FINAL

CORRECTIVE ACTION PLAN FOR THE RISK-BASED CLOSURE OF THE BASE EXCHANGE SERVICE STATION, AREA OF CONCERN - A (ST-06) KEESLER AIR FORCE BASE, MISSISSIPPI

AETC Contract No. F41689-96-D-0710 Order No. 5015

Prepared for AIR FORCE CENTER FOR ENVIRONMENTAL EXCELLENCE TECHNOLOGY TRANSFER DIVISION BROOKS AIR FORCE BASE, TEXAS

and

81 CES/CEVR KEESLER AIR FORCE BASE, MISSISSIPPI

April 1999

DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited

Prepared by

PARSONS ENGINEERING SCIENCE, INC. 1700 Broadway, Suite 900 Denver, Colorado 80290 and 5390 Triangle Parkway, Suite 100 Norcross, Georgia 30092

I:\KEE-AOCA\REPORT\FINTEXT.DOC

DTIC QUALITY INSPECTED 4

20000818 031

TABLE OF CONTENTS

Page

SECTION 1	INTRODUCTION	. 1-1
	1.1 Description Of The Risk-Based Approach	. 1-1
	1.2 Risk-Based Approach Tasks	. 1-1
	1.3 Regulatory Requirements	. 1-2
	1.4 Report Organization	. 1-3
	1.5 Site Description and Background	
SECTION 2	SITE CHARACTERIZATION ACTIVITIES	
	2.1 Scope Of Data Collection Activities	. 2-1
	2.2 Subsurface Soil Sampling	. 2-2
	2.3 Monitoring Well Installation and Development	. 2-3
	2.4 Groundwater Sampling	. 2-3
	2.5 Soil Gas Measurements	. 2-4
	2.6 Aquifer Testing	.2-4
	2.7 Equipment Decontamination Procedures	.2-5
	2.8 Investigation-Derived Wastes (IDW)	. 2-5
	2.9 Analytical Data Quality Assessment	. 2-5
	2.9.1 Introduction	. 2-5
	2.9.2 Data Quality	. 2-6
	2.9.2.1 Matrix Spike	. 2-6
	2.9.2.2 Database Laboratory Flag Review	. 2-6
	2.9.3 Conclusions	. 2-6
SECTION 3	PHYSICAL CHARACTERISTICS OF THE STUDY AREA	3-1
	3.1 Site Topography and Surface Water Hydrology	. 3-1
	3.2 Regional Geology and Hydrogeology	. 3-1
	3.3 Site Geology and Hydrogeology	
	3.4 Climatological Characteristics	
SECTION 4	TIER 1 ANALYSIS AND IDENTIFICATION OF CHEMICALS OF	
	POTENTIAL CONCERN	4-1
	4.1 Regulatory Review of the Tier 1 Screening Process	. 4-1
	4.2 Contaminant Source Assessment	. 4-1
	4.3 Land Use	
	4.4 Exposure Pathways and Potential Receptors	4-1
	4.5 Tier 1 Screening Analysis	4-2
	4.5.1 Tier 1 Screening Analysis for Soil	4-2
	4.3.2 Tier 1 Screening Analysis for Groundwater	
	4.3.3 Tier 1 Screening Analysis for Soil Gas	4-3
	4.3.4 Summary of Site COPCs	
	-	

٠

TABLE OF CONTENTS (CONTINUED)

•

SECTION 5	ANALYTICAL DATA SUMMARY AND MAGNITUDE AND
	EXTENT OF CHEMICALS OF POTENTIAL CONCERN
	5.1Overview5-15.2Soil Sampling Results5-1
	5.2 Son Sampling Results 5-1 5.3 Groundwater Sampling Results 5-1
	5.5 Groundwater Sampling Results
	5.4 Son Gas Sampling Results
SECTION 6	TIER 2 ANALYSIS AND IDENTIFICATION OF FINAL
	CHEMICALS OF CONCERN
	6.1 Objective Of Site-Specific Evaluation
	6.2 Tier II Analysis
	6.3 Summary
SECTION 7	CHEMICAL FATE ASSESSMENT
	7.1 Introduction
	7.2 Operative Mechanisms of Contaminant Attenuation
	7.3 Evidence of Contaminant Biodegradation Over Time
	7.3.1 BTEX Concentration Trends in Soil
	7.3.2 BTEX Concentration Trends in Groundwater
	7.4 Evidence of Contaminant Biodegradation Via Microbially
	Mediated Redox Reactions
	7.4.1 Relevance of Redox Couples in Biodegradation
	7.4.2 Dissolved Oxygen
	7.4.3 Nitrate
	7.4.4 Ammonia
	7.4.5 Manganese
	7.4.6 Ferrous Iron
	7.4.7 Sulfate
	7.4.8 Dissolved Methane
	7.4.9 pH
	7.4.10 Temperature
	7.5 Theoretical Assimilative Capacity Estimates
	7.6 Fate and Transport of BTEX
	7.6.1 Migration of BTEX Without Biodegradation
	7.6.1.1 Seepage Velocity (V _s)
	7.6.1.2 Retardation Coefficient (R)
	7.6.1.3 BTEX Migration
	7.7 Conclusions

TABLE OF CONTENTS (CONTINUED)

SECTION 8	LONG-TERM MONITORING PLAN	8-1		
	8.1 Overview			
	8.2 Performance Monitoring	8-1		
	8.2.1 Performance Monitoring Wells			
	8.2.2 Sampling Duration and Frequency			
	8.2.3 Analytical Protocol			
	8.3 Institutional Controls			
	8.4 Long-Term Managed Care	8-2		
SECTION 9	REFERENCES	9-1		
APPENDIX A	LABORATORY ANALYTICAL DATA SHEETS AND CHAIN-OF- CUSTODY RECORDS FROM FEBRUARY 1998 SAMPLING EVENT			
APPENDIX B	PERTINENT DATA FROM PREVIOUS SITE INVESTIGATIONS			
APPENDIX C	FIELD FORMS FROM FEBRUARY 1998- FIELD EFFORT			
APPENDIX D	AQUIFER SLUG TEST INPUT AND OUTPUT			
APPENDIX E	USEPA IEUBK MODEL INPUT AND OUTPUT			

LIST OF TABLES

No.	Title
1.1	Typical Cleanup Levels for USTs
2.1	Analytical Protocol for Groundwater, Soil, and Soil Gas Samples
2.2	Sample Analyses by Location
2.3	Soil Boring and Monitoring Well Installation Summary
3.1	Summary of Monitoring Well Gauging Data
4.1	Comparison of Maximum Site Soil Concentrations to Target Cleanup Levels
4.2	Comparison of Maximum Site Groundwater Concentrations to Target Cleanup Levels
4.3	Comparison of Maximum Site Soil Gas Concentrations to OSHA Permissible Exposure Limits
5.1	Summary of Soil Analytical Data
5.2	Summary of Groundwater Analytical Data
5.3	Historical Summary of Total Lead Concentrations in Groundwater
5.4	Summary of Soil Gas Analytical Data
7.1	Historical Comparison of Soil Analytical Data
7.2	Historical Summary of BTEX Concentrations in Groundwater
7.3	Coupled Oxidation Reactions for BTEX Compounds
7.4	Summary of Groundwater Geochemical Data
7.5	Estimated Assimilative Capacity of Saturated Soil and Groundwater
7.6	Retardation Coefficient Calculation

8.1 Long-Term Groundwater Monitoring Analytical Protocol

LIST OF FIGURES

Title

• '

	Regional Map
1.2	Location of BX Service Station
1.3	Site Layout
2.1	Sampling Location Map
3.1	Shallow Zone Groundwater Elevations; February 18, 1998
5.1	Distribution of Total Lead and BTEX in Groundwater; February 1998
7.1	Historical Comparison of Soil Analytical Data
7.2	Sequence of Microbially Mediated Redox Processes

•

No.

SECTION 1 INTRODUCTION

Parsons Engineering Science, Inc. (Parsons ES) was retained by the Air Force Center for Environmental Excellence, Technology Transfer Division (AFCEE/ERT) under Air Education and Training Command (AETC) Contract No. F41689-96-D-0710, Order No. 5015 to prepare a corrective action plan (CAP) to support a risk-based remediation decision for contaminated soil and groundwater at the Base Exchange (BX) Service Station at Keesler Air Force Base (AFB) in Mississippi, United States Environmental Protection Agency (USEPA) ID# MS2 570 024 164. The BX Service Station also is known as Area of Concern - A (AOC-A) and Site ST-06.

1.1 DESCRIPTION OF THE RISK-BASED APPROACH

The objective of risk-based remediation is to reduce the risk of specific chemicals to human health and/or ecological receptors such as animals or plant life. For any chemical to pose a risk, four elements must exist at the site:

- A source of chemical contamination that exceeds or could generate chemical contamination above health-protective or aesthetic standards;
- A mechanism of contaminant release;
- A human or ecological receptor available for chemical contact; and
- A completed pathway through which that receptor will contact the chemical.

If any one of these four elements is absent at a site, there is no current risk. The reduction or elimination of risk can be accomplished by limiting or removing any one of these four elements from the site.

The goal of this risk-based remediation approach is to find the most cost-effective method of reducing present and future risk by combining three risk reduction techniques:

- Chemical Source Reduction Achieved by natural attenuation processes over time or by engineered removals such as free product recovery, soil vapor extraction (SVE), or *in situ* bioventing.
- Chemical Migration Control Examples include natural attenuation of a groundwater plume, and SVE to prevent migration of hazardous vapors to a receptor exposure point.
- Receptor Restriction Land use controls and site fencing to eliminate chemical exposure until natural attenuation and/or engineered remediation reduce the chemical source and/or eliminate the potential for chemical migration to an exposure point.

1.2 RISK-BASED APPROACH TASKS

The major tasks of this risk-based project are:

- Assessing available data and collecting any supplemental site characterization data necessary to define the nature, magnitude, and extent of soil and groundwater contamination and to document to what degree natural attenuation processes are operating at the selected sites;
- Determining whether an unacceptable risk to human health or the environment currently exists or may exist in the foreseeable future using applicable Mississippi Department of Environmental Quality (MDEQ) guidance and regulations, quantitative contaminant fate and transport models, and exposure concentration estimates;
- Evaluating and recommending a remedial alternative that both reduces the source of contamination and minimizes or eliminates risks to potential receptors; and
- Documenting the remedial action selection process in a report that satisfies MDEQ and USEPA Region IV requirements.

1.3 REGULATORY REQUIREMENTS

The USEPA Region IV is currently the lead agency regulating environmental investigation and remediation of the BX Service Station, AOC-A (ST-06). For petroleum-related sites, the USEPA Region IV uses MDEQ underground storage tank (UST)-related guidance and regulatory criteria. Typical cleanup levels mandated by the UST Division of the MDEQ, Office of Pollution Control (OPC) are listed in Table 1.1.

The USTs removed at the BX Service Station were used to store automotive gasoline. Therefore, cleanup levels of 100 ppm BTEX for soil and 18 ppm BTEX for groundwater apply to this site.

Other cleanup levels may be considered using a tiered approach with risk-based analysis and screening of chemicals of potential concern (COPCs). Two options of this approach are:

- Tier 1: Using generic, risk-based screening levels (RBSLs) calculated by the MDEQ and available on "look-up" tables (MDEQ, 1996); or
- Tier 2: Based on the completion of a limited risk assessment, using site-specific human health risks to develop site-specific cleanup levels in accordance with American Society for Testing and Materials (ASTM) Guidance 1739 for Risk-Based Corrective Action Applied At Petroleum Release Sites (ASTM, 1995).

A tiered approach would employ the Tier 1 screening criteria to determine if current site conditions warrant further evaluation of potential human health risks through a Tier 2 assessment. If the screening process (Tier 1) or limited risk assessment (Tier 2) indicates that no contamination is present above the selected site action levels, then no type of remediation is warranted and the site can proceed to closure.

1.4 REPORT ORGANIZATION

This CAP consists of eight sections, including this introduction, and six appendices. Site background, including operating history and a review of environmental site investigations conducted to date, is provided in the remainder of this section. Section 2 summarizes the 1998 site characterization activities performed by Parsons ES. Physical characteristics of the BX Service Station and surrounding environs are described in Section 3. A Tier 1 evaluation is completed in Section 4 to identify those site contaminants that are considered chemicals of potential concern (COPCs). Section 5 summarizes the nature and extent of COPC contamination at the site. The Tier 2 evaluation is detailed in Section 6. Section 7 addresses the effects of natural chemical attenuation processes that are documented to be occurring at the site, and presents quantitative chemical fate and transport and receptor exposure analyses and conclusions. Section 8 presents a long-term monitoring plan (LTM). Section 9 presents references used in preparing this CAP.

Analytical data sheets and chain-of-custody records are in Appendix A. Pertinent information from prior investigations is presented in Appendix B. Boring logs, groundwater sampling forms, and well construction diagrams for all sampling activities completed by Parsons ES during the February 1998 field effort are included in Appendix C. Appendix D includes the input and output from the aquifer slug test analysis. Appendix E includes the input and output from the IEUBK lead model.

1.5 SITE DESCRIPTION AND BACKGROUND

Keesler AFB is located within the city limits of Biloxi, Harrison County, Mississippi, approximately 80 miles east of New Orleans, Louisiana, and 60 miles west of Mobile, Alabama. It is bordered on the north by the Back Bay of Biloxi (Back Bay) and on the west, south, and east by residential and commercial areas of the city. The Mississippi Sound is located approximately 0.5 mile south of the Base (Figure 1.1). The Base comprises 1,494 acres of federally owned land and 117 acres of leased, permit, and easement lands.

The BX Service Station is located at Larcher Boulevard and Meadows Drive (Figures 1.2 and 1.3). The station is currently active and includes service bays and pump islands. USTs containing gasoline and diesel fuel are located at the western portion of the site. These tanks currently meet federally mandated upgrade requirements for UST systems and have not leaked. In 1987, Environmental Science & Engineering (ESE) removed 10 USTs used to store automotive gasoline. Six of the tanks were located along the eastern side of Building 1504, and four were located just south of the building. Physical evidence, such as stained soils and high organic vapor readings, observed during the excavation showed that one or more of the tanks had leaked in the past [Engineering-Science, Inc. (ES) (now Parsons ES), 1994]. Previous investigation activities have included:

Resource Conservation and Recovery Act (RCRA) Facility Assessment (RFA): In September 1987, an RFA report for Keesler AFB was prepared (A.T. Kearney, Inc. *et al.*, 1987). This report identified all Solid Waste Management Units (SWMUs) at the Base, as well as other AOCs. Related information from a file review and a visual site inspection were used to assess the potential for contamination and to determine what further measures, if any, should be taken to safeguard human health and the environment. The BX Service Station was determined to be an AOC.

Site Characterization under the Installation Restoration Program (IRP): A field effort for a site characterization of Keesler AFB was initiated by ESE under the IRP in November 1987 (ESE, 1991), and the results are reported in the final site characterization report dated January 1991. This effort was performed in three sampling events in November and December 1987, April 1988, and October and November 1989. During the 1987 removal of 10 USTs at the BX Service Station, 16 soil samples were collected and analyzed for TPH and inorganic extraction procedure (EP) toxicity. Analysis of soil gas samples collected in the excavation area indicated a hydrocarbon anomaly adjacent to the east-northeast side of the service station. Based on this information, five monitoring wells (MW8-1 through 8-5) were installed at the site to evaluate potential groundwater contamination (Figure 1.3). Groundwater samples were collected from these wells in 1988 and 1989. The BX Service Station was identified as Site 8 in the ESE (1991) report.

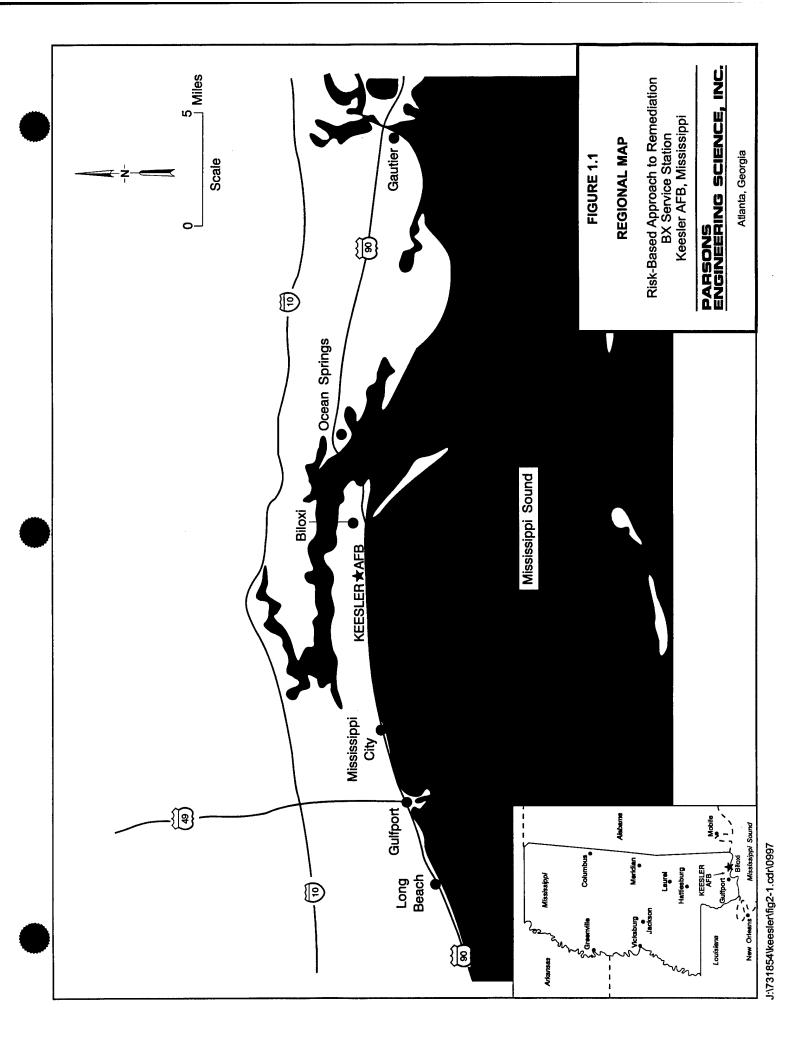
RCRA Facility Investigation (RFI): ES performed an RFI in 1992 to assess the horizontal and vertical extent of contamination in soil and groundwater (ES, 1994; Parsons ES, 1998). Soil contamination at AOC-A was defined through installation of 13 soil borings and associated soil sampling. Eight additional monitoring wells (MWA-6 through A-13) were installed at the site to monitor for possible free floating product on the groundwater surface, and to determine the lateral extent of the dissolved hydrocarbon contamination (Figure 1.3). The site was further characterized by performing a soil organic vapor survey in which BTEX, carbon dioxide (CO_2), and oxygen (O_2) concentrations were determined for each soil gas sample.

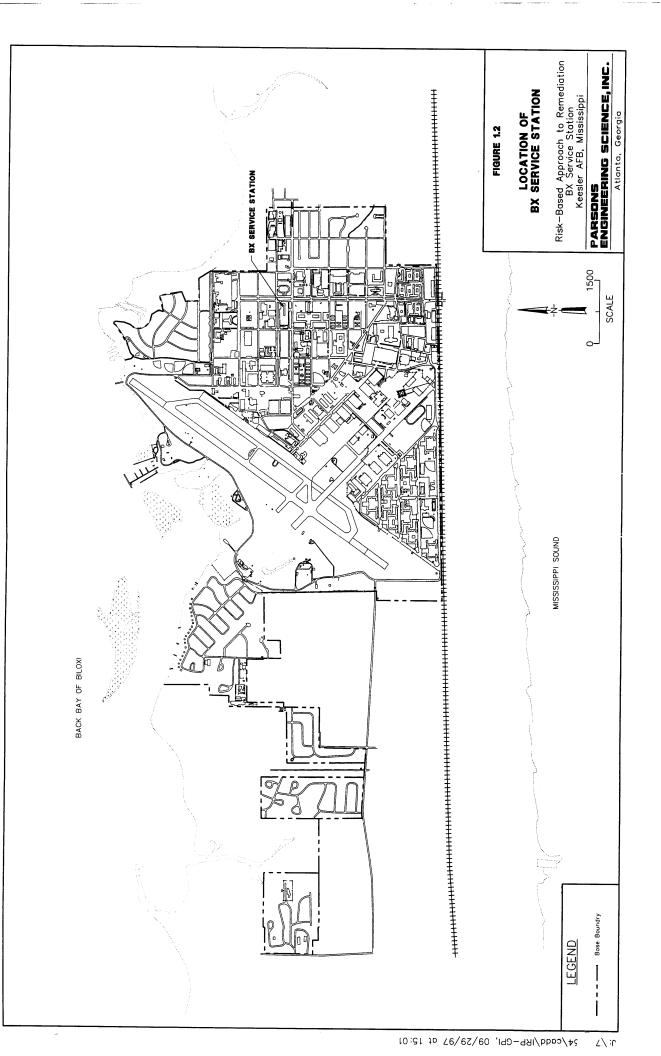
Well Assessment Report: A Well Assessment Report was produced by BCM Environmental Inc. (BCM) in September 1996. This report summarizes the location, construction, and condition of the 13 monitoring wells at AOC-A. Five of the monitoring wells were reported to be in fair condition. The remaining eight wells were in good condition (BCM, 1996).

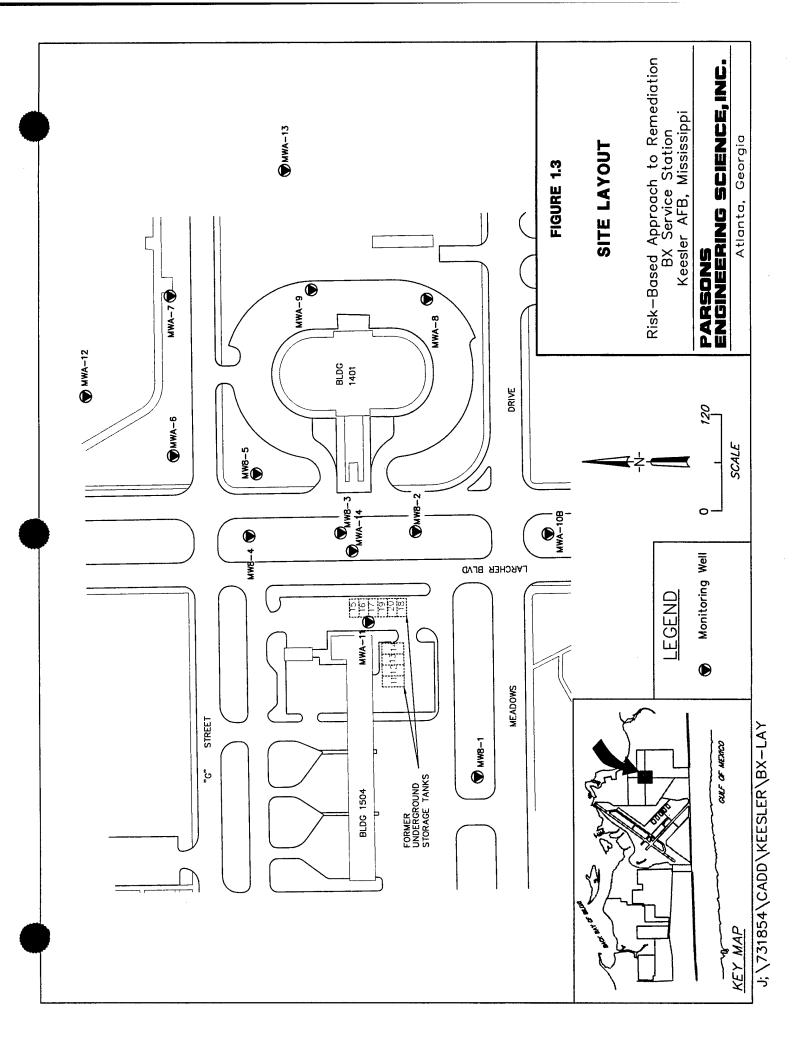
Previous and current interim remedial actions include:

Bioventing: In April 1993, initial testing was conducted for a bioventing system, and six shallow vent wells (three extraction wells and three injection wells) were installed in the vicinity of the former USTs by Battelle-Columbus, Inc. (Battelle). The bioventing system was initiated on May 21, 1993. Confirmatory soil and soil gas samples were collected after one year of operation. Average TPH concentrations in vadose zone soils were reduced by 78 percent and average TPH concentrations in soil gas were reduced by 89 percent as compared to initial concentrations (Battelle, 1995).

Density-Driven Convection (DDC) In-Well Aeration System: Wasatch Environmental, Inc. (WEI) performed a large-scale test of a DDC in-well aeration system at AOC-A. The system, which includes 32 DDC wells, 6 soil vapor extraction wells, and three blowers, began operating on May 9, 1996. The primary objective of the DDC system was to reduce saturated zone soil contamination because the previous bioventing system had already reduced vadose zone soil concentrations. A draft final report was submitted to USEPA and MDEQ on November 21, 1997 (WEI, 1997). Results of


preliminary confirmatory soil sampling indicate a significant decrease in soil total petroleum hydrocarbons (TPH) in the 7-10 feet below ground surface (bgs) interval. WEI soil data is discussed further in Section 7.3.1.


TABLE 1.1 TYPICAL CLEANUP LEVELS FOR USTS BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi


Type of Petroleum Storage Tank Removed	Media	Typical Cleanup Levels (ppm) ^{a/}
Gasoline	Soil Water	100 ppm BTEX ^{5/} 18 ppm BTEX
Diesel and/or Waste Oil	Soil Water	100 ppm TPH ^{c/} 18 ppm TPH

Notes:

Source:	MDEQ, 1993
a/	ppm = Parts per million
b/	BTEX = Benzene, toluene, ethylbenzene, and total xylenes
c/	TPH = Total petroleum hydrocarbons

SECTION 2 SITE CHARACTERIZATION ACTIVITIES

Since 1987, several soil and groundwater investigations have been conducted at the BX Service Station. These investigations focused on characterizing and delineating dissolved hydrocarbons in groundwater and residual fuel hydrocarbons in soils. Parsons ES conducted an investigation at the site during February 1998 to collect site-specific data relevant to quantifying the effects of natural contaminant attenuation processes and to facilitate development and implementation of a risk-based remedial action for the BX Service Station. Soil gas, soil, and groundwater were sampled to:

- Further delineate the extent of contamination;
- Assess temporal trends in soil and groundwater contaminant concentrations;
- · Support contaminant fate and transport analyses; and
- Develop appropriate exposure-point concentrations to compare to final remediation goals.

To the extent practicable, data collected during previous investigations were used to augment this study. Emphasis was placed on collecting data documenting the natural biodegradation and attenuation of fuel hydrocarbons in soils and groundwater at the site.

The February 1998 supplemental site characterization activities performed by Parsons ES at the BX Service Station are briefly described in the remainder of this section. Most site characterization procedures (i.e., soil, soil gas, and groundwater sampling procedures) are described in detail in the project Sampling and Analysis Plan (SAP) (Parsons ES, 1997a).

2.1 SCOPE OF DATA COLLECTION ACTIVITIES

As part of the risk-based remedial approach for the BX Service Station, field data collection efforts focused on investigating specific chemical constituents that potentially pose a threat to human health or the environment. The chemicals targeted for study at this site were identified from previous site investigations and the chemical composition of the primary contaminant source (i.e., release(s) of gasoline from the former USTs). The petroleum hydrocarbon and associated constituents identified and addressed as part of this study include BTEX; polynuclear aromatic hydrocarbons (PAHs); and lead. These analytes were targeted based on previous site assessment results.

The risk-based investigation for the BX Service Station was conducted according to the methodologies presented in the *Final Work Plan for the Risk-Based Investigation and Closure of the Base Exchange Service Station, Area of Concern - A(ST-06) (Parsons ES, 1997b), hereafter referred to as the work plan. The work plan was developed according to available guidelines and requirements of the MDEQ to support site closure.*

The following sampling and testing activities were performed by Parsons ES during February 1998 at the site as part of this investigation:

- Drilled seven soil borings;
- Collected 11 subsurface soil samples for fixed-base laboratory analysis from the seven boreholes;
- Installed two small-diameter groundwater monitoring wells;
- Collected groundwater samples from eight existing groundwater monitoring wells and the two newly installed wells;
- Collected three soil gas samples for laboratory analysis from three locations; and
- Performed aquifer (slug) tests in three monitoring wells to obtain aquifer hydraulic conductivity estimates.

Analytical method detection limit (MDL) requirements were considered before site characterization work was initiated under the risk-based remediation investigation. Suitable analytical methods and quality control (QC) procedures were selected (Parsons ES, 1997a) to ensure that the data collected under this program are of sufficient quality to be used in a quantitative risk assessment.

Soil and groundwater samples were analyzed in the field and by Quanterra, Inc. of Arvada, Colorado and Dallas, Texas. Soil gas samples were analyzed in the field and by Air Toxics, Ltd. of Folsom, California. The laboratory data sheets and chain-of-custody records are presented in Appendix A. The analytical protocol for all samples is summarized in Table 2.1. Table 2.2 summarizes the field and fixed-base laboratory analyses performed by sampling location. These analyses and measurements were performed for various inorganic, geochemical, and physical parameters to document natural biodegradation processes and to assess the potential effectiveness of low-cost source reduction technologies.

2.2 SUBSURFACE SOIL SAMPLING

Soil samples were collected from seven soil boreholes (SBA-14 through SBA-20) to obtain soil total organic carbon (TOC) data and to further characterize soil contamination at the site at locations where previous investigations indicated relatively high soil contaminant concentrations (Appendix B). Soils were sampled to facilitate evaluation of the potential for contaminant partitioning from soil into groundwater and soil gas, and to assess the magnitude of any changes in contaminant concentrations that have occurred over time. The soil boring locations are presented on Figure 2.1. These borings were advanced using a Geoprobe[®] hydraulic sampling rig as described in the SAP (Parsons ES, 1997a).

Soil samples for laboratory or field analysis were collected at regular intervals from all boreholes, both above and below the groundwater surface. A total of 11 soil samples and one duplicate sample from the seven boreholes were submitted to Quanterra Inc for laboratory analysis. Samples from all seven boreholes were described for lithology and field screened for volatile organic vapors using a organic vapor meter (OVM). Soil borehole information is summarized in Table 2.3, and borehole logs and completion diagrams for the newly-installed wells are included in Appendix C. Soil analytical results are summarized and discussed in Sections 4 and 5.

2.3 MONITORING WELL INSTALLATION AND DEVELOPMENT

Two monitoring wells (MWA-10B and MWA-14) were installed during the field effort. MWA-10B was installed to replace destroyed monitoring well MWA-10, and MWA-14 was installed to assess the vertical extent of dissolved hydrocarbon concentrations. Table 2.3 summarizes the monitoring well completions, and Figure 2.1 presents the well locations.

The monitoring wells were constructed of Schedule 80 PVC screen having an internal diameter (ID) of 0.5 inch. All well casing and screen sections were flush-threaded; glued joints were not used. The lengths of the screened intervals for the shallow monitoring well screen (MWA-10B) and the deep monitoring well screen (MWA-14) were 6 feet and 3 feet, respectively. The field geologist recorded the borehole depth, the lengths of all casing sections, and the depth to the top of all monitoring well completion materials placed in the annulus between the casing and borehole wall.

A prepacked screen was utilized for both wells. The prepacked screens are in 3-foot sections with an outside diameter (OD) of 1.5 inches and an ID of 0.5 inch. The inner component of the prepacked screen consists of 0.5-inch Schedule 80 PVC with 0.01 inch slots. The outer component of the screen is stainless steel wire mesh with a pore size of 0.011 inch. The screens are prepacked with 20/40 grade silica sand. A filter pack seal of hydrated sodium bentonite was placed above the prepacked screen.

Prior to sampling, monitoring wells were developed. Typically, development removes sediment from inside the well casing and flushes fines, cuttings, and drilling fluids from the sand pack and the portion of the formation adjacent to the well screen. Use of the Geoprobe[®] system to place monitoring wells eliminates cuttings and drilling fluids. As a result, development of monitoring wells was primarily intended to minimize the amount of fine sediment that might accumulate in the casing.

Monitoring well development was accomplished using a peristaltic pump with dedicated silicon and HDPE tubing. The pump tubing was lowered to the bottom of the wells so that fines were agitated and removed from the well in the development water. Development was continued until ten casing volumes of water were removed from the well and the groundwater pH, temperature, conductivity, and dissolved oxygen (DO) concentrations had stabilized.

2.4 GROUNDWATER SAMPLING

Groundwater samples were collected from the two newly installed monitoring wells and eight existing monitoring wells at the site in February 1998. The groundwater sampling locations are shown on Figure 2.1. Samples collected from the 10 wells were analyzed for fuel-related contaminants and for various inorganic and geochemical indicators to evaluate natural chemical and physical attenuation processes that are occurring at the site. Field and laboratory analytical data collected at each groundwater sampling location are summarized in Table 2.2. All monitoring wells were purged and sampled using a peristaltic pump with dedicated HDPE and silicon tubing. Purging consisted of removing groundwater from the well until the pH, DO concentration, oxidation-reduction potential (ORP), conductivity, and temperature stabilized.

Within 24 hours of the purge event, groundwater samples were collected from the monitoring wells. The samples were transferred directly from the peristaltic pump discharge tubing into the appropriate sample containers. The water was carefully poured down the inner walls of the sample bottle to minimize aeration of the sample. Sample bottles for BTEX, methane, and/or Hach[®] field analyses were filled so that there was no headspace or air bubbles within the container. One duplicate sample, one trip blank, and one ambient condition water blank were collected during the groundwater sampling event.

Field and laboratory groundwater analytical results are discussed in Sections 4 and 5 of this report. These analytical results are used in Section 7 to evaluate the natural physical, chemical, and biological processes that are affecting the chemicals of concern (COCs) at this site.

2.5 SOIL GAS MEASUREMENTS

Soil gas sampling was performed at the site using both field (semi-quantitative) and fixed-base laboratory (quantitative) analyses. The purpose of soil gas sampling was to assess the potential risk to future workers at the site from inhalation of volatilized contaminants, and to determine whether or not sufficient O_2 is available in the soil gas to sustain aerobic fuel hydrocarbon biodegradation. If O_2 concentrations are significantly lower than background values, and CO_2 concentrations are higher than background levels, then the occurrence of aerobic fuel hydrocarbon biodegradation can be inferred. In addition, the O_2 levels allow an assessment of whether there is sufficient O_2 to sustain continuing aerobic biodegradation without engineered addition of oxygen via *in situ* bioventing.

Soil gas samples were collected at the three locations (SG-1 through SG-3) shown on Figure 2.1. All soil gas samples were screened using field instruments to measure O_2 and CO_2 , collected in SUMMA® canisters, and submitted to Air Toxics, Ltd. in Folsom, California for analysis of total petroleum hydrocarbons (TPH) and BTEX using USEPA Method TO-3. All samples were field screened using the test equipment and methods specified in the SAP (Parsons ES, 1997a). Analytical results for soil gas samples are summarized in Sections 4 and 5.

2.6 AQUIFER TESTING

Slug tests are single-well tests used to determine the hydraulic conductivity of an aquifer in the immediate vicinity of the tested well. Slug tests can be used for confined and unconfined aquifers that have a transmissivity of less than 7,000 square feet per day (ft²/day). Slug testing can be performed using either a rising-head or a falling-head test. Both rising-head and falling-head tests were used at this site. Hydraulic characteristics of the surficial aquifer were estimated by performing slug tests in site monitoring wells MW8-3, MWA-9, and MWA-11 which are located along the plume flow path. These slug tests were performed in accordance with the *Technical Protocol for Implementing*

Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater (Wiedemeier, et al. 1995). Data obtained during slug testing were analyzed using AQTESOLV® software and the methods of Bouwer and Rice (1976) and Bouwer (1989) for unconfined conditions. The results of slug testing are presented in Section 3.3 and Appendix D.

2.7 EQUIPMENT DECONTAMINATION PROCEDURES

All downhole soil sampling tools (e.g., stainless steel Geoprobe pipe) were cleaned prior to collection of each sample with a clean water/phosphate-free detergent mix followed by a clean water rinse. Decontaminated tools also were used for installation of the two monitoring wells and soil gas sampling.

New, disposable high-density polyethylene (HDPE) and silicone tubing was used to collect the groundwater sample from each well. The only other groundwater sampling equipment requiring decontamination was the water level indicator probe. The probe was decontaminated prior to each use with a clean water/phosphate-free detergent mix-followed by a distilled water rinse.

2.8 INVESTIGATION-DERIVED WASTES (IDW)

Soil cuttings and unused soil samples were stockpiled on plastic at the golf course maintenance center's limited access compost pile. Decontamination and purge water was placed into 55-gallon, US Department of Transportation (DOT)-approved drums and discharged into an oil/water separator.

2.9 ANALYTICAL DATA QUALITY ASSESSMENT

2.9.1 Introduction

A Parsons ES electronic Level III validation was performed on the February 1998 analytical results obtained from the fixed-base laboratories. The validation included internal data checks and application of data qualifiers to the analytical results based on adherence to method protocols and project-specific control limits. Method protocols reviewed included:

- Analytical holding times,
- Method blanks,
- Trip blanks,
- Surrogate spikes,
- Matrix spikes/matrix spike duplicates (MS/MSDs),
- Laboratory control samples (LCSs), and
- Sample temperatures during shipping and storage.

Data qualifiers were applied to analytical results during the data validation process. All data were validated using method applicable guidelines and in accordance with the National Functional Guidelines for Organic Data Review (USEPA 1994a) and the National Functional Guidelines for Inorganic Data Review (USEPA 1994b). The following definitions provide explanations of the USEPA (1994a and 1994b) qualifiers assigned to analytical results during data validation. The data qualifiers described were applied to both inorganic and organic results.

- U The analyte was not present above the reported sample quantitation limit (SQL).
- J The analyte was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environmental sample. The data should be considered acceptable as a basis for decisionmaking and are usable for many purposes.
- UJ The analyte was not present above the reported SQL. The associated numerical value may not accurately or precisely represent the concentration necessary to detect the analyte in the sample.
- J1 The analyte is qualified as an estimated value solely because it is greater than the MDL and less than the SQL, indicating no laboratory quality issues.

2.9.2 Data Quality

Data quality for each QC parameter where exceptions were noted during the validation is summarized in this section. Only results that exceeded QA/QC criteria are presented. All frequency requirements for field sample collection of QA/QC samples (MS/MSDs and blanks) were met. The frequency requirements for laboratory specific method criteria QA/QC were met overall.

2.9.2.1 Matrix Spike

MS/MSD validation flags were applied only to the parent sample for a noncompliant MS/MSD. Sample results were not qualified on a total analytical batch basis. Soil sample SBA-19 (8.5-10) for lead was qualified as estimated for exceeding matrix spike limits and is believed to be related to matrix interference. Overall MS/MSD accuracy and precision is acceptable.

2.9.2.2 Database Laboratory Flag Review

Qualifiers were applied by the laboratory to sample results in the database for failure to meet method criteria. Three soil and four water samples for lead exceeding postdigestion spike criteria. Post-digestion spikes demonstrate matrix-related effects on sample data with respect to accuracy. All results were qualified as estimated concentrations.

2.9.3 Conclusions

Samples were collected and analyzed as specified in the methods with exception of those issues discussed in this report. All samples are representative of the site and comparable with previous and future investigations (when used in accordance with the validation qualifiers).

All sample results qualified as "U, UJ, J, or J1" and used in accordance with data validation qualifiers applied are usable for the purposes intended. Results qualified as such represent an association to non-compliant QC criteria which has caused the reported

concentration to be estimated. Project objectives do not exclude the use of estimated concentrations and therefore the usability of that data point for project purposes.

In summary, accuracy and precision were in control and are considered acceptable with the exception of lead. All method specific criteria were in control.

TABLE 2.1 ANALYTICAL PROTOCOL FOR GROUNDWATER, SOIL, AND SOIL GAS SAMPLES BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

		WHERE
MATRIX	METHOD	ANALYZED
GROUNDWATER		
Ferrous Iron (Fe ⁺²)	Colorimetric, Hach Method 8146	Field
Alkalinity as Calcium Carbonate (CaCO ₃)	Titrimetric, Hach Method 8221	Field
Ammonia as Nitrogen (NH ₃ -N)	CHEMetrics Method 1510, ASTM 4500: NH ₃	Field
Manganese (Mn ⁺²)	Colorimetric, Hach Method 8034	Field
Sulfate (SO_4^{-2})	Colorimetric, Hach Method 8051	Field
Total Sulfide	Colorimetric, Hach Method 8131	Field
Conductivity	Direct reading meter	Field
Oxygen	Direct reading meter	Field
рН	Direct reading meter	Field
Redox Potential	Direct reading meter	Field
Temperature	Direct reading meter	Field
BTEX	SW8020	QUANTERRA
Methane (CH ₄)	RSK-175	QUANTERRA
Nitrate as Nitrogen (NO ₃ ⁻¹ -N)	E300.0	QUANTERRA
Lead	SW7421	QUANTERRA
SOIL		
BTEX	SW8020A	QUANTERRA
Naphthalene	SW8310	QUANTERRA
Lead	SW7421	QUANTERRA
Total Organic Carbon	SW9060	QUANTERRA
SOIL GAS		
BTEX & Aromatic Hydrocarbons	TO-3	Air Toxics ^{b/}
ТРН	TO-3	Air Toxics
Oxygen	Direct reading meter	Field
Carbon Dioxide	Direct reading meter	Field

Notes:

a/ Quanterra, Inc. of Arvada, Colorado.

b/ Air Toxics LTD. of Folsom, California

TABLE 2.2 SAMPLE ANALYSES BY LOCATION BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

		Sample				Ana	Analytes and Analysis	ysis			
Sampling	Sample	Depth	BTEX	Naphthalene	Total Lead	TOC	CH4	NITRATE	ORP	Alkalinity	Conductivity
Location	Matrix	(ft. bgs) ^{a/}	8020	8310	7421	9060	RSK-175	300.0	Field	Field	Field
SBA-14	Soil	7 - 8	x								
SBA-14	Soil	9 - 11	Х	х	x						
SBA-15	Soil	9 - 10			x	x					
SBA-16	Soil	9 - 10			x	х					
SBA-16	Soil	11 - 12				х					
SBA-17	Soil	9.5 - 10.5	х	х	х						
SBA-18	Soil	8.5 - 9.5	х	х	х						
SBA-19	Soil	6.5 - 8	Х	х	х						
SBA-19	Soil	8.5 - 10	х	Х	х						
SBA-20	Soil	6 - 7	х		Х						
SBA-20	Soil	9.5 - 10.5	х	х	х						
MW8-1	Groundwater	NA	x		х		х	х	x	×	x
MW8-3	Groundwater	NA	x		х		х	Х	x	х	x
MW8-4	Groundwater	NA	х		х		Х	x	×	×	×
MW8-5	Groundwater	NA	Х		х		Х	x	×	x	x
MWA-6	Groundwater	NA	х						х	X	х
MWA-9	Groundwater	NA	Х		X		x	х	x	×	×
MWA-10B	Groundwater	NA	х		х		х	х	×	x	×
MWA-11	Groundwater	NA	х		х		х	Х	х	×	×
MWA-13	Groundwater	NA	х						х	x	×
MWA-14	Groundwater	NA	Х						×		×
SG-1	Soil Gas	4									
SG-2	Soil Gas	4									
SG-3	Soil Gas	4									
Notes:											

I:\KEE-AOCA\REPORT\TABLES\Analloc.xls

^{u'} ft. bgs = feet below ground surface

NA = not applicable

BTEX = Benzene, Toluene, Ethylbenzene, and Xylene TOC = Total Organic Carbon

DO = Dissolved Oxygen ORP = Oxidation Reduction Potential

ORP = Oxidat

BX Service Station, Area of Concern A (ST-06) SAMPLE ANALYSES BY LOCATION TABLE 2.2 (Continued) Biloxi, Mississippi Keesler AFB

BTEX/TPH TO-3 × × × Field Mn²⁺ × × × × × × × × × Field NH₃ × × × × X × XXX Sulfides Field × × × × XX × × \times **Analytes and Analysis** Sulfate Field × × × × XX × X X Field Fe²⁺ × × × × × × × × × . Field μd × × × × × × × × × × Temperature Field × × × × × × × × × X Field Q ×× × × × X X × × × (ft. bgs) */ 9.5 - 10.5 9.5 - 10.5 8.5 - 9.5 9 - 10 11 - 12 8.5 - 10 9 - 10 9 - 11 Depth 6 - 7 7 - 8 6.5 - 8 ΝA NA NA NA NA NA NA NA AN AN 4 4 4 Groundwater Soil Gas Soil Gas Soil Gas Sample Matrix Soil Soil Soil Soil Soil Soil Soil Soil Soil **MWA-10B MWA-13** SBA-16 SBA-16 SBA-19 **MWA-14** Sampling SBA-20 **MWA-11** MWA-9 **MWA-6** Location SBA-14 SBA-15 SBA-17 **SBA-18 SBA-19** SBA-20 **MW8-1 MW8-4** <u>MW8-5</u> **SBA-14 MW8-3** SG-3 SG-2 SG-1 Notes:

I:\KEE-AOCA\REPORT\TABLES\Analloc.xls

^{ω} ft. bgs = feet below ground surface

NA = not applicable

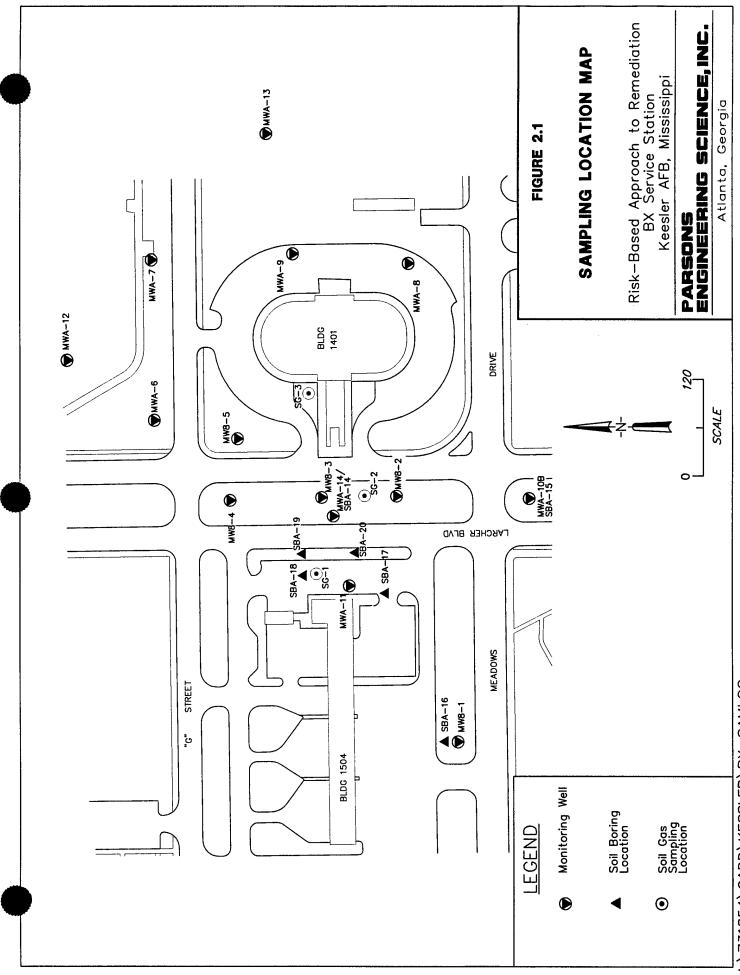
BTEX = Benzene, Toluene, Ethylbenzene, and Xylene TOC = Total Organic Carbon

ORP = Oxidation Reduction Potential DO = Dissolved Oxygen

SOIL BORING AND MONITORING WELL INSTALLATION SUMMARY BX Service Station, Area of Concern A (ST-06) **TABLE 2.3**

Keesler AFB

•	đ
•	ssip
	AISSI
	BILOXI, [


			Top of Casing	Depth to Top	Depth to Top Depth to Bottom	Casing/	Total
Well ID	Groundwater Zone	Installation Date	Elevation (ft msl) ^{*/}	of Screen (ft bgs) ^{b/}	of Screen (ft bgs)	Screen ID (inches)	Depth (ft bgs)
Soil Borings							
SBA-14	NA ^{e/}	2/17/98	NA	NA	NA	NA	25.0
SBA-15	NA	2/18/98	NA	NA	NA	NA	14.0
SBA-16	NA	2/18/98	NA	NA	NA	NA	12.0
SBA-17	NA	2/18/98	NA	NA	NA	NA	12.0
SBA-18	NA	2/18/98	NA	NA	NA	NA	12.0
SBA-19	NA	2/18/98	VN	VN	NA	NA	12.0
SBA-20	NA	2/18/98	NA	NA	NA	NA	12.0
Groundwater Monitoring Wells							
MWA-10B	Shallow	2/17/98	19.32	4.70	10.70	0.50	10.7
MWA-14	Deep	2/18/98	19.36	21.00	24.00	0.50	24.0

a/ ft msl = feet above mean sea level

b/ ft bgs = feet below ground surface

c/ NA = not applicable

I:\KEE-AOCA\REPORT\TABLES\Bore-sum.xls

J; \731854\CADD\KESSLER\BX-SAMLOC

SECTION 3 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This section describes the physical characteristics of the BX Service Station and adjacent environs at Keesler AFB, as determined from data collected during previous site investigations (ES, 1994; WEI, 1997) and by Parsons ES in February 1998 as part of the risk-based investigation. A summary of site characterization activities completed by Parsons ES to supplement existing data is presented in Section 2 of this CAP.

3.1 SITE TOPOGRAPHY AND SURFACE WATER HYDROLOGY

The BX Service Station and the surrounding area has relatively flat topography, with ground elevations at the site at approximately 30 feet above the mean sea level. Surface water hydrology around the site is dominated by the stormwater sewer system. Two small manmade lakes are present on the golf course. There is no central stream which drains the Base, however, there are small tidal creeks that provide drainage into the Back Bay along the northern edge of the Base.

3.2 REGIONAL GEOLOGY AND HYDROGEOLOGY

Several major hydrogeologic units exist in the area of Keesler AFB: the Coastal Deposits surficial aquifer, the Citronelle Aquifer, and the Miocene aquifer system. The surficial aquifer, which underlies the BX Service Station, occurs under water table conditions within the Pamlico Sand. This formation consists of Holocene- or Pleistocene-age unconsolidated terrace or alluvial deposits of sand. The water table occurs as a subdued replica of the topographic surface and slopes gently toward the Back Bay and Mississippi Sound. The axis of the topographic ridge and the groundwater divide are almost coincident, with steeper topographic slopes and hydraulic gradients south of the Base, and flatter topographic slopes and hydraulic gradients to the north. Localized variations in gradient and flow direction occur within the Base due to minor variations in ground cover and grading. These variations do not affect the overall flow and appear to produce only localized areas of stagnant water, or conversely, localized areas in which the flow rates are higher than the site average. The underlying Citronelle aquifer consists of the Citronelle Formation. The Miocene aquifer system consists of the Graham Ferry Formation, Pascagoula Formation, Hattiesburg Formation, and the Catahoula Sandstone. A hydrogeologic cross-section and geologic map depicting these units are contained in Appendix B.

The surficial aquifer is generally of poor quality, which can be attributed to both natural and artificial causes. As early as the 1940s, Brown, *et al.* (1944) reported a deterioration of local water quality due to contamination by sewage. Locally, the water contains hydrogen sulfides and dissolved organic matter which are responsible for a rotten egg odor and a dark brown color, respectively. The dissolved organic matter is largely attributed to peat resulting from the decay of plant and animal matter. Regionally, the surficial aquifer contains saline water from salt water intrusion. The majority of the region's industrial, municipal, and drinking water is supplied by the Citronelle Aquifer and the Miocene aquifer system.

3.3 SITE GEOLOGY AND HYDROGEOLOGY

AOC-A is underlain by fine- to medium-grained sands to a depth of about 20 feet bgs, with some peat present between 15 and 20 feet bgs. A soft, olive-blue-gray clay was encountered at approximately 20 feet bgs in five of the eight well borings advanced in 1992 and at 20 to 23 feet bgs at SBA-14 in February 1998. These borings were located to the east and northeast of the site. The thickness and possible continuity of this clay layer are unknown. The surficial aquifer at the site is estimated to be 20 feet thick, assuming that the clay layer is continuous beneath the site.

Groundwater at the BX Service Station is encountered at a depth of 5 to 9 feet bgs. Groundwater surface elevations measured in February 1998 are summarized on Table 3.1 and Figure 3.1. Groundwater contour maps from previous investigations are presented in Appendix B. The horizontal groundwater flow direction is toward the northeast at the former UST location. Groundwater flows to the southeast from MWA-12, which is located northeast of the former UST location. Groundwater eventually discharges into the Back Bay of Biloxi approximately 2,100 feet northeast of the BX Service Station. The hydraulic gradients at the site range between 0.003 foot per foot (ft/ft) and 0.0083 ft/ft. Slug tests were performed at monitoring wells MW8-3, MWA-9, MWA-11. Slug test results are presented in Appendix D. Using the slug withdrawal portion of the tests, the average hydraulic conductivity is 40 feet per day (ft/day). This value is similar to the hydraulic conductivity of 61 ft/day that was determined from aquifer pump tests performed in background areas during the RFI (ES, 1994) and is similar to the hydraulic conductivity of 32 ft/day that was determined by WEI (1997). Using an average gradient of 0.005 ft/ft and an estimated effective porosity of 0.25, the horizontal groundwater flow rate is calculated to be 0.8 ft/day (292 feet per year [ft/yr]).

3.4 CLIMATOLOGICAL CHARACTERISTICS

The subtropical climate of the region around Keesler AFB is characterized by mild winters and warm, moist summers. These conditions reflect the moderating influence of the Gulf of Mexico. The monthly mean temperature at the Base varies from a low of 52°F in January to a high of 83°F in July and August. The average yearly temperature is 69°F with average highs of 76°F and average lows of 61°F. High temperatures in the summer frequently exceed 90°F, but rarely exceed 100°F. In the winter, low temperatures at Keesler AFB fall below freezing an average of 11 times per year. Annual precipitation averages 60.7 inches and is evenly distributed throughout the year; however, October and November tend to be somewhat drier than the other months. It rarely snows in this region. Flooding is a concern in the vicinity of the Base; major portions of the facility lie within the 100-year flood plain (ES, 1994).

Annual wind direction frequency is bimodal with winds predominantly from the north and south. Seasonally, autumn and winter winds tend to be northerly dominated, while spring and summer winds demonstrate a more frequent southerly component. Wind velocity at the Base averages approximately 6 miles per hour; however, wind speeds as high as 130 mph have been recorded at the Base (ES, 1994).

Climatic data compiled by the National Oceanic and Atmospheric Administration (NOAA) show that pan evaporation for the Gulfport/Biloxi area is approximately 64 inch/year; lake evaporation for the same area is approximately 48 inch/year (ES, 1994).

ESE (1991) reported an evapotranspiration rate at Keesler AFB of 39.3 inch/year. The difference in the mean annual precipitation and the mean annual evapotranspiration rate is the amount of surface water available for runoff, groundwater infiltration, and aquifer recharge. This net precipitation is approximately 20 inch/year in the vicinity of Keesler AFB.

TABLE 3.1

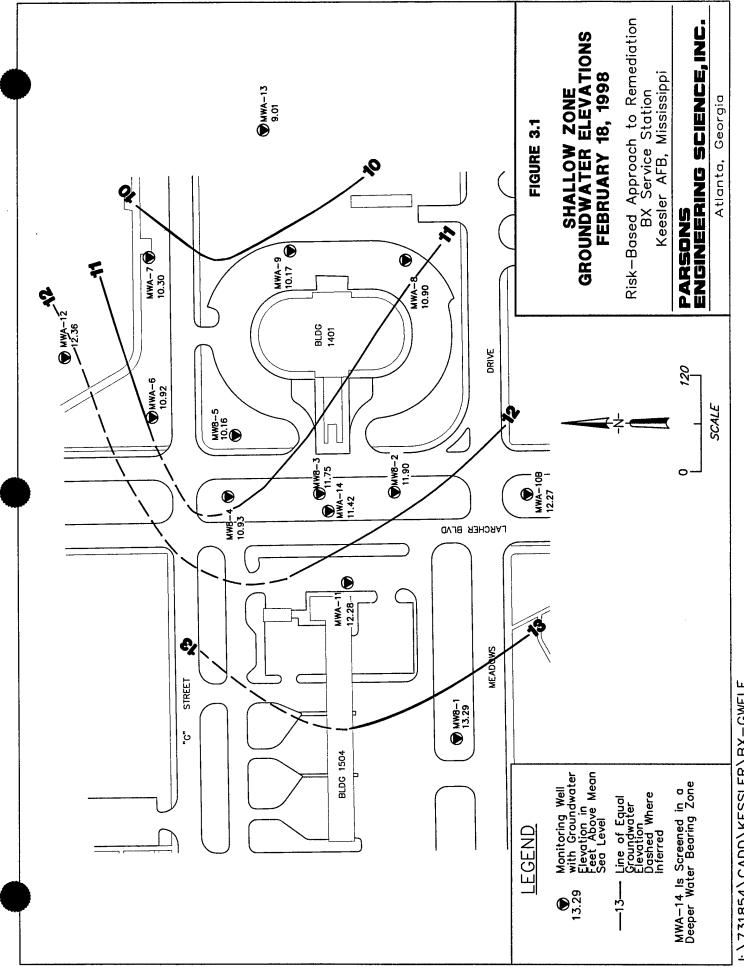
SUMMARY OF MONITORING WELL GAUGING DATA

BX Service Station, Area of Concern A (ST-06)

Keesler AFB

Biloxi, Mississippi

February 18, 1998


Well Identification	Top of Casing Elevation (ft msl) ^{*/}	Depth of Screened Interval (ft bgs) ^{b/}	Depth to Water (feet btoc) ^{c/}	Water Table Elevation (ft msl)
	19.13	6-16	5.84	13.29
MW8-2	19.57	6-16	7.67	11.90
MW8-3	19.65	6-16	7.90	11.75
MW8-4	19.08	6-16	8.15	10.93
MW8-5	19.68	6-16	9.52	10.16
MWA-6	18.44	8-23	7.52	10.92
MWA-7	18.95	7-22	8.65	10.30
MWA-8	19.23	7-22	8.33	10.90
MWA-9	19.29	8-23	9.12	10.17
MWA-10B	19.32	5-11	7.05	12.27
MWA-11	20.09	6-21	7.81	12.28
MWA-12	19.26	8-23	6.90	12.36
MWA-13	18.43	7-22	9.42	9.01
MWA-14	19.36	21-24	7.94	11.42

Notes:

a/ ft msl = feet above mean sea level

b/ ft bgs = feet below ground surface

c/ ft btoc = feet below top of casing

J: \731854\CADD\KESSLER\BX-GWELE

SECTION 4 TIER 1 ANALYSIS AND IDENTIFICATION OF CHEMICALS OF POTENTIAL CONCERN

This section presents a screening-level Tier 1 analysis used to select the COPCs that are the focus of this CAP. The COPCs for the site are identified in the Tier 1 analysis based on estimated risks to human health posed by maximum detected contaminant concentrations.

4.1 REGULATORY REVIEW OF THE TIER 1 SCREENING PROCESS

As an initial step in determining the necessity for remedial action, maximum concentrations of site contaminants are compared to the Typical Cleanup Levels mandated by MDEQ (Table 1.1). If representative concentrations of petroleum contaminants exceed these cleanup levels, individual constituents are then compared to generic RBSLs calculated by the MDEQ and available on "look-up" tables (MDEQ, 1996).

Those analytes with site concentrations that exceed the appropriate RBSLs for soil and groundwater are considered to be COPCs, and are retained for further analysis concerning the risk-reduction requirements for the site. The nature and extent of these COPCs are described more fully in Section 5. Site-specific risks resulting from exposure to COPCs and fate and transport analyses for the dissolved BTEX plume are presented in Sections 6 and 7, respectively. These analyses were conducted to assess the degree to which COPCs pose significant risks to potential receptors, and the persistence and migration potential of the dissolved BTEX plume.

4.2 CONTAMINANT SOURCE ASSESSMENT

Contaminant sources at the BX Service Station (AOC-A) consist of soils containing fuel-related organic compounds. These COPCs are present as a result of past overfills of and/or leaks from the tanks.

4.3 LAND USE

This site is located within the current business/administrative section of the Base, and is an active commercial service station. The Base Master Plan currently has this site and surrounding area designated for administrative and commercial land use. Future development of the site is unlikely to require use of the surficial aquifer because the existing drinking water distribution system is adequate.

4.4 EXPOSURE PATHWAYS AND POTENTIAL RECEPTORS

The groundwater exposure pathways of concern to the MDEQ include migration of dissolved contaminants to a receptor exposure point (e.g., drinking water well or surface water body). No known potable wells are completed in the surficial aquifer near the site. The nearest existing well is Base supply well 4, located about 300 feet southwest (upgradient) of the site. This well is completed at a depth of more than 600 feet. Base supply well 8, located about 2,200 feet east (downgradient) of the site, is also more than 600 feet deep. Clay layers between the surficial aquifer and the screened well interval

would effectively prevent COPCs from reaching these wells. Although no drinking water wells are completed in the surficial aquifer, the aquifer is protected as a potential drinking water source and is considered an exposure pathway of concern and receptor exposure point.

Groundwater discharging to surface water is not currently considered a potentially completed pathway. The closest surface water body is the Back Bay of Biloxi located 2,100 feet to the northeast.

Any surface water runoff from the site is channeled into the storm water drainage system; the ultimate discharge point for this water is not known. However, the surface water runoff pathway is not considered complete because the site is mostly paved, and runoff should not contact contaminated soils.

In addition to potential future risks posed by migration of dissolved contaminants to potential receptor exposure points, volatile chemicals in soil and groundwater can potentially be released by volatilization to ambient air or accumulated in nearby structures. Current and future receptors may be exposed to these chemicals by inhalation. Potentially exposed receptors currently include personnel working at or near the site. Potential future receptors include intrusive site workers and building occupants.

Exposure pathways for ecological receptors near the site are not considered complete because the majority of the site is paved. The asphalt cover precludes vegetation growth and erosion. No COPCs were identified that would pose risk to vegetation. In addition, no pathway for wildlife exposure to subsurface soils was identified. The site is expected to continue as a paved, urbanized environment; therefore, future risks to ecological receptors are unlikely. However, if dissolved contaminants are discharged to surface water, ecological receptors may be impacted.

4.5 TIER 1 SCREENING ANALYSIS

MDEQ (1993) Typical Cleanup Levels (Table 1.1) are used if there are no sensitive environmental receptors such as public or private wells, geologic recharge areas, or vapors in homes. If potential receptors exist or these levels are exceeded, MDEQ (1996) Tier 1 RBSLs are compared to site data. These levels are based on distance from the source to potential receptors.

