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Abstract: Thermodynamic equilibrium requires a bal- 
ance of thermal, mechanical, and chemical forces. The 
general equation for mechanical equilibrium between 
two phases describes capillary effects in porous mater- 
ials, important in both unsaturated water flow and in 
understanding ice/water interfaces in freezing soil. The 
Gibbs-Duhem equation, which relates changes in chem- 
ical potential of a substance to changes in temperature, 
pressure, and presence of other chemicals, is of critical 
importance in understanding the flow of water in freezing 
soils. Osmotic pressure, related to the chemical poten- 
tial of the substance, is useful in formulating expres- 
sions for total soil water pressure because soil water 
contains solutes, and the influence of soil particle sur- 
faces can be "approximated" as solutes. It is the gradient 
in the total sou water pressure that drives flow to the 
freezing front in soils. The generalized Clapeyron equa- 
tion, based on the thermodynamic equilibrium of ice and 
water in soils (e.g., Loch 1978), is utilized bythethermo- 

dynamically based models of Miller (1978) and Gilpin 
(1980). In these models Fourier's Law and Darcy's Law 
describe heat and mass transfer in the frozen fringe, 
respectively, and mass flow and heat flow are coupled 
by one equation that describes heat transfer in the frozen 
soil. Ice lenses start to grow when the effective stress in 
the frozen fringe becomes zero (Miller 1978, Gilpin 
1980). Once an ice lens is established, liquid water is 
removed from the adjacent pores because of phase 
change, and water flows up through the soil to replenish 
the liquid water. If the rate of water loss caused by phase 
change is matched by the rate of water flow to replenish 
the liquid water, the ice lens will continue to grow in 
thickness. If the hydraulic conductivity of the soil limits 
the rate of water replenishment to the ice lens for the 
given rate of heat loss, soil water will freeze at increasing 
depths with associated changes in the depth and thick- 
ness of the frozen fringe. 
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A Review of the Thermodynamics of Frost Heave 

KAREN S. HENRY 

INTRODUCTION 

During frost heaving of soil when the soil is freez- 
ing from the top down, water in the soil pores flows 
upward to the freezing front because of a gradient in 
the soil moisture pressure (or tension). This occurs even 
when the soil pores are not saturated. Ice lenses form 
and grow at or slightly above the freezing front and 
cause great uplifting forces. Understanding this pro- 
cess is not intuitive. However, thermodynamics, or the 
study of heat and work and the conversion of one of 
these energy forms to the other, provides a means of 
understanding frost heave. This report was written to 
make thermodynamic concepts accessible and to pro- 
vide the background needed to help engineers and sci- 
entists understand two aspects of soil freezing: the flow 
of water to the freezing front, and the initiation of ice 
lenses that cause the soil to heave. It is a review and 
summary of 1) the thermodynamic principles that are 
important in modeling frost heave in soils, and 2) past 
research using equilibrium thermodynamics that has 
contributed to the understanding of frost heaving. The 
intent is for most readers to use this report without ref- 
erence to texts. For a more complete study of thermo- 
dynamics, Castellan (1983) is highly recommended. 
Some difficult concepts are also illuminated very well 
by Silver and Nydahl (1977). 

The sections "Thermodynamic fundamentals" and 
"Thermodynamic equilibrium" present material from 
university senior-level physical chemistry, with a spe- 
cial emphasis on topics relevant to freezing soils. Ther- 
modynamic definitions, concepts, and fundamental 
equations are provided in "Thermodynamic fundamen- 
tals." "Thermodynamic equilibrium" presents thermo- 
dynamic equilibrium conditions and conditions under 
which thermodynamic processes such as phase change 
will spontaneously occur. "Thermodynamic equilibri- 

um" also includes definitions of thermal, mechanical, 
and chemical equilibrium, and the relationships among 
forces acting on systems in equilibrium are also exam- 
ined. Significant contributions to the understanding of 
frost heave, based on equilibrium thermodynamics, are 
reviewed in "Thermodynamic treatment of frost heave." 
This section begins with early work that led to the devel- 
opment of thermodynamic relations between water and 
ice in soil, followed by a brief presentation of the signif- 
icant aspects of two models of frost heaving. "Summary 
of current understanding of frost heave" summarizes 
our current understanding of frost heave without the 
use of equations. 

This report is an introduction to the thermodynam- 
ics of frost heave, and is not a comprehensive review 
of all recent work on the subject or on frost heave mod- 
eling. Nonetheless, two areas of significant develop- 
ment are mentioned below for those readers who want 
to pursue this topic in depth. This report will provide 
some of the background required for further study of 
the material discussed below. 

First, considerable progress has been made toward 
understanding the nature of the unfrozen water that 
persists in soils at temperatures below the freezing tem- 
perature of bulk water (e.g., Dash et al. 1995, Wettlaufer 
1998). The focus of the work by Dash et al. (1995) and 
Wettlaufer (1998) is on isolating the roles that curva- 
ture, confinement in pores, physical characteristics of 
ice surfaces, and the presence of impurities in soil water 
play on the thickness and mobility of unfrozen water in 
freezing soils. 

Second, regarding the ability to predict the defor- 
mation of soils in response to freezing or thawing, engi- 
neers have had great success in predicting material 
behavior by treating it as a continuum. Blanchard and 
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Fremond (1985) published a model of soil frost heav- 
ing and thaw settlement that utilized the continuum 
approach. The constitutive laws used to describe the 
soil behavior were elastic for the unfrozen soil and 
viscoplastic when frozen. Michalowski (1992, 1993) 
extended that work to account for more factors affect- 
ing frost heave (e.g., three-dimensional stress state of 
the soil). He used constitutive relations to describe the 
rate of deformation of the soil during frost heave, as 
well as the constitutive relations of heat conduction 
(Fourier's Law), water flow (Darcy's Law), and a con- 
stitutive law describing the relation between stress and 
strain in the frozen soil or soil skeleton. Recently, Harti- 
kainen and Mikkola (1997) reported progress on using 
equilibrium thermodynamics to predict the movement 
and phase change of water in freezing soil along with 
constitutive models to predict the deformation of the 
soil due to frost heave. 

THERMODYNAMIC FUNDAMENTALS 

Definitions, first, and second laws 
A thermodynamic system is a portion of the uni- 

verse set aside for study. There are three types: open, 
closed, and isolated. An open system can exchange 
energy and mass with its surroundings. The open sys- 
tem is thus specified by space rather than the matter 
contained within the space, and the volume occupied 
by an open system is a control volume. In freezing soil, 
a volume through which water, heat, and soil flow is an 
open system. A closed system can exchange only ener- 
gy with its surroundings and is modeled with a control 
mass; a mass of soil through which heat but no matter 
flows is a closed system. An isolated system can exchange 
neither energy nor mass with its surroundings. 

A property is a system characteristic that can be 
measured or determined from other measurements. The 
state of a system is defined when all of its properties 
are specified. Properties are classified as either exten- 
sive or intensive. Extensive properties are additive, 
meaning that the value of the property is obtained by 
summing the values of the property in every part of the 
system. These include mass, volume, length, area, and 
number of moles of a species in a system. Intensive 
properties do not depend on system size. These include 
pressure, temperature, specific volume, stress, surface 
tension, and force per unit length. 

A change in the state of a system results from pro- 
cesses such as energy or mass flow across its bound- 
aries or internal processes that cause its properties to 
change. Aprocess is a series of events causing a change 
of state, and a path is the sequence of states that the 
system assumes between initial and final states. There 
are many different types of processes, or stages in pro- 

cesses, including adiabatic (no heat transfer between 
system and surroundings), isothermal, isobaric, or iso- 
choric (constant volume). 

Equilibrium is defined as a state of rest—i.e., the 
system properties do not change with time. Thermody- 
namic equilibrium is an equilibrium state where there 
is a balance of thermal, mechanical, and chemical 
forces. If a system always deviates from equilibrium 
only infinitesimally during a process, then the process 
is reversible. Real processes are always irreversible, but 
reversible processes are studied to determine maximum 
or minimum amounts of work that can be produced by 
them. 

