
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A FORMAL MODEL FOR RISK ASSESSMENT
IN SOFTWARE PROJECTS

by

Juan Carlos Nogueira

September 2000

Thesis Advisor: Carl R. Jones

Approved for public release; distribution is unlimited.

20000920 054

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE
September 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE : A FORMAL MODEL FOR RISK ASSESSMENT IN SOFTWARE
PROJECTS

5. FUNDING NUMBERS

6. AUTHOR(S) Nogueira, Juan C.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING

AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT

The current state of the art techniques of risk assessment rely on checklists and human expertise. This thesis introduces a formal method to assess
the risk and the duration of software projects automatically. The method has been designed according the characteristics of evolutionary software
processes such as productivity, requirement volatility and complexity. The formal model based on these three indicators estimates the duration and
risk of evolutionary software processes. The approach introduces benefits in two fields: a) automation of risk assessment and, b) early estimation
method for evolutionary software processes.

14. SUBJECT TERMS
Software Engineering, Risk Assessment, Estimation Models 15. NUMBER

OF PAGES

182
16. PRICE
CODE

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20.
LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

A FORMAL MODEL FOR RISK ASSESSMENT
IN SOFTWARE PROJECTS

Juan C. Nogueira
Captain, Uruguay Navy

B.S., Universidad de la Repüblica, 1985
M.S., Universidad O.R.T., 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2000

Author: ^L 7
Juan Carlos Nosfaeira

Approved by:

Dan Boger, Chairman
Information Systems Academic Group

in

IV

ABSTRACT

The current state of the art techniques of risk assessment rely on checklists and

human expertise. This constitutes a weak approach because different people could arrive

at different conclusions from the same scenario. The difficulty on estimating the duration

of projects applying evolutionary software processes contributes to add intricacy to the

risk assessment problem. This thesis introduces a formal method to assess the risk and the
duration of software projects automatically. The method has been designed according the
characteristics of evolutionary software processes such as productivity, requirement
volatility and complexity. The formal model based on these three indicators estimates the
duration and risk of evolutionary software processes. The approach introduces benefits in

two fields: a) automation of risk assessment and, b) early estimation method for
evolutionary software processes.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. THE INMATURITY OF SOFTWARE ENGINEERING 1
B. THE ESTIMATION PROBLEM 2
C. RESEARCH QUESTIONS 4
D. GENERAL APPROACH 5
E. SOFTWARE EVOLUTION FOCUS 6
F. GENERAL RESEARCH DESIGN 7
G. ORGANIZATION OF THESIS 8

II. THEORETICAL FOUNDATION 9
A. THEORETICAL FOUNDATION FOR SOFTWARE EVOLUTION... 9

1. The Graph Model 9
2. Conflict Resolution Model 11
3. Relational Hypergraph Model 12
4. Conclusions about the Relational Hypergraph Model 12

B. THEORETICAL FOUNDATION FOR RISK MANAGEMENT 13
1. Risk and Uncertainty 13
2. Decision under Uncertainty 16
3. Subjective Probabilities and Utility Theory 17

C. SOFTWARE ENGINEERING FOUNDATIONS 20
1. Software Engineering Institute (SEI) 20
2. Hall 23
3. Charette 24
4. Jones 24
5. Karolak 27
6. Project Management Institute (PMI) 28
7. Mitre Corporation 29
8. Rockwell.... 29
9. Boehm 30
10. McFarlan 33
11. Gilb 33
12.USAF 33

D. ESTIMATION MODELS... 34
1. The COCOMO Family 35
2. Putnam 36
3. Function Points 39
4. Conclusions about COCOMO, Putnam and Function Points 41

E. MODERN PROJECT MANAGEMENT TECHNQUES: ViteProject.. 42
F. ORGANIZATIONAL THEORY 44

1. Introduction 44
2. The Edge of Chaos 47
3. Some of the Risks of Being in the Edge of Chaos 49

vn

4. The Strategic Planning Issue 51
5. Application in Software Engineering 54
6. Conclusion 56

III. CONCEPTUAL FRAMEWORK 57

IV. RESEARCH DESIGN 63

V. DEVELOPMENT OF THE MODEL 67
A. SOFTWARE METRICS 67

1. Metrics for Requirements 68
2. Metrics for Personnel 70
3. Metrics for Complexity 70

B. ESTIMATION METHODS 75
C. CONSTRUCTION OF THE MODEL AND SIMULATIONS 78

1. Finding the Complexity Metric and its Conversion to KLOC 78
2. Comparison between Putnam's and Boehm's Estimations 79
3. Search of the Relationship between Complexity (LGC)

and Development Time 80

4. Search for the Relation between Efficiency
and Development Time 80

5. Search for the Relation between Requirement's Volatility
and Development Time 83

6. Calibration of the Parameters 83
D. THE MODELS 86
E. INTEGRATION WITH THE EVOLUTIONARY SOFTWARE

PROCESS 91

VI. CONCLUSIONS 95

APPENDIX A. Formal definition of the Relational Hypergraph Model 97
APPENDIX B. Analysis with Organizational Consultant 105
APPENDIX C. Simulation Reports 117
APPENDIX D. Parameter configuration for ViteProject 121
APPENDIX E. Statistical Analysis of Simulation Outputs 131
APPENDIX F. Stochastic Dominance 145
LIST OF REFERENCES 149
INITIAL DISTRIBUTION LIST 161

vm

LIST OF FIGURES

FIGURE 2.1: REMAP MODEL 12
FIGURE 2.2: MULTIATTRIBUTE DECISION TREE 19
FIGURE 2.3: EFFORT ESTIMATED USING COCOMO AND PUTNAM MODELS 38
FIGURE 2.4: DEVELOPMENT TIME ESTIMATED USING COCOMO AND PUTNAM MODELS 39
FIGURE 2.5: PERROW'S CLASSIFICATION 45
FIGURE 3.1: THE EQUIVALENCE RELATION 60
FIGURE 3.2: CAUSAL ANALYSIS FISHBONE DIAGRAM 61
FIGURE 5. DEVOLUTION OF REQUIREMENTS 69
FIGURE 5.2: PSDL COMPLEXITY TOOL 73
FIGURE 5.3: CORRELATION BETWEEN PSDL AND LGC 74
FIGURE 5.4: CORRELATION BETWEEN ADA CODE AND LGC 74
FIGURE 5.5: WEIBULL DISTRIBUTION 78
FIGURE 5.6: CORRELATION BETWEEN DEVELOPMENT TIME AND COMPLEXITY 80
FIGURE 5.7: PATTERNS OF TIME DISTRIBUTION 82
FIGURE 5.8: SCATTER PLOTOFMODEL 1 89
FIGURE 5.9: SCATTER PLOT OF MODEL 2 89
FIGURE 5.10: SCATTER PLOT OF MODEL 3 90
FIGURE 5.11: THE EVOLUTIONARY PROTOTYPING SOFTWARE PROCESS 91
FIGURE 5.12: THE PROPOSED IMPROVEMENT 93
FIGURE 5.13: THE DEVELOPMENT LIFE CYCLE 94

IX

LIST OF TABLES

TABLE 2. l:SEFs TAXONOMY OF RISKS 22
TABLE 2.2: JONE'S TOP RISK FACTORS 25
TABLE 2.3: KAROLAK'S SCHEME 27
TABLE 2.4: BOEHM'S CLASSIFICATION 31
TABLE 2.5: USAF SCHEME FOR RISK 34
TABLE 2.6: FUNCTION POINTS CALCULATION 40
TABLE 2.7: BURTON & OBEL'S SCHEME 46
TABLE 5.1: SIMULATED SCENARIOS 83
TABLE 5.2: CONFIGURATION PARAMETERS FOR VITEPROJECT 85
TABLE 5.3: ACCURACY OF THE THREE MODELS 88

XI

xn

LIST OF ACRONYMS

CAPS Computer-Aided Prototyping System
CASE Computer-Aided Software Engineering
CMM Capability Maturity Model
COBOL Common Oriented Business Language
COCOMO Constructive Cost Model
CPM Critical Path Method
KLOC Thousands of Lines of Code
PERT Program Evaluation and Review Technique
PSDL Prototype System Description Language
RAD Rapid Application Development
SEI Software Engineering Institute

Xlll

XIV

ACKNOWLEDGMENT

First and foremost, I wish to express my sincere gratitude to the Navy of Uruguay

for sending me to this exceptional School and for all the support provided to my family

and myself.

Second, I wish to acknowledge my advisors. I wish to express my gratitude to Dr.

Carl R. Jones for leading and orienting me through this Master in Information

Technology Management, and foremost, for the confidence he showed opening the doors

for a Ph.D. in Software Engineering. I also wish to thank LtCol Terrance Brady, who

was my first instructor, for his advice and support.

Finally, I wish to express thanks to Dr. Lawrence Putnam. Dr. Putnam, a former

NPS alumni and author of the famous model, gave me all his support when I was in the

middle of confusion. I sent a mail to his company trying to clarify ideas, without too

much hope of response, I must confess. Surprisingly, I did receive a response. And it was

from Dr. Putnam himself! The clear insights and experience from someone who really

knows about models were very helpful. And again for my surprise, a week later I

received a box with his books and papers. Beau geste, Dr. Putnam. I will be always

thankful.

xv

XVI

I. INTRODUCTION

A. THE INMATURITY OF SOFTWARE ENGINEERING

"Despite 50 years of progress, the software industry remains years-perhaps

decades-short of the mature engineering discipline needed to meet the demands of an

information-age society." (Gibbs, 1994). Many researches have treated the problem using

different approaches: formal methods, prototyping, software processes, etc. However, in

the author's opinion, this assertion remains true today.

Experience suggests that building and integrating software by mechanically

processable formal models leads to cheaper, faster and more reliable products (Luqi,

1997). Software development processes such the Hypergraph model for software

evolution (Luqi, 1997), or the Spiral model (Boehm, 1988), have improved the state of

the art. However, in the author's opinion they share a common weakness: risk assessment.

In the software evolution domain, risk assessment has not been addressed as part

of the graph model. In the various enhancements and extensions, the graph model does

not include risk assessment steps, hence risk management remains as a human-dependent

activity that requires expertise.

On the evaluation of the spiral model, one of the difficulties mentioned by Boehm

was: "Relying on risk-assessment expertise. The spiral model places a great deal of

reliance on the ability of software developers to identify and manage sources of project

risk." "...Another concern is that a risk-driven specification will also be people-

dependent." (Boehm, 1988).

What is the reason that software engineering does not reach the maturity level of

other forms of engineering? Maybe is easier to find the answer looking at the differences

between software engineering and other disciplines. In the author's opinion, one

difference is that software engineering is highly dependent on people. A second

difference is that software engineering is younger (forty years versus centuries for civil

engineering). The third difference is that the product, software, is intangible. It is difficult

to estimate its real value until late in the development process. All these differences make

software development projects have a great deal of uncertainty.

Many researchers (Boehm, 1898), (Charette, 1997), (Gilb, 1988), (Hall, 1997),

(Jones, 1994), (Karolak, 1996), (SEI, 1996) have addressed the problem of risk

assessment following the perspective of the traditional disciplines. The tools for risk

assessment are guides of practices, checklists, taxonomies of risk factors and few metrics.

All these methods work fine IF there is a human educated on risk assessment AND with

enough experience. Such resources are very scarce. Maybe that is the reason why

software engineering is still immature.

B. THE ESTIMATION PROBLEM

Since the creation of the first computers, tremendous progress has been made in

terms of hardware. The general-purpose computer has been especially important because

of its versatility. The stored program allows specialized applications created by software.

These applications have grown in size and complexity covering all kinds of human

activities. Unfortunately, the ability to build software has not followed the same rate of

progress (Hall, 1997. pp xv). Gerald Weinberg said "to call software development an

infant discipline is not a moral judgement, but merely a colorful way to summarize its

short history and present existence." (Gilb, 1977. Foreword). Software engineering is the

discipline that focuses on the planning, developing and maintaining software products. It

seems that the creation of software imposes different challenges than the creation of

hardware. In the previous section was discussed the author's hypotheses about this issue.

As the range of computer applications has grown as well as their complexity, the

cost of software development has become the main cost component on a system.

Literature shows that in the industry as well as in government environments, schedule

and cost overruns are tragically common (Luqi, 1989). Developing software is still a

high-risk activity. Despite the advances in technology and computer-aided software

engineering (CASE) tools, little progress has been done in improving the management of

software development projects (Hall, 1997). The acquisition and development

communities, both governmental and industrial, lack a systematic way of identifying,

communicating and resolving technical uncertainty (SEI, 1996). Research shows that 45

percent of all the causes for delayed software deliveries are related to organizational

issues (vanGenuchten, 1991). Software is also the main cost contribution factor in

computer systems (Boehm, 1981), (Karolak, 1996).

This research is focused on software project risk assessment, in other words, the

prediction of success of the project. The only way to evaluate the degree of success of a

project is: a) to compare the planned and actual schedules; b) to compare the planned and

actual costs; and c) to compare the planned and actual product characteristics. An

emergent branch of software engineering has focused on this last part: software

reliability. However, the author's thinks that more emphasis must be done in the first two.

It is know that in software development, manpower and time are not

interchangeable (Brooks, 1974). It is also know that productivity rates are highly variable,

and that function and size are highly correlated with errors and duration of the project

(Putnam, 1980). It is also learned that during the requirements phase the majority and

most costly errors are introduced (Boehm 1981). It is also known that life cycle

manpower patterns follow heavy tailed curves (Putnam, 1980, 1992, 1996, 1997),

(Boehm, 1981). It is known some practices and heuristics that improve the development

process (Humphrey, 1989). There exist CASE tools that improve the productivity. There

exist macro models able to estimate with different degree of success the effort and

duration of software projects (Albrecht, 1979), (Boehm, 1981, 2000), (Putnam, 1997).

What it is not available is a model of the internal phenomenology of the software life

cycle. Without such knowledge, risk assessment is almost impossible.

C. RESEARCH QUESTIONS

The software process is a set of activities with dependency relationships that occur

over a certain period of time. From this point of view software projects do not differ from

any other type project. At the beginning there exists a great deal of uncertainty that can be

reduced to two types: time and money. Other intermediate metrics such as performance,

rate of errors and effort can be converted to time and cost. As time goes by the level of

uncertainty usually decreases as consequence of the availability of information.

Unfortunately, the main resources (time and budget) also experiment the same behavior.

So managers, as decision-makers, must choose between making early decisions with lots

of uncertainty or postponing decisions trading time for information. This leads to the

basic research question addressed in this thesis:

What are the early automatically collectable measures from the software

process that describe project risk?

The concept of early measure is emphatized because recognizing the risks in the

early phases increases the probability of contingency, improving consequently the

competitive advantage. The research focuses on automatically collectable measures

because risk identification should not impose significant extra workload and must be as

objective as possible. And this leads to the second question:

How can these measures be related in order to assess project risk?

D. GENERAL APPROACH

Despite the improvements introduced in software processes and automated tools,

risk assessment for software projects remains as an unstructured problem dependent on

human expertise (Bohem, 1988), (Hall, 1997). It is the author's intention to find ways to

transform risk assessment into a structured problem. Solving the risk assessment problem

with indicators measured on the early phases would constitute a great benefit to software

engineering. It is at that moment that changes can be done with less impact on the budget

and schedule. The requirements phase is the crucial stage to assess risk because: a) it has

a huge amount of human interaction and communication that can be misunderstood and

be source of errors; b) errors introduced at this phase are very expensive to fix; c) the

existence of generation tools diminishes the errors in the development process if the

requirements are correct; and d) requirements evolve introducing changes and

maintenance along the whole life cycle.

It is necessary to construct a model to assess risk based on measurable objective

parameters that can be automatically collected and analyzed. One of the goals of this

research is to integrate a risk assessment model to the previous research in Computer-

Aided Prototyping System (CAPS) at the Naval Postgraduate School. This integration is

required in order to capture metrics automatically and to provide project managers with a

more complete tool.

Software risk management includes the identification, assessment and mitigation

of risks. It requires dealing with complexity and to assign scarce resources in the most

efficient way. The scope of this thesis is limited to risk identification and risk assessment.

In the author's opinion, it is in these two phases where an automated method can provide

major impact.

This thesis studies project risk assessment decomposing it into three classes:

resource risk assessment, process risk assessment, and product risk assessment. There

exists a dependency between these classes of risk. The successful use of the resources

depends on their own characteristics and in the success of the product and the process.

The success of the process depends on itself as well as in the success of the resources and

the product. And the success of the product depends on itself and on the success of the

resources applied to the process. The three classes have strong coupling and in seem to be

different facets of a same entity: the project.

The measure of project risk can be viewed as the probability of developing the

required product on the planned schedule and within the budget with the available

software process and resources. The hypothesis is that the probability distribution is a

heavy-tailed distribution probably from the Weibull family.

It is necessary to create a set of metrics customized to the characteristics of

software evolution including complexity, requirements stability, personnel stability and

productivity. The details of the model and the metrics are described on Chapter III. The

approach has a fundamental implication: in order to assess risk it is necessary to assess

duration and effort.

E. SOFTWARE EVOLUTION FOCUS

Studies have shown that early parts of the system development cycle such as

requirements and design specifications are especially prone to errors (Boehm, 1981).

Problems originating in the early stages often have a lasting influence on the reliability,

safety and cost of the system. Evolutionary prototyping offers an iterative approach to

requirements engineering to alleviate the problems of uncertainty, ambiguity and

inconsistency inherent in the process. Moreover, prototyping can improve the capture of

change in requirements and assumptions during the development process. This effect is

particularly observed in projects involving multiple stakeholders with different points of

view(Ramesh, 1995), (Conklin, 1988).

Evolutionary driven CASE tools for computer-aided prototyping provide logical

assessment of the consistency and clarity of requirements and specifications. The use of

prototypes facilitates the requirement phase in any type of software projects. Particularly,

in real-time applications where severe time constraints impose more challenges, the use

of prototypes facilitates to describe the requirements in a clear, precise, consistent and

executable format. Prototypes can be applied to demonstrate system scenarios to the

affected parties as a way to: a) collect criticisms and feedback that are sources for new

requirements; b) early detection of deviations from users' expectations; c) trace the

evolution of the requirements; and d) improve the communication and integration of the

users and the development personnel.

The benefits of prototyping are unquestionable. All modern life cycle models such

as Bohem's Spiral, Luqi's Graph Model, Rapid Application Development (RAD), etc. are

based on prototyping. Experience suggests that building and integrating software by

mechanically processable formal models leads to cheaper, faster and more reliable

products (Luqi, 1997). Also, all software development processes mentioned before rely

on human expertise to identify, assess, and control risk.

A second concern in the use of prototypes is that they impose a problem to project

planning because the uncertain number of cycles required in constructing the product. For

the most part the project management and estimation techniques are based on linear

layouts of activities. Critical Path Method (CPM) and Program Evaluation Review

Technique (PERT) are not well suited to deal with cycles because they are based on

acyclic digraphs.

F. GENERAL RESEARCH DESIGN

The research design of this thesis is based on two approaches. First, an extended

literature research will provide the basis for background and theoretical foundations

covering the following topics: software engineering, software reliability, decision theory,

statistics, probability, project management, and risk management.

Second, the problem of risk assessment will be analyzed using causal analysis to

identify the risk factors. A model will be constructed, calibrated and validated in three

ways: a) internal consistency proved by mathematics and statistics; b) black box

validation by comparing its outputs in duration and effort with other available models;

and c) black box validation against simulations conducted with ViteProject.

G. ORGANIZATION OF THESIS

This thesis is organized in six chapters. The introduction has been covered in the

present chapter. Chapter II presents the theoretical foundation and background on

software engineering, software evolution and risk management. The conceptual

framework of the model is developed on Chapter III. Chapters IV and V present the

detailed research design and findings respectively. Finally, in Chapter VI discusses the

conclusions and future research.

II. THEORETICAL FOUNDATION

A. THEORETICAL FOUNDATION FOR SOFTWARE EVOLUTION

1. The Graph Model

The graph model is a data graph model for evolution that records dependencies

and supports automatic project planning, scheduling, and configuration management. The

evolution process is represented by a graph that at any given moment models the current

and the past state of the software system.

Evolutionary prototyping offers an iterative approach to requirement engineering

to alleviate the problems of uncertainty, ambiguity and inconsistency inherent in the

process. Moreover, prototyping can improve the capture of change in requirements and

assumptions during the development process. This effect is particularly notorious in

projects involving multiple stakeholders with different points of view.

Computer Aided Prototyping System (CAPS) is a CASE tool that provides a

collection of techniques and languages for computer-aided prototyping, including logical

assessment of the consistency and clarity of requirements and specifications. CAPS

methods involve the use of real-time constraints and abstract modeling to describe the

requirements in a clear, precise, consistent and executable format. Prototypes can be

applied to demonstrate system scenarios to the affected parties as a way to: a) collect

criticisms and feedback that are sources for new requirements; b) early detection of

deviations from users' expectations; c) trace the evolution of the requirements; and d)

improve the communication and integration of the users and the development personnel.

Real time systems present special difficulties in terms of requirement engineering.

Some requirements are difficult for the user to provide and for the analysts difficult to

determine. The best way to discover these hidden requirements is via prototyping. CAPS

is a tool specially suited for this task. It has a graphical, easy to understand, interface that

maps to a specification language, which in turns generates Ada code. The main

components of CAPS are:

(a) The prototype system description language (PSDL).

(b) User interface based on a graphic editor with a palette of objects that include

operators, inputs, outputs, data flows and operator loops. A search engine helps the

designer to find reusable components.

(c) The software database system provides a repository for reusable PSDL components.

(d) The execution support system consists of a translator, scheduling mechanisms,

execution monitors, and a debugger.

The prototyping process consists of prototype construction and modification

(evolution) based on evolving requirements and code generation. Both construction and

modification are exploratory activities with a common target: to satisfy multiple users

with different and often conflicting points of view. Requirement engineering is a

consensus driven activity in which mechanisms for conflict resolution and traceability of

requirement evolution represent critical success factors.

PSDL is based on data flow under real-time constraints and uses an enhanced data

flow diagram that includes non-procedural control and timing constraints. PSDL serves

as an executable prototyping language at a specification or design level. The user

interface contains a graphic editor, a browser to view reusable components, and an expert

system that provides the capability to generate English text descriptions of PSDL

specifications.

10

The software database system provides the repository facilities for reusable

components, as well as control of versions. The execution support system consists of a

translator that generates code that binds the reusable components, scheduling

mechanisms, and a debugger.

The model views a software evolution process as a partially ordered set of steps.

Steps represent activities required to produce the system. A step has states that reflect the

dynamic progression of the activity from the moment that it is proposed to the moment it

is completed or abandoned.

The graph model has experienced its own evolution process. (Luqi, 1989)

introduced the primitive version of the model. (Mostov, 1989), (Mostov, 1990) and (Luqi,

1990) refined and elaborated the model. In (Luqi, 1990), the notion of hypergraph was

introduced to realize automated software evolution in multidimensional phases. Further

refinements including scheduling and team coordination, were introduced by (Badr,

1993). Conflict resolution of requirements and criticisms introduced by (Ramesh, 1992)

and (Ibrahim, 1996). (Luqi, 1997) extended the graph model to a hypergraph that

improved the traceability of dependencies and introduced the concept of hyper-

requirements. Finally, Harn extended the model to a relational hypergraph model (Harn,

1998a, Harn, 1998b, Harn, 1998c).

2. Conflict Resolution Model

Evolutionary software development requires a way to solve the conflicts that

could occur between various users' points of view. System design must follow a

deliberation process that involves the resolution of issues or concerns that must be

addressed to satisfy user requirements. (Conklin, 1988) introduced IBIS model and

(Ramesh, 1992) extended it addressing the following concepts:

11

—^ Requirement-

-4Bt&
generalizes replaces

"qualities

generalizes depends on

generates

creates . ^
removes I ♦ depends c
modifies '

(1) Requirements represent the goals to be satisfied

by the design process.

(2) Issues are questions or concerns that different

stakeholders introduce.

(3) Positions are alternatives that address an issue.

(4) Arguments either support or object a position.

(5) Decisions represent the resolution of issues and

lead to constraints.

Figure 2.1: Ramesh's model

3. Relational Hypergraph Model

The relational hypergraph model was introduced in (Harn, 1999e) is a formal

model for software evolution that incorporates the features of the previous graph models.

The hypergraph model (Luqi, 1997) represents the evolution history, as well as the plan

for the future, in a hypergraph. A hypergraph is a directed graph with hyperedges, which

may have multiple input and output nodes. The formal definition of the relational

hypergraph model is presented on Appendix A.

4. Conclusions about the Relational Hypergraph Model

The precedent definitions constitute the formal specification of the relational

hypergraph model. It constitutes a framework to support software evolution processes.

However, risk assessment has been omitted as part of the specification. This issue creates

a human dependency in risk assessment. Despite this limitation, the model can be

extended to support automated risk assessment.

12

B. THEORETICAL FOUNDATION FOR RISK MANAGEMENT

1. Risk and Uncertainty

Developing software is still a high-risk activity. Despite the advances in

technology and CASE tools, little progress has been done in improving the management

of software development projects. The acquisition and development communities, both

governmental and industrial, lack of systematic way of identifying, communicating and

resolving technical uncertainty (SEI, 1996). Research shows that 45 percent of all the

causes for delayed software deliveries are related to organization issues (vanGenuchten,

1991). Software is also the main cost contribution factor in computer systems (Boehm,

1981), (Karolak, 1996). Besides the improvements in tools and methodologies, there is

not evidence of success in moving from the idea to the product. A study published by the

Stadish Group reveals that the number of software projects that fail has dropped from

40% in 1997 to 26%. However, the percentage of projects with costs and schedule

overruns grow up from 33% in 1997 to 46% (Reel, 1999).

Part of the problem is the misinterpretation the importance of risk management. It

is usually viewed as an extra activity layered on the assigned work, or worst, as an

outside activity that is not part of the software process (Hall, 1997), (Karolak, 1996).

A second source of the problem is the lack of tools needed to perform risk

management (Karolak, 1996). The main reason for this lack of tools is that risk

assessment is apparently an unstructured problem. To define unstructured problems it is

necessary to explain previously structured processes. Structured processes involve routine

and repetitive problems for which a least one solution exists. Unstructured processes

require decision-making based on a three-phase method (intelligence, design, choice)

(Turban & Aronson, 1998). An unstructured problem is one in which none of the three

phases is structured. Risk management is highly biased by manager's perceptions and

characteristics that are difficult to represent in an algorithm. Depending on the decision-

13

maker's risk behavior, he/she can opt to choose early with lack of information, or to

postpone the decision gaining time to invest in obtaining information, but loosing

opportunity control.

The third source of the problem is the confusion created by the informal use of

terms. Often, the software engineering community (and most part of the project

management community (Wideman, 1992)), use the term "risk" in a very lax sense.

Generally,' software risk is viewed as a measure of the likelihood of a loss or an

unsatisfactory outcome affecting the software from different points of view: project,

process and product (Hall, 1997), (SEI, 1996). This definition of risk is misleading

because confounds the concepts of risk and uncertainty. In general, most part of the

decision making during the software process is under uncertainty rather than under risk.

Let discuss briefly the decision-making environments in order to clarify these concepts.

There are three possible situations in any decision context: certainty, risk and

uncertainty. Decisions under certainty occur when the decision-maker knows exactly the

consequence of each alternative or decision choice. In this case the decision process is

very simple: the alternative with the best outcome is chosen by examination. However,

this is a rare situation.

Usually the decision-maker does not have a complete picture of the future, but

knows the probability of occurrence of the various states of nature. In this case the

decision-making is under risk, and many techniques can be addressed to support the

decision: expected monetary value, expected value of perfect information, opportunity

loss, sensitivity analysis among others (Render, 1997). All these methods rely on the

huge hypothesis of knowing the exact probability for each scenario.

A completely different situation is when the decision-maker does not have the

precise information about the probabilities of occurrence of the different states of nature,

or the list of the states. In this case it is impossible to assess the outcome, hence a

14

completely different set of techniques must be applied to support the decision-making

process: maximin, minimax, Laplace, Hurwicz, or minimax regret (Render, 1997).

The distinction between these two concepts is important for decision making

because it leads to drastically different approaches to risk assessment:

(a) Assessing software risk using a probabilistic approach usually measuring reliability.

In this case the decision-making is under risk. However, even using probabilistic

models there exist a component of uncertainty created by uncertainties in parameter

values, uncertainties in modeling, and ambiguities in the degree of completeness

(Bayburt, 1989).

• Ambiguities in parameter values are consequence of the need to estimate

parameter values from data. The ambiguities arise because the available data is

usually incomplete and because the analyst makes inferences from a state of

incomplete knowledge.

• Deficiencies of model in representing the reality.

• Completeness ambiguities are introduced by the inability of the analyst in

evaluating exhaustively all contributions to risk.

The treatment of uncertainties in risk analysis involves the evaluation of uncertainties

in the input, the propagation through each part of the risk analysis, the combination of

the uncertainties in the output, the display and interpretation of risk estimates, and the

treatment of uncertainties in decision-making.

(b) Assessing software risk using a framework of practices and guidelines (SEI, 1996). In

this case there is not a probabilistic model to rely on, hence the decision-making is

under uncertainty.

It follows, as it was previously stated, that the largest part of the decisions made

by software-managers are under uncertainty. Two categories of research attacked the

issue from different angles. First, probabilistic approaches have been made with success

to assess the reliability of the product (Lyu, 1995), (Schneidewind, 1975), (Musa, 1998).