4.5.1 Tier 1 Screening Analysis for Soil

The typical cleanup level for soil at a gasoline site is 100 parts per million (ppm, approximately 100 mg/kg) of total BTEX. The maximum total BTEX concentration exceeded this value. Therefore, concentrations of individual chemicals were compared to the MDEQ (1996) RBSLs. The closest receptor to the site is the Back Bay of Biloxi, which is approximately 2,100 feet northeast of the site. The MDEQ look-up tables have RBSLs for receptors located 1,400 feet and 2,600 feet from the source. To be conservative, the 1,400 feet RBSLs were selected as the appropriate set of Tier 1 screening values for soil at the BX Service Station. However, these values do not include a RBSL for lead. The USEPA (1994c) Office of Solid Waste directive on risk assessment and cleanup of residential soil lead recommends that soil lead levels less than 400 ppm be considered safe for residential use; this level is used as the RBSL for lead in soil. Table 4.1 compares the maximum site concentrations for each compound measured in soil at the

site to the appropriate RBSL. Based on these comparisons, there were no exceedences of Tier 1 RBSLs in soil. As shown in the table, site soils have not been analyzed for several compounds. However, these compounds should not be considered COPCs. Even if these compounds were at the maximum possible concentration in source area soils, they would not be a risk to a receptor 1,400 feet downgradient, as shown in the MDEQ (1996) RBSL tables.

4.3.2 Tier 1 Screening Analysis for Groundwater

The typical cleanup level for groundwater at a gasoline site is 18 mg/L of total BTEX. The maximum total BTEX concentration exceeded this value. Therefore, individual chemicals were compared to the MDEQ (1996) RBSLs. As with soil screening levels, the 1,400-feet-to-receptor levels were selected as the appropriate set of Tier 1 screening values for groundwater at the BX Service Station. The groundwater RBSLs also do not include a value for total lead in groundwater. Therefore, the USEPA (1996) maximum contaminant level (MCL) of 15 micrograms per liter (μ g/L) was used for this value. Comparisons of the RBSLs for groundwater to maximum concentrations of compounds detected in groundwater samples collected at the site are presented in Table 4.2. Based on these comparisons total lead is the only constituent identified as a COPC in site groundwater.

4.3.3 Tier 1 Screening Analysis for Soil Gas

MDEQ guidance does not provide RBSLs for screening soil gas concentrations or for directly screening ambient air values. As a means of assessing the potential for exposure via inhalation of volatiles, soil gas samples collected in February 1998 were analyzed for BTEX, and maximum detections of each compound were compared to the chemical-specific Occupational Safety and Health Administration (NIOSH, 1997) 8-hour time-weighted average Permissible Exposure Limits (PELs). Table 4.3 presents the results of this comparison. No BTEX constituents were detected above the OSHA PELs.

4.3.4 Summary of Site COPCs

Based on comparisons of the maximum soil, groundwater, and soil gas concentrations to MDEQ (1993) Typical Cleanup Levels, MDEQ (1996) RBSLs, and OSHA PELs (NIOSH, 1997), only lead in groundwater is identified as a COPC for the BX Service Station.

COMPARISON OF MAXIMUM SITE SOIL CONCENTRATIONS BX Service Station, Area of Concern A (ST-06) TO TARGET CLEANUP LEVELS **TABLE 4.1**

Keesler AFB

Biloxi, Mississippi

		Maximum	Location of	Date of	Target	Number of
		Concentration	Maximum	Maximum	Levels ^{a/}	Times
Chemical Name	Units	Detected	Detection	Detection		Exceeded
Total BTEX	mg/kg ^w	166.2	SBA-18	18-Feb-98	100	1
	mg/kg	8.7	SBA-18	18-Feb-98	400	0
Acenaphthene	mg/kg	NA ^{c/}	NA	NA	> res ^{d/}	0
Acenaphthylene	mg/kg	NA	NA	NA	> res	0
Anthracene	mg/kg	NA	NA	NA	> res	0
Benzene	mg/kg	0.22	SBA-17	18-Feb-98	> res	0
Benzo(b)fluoranthene	mg/kg	NA	NA	NA	> res	0
Benzo (g,h,i)perylene	mg/kg	NA	NA	NA	> res	0
Benzo(k)fluoranthene	mg/kg	NA	NA	NA	> res	0
Benzo(a)pyrene	mg/kg	NA	NA	NA	> res	0
Chrysene	mg/kg	NA	NA	NA	> res	0
Dibenzo(a,h)anthracene	mg/kg	NA	NA	NA	> res	0
Ethylbenzene	mg/kg	4.2	SBA-18	18-Feb-98	> res	0
Fluoranthene	mg/kg	NA	NA	NA	> res	0
Fluorene	mg/kg	NA	NA	NA	> res	0
Indeno(1,2,3-cd)pyrene	mg/kg	NA	NA	NA	> res	0
Naphthalene	mg/kg	10	SBA-20	18-Feb-98	> res	0
Phenanthrene	mg/kg	NA	NA	NA	> res	0
Pyrene	mg/kg	NA	NA	NA	> res	0
Toluene	mg/kg	12	SBA-18	18-Feb-98	> res	0
Xylenes, Total	mg/kg	150	SBA-18	18-Feb-98	> res	0
Notes: Shading indicates maximum	um site conce	site concentration is above target level.	arget level.			

NOICES: SHAULING IIIUICAICS IIIAMIIIUUII SIIC COIRCEIIII AHOU IS ADOVC IAI COI ICYCL

^{al} Total BTEX based on MDEQ Typical Cleanup Level (Table 1.1), lead based on USEPA (1994c), all other Target Levels based

on MDEQ RBSL "look-up" tables and a distance to receptor of 1,400 feet.

^{b/} mg/kg = Milligrams per kilogram.

c' NA = Not available.

d' >res = the RBSL exceeds the expected soil residual contamination under free product (worst case) conditions.

I:\KEE-AOCA\REPORT\TABLES\Tr1-soil.xls

COMPARISON OF MAXIMUM SITE GROUNDWATER CONCENTRATIONS TO TARGET CLEANUP LEVELS **TABLE 4.2**

BX Service Station, Area of Concern A (ST-06)

Biloxi, Mississippi Keesler AFB

		Mavimum	I acation of	Data of	Target	Number of
		Internation	LUCATION UL	Date of	Iaigu	
		Concentration	Maximum	Maximum	Levels ^{a/}	Times
Chemical Name	Units	Detected	Detection	Detection		Exceeded
Total BTEX	hg/L ^V	22,400	MW8-3	20-Feb-98	18,000	l
Total Lead	hg/L	21	MW8-3	20-Feb-98	15	3
Acenaphthene	μg/L	1	MWA-11	20-Nov-92	>sol ^{e/}	0
Acenaphthylene	μg/L	10 U ^{e/}	NA ^{d/}	20-Nov-92	>sol	0
Anthracene	µg/L	10 U	NA	20-Nov-92	>sol	0
Benzene	hg/L	2,500	MW8-3	20-Feb-98	56,000	0
Benzo(b)fluoranthene	µg/L	10 U	NA	20-Nov-92	>sol	0
Benzo (g,h,i)perylene	µg/L	10 U	NA	20-Nov-92	>sol	0
Benzo(k)fluoranthene	hg/L	10 U	NA	20-Nov-92	>sol	0
Benzo(a)pyrene	μg/L	10 U	NA	20-Nov-92	>sol	0
Chrysene	µg/L	10 U	NA	20-Nov-92	>sol	0
Dibenzo(a,h)anthracene	μg/L	10 U	NA	20-Nov-92	>sol	0
Ethylbenzene	µg/L	1,700	MW8-3	20-Feb-98	>sol	0
Fluoranthene	μg/L	10 U	NA	20-Nov-92	>sol	0
Fluorene	hg/L	10 U	NA	20-Nov-92	>sol	0
Indeno(1,2,3-cd)pyrene	μg/L	10 U	NA	20-Nov-92	150.00	0
Naphthalene	μg/L	320	MW8-3	19-Nov-92	>sol	0
Phenanthrene	μg/L	10 U	NA	20-Nov-92	>sol	0
Pyrene	hg/L	10 U	NA	20-Nov-92	>sol	0
Toluene	μg/L	10,000	MW8-3	20-Feb-98	>sol	0
Xylenes, Total	μg/L	8,200	MW8-3	20-Feb-98	>sol	0
Notes: Shading indicates maximum site concentration is above target level	num site conce	ntration is above tar	get level.			

²⁴ Total BTEX based on MDEQ Typical Cleanup Level (Table 1.1), lead based on USEPA (1996), all other Target Levels based

on MDEQ RBSL "look-up" tables and a distance to receptor of 1,400 feet.

 $b' \mu g/L = Micrograms per Liter.$

^{ω'} U = Analyte not detected above corresponding number.

^{d'} NA = Not available.

e' >sol = greater than the maximum solubility possible.

I:\KEE-AOCA\REPORT\TABLES/Tr1-gw.xls

TABLE 4.3 COMPARISON OF MAXIMUM SITE SOIL GAS CONCENTRATIONS TO OSHA PERMISSIBLE EXPOSURE LIMITS BX Service Station, Area of Concern A (ST-06)

Keesler AFB

0
D
•
\$
SSISS
6
5
Σ
Z
Z
I, N
xi, M
ixi, M
oxi, M
loxi, M
iloxi, M
Biloxi, M

	Maximum Detected	OSHA	Maximum Concentration
Chemical	Concentration (ppmv ^{*/})	PEL (ppmv) ^{b/}	Above PEL?
Benzene	Ð	1	No
Toluene	.006 M ^{d/}	200	No
Ethylbenzene	0.020	100	No
Xylenes	0.041	100	No
TPH d	1.943	f/ 	3

Notes:

 $^{s'}$ ppmv = Parts per million, volume per volume.

^{b/} Occupational Safety and Health Administration (NIOSH, 1997) 8-hour time-weighted average permissible exposure limit.

 $^{o'}$ ND = Not detected above reporting limits.

 d M data qualifier indicates potential bias due to matrix interferences.

 e^{t} TPH = Total petroleum hydrocarbons.

^{ff} "--" = No PEL available.

I:VKEE-AOCAVREPORT\TABLES\Tr1-gas.xis

SECTION 5 ANALYTICAL DATA SUMMARY AND MAGNITUDE AND EXTENT OF CHEMICALS OF POTENTIAL CONCERN

5.1 OVERVIEW

This section presents analytical results from the February 1998 field sampling event in tabular form, and summarizes the magnitude and extent of COPC contamination in sampled media at the BX Service Station. Discussion in this section is primarily limited to those chemicals that were identified as COPCs based on the Tier 1 screening analysis presented in Section 4 (i.e., lead in groundwater).

5.2 SOIL SAMPLING RESULTS

Soil sampling was performed as part of the recent risk-based investigation; analytical results are summarized in Table 5.1. Soil borings were advanced in "hotspots" of fuel contamination (based on previous investigations) to determine worst case hydrocarbon and lead concentrations in soil. In addition, soil borings were advanced downgradient from the source area to determine the lateral extent of soil contamination. As shown in Table 4.1, total BTEX at SBA-18 (8.5-9.5 feet bgs) exceeded the typical cleanup level for soils. Therefore, maximum detected concentrations of individual fuel hydrocarbon-related compounds were compared to RBSLs (also Table 4.1). Available soil analytical data indicate that there are no exceedences of RBSLs and, therefore, no soil COPCs.

5.3 GROUNDWATER SAMPLING RESULTS

Groundwater sampling was performed as part of the recent risk-based investigation; analytical results are summarized in Table 5.2. Sampled monitoring wells were selected based on the results of previous investigations. The sampling strategy was to determine extent and magnitude of fuel hydrocarbon and total lead concentrations in groundwater. As shown in Table 4.2, total BTEX at MW8-3 exceeded the typical cleanup level for groundwater. Therefore, individual fuel compounds and total lead concentrations were compared to RBSLs (also Table 4.2). The Tier 1 screening results indicate that lead is the only groundwater COPC.

During the February 1998 field effort, lead was detected slightly above the USEPA MCL of 15 μ g/L at MWA-10B (16J μ g/L), MW8-3 (21 μ g/L), and MWA-11 (21 μ g/L). The distributions of total BTEX and total lead in groundwater are presented on Figure 5.1. The highest total lead concentrations were found at the same locations as the highest BTEX concentrations (MW8-3 and MWA-11). Historically, lead has been detected above the MCL since the 1988 field effort (Table 5.3). The highest lead concentrations were generally detected in November 1992. During this sampling event, all thirteen wells sampled had total lead concentrations above the MCL. However, lead concentrations have decreased from 1992 to 1998.

MWA-14, which is located near MW8-3, is screened deeper in the water bearing zone. It was installed in an area of high BTEX concentrations to determine the vertical extent of contamination. As shown on Figure 5.1, BTEX concentrations decrease by over an order of magnitude from MW8-3 to MWA-14

5.4 SOIL GAS SAMPLING RESULTS

Soil gas samples were collected at the site to facilitate assessment of the potential risk to future workers at the site from inhalation of VOCs, and to determine whether or not sufficient O_2 is available in the soil gas to sustain aerobic fuel hydrocarbon biodegradation. Three soil gas samples were collected and analyzed in the field for concentrations of O_2 and CO_2 . All three samples also were submitted to Air Toxics, Ltd of Folsom California for analysis of BTEX and TPH (referenced to gasoline and propane). Field and laboratory analytical results for 1997 soil gas samples are summarized in Table 5.4. Comparison of maximum soil gas BTEX concentrations to OSHA 8-hour time-weighted average PELs (Table 4.3) indicated that no hydrocarbons pose a potential inhalation risk to future intrusive workers.

The field screening data indicate that the soil gas O_2 level at SG-2, has decreased due to microbial respiration during aerobic biodegradation of the fuel compounds. There probably is sufficient O_2 at SG-2 to allow aerobic biodegradation to occur. The concentration of CO_2 , which is a metabolic byproduct of biodegradation reactions, is correspondingly elevated. At SG-1, which is located in the source area (former tank pits), O_2 and CO_2 levels did not indicate biodegradation of fuel compounds, however, the interim remediation systems, which include air sparging and soil vapor extraction, probably affected the O_2 and CO_2 levels at this location. At SG-3, which is located farther downgradient of the highest soil BTEX concentrations, O_2 and CO_2 levels were not significantly elevated or depleted due to the absence of vadose zone soil or capillary fringe contamination. TABLE 5.1 SUMMARY OF SOIL ANALYTICAL DATA BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

						Sample L	ocations, I	Sample Locations, Intervals, and Dates	and Dates				
							WEI-B3		WEI-BI				
		SBA-14	SBA-14	SBA-15	SBA-16	SBA-16	SBA-17	SBA-18	SBA-19	SBA-19	SBA-100	SBA-20	SBA-20
		(1 - 8) ^{a/}	(11 - 6)	(01 - 6)	(11 - 12)	(01 - 6)	(9.5 - 10.5)	(8.5 - 9.5)	(6.5 - 8)	(8.5 - 10)	(8.5 - 10)	(6 - 7)	(9.5 - 10.5)
		17-Feb-98	_	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98	18-Feb-98
Analyte	Units												
Benzene	mg/Kg ^{b/}	0.0054U	0.017	MN	WN	WN	0.22	5.4U	0.0055U	0.28U	0.37U ^d	4.6U	2.4U
Ethylbenzene	mg/Kg	0.0022U	0.0089	MN	MN	MN	0.09	4.2	0.0022U	0.28U	0.15U	1.9	0.95U
Toluene	mg/Kg	0.0054U	0.072	WN	WN	ΜN	0.75	12	0.0055U	0.11U	0.37U	4.6U	2.4U
Xylenes (total)	mg/Kg	0.0054U	0.034	WN	MN	WN	0.58	150	0.0055U	0.28U	0.37U	3.1J1 ⁴	10
Total BTEX	mg/Kg	0.0184U	0.1319	WN	WN	MN	1.64	166.2	0.0187U	0.95U	1.26U	5	10
Naphthalene	mg/Kg	WN	0.26U	WN	MN	MN	0.27	2.1	0.22U	0.12J1	0.22U	NM	10
Lead	mg/Kg	MN	0.46J ^{e/}	0.40J	MN	0.18J	0.34J	8.7	4.2	MN	2.2	1.1	7.4
Total Organic Carbon	mg/Kg	MN	MN	2000U	2970	2000U	WN	MN	WN	WN	MN	MN	WN
Notes:								4					

Notes:

a/ depth in feet below ground surface.

b/ mg/kg = Milligrams per kilogram.

c/ U = The analyte was analyzed for and is not present above the reporting limit.

d/ J1 = The analyte was positively identified and has a concentration between the method detection limit and the reporting limit.

e/ J = The analyte was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environment.

The data should be considered as a basis of decision-making and are usable.

Analysis methods are SW7421 for lead, SW8020 for aromatic VOCs, and SW9060 for total organic carbon.

SBA-100 (8.5-10) is a duplicate of SBA-19 (8.5-10)

All analyses performed by Quanterra Laboratories of Arvada, Colorado

NM = Not Measured

BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes

I:\KEE-AOCA\REPORT\TABLES\Soilsum.xls

TABLE 5.2 SUMMARY OF GROUNDWATER ANALYTICAL DATA BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

						Samplin	Sampling Location and Date	and Date				
		MW8-1	MW8-3	MW8-4	MW8-5	MWA-6	MWA-9	MW8-4 MW8-5 MWA-6 MWA-9 MWA-10B MWA-11 MWA-11 MWA-13 MWA-14	MWA-11	MWA-11	MWA-13	MWA-14
		20-Feb-98	20-Feb-98	20-Feb-98	20-Feb-98	19-Feb-98	19-Feb-98	20-Feb-98 20-Feb-98 20-Feb-98 20-Feb-98 19-Feb-98 19-Feb-98 20-Feb-98 19-Feb-98 19-Feb-98 19-Feb-98 19-Feb-98	19-Feb-98	19-Feb-98	19-Feb-98	19-Feb-98
Analyte	Units									Duplicate		
Benzene	µg/L	2U	2,500	880	1,400	2U	0.33J1 ^d	2U	750	760	2U	170
Ethylbenzene	μg/L	2U	1,700	210	930	2U	7.7	2U	250	240	2U	250
Toluene	μg/L	2U	10,000	89	100U	2U	0.97J1	2U	1,700	1,700	2U	130
Xylenes (total)	hg/L	2U	8,200	600	530	2U	44	2U	500	500	2U	750
Total BTEX	µg/L	8U	22,400	1,779	2,860	8U	53	8U	3,200	3,200	8U	1,300
Lead	µg/L	5 U ^a /	21	5 U	5 UJ ^{b/}	MN	5 U	16 J ^{d/}	20.000	21	MN	WN
Notes:												

a/U = The analyte was analyzed for and is not present above the reporting limit.

b/ UJ = The analyte was analyzed for was not present above the SQL. The associated numerical value may not accurately or precisely represent the concentration necessary to detect the analyte in the sample.

c/ J1 = The analyte was positively identified and has a concentration between the method detection limit and the reporting limit.

d/ J = The analyte was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environment.

The data should be considered as a basis of decision-making and are usable.

 $\mu g/L = micrograms per liter.$

Analysis methods are SW7421 for lead and SW8020 for aromatic VOCs.

MWA-11duplicate named TW-11 on chain-of-custody

All analyses performed by Quanterra Laboratories of Arvada, Colorado

NM = Not Measured

BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes

I:\KEE-AOCA\REPORT\TABLES\Gwsum.xls

HISTORICAL SUMMARY OF TOTAL LEAD CONCENTRATIONS IN GROUNDWATER BX Service Station, Area of Concern A (ST-06) Keesler AFB **TABLE 5.3**

Biloxi, Mississippi

						San	Sampling Location	ation				
		MW8-1	MW8-2	MW8-3	MW8-4	MW8-5	MWA-6	MWA-7	MWA-8	0-AWM	MWA-10	MWA-6 MWA-7 MWA-8 MWA-9 MWA-10 MWA-10B ⁴
Date	Units											
January-88	μg/L	21.0	24.0	27.0	21.0	16.0	NM	MN	NM	MN	NM	MN
April-88	μg/L	7.0	20.0	45.0	0.6	14.0	MN	MN	NM	MN	MN	MN
October-89	μg/L	9.9	24.1	23.4	43.5	52.9	MN	MN	NM	NM	NM	MM
November-92	μg/L	39J ^{a/}	58.7J	37.8J	25.3J	15.7J	88.1J	15.8J	42.3J	31.6J	71.4J	MN
September-96	μg/L	0.5U ^{b/}	0.SU	0.5U	0.SU	0.SU	0.SU	0.5U	0.5U	0.SU	NM	MN
February-98	μg/L	su	MN	21	su	5UJ ⁴	MN	MN	MN	5U	MN	16J

Notes:

a/ J = The analyte was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environment.

The data should be considered as a basis of decision-making and are usable.

b/U = The analyte was analyzed for and is not present above the reporting limit.

c/ UJ = The analyte was analyzed for was not present above the SQL. The associated numerical value may not accurately or precisely

represent the concentration necessary to detect the analyte in the sample.

d/ MWA-10 destroyed and replaced by MWA-10B.

μg/L = Micrograms per liter. NM = Not Measured.

I:\KEE-AOCA\REPORT\TABLES\Leadsum.xls

I:\KEE-AOCA\REPORT\TABLES\Leadsum.xls

HISTORICAL SUMMARY OF TOTAL LEAD CONCENTRATIONS IN GROUNDWATER BX Service Station, Area of Concern A (ST-06) TABLE 5.3 (Continued) Keesler AFB

Biloxi, Mississippi

		San	Sampling Location	tion
		MWA-11	MWA-12	MWA-13
Date	Units			
January-88	μg/L	MN	NM	NM
April-88	μg/L	MN	MN	MN
October-89	μg/L	MN	MN	NM
November-92	μg/L	47J	66.7J	51.8J
September-96	μg/L	0.5U	0.5U	0.5U
February-98	μg/L	21	MN	MN

Notes:

a/ J = The analyte was positively identified, but the associated numerical value may not be consistent with the amount actually present in the environment.

The data should be considered as a basis of decision-making and are usable.

b/U = The analyte was analyzed for and is not present above the reporting limit.

c/ UJ = The analyte was analyzed for was not present above the SQL. The associated numerical value may not accurately or precisely

represent the concentration necessary to detect the analyte in the sample.

d/ MWA-10 destroyed and replaced by MWA-10B.

 $\mu g/L = Micrograms per liter.$

NM = Not Measured.

TABLE 5.4 SUMMARY OF SOIL GAS ANALYTICAL DATA BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

			Sample	Locations	, Dates, ar	ıd Units		·	
Analyte	ppmv	SG-1 19-Feb-98 μg/L	percent	ppmv	SG-2 19-Feb-98 μg/L	percent	ppmv	SG-3 19-Feb-98 μg/L	percent
Benzene	< 0.0039	< 0.013	NA	<0.0039	<0.013	NA	< 0.0039	<0.013	NA
Toluene	.006 M	0.023 M	NA	< 0.0039	< 0.015	NA	<0.0039	< 0.015	NA
Ethylbenzene	0.020	0.088	NA	< 0.0039	< 0.017	NA	0.004	0.018	NA
Xylenes (total)	0.041	0.18	NA	< 0.0039	< 0.017	NA	<0.0039	<0.017	NA
Total BTEX	0.067	0.291	NA	<0.0156	<0.062	NA	0.004	0.018	NA
TPH (C5+ Hydrocarbons)	0.043	0.18	NA	0.051	0.21	NA	<0.039	<0.16	NA
C2 - C4 Hydrocarbons	1.9	3.5	NA	0.16	0.29	NA	0.18	0.33	NA
Oxygen	NA	NA	20.17	NA	NA	9.8	NA	NA	19.8
Carbon Dioxide	NA	NA	0.2	NA	NA	7.8	NA	NA	0.8
							<u> </u>		<u> </u>

Notes:

ppmv = parts per million volume per volume

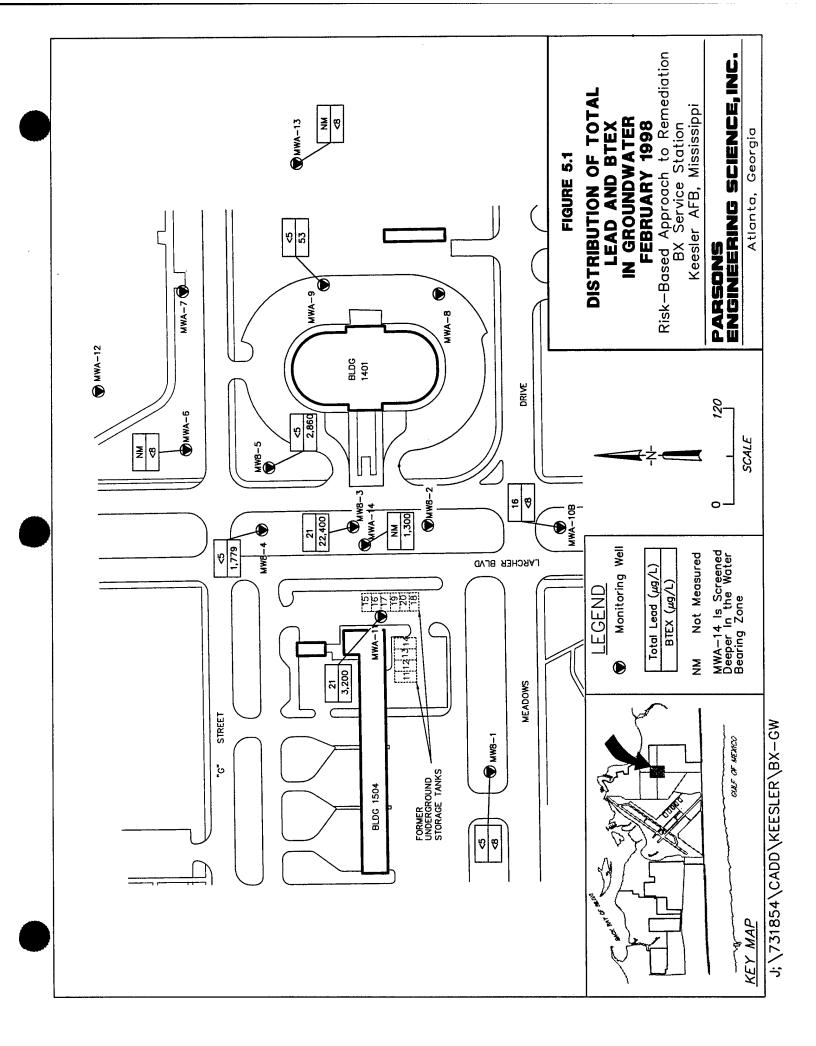
 $\mu g/L = micrograms per liter$

M = Reported values may be biased due to apparent matrix interference

Analysis method is TO-3 (Aromatic Volatiles in Air)

Analysis performed by Air Toxics Ltd. of Folsom, California

Oxygen and Carbon Dioxide measurements performed in the field


BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes

TPH = Total Petroleum Hydrocarbons

TPH referenced to gasoline (molecular weight = 100)

C2 - C4 Hydrocarbons referenced to propane (molecular weight = 44)

NA = Not Analyzed

SECTION 6 TIER 2 ANALYSIS AND IDENTIFICATION OF FINAL CHEMICALS OF CONCERN

6.1 OBJECTIVE OF SITE-SPECIFIC EVALUATION

The Tier 1 analysis conducted in this CAP (Section 4) identified total lead as a COPC in groundwater. This analyte is evaluated in detail to better define/assess the potential adverse health effects it may cause in current or future human receptors.

The Tier 1 screening process is considered protective of human health because the Tier 1 risk-based screening criteria are based on conservative exposure assumptions. However, analytes identified as COPCs in Section 4 of this CAP (i.e., analytes with representative site concentrations exceeding Tier 1 RBSLs) should not automatically be considered to be present at the BX Service Station at levels that pose unacceptable threats to human health given the current and future exposure potential at this site. Rather, the exceedances of the screening criteria indicate that further evaluation under more site-specific exposure scenarios is warranted.

In summary, the objectives of developing SSTLs that include exposure assumptions more representative of actual site conditions are 1) to determine whether current or predicted future site concentrations of COPCs present an unacceptable risk to current and future receptors; and 2) to provide a mechanism or reference to assess the cost and time required to lower site concentrations to achieve adequate risk reduction at the site.

6.2 TIER II ANALYSIS

Given that the maximum detected concentration of total lead in groundwater was identified as a COPC, it was evaluated for potential effects on the future residential child receptor using the EPA Integrated Exposure Uptake Biokinetic (IEUBK) model (USEPA, 1994). The IEUBK model provides an estimate of potential blood lead levels in residential children associated with exposure to all site media (soil and groundwater contaminated with lead).

Except for site-specific groundwater and soil concentrations, input parameters used in the model are default values provided by USEPA (USEPA, 1994). The input parameters are provided in Appendix E. The default input parameters include:

Air Parameters

- The default air concentration of 0.1 ug Pb/m3 represents the approximate average 1990 urban air lead concentration.
- The indoor air lead concentration was assumed to be 30% of the outdoor lead concentration.
- Age-specific defaults for time spent outdoors (1 to 4 hours/day) and ventilation rate (2.0 to 7.0 m³/day) were based on USEPA data.
- An assumed lung absorption of 32% was used. Values ranging from 25 to 45% have been established by USEPA, and the value of 32% was used as the default.

Dietary Intake Default

• Age-specific estimated dietary lead intake values were obtained from USEPA. The values were based primarily on a FDA (Food and Drug Administration) Market Basket Survey.

Drinking Water Default

• Age-specific water consumption values for children used in the model ranged from 0.2 to 0.59 L/day. These values are based on USEPA values provided in the USEPA's Exposure Factors Handbook (1997a, EPA/600/P-95/002Fa).

Soil and Dust Defaults

- Age-specific default values for total intake of soil ranged from 85 to 135 mg/day. These values have been reviewed and are within the range of values provided by both USEPA and other investigators.
- No additional sources of dust (other than soil) were assumed.
- A soil to dust coefficient of 0.7 was assumed (fraction of household dust that comes from soil). Measured values for this parameter have ranged from 0.09 to 0.85.
- The contribution of outdoor airborne lead to indoor airborne lead was assumed to be 100%.

Paint Intake Default

• No lead-containing paint was assumed to be ingested.

Although the IEUBK model stipulates that the model be evaluated using mean, and not maximum, concentrations of lead in environmental media, the maximum detected concentration of lead in groundwater (21 ug/L) was used in the BX Service Station evaluation to provide a conservative assessment of potential risk. The maximum soil concentration of 8.7 mg/kg was also used as a model input.

Per USEPA (1994) guidance, the probability of an individual in a population having a blood lead level exceeding 10 micrograms per deciliter (ug/dL) should be less than 5 percent. The results of the IEUBK lead model at BX Service Station indicate that an individual in a population at this site would have only a 0.5 percent chance of exceeding a blood lead level of 10 ug/dL. This percentage falls below the criteria of 5 percent, therefore, the impacts of lead in site media on potential future residents are not considered to be significant. The geometric mean blood lead level derived for the population was 3 ug/dL, which is well below the level of 10 ug/dL. The results of this very conservative exposure scenario and the IEUBK model are provided in Appendix E.

6.3 SUMMARY

Tier 1 and Tier 2 analyses indicate that there are no soil, groundwater, or soil gas COCs to be remediated at the BX Service Station.

SECTION 7 CHEMICAL FATE ASSESSMENT

7.1 INTRODUCTION

As discussed in Section 6, there are no final COCs for the BX Service Station. However, biodegradation of dissolved fuel constituents and the future migration and persistence of the dissolved BTEX plume are assessed in this section to support development of a long-term monitoring (LTM) plan that can be used to ensure that downgradient receptors (Back Bay) will not be impacted by the BTEX plume.

As used throughout this report, the term "remediation by natural attenuation" (RNA) refers to a subsurface contaminant management strategy that relies on natural physical, chemical, and biological mechanisms to control exposure of potential receptors to concentrations of contaminants in soils and groundwater that exceed regulatory levels. These mechanisms include the processes of advection, hydrodynamic dispersion, dilution from recharge, sorption, volitization, and biodegradation, which facilitate RNA of a variety of anthropogenic chemicals.

This section summarizes and interprets specific site characterization data relevant to documenting the effectiveness of RNA at minimizing dissolved BTEX migration and reducing BTEX concentration, mass, and toxicity over time.

7.2 OPERATIVE MECHANISMS OF CONTAMINANT ATTENUATION

Understanding the fate of BTEX in environmental media is critical to evaluating and predicting contaminant distribution patterns. There are several physical, chemical, and biological processes that influence how a chemical behaves in soil and groundwater.

Nondestructive attenuation processes can be described as those physical and chemical processes that may prohibit significant contaminant migration but will not result in a permanent reduction in contaminant mass. Examples of nondestructive attenuation processes include volatilization, sorption, dilution from recharge, advection, and hydrodynamic dispersion. These processes must be evaluated when determining whether some type of remediation is warranted because chemical contamination poses or has the potential to pose a risk to human or ecological receptors. If contamination cannot reach a potential receptor exposure point, the contamination poses no risk.

In comparison to nondestructive chemical attenuation processes, destructive chemical attenuation processes result in the permanent removal of contaminant mass from the environment. Documenting and distinguishing the effects of destructive attenuation processes, such as biodegradation, from nondestructive attenuation processes is critical to evaluating the potential for RNA to bring about a reduction in contaminant mass over time. The effectiveness of destructive attenuation processes at reducing contaminant mass at a site depends on how susceptible the chemical is to biodegradation and whether the site is characterized by physical, chemical, and biological conditions favorable to such processes.

Numerous laboratory and field studies have shown that hydrocarbon-degrading bacteria can participate in the degradation of many of the chemical components of

different types of fuels (e.g., gasoline) under both aerobic and anaerobic conditions. Biodegradation of fuel hydrocarbons will occur when an indigenous population of hydrocarbon-degrading microorganisms is present in the soil and groundwater, and sufficient concentrations of electron acceptors and nutrients, including fuel hydrocarbons, are available to these organisms. Soils and groundwater with a history of exposure to fuel hydrocarbon compounds, such as at the BX Service Station, generally contain microbial populations capable of facilitating biodegradation reactions (Wiedemeier *et al.*, 1995). The chemical basis for the biodegradation of BTEX is described in more detail in Section 7.4, where geochemical data relevant to documenting biodegradation at the field scale at the BX Service Station are presented.

7.3 EVIDENCE OF CONTAMINANT BIODEGRADATION OVER TIME

The first step in determining whether BTEX constituents are biodegrading in soils and groundwater at the BX Service Station was to compare contaminant concentrations at selected sampling locations over time. The purpose of this comparison was to assess the evidence of field-scale contaminant mass loss. Decreases in the magnitude of contaminant concentrations at a site over time that cannot be explained by physical processes (e.g., source removal, mass transport in groundwater) may be the first indication that contaminants are biodegrading at the site.

7.3.1 BTEX Concentration Trends in Soil

Biodegradation of soil BTEX present in the vadose zone can proceed if the soil particles to which the contaminants are adsorbed are covered with a water film that supports microbial populations. The presence of abundant soil moisture in the vadose zone can be inferred from the shallow water table depth, the relatively warm ambient air temperature, and presence of the asphalt/concrete cap that would inhibit evaporation of subsurface moisture into the atmosphere. These conditions are favorable to the growth of fuel-degrading microorganisms, and most likely result in anaerobic biodegradation of vadose zone contaminants over time.

Soil BTEX concentrations have decreased significantly since 1992. However, as discussed in Section 1.5, interim remediation systems have been in operation since May 1993. It is difficult to differentiate between BTEX reduction due to biodegradation and the interim remediation systems.

Results from the WEI (1997) report indicate that hydrocarbon concentrations decreased over the 1.5-year duration of their study as presented in Appendix B. The system was still operational (but not functioning at peak operating efficiency) when Parsons ES collected two soil samples in February 1998 (21 months after the DDC system began operation) to confirm the WEI results. As shown on Table 7.1 and Figure 7.1, hydrocarbon concentrations oscillated over the operational period, reflecting spatial heterogeneity in soil contaminant concentrations. However, the two most recent samples indicate an overall decrease in hydrocarbon concentrations.

7.3.2 BTEX Concentration Trends in Groundwater

Total BTEX concentrations measured at all monitoring wells from 1988 to 1998 are summarized in Table 7.2. Substantial oscillation in dissolved BTEX concentrations at the plume core (MW8-3, MW8-4, MW8-5, and MWA-11) during this period have been measured. These oscillations can be attributed to groundwater table fluctuations and the operation of interim remediation systems since May 1993. Furthermore, these oscillations, which range up to an order of magnitude, make it difficult to identify temporal trends in dissolved BTEX concentrations. However, the total BTEX plume length appears to have been relatively stable, as evidenced by consistent BTEX concentrations in downgradient well MWA-9. In addition, no BTEX concentrations have been detected in cross-gradient and downgradient monitoring wells MWA-6, MWA-7, MWA-8, MWA-10, MWA-10B, and MWA-13. Stable plume length indicates that the mass of BTEX input into the groundwater system in the source area (through leaching from residual BTEX in soils) is approximately equal to the mass of BTEX being removed via destructive attenuation processes (e.g., biodegradation).

7.4 EVIDENCE OF CONTAMINANT BIODEGRADATION VIA MICROBIALLY MEDIATED REDOX REACTIONS

BTEX constituents are typically utilized as electron donors in biologically mediated redox reactions under a wide range of geochemical conditions. Therefore, analytical data for potential electron acceptors can be used as geochemical indicators of BTEX biodegradation (Wiedemeier *et al.*, 1995). Reductions in the concentrations of oxidized chemical species that are used by microorganisms to facilitate the oxidation of fuel hydrocarbon compounds within contaminated media are an indication that contaminants are biodegrading. Alternately, an increase in the metabolic byproducts resulting from the reduction of electron acceptors can be used as an indicator of contaminant biodegradation. The availability of potential electron acceptors to participate in contaminant biodegraded over time at this site. Coupled with the biodegradation rates that will be determined later, this information can be used to predict how much and how quickly BTEX can be removed from saturated soils and groundwater at the BX Service Station as a result of natural processes only.

7.4.1 Relevance of Redox Couples in Biodegradation

Microorganisms obtain energy to replenish enzymatic systems and to reproduce by oxidizing organic matter. Biodegradation of dissolved BTEX is the result of a series of redox reactions that maintain the charge balance within the natural environment. Microorganisms facilitate the degradation of these organic compounds by transferring electrons from the electron donor (i.e., fuel hydrocarbons and native organic carbon) to available electron acceptors. Electron acceptors are elements or compounds that occur in relatively oxidized states and can participate in redox reactions involving these available electron donors. Electron acceptors known to be present in saturated soil and groundwater at the BX Service Station are oxygen, nitrate/nitrogen, sulfate, ferric iron, and carbon dioxide.

Microorganisms facilitate fuel hydrocarbon biodegradation to produce energy for their use. The amount of energy that can be released when a reaction occurs or is required to drive the reaction to completion is quantified by the free energy of the reaction (Stumm and Morgan, 1981). Microorganisms are able to utilize electron transport systems and chemiosmosis to combine energetically favorable and unfavorable reactions to produce energy for life processes (i.e., cell production and maintenance). Microorganisms will facilitate only those redox reactions that will yield energy. By coupling the oxidation of fuel hydrocarbon compounds, which requires energy, to the reduction of other compounds (e.g., oxygen, nitrate/nitrite, manganese, ferric iron, sulfate, and carbon dioxide), which yields energy, the overall reaction will yield energy. Detailed information on the redox reactions required to biodegrade dissolved BTEX is included in Table 7.3. The reader is encouraged to review this information to more fully understand the chemical basis of biodegradation.

Figure 7.1 illustrates the sequence of microbially mediated redox processes based on the amount of free energy released for microbial use. In general, reactions yielding more energy tend to take precedence over processes that yield less energy (Stumm and Morgan, 1981). As Figure 7.1 shows, oxygen reduction would be expected to occur in an aerobic environment with microorganisms capable of aerobic respiration because oxygen reduction yields significant energy. However, once the available oxygen is depleted and anaerobic conditions dominate the interior regions of the contaminant plume, anaerobic microorganisms can utilize other electron acceptors in the following order of preference: nitrate/nitrite, manganese, ferric iron, sulfate, and finally carbon dioxide. Each successive redox reaction provides less energy to the system, and each step down in redox energy yield would have to be paralleled by an ecological succession of microorganisms capable of facilitating the pertinent redox reactions.

The expected sequence of redox processes can be estimated by the oxidation/reduction potential (ORP) of the groundwater. The ORP measures the relative tendency of a solution or chemical reaction to accept or transfer electrons, and can be measured in the field. This measurement can be used as a crude indicator of which redox reactions may be operating at a site. High ORPs mean that the solution (or available redox couple) has a relatively high oxidizing potential.

Microorganisms can only facilitate the biodegradation (oxidation) of the fuel hydrocarbon compounds using redox couples that have a higher ORP than the contaminants. This is why these electron acceptors can be used to oxidize the fuel hydrocarbon compounds. The reduction of highly oxidized species results in an overall decrease in the oxidizing potential of the groundwater. As shown in Figure 7.1, the reduction of oxygen and nitrate will reduce the oxidizing potential to levels at which ferric iron (Fe³⁺) reduction can occur. As each chemical species that can be used to oxidize the contaminants is exhausted, the microorganisms are forced to use other available electron acceptors with lower oxidizing capacity. When sufficiently low (negative) ORP levels have been developed as a result of these redox reactions, sulfate reduction, and methanogenesis can occur almost simultaneously (Stumm and Morgan, 1981).

ORP values measured in shallow groundwater at the BX Service Station in February 1998 ranged from -136.5 to -280 millivolts (mV) (Table 7.4). Areas with the lowest ORP measurements generally coincided with the presence of fuel-contaminated groundwater, indicating that the progressive use of electron acceptors in the order shown on Figure 7.1 has caused the groundwater in the contaminated areas to become more reducing. These data imply that oxygen, nitrate, manganese, and ferric iron may be used to biodegrade fuel hydrocarbon contaminants at this site. However, it has been noted that field ORP data alone cannot be used to reliably predict all of the electron acceptors that may be operating at a site, because the platinum electrode probes are not sensitive to some redox couples (e.g., sulfate/sulfide) (Stumm and Morgan, 1981). Analytical data on oxidized

and reduced species are presented in the following subsections to verify which electron acceptors are actually being used to biodegrade the BTEX in saturated soil and groundwater at the BX Service Station.

Throughout the following subsections, the distributions of geochemical parameters are examined by comparing background concentrations to BTEX plume core concentrations. Analytical data from upgradient well MW8-1 and cross-gradient wells MWA-6 and MWA-10B are used for background concentrations. Analytical data from MW8-3, MW8-4 and MW8-5 are used for BTEX plume core concentrations. Although MWA-11 is located in source area (former UST pits), it is not used as plume core well because the active interim remediation system may have affected the geochemistry of the groundwater in this area.

7.4.2 Dissolved Oxygen

Almost all types of fuel hydrocarbons can be biodegraded under aerobic conditions (Borden, 1994). Mineralization of fuel hydrocarbons to carbon dioxide and water under aerobic conditions involves the use of oxygen as a cosubstrate during the initial stages of metabolism, and as a terminal electron acceptor during the later stages of metabolism for energy production. The reduction of molecular oxygen during the oxidation of the fuel hydrocarbon compounds yields a significant amount of free energy that the microorganisms could utilize.

DO concentrations were measured at groundwater sampling locations in February 1998. Table 7.4 presents the analytical results for DO by sampling location. As shown on the table, DO concentrations were uniformly low at all sampling locations (0.04 to 1.48 mg/l). The presence of the lowest observed DO concentration in the core of the dissolved BTEX plume and the highest DO concentration in a cross-gradient well is an indication that biodegradation through aerobic respiration is occurring. However, the overall low magnitude of DO concentrations indicates that oxygen is not currently a significant electron acceptor during microbially mediated degradation of fuel hydrocarbons at the BX Service Station.

7.4.3 Nitrate

Because anaerobic conditions generally prevail in the site groundwater, nitrate can be used as an electron acceptor by indigenous facultative anaerobes that mineralize fuel hydrocarbon compounds via either denitrification or nitrate reduction processes. Concentrations of nitrate (as nitrogen [N]) measured at the site in February 1998 are summarized in Table 7.4. Background nitrate (as N) concentrations measured in upgradient to cross-gradient wells MW8-1, MWA-6, and MWA-10B ranged from 0.65 to 1.21 mg/L and averaged 0.93 mg/L. Conversely, nitrate (as N) concentrations measured in plume core area wells exhibiting dissolved fuel contamination (MW8-3, MW8-4, and MW8-5) were all below the detection limit of 0.5 mg/L. These data indicate that nitrate concentrations within the dissolved plume are depleted relative to measured background The results indicate that nitrate is being used to oxidize fuel concentrations. hydrocarbons in the anaerobic core of the dissolved plumes via denitrification or nitrate reduction. The use of nitrate as an electron acceptor in microbially facilitated redox reactions is consistent with the range of ORP values measured at the BX Service Station (Figure 7.1). However, the low background nitrate (as N) concentrations appear to limit the importance of this degradation reaction at this site.

7.4.4 Ammonia

The presence of ammonia in groundwater can result from either nitrate reduction (facilitated by microbes) or fixing of atmospheric nitrogen (also a microbial process). Nitrate is not widespread in groundwater within the aquifer; however, the fixation of atmospheric nitrogen may occur under the anaerobic, methanogenic conditions observed at the site. The presence of ammonia in groundwater is a strong indication of microbial activity.

Ammonia (as N) concentrations measured in groundwater samples collected in February 1998 are summarized in Table 7.4. Ammonia was detected in all of the samples analyzed. The pale-yellow natural color of the shallow groundwater may have interfered with the ammonia analysis, causing the concentrations to be biased high. Ammonia concentrations detected in shallow groundwater varied across the site, with elevated ammonia concentrations occurring in the BTEX plume core area. Therefore, production of ammonia appears to be occurring due to increased microbial activity stimulated by the relative abundance of organic carbon (fuel hydrocarbons).

7.4.5 Manganese

Manganese also can be used as an electron acceptor to facilitate the oxidation of the fuel hydrocarbons in groundwater under anaerobic and slightly reducing conditions. As shown on Figure 7.1, manganese reduction can be microbially facilitated in groundwater conditions similar to those required to support denitrification. The reduction of manganese during the oxidation of fuel hydrocarbon compounds yields essentially as much free energy to the system as aerobic respiration. Under anaerobic and slightly reducing groundwater conditions, manganese reduction is the second-most energetically favorable redox reaction that can be used to oxidize (degrade) fuel hydrocarbon compounds.

Reduced forms of manganese were targeted for analysis at groundwater sampling locations in February 1998. Reduced forms of manganese would be produced locally if oxidized forms of manganese were being used as electron acceptors to oxidize other compounds, such as fuel hydrocarbons. As shown on Table 7.4, reduced manganese was not detected. Although the ORP data collected at the site imply that manganese could be involved in fuel hydrocarbon degradation reactions, the lack of significant concentrations of manganese minimizes the importance of this degradation reaction at the BX Service Station.

7.4.6 Ferrous Iron

Although relatively little is known about the anaerobic metabolic pathways involving the reduction of ferric iron (Fe³⁺), this process has been shown to be a major metabolic pathway for some microorganisms (Lovley and Phillips, 1988; Chapelle, 1993). Elevated concentrations of ferrous iron (Fe²⁺) often are found in anaerobic, fuel-contaminated groundwater systems. Concentrations of dissolved ferrous iron once were attributed to the spontaneous and reversible reduction of ferric oxyhydroxides, which are thermodynamically unstable in the presence of organic compounds such as benzene. However, more recent studies suggest that the reduction of ferric iron cannot proceed at all without microbial mediation (Lovley and Phillips, 1988; Lovley *et al.*, 1991; Chapelle, 1993). None of the common organic compounds found in low-temperature, neutral, reducing groundwater could reduce ferric oxyhydroxides to ferrous iron under sterile laboratory conditions (Lovley *et al.*, 1991). This means that the reduction of ferric iron to ferrous iron requires mediation by microorganisms with the appropriate enzymatic capabilities.

To determine if ferric iron is being used as an electron acceptor for fuel biodegradation at the BX Service Station, ferrous (reduced) iron concentrations were measured at groundwater sampling locations in February 1998. Low ferrous iron concentrations were detected in the BTEX plume core wells (0.05 mg/L to 1.11 mg/L). The occurrence of ferrous iron concentrations within contaminated areas indicates that ferric iron is acting as an electron acceptor at these locations. In addition, the measured redox potentials of the groundwater at this site are within the range that would be expected for the ferric iron-reducing conditions implied by the observed ferrous iron distributions (Figure 7.1).

7.4.7 Sulfate

Sulfate also may be used as an electron acceptor during microbial degradation of fuel hydrocarbons under anaerobic conditions (Grbic-Galic, 1990). Sulfate can be reduced to sulfide during the oxidation of the fuel hydrocarbon compounds. The presence of decreased concentrations of sulfate (and increased concentrations of sulfide) in the source area relative to background concentrations indicates that sulfate is participating in redox reactions at the site. To investigate the potential for sulfate reduction at the BX Service Station, sulfate and sulfide concentrations were measured during the February 1998 groundwater sampling event.

Table 7.4 shows the analytical results for sulfate and sulfide in groundwater at the BX Service Station. In general, areas characterized by elevated concentrations of dissolved BTEX are depleted in sulfate concentrations relative to measured background concentrations. Background concentrations of sulfate at the site ranged from 7.38 mg/L at well MWA-10B to 30.11 mg/L at MWA-6. Sulfate concentrations measured at plume core area wells exhibiting dissolved fuel contamination (MW8-3, MW8-4, and MW8-5) ranged from 2.11 mg/L to 4.79 mg/L. This general depletion of sulfate within the contaminated areas indicates that this compound is acting as an electron acceptor during fuel biodegradation reactions.

Table 7.4 also shows that elevated concentrations of sulfide, which can be produced when sulfate is reduced during fuel hydrocarbon oxidation, generally coincide with depleted sulfate concentrations and elevated fuel hydrocarbon concentrations. The apparent production of sulfide within the contaminated area supports the observation that microbial populations are using sulfate to oxidize fuel hydrocarbons at the site.

The measured ORPs of the groundwater at this site are not within the range that would be expected for the sulfate-reducing conditions implied by the observed sulfate and sulfide distributions. However, as described in Section 7.4.1, field ORP data alone cannot be used to reliably predict the electron acceptors that may be operating at a site.

7.4.8 Dissolved Methane

On the basis of free energy yield and the oxidizing potential of the site groundwater, the carbon dioxide/methane (CO_2/CH_4) redox couple also could be used to oxidize fuel

hydrocarbon compounds to carbon dioxide and water once the groundwater is sufficiently reducing. To attain these reducing levels, other highly oxidizing chemical species such as oxygen, nitrate, ferric iron, and sulfate must first be reduced. This redox reaction is called methanogenesis or methane fermentation. Methanogenesis yields the least free energy to the system in comparison to other chemical species (Figure 7.1 and Table 7.3). The presence of methane in groundwater at elevated concentrations relative to background concentrations is a good indicator of methane fermentation.

Dissolved methane was measured at groundwater monitoring wells sampled during the February 1998 sampling event. Table 7.4 presents the analytical data for methane. Methane concentrations detected at the contaminant source area were substantially elevated relative to background concentrations. Methane concentrations measured at plume core area wells MW8-3, MW8-4, and MW8-5 ranged from 1.1 mg/L to 4.9 mg/L and averaged 3.6 mg/L. In contrast, background concentrations ranged from 0.0031 mg/L to 0.062 mg/L. The presence of elevated methane levels in groundwater at the BX Service Station strongly indicates that biodegradation is occurring via methanogenesis.

7.4.9 pH

The pH of groundwater samples collected from groundwater monitoring wells in February 1998 was measured (Table 7.4). The pH of a solution is the negative logarithm of the hydrogen ion concentration $[H^+]$. Groundwater pH values measured at the site were slightly acidic, ranging from 5.51 to 6.68 standard units. This range of pH is within or near the optimal range for fuel hydrocarbon-degrading microbes of 6 to 8. The presence of more acidic pH values indicates that the groundwater alkalinity may be insufficient to fully buffer the groundwater pH against the organic acids produced during microbial reactions.

7.4.10 Temperature

Groundwater temperature was measured at groundwater monitoring wells in February 1998 (Table 7.4). Temperature affects the types and growth rates of bacteria that can be supported in the groundwater environment, with higher temperatures generally resulting in higher growth rates. The temperature of groundwater samples collected from the shallow monitoring wells varied from 19.3 degrees Celsius (°C) to 23.0 °C. These relatively warm temperatures should promote microbial growth and may enhance rates of hydrocarbon biodegradation.

7.5 THEORETICAL ASSIMILATIVE CAPACITY ESTIMATES

The preceding discussions have been devoted to determining if fuel hydrocarbons are biodegrading in saturated soils and groundwater at the BX Service Station. Analytical data on reduced and oxidized chemical species indicate that indigenous microorganisms are facilitating the oxidation of fuel hydrocarbons and the reduction of electron acceptors to generate free energy for cell maintenance and production. The question of how much contaminant mass can be biodegraded must be addressed to assess the full potential for long-term intrinsic bioremediation to minimize plume size and mass over time.

Mass balance relationships can be used to determine how much contaminant mass can be degraded by each of the redox reactions that the microorganisms might use to make free energy available for cell maintenance and production. The stoichiometric relationship between the contaminant and the electron acceptor can be used to estimate the expressed assimilative capacity of the groundwater. Once the redox reactions operating at the site have been defined, it is possible to estimate how much contaminant mass can be assimilated or oxidized by available electron acceptors.

Table 7.3 presents the coupled redox reactions that represent the biodegradation of the individual BTEX compounds, including the stoichiometric mass ratio of electron acceptors needed to oxidize each compound. These stoichiometric mass ratios can be used to estimate the assimilative capacity of the groundwater at the BX Service Station. For oxygen, nitrate, and sulfate, this is accomplished by first determining the initial (background) mass of each electron acceptor available in the groundwater. Data on these chemical species were collected at sampling locations upgradient and cross-gradient from the dissolved plume. As groundwater slowly migrates into the source area, electron acceptors are brought into contact with hydrocarbon-degrading microorganisms and site contamination. The change in the electron acceptor mass from background sampling locations to sampling locations within the plume core is divided by the mass of electron acceptors required to mineralize BTEX. For ferrous iron, ammonia, and methane, the highest observed concentration in the BTEX plume core wells is the divided by the mass of electron acceptors required to mineralize BTEX. However, the change in ammonia mass was used to correct for the natural yellow color of the groundwater at the site. These numbers are summed to estimate the expressed intrinsic capacity of the groundwater to biodegrade BTEX.

Estimates of the background and plume core concentrations were used to calculate the expressed assimilative capacity of the groundwater system attributable to aerobic respiration and sulfate reduction (Table 7.5). Table 7.5 also presents the source area concentrations of ammonia, ferrous iron, and methane. These concentrations are used to "back-calculate" the expressed assimilative capacity that is attributable to nitrogen fixation, ferric iron reduction, and methanogenesis. Nitrate is not listed in Table 7.5. As discussed above, nitrate is ultimately reduced to ammonia; however, ammonia can be produced from the reduction of nitrate and from fixation of atmospheric nitrogen. Therefore, only ammonia is used to calculate the intrinsic capacity. On the basis of these calculations, one pore volume of saturated soils and groundwater at the BX Service Station has the capacity to oxidize an average BTEX concentration of approximately 11.2 mg/L (11,200 μ g/L). As shown in Table 7.5, this capacity is lower than the maximum BTEX concentration detected in groundwater at the BX Service Station.

This estimate essentially represents an estimate of the BTEX reduction capability of one pore volume of groundwater at the BX Service Station. The estimate identifies how much contaminant mass can be theoretically oxidized as one pore volume travels through the plume core. In reality, over 4 pore volumes are expected to move through the contaminated aquifer material in the source area each year based on the estimated groundwater velocity of 460 ft/yr.

A closed system containing 2 liters of water can be used to help visualize the physical meaning of assimilative capacity. Assume that the first liter contains no fuel hydrocarbons, but it contains fuel-degrading microorganisms and has an assimilative capacity of exactly "x" mg of fuel hydrocarbons. The second liter has no assimilative capacity; however, it contains fuel hydrocarbons. As long as these 2 liters of water are kept separate, biodegradation of fuel hydrocarbons will not occur. If these 2 liters are

combined in a closed system, biodegradation will commence and continue until the fuel hydrocarbons or electron acceptors are depleted. If less than "x" mg of fuel hydrocarbons are in the second liter, all of the fuel hydrocarbons will eventually degrade given a sufficient time; likewise, if greater than "x" mg of fuel hydrocarbons were in the second liter of water, only "x" mg of fuel hydrocarbons would ultimately degrade.

This example shows that in a closed system, the measured expressed assimilative capacity eventually should be equivalent to the loss in contaminant mass; however, the groundwater beneath the site is an open system. Electron acceptors can continually enter the system from upgradient flow. Furthermore, contaminant mass can be added to the system through dissolution or leaching from LNAPL or contaminated soils. This means that the assimilative capacity is not fixed as it would be in a closed system, and therefore should not be quantitatively compared to concentrations of dissolved contaminants in the groundwater. Rather, the expressed assimilative capacity of groundwater is intended to serve as a qualitative tool. The fate of BTEX in groundwater is dependent on the relationship between the kinetics of biodegradation and the solute transport velocities (Chapelle, 1994).

7.6 FATE AND TRANSPORT OF BTEX

7.6.1 Migration of BTEX Without Biodegradation

In the absence of biodegradation, the dissolved BTEX migration distance can be approximated by dividing the seepage velocity (V_s) by the retardation coefficient (R).

7.6.1.1 Seepage Velocity (V_s)

Seepage velocity is the actual interstitial groundwater velocity. It is defined as the hydraulic conductivity (K) times the hydraulic gradient (dH/dL) divided by the effective porosity (n_e) .

$$V_s = \left(\frac{K}{n_e}\right) \left(\frac{dH}{dL}\right)$$

Seepage velocity was calculated in Section 3.3 to be approximately 292 feet per year.

7.6.1.2 Retardation Coefficient (R)

The retardation coefficient is a measure of the degree of retardation of dissolved organic chemical movement through the aquifer. Retardation coefficients are calculated using the following formula:

$$R=1+(K_d\rho_b/n_e)$$

where

 $K_d = (K_{oc})(f_{oc})$ $K_{oc} = \text{Organic Carbon Partition Coefficient}$ $f_{oc} = \text{Fraction Organic Carbon}$ $\rho_{\rm b}$ = Soil Bulk Density of Aquifer Matrix

 $n_e = Effective Porosity$

An average retardation value for the dissolved BTEX plume at the BX Service Station of 4.27 was calculated in Table 7.6.

7.6.1.3 BTEX Migration

Using the values described above, the average BTEX migration distance in the absence of biodegradation should be approximately 68 feet per year. As described in Section 1.5, the fuel release was discovered in 1987 during tank closure activities; it is likely that the release occurred before 1987. If 1986 is conservatively assumed to be the release year (12 years of plume migration), the calculated plume length should be approximately 815 feet if biodegradation was not occurring. As shown on Figure 5.1, the maximum plume length in 1998 was approximately 520 feet. Furthermore, the data in Table 7.2 indicate that the plume length has been stable for at least 6 years (since 1992). The stable plume length and the disparity between the calculated plume length in the absence of biodegradation and measured site conditions support the conclusions of Sections 7.4 and 7.5 that significant biodegradation of dissolved BTEX is occurring at the BX Service Station.

7.7 CONCLUSIONS

The following conclusions can be drawn:

- Concentrations of target analytes in all sampled media do not exceed applicable MDEQ (1996) RBSLs or OSHA PELs (NIOSH, 1997), and detected concentrations of total lead in groundwater do not pose a risk to potential receptors;
- Geochemical data strongly indicate that biodegradation of fuel hydrocarbons is occurring at the site, primarily via the anaerobic processes of sulfate reduction, nitrogen fixation, and methanogenesis;
- Previous and current interim source removal efforts have reduced hydrocarbon concentrations in vadose and saturated zone soils, and the current system does not have an adverse effect on the natural attenuation processes at the site;
- Available data indicate that the dissolved plume is stable, is entirely contained within the existing monitoring well network, and should not impact potential downgradient receptors;
- Keesler AFB is an active Base where institutional controls can be maintained with a high level of confidence; and
- None of the potential exposure pathways described in Section 4.4 are considered complete.

The USEPA Office of Solid Waste and Emergency Response (OSWER) has written the Interim Final Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites (USEPA, 1997b). This document outlines a process for determining if a site would be appropriate for monitored natural attenuation. Per the above conclusions, monitored natural attenuation is appropriate for the BX Service Station. A LTM plan is outlined in Section 8.

Institutional controls should be implemented to ensure that exposure pathways to receptors cannot be completed. The institutional controls will be in accordance with the Land Use Controls Assurance Plan (LUCAP) that is currently being prepared for Keesler Air Force Base. The LUCAP will be prepared in accordance with EPA Region 4 Federal Facilities Branch Policy (Memorandum from EPA Region 4 Federal Facilities Branch, Assuring Land Use Controls at Federal Facilities, undated). The specific land use controls will be listed in the Land Use Control Implementation Plan (LUCIP) which will be attached to Decision Document that will be prepared for this site.

Continued operation of the interim system is not required to meet MDEQ (1996) RBSLs. Therefore, unless further assessment of the effectiveness of the system is desired, system operation should be discontinued.

7-12

HISTORICAL COMPARISON OF SOIL ANALYTICAL DATA BX Service Station, Area of Concern A (ST-06) **TABLE 7.1**

Keesler AFB

Biloxi, Mississippi

				Sample I	Sample Locations, Intervals, and Dates	ntervals, a	nd Dates		:
		B3	B3	B3	SBA-17	Bl	Bl	B1	SBA-18
		9 ^{a/}	6	10	9.5 - 10.5	6	6	6	8.5 - 9.5
Analyte	Units	23-Apr-96	29-Apr-97	24-Oct-97	18-Feb-98	23-Apr-96	29-Apr-97	24-Oct-97	18-Feb-98
Benzene	mg/Kg ^{b/}	4.9	0.06	3.1	0.22	28	0.28 U ^{c/}	0.10 U	5.4 U
Ethylbenzene	mg/Kg	7	0.08	37	0.09	72	0.34	5.7	4.2
Toluene	mg/Kg	30	0.48	95	0.75	180	1.6	29	12
Xylenes (total)	mg/Kg	51	1.7	190	0.58	360	11	150	150
Total BTEX ^d	mg/Kg	92.9	2.32	325.1	1.64	640	12.94	184.7	166.2
Naphthalene	mg/Kg	9.4	0.65	31	0.27	41	3.3	51	2.1
N1-4									

Notes: a/ depth in feet below ground surface.

b/ mg/kg = Milligrams per kilogram.

c/U = The analyte was analyzed for and is not present above the reporting limit.