Heat flows across a system boundary in response to 
a temperature gradient. Heat is path-dependent, mean- 
ing that the amount of heat flow that occurs depends on 
the process itself. Heat appears only at the boundary of 
a system during a change in state. It is manifested by 
temperature change in the surroundings. 

Work is energy that flows across the boundary of a 
system during a change in state that is completely con- 
vertible to lifting a weight in its surroundings. Like heat, 
work is path-dependent, appearing only at the bound- 
ary of a system during a change in state, and is mani- 
fested by an effect in the surroundings (e.g., the lifting 
of a weight). It occurs as a result of a potential gradient 
other than temperature (e.g., a pressure gradient). The 
equation for mechanical work is 8W= Fdl, where F 
refers to a "generalized force," and / refers to a "gener- 
alized displacement." (The symbol 8 indicates path 
dependence and d, path independence.) If the force is 
independent of direction and the rate of change of the 
process (i.e., it is path-independent), then the work mode 
is reversible (that is, the amount of energy added in a 
forward process is equal to the amount of energy 
removed in a reverse process). 

All intensive thermodynamic properties are gener- 
alized forces, and all extensive properties are general- 
ized displacements—including length, volume, area, 
mass, and number of moles of a substance. Reversible 
work is an idealization of real processes—examples are 
frictionless pulleys or resistanceless wires. Types of 
reversible work are defined in Table 1. For nonrevers- 
ible work, relationships other than those given in Table 
1 must be used to account for the energy that is not 
converted to work. 

Entropy is the extensive property of a system asso- 
ciated with heat energy, and temperature is the inten- 
sive property. Heat can be expressed as Sßrev = TdS, 
where S is the entropy. Entropy is a measure of the 
decrease in the system's ability to do work. It can be 
associated with mass entering or leaving a system, or 
both, and can be exchanged across system boundaries 
because of heat transfer. 

to contents 



Table 1. Types of reversible work done by thermo- 
dynamic systems (Silver and Nydahl 1977). 

Type of work 
Generalized 

force 
Generalized 
displacement 

Element 
of work 

Volumetric P -V PdV 

Length F 1 -Fdl 

Surface y (surface tension) Ar (area) -v/dAr 

Gravitational ffz m (mass) -gzdm 

Centrifugal -fl<S?/2 m (mass) 
r*a2   . 
 dm 

2 
Electrical e <J -edg 

Chemical* li H -udn. 

* u. = chemical potential (see eq 18) T| = number of moles. 

Heat capacity, C, is the amount of heat, Sg, that 
must be added to a system to change the temperature 
by dT, or C= hQ/dT. Cv is the heat capacity at constant 
volume, and Cp is the heat capacity at constant pres- 
sure. 

The fundamental thermodynamic principles needed 
for the study of freezing soils are 

The zeroth: If two systems are in thermal equilibri- 
um with a third, then they are in equilibrium with each 
other. 

Conservation of mass: Matter is not created or 
destroyed; it can only be changed to other chemical 
species or to energy. 

First law: Energy is conserved. Amathematical state- 
ment of the first law is 

dU= 8ß - 8W, orAU=Q-W (1) 

where Uis the energy of the system. 
Second law: Every system that is left to itself will 

change toward a condition in which its ability to do 
work will have decreased. Another way to express the 
second law is that entropy can be produced, but never 
destroyed. Amathematical statement of the second law 
is 

\dS>^,ovdS>^-. 

For all irreversible cycles 

and for any change of state in an isolated system 

dS>0. 

(2a) 

(2b) 

(2c) 

Other important definitions include the composite 
functions, so called because they are combinations of 

other functions (properties) of a state. The compos- 
ite functions are Gibbs free energy, enthalpy, and 
Helmholtz free energy. They were defined for con- 
venience from applying the first and second laws to 
systems under various constraints. For example, 
Gibbs free energy (a quantity of great interest in study- 
ing freezing soils) was developed to help study sys- 
tems that exist at constant temperature and pressure. 
Gibbs free energy, G: For constant temperature and 

pressure, d(PV) = PdV and d(TS) = TdS. Applying 
the first law in the form b~Q = dU+ SWand the rela- 
tion that TdS > 8g* (from eq 2a), we obtain TdS > 
dU+ 8W, where W= PdV+ 8Wa and Wa is all of the 
work other than PVwork. Thus, -d(U + PV- TS) > 
b~Wa, and G = U+ PV- TS becomes a convenient 
definition. Thus, at equilibrium dGlbW& = 0; and, dGI 

5 W& < 0 for a spontaneous transformation to occur at con- 
stant temperature and pressure. This will be discussed 
again in the section "Thermodynamic equilibrium." 

Enthalpy, H: H=U+PV=G+ TS. Enthalpy applies 
to systems at constant pressure, such as laboratory sys- 
tems at atmospheric pressure. It was developed simi- 
larly to Gibbs free energy by applying the first law at 
constant pressure. 

Helmholtz free energy, A: A = U-TS=G-PV Helm- 
holtz free energy was developed for constant tempera- 
ture systems. 

Fundamental equations 
The basic balance equations of thermodynamics 

relate the heat and work transferred during a process to 
a difference in thermodynamic functions such as 
enthalpy and entropy. For a closed system, the energy 
balance equation is eq 1. Making substitutions for the 
heat term (see the definition of entropy) and for the 
work term (from Table 1) yields 

dU = TdS- PdV + Fdl + ydAr + zdq 

+ JJ]iich\i+gzdm + \rz — 
CO" 

dm+, etc. (3a) 

Equation 3a is known as the property relationship (Sil- 
ver and Nydahl 1977). For the engineering study of 
thermodynamics, this relationship is often stated for 
systems in which there is only expansive work: 

dU=TdS-PdV. (3b) 

However, for the study of freezing soil, the property 
relationship often used is 

dU=TdS-PdV + 1iiidr\i. (3c) 

' In a reversible process, dS-- SO 
T' 
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For eq 3b and c, respectively, using the definitions 
of Gibbs free energy, enthalpy, and Helmholtz free 
energy, differentiating and substituting eq 3b or 3c for 
dU results in 

or 

or 

or 

dG = -SdT+VdP 

dG=-SdT+VdP + l\iidr\i 
i 

dH=TdS+VdP 

dH = -TdS +VdP + l \lidr\i 
i 

dA=-SdT-PdV 

dA = -SdT- PdV+-Hiich]i. 

(4a) 

(4b) 

(5a) 

(5b) 

(6a) 

(6b) 

Equations 3 through 6 are known as the four funda- 
mental equations of thermodynamics. 

THERMODYNAMIC EQUILIBRIUM 

Equilibrium thermodynamic relations are often used 
in soil freezing and frost heave models (analytical and 
numerical); therefore, their derivations are now present- 
ed. For a system undergoing cyclical changes in state, 
the process is reversible if, at the end of each cycle, the 
surroundings are restored to their original state. At every 
stage of this process, the system departs from equilib- 
rium only infmitesimally. Thus, the condition for revers- 
ibility is an equilibrium condition (e.g., Castellan 1983): 

TdS=8Qrev (7a) 

and for irreversible (natural) processes 

TdS>8Qm. (7b) 

The composite functions are used to describe equi- 
librium and spontaneous transformation conditions of 
systems under the constraints for which they were 
defined. For example, at constant temperature, d(TS) = 
TdS, and applying eq 7 {TdS > 8Q) together with the 
first law and the substitution that 8g = TdS = d(TS) 
results in 

-dU+d(TS)>5W 

-d(JJ- TS) > hW 

or     -dA>hW. 

(8) 

(9) 

(10) 

In the absence of work, the isothermal equilibrium 
condition is dA - 0; furthermore, a spontaneous pro- 
cess produces negative Helmholtz free energy. In other 
words, a constant temperature system minimizes Helm- 
holtz free energy. 