15

However, these approaches assess software reliability when it is too late for software

engineering purposes, because the product is complete or almost complete.

A second category of research has addressed the problem from a different

perspective, trying to assess the risk in parallel with the development process. However,

in this case the approach is less rigorous and unstructured, basically the proposals are lists

of practices and checklists (SEI, 1996), (Hall, 1997) or scoring techniques (Karolak,

1996). Paradoxically, SEI defines software technical risk as a measure of the probability

and severity of adverse effects in the development of software that does not meet its

intended functions and performance requirements (SEI, 1996). However, the term

"probability" in this case is misleading, because the probability is unknown. There is a

third category of research focused mainly on estimation of effort and time that has

characteristics of both previous groups. This approach tangentially related to risk and will

be discussed in Section E.

The fourth source of confusion is introduced when the term "risk" is used to

describe different things. It is not only erroneously used as a synonym of uncertainty as

stated before, but it is also used as a synonym of "threat" (SEI, 1996), (Hall, 1997),

(Karolak, 1996). In this research the term risk is reserved to indicate the probabilistic

outcome of a succession of states of nature, and the term "threat" is used to identify the

dangers that can occur.

2. Decision under Uncertainty

Very frequently decision-makers make decisions using incomplete information.

Particularly, the problem of decision-making under uncertainty involves choosing among

a set of alternatives under the following conditions:

• The outcome of each course of action depends on several possible states of

nature.

• The outcome for each alternative under each state of nature is known.

16

• The probability of occurrence of each state of nature is unknown.

When the probability of occurrence of each state of nature is unknown or cannot

be assessed, then the following five techniques can be applied:

• Maximax criterion. This criterion implies an optimistic vision of the future.

The method consists in choosing the alternative that maximizes the maximum

outcome for every alternative.

• Maximin criterion. This method finds the alternative that maximizes the

minimum outcome. It is a pessimistic approach.

• Laplace criterion. This method uses equal probabilities for each state of nature

and then computes the outcomes for each alternative, choosing the higher

outcome.

• Criterion of realism. This method is also known as Hurwicz criterion. It is a

compromise between an optimistic and a pessimistic decision. The decision-

maker must choose a coefficient of realism a between 0 and 1. This

coefficient is applied to the favorable state of nature outcome, and (1 - a) is

applied to the outcome of the unfavorable state of nature. The alternative with

the higher weighted sum is chosen.

• Minimax criterion. This method is based on opportunity loss. It finds the

alternative that minimizes the maximum opportunity loss within the

alternatives.

3. Subjective Probabilities and Utility Theory

Another way to deal with uncertainty situations is to use a subjective estimation of

the probabilities of occurrence of the different states of nature. This approach is easy to

implement but requires a great deal of experience to judge the success probability of each

alternative. Group consensus techniques, like Delphi method (Dalkey & Helmer, 1963),

are usually very helpful in such situations (Marshall, 1995).

,17

Decisions trees are based on the expected monetary value (EMV) could lead to

bad decisions in many cases. There are many situations in which a linear payoff function

is unable to represent the behavior of people (Marshall, 1995). These are the two reasons

to study utility theory. In practice, historical data can be analyzed to obtain an objective

estimate of the outcomes. But in situations, especially those that incorporate management

decisions, historical data could be not relevant. The judgments and beliefs of the

decision-makers may be more important that estimating relevant probabilities (Marshall,

1995). Before describing utility theory in detail, two definitions are required:

"The indifference probability for a decision problem between a risky
venture and a riskless alternative with given known results is that
probability of success in the risky venture for which the decision-maker is
indifferent to the two alternatives." (Marshall, 1995).

"The certainty equivalent to a risky venture is the least amount the
decision-maker would have to obtain for certain by choosing the riskless
alternative." (Marshall, 1995).

In many situations the indifference probability and the certainty equivalent would

have different values for different people. The differences reflect various behaviors

toward risk. Utility assessment assigns the worst outcome a utility of 0 and the best

outcome a utility of 1. All other outcomes have a utility value between 0 and 1. When

two or more alternatives are equally attractive (or unattractive), that is the decision-maker

is indifferent, then their utility value should be the same. The problem is to find the

probability that makes the decision-maker indifferent.

Until now, it was considered decision-making with only one attribute. A more

general scenario would have many attributes for measuring the decision. Often, these

attributes conflict with each other, hence optimizing one results in suboptimizing others.

Thus, it is necessary to use trade-offs to resolve such conflicts. A common approach to

solving multiattribute problems is to combine the different measures into a single

numeric measure. The problem can then be treated as single attribute problem (Marshall,

1995). In many decision problems it is very difficult to establish measurement criteria.

18

Particularly, when the decisions are not at the operational level. At the operational level,

decisions can be measured in terms of lines of code or function points. However, at the

project management level, the effectiveness of a decision could be measured in terms of

quality, stability, marketing impact, etc. In such cases, multiattribute utility theory should

be applied (Fig. 2.2).

OUTCOMES

A1 A2 An

Figure 2.2: Multiattribute Decision Tree

The decision-maker must provide his estimation of return for each attribute

related to the decision, as a vector R = (Rl, R2, ..., Rn). The decision-maker must

introduce also his preferences as a weight vector W = (Wl, W2, ..., Wn). The outcomes

of each attribute are given by Ai, such:

Ai - Wi * Ri
n

where 2^ Wi = 1
i = 0

The outcome for each alternative is then calculated as a function of the sum of the

attributes (Al, A2,..., An) converted to a value between 0 and 1, where 1 is given to the

best outcome and 0 to the worst.

19

C. SOFTWARE ENGINEERING FOUNDATIONS

The literature and research about risk and risk management is very wide. This

research focuses on a partition that comprehends operational research, project

management, software engineering and software reliability. Operational research provides

the theoretical foundation to describe and analyze risk. Project management, software

engineering and software reliability apply the theory. This research narrows the problem

to software, specifically to the software engineering domain.

Taxonomies are very useful. They facilitate the understanding of complexity by

partitioning the problem in disjoint pieces that are simpler. The review of the literature

shows two different schools of thinking:

(1) The group that studies the problem of software risk from the point of view

of the development process. This group follows a forward approach

managing the risk in parallel with the development process. The caveat of

many of these approaches is that they are not formal and their success

mainly depends on human expertise.

(2) The group that studies the problem of software risk from the point of view

of reliability. This group follows post mortem approach, studying the

product created and inferring its future behavior. This category is strongly

supported by statistics. However, from the point of view of software

engineering, it has less impact because the findings arrive too late to make

changes in the product without incurring in huge costs.

1. Software Engineering Institute (SEI)

The Software Engineering Institute (SEI), at Carnegie Mellon, relies on

improving the process as a way to improve the products and diminish risks. This

philosophy is particularly clear in a guideline created as a request of the USAF by SEI

20

and Mitre Corporation (Humphrey, 1987). The document describes a method to assess the

software engineering capabilities of contractors. The guideline stated that the quality of

the product depends on the quality of the process, which depends on the technology used

to support it, which depends on the maturity level of the organization. Hence, by

transitivity, the quality of the product depends on the maturity level of the organization.

Consequently, assessing the maturity of the organization it is possible to estimate the

attributes of the product

The SEI proposes a three dimensional vision of risk management process

composed by (SEI, 1996):

(a) Temporal dimension that includes the micro perspective, that is from the

point of view of the project, and the macro perspective that covers the

complete life cycle.

(b) Methodological dimension that includes practices (software risk

evaluation (SRE), continuous risk management (CRM) and team risk

management (TRM)), and basic constructs including the SEI's risk

taxonomy.

(c) Human dimension that consider the perspectives of the individual, the

team, the management and the stakeholder.

The SEI approach to risk assessment uses a risk taxonomy questionnaire to ensure

that all risk areas are systematically addressed. The complete taxonomy can be reached

on (SEI96). Table 2.1 presents a brief summary to show the characteristics analyzed.

21

Table 2.1: SEI's taxonomy of risks (SEI, 1996)

1. Product engineering
1.1. Requirements (stability, completeness, clarity, validity, feasibility, precedent, and scale).
1.2. Design (functionality, interfaces, performance, testability, hardware constraints, and

non-developmental software).
1.3. Code and unit test (feasibility, testing, coding/implementation).
1.4. Integration and test (environment, product, system).
1.5. Engineering specialties (maintainability, reliability, safety, security, human factors, and

specifications).
2. Development environment
2.1. Development process (formality, suitability, process control, familiarity, and product

control).
2.2. Development system (capacity, suitability, usability, familiarity, reliability, system

support, and deliverability).
2.3. Management process (planning, project organization, management experience, program

interfaces).
2.4. Management methods (monitoring, personnel management, quality assurance, and

configuration management).
2.5. Work environment (quality attitude, cooperation, communication, and morale).
3. Program constraints
3.1. Resources (schedule, staff, budget, and facilities).
3.2. Contract (type of contract, restrictions, and dependencies).
3.3. Program interfaces (customer, associate contractors, subcontractors, prime contractor,

corporate management, vendors, and politics).

The SEI approach presents some problems:

• Many of the items covered by this taxonomy are highly subjective and

difficult to express in terms of equations. How to measure politics? How to

measure with confidence the morale? The only way is to use qualitative

measures that have inherent subjectivity.

• Many of the items are covered more than once. As instance human factors,

work environment and budget seem to be highly related.

• The guidelines are sets of heuristics and good practices which impact, on the

success of the project, depends on human experience.

Consequently, this approach relies on the ability of the human using the checklist.

It is required an expert to assess the risk.

22

2. Hall

Elaine Hall's method for managing risk (Hall, 1997) is derived from the SEI

model. In her view four major critical success factors are responsible for risk

management: People, Process, Infrastructure, and Implementation (P2I2).

• People participate in risk management by implementing the processes

according to the plans, by detecting problems, communicating issues and

introducing uncertainties in their work. People at all levels need to be

educated, involved, and motivated in risk management.

• Process must transform uncertainties into risks. The transformation is based

on identifying the sources of risk, analyzing the risk based on some

established criteria, planning alternative strategies for risk resolution, tracking

the risk metrics, and resolving the risk triggering action plans. Unfortunately,

how to do the transformation (that is the key problem), is not addressed in

(Hall, 1997) nor in (SEI, 1996).

• Infrastructure establishes the culture that supports risk management.

• Implementation is the execution of the plans, assigning responsibilities,

authorities, tools and methods.

On Hall's method, checklists based on SEI taxonomy, work breakdown

decomposition, meetings, reviews, and surveys are the tools for risk identification. All

these tools are human dependant and highly unstructured. Hence, the method is very

difficult to automate. However, Hall emphasizes the use of metrics to identify occurrence

of risks such as progress in milestones, size (LOC), change (requirements added,

changed, deleted), quality (number of defects), staff (turnover) and risk exposure. Risk

analysis, risk planning, risk tracking and risk resolution are based on planning, and a set

of resolution techniques and tools inherited from SEI's model. Hall's approach has the

same problems of SEI's model.

23

3. Charette

(Charette, 1997) introduced the concept of risk management in maintenance. The

author states that during maintenance, risk management is more difficult than during

development. First, maintenance projects provide more opportunities for risk and less

freedom to mitigate it as a consequence of the previous version of the system. Second, it

involves more attention to customer related issues. The approach is based on uses SEI's

taxonomy as the tool to identify treats and SEI's software risk evaluation process to assess

the risk. Charette's approach has the same problems that previously addressed about SEI's

model. The method relies on human experience.

4. Jones

During the 60's and the 70's, IBM have focused significantly on software

processes. Many technologies were invented in IBM's laboratories: HIPO diagrams, joint

application design, formal inspections, structured walkthroughs, integrated cost and

estimation tools, and formal specifications. It is significant also that CMM has

characteristics that can be traced back to IBM when Humphrey was at IBM. Neither

SEI's CMM or Software Productivity Research (SPR) (Jones, 1994) addresses how to

solve the problems of estimation. SPR is a software process introduced by Capers Jones

that has some very similar characteristics with CMM. Jones and Humphrey were working

at IBM during the seventies, so it is not surprising that both models have common

characteristics. As an example the five-level scale of CMM correspond to the five-scale

of SPR. (Jones, 1994) observed those significant risks are not the same across all

software domains. He introduced six categories of software projects with different kinds

of risks. Table 2.2 shows the percentage of projects at risk for each category. Note that

the table is ordered showing on the top the risk factors more common for all the projects

categories.

24

Table 2.2: Jone's top risk factors (Jones. 1994)

Risk factor MIS Embedded COTS Military Outsource End-user

Schedule

Creeping user requirements

Excessive paperwork

§;|!§|%:sf

65%

80%

50%

70% 50%

45% 65%

75%

70% 45%

60% 90%

Cost estimates iii^iis 65%

Low productivity 85%

inadequate documentation 70%

High maintenance costs 60%

Inadequate configuration contra! 50%

Friction between personnel

Acceptance criteria

Maintenance problems

Redundant applications

Competitors 45%

Cancellation 35%

Litigation expense 30%

j Legai ownership of deliverables 20%

50%

30% 20%

50%

50%

are:

Jones stated that the ten most serious risk factors observed in the SPR assessments

(1) Inaccurate metrics. The generalized use of LOC as a productivity metric

introduces errors because the differences in the languages and

programming styles. Counting LOC does not address the complexity

involved in recursion nor object-oriented paradigm. LOC is very difficult

to estimate during the requirements. Albrecht addressed this problem with

the introduction of function points. However, recently Kitchenham,

25

Kemerer and others have introduced some criticisms to this metric. This

issue will be discussed on Chapter III.

(2) Inadequate measurement. Data collection is not always correctly done,

even in the case of cost collection. One major leak in terms of cost is the

work of end users.

(3) Time pressure introduced by irrational schedules or by continuously

changing requirements. This second factor is more intense as the

complexity of the systems grows. Projects with more than 1000 function

points are most likely to experience this problem.

(4) Management weaknesses due to lack of education in estimation, planning,

measuring and assessment.

(5) Inaccuracies in cost estimation. Despite the numerous commercial

software tools available, the use of estimation tools is not generalized.

(6) Naive belief that moving to a new technology will create improvements in

productivity or quality.

(7) Late requirements. Even with the availability methodologies like

prototyping, JAD or QFD, and metrics like function points or feature

points, which permit to understand the impact of changes, late

requirements continue to be a major threat.

(8) Low quality. The current average of defects per function point in U.S. is 5

defects per function point.

(9) Low productivity. The current U.S. average for military projects is about 3

function points per man-month. For MIS the productivity is about 8

function points per man-month.

(10) Cancellation of projects is directly proportional to their size. This

particularly critical above 10,000 function points or 1 million LOC.

The contribution of Jones reveals some common threats characteristics of

different types of software projects. It is particularly significant the impact of paperwork

and low productivity in DoD projects. The caveat of this work is that it does not provide a

26

method to manage risk relying on the experience of the project manager to make the right

decisions.

5. Karolak

(Karolak. 1996) introduced a classification scheme that divides the risk in three

software-risk elements: Technical Cost and Schedule. This model uses subjective

Bayesian probability approach to assess software risks. Each of the three software risk

elements are influenced by ten risk factors according with Table 2.3:

Table 2.3: Karolak's scheme (Karolak, 1996)

Software Risk Element

Software Technical Cost Schedule

Risk Factor

Organization LOW HIGH HIGH

[Estimation LOW HIGH HIGH

Monitoring MEDIUM HIGH HIGH

: Methodology ~
■

'" MEDIUM' "' HIGH HIGH" "

tools MEDIUM MEDIUM MEDIUM

Risk culture HIGH MEDIUM MEDIUM

Usability HIGH ' LOW LOW

Correctness HIGH LOW LOW

Reliability HIGH LOW LOW

Personnel HIGH HIGH HIGH

(a) "Organization" addresses risks associated with tine maturity of the organization structure,
functions, management and communications.

<b) "Estimation" addresses the risks associated with inaccuracies in estimating resources,
schedules and costs.

(c) "Monitoring" refers to risks associated with identifying problems.
(d) "Methodology" addresses the .risks associated with the lack of forma! methodology and

standards.
(e) 'Tools" refers to the risks associated with the development tools.
(f) "Risk culture" addresses the characteristics of the management decision-making style.
(g) "Usability" refers to risks associated to the software product after it is delivered.
(h) "Correctness" addresses to the risks associated with compliance with requirements ater the

delivery.

27

(i) "Reliability" refers to the risks of failures after the delivery.
(j) "Personnel" includes the risks associated with the knowledge and skills of the development

team.

The key element to identify and measure risks on Karolak's approach is a

questionnaire used to evaluate the risk factors (81 questions: organization 8, estimation 7,

monitoring 7, methodology 7, tools 9, risk culture 11, usability 6, correctness 9,

reliability 12, and personnel 12). The answer for each question in a number between 0

and 1, where 0 represents none and 1 represents all. The main contribution of this model

is that it can be automated; indeed Karolak developed a tool called SERIM (Software

Engineering Risk Model). However, the problem with this approach is that even though

the tool provides support, human experience is still required as the key factor to identify

risks.

6. Project Management Institute (PMI)

The Project Management institute (PMI) introduced a methodology for risk

management (Wideman, 1992) generalized for any kind of projects. The method is based

on four phases: risk identification, risk assessment, risk response, and documentation.

Risk identification follows an informal approach based on taxonomies, expert's opinions

and workgroup techniques. The assessment phase may range from subjective evaluation

to the use of metrics. This phase includes also the analysis of impact. On this model there

are two planning activities: response planning, and contingency planning; and three'

typical risk response strategies: avoidance, deflection, and absorption. PMI uses the term

risk to denote two different concepts: the probability of occurrence of a threat and the

threat itself. Another terminology issue in this approach is the use of the term risk in

scenarios which decisions are made under uncertainty rather than risk. The approach is

too general to be useful in software engineering.

28

7. Mitre Corporation

Mitre Corporation developed a Web application (RAMP) to capture risk

management experience and retrieve experiences from other projects and advice. The user

introduces the characteristics of his project in a static HTML form. A query is launched

over the RAMP databases creating a dynamic HTML form with a set of projects with

similar characteristics. The user can select one or more of these projects and a second

script retrieves risks from the database. The result of this second query is a report

containing links to the applicable documents (Garvey, 1997). This approach helps the

decision-maker providing him of related documents about similar projects, but it did not

release the need of human experience to manage risk.

8. Rockwell

At Rockwell, an improvement on communicating risks more effectively resulted

the following benefits: predictable program performance, better reviews, improved

process, and improvements in management practices. Three key elements are the cause of

successful risk management at Rockwell: repeatable process, widespread access to

adequate knowledge and functional behavior (defined as human factors).

Functional behavior implies human interactions, motivations and incentives,

perceptions and perspectives, communication and consensus, and decision making and

risk tolerance. (Gemmer, 1997) identified the following functional behaviors: a) manage

risk as an asset, b) treat decision making as a skill, c) active seek for risk information, d)

seek diversity in perspectives and information sources, e) minimize uncertainty on time,

control and information, f) recognize and minimize bias in perceiving risk, g) plan for

multiple futures, h) be proactive, i) improve the decision-making skills, and j) reward

who identify and manage risks early.

.29

Gemmer identified the following causes for risks: a) uncertainty in time, b)

uncertainty in control, and c) uncertainty in information. Risk management is usually an

uncertainty scenario characterized by: a) uncertainty in the impact or consequence, b)

there exists a time frame to prevent or mitigate, c) there exists a coupling or domino

effect, d) there exists uncertainty about the probability distribution function (Gemmer,

1997).

9. Boehm

Boehm has been studying the problem of risk management for more than a

decade. His contributions to the area are notable. He introduced the importance of

verification and validation of software requirements and design specifications during

early phases of the project as a way to mitigate risk (Boehm, 1984). Such activities

include: a) completeness, b) consistency, c) feasibility, and d) testability of the

specifications. Completeness implies that all the documents and references exist and that

there are no missing items, functions or products. Consistency is both internal and

external, and implies traceability. Feasibility requires validate that the project can be

achieved with the actual resources, that it will satisfy the users' needs, that it will be

maintainable, and estimate the risk. Testability requires unambiguous and quantitative

specifications.

Boehm introduced the Spiral model (Boehm, 1988) as a substitute to the Royce's

Waterfall model. The Spiral model was the first software process in which risk

assessment was a driving factor. The author recognized however that there exist

difficulties in applying his model: a) matching the evolving process with contracts; b)

relying on risk-assessment expertise, the model is people dependent in terms of

identification, management and risk-driven specification; c) the need of further

elaboration in the spiral steps (Boehm, 1988); d) ambiguities about how to initiate,

terminate and iterate within the spiral; e) complexities in handling incremental

30

development such as refinements from previous versions; f) difficulties in formalize

processes; and h) some steps result more complex than were envisioned (Boehm, 1988a).

In (Boehm, 1989) and (Boehm, 1991) he introduced a method for risk

management (Table 2.4). Risk management is divided in two families of activities: risk

assessment and risk control.

Table 2.4: Boehm's classification (Boehm, 1991)

Risk assessment is decomposed into:
(1) Risk identification by use of checklists, decision driver analysis, assumption

analysis, and decomposition.
a. Checklist (top 10 risks)

Personnel shortfalls.
Unrealistic schedules.
Requirement risks.
Developing the wrong functionality.
Developing the wrong user interface.
Developing extra functionality not essential or with marginal
usefulness.
Continuous stream of requirement changes.
Problems in external components.
Problems in external tasks.
Performance shortfalls. Straining computer science
capabilities (trying to do more than the possibilities of the
state of the art technology): distributed processing, AI,
human-machine interface, algorithm speed and accuracy,
computer security, reliability and fault tolerance.

b. Decision driver analysis:
• Politically driven decisions.
• Marketing driven decisions.
• Applying the wrong solution to the problem because there

exist compromises or preferences. (Story of the guy that was
looking for his keys in the night. He was looking in a
different spot were he presumably lost the keys, but this spot
was under a light).

• Short-term versus long-term decisions.
Assumption analysis.
• Comparison with previous experience.
• Pessimistic approach (Murphy's Law).

31

d. Decomposition
• Pareto 80-20 phenomena.
• Task dependencies (high fan-in implies risk: if anything slips

the project aborts. High fan-out also implies risk: if the
precondition slips then the effect is in many parts of the
project).

• Uncertainty areas in the plan.

(2) Risk Analysis:
a. Decision trees.
b. Network analysis using PERT and probabilistic network analysis.
c. Cost risk analysis using COCOMO, Putnam or other estimation tool

for effort and duration.
d. Automated analysis tools (PROMAP, PROSIM, RISNET, SLAM,

Opera/Open Plan, PRISM, REP).

(3) Risk Prioritization:
a. Assess the risk probabilities from historical data, Delphi or other group

technique.
b. Deal with compound risks.
c. Deal with triggered risks (dominoes effect).

Risk control is decomposed into:
(1) Planning.
(2) Resolution.
(3) Monitoring (milestone tracking and top-10 risk tracking).

Boehm alerted that current approaches to the software process make have

tendency to make high-risk commitments. "The waterfall model tempts to over promise

software capabilities in contractually binding requirements specifications before

analyzing the implications. The evolutionary development makes too easy to introduce

new ideas and requirements that can lead to a disaster." (Boehm, 1991). Recently in an

article coauthored with De Marco they showed a pessimistic and pragmatic stating "doing

software risk management makes good sense, but talking about it can expose you to legal

liabilities. If a software product fails, the existence of a formal risk plan that

acknowledges the possibility of such a failure could complicate and even compromise the

producer's legal position." (Boehm, 1997).

32

Boehm's contributions to risk management are multiple. This research picked the

most important ones such as the Spiral model, his analysis of the activities required for

risk management, and his risk management method. Due to its relevance, a separate

section includes the discussion about the Constructive Const Model (COCOMO). Despite

his contributions, Boehm recognizes that the issue of relying on humans to assess risk

remains unsolved. The use of checklists, decision driver analysis, assumption analysis,

and decomposition is not enough to automate risk identification and assessment.

10. McFarlan

McFarlan introduced a model to assess risk on information system projects based

on a three-dimensional checklist covering the three major dimensions influence the risk

inherent in a project: a) project size in terms of budget, staffing levels, elapsed time and

number of departments affected; b) experience with the technology; c) project structure in

terms of definition of the tasks and deliverables (McFarlan, 1974). The importance of his

contribution resides in the identification of different facets on software projects. This

model relies on checklists and in the experience of the decision-maker to evaluate risk.

11. Gilb

In his classical text on Software Engineering Management (Gilb, 1988) presented

a set of principles or rules of engagement with risk. The approach is informal. Gilb's

principles are heuristics that were the state of the art at that time. His work was included

because he was a pioneer in recognizing, the problem and the need of being proactive.

12. USAF

(USAF, 1988) defines risk as the probability at a given point in a system's life

cycle that predicted goals couldn't be achieved with the available resources. Due to the

33

high degree of uncertainty high precision is not useful during the early phases. As the

system progresses the uncertainty is transformed into risk, therefore higher precision is

required. The USAF introduced a method to abate risk based on checklists and

estimations of probability of occurrence and effects. They decompose the software risk in

four dimensions: performance, support or maintainability, cost and schedule. The effects

on the project are categorized into catastrophic, critical, marginal and negligible. The four

risk dimensions are measured in terms of their probability of occurrence and their effect

according to Table 2.5.

Table 2.5: USAF scheme for risk

Prob.j 1.0-0.7 0.7-0.4 0.4-0.0 0.0

Impact | Frequent Probable Improbable Impossible

Catastrophic

Critical

Margina!

Negligible

MODERATE NONE

LOW

The USAF method is very simple and robust. However, it is informal, relying on

checklists and experience of the evaluator.

D. ESTIMATION MODELS

In this section presents three models to estimate effort and duration so software

projects: COCOMO, Putnam and function points. The importance of these estimation

models resides in that constitute a preliminary approach to assess risk.

34

1. The COCOMO Family

COCOMO (for Constructive Cost Model) was introduced by (Boehm, 1981) is a

family of models constituted by Basic, Intermediate, and Detailed COCOMO. Basic

COCOMO is an easy to calculate model applicable to small to medium software projects.

Intermediate COCOMO is based on the Basic model and includes effort adjustment

factors. The detailed COCOMO accounts the influence of additional factors on individual

project phases. These earlier models are known as COCOMO 81.

Projects are classified into three categories: a) organic which are characterized by

small size, small teams and low environmental noise; b) embedded characterized by

strong complex coupling with hardware or other kind of tight constraints like real time

systems; and c) semidetached which are intermediate between the previous two

categories. The details of the model can be found in (Boehm, 1981), but it is important to

highlight the following assumptions that show the optimistic bias of the model.

• The development period considered by COCOMO 81 starts at the beginning

of the design phase. The requirements phase is not covered.

• The estimation covers only the direct-charged labor. Costs related to computer

center operators, secretaries, higher management, and support are excluded.

• The model assumes that a man-month is 152 hours of working time.

• The model assumes that the project will enjoy of good management.

• Finally, the model assumes that the requirements will remain unchanged.

The input parameter for COCOMO 81 is the size estimation in thousands of lines

of code (KLOC), which constitutes a drawback because of the difficulty of predicting the

size during early stages. COCOMO II addresses the problem of size estimation

introducing a more abstract indicator of size called object points (a variation of function

points). This model is being calibrated.

35

2. Putnam

In the 50's, Peter Norden from IBM developed a manpower model. He used the

following curve of the Weibull distribution family, named after the 19lh century physicist

Lord Rayleigh:

y = K (1 - exp(-at2)), and its first derivative
y' = 2 K a t exp(-at2), where
y = cumulative percentage of total effort
y' = manpower rate in terms of people per unit of time
K = effort in men-unit of time
t = development time
a = a constant governing the time to manpower peek.

During the 70's, Putnam, an alumni of the NPS, introduced a model applying the

concepts developed before by Norden at the IBM development laboratory of

Poughkeepsie. This model is supported by a commercial tool named SLIM (Software

Life Cycle Management). The use of the Rayleigh curve as a reasonably good fit for the

manpower distribution has been proved by Norden, (Putnam, 1980) and (Boehm, 1981).

Putnam observed that there exist a strong correlation between lines of code and schedule,

manpower and defects. He recognized differences in terms of development difficulties

between real time systems and normal information systems (Putnam, 1980 and 1996).

Putnam's model is based on the following assumptions (Londeix, 1987):

• A development project is a finite sequence of purposeful, temporally ordered

activities, operating on an homogeneous set of problem elements, to meet a

specified set of objectives.

• The number of problem elements is unknown but finite.

• Problems are detected, recognized and solved applying effort.

• The occurrence of problem solving follows a Poisson process.

• The number of people working in the project is proportional to the number of

problems ready to solve at that time.

The main equation of this model relates the size of the project in lines of code to

the effort and the schedule:

36

S =CkK
I/3td

4/3, where
S = number of delivered source instructions
K = life-cycle effort in man-years
td = development time in years
Ck = a "technology constant"

The required development effort (DE) is estimated as 40% of the life-cycle effort.

That is:

DE = 0.4 K = 0.4 (S/Ck)
3 (l/td

4).

One difficulty of the approach, as with COCOMO, is the requirement of knowing

the number of lines of code at the beginning of the project. Putnam suggests the use of

the Delphi method to estimate S.

Let a = minimum size estimation,
b = most likely size,
c = maximum size estimation.