BTEX = benzene, toluene, ethylbenzene, and total xylenes

B3 was advanced by Wasatch at the same location as SBA-17

B1 was advanced by Wasatch at the same location as SBA-18

I:\KEE-AOCA\REPORT\TABLES\SOILhis.xls

TABLE 7.2

HISTORICAL SUMMARY OF BTEX CONCENTRATIONS IN GROUNDWATER BX Service Station, Area of Concern A (ST-06) Keesler AFB

, Mississippi
Biloxi

						San	Sampling Location	ation				
Date	I mite	MW8-1	MW8-2	MW8-3	MW8-4	MW8-5	MWA-6	MWA-7	MWA-8	MWA-9	MWA-10 ^{c/}	MWA-10B
Dan												
January-88	μg/L ^{a/}	NM ^{b/}	4,413	37,110	415	1,588	MN	NM	MM	NM	MN	NM
April-88	μg/L	MN	12,890	14,196	895	184	WN	MN	MN	WN	MN	MN
November-92	μg/L	4U	3,251	21,700	12	272	4U	4U	4U	159	4U	MN
May-96	hg/L	MN	MN	14,000	2,490	MN	MN	MN	MN	159	MN	MN
June-96	μg/L	MN	MN	1,052	1,088	MN	MN	WN	MN	37	MN	MN
July-96	μg/L	MN	MN	1,670	436	MN	MN	MN	MN	20	NM	MN
August-96	μg/L	MN	MN	5,184	512	MN	MN	MN	MN	56	NM	MN
September-96	hg/L	MN	MN	28,700	1,240	MN	MN	MN	MN	26	MN	MN
November-96	hg/L	MN	MN	33,100	1,520	MN	WN	MN	MN	NM	MM	NM
January-97	μg/L	MN	MN	11,090	1,770	MN	MN	MN	MN	NM	NM	NM
April-97	hg/L	MN	MN	9,040	3,170	WN	WN	MN	MN	NM	NM	NM
August-97	hg/L	MN	MN	13,100	2,560	MN	WN	MN	MN	8U	NM	NM
October-97	hg/L	MN	MN	17,600	1,060	MN	MN	MN	WN	NM	NM	NM
February-98	μg/L	8U	MN	22,400	1,779	2,860	8U	NM	MN	53	NM	8U

Notes:

a/ $\mu g/L = Micrograms per liter.$ b/ NM = Not Measured.

I:\KEE-AOCA\REPORT\TABLES\Btexsum.xls

c/ MW-10 was destroyed and replaced with MW-10B. BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes.

I:\KEE-AOCA\REPORT\TABLES\Btexsum.xls

HISTORICAL SUMMARY OF BTEX CONCENTRATIONS IN GROUNDWATER BX Service Station, Area of Concern A (ST-06) TABLE 7.2 (Continued) Biloxi, Mississippi Keesler AFB

		San	Sampling Location	tion			Averages	
					L	MW8-3,	MW8-3,	All
		MWA-11	MWA-12	MWA-13		MW8-4,	MW8-4,	MWs
Date	Units					MW8-5	MW8-11	
	_							
January-88	μg/L	MN	MN	MN		13,038	NM	NM
April-88	μg/L	MN	MN	MN		5,092	MN	NM
November-92	μg/L	3,790	4U	4U		7,328	8,501	4,864
May-96	μg/L	2,090	MN	MN	L	NM	6,193	NM
June-96	µg/L	4,912	MN	MN	L	NM	2,351	NM
July-96	μg/L	2,423	MN	MN		MM	1,510	NM
August-96	μg/L	2,260	MN	MN	<u> </u>	NM	2,652	MN
September-96	μg/L	2,150	MM	NM		NM	10,697	NM
November-96	μg/L	12,940	NM	NM		NM	15,853	NM
January-97	μg/L	7,000	MN	MN		NM	6,620	NM
April-97	μg/L	1,320	MN	NM		NM	4,510	NM
August-97	μg/L	420	MN	MN		MN	5,360	NM
October-97	μg/L	80	NM	NM		NM	6,247	NM
February-98	μg/L	3,200	NM	80		9,013	9,126	6,058

Notes:

a/ $\mu g/L = Micrograms per liter.$

b/ NM = Not Measured.

c/ MW-10 was destroyed and replaced with MW-10B.

BTEX = Benzene, Toluene, Ethylbenzene, and Total Xylenes.

TABLE 7.3 COUPLED OXIDATION REACTIONS FOR BTEX COMPOUNDS BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

Coupled Benzene Oxidation Reactions	ΔG° _r (kcal/mole Benzene)	ΔG° _r (kJ/mole Benzene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$7.5O_2 + C_6H_6 \Rightarrow 6CO_{2,8} + 3H_2O$ Benzene oxidation /aerobic respiration	-765.34	-3202	3.07:1
$6NO_3 + 6H^+ + C_6H_6 \Rightarrow 6CO_{2,g} + 6H_2O + 3N_{2,g}$ Benzene oxidation / denitrification	-775.75	-3245	4.77:1
$3.75 \text{ NO}_3^- + C_6 H_6 + 7.5 H^+ + 0.75 H_2 O \Longrightarrow 6 CO_2 + 3.75 NH_4^+$ Benzene oxidation / nitrate reduction	-524.1	-2193	2.98:1
$\frac{60H^{+} + 30Fe(OH)_{3,a} + C_{6}H_{6} \Rightarrow 6CO_{2} + 30Fe^{2+} + 78H_{2}O}{Benzene \ axidation \ / \ iron \ reduction}$	-560.10	-2343	21.5:1
$75H^{+} + 3.75SO_{4}^{2} + C_{6}H_{6} \Rightarrow 6CO_{2,g} + 3.75H_{2}S^{o} + 3H_{2}O$ Benzene oxidation / sulfate reduction	-122.93	-514.3	4.61:1
$5 N_2 + C_6 H_6 + 10 H^+ + 12 H_2 O \Longrightarrow 6 CO_2 + 10 NH_4^+$ Benzene oxidation / nitrogen fixation	-104.8	-437.9	2.31:1
$4.5 H_2 O + C_6 H_6 \Rightarrow 2.25 CO_{2,g} + 3.75 CH_4$ Benzene oxidation / methanogenesis	-32.40	-135.6	0.77:1

Coupled Toluene Oxidation Reactions	ΔG° _r (kcal/mole Toluene)	ΔG° _r (kJ/mole Toluene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$9O_2 + C_6H_5CH_3 \Rightarrow 7CO_{2,g} + 4H_2O$ Toluene oxidation /aerobic respiration	-913.76	-3823	3.13:1
$7.2 NO_3 + 7.2 H^+ + C_6 H_5 CH_3 \implies 7 CO_{2,g} + 7.6 H_2 O + 3.6 N_{2,g}$ Toluene oxidation / denitrification	-926.31	-3875	4.85:1
$4.5NO_3 + 9H^+ + 0.5H_2O + C_6H_5CH_3 \Rightarrow 7CO_2 + 4.5NH_4^+$ Toluene oxidation / nitrate reduction	-624.24	-2609	3.03:1
$72H^{+} + 36Fe(OH)_{3,a} + C_6H_5CH_3 \implies 7CO_2 + 36Fe^{2+} + 94H_2O$ $Toluene oxidation / iron reduction$	-667.21	-2792	21.86:1
$9H^{+} + 4.5SO_{4}^{2} + C_{6}H_{5}CH_{3} \Rightarrow 7CO_{2,g} + 4.5H_{2}S^{o} + 4H_{2}O$ Toluene oxidation / sulfate reduction	-142.86	-597.7	4.7:1
$6 N_2 + C_6 H_5 CH_3 + 12 H^+ + 14 H_2 O \Longrightarrow 7 CO_2 + 12 NH_4^+$ Toluene oxidation / nitrogen fixation	-121.0	-505.8	2.35:1
$5H_2O + C_6H_5CH_3 \implies 2.5CO_{2,g} + 4.5CH_4$ Toluene oxidation / methanogenesis	-34.08	-142.6	0.78:1

TABLE 7.3 (CONTINUED) COUPLED OXIDATION REACTIONS FOR BTEX COMPOUNDS BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

Coupled Ethylbenzene Oxidation reactions	ΔG°, (kcal/mole Ethyl- benzene)	ΔG°, (kJ/mole Ethyl- benzene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$10.5O_2 + C_6H_5C_2H_5 \Rightarrow 8CO_{2,8} + 5H_2O$ Ethylbenzene oxidation /aerobic respiration	-1066.13	-4461	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_5C_2H_5 \implies 8CO_{2,g} + 9.2H_2O + 4.2N_{2,g}$ Ethylbenzene oxidation / denitrification	-1080.76	-4522	4.92:1
$5.25NO_3^{-} + 10.5H^+ + 0.25H_2O + C_6H_5C_2H_5 \Rightarrow 8CO_2 + 5.25NH_4^+$ Ethylbenzene oxidation / nitrate reduction	-746.04	-3118	3.07:1
$\frac{84H^{+} + 42Fe(OH)_{3,a} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2} + 42Fe^{2+} + 110H_{2}O}{Ethylbenzene oxidation / iron reduction}$	-778.48	-3257	22:1
$10.5 H^{+} + 5.25 SO_{4}^{2-} + C_{6}H_{5}C_{2}H_{5} \Rightarrow 8CO_{2,g} + 5.25H_{2}S^{o} + 5H_{2}O$ Ethylbenzene oxidation / sulfate reduction	-166.75	-697.7	4.75:1
$7 N_2 + C_6 H_5 C_2 H_5 + 14 H^+ + 16 H_2 O \Longrightarrow 8 CO_2 + 14 N H_4^+$ Ethylbenzene oxidation / nitrogen fixation	-138.4	-578.5	2.38:1
$5.5 H_2 O + C_6 H_5 C_2 H_5 \implies 2.75 CO_{2,g} + 5.25 CH_4$ Ethylbenzene oxidation / methanogenesis	-39.83	-166.7	0.79:1

Coupled m-Xylene Oxidation Reactions	ΔG°_{r} (kcal/mole <i>m</i> -xylene)	ΔG°_{r} (kJ/mole <i>m</i> -xylene)	Stoichiometric Mass Ratio of Electron Acceptor/Byproduct to Compound
$10.5O_2 + C_6H_4(CH_3)_2 \implies 8CO_{2,8} + 5H_2O$ m-Xylene oxidation /aerobic respiration	-1063.25	-4448	3.17:1
$8.4NO_3 + 8.4H^+ + C_6H_4(CH_3)_2 \implies 8CO_{2,8} + 9.2H_2O + 4.2N_{2,8}$ m-Xylene oxidation / denitrification	-1077.81	-4509	4.92:1
$5.25NO_3^- + 10.5H^+ + 0.25H_2O + C_6H_4(CH_3)_2 \Rightarrow 8CO_2 + 5.25NH_4^+$ m-Xylene oxidation / nitrate reduction	-743.52	-3108	3.07:1
$\frac{84H^+ + 42Fe(OH)_{3,a} + C_6H_4(CH_3)_2}{m-Xylene \text{ oxidation / iron reduction}} \Rightarrow 8CO_2 + 42Fe^{2+} + 110H_2O$	-775.61	-3245	22:1
$10.5 H^+ + 5.25 SO_4^2 + C_6 H_4 (CH_3)_2 \implies 8 CO_{2,8} + 5.25 H_2 S^\circ + 5 H_2 O$ m-Xylene oxidation / sulfate reduction	-163.87	-685.6	4.75:1
$7 N_2 + C_6 H_4 (CH_3)_2 + 14 H^+ + 16 H_2 O \Longrightarrow 8 CO_2 + 14 NH_4^+$ m-Xylene oxidation / nitrogen fixation	-141.3	-590.6	2.38:1
$5.5 H_2 O + C_6 H_4 (CH_3)_2 \Rightarrow 2.75 CO_{2,8} + 5.25 CH_4$ m-Xylene oxidation / methanogenesis	-36.95	-154.6	0.79:1

SUMMARY OF GROUNDWATER GEOCHEMICAL DATA BX Service Station, Area of Concern A (ST-06) Biloxi, Mississippi **Keesler AFB TABLE 7.4**

					Š	ample Locat	Sample Location and Date	te			
		MW8-1	MW8-3	MW8-4	MW8-5	MWA-6		MWA-10B	MWA-11	MWA-13	MWA-14
		20-Feb-98 20-	20-Feb-98	20-Feb-98	20-Feb-98	19-Feb-98	19-Feb-98	20-Feb-98	19-Feb-98	19-Feb-98	19-Feb-98
Analyte	Units										
Ferrous Iron	mg/L	0.09	1.11	0.05	0.33	1.46	0.23	4.14	0.47	1.50	NM
Manganese	mg/L	.33U	.33U	.33U	.33U	.33U	.33U	.33U	.33U	.33U	NM
Sulfate	mg/L	17.00	4.79	2.11	3.80	30.11	13.66	7.38	38.50	27.64	MM
Sulfide	mg/L	0.235	1.140	1.625	2.800	0.118	0.590	0.027	2.025	0.066	NM
Alkalinity	mg/L	74	228	164	32	30	72	207	52	78	NM
Ammonia-N	mg/L	0.6	2	3	2	0.8	0.4	0.8	2	0.4	MM
Methane	mg/L	0.062	1.1	4.7	4.9	NM	0.078	0.0031	0.750	MN	NM
Nitrate-N	mg/L	1.21J	0.14J	0.5U	0.5U	MN	0.65	0.65	0.5U	MN	NM
Temperature	Deg C	20.4	20.2	20.4	23.0	19.9	22.0	19.3	22.7	20.2	23.4
Hd	NS	5.88	6.26	6.17	5.51	5.71	6.17	6.68	6.31	6.01	5.56
Conductivity	μS/cm	219	450	325	86	189	200	405	180	210	70
Dissolved Oxygen	mg/L	0.33	0.26	0.04	0.16	0.30	0.41	1.48	0.24	0.29	0.20
ORP	мV	-184.0	-259.6	-280.0	-232.0	-134.0	-204.0	-136.5	-264.9	-172.9	-244.0
Notes:											

Notes:

Methane and Nitrate analysis performed by Quanterra Laboratories of Arvada, Colorado; all other analyses performed in the field.

J1 = The analyte was positively identified and has a concentration between the method detection limit and the reporting limit.

U = The analyte was analyzed for and is not present above the reporting limit.

ORP = oxidation reduction potential

mg/L = milligrams per Liter

 $\mu S/cm = microsiemen per centimeter$ mV = millivolt

SU = Standard Units

I:\KEE-AOCA\REPORT\TABLES\Geochem.xis

NM = not measured

Deg C = degrees Celcius

ESTIMATED ASSIMILATIVE CAPACITY OF BX Service Station, Area of Concern A (ST-06) SATURATED SOIL AND GROUNDWATER Keesler AFB **TABLE 7.5**

Biloxi, Mississippi

Electron Acceptor or	Background	Concentration in	Mass Ratio	BTEX
Metabolic Byproduct	Concentration	Core of Plume	of Electron Acceptor/	Assimilative
			Byproduct to BTEX	Capacity ^{a/}
	(mg/L) ^{b/}	(mg/L)	(unitless)	(mg/L)
Oxygen	0.70	0.04	3.14	0.21
Ferrous Iron	NA ^{c/}	1.11	21.8	0.05
Sulfate	18.16	2.11	4.7	3.41
Ammonia ^{d/}	0.90	3.87	2.36	1.26
Methane	NA	4.90	0.78	6.28
	Total			11.22
	Max. 1998 Concentration	u		22.40

^{a/} Calculation based on the ratio of the total mass of electron acceptor required to oxidize a given mass of BTEX.

 b^{V} mg/L = milligrams per liter.

 e^{t} NA = Not Applicable.

^{d'} Concentration of ammonia = concentration of ammonia reported as N x 1.29 to convert to ammonia as NH₄.

I:\KEE-AOCA\REPORT\TABLES\Asm-cpty.xis

TABLE 7.6 RETARDATION COEFFICIENT CALCULATION BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

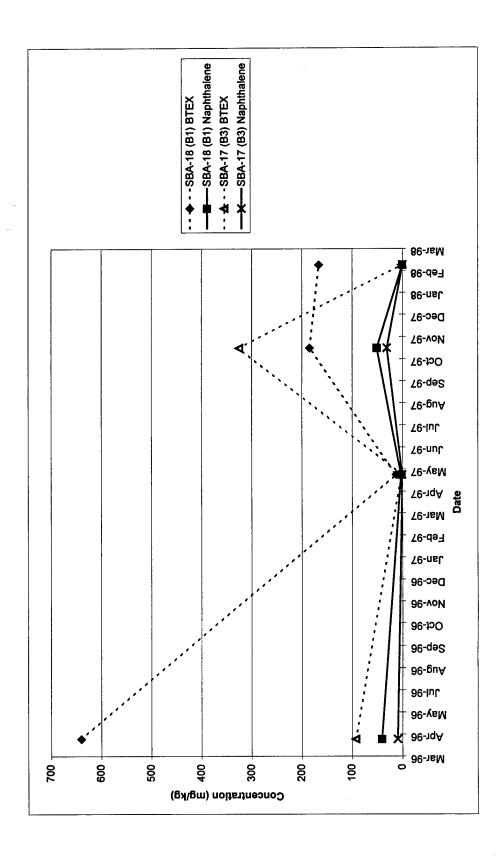
		Average				
		Fraction	Fraction Distribution Coefficient	Bulk		
-	K	Organic	K _d (L/kg)	Density	Effective	Coefficient of
Compound	(L/kg *)	(L/kg ^{a/}) Carbon ^{b/}	Average ^{c/}	(kg/L) ^{d/}	Porosity e	Retardation
Benzene	6L	0.0017	0.1343	1.7	0.25	16.1
Toluene	190	0.0017	0.323	1.7	0.25	3.20
Ethylbenzene	468	0.0017	0.7956	1.7	0.25	6.41
m-xylene	405	0.0017	0.6885	1.7	0.25	5.68
o-xylene	422	0.0017	0.7174	1.7	0.25	5.88
p-xylene	357	0.0017	0.6069	1.7	0.25	5.13
Average ^{t/}						4.27

Notes:

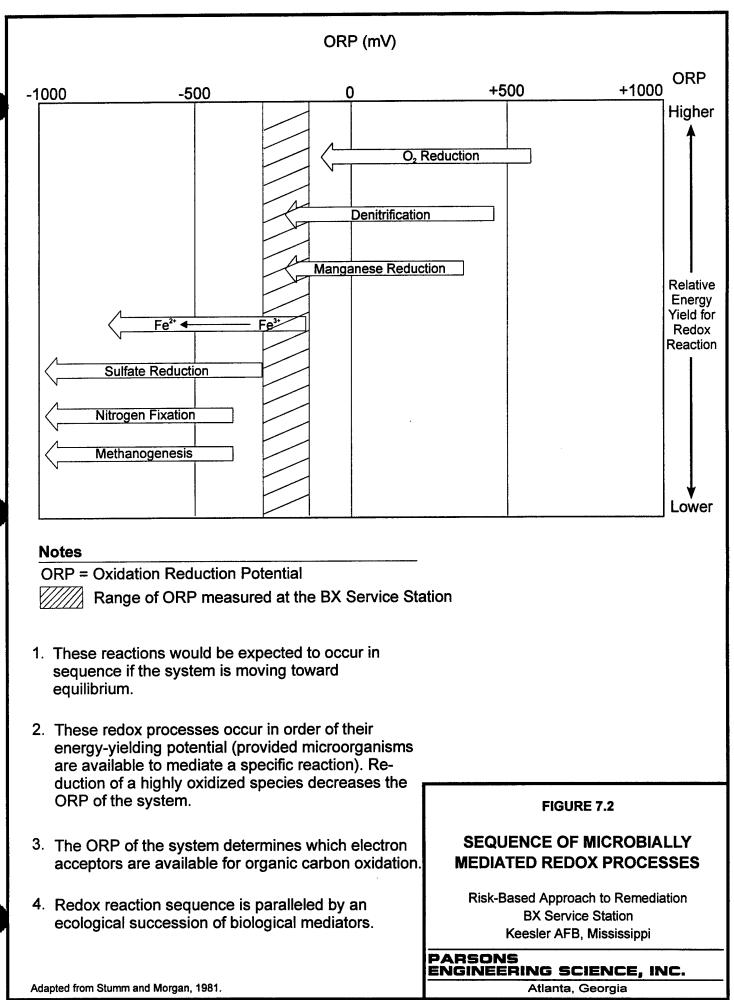
* From technical protocol (Wiedemeier et al., 1996)

^{b/} From laboratory analyses of site soil samples

 $^{o'}$ K_d = Average Fraction Organic Carbon x K_{oc}


^{d/} Estimated Value

e' Estimated Value


 $^{\prime\prime}$ Average is the average of benzene, toluene, ethylbenzene, and total xylenes

I:\KEE-AOCA\REPORT\TABLES\Retard.xis

FIGURE 7.1 HISTORICAL COMPARISON OF SOIL ANALYTICAL DATA BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

I:\KEE-AOCA\REPORT\TABLES\Soilhis.xls\graph

SECTION 8 LONG-TERM MONITORING PLAN

8.1 OVERVIEW

At the BX Service Station, a long-term monitoring (LTM) plan that combines three tasks is recommended. These tasks include 1) performance monitoring; 2) institutional controls; and 3) long-term managed care. A full scale LTM plan including a Sampling and Analysis Plan (SAP) and a Health and Safety Plan (HSP) should be developed before these tasks are implemented.

8.2 PERFORMANCE MONITORING

The objectives of the performance monitoring are as follows:

- Demonstrate that natural attenuation is occurring according to expectations;
- Determine if the dissolved plume is expanding (either downgradient, laterally or vertically);
- Ensure no impact to downgradient receptors;
- Detect new releases of contaminants to the environment that could impact the effectiveness of the natural attenuation remedy;
- Demonstrate the efficacy of institutional controls that were put in place to protect potential receptors; and
- Detect changes in environmental conditions that may reduce the efficacy of any of the natural attenuation processes (USEPA, 1997).

The performance monitoring task of the LTM plan consists of identifying groundwater sampling locations and developing a sampling and analysis strategy. In the event that data collected under this LTM program indicate that RNA is insufficient to be protective of human health and the environment, additional engineered controls to augment the beneficial effects of RNA may be necessary. A site-specific groundwater SAP should be prepared prior to initiating the LTM program.

8.2.1 Performance Monitoring Wells

A total of 9 monitoring wells should be included in the LTM program. These wells include MW8-1, MW8-3, MW8-4, MW8-5, MWA-7, MWA-8, MWA-9, MWA-11, and MWA-13. The wells include four wells without hydrocarbon concentrations (one upgradient and three downgradient) and five wells with historical hydrocarbon concentrations (Figure 2.1 and Table 7.2).

8.2.2 Sampling Duration and Frequency

As discussed in Section 7.7, groundwater contaminant levels are below the required cleanup levels as long as land utilization does not change. Typically, groundwater monitoring is continued after cleanup levels have been achieved to ensure that concentration levels are stable and remain below target levels (USEPA, 1997). Five years of groundwater monitoring is recommended to accomplish this objective.

Monitoring should occur quarterly for the first year and annually for the second through fifth years.

8.2.3 Analytical Protocol

All performance monitoring wells will be sampled and analyzed to verify the effectiveness of naturally-occurring remediation processes at the site. At the beginning of each sampling event, water levels should be measured in all site monitoring wells. Groundwater samples collected from the performance monitoring wells should be analyzed for the parameters listed in Table 8.1. Any changes to the analytical protocol, such as the addition of MTBE, will be addressed in the SAP.

8.3 INSTITUTIONAL CONTROLS

As discussed in Section 7.7, institutional controls need to be implemented at the BX Service Station to ensure protectiveness of human health and the environment. Appropriate land use controls will be determined by the Base LUCAP and site-specific LUCIP. These plans will be reviewed by the USEPA and MDEQ prior to implementation of the LTM plan.

8.4 LONG-TERM MANAGED CARE

If the five-year monitoring period confirms that contamination has remained below target cleanup levels, performance monitoring and source removal system operation would cease and the site would be placed in an inactive (but managed) status. Groundwater monitoring would be resumed if land use and/or ownership at the site changed (e.g. became residential). Implementation of this alternative would require that the site remain administratively "on the books" during the inactive period so that the proper institutional controls were enforced (e.g. restriction of water withdrawal points from the shallow aquifer) and the appropriate personnel remained aware of the site's status.

TABLE 8.1 LONG-TERM GROUNDWATER MONITORING ANALYTICAL PROTOCOL BX Service Station, Area of Concern A (ST-06) Keesler AFB Biloxi, Mississippi

				Recommended	Sample Volume, Sample	Field or
				Frequency of Analysis	Container, Sample Preservation	Fixed-Base
Analyte	Method/Reference	Comments	Data Use			Laboratory
Ferrous Iron	Colorimetric	Filter if turbid	May indicate an anaerobic	Each sampling event	Collect 100 mL of water in a glass	Field
(Fe^{2+})	A3500-Fe D or Hach		degradation process due to the		container; for Method A3500-FeD,	
	25140-25		depletion of oxygen, nitrate, and		acidify with hydrochloric acid per	
			manganese		method	
Temperature	E170.1, direct-reading	Measure at well-	Purging adequacy; metabolism rates	Each sampling event	Measure at well-head using a flow-	Field
I	meter	head	for microorganisms depend on		through cell	
			temperature			
Dissolved	Dissolved oxygen	Measure at well-	Purging adequacy; concentrations	Each sampling event	Measure at well-head using a flow-	Field
Oxygen	meter	head; refer to	less than 1 mg/L generally indicate		through cell	
		Method A4500	an anaerobic pathway			
		for a comparable				
		laboratory procedure				
pH	E150.1/SW9040,	Measure at well-	Purging adequacy; aerobic and	Each sampling event	Measure at well-head using a flow-	Field
	direct-reading meter	head	anaerobic processes are pH-sensitive		through cell	
Conductivity	E120.1/SW9050,	Measure at well-	General water quality parameter	Each sampling event	Collect 100-250 mL of water in a	Field
	direct-reading meter	head	used as a marker to verify that site		glass or plastic container or measure	
			samples are obtained from the same		at wellhead using flow-through cell	
			groundwater system			
Ammonia	CHEMetrics Method	Filter if turbid	Most reduced form of mitrogen;	Each sampling event	Collect 100 mL of water in a glass	Field
(NH ₃)	1510, ASTM 4500:		metabolic byproduct of anaerobic		or plastic container	
1	NH3		microbial respiration			

TABLE 8.1 (Continued) LONG-TERM GROUNDWATER MONITORING ANALYTICAL PROTOCOL BX Service Station, Area of Concern A (ST-06) Biloxi, Mississippi Keesler AFB

		ç		Recommended Frequency of Analysis	Sample Volume, Sample Container, Sample Preservation	Field or Fixed-Base
Analyte	Method/Reference	COMMENTS	Data Use			Labor awry
Sulfate (SO4 ²)	IC method E300 or method SW9056 or Hach SulfaVer 4 method	Method E300 is a Handbook method; method SW9056 is an equivalent procedure. Hach method is Photometric	Substrate for anaerobic microbial respiration	Each sampling event	Collect up to 40 mL of water in a glass or plastic container; cool to 4°C	Fixed-base or field (for Hach method)
Oxidation- Reduction Potential (ORP)	A2580 B, direct- reading meter	Measurements are made with electrodes; results are displayed on a meter; samples should be protected from exposure to atmospheric oxygen	The redox potential of groundwater influences and is influenced by biologically mediated reactions; the redox potential of groundwater may range from more than 200 mV to less than -400 mV	Each sampling event	Measure at well-head using a flow- through cell	Field
Methane	RSKSOP-114 modified to analyze water samples for methane by headspace sampling with dual thermal conductivity and flame ionization detection.	Method published and used by the USEPA National Risk Management Research Laboratory	The presence of methane indicates the presence of sufficiently reducing conditons for reductive dehalogenation to occur	Each sampling event	Collect water samples in 40 mL volatile organic analysis (VOA) vials with butyl gray/Teflon-lined caps (zero headspace); cool to 4°C	Fixed-base
Aromatic Volatile Organics	GC method SW8021B	Replaces Method SW8020	Measured for regulatory compliance. BTEX is the primary target analyte for monitoring natural attenuation.	Each sampling event	Collect water samples in a 40 mL VOA vial; cool to 4°C; add hydrochloric acid to pH < 2	Fixed-base

Notes:

a/ Handbook refers to the AFCEE (1993) "Handbook for the Installation Restoration Program (IRP) Remedial Investigations and Feasibility Studies (RI/FS)."

I:\KEE-AOCA\REPORT\TABLES\LTM-PLAN.DOC

SECTION 9 REFERENCES

- American Society for Testing and Materials (ASTM). 1995. Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites.
- Battelle-Columbus, Inc. 1995, Final Report on Field Treatablility Study for Keesler AFB, MS.
- BCM, Inc. 1996, Well Assessment Report, Long Term Monitoring Program, Keesler AFB, Biloxi, Mississippi.
- Borden, R.C., 1994. Natural Bioremediation of Hydrocarbon-Contaminated Ground Water, Handbook of Remediation, Lewis Publishers, Boca Raton, Fl/
- Bouwer, H., 1989, The Bouwer and Rice slug test an update: Ground Water, 27(3), p. 304-309.
- Bouwer, H., and Rice, R.C., 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, 12(3), p. 423-428.
- Brown, G.F., Foster, V.M., Adams, R.W., Reed, E.W., and Padgett, H.D., 1944. Geology and Ground Water Resources of the Coastal Area in Mississippi. Mississippi State Geological Survey Bulletin 60.
- Chapelle, F.H., 1993, Ground-water Microbiology and Geochemistry. John Wiley and Sons, Inc., New York, NY.
- Chapelle, F.H., 1994, Assessing the Efficiency of Intrinsic Bioremediation, in Proceedings of the Symposium on Intrinsic Bioremediation of Ground Water, August 30 - September 1, 1994: US Environmental Protection Agency, p. 171.
- Engineering-Science, Inc. (ES), 1994. Air Force Installation Restoration Program, Keesler Air Force Base, Mississippi, Draft RCRA Facility Investigation/CERCLA Remedial Investigation Group 1 Sites. Engineering-Science, Inc., July 1994.
- Environmental Science and Engineering, 1991. Installation Restoration Program Final Site Characterization Report, Keesler AFB, Mississippi, Prepared for U.S. Air Force HQ ATC/DEEV, Randolph AFB, Texas and HSD/YAQ Brooks AFB, Texas. Gainesville, Florida.
- Grbic'-Galic', D., 1990, Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface, and freshwater sediments, In: Bollag, J.M., and Stotzky, G., eds.: Soil Biochemistry: Marcel Dekker, Inc., New York, NY. p. 117-189.
- Kearney, AT. Inc. and Pope Reid Associates, Inc., 1987. RCRA Facility Assessment Report, Keesler AFB, Mississippi. Prepared for U.S. EPA Region IV, Atlanta, Georgia, September, 1987.

- Lovley, D.R., and Phillips, E.J.P., 1988, Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese: Applied and Environmental Microbiology, v. 54, no. 6, p. 1472 - 1480.
- Lovley, D.R., Phillips, E.J.P., and Lonergan, D.J., 1991, Enzymatic versus nonenzymatic mechanisms for Fe(III) reduction in aquatic sediments: Environmental Science and Technology, v. 26, no. 6, p. 1062 1067.
- MDEO, 1993. Underground Storage Tank Typical Cleanup Levels, Jackson, Mississippi.
- MDEO, 1996. Tier 1 Site Specific Target Levels, Jackson, Mississippi.
- NIOSH, 1997. Pocket Guide to Chemical Hazards. U.S. Department of Health and Human Services.
- Parsons ES. 1997a. Sampling and Analysis Plan.
- Parsons ES. 1997b. Final Work Plan for the Risk-Based Investigation and Closure of the Base Exchange Service Station, Area of Concern A (ST-06).
- Parsons ES, 1998. Air Force Installation Restoration Program, Keesler Air Force Base, Mississippi, Draft Final RCRA Facility Investigation/CERCLA Remedial Investigation Group 1 Sites.
- Stumm, W. and Morgan, J.J., 1981, Aquatic Chemistry. John Wiley & Sons, New York, NY.
- USEPA, 1994a. USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review. EPA 540/R-94/012.
- USEPA, 1994b. USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. EPA 540/R-94/013.
- USEPA, 1994c. Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities.
- USEPA, 1994d. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model for Lead in Children. Office of Emergency and Remedial Response. EPA 540-R-93-081.
- USEPA, 1996. Drinking Water Regulations and Health Advisories, Office of Water, October.
- USEPA, 1997a. Exposure Factors Handbook. Volume I. General Factors. EPA/600/P-95/002Fa. August 1997.
- USEPA, 1997b. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites, Interim Final, Office of Solid Waste and Emergency Response. December 1. Directive Number 9200.4-17.
- USEPA, undated. Memorandum from EPA Region 4 Federal Facilities Branch, Assuring Land Use Controls at Federal Facilities.
- Wasatch Environmental Inc. (WEI). 1997, Draft Final Report, DDC In-Well Aeration Technology Demonstration, Keesler AFB, Biloxi, Mississippi.

Wiedemeier, Todd H., et al. 1995. Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater. Revision 0. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

APPENDIX A LABORATORY ANALYTICAL DATA SHEETS AND CHAIN-OF-CUSTODY RECORDS FROM FEBRUARY 1998 SAMPLING EVENT

FOXICS 1 $w_{\mathbf{A}}$ \mathbf{R}

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9802265

٩

Work Order Summary

CLIENT:	Mr. Doug Downey Parsons Engineering Science 1700 Broadway, Suite 900 Denyer, CO 80290	BILL TO): Same
PHONE: FAX: DATE RECEIVED: DATE COMPLETED:	303-831-8100 303-831-8208 2/23/98 3/20/98		# 731854.06 # 731854.06 SRBIC KEESLER
FRACTION # 01A 02A 03A 04A 05A	NAME SG-1 SG-2 SG-3 Method Spike Lab Blank	<u>TEST</u> TO-3 TO-3 TO-3 TO-3 TO-3	RECEIPT VAC./PRES. 0.4 psi 0.4 psi 0.4 psi NA NA

LAB NARRATIVE: The second source recoveries for benzene, toluene, ethyl benzene and total xylenes exceeded the project specific QAPP requirements of +/- 15%. The recoveries ranged from 121 - 125%.

CERTIFIED BY: Laboratory Director

DATE: 4-13-98

Certification numbers: CA ELAP - 1149, NY ELAP - 11291, UT ELAP - E-217

180 BLUE FIAVINE ROAD, SUITE B FOLSOM, CA 95630 (916) 985-1000 • (800) 985-5955 • FAX (916) 985-1020

AIR TOXICS LTD. SAMPLE NAME: SG-1

ID#: 9802265-01A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name:	6022423 3.94		Date of Collection: Date of Analysis:	1. A.
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.0039	0.013	Not Detected	Not Detected
Toluene	0.0039	0.015	0.006 M	0.023 M
Ethyl Benzene	0.0039	0.017	0.020	0.088
Total Xylenes	0.0039	0.017	0.041	0.18

	hod Limits
Surroaste	
Surrogate	
	50-150
Fluorobenzene	

TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Gasoline)

File Name: 6022 Dil. Factor:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date of Collection: Date of Analysis:	1. a
a na	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	0.039	0.16	0.043	0.18
C2 - C4** Hydrocarbons	0.039	0.072	1.9	3.5

*TPH referenced to Gasoline (MW=100)

**C2 - C4 Hydrocarbons referenced to Propane (MW=44)

% Recovery
Surrogate <u>% Recovery</u>
Eluorobenzene 50-150
Fluorobenzene

M = Reported value may be biased due to apparent matrix interferences.

Q = Exceeds Quality Control limits of 50% to 150%.

Container Type: 1 Liter Summa Canister

٩

SAMPLE NAME: SG-2 ID#: 9802265-02A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

Dil. Factor: 3.	.94		Date of Analysis:	3/24/98
an an an Antonio ann an Anna an	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.0039	0.013	Not Detected	Not Detected
Toluene	0.0039	0.015	Not Detected	Not Detected
Ethyl Benzene	0.0039	0.017	Not Detected	Not Detected
Total Xylenes	0.0039	0.017	Not Detected	Not Detected

Surrogate	and the second	<u>% Recovery</u>	Method Limits
Fluorobenzene		32 Q	 50-150

TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Gasoline)

File Name:6022425Dil. Factor:3.94Date of Analysis:3/24/98					
	Rpt. Limit	Rpt. Limit	Amount	Amount	
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)	
TPH* (C5+ Hydrocarbons)	0.039	0.16	0.051	0.21	
C2 - C4** Hydrocarbons	0.039	0.072	0.16	0.29	

*TPH referenced to Gasoline (MW=100)

.

**C2 - C4 Hydrocarbons referenced to Propane (MW=44)

Surrogate	% Recovery		Method Limits
Fluorobenzene	110	a de la companya de Companya de la companya de la company Companya de la companya de la company	50-150

Q = Exceeds Quality Control limits of 50% to 150%, due to matrix effects.

Container Type: 1 Liter Summa Canister

٠

SAMPLE NAME: SG-3 ID#: 9802265-03A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: Dil. Factor:	6022424 3.94		Date of Collection: Date of Analysis:	
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.0039	0.013	Not Detected	Not Detected
Toluene	0.0039	0.015	Not Detected	Not Detected
Ethyl Benzene	0.0039	0.017	0.004	0.018
Total Xylenes	0.0039	0.017	Not Detected	Not Detected

Surrogate % Recover	ery	Method Limits
Fluorobenzene 32 Q		50-150

TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Gasoline)

	2424	Date of Collection: NA Date of Analysis: 3/24/98		
Dil. Factor:	3.94			
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	0.039	0.16	Not Detected	Not Detected
C2 - C4** Hydrocarbons	0.039	0.072	0.18	0.33

*TPH referenced to Gasoline (MW=100)

**C2 - C4 Hydrocarbons referenced to Propane (MW=44)

ション・ション アメリカ ション・グライト 人間 たいしょう たいしょう たいしょう たいしょう しょうしょう		그는 것 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은
• A structure to the set of th	% Recovery	/ Method Limits
Surrogate	~% Recoverv	A MELIOU LINIS MALE AND A MELIOU LINIS
Antis and a second s		• An analysis of the second s second second se second second s
그는 것 같은 것 같		그는 것 것 같아? 것 같은 것 같아요. 것 것 같아요. 것 것 같아요. 것 것 같아요. 귀엽 가 같아요. 그는 것 같아요. 그 그는 것 같아요. 그는 그는 요. 그는 그는 요. 그는 그는 것 ? 그는 그는 요. 그는 그는 그는 요. 그는 요. 그는 그
Fluorobenzene	104	5 0-15 0
Fluorobenzene		그는 것 것 같아요. 그는 것 같아요. 가지 않는 것 같아요. 가지 않는 것 같아요. 정말 것 같아요. 정말 것 같아요. 정말 것 같아요. ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
		(1) The second s Second second s Second second s Second second second Second second sec

Q = Exceeds Quality Control limits of 50% to 150%, due to matrix effects.

Container Type: 1 Liter Summa Canister

SAMPLE NAME: Method Spike ID#: 9802265-04A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name: Dil. Factor:	6022411 1.00		Date of Collection: NA Date of Analysis: 3/24/98
Dil. Factor.	Rpt. Limit	Rpt. Limit	
Compound	(ppmv)	(uG/L)	% Recovery
Benzene	0.001	0.003	125
Toluene	0.001	0.004	121
Ethyl Benzene	0.001	0.004	123
Total Xylenes	0.001	0.004	122

Elucobenzene 121 50-150	Surrogate	<u>% Recov</u>	<u>very</u>	Method Limits
	Fluorobenzene			50-150

TOTAL PETROLEUM HYDROCARBONS
GC/FID
(Quantitated as Gasoline)

File Name: 50 Dil. Factor:	022411 1.00		Date of Collection: NA Date of Analysis: 3/24/98
	Rpt. Limit	Rpt. Limit	
Compound	(ppmv)	(uG/L)	% Recovery
TPH* (C5+ Hydrocarbons)	0.010	0.042	81
C2 - C4** Hydrocarbons	0.010	0.018	81

*TPH referenced to Gasoline (MW=100)

**C2 - C4 Hydrocarbons referenced to Propane (MW=44)

Surrogate <u>% Recovery</u> <u>Method Limits</u> Fluorobenzene 120 50-150	
	868888 Second

Container Type: NA

•

•

SAMPLE NAME: Lab Blank ID#: 9802265-05A

EPA METHOD TO-3

(Aromatic Volatile Organics in Air)

GC/PID

File Name:	6022416		Date of Collection: Date of Analysis: 3	
Dil. Factor:	1.00 Rpt. Limit	Rpt. Limit	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected

Currente.	<u>% Recovery Method Limits</u>
Surrogate	<u>Je necovery</u>
Fluorobenzene	112 50-150
Fluorodenzene	114 CO 100

TOTAL PETROLEUM HYDROCARBONS GC/FID (Quantitated as Gasoline)

File Name: 602241 Dil. Factor: 1.0			Date of Collection: Date of Analysis: 3	
	Rpt. Limit	Rpt. Limit	Amount	Amount
Compound.	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH* (C5+ Hydrocarbons)	0.010	0.042	Not Detected	Not Detected
C2 - C4** Hydrocarbons	0.010	0.018	Not Detected	Not Detected

*TPH referenced to Gasoline (MW=100)

**C2 - C4 Hydrocarbons referenced to Propane (MW=44)

Surrogate <u>% Recovery</u> <u>Method Limits</u>
Fluorobenzene 112 Su-130

Container Type: NA

٩

ها:

Quanterra Incorporated 4955 Yarrow Street Arvada, Colorado 80002

303 421-6611 Telephone 303 431-7171 Fax

ANALYTICAL RESULTS FOR PARSONS ENGINEERING SCIENCE, INC.

ŧ,

QUANTERRA INCORPORATED, DENVER PROJECT NUMBER 059173

MARCH 21, 1998

Written by:

Ellen La Riviere, Program Manager

Table Of Contents

Standard Deliverables With Supporting Documentation

Report Contents	Section	Number Of Pages
Standard Deliverables Introduction	A	103
• Table of Contents		
• Narrative		
LIMs Report Key		
Sample Description		
 Test Requests 		
 Analytical Results 		

• QC Summary

- Chain-of-Custody
- Miscellaneous

Supporting Documentation

[Please Note: A one-page "Description of Supporting Documentation" is provided in the Supporting Documentation section(s).]

Volatile GC/MS	В	
Semivolatile GC/MS	С	
Volatile GC	D	396
Semivolatile GC	E	62
LC/MS or HPLC	F	431
Metals	G	48
General Chemistry	H	35
Subcontracted Data	I	64

Overview

On February 20, 1998, Quanterra Incorporated; Denver Laboratory received twelve soil samples and seven aqueous samples from Parsons Engineering Science, Inc.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

Overview Sample Description Information/Analytical Test Requests Analytical Results Quality Control Report

Aromatic Volatile Organics Data Review

Each sample was analyzed to achieve the lowest possible reporting limits within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration range of the instrument, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilutions required. Quanterra samples 059173-0007-SA, -0012-SA, -0013-SA, -0014-SA and -0018-SA were analyzed at dilutions for Method 8020A due to the concentration of target compounds present in the samples. Samples 059173-0009-SA, -0010-SA and -0011-SA were analyzed at dilutions for non-target compounds in the samples. As a result of the dilutions required, the surrogates were diluted to less than detectable concentrations in samples 059173-0007-SA, -0011-SA and -0012-SA.

Extractable Petroleum Hydrocarbons Data Review

Sample 059173-0007-SA was analyzed at a dilution for Method 8015M, reported as diesel range organics, due to the concentration of target compounds in the samples. The reporting limit has been adjusted accordingly. As a result of the dilution required, the surrogates were diluted to less than detectable concentrations in this sample.

Polynuclear Aromatic Hydrocarbons Data Review

Sample 059173-0012-SA was analyzed at a dilution for Naphthalene by Method 8310 due to the concentration of the target compound present in the sample. The reporting limits have been raised relative to the dilutions required.

Metals Data Review

For matrix spike analyses, the project specific quality control results contain the analytical results form both analyses along with the spike level and percent recovery. The percent recovery calculation is not performed if the spike level is less than or equal to 25 percent of the value of the sample. The percent

recovery and relative percent difference (RPD) are reported as not calculated for lead due to the concentration of that analyte in the sample.

Methane Data Review

Analyses for methane by RSK-175 were performed by Quanterra's Austin laboratory.

Samples 059173-0013-SA and -0014-SA were analyzed at dilutions for methane due to the concentration of the target analyte present in the samples. The reporting limits have been raised relative to the dilutions required.

With the above noted exception, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory quality control samples analyzed in conjunction with the samples in this project were within established control limits.

Footnotes and Data Qualifiers

The data sheets contained in this report may contain a variety of footnotes and data qualifiers. Some footnotes are used with specific tests; for example, footnotes used with the GC/FID Petroleum Hydrocarbon methods to indicate (in the analyst's judgment) the product that appears to be present. Finally, there are a number of general qualifiers that serve to identify problems and pertinent observations made during sample analysis that may not be discussed in the Overview. These are described below:

B Compound is also detected in the blank. The indicated compound was detected in the sample as well as the method blank. Please note that the B flag is not used when the sample result is ND (Not Detected).

G Reporting limit raised due to the matrix of the sample. Indicates that reporting limits were raised due to the presence of non-target compounds or other matrix interferences. The sample may or may not have been diluted. For inorganic methods, the footnote applies only to the flagged analyte. For organic methods, the footnote pertains to all analytes determined by the method.

- J Result is detected below the reporting limit or is an estimated concentration. Most commonly, a "J" value indicates that the reported result for the analyte is below the stated reporting limit and is an estimated value. "J" values are applied to organic analytes detected above the MDL but below the reporting limit and for inorganic analytes detected above the IDL but below the reporting limit. Analytes which are not detected at or below the reporting limit are reported as "ND" and do not have "J" flags. Because "J" values may represent false positive concentrations, care should be used when interpreting these data. If there is uncertainty about the quantitation of an analyte such as due to metals serial dilution failure, this footnote may also indicate that a reported result is an estimated concentration, even if it is above the reporting limit.
- N Spiked sample recovery not within limits. This qualifier is applied to the parent sample when MS/MSD recoveries are not within acceptable limits.
- r This footnote is analyst defined. The data sheets will list "r" footnotes with consecutive numbers. The electronic data deliverable will show "r" data qualifiers. Please see datasheet for exact definition.

LIMs Report Key

٩

Section	Description
Cover Letter	Signature page, report narrative as applicable.
	Tabulated cross-reference between the Lab ID and
Sample Description Information	Client ID, including matrix, date and time sampled,
	and the date received for all samples in the project.
	Lists sample results, test components, reporting
Sample Analysis Results Sheets	limits, dates prepared and analyzed, and any data qualifiers. Pages are organized by test.
	Cross-reference between lab IDs and applicable QC
QC LOT Assignment Report	batches (DCS, LCS, Blank, MS/SD, DU)
	Percent recovery and RPD results, with acceptance
	limits, for the laboratory duplicate control samples
Duplicate Control Sample Report	for each test are tabulated in this report. These are
	measures of accuracy and precision for each test.
	Acceptance limits are based upon laboratory
	historical data.
	Percent recovery results for a single Laboratory
Laboratory Control Sample Report	Control Sample (if applicable) are tabulated in this report, with the applicable acceptance limits for
	each test.
	Percent recovery and RPD results for matrix-
Matrix Spike/Matrix Spike Duplicate Report	specific QC samples and acceptance limits, where
Main Spike Main Spike Duphone Report	applicable. This report can be used to assess matrix
	effects on an analysis.
Single Control Sample Report	A tabulation of the surrogate recoveries for the
	blank for organic analyses.
Method Blank Report	A summary of the results of the analysis of the
-	method blank for each test.

List of Abbreviations and Terms

Abbreviation	Term	Abbreviation	Term
DCS	Duplicate Control Sample	MSD	Matrix Spike Duplicate
DU	Sample Duplicate	QC Run	Preparation Batch
EB	Equipment Blank	QC Category	LIMs QC Category
FB	Field Blank	QC Lot	DCS Batch
FD	Field Duplicate	ND	Not Detected at or above the reporting limit expressed
IDL	Instrument Detection Limit (Metals)	QC Matrix	Matrix of the laboratory control sample(s)
LCS	Laboratory Control Sample	RL	Reporting Limit
MB	Method Blank	QC	Quality Control
MDL	Method Detection Limit	SA	Sample
MS	Matrix Spike	SD	Spike Duplicate
RPD	Relative Percent Difference	TB	Trip Blank
ppm (part-per- million)	mg/L or mg/kg (usually)	ppb (part-per- billion)	ug/L or ug/kg (usually)
QUAL	Qualifier flag	DIL	Dilution Factor

.

SAMPLE DESCRIPTION INFORMATION for Parsons Engineering Science

۰

Lab ID	Client ID
059173-0001-SA 059173-0002-SA 059173-0003-SA 059173-0004-SA 059173-0005-SA 059173-0005-SA 059173-0007-SA 059173-0009-SA 059173-0009-SA 059173-0009-SD 059173-0010-SA 059173-0012-SA 059173-0012-SA 059173-0013-SA 059173-0015-SA 059173-0015-SA 059173-0016-SA 059173-0018-SA 059173-0018-SA	<pre>SBA-14 (7.00-8.00) SBA-14 (9.00-11.00) SBA-15 (9.00-10.00) SBA-16 (9.00-10.00) SBA-16 (11.00-12.00) SBA-17 (9.50,10.50) SBA-19 (6.50,8.00) SBA-19 (6.50,8.00) SBA-19 (8.50,10.00) SBA-19 (8.50,10.00) SBA-19 (8.50,10.00) SBA-20 (6.00-7.00) SBA-20 (6.00-7.00) SBA-20 (9.50,10.50) TW-11 (0.00,0.00) MWA-11 (0.00,0.00) MWA-13 (0.00,0.00) MWA-9 (0.00,0.00) TRIP BLANK (0.00,0.00) MWA-14 (0.00,0.00)</pre>

Matrix	Sampled Date Time	Received Date
SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	17 FEB 98 11:15 17 FEB 98 17:00 18 FEB 98 07:20 18 FEB 98 08:40 18 FEB 98 08:40 18 FEB 98 09:40 18 FEB 98 10:30 18 FEB 98 13:15 18 FEB 98 13:16 18 FEB 98 13:16 18 FEB 98 13:16 18 FEB 98 13:16 18 FEB 98 13:45 18 FEB 98 13:45 18 FEB 98 13:45 18 FEB 98 13:53 19 FEB 98 09:40 19 FEB 98 09:40 19 FEB 98 11:50 19 FEB 98 15:05 19 FEB 98 15:05 19 FEB 98 15:05	20 FEB 98 20 <td< td=""></td<>

ANALYTICAL TEST REQUESTS for Parsons Engineering Science

--

.

٩

Page 1 of 3

Lab ID: 059173	Group Code	Analysis Description	Custom Test?
0013 - 0014, 0016	A	Method EPA-9 RSK-175 by GC/FID AFCEE Aromatic VOAs by Method 8020A with MTBE & T GC Prep For Waters AFCEE Aromatic VOAs by Method 8020A with MTBE & T AFCEE Nitrate. Ion Chromatography AFCEE Lead, Furnace AA (Totals) Prep - Total Metals, Furnace AA	N Y
0002 . 0009. 0010 . 0012	В	Percent Water AFCEE Aromatic Volatile Organics with MTBE GC Prep For Soils AFCEE Polynuclear Aromatic Hydrocarbons, HPLC AFCEE Prep - Polynuclear Aromatic Hydrocarbons, HPLC (Con Lead, Furnace AA Prep - Total Metals, Furnace AA AFCEE Aromatic Volatile Organics with MTBE (Second	Y nfirYat N N Y

0005	С	Total Organic Carbon (TOC) Prep - Total Organic Carbon Total Organic Carbon (TOC) Total Organic Carbon (TOC) Total Organic Carbon (TOC)	N N N N
0001	D	Percent Water AFCEE Aromatic Volatile Organics with MTBE GC Prep For Soils AFCEE Aromatic Volatile Organics with MTBE (S	N Y N Y econd CoYum
0006 - 0007	E	Percent Water AFCEE Aromatic Volatile Organics with MTBE	N Y Y

ANALYTICAL TEST REQUESTS for Parsons Engineering Science

٢

Page 2 of 3

Lab ID: 059173	Group Code	Analysis Description	Custom Test?
		GC Prep For Soils AFCEE Polynuclear Aromatic Hydrocarbons, HPLC AFCEE Prep - Polynuclear Aromatic Hydrocarbons, HPLC AFCEE Polynuclear Aromatic Hydrocarbons, HPLC (Con Lead, Furnace AA Prep - Total Metals, Furnace AA AFCEE Extractable Petroleum Hydrocarbons Prep - Hydrocarbons by GC AFCEE Aromatic Volatile Organics with MTBE (Second	Y N N N N N N Y
0015 , 0017, 0018 - 0019	G	AFCEE Aromatic VOAs by Method 8020A with MTBE & TH GC Prep For Waters AFCEE Aromatic VOAs by Method 8020A with MTBE & TH	N Y
0003 - 0004	Η	Total Organic Carbon (TOC) Prep - Total Organic Carbon Total Organic Carbon (TOC) Total Organic Carbon (TOC) Total Organic Carbon (TOC) Lead, Furnace AA Prep - Total Metals, Furnace AA	N N N N N
0008	Ι	Percent Water AFCEE Aromatic Volatile Organics with MTBE GC Prep For Soils AFCEE Aromatic Volatile Organics with MTBE (Second AFCEE Polynuclear Aromatic Hydrocarbons, HPLC AFCEE Prep - Polynuclear Aromatic Hydrocarbons, HF Lead, Furnace AA Prep - Total Metals, Furnace AA	N N N
0011	J	Percent Water	N

ANALYTICAL TEST REQUESTS Page 3 of 3 for Parsons Engineering Science Page 3 of 3 Custom Test? AFCEE

AFCEE	Y
Aromatic Volatile Organics with MTBE	Y
GC Prep For Soils	N
AFCEE	N
Aromatic Volatile Organics with MTBE (Second	I CoNum
Lead, Furnace AA	N
Prep - Total Metals, Furnace AA	N

¢

AFCEE[^]Aromatic Volatile Organics Method 8020A

ŧ,

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-14 (7.00-8.00) 059173-0001-SA SOIL 20 FEB 98 GCPID-H	Sam Prep	e mpled: 17 FE pared: 24 FE ution: 1.0	B 98 B 98		Received: Analyzed:		
Parameter		Result	Qualifier		RL	MDL	Units	
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND ND			0.0054 0.0054 0.0022 0.0054	0.00054 0.0013 0.00054 0.0016	mg/kg mg/kg	
Surrogate			Recovery		A	cceptable R	ange	
a.a.a-Trifluc Fluorobenzene			98 89		% %	34 - 17 34 - 17		

All results and limits are reported on a dry weight basis. Percent moisture is 8.0%.

ND = Not Detected

Reported By: Dan Appelhans

Wuanterra

Α

11

Environmental Services

AFCEE^Aromatic Volatile Organics Method 8020A

ŧ

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-14 (9.00-11.00 059173-0002-SA SOIL 20 FEB 98 GCPID-H	ng Science)) Sampled: 17 Prepared: 24 Dilution: 1.0	FEB 98	Received: 20 FEB 98 Analyzed: 24 FEB 98
Parameter		Result Qualifie	er RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	0.017 M 0.073 d 0.0089 M 0.034 M	0.0065 0.0065 0.0026 0.0065	0.00065 mg/kg 0.0015 mg/kg 0.00065 mg/kg 0.0019 mg/kg
Surrogate		Recover	ry A	cceptable Range
a.a.a-Trifluc Fluorobenzene	rotoluene	96 92	2 2 2	34 - 175 34 - 175

Percent moisture is 22.6%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Dan Appelhans

Services

(Second Column)

٩.

AFCEE^Aromatic Volatile Organics Method 8020A	
Parsons Engineering Science SBA-14 (9.00-11.00) 059173-0002-SA	

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri SBA-14 (9.00-11.00 059173-0002-SA SOIL 20 FEB 98 GCPID-H	ng Science 0) Sampled: 17 FEB Prepared: 24 FEB Dilution: 1.0	98 98	Received: 20 FEB 98 Analyzed: 24 FEB 98
Parameter		Result Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1) .	0.018 d 0.072 M 0.0089 d 0.037 d	0.0065 0.0065 0.0026 0.0065	0.00065 mg/kg 0.0015 mg/kg 0.00065 mg/kg 0.0019 mg/kg
Surrogate		Recovery	Ad	cceptable Range
a,a,a-Trifluo Fluorobenzene	rotoluene	103 92	* *	34 - 175 34 - 175

Percent moisture is 22.6%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Dan Appelhans

Approved By: Audrey Cornell

12

AFCEE[^]Aromatic Volatile Organics Method 8020A

¢,

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-17 (9.50,10.50 059173-0006-SA SOIL 20 FEB 98 GCPID-H)) Sam Prep;	e pled: 18 FEB ared: 24 FEB tion: 1.0	98 98	Received: 20 FEB 98 Analyzed: 25 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	0.22 0.77 0.090 0.58	d	0.12 0.12 0.049 0.12	0.012 mg/kg 0.030 mg/kg 0.012 mg/kg 0.037 mg/kg
Surrogate			Recovery	A	cceptable Range
a.a.a-Trifluo Fluorobenzene	rotoluene		86 84	× ×	34 - 175 34 - 175

Percent moisture is 18.7%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Shawn Hadley

(Second Column)

۰

AFCEE	^Aromatic	Vol		Organi 1ethod	
Danconc	Engineeri	na	Scione	~	

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-17 (9.50.10.50 059173-0006-SA SOIL 20 FEB 98 GCPID-H)) Samp Prepa	e bled: 18 FEE ared: 24 FEE tion: 1.0	3 98 3 98		20 FEB 98 25 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	0.22 0.75 0.092 0.58		0.12 0.12 0.049 0.12	0.012 0.030 0.012 0.037	mg/kg mg/kg mg/kg mg/kg
Surrogate			Recovery	A	cceptable R	ange
a,a,a-Trifluo Fluorobenzene	rotoluene		88 84	% %	34 - 17 34 - 17	-

Percent moisture is 18.7%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Shawn Hadley

Services

AFCEE[^]Aromatic Volatile Organics Method 8020A

٢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-18 (8.50,9.50) 059173-0007-SA SOIL 20 FEB 98 GCPID-H	Sam Prep	ce mpled: 18 FEB bared: 24 FEB ition: 50	98 98	Received: 20 FEB 98 Analyzed: 25 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND 17 4.2 170	d M d	5.4 5.4 2.2 5.4	0.54 mg/kg 1.3 mg/kg 0.54 mg/kg 1.6 mg/kg
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene	rotoluene		ND ND	% %	34 - 175 34 - 175

All results and limits are reported on a dry weight basis. Percent moisture is 7.6%.

d = See Preferred Result on Other Column
M = Preferred Result
ND = Not Detected

Reported By: Shawn Hadley

Approved By: Audrey Cornell

15

(Second Column)

٩

Client Name: Client ID: LAB ID:	Parsons Engineeri SBA-18 (8.50,9.50) 059173-0007-SA)			
Matrix: Authorized: Instrument:	SOIL 20 FEB 98 GCPID-H	Prep	npled: 18 FEB 9 bared: 24 FEB 9 ition: 50	98 98	Received: 20 FEB 98 Analyzed: 25 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND 12 5.3 150	M d M	5.4 5.4 2.2 5.4	0.54 mg/kg 1.3 mg/kg 0.54 mg/kg 1.6 mg/kg
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene			ND ND	% %	34 - 175 34 - 175

AFCEE^Aromatic Volatile Organics Method 8020A

Percent moisture is 7.6%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column
M = Preferred Result
ND = Not Detected

Reported By: Shawn Hadley

AFCEE[^]Aromatic Volatile Organics Method 8020A

٩

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri SBA-19 (6.50,8.00 059173-0008-SA SOIL 20 FEB 98 GCPID-H		3 98 3 98	Received: 20 FEB 98 Analyzed: 24 FEB 98
Parameter		Result Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND ND	0.0055 0.0055 0.0022 0.0055	0.00055 mg/kg 0.0013 mg/kg 0.00055 mg/kg 0.0017 mg/kg
Surrogate		Recovery	Ac	cceptable Range
a,a,a-Trifluo Fluorobenzene	rotoluene	99 89	ž	34 - 175 34 - 175

All results and limits are reported on a dry weight basis. Percent moisture is 9.1%.

ND = Not Detected

.

Reported By: Dan Appelhans

Approved By: Audrey Cornell

17

AFCEE^Aromatic Volatile Organics Method 8020A

٢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineer SBA-19 (8.50,10. 059173-0009-SA SOIL 20 FEB 98 GCPID-H	00) Sam Prep	pled: 18 FEB 9 pared: 24 FEB 9 pared: 24 FEB 9	98 98	Received: 20 FEB 9 Analyzed: 25 FEB 9	
Parameter		Result	Qualifier	RL	MDL Units	
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND ND		0.28 0.28 0.11 0.28	0.028 mg/kg 0.067 mg/kg 0.028 mg/kg 0.083 mg/kg	
Surrogate			Recovery		Acceptable Range	
a.a.a-Trifluo Fluorobenzene			92 89	* *	34 - 175 34 - 175	

Percent moisture is 9.9%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Shawn Hadley

Approved By: Audrey Cornell

18

Services

AFCEE[^]Aromatic Volatile Organics Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-100 (8.50,10.0 059173-0010-SA SOIL 20 FEB 98 GCPID-H)0) Sam Prep	pled: 18 FEB 9 pared: 24 FEB 9 paren: 3.3	8 8	Received: 20 FEB 98 Analyzed: 25 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND ND		0.37 0.37 0.15 0.37	0.037 mg/kg 0.089 mg/kg 0.037 mg/kg 0.11 mg/kg
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene	rotoluene		91 89	x x	34 - 175 34 - 175

Percent moisture is 10.6%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Shawn Hadley

• •

AFCEE[^]Aromatic Volatile Organics Method 8020A

¢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-20 (6.00-7.00) 059173-0011-SA SOIL 20 FEB 98 GCPID-H	Sam Prep	ce npled: 18 FEB 98 Dared: 24 FEB 98 Ntion: 40	3	Received: 20 FEB 98 Analyzed: 25 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND 1.9 3.1	M JM	4.6 4.6 1.8 4.6	0.46 mg/kg 1.1 mg/kg 0.46 mg/kg 1.4 mg/kg
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene			ND ND	% %	34 - 175 34 - 175

Percent moisture is 12.2%. All results and limits are reported on a dry weight basis.