A similar derivation can be done for constant pres- 
sure and temperature processes to show that the spon- 
taneity condition is 

-dG>8W. (ID 

Thus, at constant temperature and pressure and in the 
absence of work, the equilibrium condition is dG = 0; 
and, a spontaneous process produces negative Gibbs 
free energy. 

Thermal equilibrium 
Substituting TdS > Sg into the first law results in 

-dU-8W+TdS>0. (12) 

For an isolated system, dU= ?>W= 8g = 0; thus, eq 
12 applied to an isolated system is 

dS>0. (13) 

Since dS = (Sgrev / T), if a positive quantity of heat 
passes from region a to b within an isolated system, 
then 

dS = dSa+dSb 
1 

5ß„ (14) 

and for a spontaneous process, dS > 0; therefore, Ta > 
7b- At equilibrium, dS = 0 and Ta = 7V Thus, a system 
in thermal equilibrium has the same temperature in all 
regions, and when it is not in equilibrium, heat flows 
from regions of high temperature to low temperature. 

Mechanical equilibrium 
For a constant-volume, constant-temperature system 

divided into regions a and b, if region a expands revers- 
ibly by dV& then region b contracts by dV\, = -dVa. 
According to eq 6a, (3^/3 F)T = -P, or dA = -PdV, and 
dA = dAa+ dAh. Therefore, dA = (Pb - ^a) dVa. Since 
6W= 0 (for a constant volume), from eq 10 and the 
second law, dA < 0 and, therefore, P& > Pb- In other 
words, for a spontaneous expansion of region a into b, 
the pressure must be greater in a. At equilibrium, Pa = 
Pb- This is a lot of work to get an obvious result, but 
this type of analysis is helpful when less intuitive pro- 
cesses are described as below. 

For a constant-volume, constant-entropy system 
consisting of two phases a and b with an interface, v|/, 
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between them (e.g., ice and water), the total energy is 
the sum of the energy of the various parts: 

dU = dUa + dUh + dUw. (15) 

The surface work term (see Table 1) is *Fc£4r; there- 
fore, 

dU= -PadVa- PhdVh + VdAr. 

At equilibrium, dU= 0, therefore 

{Pa-Ph)dVa = *¥dAx. 

(16) 

(17) 

Thus, at equilibrium there is a pressure difference across 
the interface unless it is planar. If the interface is pla- 
nar, dAT = 0 and Pa = P\,. The difference in pressure 
across a curve interface is the physical reason for cap- 
illary rise and depression of liquids in porous materials 
(e.g., Castellan 1983). 

Chemical equilibrium 

Conditions for chemical equilibrium 
From eq 4b, 

dG 
Hi- (18) 

T.P.T1J, 

The chemical potential of a substance, Ui, is the Gibbs 
free energy increase per mole of substance j added to a 
system at constant temperature, pressure, and numbers 
of moles of other substances (/) present in the system. 
For a system consisting of a pure substance i, dG = 
SdT+ VdP (eq 4a), and this can be divided by T|i so that 

d\ii=-SdT+VdP (19) 

where S and Fare the entropy and volume per mole 
of substance i, respectively. 

For a system at constant temperature, pressure, and 
numbers of moles, j, and divided into two regions, a 
and b: 

dG = dGa +dGb= Hia^tii + M-ib^n;. (20) 

Iftitii moles go into b, and dx\[ moles leave a, then dGa 

= Hia (-dr\i); dGb = u.jbfi?r|; and dG = (\iih -1%)^;. 
A spontaneous reaction requires that dG be nega- 

tive, therefore |l;b < \im, and matter flows from regions 
of high chemical potential to low chemical potential. 
At equilibrium, dG = 0 and u.;b = [J-ia- Thus, chemical 
potentials for substance j must have the same values 
throughout a system in chemical equilibrium. 

Properties of chemical potential 
Equation 18 shows that the chemical potential of a 

component is a function of temperature, pressure, and 
amounts of other chemical species. This leads to inter- 
esting system behavior. If two regions in the same sys- 
tem are at different pressures or temperatures, with all 
other properties being held constant, then they will have 
different chemical potentials. At constant temperature 
and pressure, the chemical potential of a component in 
two regions may be different due to different concen- 
trations of it. Another property of chemical potential is 
that, at constant concentration of a species, a pressure 
difference and a temperature difference may compen- 
sate each other, thereby maintaining a constant chemi- 
cal potential. 

Other properties of chemical potential can be deduced. 
At constant temperature for a single-component sys- 
tem, the pressure dependence derived from eq 4a is dG 
= VdP, which can be integrated to obtain 

G = G' >(T)+ j VdP (21) 
po 

where G° is the Gibbs free energy at one atmosphere 
of pressure, P°. For liquids and solids (constant vol- 
ume), this relation becomes 

G=G°(T)+V(P-P°). 

For ideal gases 

„    nRT 

(22) 

and 

G = G°(T) + nRTM (3 
\l = ]i°(T) + RTln m 

(23) 

(24) 

where (x° is the chemical potential of a pure substance 
at one atmosphere. For solid, liquid, or gaseous mix- 
tures of ideal solutions (i.e., Pi=x^Pf, where x\ is the 
mole fraction of the substance and P\ is its partial pres- 
sure) 

Hi = \i?(T,P) + RTlwCi. (25) 

The dependence of Gibbs free energy on temperature 
at constant pressure can be expressed by using eq 4a, 
which yields 

fi- (26) 
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The dependence of G/T on temperature at constant 
pressure is also of interest, and it is derived by apply- 
ing the ordinary rule of differentiation to d(GIT)ldT, eq 
26, and using the definition of enthalpy, H, to obtain 
(e.g., Castellan 1983) 

(27) 

Equation 27 is known as the Gibbs-Helmholtz equa- 
tion. 

For an equilibrium mixture (i.e., u.; is constant) at 
constant temperature and pressure, 

Constant Pressure 

i 

which can be integrated to obtain 

AG = liti(ATii) 
i 

For r|initial = 0 = Gjnitiai, we obtain 

(28) 

(29) 

(30) 

Differentiating eq 23 and setting it equal to eq 4b results 

Z^idVL-^-SdT+VdP. (31) 

Equation 31 is the Gibbs-Duhem equation. Note that 
for constant temperature and pressure, 

Etiirfjii=0. (32) 

Chemical equilibrium between phases 
of a single component 

For a system in chemical equilibrium containing 
more than one phase of a substance, the chemical poten- 
tials of the substance in all phases must be equal. For a 
system containing a pure substance only, we know from 
eq 19 that 

dm 
dT 

■■-S. (33) 

Thus, a plot of u. vs. Tfor any phase will have a slope 
of —S and equilibrium between phases occurs when 
the chemical potentials of both phases are equal (Fig. 
1). Proceeding from solid to liquid to vapor, the nega- 
tive slopes increase, reflecting the increase in entropy 
(eq 33). Figure 1 shows that if the chemical potential 
of the liquid phase is lowered (e.g., adding salt to water 
lowers the chemical potential of the water—see eq 25), 
there will be an accompanying decrease in the freezing 
point and increase in the boiling point. From eq 19 

Figure 1. Plot of u as a function of temperature for a 
pure solvent (solid lines). The dashed line represents 
the chemical potential of the liquid solvent when sol- 
ute i is present. (After Castellan 1983.) 

n-r- (34) 

Consider the equilibrium of a pure substance in two 
phases, a and b: 

MT,P) = \ib(T,P). (35) 

From eq 34 we know that a pressure increase, dP, 
will result in a chemical potential increase, d\a. This 
will be accompanied by a change in equilibrium tem- 
perature (e.g., Fig. 1). At (T + dT, P + dP), the new 
equilibrium condition can be expressed as 

\ia(T,P) + dii^\ih(T,P) + diib. (36) 

Subtracting eq 36 from 35 results in d\ia = rfu.),, or by 
substituting each of these expressions into eq 19 and 
setting these equal to each other, 

(sb-sayr=(rb-7ayp 

or 

dP 
dT H AS 

AV 

(37) 

(38) 

Equation 38 is known as the Clapeyron equation, an 
important equation of equilibrium between two phases 
of a substance. Phase diagrams, such as the one for pure 
water shown in Figure 2, consist of lines that represent 
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Figure 2. Phase diagram for water. 

the pressure and temperature conditions for phases in 
equilibrium. 