The estimator of the expected size, E(S) = (a + 4b + c) / 6.
And the estimator of the standard deviation is s = (c - a) / 6.

Another difficulty is to estimate the technology constant Ck. Putnam suggests

deriving it from previous projects. That is, analyzing post-mortem projects with known S,

K and td it is possible to derive the value of Ck. This approach introduce two constraints:

• To apply the model it is required to have available historic data.

• The development process must be repeatable, that is at least CMM level 2.

(Boehm, 1981) states that this method is not good for projects employing

incremental development, but this comment could be a little biased. Nevertheless,

changes in requirements lead to a new estimation. According to its author, the method is

not precise for small projects with development time of two years or less. This seems to

be caused to a more rectangular manpower pattern observed in small projects. The

method has been verified with more than 4000 projects. (Conte, 1986) observed also that

the model works "reasonably well" on very large systems but overestimates the effort on

medium and small ones. Other criticisms of the same authors are exaggeration of the

37

effect of time compression on the development effort, excessive weight on the size, and

excessive sensibility to changes of the technological constant.

During this research an experiment was conducted to compare Putnam's model

with COCOMO 81. The experience consisted in comparing the estimates of 100 projects

with sizes from 10KLOC to 1MLOC using Basic COCOMO for organic, semidetached

and embedded systems with Putnam estimation. To avoid problems of tuning, the effort

in Putnam was based using the average of the development times of COCOMO.

Similarly, the time in Putnam was calculated using the average to COCOMO efforts.

Both cases used a constant of technology = 10100 as suggested in (Boehm, 1981). The

following graphs show the findings:

• In terms of effort Putnam's model is almost the average of embedded and

semidetached COCOMO (Fig. 2.3).

• In terms of development time, the models are quite similar, being Putnam's

estimation more optimistic (Fig. 2.4).

Effort (COCOMO vs Putnam)

16000

s
E
r

0 200 400

Organic ,„..+ Semidetached

600 800

Embedded

1000

. Putnam

1200

KLOC

Figure 23: Effort Estimated Using COCOMO and Putnam Models

60

Dev. Time (COCOMO vs Putnam)

50

— 40
05

1 30 . ^^^^^"^
£

J 20 .
h-

10 .

0 ..
c) 200 400 600 800 1000 1200

KLOC —«—.Organic .+., Semidetached „ Embedded Putnam

Figure 2.4: Development Time Estimated Using COCOMO and
Putnam Models

3. Function Points

Functional complexity has been studied for years because it is highly correlated

with effort and risk. The traditional functional complexity metric has been introduced by

(Albrecht 1979 and 1983). Function Points had an enormous success because:

• It is an early metric. It can be calculated after the preliminary analysis of the

system.

• It is easy to calculate. There are only five input parameters to compute and

fourteen fine-tuning adjustments, and the whole process can be done

manually.

• It was the first metric that related complexity to number of lines of code.

The procedure for calculating Function Points is quite simple. It is required to

count the number of inputs, outputs, queries, files, and system's interfaces. Each of the

five parameters is classified into simple, medium or complex. Depending on the

parameter and its complexity the count is multiplied by a weight factor. Table 2.6

presents the template for the calculation.

Table 2.6: Function Points Calculation (Albrecht, 1983)
Simple Weight Medium Weight Complex Weight Total

Inputs *3) + M)+ !(j *6) =
Outputs *4) + *5)+ |(*7) =
Queries *3) + *4}+ :(i *6) =
Files *7) + *10)+ ! { I *15) =
Interfaces *5) + *7)+ | (i * 10) =

1 | NAFP i = z !

The result of the total is called Not Adjusted Function Points (NAFP). Fourteen

adjustment factors, whose values are in the range of zero to five, describing the

environment are added. Finally the Function Points are calculated by the formula:

FP = NAFP * (0.65 + 0.01 * Z F)

where NAFP is the non adjusted Function points

Fj is each of the fourteen adjustment factors

Despite its attractive approach. Function Points has many weaknesses. First of all,

the metric was derived from a study of MIS projects in the seventies. Today, there are

many issues that are not considered by the metric and that are contributors to complexity.

For instance, recursive functions, reuse, inheritance, communication by messages, and

pol>Tnorphism are not covered by the metric. The languages have evolved also, and differ

a lot from the COBOL of the seventies. Programming styles experienced a dramatic

change that does not appear in the metric.

(Kemerer, 1993) reported some weaknesses of the metric. Similar results have

been reported by (Kitchenham, 1993) and (Kitchenham, 1997). The main issue is that

function points is a not well-formed metric because there is a correlation between their

constituent elements. In her conclusions she stated that:

• The individual function point elements were not independent.

40

• Not all the function point elements are related to effort.

• An effort prediction metric based on inputs and outputs is just as good

predictor as function points.

• An effort prediction metric based on the number of files and the number of

outputs was only slightly worse that Function Points.

• To get good estimates it is necessary estimation methods and models based on

the organization's performance, working practices, and software experience.

• Uncertainty and risk cannot be managed effectively at the individual project

level, but in the organization context. If a single project had to ensure against

all possible risks and uncertainty, its cost would be prohibitive. The sources

for estimate uncertainty are: a) measurement error caused because some of the

input variables in a model have inherent accuracy limitations; b) model error

caused because no estimation model can include all the factors involved; c)

assumption error caused because some of the hypotheses about input

parameters are incorrect; and d) scope error caused because the project under

study is outside the model's domain.

Even if there was evidence of defects in the metric, nobody introduced a better

alternative. So, function points remained for many years as the most common prediction

metric. More recently, some extensions to function points have been introduced such as

"feature points" and "Boeing's 3-F function points" addressing the effort estimation for

embedded systems.

4. Conclusions about COCOMO, Putnam and Function Points

All these methodologies have some weaknesses with respect to software

evolution. First, the need of a size estimate as an input parameter limited the applicability

of COCOMO and Putnam methods. Second, the characteristics counted on function

points are quite different than the specification attributes. Third, the criticisms introduced

41

by (Kemerer, 1993; Kitchenham, 1993 and 1997) suggested that despite the correlation

observed between complexity and size, other metrics could be more accurate on this

metric.

E. MODERN PROJECT MANAGEMENT TECHNQUES: ViteProject

ViteProject is a modeling and simulation tool that integrates the organizational

work of projects explicating the interdependences between tasks and roles not only from

the point of view of producer-consumer such as in CPM or Pert, but also communication

and rework dependencies. ViteProject is the commercial version of VDT (Virtual Design

Tool), a research based on contingency theory directed by Dr. Raymond Levitt at

Stanford (Jin, 1996).

CPM models are sequential interdependencies through explicit representation of

precedence relationships between activities. This simplified vision of the project cannot

address the dynamics created by reciprocal requirements of information in concurrent

activities, exceptions management, and the impacts of actor interactions.

The original model of VDT was based on the following observations about

collaborative, multidisciplinary work in large complex projects:

• Organizational tasks in the project can be divided into two categories:

production work that directly adds value to the product, and coordination

work that facilitates the previous one.

• Contingency theory provides qualitative insights about the extent of

coordination work, but did not provide information about how to address the

bottleneck problems created by coordination.

The model integrates the micro level description of the entities that perform work

and process information called "actors". Actors can be individuals or small teams acting

as a unique and cohesive unit where individuals are not differentiated. Actors have two

42

basic behaviors: attention allocation and information processing. As a consequence of

such behaviors, actors perform production and coordination. The model is based on the

following assumptions:

• Actor allocation assumption: Each actor has one input buffer where all the

incoming information and requests for production or coordination work arrive.

The input buffer is a queue that supports different policies: priorities, FIFO,

and random. Each actor has also an output buffer to place its accomplished

work.

• Actor capacity allocation assumption: An actor has certain information-

processing capacity determined by its skill type, skill level, and allocable time.

An information processing work can be processed and completed if the actor

allocates sufficient capacity to the job. This assumption implies: a)

information processing requires not only attention but also takes time; b) the

information content of a work is related to the skills; c) the volume of a work

is related to the time; d) actors have limited capacity to allocate.

• Actors cannot allocate 100% of its capacity to work because they are

interrupted by: a) information requests from other actors; b) decision-making

to solve exceptions produced by subordinate actors; c) meetings; and d)

processing noise, that is all other interruption created outside the project that

have impact on the actor.

The organization structure is modeled through simulation. The organization

variables such as control structure, communication structure, formalization and matrix

strength, influence actor's micro level actions, and consequently an organization's

emergent performance appears. The use of complex adaptive systems to model

organizational behavior has been discussed also by (Brown, 1998).

43

F. ORGANIZATIONAL THEORY

This section introduces some foundations of organizational theory that support the

research. Why to review the organizational foundation if the research is about software

engineering? First, software development requires teamwork, more specifically organized

work. So it is required to understand the dynamics of organizations as artificial social

entities that exist to achieve a specific purpose, in this case to develop software. Second,

organizations are made up of individuals who accomplish diverse desegregate activities

that require coordination and consequently information exchange. These two activities,

despite their impact, have not been covered by the research in estimation models. Third,

ViteProject is customized for general projects. In order to obtain a rigorous simulation, it

is required to customize the tool according to the characteristics of software engineering.

1. Introduction

As software systems increased in complexity, software development evolved form

a primitive art into software engineering. Methodologies and software tools were

developed to help development processes. Most of the present tendencies (DOD-STD-

2167A, ISO-9001, SEI/CMM) try to standardize processes, emphasizing planning and

structure (Humphrey, 1990). Some authors criticize those approaches stating that they

underestimate the dynamics of the software development (Bach, 1994), (Abdel-Hamid,

1997). Others question that activities such as research and development are not addressed

by TQM principles (Dooley et al., 1994). In the author's opinion, many of the problems

on current software projects have organizational roots. This view is also supported by

(van Genutchen, 1991)1 and (Capers Jones, 1994)2. The typical software engineering

process is a succession of decision problems trying to transform a set of fuzzy

expectations into requirements, specifications, designs and finally code and

documentation. The traditional waterfall software process failed to accomplish their

purpose because it applied a method valid for well-defined and quasi-static scenarios.

Van Genuchten found that 45% of all the causes for delayed software are related to organizational issues.
Capers Jones found that on military software developments the two more common threats are excessive

paperwork (90% of the time) and low productivity (85% of the time).

44

This hypothesis is far from the reality. Today, modern software processes (Boehm,

1988)(Luqi, 1989) are based on evolution and prototyping. These approaches recognize

the fact that software development presents an ill-defined decision problem and they fail

in assessing automatically the risk. In the author's view, software development projects

present special characteristics that require to be solved in order to achieve an

improvement in the state of the art. These particularities affect the strategic planning,

the organizational structure, and the engineering applied to software. In these three

areas chaos theory can provide clues for possible solutions.

(Woodward, 1965) has studied the relationship between technological complexity

and structure, classifying the technology into three types: a) unit (custom made and non-

routine jobs), b) mass (large batch or mass production in assembly lines), and c) process

(highly controlled, standardized and continuous processing such as refineries). This

scheme was created for the manufacturing industry and it is not very suitable for software

engineering. However, it has some characteristics of unit and process technologies: high

proportion of skilled workers, low formalization and low centralization.

Perrow (Burton, 1998) introduced

a two-dimensional classification of the

technology (Fig. 2.5). The first dimension

is the analyzability of the problem

varying from well-defined to ill-defined.

The second dimension is the task

variability, which means the number of

expected exceptions in the tasks. The

scheme lacks of a third dimension

representing time. Hence, in this

Si-defined craft rjonroutirife

Problem
software

analyzabity vy
Wett-cäefined routine engineering

Few exceptions Many exceptions

Taskv ariabitty

Figure 2.5: Perrow's classification

projection, software engineering occupies part of the non-routine and part of the

engineering regions. During the earlier phases of the development usually the problem is

ill-defined. That is why the requirements phase is so prone to errors. After several

45

prototypes and evolution cycles the problem is transformed into well-defined and the

system can be specified. This is a key difference with other forms of engineering already

discussed in the first chapter. Highly skilled personnel, low formalization and

centralization, high information processing demand, and coordination obtained through

meetings characterize the organizations in this region.

A second line of research (Burton and Obel, 1998 pp. 174-180), introduced a

classification based on four-variable model: equivocality, environmental complexity,

uncertainty and hostility. Equivocality is "the existence of multiple and conflicting

interpretations", it is a measure of the lack of knowledge or the level of ignorance

whether a variable exists in the space, uncertainty is the lack of knowledge about the

likelihood of values for the known variables. Environmental complexity is the number of

factors in the environment affecting the organization and their interdependency. Finally,

hostility is 'the level of competition and how malevolent the environment is." In Table

2.7, the fourth variable, hostility, was disregarded because when hostility grows over a

certain threshold, it overrules other factors (Burton & ObeL 1998 pp. 177). In highly

hostility scenarios only a highly centralized organization ("regular army"), or a low-

formal-low-complex organization ("guerilla") are the possible alternatives.

Table 2.7: Burton & Obel's scheme (Adapted from Burton & Obel, 1998 pp 181-182)

Equivocality Enviromental

Complexity

Uncertainty Formalization Organizational

Complexity

Centralization

Low Low Low High Medium High

Low Low High Medium High Medium

Low High Low High Medium Medium

Low High High Medium High Low

High Low Low Medium Medium High

High Low High Low Low High

High High Low Medium Medium Low

High High High Low Low Low

Software development scenarios usually correspond to high equivocality that

decreases over time, high environmental complexity and high uncertainty scenarios (dark

46

gray in Table 2.7), which corresponds to low formalization and low organizational

complexity, with centralization inverse to the environmental complexity. The

recommended organization could be ad hoc or matrix with coordination by integrator or

group meeting. The information exchange is rich and abundant. The incentive policy

should be based on results. These parameters constitute the key points to customize the

behavior matrix of ViteProject to software developments.

2. The Edge of Chaos

Chaos theory describes a specific range of irregular behaviors in systems that

move or change (James, 1996). Chaotic does not mean random. The primary feature

distinguishing chaotic from random behavior is the existence of one ore more attractors.

Without the existence of such attractors the quasi-chaotic scenarios could not be

repeatable. It is important to realize that a chaotic system must be bounded, nonlinear,

non-periodic and sensitive to small disturbances and mixing. A system that has all these

properties can be driven into chaos. The edge of chaos is defined as "a natural state

between order and chaos, a grand compromise between structure and surprise" (James,

1996). The edge of chaos can be visualized as an unstable partially structured state of the

universe. It is unstable because it is constantly attracted to the chaos or to the absolute

order. Usually people have the tendency to think that the order is the ideal state of nature.

This could be a big mistake. Research on organizational theory (Stacey, Nonaka,

Zimmerman); Management (Stacey, Levy); and economics (Arthur) support the theory

that operation away from equilibrium generates creativity, self-organization processes

and increasing returns (Roos, 1996).

Change occurs when there is some structure so that the change can be organized,

but not so rigid that it cannot occur. Too much chaos, on the other hand, can make

impossible coordination and coherence. Lack of structure does not always mean disorder.

Let illustrate this idea with an example. A flock of migratory ducks in a lake has little

structure. However, a few minutes after they start flying some order appear and the flock

47

creates a V-shape formation. This self-organized behavior occurs because a loose form of

structure exists. Experiments with intelligent agents governed by three rules (a) try to

maintain a minimum distance from the other objects in the environment, including other

agents; b) try to match the speed of other agents in the vicinity; and c) try to move toward

the perceived center of mass of the agents in the vicinity), show the same macro behavior.

Independently of the starting position of the agents, they always end up in a flock. Even if

an obstacle disturbs the formation, the pseudo-order is recovered some time later. This

self-organized behavior emerges despite the absence of leadership and without an explicit

order to form a flock.

A more interesting example is the behavior of software development teams. A

recent article (Cusumano, 1997), describes the strategies of Microsoft to manage large

teams as small teams. Dr. Cusumano says "What Microsoft tries to do is allow many

small teams and individuals enough freedom to work in parallel yet still function as one

large team, so they can build large-scale products relatively quickly and cheaply. The

teams adhere to a few rigid rules that enforce a high degree of coordination and

communication." This seems to be a description of the emerging behavior in a complex

adaptive system. It is self-adaptive because the agents realize the adjustment to the

environment, and it is emergent because it arises from the system and can only be partly

predicted. As in the example of the ducks, a few rules of interaction between the agents

(in this case people) generate a efficient behavior. The three rigid rules at Microsoft are:

a) developers integrate their work daily forcing the synchronization and testing of the

work; b) developers responsible for bugs must fix them immediately, and are responsible

for the next day integration; and c) milestone stabilization is sacred. Another possible

explanation of Cusumano's observations could be the presence of an underlying structure

that propitiates the creativity and productivity.

Complex adaptive systems, as the one just described, are made up with multiple

interacting agents. The emergence of the complex behavior requires some conditions. The

48

first condition is the existence of more than one agent. A second condition is that agents

must be sufficiently different to each other that their behavior is not exactly the same in

all cases. When agents behave exactly the same way exhibit predictable, not complex,

behavior. Finally, a third condition is required. Complex adaptive behavior only occurs in

the edge of chaos.

3. Some of the Risks of Being in the Edge of Chaos

Limiting the structure in organizations can be useful in situations when innovation

is critical or when is required to revitalize bureaucracies. However, if the structure is

debilitated beyond a certain minimum, it leads to an undesired state. Some traits can alert

the eminence of such anarchic situation known as the "chaos trap" (Brown & Eisenhardt3,

1999): a) emerging of a rule-breaking culture, b) missing deadlines and unclear

responsibilities and goals, and c) random communication flows.

On the other hand, focusing in hierarchy and disciplined processes, emphasis on

schedules, planning and job descriptions may lead to a steady inert bureaucracy.

Organizations in such a state react too late failing to capture shifting strategic

opportunities. This is the case of a "bureaucratic trap", where there are also some

observable warning traits: a) rule-following culture, b) rigid structure, tight processes and

job definitions, and c) formal communication as the only channel.

The alternative is "surfing" the edge of chaos avoiding both attractors. That

requires limited structure combined with intense interaction between the agents, giving

enough flexibility to develop surprising and adaptive behavior. Organizations in this state

are characterized by having an adaptive culture. People expect and anticipate changes. A

second characteristic is that the few key existing structures are never violated. Finally,

real time communication is required throughout the entire organization.

' Kathleen Eisenhardt is a NPS alumni.

49

Being in the edge of the chaos implies an unstable position. Some perturbations

can cause the rupture of this delicate equilibrium and the fall into one of the two steady

states. A potential perturbation factor is the organizational collaboration style. Too much

collaboration can disturb the performance of each agent and consequently, the whole

system is affected. On the other hand, too little collaboration destroys the advantage of

acting organized and leads to paralysis. Other sources of perturbation are the tendency to

be tight to the past and cultural idiosyncrasy, or by contrary, to loose the link with the

past. In one case, the change becomes impossible. In the other case, the assets from

previous experiences are not capitalized. The equilibrium point is called regeneration. In

such unstable state, mutation can occur. Therefore the inherited characteristics that give

competitive advantage in a certain scenario can be perpetuated, and new variations are

introduced. If too little variation exists, natural selection fails. This process permits that

complex adaptive systems change over the time following a Darwinian pattern.

(Kauffman, 1995) introduced the concept of fitness landscape. This concept can

be understood by observing the behavior of species. In the competition for survival,

species attempt to alter their genetic make-up by taking adaptation trying to move to

higher "fitness points" where their viability will be enhanced. Species that are not able to

reach higher points on their landscapes may be outpaced by competitors who are more

successful in doing so. If that occurs the risk of extinction increases. The same principle

applies between predator and prey. Each development in the abilities of one species

generates an improvement on the abilities of the other. This concept is called co-

evolution. Certain higher fitness points have more value to some species than to others.

The contribution a new gene can make to a species' fitness depends on genes the species

already has. As more complicated is the genetic pattern (more evolved), the probability of

conflict of a new adaptation increases slowing down the speed of variations.

Natural selection is an effective, but not generally efficient way to evolve (Brown

& Eisenhardt, 1998). The process requires some amount of mutation to avoid the sudden

convergence on suboptimal characteristics. Some of the characteristics lost in the past can

50

be reintroduced being useful in the new scenario. Many errors are committed during this

blind process. A more efficient way to evolve is by recombination of the pool of genes

using genetic algorithms. This technique has been applied to improve the performance of

robots, however the idea can be used to improve the competencies of organizations. If too

much or too less variation occurs the result always conduct to the failure of the system.

4. The Strategic Planning Issue

Traditional approaches to strategic planning emphasize picking a unique strategy

according to the competitive advantages of each organization. Porter's five-force

approach (Porter, 1980), assumes that there exists some degree of accuracy in the

prediction of which industries and which strategic positions are viable and for how long.

In a high-velocity scenario the assumption of a stable environment is too restrictive.

Customers, providers, competitors, and potential competitors, as well as substitute

products are evolving faster than expected. The introduction of new information

technology tools, the Internet and the globalization of the markets are contributing to this

phenomenon, and nothing seems to reverse the process. The failure of long-term strategic

planning is not a failure of management, it is the normal outcome in a complex and

unpredictable environment. A growing number of consultants and academics (Santosus,

1998)(Brown and Eisenhardt, 1999) are looking at complexity theory, to help decision-

makers improve the way they lead organizations.

How useful could a map of a territory that is constantly changing its topography

be? In fast changing environments, survival requires a refined ability to sense the external

variables. Traditional approaches rely on strategic planning and vision. However, in

unstable environments planning would not be effective because it is impossible to predict

the scenario's evolution in terms of markets, technologies, customer's needs, etc.

Organizations relying only on one vision supported by a tight planning, risk paying little

attention to the future. Consequently, their sensing organs are blind to foresight of the

51

future. A certain amount of inertia and commitment to the plans is required to prevent

erratic changes caused by reaction diverse variables.

If the time window of the opportunities is shrinking, a different form of thinking

is required. The present technological situation can be described as a fast succession of

short-term niches. The ability to change is the key of success for surviving in such a

variable environment. In a systemic approach, the General Systems Theory establishes

that organizations are systems whose viability depends on some basic behaviors (von

Bertalanfy, 1976):

• Ability to sense changes in the environment. This is the most primitive form

of intelligence, if it is not present the probabilities of survive are minimum.

• Ability to adapt to a new environment modifying the internal structure and

behavior. The system tries to auto-regulate to survive the crisis in hostile

scenarios, or take advantage of the opportunities in favorable ones.

• Ability to learn from the past, anticipating the auto-regulation behaviors and

structure before the environment change. This ability requires intelligence able

to infer conclusions from the past according to the context of the variables

sensed on the present.

• Ability to introduce changes in the environment, making it more favorable to

the system's needs. In this case, the system has developed the technology

(know how and tools) to exert power over the environment.

Any mechanical or computing system has some or all of these abilities. These

same abilities could be found in any form of life. The more developed the system is, the

more of the above characteristics has. Darwin's Evolution Theory validates this line of

reasoning. Natural selection, acting on inherited genetic variation through successive

generations over the time is the form of evolution. Variation is the way used by biological

systems to probe the environment presenting many alternatives, some of them ending on

52

failure but a few very successful. This process is an inefficient but very effective way of

improvement.

Experiments can provide a certain amount of knowledge about the future. In some

sense, probes are mutations in small scale that can cause only small losses. The results

give insights to discover new options to compete in the future and stimulate creative

thinking. The research investment pays dividends when a new way of competition is

discovered altering the status quo's rules. When the changes in the environment occur too

fast, sensing the variables becomes more difficult. It is possible that a specialized organ

was not able to react on time to record the metric and transmit the alert. In this case, the

system starts to lose information threatening its own viability. When the changes in the

environment are too drastic, even if the sensor organs detect the change, the inference

organs may not be able to determine an effective course of action because they do not

have a previous experience, or because the decision-making process requires more time.

This situation also threats the viability of the system in the long run. The effects of drastic

variations and high rate of change over systems can be visualized with simple

experiments: a) increasing the speed of transmission in a communication channel beyond

some limit will provoke the lost of part or the entire message, b) modifying the pH in the

soil beyond a certain limit can cause the death of a plant. The same syndrome can be

recognized in any type of organization. It is possible to employ a new strategy.

"Competing on the Edge" is a new theory defines strategy as the creation of a relentless

flow of competitive advantages that, taken together, form a semi-coherent strategic

direction (Brown & Eisenhardt, 1998). The key driver for superior performance is the

ability to change, reinventing the organization constantly over the time. This factor of

success can be applied to software engineering as well as to other decision problems with

similar characteristics.

If the environment is moving, like in surfing, the best way to remain in

equilibrium is by being in the rhythm. Successful corporations such as Intel or Microsoft

53

are in perpetual movement, launching new products with certain rhythm. Intel is faithful

to its founder's (Moore) law: the power of the microprocessors double every eighteen

months. Microsoft has a proportional pace on the software sector. The challenges

imposed by hyper competition create similar characteristics than in software engineering

developments. So, the rules of engagement proved effective for one discipline could

result useful in the other.

5. Application in Software Engineering

Chaos in software development comes from various sources: a) the intrinsic

variable nature of requirements, b) the changes introduced by new technologies, c) the

dynamics of the software process, and d) the complex nature of human interaction. These

conditions are sufficient for the development of complex adaptive systems where the

agents are software developers or parallel collaborative projects. Software development

scenarios usually have high equivocality, high environmental complexity and high

uncertainty. The suggested organizational structure to deal with such scenarios (Burton

and Obel, 1998) should have low formalization and organizational complexity,

centralization inverse to the environmental complexity, and rich and abundant

information exchange. The recommended organization should be ad hoc or matrix, with

coordination by integrator or group meeting. This organizational style is difficult to

achieve when the organizations are large.

A simple solution can be recognized at Microsoft (Cusumano, 1997): a) parallel

developments by small teams with continuous synchronization and periodically

stabilization, b) software evolution processes where the product acquires new features in

increments as the project proceeds rather than at the end of a project, c) testing conducted

in parallel as part of the evolution process, and d) focus creativity by evolving features

and "fixing" resources. Cusumano observed that small development teams were more

productive because: a) fewer people on a team have better communication and

54

consistency of ideas than large teams, and b) in research, engineering and intellectual

work individual productivity has big variance. Software development requires teamwork,

more specifically organized work. So it is necessary to understand the dynamics of

organizations as artificial social entities that exist to achieve a specific purpose, in this

case to develop software. Such organizations are made up of individuals who accomplish

diverse desegregate activities that require coordination and consequently information

exchange.

In order to apply this approach three factors should be resolved. First, automated

risk assessment is required (the topic of this research). Second, evolutionary software

processes should establish the maximum speed of the evolution. If the evolutions occur

too fast, without a period of relaxation, it is certain that the process will fall into chaos.

On the other hand if the speed is too slow then the productivity could result affected. The

correct rhythm for software processes has not been researched and remains on the hands

of the project manager. Third, software processes should be focused on flexibility and

extensibility rather than in high quality. This assertion sounds scary. However, it is

necessary to prioritize the speed of the development over zero defects. Extending the

development in order to reach high quality could result in a late delivery of the product,

when the opportunity niche has disappeared. This paradigm shift is imposed by the

competition on the edge of chaos.

A shift from the traditional long-term development organizations is required.

Virtual teams created as temporary dynamic project-oriented structures, with a

composition of skills matching exactly the objectives could improve the current

performances. Such virtual organizations are not exposed to bureaucratic loads and do not

require to absorb the cost of permanent staff (Senegupta and Jones, 1999). Larger

developments could be achieved by parallel projects loosely coupled sharing a common

architecture such CORBA or DCOM. This paradigm enables the possibility of managing

large developing organizations as if they were small. In such scenarios, the benefits of

55

complex adaptive systems will occur at two levels. At the micro level, inside each small

project, the agents are individuals. Second, at the macro level where the agents are the

small projects.

6. Conclusion

Complex adaptive systems appear as the most attractive way to deal with

changing environments. Besides some indicators introduced by (Brown and Eisenhardt,

1999), the academic research is not mature enough to assert a methodology for

competition on the edge. Some enterprises like Microsoft and Intel seem to have

discovered and applied this form of strategy since many years ago, but little information

has permeated. The drastic change proposed in the software processes aims to use the

benefits of programming in the small to programming in the large. The quality-driven

paradigm should be revised, and that the objective should be shorter delivery times,

flexibility, and scalability.

56

III. CONCEPTUAL FRAMEWORK

This chapter contains the framework for risk identification and risk assessment.

Causal analysis was used to find the primitive origins of threats in a project, trying to find

a way to identify and assess risk automatically. From the point of view of software

engineering, it is necessary to create the methodology to frame the decision-making

process during the early stages of the life cycle, when changes can be done with less

impact on the budget and schedule. According to (Field, 1997), the most significant

causes of IS project failures are: lack of understanding of user's needs, ill defined scopes,

poor management of project changes, changes in the chosen technology, changes in the

business needs, unrealistic deadlines, user's resistance, loss of sponsorship, lack of

personnel skills, and poor management.

Risk management can be divided in three activities: risk identification, risk

assessment and risk resolution. Risk identification is the set of techniques designed to

alert and identity possible threats. Risk assessment is the quantitative analysis of the

probabilities and impacts of the identified threats. Risk resolution is the application of

resources and effort to avoid, transfer, prevent, mitigate or assume the risks. This third

activity is beyond the scope of this research.