J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result ND = Not Detected

Reported By: Shawn Hadley

. (Second Column)

٩

AFCEE^Aromatic Volatile Organics Method 8020A
--

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-20 (6.00-7.00) 059173-0011-SA SOIL 20 FEB 98 GCPID-H	Sam Prep	e pled: 18 FEB 9 ared: 24 FEB 9 tion: 40	98 98	Received: 20 FEB 98 Analyzed: 25 FEB 98	
Parameter		Result	Qualifier	RL	MDL Units	
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND 3.5 3.4	d Jd	4.6 4.6 1.8 4.6	0.46 mg/kg 1.1 mg/kg 0.46 mg/kg 1.4 mg/kg	
Surrogate			Recovery		Acceptable Range	
a.a.a-Trifluo Fluorobenzene	rotoluene		ND ND	x x	34 - 175 34 - 175	

Percent moisture is 12.2%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column J = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Shawn Hadley

Approved By: Audrey Cornell

21

AFCEE^Aromatic Volatile Organics Method 8020A

t,

Client Name: Client ID: LAB ID:	Parsons Engineeri SBA-20 (9.50,10.5 059173-0012-SA		ce			
Matrix: Authorized: Instrument:	SOIL 20 FEB 98 GCPID-H	Prep	npled: 18 FEB 9 Dared: 24 FEB 9 Ition: 20	98 98	Received: 20 FE Analyzed: 25 FE	
Parameter		Result	Qualifier	RL	MDL Units	
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND 15	d	2.4 2.4 0.95 2.4	0.24 mg/k 0.57 mg/k 0.24 mg/k 0.72 mg/k	g g
Surrogate			Recovery		Acceptable Range	
a.a.a-Trifluo Fluorobenzene	rotoluene		ND ND	*	34 - 175 34 - 175	

Percent moisture is 16.1%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column
ND = Not Detected

Reported By: Shawn Hadley

Environmental Services

(Second Column)

٠

AFCEE^Aromatic Volatile Organics . Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-20 (9.50,10.50 059173-0012-SA SOIL 20 FEB 98 GCPID-H)) Sam Prep	ce mpled: 18 FEB 98 bared: 24 FEB 98 ution: 20	3	Received: 20 FEB 98 Analyzed: 25 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND 10	м	2.4 2.4 0.95 2.4	0.24 mg/kg 0.57 mg/kg 0.24 mg/kg 0.72 mg/kg
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene	rotoluene		ND ND	% %	34 - 175 34 - 175

Percent moisture is 16.1%. All results and limits are reported on a dry weight basis.

M = Preferred Result ND = Not Detected

• •

Reported By: Shawn Hadley

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir TW-11 (0.00,0.00) 059173-0013-SA GRND-H2O 20 FEB 98 GCPID-H	Sam Prep	e pled: 19 FEB bared: 26 FEB tion: 50	8 98 8 98	Received: 20 FEB 98 Analyzed: 26 FEB 98	
Parameter		Result	Qualifier	RL	MDL Units	
Benzene Toluene Ethylbenzene Xylenes (tota	1)	780 1700 240 530	d d M d	100 100 100 100	2.8 ug/L 7.5 ug/L 2.7 ug/L 7.5 ug/L	
Surrogate			Recovery		Acceptable Range	
a.a.a-Trifluo Fluorobenzene	orotoluene e		109 82	**	44 - 165 44 - 165	

۲

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Steven McKee

Environmental Services

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir TW-11 (0.00,0.00) 059173-0013-SA GRND-H20 20 FEB 98 GCPID-H	Sam Prep	e pled: 19 FEE ared: 26 FEE tion: 50	398 398		20 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	760 1700 250 500	M M d M	100 100 100 100	2.8 7.5 2.7 7.5	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a,a,a-Trifluo Fluorobenzene	rotoluene		95 81	× ×	44 - 169 44 - 169	

¢

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Steven McKee

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client ID: M LAB ID: 0 Matrix: G Authorized: 2	arsons Engineerin WA-11 (0.00,0.00 59173-0014-SA RND-H2O 0 FEB 98 CPID-H) Sam Prep	e pled: 19 FEB ared: 26 FEB tion: 50	98 98		20 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total)		750 1700 250 530	M d d	100 100 100 100	2.8 7.5 2.7 7.5	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a,a,a-Trifluorot Fluorobenzene	toluene		104 83	x x	44 - 16 44 - 16	-

١,

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Steven McKee

Environmental Services

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir MWA-11 (0.00,0.00 059173-0014-SA GRND-H20 20 FEB 98 GCPID-H) Sam Prep	e pled: 19 FEB ared: 26 FEB tion: 50	3 98 3 98		20 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL.	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	760 1700 250 500	d M M	100 100 100 100	2.8 7.5 2.7 7.5	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a,a,a-Trifluon Fluorobenzene	rotoluene		93 83	x X	44 - 16 44 - 16	

٢

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Steven McKee

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir MWA-13 (0.00,0.00) 059173-0015-SA GRND-H20 20 FEB 98 GCPID-H	San Prep	ce mpled: 19 FEB Dared: 26 FEB ution: 1.0	98 98	Received: 20 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND ND		2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene			96 76	% %	44 - 165 44 - 165

ŧ,

ND = Not Detected

Reported By: Steven McKee

Services

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir MWA-9 (0.00,0.00) 059173-0016-SA GRND-H20 20 FEB 98 GCPID-H	Sam Prep	e pled: 19 FEB ared: 26 FEB tion: 1.0	98 98	Received: 20 FEB 9 Analyzed: 26 FEB 9	
Parameter		Result	Qualifier	RL	MDL Units	
Benzene Toluene Ethylbenzene Xylenes (tota	1)	0.33 0.97 7.7 44	Jd JM M M	2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L	
Surrogate			Recovery		Acceptable Range	
a,a,a-Trifluo Fluorobenzene	rotoluene		104 81	% %	44 - 165 44 - 165	

٩

d = See Preferred Result on Other Column
J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

•

Reported By: Steven McKee

AFCEE^Aromatic VOAs by Method 8020A : Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir MWA-9 (0.00.0.00) 059173-0016-SA GRND-H20 20 FEB 98 GCPID-H	Sam Prep	e pled: 19 FEB 9 ared: 26 FEB 9 tion: 1.0	98 98	Received: 20 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	0.33 1.0 7.9 44	JM Jd d d	2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene			96 89	× ×	44 - 165 44 - 165

٢

d = See Preferred Result on Other Column
J = Result is detected below the reporting limit or is an estimated concentration.
M = Preferred Result

Reported By: Steven McKee

Approved By: Audrey Cornell

Environmental Services

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client ID: LAB ID: Matrix: Authorized:	Parsons Engineerin MWA-14 (0.00,0.00 059173-0018-SA GRND-H20 20 FEB 98 GCPID-H) San Prep	e mpled: 19 FEB ared: 26 FEB tion: 20	3 98 3 98		20 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (total)	170 130 250 750	M M M M	40 40 40 40	1.1 3.0 1.1 3.0	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a.a.a-Trifluor Fluorobenzene	otoluene		99 86	× ×	44 - 16 44 - 16	

۰

M = Preferred Result

....

Reported By: Steven McKee

.

AFCEE^Aromatic VOAs by Method 8020A [·] Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri MWA-14 (0.00,0.00 059173-0018-SA GRND-H20 20 FEB 98 GCPID-H)) Sam Prep	e mpled: 19 FEB Dared: 26 FEB ution: 20	8 98 8 98	Received: 20 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	170 130 260 760	d d d	40 40 40 40	1.1 ug/L 3.0 ug/L 1.1 ug/L 3.0 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene			92 87	*	44 - 165 44 - 165

٢

d = See Preferred Result on Other Column

`

Reported By: Steven McKee

Environmental Services

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MWA-6 (0.00,0.00) 059173-0019-SA GRND-H20 20 FEB 98 GCPID-H) Sam Prep	ce mpled: 19 FEB 9 bared: 26 FEB 9 ution: 1.0	8 8	Received: 20 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	nd Nd Nd Nd		2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene	rotoluene		96 75	x x	44 - 165 44 - 165

ŧ,

ND = Not Detected

- -

Reported By: Steven McKee

QC LOT ASSIGNMENT REPORT Organics by Chromatography

.

059173-0002-SASOIL8020-PR-LS24 FEB98-H24 FEB98-059173-0002-SASOIL8020-PR-LS24 FEB98-H24 FEB98-059173-0006-SASOIL8020-PR-MS24 FEB98-0124 FEB98-059173-0006-SASOIL8020-PR-MS24 FEB98-0124 FEB98-059173-0007-SASOIL8020-PR-MS24 FEB98-0124 FEB98-059173-0007-SASOIL8020-PR-MS24 FEB98-0124 FEB98-	Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059173-0008-SA SOIL 8020-PR-LS 24 FEB 98-H 24 FEB 98-01 24 FE	059173-0002-SA 059173-0002-SA 059173-0006-SA 059173-0006-SA 059173-0007-SA 059173-0007-SA 059173-0009-SA 059173-0009-SA 059173-0009-SD 059173-0010-SA 059173-0011-SA 059173-0011-SA 059173-0012-SA 059173-0012-SA 059173-0012-SA 059173-0013-SA 059173-0013-SA 059173-0014-SA 059173-0014-SA 059173-0014-SA 059173-0016-SA 059173-0016-SA 059173-0018-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	8020 - PR - LS 8020 - PR - LS 8020 - PR - MS 8020 - PAR - A 8020 - PAR - A	24 FEB 98-H 24 FEB 98-H 24 FEB 98-01 24 FEB 98-01 26 FEB 98-H 26 FEB 98-H	24 FEB 98-H 24 FEB 98-01 24 FEB 98-01 26 FEB 98-H 26 FEB 98-H

LABORATORY CONTROL SAMPLE REPORT Organics by Chromatography Project: 059173

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE Matrix: AQUEOUS Date Analyzed: 26 FEB 98 QC Run: 26 FEB 98-H Concentration Units: ug/L Concentration Accuracy(%)

٩

Analyte	Spiked	Measured	LCS	Limits
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene	20.0 20.0 20.0 60.0 20.0 20.0 20.0 20.0	19.8 19.3 19.3 19.0 58.3 19.4 19.4 19.6	99 96 95 97 97 97 98	75-125 70-125 75-129 71-129 71-133 70-131 61-134 75-126
Surrogates a.a.a.Trifluorotoluene	Spiked 30.0	ntration Measured 27.6	LCS 92	racy(%) Limits 44-165
Fluorobenzene	30.0	26.6	89	44-165

Category: 8020-PR-LS Aromatic Volatile Organics (AFCEE-Low Level) with MTBE Date Analyzed: 24 FEB 98 Matrix: SOIL QC Run: 24 FEB 98-H

Concentration Units: mg/kg

concentration onites. mg/kg	Concei	ntration	Accu	racy(%)	
Analyte	Spiked	Measured	LCS	Limits	
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Methyl-tert-butyl ether	$\begin{array}{c} 0.0500\\ 0.0500\\ 0.0500\\ 0.1500\\ 0.150\\ 0.0500\\ 0.0500\\ 0.0500\\ 0.0500\\ 0.0500\\ 0.0500\\ 0.0500\end{array}$	0.0416 0.0408 0.0462 0.0444 0.136 0.0473 0.0486 0.0469 0.0442	83 82 92 89 90 95 97 94 88	66-135 60-135 66-139 61-139 61-143 60-141 66-136 51-144 25-175	
Summershee	Concer Spiked	ntration Measured	Accur LCS	racy(%) Limits	
Surrogates	spiked	neasur ea	205	Linitus	
a.a.a-Trifluorotoluene Fluorobenzene	0.0750 0.0750	0.0739 0.0674	99 90	34-175 34-175	
		WAL NOTE (AECE	E Modium		

Category: 8020-PR-MS Aromatic Volatile Organics with MBTE (AFCEE-Medium Level) Date Analyzed: 25 FEB 98 Matrix: SOIL QC Run: 24 FEB 98-01 Concentration Units: mg/kg

concentración onica. mg/kg	Concentration	Accuracy(%)		
Analyte	Spiked Measured	LCS Limits		
Benzene	1.00 1.05	105 66-135		

Calculations are performed before rounding to avoid round-off errors in calculated results.

•

SINGLE CONTROL SAMPLE REPORT Organics by Chromatography

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 8020-PR-LS Matrix: SOIL QC Lot: 24 FEB 98-H QC Run: Concentration Units: mg/kg	24 FEB 98-H	
a.a.a.Trifluorotoluene Fluorobenzene	0.0750 0.0743 0.0750 0.0662	99 34-175 88 34-175
Category: 8020-PR-MS Matrix: SOIL QC Lot: 24 FEB 98-01 QC Run: Concentration Units: mg/kg	24 FEB 98-01	
a.a.a-Trifluorotoluene Fluorobenzene	1.50 1.47 1.50 1.43	98 34-175 95 34-175
Category: 8020-PAR-A Matrix: AQUEOUS QC Lot: 26 FEB 98-H QC Run: Concentration Units: ug/L	26 FEB 98-H	
a.a.a-Trifluorotoluene Fluorobenzene	30.0 28.2 30.0 27.1	94 44-165 90 44-165

Calculations are performed before rounding to avoid round-off errors in calculated results.

Α

METHOD BLANK REPORT Organics by Chromatography Project: 059173

.

..

Test:	8020-PAR-MDL-AP	. AFC	EE Aromatic VOAs	by Method 8020A w	ith MTBE &	TMBs
Matrix: QC Lot:	AQUEOUS 26 FEB 98-H	QC Run:	26 FEB 98-H	Date Analyzed:	26 FEB 98	
Analyte			Result	Units	RL	MDL
Benzene Toluene Ethylben Xylenes			ND ND ND ND	ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0	0.056 0.15 0.054 0.15

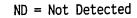
4

Test: Matrix: QC Lot:	8020-PAR-MDL-2 AQUEOUS 26 FEB 98-H	-AP AF QC Run:		s by Method 8020A Date Analyzed:		TMBs
Analyte			Result	Units	RL	MDL
Benzene Toluene Ethylben Xylenes			ND ND ND ND	ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0	0.056 0.15 0.054 0.15

Test:	8020-PAR-MDL-L	-S AFC	EE Aromatic Volat	tile Organics wit	h MTBE	
Matrix: QC Lot:	SOIL 24 FEB 98-H	QC Run:	24 FEB 98-H	Date Analyzed:	24 FEB 98	
Analyte			Result	Units	RL	MDL
Benzene Toluene Ethylben Xylenes			ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.0050 0.0050 0.0020 0.0050	0.00050 0.0012 0.00050 0.0015

Test:	8020-PAR-MDL-M	-S AFC	AFCEE Aromatic Volatile Organics with MBTE				
Matrix: QC Lot:	SOIL 24 FEB 98-01	QC Run:	24 FEB 98-01	Date Analyzed:	25 FEB 98		
Analyte			Result	Units	RL	MDL	
Benzene Toluene Ethylber Xylenes			ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.040 0.10	0.010 0.024 0.010 0.030	

ND = Not Detected



METHOD BLANK REPORT Organics by Chromatography Project: 059173

Test: Matrix: QC Lot:	8020-PAR-MDL-2 SOIL 24 FEB 98-H	QC Run:	CEE Aromatic Vola 24 FEB 98-H	tile Organics with Date Analyzed:		d Column)
Analyte			Result	Units	RL	MDL
Benzene Toluene Ethylber Xylenes			ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.0050 0.0050 0.0020 0.0050	0.00050 0.0012 0.00050 0.0015

L

Test: Matrix:	8020-PAR-MDL -2 SOIL	-M-S AF	CEE Aromatic Vola	tile Organics with	MBTE (Secon	d Column)
QC Lot:	24 FEB 98-01	QC Run:	24 FEB 98-01	Date Analyzed:	25 FEB 98	
Analyte			Result	Units	RL	MDL
Benzene Toluene Ethylber Xylenes			ND ND ND ND	mg/kg mg/kg mg/kg mg/kg	0.10 0.10 0.040 0.10	0.010 0.024 0.010 0.030

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Organics by Chromatography Project: 059173

Category: 8020-PR-MS Aromatic Volatile Organics with MBTE (AFCEE-Medium Level) Matrix: SOIL 059173-0009 Sample: 24 FEB 98-01 MS Run: Units Qualifier: Dry weight Units mg/kg

		Concentrat	ion	٨٣	ount	*	De	ecov.	r	RPD
Analyte	Sample Result	MS Result	MSD Result			Recove	ry Ac		PD Ad	ccept
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Methyl-tert-butyl ether	nd Nd Nd Nd Na Na Na	1.07 1.01 NA 1.02 3.11 NA NA NA	1.05 0.990 NA 1.00 3.08 NA NA NA	$\begin{array}{c} 1.11\\ 1.11\\ 0.00\\ 1.11\\ 3.33\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ \end{array}$	1.11 1.11 0.00 1.11 3.33 0.00 0.00 0.00	96 91 NC 92 93 NC NC NC	95 89 NC 90 93 NC NC NC	66-135 60-135 66-139 61-139 61-143 60-141 66-136 51-144 25-175	1.4 1.9 NC 1.6 0.9 NC NC NC	30 30 30 30 30 30 30 50
Surrogates		%Recovery		Rec.	Accept	t. Limi	its			
a.a.a.Trifluorotoluene Fluorobenzene	e 92.0 89.0	93.0 89.2	88.3 88.5		34-17 34-17					

١,

NA = Not ApplicableNC = Not Calculated, calculation not applicable.

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

QC LOT ASSIGNMENT REPORT Semivolatile Organics by GC

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059173-0006-SA	SOIL	8015DAF - S	25 FEB 98-01	25 FEB 98-01
059173-0007-SA	SOIL	8015DAF - S	25 FEB 98-01	25 FEB 98-01

DUPLICATE CONTROL SAMPLE REPORT Semivolatile Organics by GC Project: 059173

• •

Category: 8015DAF-S Diesel Range Organics in Solid Samples, AFCEE Matrix: SOIL QC Lot: 25 FEB 98-01 Concentration Units: mg/kg

Ann]to	Concentration Spiked Measured				Accuracy Average(%)		Preci (RP	
Analyte	Spiked		DCS1 Qual DCS2 Qual		DCS	Limits	DCS L	
Diesel Range Organics	20.0	18.7	18.9	18.8	94	51-153	0.90	50
Cumpagata	Co Spiked	ncentration) Measured			curacy rage(%)		
Surrogate	Spiked		al DCS2 Qual		DCS	Limits		
o-Terphenyl	0.800	0.717	0.698		88	47-142 25-162		
n-Octacosane	0.800	0.654	0.642		81	22.102		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Services

AFCEE[^] Extractable Petroleum Hydrocarbons Method M8015D

s

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-17 (9.50,10.50 059173-0006-SA SOIL 20 FEB 98 GCFID-Z	0) Sam Prep	ce mpled: 18 FEB 9 Dared: 25 FEB 9 Ntion: 1.0	98 98	Received: Analyzed:	
Parameter		Result	Qualifier	RL	MDL	Units
Diesel Range	Organics	12	v1	4.9	1.2	mg/kg
Surrogate			Recovery		Acceptable Ra	nge
o-Terphenyl n-Octacosane			74 69	x X	47 - 142 25 - 162	

Percent moisture is 18.7%. All results and limits are reported on a dry weight basis.

- 1 = Sample resembles a hydrocarbon product occurring within the n-alkane range of C10-C26.
- v = This sample has GC/FID characteristics for which reliable identification of a product could not be achieved.

Reported By: Bret Collins

Approved By: Audrey Cornell

iii uanterra Environmental Services

AFCEE[^] Extractable Petroleum Hydrocarbons Method M8015D

٩

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-18 (8.50,9.50) 059173-0007-SA SOIL 20 FEB 98 GCFID-Z) Sam Prep	ce mpled: 18 FEB pared: 25 FEB ution: 20	98 98		20 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Diesel Range	Organics	1100	v1	87	22	mg/kg
Surrogate			Recovery		Acceptable R	ange
o-Terphenyl n-Octacosane			ND ND	ž	47 - 142 25 - 162	

Percent moisture is 7.6%. All results and limits are reported on a dry weight basis.

- 1 = Sample resembles a hydrocarbon product occurring within the n-alkane range of C10-C26.
- v = This sample has GC/FID characteristics for which reliable identification of a product could not be achieved.

ND = Not Detected

Reported By: Bret Collins

Approved By: Audrey Cornell

SINGLE CONTROL SAMPLE REPORT Semivolatile Organics by GC

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits	
Category: 8015DAF-S Matrix: SOIL QC Lot: 25 FEB 98-01 QC Run: 25 F Concentration Units: mg/kg	EB 98-01		
o-Terphenyl n-Octacosane	0.800 0.706 0.800 0.683	88 47-142 85 25-162	

ı,

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Semivolatile Organics by GC Project: 059173

Test: Matrix:	8015M-AF-DRO-MD SOIL	L-S	AFCE	EE	Exti	ractable	Petroleum Hydroca	rbons	
		QC	Run:	25	FEB	98-01	Date Analyzed:	03 MAR 98	
Analyte						Result	Units	RL	MDL
Diesel R	ange Organics					ND	mg/kg	4.0	1.0

ι

.

Services

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

١,

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri SBA-17 (9.50,10.5 059173-0006-SA SOIL 20 FEB 98 HPLC-Y	0) Sam Prep	e pled: 18 FEB 9 ared: 23 FEB 9 tion: 1.0	8 8	Received: 20 FEB 98 Analyzed: 17 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		0.27	М	0.25	0.057 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			110	x	22 - 167

Percent moisture is 18.7%. All results and limits are reported on a dry weight basis.

M = Preferred Result

Reported By: Blake Besser

Environme Services

	AFCI	EE	
Polynuclear	Aromatic Method	Hydrocarbons, 8310	HPLC

4

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri SBA-18 (8.50,9.50 059173-0007-SA SOIL 20 FEB 98 HPLC-Y) San Prep	ce mpled: 18 FEB 9 mared: 23 FEB 9 ition: 1.0	8 8	Received: 20 FEB 98 Analyzed: 17 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		2.1	М	0.22	0.050 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			88	*	22 - 167

Percent moisture is 7.6%. All results and limits are reported on a dry weight basis.

M = Preferred Result

Reported By: Blake Besser

	AFCI	EE	
Polynuclear		Hydrocarbons,	HPLC
	Method	8310	

۲

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-14 (9.00-11.00 059173-0002-SA SOIL 20 FEB 98 HPLC-Y) Sam Prep	e npled: 17 FEB 9 pared: 23 FEB 9 ntion: 1.0	8 8	Received: 20 FEB 98 Analyzed: 17 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		ND		0.26	0.059 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			110	%	22 - 167

Percent moisture is 22.6%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Blake Besser

Approved By: Audrey Cornell

Environmental Services

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

.

4

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-17 (9.50,10.50 059173-0006-SA SOIL 20 FEB 98 HPLC-Y)) Sam Prep	e pled: 18 FEB 98 ared: 23 FEB 98 tion: 1.0) 	Received: 20 FEB 98 Analyzed: 17 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		0.27	ď	0.25	0.057 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			110	%	22 - 167

Percent moisture is 18.7%. All results and limits are reported on a dry weight basis. d = See Preferred Result on Other Column Reported By: Blake Besser Approved By: Audrey Cornell

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

٠

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-18 (8.50,9.50) 059173-0007-SA SOIL 20 FEB 98 HPLC-Y	- Sam Prep	e pled: 18 FEB 9 ared: 23 FEB 9 tion: 1.0	98 98	Received: 20 FEB 98 Analyzed: 17 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		2.3	d	0.22	0.050 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			92	*	22 - 167

Percent moisture is 7.6%. All results and limits are reported on a dry weight basis. d = See Preferred Result on Other Column Reported By: Blake Besser Approved By: Audrey Cornell

Services

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

ŝ,

Client Name: Client ID: LAB ID: Matrix:	Parsons Engineerin SBA-19 (6.50,8.00) 059173-0008-SA SOIL) Sam	e pled: 18 FEB 9 ared: 03 MAR 9	98	Received: 20 FEB 98 Analyzed: 06 MAR 98
Authorized: Instrument:	20 FEB 98 HPLC-Y	Dilu	ition: 1.0	20	Analyzea. Jo hak jo
Parameter		Result	Qualifier	RL	MDL Units
Acenaphthene Acenaphthylen Anthracene Benzo(a)anthr Benzo(a)pyren Benzo(b)fluor Benzo(g,h,i)p Benzo(k)fluor Chrysene Dibenz(a,h)an Fluorene Fluoranthene Indeno(1,2,3- Naphthalene Phenanthrene Pyrene	acene le anthene erylene anthene thracene			$\begin{array}{c} 0.22\\ 0.22\\ 0.022\\ 0.0099\\ 0.017\\ 0.013\\ 0.055\\ 0.012\\ 0.044\\ 0.022\\ 0.044\\ 0.033\\ 0.22\\ 0.044\\ 0.034\\ 0.044\\ 0.033\\ 0.22\\ 0.044\\ 0.04\\ 0.044\\$	0.040 mg/kg 0.054 mg/kg 0.0029 mg/kg 0.0037 mg/kg 0.0024 mg/kg 0.0028 mg/kg 0.0033 mg/kg 0.0039 mg/kg 0.0022 mg/kg 0.0037 mg/kg 0.0070 mg/kg 0.0026 mg/kg 0.0033 mg/kg 0.0051 mg/kg 0.0029 mg/kg
Surrogate			Recovery	A	cceptable Range
Terphenyl-d14			95	%	22 - 167

Percent moisture is 9.1%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Blake Besser

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir SBA-19 (8.50,10.00 059173-0009-SA SOIL 20 FEB 98 HPLC-Y)) Sam Prep	e pled: 18 FEB 98 ared: 23 FEB 98 tion: 1.0	5	Received: 20 FEB 98 Analyzed: 27 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		0.13	Jd	0.22	0.051 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			100	*	22 - 167

Percent moisture is 9.9%. All results and limits are reported on a dry weight basis.

d = See Preferred Result on Other Column J = Result is detected below the reporting limit or is an estimated concentration.

Reported By: Blake Besser

Approved By: Audrey Cornell

Services

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

4

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-19 (8.50,10.00 059173-0009-SA SOIL 20 FEB 98 HPLC-Y) Samj Prep	e pled: 18 FEB 94 ared: 23 FEB 94 tion: 1.0	8 8	Received: Analyzed:	20 FEB 98 27 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Naphthalene		0.12	JM	0.22	0.051	mg/kg
Surrogate			Recovery		Acceptable Ra	ange
Terphenyl-d14			140	%	22 - 167	7

All results and limits are reported on a dry weight basis. Percent moisture is 9.9%.

J = Result is detected below the reporting limit or is an estimated concentration. M = Preferred Result

Reported By: Blake Besser

Approved By: Audrey Cornell

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

ι.

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri SBA-100 (8.50,10. 059173-0010-SA SOIL 20 FEB 98 HPLC-Y	00) Sam Prep	ce mpled: 18 FEB 9 bared: 23 FEB 9 ution: 1.0)8)8	Received: 20 FEB 98 Analyzed: 27 FEB 98
_ .		-		51	
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		ND		0.22	0.051 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			98	x	22 - 167

Percent moisture is 10.6%. All results and limits are reported on a dry weight basis.

ND = Not Detected

Reported By: Blake Besser

Services

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC Method 8310

4

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-20 (9.50.10.50 059173-0012-SA SOIL 20 FEB 98 HPLC-Y) Sam Prep	pled: 18 FEB 9 pared: 23 FEB 9 tion: 5.0	8 8	Received: 20 FEB 98 Analyzed: 10 MAR 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		11	d	1.2	0.27 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			100	%	22 - 167

Percent moisture is 16.1%. All results and limits are reported on a dry weight basis. d = See Preferred Result on Other Column Reported By: Blake Besser Approved By: Audrey Cornell

AFCEE Polynuclear Aromatic Hydrocarbons, HPLC (Confirmation) Method 8310

٩

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin SBA-20 (9.50,10.50 059173-0012-SA SOIL 20 FEB 98 HPLC-Y)) Sam Prep	ce mpled: 18 FEB bared: 23 FEB ition: 5.0	98 98	Received: 20 FEB 98 Analyzed: 10 MAR 98
Parameter		Result	Qualifier	RL	MDL Units
Naphthalene		10	M	1.2	0.27 mg/kg
Surrogate			Recovery		Acceptable Range
Terphenyl-d14			100	*	22 - 167

Percent moisture is 16.1%. All results and limits are reported on a dry weight basis.

M = Preferred Result

Reported By: Blake Besser

QC LOT ASSIGNMENT REPORT High Performance Liquid Chromatography

...

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059173-0002-SA 059173-0006-SA 059173-0006-SA 059173-0007-SA 059173-0007-SA 059173-0008-SA 059173-0009-SA 059173-0009-SA 059173-0009-SD 059173-0010-SA 059173-0012-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S 8310AF-S	23 FEB 98-03 23 FEB 98-03 23 FEB 98-03 23 FEB 98-03 23 FEB 98-03 03 MAR 98-01 23 FEB 98-03 23 FEB 98-03	 23 FEB 98-03 03 MAR 98-01 23 FEB 98-03

٩

DUPLICATE CONTROL SAMPLE REPORT High Performance Liquid Chromatography

Analyte	Con Spiked	centratic DCS1	on Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li	
Category: 8310AF-S Matrix: SOIL QC Lot: 23 FEB 98-03 Concentration Units: mg/kg								
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluoranthene Indeno(1.2,3-cd)pyrene Naphthalene Phenanthrene Pyrene Terphenyl-d14	NA NA NA NA NA NA NA 0.533 NA NA 3.33	NA NA NA NA NA NA NA NA 0.513 NA 0.513 NA 3.54	NA NA NA NA NA NA NA NA 0.548 NA 0.548 NA 3.57	NC NC NC NC NC NC NC NC NC 0.530 NC 3.56	NC NC NC NC NC NC NC NC NC NC NC NC NC 107	$\begin{array}{r} 33-140\\ 39-135\\ 44-135\\ 29-145\\ 42-135\\ 25-147\\ 43-135\\ 50-139\\ 49-144\\ 41-135\\ 43-135\\ 32-135\\ 43-135\\ 33-135\\ 42-139\\ 45-135\\ 22-167\\ \end{array}$	NC NC NC NC NC NC NC NC NC NC NC 0.84	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Category: 8310AF-S Matrix: SOIL QC Lot: 03 MAR 98-01 Concentration Units: mg/kg								
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Fluorene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	$0.533 \\ 0.53$	0.513 0.533 0.478 0.528 0.483 0.527 0.554 0.550 0.521 0.549 0.549 0.542 0.546 0.559 0.548 0.548	0.529 0.565 0.482 0.522 0.479 0.526 0.550 0.546 0.518 0.543 0.543 0.543 0.543 0.543 0.553 0.552	0.521 0.549 0.480 0.525 0.481 0.526 0.552 0.548 0.520 0.546 0.544 0.543 0.541 0.550 0.550	102 102 102 102 105 103	$33 \cdot 140$ $39 \cdot 135$ $44 \cdot 135$ $29 \cdot 145$ $42 \cdot 135$ $25 \cdot 147$ $43 \cdot 135$ $50 \cdot 139$ $49 \cdot 144$ $41 \cdot 135$ $43 \cdot 135$ $32 \cdot 135$ $32 \cdot 135$ $33 \cdot 135$ $42 \cdot 139$ $45 \cdot 135$	1.1 1.8 0.37 1.8 0.71 0.91	50 50 50 50 50 50 50 50 50 50 50 50 50 5

ND = Not detected NC = Not calculated, calculation not applicable NA = Not applicable

Calculations are performed before rounding to avoid round-off errors in calculated results.

DUPLICATE CONTROL SAMPLE REPORT High Performance Liquid Chromatography (cont.)

	Concentration					uracy	Precision	
Analyte	Spiked	DCS1	Measured DCS2	AVG	DCS	age(%) Limits	(RPD) DCS Limits	
Category: 8310AF-S Matrix: SOIL QC Lot: 03 MAR 98-01 Concentration Units: mg/kg								
Terphenyl-d14	3.33	3.51	3.28	3.40	102	22-167	6.8	

•

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT High Performance Liquid Chromatography

Analyte	Concentration Spiked Measured	Accur SCS	acy(%) Limits
Category: 8310AF-S Matrix: SOIL QC Lot: 23 FEB 98-03 QC Run: Concentration Units: mg/kg Terphenyl-d14	23 FEB 98-03 3.33 3.50	105	22-167
Category: 8310AF-S Matrix: SOIL QC Lot: 03 MAR 98-01 QC Run: Concentration Units: mg/kg	03 MAR 98-01		
Terphenyl-d14	3.33 3.12	94	22-167

Calculations are performed before rounding to avoid round-off errors in calculated results.

٢

A

METHOD BLANK REPORT High Performance Liquid Chromatography Project: 059173

-

- -

Test:	8310-AFCEE-MDL	-S AFC	CEE Polynuclear Arc	omatic Hydrocarbo	ons, HPLC	
Matrix: QC Lot:	SOIL 23 FEB 98-03	QC Run:	23 FEB 98-03	Date Analyzed:	27 FEB 98	
Analyte			Result	Units	RL	MDL
Naphtha1	ene		ND	mg/kg	0.20	0.046
QC Lot:	23 FEB 98-03	QC Run:	23 FEB 98-03	Date Analyzed:	27 FEB 98	
Analyte			Result	Units	RL	MDL
Naphtha1	ene		ND	mg/kg	0.20	0.046
QC Lot:	03 MAR 98-01	QC Run:	03 MAR 98-01	Date Analyzed:	06 MAR 98	
Analyte			Result	Units	RL	MDL
Benzo(a) Benzo(b) Benzo(g, Benzo(k) Chrysene Dibenz(a Fluorene Fluorant	hylene ne anthracene pyrene fluoranthene h,i)perylene fluoranthene ,h)anthracene hene ,2,3-cd)pyrene ene			mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.20 0.20 0.020 0.015 0.012 0.050 0.011 0.040 0.040 0.040 0.040 0.030 0.20 0.040	$\begin{array}{c} 0.036\\ 0.049\\ 0.0026\\ 0.0034\\ 0.0022\\ 0.0025\\ 0.0030\\ 0.0035\\ 0.0020\\ 0.0034\\ 0.0064\\ 0.0024\\ 0.0024\\ 0.0030\\ 0.046\\ 0.0055\\ 0.0026\\ \end{array}$

4

		·2-S /	FCEE Poly	nuclear	Aromatic Hydrocarbons	i, HPLC ((Confirmation)
Matrix: QC Lot:	SOIL 23 FEB 98-03	QC Rui	: 23 FEB	98-03	Date Analyzed: 27	FEB 98	
Analyte				Result	Units	RL	MDL
Naphtha1	ene			ND	mg/kg	0.20	0.046

ND = Not Detected

			Т	Metals otal Met					
Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Er SBA-14 (9. 059173-000 SOIL 20 FEB 98	.ŎO-11.		Sampled	l: 17 FEB 98 ed: See Belo	B ow		rived: 20 FEB yzed: See Be	
Parameter	Result	Qual	Dil	MDL	Rep Lim l	Jnits	Method	Prepared Date	Analyzed Date
Lead	0.46	JW	1.0	0.15	0.65 п	ng/kg	SW7421	27 FEB 98 (02 MAR 98

4

Percent moisture is 22.6%. All results and limits are reported on a dry weight basis.

J = Result is detected below the reporting limit or is an estimated concentration. W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance

Reported By: Robin Proctor

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering Sc SBA-15 (9.00-10.00) 059173-0003-SA SOIL 20 FEB 98	cience Sampled: 18 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below
Parameter Lead	Result Qual Dil 0.40 JW 1.0	MDL Rep Lim Units 0.12 0.50 mg/kg	Prepared Analyzed Method Date Date SW7421 02 MAR 98 03 MAR 98

٩

J = Result is detected below the reporting limit or is an estimated concentration. W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance

Reported By: Robin Proctor

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering SBA-16 (9.00-10.00) 059173-0004-SA SOIL 20 FEB 98	Science Sampled: 18 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared Analyzed Method Date Date
Lead	0.18 JW 1.0	0.12 0.50 mg/kg	SW7421 02 MAR 98 03 MAR 98

٩

J = Result is detected below the reporting limit or is an estimated concentration. W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance

Reported By: Robin Proctor

s

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering So SBA-17 (9.50,10.50) 059173-0006-SA SOIL 20 FEB 98	cience Sampled: 18 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared DateAnalyzed DateSW742127 FEB 98 02 MAR 98
Lead	0.34 JW 1.0	0.14 0.62 mg/kg	

Percent moisture is 18.7%. All results and limits are reported on a dry weight basis.

J = Result is detected below the reporting limit or is an estimated concentration. W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance

Reported By: Robin Proctor

		1	Metals Total Meta	ls				
Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engir SBA-18 (8.50, 059173-0007-S SOIL 20 FEB 98	9.50)	Sampled:	18 FEB 98 : See Belo			ved: 20 FEB zed: See Be	
Parameter	Result Qu	al Dil	MDL	Rep Lim U	Jnits	Method	Prepared Date	Analyzed Date
Lead	8.7	1.0	0.12	0.54 п	ng/kg	SW7421	27 FEB 98 (02 MAR 98 ·

•

Percent moisture is 7.6%. All results and limits are reported on a dry weight basis.

Reported By: Robin Proctor

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S SBA-19 (6.50,8.00) 059173-0008-SA SOIL 20 FEB 98		Sampled	: 18 FEB 98 d: See Below	Received: 20 FEB 98 Analyzed: See Below		
Parameter	Result	Qual Dil	MDL	Rep Lim Units	Method	Prepared Analyzed Date Date 02 MAR 98 03 MAR 98	
Lead	4.2	1.0	0.13	0.55 mg/kg	SW7421	UZ MAR 90 UJ MAR 98	

١

Percent moisture is 9.1%. All results and limits are reported on a dry weight basis.

Reported By: Robin Proctor

-

1				Metals Total Met				
	Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engin SBA-19 (8.50) 059173-0009-5 SOIL 20 FEB 98	,10.00)	Sampled	: 18 FEB 98 d: See Below		rived: 20 FEB 98 yzed: See Below	
	Parameter	Result Qu	ual Dil	MDL	Rep Lim Units	Method		lyzed ate
	Lead	7.6	1.0	0.13	0.55 mg/kg	SW7421	27 FEB 98 02 M	AR 98 .

٢

Percent moisture is 9.9%. All results and limits are reported on a dry weight basis.

Reported By: Robin Proctor

Services

Metals Total Metals

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S SBA-100 (8.50,10.00) 059173-0010-SA SOIL 20 FEB 98	Science Sampled: 18 FEB 98 Prepared: See Below	98 Received: 20 FEB 98 Plow Analyzed: See Below			
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared MethodAnalyzed DateSW742127FEB9802MAR98			
Lead	2.2 1.0	0.13 0.56 mg/kg				

٢

Percent moisture is 10.6%. All results and limits are reported on a dry weight basis.

Reported By: Robin Proctor

-

-

٤

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering SBA-20 (6.00-7.00) 059173-0011-SA SOIL 20 FEB 98	Science Sampled: 18 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below			
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared Analyzed Method Date Date			
Lead	1.1 1.0	0.13 0.57 mg/kg	SW7421 02 MAR 98 03 MAR 98			

Percent moisture is 12.2%. All results and limits are reported on a dry weight basis.

Reported By: Robin Proctor

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S SBA-20 (9.50,10.50) 059173-0012-SA SOIL 20 FEB 98	Science Sampled: 18 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below			
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared DateAnalyzed DateMethodDateDateSW742127 FEB 98 02 MAR 98			
Lead	7.4 1.0	0.14 0.60 mg/kg				

٢

Percent moisture is 16.1%. All results and limits are reported on a dry weight basis.

Reported By: Robin Proctor

AFCEE Total Metals

"

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Enginee TW-11 (0.00,0.00 059173-0013-SA GRND-H20 20 FEB 98				Received: 20 FEB 98 Analyzed: See Below				
Parameter	Result Qual	Dil	MDL	Rep Lim Units	Method	Prepared Analyzed Date Date			
Lead	0.021	1.0	0.0012	0.0050mg/L	SW7421	27 FEB 98 02 MAR 98			

Reported By: Robin Proctor

.

AFCEE Total Metals

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering (MWA-11 (0.00,0.00) 059173-0014-SA GRND-H20 20 FEB 98	Science Sampled: 19 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below				
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared DateAnalyzed DateMethodDateDateSW742127 FEB 98 02 MAR 98				
Lead	0.020 1.0	0.0012 0.0050mg/L					

٩

Reported By: Robin Proctor

ſ

ł

. : ;

. ,

. .

-

(. {

ŗ

•

.

. .

ı

1

.

AFCEE Total Metals

١

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineeri MWA-9 (0.00,0.00 059173-0016-SA GRND-H20 20 FEB 98	g Science Sampled: 19 FEB 98 Prepared: See Below	Received: 20 FEB 98 Analyzed: See Below			
Parameter	Result Qual D	1 MDL Rep Lim Units	Prepared Analyzed Method Date Date			
Lead	ND 1	0 0.0012 0.0050mg/L	SW7421 27 FEB 98 02 MAR 98			

ND = Not Detected Reported By: Robin Proctor

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059173-0002-SA 059173-0003-SA 059173-0004-SA 059173-0006-SA 059173-0008-SA 059173-0009-SA 059173-0009-SD 059173-0009-SD 059173-0010-SA 059173-0011-SA 059173-0012-SA 059173-0014-SA 059173-0016-SA	SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOIL	PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-FAA-S PB-LAW-AT PB-LAW-AT	27 FEB 98-R3 02 MAR 98-L4 02 MAR 98-L4 27 FEB 98-R3 27 FEB 98-R3 02 MAR 98-L4 27 FEB 98-R3 27 FEB 98-R3 27 FEB 98-R3 27 FEB 98-R3 02 MAR 98-L4 27 FEB 98-R3 27 FEB 98-R3 27 FEB 98-R2 27 FEB 98-R2 27 FEB 98-R2	27 FEB 98-R3 02 MAR 98-L4 02 MAR 98-L4 27 FEB 98-R3 27 FEB 98-R3 02 MAR 98-L4 27 FEB 98-R3 27 FEB 98-R3 27 FEB 98-R3 27 FEB 98-R3 02 MAR 98-L4 27 FEB 98-R3 27 FEB 98-R2 27 FEB 98-R2 27 FEB 98-R2

٤

LABORATORY CONTROL SAMPLE REPORT Metals Analysis and Preparation

Analyte	Concent Spiked	ration Measured	Accur LCS	acy(%) Limits
Category: PB-LAW-AT Matrix: AQUEOUS QC Lot: 27 FEB 98-R2 Concentration Units: mg/L	QC Run: 27 FEB	98-R2		
Lead	0.0400	0.0459	115	74-124
Analyte	Concentr Spiked	ration Measured	Accur LCS	acy(%) Limits
Category: PB-FAA-S Matrix: SOIL QC Lot: 27 FEB 98-R3 Concentration Units: mg/kg	QC Run: 27 FEB	98-R3		
Lead	4.00	4.06	102	83-123
Analyte	Concentr Spiked	ration Measured	Accur LCS	acy(%) Limits
Category: PB-FAA-S Matrix: SOIL QC Lot: 02 MAR 98-L4 Concentration Units: mg/kg	QC Run: 02 MAR	98-L4		
Lead	4.00	4.71	118	83-123

Calculations are performed before rounding to avoid round-off errors in calculated results.

Α

Environmental Services

METHOD BLANK REPORT Metals Analysis and Preparation Project: 059173

•

Test: Matrix:	PB-AFCEE2-MDL- AQUEOUS	AT AFCEE Lea	ad, Furnace	AA (Totals)		
QC Lot:	27 FEB 98-R2	QC Run: 27 F	EB 98-R2	Date Analyzed:	02 MAR 98	
Analyte			Result	Units	RL	MDL
Lead			ND	mg/L	0.0050	0.0012
Test:	PB-FAA-MDL-S	Lead, Fur	rnace AA			
Matrix: QC Lot:	SOIL 27 FEB 98-R3	QC Run: 27 FE	B 98-R3	Date Analyzed:	02 MAR 98	
Analyte			Result	Units	RL	MDL
Lead			ND	mg/kg	0.30	0.069
QC Lot:	02 MAR 98-L4	QC Run: 02 MA	R 98-L4	Date Analyzed:	03 MAR 98	
Analyte			Result	Units	RL	MDL
Lead			ND	mg/kg	0.30	0.069

ŧ

ND = Not Detected

.

79

٩

Environmental Services

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Metals Analysis and Preparation Project: 059173								
Category: PB-LAW Matrix: AQUEOUS Sample: 059173- MS Run: 27 FEB Units: mg/L	0013	AA / Totals	; (England A	FB)				
		Conc	entration	A			A	
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	XRecover MS MSE	y %RPD	Acceptance) Limit Recov. RPD	
Lead	0.021	0.0623	0.0616	0.040	0 103 1	.02 1.1	74-124 15	
Category: PB-FAA- Matrix: SOIL Sample: 059173- MS Run: 27 FEB Units mg/kg	0009		t.					
		Conc	entration	Amount			Accontance	
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recover MS MSD		Acceptance Limit Recov. RPD	
Lead	6.9	6.13	5.96	4.00	NC	NC NC	83-123 10	
Category: PB-FAA- Matrix: SOIL Sample: 059173- MS Run: 02 MAR Units mg/kg	0003		t.					
		Conc	entration	Amount			Acceptance	
Analyte	Sample Result	MS Result	MSD Result	Spiked MS/MSD	%Recover MS MSD			
Lead	0.40 JW	4.71	4.70	4.00	108 1	08 0.2	83-123 10	

J = Result is detected below the reporting limit or is an estimated concentration.
 W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance
 NC = Not Calculated, calculation not applicable.

Calculations are performed before rounding to avoid round-off errors in calculated results.

ŧ,

Client Name: Client ID: LAB ID: Matrix: Authorized:		ngineering S .00-10.00) D3-SA	Sample	d: 18 FEI ed: See I		Received: 20 FEB 98 Analyzed: See Below			
Parameter	Result	Qual Dil	MDL	Rep L	im Units	Method	Prepared Analyzed Date Date		
Total Organic Carbon Total Organic	ND	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98		
Carbon Total Organic Carbon	ND	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98		
	ND	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98		
Total Organic Carbon	ND	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98		

ND = Not Detected

Reported By: Roxanne Sullivan

۰.

LAB ID:059173-0004-SA Matrix:Sampled: 18 FEB 98 Prepared: See BelowReceived: 20 FEB 98 Analyzed: See BelowAuthorized:20 FEB 98Prepared: See BelowAnalyzed: See BelowParameterResult Qual DilMDLRep Lim UnitsMethodPrepared Analyze DateTotal Organic CarbonND1.05502000mg/kg906007 MAR 98 09 MAR 98Total Organic CarbonND1.05502000mg/kg906007 MAR 98 09 MAR 98	Client Name: Client ID:	Parsons En SBA-16 (9.													
ParameterResultQual DilMDLRep Lim UnitsMethodDateDateTotal Organic CarbonND1.05502000mg/kg906007MAR 98 09MAR 98Total Organic CarbonND1.05502000mg/kg906007MAR 98 09MAR 98Total Organic CarbonND1.05502000mg/kg906007MAR 98 09MAR 98Total Organic Total OrganicND1.05502000mg/kg906007MAR 98 09MAR 98	Matrix:	SOIL	4-5A												
Carbon ND 1.0 550 2000 mg/kg 9060 07 MAR 98 09 MAR <th< td=""><td>Parameter</td><td>Result</td><td>Qual [</td><td>Dil</td><td>MDL</td><td>Rep Lir</td><td>n Units</td><td>Method</td><td>Ρ</td><td></td><td></td><td>A</td><td></td><td></td><td></td></th<>	Parameter	Result	Qual [Dil	MDL	Rep Lir	n Units	Method	Ρ			A			
Carbon ND 1.0 550 2000 mg/kg 9060 07 MAR 98 09 MAR <th< td=""><td>Carbon</td><td>ND</td><td></td><td>1.0</td><td>550</td><td>2000</td><td>mg/kg</td><td>9060</td><td>07</td><td>MAR</td><td>98</td><td>09</td><td>MAR</td><td>98 ·</td><td></td></th<>	Carbon	ND		1.0	550	2000	mg/kg	9060	07	MAR	9 8	09	MAR	98 ·	
Carbon ND 1.0 550 2000 mg/kg 9060 07 MAR 98 09 MAR <th< td=""><td>Carbon</td><td>ND</td><td>:</td><td>1.0</td><td>550</td><td>2000</td><td>mg/kg</td><td>9060</td><td>07</td><td>MAR</td><td>98</td><td>09</td><td>MAR</td><td>98</td><td></td></th<>	Carbon	ND	:	1.0	550	2000	mg/kg	9060	07	MAR	98	09	MAR	98	
	Carbon	ND	1	1.0	550	2000	mg/kg	9060	07	MAR	98	09	MAR	98	
		ND	1	1.0	550	2000	mg/kg	9060	07	MAR	9 8	09	MAR	98	

ND = Not Detected

Reported By: Roxanne Sullivan

4

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Eng SBA-16 (11, 059173-0005 SOIL 20 FEB 98	.00-12.00)	ing Science .00) Sampled: 18 FEB 98 Prepared: See Below				Received: 20 FEB 98 Analyzed: See Below			
Parameter	Result	Qual Dil	MDL	Rep Li	im Units	Method	Prepared Analyzed Date Date			
Total Organic Carbon Total Organic	2810	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98			
Carbon	2970	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98			
Total Organic Carbon	2800	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98			
Total Organic Carbon	2520	1.0	550	2000	mg/kg	9060	07 MAR 98 09 MAR 98			

Reported By: Roxanne Sullivan

.

General Inorganics

۲

C L M	Client Name: Client ID: AB ID: Matrix: Authorized:	Parsons En TW-11 (0.00 059173-001 GRND-H20 20 FEB 98	Ŏ,O.OO)	Sampled:	19 FEB 98 : See Below		ed: 20 FEB 98 ed: See Below	
P	arameter	Result	Qual Dil	MDL	Rep Lim Units	Method	Prepared Analyz Date Date	
N	litrate as N	ND	1.0	0.040	0.50 mg/L	9056	NA 20 FEB	98

ND = Not Detected Reported By: Patty Jungk

Client Name:Parsons EngineeringClient ID:MWA-11 (0.00,0.00)LAB ID:059173-0014-SAMatrix:GRND-H20Authorized:20 FEB 98		0.00,0.00)	Sampled	: 19 FEB 98 d: See Below	Received: 20 FEB 98 Analyzed: See Below		
Parameter Nitrate as N	Result ND	Qual Dil 1.0	MDL 0.040	Rep Lim Units 0.50 mg/L	Method 9056	Prepared Analyzed Date Date NA 20 FEB 98	

¢

ND = Not Detected

.

Reported By: Patty Jungk

٢

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineerir MWA-9 (0.00,0.00) 059173-0016-SA GRND-H20 20 FEB 98	Sampled	: 19 FEB 98 d: See Below		ived: 20 FEB 98 yzed: See Below
Parameter	Result Qual Di	1 MDL	Rep Lim Units	Method	Prepared Analyzed Date Date
Nitrate as N	0.65 1.	0 0.040	0.50 mg/L	9056	NA 20 FEB 98

Reported By: Patty Jungk

•

.

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

059173-0003-SASOILTOC-MG-S09 MAR98-N1059173-0003-SASOILTOC-MG-S09 MAR98-N1059173-0003-SASOILTOC-MG-S09 MAR98-N1059173-0003-SASOILTOC-MG-S09 MAR98-N1059173-0004-SASOILTOC-MG-S09 MAR98-N1059173-0004-SASOILTOC-MG-S09 MAR98-N1059173-0004-SASOILTOC-MG-S09 MAR98-N1059173-0004-SASOILTOC-MG-S09 MAR98-N1059173-0004-SASOILTOC-MG-S09 MAR98-N1059173-0004-SASOILTOC-MG-S09 MAR98-N1059173-0005-SASOILTOC-MG-S09 MAR98-N1059173-0005-SASOILTOC-MG-S09 MAR98-N1059173-0005-SASOILTOC-MG-S09 MAR98-N1059173-0005-SASOILTOC-MG-S09 MAR98-N1059173-0013-SAAQUEOUSN03-PAR-A20 FEB98-S1059173-0014-SAAQUEOUSN03-PAR-A20 FEB98-S1059173-0016-SAAQUEOUSN03-PAR-A20 FEB98-S1	08 MAR 98-N1 08 MAR 98-N1

¢

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

Analyte	Cc Spiked	oncentrati	on Measured	I	Accuracy Average(%)			Precision (RPD)	
	-	DCS1	DCS2	AVG	DCS	Ľimits	DCS L	imits	
Category: TOC-MG-S Matrix: SOIL QC Lot: 09 MAR 98-N1 Concentration Units: mg/kg Total Organic									
Carbon	120000	121000	120000	121000	101	91-111	0.41	10	
Category: NO3-PAR-A Matrix: AQUEOUS QC Lot: 20 FEB 98-S1 Concentration Units: mg/L									
Nitrate as N	5.00	5.27	5.37	5.32	106	90-110	2.0	20	

٨

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Wet Chemistry Analysis and Preparation Project: 059173

Test: Matrix:	NO3-AF-IC-PAR- AQUEOUS	MDL-A AFC	EE Nitrate, Ion (Chromatography		
QC Lot:	20 FEB 98-S1	QC Run:	20 FEB 98-S1	Date Analyzed:	20 FEB 98	
Analyte			Result	Units	RL	MDL
Nitrate	as N		ND	mg/L	0.50	0.040

¢

Test: Matrix: QC Lot:	TOC-9060-MG-MDL SOIL 09 MAR 98-N1		Tota Run:	-	nic Carbon 98-N1	(TOC) Date Analyzed:	09 MAR 98	
Analyte		•			Result	Units	RL	MDL
Total Or	ganic Carbon				ND	mg/kg	2000	550

ND = Not Detected

89

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Wet Chemistry Analysis and Preparation Project: 059173

Category: TOC-MG-S Total Organic Carbon for soils reported in mg/kg. (Limits for TOC-S also apply for this QC category)

matrix:	201L
Sample:	059173-0005
MS Run:	09 MAR 98-N1
Units:	mg/kg

		Con	centration					
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recovery MS MSD	%RPD	-	
Total Organic Carbon	2970	122000	125000	120000	99 102	2 2.7	91-111	10

٢

Calculations are performed before rounding to avoid round-off errors in calculated results.

Method EPA-9 RSK-175 by GC/FID Method EPA-9 RSK-175

¢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir TW-11 (0.00,0.00) 059173-0013-SA GRND-H2O 20 FEB 98 GCFID-K1A	San Prep	ce mpled: 19 FEB mared: N/A mition: 10	98		20 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		610	В	5.0	0.52	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

Approved By: Lynn S. Calvin

91

Method EPA-9 RSK-175 by GC/FID Method EPA-9 RSK-175

٢

Client Name: Client ID: LAB ID:	Parsons Engineerin MWA-11 (0.00,0.00 059173-0014-SA))				
Matrix: Authorized: Instrument:	GRND-H2O 20 FEB 98 GCFID-K1A	Prep	pled: 19 FEB ared: N/A ition: 20	98		20 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		750	В	10	1.0	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

Approved By: Lynn S. Calvin

92

Method EPA-9 RSK-175 by GC/FID Method EPA-9 RSK-175

¢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MWA-9 (0.00,0.00) 059173-0016-SA GRND-H20 20 FEB 98 GCFID-K1A	Sam Prep	e pled: 19 FEB 9 ared: N/A tion: 1.0	В		20 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		78	В	0.50	0.052	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

.

۰.

Approved By: Lynn S. Calvin

QC LOT ASSIGNMENT REPORT Subcontracted to Quanterra Lab

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)	
059173-0013-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1	
059173-0014-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1	
059173-0016-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1	

۰

A

()) Wuanterra

Environmental Services

LABORATORY CONTROL SAMPLE REPORT Subcontracted to Quanterra Lab

	Concent	Accuracy(%)		
Analyte	Spiked	Measured	LCS	Limits
Category: GAS-AUS-A Matrix: AQUEOUS QC Lot: 03 MAR 98-S1 Concentration Units: ug/L	QC Run: 03 MAR	98-S1		
Methane Ethane Ethene	34.1 63.9 59.6	30.2 57.0 52.8	89 89 88	70-130 70-130 70-130

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Subcontracted to Quanterra Lab Project: 059173

Test: Matrix:	GASES-AUSTIN-MDL AOUEOUS	-A M	Method EPA-9 RSK-			by GC/FID			
		QC Run	: 03	MAR	98-S1	Dat	e Analyzed:	03 MAR 98	
Analyte					Result		Units	RL	MDL
Methane					0.12	J	ug/L	0.50	0.052

٢

J = Result is detected below the reporting limit or is an estimated concentration.

Α

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Subcontracted to Quanterra Lab Project: 059173

Category: GAS-AUS-A Gases by Method AUS GC-0019 (Quanterra-Austin) Matrix: AQUEOUS Sample: 059189-0002 MS Run: 03 MAR 98-S1 Units: ug/L

		Concentra	tion	Amount	4	Recov		RPD
Analyte	Sample Result	MS Result	MSD Result	Spiked MS MS	Recover MS MS	у Ассер	RPD	Accept 5D Limits
Methane Ethane Ethene	62 0.87 ND	101 56.4 51.8	117 55.7 51.3	33.9 34. 63.6 64. 59.3 60.	2 87	85 70		14 30 2.3 30 2.1 30

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client D Chief						2			
MANIE PKWY	Project Manager	ager 7 Cree	دأسقا		Date 14	. 86	Chain Of Custody Number 26966	rody Number	99
	_	Telephone Number (Area Code)/Fax Number	Fax Number	40	Lab Number	521	Pade	ō	À
1 XI/T/V NUU			5	•)	Analysi		
ps 5						278	51-1		
2210-10	Carrier/Waybill Number	bill Number				1 (h) (8) (h) (8) (h) (8) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h)	151 3 V 510		
1						i pr 1741	л. 19 19	וציגאיזי	
Sample I.D. No. and Description Date	Time Sample Type	ype Total Volume	Containers Type No.	Preservative	Condition on Receipt	217 1101 2181	HAL		
80/11K 10-2/11. 033	2 1115 51			1		×			
	1700		Arche A	۱		XXX			+
(101-1) 51.	01.10			1			××		
<u>5 4 - 16 (</u>				1					
$\frac{5RA-16}{7}$	1105 0400		1			X	×		
			r 11	1		XXX	X		
165.			:	}		×'`X`			
- 19 (5.5 - 10')		8 02	240	1					1
	11 2721	8-05	ALEMTE	1		X			
(d ~ ~ 10, 21) *	- 		1	+ +		XXX			
	0832 V	ER LOUL	VIAUTOAN	Hee/Hues		× ×		<>>	
MWA-II		1741	::	1,21.			ζ 		
	11 50 11	1.141		II		X	X	X	
Special Instructions Special Instructions SRA-19 (6.5-8) is			For soil	N.					
dentification			Sample Dispo	sal To Client	Disnosal Bv Lab	Archive For	For	Months	
ard L Time Require	C Level		Project Specific (Specify)	ic (Specify)					
Theinguished By	Dail 140	li≍		Ma Da	1 ton		Date 2-20	Date 77 1me 2-20-76 0835	835
2 Adinguesting By	Dare		2. Received By	h h			Date	Tim	0)
3. Reinquished By	Date	Time	3. Received By	y			Date	Time	C)

.

•

DISTRIBUTION: WHITE . Stays with Sample; CANARY - Returned to Client with Report, PINK - Field Copy

¢

98

A

Chain of Custody Record							en en	<u> </u>	
Client Dr. FS		Project Manager	2 (or	viv.			89/19/2	Chain Of Custody	Chain Of Custody Number 5 5
	57E (00	Telephone Number (Area Code)/Fax Number	r (Area Code)/Fa	x Number		Lab Number	173	Page	، م
VDRLKOS > (6.4	Zip Code	Site Contact				7		11 553 1	
ED RB15	- 16 652159	Carrier/Waybill Number	mber				1425 1425 0403	لالجناح	
Sample I.D. No. and Description	Date Time	Sample Type	Total	Containers	Preservative	Condition on Receipt	X219	רוייין <i>בן</i>	
A GUNT	2/14/98	VITEL	++-						
19 MWA-14	11 1505 11 1545		01200				××		
	0								
Special Instructions				_					
dentification				Sample Disposal	osal				
Tequired	Skin Irritant Poison B	OC Level Unknown		Pro	Return To Client ject Specific (Specify)	Disposal By Lab	L Archive For		Months
T. Hommal Hush		Data 1	Time 1600	1. Recoved By	By Da Da	rlten		Date 2.20-78 Date	8 DB35 Time
to American					6				
3. Relinquished By		Date	Time	3. Received By	By			Date	Time
Comments				_			-		_
	-								
DISTRIBU WHITE - Stays with Sample: CANARY - Returned to Client with Report; PINK - Field Copy	IARY - Returned to Client w	ith Report; PINK - Fi	eld Copy	Í					

ĸ

. .