Osmotic pressure 
Osmotic pressure, IT, is the pressure required to 

maintain equilibrium between a solution and the pure 
solvent across a semi-permeable membrane through 
which the solvent, but not the solute, can diffuse. The 
osmotic pressure is easily determined using the chem- 
ical potential requirement of equilibrium. For the sol- 
vent on both sides of the membrane, 

\i(T,P + n,x) = \L°(T,P). (39) 

From eq 25 we know that \i(T, P + Yl,x) = \1°{T, P + Tl) 
+ RTlnx. Substituting this into eq 39 results in 

\L° (T, P + IT) + RTlnx = U° (J, P). (40) 

Using eq 34, d\\.° = V°dP and integrating from P to 
P + n, we get 

p+n_ 
li°(T,P + n)-\i°(T,P)=  J  V°dP.        (41) 

p 

Substituting eq 41 into 40 yields 

p+n_ 
J   V°dP + RT\wc = 0. (42) 

For an incompressible solvent in an ideal solution the 
molar volume remains constant, and 

n = -RTtex (43) 

If the solution is dilute, then lnx = ln(l -X2) =X2> where 
*2 is the mole fraction of the solute, and because ri2«n, 

-x2—— (44) n 

where n refers to the number of moles. Thus, substitut- 
ing eq 44 into eq 43 yields 

II: 
n2RT 

nV° 

but V ~nV , so 

n = cRT 

(45) 

(46) 

where c is the solute concentration (mol m-3). The con- 
cept of osmotic pressure is useful in formulating expres- 
sions for total soil water pressure because soil water 
contains solutes. Furthermore, the influence of soil par- 
ticle surfaces on the chemical potential of the soil water 
can be "approximated" as solutes. 

Summary 
Fundamental thermodynamic principles have been 

reviewed in the above sections. The relations and con- 
cepts that are particularly useful in studying the physi- 
cal processes associated with freezing soil are 

1. Thermodynamic equilibrium requires a balance 
of thermal, mechanical, and chemical forces. Thermal 
equilibrium is reached when temperatures are equal, 
mechanical equilibrium is reached when there is a bal- 
ance of mechanical forces, and chemical equilibrium 
is reached when the chemical potentials of all compo- 
nents of the system are equal. 

2. The general equation for mechanical equilibrium 
between two phases—i.e., the interface is curved, rather 
than planar—is (Pa - Pb)dV= WAr (eq 17). 

This equation applies to interfaces between all phases 
of a substance (solid/liquid, vapor/liquid, and solid/ 
vapor interfaces) and is the physical reason for capil- 
lary rise of liquids in porous materials. 

3. The Gibbs-Duhem equation, 

i 

(eq 31), is useful when applied to water in freezing soils. 
4. The concept of osmotic pressure is useful in for- 

mulating expressions for total soil water pressure. This 
is because soil water contains solutes; in addition, the 
influence of soil particle surfaces can be "approximated" 
as solutes. Expressions for the osmotic potential of a 
dilute solution are 

n = -RT\VX 

(eq 45) and II = cRT (eq 46). 
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THERMODYNAMIC TREATMENT 
OF FROST HEAVE 

Early contributions 
The first researchers to make significant progress in 

understanding frost heave were Taber (1929,1930) and 
Beskow (1935). Taber (1929, 1930) established with 
certainty that frost heave does not occur because of the 
expansion of soil water upon freezing. He proved that 
pore size influenced the total amount of frost heave for 
given freezing conditions and that saturated material 
with very small pores retains unfrozen water at several 
degrees below freezing. Taber (1929) established that 
the pressure from frost heaving is due to the direction 
of ice crystal growth, which is, in turn, controlled by 
the direction of heat loss. He deduced that slow crystal 
growth favored frost heave, and introduced the idea that 
water exists in a state of tension. 

Taber (1930) treated freezing soils as open systems. 
He developed the idea of a gradient in soil moisture 
tension that causes water above the water table to flow 
to the freezing front. He also observed that the rate of 
heave is continuous under constant temperatures applied 
at the top and bottom of soil specimens even though 
the ice lenses are separate and distinct from each other. 

Taber hypothesized that during the growth of an ice 
layer, voids underneath it gradually fill with ice, begin- 
ning with the larger ones. As the resistance to the flow 
of water to the ice lens increases (because of the pores 
filling with ice), a new layer of ice begins to form near 
the bottom of the zone of the frost penetration. This is 
the beginning of the idea of a "frozen fringe," a zone at 
the freezing front where ice has penetrated the pores, 
contains no ice lenses, and has very low hydraulic con- 
ductivity that can limit rate of heave. 

Working independently from Taber, Beskow (1935) 
also contributed several important concepts to the under- 
standing of soil freezing. However, the English transla- 
tion of Beskow's 1935 report on frost heave is long, 
difficult to follow, and uses terms that are not well 
defined. Some clarifications of terms that he used are 
listed here.* In Beskow's report, soil water is referred 
to as capillary water, and adsorbed water is called the 
waterunder the radius of influence of the particle. The 
term "capillary pressure" or "positive capillary pres- 
sure" means soil moisture tension. Effective stress (a 
concept that was not yet well-developed) was referred 
to as "total compressive force," or just "pressure." Two 
other things are noted: 1) that Beskow described only 
the "saturated capillary fringe" in all of his discussions 
that refer to the similarities between soil freezing and 

!!i!|;!i!l!!i!l!!!!l!! 111! 111! III! III! ! !! 
.  hi  hi i !    !i!ice!i hi hi i jih Mi 
I!i  I!>  ti! !Ii! !IMjiii! !I!! ! 1 ]! ! i! ! i! I il il 1:1 ill i hi 111 il HI II HI il li 1 il i Um 111111 

* These terms and their definitions refer only to Beskow's report; 
they are not necessarily terminology used today. They are pro- 
vided for the convenience of those who will read his work. 

Figure 3. Frost line in two soil types. The upper part 
of the figure represents a fine-grained frost-heaving 
soil and the lower part of the figure is a coarse-grained 
frost-heaving soil (e.g., a coarse silt). The scale of the 
upper diagram is about 20 times that of the lower dia- 
gram. The arrows show the maximum distance that 
water must travel for frost heave to occur. (After Bes- 
kow 1935.) 

drying, and 2) that in reference to soil water and soil 
pressures, Beskow usually (but not always) expressed 
them in terms of head. 

One of the most important ideas contributed by Bes- 
kow (1935) is that soil freezing is similar to soil drying— 
in both cases water changes phase and the amount of liq- 
uid water in the soil decreases. Thus, water flow from 
above the water table to the zone where water is chang- 
ing into ice is analogous to flow of water to a zone 
where it is evaporating. 

In describing soil freezing, Beskow (1935) noted the 
freezing point depression of soil water due both to sol- 
utes in the water and the "effect of the particle system" 
(adsorbed water). He constructed freezing temperature 
curves, showing unfrozen water content vs. tempera- 
ture and noted that, for saturated fine-grained soils, even 
the water in the center of the pores is considerably influ- 
enced by the particle surface. Ice crystallization is 
favored farther away from a particle surface and the 
surface of the ice protrudes down into the pores, with 
adsorbed water adjacent to it (Fig. 3). Beskow explained 
that when an adsorbed water film becomes thinner, an 
increased negative pressure occurs in the unfrozen soil 
water that induces water to replenish the film. 