In order to achieve risk management, an organization requires a minimum level of

maturity that can be associated to Capability Maturity Model (CMM) level 2. SEI

followers said that "many organizations are unable to manage risks effectively for any of

the three following reasons: a risk-averse culture; an inadequate management

infrastructure to support effective risk management; or the lack' of a systematic and

repeatable method to identify, analyze, and plan risk mitigation" (Carr, 1997). If an

57

organization is not able to collect metrics, any attempt to formally identify and assess

risks is impossible. Project managers require critical information to make timely and

prudent decisions. It is not surprising that increased complexity can decrease a project

manager's ability to identify and manage risk.

In this research vision, software risks could be controlled if the problems of how

to administer uncertainty, complexity and resources are solved. Transforming the

unstructured problem of risk assessment leads to a formal method able to be translated

into an algorithm. In order to structure the problem, project risk was analyzed and

decomposed into simpler parts. Using causal analysis three major risk factors were

identified: process risk, resource risk and product risk. Each of these factors introduces

risks by themselves but mainly due to the interaction between them.

Resource risk is affected by organizational, operational, managerial and

contractual parameters such as resources, outsourcing, personnel, time and budget among

others. The literature is abundant in this area (Hall, 1997), (Karolak, 1996), (Grey, 1995).

Various approaches use subjective techniques such as guidelines and checklists (SEI,

1996), (Hall, 1997), (Karolak, 1995), which even when could be supported by metrics,

require expert's opinion.

Engineering development work procedures such as software development,

planning, quality assurance, and configuration management cause process risk. The more

complex a process is, the more difficult it is to manage, and the more education, training,

standards, reviews, and communication are required. Consequently, complexity grows.

The software process complexity has been partially covered by research in terms of

subjective assessments about maturity level and expertise (SEI, 1996), (Hall, 1998),

(Humphrey, 1989). However, a more precise and objective method is required. Several

approaches to study process complexity have been introduced in the field of management.

Particularly, (Nissen, 1998) introduced an objective methodology that can be used to

measure the complexity of processes that can be applied to software development.

58

Cyclomatic complexity of the process graph is another candidate metric. These two

approaches measure complexity in a static way. Simulation can be used to measure the

complexity of the dynamics of the processes (Abdel-Hamid, 1989 and 1991).

Finally, product risk is related to the final characteristics of the product, its

complexity, its conformance with specifications and requirements, its reliability, and

customer satisfaction. The product introduces its own risk terms of quantitative and

qualitative attributes. Two basic product-risk factors, requirement stability and

requirement complexity, were identified. Requirement stability is measurable using the

set of metrics previously described. Due to the inherent lack of structure of requirements,

it is necessary to transform them into specifications in order to compute complexity.

Other product characteristics such as reliability and maintainability are not of interest to

identify and assess risk on early stages. Reliability can be measured only after completion

or almost completion. Maintainability can be measured only after the design stated. Both

measures are useful to control the project in future phases. For instance, applying

Schneidewind's model it is possible to monitor the occurrence of software errors as a

predictor for future cumulative detected and corrected errors. These estimations are useful

in order to: (1) identify the trade-off function between error reduction and cost of error

reduction, (2) provide quantitative basis for accepting or rejecting software during

functional testing, and (3) provide quantitative basis for deciding whether additional

testing is warranted based on the cost of error removal. Maintainability can be measured

using metrics such as introduced in (Lorenz, 1995).

The analysis showed a dependency between these classes of risk. The success of

the project depends on its own characteristics and in the success of the product and the

process. The success of the process depends on itself as well as the successful use of

resources in the project, and the success of the product. And the success of the product

depends on itself, but depends on the success of the resources and the process. The three

areas constitute an equivalence relation (Fig. 3.1) because the symmetric, transitive and

reflexive properties apply. Moreover, the three classes are one equivalence class in the

.59

relation. The strong dependency between the three concepts reflects the fact that

resources, process and product are different facets of a same entity: the project.

The process provides the

description of its environment

and the theoretical requirements

to execute it. Consequently, the

process introduces threats due to

its requirements and

characteristics: complexity,

technology required, budget

required, schedule required, and

personnel skills required. The

resources represent the actual

allowances in personnel, tools,

Figure 3.1: The Equivalence Relation

budget and schedule. They impose constraints that could not match the process

requirements. The productivity is consequence of the matching of these two facets of the

project.

The decomposition created by causal analysis (Fig. 3.2) reveals:

• A method to identify risks by comparing the degree of mismatching between

the product and process characteristics, against the resource constraints.

• Candidate indicators to be used in the estimation model. In Chapter V, three

groups of metrics will be introduced: a) for requirements, b) for personnel—

the key resource—, and c) for complexity. These three groups of metrics

correspond to the three risk factors identified by causal analysis.

60

Personnel
Skill

Requirements

Budget
Requirements

Process
Complexity

•*| Process 1

Learning Schedule Technology
curve Requirements Requirements

Stability

Personnel
Constraints

Technology
Constraints

 Conflicts' »
Requirements

Stability

Functionality

Complexity

| Product ~|

Reliability
target

"Mainainability.. Quality
Target

_J Components

Figure 3.2: Causal Analysis Fishbone Diagram

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

IV. RESEARCH DESIGN

As outlined in the introduction, this research is focused primarily upon risk

assessment for software engineering. More precisely, it addressed the issue of human

dependency in risk assessment of the evolutionary software processes incorporating an

automated risk assessment method. Despite the improvements achieved in software

processes, software reuse and automated tools, risk assessment for software projects

remains as an unstructured problem dependent on human expertise. It is the intention of

this research to find ways to transform risk assessment into a structured problem. Solving

the risk assessment problem with indicators measured on the early phases constitute the

main contribution of this research.

The problem of productivity is partially solved. The industry has enough tools

that improve software development productivity. New efforts on this vein are not the

solution for the software crisis because the problem in the author's opinion is focused on

organizational and human communication issues. Software development is still a human

dependent activity requiring lot of human communication, and without appropriate

managerial decision support tools, software engineering will remain in its present state. A

better understanding of the knowledge about the internal phenomenology of the software

life cycle is required to improve software development because it is in the human aspects

of the software process where the bottleneck is located now. Without such knowledge,

risk assessment is almost impossible.

The primary research question is: What are the early automatically collectable

measures from the software process that describe project risk? The risk of the project is

related to its probability of success. That is the probability of reaching the objective with

63

the assigned resources in the allocated time. The main point in the question is the

discovery of a set of good indicators for risk. These indicators should be recognized

during the early phases of the process in order to provide early alert. To answer the

research question a literature revision was conducted covering different fields:

1. Review the papers and books about software evolution. This study helped

to understand the scope and limitations of such software processes, and it

helped to discover the problem.

2. Review of risk management from the operational research point of view.

This study provided theoretical background to produce a mathematical

model.

3. Review of the literature about risk management in the field of software

engineering. This study showed two well-defined groups of researchers.

The first group follows a less rigorous and human dependant approach

starting from the beginning of the project. This study revealed that this

research was original. The second group corresponds to the software

reliability field and follows a rigorous approach post mortem. This set of

research provided insights of how to link the operational research

approaches with the software engineering approaches.

4. Causal analysis was employed to find a set of candidate indicators for risk.

The set of candidate indicators was compared with previous research. It

was found that requirement variability, personnel turnover and complexity

were promising indicators.

5. Review of the software economics research, specially COCOMO and

Putnam's models. This study showed that the estimation models available

today have some limitations when applied to evolutionary software

processes.

6. Experiments to prove the correlation between complexity and size were

conducted using the available baselines of projects created by the

evolutionary software process, specifically using CAPS.

64

The second research question is: How can these measures be related in order to

assess project risk? Answering this question implies the formalization of a model and its

calibration and validation in three ways: a) internal consistency proved by mathematics

and statistics; b) black box validation by comparing its outputs in duration and effort with

other available models; and c) black box validation against a set of observations. To

achieve this last goal a large set of well-measured software projects is required. This set

could not be found. A second and more promising alternative was to simulate a set of

projects. ViteProject was chosen for the following reasons:

• Availability

• Possibility of customizing

• Includes the model for communications and exceptions

• Given that the proposed model uses parameters collected during the early

phases and given that ViteProject requires a complete breakdown structure of

the project -that can be done only in the late phases- there exists a

considerable time gap between the two measurements. Such time gap is less

than conducting a post mortem analysis, but is enough for calibration and

validation purposes.

However, the simulation tool is not configured for software projects. To solve this

problem it was necessary to review organizational theory and use an expert system

(Organizational Consultant) to obtain the correct parameters (see Appendix B). The

research ends proposing an extension to the latest version of the graph model, namely

relational hypergraph model, to support automated risk assessment.

65

THIS PAGE INTENTIONALLY LEFT BLANK

66

V. DEVELOPMENT OF THE MODEL

This chapter applies the framework described in Chapter III, to develop a model

for risk identification and risk assessment. First, some concepts about software metrics

will be discussed, presenting a small set of metrics in which the model will be based.

Next, the model will be discussed with its variables and their relationships.

A. SOFTWARE METRICS

Metrics are a key factor in the identification of threats. Without metrics it is not

possible to provide early alerts of risks. There are some erroneous perceptions about

metrics that it is necessary to clarify:

• "Metrics act against the creative process." This is an excuse to avoid the use of

metrics. Metrics should be collected without the direct intervention of

humans. The collection process should be transparent to designers.

• "Metrics represent additional work load." The collection procedure can be

automated, so the extra workload is not significant. The analysis of the metrics

requires the attention of the project manager, and this is his normal work.

• "The benefits of metrics are unclear." This myth is really irrational. Without

measures over the process it is impossible to assess how much effort is

required, or what are the risks that should be mitigated.

• "People are afraid of metrics." That is true, and it is very common to find

some resistance to the introduction of a metrics plan. It is important to use the

metrics to measure the process rather than use them to punish low

productivity.

67

This section describes a set of metrics that support the risk identification strategy.

All the metrics presented here are well formed, in the sense that they present the

following strengths:

• Robustness. Capacity of being tolerant to variability of the inputs.

• Repeatable. Different observers would arrive to the same measurement no

matter how many repetitions.

• Simple. Using the least number of parameters sufficient to obtain an accurate

measurement.

• Easy to calculate. They do not require complex algorithms or processes.

• Automatically collected. There is no need of human intervention.

The minimal set of metrics to support the risk assessment model cover three areas:

a) requirements, b) personnel (the key resource), and c) complexity. These three groups

of metrics correspond to the three risk factors that identified by causal analysis, described

in Section 3.1.

1. Metrics for Requirements

a. Birth-rate (BR)

Birth-rate is defined as the percentage of new requirements incorporated in

each cycle of the evolution process. This metric shows the explosion of new requirements

as a percentage.

BR = (NR/TR)* 100 (%)

where NR = number of new requirements

TR = total number of requirements = PR + NR

PR = previous requirements

b. Death-rate (DR)

Death-rate is defined as the percentage of requirements that are dropped by

the customer in each cycle of the evolution process.

68

DR = (DelR/TR)* 100

where DelR = number of requirements deleted

TR = total number of requirements (before deletion) = PR + NR

c. Change-rate (CR)

Change-rate is defined as the percentage of requirements changed from the

previous version.

CR = (ModR / TR) * 100 (%)

where ModR = number of requirements changed

TR = total number of requirements

100%

"5
sz
■c

From the point of view of the metrics, a change on a requirement can be

viewed as a death of the old version and a birth of the new one. This simplification does

not imply losses of information about the history of the evolution. The traceability of the

evolution remains in the hypergraph model.

The simplification just described, enables

one to compare birth-rate and death-rate in

a bi-dimensional plot that shows four

regions: stability region, growing region,

volatility region and shrinking region (Fig.

5.1). The graph is double logarithmic, so

the borders of the four regions are in the

10% value. Each of these regions has

different risk connotations. The arrow

10%

o%

„c ̂—^volatile

stable shrinking

0% 10%

death-rate

100%

Figure 5.1: Evolution of Requirements

shows the normal evolution of the project as the time goes by. During early stages, it is

normal for projects being in the growing region. However, if the project continues in this

region after many cycles, or return to this region after visiting other regions, something

wrong happens. In the first case, this is an indicator that the requirement engineering is

not efficient; hence some corrective action should be applied. In the second case, shows

evidence of late discovery of some cluster of hidden requirements.

69

After some cycles, the project should be in the volatile region. If the

project does not evolve through the stability region, then there is evidence that the

requirements engineering activity is not being efficient and some corrective action is

mandatory. It is important to analyze the evolution of the stakeholders' issues and

criticisms. It could be also the case that stakeholders have changed their minds. If the

project evolves to the shrinking region, and the requirements engineering is working

right, there is evidence that the customers are cutting down the project. This can be the

indicator of a severe cut in the budget. Finally, any involution to a previous region should

be considered as evidence of threats. In such cases a detailed analysis is required to assess

the causes of the anomaly. This set of metrics can be collected automatically form the

hypergraph and can give early alerts of the threats.

2. Metrics for Personnel

It is necessary to measure the fit between people and their roles in the software

process. In order to measure personnel both quantitative and qualitative metrics are

required. A skill match between person and job is required to estimate the speed in

processing information and rate of exceptions. On the quantitative side it is important to

measure the number of people and the turnover. The latter provides information about the

expected productivity losses due to training, learning curves and communications. This

set of metrics is difficult to collect because people are very reluctant to being measured.

The simulations showed that there exists an easier way to measure the productivity fitness

observing the ratio between direct working time and idle. Fitness is related to two risk

factors: the resources and the process.

3. Metrics for Complexity

In general, the complexity of an object is a function of the relationships among the

components of the object. In an early vision of modern object oriented paradigm, (Myers,

1976) introduced three valuable concepts to measure complexity:

70

• Independence: The independence of each component can reduce the

complexity of the system if the components are a partition of the system. So,

there is maximum cohesion and minimum coupling.

• Hierarchy: Hierarchical structures allow the stratification of the system in

different layers of abstraction.

• Explicit communication: The components should communicate with explicit

protocols avoiding any hidden side effects.

Complexity has a direct impact on quality because the likelihood that a

component fails is directly related to its complexity. The quality of the product can only

be determined at the end of the process. Hence, it is important to measure the complexity

as predictor (Munson, 1995). Real time systems present special difficulties in terms of

requirement engineering. Some requirements are difficult for the user to provide and for

the analysts difficult to determine. The best way to discover these hidden requirements is

via prototyping. CAPS is a CASE tool specially suited for this task. It has a graphical

easy to understand interface and mapped to a specification language, which in turns

generates Ada code. The main components of CAPS are:

• The prototype system description language (PSDL). PSDL is based on data

flow under real-time constraints. It uses an enhanced data flow diagram that

includes non-procedural control and timing constraints.

• User interface based on a graphic editor with a palette of objects that include

operators, inputs, outputs, data flows and operator loops. A browser helps the

designer to find reusable components. An expert system provides the

capability to generate English descriptions of PSDL specifications.

• The software database system provides the repository for reusable PSDL

components.

• The execution support system consists of a translator, scheduling mechanisms

and a debugger.

71

The prototyping process consists of prototype construction and modification

(evolution) based on evolving requirements and code generation. Both construction and

modification are exploratory activities with a common target: to satisfy multiple users

with different and often conflicting points of view. Requirement engineering is a

consensus driven activity in which mechanisms for conflict resolution and traceability of

requirement evolution represent critical success factors.

The specifications written in PSDL are suitable of being analyzed to compute

their complexity. In PSDL code has the following tokens: types, operators, data streams

and constraints. Types are declarations of abstract data types required for the system.

Operators and data streams are the components of a dataflow graph. Finally, constraints

represent the real-time constraints that the system must support.

Two complexity metrics were defined for PSDL: Fine Granularity Complexity

metric (FGC), and Large Granularity Complexity metric (LGC). The reason to

compute different metrics is because they are indicators of two classes of threats. First, it

is necessary to be aware of operators too complex. High complexity on one operator

could be caused by poor design and possible can be solved by further decomposition.

Second, it is necessary to have a metric to compute the total complexity of the system.

FGC expresses the complexity of each operator in the system and is a function of

the fan-in and fan-out data streams related to the operator.

FGC = fan-in + fan-out

LGC expresses the complexity of the system as a function of the number of

operators, data streams, and types.

LGC = O + D + T

72

To analyze PSDL code it was necessary to develop a tool to compute the LGC

and FGC. In Figure 5.2 LGC in presented under the title of "Complexity" and FGC is

presented under the title "Fan-In+Fan-Out".

^PSOLAiM^reejVer. 1.8 Joan Cailos Nogue»«
He m>

&S3iU
Types |s ratvlmrän-Öur Öpeatof Fatvln jFafcO« *J

: Operators ja o ■■'

CBlXS

CKl.S

mwereJSOJMS

Kans2jn?J16

0*020.113

EXTERN

t*se!J23_"22

saej)»J2S.'!25

ssns1_1UJ13

-«8«-.233.232

~_->_23S_23-ä

t.p.71.70

0

4

s

0

13

1

5

n
5

0

0

2

1

1

0 J
13 ' ■ 9

Edges p-
13 4

vertices)63 0 0

Complexity!« 21 s
5 4

H 9

2S 13 -;

12 ?

1 1

2 *
3 0

5 3

I 0

1 « -1

C-L50JSS10 -
t « 47 4S10
">.-.!-« 4310
m s «1 401 0
m tJ 38 3? 1 0
irtf_35_34-;0
V*J> 235 23S10
Su event aomax 5300
isse sen 12SÖC
wseL1Z300
tüte 120 00
!;<TK2 11700
sansl 114 00
now« 2S000
U>_?U0
bj3.S8S0
dLS500
S.S.S2C0
U.5SO0
J> !5S00
CJ.5S00
1 4 4700
a i : 44 0 0
si J 41 0 0
m d 3S00
bUSOO
messe 233 00
i nj>_23S3S
mj>_239 0 0

~

Figure 5.2: PSDL Complexity Tool

Figure 5.3 shows the strong correlation between PSDL lines of code and LGC.

The correlation coefficient (R) is 0.996.

73

100

80

60 o
o
-J 40

20

0
C

PSDL LOC vs Large Granularity Complexity (LGC)

y=0.0722x-1.576
R2 = 0.9924

^^*

^*^^

^^^^

^ ♦""♦

<^^

> 200 400 600 800 1000 1200
PSDL LOC

1400

Figure 5.3: Correlation between PSDL and LGC

100

80.

60 O
O
-" 40

20-

0
(

Ada NCLOC vs Large Granularity Complexity (LGC)

y = 0.0312x- 4.6857
R2 = 0.8066

♦

♦^-—-"""''^
^ _^-^^^

•j*-^~ *

+~^*~^
) 500 1000 1500 2000 2500

Ada NCLOC

3000;

i

Figure 5.4: Correlation between Ada code and LGC

The comparison between Ada non-comment lines of code of the projects with

their complexity measured using LGC shows a strong correlation also (R = 0.898). The

complexity metric correlates better with PSDL than with Ada. The reason for this

difference is because CAPS automatically generate PSDL. On the other hand, even if

CAPS generates part of the Ada code, the designer can add and modify the generated

code introducing more variability. Figure 5.4 shows the correlation observed for the same

set of projects.

74

A caveat of this study is that the sample is small, but it includes all the available

information at the current time. However, the study suggests the possibility of estimating

size in terms of complexity with a useful degree of accuracy.

B. ESTIMATION METHODS

Software projects could be considered as experiments where their cost and

schedule are the output measures. It is well known that software projects tend to overrun

costs and schedule (this fact has been proved by research and industry) (Boehm, 1981),

(Putnam, 1997), (Jones, 1996). There are two possible ways to interpret the result of the

experiment. One hypothesis is that this behavior is abnormal, and consequence of lack of

process maturity (SEI/CMM approach). Another hypothesis is that this could be a "false-

abnormal" behavior assumed abnormal as consequence of inappropriate measurements.

The industry has been using three classes of tools to estimate effort and time that

can be applied at different moments during the life cycle, each category being more

precise than the previous one but arriving later:

• Very early estimations. This category includes very crude approximations

done during the beginning of the process usually by subjective comparisons

using previous projects.

• Macro models. This category includes Basic COCOMO, Putnam, Function

Points, etc. The estimation is done after completing the requirements phase.

• Micro models. This category includes intermediate and detailed COCOMO,

and Pert/CPM/Gantt techniques. The estimation is done after the design when

it is possible to have a work breakdown structure. The estimation is the

integration of all module estimations.

None of these techniques consider the following characteristics of software

projects: a) requirements stability, b) personnel stability, and c) time consumed by

75

communications, exceptions and noise in the process. All the methods use size as input

parameter as some kind of derivation from complexity. In many cases the methods to

compute such complexities and sizes are questionable. Recently, Stanford University

(Levitt, 1999) developed a new generation micro model estimation tool (ViteProject) that

addresses some of the previous concerns. However, this tool is useful to control the

project but its results arrive too late for early estimation.

How to create a macro model that considers the previous concerns and is able to

be used during the early stages of the process? Probabilities can be applied. In 1939 the

Swedish physicist Waloddi Weibull introduced a heavy-tailed probability distribution to

represent the distribution of the breaking strength of materials (Devore, 1995). There is

some controversy about who was the first scientist that introduced this distribution. There

is a previous study of 1933 describing the "laws governing the fineness of powdered

coal" that used a similar function (Johnson94). Weibull distribution is also known as

Weibull-Gnedenko in the Russian literature, and as Frechet for an earlier paper presented

in Poland in 1927.

Weibull used this distribution to model strength of Bofors's steel, fiber strength of

Indian cotton, length of syrtoideas, fatigue life of steel, statures of adults males, and

breadth of beans. The Weibull distribution includes the exponential and the Rayleigh as

special cases. It has been used to model different failure rates: a) decreasing (when the

shape parameter a < 1), b) constant (when a = 1 -the exponential case with X = l/ß~),

and c) increasing (when a > 1). Many authors (Johnson94, Devore95, Lyu95) advocated

the use of this distribution in reliability and quality control. Others like Putnam and

Norden used it to model software life cycles. These previous works cited in Chapter II

motivated the interest in this distribution.

In some literature (Devore, 1995) and software (Excel), the distribution function

is presented with two parameters: a (the shape parameter), and ß (the scale parameter that

76

can compress or elongate the curve in the x axis). However, Weibull in his original work

mentioned a third parameter, y, to shift the curve to the right.

A random variable x is said to have a Weibull distribution with parameters a and

ß (with a > 0, ß > 0) if the probability distribution function (pdf) and cumulative

distribution function (cdf) of x are respectively:

f 0, x < 0
pdf: f(x; a, ß) = {

{ (cc/ßa) xa-' exp(-(x/ß)a), x > 0

f 0, x < 0
cdf: F(x; a, ß) = i

I l-exp(-(x/ß)a), x>0

Lets discuss the meaning of each of the variables in the function:

a) x is the random variable under study. In this case, x can be interpreted as

development time.

b) a is a shape parameter. It reduces the variability narrowing the shape of the

pdf.

c) ß is a scale parameter that stretches or compresses the graph in the x direction.

d) Note that the functions start at x = 0. A third parameter is required to shift the

curves to the right. For that reason was introduced a location parameter y,

which is function of the system complexity. The new functions are then:

f 0, x < y
pdf: f(x; y, a, ß) = <!

I (a^Xx-yr'exp^x-yVßr), x>y (Eq. 1)

f 0, x < y
cdf:F(x;y,a,ß)= {

{ l-exp((-(x-y)/ß)a), x>y (Eq. 2)

77

^*»—"~ Weibull

^^ - - - pdf

y^ \ cdf

Figure 5.5: Weibull Distribution

C. CONSTRUCTION OF THE MODEL AND SIMULATIONS

1. Finding the Complexity Metric and its Conversion to KLOC

One of the goals of this research was to provide a way to assess the duration of the

project given some indicators collected during the requirements phase. In such

conditions, code is not available, so the only possible measurements should come from

the specification.

Research on Function Points (FP) (Albrecht 1979, 1983) showed that there exists

a clear relation between complexity and size in terms of lines of code. However, FP is not

well suited for real time systems or object-oriented developments. The reason is that

parameters used in FP are not representative of the complexity in such systems. Chapter

II discussed in detail this issue. Consequently, it was necessary to look for another way to

measure complexity. The observed properties on PSDL showed characteristics that could

be used to find the way to calculate complexity. In order to measure the complexity of a

module, the count of the fan-in and fan-out is a good estimator. This metric was called

Fine Granularity Complexity (FGC). In order to find the complexity of the whole system,

the count of PSDL operators (bubbles), data streams (arrows), and types is a good

estimator. This metric was called Large Granularity Complexity (LGC).

78

The observations showed a strong linear correlation between LGC and size of the

specification. More interesting was the finding of a strong (but lower) correlation

between LGC and the size of the projects in Ada non-comment-lines of code. The size of

the project in thousands of non-comment lines of code can be estimated as:

KLOC = (32 LGC + 150) /1000 (Eq. 3)

As the complexity grows, the ratio trends to approximately 32 LOC for each unit

of LGC. This finding provided us with a method to compute the size of the projects given

an early measure of their complexity. This conversion is required to compare how close

this approach is with respect to other methods, such as Putnam's and Boehm's, that

require size as parameter.

2. Comparison between Putnam's and Boehm's Estimations

Before trying to compare this estimation model with the industries standards

(Putnam and COCOMO), an experiment was conducted to compare these two methods

(see Chapter II). In the experiment used Basic COCOMO because it is the only one that is

a macro model. Intermediate and Detailed COCOMO require a micro calibration that

cannot be done until the design is done. The purpose was to analyze early estimations, so

Basic COCOMO was the choice. For the comparison Putnam's results were transformed

from man-year and years to man-month and months.

The experiment consisted in computing Basic COCOMO and Putnam for

fictitious projects from 10 to 1000 KLOC. Basic COCOMO was computed for organic,

semidetached, and embedded systems to discriminate between these types of projects.

The results showed that in terms of effort, Putnam's method provides an estimation that is

close to the average between embedded and semidetached basic COCOMO. In terms of

development time, the models are quite similar, Putnam's being more optimistic.

79

3. Search of the Relationship between Complexity (LGC) and

Development Time

Having found a complexity metric suited for this research, the next step was to

find the existence of some sort of relationship between LGC and development time. A

simple experiment was conducted using the conversion ratio (Eq. 3) to obtain the size

inputs for the sample. The sample points were from 1000 LGC to 30000 LGC, which

means sample projects from 32 KLOC to almost 1MLOC. The average estimation for the

development time using COCOMO and Putnam was computed fro these projects. The

sample points are plotted with a smoothing thick line (Fig. 5.6). The logarithmic trendline

is plotted as a thin red line. A strong logarithmic correlation (R2 = 0.9699) with the

following function was found (Fig. 5.6):

Time (months) = 12.968 Ln(LGC) - 82.23 (Eq. 4)

This equation gives a

conservative estimation for

projects between 4000 and 20000

LGC (128 and 640 KLOC of

Ada). The estimation seems to be

too optimistic for projects smaller

than 2000 LGC or greater than

25000 LGC.

Trendline

o
S

60

50

40

30

20

10

0

^_^_

^^^=^~^

S y = 12.968Ln(x)- 82.23

f R2 = 0.9699

5000 10000 15000 20000 25000 30000 35000

Complexity LGC

Figure 5.6: Correlation between Development
Time and Complexity

4. Search for the Relation between Efficiency and Development Time

Causal analysis showed (Chapter III) that the risk of the project should be

dependent on three factors: complexity, productivity and volatility of requirements. The

method to compute complexity and the equation to estimate y, the estimated development

80

time (in months), based on complexity were discussed in the previous sections. Literature

in productivity classifies time spent at work into four categories:

• Direct. Time spent working and correcting errors on the product. In

ViteProject terminology, it is the sum of work and rework.

• Indirect. Time spent in activities supporting the work such as meetings,

coordination, information exchanges, etc. In ViteProject terminology, it is

known as coordination time.

• Idle. Time spent without work to do, waiting for some input. In ViteProject

terminology, it is known as waiting time.

• Personal. Time spent doing anything except the other categories. ViteProject

does not compute this category of time. However, it is loosely related to the

noise parameter of the tool.

Examining the time distribution of these categories it is possible to observe a

remarkable pattern that differentiates high efficiency scenarios from the low efficiency

ones. This effect is independent of the other two variables of the simulation. Hence, this

suggests that the time distribution can be a good indicator for the efficiency of the

organization The ratio between work and idle time can be automatically captured from

the software evolution steps as suggested by [Harn, 1999f]. Figure 5.7 presents the

distribution times for the eight scenarios simulated. A pattern of time distributions can be

clearly observed. Scenarios with low efficiency have a percentage of idle time greater

than 13% of the total development time. The following characteristics can be observed

from the simulations:

• Direct work is reduced by 10% when efficiency is high.

• Indirect work is reduced by 40% when the efficiency is high.

• Idle time is reduced by 70% when the efficiency is high.

Low efficiency scenarios can be recognized also by the ratio of the percentage of

direct time over percentage of idle time, which was called efficiency ratio (EF):

EF = Direct% / Idle% [Eq. 5]

81

For high efficiency scenarios 2.0 < EF, and for low efficient scenarios 0.8 < EF <

2.0.

HHH . • j

LHH ES?s-
^•Sl- :

nni_ [i>«|mg

LHL KSS"

1
>'

 -j ;' ™ ■•..■;^-.-L ■■■ TF. • '
nun (1^5

4 ■
11 u :.„:,„ ■,?■ ills "•- ■■ f ' ä ■■

1

0% 20% 40% 60% 80% 100%

13 Direct ■ Indirect nidle

Figure 5.7: Patterns of Time Distribution

The simulations showed that for high efficient scenarios the development time

was 60% shorter than for low efficient ones. The reasons why the ratio EF is related to

productivity require further study. However, it is possible to conjecture that the reason

could be related to:

• Fit of job and people skills.