99

A

Chain of Custody Record		tsut; st	int s	,						I P B P O O T F U anterra Environmental Services	(6 0) / " [" a mental	S	
Cleri Cleri Address		Project E	Project Manager EIIEN Telephone Number	Project Manager Ellen Lo. Liviev Telephone Number (Area Code) Fax Number	AVLEV ax Number	2		Date 02/23/98 Lab Number 20/23	861	chain Of C	1 Lasto	Der	
City State	Zip Code	Site C	Site Contact							Anal	analysis		
Project Name 59173 Ru Contract/Purchase Order/Quote No.	lacon / Ki	Lucarda A	CarrierWaybill Number	ıber					_St1		······		
Sample I.D. No. and Description	Date	Time Sam	Sample Type	Total Volume	Containers Tvpe N	rs No.		Condition on Receipt	সন্থ				
59173-13	02/19	0830 A				3	90 Y	200 H 600 y	X				
h'-			AC A	-		ę c	5	16-52-2 245	*				
d 12)			a	2								
Special Instructions												_	
n Flamm	Skin Irritant	Deison B	Unknown	umo	Sample Disposal	ple Disposal Return To Client		Disposal By Lab	Archive For	e For	Months		
Turn Around Time Required \Box Normal \Box Rush $O_{\rm UC}$ $\beta_{\rm O}$	5	ور در الخر	ы 1. П.	ш Ш	Project Sp	Project Specific (Specify)							
ed By	2	Date	3-98	Time 1350	1. Receive	d By	hu/			Date	Date 72-26-7	^{Time} 0939	
2. Relinquished By		Date			2. Pieceive	d By	P			Date		ime	

100

DISTRIBUTION: WHITE . Stays with Sample: CANARY - Returned to Client with Report, PINK - Field Copy

A

`

Time

Date

3. Received By

Time

Date

3. Relinquished By

Comments

1

101

A

		()) Wuan	terra	
	SA	MPLE CH	HECKLIST	
	Pro	ject #:	D9173 Date/Time Received: <u>2-20-98_C0835</u>	
	Cor	npany Nan	ne & Sampling Site: Parsons E:	
		*Cooler #(s)		
]	Temperatures	s: <u>2, lo</u>	
	Unj	packing &	Labeling Check Points:	
	N/A	Yes No	1. Radiation checked, record if reading > 0.5 mR/hr. (mR/hr)	ABD.
		^	2. Cooler seals intact.	
			3. Chain of custody present.	
			4. Bottles broken and/or are leaking, comment if yes.	
			PHOTOGRAPH BROKEN BOTTLES	
			5. Containers labeled, comment if no.	
		•	6. pH of all samples checked and meet requirements, note exceptions.	
		+	 Chain of custody includes "received by" and "relinquished" by signatures, dates, and times. 	
	¥		8. Receipt date(s) > 48 hours past the collection date(s)? If yes, notify PA/PM.	
			9. Chain of custody agrees with bottle count, comment if no.	
			0. Chain of custody agrees with labels, comment if no.	
¥			1. VOA samples filled completely, comment if no.	
			2. VOA bottles preserved, check for labels.	
			3. Did samples require preservation with sodium thiosulfate?	
			4. If yes to #12, did the samples contain residual chlorine?	
	ď		5. Sediment present in "D," dissolved, bottles.	
			6. Are analyses with short holding times requested?	·
	ď		7. Is extra sample volume provided for MS, MSD or matrix duplicates?	
			8. Multiphase samples present? If yes, comment below.	
		C Coffee 1	9. Any subsampling for volatiles? If yes, list samples.	<u> </u>
			PHOTOGRAPH MULTIPHASE SAMPLES	}
			20. Clear picture taken, labeled, and stapled to project folder.	
			1. Subout COC signed and sent with samples to bottle prep?	<u>VPB</u>
			2. Was sample labeling double checked?	<u> 148</u>
	mor	e space is n	clude action taken to resolve discrepancies/problems. Include a hard copy of e-mail or use ex needed. <u>Samples 01 02 sampled 2-17</u> , one of two trip	United the second se
	<u>ha</u>	we hea	d space - Sample + 08 is skipped in chain due to tabeling problem	ABP

•

٠

.

Revision 3.5 -November 21, 1997

A

· · · · · · · · · · · · · · · · · · ·		uanterra
Fax #: 831-8208	Phone: 421-6611	Fax: 431-7171
Co.: Parsons ES	Quanterra Denver	
To: John Hicks	From: Ellen La Rivier	e
FAX TRANSMITTAL	# Pages 1 of 1	

Environmental Services

CONFIRMATION OF COMMUNICATION

Pursuant to our conversation today, the following is Quanterra's understanding of your instructions. We believe this \square is \square is not a contract change. An estimate of the schedule and cost impact (if any) will follow, so that change order negotiations may begin, if necessary. Meanwhile, Quanterra \square will \square will not perform according to the revised instructions, unless you instruct otherwise.

Client Name: Parsons Engineering Science	Program Name/LIMS Number: Keesler AFB
Quanterra Project Number: 059173	Contact at Laboratory: Ellen La Riviere
Date of Request: February 26, 1998	Contract/Order Number:
Date Change Order Submitted to Client: February 27, 1998	Authorized Client Representative: John Hicks

TYPE OF CHANGE:	DESCRIPTION OF			
· · ·		CHANGE/DISCREPANO		
Method	On February 26, 1998,	Mr. Brad Lewis of Parsons E	Engineering Science a	dded the following
Sample Delivery Schedule	analyses to samples in	Quanterra's project number (59173:	
SDA Criteria	Sample ID	Client ID	Analysis	
Matrix	059173-0003-SA	SBA-15 (9-10')	Lead	
QC Change	059173-0004-SA	SBA-16 (9-10')	Lead	
Bottles Received	059173-0008-SA	SBA-19 (6.5-8')	Lead, Naphthal	ene
Deliverable	059173-0011-SA	SBA-20 (6-7')	Lead	
C of C Discrepancies				
PROGRAM CHANGE				
PROJECT CHANGE ONLY				

Date change is to be implemented: February 27, 1998 APPROVED BY:		S. i P	<u> </u>
CLIENT REP:	QUANTERRA REP:	lley Tot	weise
		Jen Ger	/
Follow-up required: N/A		÷ .	
Yes, Describe: Please sign acknowledgment and return to	o the laboratory.	·.·`	
			· · · · · · ·
		•	
			: 1

102

Α

R2/2	25/1998	09:55	303-831-8208	PARSUNS	ΕN
FER.	51,188	18:08	303-831-8208 FROM QUANTERRA-PIPEL	.INE	TC

- 10 8318208

PAGE.001/001

FAX TRANSMITTAL	# Pages 1 of 1	
To: John Hicks	From: Ellen La Rivi	ere
Co.: Parsons ES	Quanterra Denver	
Fax #: 831-8208	Phone: 421-6611	Fax: 431-7171
	. A	uanterra

Esvironmental Services

CONFIRMATION OF COMMUNICATION

Pursuant to our conversation today, the following is Quanterra's understanding of your instructions. We believe this is is not a contract change. An estimate of the schedule and cost impact (if any) will follow, so that change order negotiations may begin, if necessary. Meanwhile, Quanterra is will in will not perform according to the revised instructions, unless you instruct otherwise.

Client Name: Parsons Engineering Science	Program Name/LIMS Number: Keesler AFB
Quantorra Project Number: 059173	Contact at Laboratory: Ellen La Riviere
Date of Request: February 20, 1998	Contract/Order Number:
Date Change Order Submitted to Client: February 21, 1998	Authorized Client Representative: John Hicks

TYPE OF CHANGE:	DESCRIPTION OF							
	MODIFICATION/CHA	MODIFICATION/CHANGE/DISCREPANCY/NOTIFICATION:						
Method	The chain of custody receive	d with the samples in this project requ	uested nitrate/nitrite analyses.					
Sample Delivery Schedule		s with the client, it was determined th						
SDA Criteria	samples for nitrate by Metho							
🗋 Matrix								
QC Change								
Borries Received		i						
Deliverable								
C of C Discrepancies								
PROGRAM CHANGE	· .							
PROJECT CHANGE ONLY								
Date change is to be implemented: F	cbruary 20, 1998							
APPROVED BY: CLIENT REP: ALL.	hik	QUANTERRA REP: Ellen	LeRivine					
	· · · · · · · · · · · · · · · · · · ·	QUANTERRA REF: CHILL	- yi wase					
Follow-up required: N/A								
Yes, Describe: Please sign acknow	wledgment and return to the lab	boratory.						
•		731854.0600.2						
		Post-lt* Fax Note 7671	Date 2/25 pages /					
		To Elle Lahviere	From John Hicks					
		- CONDEDT. Quinter	Co. PorsmiES					
		Phone # 721-6611	Phone # 831-4100					
		Fax # 431-7171	Fax a					

** 101HL PHGE.001 ** 303 831 8208 PAGE.001

FEB 25 '98 9:54

Overview

On February 21, 1998, Quanterra Incorporated; Denver Laboratory received six aqueous samples from Parsons Engineering Science, Inc.

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

Overview Sample Description Information/Analytical Test Requests Analytical Results Quality Control Report

Aromatic Volatile Organics Data Review

Each sample was analyzed to achieve the lowest possible reporting limits within the constraints of the method. In some cases, due to interferences or analytes present at concentrations above the linear calibration range of the instrument, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilutions required. Quanterra samples 059189-0001-SA, -0004-SA and -0005-SA were analyzed at dilutions for Method 8020A due to the concentration of target compounds present in the samples

Methane Data Review

Analyses for methane by RSK-175 were performed by Quanterra's Austin laboratory.

Samples 059189-0001-SA, -0004-SA and -0005-SA were analyzed at dilutions for methane by RSK-175 due to the concentration of the target analyte present in the sample. The reporting limits have been raised relative to the dilutions required.

The percent recovery in the matrix spike duplicate, 059189-0002-SD, exceeded the upper control limit. Because the laboratory control sample (LCS) was within acceptable limits, a matrix effect is indicated, and no further action was required by the laboratory.

With the above noted exceptions, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. All laboratory quality control samples analyzed in conjunction with the samples in this project were within established control limits.

Footnotes and Data Qualifiers

The data sheets contained in this report may contain a variety of footnotes and data qualifiers. Some footnotes are used with specific tests; for example, footnotes used with the GC/FID Petroleum Hydrocarbon methods to indicate (in the analyst's judgment) the product that appears to be present. Finally, there are a number of general qualifiers that serve to identify problems and pertinent observations made during sample analysis that may not be discussed in the Overview. These are described below:

B Compound is also detected in the blank. The indicated compound was detected in the sample as well as the method blank. Please note that the B flag is not used when the sample result is ND (Not Detected).

G Reporting limit raised due to the matrix of the sample. Indicates that reporting limits were raised due to the presence of non-target compounds or other matrix interferences. The sample may or may not have been diluted. For inorganic methods, the footnote applies only to the flagged analyte. For organic methods, the footnote pertains to all analytes determined by the method.

- J Result is detected below the reporting limit or is an estimated concentration. Most commonly, a "J" value indicates that the reported result for the analyte is below the stated reporting limit and is an estimated value. "J" values are applied to organic analytes detected above the MDL but below the reporting limit and for inorganic analytes detected above the IDL but below the reporting limit. Analytes which are not detected at or below the reporting limit are reported as "ND" and do not have "J" flags. Because "J" values may represent false positive concentrations, care should be used when interpreting these data. If there is uncertainty about the quantitation of an analyte such as due to metals serial dilution failure, this footnote may also indicate that a reported result is an estimated concentration, even if it is above the reporting limit.
- N Spiked sample recovery not within limits. This qualifier is applied to the parent sample when MS/MSD recoveries are not within acceptable limits.
- r This footnote is analyst defined. The data sheets will list "r" footnotes with consecutive numbers.
 The electronic data deliverable will show "r" data qualifiers. Please see datasheet for exact definition.

ANALYTICAL TEST REQUESTS for Parsons Engineering Science

•

٠

Page 1 of 1

Lab ID: 059189	Group Code	Analysis Description	Custom Test?
0001 - 0005	A	Method EPA-9 RSK-175 by GC/FID AFCEE Aromatic VOAs by Method 8020A with MTBE & GC Prep For Waters AFCEE Aromatic VOAs by Method 8020A with MTBE & AFCEE Nitrate, Ion Chromatography AFCEE Lead, Furnace AA (Totals) Prep - Total Metals, Furnace AA	N Y
0006	В	AFCEE Aromatic VOAs by Method 8020A with MTBE & GC Prep For Waters AFCEE Aromatic VOAs by Method 8020A with MTBE &	N Y

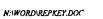
Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir MW8-4 (0.00,0.00) 059189-0001-SA GRND-H20 21 FEB 98 GCPID-H	Sam Prep	e pled: 20 FEE ared: 26 FEE tion: 25	3 98 3 98		21 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL ·	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	880 89 210 600	d M M d	50 50 50 50	1.4 3.8 1.4 3.8	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a,a,a-Trifluo Fluorobenzene	rotoluene		103 82	x x	44 - 16 44 - 16	-

.

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Shawn Hadley

.


LIMs Report Key

۰.

Section	Description
Cover Letter	Signature page, report narrative as applicable.
Sample Description Information	Tabulated cross-reference between the Lab ID and Client ID, including matrix, date and time sampled, and the date received for all samples in the project.
Sample Analysis Results Sheets	Lists sample results, test components, reporting limits, dates prepared and analyzed, and any data qualifiers. Pages are organized by test.
QC LOT Assignment Report	Cross-reference between lab IDs and applicable QC batches (DCS, LCS, Blank, MS/SD, DU)
Duplicate Control Sample Report	Percent recovery and RPD results, with acceptance limits, for the laboratory duplicate control samples for each test are tabulated in this report. These are measures of accuracy and precision for each test. Acceptance limits are based upon laboratory historical data.
Laboratory Control Sample Report	Percent recovery results for a single Laboratory Control Sample (if applicable) are tabulated in this report, with the applicable acceptance limits for each test.
Matrix Spike/Matrix Spike Duplicate Report	Percent recovery and RPD results for matrix- specific QC samples and acceptance limits, where applicable. This report can be used to assess matrix effects on an analysis.
Single Control Sample Report	A tabulation of the surrogate recoveries for the blank for organic analyses.
Method Blank Report	A summary of the results of the analysis of the method blank for each test.

List of Abbreviations and Terms

Abbreviation	Term	Abbreviation	Term
DCS	Duplicate Control Sample	MSD	Matrix Spike Duplicate
DU	Sample Duplicate	QC Run	Preparation Batch
EB	Equipment Blank	QC Category	LIMs QC Category
FB	Field Blank	QC Lot	DCS Batch
FD	Field Duplicate	ND	Not Detected at or above the reporting limit expressed
IDL	Instrument Detection Limit (Metals)	QC Matrix	Matrix of the laboratory control sample(s)
LCS	Laboratory Control Sample	RL	Reporting Limit
MB	Method Blank	QC	Quality Control
MDL	Method Detection Limit	SA	Sample
MS	Matrix Spike	SD	Spike Duplicate
RPD	Relative Percent Difference	TB	Trip Blank
ppm (part-per- million)	mg/L or mg/kg (usually)	ppb (part-per- billion)	ug/L or ug/kg (usually)
QUAL	Qualifier flag	DIL	Dilution Factor

.

.

4

SAMPLE DESCRIPTION INFORMATION for Parsons Engineering Science

Lab ID	Client ID	Matrix	Sampl Date	ed Time	Received Date
059189-0001-SA 059189-0002-SA 059189-0002-SD 059189-0002-SD 059189-0003-SA 059189-0004-SA 059189-0005-SA 059189-0006-FB	MW8-4 (0.00,0.00) MW8-1 (0.00,0.00) MW8-1 (0.00,0.00) MW8-1 (0.00,0.00) MWA-10B (0.00,0.00) MW8-5 (0.00,0.00) MW8-3 (0.00,0.00) FIELD/TRIP BLANK (0.00,0.00)	GRND - H20 GRND - H20 GRND - H20 GRND - H20 GRND - H20 GRND - H20 GRND - H20 WATER - QA	20 FEB 98 20 FEB 98 20 FEB 98 20 FEB 98 20 FEB 98 20 FEB 98 20 FEB 98	08:30 08:30 08:30 09:15 10:20 10:20	21 FEB 98 21 FEB 98

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MW8-4 (0.00,0.00) 059189-0001-SA GRND-H20 21 FEB 98 GCPID-H	San Prep	ce mpled: 20 FEB wared: 26 FEB ution: 25	98 98 98	Received: 21 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	880 93 220 600	M d M	50 50 50 50	1.4 ug/L 3.8 ug/L 1.4 ug/L 3.8 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluo Fluorobenzene			96 86	X X	44 - 165 44 - 165

٠

d = See Preferred Result on Other Column
M = Preferred Result

Reported By: Shawn Hadley

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri MW8-1 (0.00,0.00) 059189-0002-SA GRND-H20 21 FEB 98 GCPID-H	San Prep	ce mpled: 20 FEB 9 Dared: 26 FEB 9 ution: 1.0	8 8	Received: 21 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	nd Nd Nd Nd		2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene			94 87	% %	44 - 165 44 - 165

١

ND = Not Detected

Reported By: Shawn Hadley

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MWA-10B (0.00,0.00 059189-0003-SA GRND-H20 21 FEB 98 GCPID-H)) San Prep	ce mpled: 20 FEB 9 bared: 26 FEB 9 ution: 1.0	8 8	Received: 21 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND ND ND ND		2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L
Surrogate			Recovery		Acceptable Range
a,a,a-Trifluo Fluorobenzene			97 94	x x	44 - 165 44 - 165

.

ND = Not Detected

Reported By: Shawn Hadley

Environmental Services

AFCEE^Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri MW8-5 (0.00,0.00) 059189-0004-SA GRND-H20 21 FEB 98 GCPID-H	Sam Prep	e npled: 20 FEI ared: 26 FEI tion: 50	3 98 3 98		21 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	1500 ND 930 540	d M d	100 100 100 100	2.8 7.5 2.7 7.5	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable Ra	ange
a,a,a-Trifluo Fluorobenzene	rotoluene		99 90	* *	44 - 165 44 - 165	

.

d = See Preferred Result on Other Column
M = Preferred Result
ND = Not Detected

Reported By: Shawn Hadley

AFCEE[^]Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MW8-5 (0.00,0.00) 059189-0004-SA GRND-H20 21 FEB 98 GCPID-H	Sam Prep	e pled: 20 FEB bared: 26 FEB tion: 50	98 98	Received: 21 FEB 98 Analyzed: 26 FEB 98
Parameter		Result	Qualifier	RL	MDL Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	1400 ND 940 530	M đ d M	100 100 100 100	2.8 ug/L 7.5 ug/L 2.7 ug/L 7.5 ug/L
Surrogate			Recovery		Acceptable Range
a.a.a-Trifluc Fluorobenzene	protoluene		96 90	* *	44 - 165 44 - 165

•

d = See Preferred Result on Other Column
M = Preferred Result
ND = Not Detected

Reported By: Shawn Hadley

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineeri MW8-3 (0.00,0.00) 059189-0005-SA GRND-H20 21 FEB 98 GCPID-H	Sam Prep	e pled: 20 FEE ared: 26 FEE tion: 250	3 98 3 98		21 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	2500 10000 1700 8200	M M M M	500 500 500 500	14 38 14 38	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a,a,a-Trifluo Fluorobenzene	rotoluene		96 88	x X	44 - 16 44 - 16	

٩

M = Preferred Result

Reported By: Shawn Hadley

AFCEE[^]Aromatic VOAs by Method 8020A Method 8020A

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineer MW8-3 (0.00,0.00) 059189-0005-SA GRND-H20 21 FEB 98 GCPID-H) Sam Prep	e pled: 20 FEE pared: 26 FEE tion: 250	3 98 3 98		21 FEB 98 26 FEB 98
Parameter		Result	Qualifier	RL	MDL	Units
Benzene Toluene Ethylbenzene Xylenes (tota	1)	2600 10000 1800 8300	d d d	500 500 500 500	14 38 14 38	ug/L ug/L ug/L ug/L
Surrogate			Recovery		Acceptable R	ange
a.a.a-Trifluo Fluorobenzene			92 88	* *	44 - 16 44 - 16	

٢

d = See Preferred Result on Other Column

Reported By: Shawn Hadley

AFCEE^Aromatic VOAs by Method 8020A with MTBE & TMBs Method 8020A

Client Name: Client ID:	FIELD/TRIP BLANK (rsons Engineering Science ELD/TRIP BLANK (0.00,0.00)							
LAB ID: Matrix: Authorized: Instrument:	059189-0006-FB WATER-QA 21 FEB 98 GCPID-H	Sam Prep Dilu	pled: 20 FEB 98 ared: 26 FEB 98 tion: 1.0	3 3	Received: 21 FEB 98 Analyzed: 26 FEB 98				
Parameter		Result	Qualifier	RL	MDL Units				
Benzene Toluene Ethylbenzene Xylenes (tota	1)	ND 0.97 ND ND	J	2.0 2.0 2.0 2.0	0.056 ug/L 0.15 ug/L 0.054 ug/L 0.15 ug/L				
Surrogate			Recovery		Acceptable Range				
a.a.a-Trifluo Fluorobenzene			95 85	% X	44 - 165 44 - 165				

 ${\tt J}$ = Result is detected below the reporting limit or is an estimated concentration. ND = Not Detected

Reported By: Shawn Hadley

QC LOT ASSIGNMENT REPORT Organics by Chromatography

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059189-0001-SA 059189-0002-SA 059189-0002-SA 059189-0002-MS 059189-0002-SD 059189-0003-SA 059189-0004-SA 059189-0004-SA 059189-0005-SA 059189-0005-SA 059189-0006-FB	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	8020 - PAR - A 8020 - PAR - A	26 FEB 98-H 26 FEB 98-H	26 FEB 98-H 26 FEB 98-H

.

•

LABORATORY CONTROL SAMPLE REPORT Organics by Chromatography Project: 059189

.

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE Matrix: AQUEOUS Date Analyzed: 26 FEB 98 QC Run: 26 FEB 98-H Concentration Units: ug/L Concentration Accuracy(%)

Analyte	Spiked	Measured	LCS	Limits	
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1.3-Dichlorobenzene 1.2-Dichlorobenzene 1.4-Dichlorobenzene	20.0 20.0 20.0 20.0 60.0 20.0 20.0 20.0	19.8 19.3 19.3 19.0 58.3 19.4 19.4 19.6	99 96 95 97 97 97 98	75-125 70-125 75-129 71-129 71-133 70-131 61-134 75-126	
Surrogates	Concer Spiked	ntration Measured	Accu LCS	racy(%) Limits	
a,a.a-Trifluorotoluene Fluorobenzene	30.0 30.0	27.6 26.6	92 89	44-165 44-165	

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Organics by Chromatography

Analyte	Concentration Spiked Measured	Accuracy(%) SCS Limits
Category: 8020-PAR-A Matrix: AQUEOUS QC Lot: 26 FEB 98-H QC Run: Concentration Units: ug/L	26 FEB 98-H	
a,a,a-Trifluorotoluene Fluorobenzene	30.0 28.2 30.0 27.1	94 44-165 90 44-165

Calculations are performed before rounding to avoid round-off errors in calculated results.

٠

Quanterra Incorporated 4955 Yarrow Street Arvada, Colorado 80002

...

-

303 421-6611 Telephone 303 431-7171 Fax

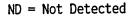
ANALYTICAL RESULTS FOR PARSONS ENGINEERING SCIENCE, INC.

QUANTERRA INCORPORATED, DENVER PROJECT NUMBER 059189

MARCH 21, 1998

Written by:

Ellen La Riviere, Program Manager



METHOD BLANK REPORT Organics by Chromatography Project: 059189

Test: Matrix: QC Lot:	8020-PAR-MDL-AP AQUEOUS 26 FEB 98-H	AFC QC Run:	EE Aromatic VOAs 26 FEB 98-H	by Method 8020A w Date Analyzed:		TMBs
Analyte			Result	Units	RL	MDL
Benzene Toluene Ethylben Xylenes			ND ND ND ND	ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0	0.056 0.15 0.054 0.15

•

Test:	8020-PAR-MDL-2	-AP AFC	AFCEE Aromatic VOAs by Method 8020A with MTBE & TME					
Matrix: QC Lot:	AQUEOUS 26 FEB 98-H	QC Run:	26 FEB 98-H	Date Analyzed:	26 FEB 98			
Analyte			Result	Units	RL	MDL		
Benzene Toluene Ethylber Xylenes			ND ND ND ND	ug/L ug/L ug/L ug/L	2.0 2.0 2.0 2.0	0.056 0.15 0.054 0.15		

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Organics by Chromatography Project: 059189

Category: 8020-PAR-A Method 8020A - AFCEE Aromatic Volatile Organics with MTBE Matrix: Sample: AQUEOUS 059189-0002 MS Run: 26 FEB 98-H Units: ug/L

		Concentrat	ion	۸	ount	X	De	cov.	,	RPD
Analyte	Sample Result	MS Result	MSD Result		iount oiked MSD	Recove	ry Ac		D A	ccept
Benzene Toluene Chlorobenzene Ethylbenzene Xylenes (total) 1,3-Dichlorobenzene 1.2-Dichlorobenzene 1,4-Dichlorobenzene	nd Nd Nd Nd Nd Nd Nd Nd	20.9 20.2 20.3 19.8 61.0 20.4 20.4 20.5	22.1 21.5 21.3 21.1 63.9 21.2 21.3 21.5	20.0 20.0 20.0 20.0 60.0 20.0 20.0 20.0	20.0 20.0 20.0 60.0 20.0 20.0 20.0 20.0	104 101 102 99 102 102 102 102	110 108 106 106 106 106 106	75-125 70-125 75-129 71-129 71-133 70-131 61-134 75-126	5.6 6.2 4.8 6.4 4.6 3.8 4.3 4.8	20 20 20 20 20 20 20 20
tert-Butyl methyl	NA	NA	NA	20.0	20.0	NC	NC	65-138	NC	20
1.2.3- Trimethylbenzene	NA	NA	NA	20.0	20.0	NC	NC	70-130	NC	20
1,3,5- Trimethylbenzene	NA	NA	NA	20.0	20.0	NC	NC	70-130	NC	20
1.2.4- Trimethylbenzene	NA	NA	NA	20.0	20.0	NC	NC	70-130	NC	20
Surrogates		%Recovery		Rec.	Ассер	t. Lim	its			
a,a,a-Trifluorotoluene Fluorobenzene	94.3 87.0	94.9 87.1	98.1 91.8		44-1 44-1					

NA = Not Applicable NC = Not Calculated, calculation not applicable. ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

AFCEE Total Metals

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engin MW8-4 (0.00,0 059189-0001-S GRND-H20 21 FEB 98	.00)	Sampled:	20 FEB 98 : See Below		rived: 21 FEB 98 yzed: See Below
Parameter Lead	Result Qu ND	ual Dil 1.0	MDL 0.0012	Rep Lim Units 0.0050mg/L	Method SW7421	Prepared Analyzed Date Date 24 FEB 98 25 FEB 98

١

ND = Not Detected Reported By: Robin Proctor

AFCEE Total Metals

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Er MW8-1 (0.0 059189-000 GRND-H20 21 FEB 98		Sampled	: 20 FEB 98 1: See Below		eived: 21 FEB 98 yzed: See Below
Parameter	Result	Qual Dil	MDL	Rep Lim Units	Method	Prepared Analyzed Date Date
Lead	ND	W 1.0	0.0012	0.0050mg/L	SW7421	24 FEB 98 25 FEB 98

٩

W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance ND = Not Detected

Reported By: Robin Proctor

AFCEE Total Metals

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S MWA-10B (0.00,0.00) 059189-0003-SA GRND-H2O 21 FEB 98	cience Sampled: 20 FEB 98 Prepared: See Below	Received: 21 FEB 98 Analyzed: See Below
Parameter	Result Qual Dil	MDL Rep Lim Units	Prepared Analyzed Method Date Date
Lead	0.0016JW 1.0	0.0012 0.0050mg/L	SW7421 24 FEB 98 25 FEB 98

.

J = Result is detected below the reporting limit or is an estimated concentration. W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance

Reported By: Robin Proctor

Services

AFCEE Total Metals

.

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons E MW8-5 (0. 059189-00 GRND-H20 21 FEB 98	0Ŏ,O.O		Sampled:	20 FEB 98 1: See Below		eived: 21 FEB 98 lyzed: See Below
Parameter Lead	Result ND	Qua] W	Dil 1.0	MDL 0.0012	Rep Lim Units 0.0050mg/L	Method SW7421	Prepared Analyzed Date Date 24 FEB 98 25 FEB 98

W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance ND = Not Detected

Reported By: Robin Proctor

.

:

۰.

AFCEE Total Metals

٠

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S MW8-3 (0.00,0.00) 059189-0005-SA GRND-H2O 21 FEB 98	cience Sampled: 20 FEB 98 Prepared: See Below	Received: 21 FEB 98 Analyzed: See Below			
Parameter Lead	Result Qual Dil 0.021 1.0	MDL Rep Lim Units 0.0012 0.0050mg/L	Method Prepared Analyzed Date Date SW7421 24 FEB 98 25 FEB 98			
		-				

Reported By: Robin Proctor

QC LOT ASSIGNMENT REPORT Metals Analysis and Preparation

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059189-0001-SA 059189-0002-SA 059189-0002-MS 059189-0002-SD 059189-0003-SA 059189-0004-SA 059189-0005-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT PB-LAW-AT	24 FEB 98-K3 24 FEB 98-K3	24 FEB 98-K3 24 FEB 98-K3

۰

DUPLICATE CONTROL SAMPLE REPORT Metals Analysis and Preparation

Analyte	Concentration Spiked Measured					curacy rage(%)	Precision (RPD)		
Analyte	opikeu	DCS1	DCS2	AVG	DCS	Limits	DCS L		
Category: PB-LAW-AT Matrix: AQUEOUS QC Lot: 24 FEB 98-K3 Concentration Units: mg/L									
Lead	0.0400	0.0473	0.0473	0.0473	118	74-124	0.0	15	

١,

Calculations are performed before rounding to avoid round-off errors in calculated results.

Α

28

METHOD BLANK REPORT Metals Analysis and Preparation Project: 059189

Test: Matrix:	PB-AFCEE2-MDL-A AQUEOUS	Т	AFCEE Lead, Furnace AA (Totals)								
		QC	Run:	24	FEB	98-K3	Date Analyzed:	25 FI	EB 98		
Analyte						Result	Units	F	RL		MDL.
Lead						ND	mg/L	(0.0050		0.0012

ŧ.

ND = Not Detected

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Metals Analysis and Preparation Project: 059189

Category: PB-LAW-AT Lead, Furnace AA / Totals (England AFB) Matrix: AQUEOUS Sample: 059189-0002 MS Run: 24 FEB 98-K3 Units: mg/L

Analyte	Sample Result	MS Result	MSD Result		very %RPD MSD	Accepta Limi Recov	
Lead	ND W	0.0481	0.0487	0.0400 120	122 1.2	74-124	15

٩

W = Post-digestion spike for furnace AA out of control limits while sample absorbance is less than 50% of spike absorbance ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering MW8-4 (0.00,0.00) 059189-0001-SA GRND-H20 21 FEB 98	Science Sampled: 20 FEB 98 Prepared: See Below	Received: 21 FEB 98 Analyzed: See Below		
Parameter	Result Qual Dil	MDL Rep Lim Units	PreparedAnalyzedMethodDateDate		
Nitrate as N	ND 1.0	0.040 0.50 mg/L	9056 NA 21 FEB 98		

٠

ND = Not Detected Reported By: Patty Jungk

Approved By: Jan Ecos

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Eng MW8-1 (0.00 059189-0002 GRND-H20 21 FEB 98	,0.00)	ng Sci	ence Sampled: Prepared				ved: 21 FE	
Parameter	Result (Qual D	i]	MDL	Rep Lim	Units	Method	Prepared Date	Analyzed Date
Nitrate as N	0.21	J 1	.0	0.040	0.50	mg/L	9056	NA	21 FEB 98

J = Result is detected below the reporting limit or is an estimated concentration.
Reported By: Patty Jungk Approved By: Jan Ecos

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S MWA-10B (0.00,0.00) 059189-0003-SA GRND-H20 21 FEB 98	cience Sampled: 20 FEB 98 Prepared: See Below	Received: 21 FEB 98 Analyzed: See Below			
Parameter Nitrate as N	Result Qual Dil 0.65 1.0	MDL Rep Lim Units 0.040 0.50 mg/L	Prepared Analyzed Method Date Date 9056 NA 21 FEB 98			

٠

Reported By: Patty Jungk

•

Approved By: Jan Ecos

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Er MW8-5 (0.0 059189-000 GRND-H20 21 FEB 98		Sampled	: 20 FEB 98 d: See Below		eived: 21 FEB 98 lyzed: See Below	
Parameter Nitrate as N	Result ND	Qual Dil 1.0	MDL 0.040	Rep Lim Units 0.50 mg/L	Method 9056	Prepared Analyzed Date Date NA 21 FEB 98	

٢

ND = Not Detected Reported By: Patty Jungk

Approved By: Jan Ecos

Client Name: Client ID: LAB ID: Matrix: Authorized:	Parsons Engineering S MW8-3 (0.00,0.00) 059189-0005-SA GRND-H20 21 FEB 98	cience Sampled: 20 FEB 98 Prepared: See Below	Received: 21 FEB 98 Analyzed: See Below		
Parameter	Result Qual Dil	MDL Rep Lim Units	PreparedAnalyzedMethodDateDate9056NA21 FEB 98		
Nitrate as N	0.14 J 1.0	0.040 0.50 mg/L			

۰,

J = Result is detected below the reporting limit or is an estimated concentration.
Reported By: Patty Jungk Approved By: Jan Ecos

QC LOT ASSIGNMENT REPORT Wet Chemistry Analysis and Preparation

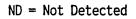
Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059189-0001-SA 059189-0002-SA 059189-0002-MS 059189-0002-SD 059189-0003-SA 059189-0004-SA 059189-0005-SA	AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS AQUEOUS	NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A NO3-PAR-A	21 FEB 98-S1 21 FEB 98-S1	21 FEB 98-S1 21 FEB 98-S1

Environmen Services

DUPLICATE CONTROL SAMPLE REPORT Wet Chemistry Analysis and Preparation

Analyte	Con Spiked	centratio DCS1	n Measured DCS2	AVG		curacy rage(%) Limits	Precis (RPD) DCS L)
Category: NO3-PAR-A Matrix: AQUEOUS QC Lot: 21 FEB 98-S1 Concentration Units: mg/L								
Nitrate as N	10.0	10.4	10.5	10.5	105	90-110	0.67	20

•


Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Wet Chemistry Analysis and Preparation Project: 059189

Test: Matrix: QC Lot:	NO3-AF-IC-PAR AQUEOUS 21 FEB 98-S1	CEE Nitrate, Ion 21 FEB 98-S1	Chromatography Date Analyzed:	21 FEB 98	
Analyte		Result	Units	RL	MDL
Nitrate	as N	ND	mg/L	0.50	0.040

.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Wet Chemistry Analysis and Preparation Project: 059189

Category: NO3-PAR-A Nitrate as N by Ion Chromatography (Cape Canaveral) Matrix: AQUEOUS Sample: 059189-0002 MS Run: 21 FEB 98-S1 Units: mg/L

		Conc	centration					
Analyte	Sample Result	MS Result	MSD Result	Amount Spiked MS/MSD	%Recove MS MS			
Nitrate as N	0.21 J	4.91	4.89	5.00	94	94 0.4	90-110	20

J = Result is detected below the reporting limit or is an estimated concentration.

Calculations are performed before rounding to avoid round-off errors in calculated results.

•

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerir MW8-4 (0.00,0.00) 059189-0001-SA GRND-H2O 21 FEB 98 GCFID-K1A	Sam Prep	e pled: 20 FEB ared: N/A tion: 100	98		21 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		4700	В	50	5.2	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

١

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MW8-1 (0.00,0.00) 059189-0002-SA GRND-H2O 21 FEB 98 GCFID-K1A	Sam Prep	e pled: 20 FEB 98 ared: N/A tion: 1.0	3	Received: Analyzed:	21 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		62	В	0.50	0.052	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

٢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MWA-10B (0.00,0.00 059189-0003-SA GRND-H2O 21 FEB 98 GCFID-K1A) Sam Prep	e pled: 20 FEB 98 ared: N/A tion: 1.0	3		21 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		3.1	В	0.50	0.052	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

٢

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MW8-5 (0.00,0.00) 059189-0004-SA GRND-H20 21 FEB 98 GCFID-K1A	Sam Prep	e pled: 20 FEB ared: N/A tion: 100	98		21 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		4900	В	50	5.2	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

۰,

Client Name: Client ID: LAB ID: Matrix: Authorized: Instrument:	Parsons Engineerin MW8-3 (0.00,0.00) 059189-0005-SA GRND-H20 21 FEB 98 GCFID-K1A	Sam Prep	e pled: 20 FEB ared: N/A tion: 30	98		21 FEB 98 03 MAR 98
Parameter		Result	Qualifier	RL	MDL	Units
Methane		1100	В	15	1.6	ug/L

B = Compound is also detected in the blank.

Reported By: Quanterra-Austin

QC LOT ASSIGNMENT REPORT Subcontracted to Quanterra Lab

.

· Ì

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
059189-0001-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1
059189-0002-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1
059189-0002-MS	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1
059189-0002-SD	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1
059189-0003-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1
059189-0004-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1
059189-0005-SA	AQUEOUS	GAS-AUS-A	03 MAR 98-S1	03 MAR 98-S1

۰,

LABORATORY CONTROL SAMPLE REPORT Subcontracted to Quanterra Lab

Analyte	Concentr	ration	Accur	racy(%)
	Spiked	Measured	LCS	Limits
Category: GAS-AUS-A Matrix: AQUEOUS QC Lot: 03 MAR 98-S1 Concentration Units: ug/L	QC Run: 03 MAR			
Methane	34.1	30.2	89	70-130
Ethane	63.9	57.0	89	70-130
Ethene	59.6	52.8	88	70-130

٢

Calculations are performed before rounding to avoid round-off errors in calculated results.

Α

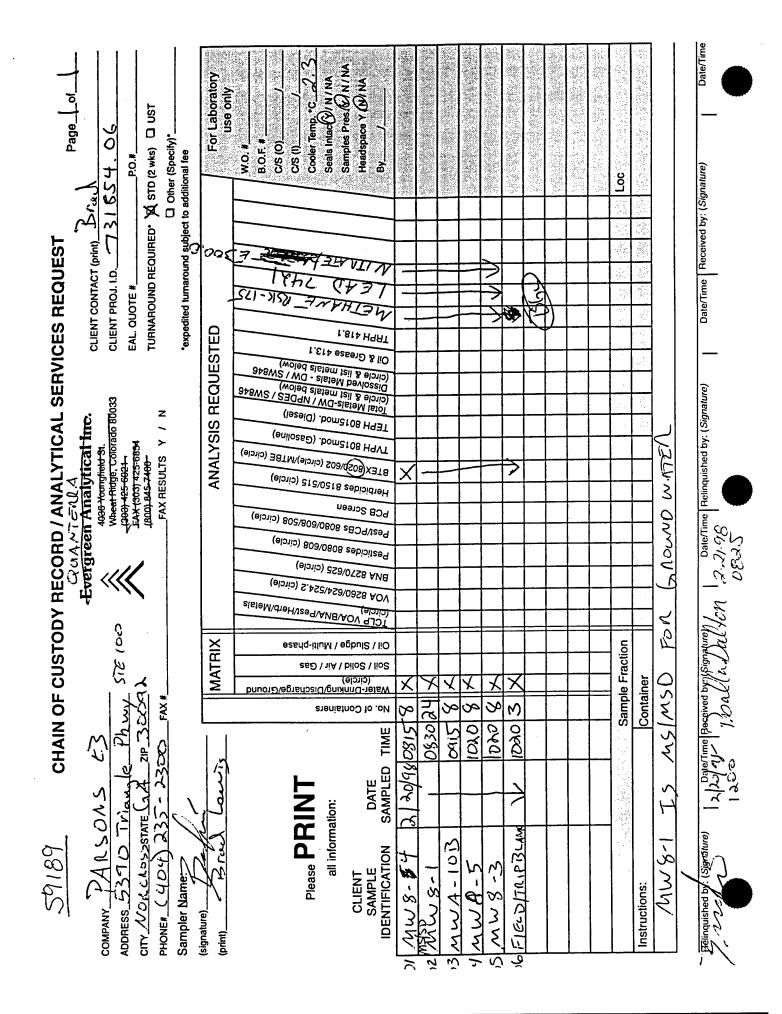
METHOD BLANK REPORT Subcontracted to Quanterra Lab Project: 059189

Test: Matrix:	GASES-AUSTIN-ME AQUEQUS	L-A	Meth	od	EPA	-9 RSK-175	by (GC/FID			
QC Lot:	03 MAR 98-S1	QC	Run:	03	MAR	98-S1	Dat	ce Analyzed:	03 M	AR 98	
Analyte						Result		Units	J	RL	MDL
Methane						0.12	J	ug/L	(0.50	0.052

J = Result is detected below the reporting limit or is an estimated concentration.

.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE QC REPORT Subcontracted to Quanterra Lab Project: 059189


Category: GAS-AUS-A Gases by Method AUS GC-0019 (Quanterra-Austin) Matrix: AQUEOUS Sample: 059189-0002 MS Run: 03 MAR 98-S1 Units: ug/L

		Concentrat	tion	Amount	۶	Recov.	RPD	
Analyte	Sample Result	MS Result	MSD Result		Recovery MS MSD	Accep. RF	=	·
Methane Ethane Ethene	62 0.87 ND	101 56.4 51.8	117 55.7 51.3	33.9 34.3 63.6 64.2 59.3 60.0	87 8	50 70-130 35 70-130 36 70-130	14302.3302.130	

٩

ND = Not Detected

Calculations are performed before rounding to avoid round-off errors in calculated results.

.

Α

48

Chain of Custody Record

.....

Chain Of Custody Number.	14102	-	Page _/ of/	Analysis												
Date	02-21-48	Lab Number				S	£	/	7.	Condition on Baceint		600 47 V	J. J			
Project Manager	FILEN Lakiviere	Telephone Number (Area Code)/Fax Number	303-421-6611	Sile Contact		Carrier/Waybill Number					Sample Lype Volume Type No.	CH S MAC 120 mt HD mt 3 HC	00 20 MD 20		a phome o	2 2
			74	Zip Code			Linelen AR			┢	Date Time	21 80 00.00 - CM	25 6V 10 10 20	2007	08130	
duA-1124 Client -	VILL - JUNION	Address		Chu I V V I WI V V V V	Brinch [CL	Project Name	/ mars/	Contract/Purchase Order/Quote No.			Sample I.D. No. and Description	20100 - 01		- 02	GNSW20 -	

		i	Count of Truce	Total	Containers	-	Precentative	Condition on Receipt	57						
Sample I.D. No. and Description	Date	amit	adki aidiiliec	Volume	Type No.				7		+		╉	+	
20100 - 01	61 20.00 MB 15	RR 15	Ginialutitat 120 mL 40 mL 3	Jm 001	HDWC	3	(1)	24 000	K		-				ļ
12 - 40160	Ne 64 10							1 - 2 - 2 - 2 - 2							
- 02		0830		JHO WC		8		PLC: - WC						Ì	
		P		JMOHC		Ð							-+		ļ
ACT 611/70				100 0 01		2			-						1
- 03		212		140 11-1							-				
104		070		120mc		2				-	-		╞	1	
20 S	-;	acor)	120mC	7	M	2	4	×	-	+	+	+	+	1
														_	1
										-		┤	╡	1	ļ
													╞	L	
											_				
										+				T	İ
														┦	
						_						_	_	-	
														+	
Special Instructions															

١

Time 0939 Time ime Months Date 22 25-98 Date Date Archive For Disposal By Lab Return To Client Project Specific (Specify) 1. Received BV Sample Disposal 2. Received By 3. Received By 1^{Time} Time Unknown Poison B L Date Skin Irritant צן Non-Hazard Elammable TANK Bush Possible Hazard Identification Normal 1. Relinquished By 2. Relinquished By 3. Relinquished By Comments

DISTRIBUTION: WHITE - Stays with Sample; CANARY - Returned to Client with Report; PINK - Field Copy

49

A

Quanterra	
SAMPLE CHECKLIST	
Project #: <u>59189</u> Date/Time Received: <u>2-21-98 @08</u>	<u>a</u> s
Company Name & Sampling Site: Parsons ES *Cooler #(s):	
Unpacking & Labeling Check Points:	;
<i>N/A</i> Yes No \square 1. Radiation checked, record if reading > 0.5 mR/hr. (mR/hr)	PBD
2. Cooler seals intact.	<u> </u>
☑ □ 3. Chain of custody present.	
I I 4. Bottles broken and/or are leaking, comment if yes.	
PHOTOGRAPH BROKEN BOTTLES	
5. Containers labeled, comment if no.	
□ 6. pH of all samples checked and meet requirements, note exceptions.	
 7. Chain of custody includes "received by" and "relinquished" by signatures, dates, and times. 	
\square \blacksquare 8. Receipt date(s) > 48 hours past the collection date(s)? If yes, notify PA/PM.	
9. Chain of custody agrees with bottle count, comment if no.	
□ 10. Chain of custody agrees with labels, comment if no.	
I I. VOA samples filled completely, comment if no.	
□ □ 12. VOA bottles preserved, check for labels.	
□ □ 13. Did samples require preservation with sodium thiosulfate?	
\Box \Box 14. If yes to #12, did the samples contain residual chlorine?	
□ □ 15. Sediment present in "D," dissolved, bottles.	
☑ □ 16. Are analyses with short holding times requested?	
□ □ □ 17. Is extra sample volume provided for MS, MSD or matrix duplicates?	
I 18. Multiphase samples present? If yes, comment below.	
If 19. Any subsampling for volatiles? If yes, list samples.	<u> </u>
PHOTOGRAPH MULTIPHASE SAMPLES	
☑ 20. Clear picture taken, labeled, and stapled to project folder.	
\square \square 21. Subout COC signed and sent with samples to bottle prep?	- And
□ 22. Was sample labeling double checked?	POD
Comments: Include action taken to resolve discrepancies/problems. Include a hard copy of e-mail or use more space is needed.	extra paper if

ł

٩

Α

50

\\QARVCO01'PUBLIC\QA\FORMS\SAMPCHCK.DOC

-

.

-

. .

. -

-

-

Revision 3.5 -November 21, 1997

Initials:

Table Of Contents

Standard Deliverables With Supporting Documentation

Report Contents	Section	Number Of Pages
Standard Deliverables		
Introduction	Α	50
• Table of Contents		<u></u>
Narrative		
 LIMs Report Key 		
 Sample Description 		
Test Requests		
Analytical Results		

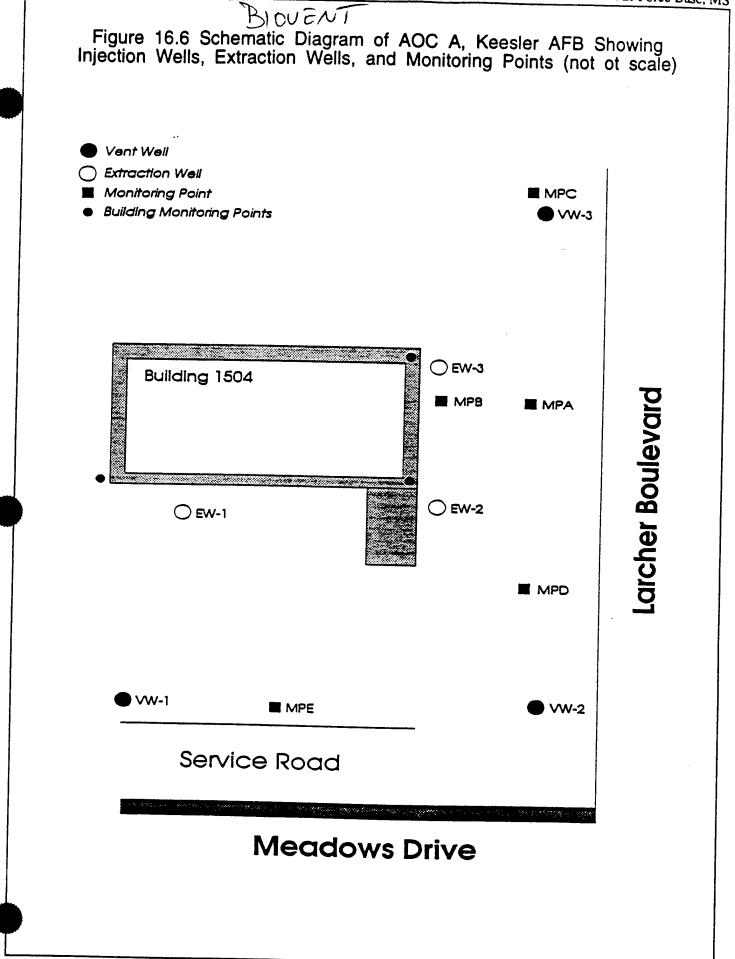
• QC Summary

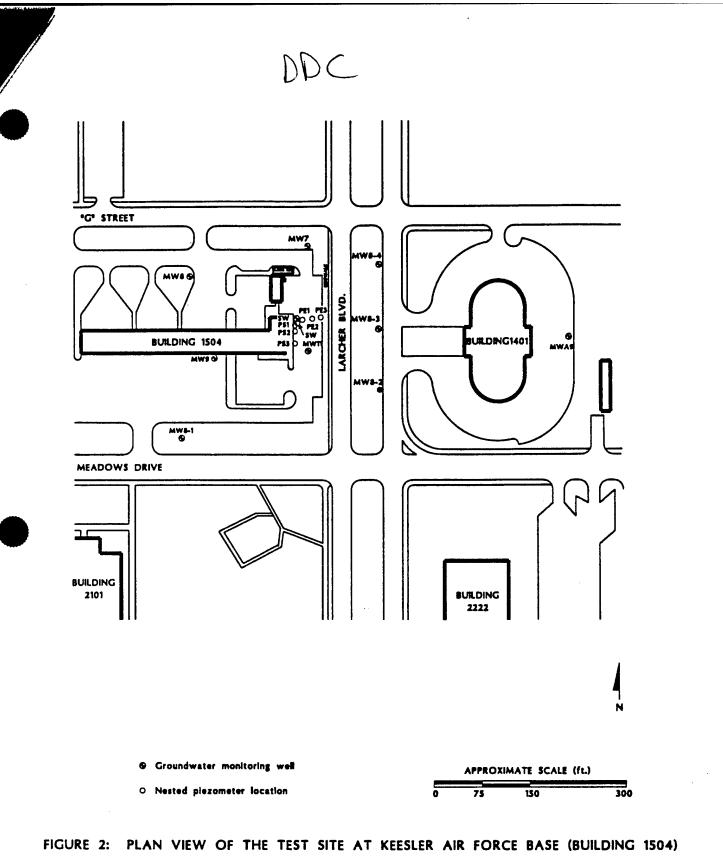
- Chain-of-Custody
- Miscellaneous

Supporting Documentation

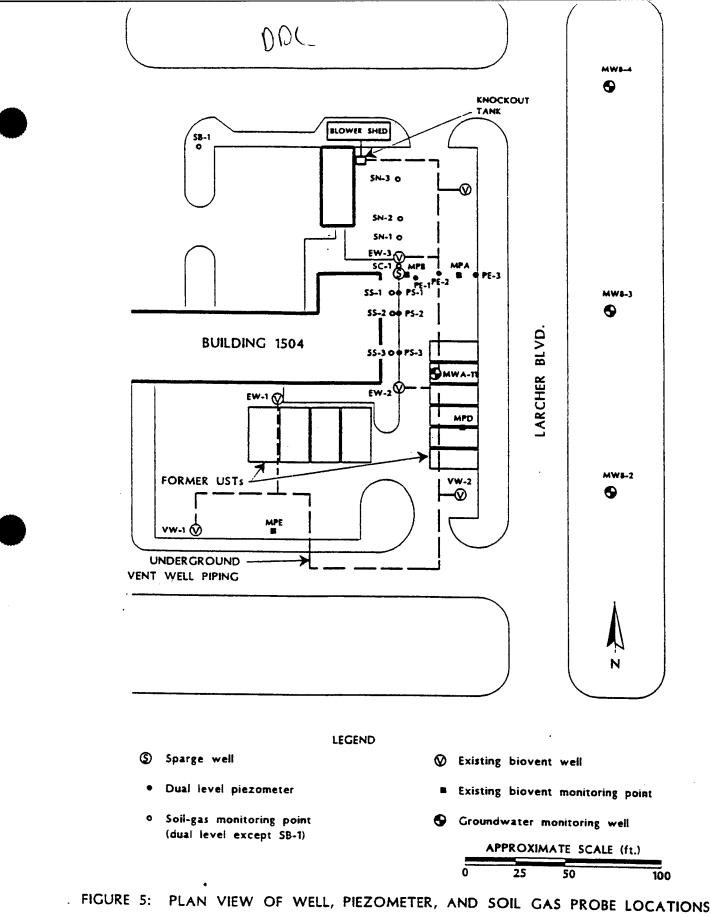
[Please Note: A one-page "Description of Supporting Documentation" is provided in the Supporting Documentation section(s).]

Volatile GC/MS	B	
Semivolatile GC/MS	С	\square
Volatile GC	D	171
Semivolatile GC	E	
LC/MS or HPLC	F	
Metals	G	12
General Chemistry	H	111
Subcontracted Data	I	69

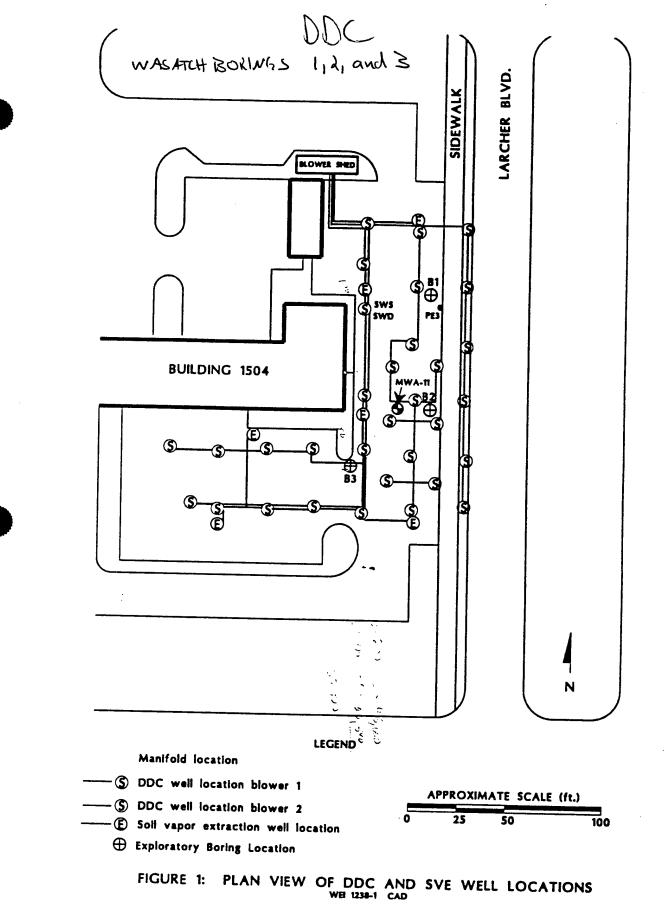

APPENDIX B PERTINENT DATA FROM PREVIOUS SITE INVESTIGATIONS


.

.

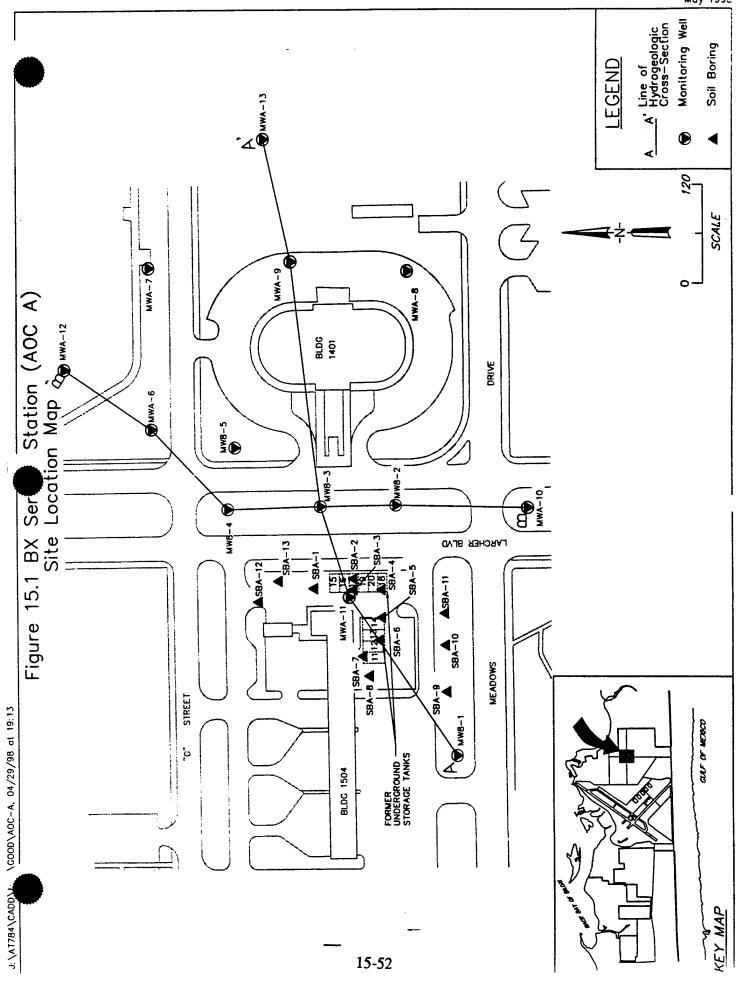

SITE MAPS

. .

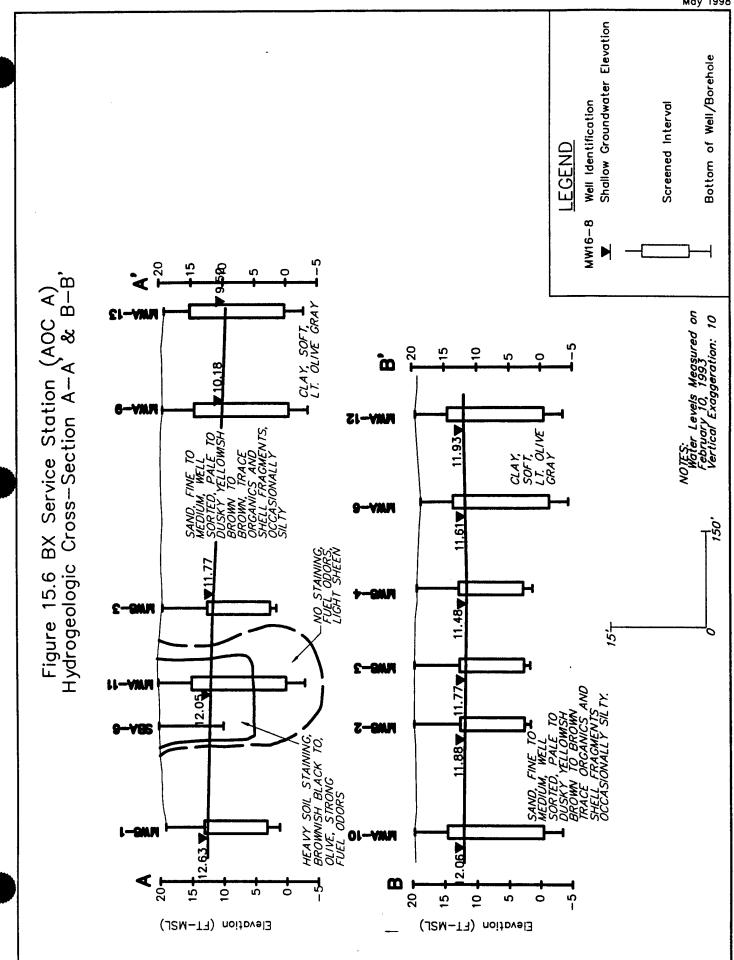


WE 1238-1 CAD

WEI 1238-1 CAD

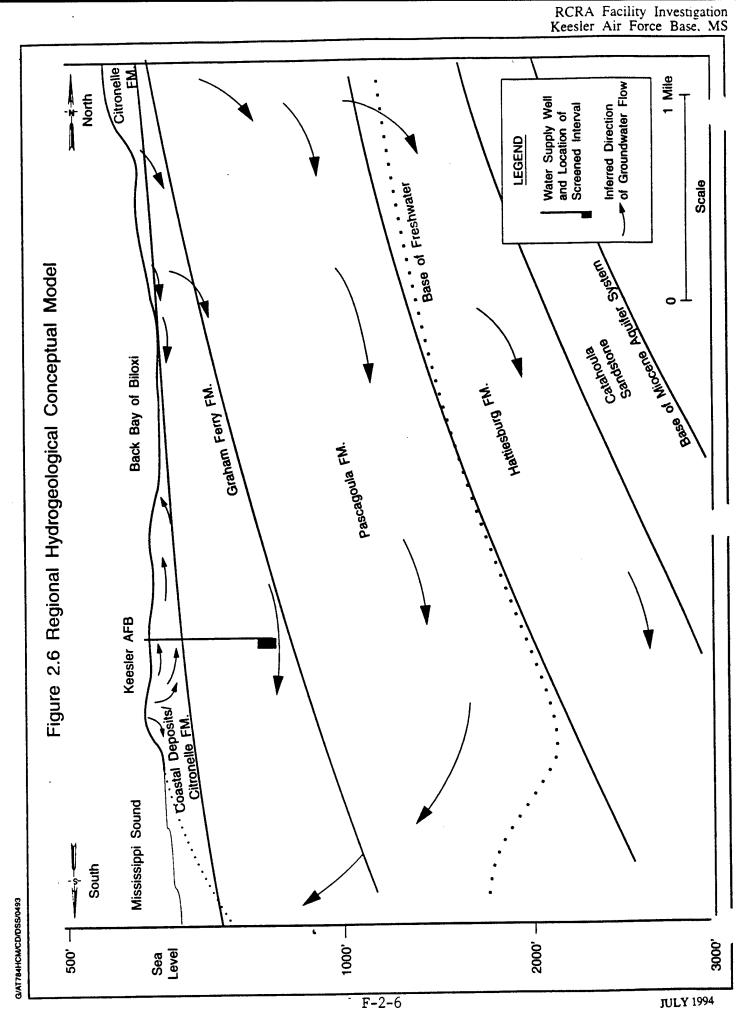

٨

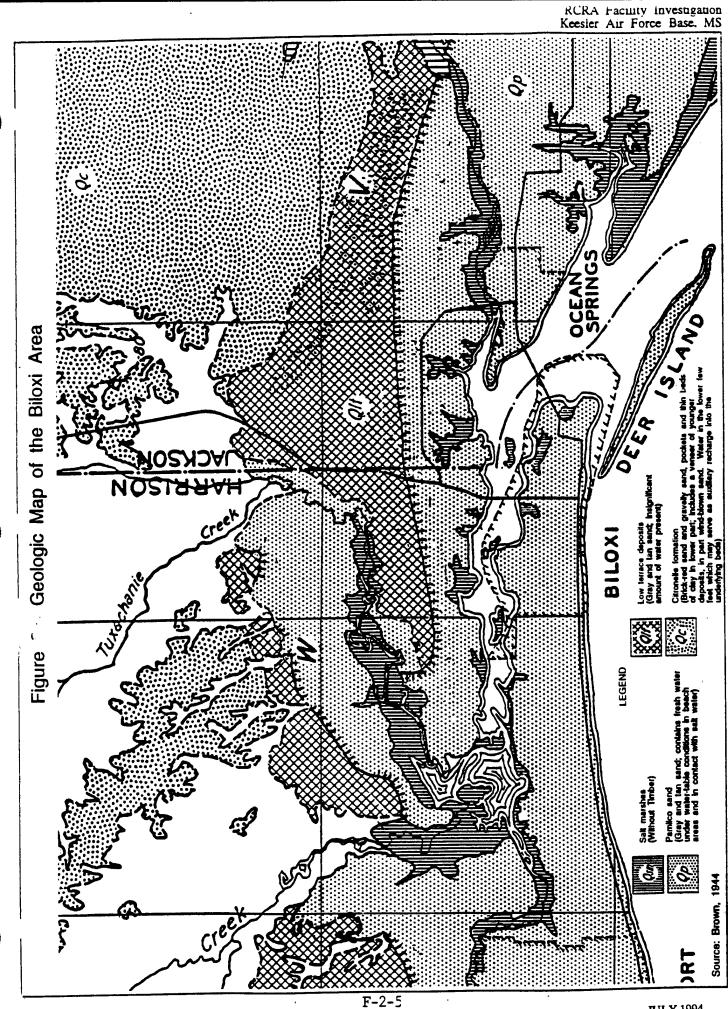



CROSS-SECTION

.