Beskow (1935) documented the influence of effec- 
tive stress on frost heave. He said that the total com- 
pressive force acting on soil particles during freezing 
was the sum of the actual load (overburden) pressure 
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Figure 4. Curves of maximum capillary rise of sorted soils as a func- 
tion of the average particle diameter for a number of different dis- 
tances to the groundwater table. (After Beskow 1935.) Note that units 
of measurement of the rate of capillary rise were not provided. 

and the positive capillary pressure (soil moisture ten- 
sion). In addition, in the tests he performed, equal 
amounts of overburden pressure and soil moisture ten- 
sion reduced frost heave rate by the same amount. Be- 
skow (1935) also noticed that when the capillary rise 
of water in the soil is lower than the distance between 
the freezing front and the groundwater table, then the 
soil does not heave. 

Beskow froze 32.5-mm-diameter by approximately 
40-mm-high insulated specimens from the top down 
with water available at the base using air temperatures 
of-2 to -10°C at the top with 0°C water at the base. He 
believed that his experiments showed that for relatively 
permeable soils, frost heave rate is fully independent 
of rate of freezing. However, the temperature variations 
of his experiments were too small, and the freezing was 
conducted over too short a time to permit the air tem- 
perature variation to produce a noticeable effect on frost 
heave rate, and we now know that rate of freezing does 
influence frost heave rate (e.g., Loch 1979). 

Beskow (1935) found that, for relatively coarse soils, 
heave rate drops off rapidly with increasing grain size; 
however, for fine soils, heave rate drops off slowly with 
decreasing grain size. The curves are shaped roughly 
as those shown in Figure 4 (with heave rate being on 
they-axis). Figure 4 shows the rate of capillary rise vs. 
particle size. Beskow determined that soil type and 
effective stress influenced frost heave. However, his 
laboratory freezing tests are not described in detail, and 
may be extreme compared to field conditions of freez- 
ing. For example, the temperature gradient induced by 
-2°C at the top surface of a 40-mm-high specimen with 

the bottom held at 0°C (50°C nr1) is more than twice 
the maximum temperature gradient measured near the 
freezing front by other researchers (e.g., Saarelainen 
1992, Vikström 1997). 

Everett 
D.H. Everett (1961) was one of the first researchers 

to use the principles of thermodynamic equilibrium to 
describe the processes associated with the freezing of 
water in porous media. He wanted to answer why, when 
pore spaces are completely filled with ice, further 
growth of ice continues and causes either frost damage 
(in a porous solid) or frost heave (in soil). He used eq 
17 in the form 

^s" p,=v* 
dAr 

dV 
= ¥.,*■ (47) 

where Ps is the pressure of the solid crystal, P\ is the 
pressure in the surrounding liquid, *¥s\ is me interfacial 
tension between the solid and the liquid, Ar is the sur- 
face area of the phase boundary, Fis the volume of the 
crystal, and Ä"is the mean curvature of the solid/liquid 
interface. Thus, if the solid phase is at a different pres- 
sure than the liquid phase, the interface between the 
phases is curved. For a pure substance, the equilibrium 
state is determined only by Ps, P\, and the temperature. 

Everett presented a simple model of two cylinders 
connected by a capillary tube, each closed by a piston 
(Fig. 5). Both cylinders are initially filled with water, 
and temperatures are lowered so that ice nucleates and 
grows in the top cylinder. As freezing proceeds, the pis- 
tons move to accommodate expansion of the system. 
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Figure 5. Piston-cylinder model of ice growth. (After Everett 1961.) 

Once the top cylinder is ice-filled, further heat loss will 
result in either 1) upward movement of the upper pis- 
ton, with flow of water from the bottom cylinder, or 2) 
propagation of ice along the capillary. If the pressures 
on the cylinders are equal, PS = P\ = P, then the inter- 
face between phases is planar and ice cannot penetrate 
into the capillary. Ice will form in the top cylinder until 
all water is removed from the bottom cylinder; i.e., frost 
heave will occur. An example of this is needle ice* 
growing at the soil surface. When the needles first begin 
to grow, there is no overburden and no significant self- 
weight, thus no chance forPs to develop. 

If the pressure on the ice phase, Ps, can be main- 
tained at a higher level than the liquid, then the chemi- 
cal potential of the ice in the cylinder (bulk ice) will 
increase. (For example, as the needle ice at the ground 
surface grows in length, the weight of the ice exerts a 
positive ice pressure in the pores at the soil surface.) 
The freezing temperature becomes depressed and ei- 
ther the ice will melt or heat will be withdrawn until, at 
the new equilibrium temperature, there is a curved inter- 
face between the two phases. If the pressure difference 
is constant between the ice and the water while further 
heat is removed, the bulk ice will again grow in the top 
cylinder as described above. If Ps increases to the point 
at which the chemical potential of the ice in the piston 
exceeds that of a hemispherical cap of ice between the 
ice and water in the pore, then ice growth proceeds down 
the capillary. 

* Everett (1961) referred to the needle-ice as "hoarfrost"; however, 
hoarfrost refers to the deposition of ice crystals on objects by direct 
sublimation from water vapor. 

Using the equilibrium condition of eq 47 (and not- 
ing that a hemispherical cap has the maximum (dAr/ 
dV) of various-shaped interfaces), Everett explained that 
this maximum pressure (with Pj = 0) is the maximum 
heaving pressure that can be reached in porous media. 
Thus, he concluded that the maximum heaving pres- 
sure is a function of pore size and interfacial energy 
between the ice and water. If this heaving pressure 
exceeds the overburden pressure in a freezing soil, then 
frost heave will occur. Here is a basis for understand- 
ing why ice can grow against an overburden pressure. 
Because of the pressure difference across the curved 
interface, the water can exist at a lower pressure than 
the ice on the other side of it. For a hemispherical ice 
front in a pore, dAr/dV= 2/r; therefore, Everett (1961) 
concluded that heaving pressure is inversely propor- 
tional to the size of the pore radius, r. Note that the 
pressure difference maintained across an ice/water inter- 
face can arise from a reduction of the liquid water pres- 
sure as well as from an increase in the bulk ice pressure. 

Everett's model considered the mechanical equilib- 
rium between ice and water in porous materials, but 
ignored the soil particle surface effects on the adsorbed 
water. As mentioned earlier, a complete thermodynam- 
ic equilibrium formulation of the problem would con- 
sider thermal, mechanical, and chemical equilibrium. 
This was the approach taken by R.D. Miller and his 
students (e.g., Miller et al. 1960, Miller et al. 1975), 
discussed in the next section. 

Miller and Loch 
Miller et al. (1960) and Miller et al. (1975) accounted 

for the osmotic effects related to films adsorbed on soil 
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particles in the frost heave process by applying the gen- 
eralized Clapeyron equation (GCE) to the thermody- 
namic equilibrium between ice and water in soil. In 
order to clarify that the GCE is based on sound thermo- 
dynamics, one of Miller's students, J.P.G. Loch (1978) 
published a detailed derivation of the GCE. That deri- 
vation is now summarized. 