• People turnover, generating noise and productivity losses derived from

training and learning curves.

• Number of people, influencing the productivity in two ways. If the number of

people is less than the roles of the software process, then the productivity will

be affected because someone will be dividing his attention and effort to more

than one role. On the other hand if the number of people exceeds the roles,

then the productivity will be affected by additional communications.

82

5. Search for the Relation between Requirement's Volatility and

Development Time

The requirements volatility is obtained by the following formula:

RV = INT((BR + DR) /10) (Eq. 5)

For instance if BR = 20% and DR = 10% then RV = 3. The simulations showed a

20% increase on the development time when the requirement's volatility is high

(Appendix C).

6. Calibration of the Parameters

To calibrate the values of the parameters described previously, a set of

simulations with ViteProject was conducted keeping the values of two variables constant

and changing the third one from low to high. The reason to do so, is to isolate the effects

of each variable. Having three variables and using two possible values for each one, the

universe of scenarios is reduced to the eight (23) scenarios showed in Table 5.1:

Table 5.1: Simulated Scenarios

Scenario name Productivity Req. volatility Complexity

LLL Low Low Low

LLH Low Low ' High

LHL Low High Low

LHH'" Low High ' High

HLL High Low Low

HLH High Low High 1

HHL High High Low-

HHH High High High :
f

Each scenario name consists of three letters that correspond to the value of each of

the three concepts under study: efficiency ratio (EF), requirements' volatility (RV), and

83

complexity (CX). Each letter could have two values: high (H) or low (L). The simulation

tool was configured to run 100 simulations for each scenario, and the organizational

parameters were set to match the characteristics of software development.

The simulation reports can be found in Appendix C. Table 5.2 contains the

configuration used in the simulation. These values are consequence of an analysis

realized with an expert system called Organizational Consultant (Burton, 1998). The tool

provides assistance to establish characteristics of organizations. The characteristics of two

Active software development organizations were introduced in the simulations: low

efficiency (associated to CMM level 1 or 2), and high efficiency (CMM level 3 or more).

The reports of the expert system are presented in Appendix B.

To analyze the effect of efficiency, the results of the simulations of the following

scenarios were compared: LLL vs HLL, LLH vs HLH, LHL vs HHL, and LHH vs HHH.

It was found that for high productivity scenarios (Hxx) the development time improved in

a 60%.

To analyze the effect of requirement volatility, the results of the simulations of the

following scenarios were compared: LLL vs LHL, LLH vs LHH, HLL vs HHL, and HLH

vs HHH. It was found that high requirement volatility (xHx) degraded the development

time in 20 to 30%.

To analyze the effect of complexity, the results of the simulations of the following

scenarios were compared: LLL vs LLH, LHL vs LHH, HLL vs HLH, and HHL vs HHH.

It was found that high complexity (xxH) degrade the development time in 20 to 30%.

84

-)-i_J_JXXXX

1 -J -I X X X X

fc
-J-i-J-JXXXX

M « O
o

B

Q> CO

0>
CO
OJ

5
o

E
o

d
u
o

•0s

«■a»

U

es
s-
es

PH

s ^o
♦3
es
u s
«
a o
U
<s

«j

3
«

X X X X

-J-i-J-JXXXX

-I -J X X X X

-J -I X X X X

oooooooo

•a
B re
CO
U

re
u
OJ
c
OJ
60

OJ < ü

E ™
re a>
«J E

z ©
U *-.
" es
C?:£

°- e
60
E

re
•s £

o
2

c
_o

83
#U
'£
3
£
E
o
U

60
c
2 <» r>
E ö «2 re 2 E u —

oj
o
o

JD re

o
' co

•s
o

•o
E

re
B <
b re
E
E
3

00

J=

_re -^3

E W
CO U.

JE T3
O V

«J .2
«4- T3
O £
>, &

ja <u
re •£
3
cr .£2

•o m
B B re E

aß oj
B Xi

to "O

go
"<5

B
O

re ^_
ju o

re X> *J

& i

o
o
O

EX Q.
CO "■

re rfc:

re
B

O
o
U

s
E

in
<u
H

eu u
2 r, O.DJ

t-
•O It

«2
eo B

.E OJ

o t-1

o 2
*^ o

re

.S fe
"a xj
B o
CJ °

re E
o

•o cE
E

EX to « u
3

Ut 01
O e.

re E

« 2 CO o
re

re x

EX
O
OJ
EX

/-^
[11
H
u. ^^^
*-»
E

re > ■*-»

3 >
cr 4-*
(i) o re
<u

= re
re B

re <£
x E

'S 2

Ja
«> "2 f~> re

E "re
3 >
B re

-J S S X _l ^ S X

-"S^X-lS^X

-J^^X-lSSX

-JX_lX_lX_lX

-1-JXX_I_JXX

_1_J_J_IXXXX

^5^iS?5

n <if m (o s oo ro

re ^>
E «

«2 =

E 2
"" re _o
^*-. ^a
o c.

o
£ >
OJ o

•o

re
.2 &

« O
ö J

i^ to

a> re
E *
60 «

B
.2 B -C O

Bfl
re

1_ E
o

O
0J u.
*-
t—
o B
V) O
u
o re
u N

E re re P.
i8 o
Cu u.

u re «

g re
E .H
re S
10 3
B C

•B £
re o

i ^
° E U .—

&
O a.
60

«' .£
> > re
1 « £
re > .ü
3 £ to
>3"2 '5
« B no
co a>

•~ 60 >
c E «
O = ^ •& ~ co

.111
'S ° TO r-
^- 5
£-5

E
O
E

■o
E

DC
O

X
-o

OJ

OJ

E
O
60

.E
'•B
E
OJ
EX
OJ
-a

X
a

u
O

o

tt- u o O
W

X 3
B £
3
E c«
OJ OJ

tt- to ° •«
Ü re

■2 c

£ <
3
B ,_

"I

T ^
.a 5

O oj o
o —

E S re
O -B

re E oj
N « tS
re g>.H
is .E "O
•c -^ -E
UE2

— ^ ..
JS S w
60^ OJ

§ « '"
2 E
« oj

•= t; is « re Ex

OJ
EX
X
OJ .

co —

S-o
OJ I
re o

I
3 S

. «>

ü« 5 B
O

o '5
SI
OJ *"

t §
2 ö
oj .5

*- JE i5

CJ E
OJ —

'S'e
Cu J

. o

O

o
Ö oj

re
E
OJ
CJ

X) re
X)
o
i.

eu

re b
E a

Ö E
E £

— 3

OJ ,S2
re CO

OJ
E

eo<

2 u
re oj

si
fc
OJ Xi

oj

o re

? E
OJ

JE
60

OJ
60
E re

"u
X
CD

E
_o
re

CU 6000 J=

85

D. THE MODELS

Three models were created with an increasing degree of accuracy. These models

are based on:

• Metrics from the three risk factors

• Weibull cumulative density function (Eq. 6)

• The derivation of the time (Eq 7)

The cdf of Weibull is:

P(x < t) = p = 1 - exp(-(((t - Y) / ß)a)) (Eq. 6)

.l-p = exp(-(((t-y)/ß)a))

.ln(l-p) = -(((t-y)/ß)°)

.-ln(l-p) = (((t-y)/ß)a)

.(-ln(l-p))1/a = (t-y)/ß

.ß(-ln(l-p)),/a = t-y

.ß(-ln(l-p)),/a + y = t (Eq.7)

Eq. 7 provides the estimated time for a given probability of success p. Note that t

and y should be expressed in the same units. The following notation applies to the

algorithms that define the three models:

EF: efficiency level

RV: requirements volatility as percentage

CX: complexity in LGC

ym: delay in months

y: delay in days

All the algorithms can be used to obtain t given EF, RV, CX, and e (the

probability of being correct); or to obtain s given EF, RV, CX, and t (a given day in the

future).

86

Model 1: This model can be used when the requirements volatility is small.

Algorithm Model 1:

i. If (EF > 2.0) then begin
a = 1.95;
ym = 0.28 * (13 * ln(LGC) - 82);
end

else begin
a = 2.5;
ym = 0.76 * (13 * ln(LGC) - 82);
end;

ii. y = ym * 22; //we assume 22 working days per
month

iii. ß = y / 5.5;

iv. p = 1 - exp(-(((t - y) / ß)a)); // P(x<=t)
v. t = ß * (-ln(l - s)) 1/a + y; // time in days

Model 2: This model considers the three factors (EF, RV, and CX), but it neglects

the combined effect of EF and RV.

Algorithm Model 2:

i. If (EF > 2.0) then begin

a = 1.95;
ym = 0.28 * (13 * ln(LGC) - 82);
end
else begin
a = 2.5;
ym = 0.76 * (13 * ln(LGC) - 82);
end;

ii. y = ym * 22; //we assume 22 working days per month
iii. If (RV > 30) then ß = yd / 5.25 // RV more than 30%

else ß = yd / 5.9;
iv. p = 1 - exp(-(((t - y) / ß)a)); // P(x<=t)
v. t = ß * (-ln(l - e)) 1/a + y; // time in days

87

Model 3: This model considers the three factors as well as the combined effects of

EF and RV.

Algorithm ModeB:

i. If (EF > 2.0) msr. oectir.
a = 1.95;
ym = 0.32 * (13 * In LGC) - 82);
enc

se begin
a = 2.5;
ym = 0.85 * (13 * In LGC) - 825;
end ;
// we assum e 22 work. _ng days per month
then ß = y /(5.71 + (RV - 20) * 0.046)
eise ß = y /(5.47 - (RV - 20) * 0.114) ;

(Ct - y) / ß)«)) // ?(x<=t)
- s) i :/a + y; // time in davs

ii. y = ym * 22;

iv. p = 1 - exp(-
v. t = ß * (-inf;

These three models were tried against 16 simulated projects obtaining the scatter

plots of Fig. 5.8, 5.9 and 5.10 respectively. Note the errors as vertical segments between

the estimated and real values. The values of R, R2 and standard errors are shown in Table

5.3.

Table 53: Accuracy of the Three Models

Modell Model 2 Model 3

R 0.9867 0.9890

0.9781

27 days

0.9930

0.9862

 22 days

R2

Standard[error

0.9736

30 days

88

700

600

500 .

400.

300 .

200-

100.

0 -

1

-f-
, t = duration

♦ estimated

100 200 300 400 500 600 700

Figure 5.8: Scatter Plot of Model 1

700
days

600

500

400

300 .

200.

100.

0.

JL

100 200 300 400 500

*

, t = duration

♦ estimated

600 days700

Figure 5.9: Scatter Plot of Model 2

89

700

600

500

400

300

200

100

0
C

T

1

*■

>i . t = duration

♦ estimated I—

*.+
4*

*

> 100 200 300 400 500 600 700

Figure 5.10: Scatter Plot of Model 3

90

E. INTEGRATION WITH THE EVOLUTIONARY SOFTWARE PROCESS

The evolutionary prototyping software process (Fig. 5.11) is a directed graph with

two cycles. Initially, the analysts collect a set of issues, which represent concerns and

preliminary goals of the customers, and transform them into a more elaborated level of

description called requirements using a requirements analysis step.

REQUIREMENTS
ANALYSIS

STEP

SPECIFICATION
DESIGN

STEP

(ISSUES]

ISSUE

ANALYSIS

STEP

OPTIMIZA-
TIONS

I CRITICISMS U

PRODUCT

IMPLEMENT.

STEP

MODULE

IMPLEMENT.
STEP

PROTOTYPE/

PRODUCT

DEMO STEP

-j PROGRAMS U
PROGRAM

INTEGRATION

STEP

Figure 5.11: The Evolutionary Prototyping Software Process. The vertices in
the graph are represented by rectangles. The arcs labeled with
circles represent the edges of the digraph.

The requirements are transformed into specifications, probably in PSDL, during

the specification design step. In the module implementation step the specifications are

automatically converted into code using an appropriate CASE tool such CAPS. The

program integration step transforms the modules obtained by the generator are integrated

into a program, possibly adding code created by programmers and reusable components.

This step includes integration testing and debugging. The program is demonstrated to the

customer in a prototype demo step that has two possible outcomes: a) the customer is not

satisfied and introduces criticisms, or b) the product conforms the needs and expectations

91

of the customer. In the first case, the process continues by analyzing the criticisms during

an issue analysis step that produces new issues closing the external cycle in the graph. In

the second case, the prototype contains all the required functionality, so a set of

optimizations is introduced during a product implementation step. The resulting product

is presented again to the customer during a product demo step closing the internal cycle

of the graph.

It is required the introduction of a new vertex in the graph to contain the risk

assessment step. A risk assessment step can be automatically done after the completion of

the specifications. From the specifications it is feasible to derive the complexity of the

product. This information is used together with personnel and organizational information,

and with metrics of requirements collected from the baselines, to produce the risk

assessment. The risk assessment step integrates these measures with issues in the issue

analysis steps (Fig. 5.12).

The development life cycle can be visualized a succession of prototyping

developments with increasing functionality followed by a final optimization that

produces the system. Each of these phases has the same activity pattern, so its reasonable

to suppose that the delivery time for each one has a probability distribution from the

Weibull but with different parameters.

During each phase a certain number of problem events occur. A problem event is

an effort-consuming situation that introduces a certain amount of functional complexity

to be solved (caused by a new requirement, a change on a requirement, or as the

consequence of rework), and a certain amount of information exchange.

92

REQUIREMENTS
ANALYSIS

STEP

CRITICISMS }<+>
PROTOTYPE/

PRODUCT
DEMO STEP

SPECIFICATION
DESIGN
STEP

„ / SPECIFI- \
"^\ CATIONS /

/
/

./
/
/

MODULE
IMPLEMENT.

STEP

MODULES

PROGRAMS k
PROGRAM

INTEGRATION
STEP

Figure 5.12 The Proposed Improvement

It is supposed that the occurrence of problem events in each phase follows a

Poisson distribution with different mean (A.) for each phase. So, the entire development

life cycle is a non-homogeneous Poisson process (Fig. 5.13). The assumption of this

distribution is based on the following reasoning:

• There exists a certain rate of occurrence of events.

• The probability of more than one event occurring in a time interval depends

on the length of the interval.

• The number of events during one time interval is independent of the number

received prior this time interval.

93

■d1 d2 dn
t

Figure 5.13: The Development Life Cycle. The shadow represents the non-
homogeneous Poisson process of the problem events. The curves
represent the Weibull probability distributions for the development time
of each phase.

94

VI. CONCLUSIONS

This thesis introduced a formal model to assess the risk of software projects based

on metrics automatically collectable from the project baseline. The model enables a

project manager to evaluate the probability of success of the project very early in the life

cycle. The problem of subjectivity in risk assessment is addressed by using a formal

method. Any decision-maker will arrive to the same estimations, independently of his

expertise.

A second benefit of this approach is that the model is an estimation tool for time

and effort, which improves the state of the art. The model addresses the weaknesses of

current standards for estimation because the constraint of frozen requirements, existent in

COCOMO 81, COCOMO II and Putnam, is not an issue in this model.

Finally, the research has been addressed using simulations and a small set of real

projects. It is necessary to conduct a survey with a large set of real projects to confirm the

results.

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

APPENDIX A

FORMAL DEFINITION OF THE

RELATIONAL HYPERGRAPH MODEL

Definition 1: Directed hypergraph (Harn, 1999f). A directed hypergraph is a tuple H =

(N, E, I, 0) where N is a set of nodes, E is a set of hyperedges, I is a function giving the

set of input nodes of each hyperedge, and O is a function giving the output nodes of each

hyperedge.

Definition 2: Path (Harn, 1999f). A path p from node m to node nk is a sequence of

hyperedges ei,..., ek-i (k>0), and a sequence of nodes ni,..., nk.

Definition 3: Acyclic hypergraph (Harn, 1999f). A hypergraph H = (N, E, I, O) is acyclic

if and only if there is no path from any node in H to itself.

Definition 4: Reachable (Harn, 1999f). A set N of nodes is reachable from a set R of

nodes if and only if there is path to each node n € N from some node r € R. A

hypergraph H, is reachable from a set R of its nodes, if and only if all its nodes are

reachable from R. The root of the hypergraph H is a node from which H is reachable. A

leaf of H is a node from which no other node is reachable.

Definition 5: Composite node and composite edge (Harn, 19991). A composite node is a

set of nodes, and a composite edge is a set of edges.

97

Definition 6: Hypergraph set (Ham, 1999f). The hypergraph set is the union of nodes and

edges of a set of hypergraphs.

Definition 7: Minimal hypergraph (Harn, 1999f). Let Nin and Nout be input and output

nodes of a hyperedge e in the hypergraph H = (N, E, I, 0). A minimal hypergraph Hm =

(Nin u N0ut, {e}, I, O) is a minimal unit of the hypergraph whose edge set has only one

edge e, and where Njn = 1(e) and Nout= 0(e).

Definition 8: Refinement of a composite node (Harn, 1999f). Let H = (N, E, I, O). The

refinement of a composite node n e N is a directed minimal hypergraph Hm = (N\n u Nout,

{e}, I, O), where the input node setNjn = {nl,..., nn}, the output node setN0Ut= {n}, and

the edge set is {e}. The edge e is called decomposition edge and relates the refinement

node with its decomposition.

Definition 9: Opposite hypergraph (Harn, 1999f). Let H = (N, E, I, O) then its opposite

hypergraph Hop = (N, E, O, I).

Definition 10: Hyperpath (Harn, 1999f). A hyperpath in the hypergraph H = (N, E, I, O),

is the minimal hypergraph from a set of nodes Ni to another set of nodes N2 where Ni c

N and N2 c N.

Definition 11: Refinement of a composite edge (Harn, 1999f). Let H = (N, E, I, O). The

refinement of a composite edge e = ei, ..., en where e e E, is a hypergraph set of minimal

hypergraphs R = (Njn u Nout, e, I, O). Njn = 1(e), Nout = 0(e), and ej, ..., enare called

subedges.

98

Definition 12: Refinement of a minimal hypergraph (Harn, 1999f). Let Hm = (Nin u Nout,

{e}, I, 0) be a minimal hypergraph. The refinement of a minimal hypergraph is a

hypergraph set R = Hin u Hout u He, where Hjn is a refinement of Njn, Houtis a refinement

of Nout, and He is a refinement of e. Hm can be viewed as a graph composed by two nodes

(Nin, Nout) and one edge (e) where Njn and Nout are hypergraphs and e is hyperedge.

Definition 13: Evolutionary hypergraph (Harn, 1999f). An evolutionary hypergraph is a

labeled, directed, and acyclic hypergraph H = (N, E, I, 0) together with label functions

that give component attributes to the nodes and step attributes to the edges.

Definition 14: Top-level evolution step (Harn, 1999f). A hyperedge is called top-level

evolution step if there are no parent evolution steps.

Definition 15: Atomic evolution step (Ham, 1999f). An atomic evolution step is an

atomic (non decomposable) edge.

Definition 16: Top-level evolutionary hypergraph (Harn, 1999f). A top-level evolutionary

hypergraph is an evolutionary hypergraph which its edges are top-level evolution steps.

Definition 17: Atomic evolutionary hypergraph (Harn, 1999f). An atomic evolutionary

hypergraph is an evolutionary hypergraph with an atomic evolution step as its hyperedge.

Definition 18: Primary input (Harn, 1999f). Primary inputs are different versions of the

output component of an evolutionary step.

99

Definition 19: Secondary inputs (Harn, 1999f). Secondary inputs are all other input

components required in an evolutionary step that are not primary inputs.

Definition 20: Primary-input-driven hypergraph (Harn, 1999f). An evolutionary

hypergraph is called primary-input-driven if and only if its nodes are primary inputs.

Definition 21: Secondary-input-driven hypergraph (Harn, 1999f). An evolutionary

hypergraph is called secondary-input-driven if and only if its nodes are secondary inputs.

Definition 22: Relational hypergraph (Harn, 1999f). A relational hypergraph is an

evolutionary hypergraph in which the dependency relationships between components and

steps can have a hierarchy of specialized interpretations.

Definition 23: Software prototyping demo step (Harn, 1999f). A software prototyping

demo step is a step in which the input components are a set of criticisms (Cl), a set of

programs (P), a set test scenarios (T), and a set of stakeholders (U), producing an output

component set of criticisms (C2).

Definition 24: Issue analysis step (Harn, 1999f). A issue analysis step is a step in which

the input components are a set of previous issues (Jl), a set of stakeholders (U), a set of

criticisms (C), producing an output component set of new issues (J2).

100

Definition 25: Requirement analysis step (Harn, 1999f). A requirement analysis step is a

step in which the input components are a set of previous requirements (Rl), a set of

issues (J), a set of stakeholders (U), producing an output component set of new

requirements (R2).

Definition 26: Specification design step (Harn, 1999f). A specification design step is a

step in which the input components are a set of previous specifications (SI), a set of

stakeholders (U), a set of requirements (R), producing an output component set of new

specifications (S2).

Definition 27: Module implementation step (Harn, 1999f). A module implementation step

is a step in which the input components are a set of previous modules (Ml), a set of

stakeholders (U), a set of specifications (S), producing an output component set of new

modules (M2).

Definition 28: Program integration step (Harn, 1999f). A program integration step is a

step in which the input components are a set of previous programs (PI), a set of

stakeholders (U), a set of modules (M), producing an output component set of new

programs (P2).

Definition 29: Software product demo step (Harn, 1999f). A software product demo step

is a step in which the input components are a set of previous optimizations (Kl), a set of

stakeholders (U), a set of programs (P), a set of test scenarios (T), producing an output

component set of new optimizations (K2).

101

Definition 30: Software product implementation step (Harn, 1999f). A software product

implementation step is a step in which the input components are a set of previous

versions of programs (PI), a set of stakeholders (U), a set of optimizations (K), producing

an output component set of new programs (P2).

Definition 31: Software prototyping evolution process (Harn, 1999f). A software

prototyping evolution step is a hypergraph with a path with the following properties:

(1) Steps are software prototype or product demo, issue analysis, requirement

analysis, specification design, module implementation and program integration.

(2) Nodes are old version programs, criticisms, issues, requirements,

specifications, modules, and new version programs.

Definition 32: Software product generation process (Harn, 1999f). A software product

process is a relational hypergraph with a path with the following properties:

(1) Steps are software prototype or product demo, and program integration.

(2) Nodes are new version prototypes or old version programs, optimizations,

and new version programs.

Definition 33: Software evolution process (Harn, 1999f). A software evolution process is

a relational hypergraph with a combined structure of software prototyping evolution

processes and software product generation processes.

Definition 34: Top-level relational hypergraph net (Harn, 1999f). A top-level relational

hypergraph is a set composed by a set of primary inputs, one or more sets of secondary

inputs, and a set of output nodes to a top-level evolution step. (Harn, 1999f) called this is

concept SPIDER (Step Processed in Different Entrance Relationships).

102

Definition 35: Atomic relational hypergraph net (Harn, 1999f). An atomic relational

hypergraph is a set composed by a set of primary inputs, one or more sets of secondary

inputs, and a set of output nodes to an atomic evolution step. (Harn, 1999f) called this is

concept atomic SPIDER.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX B

ANALYSIS WITH ORGANIZATIONAL CONSULTANT

The following reports were produced using Organizational Consultant expert system. The
first report analyze a Active organization "Software Engineering" which represents a
typical public software development department below CMM level 3. The second report
analyzes the same organization after reaching CMM level 3.

REPORT SUMMARY - Software Engineering

Time: 2:17:22 PM, 12/29/99
Scenario: Scenario 1

INPUT DATA SUMMARY

The description below summarizes and interprets your answers to the questions about your organization
and its situation. It states your answers concerning the organization's current configuration, complexity,
formalization, and centralization. Your responses to the various questions on the contingencies of age, size,
technology, environment, management style, cultural climate and strategy factors are also given. The
writeup below summarizes the input data for the analysis.

- Software Engineering has an adhocracy configuration (cf 100).
- Software Engineering has a small number of different jobs (cf 100).
- Of the employees at Software Engineering 76 to 100 % have an advanced degree or many years of special
training (cf 100).
- Software Engineering has 3 to 5 vertical levels separating top management from the bottom level of the
organization (cf 100).
- The mean number of vertical levels is 3 to 5 (cf 100).
- Software Engineering has 1 or 2 separate geographic locations (cf 100).
- Software Engineering's average distance of these separate units from the organization's headquarters is of
no relevance because there is only one site undetermined (cf 100).
- An undetermined number of Software Engineering's total workforce is located at these separate units (cf
100).
- Job descriptions are available for none or an undetermined number of employees (cf 100).
- Where written job descriptions exist, the employees are supervised an undetermined manner to ensure
compliance with standards set in the job description (cf 100).
- The employees are allowed to deviate in an undetermined way from the standards (cf 100).
- 0 to 20 % non-managerial employees are given written operating instructions or procedures for their job
(cflOO).
- The written instructions or procedures given are of no relevance as there are no written instructions or
they may be undetermined (cf 100).
- Supervisors and middle managers are to some extent free from rules, procedures, and policies when they
make decisions (cf 100).
- Less than 20 % of all the rules and procedures that exist within the organization are in writing (cf 100).
- Top Management is to a great extent involved in gathering the information they will use in making
decisions (cf 100).
- Top management participates in the interpretation of 61 to 80 % of the information input (cf 100).
- Top management directly controls 21 to 40 % of the decisions executed (cf 100).
- The typical middle manager has little discretion over establishing his or her budget (cf 100).
- The typical middle manager has little discretion over how his/her unit will be evaluated (cf 100).
- The typical middle manager has little discretion over the hiring and firing of personnel (cf 100).

105

- The typical middle manager has little discretion over personnel rewards - (ie, salary increases and
promotions) (cf 100).
- The typical middle manager has some discretion over purchasing equipment and supplies (cf 100).
- The typical middle manager has little discretion over establishing a new project or program (cf 100).
- The typical middle manager has very great discretion over how work exceptions are to be handled (cf
100).
- Software Engineering has 25 employees (cf 100).
- Software Engineering's age is young (cf 100).
- Software Engineering's ownership status is public (cf 100).
- Software Engineering has some different products (cf 100).
- Software Engineering has few different markets (cf 100).
- Software Engineering only operates in one country (cf 100).
- Software Engineering has no different products in the foreign markets (cf 100).
- Software Engineering's major activity is categorized as service (cf 100).
- Software Engineering has a specialized customer-oriented service technology (cf 100).
- Software Engineering has undetermined technology (cf 100).
- Software Engineering's technology is undetermined with respect to divisibility (cf 100).
- Software Engineering's technology dominance is strong (cf 100).
- Software Engineering has given no information about a possible advanced information system (cf 100).
- Software Engineering's environment is complex (cf 100).
- The uncertainty of Software Engineering's environment is high (cf 100).
- The equivocality of the organization's environment is high (cf 100).
- Software Engineering's environment has an undetermined level of hostility (cf 100).
- Top management prefers to make resource allocations and detailed operating decisions (cf 100).
- Top management primarily prefers to make long-term decisions (cf 100).
- Top management has a preference for very aggregate information when making decisions (cf 100).
- Top management has a preference for some proactive actions and some reactive actions (cf 100).
- Top management is risk averse (cf 100).
- Top management has a preference for a combination of motivation and control (cf 100).
- Software Engineering operates in an industry with a medium capital requirement (cf 100).
- Software Engineering has a high product innovation (cf 100).
- Software Engineering has a high process innovation (cf 100).
- Software Engineering has a high concern for quality (cf 100).
- Software Engineering's price level is undetermined relative to its competitors (cf 100).
- The level of trust is high (cf 100).
- The level of conflict is low (cf 100).
- The employee morale is not known (cf 100).
- Rewards are given in a not known fashion (cf 100).
- The resistance to change is not known (cf 100).
- The leader credibility is high (cf 100).
- The level of scapegoating is low (cf 100).

THE SIZE

The size of the organization - large, medium, or small - is based upon the number of employees, adjusted
for their level of education or technical skills.
Based on the answers you provided, it is most likely that your organization's size is medium (cf 50).
More than 75 % of the people employed by Software Engineering have a high level of education.
Adjustments are made to this effect. The adjusted number of employees is lower than 500 but greater than
100 and Software Engineering is categorized as medium. However, for this adjusted number this size does
not have a major effect on the organizational structure.

THE CLIMATE

The organizational climate effect is the summary measure of people and behavior.

106

Based on the answers you provided, it is most likely that the organizational climate is a group climate (cf
76).
It could also be that climate is a developmental (cf 73).
The group climate is characterized as a friendly place to work where people share a lot of themselves. It is
like an extended family. The leaders, or head of the organization, are considered to be mentors and, perhaps
even parent figures. The organization is held together by loyalty or tradition. Commitment is high. The
organization emphasizes the long-term benefit of human resource development with high cohesion and
morale being important. Success is defined in terms of sensitivity to customers and concern for people. The
organization places a premium on teamwork, participation, and consensus.
When the organization has a high level of trust it is likely that the organization has a group climate. An
organization with little conflict can be categorized to have group climate. High leader credibility
characterizes an organization with a group climate. An organization with a low level of scapegoating may
have a group climate.
The developmental climate is characterized as a dynamic, entrepreneurial and creative place to work.
People stick their necks out and take risks. The leaders are considered to be innovators and risk takers. The
glue that holds organizations together is commitment to experimentation and innovation. The emphasis is
on being on the leading edge. Readiness for change and meeting new challenges are important. The
organization's long-term emphasis is on growth and acquiring new resources. Success means having unique
and new products or services and being a product or service leader is important. The organization
encourages individual initiative and freedom.
When the organization has a high to medium level of trust it is likely that the organization has a
developmental climate. An organization with low level of conflict can be categorized to have a
developmental climate. Medium to high leader credibility characterizes an organization with a
developmental climate. An organization with a medium level of scapegoating may have a developmental
climate.