DRAFT FINAL RCRA Facility Investigation Keesler Air Force Base, MS May 1998




15-57

GEOLOGY/ HYDROGEOLOGY

.

F-2-6

System	Series	Formation	Thickness (ft)	Physical Character	Hydrology
	Holocene	Alluvium	0 to 80	Chert and quartz gravels and sandy clays and silt; much organic debris including sawdust in and near the tidal	Contains water that is probably salty as far north as salt water penetrates up the rivers.
Quaternary		Coastal Deposits Low Terrace	1 to 75 0 to 20	Mostly unconsolidated gray and tan sand; locally contains pebbles of quartz and chert and, in former lagoonal areas, much clay and silt Sand derived from beach	Contain fresh water having a low dissolved-solids content. Near the coast at shallow depths, the water is subject to salt-water encroachment.
	Pleistocene	Deposits	0.00	deposits, locally sprinkled with pebbles of quartz and brown chert	
		High Terrace Deposits	0 to 100	Sand and gravel where quartz is more abundant and chert less abundant than in the older adjacent Citronelle Formation, locally an iron-cemented conglomerate at the base	
		Citronelle	0 to 100+		Maintains high base flows of streams, and a source of recharge to the Miocene aquifer system. Supplies most rural wells in uplands.
	Pliocene	Graham Ferry	0 to 200	Silty clay and shale, silty sand, and gravelly sand and gravel in heterogeneous deltaic masses; various colors; generally dark, carbonaceous clay most abundant in the outcrops; marine fossil casts in the upper	Supplies 60 percent of the municipal and industrial groundwater supply. Soft sodium bicarbonate type of water, usually having a lower chloride content than the Pascagoula Formation.
Tertiary		Pascagoula	250 to 1.000	- Clay and shale, blue-green, silt, sandy shale, gray and green sand, gray silty clay, and dark sandy gravel containing numerous grains and pebbles of polished black chert, of estuarine or deltaic origin, identified primarily by a	Comprises several aquifers along the coast and many sand beds of local extent. The base of fresh water is in the lower part of the formation. Where the thickness is substantial transmissivity is high
	Miocene	Hattiesburg	850+	Gray-green and blue-green shale and clay, gray sand and silt, mostly carbonaceous and noncalcareous, of a continental origin than overlying beds	Contains supplies of fresh water in counties north of coastal area.
		Catahoula Sandstone	300+	Shale, sandy shale, sand, clay and silt, and gravelly sands containing black chert	Unused, saline water.

ついて Table 2.3-Mississippi Coastal Plain Geologic Units and Their Water-bearing Properties

.

--

MONITORING WELL COMPLETION SUMMARY

.

TABLE 4 -8 WELL DATA SUMMARY BX SERVICE STATION - AOC A

	Coordinates	inates				Well	Screen	Groundwater	
Well I.D.	Northing	Easting	Elevation T.O.C.	Elevation Ground	Total Depth Ft B.T.O.C.	Diameter Inch	Length Feet	Elevation Ft. NGVD	Description
MW8-1	475223.38	269678.51	19.13	19.4	16.21	й.	10	11.74	Flush mounted cover set in pad is in fair condition. Not seal around casing.
MW8-2	475531.35	269755.31	19.57	19.9	16.27	5	10	11.98	Flush mounted cover set in pad is in fair condition. Not seal around casing.
MW8-3	475529.21	269850.93	19.65	19.9	16.04	N	10	11.82	Flush mounted cover set in pad is in fair condition. Not seal around casing.
MW8-4	475526.16	269966.03	19.22	19.4	15.91	, N	10	11.21	Flush mounted cover set in pad in good condition. Seal around well is good.
MW8-5	475603.59	269956.32	19.68	19.8	17.27	"N	10	10.83	Flush mounted cover set in pad is in fair condition. Not seal around casing.
MWA-6	475626.61	270061.62	18.44	18.5	22.7	2 .	15	11.48	Flush mounted cover, pad and seal in good condition.
MWA-7	475825.02	270065.01	18.95	19.1	21.67		15	10.83	Flush mounted cover and pad is in good condition. No seal around casing.
MWA-8	475819.91	269739.92	19.23	19.2	22.02	5"	15	11.17	Flush mounted cover set in small concrete pad is in good condition.

T.O.C. = Top of Casing B.T.O.C. = Below Top of Casing

43

TABLE 4-8 (Continued) WELL DATA SUMMARY BX SERVICE STATION - AOC A

	Coorc	Coordinates							
Well I.D.	Northing	Easting	Elevation T.O.C.	Elevation Ground	Total Depth Ft B.T.O.C.	Well Diameter Inch	Screen Length Feet	Groundwater Elevation Ft. NGVD	Description
MWA-9	475832.07	269886.05	19.29	19.3	23.28	2"	15	10.48	Flush mounted cover set in pad is in fair condition. Not
MWA-10	475523.78	269593.56	19.37		22.87	2"	15	Q N	Flush mound casing. Flush mounted cover set in square pad is in good condition. No seal around
MWA-11	475417.45	269815.35	20.09	20.1	21.06	4	15	11.84	casing. Flush mounted cover set in small pad. Well is in good
MWA-12	475700.63	270172.52	19.26	19.4	22.51	2"	15	12.71	condition. Flush mounted cover and pad
MWA-13	475982.92	269919.38	18.43	19.1	22.1	2"	15	9.37	Flush mounted cover and pad
									is in good condition. No seal around casing.

T.O.C. = Top of Casing B.T.O.C. = Below Top of Casing 44

SOIL BORING LOGS/ MONITORING WELL CONSTRUCTION DIAGRAMS

Clie	nt E	ЕМО								Page 1 of 1
Site	Ke	esler	AFB	(AOC	2-A)	Project I.D	AT	784.04	1	
		I.O. <u>S</u>								
					Burgin					
					Stem Auger	Date Grouted	±			
					Spoon					
Dat	e S	tarted	09-	-24-9	32					
Dati	e C	omplet	ed	29-24	-92	Casing Inter	val	(ft)		
					ental					
					8					
		Drilled				Well Depth (ft)_			
					20.03	TOC Elevatio	n	(ft)		
Dati	e M	easure	2d		· · · · · · · · · · · · · · · · · · ·	Date Measur	ed.	·····		
			r	1	I		Τ	r I		
1		z					S			
DEPTH (feet)	<u>u</u>	ni 9/smote	ن	HNU/OVA (ppm)			AS	GRAPHIC	WE	LL DIAGRAM
H =	SAMPLE	NS/	X REC.	(mqq)		RIPTION		LOG		
1	S	ICO	24	I₹ (SOIL			
	-									
0-	+						SM			
	-IXI	N/A	95	>1000	SILT and SAND, little pebbles, light medium, dry.	t olive gray, fine to	1	· · · · · · ·		
	Ш				SAND, little SILT, fine to medium, fi	ra to looro light		22222		
	M	4,11,	100	>1000	,		SM			
	٦Å	7,6								
	\mathbf{H}				SAND, fine to medium, very loose to					
5-	-IXI	4.1.	100	500	orange to olive gray, stained, dam	D.				
	Ц	13,20			SAND, fine to medium, firm to very	firm, very pale	1			
	M	10,14	100	>1000						
	٦٨I	22,18								
	\mathbf{t}				SAND, fine to medium, very firm to	dense, very pale	1			
	HXI	2,20.	100	>100	orange, wet.		1			
10-	4	2,48								
· ·										
1	1		1							
	1							· · ·		
	-									
15	_			1						
1	1		1							
	4			1						
	4									
20						•				
	ŀ									
	7									
	1									
	+		1							
	-		1							
25				1						
20		1	1							
]		1							
	1									
	4									
	4	ļ						1		KEBOR
1	Į.	1	1	1	ļ	-	1	1	1	NESUR

Client EMO	Page 1 of 1
Site Keesler AFB (AOC-A)	Project I.D. AT 784.04
Boring I.D. SBA-2	Well I.D. <u>N/A</u>
Geologist/Engineer_J. Burgin	Date Installed
Drilling Method Hollow-Stem Auger	Date Grouted
Sampling Method Split-Spoon	Casing Material
Date Started 09-24-92	Screen Material
Date Completed 09-24-92	Casing Interval (ft)
Driller Layne Environmental	Screened Interval (ft)
Borehole Diameter (in) 8	Sump Installed?
Depth Drilled (ft) 10	Well Depth (ft)
Ground Elevation (ft) 20.0	TOC Elevation (ft)
Depth to Water (ft)	Water Level (ft)
Date Measured	Date Measured

DEPTH	(leet)	SAMPLE	BLOWS/6 IN	X REC.	HNu/OVA (ppm)	LITHOLOGIC DESCRIPTION	SOIL CLASS	GRAPHIC LOG	WELL DIAGRAM	
I	00	M	NA	NA	22.0	SAND and SILT, fine to medium, olive gray to moderate olive brown, stained, dry.	SM			
		Ø	NA	NA	20.0	SAND, little SILT, fine to medium, moderate yellowish brown, damp.	SW	***		
	- 5	X	22,19, 14,21	100	70.0	SAND, fine to medium, firm to very firm, very pale crange to olive brown, damp to moist.				
	1 1	M	13,35 12	70	1000	As above, dense to firm, color ranges from brownish black to black, (apparent oil stains).				
1	- - 0-	M	8,15, 22,23	80	1000	(As above), firm to very firm.				
	-									1
	-									
	15									
	-									
. 2	- 20 —					•				
	-									
	- -									
ė	25 -								(ł
									KEBOR	_

Client EMO	Page 1 of 1				
Site Keesler AFB (AOC-A)	Project I.D. AT 784.04				
Boring I.D. SBA-3	Well I.D. N/A				
Geologist/Engineer.J. Burgin	Date Installed				
Drilling Method Hollow-Stem Auger	Date Grouted				
Sampling Method Solit-Spoon	Casing Material				
Date Started 09-25-92	Screen Material				
Date Completed 09-25-92	Casing Interval (ft)				
Driller Lavne Environmental	Screened Interval (ft)				
Borehole Diameter (In) 8	Sump Installed?				
Depth Drilled (ft) 10	Well Depth (ft)				
Ground Elevation (ft) 20.02	TOC Elevation (ft)				
Depth to Water (ft)	Water Level (ft)				
Date Measured	Date Measured				
	<u> </u>				
	WELL DIAGRAM				

DEPTH (feet)	SAMPLE	BLOWS/6	X REC.	(udd) (bpm)	LITHOLOGIC DESCRIPTION	SOIL CLA	GRAPHIC LOG	
0-	M	NA	90	62.0	SAND and SHELL FRAGMENTS (1111), tine to medium, pale yellowish brown, dry.	SW		
	M	3,5, 6,7	95	150.0	SAND and FILL NATERIAL, fine to medium, SHELL FRAGMENTS, loose, very pale grange to dark brown, damp.			
5-	M	8,4, 7,9	100	100	SAND, fine to coarse, moderately sorted, loose, very pale orange, little black stains, wet.	SW		
	Ň	NA	100	100	SAND, trace SHELL FRAGMENTS, trace PEBBLES, fine to medium, very pale orange, little black stains, wet.			
	$\frac{1}{2}$	4,7, 22,34	10	100	SAND, fine to medium, loose to dense, very pale orange with brownish black stains, wet.			
10-								
15-								
20-								
25-								
								KEBOR

Client EMO	Page 1 of 1			
Site Keesler AFB (AQC-A)	Project I.D. AT 784.04			
Boring I.D. SBA-4	Well I.D. N/A			
Geologist/Engineer, J. Burgin	Date Installed			
Drilling Method Hollow-Stem Auger	Date Grouted			
Sampling Method Split-Spoon	Casing Materiai			
Date Started 09-25-92	Screen Material			
Date Completed 09-25-92	Casing Interval (ft)			
Driller Lavne Environmental	Screened Interval (ft)			
Borehole Dlameter (In) 8	Sump Installed?			
Depth Drilled (ft) 8	Well Depth (ft)			
Ground Elevation (ft) 20.08				
Depth to Water (ft)				
Date Measured				
HEPTH (feet) Hur/OVA (ppm) (nur/OVA FILE FILE FILE FILE FILE FILE FILE FILE	RIPTION STATE CON WELL DIAGRAM			

H -	SAM	BLOWS	XR	/nNH		SOIL	LOG		
0 -	\mathbf{X}	NA	90	0.0	SAND and SHELL FRAGMENTS (fill), fine to medium, moderately sorted, yellowish brown, damp.	SW	3 4 4 4		
4	\mathbf{X}	3.4. 7,9	95	0.0	As above, loose, some black staining, odors.				
5-	$\overline{\mathbf{X}}$	2,4, 6,7	95	3.0	SAND, fine to medium, loose, trace SHELL FRAGMENTS, pale yellowish brown with brownish black oil stains, wet.	SW			
+	\mathbb{X}	6.6.9	100	8.0	SAND, trace SILT, trace ORGANIC NATERIAL (wood chips), loose, yellowish brown, wet.				
-									
-									
15									
-									
20-									
-									
25-									i
									·
					· .	Ľ	L	l	KEBOR

Client EMO		P=gelof1
Site Keesler AFB (AOC-A)	Project I.D. <u>AT 784.04</u>	
Boring I.D. <u>SBA-5</u>	Well I.D. N/A	
Geologist/Engineer <u>J. Burgin</u>	Date Installed	······
Drilling Method Hollow-Stem Auger	Date Grouted	
Sampling Method Split-Spoon	Casing Material	·····
Date Started 09-25-92	Screen Material	
Date Completed 09-25-92	Casing Interval (ft)	
Driller Lavne Environmental	Screened Interval (ft)	
Borenole Diameter (in) <u>8</u>	Sump Installed?	
Depth Drilled (ft) 10	Well Depth (ft)	
Ground Elevation (ft) 20.20	TOC Elevation (ft)	
Depth to Water (ft)	Water Level (ft)	· · · · · · · · · · · · · · · · · · ·
Date Measured	Date Measured	· · · · · · · · · · · · · · · · · · ·

	(feet)	SAMPLE	BLOWS/6 IN	X REC.	HNu/OVA (ppm)	LITHOLOGIC DESCRIPTION	SOIL CLASS	GRAPHIC LOG	WELL DIAGRAM
	0	\mathbb{A}	NA	100	20	SAND, little SILT, trace CLAY, fine to medium, pale yellowish brown with clive gray, stains, fuel odor, moist.	SW		
		Д	5,5, 9,9	100	350	SAND, trace SILT, fine to medium, well sorted, loose, pale yellowish brown to olive gray, stains, fuel odor, wet.			
	5	-X	2.6. 13,14	100	300	SAND, trace SILT, fine to medium, compacted, loose to firm, pale yellowish brown with olive gray, wet.			
		\mathbb{N}	15,26 38,50	100	>1000	SAND, fine to medium, well sorted, very firm to dense, very pale orange with brownish black stains, wet.			
	10	\mathbb{N}	10,25 30,35	100	>1000	(As above), very firm to dense.			
	10	-							
								· .	
	15	-							
	20								
	20								
	25								
									KEBOR
L_						- 374			

Client EMO	Page 1 of 1
Site Keesler AFB (AOC-A)	Project I.D. AT 784.04
Boring I.D. SBA-6	Well I.D. N/A
Geologist/Engineer_J. Burgin	Date Installed
Drilling Method Hollow-Stem Auger	Date Grouted
Sampling Method Split-Spoon	Casing Material
Date Started 09/25/92	Screen Material
Date Completed 09/25/92	Casing Interval (ft)
Driller Lavne Environmental	Screened Interval (ft)
Borehole Diameter (in) 8	Sump Installed?
Depth Drilled (ft) 10	Well Depth (ft)
Ground Elevation (ft) 20.22	TOC Elevation (ft)
Depth to Water (ft)	Water Level (ft)
Date Measured	Date Measured

		.					<u> </u>		
DEPTH		SAMPLE	BLOWS/6 IN	X REC.	HNU/OVA (ppm)	LITHOLOGIC DESCRIPTION	SOIL CLASS	GRAPHIC LOG	WELL DIAGRAM
	0-	M	NA	90	>1000	SAND and SILT, brownish black (heavily stained), strong odors, moist.	SM	******	
	-	M	3,4 3,4,	90	70	olive brown to black, stained, odors, wet.	SW		
	- 5-	M	3,8, 15,22	100	>1000	SAND, fine to medium, loose to very firm, pale yellowish brown, olive gray to black stains, fuel odors, wet.			1
	-	Ŵ	17,30, 50/18"	100	>1000	SAND, fine to medium, dense to very dense, very pale orange with olive gray stains, fuel odors, wet.			
	- 10-	M	9,23, 32,38	100	>1000	(As above), very firm to dense.			
	•								
	15-								
	20 -								
	25-								
	20-								-
									KEBOR
				1	1				1

Drilling Method <u>Hollow</u> - Sampling Method <u>Split</u> - Date Started <u>09/25/9</u> Date Completed <u>09/25</u> Driller <u>Lavne Environmi</u> Borehole Diameter (in Depth Drilled (ft) <u>10</u> Ground Elevation (ft)	Burgin Stem Auger -Spoon 2 i/92 ental 0 8 20.40	Date Installed Date Grouted Casing Materi Screen Mater Casing Interv Screened Int Sump Installe Well Depth (f TOC Elevation Water Level	d ial ial ial ial ial id? it) (ft)	(ft) val (ft) 	
DEPTH (feet) SAMPLE BLOWS/6 IN X REC. HNU/OVA (DDM)	LITHOLOGIC DESC	RIPTION	SOIL CLASS	GRAPHIC LOG	WELL DIAGRAM
0 NA 90 0.0 2.8, 95 18.0 5-2.11, 95 340.0 10.11 2.10, 95 100.0 12.12 2.5, 100 410.0 10 15 15 - 20 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 - - 25 - - - - - - - - - - - - -	SAND, little SILT, fine to medium, f olive brown, stained, odars, wet. SAND, fine to medium, loose to firm	wish brown to light firm, dark yellowish idars, wet. Irm to very firm, I, pale yellowish	SC		
		•			Kebor

Geologist/Engineer_J Drilling Method_Hollow Sampling Method_Spli Date Started_09/25/ Date Completed_09/2 Driller_Layne Environ Borehole Diameter (1 Depth Drilled (ft)_10 Ground Elevation (ft Depth to Water (ft)_	I. Burgin ∀-Stem Auger it-Spoon	Date Grouted Casing Material Screen Material Casing Interval (ft)				
DEPTH (leet) Sample BLOWS/6 IN % REC. HNu/OVA		RIPTION	GRAPHIC LOG	WELL DIAGRAM		
27,25	SAND, little CLAY, fine to medium, to glive gray, stains, odors, wet.	e gray, adors, dry. firm, maderate brown alive gray, fuel base to very firm,	SC			
				KEBOR		

	MO							Page 1 of 1	
Site Ke	esler .	AFB	(AQC	(A)	Project I.D	AT	784.04	L	
Boring					Well I.D. N/A				
Geologi	st/Eng	aine	er J. E	Burgin	Date Installed				
	Metho	d Ho	llow-	Stem Auger	Date Grouted	11		<u></u>	
				Spoon					
)	Screen Mater	rlal			
				/92	Casing Interv	/ai	(ft)		
				ental	Screened In	her	rat (ft)	•	
Urmer				8					
Depth (Jrillea	(11)	10						
Ground	Eleva	tion	(n)	9.67					
Date M	easure	.d			Date Measuri	ea'		<u>, , , , , , , , , , , , , , , , , , , </u>	
					L <u></u>		r	······	
		Į					1		
= =	N	Ι.	<			No.	GRAPHIC	WELL DIAGRAM	
DEPTH (feet) MPLE	3/6		(udd)	LITHOLOGIC DESC	RIPTION	5	GRAPHIC		
DEPTH (feet) SAMPLE	NI 9/SMOTE	X REC.	HNu/OVA (ppm)			Solt	L0G		
	Ĩ		I =			ß			
0-11				SAND, little CLAY and SILT, fine to	course dark	SW			
I -1XI	N/A	N/A	2.0	yellowish grange to light give gray					
						1			
			1			Į į			
		I		SAND, fine to medium, well sorted, I	iaase to firm, very				
1 - 1XI	8,9,	100	4.2	pale orange to grayish orange, mo	ist.				
	11,13		1				••••••		
1 °TA	4,12,	1.00	40.0	SAND, fine to medium, well sorted,					
I TXI	17,20	100	40.0	orange to dark yellowish orange, m	loist.				
	,20								
						1			
	7.9.	100	11.0	SAND, fine to medium, well sorted,	tim to very tim,				
i 1XI	14.22		1.0	very pale orange , wet.					
10-4-1						+			
		1				1			
			ł.						
			1						
15-									
		1							
			1						
1		1						~	
			1						
20-		1							
20		1							
1			1				1		
-		1	1						
			1					•	
						1			
1			1				1		
25-			l				l ·		
	1		1			1	1		
1									
		1							
	1						1		
	1	1	1	1			1		

•

Client EMO		Page 1 of 1						
Site Keesler AFB (AOC A)	Project I.D. <u>AT 784.04</u>							
Boring I.D. SBA-10	Well I.D. <u>N/A</u>							
Geologist/Engineer J. Burgin	Date Installed							
Drilling Method Hollow-Stem Auger	Date Grouted							
Sampling Method Split-Spoon	Casing Material							
Date Started 10/21/92	Screen Material							
Date Completed 10/21/92	Casing Interval (ft)	Casing Interval (ft)						
Driller Lavne Environmental	Screened Interval (ft)	Screened Interval (ft)						
Borehole Diameter (in) 8	Sump Installed?							
Depth Drilled (ft) 10	Well Depth (ft)							
Ground Elevation (ft) 19.71	TOC Elevation (ft)							
Depth to Water (ft)	Water Level (ft)							
Date Measured	Date Measured	<u> </u>						
	ر ا							

DEPTH (feet)	SAMPLE	BLOWS/6 IN	X REC.	HNU/OVA (ppm)	LITHOLOGIC DESCRIPTION	SOIL CLASS	GRAPHIC LOG	WELL DIAGRAM
0-	M	N/A	40	6.1	SAND, little CLAY and SILT, fine to coarse, dark yellowish orange to light olive gray, dry.	SW		
-	M	6,16, 17,14	90	6.4	SAND, fine to medium, well sorted, firm, very pale orange to grayish orange, moist.			
5-	M	5.10. 17,25	85	9.1	SAND, fine to medium, well sorted, firm to very firm, very pale orange to dark yellowish orange, moist.			× (
	M	11,23 34,53	100	3.8	SAND, fine to medium, well sorted, very firm to very dense, very pale orange, wet.			
10-	\mathbb{N}	1,7, 12,21	100	1.6	As above, loose to very firm, grayish orange.			
15-								
20-								
25-								
								KEBOR
L		<u> </u>		<u> </u>				

								Page 1 of 1	
Client	esler			C A)	Project I.D				
Boring	I.DSI	HA-1	u						
Geolog	ist/En	gine	er <u>J. E</u>	Burgin	Date Installed				
				Stem Auger					
				Spoon					
Date S	tarted	1 <u>_10/</u>	21/92		Screen Mate	rial.			
Date C	omplet	ed	0/21/	92	Casing Interv	val	(ft)	·	
Driller_	avne	Env	ronme	ental					
Boreho	le Diar	nete	ir (In)	8	Sump Installe	≥d?.			
Depth	Drilled	(ft)	10		Well Depth (1	ft)_			
				9.66	TOC Elevatio	n (ft)		
Depth	to Wat	er ((ft)					······	
Date M	easure	ed			Date Measur	ed_			
		Г	T	r		m			
	_					പ			
Ezw	BLOWS/6 IN	1	15-			AS	GRAPHIC	WELL DIAGRAM	
DEPTH (leet) SAMPLE	IS/I	X REC.	HNu/OVA (ppm)	LITHOLOGIC DESC	RIPTION	리	LOG		
SA C	ð	*	1 ž J			ธี	100		
	8					ر م			
0-						SM	****		
I -X	N/A	N/A	0	SAND and SILT, trace organics 'pe well sorted, moderate yellowish bro			****		
$ \downarrow \rangle$						CW	*****		
I N	12,18,	100	5.8	SAND, trace CLAY and SILT, fine t	o sedius vell	24			
1 7/	11,13			sorted, firm, moderate yellowish br	own, light stains,		• • • • •		
				moist.					
5-X	13,7.	100	12.0	SAND, fine to medium,very well sort	ted, loose, very pale				
	9,10			orange to pale brown, wet.					
N	11,12,	100	7.4	SAND, fine to medium, very well so	rted, tim to dense,				
$ $	24,34			very pale orange, wet.					
N	8,11,	100	2.5	As above, firm to very firm.					
1 7	17,25			Peat		ы			
10-				Note: Organic 'peat' layer begins	at 9.5'.	M			
· •									
-									
-		1						• .	
15-									
4									
-									
	ł	1	1			1			
	1								
20-		1.							
-									
					•	1.	ł		
]	1						1		
1			1				1		
25-	1			1			1		
		1							
]			1				1		
1									
-	ł			1		1	ļ	KEBOR	

								Page 1 of 1		
		AFR		(A)	Project I.D. AT 784.04					
Boring					Well I.D. N/A					
Geolog	عجب ، ت ۱۹۴/۴۰۰	aines	er J. F	Burain						
Delling	Metho	d Ho	llow-	Stem Auger						
Cample	Metion Meti		Solit-	Spoon						
	tarted	10/	21/92					······································		
			0/21/9	92						
	avoe	EQU		ental	Screened In	terv	val (ft)			
Driller		n 0 + 0	r (in)	8	Sump Installe	ed?				
Boreno		14+}	· · · · · · ·		Well Depth (ft)_				
Depth	Flava	+100	(++) 1	9.72						
Ground	teva teva	er (()(<u>/_</u> f+)							
					Date Measur	ed_				
Datem	693016									
	z		-			CLASS		WELL DIAGRAM		
DEPTH (feet) SAMPLE	ni 9/smote	X REC.	(udd)	LITHOLOGIC DESC	RIPTION	3	GRAPHIC			
	SN	R	ju ju			SOIL	LOG			
S	BIC		Ŧ			8				
	_									
		1		SAND little SILT, moderately sorte	d, veliawish brown.	S₩				
I -IX	N/A	N/A	50.0	tuel odors, damp.						
4		i i								
I M	5,6,	100	68.0	SAND, fine to medium, well sorted, I	dose, very pale					
$ $ \mathcal{W}	8,7			orange, fuel odors , sains, wet.						
				SAND, fine to medium, well sorted.	loose to firm, very					
5-X	2,3, 8,14	100	>1000	pale orange, mottling, fuel odors, s	tains, wet.					
	8,14	Ì								
I N	6.7.	100	>1000	SAND, fine to medium, well sorted,						
1 1	27,32			pale orange, strong fule odors, we	τ.					
	5,9,	100	38.0	As above, loose to very firm.						
10-1	20,28				· ·····	+				
				· ·						
· 1						1				
-										
							· ·			
15-										
· -										
		1								
				l l						
			1							
20-			1							
-			1			1	<u> </u>			
			1							
1	1 ·									
25-	1		1							
	Į						1			
	1	1	1					· · ·		
1		1	1	1			1			
	1									
							1	Kebor		
	1	1		1			1	nedun		

Boring I.D. <u>SBA-13</u> Geologist/Engineer Drilling Method <u>Hollon</u> Sampling Method <u>Spl</u> Date Started <u>10/21/</u> Date Completed <u>10/21/</u> Borehole Diameter (ft) <u>10</u> Ground Elevation (ft) Depth to Water (ft).	OC A) . Burgin -Stem Auger t-Spoon 22 1/92 mental n)_8) 19.73	Well I.D. <u>N/A</u> Date Installed Date Grouted Casing Materia Screen Materia Screened Interva Screened Interva Sump Installed Well Depth (fi TOC Elevation Water Level (d al al (ft) erval (ft) d? t) n (ft) (ft)	
DEPTH (feet) SAMPLE BLOWS/6 IN X REC. HNu/OVA			SY GRAPHIC LOG	WELL DIAGRAM
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 SAND, trace SILT, fine to medium, fuel odors, damp. SAND, fine to medium, very well so pale orange, fuel odors, stains, we As above, loose to firm. As above, very firm to very dense 	moderately sorted, orted, loose, very at.	23 5W	
25-				1500

										-		
Client	E	40								Page		
Site #	kee	esler A	FB	(AOC	A)	_ Project I.D. AT 784.04						
Boring	a I	.D. MW	A-6			Well I.D. <u>MWA-6</u>						
Geolo	ais	t/Eng	inee	er <u>J. B</u>	lurain	Date Installed <u>9-16-92</u>						
Drilling		etho	<u>1 Ho</u>	Ilow -	Stem Auger	Date Grouted						<u> </u>
Samo		Metr	DO	Solit-	Spoon	Casing Mater	ial_	2" Sch.	40			
Date	St	arted	9-1	5-92		Screen Mater	rial	2" PVC	20 9	Slat		
Date	Co	moleti	ed_9	-16-9	92	Casing Interv	val	(ft) <u>0</u>	- 5		· · · · · ·	
	- L.	avne	Envi	ronme	intal	Screened In	ter	val (ft)	5 -	20		
Borer	יים. ווסר	e Diam	ete	r (in)	8	Sump Installe						
Dent	ם ר	rilled	(ft)	23		Well Depth (1						
Groun	nd I	Eleval	lon	(ft) <u>1</u>	8.57	TOC Elevatio			5	<u></u>		
Dept	n te	o Wate	⊇r (ft) <u>6.8</u>	34	Water Level						
Date	Me	asure	a_ <u>0</u> ;	2-10-	93	Date Measur	ed.	02-10-	93			
	-					<u>1</u>						
		N					CLASS			WELL DIAGR	AM	
DEPTH (teet)	끨	3/6	<u></u>	lu/OVI	LITHOLOGIC DESC	RIPTION	3	GRAPHIC				
83	SAMPLE	BLOWS/6 IN	X REC.	HNU/OVA			S	L06				
	S	B		Ŧ			2					
0-	\downarrow		ļ				SW			ਸ਼ੇਸ਼		
	Υl	N/A	90	3.8	SAND, fine to medium, and TOPSOI	<u>1</u> (2° cap), pale			Grout		•	
					yellowish brown, dry to moist.				9		Ŧ	
1	∇	N/A	90	7.2		AND ORGANICS	SW	1.4				
	-X N/A 9		30	1 -	SAND, fine to medium, well sorted. pake yellowish brown, moist.	JUNE UNDANICJ,		N - K -			Ł	•
-	H			1			SW		T			불
_ م_ ا	Μ	5.7,	90	2.2	SAND, fine to medium, trace ORGA	NICS, loose, pale					Ŧ	Sea
	5-1Ň		l	1	yellowish brown to grayish orange	, maist.		[Bentonite Seal-
1				0								ēĂ
-	XI.	1,1, 6,10	90		SAND, fine to medium, very loose i moderate yellowish brown to mode	to loose, wes sorted. Kate brown, wet.						ßen
	H	-		1	I INGGELGTE JEIGMISTI DIGMIT TO INGGE						ļ	_
	Υl	9,13,	75	26	(Same As above) with trace ORGA	NICS.					l	
10-	\mathbb{N}	16,20									1	
	Π		1	1			1				eened Interval	
-	1			ļ							nte	
-									Pack		P2	
_			1						Pa		Na	
				1					Sand	1.1.1.1.1.1	Scre	
	М		00	2.6		nea wail sarled			, N		UN I	
15-	١XI	8,1 6 , 20,38	1 30	4.0	SAND, fine to medium, loose to de moderate yellowish brown, wet.	1138, WER SUI (EU.		1: : : :				
	۲ł		1	1							1	
-	41			1								
				1							1	
	1							<u> </u>				
-	\mathbf{t}				_	1	S				+	
20-	HXI	1,1, 2,4	100	7.5	SAND, poorly sorted, some CLAY,	, soft, moderate	1				ŧ	
.	Y	2,4		1	yellowish brown to light alive gray	, we t.					Sump	
				1					4		ទី	
	71			1			_		≝ ±		ŧ	
1.	1		1									
	1								}			
25-]						1					:
]								1			
]											
											1	KEVAAP
1		1		1					<u> </u>			-

Client E Site Ke Boring Geologi Drilling Samplin Date S Date C Driller L Boreho Depth (Ground Depth (Date M	ester A I.D. <u>MW</u> st/Eng Method g Metho arted_ omplete avne E e Diam Drilled Elevat	A-7 inee <u>Hoi</u> od <u>9</u> <u>9-2</u> d <u>9</u> eter (ft) ion er (f	r J. B low-S Split-S 1-92 -21-9 onmei (in) 22.5 (ft) <u>15</u> (ft) <u>15</u>	well urgin Dat Stem Auger Dat Spoon Cas 2 Cas ntal Scr 8 Sum 9,14 Too 8 Wat	ect I.D. <u>AT 784</u> I.D. <u>MWA-7</u> Installed <u>9-21-</u> Grouted <u>9-22-</u> ng Material <u>2" S</u> en Material <u>2" F</u> ng Interval (ft) ened Interval p Installed? <u>YES</u> Depth (ft) <u>22.5</u> Elevation (ft) er Level (ft) <u>10.</u> e Measured <u>02-</u>	$ \begin{array}{r} -92 \\ -92 $
DEPTH (leet) SAMPLE	BLOWS/6 IN	X REC.	(nqq)	LITHOLOGIC DESCRIPTION	ST CASE Soli CASE Soli CASE	
	N/A N/A	90 50	0.1 0	SAND, fine to medium, little loamy topsol some SHELL FRAGMENTS, trace ORGANIC yellowish orange, dry. SAND, fine to medium, trace black ORGAN	SW	
5-1	2.5. 8.13	70	٥	yelowish orange, damp. SAND, loose to firm, well sorted, pale yell moist.	wish brown,	
	5.8, 18,28	80	0	SAND, fine to medium, loose to very firm, dusky yellowish brown, wet.	ell sarted,	
15-	2.5. 13,15	90	٥	SAND, fine ta medium, kaase ta firm, well s yellawish brawn , slight sulfuraus adar, we	orted, pale	
20-	3.L 1.2	90	0	SAND, fine to medium, well sorted, dusky brown, wet, slight adar, grades to CLAY, moist.	yellowish soft. adars, CL	

Client EMO	Page 1 of 1
Site Keesler AFB (AQC A)	Project I.D. AT 784.04
	Well I.D. MWA-8
Boring I.D. MWA-8	Date Installed 9-21-92
Geologist/Engineer J. Burgin	
Drilling Method Hollow-Stem Auger	Date Grouted <u>9-21-92</u>
Sampling Method Split-Spoon	Casing Material <u>2" Sch. 40 PVC</u>
Date Started 9-21-92	Screen Material <u>2" PVC 20 Slot</u>
Date Completed 9-21-92	Casing Interval (ft) <u>0 - 4.5</u>
Driller Layne Environmental	Screened Interval (ft) 4.5 - 19.5
Borehole Diameter (in)_8	Sump Installed? YES
	Well Depth (ft) 22.5
Depth Drilled (ft) 22.5	TOC Elevation (ft) 19.26
Ground Elevation (ft) 19.45	
Depth to Water (ft) 8.24	Water Level (ft) 10.98
Date Measured 02-10-93	Date Measured 02-10-93

	_	SAMPLE	Br oms/g in	X REC.	HNu/OVA (ppm)	LITHOLOGIC DESCRIPTION	SOIL CLASS	WELL DIAGRAM	
(-0-1	X	N/A	100	5.0	SAND, fine to coarse, trace SILT, pale yellowish grange to dark gray, mottled, damp.	SV	Ť	
		X	5 .6. 13,12	90	10.0	SAND, trace CLAY, trace SILT, trace SHELL FRAGMENTS, bose to firm, pale yellowish orange,			ا . [ي
!	5-	X	3.5. 3.6	5	0	noist. (Na recovery – spaon plugged with pine chunk).			Bentonite Sea
		M	6,9, 8,13	40	40.0	SAND, line to medium, well sorted, trace ORGANICS (pine chunks), loose to firm, pale yellowish brown, strong disinfectant odor (pine), moist to wet.			Ben t
1	0							Sand Pack Sand P	
t		X	8.12. 15.22	100		SAND, fine to medium, firm to very firm, well sorted, dusky yellowish, wet.			
2	0: - -	Ň	5.5. 15,25	100	0	SAND, fine to medium, well sorted, dusky yellowish brown, wet, slight adar, grades to CLAY, very stiff, light alive gray, wet.			
2	- 								-
								KE	YR AP

	iorin eolo ante ate iate iorei iept iept	Ke ng j ng j ng j ng j ng j ng j ng j ng j	MO ester I.D. <u>Mi</u> st/En Metho g Meth arted omplet avne e Diar)rilled	AFB ginee d_Hg hod_ i_g-2 Envi nete (ft) tion er ((AQC er J. E billow- Solit- 22-92 -22- ronme r (in) 23 (ft) 1 ft) 91	Burgin Stem Auger Spoon 92 ental 8 9,48 1	- SCIEN CONSTRUCT Well I.D. MWA Date Installe Date Grouted Casing Mater Screen Mate Casing Inter Screened In Sump Installe Well Depth (TOC Elevatio Water Level Date Measur	AT -9 d <u>9</u> d <u>9</u> d <u>9</u> d <u>9</u> d <u>9</u> d <u>9</u> d <u>1</u> e t <u>1</u> e t <u>1</u> e t <u>1</u> e t <u>1</u> d 1 1 d 1 1 1 1 1 1 1 1 1 1 1 1 1	NRE 784.04 -22-9 -22-92 2" Sch. 2" PVC (ft) 0 val (ft) YES 23 (ft) 19.2) 10.18	4 2 20 Slot 20 Slot - 5 5 - 20	Page 1 of 1		
DEPTH						LITHOLOGIC DESC	RIPTION	SOIL CLASS	GRAPHIC LOG	WE	IELI. DIAGRAM		
	0-	M	N/A	95	3.0	SAND, fine to coarse, and TOPSOIL GRAVEL, pale yellowish brown, sligh		SW			· ·		
		X	1, 5. 8,4	100	0.2	naist. SAND, tine ta nedium, laase, mader yefawish brown, wet.	ately sorted, pale ,				Bentonite Seal		
	 	X	3.2, 7,13	100	1.4	SAND, fine to medium, very loose to pale yellowish brown, wet.	a laase, wei sarted,				1		
	15 - - -		8.17, 19,21	100	60.0	SAND, fine to medium, firm to very dusky yellowish brown, sulfurous oc				- Sand Pack			
	20		3,4, 3,5	100	9.0	SAND, fine to medium, very loose t dusky yellowish brown to pale yello sulfurous odors, wet.							

·

.

						Page	1 of 1	
Client EMO		Project I.D.	ΔΤ 7	84.04		L		
Site Keesler AFB (AOC	<u>A)</u>	Well I.D. MWA-						
Boring I.D. MWA-10		Date Installe	d 9-	22-92	2			
Geologist/Engineer J. B		Date Grouted 9-22-92						
Drilling Method Hollow-S		Casing Mater	1al 2	' Sch.	40 P	/C		
Sampling Method Spilt-	5000h	Screen Mater	rial 2	" PVC	20 SI	ot		
Date Started 9-22-92		Casing Interv	, 10, <u>.</u> / 12, (f+) () -	- 5			
Date Completed 9-22-1	92	Screened Int	ra: \ Farvs	(f_{\dagger})	5 - 2	0		-
Driller Lavne Environme		Sump Installe				•		
Borehole Diameter (in)	88	Well Depth (1						
Depth Drilled (ft) 23		TOC Elevatio			7			
Ground Elevation (ft) 19	9.56				<u>, </u>			
Depth to Water (ft) 7.3	1	Water Level	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-10-	63			
Date Measured 02-10-1	93	Date Measure	ea <u>v</u>	2-10-	<u></u>	<u></u>		
			ГТ					
			5					
			GLASS	RAPHIC		WELL DIAG	MAM	
DEPTH (feet) MS/6 11 MS/6 11 MS/6 11 UVOVA	LITHOLOGIC DESC	RIPTION						
DEPTH (feet) SAMPLE BLONS/6 IN X REC. HNU/OVA (DPM)			SOH	LOG				
			S					
				-5		-		
0	SAND, fine to coarse, some SHELL	EDIGNENTS HACE	SW3	535	Grout	A B		
	SAND, time to coarse, some shell SILT, pale yellowish brown, damp.	PRADIENTS, LOU			<u>G</u>			
	SILT, Date yenowish brown, compr		SW				1	
	SANO, fine to coarse, pale yellow	sh brown, damp.			•			
					Т		1	
					T			Į.
5	SAND, fine to medium, moderately	Sorted, little Shell					t t	ភ្
1 8.10	FRAGMENTS, loose, pale yellowish	Uldan, wet.						- Te
							.	Bentonite Seal
								Be
							1	
10_V 9.4, 100 1.8	SAND, fine to medium, moderately	sorted, little SHELL					1	
10 10.18	FRAGMENTS, loose to firm, dusky	yellowish brown,					Screened Interval	
	wet.						Inte	
			.	• • • • • •	t d		P.	
					and Pack		ien (
	1				S		cre	
			1 1.		เดี		S	

SAND, fine to medium, moderately sorted, little SHELL 10.0 FRAGMENTS, loose, dusky yellowish brown, wet. 1.0

SAND, fine to medium, well sorted, trace SHELL FRAGMENTS, moderate yellowish brown, wet.

(Same as above).

(Same as above).

1,4, 10,10

N/A

N/A

1,4. 3,2

15-

20

25

100

50

100

50

0

0

KEVRAP

+ auns +

Client EMO Site Keesler AFB (AOC A) Boring I.D. MWA-11 Geologist/Engineer J. Burgin Drilling Method Hollow-Stem Auger Sampling Method Split-Spoon Date Started 9-23-92 Date Completed 9-23-92 Driller Lavne Environmental Borehole Diameter (in) 11 Depth Drilled (ft) 23 Ground Elevation (ft) 20.38 Depth to Water (ft) 8.11 Date Measured 02-10-93	Page 1 of 1Project I.D. AT 784.04Well I.D. MWA-11Date Installed $9-24-92$ Date Grouted $9-24-92$ Casing Material 4" Sch. 40 PVCScreen Material 4" PVC 20 SlotCasing Interval (ft) 0 - 5Screened Interval (ft) 5 - 20Sump Installed? YESWell Depth (ft) 23TOC Elevation (ft) 20.16Water Level (ft) 12.05Date Measured 02-10-93
HILE LITHOLOGIC DESC	RIPTION S GRAPHIC WELL DIAGRAM

DEPT	(lee	SAMPLE	BLOWS/6	X REC	(udd) (udd)	LITHOLOGIC DESCRIPTION	SOILCI	LOG			
I	0	M	N/A	70	>1000	SAND, fine to medium, trace SHELL FRAGMENTS, trace SILT, dive gray, strong fuel odors, staining, damp.	SW		Grout	Ŧ	
	-	M	N/A	50	>1000	SAND, fine to medium, moderately sorted, olive gray, strong fuel odors, staining, damp.			Ŧ	<u> </u>]
	5- - - 	M	2.7. 10,10	100	>1000	SAND, fine to medium, loose, well sorted, alive gray, strong fuel adors, staining, wet.					Bentonite Seal. ∳∆
	10- - -	X	5,10, 25,40	100	45.0	SAND, fine to medium, well sorted, trace SILT, loose to very firm, olive gray, strong fuel odors, staining, wet.			Sand Pack	Screened Interval	
	15-		4.8, 12,20	60	16.0	SAND, fine to medium, moderately sorted, little SHELL FRAGMENTS, ORGANICS (peat), loose to firm, dusky yellowish brown, fuel odors, light sheen, wet.					
	20-		2.10. 12.14	80	16.0	SAND, fine to medium, moderately sorted, little SHELL FRAGMENTS, firm, dark yellowish brown to pale brown, fuel odors, light sheen, wet.				ter Sumo	
	25 [.]									KE	(VRAP
		1			1					 KE	WHAP

Client El Site Kee Boring I Geologis Drilling M Sampling Date St Date Co Driller Li Borehold Depth D Ground Depth to Date Me	sier A .D. <u>MW</u> st/Eng tethoo g Meth arted gmplete avne i e Diam rilled Eleval o Wate	A-12 ince <u>Hol</u> 10-2 ed_10 Envir icter (ft). clon er (1	r <u>J. B</u> 10w-5 5011t- 20-92 0-20- 00nme (in) 23 (ft) <u>11</u> (ft) <u>11</u>	urgin Stem Auger Spoon -92 ntal 8 9,43 30	Project I.D. Well I.D. <u>MWA</u> - Date Installer Date Grouted Casing Mater Screen Mater Casing Interv Screened Int Sump Installe Well Depth (f TOC Elevatio Water Level Date Measure	-12 d_1 lal lal ral ral ral r r t n (ft	0-20-9 2" Sch. 2" PVC (ft) <u>0</u> - val (ft) YES 23 (ft) 19.2) 11.93	2 40 PVC 20 Slot 5 5 - 20 3	
DEPTH (feet) SAMPLE	BLOWS/6 IN	X REC.	INU/OVA (nga)	LITHOLOGIC DESC	RIPTION	SON CLASS	GRAPHIC LOG	WELL DIAGRAM	I
	N/A N/A	60 40	5.4 22.0	SAND, fine to medium, and TOPSOI SHELL FRAGMENTS, little ORGANIC fragments), moderate yellowish bro orange, moist. SAND, fine to medium, well sorted.	CS (pine wood own to dark yelowish trace ORGANICS	SW			
5-X	5,10. 11,10	100	8.8	(pine fragments), dark yellowish o SAND, fine to medium, well sorted, ORGANICS (wood, plant debris), fi	trace SILT, trace				Bentonite
 	6.15, 17,21	100	56.0	SAND, fine to medium, well sorted, (peat), firm to very firm, moderate yellowish brown, wet.	little ORGANICS a brown to dusky			reened Interval	Sand Pack
15-X	6.13. 17,12	100	1.9	SAND, fine ta medium, firm, well sa yellawish brown, wet.	rted, moderate			SGr	
20-1	1,0. 3,3	100	6.8	SAND, tine to medium, well sarted brown, wet, grades to CLAY, soft wet.	, maderate yellowish , light alive gray.	C			
25-									
					•				KEVRAP

	Page 1 of 1
Client EMO Site Keesler AFB (AOC A) Boring I.D. MWA-13 Geologist/Engineer U. Burgin Drilling Method Hollow-Stem Auger Sampling Method Split-Spoon Date Started 10-20-92 Date Completed 10-20-92 Driller Lavne Environmental Borehole Diameter (in) 8 Depth Drilled (ft) 22 Ground Elevation (ft) 19,17 Depth to Water (ft) 9,53 Date Measured 02-10-93	Project I.D. <u>AT 784.04</u> Well I.D. <u>MWA-13</u> Date Installed <u>10-20-92</u> Date Grouted <u>10-20-92</u> Casing Material <u>2" Sch. 40 PVC</u> Screen Material <u>2" PVC 20 Sigt</u> Casing Interval (ft) <u>0 - 4</u> Screened Interval (ft) <u>4 - 19</u> Sump Installed? <u>YES</u> Well Depth (ft) <u>22</u> TOC Elevation (ft) <u>19.05</u> Water Level (ft) <u>9.52</u> Date Measured <u>02-10-93</u>

DEPTH	(leet)	SAMPLE	BLOWS/6 IN	X REC.	HNU/OVA (ppn)	LITHOLOGIC DESCRIPTION	SOIL CLASS	GRAPHIC LOG		WELL DIAGF	IAM .	
	0- - -	M	N/A	85	0.2	SAND, fine to coarse, and SILT, some SHELL FRAGMENTS (fill material), dry.	SM					
	- 5 -	X	2.3, 8,9	100	2.2	SAND, fine to medium, well sorted, trace CLAY, trace ORGANICS (wood), very loose to loose, wet.	SV				Bentonite Seal	
	10-	X	23.14. 22.29	100	2.0	SAND, fine to coarse, little CLAY, trace PEBBLES, trace ORGANICS (peat), firm to very firm, dusky yellowish brown, wet.			- Screened Interval		- Sand Pack	
	15-		4,11, 17,21	100	0.2	SAND, fine to medium, firm, well sorted, little SILT, trace ORGANICS (wood, peat), brown to dusky brown, wet.						
	20-		3.1. 2.0	100	22.0	SAND, tine to medium, well sorted, moderate yellowish brown, wet, grades to CLAY, soft, light olive gray, wet.			- Sump	\mathbf{N}	Ţ	
	25											
		4									KEWRAP	

Project Name: Keesler AFS Project Location: Biloxi, Miss. Engineer/Geologist: DAB Date of Boring: 12/4/87 Top of Casing: 0.24 ft BGL Drilling Co: ERS PID: Photoionization Detector SS: Split-spoon

٠

.

Project Number: 87256 File Number: 81 Site Number: 8 Boring Number: 8MW1 Boring Diameter: 7 in Well Diameter: 2 in Casing Material: Sch 40 PVC Drill Type: Hollow Stem Auger

{

	Sample: Depth:	Back-		N; Value;	F	
:	:	ppe;	•	•	t	Visual Classification
	1	0.0;		43:	1	[SM] SAND, brown yellow (10YR 6/6), silty (25%), fine-grained, loose to slightly dense, moist - organics 0.0 to 0.5 ft
177	2-4	•	t	<u> </u>	2	[] [[SW] SAND, very pale brown (10YR 7/4), slightly silty (5%), fine-grained, well sorted, moderately dense, moist
		0.0	0.0;	60	4	-yellow/yellow brown (10YR 7/6 and 5/6)
178	6-8:	0.0	0.0	70	- 6	WATER LEVEL 6.25 FT TOC 4/1/88
		0.0			7	[SP] SAND, very pale brown (10YR 7/3), medium-grained, poorly
		<u> </u>		93	8	sorted, dense, wet -brown to dark brown (10YR 5/3.5), slightly silty, fine to medium-grained
	*	0.0;	0.0	122	10	SAND FILTER PACK FROM 5.0 TO 18.0 FT BEL
					11	BENTONITE SEAL FROM 4.0 TO 5.0 FT BGL
<u>179</u>	12-14	0.0	0.0	140	12	GROUT FROM 0.88 TO 4.0 FT BGL Well Screen and Well Point From 6.0 To 16.5 FT BGL
					13	
		<u> </u>		;	14	
			i		15	
					16	
<u></u> ;					17	
			1	;	18	TOTAL DEPTH OF BORE HOLE 18.0 FT BGL

C-21

B-171

. .. .

Project Name: Keesler AFB Project Location: Biloxi, Miss. Engineer/Geologist: DAB Date of Boring: 12/4/87 Top of Casing: 0.26 ft BGL Drilling Co: ERS PID: Photoionization Detector S5: Split-spoon

.....

Project Number: 87256 File Number: 83 Site Number: 8 Boring Number: 8MW3 Boring Diameter: 7 in Well Diameter: 2 in Casing Material: Sch 40 PVC Drill Type: Hollow Stem Auger

Ĺ

	Sample:			X	•	
Number:	Deptn;	Back-;		Value	: e	
		-	Sample!		•	Visual Classification
;	i	ppa ;	• •		; t	
	1	0.0;	0.0	36	-	[SH] SAND, yellow brown (10YR 5/8), silty, fine-grained,
<u> </u>					1	slightly dense, moist
: 185;	; 2-4 :	0.0	i	31	2	-yellow (10YR 7/6)
<u>101</u>		0.0.			• *	
		:			: 3	[SW] SAND, very pale brown (10YR 7/3), fine-grained, well sorted
:	;	:	:			loose to slightly dense, moist
1		0.0;	0.0	13	; 4	
	;	•	1		2 8	-white with brown streaks (10YR 8/1)
					; 5	
1					. ,	
186;	6-8;	0.0	0.0	28	; 0	-very pale brown (10YR 8/3)
i		i	i .		, 7	
······································	1	•			· · ·	WATER LEVEL 7.64 FT TOC 4/1/88
		0.0	58.0;	57		-pale brown (10YR 8/2.5) to white (10YR 8/1),
	· · · · · · · · · · · · · · · · · · ·					eoderately dense - PID reading peaked at 80 pps
1		1			; 9	-wet
	:	:	:		;	
		0.0;	75.0;	68	; 10	-brown to pale brown layers - PID peaked at 80 pps
-	1	l	1			
					11	
1871 1871	12-14		; 400.0:	90	: 12	-denser - PID reading peaked at 515 pps
187;	12-14		400.0	70	j 14 1	erenden Antonia - Antonia - Alta Langaria hankan ar ara han Antonia - Antonia - Alta Langaria hankan ar ara han
1		. 1			13	
			:			
i					14	SAND FILTER PACK FROM 4.0 TO 18.0 FT BGL
:			;		1	BENTONITE SEAL FROM 3.0 TO 4.0 FT BGL
			i		; 15	GROUT FROM 0.85 TO 3.0 FT BGL
1						WELL SCREEN AND WELL POINT FROM 7.0 TO 17.5 FT BGL
<u>+</u>					. 16	
					17	
<u> </u>			· ·		. 1/	
1					. 18	TOTAL DEPTH OF BORE HOLE 18.0 FT BGL
		I	L			

C-23

· · . .

Project Name: Keesler AFB Project Location: Biloxi, Miss. Engineer/Geologist: DAB Date of Boring: 12/4/87 Top of Casing: 0.22 ft BGL Drilling Co: ERS PID: Photoionization Detector SS: Solit-spoon Project Number: 27255 File Number: 32 Site Number: 3 Boring Number: 3HW2 Boring Diameter: 7 in Well Diameter: 2 in Casing Material: Sch 40 PVC Drill Type: Hollow Stem Auger

	Sample:	PID;		N;		
Nusber;	Depth;	Back-;		Value:	ŧ	
:	1	-	Sample:	:	ŧ	
:	:	ppe;	ppe;	:	t	Visual Classification
;		0.0;	0.0;	29 (ti:	[SM] SAND, light yellow brown (10YR 6/4), silty, fine-grained,
	!			¦	1	with shells and pebbles, loose, moist
!						-no shells
174:	2-4!	0.0	0.0;	34	2	no snells Activitie
۱ ۱	*		4	,	3	
		<u> </u>				
		0.0	•	50 !	4	-brown yellow (10YR 6/8), slightly silty
:	:	;	4	;		
	:	!			5	
;					<u>:</u> [
1751	6-8:	0.0!	19.0	51		<pre>sediua-sized grains, well sorted, slightly dense, acist</pre>
	i ,	i	i i	i	🖌 , 🗄	THTE SUPERIOR SIZES GRAINS, WELL SUFLEY, SLIGHLY GENZE, AGUST The second
	•	· · ·	, ,	'	÷ '	WATER LEVEL 7.35 FT TOC 4/1/89
		0.0:	20.0	50	8	-pale brown (10YR 7/4), fine-grained, moderately dense
	:	;	1	, 		solst to wet
!	!		t		9	
:	:	!	+ 1	;		
i	<u></u>	0.0	50.01	80	10	-denser - PID reading peaked at 89 pps
-	÷	i	i			
	i	i		i		
176	12-14	1.5	50	79	12	-PID reading peaked at 70 pps
1		1	:			
, , 					13 🕃	
:	:	:	1			SAND FILTER PACK FROM 5.5 TO 19.0 FT BGL
	• 	i			14	BENTONITE SEAL FROM 4.5 TO 5.5 FT BGL
	1	-	1	1		SROUT FROM 0.9 TO 4.5 FT BGL
					15	WELL SCREEN AND WELL POINT FROM 7.0 TO 17.5 FT BEL
i	i		i			
	ł		i		16	
•			:		17	
:						an Trina - Ang Tana ang Ang Tana ang Ang
					18 🗣	TOTAL DEPTH OF BORE HOLE 18.0 FT BEL

C-22

B-172

Project Name: Keesler AFB Project Location: Biloxi, Miss. Engineer/Geologist: DAB Date of Boring: 12/5/67 Top of Casing: 0.18 ft B6L Drilling Co: ERS PID: Photoionization Detector SS: Split-spoon Project Number: 87256 File Number: 84 Site Number: 8 Boring Number: 8MW4 Boring Diameter: 7 in Well Diameter: 2 in Casing Material: Sch 40 PVC Drill Type: Hollow Stem Auger

Sample:		PID;		N ;	F	
Number:	Depth:			Value!	t	
1		+	Sample:		E	Visual Classification
:	i	006;		i	<u>t</u>	
	1	0.0;	0.0;	39;		[[SM] SAND, brown yellow (10YR 7/7.5), silty (25%), fine-grained,
			<u></u>	i	1	loose to slightly dense, dry to moist
189	2-4:	0.0;	1.5;	40	2	(SW) SAND, white (10YR 8/1), fine-grained, well sorted, slightly dense to moderately dense, moist
i	i	i	i	i		the sense to uggeralely dense, aulst
	i		i	;		
		0.0;	1.0	56 :	4	-very pale brown (10YR 7/4) with brown streaks
	ł					
	1				5 + +	
ь і	:	1	;	;		
190;	6-8:	0.0:	0.0	72:	6	-light brown (10YR 6/4), moderately dense to dense
;	:	:	:	:	• •	
<u></u>		ا ار در در میں درجہ		!	7	
	-		:	2		WATER LEVEL 7.53 FT TOC 4/1/88 -light yellow brown (10YR 6/4), slightly silty (5-10%)
	<u> </u>	0.0;	0.0	106	8	fine to medium-grained, moist to wet
i	i			i		eri ilne to medium-grained, molat to wet
	L	لي	t	;	1	
1		0.0	0.0	94	10 + +	
:				!		
;				į	11	
:	:	1	:			
1911	12-14	0.0;	0.0;	113;	12	[SM] SAND, dark brown (10YR 3/3), silty (10-152), fine to medium
1	1	;	;	:		grained, dense, wet
	!	ا است		¦	12	
	i	i	1			SAND FILTER PACK FROM 5.0 TO 18.0 FT BGL
<u>+</u>	<u> </u>				14	BENTONITE SEAL FROM 4.0 TO 5.0 FT BGL
i	i	i	i i	i	15	GROUT FROM 0.79 TO 4.0 FT BGL
<u> </u>	1 			;		WELL SCREEN AND WELL POINT FROM 6.5 TO 17.0 FT BGL
1					16	
<u>!</u>			:	;		
:				i	17	
1				!	18	TOTAL DEPTH OF BORE HOLE 18.0 FT BGL

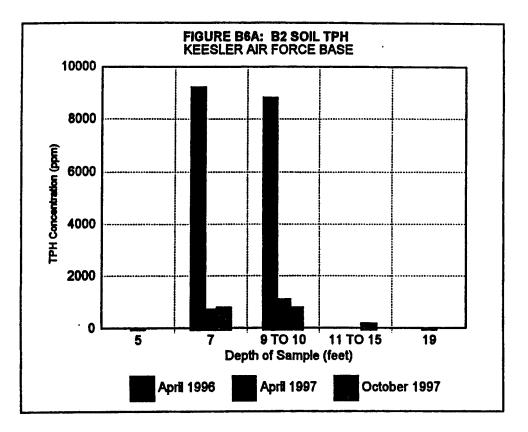
в-174

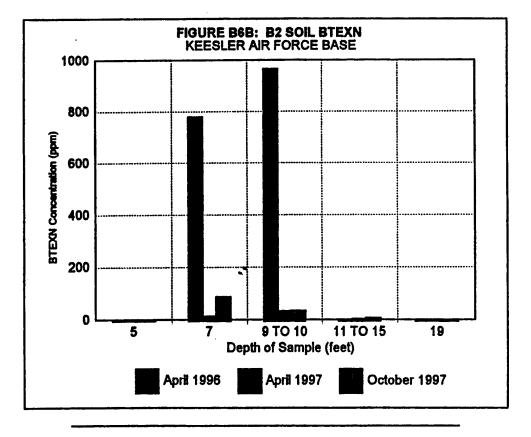
•

Project Name: Keesler AFB Project Location: Biloxi, Miss. Engineer/Geologist: DAB Date of Boring: 12/5/87 Top of Casing: 0.12 ft B6L Drilling Co: ERS PID: Photoionization Detector SS: Split-spoon Project Number: 8725: File Number: 85 Site Number: 8 Boring Number: 8MW5 Boring Diameter: 7 in Well Diameter: 2 in Casing Material: Sch 40 PVC Drill Type: Hollow Stem Auger

f

	Sample:			N;	F		ł
Nusber:	Depth:	Back-		Value;	ŧ		•
:			Sample:		•	(I) and the state of the state	
:		ppe ;	pps:		t	Visual Classification	
:	:	0.0;	0.0	72;	\$	[[]][][SM] SAND, very pale light yellow brown (10YR 6/4 - 7/4), silty,	
!					1	(silt 25%), fine-grained, dry	
:	:		i i	1	E		
193;	2-4:	0.0;	1.5	32:	2 [-less dense	
1	:		:	1			
i			i		2		
1		1					
	<u> </u>	0.0;	0.0;	39	4	[SW] SAND, light yellow brown (10YR 6/6 - 6/4), fine-grained,	
i	i	i		į		well sorted, slightly dense, eoist	
<u> </u>		i		i	5		
194	6-8:	0.0	0.0	44 :			
174;	<u> </u>	0.0,					
· •		1 1			7		
<u>+</u>				;	ľ,		
	į	0.0:	0.0	63 🔁	E 8	WATER LEVEL 8.05 FT TOC 4/1/88	
į			į		9	ning and the second	
;	;	1	:	;			
1	;	0.0;	0.0;	93;	10	-light gray (10YR 7/2) to pale brown (10YR 7/4), fine	
;	:		1			to medius-grained, slightly silty (10-121), dense	•
	!		1	;	11		
	;	:	:	1			
195:	12-14	0.0;	1.0	122;	12	-pale brown (10YR 5/3) to brown (10YR 6/3), mediua-	
:	:	;	:	:		grained	
<u> </u>			<u> </u>	i	13		
i	:	ł	1				
<u>_</u>	•			!	14	SAND FILTER PACK FROM 6.0 TO 18.0 FT BGL	
-				;		BENTONITE SEAL FROM 5.0 TO 6.0 FT BGL	
				!	15	GROUT FROM 0.71 TO 5.0 FT BGL Well Screen and Well Point From 7.0 To 17.5 FT BGL	
ļ	:	:		i		ANALANA MELL JUKEEN MAU MELL FUIRI FRUN /AV IU 1/AJ FR DUL Analana Analana	
<u> </u>	i		<u> </u>	!	16		
i	i	i	1 1	i 1	17		
i	i	نــــــــــــــــــــــــــــــــــــ	· · ·	:	• 1		
:	1		· ·	1	18	TOTAL DEPTH OF BORE HOLE 18.0 FT BGL	
<u> </u>			L	······································	10		

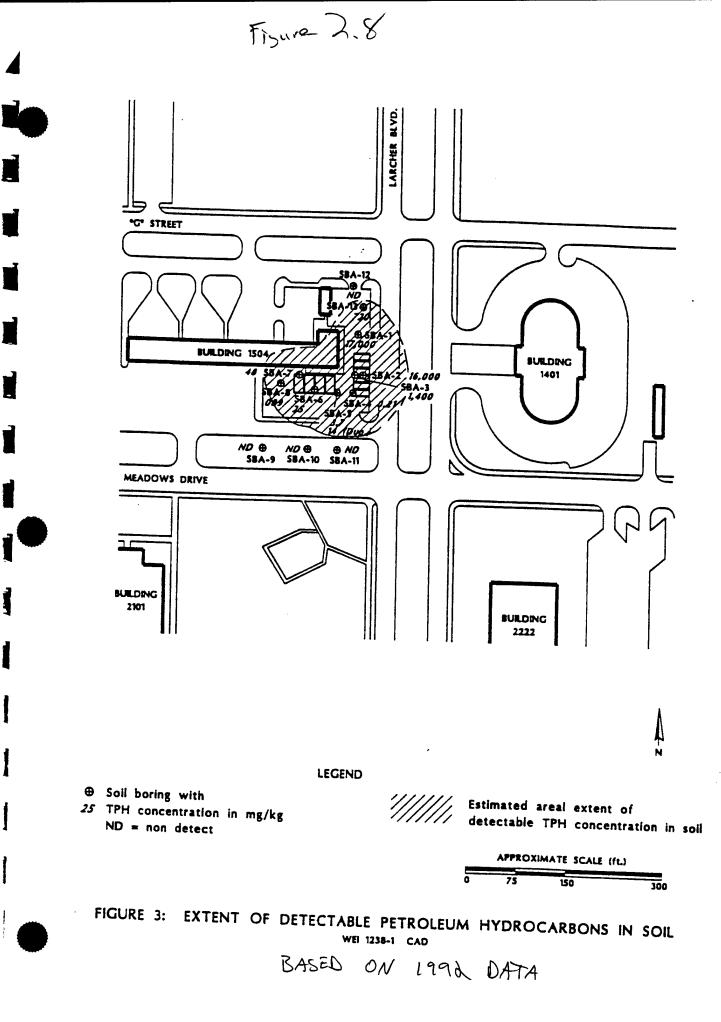

C-25


B-175

.