Using the Gibbs-Duhem equation (eq 31) for soil 
ice/water equilibrium, Loch (1978) redefined the chem- 
ical potential as the Gibbs free energy per unit mass of 
a substance so that T|; refers to mass and not moles of a 
substance, t* 

■n^w = -SdT+ VdP - r\sd\is (48) 

where the subscripts w and s refer to water and salt, 
respectively. The equation for the chemical potential 
for salt in soil water (a form of eq 25) is 

lLs=\l0
s(T,P) + lnxa (49) 

where \is°(T, P) is the chemical potential of the pure 
salt at the same temperature and pressure as the sys- 
tem, Ms is the molecular weight of the salt, and xs is the 
mole fraction of the salt. Making the approximation that 

d\lw=-SdT+VdP-VdTl (53) 

since n, the osmotic pressure, is equal to RTc. 
If the symbol Pw is used to describe the total soil 

water potential, then 

PV=P-U. (54) 

Note that P is the pressure of the water excluding os- 
motic effects and 

dp.v/=-SdT+VdPv/ (55) 

Equation 55 is integrated after making the substitu- 
tion that at equilibrium, 

S = 

to obtain 

H 
(56a) 

Hw=-fflnll + — 

or for small AT, 

HAT   =_ 

+ Vpw 

(56b) 

Tlw 

we obtain 

-^Kf)#MS>fe) 
(50) 

Differentiating eq 50 with respect to % gives d\is ■ 
(RTIMs)(\lT\s)dT\s, or 

T\sdiis=RTd 
\MSJ 

Substituting eq 51 into eq 48 gives 

4iw = -SdT + VdP- VRTd Tls 
{MST)„V 

(51) 

(52) 

where S and Fare entropy and volume of solutions per 
gram of water, respectively. Since the expression in the 
parentheses of eq 52 is equal to the concentration of 
the solute in solution, c, eq 52 can be rewritten as 

* Loch (1978) apparently redefined the chemical potential in this 
way in order to arrive at the generalized Clapeyron equation (eq 61) 
in a form that is convenient to work with because the specific vol- 
ume of a substance is equal to the inverse of its density. 

where H is the enthalpy per unit mass of the solution. 
In eq 56a, T0 is the freezing point of pure water and 
A7 is the freezing point depression (K). 

Assuming that ice contains no solutes, the chemical 
potential for pore ice is 

^-^+^+^(ftj. (57) 

Setting the chemical potentials of pore ice and water 
equal (at equilibrium) results in 

|JAr+KPw=-^ + ^+^iw[||].(58) 
Using the following definitions for the pressure of ice, 
Pj, and the latent heat of fusion of water per mass, 

Lf=H-Hl 

(59) 

(60) 

and substituting eq 59 and 60 into eq 58 results in the 
equation of chemical equilibrium between pore ice and 
water, or the generalized Clapeyron equation: 

^-F7>w=-If 
AT 
T Jo 

(61) 
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Note that the osmotic pressure includes the effects 
of the diffuse double layer associated with the surface 
of soil particles (i.e., adsorbed water) through the pres- 
sure term, P (eq 54). Equation 61 was referred to later 
by Miller (1978) as the Clapeyron equation; but it is 
not the Clapeyron equation one usually finds in Physi- 
cal Chemistry texts (i.e., eq 38). 

Equations 59 and 61 reveal that equilibrium is a func- 
tion of pore size (through the dAfi V term), hydrostatic 
pressure of the soil water, osmotic pressure (i.e., pres- 
ence of solutes and the chemical properties of soil particle 
surfaces), and temperature. Changes in any of these vari- 
ables result either in change of location of freezing front 
or rate of frost heave. For example, if P, P\, and r are 
constant throughout a soil body, but there is a spatial dis- 
tribution of temperature, there will be a gradient in Pw, 
causing a steady-state flow of water through the system. 

This is a more complete formulation of the equilib- 
rium between ice and water in soils than Everett's 
(1961). This is because the effects of solutes and the 
chemical properties of soil particle surfaces on the pore 
water are accounted for through the use of osmotic pres- 
sure and the effects of the depressed freezing tempera- 
ture are also accounted for. Thus, the equilibrium pres- 
sure difference that can be sustained between pore ice 
and pore water, as indicated in eq 61, is much greater 
than that indicated in eq 47. 

Miller 
Miller (1978) utilized the concepts described in Loch 

(1978) and developed a soil freezing model—predict- 
ing frost heave as a function of time, temperatures, and 
pressures. Miller applied concepts developed for treat- 
ment of soil drying to model freezing of a saturated, 
noncolloidal soil. He restricted his modeling efforts to 
noncolloidal soil, so that the deformations of the soil- 
ice body are due to the formation of ice lenses, and not 
compression or expansion of the soil skeleton. This 
model, called the rigid ice model, includes a rigid, con- 
tinuous body of ice that comes in contact with continu- 
ous pore water in a zone called the frozen fringe (Fig. 
6). The frozen fringe is the zone below the deepest ice 
lens where ice has penetrated the narrowest parts of 
larger pores between soil particles. This is similar to 
the capillary fringe where air has penetrated the larger 
pores in a drying soil. Miller (1978) also defined con- 
ditions under which an ice lens will begin to form, and 
extended beyond development of the thermodynamic 
equilibrium relations in freezing porous materials 
(which he utilized) to the transport of mass and heat 
through unfrozen and partially frozen soil. 

Miller used eq 61 in the form 

ft 
.is. 

Pw 

AT (62) 

where p; and pw are the densities of ice and water, 
respectively (recall that Pw refers to total soil water 
potential). He defined a variable, <]>, as the difference 
between the ice pressure and the soil water potential 
divided by the interfacial tension 

P -P 
»I». 
MW 

or, for air and water 

<fa: 
P -P ia    J w 

(63a) 

(63b) 

where subscript a refers to air. Equation 63a is an 
expression for the mean curvature of the ice/water inter- 
face in soil pores at equilibrium, and eq 63b applies to 
the air/water interface. When there are no ice lenses in 
a frozen soil, pore ice and pore water contents depend 
on (j): 

*w(4>) + *i(4>)=Tl (64) 

where #w refers to volumetric pore water content (note 
change in notation), $; to volumetric pore ice content, 
and r) is the total porosity. 

Miller noted that the pore pressure, w, has both ice 
and water components. Thus, he borrowed an expres- 
sion from Bishop andBlight(1963) for the distribution 
of pore pressure between the air and water phases and 
applied it to ice and water: 

u = x(Wv + V-7iMPi- (65) 

Miller approximates % (<!>), known as the stress parti- 
tion function, as 

X(®< 0w(4>) (66) 

Using similitude between soil freezing and soil drying, 

*w(<t») = *w(W (67> 

Figure 6. Frozen fringe with ice lens 
above. (After O'Neill and Miller 1985.) 
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m)=K(4?a) 

Figure 7. Vertical gradient 
of pore contents in a ver- 
tical column of freezing 
soil. (After Miller 1978.) 
Note that the top portion of 
the soil particle has more 
film water in contact with 
ice than the bottom portion 
and that the curvature of 
the ice/water interface is 
greater at the top interface 
than at the bottom inter- 
face. 

(68) 

where K is the hydraulic conductivity of the soils (m s_1) 
and 

X(<W = 3C(<t>a)- (69) 

Using laboratory data for unfrozen water content in a 
frozen soil, dw, as a function of temperature, along with 
all of the relations defined by eq 62 through 69, and 
Terzaghi's equation for effective stress, 

CTx = o' + u. (70) 

Equilibrium values of %, (|>, a', w, and K(§) can be pre- 
dicted as a function of temperature (or depth) in a freez- 
ing soil. 

Miller (1978) identified a downward force acting 
on the granular skeleton in the freezing soil due to a 
vertical pressure gradient in the adsorbed film. This 
pressure gradient results from the fact that the top, colder 
pores have thinner films and therefore greater curva- 
ture and greater differences between the ice and water 

pressures than the lower, warmer pores (Fig. 7). That 
is, the pore ice pressure increases upwards from the 
bottom of the frozen fringe, which causes effective 
stress to decrease. Figure 8 depicts profiles of soil water 
pressure, effective stress, and pore pressure in the frozen 
fringe just prior to ice lens initiation (after Miller 1978). 
Ice lens initiation occurs when the effective stress 
reaches 0. At this condition, soil particles become incor- 
porated into upward moving ice. Thus, the ice lens 
initiation condition is similar to that of Everett (1961). 
However, the pore pressure that can be generated is 
greater than that proposed by Everett (1961) due to sur- 
face effects of soil particles as well as temperature gra- 
dients in the frozen fringe. 