THE MANAGEMENT STYLE

The level of management's microinvolvement in decision making is the summary measure of management
style. Leaders have a low preference for microinvolvement; managers have a high preference for
microinvolvement.
Based on the answers you provided, it is most likely that your management profile has a medium
preference for microinvolvement (cf 78).
The management of Software Engineering has a preference for letting some decisions be made by other
managers. This will lead toward a medium preference for microinvolvement. The management of Software
Engineering has a preference for taking actions on some decisions and being reactive toward others. This
will lead toward a medium preference for microinvolvement. Management has a preference for using both
motivation and control to coordinate the activities, which leads toward a medium preference for
microinvolvement.

THE STRATEGY

The organization's strategy is categorized as one of either prospector, analyzer with innovation, analyzer
without innovation, defender, or reactor. These categories follow Miles and Snow's typology. Based on
your answers, the organization has been assigned to a strategy category. This is a statement of the current
strategy; it is not an analysis of what is the best or preferred strategy for the organization.
Based on the answers you provided, it is most likely that your organization's strategy is an analyzer with
innovation strategy (cf 68).
It could also be: a prospector (cf 64).
An organization with an analyzer with innovation strategy is an organization that combines the strategy of
the defender and the prospector. It moves into the production of a new product or enters a new market after
viability has been shown. But in contrast to an analyzer without innovation, it has innovations that run
concurrently with the regular production. It has a dual technology core.
An organization with a medium capital investment is likely to have some capabilities rather fixed, but can
also adjust. The analyzer with innovation which seeks new opportunities but also maintains its profitable
position is appropriate. With a concern for high quality an analyzer with innovation strategy is a likely

107

strategy for Software Engineering. With top management preferring a medium level of microinvolvement
top management wants some influence. This can be obtained via control over current operations. Product
innovation should be less controlled. The strategy is therefore likely to be analyzer with innovation.
An organization with a prospector strategy is an organization that continually searches for market
opportunities and regularly experiments with potential responses to emerging environmental trends. Thus,
the organization is often the creator of change and uncertainty to which its competitors must respond.
However, because of its strong concern for product and market innovation, a prospector usually is not
completely efficient.
With a concern for high quality a prospector strategy is a likely strategy for Software Engineering.

THE CURRENT ORGANIZATIONAL CHARACTERISTICS

Based on your answers, the organization's complexity, formalization, and centralization have been
calculated. This is the current organization. Later in this report, there will be recommendations for the
organization.
The current organizational complexity is medium (cf 100).
The current horizontal differentiation is medium (cf 100).
The current vertical differentiation is low (cf 100).
The current spatial differentiation is low (cf 100).
The current centralization is medium (cf 100).
The current formalization is low (cf 100).
The current organization has been categorized with respect to formalization, centralization, and complexity.
The categorization is based on the input you gave and does not take missing information into account.

SITUATION MISFITS

A situation misfit is an unbalanced situation among the contingency factors of management style, size,
environment, technology, climate, and strategy.
The following misfits are present: (cf 100).
Software Engineering has both an analyzer strategy and few products. Generally, more products are
required for an analyzer. A few products may be reasonable in the short run, but an analyzer should be in
constant consideration of new possibilities. When a few, unchanging products become the norm, the
analyzer should broaden its scope of new opportunities.

ORGANIZATIONAL CONSULTANT RECOMMENDATIONS

Based on your answers about the organization, its situation, and the conclusions with the greatest certainty
factor from the analyses above Organizational Consultant has derived recommendations for the
organization's configuration, complexity, formalization, and centralization. There are also
recommendations for coordination and control, the appropriate media richness for communications, and
incentives. More detailed recommendations for possible changes in the current organization are also
provided.

ORGANIZATIONAL CONFIGURATIONS

The most likely configuration that best fits the situation has been estimated to be a matrix configuration (cf
59).
A matrix structure is a structure that assigns specialists from functional departments to work on one or
more interdisciplinary teams that are led by project leaders. Permanent product teams are also possible. A
dual hierarchy manages the same activities and individuals at the same time.
When Software Engineering's environment has neither low equivocality nor low complexity, the
configuration should be matrix. When Software Engineering is of medium size, the configuration can be a
matrix configuration. The matrix configuration is a more likely configuration when Software Engineering
has a unit production technology.

108

ORGANIZATIONAL CHARACTERISTICS

The recommended degree of organizational complexity is medium (cf 43).
Medium size organizations should have medium organizational complexity. Top management of Software
Engineering has a preference for a medium level of microinvolvement, which drives the organizational
complexity towards medium. A group climate in the organization requires a medium level of complexity
with a low level of vertical differentiation.
The recommended degree of horizontal differentiation is low (cf 28).
It, too, could be: medium (cf 19).
The recommended degree of vertical differentiation is low (cf 38).
The recommended degree of formalization is medium (cf 48).
There should be some formalization between the organizational units but less formalization within the units
due to the high professionalization. Software Engineering has a medium capital requirement, which leads to
medium formalization. Medium size organizations should have medium formalization. Medium
formalization is consistent with the leadership style when top management's preference for
microinvolvement is neither very great nor very low.
The recommended degree of centralization is medium (cf 45).
Software Engineering has an analyzer with innovation strategy. Centralization should be medium. There
should be tight control over current activities and looser control over new ventures. Software Engineering
is of medium size. Such organizations should have medium to high centralization. Medium centralization is
recommended when top management has neither a great desire nor very little desire for microinvolvement.
Software Engineering's span of control should be narrow (cf 30).
It, too, at places should be moderate (cf 25).
Since Software Engineering has a nonroutine technology, it should have a narrow span of control.
Software Engineering should use media with high media richness (cf 85).
The information media that Software Engineering uses should provide a large amount of information (cf
85).
Incentives should be based on results (cf 85).
Software Engineering should use an undetermined process as means for coordination and control (cf 100).
When the environment of Software Engineering has high equivocality, high uncertainty, and high
complexity, coordination and control should be obtained through integrators and group meetings. The
richness of the media should be high with a large amount of information. Incentives must be results based.
Coordination is a major issue requiring a lot of time by functional managers and product or project
managers. Managers should make frequent adjustments in order to maintain project and product goals and
use scarce functional resources and personnel efficiently. In an international firm, matrix dimensions will
likely include country or region and may include either product, customer, or function. Project or product
managers will likely be required to champion new innovations in customers, products or technologies.
When the organization has a group climate, coordination should be obtained using integrators and group
meetings. Incentives could be results based but with a group orientation. An organization with a group
climate will likely have to process a large amount of information and will need information media with
high richness.

ORGANIZATIONAL MISFITS

Organizational misfits compares the recommended organization with the current organization.
The following organizational misfits are present: (cf 100).
Current and prescribed configuration do not match.
Current and prescribed formalization do not match.

MORE DETAILED RECOMMENDATIONS

There are a number of more detailed recommendations (cf 100).

109

You may consider increasing the number of positions for which job descriptions are available.
You may consider supervising the employees more closely.
You may consider allowing employees less latitude from standards.
You may consider more written job descriptions.
Managerial employees may be asked to follow written instructions and procedures more closely.
You may consider having more written rules and procedures.

END

REPORT SUMMARY - Software Engineering

Time: 2:40:37 PM, 12/29/99
Scenario: Scenario 2

INPUT DATA SUMMARY

The description below summarizes and interprets your answers to the questions about your organization
and its situation. It states your answers concerning the organization's current configuration, complexity,
formalization, and centralization. Your responses to the various questions on the contingencies of age, size,
technology, environment, management style, cultural climate and strategy factors are also given. The
writeup below summarizes the input data for the analysis.
- Software Engineering has a matrix configuration (cf 100).
- Software Engineering has a small number of different jobs (cf 100).
- Of the employees at Software Engineering 76 to 100 % have an advanced degree or many years of special
training (cf 100).
- Software Engineering has 3 to 5 vertical levels separating top management from the bottom level of the
organization (cf 100).
- The mean number of vertical levels is 3 to 5 (cf 100).
- Software Engineering has 1 or 2 separate geographic locations (cf 100).
- Software Engineering's average distance of these separate units from the organization's headquarters is of
no relevance because there is only one site undetermined (cf 100).
- An undetermined number of Software Engineering's total workforce is located at these separate units (cf
100).
- Job descriptions are available for operational employees, low and middle management (cf 100).
- Where written job descriptions exist, the employees are supervised closely to ensure compliance with
standards set in the job description (cf 100).
- The employees are allowed to deviate a moderate amount from the standards (cf 100).
- 81 to 100 % non-managerial employees are given written operating instructions or procedures for their
job (cf 100).
- The written instructions or procedures given are followed to a great extent (cf 100).
- Supervisors and middle managers are to a little extent free from rules, procedures, and policies when they
make decisions (cf 100).
- More than 80 % of all the rules and procedures that exist within the organization are in writing (cf 100).
- Top Management is to some extent involved in gathering the information they will use in making
decisions (cf 100).
- Top management participates in the interpretation of 41 to 60 % of the information input (cf 100).
- Top management directly controls 0 to 20 % of the decisions executed (cf 100).
- The typical middle manager has some discretion over establishing his or her budget (cf 100).
- The typical middle manager has some discretion over how his/her unit will be evaluated (cf 100).
- The typical middle manager has great discretion over the hiring and firing of personnel (cf 100).
- The typical middle manager has some discretion over personnel rewards - (ie, salary increases and
promotions) (cf 100).
- The typical middle manager has some discretion over purchasing equipment and supplies (cf 100).
- The typical middle manager has some discretion over establishing a new project or program (cf 100).

110

- The typical middle manager has very great discretion over how work exceptions are to be handled (cf
100).
- Software Engineering has 25 employees (cf 100).
- Software Engineering's age is young (cf 100).
- Software Engineering's ownership status is public (cf 100).
- Software Engineering has few different products (cf 100).
- Software Engineering has few different markets (cf 100).
- Software Engineering only operates in one country (cf 100).
- Software Engineering has no different products in the foreign markets (cf 100).
- Software Engineering's major activity is categorized as service (cf 100).
- Software Engineering has a specialized customer-oriented service technology (cf 100).
- Software Engineering has a medium routine technology (cf 100).
- Software Engineering's technology is highly divisible (cf 100).
- Software Engineering's technology dominance is strong (cf 100).
- Software Engineering has either planned or already has an advanced information system (cf 100).
- Software Engineering's environment is complex (cf 100).
- The uncertainty of Software Engineering's environment is high (cf 100).
- The equivocality of the organization's environment is high (cf 100).
- Software Engineering's environment has an undetermined level of hostility (cf 100).
- Top management prefers to make policy and general resource allocation decisions (cf 100).
- Top management primarily prefers to make long-term decisions (cf 100).
- Top management has a preference for very aggregate information when making decisions (cf 100).
- Top management has a preference for some proactive actions and some reactive actions (cf 100).
- Top management is risk averse (cf 100).
- Top management has a preference for high control (cf 100).
- Software Engineering operates in an industry with a medium capital requirement (cf 100).
- Software Engineering has a high product innovation (cf 100).
- Software Engineering has a high process innovation (cf 100).
- Software Engineering has a high concern for quality (cf 100).
- Software Engineering's price level is undetermined relative to its competitors (cf 100).
- The level of trust is high (cf 100).
- The level of conflict is low (cf 100).
- The employee morale is high (cf 100).
- Rewards are given in a inequitably fashion (cf 100).
- The resistance to change is not known (cf 100).
- The leader credibility is high (cf 100).
- The level of scapegoating is low (cf 100).

THE SIZE

The size of the organization - large, medium, or small - is based upon the number of employees, adjusted
for their level of education or technical skills.
Based on the answers you provided, it is most likely that your organization's size is medium (cf 50).
More than 75 % of the people employed by Software Engineering have a high level of education.
Adjustments are made to this effect. The adjusted number of employees is lower than 500 but greater than
100 and Software Engineering is categorized as medium. However, for this adjusted number this size does
not have a major effect on the organizational structure.

THE CLIMATE

The organizational climate effect is the summary measure of people and behavior.
Based on the answers you provided, it is most likely that the organizational climate is a group climate (cf
82).
It could also be the that climate is a developmental (cf 80).

Ill

The group climate is characterized as a friendly place to work where people share a lot of themselves. It is
like an extended family. The leaders, or head of the organization, are considered to be mentors and, perhaps
even parent figures. The organization is held together by loyalty or tradition. Commitment is high. The
organization emphasizes the long-term benefit of human resource development with high cohesion and
morale being important. Success is defined in terms of sensitivity to customers and concern for people. The
organization places a premium on teamwork, participation, and consensus.
When the organization has a high level of trust it is likely that the organization has a group climate. An
organization with little conflict can be categorized to have group climate. Employees with a high morale is
one element of group climate. High leader credibility characterizes an organization with a group climate.
An organization with a low level of scapegoating may have a group climate.
The developmental climate is characterized as a dynamic, entrepreneurial and creative place to work.
People stick their necks out and take risks. The leaders are considered to be innovators and risk takers. The
glue that holds organizations together is commitment to experimentation and innovation. The emphasis is
on being on the leading edge. Readiness for change and meeting new challenges are important. The
organization's long-term emphasis is on growth and acquiring new resources. Success means having unique
and new products or services and being a product or service leader is important. The organization
encourages individual initiative and freedom.
When the organization has a high to medium level of trust it is likely that the organization has a
developmental climate. An organization with low level of conflict can be categorized to have a
developmental climate. Employees with a high morale is frequently one element of a developmental
climate. Medium to high leader credibility characterizes an organization with a developmental climate. An
organization with a medium level of scapegoating may have a developmental climate.

THE MANAGEMENT STYLE

The level of management's microinvolvement in decision making is the summary measure of management
style. Leaders have a low preference for microinvolvement; managers have a high preference for
microinvolvement.
Based on the answers you provided, it is most likely that your management profile has a low preference for
microinvolvement (cf 72).
It could also be that your management profile has an inappropriate preference (cf 70).
It could also be that your management profile has a high preference (cf 69).
The management of Software Engineering has a preference for delegating decisions. This will lead toward
a low preference for microinvolvement. Management has a long-term horizon when making decisions,
which characterizes a preference for a low microinvolvement. Since the management has a preference for
making decisions on the basis of very aggregate information a low preference for microinvolvement
characterization is appropriate.
The management dimensions are not in balance. This is likely to result in an ineffectual individual.
Management is risk averse. This is one of the characteristics of a manager with a high preference for
microinvolvement. Management has a preference for using control to coordinate activities, which leads
toward a high preference for microinvolvement.

THE STRATEGY

The organization's strategy is categorized as one of either prospector, analyzer with innovation, analyzer
without innovation, defender, or reactor. These categories follow Miles and Snow's typology. Based on
your answers, the organization has been assigned to a strategy category. This is a statement of the current
strategy; it is not an analysis of what is the best or preferred strategy for the organization.
Based on the answers you provided, it is most likely that your organization's strategy is a prospector
strategy (cf 73).
It could also be: a defender (cf 72).
It could also be: an analyzer with innovation (cf 72).
An organization with a prospector strategy is an organization that continually searches for market
opportunities and regularly experiments with potential responses to emerging environmental trends. Thus,
the organization is often the creator of change and uncertainty to which its competitors must respond.

112

However, because of its strong concern for product and market innovation, a prospector usually is not
completely efficient.
With a concern for high quality a prospector strategy is a likely strategy for Software Engineering. With top
management preferring a relatively low level of microinvolvement, the strategy is likely to be prospector.
An organization with a defender strategy is an organization that has a narrow product market domain. Top
managers in this type of organization are expert in their organization's limited area of operation but do not
tend to search outside their domains for new opportunities. As a result of this narrow focus, these
organizations seldom need to make major adjustments in their technology, structure, or methods of
operation. Instead, they devote primary attention to improving the efficiency of their existing operations.
Software Engineering has few products. It needs to defend these products well in the marketplace. Viability
depends on being successful with these limited activities. With a concern for high quality a defender
strategy is a likely strategy for Software Engineering.
An organization with an analyzer with innovation strategy is an organization that combines the strategy of
the defender and the prospector. It moves into the production of a new product or enters a new market after
viability has been shown. But in contrast to an analyzer without innovation, it has innovations that run
concurrently with the regular production. It has a dual technology core.
An organization with a medium capital investment is likely to have some capabilities rather fixed, but can
also adjust. The analyzer with innovation which seeks new opportunities but also maintains its profitable
position is appropriate. For a medium routine technology, Software Engineering has some flexibility. It is
consistent with an analyzer with innovation strategy. With a concern for high quality an analyzer with
innovation strategy is a likely strategy for Software Engineering.

THE CURRENT ORGANIZATIONAL CHARACTERISTICS

Based on your answers, the organization's complexity, formalization, and centralization have been
calculated. This is the current organization. Later in this report, there will be recommendations for the
organization.
The current organizational complexity is medium (cf 100).
The current horizontal differentiation is medium (cf 100).
The current vertical differentiation is low (cf 100).
The current spatial differentiation is low (cf 100).
The current centralization is medium (cf 100).
The current formalization is high (cf 100).
The current organization has been categorized with respect to formalization, centralization, and complexity.
The categorization is based on the input you gave and does not take missing information into account.

SITUATION MISFITS

A situation misfit is an unbalanced situation among the contingency factors of management style, size,
environment, technology, climate, and strategy.
The following misfits are present: (cf 100).
Software Engineering has both a prospector strategy and a risk adverse management. This strategy
conflicts with the management's risk adverse attitude. A prospector strategy demands a projection into the
unknown with new and innovative products and services, where the returns are uncertain. A risk adverse
management will be very uncomfortable with this high level of risk. Risk adverse managers prefer
situations with less uncertainty. It is possible to either change the prospector strategy or hire more risk
assuming managers. Usually a risk adverse management will control expenditures to reduce or eliminate
the prospector projects. If the environment and markets call for a prospector strategy, a new management
would be preferable. Some risk adverse managers can adapt, but it is very difficult.
Software Engineering has both a prospector strategy and not many products or markets. The prospector will
create a broad range of new possible products and services, which requires a large number of possible
products and markets. A prospector requires variety to explore and find new products and markets for its
innovations. With limited product and market opportunity, the range of prospector possibilities may exceed
the environmental possibilities. The prospector needs to seek new markets as well as new products. If the
markets do not exist or cannot be created, the prospector will incur high costs of innovation without return.

113

Software Engineering has a group climate. This is a mismatch with a prospector strategy! A group climate
has low resistance to change. A prospector strategy is committed to changes.

ORGANIZATIONAL CONSULTANT RECOMMENDATIONS

Based on your answers about the organization, its situation, and the conclusions with the greatest certainty
factor from the analyses above Organizational Consultant has derived recommendations for the
organization's configuration, complexity, formalization, and centralization. There are also
recommendations for coordination and control, the appropriate media richness for communications, and
incentives. More detailed recommendations for possible changes in the current organization are also
provided.

ORGANIZATIONAL CONFIGURATIONS

The most likely configuration that best fits the situation has been estimated to be an adhocracy
configuration (cf 68).
It is certainly not: a professional bureaucracy (cf-73).
It is certainly not: a machine bureaucracy (cf-73).
An adhocracy organization is normally an organization with high horizontal differentiation, low vertical
differentiation, low formalization, decentralization, and great flexibility and responsiveness.
An adhocracy configuration is appropriate when neither the environmental equivocality of Software
Engineering nor the environmental uncertainty is low. When the organization is also young, the conclusion
that it should bean adhocracy is further strengthened. Since top management has a low preference for
microinvolvement, the ad hoc configuration is feasible. However, the size of the organization is not very
important for the choice of an adhocracy configuration. A prospector like Software Engineering should be
configured as an ad hoc organization. An organization with a group climate could have an ad hoc
configuration.
Since the organization has a prospector strategy, it cannot have a configuration like a professional
bureaucracy.
When the organization has a prospector strategy, it cannot be a machine bureaucracy!

ORGANIZATIONAL CHARACTERISTICS

The recommended degree of organizational complexity is medium (cf 54).
Medium size organizations should have medium organizational complexity. Software Engineering has a
technology that is somewhat routine, which implies that the organizational complexity should be medium.
Because Software Engineering has an advanced information system, organizational complexity can be
greater than it could otherwise. A group climate in the organization requires a medium level of complexity
with a low level of vertical differentiation.
The recommended degree of horizontal differentiation is low (cf 34).
It, too, could be: medium (cf 24).
The recommended degree of vertical differentiation is low (cf 72).
It, too, could be: medium (cf 62).
The recommended degree of formalization is low (cf 56).
Software Engineering has a prospector strategy. A low formalization is required so that the organization
can react quickly. Low formalization is also required because of the need for innovations. Since the set of
variables in the environment that will be important is not known and since it is not possible to predict what
will happen, no efficient rules and procedures can be developed, which implies that Software Engineering's
formalization should be low. Low formalization is consistent with top management having a low preference
for microinvolvement. A group climate in the organization requires a low level of formalization.
The recommended degree of centralization is low (cf 46).
There is evidence against it should be: high (cf-16).
Software Engineering has a prospector strategy. A low centralization is required so that the organization
can react and innovate quickly. Since there are many factors in the environment that affect the organization
but Software Engineering does not know which factors are or will be important for Software Engineering,

114

centralization should be low. Low centralization can be allowed when top management has no desire for
microinvolvement. A group climate in the organization requires a low level of centralization.
Software Engineering's span of control should be moderate (cf 62).
Since Software Engineering has some technology routineness, it should have a moderate span of control.
Software Engineering should use media with high media richness (cf 85).
The information media that Software Engineering uses should provide a large amount of information (cf
85).
Incentives should be based on results (cf 85).
Software Engineering should use meetings as means for coordination and control (cf 94).
When the environment of Software Engineering has high equivocality, high uncertainty, and high
complexity, coordination and control should be obtained through integrators and group meetings. The
richness of the media should be high with a large amount of information. Incentives must be results based.
An open organizational climate and team spirit must be fostered. Information must be shared among all
levels. Constructive conflict on 'what to do' will be usual. Individual tolerance of ambiguity and uncertainty
will be necessary. Individual performance evaluation will be problematic and largely subjective. Mutual
adjustments of'give and take' will be the norm. Frequent informal meetings and temporary task forces will
be the primary coordinating devices. When the organization has a group climate, coordination should be
obtained using integrators and group meetings. Incentives could be results based but with a group
orientation. An organization with a group climate will likely have to process a large amount of information
and will need information media with hish richness.

ORGANIZATIONAL MISFITS

Organizational misfits compare the recommended organization with the current organization.
The following organizational misfits are present: (cf 100).
Current and prescribed configuration do not match.
Current and prescribed centralization do not match.
Current and prescribed formalization do not match.

MORE DETAILED RECOMMENDATIONS

There are a number of more detailed recommendations (cf 100).
You may consider supervising the employees less closely.
You may consider fewer written job descriptions.
Managerial employees may be asked to pay less attention to written instructions and procedures.
You may give supervisors and middle managers fewer rules and procedures.
You may consider having fewer rules and procedures put in writing.

END

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

APPENDIX C

SIMULATION REPORTS

The following chart (Fig C.l) presents the simulated organization and the simulated

software process. The process presents only four cycles of evolution. Each cycle has the

activities described in Chapter VII (Fig. 7.1).

} PW

/ Revision f

BStäT>HWRcqArrt i-J>J SpecDesI L-M ModSmplij->j Proglntt

_— T^rtL _ .- -*^- __ _1 —-*v— —~—

J-fjiriRb

Figure C.l: Project layout1.

! Note: The detailed description of the notation can be found on the ViteProject user
manual (Levitt, 1999). Rectangles indicate tasks. Rounded-corner rectangles indicate
roles. Parallelograms indicate meetings. Double-headed-dashed arrows indicate
information dependencies between tasks. Dashed arrows indicate problem dependencies
between tasks. Normal arrows indicate precedence dependencies between tasks.

117

1. Simulation Results

Table C.l shows the expected durations and the standard deviations in days for

the sixteen scenarios simulated. The simulations were configured to run 30 cases for each

scenario. The column titles LGC shows the complexity measure for each scenario

measured in LGC.

Table C.l: Simulation results

Scenario Efficiency Req. Vol. Complexity E(t) days SD(t) days LGC
LLL L L L 88 5 746
LLH L L H 101 6 781:
'LLH2.5 L L H2.5 254 16 1334
LLH5 L L H5 507 31 3230
LHL L H L 101 7 746
LHH L H H 128 10 781i
LH2.5 L H H2.5 319 25 1334:
LH5 L H H5 638 49 3230
HÜ H L L 32 2 746
>HLH H L H 42 3 781:
HLH2.5 H L H2.5 105 7 1334
HLH5 H L H5 209 14 3230
]HHL H H L 42 3 746
HHH H H H 49 4 78f
HBH2.5 H H H2.5 122 9 1334
HHH5 H H H5 244 18 3230

118

LH
HL EF-RV

Figure C2: Effects of complexity

Figure C.2 shows the effects of the complexity in the expected duration of similar

efficiency and requirements volatility scenarios. Observe that the effect of complexity is

different when the efficiency and requirement volatility vary.

days

H-C.5

RV-CX V H EF

Figure C3: Effects of efficiency

119

Figure C.3 shows the effects of efficiency. For same values of complexity and

requirements volatility, the durations for high efficiency scenarios were 40% of the

durations for low efficiency ones.

Figure C.4: Effects of requirement volatility

Figure C.4 shows the effects of requirements volatility. For same values of complexity

and efficiency, the durations for volatile scenarios were 122% of the durations for non

volatile ones.

120

APPENDIX D

PARAMETER CONFIGURATION FOR VITEPROJECT

ViteProject uses a set of default values for the variables of the model. These

values are stored in a file named "behmatrx.opd" in the subdirectory of ViteProject. The

behavior of the model depends on the values of these variables that are collectively called

Behavior Matrix. This Appendix discusses the concepts considered in the behavior matrix

and their relationship with software projects.

(1) Participant attention rule: Defines the probability distribution applied to the

different selection methods (e.g. priority, FIFO, LIFO, random) of picking items

to process.

(2) Participant tool selection rules: Defines the probability distribution applied to

different information exchange tools (e.g. conversation, email, fax, memo, phone,

video, voice-mail) given the type of message (e.g. Exception, Decision, etc.) A

tool selected for an information exchange determines (1) the time needed for the

message to move from one participant to another and (2) the time the message

will stay in the in-tray of the receiver participant.

Findings:

i. Even if there is one matrix for each role, all the matrices are identical,

ii. Too much emphasis on voicemail. We expected more weight on

conversation, phone and email.

(3) Activity Verification Failure Probability (VFP) adjustment: There are two VFP

(internal and external). The internal VFP depends on the complexity of the

requirement and the skills of the participants. The external VFP depends on the

121

complexity of the solution and the skills of the participants. The processing speed

of responsible participants is affected by the solution complexity and the

requirement complexity.

(4) Activity Information Exchange Frequency adjustment: This adjustment depends

on the uncertainty of the activity and the team experience.

(5) Participant Processing Speed adjustment: This adjustment depends on the match

between the participant and activity skill requirements.

(6) Definition of Rework, Quick-Fix, and Ignore decisions: This matrix defines how

much of the original failed work should be reworked, quick-fixed or ignored. The

values depend on the following failure types:

i. Internal|Internal: Amount of rework of an activity given internal activity

failure (based on VFPInternal.).

ii. Internal|External: Amount of rework of an activity given external failure

(based on VFP External.),

iii. Internal|External: Amount of rework of a failure dependent activity given

external failure of an independent activity (based on VFP External of the

independent activity.).

(7) Impact of participant information exchange behavior on its VFP: This adjustment

depends on the attendance or non-attendance of the participant to information

exchange events related to the activities.

(8) Impact of participant decision-making behavior on the VFP of failed activity:

This adjustment depends on the centralization level of the organization.

(9) Finally there is a set of matrices to implement Project Decision Making Policies

including how to determine to whom to report an exception, how to make a decision for

an exception, what is the maximum time a participant will wait before it takes delegation

by default.

122

The following source code is the behavior matrix provided as default by ViteProject.