. . .

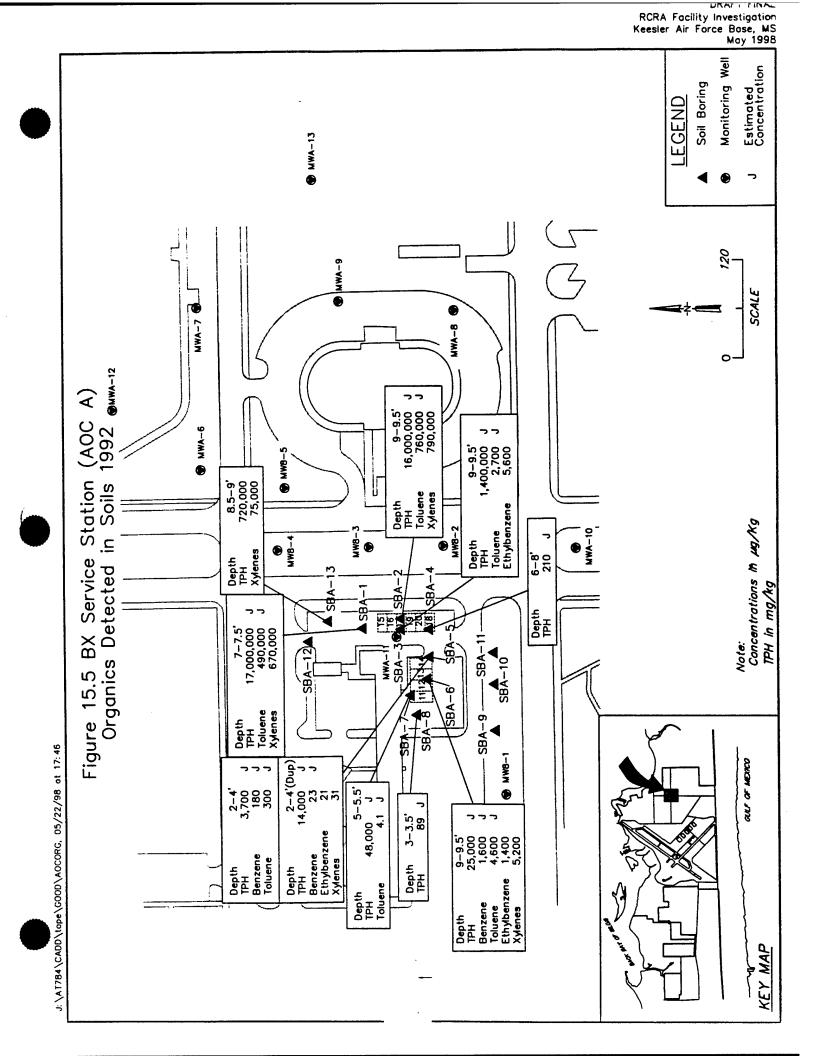
SOIL ANALYTICAL AND MAPS


Wasatch Environmental, Inc.

NASATCH BORINGS 1,2, and 3 TABLE AT: SOIL SAMPLE ANALYTICAL RESULTS

/

NS Indicate	SOIL SAMPLE es no sample	collected fr	om Intervi	al.)		Total	Naph-	Total
Sample	Sample				Ethyl-	Total Xylenes	thalene	BTEXN
Location	Depth	ТРН	Benzene	Toluene	Benzene	X ylelles	Lidicile	
Jucation	(feet)			_	to diama f		A/23/96:	
				ed Concel	ntrations (mg/kg) on	<0.10	0
B1	5	<2.0	<0.10	<0.10	<0.10	<0.10	69	317.95
	7	4500	0.95	13	25	210 360	41	681
	9	9900	28	180	72		2.7	29.5
	15	440	1.2	5.5	3.1	17	0.12	2.25
l	19	35	0.18	0.46	0.19	<0.10	<0.12	0
B2	5	<2.0	<0.10	<0.10	<0.10	290	41	389.42
D2	7	9200	0.42	18	40	350	49	482.5
	9	8800	8.5	11	64	<0.10	<0.10	0
	13	<2.0	<0.10	<0.10	<0.10	<0.10	<0.10	0
	19	<2.0	<0.10	<0.10	<0.10	NS	NS	0
B 3	5	NS	NS	NS	NS	680	92	1533
DJ	7	21000	91	510	160	51	9.4	102.3
•	9	1300	4.9	30	7 <0.10	<0.10	<0.10	0
	15	<2.0	<0.10	<0.10		<0.10	<0.10	0
	19	<2.0	<0.10	<0.10	<0.10			
				red Conc	entrations	(mg/kg) o <0.20	<0.40	0
B1	5	<2.0	<0.20	<0.20	<0.20	2.8	3.5	6.3
DI	7	400	<0.06	<0.06	<0.06	11	3.3	16.24
	9	160	<0.28	1.6	0.34	0.21	0.45	1.11
	15	4.9	0.08	0.2	0.17	NS	NS	0
	19	NS	NS	NS	NS <0.20	and the second se		0
B2	5	0.99	<0.20		3.1	36	7.9	51.5
	7	720	<0.40		4.9	96	20	130.9
	9	1100	<0.30	10	NS	NS	NS	0
	13	NS	NS	NS				0.03
	19	0.91	0.03	<0.20	NS	NS	NS	0
B3	5	NS	NS	NS E7	17	100	21	199.4
	7	2400	4.4	57			0.65	2.97
	9	13	0.06				0.46	3.62
	11	11	0.65			NS	NS	0
1	19	NS	NS	INO Con	centration	s (mg/kg) (on 10/24/97	1:
			Meas	NS	NS	I NS	NS	
B1	5	NS	NS			1	1 0.19	
	7	62	<0.1	-			51	235.7
	9	6400	<0.1	·	1		0.45	1 -
1	15	13	0.08	- I			NS	
	19	NS NS	NS 			20 <0.2		0 0
B2	5	NS	<0.2			2 28		42.82
	7	800	<0. <0.	· · ·		8.4		
	9	790		· · ·	· · ·	1 1.3		
	13	170	NS	· 1	·	5 <u>N</u> S		
	19	NS NS			the second se	5 NS		
B3	5	NS				.1 <0.		
	7	<2.0				7 19		
	10	580				.1 0.4		
	11	13				13 0.8		-
	15	14					S N	S 0
L.	19	NS	i N	SIN	<u>s N</u>	<u> </u>	and the second se	


NS = Not sampled

I

I

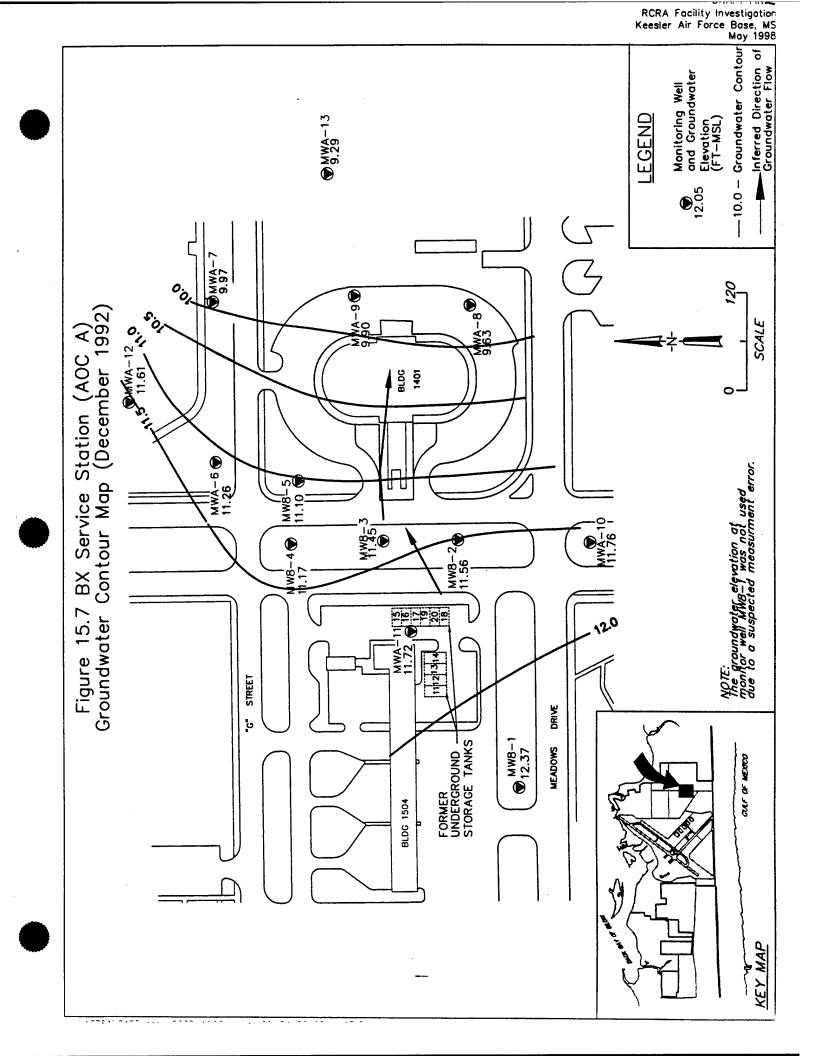
Ņ

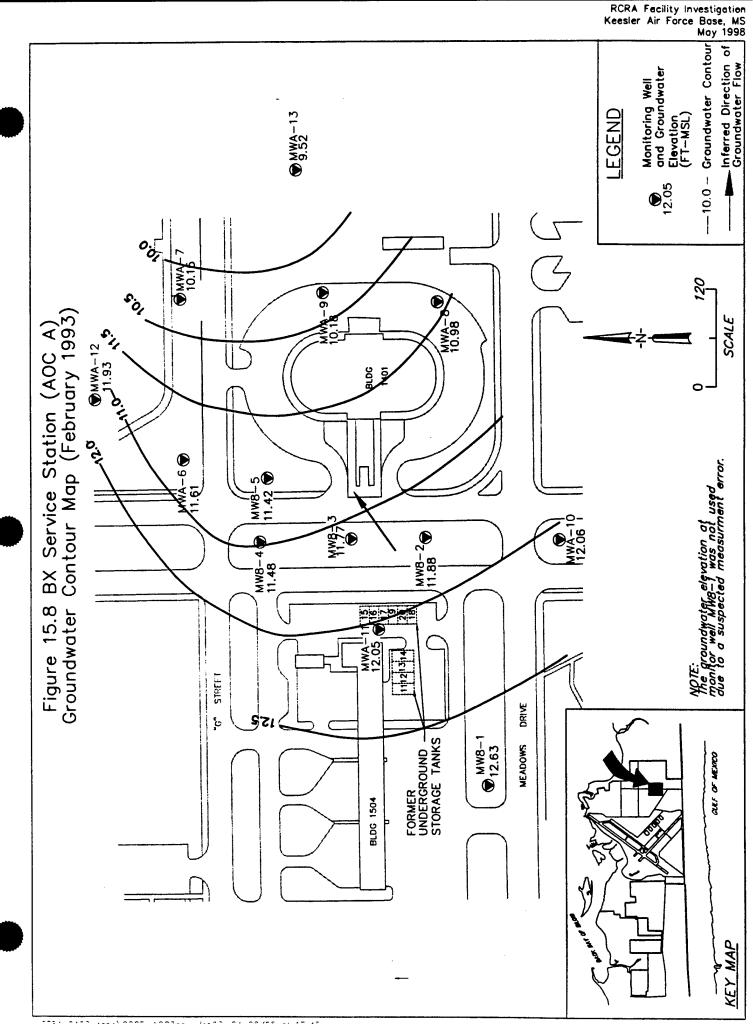
RCRA Facility Investigation Keesler Air Force Base, MS

		Tal	Table 15.2 BX		ice Sta	tion	(AOC	A) - (Soil Tes	it Res	Service Station (AOC A) - Soil Test Results - BTEX and TPH	ΈX	and TPI					
Boring ID	SBA-1		SBA-2	SBA-3	A-3	S	SBA-4		SBA-5		SBA-5 (a)		SBA-6		SBA-7		SBA-7	
Depth (ft)	7.0-7.5	•	5.0-0.	9.0-9.5	5. 6	9	6.0-8.0		2.0-4.0		2.0-4.0		9.0-9.5		5.0-5.5		9.0-9.5	
Date	9/24/92		9/25/92	9/25/92	\$/92	6	9/25/92		9/25/92		9/25/92		9/25/92		9/25/92		9/25/92	
BTEX Compounds - SW8020 (µg/kg)	20 (µg/kg)												a.				- - -	
DILUTION FACTOR	1000		1000	-	10		1.0		1.0		5.0		5.0		1.0		0.1	
Benzene	100000	n D	110000 U	009		D	1	D	180	ŗ	23	-	1600	-	1.1	D	1.1	D
Ethyl Benzene	210000	U 2	220000 U	5600	0		2.1	n	240	D	21		1400		2.3	D	2.2	D
Toluene	490000		760000 J	2700	-	ſ	2.1	D	300		11	D	4600		4.1	ſ	2.2	D
Xylenes (total)	670000	~	790000	1200		n	2.1	n	240	D	31		5200		2.3	D	2.2	D
BTEX (total)	1160000	I	1550000	83	8300		r +		480		75		12800		4.1		ŧ	
Total Petroleum Hydrocarbons - SW8015 (µg/kg)	bons - SW8(015 (J	lg/kg)															
DILUTION FACTOR	5000		2000	1000	8				S		100		100		100		-	
Gasoline	1700000 J		1600000 J	1400	1400000	_	210	-	3700	7	14000	-	25000	-	48000		56	n
Boring ID	SBA-8		SBA-8	SB	SBA-9	S	SBA-10	S	SBA-10 (b)		SBA-10		SBA-11		SBA-12		SBA-13	ł
Depth (ft)	1.0-1.5		3.0-3.5	6.0-6.5	6.5	4	4.5-5.0		4.5-5.0		6.0-8.0		5.0-5.5		5.0-5.5		8.5-9.0	
Date	9/25/92		9/25/92	10/2	10/20/92	=	10/21/92		10/21/92		10/21/92		10/21/92		10/21/92		10/21/92	
BTEX Compounds - SW8020 (µg/kg)	120 (µg/kg)																	
DILUTION FACTOR	1.0		1.0	H	100		1.0		1.0		1.0		1.0		1.0		100	
Benzene	1.1	D	1.2 U	120		D	1	D	1.1	D	1	D	1.1	D		D	11000	D
Ethyl Benzene	2.2	D	2.4 U	240		D	7	D	2.2	D	2.1	D	2.1	D	7	D	23000	n
Toluene	2.2	D	2.4 U	240		n	7	D	2.2	D	2.1	D	2.1	D	7	D	23000	D
Xylenes (total)	2.2	D	2.4 U	240			7	D	2.2	D	2.1	D	2.1	D	2	D	75000	
BTEX (total)	•		:	•	:		: •		! .		;		:		:		75000	

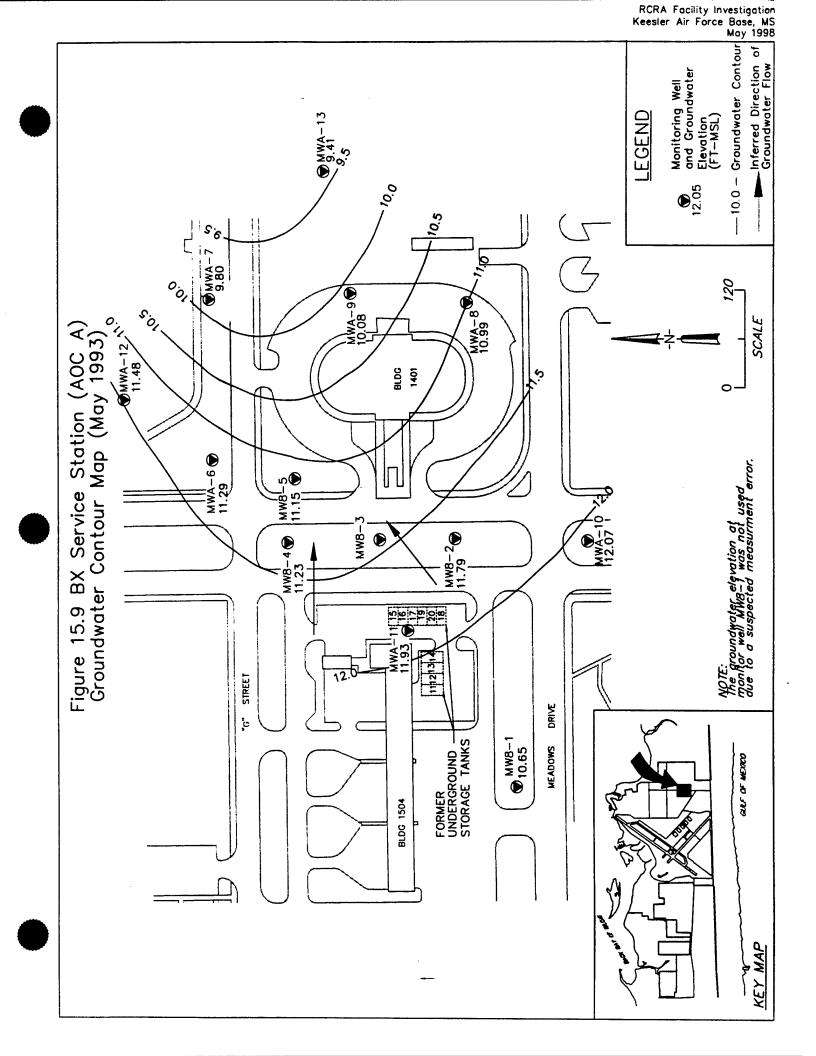
H:V211 4120NSEC-15VT-15-2XLS

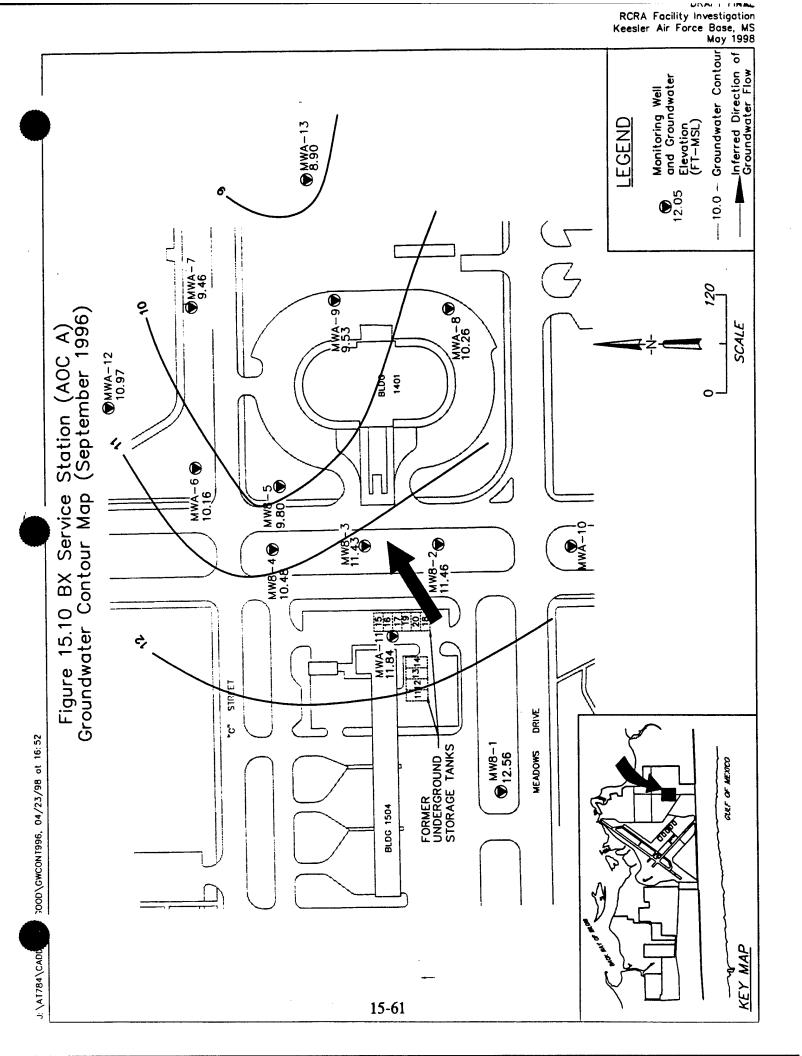
LY 1994

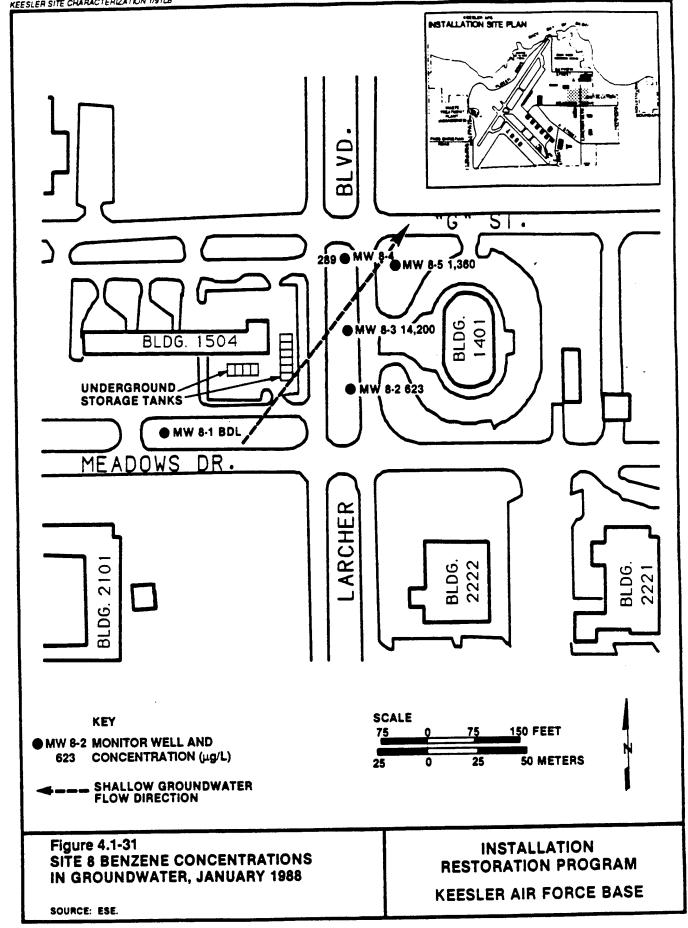

1

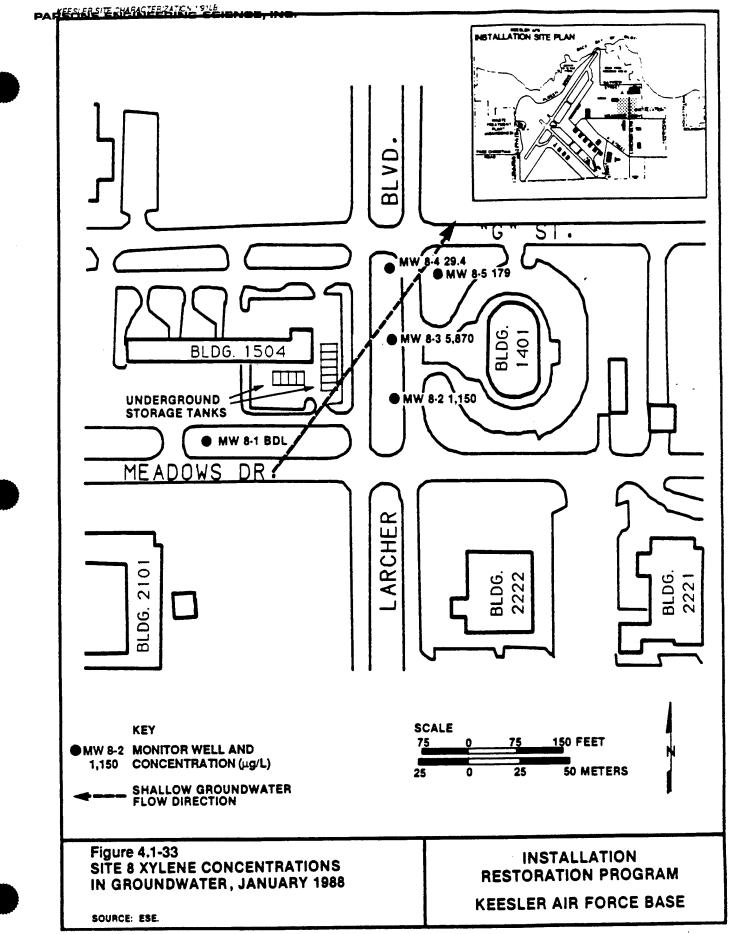

15**-**24

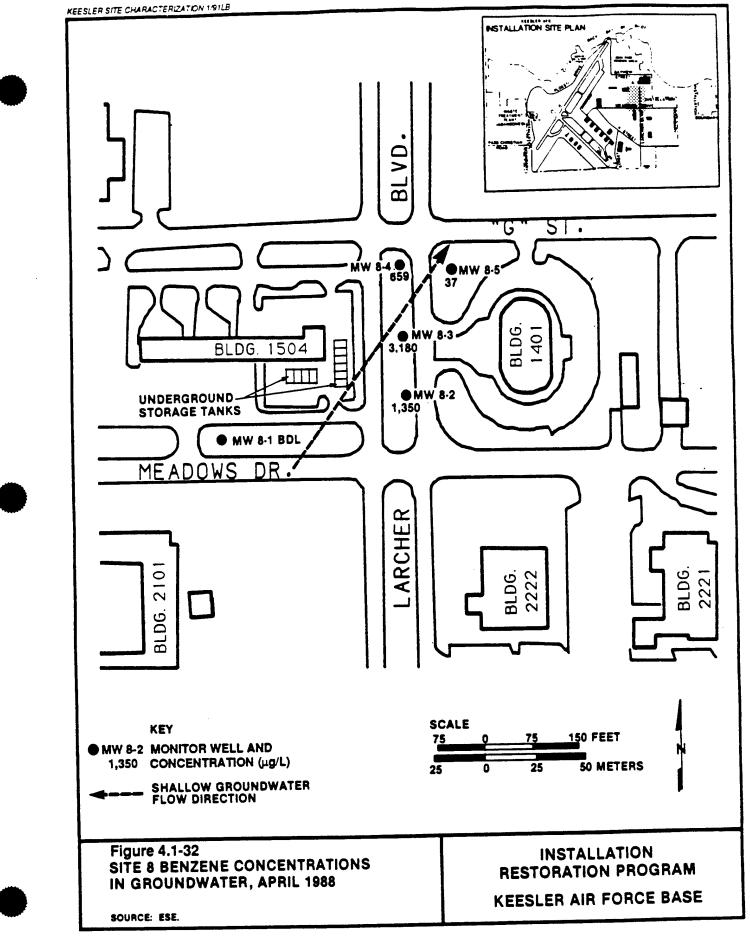
Total Petrolous Hydroarchoac - SW015 (up/kg) 1 <th></th> <th>_</th> <th>Keesle</th> <th>RCRA Facility Investigation Keesler Air Force Base, MS</th> <th>Keesler Air Force Base, MS</th>																_	Keesle	RCRA Facility Investigation Keesler Air Force Base, MS	Keesler Air Force Base, MS
- Duplicate of SBA-5 - Duplicate of SBA-10	Total Petroleum DILUTION FACT Gasoline	Hydrocarb OR	ons - SV 1 59	V8015 (U	(µg/kg) 1 89		1 59	n	1 51	D	1 54	n	1 51	D	1 53	D	1 51	D	1000(72 000
	(a) - Duplicate of { (b) - Duplicate of {	SBA-5 SBA-10																	
	•																		
						·.													
	·	·																	
	·																		
									····										

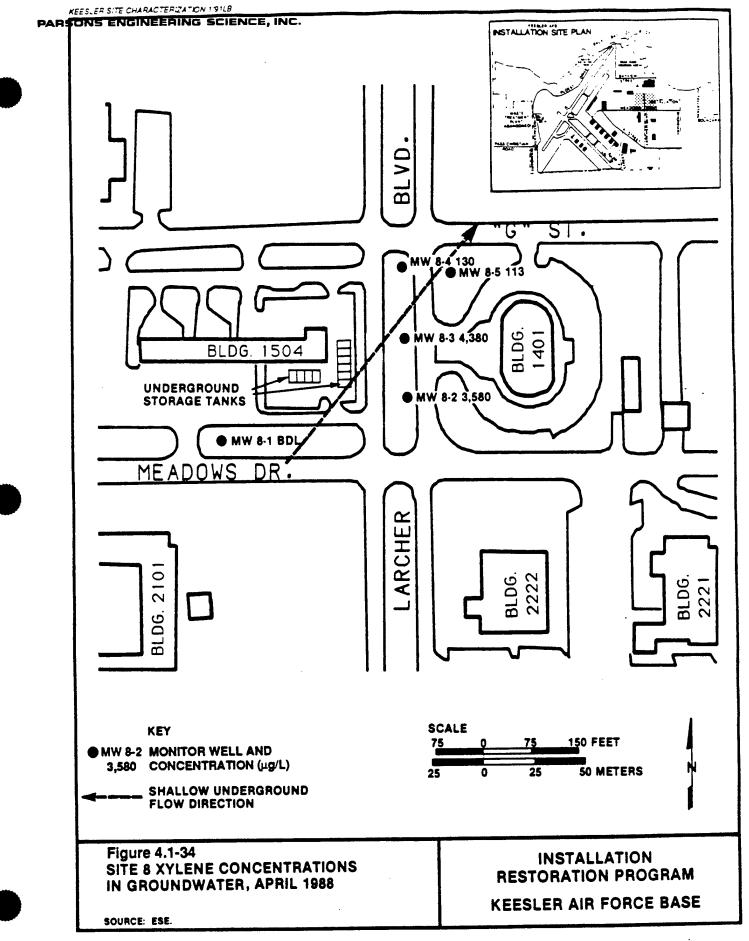

•


GROUNDWATER FLOW MAPS









GROUNDWATER ANALYTICAL AND MAPS

SAMPLE ID'S Paraneiers Umits Date			:	I - ANL		7 _ 0 ML								
UNITS	ME THOD	DETECTION	K 8GM22 An 8h	K8GW22 AK8W2	K86N23 AK8U	KBGM23 AKBW2 AKBW2	KBGN24 Akri	NBCM24 ANBW2	KRGN25 AKBN	K8CM25 AK8W2 4	K BGM26 An Bu 5	N86426 AN842 5	анди.18 л Авали Арали	K BGMDUP An Hu2 6
			88/1/10	04/26/88	91/13/88	04/26/88 11:45	01/14/88 11:40	04/26/88 16:20	01/14/88 09:08	04/26/88 15:45	01/13/88 11:20	04/26/88 15:00	и2°11 8878 Г. 16	04/26/88 11:45
			00:01 02	5 66	22.6	24.0	22.1	24.6	21.9	22°0	22.1	23.7	4	23.5
WATER TEMP C	EPA 170.1		8.33	5. 10	6.0	5.70	6 .30	5.98	6.20	5.90	5.20	5.00	ни ⁻ л	5.10
STD UNITS			110	188	245	374	414	354	453	461	129	224	245	188
SP.COND. FIELD025C UMHOS/CN	EPA 120.1 eta metu A429	•	9.542	Ξ	164.6	13.96	12.16	9.688	32.71	17.16	12.32	Н. Н	11 11	12.08
HG/L	STD NETH A429		35.59		11.44	12.50	2.589	7.031	6.641	31.25	25.26	46.76	1 4 54	E 1 SE
SULFAIL MG/L	STD HETH A403		30.0		68.6	178	169	160	192	218	12.5	21.8	HL.	64
MC/L-CACO3 MC/L-CACO3 MC/L-CACO3	EPA 418.1	•.2	ł	;	1.5	1.4	4.1	1.6	;	;	;	•	~ -	
MIDNUCANBORS, L MG/L DESIDIE DISS	EPA 160.1	2	118	144	8 9	248	262	208	9 0 E	304	12	126	Ξ	96.1
mestingy total	EPA 245.1	0.002	E000 °	;	8.8882	8 . 88A4	;	1	;	:	1	1		
ADSEMIC TOTAL	EPA 206.2	0.0034	0,0060	1	0.0050	1	9699.9	0.0050	0,0050	!	1	1		
NG/L	EPA 239.2	2 0.0024	0.6210	8.8678	0.0240	0.0280	0.0270	0, 8458	0.0210	0,8890	0.0160	0.6149	0'10'0	8 . 8 8 9 8
NG/L STIFNILM TOTAL	EPA 270.2	2 0.0010	ł	;	1		•	ł	0,0050	1	1	;	;	
NC/L	EPA 279.2	2 0.002	9.982	1	1	1	. 8.862	!	1	;	1	i	;	
NG/L	EPA 200.7	•	15.9	27.1	10 .6	07.E	9 30.8	14.9	24.8	9.11.6	14.6	5.01 5.7	9.11	60
NG/L	EPA 200.7	7 0.0210	-	1	!	;	- 6.6414	:	1	1	i		;	
NG/L	FPA 200.7		6,0691	0.208	8°9488	961.0 8	9 0.0558	1 0.161	0.8484	9.157	0.0451	1 0.178	6619-8	0,0545
BAKIUN, IUTAL MG/L	FPA 200.7			9 . 9.0847	616.0	946. 0 E	4 0.0438	9.245	0.0418	171.0	9 .651	1 8.181	N.829	8.8955
BORON, TOTAL NG/L	EPA 200.7			3 30.1	26.6	82	.9 58.8	8 62.9	9.89	96.96	5.16	6 31.0	8 25 5	21.6
NG/L TOTAL	EPA 200.7		0.0112	2 0.0252		- 8.6849	9 0.0251	9.8148	0.0258	8 8,0869	9 8.8132	2 0.0274	4 8,8893	-
CHRUTIUM, TOTAL	F PA 200 7				1	i	i ,	;	0.0110	•		-	I	
COBALI, IUIAL MG/L Cobard Total	EPA 200.7		0.01	8 8.8694	;	- 0.242	12 B. 8968	10) °	8.0176	6 6.0784	4 0°069	9 8.8497	7 8.8455	
UTAL MG/L	FPA 200.7		5.6	6.10	9.88	8 4.34	11 12.0	6,15	10.0	9 3.89	9 8.45	1.4	9. Ө. П	5
IROM, IUI AL MG/L MACNESIIN TOTAL	EPA 200.7		1.1	ŝ	5 2.16	6 3.39	91.14	4 3.27	7 3.58	8 3.84	4 1.52	52 1.85	5 2.0R	~
MAGNESTON, TOTAL MG/L MAMEANESE TOTAL	F PA 200.7		•	13 0.8217	7 8.0124	4 6.6183	83 8.6328	9.0149	9 9 9688	8 8.9624	4 0.6289	19 8.8294	4 8.8126	6 8 8942

Table 4.1-10a. Perameters Detected in Groundwater at Site 8. Ruinde num and two (Pare 1 of 2)

.

,

			Z	NU(8 - 1	£	NU8-2	ł	MN8-3	ł	MU8-4	ź	MUR-5	MUR .	1-8M
SAMPLE 10'S Parameters	ME THOD	DETECTION	K8GW22 AK8W	K86422 AK842 AK842	 K8GW23 AK8H	KBGN23 AKBN2 2	K BGW24 AK BN 3	K8GW24 AK8W2 3	K8GN25 AK8N	K8GN25 AK8W2 4	KBGN26 AKRU 5	KBGN26 AKBN2 5	A RGUIDTIP AA HU "H	K RGMDUP AK 8W2 6
DATE DATE TIME			00:01 88/21/10	04/26/88 11:45	07:13/88 14:20	84/26/88 13:45	01/14/88 11:00	04/26/88 16:20	01/14/88 09:00	04/26/80 15:45	01/13/88 11:20	n4/26/88 15:00	85781718 88781718	04/26/88 11:45
MOLYRDFINGE TOTAL	EPA 200.7	6600.0	1	ł	;	;	0.0062	ţ	:	ł	;	1		;
NC/L	EPA 200.7	0. 00 86	ł		1	1	1	;	ł	:	0.0387	0.0170		;
POTASSIUM TOTAL	EPA 200.7	0.103	2.63	3.19	•.622	1.34	69.1	868.8	2.18	1.32	0 .962	2.27	10	2.76
MC/L	EPA 200.7	9600.0	ł	1	ł	0.8243	0.0226	e. ee8e	1	0,0054	1	1		1
	EPA 200.7	9 58 0	13.1	11.9	8.23	8.43	11.7	10.3	29.0	17.7	14.3	13.7	4.41	12.4
5001001, 10100 106/L	FPA 200 7	90.00	0.0286	0.0277	0.0244	0.0047	.0605	0.0159	0.0375	9,9166	0.0245	6, 8156	(F.U. 8	0.0056
VANADIUM, IUIAL NG/L	FPA 200.7			0.127	0.0130	0.112	0.0240	0.0973	. 6247 -	. 105	0, 8075	0.117	51.78°.N	0.0042
LINC, TUTAL NG/L	EPA 200.7			17.4	12.1	2.4	17.4	5.9	11.1	3.0	4.4	8.7	.	9.6
SILICON, TUTAL NG/L BEHTENE	/0E0SNS	0.15	1	;	623	1350	14200	3180	289	629	1360	97.6	1 11	;
01 N.C.W. UC/L	SH0020 SH2030/	-	ł	;	1	;	ł	ţ	6	;	ł	;	N. 151	ł
CHLUMUDENZENE UG/L • • NICHLORDENZENE	9200HS 98090/96/96/	0.450	1	1	Ŷ	•	Ŷ	:	Ŷ	ł	<u>e</u>	ł	GM	ł
	SW0020		1	;	9 9E	88	1240	766	94.7	89.2	40.9	31.8	162	;
E I HI LUERKER. VG/L	SH5020/06020		ł	ł	2280	7880	15800	5870	2.21	16.4	8.54	2.43	1689	:
INCLURE UG/L XYLENES, TOTAL	JOE OSMS		1	;	1150	3580	5878	4380	29.4	661	671	113	885	;
UG/L SM8820														

4-86

W/A - Not applicable. MD - Analyte was not detected by confirmatory analysis. --- - Indicates the reported value was less than the instrument detection limit.

•

Source: ESE, 1908

• •

-

oundwater at Site 8.	0
in Grou	1 of 2)
sters Detected in G	e. (Page
Parameters	Round three
Tahla 4.1-10b.	

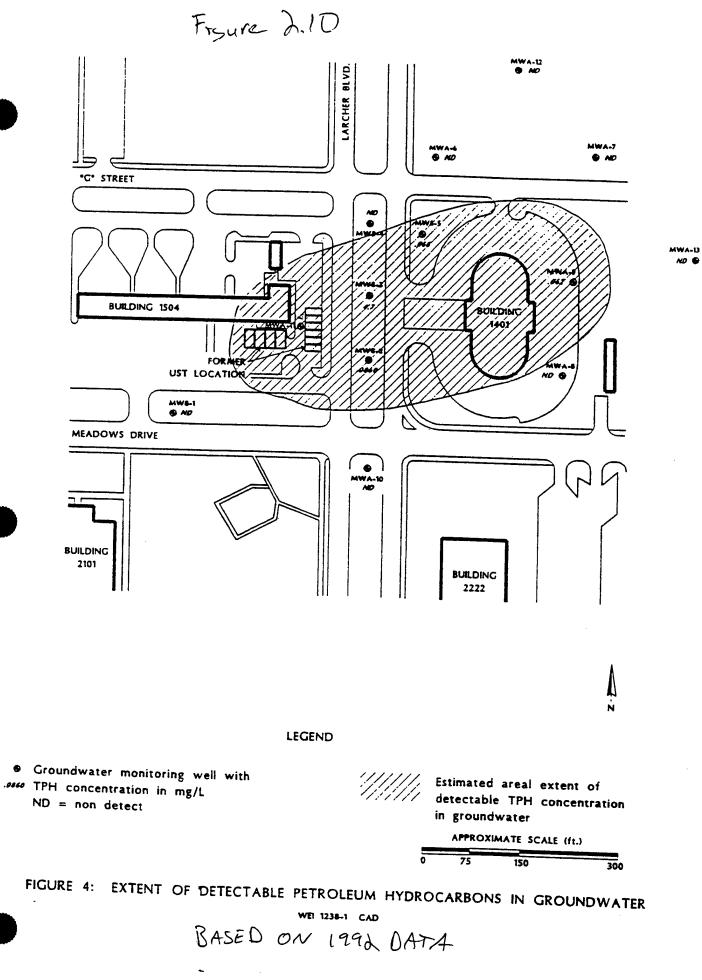
			1 - 8MM	1418-2	6 - 8MM	118-4	2-9MN
SAMPLE ID'S Paraneters Units	ME 1H00	DETECTION	K8GN22 AKE 2M8 1	 K8GN23 AKE 2W8 2	K BGW24 Ang 208 3	K BGW25 AKE 2MB	K 86W26 AKE 2M8 5
DATE DATE TIME	·		10/38/89 89:88	9E : 69 68/9E/91	18/38/89 89:45	51:01 51:01	10/30/89 10:45
WATER TEMP	EPA 170.1	N/A	28.8	27.5	27.1	28.7	26.6
C SP_CONDFIELD@25C	EPA 150.1	N/A	253	255	225	301	125
PH FIFTD	EPA 120.1	M/A	4.60	5.00	5.00	5.30	3.70
STD UNITS	/500EMS	0.0275	3.30	4.43	3.50	14.8	3.95
AL UNIT NUM DI SS	/500ENS	0.0275	0.0658	0.0322	i	0,0554	0,0190
MG/L	01098S	9.0011	0.0522	0.0305	0.0211	9.0341	8760.0
	0109NS		0.0455	.0264	0.0165	8.8139	0.0324
BAKIUN, UISS MG/L Calcium Total	SW6010 SM3005/	•	22.8	45.6	38.7	46.0	5.59
CALCTURE DISS.	200ENS	0.0141	21.7	43.8	37.9	38.1	4.99
CHECKIN, DOC	0109NS	0.0071	1	;	8118.8	0.0200	8.6167
CANDAL UN, TUTAL MG/L	/500ENS	•	1	1	8.8118	8,0063	;
CUTCH, TOTAL	SIN6010 SU13005/	.0190	8 .884	1.94	6.82	5.95	1.66
IRUN, IUIAL NG/L	0109MS	•	•	0.845	3.72	8.8722	. 789
MON, 0133 MG/L MG/L MACASINI TOTAL	01090EHS		2.42	2.66	2.43	2.67	1.42
MACHES IN ALSO	21090EHS		2.32	2.54	2.38	2.15	1.31
HAUNESTUR, DISS MG/L MANGANESE TOTAL	01098S	•	0.0015	0.0050	9688.8	0.0217	¥E10'0
	2000 HS		1	9.6628	8.8867	6.0103	9010-0
MG/L	1998S	.0058	i		8.8312	;	. 8.862
DOTASSIUM TOTAL	0109MS	6, 563	2.65	9 1.5	1	1.2	1.09
NG NUISSION DI SS	0109MS	6.563	1 2.75	6.1.30	0.851	1.24	e. 789
HG/L	/500ENS 0109NS	6 • · 133	14.8	8 5.45	11.4	15.2	2 11.4
SOUTHIN DISS.	2006 HS	6 0.133	3 15.6	6 5.73	9 18.9	13.4	10.5
MC/L VANADIUN 101AL	/500ENS	10 5/ 0.0060	i	i		6416-8	•
MG/L ZINC,TOTAL	2002 NS	18 5/ 0.0042	2 8.6136	6 8.8382	2 8.8248	0.0176	6 B.828
HG/L							

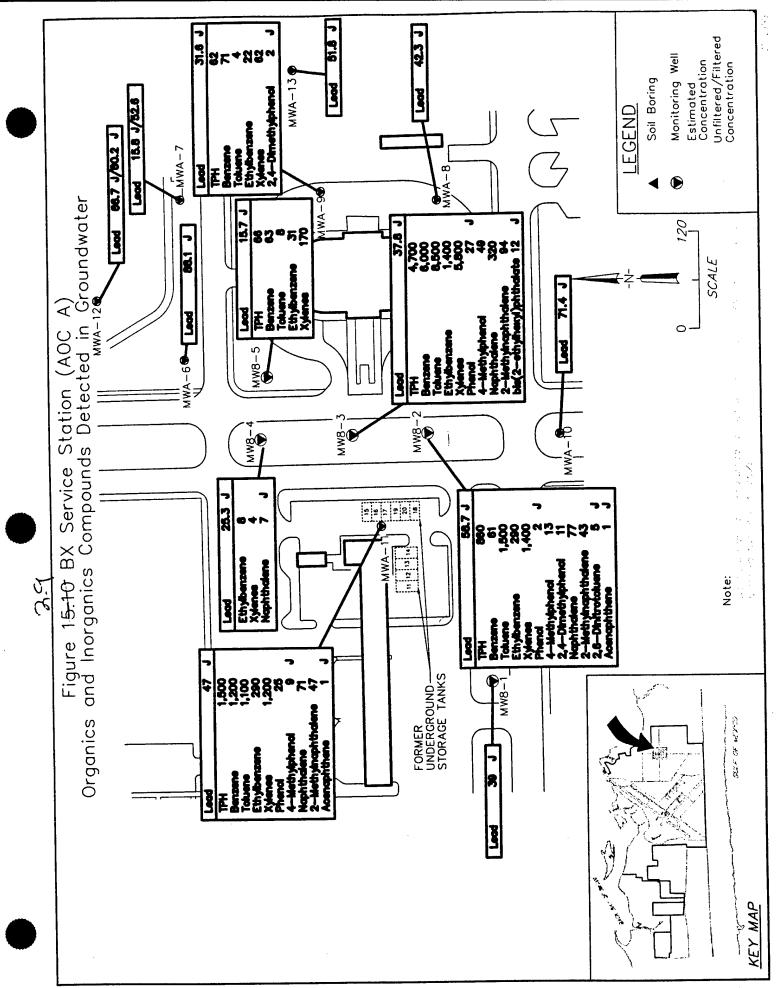
•

1.

Perameters Detected in Groundwater at Site 8. Round three. (Page 2 of 2) Table 4.1-10b.

ECTION MECHZZ KBGMZA KBGMZA KBGMZA KBGMZA KBGMZA KEGMAA MEUMZA MEUMAA MEUMAA<
10/30/89 10/30/89 10/30/89 10/30/89 10/30/89 09:05 09:30 09:45 10:10 09:05 09:10 09:23 0.0557 0.02 0.051 0.0012 0.0012 0.012 0.02 0.051 0.0012 0.0012 0.012 0.012 0.051 0.0012 0.0014 0.0014 0.001 0.052 0.0014 0.0014 0.0014 0.001 0.052 0.0014 0.0014 0.0014 0.001
0.0501 0.0116 0.0223 0.0557 0.02 10100 0.0022 0.0012 0.0012 0.023 10100 0.0025 0.0012 0.023 10100 0.0025 0.0012 0.023 10100 0.0022 0.0012 0.002 10100 0.0002 0.0002 0.0002
1010 0.0032 0.0036 0.0036 0.0036 1010 0.0035 0.0036 0.0036 0.0036 0.0022 0.0041 0.0036 0.006 1010 0.0036 0.006 0.006
0.009 0.0241 0.0234 0.0435 0.05 0.0022 0.0041 0.0036 0.00 0.0002
0.0022 0.0041 0.0036 0.00 0.0002
0.002


N/A - Not applicable.
 → Modify digestion to be 7ml of nitric acid.
 → Indicates the reported value was less than the instrument detection limit.


£

Source: ESE, 1989

4-88

,

1: /AT784/AOCCW, 07/07/93 at 12:47

8ample Date Elapsed Benzene TPH Toluene Ethyl-Total Naphtha-Location Time (days) benzene Xylane lene SM-S 05/09/98 ō < 0.020 0.005 0.005 < 0.002 0.002 06/14/96 < 0.004 38 < 0.050 < 0.005 < 0.005 < 0.005 < 0.005 < 0.010 07/11/98 63 1.0 0.11 0.21 0.040 0.085 0.018 08/14/96 97 1.3 0.15 0.37 0.077 0.16 09/18/96 0.033 132 < 0.020 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 11/25/96 200 0.73 0.12 0.23 0.07 0.1 0.016 01/15/97 261 1.7 0.096 0.3 0.083 0.2 0.38 04/30/97 356 1.1 0.083 0.21 0.063 0.14 SW-D 05/09/96 0.039 0 < 0.020 < 0.002 < 0.002 < 0.002 < 0.002 < 0.004 06/14/96 38 2.4 0.51 0.71 0.14 0.42 0.048 07/11/96 63 4.6 0.19 0.49 0.090 0.43 08/14/98 0.085 97 2.1 0.074 0.19 0.072 0.13 880.0 09/18/96 132 1.1 0.14 0.31 0.054 0 12 0.032 11/25/96 200 9.8 0.28 0.45 0.35 0.68 0.25 01/16/97 251 Б.З 0.44 1.1 0.25 0.65 04/30/97 0.23 358 1.1 0.04 0.087 0.055 0.069 PE3-S 0.063 05/09/96 ٥ 96 17 2.9 0.88 2.0 0.15 08/14/98 36 42 7.7 8.7 1.3 3.4 0.25 07/11/96 63 210 10 9.5 1.5 Б.0 0.88 08/14/96 97 79 14 13 1.1 2.6 09/18/96 0.5 132 47 9.5 12 1.3 3.2 11/25/98 0.49 200 47 13 11 1.7 3.6 01/15/97 0.42 251 47 8.5 9.7 1.3 33 0.48 04/30/97 356 28 5 5.8 1.1 MW-11 2.5 0.51 05/09/96 0 6.9 0.8 0.12 0.26 0.91 0.050 06/14/96 38 52 < 0.005 0.012 1.3 3.6 07/11/96 1.1 63 49 < 0.005 0.013 0.91 1.5 0.52 08/14/96 97 26 < 0.005 < 0.005 0.66 16 0.72 09/18/96 132 36 0.42 0.35 0.63 0.75 11/25/96 0.39 200 34 6.7 4 0.74 01/15/97 1.5 0.4 261 19 3.7 24 0.42 0.48 04/30/97 0.26 356 18 0.05 0.28 0.37 MWB-3 0.62 05/09/96 0.51 0 32 1.4 6.0 1.2 5.4 0.31 08/14/96 36 3.8 0.068 0.41 0.094 0.48 0.067 07/11/96 63 7.0 0.12 0.59 0.13 0.83 08/14/96 0 1 1 97 11 0.084 1.8 0.40 2.9 0.11 09/18/96 132 66 3.2 14 1.9 9.6 0.97 11/25/96 200 61 4.8 16 25 98 01/15/97 251 0.75 28 0.99 5.3 1.1 3.7 04/30/97 0.46 356 17 0.74 4.2 MW8-4 1.7 2.4 05/09/96 0.41 0 8.6 1.9 0 080 0.29 0.29 06/14/96 0.24 36 7.7 0.62 0.038 0.14 0.20 07/11/98 0.29 63 2.7 0.27 < 0.005 0.036 0 048 08/14/98 0.13 97 0.98 0.37 < 0.010 0.042 0.028 09/18/96 0.10 132 33 0 89 < 0.010 0.23 11/25/98 0.055 0.12 200 4.8 1.2

< 0.010

< 0.05

0.24

0.32

0.32

0.3

0.23

0.22

0.35

0.1

0.15

0.33

TABLE 4: RESULTS OF GROUNDWATER CHEMICAL ANALYSIS (mg/L)

01/15/97

04/30/97

251

358

5.2

4.9

1.3

2.3

ce Base, MS Investigation vility.

Tahla 15 3	RX Service Station (AOC A) Groundwater Test Results - Volatile Organics	tation (AOC	A) Groundy	water Tect R	enite - Vals	tile Arganice	RCRA Facility In Keesler Air Forc	cility In ir Forc
	MW8-1	MW8-2	MW8-3	MW8-4	MW8-5	MW14 (a)	MWA-6	
Date	11/19/92	11/19/92	11/19/92	11/19/92	11/19/92	11/19/92	11/19/92	
Volatile Organic Compou	pounds SW8240	0 (µg/L)						
DILUTION FACTOR	1.0	50	500	1.0	5.0	5.0	1.0	
Chloromethane	2 U	100 U	1000 U	2 U	10 U	10 U	2 U	
Bromomethane	2 U	100 U	1000 U	2 U	10 U	10 U	2 U	
Vinyl Chloride	2 U	100 U	1000 U	2 U	10 U	10 U	2 U	
Chloroethane	2 U	100 U	1000 U	2 U	10 U	10 U	2 U	
Methylene Chloride	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Acetone	10 U	500 U	5000 U	10 .U	50 U	50 U	10 U	
Carbon Disulfide	2 U	100 U	1000 U	2 U	10 U	10 U	2 U	
1,1-Dichloroethene	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
1,1-Dichloroethane	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
cis-1,2-Dichloroethene	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
trans-1,2-Dichloroethene	1 U	50 U	500 U	1 N	5 U	5 U	1 U	
1,2-Dichloroethene(total)	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Chloroform	1 U	50 U	500 U	1 U	5 U	5 U	I U	
1,2-Dichloroethane	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
2-Butanone	10 U	500 U	5000 U	10 U	50 U	50 U	10 U	
1,1,1-Trichloroethane	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Carbon Tetrachloride	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Vinyl Acctate	10 U	500 U	5000 U	10 U	50 U	50 U	10 U	
Bromodichloromethane	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
1,2-Dichloropropane	1 U	50 U.	500 U	1 U	5 U	5 U	1 U	
cis-1,3-Dichloropropene	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Trichloroethene	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Benzene	1 U	61	6000	1 U	63	59	1 U	
Dibromochloromethane	1 U	50 U	500 U.	1 U	5 U	5 U	1 U	
1,1,2-Trichloroethane	1 U	50 U	500 U	1 U	5 U	5 U	1 N	
trans-1,3-Dichloropropene	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
Bromoform .	1 U	50 U	500 U	1 U	5 U	5 U	1 U	
2-Hexanone	10 U	500 U	5000 U	10 U	50 U	50 U	10 U	
4-Methyl-2-pentanone	10 U	500 U	5000 U	10 U	50 U	50 U .	10 U	
Tetrachloroethene	. 1 U	50 U	500 U	1 U	5 U	5 U	1 U	
1,1,2,2-Tetrachloroethane	1 U	50 U	500 U	1 U	5 U	5 U	1 U	

ri200SEC-15/T-15-3.XLS H:N2(

ILY 1994 1

D 500 ·

15-26

-

U I)	
	1500	8500	0 1	80	80	1 U
I U	50 U	500 U	1 U	5 U	5 U	1 U
1 U	290	1400	80	31	30	1 U
1 U	50 U	500 [°] U	1 U	5 U	5 U	1 U
1 U	1400	5800	4	170	150	1 U
MWA-7	MWA-8	MWA-9	MWA-10	II-VMW	MWA-12	MWA-13
11/18/92	11/18/92	11/18/92	11/19/92	11/20/92	11/20/92	11/20/92
- SW8240	(µg/L)					-
1.0	1.0	2.0	1.0	50	1.0	1.0
2 U	2 U	4 U	2 [.] U	100 U	2 U	2 U
2 U	2 U	4 U	2 U.	100 U	2 U	2 U
2 U	2 U	4 U	2 U	100 U	2 U	2 U
2 U	2 U	4 U	2 U	100 U	2 U	2 U
I U	1 U	2 U	1 U	50 U	1 U	1 U
10 U	10 U	20 U	10 U	500 U	10 U	10 U
2 U	2 U	4 U	2 U	100 U	2 U	2 U
I U	1 U	2 U	1 U	50 U	1 N	1 U
1 U	1 U	2 U	1 U	50 U	I U	1 N
1 U	1 U	2 U	1 U	50 U	1 U	1 U
I U	1 U	2 U	1 U	50 U	1 U	1 U
1 U	1 U	2 U	1 U	50 U	1 N	1 U
1 U	1 U	2 U	1 U	50 U	1 N	1 U
I U	1 U	2 U	1 U	50 U	1 U	1 U
10 U	10 U	20 U	10 U	500 U	10 U	10 U
1 U	1 U	2 U	1 U	50 U	1 U	1 U
I U	1 U	2 U	1 U	50 U	1 N	1 U
10 U	10 U	20 U	10 U	500 U	10 U	10 U
1 U	1 U	2 U	1 U	50 U	1 U	1 U
1 U	1 U	2 U	1 U	50 U	1 U	1 U
1 U	1. U	2 U	1 U	50 U	I U	1 0
1 U	I U	2 U	1 U	50 U	1 U	1 N
1 U	1 U	71	1 U	1200	I U	1 U
1 U	1 U	2 U	1 U	50 U	1 N	1 U
1 U	1 U	2 U	1 U	50 U	1 N	1 U
	SW8240 0	N8740 (M8 רממכמממממממ (M8 רמממממממממממממממ			$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.0 50 1.1 2.1 1.1 50 1.1 2.1 1.1 50 1.1 2.1 1.1 50 1.1 2.1 1.1 50 1.1 2.1 1.1 50 1.1 50 50 50 1.1 50 50 50 1.1 50 50 50 1.1 50 50 50 1.1 50 50 50 1.1 50 50 50 1.1 50 50 50 1.1 50 50 50

H:V721131V945r120VSEC-15VT-15-3.XLS

JULY 1994

15-27

. • . • .