Ice movement within a soil is called regelation 
(refreezing), and it involves the melting, transport 
around soil grains in adsorbed films, and refreezing of 
water. The heat released during the change of phase 
from water to ice in freezing soil is far more significant 
than the sensible heat transfer. Therefore, Miller ignored 
sensible heat transfer during freezing, and accounted 
only for heat transfer due to ice formation: 

q=-Kn (!> 
ft£fVi(<!>) (71) 

where q is the rate of heat flow in the soils, X is the 
thermal conductivity of the soil, and VJ is the volumet- 
ric ice flux: 

vi(<t>) = ^i(4>)vl (72) 

where vi is the rate of frost heave. In the unfrozen zone, 
only heat conduction is considered: 

, = -*„(£} (73, 
Equation 71 contains both heat and mass transfer 
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Figure 8. Profiles of soil water pressure, effective stress, and pore pressure in the frozen fringe just prior to 
ice lens initiation. (After Miller 1978.) 
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terms, thus coupling models of heat and mass transport 
in freezing soils. Note that the volumetric ice flux in 
soil, described by eq 71, consists of the volumetric ice 
content (a function of <|>) times the rate of frost heave. 
The volumetric ice content can change within the frozen 
fringe because of temperature effects as reflected in the 
§ value. 

Frost heave that occurs once a frozen fringe is formed 
is referred to as secondary heaving, while frost heave 
with no frozen fringe is primary heaving (assuming an 
adequate water supply). With primary heaving, only the 
rate of heat loss controls the rate of frost heave, while 
with secondary heaving, there is a component of 

hydraulic resistivity influencing frost heave rate (Miller 
1972). 

To complete his model, Miller (1978) applied the 
conservation of mass and energy in the frozen fringe, 
along with the relations already mentioned, to obtain 
the relations among frost penetration rate, rate of frost 
heave, and rate of heat loss. Miller's rigid ice model 
was put into finite element form; some results are 
reported in O'Neill andMiller(1985). Equations of the 
model were solved for one-dimensional freezing of an 
initially unfrozen, saturated soil column. A153-mm soil 
column of silt with a given function of unsaturated 
hydraulic conductivity vs. liquid water content was 
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Figure 9. Typical results of Miller's rigid ice model of frost heave, reported by O'Neill and Miller (1985), for a 
saturated silty soil. 
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modeled. The specimen was initially at 1°C, then the 
top temperature was gradually ramped down to -0.5°C. 
The thermal conductivity of the specimen was com- 
puted as a geometric mean of the thermal conductivi- 
ties of soil solids, ice, and water during freezing. Fig- 
ures 9a and b show typical results. The model predicts 
behavior of the soil column during freezing and the 
values are reasonable. 

Black and Miller (1985) applied a simplified ver- 
sion of the rigid ice model to laboratory test results on 
a silt. They assumed that the liquid water content and 
the unsaturated hydraulic conductivities were simple 
Brooks-and-Corey-type exponential functions of <(> (e.g., 
Brooks and Corey 1964). Heave and frost penetration 
rates and temperature gradients in the unfrozen soil were 
input variables, while temperature gradients in the fro- 
zen soil and heaving pressure were outputs. The model 
accurately predicted temperature gradients, but predict- 
ed heaving pressures to be about half of those mea- 
sured, indicating problems with the experimental pro- 
cedure that were later found to exist.* The rigid ice 
model is now available in the form of a MathCad 5.0+ 
computer program (Black 1995). 

The rigid ice model has now been developed into an 
engineering tool for prediction of heaving due to one- 
dimensional heat loss. Using the rigid ice model as a 
basis, Sheng (1994) developed a numerical model of 
frost heave. This model, called PC-Heave, predicts 
heave for stratified soils and unsaturated layers. Input 
variables for PC-Heave are the number of soil layers 
and their thicknesses, the dry densities, water contents, 
thermal and hydraulic conductivities and percentage 
saturation of the soil layers, the boundary temperatures 
at the top and the bottom, the depth of the groundwater 
table, and one unfrozen water content at a subfreezing 
temperature per FSL (a calibration factor). The model 
predicts heave, location of ice lenses, frost penetration, 
segregation temperature, and suction in the pore water 
of the frozen fringe with time. 

The modeling equations are the mass and heat bal- 
ances at the base of the warmest ice lens and for the 
frozen fringe, Darcy's Law, and the expression for the 
pore water pressure in the frozen fringe that incorpo- 
rates the generalized Clapeyron equation (Sheng 1994). 
The model has been verified using both field and labo- 
ratory soil freezing information. 

Gilpin 
Gilpin (1979,1980) developed a model very similar 

to the rigid ice model. He assumed that the chemical 
potential of the water in the adsorbed film is lowered 

by the surface effects of the solid: 

(74) 

where |IL is the chemical potential of the liquid in the 
film, HLB is the chemical potential of the bulk liquid, 
and |IL>P is the depression in the chemical potential from 
bulk water caused by the presence of the solid surface. 
Gilpin assumed that it had the form of a power law 
relationship: 

\iLy=ay-a (75) 

where y is the distance from the soil particle surface 
and a and -a could be adjusted as needed. 

The chemical potential of the bulk water is given 
by (an integrated form of eq 19) 

^LB=^Lo + ^L-^o)-5L(7L-ro)     (76) 

where u^o is the chemical potential at a reference con- 
dition, (P0, T0). Substituting eq 75 into eq 74 and 74 
into 76 at equilibrium (i.e., U-L = Mio) and assuming 
that the temperatures of the bulk and film water are 
equal leads to the following expression for the varia- 
tion of pressure in film water, with a distance from the 
solid surface (Fig. 10): 

(PL-P0)- 

( a^ 

K'L 
(77) 

Bulk Water 

* Personal communication, Dr. Patrick Black, CRREL, Hanover, New 
Hampshire, 1999. 

Figure 10. Gradient in film water pressure next 
to a soil particle as described by Gilpin (1980); 
note similarity to ion distribution according to 
the diffuse double layer theory. 
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Static equilibrium in the film perpendicular to the par- 
ticle surface requires that the particle must exert a body 
force per unit volume, g, equal to 

g'- (78) 
dy       ' 

If the film is not of a uniform thickness, the body 
force will drive tangential fluid flow to return the film 
to a uniform thickness. Using equilibrium thermody- 
namics, Gilpin (1979) then derived the following 
expression for the thickness of the film (h) as a func- 
tion of temperature, pressure, and surface curvature: 

{K-K)PL* + KVSLK-Lf?±j^ = ah-«  (79) 

where PTJI is the difference between the pressure in the 
film at the ice/water interface and the reference pres- 
sure. Using this model along with experimental results, 
Gilpin (1979) concluded that the value of a is approx- 
imately 2. 

Gilpin (1980) used an approach similar to Miller's 
in developing a model to predict frost heave in soils, 
although his model was simpler due to his initial approx- 
imations. His model includes the model of the pressure 
gradient in the water near a solid/liquid interface 
described above. This is similar to the use of osmotic 
pressure as described by Loch (1978). Gilpin's model 
is also based on the GCE: 

^-^SL*' 
LfAT (80) 

Assuming that Darcy's law is valid, Gilpin derived 
the relationship between driving potential tangential to 
soil particle surfaces and flow rate of water in the con- 
tinuous liquid phase. The equation that resulted is 

=-<»* 

L{AT 
(81) 

where Ps is the pressure of the ice phase. Thus (like the 
rigid ice model) the flow rate is governed by the ice 
pressure gradient, temperature gradient, and hydraulic 
conductivity in the frozen fringe. Gilpin assumed that 
the pore ice formed a continuous three-dimensional 
network, but that it remained stationary. To address the 
question of ice lens formation, he used relations among 
interface curvature, pressure, and temperature to estimate 
the ice pressure at which the force of contact between 
two particles will drop to zero. For most situations of 
interest, this ice pressure is equal to the overburden 
pressure, POB. Pms me pressure difference across the 
ice/water interface: 

-PsEP ~ ^OB +m (82) 

Figure 11. Gilpin's idealized model 
of the frozen fringe in a matrix of 
uniform spheres. (After Gilpin 
1980.) 