% BehMatrx.opd - Vite-Project uses default qualitative-to-quantitative calibration
% parameter values defined in this file. To override any of the default calibration
% values, place a modified version of this file in the directory that holds Vite-Project
% and specify the file name in the Vite-Project simulation control dialog box. Vite-
% Project will load this file automatically.
%
% Each matrix defines an association set: the row selection, when associated with the
% column selection, has the behavior of the corresponding matrix value. For example, for
% the ParticipantAttentionRule, a Project Manager (PM) will select an item from the
% intray by Priority with probability 0.5. Notation:
% PM = Project Manager
% SL = participant subteam leader
% ST = participant
%
% Revisions:
% 10.17.97 Update comments and values

(Application BehMatrices)

%=======================================s === =============================

% Participant attention rule: - A participant uses this attention rule to select an item
% from its in-tray. By default, all participants in Vite-Project share this common
% attention rule.
% Example: a Project Manager (PM) will select an item from the intray by priority with
% probability 0.5, with FIFO with probability 0.1, etc.
%==================:========= ====================:=============================

(Matrix ParticipantAttentionRule
:Row PM SL ST %= Participant role.
:Column Priority FIFO LIFO Random %= Item Selection strategy.
:Values (0.4 0.3 0.2 0.1) %= Probability corresponding strategy

(0.30.4 0.2 0.1) % will be applied.
(0.1 0.5 0.3 0.1)

Participant tool selection rules
Information exchange tool selection is based on only Message types (e.g,. Exception,
Decision, etc.) A tool selected for an information exchange determines (1) the time
needed for the message to move from one participant to another and (2) the time the
message will stay in the in-tray of the receiver participant.
Example: Given an exception to process, the PM will never choose the Phone or Video.
Note that Decisions go directly to the recipient in-tray without use of a information
exchange tool.

% This rule only applies to project managers
%
(Matrix ToolSelectionRulesPM

:Row [Message type]: Decision Exception InfoExchange Meeting Noise
:Column [Tool to use]: Conversation Email Fax Memo Phone Video VoiceMail
:Values (0.15 0.20 0.20 0.20 0.0 0.0 0.25) %= Probability

(0.20 0.20 0.20 0.20 0.1 0.0 0.10) % a specific tool
(0.25 0.1 0.1 0.15 0.25 0.0 0.15) % will be used
(0.5 0.0 0.0 0.0 0.2 0.0 0.3)
(0.3 0.1 0.05 0.1 0.35 0.0 0.1) .

123

% This rule only applies to participant leaders

(Matrix ToolSelectionRulesSL
:Row Decision Exception InfoExchange Meeting Noise
:Column Conversation Email Fax Memo Phone Video VoiceMail
:Values (0.15 0.20 0.20 0.20 0.0 0

(0.20 0.20 0.20 0.20 0.1 0
(0.25 0.1 0.1 0.15 0.25 0
(0.5 0.0 0.0 0.0 0.2 0
(0.3 0.1 0.05 0.1 0.35 0

,0 0.25)
.0 0.10)
.0 0.15)
,0 0.3)
,0 0.1)

%= Probability
% a specific tool
% will be used

% This rule only applies to sub teams

(Matrix ToolSelectionRulesST
:Row Decision Exception InfoExchange Meeting Noise
:Column Conversation Email Fax Memo Phone Video VoiceMail
rvalues (0.15 0.20 0.20 0.20 0.0 0.0 0.25) %= Probability

(0.20 0.20 0.20 0.20 0.1 0.0 0.10) % a specific tool
(0.25 0.1 0.10 0.15 0.25 0.0 0.15) % will be used
(0.5 0.0 0.0 0.0 0.2 0.0 0.3)
(0.3 0.1 0.05 0.10 0.35 0.0 0.10)

% Activity Verification Failure Probability (VFP) adjustment:
% The formula used to determine activities' internal and external VFP:
%
% ?activity.VFPexternal =
% ?proj.VFPexternal * SolutionComplexityEffeet * ParticipantSkillEffect;
% ?activity.VFPinternal =
% ?proj.VFPinternal * RequirementComplexityEffeet * ParticipantSkillEffect;
%
% The adjustment coefficients (e.g., SolutionComplexityEffeet ParticipantSkillEffect)
% are determined by values in the following matrices.

% Effect of Activity solution complexity on processing speed of responsible
% participants.
%
(Matrix SolutionComplexityEffeet

:Row High Medium Low %= Level of solution complexity.
:Values 1.5 1.0 0.67 %= Value of SolutionComplexityEffeet

)

%

% Effect of Activity requirement complexity on responsible participant processing speed.
%
(Matrix RequirementComplexityEffeet

:Row High Medium Low %= Level of requirement complexity.
:Values 1.5 1.0 0.67 %= Value of RequirementComplexityEffeet

)

%

% Effect of Participant-Activity skill match on activity VFP:
% If responsible participant skill matches the skill requirement of the
% corresponding activity, then use this matrix to determine
% ParticipantSkillEffect.

(Matrix ParticipantSkillMatchVFP
:Row High Medium Low
:Column High Medium Low
rvalues (0.5 0.7 0.9)

(0.7 1.0 1.2)
(0.9 1.2 1.5)

%= Level of participant App. Experience
%= Participant Required Skill Level.
%= Values of ParticipantSkillEffect.

% Effect of Participant-Activity match on activity VFP:

124

% If participant skill DOES NOT match activity's skill requirement, then
% use this matrix to determine ParticipantSkillEffect. Failure of
% participant-activity skill match creates a major VFP penalty.

(Matrix ParticipantSkillNonMatchVFP
:Row High Medium Low
:Column High Medium Low
rvalues (2.0 2.0 2.0)

(2.5 2.5 2.5)
(3.5 3.5 3.5)

1= Level of participant App. Experience
i= Participant other Skill Level.
i= Values of ParticipantSkillEffect.

% Activity Information Exchange Frequency adjustment: The following formula is used to
% determine probabilistic information exchange frequency of an activity
%
% ?activity.InfoExchangeFrequency = ?proj.InfoExchängeFrequency *
% ActivityOncertaintyEffect * TeamExperienceEffeet

% Effect of Activity uncertainty on information exchange frequency:
%
(Matrix ActivityOncertaintyEffect

:Row High Medium Low %= Level of activity uncertainty
:Values 1.4 1.00 0.67 %= Value of ActivityOncertaintyEffect

)

% Effect of responsible Participant team experience on information exchange frequency:

(Matrix TeamExperienceEffect
:Row High Medium Low
:Values 0.67 1.0 1.5 %

%= Level of participant team experience.
Value of TeamExperienceEffect

% participant processing speed adjustment:
% The following formula determines participant processing speed. Since participant
% processing speed is based on its match with the skill requirement of its assigned
% activity, the ParticipantSpeed is associated with each activity. (Vite-Project
% assumes that each activity can have only ONE responsible participant working on
% it.)
%
% ?activity.ResponsibleParticipantSpeed =
% 1.0 / (?Participant.NumberOfParticipants * ?Participant.APS0 *
% ParticipantSkillEffect * ?Participant.TimePercentageForProject) ;
%
% The rule uses 1/ "time needed to process a work unit" to calculate speed.

Effect of Participant-Activity match on APS:
If responsible participant skill matches the activity's skill
requirement, then use this matrix to determine the value of
ParticipantSkillEffect.

(Matrix ParticipantSkillMatchAPS
:Row High Medium Low
:Column High Medium Low
:Values (2.0 1.5 0.9)

(1.5 1.0 0.7)
(0.9 0.7 0.5)

%= Level of participant App.Experience.
%= Participant Required Skill level.
%- Values of ParticipantSkillEffect

% If participant skill DOES NOT match activity's skill requirement, then
.% use this matrix to determine the value of ParticipantSkillEffect.
%
(Matrix ParticipantSkillNonMatchAPS

:Row High Medium Low %= Level of participant App. Experience.

125

:Column High Medium Low
:Values (0.7 0.7 0.7)

(0.5 0.5 0.5)
(0.3 0.3 0.3)

%= Participant Other Skill level.
%= Values of ParticipantSkillEffeet

Definition of Rework, Quick-Fix, and Ignore decisions:
This matrix defines how much of the original failed work should be reworked based
decision types (i.e., Reworked, Quick-Fixed, Ignore). The actual rework volume is the
given subactivity volume * % - of failed work that needs to be reworked * user-
interface defined "Strength" of failure dependent activity relationship

The values change depending on the failure types described below:

Internal!Internal: Amount of rework of an activity given internal activity failure
(based on VFPInternal.)

Internal!External: Amount of rework of an activity given external failure (based on
VFP External.)
Internal!External Amount of rework of a failure dependent activity given external
failure of an independent activity (based on VFP External of the independent
activity.)

(Matrix ReworkVolume
:Row Internal Internal!External External!External %= failure type
.•Column Rework Quick-Fix Ignore %= Decision for the exception
:Values (1.0 0.5 0.0) %= Percent of failed work

(1.0 0.5 0.0) % that needs to be reworked.
(1.0 0.5 0.0)

% Impact of participant information exchange behavior on its VFP:
% Vite-Project simulates the impact of participant information exchange behavior on its
% VFP by updating VFP based on the effect weight as shown below (same for VFPexternal
% and VFPinternal):
%
% ?activity.VFPinternal = ?activity.VFPinternal * VFPInfoXEffeet;
% if ?activity.VFPinternal > 1.0;
% then ?activity.VFPinternal = 1.0;
%
% The value of VFPInfoXEffeet is retrieved from the following matrices.
%
% VFP updating is dynamic, i.e., it happens whenever an information exchange finishes.
% You can disable the effects by setting matrix values to 1.0.

% This matrix defines the weight for updating participant verification failure
probabilities (*** Internal and External) due to not attending to information exchange
with peers, meetings and noise respectively.
% NOTE: Weight =1.0 implies no effect of ignoring communications, meetings or noise.

(Matrix ParticipantNonAttendanceFailureEffect
:Row

:Column
:Values

InfoXNonAttend MeetNonAttend NoiseNonAttend

High Medium Low
(1.01 1.07 1.1)

(1.10 1.07 1.05)
(1.0 1.00 1.00)

Nonatt InfoX type
%= Level of formalization
%= VFPInfoXEffeet.

This matrix defines the weight for updating participant verification failure
probability due to attending to information exchange from peers, meetings
and noise respectively.

126

(Matrix ParticipantAttendanceFailureEffect
:Row InfoXAttend MeetAttend NoiseAttend %= Nonatt InfoX type
:Column High Medium Low %= Level of formalization
:Values (0.99 0.96 0.95) %= VFPInfoXEffect.

(0.90 0.96 0.99)
(1.0 1.0 1.0)

)

% Impact of participant decision-making behavior on the VFP of failed activity:
% Vite-Project simulates the impact of participant information exchange behavior on its
% VFP updating VFP based on the effect weight as shown below
% (same for VFPexternal):
%
% ?activity.VFPinternal = ?activity.VFPinternal * VFPInfoXEffect;
% if ?activity.VFPinternal > 1.0;
% then ?activity.VFPinternal = 1.0;
%
% The value of VFPInfoXEffect is retrieved from the following matrices, based
% decision-maker's role and the type of decision it has made.
%
% VFP updating is dynamic, i.e., it happens whenever a decision is made.
%
% You can turn off the effects by setting values of the matrices to 1.0.

% Matrix used for Low centralization:
%
(Matrix LowCentralDecisionWeight

:Row PM SL ST %= Decision-maker's role.
:Column Rework Quick-Fix Ignore %= Type of decision made.
:Values (0.95 1.0 1.05) %= VFPInfoXEffect for update VFP

(0.95 1.0 1.05)
(0.95 1.0 1.05)

% Matrix used for Medium centralization:
%
(Matrix MediumCentralDecisionWeight

:Row PM SL ST %= Decision-maker's role.
:Column Rework Quick-Fix Ignore %= Type of decision made.
:Values (0.9 0.95 1.05) %= VFPInfoXEffect for update VFP

(0.95 1.0 1.05)
(0.95 1.05 1.1)

% Matrix used for High centralization:
%
(Matrix HighCentralDecisionWeight

:Row PM SL ST %= Decision-maker's role.
:Column Rework Quick-Fix Ignore %= Type of decision made.
:Values (0.9 0.95 1.05) %= VFPInfoXEffect for update VFP

(0.95 1.0 1.1)
(0.95 1.1 1.2)

Following matrices are used to implement Project Decision Making Policies
including how to determine to whom to report an exception, how to make
a decision for an exception, what is the maximum time a participant will
wait before it takes delegation by default.

Time To Wait For Decision Policy:
This matrix defines how long a participant should wait for a decision
before it assumes delegation by default. Participants playing different

127

roles in the organization may have different time-out durations.

(Matrix TimeToWaitForDecision
:Row PM SL ST
:Values 480

960
960

%= Participant roles
%= Time-out duration in minutes

Decision Maker Policy:
This matrix is used by a participant to determine who should make
decision for his/her exception, based on project's centralization
policy. The assumption is that more centralized project teams
requires higher level participants make decisions for exceptions.

(Matrix DecisionMakerPolicy
:Row PM SL ST
:Column High Medium Low
:Values (0.6 0.2 0.1)

(0.3 0.6 0.3)
(0.1 0.2 0.6)

%= Decision maker's role
%= Level of centralization

%= Probability
% a certain role should
% make the decision.

% Decision Choice Policy:
% This matrix is used by a decision-maker to determine how an exception should be
dealt with, based on project's centralization policy. NOTE: The assumption is that
higher level participants (e.g., project managers) tend to make more Rework decisions.
Vite experience has found this assumption reasonable for routine engineering design.
However, for domains like software engineering, Vite staff has found that the reverse is
true. Participants (hackers) want to fix every known bug, whereas managers want to ship
on time, even with known, non-serious bugs. This matrix should be adjusted to reflect
the "bug fixing" culture of the organization being modeled.

(Matrix DecisionChoicePolicy
:Row PM SL ST
:Column Rework Quick-Fix Ignore
:Values (0.65 0.3 0.05)

(0.4 0.4 0.2)
(0.05 0.35 0.6)

%= Decision-maker's role
Decision type

%= Probability
the decision-maker will

% make a certain type of decision

% Information exchange Probability adjustment:
% The following matrices adjust the frequency probability of different types of
information exchange based on the Level of project Formalization:
%
% ?AdjustedInfoXProbability = OriginalCommunicationProbability * AdjustFactor;
%
% The Info Exchange AdjustFactor is retrieved from the following matrix given the level
of formalization.
%
% NOTE: Meeting frequency is not adjustable in Vite-Project, so the Meet row of the
matrices is not meaningful.

% This matrix defines the VFP adjustment factor for different types of information
exchange.

(Matrix CoordinationDistribution
:Row InfoX Meet Noise
:Column High Medium Low
:Values (0.5 1.0 2.0)

(0.7 1.0 1.0)
(1.0 1.0 1.0)

%= Information exchange type
%= Level of formalization
%= Info Exchange AdjustFactor.

128

% In Vite-Project, when a participant picks up an information exchange item, it has to
% decide whether to attend the request for information exchange. This matrix defines the
% chance a participant attends to a given type of information exchange given a level of
% strength of organization matrix.
%
% e.g., if Matrix Strength is High (as in a Project organization), then a participant
% will probabilistically attend to 80% of information exchanges, and 20% of the meetings
% and 20% of the Noise. Project organizations have high Matrix strength; functional teams
% have low matrix strength.

(Matrix CoordinationPriority
:Row InfoX Meet Noise
:Column High Medium Low
:Values (0.9 0.7 0.6)

(0.6 0.7 0.9)
(0.2 0.2 0.2)

%= Type of information exchange
%= Org Matrix Strength
%= Probability
% a participant will attend
% a communication.

% Communications-related matrices

% This matrix defines the length of time (in minutes) it takes to
% deliver messages using different communication tools

(Matrix ToolTimeToDeliver
:Row Conversation Email Fax Memo Phone VideoConf VoiceMail %= Communication

tool
rvalues 10

1
1
5
1
1
1

% This matrix defines the length of time (in minutes) it takes for
% messages to expire in the recipients in-tray

(Matrix ToolTimeToExpire
:Row Conversation Email Fax Memo Phone VideoConf VoiceMail %= Communication

tool
:Values 60

2400
1440
2400
5
10
960

% This matrix defines the volume (in minutes) for each type of message
%

(Matrix MessageVolume
:Row PM SL ST %= Recipients role
:Column decision exception info_exchange meeting noise %= Message type
rvalues (10 120 30 0 10)

(10 240 30 0 10)
(10 240 30 0 10)

129

%%%%%%%%%%%%%%%
% END OF FILE %
%%%%%%%%%%%%%%%

130

APPENDIX E

STATISTICAL ANALYSIS OF SIMULATION OUTPUTS

A. Descriptive statistics and box plots

LLL LLH LHL LHH HLL HLH HHL HHH
Mean
Standard

88 507.3333 100.8667 638 32.23333 209 41.56667 244

Error 0.91977 5.732211 1.323296 8.939773 0.334538 2.530276 0.495226 3.342516
Median 88 507.5 100.5 635 32 205 41.5 240
Mode
Standard

88 535 96 575 31 200 39 230

Deviation 5.037788 31.39661 7.247988 48.96515 1.83234 13.85889 2.712466 18.30771
Kurtosis 0.103871 -1.16404 -0.23193 -0.17195 -0.95402 -1.13356 -0.91119 -0.56513
Skewness
Range
Minimum
Maximum
Count

0.130034

22

78

100

30

-0.00625

105

455

560

30

0.562342

28

91

119

30

0.203825

210

540

750

30

0.062831

6

29

35

30

0.138658

50

185

235

30

0.216263

10

37

47

30

0.600225

70

215

285

30
Cl (95.0%) 1.881142 11.72369 2.706445 18.2839 0.684208 5.174999 1.012852 6.836217

800

700 :■ X
600 I Ep
500 J. Ep]

I

400-

300 1

200- * ■+■
100 -.4L. -»-

0 7 LLL LLH LHL
____ —M-

LHH HLL HLH HHL HHH

-100 -

The descriptive statistics do not give conclusive information about the kind of
distribution observed. The boxplots show that complexity (the third variable) has the
strongest influence over the development time, efficiency seems to have less impact, and
requirements volatility seems to have moderate influence.

131

B. Weibull probability plots

The data obtained from the simulations was analyzed with a statistical software
package from Reliasoft. The product checks what is the distribution function that better
fits the sample. The distributions compared were exponential (one and two parameters),
Weibull (two and three parameters), normal, and lognormal. In all the cases the tool
found that Weibull with three parameters was the best fit. The following plot is a Weibull
paper and shows the data points as icons and the distribution function recommended by
the tool as lines.

99.00

90.00

50.00

10.00

5.00

1.00
10.00

Probability Plot
HLL HHL LLL LHL HLH HHH LLH LHH

I TT
a A\

01=1.78,
02=2.04,
03=2.21,
04=2.65,
05=2.80,
06=1.83,
07=2.47,
08=2.87,

nl=34.98, yl=212.87
ti2=5.86, y2=36.37
Ti3=31.98, Y3=1 80.70
Ti4=4.92, y4=27.87
ti5=139.39, T5=513.88
T|6=14.07, y6=88.39
T)7=78.90, y7=437.48
ti8=14.66, y8=74.93

100.00
Time, (t)

CB/FM: 90.00%

I !■ it-

-J—14

Weibull
"HHH

P=3, A=MLE-S
F=30 | S=0

\r i
"XT

1000.00

"HHT"

P=3, A=MLE-S
F=30 I S=0

~RTH

P=3, A=MLE-S
F=30 | S=0

Tax

P=3, A=MLE-S
F=30 I S=0

XHH

P=3. A=MLE-S
F=30 | S=0

THIT

P=3, A=MLE-S

LLH
s=<r

P=3, A=MLE-S
F=30 | S=0

"TLT

P=3, A=MLE-S
F=30 I S=0

132

C. Probability distribution functions

Probability Density Function

0.25

0.20

0.15

0.10

0.05

ftt

HHl

nr
LHL

IHtlt
*tttt LLH

Weibull
"HHH

P=3, A=MLE-S
F=30 I S=0

P=3, A=MLE-S
F=30 | S=0

TO)

P=3, A=MLE-S
F=30 | S=0

BUH

P=3. A=MLE-S
F=30 | S=0

160.00

ßl=1.78,
ß2=2.04,
ß3=2.21,
ß4=2.65,
ß5=2.80,
ß6=1.83,
ß7=2.47,
ß8=2.87,

T|l=34.98, 71=212.87
TI2=5.86, 72=36.37
713=31.98, y3=180.70
11.4=4.92, 74=27.87
TIS=139.39, 75=513.88
n.6=14.07, 76=88.39
T)7=78.90, 77=437.48
1)8=14.66, 78=74.93

320.00 480.00
Time, (t)

640.00 800

P=3, A=MLE-S
F=30 I S=0

THE

P=3, A=MLE-S

4;30 ' S=°
P=3, A=MLE-S
F=30 I S=0

TUT

P=3, A=MLE-S
F=30 I S=0

133

D. Effect of requirements volatility

The following graphs show the influence of requirements volatility. Two graphs
are presented to discriminate the cases of high and low efficiency in order to avoid
confounding factors.

0.25

Probabi ty Density Function

I I I ! I i ' 1 I I I Weibull
 i I I I I HHH
I ,1 1 1 i i I -

H J-! 1 i 1 P=3, A=MLE-S

0.20 j 1 1 F=30 | S=0

! > I : i 1 HHL
t .MM i

:■ i ; MM ; P=3, A=MLE-S
i :l I MM 1

0.15 i ':: 1 MM 1
MLH

"

i ■:I,HHL 1 i ' 1 1
I ■:l: : 1 M.M ' i I i

F=30 | S=0 ■ ;|; . I ill '| ! I

■■[■■ i ! M M 1 1

0.10 J | ■l, l MM;! I P=3. A=MLE-S
F=30 | S=0 I :■!■ ii 1 M I

1 i''!'i i ' i MM I
1 ;:■!' I ! i

::!■ 1 M 1 i 1 1 I
0.05 :l; ! Mil 1 |_ • I I

i :l: | : 1 1 : u i M I
i r.i i 1 ' i' LV UM
i * :i i 1 1 I i M 'N M I NPGS
i M 1 I i 1 1 1 1/ IM M 3/22/00

0 .J.ti.LL ! i 1 \i\ h IN I 9:18:07 AM

() 54 01 3 i 2! i.O 0
n TK

1 9.
t>

X 0 256.00 320.00

Bl=1.78.1)1=34.98, Tl=212.87
P2=2.M,r|2=5.86. T2=36.37
P3=2.21,r|3=3l.98, y3=180.70
B4=2.65, l|4=4.92. ^4=27.87

f, 1=2.80.
02=1.83.
63=2.47.
64=2.87,

Probability Density Function

_LU
US u

aio-

i M | | |

i [!
I 1 I

J-U

iH MM!

M ; I
J_l_ -U-

LMMIill
IlilHl

,im
I I KJ

P=3, A=MIE-S
F=30 | S=0

P=3, A=MIE-S
F=30 | S=0

P=3. A=MLE-S
F=30 | S=0

P=3. A=MLE-S
F=30 | S=0

Glasgow Computer
NPGS
3/22/00
9:19:48 AM

200.00 400.00 600.00 800.00 1000.00
Time, (t)

1)1 = 13939. yl=513.88
112=14.07. y2=88J9
113=78.90. y3=437.48
i)4= 14.66. T4=74.93

High efficiency Low efficiency

In both cases the increment of volatility produces a shift to the right. This shift is
magnified when the complexity is high. The effect is also magnified when the efficiency
is low.

134

E. Effect of efficiency

The following graphs show the influence of efficiency. Two graphs are presented
to discriminate the cases of high and low complexity in order to avoid confounding
factors.

0.03

Probability Density Functior

I ; 1 Weibull
LH. HHH

I' 1 -
I; 1 P=3, A=MLE-S

0.02 ;|: 1 F=30 | S=0

?: IH H H i HLH
i I I P=3, A=MLE-S

:i. I i F=30 | S-0

0.02 : • i 1
!

I I I 1 P=3, A=MLE-S
F=30 | S=0 I 1

■ I .LI H
0.01 I 1. P=3, A=MLE-S

F=30 | S=0
i 1

I j !
t I i

; I ,
6.O0E-3 . i . I ! .'I

I I / \
' I I / \
■ I I /

^ I I \ 3/22/00
0 • ; h M ! ,1 J f. K 9:26:40 AM

12).C 0 2 56.C 0 392.00 528.00 664.00 BOC
Time, (t)

.00

0.25

P ro aa bi ty Density F jn eta or

I Weibull
HHL -

■racr P=3, A=MLE-S
0.20 ! F=30 | S=0

HLL
;;

P=3, A=MLE-S

0.15 I i ' !
l\ HHl

i i I
F=30 | S=0 I I

I I !
0.10 P=3, A=MLE-S

F=30 | S=0 IjLL I
: i

: i i I
0.05 : I

1 / ^
\ \
\ / \

I ! \ | / \ 3/22/00
0 I i i ' M I I 9:29:19 AM

10.00 34.00 58.00 82.00 106.00 130.00
Time, (t)

81=1.78,1)1=34.98, TU212.87
82=2.21, ii2=31.98, 72=180.70
83=2.80,113=13939, y3=5!3.88
84=2.47,1)4=78.90, y4=437.48

81=2.04,
82=2.65.
83=1.83,
84=2.87,

1)1=5.86. Yl=3637
H2=4.92, y2=27.87
1)3=14.07. T3=88.39
r|4=14.66. v4=74.93

High complexity Low complexity

In both cases the increment on efficiency produces a shift to the left. This shift is
magnified when the complexity is high. The effect is also magnified when the volatility is
high.

135

F. Effect of complexity

The following graphs show the influence of complexity. Two graphs are
presented to discriminate the cases of high and low requirements volatility in order to
avoid confounding factors.

0.06

Probability Density Function

! ! I
_LL

! i i ', ll

_!_L

U

idd
J:Jl:LLii

i_L
MM

-1_L

1 I i l I

HMH

' I I

i i i-
I i | P=3, A=MLE-S
T~1 F=30 I S=0

J_L

H

1 P=3. A=MLE-S
TF=30JS=0

P=3, A=MLE-S
F=30 | S=0

tHI

P=3. A=MLE-S
F=30 I S=0

ID

Glasgow Computer
NPGS
3/22/00
922:17 AM

160.00 320.00 480.00 640.00
Time, (t)

Bl=1.78.
62=2.04.
63=2.80.
64=1.83.

111=34.98. yl=2!2.87
ti2=5.86. 72=3637
t]3=139J9. v3=5I3.88
t)4=t4.07. 74=88.39

0.20

Probabi ty Density Functior

1 i , ! 1 1 | 1 i i 1 i Weibull

p,M ' ' ' ' ■ 1 1 1 1 i HLH

- 1 1 1 l -
• 1 I i ' i ; 1 1 1 P=3, A=MLE-S

0.16 i1 | ! j < : M ' | I | i F=30 | S=0

L I'J '■■ ' ! i ; j_ '■ i 1 : 1 l HLL

_l:j LL . I I • I I I I I l
;:i i i II Ll.l.! 1 P=3. A=MLE-S
i: I ii > ; | 1 i ' i

0.12 I.: M I : | 1 1 I i 1 LLM

i~ i
! _ I I ■ I .. I _1 : !. i I

I M i j I I . t 1 i F=30 | S=0 i- I i 1 il 1 1 1 1 I'l 1 1 1 |
1". . J. 1 i 1 1 ! M II : 1 | 1 1

0.08 j !■■■ M-Ll M i 1 i i l M i 1 1 ' ' P=3. A=MLE-S
!■■: I:i . ! M : I I M 1 1 i I
|:' I" , i ■ ' i ! 1 1 1 i
P Li M 1 M 1 1 1 1 1 1
P i.-i i I : : ! ' 1 1 ' i

0.04 FL M i ■ .nil I ■ 1 i
HLH I : 1 1 1 1

H i'i > I !,<■ | I | ' i
hl.!:' i
M !■ 1 1

1 ! 1 i M . .
i il M J_ i \j" ^ ! NPGS

3^2/00
0 .1:' LJ-J.LL/! ! 'U i.l 1 i r -i 9:24:35 AM

0 120.00 240.00 360.00 480.00 600.00
Time, (t)

ßl=2.21,
ß2=2.65.
ß3=2.47.
64=2.87.

nl=31.98. Tl=18O.70
112=4.92, 12=27.87
1)3=78.90. Y3=437.48
Tl4= 14.66, T4=74.93

High volatility Low volatility

In both cases the increment on complexity produces a shift to the right. This shift is
magnified when the efficiency is low. The effect is also magnified when the volatility is
high.

136

Cumulative density functions and stochastic dominance

1 -
0.9
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

;' \i * i / /^ LLL
 LLH
 LHL
 LHH

HLL
 HLH
 HHL
 HHH

\ 1; ;' /
\ \\ ' ! '

: . . /

i ' ! ;
i ! i /

: !
i ; ' ;' /

■ ■ 1 1

0 - / ii a / /
w "I

C) 200 400 600 800

Figure x.4: Comparison of the cdfs for the different scenarios.

As expected, for same level of complexity high efficiency scenarios have
stochastic have stochastic dominance.

137

H. Contour of time

One of the difficulties in visualizing the model is that it has four variables
(efficiency, requirements volatility, complexity, and time), hence it is necessary- a five
dimensional space to represent it (four dimensions for the parameters plus one extra
dimension for the scalar value of the probability associated).

The following graph represents the lines of same expected time given a discrete
set of scenarios with different efficiency, complexity, and requirements volatility. The
graph is only useful to visualize the combined effect of the three parameters of the model.
Given a certain scenario and a confidence probability it is possible to determine the
expected time in days. For instance, the comparison of HHH5 (high efficiency, high
volatility, high complexity) vice LHH5 (low efficiency and the same other parameters)
show the effect of efficiencv.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability

138

I. Contour of probabilities

The following graph represents the lines of same probability of finishing the
project at a given date, given a discrete set of scenarios with different efficiency,
complexity, and requirements volatility. The graph is only useful to visualize the
combined effect of the three parameters of the model.

HHH5
HHH2.5
HHH

HHL

HLH5

HLH2.5

HLH

HLL

LHH5

LHH2.5

LHH

LHL

LLH5

LLH2.5

LLH
LLL

l=Ss§N£?rJ?f-i

100 200 300 400 500 600 700 800 DAYS

139

J. Surface of cumulative distribution

The following graph represents a 3D view of the cumulative distributions for a
discrete set of scenarios. The z-axis represents the cdf. the x-axis represents the scenario
(1-16), and the y-axis represents the time (0-100).

0.8-

0.SJ

0.4 -'■

s>..

0.2 s

1S « ,4'

100

140

K. Snapshots of the surface of cumulative distribution for high efficiency

The following series of graphs represents the continuous 3D aspect of the five-
dimension model given a high efficiency scenario for five different moments in time. The
axes represent complexity, volatility, and cdf. The five snapshots represent time in a
discrete way. Efficiency is constant and high for all the graphs.

**ft«*i.95,?««»«

XMCCSOttJXCs csxiece-eaaoxci

8*&Vel{W%-W&*i RfrSVoMWX,-'

Ww-tÄT-KlCc *to**»:.3S.r.S!>Ce

csw-jwe-flowuscj x

*K.V«f.|5PK-ICO"**

cMusM-seoetco

Rmj v«.;;e*&. *»%>

*e**»!.S5.T-?W«

a*s. v«. (W* • tocxi

141

L. Snapshots of the surface of cumulative distribution for high efficiency

The following series of graphs represents the continuous 3D aspect of the five-
dimension model given a high efficiency scenario for five different moments in time. The
axes represent complexity, volatility, and cdf. The five snapshots represent time in a
discrete way. Efficiency is constant and low for all the graphs.

MP*~7."..T-XCe *(*»*? J T-*K«

CWWS8.6000 i6c:

ftec V* |»H • ?W*l

C%,i5M.«C00'.GC]

Ae*i»";.5,7-;cce

cpxtooa.i»cc!.oc? cry »wo ■ so« LCC:

K*eVtff1Ö%-1»S.i R*= Vr> f t0% - WV

«?5.7.7«c

cry.:««-»oooi.cc>

ft»« v<x ne%-twiw

142

M- Surface of cumulative distribution for high efficiency and gamma-beta ratio
= 5.5

The following graph represents the cdf surface for a given level of efficiency and
a given level of volatility. The three axes correspond to complexity, time, and cdf This
graph predicts the future of the project under the hypothesis of constant volatility and
high efficiency.

Efficiency = H (alpha = 1.95, beta-gamma ratio = 5.5)

Time (25 - S00 days) Complexity (S00 - 6000 LGC)

143

N. Surface of cumulative distribution for low efficiency and gamma-beta ratio =
5.5

The following graph represents the cdf surface for a given level of efficiency and
a given level of volatility. The three axes correspond to complexity, time, and cdf. This
graph predicts the future of the project under the hypothesis of constant volatility and low
efficiency.

Efficiency = Low (alpha = 2.5, beta-gamma ratio = 5.5)

Time (25 - 800 days) Complexity (600 - 6000 LGC)

144

APPENDIX F

STOCHASTIC DOMINANCE

The major areas of application of dominance have been finance, insurance, and

economics. The classical portfolio problem was the catalyst for the initial research. From

there the technique was applied to other domains (Whitmore & Findley, 1978). Stochastic

dominance is a methodology related to decision theory. It is based on formal concepts

and theorems and employs partial information on the decision-maker's preferences and

the random variables to produce a partial ordering (Levy, 1998).

Definition of dominance: Let D be a domain constituted by a set of decisions. Let d e

D. We say that the decision dj dominates the domain D (expressed as di DOM D), if and

only if the return value for the application of d is maximum for all possible values of x

and for all possible dj e D.

(Vd e D)(Vx e X)(R(x, dj) > R(x, dj)) o dj DOM D

where D = set of alternatives or decisions, also called Feasible Set (F.S.)

X = set of possible values for the random value x.

R(x, d) = a function that measures the outcome of the decision.

Definition of Efficient Set (E.S.): E.S. is the set of dominating decisions.

(Vd e D) (d DOM D) => d e E.S.

Definition of Inefficient Set (I.S.): I.S. is the set of dominated decisions.

F.S. = E.S.uI.S.

145

Definition of First Degree Stochastic Dominance (FSD): FSD is the dominance that

can be established by the application of the following Theorem:

Let F(x) and G(x) be cumulative distribution functions (cdf) related to the decisions fand

g respectively. We say that f dominates FSD g (f FSD g) if and only if the F(x) > G(x) for

all values of x.

(Vx)(F(x)>G(x))«(fFSDg)

Observations:

(1) FSD requires that distributions do not intercept, but can be tangent.

(2) When more than two alternatives exist, the mere condition of being dominated by

one alternative is sufficient condition to belong to I.S.

(3) All alternatives in E.S. must intercept, and should not be dominated.

Figure G.l shows an example of inexistence of FSD. cdfl and cdf2 belong to E.S.

cdf3 is clearly dominated so it belongs to I.S. Note that neither cdfl or cdf2

dominates each other.

Figure G.l: Concept of domination, cdfl

dominates cdf3

146

Definition of sufficient conditions for FSD: Let £ g be two alternatives related to F(x)

and G(x) respectively.

(1) We say that f dominates first degree stochastic g (f FSD g), if the maximum range

of F(x) is less or equal the minimum range of G(x) (Fig. G.2).

Max(Range(F(x))) < Min(Range(G(x))) o (f FSD g)

Figure G.2: FSD sufficient condition. Seriesl

dominates Series2.

(2) We say f dominates first degree stochastic g (f FSD g), if for all values of x F(x)

is greater or equal to G(x) (Fig. G.3).

(VxeX)(F(x) > G(x)) A (3yeX)(F(y) > G(y))

1

0.8

0.6

0.4

0.2-

0
(

S **
*

.-'

/ *
y m

, Scrips 1

 Series2
/ •

S *

) 0.2 0.4 0.6 0.8 I

Figure G.3: FSD, second sufficient condition.
Seriesl dominates Series2.

147

Definition of Second Degree Stochastic Dominance (SSD): SSD is the dominance that

can be established by the application of the following Theorem:

Let f, g be two alternatives with cdf F(x) and G(x) respectively. We say that f dominates

g on 2nd degree stochastic dominance (f SSD g), if and only if the area between the two

curves is positive.

(f SSD g) o I [F(x) - G(x)] dx > 0

Observation

(1) Figure G.3 represents SSD.

(2) Figure G.l also represents SSD of cdf2 over cdfl if we assume that the area under

cdf2 is greater than the area under cdfl.

Definition of sufficient conditions for SSD: FSD is sufficient for SSD.

(fFSDg)=>(fSSDg)

Definition of Third Degree Stochastic Dominance (TSD): The third degree of

stochastic dominance is the preference for positive skewness on the pdfs. The skewness

(y) is defined as the ratio of the third moment over the standard deviation to the third.

y=[Jf(x)(x-u)3dx]/a3

Definition of the sufficient conditions for TSD:

(1) FSD is sufficient for TSD.

(2) SSD is sufficient for TSD.

148

LIST OF REFERENCES

(Abdel-Hamid, 1989)

(Abdel-Hamid, 1991)

(Agresti, 1992)

(AIAA, 1993)

(ANSI, 1991)

(Albrecht, 1979)

(Albrecht, 1983)

(Badr, 1993)

(Balighetal., 1994)

Abdel-Hamid, T. Lessons learned from modeling
the dynamics of Software. Communications of the
ACM. December, 1989.

Abdel-Hamid, T. Software Project Dynamics: An
Integrated Approach. Prentice Hall, 1991.

Agresti and Evanco. Projecting Software Defects
from Analyzing Ada Designs. IEEE Transactions on
Software Engineering, vol 18 no. 11, November
1992, pp. 988-997.

American Institute of Aeronautic and Astronautics.
Recommended Practice for Software Reliability,
ANSI/AIAA R-013-1992, February 1993.

ANSI/IEEE Standard Glossary of Software
Engineering Terminology. STD-729-1991.

Albrecht, A. Measuring Application Development
Productivity. Proceedings IBM. October 1979.

Albrecht, A. and Gaffney, J. Software Function
Source Lines of Code and Development Effort
prediction. IEEE Transactions on Software
Engineering, SE-9,1983.

Badr, S. A Model and Algorithms for a Software
Evolution Control System. PhD Dissertation,
Computer Science Department. Naval Postgraduate
School. Monterey, CA. 1993.

Baligh, H., Burton, R., and Obel, B. Validating an
Expert System that Designs Organizations. In
Computational Organization Theory edited by
Carley, K. and Prietula, M. Lawrence Erlbaum
Associates, Publishers. 1994

149

(Baligh et al., 1996)

(Baybutt, 1989)

(Berzins, 1990)

(Boehm, 1981)

(Boehm, 1984)

(Boehm, 1988)

(Boehm, 1988a)

(Boehm, 1989)

(Boehm, 1991)

(Boehm, 1997)

(Boehm, 2000)

Baligh, H., Burton, R., and Obel, B. Organizational
Consultant: Creating a Useable Theory for
Organizational Design. Management Science,
42(12). 1996.

Baybutt, P. Uncertainty in Risk Analysis.
Mathematics in Major Accidents Risk Analysis.
Edited by R.A. Cox. Clarendon Press - Oxford,
1989.

Berzins, V. and Luqi. Software Engineering with
Abstractions. Addison-Wesley, 1990.

Boehm, B. Software Engineering Economics.
Prentice Hall, 1981.

Boehm, B. Verifying and Validating Software
Requirements and Design Specifications. IEEE
Software, January 1984.

Boehm, B. A Spiral Model of Software
Development and Enhancement. Computer. May,
1988.

Boehm, B. and Beiz, F. Applying Process
Programming to the Spiral Model. Proceedings of
the 4th International Software Process Workshop.
May 1988.

Boehm, B. Software Risk Management. IEEE
Computer Society Press. 1989.

Boehm, B. Software Risk Management: Principles
and Practices. IEEE Software, January, 1991.

Boehm, B. & De Marco T. Software Risk
Management. IEEE Software. May-June, 1997.

Boehm, B., Madachy R., Selby, R. Cost Models for
Future Software Life Cycle Processes: COCOMO
2.0. http://sunset.usc.edu/COCOMOII/cocomo.html

(Brooks, 1974) Brooks, F. The Mythical Man-Month. Datamation.
December. 1974.

150

(Brown & Eisenhardt, 1998)

(Burton & Obel, 1998)

(Campbell & Stanley, 1966)

(Carr, 1997)

(Charette, 1997)

(Chen, 1978)

(Christiansen, 1993)

(Chulani et al., 1999)

(Cohen, 1992)

(Conklin, 1988)

(Conte, 1986)

Brown, S. and Eisenhardt, K. Competing on the
Edge. Strategy as Structured Chaos. Harvard
Business School Press. 1998.

Burton, R., and Obel, B. Strategic Organizational
Diagnosis and Design. Developing Theory for
Application. Kluwer Academic Publishers. 1998.

Campbell, D. and Stanley, J. Experimental and
Quasi-experimental Designs for Research. Rand
McNally, 1966

Carr, M. Risk Management May not be for
Everyone. IEEE Software, May - June 1997.

Charette, R., Adams, K., & White, M. Managing
Risk in Software Maintenance. IEEE Software,
May-June, 1997.

Chen, E. Program Complexity and Programmer
Productivity. IEEE Trans. Soft. Eng. May 1978.

Christiansen, T. R. Modeling the Efficiency and
Effectiveness of Coordination in 'Engineering
Design Teams. Ph.D. Dissertation, Department of
Civil Engineering, Stanford University. Published
as Det Norske Veritas Research Report No. 93-
2063, Oslo, Norway.

Chulani, Sunita Boehm, Steece. Bayesian Analysis
of Empirical Software Engineering Cost Models.
IEEE Transactions on Software Engineering. July-
August, 1999.

Cohen G.P. The Virtual Design Team: An Object-
Oriented Model of Information Sharing in Project
Teams [Ph.D.]. Stanford: Stanford University, 1992.

Conklin, J. and Begeman, M. GIBIS: A Hypertext
Tool for Exploratory Policy Discussion. ACM
Transactions on Office Information Systems. Vol.
6. October, 1988.

Conte. S, Dunsmore, H. and Shen, V. Software
Engineering Metrics and Models. Benjamin
Cummings. 1986.

151

(Cook & Campbell, 1976)

(Cullen& Frey, 1999)

(Cusumano, 1999)

(Dalkey& Helmer, 1963)

(Devore, 1995)

(Dooley, 1994)

(Elsayed, 1996)

(Fenton & Pfleeger, 1997)

(Field, 1997)

(Gaffney, 1988)

(Galbraith, 1977)

Cook, T., Campbell, D. The Design and Conduct of
Quasi-Experiments and True Experiments in Field
Settings. In Handbook of Industrial and
Organizational Psychology. Rand-McNally.
Dunnette (editor). 1976.

Cullen, A. and Frey, H. Probabilistic Techniques in
Exposure Assessment. A Handbook for Dealing with
Variability and Uncertainty in Models and Inputs.
Plenum Press. 1999.

Cusumano, M. and Yoffie, D. Software
Development on Internet Time. Computer. October,
1999.

Dalkey, N and Helmer, O. An Experimental
Application of the Delphi Method to the Use of
Experts. Management Science, 1963, 9, 458-467.

Devore, J. Probability and Statistics for
Engineering and the Sciences. Duxbury. 1995.

Dooley, K. and Flor, R. Success and Failure in
Total Quality Management Initiatives. Proceeding
of the Chaos Network, Denver, 1994.

Elsayed, E. Reliability Engineering. Addison
Wesley. 1996.

Fenton, N. and Pfleeger, S.L. Software Metrics. A
Rigorous & Practical Approach. PWS Publishing
Co. 1997.

Field, T. When BAD Things Happen to GOOD
Projects. CIO, 15 October, 1997.

Gaffney and Davis. An Approach to Estimating
Software Errors and Availability. SPC-TR-88-007
version 1.0, March 1988. Proceedings of the
Workshop on Software Reliability, July 1988.

Galbraith, J. R., Organization Design. Reading,
MA: Addison-Wesley, 1977.

152

(Garvey, 1997)

(Gemmer, 1997)

(Gilb, 1977)

(Gilb, 1988)

(Hall, 1997)

(Harn, 1999a)

(Harn, 1999b)

(Harn, 1999c)

(Harn, 1999e)

(Harn, 1999f)

(Huberman & Glance, 1998)

Garvey, P., Phair, D. and Wilson, J. An Information
Architecture for Risk Assessment and Management.
IEEE Software, May - June 1997.

Gemmer. Risk Management: Moving Beyond
Process. Computer Vol. 30 Issue 5. May, 1997.

Gilb, T. Software Metrics. Winthrop Publishers,
Inc. 1977.

Gilb, T. Principles of Software Engineering
Management. Addison-Wesley 1988.

Hall, E. Managing Risk. Methods for Software
Systems Development. Addison Wesley, 1997.

Harn, M., Berzins, V. and Luqi. Software Evolution
via Reusable Architecture. Proceedings of 1999
IEEE Conference and Workshop on Engineering of
Computer-Based Systems. Nashville, Tennesee.
March, 1999.

Harn, M. Computer-Aided Software Evolution
Based on Inferred Dependencies. Proceedings of
Conference on Advanced Information Systems
Engineering: 6th Doctoral Consortium. Heidelberg,
Germany. June, 1999.

Harn, M., Berzins, V. and Luqi. A Dependency
Computing Model for Software Evolution.
Proceedings of the 11th International Conference on
Software Engineering and Knowledge Engineering.
Kaiserslautern, Germany. June, 1999.

Harn, M., Berzins, V. and Luqi. Computer-Aided
Software Evolution Based on a Formal Model.
Proceedings of the 13th International Conference on
Systems Engineering. Las Vegas, Nevada. August,
1999.

Harn, M. Relational Hypergraph Model. PhD
Disssertation. Naval Postgraduate School.
Monterey, California. 1999.

Huberman, B. and Glance, N. Fluctuating Efforts
and Sustainable Cooperation. Chapter 5 on Prietula,

153

(Humphrey, 1987)

(Humphrey, 1989)

(Ibrahim, 1996)

(James, 1996)

(Johnson, 1994)

(Jones, 1994)

(Jones, 1996)

(Jin, 1996)

(Kangetal., 1998)

(Karolak, 1996)

M., Carley, K., Gasser L. Simulating Organizations.
Computational Models for Institutions and Groups.
MIT Press, 1998.

Humphrey, W. et al. A Method for Assessing the
Software Capability of Contractors. CMU/SEI-87-
TR-23. 1987.

Humphrey, W. Managing the Software Process.
Addison-Wesley, 1989.

Ibrahim, O. A Model and Decision Support
Mechanism for Software Requirements
Engineering. Ph.D. Dissertation. Naval
Postgraduate School. Monterey, California. 1996.

James, G. E. Chaos Theory. The Essentials for
Military Applications. Naval War College. The
Newport Papers, 1996.

Johnson, N., Kotz, S., and Balakrishnan N.
Continuous Univariate Distributions. Vol. 1. Wiley
&Sons, 1994.

Jones, Capers. Assessment and Control of Software
Risks. Yourdon Press Prentice Hall, 1994.

Jones, Capers. By Popular Demand: Software
Estimating Rules of Thumb. Computer, March 1996.

Jin, Y. and Levitt, R. (Department of Civil
Engineering, Stanford University). The Virtual
Design Team: A Computational Model of Project
Organizations. Paper to appear in Computational
and Mathemetical Organization Theory. 1996.

Kang, M., Waisel, L. and Wallace, W. Team Soar.
A Model for Team Decision Making. Chapter 2 on
Prietula, M., Carley, K., Gasser L. Simulating
Organizations. Computational Models for
Institutions and Groups. MIT Press, 1998.

Karolak, D. Software Engineering Management.
IEEE Computer Society Press, 1996.

154

(Kauffman, 1995)

(Kemerer, 1993)

(Kemerer, 1997)

(Kitchenham, 1993)

(Kitchenham, 1997)

(Kunzetal., 1998)

(Levitt et al., 1994)

(Levitt, 1999)

(Levitt, 2000)

(Lin, 1998)

Kauffman, Stuart. At Home in the Universe. Oxford
University Press, 1995.

Kemerer, C. Reliability of Function Points
Measurements: A Field Experiment.
Communications of ACM, Vol 36 No 2. 1993.

Kemerer, C. Software Project Management.
Readings and Cases. McGraw-Hill. 1997

Kitchenham, B., Kansala, K. Inter-item
Correlations among Function Points. First
International Software metrics Symposium. IEEE
Computer Society Press. 1993.

Kitchenham, B., Linkman, S. Estimates,
Uncertainty, and Risk. IEEE Software. May-June,
1997.

Kunz, J. C, Tore R. Christiansen, Geoff P. Cohen,
Yan Jin, Raymond E. Levitt. The Virtual Design
Team: A Computational Simulation Model of
Project Organizations. Communications of the
Association for Computing Machinery (CACM) 41
(11), November, 1998, pp. 84-91.

Levitt, R. E., G. P. Cohen, J. C. Kunz, C. I. Nass, T.
Christiansen, and Y. Jin (1994), The Virtual Design
Team: Simulating How Organization Structures and
Information Processing Tools Affect Team
Performance, in K. Carley and M. Prietula (Eds.)
Computational Organizational Theory, Hillsdale,
NJ: Lawerence Erlbaum Associates.

Levitt, R. The ViteProject Handbook: A User's
Guide to Modelling and Analyzing Project Work
Processes and Organizations. Vite ©. 1999.

Levitt, R. VDT Computational Emulation Models of
Organizations: State of the Art and the Practice.
Center for Integrated Facility Engineering. Stanford
University, 2000.

Lin, Z. The Choice Between Accuracy and Errors.
A Contingency Analysis of External Conditions and
Organizational Decision Making Performance.

155

(Levy, 1998)

(Londeix, 1987)

(Lorenz, 1995)

(Luqi, 1988a)

(Luqi, 1988b)

(Luqi, 1989)

(Luqi, 1990)

(Luqi)

(Luqi, 1991)

(Luqi, 1997)

(Lyu, 1995)

(McFarlan, 1974)

Chapter 4 on Prietula, M., Carley, K., Gasser L.
Simulating Organizations. Computational Models
for Institutions and Groups. MIT Press, 1998.

Levy, H. Stochastic Dominance. Investment
Decision Making under Uncertainty. Kluwer
Academic Publishers. 1998.

Londeix, B. Cost Estimation for Software
Development. Addison-Wesley, 1987.

Lorenz, Kidd. 00 Software Metrics. Prentice Hall,
1995.

Luqi and Ketabchi, M. A Computer-Aided
Prototyping System. IEEE Software. March, 1988.

Luqi and Berzins, V. Rapidly Prototyping Real-
Time Systems. IEEE Software. September, 1988.

Luqi. Software Evolution Through Rapid
Prototyping. IEEE Computer. May, 1989.

Luqi. A Graph Model for Software Evolution. IEEE
Transactions on Software Engineering. Vol. 16 No.
8. August, 1990.

Luqi. Formal Models and Prototyping. Research
supported by National Science Foundation (CCR-
9058453) and by the Army research Office (30989-
MA).

Luqi and Royce, W. Status Report: Computer-Aided
Prototyping. IEEE Software. November, 1991.

Luqi and Goguen, J. Formal Methods: Promises
and Problems. IEEE Software. January, 1997.

Lyu, M. Software Reliability Engineering. IEEE
Computer Society Press. 1995.

McFarlan, F. Portfolio Approach to Information
Systems. Harvard Business Review. January-
February, 1974.

156

(Marshall, 1995)

(Mostov, 1989)

(Mostov, 1989)

(Munson, 1995)

(Musa, 1998)

(Myers, 1976)

(Nissen, 1998)

(Nogueira et al., 2000a)

(Nogueira et al., 2000b)

(Nogueira et al., 2000c)

(Nogueira et al., 2000d)

Marshall, K. Oliver, R Decision Making and
Forecasting. McGraww-Hill, 1995.

Mostov, Luqi and Hefner. A Graph Model of
Software Maintenance. Technical Report NPS52-
90-014. Department of Computer Science. Naval
Postgraduate School. Monterey, CA. August 1989.

Mostov. A Model of Software Maintenance for
Large Scale Military Systems. Master's Thesis.
Naval Postgraduate School. Monterey, CA. June,
1990.

Munson, J. and Khoshgofar, T. Chapter 12 (Lyu,
1995).

Musa, J. Software Reliability Engineering: More
Reliable Software, Faster Development and Testing.
McGraw-Hill, 1998.

Myers, G. Software Reliability. John Wiley & Sons.
1976.

Nissen, M. Redesigning Reengineering through
Measurement-Driven Inference. MIS Quarterly.
December, 1998.

Nogueira, J.C., Luqi, and Berzins, V. A Formal Risk
Assessment Model for Software Evolution. SEKE
2000. Chicago, July 2000.

Nogueira, J.C., Luqi, and Bhattacharya, S. A Risk
Assessment Model for Software Prototyping
Projects. IEEE Workshop on Rapid System
Prototyping RSP 2000. Paris, June 2000.

Nogueira, J.C., Luqi,, Berzins, V., and Nada, N. A
Formal Risk Assessment Model for Software
Evolution. ICSE 2000. Limerick, June 2000.

Nogueira, J.C., Luqi, and Berzins, V. Risk
Assessment in Software Requirement Engineering.
IDTP 2000. Dallas, June 2000.

157

(Nogueira, 2000e)

(Norden, 1963)

(O'Leary, 1988)

(Porter, 1980)

(Pfleeger, 1999)

(Pressman, 1992)

(Prietula et al, 1998)

(Putnam, 1980)

(Putnam, 1992)

(Putnam, 1996)

(Putnam, 1997)

(Ramesh, 1992)

Nogueira, J.C., Jones, C. R., and Luqi. Surfing on
the Edge of Chaos: Applications to Software
Engineering. CCRP 2000. Monterey, June 2000.

Norden, Peter. Resource Usage and Network
Planning Techniques. In Operations Research in
Research and Development. Edited by Dean, B.
John Wiley & Sons 1963 pp. 149-169.

O'Leary, D. Methods of Validating Experts Systems.
Interfaces #18. 1988.

Porter, Michael. Competitive Strategy. Free Press,
1980.

Pfleeger, S.L. Albert Einstein and Empirical
Software Engineering. IEEE Computer. October
1999.

Pressman. Software Engineering, 1992

Prietula, M., Carley, K., Gasser L.Simulating
Organizations. Computational Models for
Institutions and Groups. MIT Press, 1998.

Putnam, L. Soßware Cost Estimating and Life-cycle
Control: Getting the Software Numbers. IEEE
Computer Society Press. 1980.

Putnam, L. and Myers, W. Measures for Excellence.
Reliable Software On Time Within Budget. Yourdon
Press, 1992.

Putnam, L. and Myers, W. Executive Briefing.
Controlling Software Development. IEEE Computer
Society Press. 1996.

Putnam, L. and Myers, W. Industrial Strength
Software. Effective Management Using
Measurement. IEEE Computer Society Press, 1997.

Ramesh, B. and Dhar, V. Supporting Systems
Development Using Knowledge Captured During
Requirements Engineering. IEEE Transactions on
Software Engineering. June, 1992.

158

(Ramesh, 1995)

(Reel, 1999)

(Render, 1997)

(Rifkin, 2000)

(Roos, 1996)

(Santosus, 1998)

(SEI, 1996)

(Schneidewind, 1975)

(Senegupta and Jones, 1999)

(Sommerville, 1992)

(Thomsen et al, 1999)

Ramesh and Luqi. An Intelligent Assistant for
Requirements Validation. Journal of Systems
Integration, 5, 157-177.1995.

Reel, J. Critical Success Factors in Software
Projects. IEEE Software. May - June, 1999.

Render, B. and Stair, R Quantitative Analysis for
Management. Prentice Hall, 1997.

Rifkin, S. When the Project Absolutely Must Get
Done: Marrying the Organization Chart with the
Precedence Diagram. International Conference on
Software Engineering (ICSE 2000), Limerick,
Ireland, June 2000.

Roos, Johan. The Poised Organization: Navigating
Effectively on Knowledge Landscapes., 1996.
http://www.imd.ch/fac/roos/paper po.html

Santosus, Megan. Simple, Yet Complex. Business
Management CIO Enterprise Magazine. April 15,
1998.

Software Engineering Institute. Software Risk
Management. Technical Report CMU/SEI-96-TR-
012. June, 1996.

Schneidewind, N. Analysis of Error Processes in
Computer Software. Proceedings of the
International Conference on Reliable Software.
IEEE Computer Society, 21-23 April 1975. Pp 337-
346.

Sengupta, K. and Jones Carl R. Creating Structures
for Network-Centric Warefare: Perspectives from
Organizational Theory. Command & Control
Research & Technology Symposium. CCRP 1999.
Naval War College, 1999.

Sommerville, I. Software Engineering. 1992

Thomsen, Jan, Raymond E. Levitt, John C. Kunz,
Clifford I. Nass, Douglas B. Fridsma. A Trajectory
for Validating Computational Emulation Models of

159

(Turban & Aronson, 1998)

(USAF, 1988)

(vanGenuchten, 1991)

(von Bertalanfy, 1976)

(Walston, 1977)

(Weibull, 1939)

(Whitmore & Findlay, 1978)

(Wideman, 1992)

(Woodward, 1965)

(Woodward, 1999)

Organizations. Journal of Computational &
Mathematical Organization Theory, 5, (4),
December 1999, pp. 385-401

Turban, E. and Aronson, J. Decision Support
Systems and Intelligent Systems. Prentice Hall.
1998.

USAF. Software Risk Abatement. ASFC/AFLC
pamphlet 800-45, US Air Force Systems Command.
Andrews AFB. 1988.

van Genuchten, M. Why is Software Late? An
Empirical Study of the Reasons for Delay in
Software Development. IEEE Transactions on
Software Engineering. June, 1991.

von Bertalanfy, L. General System Theory:
Foundations, Development, Applications. Braziller,
1976.

Walston, C. and Felix, C. A Method of
Programming Measurement and Estimation. IBM
Systems Journal. Vol. 16 No. 1,1977.

Weibull, W. A Statistical Theory of the Strength of
Material. Report No. 151, Ingeniors Vetenskaps
Akademiens Handligar. Stockholm, 1939.

Whitmore, G. and Findlay, M. Stochastic
Dominance. Lexington Books. 1978.

Wideman, R. Risk Management. A Guide to
Managing Project Risk Opportunities. Project
Management Institute. 1992.

Woodward, J. Industrial Organization Theory and
Practice. Oxford University Press. 1965.

Woodward, S. Evolutionary Project Management.
IEEE Computer, October 1999.

160

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John j. Kingman Rd., STE 0094
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5000

3. Dr. Dan Boger
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5000

4. Dr. Carl R. Jones
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5000

5. LtCol Terrance Brady 1
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5000

6. Comando General de la Armada 10
Edificio Comando General 4 Piso
Rambla 25 de Agosto de 1825 S/N
Montevideo, CP 11000
Uruguay

7. CAPT Juan C. Nogueira
Edificio Comando General 4 Piso
Rambla 25 de Agosto de 1825 S/N
Montevideo, CP 11000
Uruguay

161