He estimated the hydraulic conductivity of the frozen 
fringe based on simplifying assumptions regarding the 
packing of uniform spheres (Gilpin 1980). Figure 11 is 
Gilpin's idealized model of a frozen fringe in a matrix 
of uniform spheres, showing a graph of the tempera- 
ture and pressure gradients. 

Gilpin (1980) developed numerical solutions to his 
mathematical model of frost heave for a 100-mm col- 
umn. The "soil" was a matrix of 2-um uniform spheres. 
A constant subfreezing temperature was imposed on 
the top surface, and a temperature slightly above freez- 
ing was imposed on the bottom surface. Gilpin's results 
are qualitatively and quantitatively similar to those 
reported in O'Neill and'Miller (1985). 

Summary of the thermodynamic 
formulations of frost heave 

Taber (1929) proved that frost heave was not caused 
by the volume expansion of water upon freezing, and 
introduced the idea that frost heave was dependent on 
freezing rate and occurred in a direction perpendicular 
to heat flow. Beskow (1935) contributed the important 
idea that frost heave is analogous to soil drying and 
that in fine-grained soils frost heave is sometimes lim- 
ited by water flow in the soils. He also noted that in- 
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creasing effective stress (by some combination of low- 
ering the water table and increasing the overburden 
pressure) reduces the rate of frost heave of a soil, all 
other things being equal (Beskow 1935). Beskow incor- 
rectly concluded that frost heave rate in saturated soils 
was independent of freezing rate, and his generalizations 
about frost heave were for a constant rate of freezing. 

Everett (1961) applied equilibrium concepts to 
explain frost heave. He considered the mechanical equi- 
librium between pore ice and pore water, thereby con- 
cluding that the maximum pressure difference in a heav- 
ing soil is determined by the smallest pore sizes. This 
was an important theoretical advancement; it provided 
a qualitative explanation for what is now known as pri- 
mary frost heaving. However, he did not consider tem- 
perature and chemical effects that can result in even 
smaller radii of curvature between ice and water in soil 
pores (leading to greater ice-water pressure differences). 

Miller et al. (I960), Miller et al. (1975), and Loch 
(1978) developed a more complete thermodynamic equi- 
librium of pore ice and water; thus, chemical and ther- 
mal equilibrium are included. The Generalized Clapey- 
ron Equation, based on the equilibrium of ice and water 
in soils is utilized by the thermodynamically based 
models of Miller (1978) and Gilpin (1980). 

Miller (1978) and Gilpin (1980) used the equilibri- 
um relationships as described by Loch (1978) and add- 
ed heat and mass transfer in the frozen fringe to model 
frost heave. Darcy's Law and Fourier's Law describe 
heat and mass transfer in the frozen fringe, respectively, 
and mass flow and heat flow are coupled by one equa- 
tion that describes heat transfer in the frozen soil. Ice 
lenses start to grow when the effective stress in the fro- 
zen fringe becomes zero (Miller 1978, Gilpin 1980). 
The rigid ice model assumes that ice is one continuous 
rigid body that grows by regelation (Miller 1978). 
Gilpin's model also assumes that the ice forms a con- 
tinuous three-dimensional network, but it remains sta- 
tionary in the frozen fringe. The main difference between 
the models is that Gilpin made a few reasonable sim- 
plifying assumptions that allowed the model to be pro- 
grammed rather easily. However, more recent work with 
the rigid ice model has made it relatively easy to use (e.g., 
Black 1995). Both models predict the same qualitative 
frost heave behavior, and are similar quantitatively. The 
rigid ice model is also the basis for the more recently 
developed numerical model used to predict frost heave 
in the field, known as PC heave (Sheng 1994). 

SUMMARY OF CURRENT UNDERSTANDING 
OF FROST HEAVE 

In the introduction of this report the idea that the 
frost heave of soils can be understood from the stand- 

point of thermodynamics was introduced. Thermodynam- 
ic fundamentals and thermodynamic equilibrium con- 
ditions are presented in the sections "Thermodynamic 
fundamentals" and "Thermodynamic equilibrium," 
respectively. In "Thermodynamic treatment of frost 
heave," the modeling of frost heave based on equilib- 
rium thermodynamics was briefly presented. In this sec- 
tion, a brief summary of the current understanding of 
frost heave, based on the work reviewed above, is pre- 
sented without reference to any equations. This is 
intended to help readers better understand frost heav- 
ing. It makes use of similarities between freezing and 
drying since most readers are more comfortable think- 
ing about the evaporation of water from soils than about 
frost heave. 

Drying is due to evaporation, or the conversion of 
water to vapor by the addition of heat, whereas freez- 
ing is the conversion of liquid to solid by the removal 
of heat. Conditions required for evaporation of water 
from soil include 1) a supply of heat, 2) a means of 
transporting the vapor away from the pores, and 3) a 
supply of water. Conditions required for frost heave 
include 1) a removal of heat, 2) a means of transport- 
ing the ice away from the pores (i.e., the ice lenses), 
and 3) a supply of water. (Note, however, that the effec- 
tive stress must become zero in order for an ice lens to 
initiate—this is discussed in detail later.) 

It may also be helpful to keep in mind the differences 
between the capillary fringe and the frozen fringe. The 
capillary fringe is the soil just above the water table 
where water rises up through capillary action. This layer 
ranges in thickness from zero to a meter or so, and it 
depends on the pore sizes of the materials. In a soil that 
frost heaves, recall that the frozen fringe is the soil just 
below the bottommost ice lens and above the unfrozen 
soil where water and ice coexist in soil pores. 

Consider evaporation from soils. If the water in the 
pores of the capillary fringe is in equilibrium with the 
water vapor across curved liquid/vapor interfaces there 
is no movement or phase change of water (i.e., no net 
evaporation). If water vapor is removed from the pores 
by convection, for example, liquid water will change 
phase to replace the vapor and water will flow up 
through the soil pores to replenish the liquid water. If 
the rate of water loss due to phase change is matched 
by the rate of water flow to replenish the liquid water, 
no change in the water distribution of the capillary fringe 
occurs. If the soil at the location of phase change cannot 
replenish the water for the given rate of heat addition, 
(e.g., due to low hydraulic conductivity), the capillary 
fringe will increase in depth and/or thickness. 

Frost heave occurs by a process very similar to soil 
freezing. In freezing soils, pore water is in equilibrium 
with ice across curved liquid/solid interfaces. However, 
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unlike the liquid/vapor interface in soil pore, the liquid/ 
ice interface is such that the ice can exert a positive pres- 
sure on the soil skeleton. When the pore pressures in a 
freezing soil reach the soil strength at that location (i.e., 
the effective stress becomes zero), an ice lens initiates. 
Once an ice lens is established, liquid water is removed 
from the pores because of the phase change and water 
flows up through the soil to replenish the liquid water. 
The water flows through unfrozen soil and through the 
frozen fringe to reach the ice lens. If the rate of water 
loss due to phase change is matched by the rate of water 
flow to replenish the liquid water, no change in the water 
distribution of the frozen fringe occurs and the ice lens 
will continue to grow in thickness. If the hydraulic con- 
ductivity of the soil limits the rate of water replenishment 
to the ice lens for the given rate of heat loss, soil water will 
freeze at increasing depths with associated changes in the 
depth and thickness of the frozen fringe. In addition, if 
there is a location in the frozen fringe at which the effec- 
tive stress reaches zero, a new ice lens will begin to devel- 
op. The new ice lens will grow at a faster rate than the one 
above it because the hydraulic conductivity of soil imme- 
diately below is greater, although the ice lenses above the 
new one may continue to grow. 

The frozen fringe thickness depends on the tempera- 
ture gradient, overburden pressure, and the specific soil. 
High overburden pressure and low temperature gradi- 
ents increase the thickness of the frozen fringe. The ice 
is a continuous body from the frozen fringe up through 
the ice lens, and it moves by regelation, or continuous 
ice-water phase change, accompanied by locally circu- 
lating liquid flow. 
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