Table 15.3	BX Service Station (AOC A) Groundwater Test Results - Volatile Organics	ation (AOC A	V) Groundwa	iter Test R	cesults - Vola	tile Organics	Keesler Air
trans-1,3-Dichloropropene	1 U	1 U	2 U	1 U	50 U	1 U	1 U
Bromoform	1 U	10 U	2 U	1 U	50 U	1 U	1 U
2-Hexanone	10 U	10 U	20 U	10 U	500 U	10 U	10 U
4-Methyl-2-pentanone	10 U	1 U	20 U	10 U	500 U	10 U	10 U
Tetrachloroethene	1 U	1 U	2 U	1 U	50 U	n I	1 U
1,1,2,2-Tetrachloroethane	1 U	U I	2 U	1 U	50 U	I U	I U
Toluene	1 U	1 U	4	1 U	1100	1 U	1 U
Chlorobenzene	1 U	1 U	2 U	1 U	50 U	1 U	1 U
Ethylbenzene	1 U	1 U	22	1 U	290	1 U	1 U
Styrene	1 U	1 U	2 U	1 N	50 U	1 U	1 U
Total Xylenes	1 U	I U	62	1 U	1200	1 U	1 U
(a) Duplicate of MW8-5							

H:\72(5r120\SEC-1S\T-15-3.XLS

) . ILY 1994

15-28

.,

1 4010 10.4	DA DEI TICE DIATIONI (AUC A) ULUMINAREI LESI NESUIS - DEINYUIAINE ULUMINICS			Incov 1co I Io		nie Urganics	
Well ID Date	MW8-1 11/19/92	MW8-2 11/19/92	MW8-3 11/19/92	MW8-4 11/19/92	MW8-5 11/19/92	MW14 (a) 11/19/92	MWA-6 11/19/92
Semivolatile Organic Compounds SW8270	ounds SW827	0 (µg/L)					
DILUTION FACTOR	1.0	1.0	4.0	1.0	1.0	1.0	1.0
N-Nitroso-Dimethylamine	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Phenol	10 U	2 J	27 J	10 U	10 U	10 U	10 U
bis(2-Choroethyl)ether	10 U	10 U	40 U	10 U	10 U	10 U	10 U
2-Chlorophenol	10 U	10 U	40 U	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	10 U	10 U	40 U	10 U	10 U	10 U	10 U
1,4-Dichlorobenzene	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Benzyl a lcohol	10 U	10 U	40 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	10 U	10 U	40 U	10 N	10 U	10 U	10 U
2-Methylphenol	10 U	10 U	40 U	10 U	10 U	10 U	10 U
bis(2-chloroisopropyl)ether	10 U	10 U	40 U	10 U	10 U	10 U	10 U
4-Methylphenol	10 N	13	49	10 U	10 U	10 U	10 U
N-Nitroso-Di-n-propylamine	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Hexachloroethane	10 U	10 U	40 U	10 U	10 N	10 U	10 U
Nitrobenzene	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Isophorone	10 U	10 U	40 U	10 U	10 U	10 U	10 U
2-Nitrophenol	10 U	10 U	40 U	10 U	10 U	10 U	10 U
2,4-Dimethylphenol	10 U	11	40 U	10 U	10 U	10 U	10 U
bis(2-Chloroethoxy)methane	10 U	10 U	40 U	10 U	10 U	10 U	10 U
2,4-Dichlorophenol	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Benzoic Acid	25 U	25 U	100 U	25 U	25 U	25 U	25 U
1,2,4-Trichlorobenzene	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Napthalene	10 U	77	320	1]	10 U	10 U	10 U
4-Chloroaniline	10 U .	10 U	40 U	10 U	10 U	10 U	10 U
Hexachlorobutadiene	10 U	10 U	40 U	10 U	10 U	10 U	10 U
4-Chloro-3-methylphenol	10 U	10 U	40 U	10 U	10 U	10 U	10 U
2-Methylnapthalene	10 U	43	94	10 U	10 U	10 U	10 U
Hexachlorocyclopentadiene	10 U	10 U	40 U	10 U	10 U	10 U	10 U

Table 15.4 BX Service Station (AOC A) Groundwater Test Results - Semivolatile Organics

H:V721131V945r120VSEC-15VT-15-4.XLS

15-29

JULY 1994

•

•

I able 13.4 (Cont. d) DA SERVICE Station (AUC. A) Groundwater Test Results - Senirvolanie Organics							
2,4,6-Trichlorophenol	10 U	10 N	40 U	10 U	10 U	10 U	10 U
2,4,5-Trichlorophenol	25 U	25 U	100 U	25 U	25 U	25 U	25 U
2-Chloronapthalene	10 U	10 U	40 U	10 U	10 U	10 U	10 N
2-Nitroaniline	25 U	25 U	100 U	25 U	25 U	25 U	25 U
Dimethylphthalate	10 U	10 U	40 U	10 U	10 U	10 U	10 U
Acenaphthylene	10 N	10 U	40 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	10 U	S J	40 U	10 U	10 U	10 U	10 U
Well ID	MW8-1	MW8-2	MW8-3	MW8-4	MW8-5	MW14 (a)	MWA-6
Date	11/19/92	11/19/92	11/19/92	11/19/92	11/19/92	11/19/92	11/19/92

Samivalatile Arganice act Daenite Ē Tahla 15 d (Contld) RY Sarvica Station (AMC A) Cro

Semivolatile Organic Compounds - SW8270 (ng/L) L0 L0 <th< th=""><th>Date</th><th>11/19/92</th><th>76/61/11</th><th>11/19/92</th><th>76/67/11</th><th>76/61/11</th><th>11/19/94</th><th>11/17/9/</th></th<>	Date	11/19/92	76/61/11	11/19/92	76/67/11	76/61/11	11/19/94	11/17/9/
OR I.0		ounds SW827	0 (µg/L)					
25 U 25 U 1 J 40 U 10 U 25 U 26 U		1.0	1.0	4.0	1.0	1.0	1.0	1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Nitroaniline	25 U		100 U			25 U	25 U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Acenaphthene	10 U					10 U	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4-Dinitrophenol	25 U					25 U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Dibenzofuran	10 U					10 U	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Nitrophenol	25 U					25 U	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,4-Dinitrotoluene	10 N					10 U	
	Fluorenc						10 U	
nylether 10 <	Dicthylphthalate						10 U	
25 U 25 U 100 U 25 U 25 U Iphenol 25 U 25 U 100 U 25 U 25 U mine 10 U 10 U 40 U 10 U 10 nylether 10 U 10 U 40 U 10 U 10 10 U 10 U 10 U 40 U 10 U 10 25 U 25 U 25 U 26 U 25 U 25 U 25 U 25 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10 10 10 U 10 U 40 U 10 U 10 10 10 U 10 U 40 U 10 U 10 10 10 U 10 U 40 U 10 U 10 10	4-Chlorophenyl-phenylether						10 U	
Iphenol 25 U 25 U 100 U 25 U 26 U 10 U	4-Nitroaniline						25 U	
mine 10 U 10 U 40 U 10 U <th< td=""><td>4,6-Dinitro-2-methylphenol</td><td></td><td></td><td></td><td></td><td></td><td>25 U</td><td></td></th<>	4,6-Dinitro-2-methylphenol						25 U	
nylether 10 U 10 U 10 U 40 U 10 U	N-Nitrosodiphenylamine						10 U	
10 U 10 U 40 U 10 U 10 U 10 25 U 25 U 25 U 100 U 25 U 25 10 U 10 U 10 U 100 U 25 U 25 10 U 10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10 10 10 U 10 U 40 U 10 U 10 10 10 U 10 U 40 U 10 U 10 10							10 U	
25 U 25 U 100 U 25 U 26 U 20 U 10 U	Hexachlorobenzene						10 U	
10 U 10 U 40 U 10 U 10 U 10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10	Pentachlorophenol						25 U	
10 U 10 U 40 U 10 U <th< td=""><td>Phenanthrene</td><td></td><td></td><td></td><td></td><td></td><td>10 U</td><td></td></th<>	Phenanthrene						10 U	
10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10	Anthracene						10 U	
10 U 10 U 40 U 10 U 10 10 U 10 U 40 U 10 U 10	Di-n-butylphthalate			40 U			10 U	
10 U 10 U 40 U 10 U 10	Fluoranthene						10 U	
	Pyrene						10 U	

į

<u>MWA-13</u> 11/20/92 10 U 10 U 10 U D D 20 U D D D D D D С D) D D D D 1 2 2 0.1 0 2 2 2 0 2 2 2 2 2 2 10 10 0 2 0 10 2 ŝ <u> MWA-12</u> 11/20/92 10 U 10 U 10 U D 20 U 10 U D D D D D D D D D 5 D D 1 D D D 1.0 10 2 2 10 2 2 2 2 2 10 2 2 10 10 10 10 0 2 2 00 <u>MWA-11</u> 11/20/92 20 U 10 U D D D D D D D D D D -1:0 10 10 10 10 10 2 2 2 2 2 2 2 2 10 9 e 25 <u>MWA-10</u> 11/19/92 20 U 10 U D D D Þ D D D D D D D D D 1.0 2 2 2 2 <u>o</u> 2 2 2 0 2 2 2 2 2 2 Ś 2 11/18/92 40 U 40 U 80 U 40 U 40 U D 40 U D 5 D D D D \supset 0 D D D D 10 10 đ 10 10 10 10 10 \$ Q 2 \$ \$ 2 2 9 2 1.0 <u>MWA-8</u> 11/18/92 20 U 10 U 10 U 10 U D 10 U D D D D D D D D D Semivolatile Organic Compounds -- SW8270 (µg/L) 10 2 1.0 2 2 2 0 2 2 2 2 2 <u>o</u> <u>o</u> 2 2 2 2 2 2 11/18/92 D 20 U 10 U 10 U 10 U 10 U 10 U 10 U D D þ D D D D D D D D D D 1 2 1.0 2 0 2 2 0 2 2 2 2 2 0 2 2 2 2 2 N-Nitroso-Di-n-propylamine bis(2-chloroisopropyl)ether bis(2-ethylhexyl)phthalate N-Nitroso-Dimethylamine **DILUTION FACTOR** Indeno(1,2,3-cd)pyrene 3,3'-Dichlorobenzidine Dibenz(a,h)anthracene bis(2-Choroethyl)ether Benzo(b)fluoranthene Butylbenzylphthalate Benzo(k)fluoranthene Benzo(g,h,i)perylene 1,3-Dichlorobenzene 1,4-Dichlorobenzene ,2-Dichlorobenzene Benzo(a)anthracene Di-n-octylphthalate 2-Methylphenol Benzo(a)pyrene 2-Chlorophenol 4-Methylphenol **Benzyl** alcohol Chrysene Well ID Phenol Date

Table 15.4 (Cont'd) BX Service Station (AOC A) Groundwater Test Results - Semivolatile Organics

H:\721131\945r120\SEC-15\T-15-4.XLS

JULY 1994

D D

D D

ò 2

D

D n

D D

D D

01 01

D

D

2 0

Hexachloroethane

Nitrobenzene sophorone

01 01

0 0

15-31

-12

.

Table 15.4 (Cont'd) BX Service Station (AOC A) Groundwater Test Results - Semivolatile Organics

2,4-Dimethylphenol his(?-Chloroethory)methane							
his(?-Chloroethory)methane	10 0	10 U	2 J	10 U	10 U	10 U	10
AIMINATIN' AVAINANTINA TIMA	10 U	10 U	10 U	10 U	10 U	10 U	10
2,4-Dichlorophenol	10 U	10 U	10 U	10 U	10 U	10 U	10
Benzoic Acid	25 U	25 U	25 U	25 U	25 U	25 U	25 U
1,2,4-Trichlorobenzene	10 N	10 U	10 U	10 U	10 U	10 U	10 U
Napthalene	10 U	10 U	10 U	10 U	11	10 U	10 N
4-Chloroaniline	10 U	. N 01	10 U	10 U	10 N	10 N	10 N
Hexachlorobutadiene	10 U	10 U	10 U	10 U	10 N	10 U	101
4-Chloro-3-methylphenol	10 U	10 U	10 U	10 U	10 U	10 U	101
2-Methylnapthalene	10 U	10 U	10 U	10 N	47	10 U	101
Hexachlorocyclopentadiene	10 U	10 U	10 U	10 U	10 U	10 U	10
2,4,6-Trichlorophenol	IO N.	10 U	10 U	10 U	10 U	10 U	25
2,4,5-Trichlorophenol	25 U	25 U	25 U	25 U	25 U	25 U	10
2-Chloronapthalene	10 U	10 U	10 U	10 U	10 U	10 U	25
2-Nitroaniline	25 U	25 U	25 U	25 U	25 U	25 U	10
Dimethylphthalate	10 U	10 U	10 U	10 U	10 U	10 U	10 N
Acenaphthylene	10 N	10 U	10 U	10 U	10 U	10 U	10 U
2,6-Dinitrotoluene	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Well ID	MWA-7	MWA-8	MWA-9	MWA-10	MWA-11	MWA-12	I-VMW
Date	11/18/92	11/18/92	11/18/92	11/19/92	11/20/92	11/20/92	11/20/92
Semivolatile Organic Compounds SW8270 (µg/L)	ounds SW827	'0 (µg/L)					
DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0	1.0
3-Nitroaniline	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Accnaphthene	10 U	10 N	10 U	10 U	1 J	10 U	10 U
2,4-Dinitrophenol	25 U	25 U	25 U	25 U	25 U	25 U	25 U
Dibenzofuran	10 U	10 U	10 U	10 U	10 U	10 U	10
4-Nitrophenol	25 U	25 U	25 U	25 U	25 U	25 U	25
2,4-Dinitrotoluene	10 U	10 U	10 U	10 U	10 N	10 U	10 N
Fluorene	10 U	10 U	10 U	10 U	10 U	10 U	10
Diethylphthalate	10 U	10 U	10 U	10 U	10 U	10 U	10

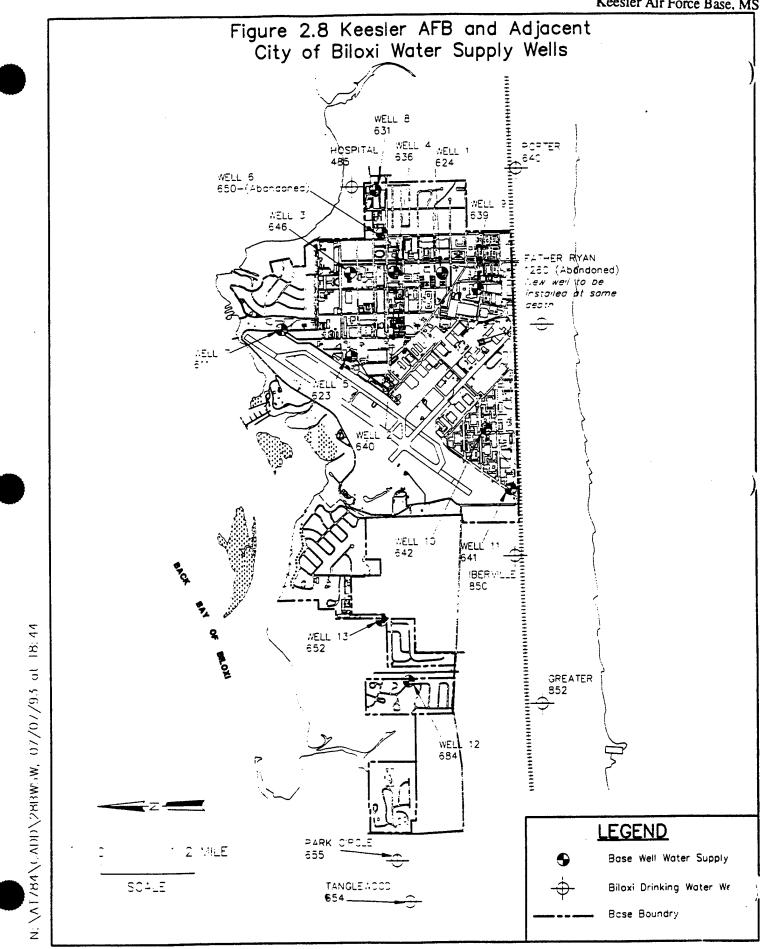
Л.Ү 1994

Table 15.4 (Cont'd) BX Service Station (AOC A) Groundwater Test Results - Semivolatile Organics

4-Chlorophenyl-phenylether	10 U	10 U					
4-Nitroaniline		25 U	-				
4,6-Dinitro-2-methylphenol	25 U	25 U	-	25 U			
N-Nitrosodiphenylamine	10 U	10 U	-				
4-Bromophenyl-phenylether	10 U	10 U	-				
Hexachlorobenzene		10 U	-				
Pentachlorophenol			-				
Phenanthrene	10 U	10 U.	-				
Anthracene			-				
Di-n-butylphthalate							
Fluoranthene	10 U	10 U	-				
Pyrene	10 U	10 U					
Butylbenzylphthalate	10 U	10 U					
Benzo(a)anthracene		10 U					
3.3'-Dichlorobenzidine		20 U					
Chrysene		10 U					
bis(2-ethylhexyl)phthalate		2 U					
Di-n-octylphthalate	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene		10 U					
Benzo(k)fluoranthene		10 U			10 U		
Benzo(a)pyrene	10 U	10 U	10 U		10 U	- 10 U	
Indeno(1,2,3-cd)pyrene	10 U	10 U	10 U		· 10 U	10 U	
Dibenz(a,h)anthracene	10 U	10 U	10 U	10 U	10 U	10 U	
Benzo(g.h.i)pervlene	10 U	10 U	10 U	10 U	10 U	10 U	

(a) -- Duplicate of MW8-5

15-33


Total Filtered Total Date 11/19/92 11/19/92 11/19/92 Total Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 DILUTION FACTOR 1.0 1.0 1.0 DILUTION FACTOR 1.0 2.4 1.0 DILUTION FACTOR 39 J 2.4 0 Gasoline 50 U 860 MM14 (a) M Well ID MW14 (a) M M M M Well ID MW14 (a) M M M M M Date 11/19/92 11/19/92 11/19/92 11/19/92 11/19/92 11/19/92 DILUTION FACTOR 1.0 75 J S6 U Well ID MWA-10 M M M M M 10 U Utution Factoreum Hydrocarbons - SW8015 10/19/92 11/19/92 11/20/92 11/20/92 U Mete 10 M M S.5		MW8-2	MW8-3	8-3	MW8-4	/8-4	MW8-5	/8-5
Petroleum Hydrocarbons - SW8015 (µg/L) 1.0 TION FACTOR 1.0 1.0 TION FACTOR 1.0 860 (µg/L) 39 J 2.4 860 (µg/L) 39 J 2.4 860 (µg/L) 39 J 2.4 986. (µg/L) 39 J 2.4 986. (µg/L) 11/19/92 11/19/92 11/19/92 11/19/92 Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 1.0 TION FACTOR 1.0 1.0 1.0 1.0 Inc 75 J 5.5 J 88.1 (µg/L) 16.9 J 5.5 J 88.1 (µg/L) 16.9 J 5.5 J 88.1 O 701 1.0 1.0 1.0 1.0 Inc 75 J 5.5 J 88.1 (µg/L) 16.9 J 5.5 J 88.1 (µg/L) 1.0 1.0 J 1.0 1.0		Filtered 11/19/92	Total	Filtered 11/19/92	Total 11/19/92	Filtered	Total	Filtered
TION FACTOR 1.0 1.0 1.0 TION FACTOR 50 V 860 (ug/L) 39 J 2.4 V 58.7 ID MW14 (a) Total Filtered Tota II/19/92 11/19/92 11/19/92 11/19/ Petroleum Hydrocarbons - SW8015 (ug/L) 1.0 1.0 ine 75 J 88.1 (ug/L) 16.9 J 5.5 J 88.1 Oline 75 J S.5 J 88.1 In/ON PACTOR 1.0 1.0 1.10 1.0 Petroleum Hydrocarbons - SW8015 (ug/L) 11/19/92 11/20/ 11/20/ Petroleum Hydrocarbons - SW8015 (ug/L) 1.00 1.00 1.00 Petroleum Hydrocarbons - SW 8015 (ug/L) 1.00 1.00 1.00 TON PACTOR 1.0 <td< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	1							
ine 50 U 58.7 (ng/L) 39 J 2.4 U 58.7 (ng/L) 39 J 2.4 U 58.7 D MW14 (a) Total Filtered Tota 11/19/92 11/19/92 11/19/92 11/19/ Petroleum Hydrocarbons SW8015 (ng/L) TION FACTOR 1.0 TION FACTOR 1.0 10 MWA-10 10 MWA-10 11/19/92 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (ng/L) 11/19/92 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (ng/L) TION FACTOR 1.0 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 10 TOTAL 1.0 11/19/92 11/19/92 11/20/ 10 TOTAL 1.0 10 TOTAL 1.0 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/ 11/19/92 11/19/92 11/20/			5 0		01		01	
ine 50 U 860 (µg/L) 39 J 2.4 U 58.7 ID MW14 (a) 70tal Filtered Total ID Total Filtered Total Total II/19/92 II/19/92 II/19/92 11/19/92 10 Petroleum Hydrocarbons SW8015 (µg/L) 5.5 J 88.1 10 ION FACTOR 1.0 5.5 J 88.1 10 (µg/L) 16.9 J 5.5 J 88.1 10 (µg/L) 16.9 J 5.5 J 88.1 10 Invariance Total Filtered Total 11/20/ INMA-10 MWA-10 11/19/92 11/20/ 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 11/20/ 11/20/ 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 11/20/ 11/20/ 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 11/20/ 11/20/ 11/20/	0.1							
(µg/L) 39 J 2.4 U 58.7 ID MW14 (a) MW14 (a) 11/19/92 11/19/92 11/19/92 ID Total Filtered Total Total Total Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 1.0 TION FACTOR 1.0 7.5 38.1 (µg/L) 16.9 J 5.5 J 88.1 (µg/L) 16.9 J 5.5 J 10 ID MWA-10 Total Filtered Total 11/19/92 11/20/ Petroleum Hydrocarbons	860		4700		50 U		8	
ID MW14 (a) Total Filtered Total Total Filtered Total IU/19/92 11/19/92 10 1.0	58	14.2 U	37.8 J	13.3 U	25.3 J	1.2 U	15.7 J	1 UJ
Total Filtered Total 11/19/92 11/19/92 11/19/92 Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 TION FACTOR 1.0 1.0 1.0 TION FACTOR 1.0 75 50 ine 75 3.5 J 88.1 (µg/L) 16.9 J 5.5 J 88.1 D MWA-10 70tal 70tal D Total Filtered 70tal 11/19/92 11/19/92 11/20/ 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 10 10 TON FACTOR 1.0 11/19/92 11/20/	9-PWM	A-6	MWA-7	A-7	MM	MWA-8	MM	MWA-9
II/19/92 II/19/92 II/19/92 II/19/92 Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 TION FACTOR 1.0 55 50 ine 75 55 98.1 (µg/L) 16.9 J 5.5 J 88.1 (µg/L) 16.9 J 5.5 J 88.1 Op MWA-10 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 100 100 TION FACTOR 1.0 1.0 1.0	Total	Filtered	Total	Filtered	Total	Filtered	Total	Filtered
Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 TION FACTOR 1.0 1.0 1.0 ine 75 55 50 (µg/L) 16.9 J 5.5 J 88.1 (µg/L) 11.1/19/92 111/19/92 111/20/ 111/20/ Petroleum Hydrocarbons SW8015 (µg/L) 1.0 1.0 1.0 TION FACTOR 1.0 1.0 1.0 1.0 1.0 1.0		11/19/92	11/18/92	11/18/92	11/18/92	11/18/92	11/18/92	11/18/92
TION FACTOR 1.0 1.0 ine 75 50 (µg/L) 16.9 J 5.5 J 88.1 D MWA-10 Total Filtered Total ID Total Filtered Total Total Petroleum Hydrocarbons SW8015 (µg/L) 11/20/ 11/20/ TION FACTOR 1.0 1.0 1.0 1.0	ug/L)							
ine 75 55 J 88.1 (μg/L) 16.9 J 5.5 J 88.1 (μg/L) Total 5.5 J 88.1 D MWA-10 Total Filtered Tota 11/19/92 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (μg/L) TION FACTOR 1.0 ine 50 U 1500	1.0		1.0		1.0		1.0	
(µg/L) 16.9 J 5.5 J 88.1 ID MWA-10 MWA-10 Total Total Total Total ID Total Filtered Total Total Total Total Total Petroleum Hydrocarbons SW8015 (µg/L) 11/20/ 11/20/ 1.0 1.0 TION FACTOR 1.0 50 U 1500 1500 1500	50 U		50 U		50 U		62	
ID MWA-10 Total Filtered Total Total Filtered Total 11/19/92 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 1.0 TION FACTOR 1.0 1.0 ine 50 U 1500	J 88	5.8 U	15.8 J	52.6	42.3 J	1 U	31.6 J	1 U
ID MWA-10 Total Filtered Total 11/19/92 11/19/92 11/20/ Petroleum Hydrocarbons SW8015 (µg/L) 1.0 TION FACTOR 1.0 1.0 Tion FACTOR 1.0 1.0								
TotalFiltered111/19/9211/19/9211Petroleum Hydrocarbons SW8015 (µg/L)10TION FACTOR1.0ine50 U15	II-AWM	A-11	MWA-12	<u> </u>	MM	MWA-13		
11/19/92 11/19/92 11 Petroleum Hydrocarbons SW8015 (µg/L) TION FACTOR 1.0 TION FACTOR 1.0 15 ine 50 U 15	-	Filtered	Total	Filtered	Total	Filtered		
15		11/20/92	11/20/92	11/20/92	11/20/92	11/20/92		
15	ug/L.)			·				
50 U			1.0		1.0			
	1500		50 U		50 U			
Lead (µg/L) 71.4 J 2.7 U 47 J		20.2 U	66.7 J	60.2 J	51.8 J	2.3 U		

15-34

HAT STITUTE STATE

2

GENERAL BASE INFORMATION

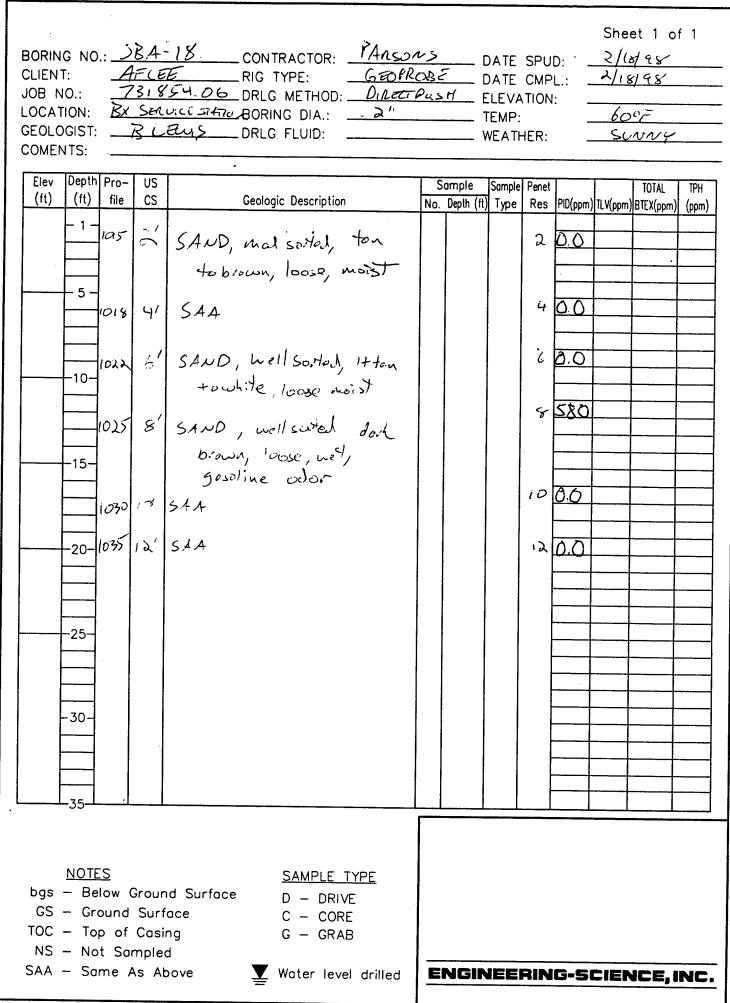
APPENDIX C FIELD FORMS FROM FEBRUARY 1998 FIELD EFFORT

BORIN CLIEN JOB N LOCAT	10.: -2.51	854.06	CONTRACTOR: . RIG_TYPE: DRLG_METHOD: . BORING_DIA.: .	DINECT P	BE USIT	_ ELEVA	TION	D: _ L.: _ : _		5°	8
GEOLC)GIST: <u>13 - (</u>	EWIS	DRLG FLUID:		Ťo	- TEMP: - WEATH - (3 ET	HER:	- - - -	S	UNN	, 1
Elev (ft)	1	IS S	Geologic Description		Sampl No. Depth	e Sample n (ft) Type			TLV(ppm)	TOTAL BTEX(ppm)	TPH (ppm)
	-1 - 1040	2-45 4-65 6-85, 8-10 9-11 12-14 14-16 16-18 A 13-205 23-25	S. A A T >AMPLED	in to it lasse It loose nun lasse in lasse it in lasse it in lasse		23	8' 10 12' 14	185 6.7			
GS TOC NS	<u>NOTES</u> – Below Gro – Ground S – Top of C – Not Sam – Same As	urface asing bled	e <u>SAMPLE</u> D – DRIV C – CORI G – GRAI	E B	ENG	JINEE	RIN	G-S		ICE, I	INC

•

1.2

Sheet 1 of 1 BORING NO.: <u>BA-15</u> CONTRACTOR: <u>Pursons</u> DATE SPUD: <u>2/18/98</u> CLIENT: <u>AFLEE</u> RIG TYPE: <u>Geoprobe</u> DATE CMPL.: JOB NO.: <u>731854.06</u> DRLG METHOD: <u>Direct Push</u> ELEVATION: LOCATION: <u>Bx Service STATE</u> BORING DIA.: <u>2''</u> TEMP: <u>40°</u> GEOLOGIST: <u>BLEWIS</u> DRLG FLUID: <u>WEATHER</u>: <u>50007</u>

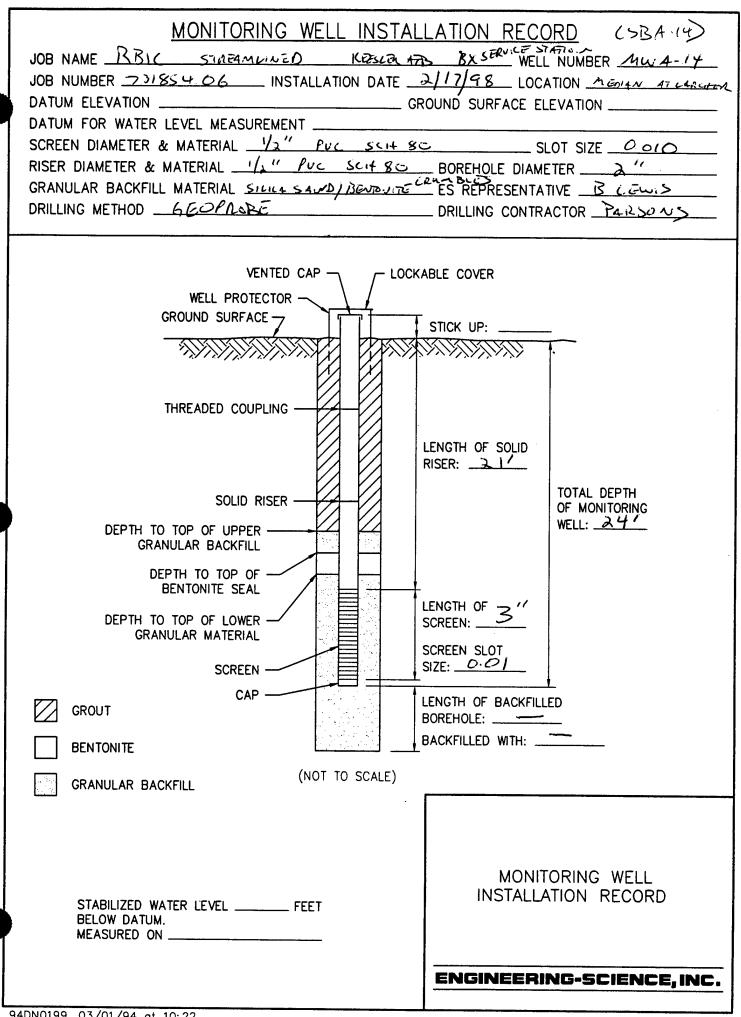

Lev Uppth Pro- US Sample Sample Sample Part TUL, PR No. Upph (f) Type Res POlymon Dulymon BTX(ppn) BTX(ppn) (ppn 1 - 1 -	Elev	Depth	Pro-	US		5	ample	Sample	Penet	1		TOTAL	του
$\frac{1}{972} + \frac{1}{972} + \frac{1}$					Geologic Description					PID(ppm)	Ti V(nom)	TOTAL BTEX(nom)	TPH (nnm)
$\frac{1}{970} = \frac{1}{970} = \frac{1}$		L 1 _									·-·(PP···/	D ICA(ppin)	(PP)
$\frac{5}{972} + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + $		ļ			•								
$\frac{5}{972} + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + $				0705	4' SAND, mul sortal,				4'	0.0			
$\frac{10}{10}$ 10					grey to It brown, loose								
$\frac{10}{10}$ 10	<u> </u>	- 5 -			morst								
$\frac{10}{10}$ 10				טורס	6' <41								
$\frac{10}{10}$ 10					al and wall a dal								
NOIES SAMPLE TYPE -30- -30- -30- -30- -30- -30- -30- -30- -30- -30-				C716	-				8	0.0			
NOTES SAMPLE TYPE bgs - Below Ground Surface CS - Ground Surface CS - Ground Surface SAMPLE TYPE D - DRIVE CS - Ground Surface C - CORE C - CORE C - CORE C - CORE C - CORE C - CORE NOTES NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE C - CORE NOTES NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE C - CORE NOTES NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE C - CORE S - Ground Surface S - GRAB		-10-											
NOTES SAMPLE TYPE bgs - Below Ground Surface CS - Ground Surface CS - Ground Surface SAMPLE TYPE D - DRIVE CS - Ground Surface C - CORE C - CORE C - CORE C - CORE C - CORE C - CORE NOTES NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE C - CORE NOTES NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE C - CORE NOTES NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE C - CORE S - Ground Surface S - GRAB					loose wet								
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sompled				mis									
NOTES SAMPLE TYPE Jord Control Surface GS - Ground Surface GS - Ground Surface C - CORE C - CORE C - CORE C - CORE C - CORE S - Ground Surface NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE C - CORE S - Ground Surface S - Ground Surface NOTES SAMPLE TYPE D - DRIVE C - CORE C - CORE S - Ground Surface S - GRAB													
NOTES SAMPLE TYPE JS - Below Ground Surface GS - Ground Surface CS - Ground Surface D - DRIVE CS - Ground Surface D - DRIVE C - CORE G - GRAB NS - Not Sampled		-15-		2722	12' 344				15	\mathcal{O}			
NOTES SAMPLE TYPE -30- -30- -35- NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
NOTES SAMPLE TYPE -30- -30- -35- NOTES D - DRIVE GS - Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled					14 <i>></i> 44								
NOTES SAMPLE TYPE -30- -30- -35- NOTES D - DRIVE GS - Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled		-20-											
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
NOTES SAMPLE TYPE 35 35		-25-											
NOTES SAMPLE TYPE 35 35													
NOTES SAMPLE TYPE 35 35													
NOTES SAMPLE TYPE 35 35													
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled		-30-											
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													·
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
NOTES SAMPLE TYPE bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled		_35				l							
bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled								·					
bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled													
bgs - Below Ground Surface D - DRIVE GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled		NOTE	ES		SAMPLE TYDE						•		
GS - Ground Surface C - CORE TOC - Top of Casing G - GRAB NS - Not Sampled	bgs			Groun									
TOC - Top of Casing G - GRAB NS - Not Sampled													
NS - Not Sampled					0 00112								
					•	ι. 							
						E	NGIN	JEE	RIN	G-5		ICE.	NC
					-		_						

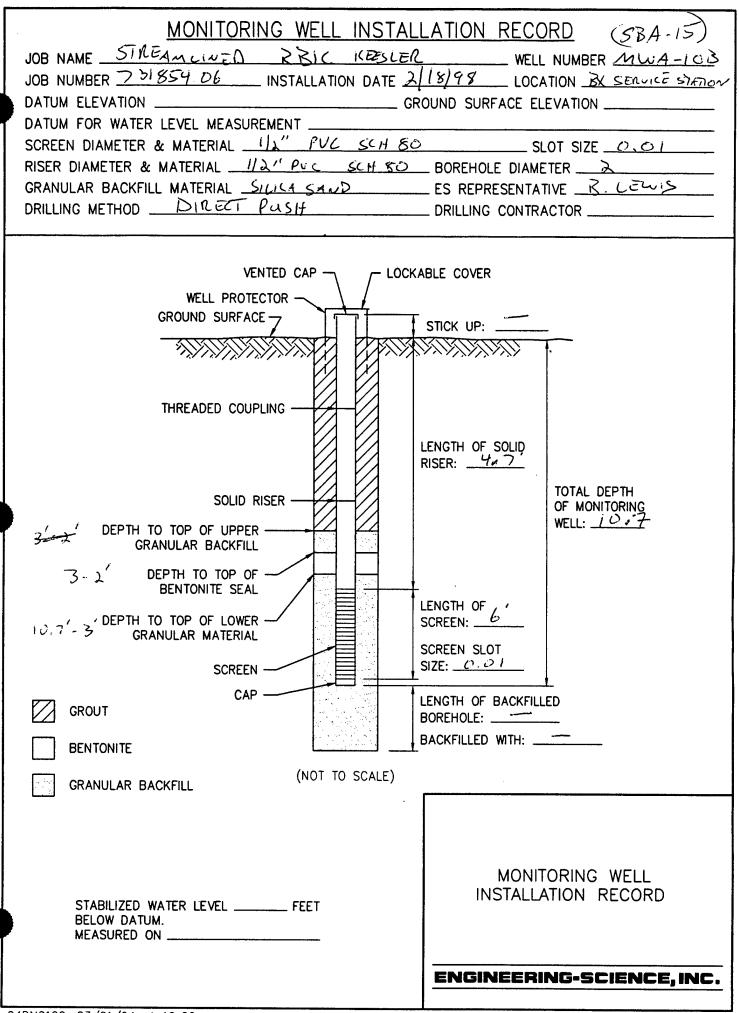
ż

94DN0155, 02/28/94 at 10:52

BORING NO. CLIENT: JOB NO.: LOCATION: GEOLOGIST: COMENTS:	731.8 Bx 50	54 FAVI	E STATION		METHOD: _ G DIA.: _	PANSU. GEDPM DINZET 2''	pus	C C E T V	LEVA	TION	D: L.: _ : _	2/18 2/18 55	et 1 of 198 198 27 	
Elev Depth		S							Sample			r <u> </u>	TOTAL	TPH
(ft) (ft)	file C	S		Geologic	Description		No.	Depth (ft)	Туре	Res	PID(ppm)) TLV(ppm)	BTEX(ppm)	(ppm)
		30	11 ۸۸ ' ۶۹۸ ۲۰ ۸۸ - ۲۰	uD, m A brown D, m inhite A A A A	mith finn, lasse eil sovite, lasse, r al-weil a	ed noist								
<u>NOT</u> bgs – Be GS – Gr TOC – To NS – No SAA – So	ound S ound S p of C ot Sam	Surf Casir plea	ace ng t	e	<u>SAMPLE</u> D DRIV C COR G GRA Water leve	νΈ Ε Β	-	NGII	NEE	RIN	1G-S	CIEI	NCE,	INC

CLIEN [.] JOB N	T: IO.: FION: DGIST:	71 23 3X	= <u>(</u> 185 SEI		IG TYPE: RLG METHO ORING DIA :	GEOPRI DIRECT	pa	<u>sa</u> e t	LEVA	TION	D:	2/18 2/18 60	et 1 o \$/98 /98 /98 00	
Elev (ft)	Depth (ft) - 1 - 5 - 10 - br>- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - - 10 - 10 - 10 - 10 - 10 - - 10 - - 10 - - 10 - - 10 - - - 1	file	0930 0935	2' SAND 4' SAN 6' SAA 6' SAA mois 00	except u t n/ go lor no well hrown u se 1	ted grey noist ery avoline			Sample Type	Res 2' 4' 8' 10'	PID(ppm) C. () 34 15 30-6 584 30-6 30-7			TPH (ppm)
GS TOC NS	<u>NOTE</u> - Be - Gr - To - Nc - Sa	elow ound op of ot So	Surf Casi Imple	ng d	SAMPL D − D C − C G − G ¥ Water I	ORE RAB		NGIN	1EE	RIN	G-S		ICE,	INC.




CLIEN JOB I LOCA	NO.: 23 TION: 3x se DGIST:	FCE8 31850 Murcie	= f_06 = >7 ATLO	RIGT` DRLG BORIN	YPE: METHOD: _ G DIA.: _	DINEZ	ρυs	D •# E T	ATE LEVA	CMPI TION	L.:	2/1	et 1 o r/98 8/98 20 NNY	
	Depth Pro- (ft) file - 1 - - 5 - 	1308 13/0 13/5 13/5 208	41 SA brow 61 S 81 S. 101 S. 101 S.	ND NO ND ND ND ND MD MA AA AA AA AA AA AA AA AA AA	c Description avlj south es, dh moist well so cept dh xcept me hell so rey-brow on ador	brown bly brown brown t brown t vbl why wat			Sample Type	Res 2 4 .6 8 10	PID(ppm) 0.0 0.0 0.0 0.0 2.52 2.92 14.5 14.5 			TPH (ppm)
GS TOC NS	<u>NOTES</u> – Below – Ground – Top of – Not So – Same	l Suri Casi Imple	face ing d		C – CORI G – GRAI	Έ Ε Β		NGIR	VEE	RIN	IG-5	CIEI	NCE,	INC.

•.

			Sheet 1 of 1
BORING NO .: SPA-20	_CONTRACTOR: PAnson	DATE SPUD:	2/18/98
	_RIG TYPE: 60000	DATE CMPL .:	2/18/98
	_DRLG METHOD: _PIRECT	PUSH ELEVATION:	·
LOCATION: /STEXEN AFB	_BORING DIA.:2	TEMP:	600
GEOLOGIST: BLEWIS	DRLG_FLUID:	WEATHER:	SUNNY
COMENTS:			

Elev	Depth		US			ample	Sample				TOTAL	TPH
_(ft)	(ft)	file	CS	Geologic Description	No.	Depth (ft) T	Type	Res	PID(ppm)	TLV(ppm)	BTEX(ppm)	(ppm)
	- 1 -		1340	2' SAND, poorly' sorted,				20	0.0			
				AL brown, loose, moist								
				AL brown, 100se, moist								
	- 5 -			HI CANO ILCONT				ન	6.0			
			1342	41 SAND, vell sort								
				white totan, loose,				•				
	-10-			moist				6	6.0			
			1345	6' SAND, mod sorted,				0				
				, mod sailed,								
				dh brown, loose very moist to wet								
	-15-			very moist to wet								
			1350	8' SAA wat 11				J	5.2			
				8' SAA wet u/hydraca	7 an			8	315	····		·
								,				
	-20-		: 55	10' SAA				10	157	285		
			17-6									.
			דלט	12' SAA				י. גו	147			·
	-25-											
	70											
	-30-				•							
	-35-											
	_35	<u></u>		SAMPLE TYPE] 					
				nd Surface D - DRIVE								
	— Gr			face C - CORE								
	- To			•								
	– No – So		•									
Δ Δ	- So	me	As A	bove 📃 Water level drilled	1 🗎	NGI	VEE	KIR	IG. C			

MONITORING WELL DEVELOPMENT RECORD

Job Number: 730308.03000	Job Name: AFCEE-RNA
Location PNM - Person Gen. Station	by <u>E.A.K</u> , Date: <u>2-20-98</u>
Well Identification mul-10B	Measurement Datum
Pre-Development Information	Time (Start): 0845
Water Level:	Total Depth of Well:
Water Characteristics	
Color Dark Brown	Clear Cloudy
Odor: None Weak	Moderate Strong
nH 6.95 Tempe	rature (°C) 18.7
	450 umbos
Dissolved Oxygen (mg/L)	
Redox (mV) -133. D	
Interim Water Characteristics	
Gallons Removed 1.5	2.0 3.0
pH ሬ.ግና	6.72 6.7(
Temperature (°C) 19,	3 19.3 19.3
Specific Conductance(µS/cm) 45	<u>25 un</u> has 415 415
Dissolved Oxygen (mg/L)	1.45 1.54
Redox (mV) - 12	1.3 - 130.4 - 123.5
Post-Development Information	Time (Finish): 0907
Water Level:	Total Depth of Well:
Approximate Volume Removed: <u>3.</u>	5 gallons
Water Characteristics	
Color clari	Clear Cloudy
Odor: None Weak	Moderate Strong
Any Films or Immiscible Material	
pH6.10	Temperature (°C) 19.3
Specific Conductance (µS/em)	
Dissolved Oxygen (mg/L) 1. Redox (mV) - 127.4	26
Comments:	

1:\forms\develop.doc

MONITORING WELL DEVELOPMENT RECORD

Job Number: <u>730308.03000</u>	Job Name: AFCEE-RNA 98
Location <u>PNM - Person Gen. Station</u> Well Identification <u>かんね - 14</u>	by <u>E.A.K.</u> Date: <u>2-19-</u> Measurement Datum
Pre-Development Information	Time (Start): 1115
Water Level:	Total Depth of Well:
Water Characteristics	
Color Dark Brown	Clear Cloudy
	Moderate Strong
Any Films or Immiscible Material	<u> </u>
pHTemper	rature (°C) 22,8°C
	75 Aumhos
Dissolved Oxygen (mg/L) O_c	
Redox (mV) <u>AIS.9</u> Interim Water Characteristics	
Interim water Characteristics	
Gallons Removed 3.5	· · · · · · · · · · · · · · · · · · ·
pH	
Temperature (°C) 23.3	
Specific Conductance(µS/em) 80	umhes
Dissolved Oxygen (mg/L) O.18	
Redox (mV) - 246.7	
Post-Development Information	Time (Finish): 1445
Water Level:	_ Total Depth of Well:
Approximate Volume Removed:	5 gallons
Water Characteristics	
Color <u>Dork brown</u> Odor: None Weak Any Films or Immiscible Material pH <u>S.62</u> Specific Conductance (µS/em) Dissolved Oxygen (mg/L) <u>O</u> Redox (mV) <u>- 338.5</u>	Clear Cloudy Moderate Strong Temperature (°C) 23.4 75 µhmes
Comments:	

1:\forms\develop.doc

		Sampling Location Sampling Dates 2-2	A-48
GROUND	WATER SAMPLING RECORD	- MONITORING WELL HLJ 8-1	
		-	(number)
REASON F	OR SAMPLING: [X] Regular	Sampling; [] Special Sampling;	
DATE ANI	D TIME OF SAMPLING:	, 1998 a.m./p.m.	
SAMPLE C	OLLECTED BY:	, 1998 a.m./p.m. f <u>Parsons ES</u>	
WEATHER	: Junny = JJ		
DATUM FO	OR WATER DEPTH MEASUR	EMENT (Describe):	
<u></u>			······································
MONITOR	ING WELL CONDITION:	،	<u>, , , , , , , , , , , , , , , , , , , </u>
	[] LOCKED:	[] UNLOCKED	
	WELL NUMBER (IS - IS N		
	STEEL CASING CONDITION	ON IS:	
	INNER PVC CASING CON		
		EMENT DATUM (IS - IS NOT) APPARENT	
		ECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL	REQUIRED REPAIR (describe):	·····
	<u></u>	<u></u>	
Check-off	<u></u>		
1[]	EQUIPMENT CLEANED B	EFORE USE WITH	
		(List):	
2[]	PRODUCT DEPTH		FT. BELOW DATUM
2[]	Measured with:		FI. DELOW DATUM
	Wicasulou with.	· · · · · · · · · · · · · · · · · · ·	
	WATER DEPTH		FT. BELOW DATUM
	Measured with:		
3[]	WATER-CONDITION BEF	ORE WELL EVACUATION (Describe):	
	Odor:		
	Other Commen	ts:	
4[]	WELL EVACUATION:		
•[]	Method:		
	Volume Remov	ed:	
	Observations:	Water (slightly - very) cloudy	
		Water level (rose - fell - no change)	
		Water odors:	
		Other comments:	

•

Groundwater Sampling Record Monitoring Well No. <u>MW & (</u>Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of: [] Pump, type:_Paristallie
- []. Other, describe:_____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECT INSTRUMENT READINGS

Time	0750	0756	0803	0810	0815	0822	Measured With
Temp (°C)	14.6	20.3	20.3		20.4	20.4	
pH	5.64	5.70	5.79	5.87	5.87	5.88	
Cond (µS/cm)	195	189	197	267	214	219	·····
Do (mg/L)	0.70	0.44	0.37	0.35	0.34	0.33	
Redox (mv)	-36.0	-120	-177	-182	-180	-184	
gallons purged	Init	1.0	2.0	3.0	4.0	5.0	

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			

Additional Comments:

7[] SAMPLE CONTAINERS (material, number, size):

8[] ON-SITE SAMPLE TREATMENT:

[]	Filtration:	Method	Containers:	
		Method	Containers:	
[]	Preservatives	added:		
		Method	Containers:	
CONTA	INER HANDLING	} :		

- [] Container Sides Labeled
- Container Lids Taped
- Containers Placed in Ice Chest

10[] OTHER COMMENTS:

9[]

	Sampling Location Sampling Dates	
GROUND	WATER SAMPLING RECORD - MONITORING WELL <u>Mus-3</u>	
REASON F DATE ANI SAMPLE C WEATHER	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; D TIME OF SAMPLING: 2-20-9, 1998 (0,20 a.m.p.m. COLLECTED BY: C. A K of <u>Parsons ES</u>	(number)
DATUM FO	DR WATER DEPTH MEASUREMENT (Describe):	
MONITOR	ING WELL CONDITION: [] LOCKED:	
	WELL NUMBER (IS - IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: <u>Coo</u> <u>b</u> WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH <u></u> Items Cleaned (List):	DI
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH Measured with: <u>Solinst い</u> し.F.	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: <u>clocky</u> Odor: <u>woderate</u> Other Comments:	
4[]	WELL EVACUATION: Method: <u>Qeristaltic</u> Volume Removed: Observations: Water (slightly very) cloudy Water level (rose - fell - no change) Water odors:	

;

Monitoring Well No. _____ (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of:_____
- De Pump, type:_ peristettic [] Other, describe:_____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6[] **ON-SITE MEASUREMENTS:**

DIRECT INSTRUMENT READINGS

	Time	09561	063	1007	1012	1017	Measured With
	Temp (°C)	20.4	2e.3	20.3	20.3	20.2	15I 55
	pH	6.30					Ocion 250A
mhos	Cond (µS/cm)	465 4	460	455	450	450	VSI 33
	Do (mg/L)	0.83	c.38	0.39	0.30	0.26	<u>NSI 55</u>
	Redox (mv)	-263.0	270.6	-735.6	-279.6	-259.6	Orien 250A
	gallons purged	init!	1.0	2.0	3.0	4.0	+ gallons

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			

Additional Comments:

SAMPLE CONTAINERS (material, number, size): <u>6 40 mL VOA 1 750 mL</u> <u>pely</u>, <u>1 1000 mL pely</u> 7[]

8[] **ON-SITE SAMPLE TREATMENT:**

[]	Filtration:	Method	Containers:
		Method	Containers:
[]	Preservatives ad	ded:	
		Method	Containers:

9[] **CONTAINER HANDLING:**

- K Container Sides Labeled
- **Container Lids Taped**
- Containers Placed in Ice Chest ħ₽/

10 [] OTHER COMMENTS:_____

	Sampling Location
	Sampling Dates
GROUND V	VATER SAMPLING RECORD - MONITORING WELL <u>Mw8-4</u> (number)
DATE AND	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: <u>2-20</u> , 1998 <u>0815 (a.m./p.m.</u> OLLECTED BY: C. A.K. of Parsons ES
WEATHER DATUM FC	C SJARY SC DR WATER DEPTH MEASUREMENT (Describe):
MONITORI	NG WELL CONDITION:
1010101010	[] LOCKED: NUNLOCKED
	WELL NUMBER (IS - IS NOT) APPARENT
	STEEL CASING CONDITION IS: Cee e
	INNER PVC CASING CONDITION IS: Coul
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR
	[] MONITORING WELL REQUIRED REPAIR (describe):
Check-off	EQUIPMENT CLEANED BEFORE USE WITH <u>Isopropyl</u> , DF Items Cleaned (List):
2[]	PRODUCT DEPTHFT. BELOW DAT
-13	Measured with:
	WATER DEPTHFT. BELOW DAT
	Measured with: <u>Solinst</u> W.L.L.
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):
	Appearance: clear
	Odor: <u>nome</u> Other Comments:
4[]	WELL EVACUATION:
	Method:
	Volume Removed:
	Observations: Water (slightly very) cloudy
	Water level (rose - fell - no change)
	Water odors: slight
	Other comments:

.

Groundwater Sampling Record Monitoring Well No. <u>mw8-4</u> (Cont'd)

SAMPLE EXTRACTION METHOD:

- [] Bailer made of:___
- Pump, type:_peristattic

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECT INSTRUMENT READINGS

	Time	0715	0726	0735	0747	0 800	0813	Measured With
	Temp (°C)	19.3	20.1	20.3	20.2	20.3	20.4	YSE SS
	pН	6.15	6.14	6.14	6.15	6.16	6.17	Orion 250A
vition os	Cond (#S/cm)	280				320		YSF 33
	Do (mg/L)	0.70	0.35	0.28	0.36	0.34	40.04	YSE 55
	Redox (mv)	-214.0	-267.8	-273.5	-275.6	-279.8	-280.0	Orien 250
	gallons purged	init.	1.0	2.5	5.0	7.5	10.0	+ callons

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide		-	
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			
			· · · · · · · · · · · · · · · · · · ·

7[]	SAMPL	E CONTAINERS	material, number, size): 6 40mL VOA, 1 750mL poly.
8[]	ON-SIT	E SAMPLE TREA	TMENT:	
	[]	Filtration:	Method	Containers:
			Method	Containers:
	[]	Preservatives	added:	
			Method	Containers:
9[]	CONTA	INER HANDLING	3:	
		<i></i>	ner Sides Labeled	
			ner Lids Taped	
		Contain	ners Placed in Ice Ches	t
10 []	OTHER	COMMENTS:		

L:\forms\gwform1.doc

5[]

	Sampling Location Sampling Dates 2-3	20-98
GROUND	WATER SAMPLING RECORD - MONITORING WELL $MOS $	<u>5</u> (number)
DATE AN SAMPLE	FOR SAMPLING: [X] Regular Sampling; [] Special Sampling; ID TIME OF SAMPLING: 2 - 20 - 98, 1998 <u>1020</u> amp/p.m. COLLECTED BY: of <u>Parsons ES</u> IR: <u>Shang & 60 F</u>	
DATUM	FOR WATER DEPTH MEASUREMENT (Describe):	
MONITO	RING WELL CONDITION:	
10101110	[] LOCKED: [] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	Γ
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	
1[]	EQUIPMENT CLEANED BEFORE USE WITH Items Cleaned (List):	
2[]	PRODUCT DEPTH	FT. BELOW DATUN
	Measured with:	
	WATER DEPTH	FT BELOW DATIN
	Measured with:	11. BLEOW BATTON
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance:	
	Odor:	
	Other Comments:	
4[]	WELL EVACUATION:	
• •	Method:	
	Volume Removed:	
	Observations: Water (slightly - very) cloudy	
	Water level (rose - fell - no change)	
	Water odors:	
	Other comments:	

Monitoring Well No. <u>MW8-5</u> (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of:_
- [v] Pump, type: Peristaltiz
- [] Other, describe:____

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECTINSTRUMENT READINGS

Time	0952	0954	1039	1004	1008	1019	Measured With
Temp (°C)	22.6	22.9	23.0	230	23.0	23.0	
pH	5.20	5.22	5.30	5.39	5.45	5.51	
Cond (µS/cm)	80	76	76	83	91	98	
Do (mg/L)	0.50	0.22	0.18	0.17	0.17	0.16	
Redox (mv)	-206	-216	-218	-223	-229	-232	
gallons purged	Init	EI	2	3	4	5	······································

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate		·	
(4) Nitrite			
(5) Manganese		· · · · · · · · · · · · · · · · · · ·	
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	

SAMPLE CONTAINERS (material, number, size):_____ 7[]

8[] ON-SITE SAMPLE TREATMENT:

[]	Filtration:	Method	Containers:
		Method	Containers:
[]	Preservatives ad	lded:	
		Method	Containers:

9[] CONTAINER HANDLING:

- [] Container Sides Labeled
- Container Lids Taped []
- Containers Placed in Ice Chest []

10[] OTHER COMMENTS:___

	Sampling Location Sampling Dates 2-19	-98
GROUND	water sampling record - monitoring well $M \mathcal{A} - 6$	(number)
DEACONE	OR SAMPLING: [X] Regular Sampling; [] Special Sampling;	(number)
REASON P	D TIME OF SAMPLING: $2 - 19 - 95$, 1998 a.m./p.m.	
SAMPLE C	COLLECTED BY: of Parsons ES	
WEATHER	COLLECTED BY: of <u>Parsons ES</u> Cloudy ~ 65 °F	
DATUM FO	OR WATER DEPTH MEASUREMENT (Describe):	
<u> </u>		
MONITOR	ING WELL CONDITION:	
	[✓] LOCKED: [] UNLOCKED	
	WELL NUMBER (IS - IS NOT) APPARENT	
	STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS:	
	WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT	
	[] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off		· · · ·
	EQUIPMENT CLEANED BEFORE USE WITH	
1[]	Items Cleaned (List):	
		· · · · · · · · · · · · · · · · · · ·
2[]	PRODUCT DEPTH	
	Measured with:	
	WATER DEPTH	FT. BELOW DATUM
	Measured with:	
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe):	
	Appearance:	
	Odor:	
	Other Comments:	
4[]	WELL EVACUATION:	
	Method:	
	Volume Removed:	
	Observations: Water (slightly - very) cloudy	
	Water level (rose - fell - no change)	
	Water odors:	
	Other comments:	

Monitoring Well No. MWA-6 (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- Bailer made of:
 Pump, type:
 Pump, type:
 Cristallic
 Other, describe:

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECT INSTRUMENT READINGS

Time	1125	1433	1444	1454	1500	1505	Measured With
Temp (°C)	20.3	20,1	199	19.9	20.0	19.9	
pН	5.67	5.65	5.70	5.71	5.72	5,71	
Cond (µS/cm)	231	215	198	192	191	189	
Do (mg/L)	0.78	0.42	0.34	0.30	0.32	6.50	
Redox (mv)	-126	-130	-134	-134	-134	-134	
gallons purged	Init	1.5	3.0	4.5	6.0	7.0	· · · · · · · · · · · · · · · · · · ·
		-	D D OTT		DECIT	1	

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			

Additional Comments:

7[] SAMPLE CONTAINERS (material, number, size):

8[] ON-SITE SAMPLE TREATMENT:

I]	Filtration:	Method	Containers:
			Method	Containers:
I]	Preservatives add	ded:	

Method_____ Containers:_____

9[] CONTAINER HANDLING:

Container Sides Labeled []

- Container Lids Taped []
- **Containers Placed in Ice Chest** []

10[] OTHER COMMENTS:_____

		Sampling Location	
		Sampling Dates <u>2-19</u>	- 78
GROUND	WATER SAMPLING RECORD	- MONITORING WELL <u>MUA-9</u>	
			(number)
REASON F	OR SAMPLING: [X] Regular	Sampling; [] Special Sampling;	
DATE ANI	D TIME OF SAMPLING: Fe	a.m./p.m. f <u>Parsons ES</u>	
SAMPLE C	Cloudy ~ 60°F	f <u>Parsons ES</u>	
WEATHER	DE WATER DEPTH MEASUR	EMENT (Describe):	
DATOWIT	OK WATER DEF III MEASUR	EMENT (Describe)	
MONITOR	ING WELL CONDITION:		
	[] LOCKED:	[] UNLOCKED	
	WELL NUMBER (S) IS N		
	STEEL CASING CONDITI INNER PVC CASING CON		
		EMENT DATUM (IS - IS NOT) APPARENT	
		ECTED BY SAMPLE COLLECTOR	
		REQUIRED REPAIR (describe):	
~ ~			
Check-off		FOR HER WITH	
1[]	EQUIPMENT CLEANED B	EFORE USE WITH	
	Itenis Citalica ((LISt)	
2[]			
	Measured with:		s
	WATER DEPTH		FT. BELOW DATUM
	Measured with:		
3[]		ORE WELL EVACUATION (Describe):	
	Appearance:		
	Odor: Other Commen	+	
	Other Comment	LS	
4[]	WELL EVACUATION:		
	Method:		
	Volume Remov	ed:	
	Observations:	Water (slightly - very) cloudy	
		Water level (rose - fell - no change)	
		Water odors:	
		Other comments:	

.

Monitoring Well No. M. A-9 (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of:___
- Pump, type:_Peristettic

[] Other, describe:___

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECT INSTRUMENT READINGS Measured With 22 Time 226 22. Temp (°C) 22.4 22. 221 22.0 pH 5.85 6.20 6.18 6.18 6.17 19 206 213 20 200 Cond (µS/cm) 0-22 2 2 Do (mg/L) 0:37 0.35 0.38 0.41 0.41 22 Ô. -190 -197 -204 Redox (mv) -175 -110 Or 4.5 gallons purged 3.0 5.5 7. O 1 5 1ni

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			
	· · · ·		

7[]	SAMPL	E CONTAINERS	material, number, size	e):	
8[]	ON-SIT	E SAMPLE TREA	TMENT:		
	[]	Filtration:	Method Method	Containers:	
	[]	Preservatives		Containers:	
9[]	CONTA	[] Contair	i: her Sides Labeled her Lids Taped hers Placed in Ice Ches	st .	
10[]	OTHER	COMMENTS:			<u> </u>

L:\forms\gwform1.doc

		Sampling Location Sampling Dates	
GROUND	WATER SAMPLING RECORD	- MONITORING WELL MWA-10	B (number)
REASON F	OR SAMPLING: [X] Regular	Sampling; [] Special Sampling;	()
DATE ANI	TIME OF SAMPLING: 2 -	-20-96, 1998 09 15 a.m./p.m.	
SAMPLE C	COLLECTED BY: of	Parsons ES	
WEATHER	- Sunny 55°	MENT (Describe):	
DATUM FO	OR WATER DEPTH MEASURE	EMENT (Describe):	
MONITOR	ING WELL CONDITION:		
	[] LOCKED:	UNLOCKED	
	WELL NUMBER (IS - IS NO		
	STEEL CASING CONDITIC		
	INNER PVC CASING CONI		
		MENT DATUM (IS - IS NOT) APPARENT	
		CTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL R	EQUIRED REPAIR (describe):	
Check-off 1 []	EQUIPMENT CLEANED BI Items Cleaned ()	EFORE USE WITH DI + is prop List):	<u>, </u>
2[]	PRODUCT DEPTH		FT. BELOW DATUM
	Measured with:		
	WATER DEPTH		FT. BELOW DATUM
3[]		DRE WELL EVACUATION (Describe):	
	Odor:		
	Other Comment	S:	
4[]	WELL EVACUATION:		
	Method:		·
	Volume Remove		
	Observations:	Water (slightly - very) cloudy	
		Water level (rose - fell - no change)	
		Water odors:	
		Other comments:	

Monitoring Well No. 10B (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of:______
- [] Pump, type:_
- [] Other, describe:______

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECT INSTRUMENT READINGS

	Time	0907	0909	0911	0913	0915	Measured With
	Temp (°C)	19.3	19.3	19.4	19.4	14.3	
	pН	6.69	6.69	6.68	6.68	6.68	
unhos	Cond (µS/cm)	410	410	408	405	405	
	Do (mg/L)	1-54	1.54	1.54	1.51	1.48	
	Redox (mv)	-135.6	- 133.7	-133,4	-128.8	- 136.5	
	gallons purged	init.	.25	.50	.75	1,00	K Gallons
			FI	ELD CHE	MISTRY	RESULTS	

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate		-	
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			
Additional Comments:			

SAMPLE CONTAINERS (material, number, size): 6-40mL Vot 1 750mL 7[] poly 1 1,000 mL poly

8[] **ON-SITE SAMPLE TREATMENT:**

[]	Filtration: Met	thod	Containers:
	Met	thod	Containers:
[]	Preservatives added:		
	Met	thod	Containers:

9[] CONTAINER HANDLING:

- M **Container Sides Labeled**
- Container Lids Taped []
- Containers Placed in Ice Chest М

10 [] OTHER COMMENTS:_____

	Sampling Location	
	Sampling Dates	
	WATER SAMPLING RECORD - MONITORING WELL $\underline{M} = 11$	(number)
DATE AND	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; O TIME OF SAMPLING: 2 - 19 .0940 a.m./p.m. COLLECTED BY: of Parsons ES	
WEATHER DATUM FO	COLLECTED BY: of <u>Parsons ES</u> COLLECTED BY: of <u>Parsons ES</u> CONTY OR WATER DEPTH MEASUREMENT (Describe):	
MONITOR	ING WELL CONDITION:	
	[] LOCKED: WELL NUMBER (IS) IS NOT) APPARENT STEEL CASING CONDITION IS:	
	INNER PVC CASING CONDITION IS: <u>Coold</u> WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT 1 DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR	
	[] MONITORING WELL REQUIRED REPAIR (describe):	······
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH DI water Items Cleaned (List):	
2[]	PRODUCT DEPTH	FT. BELOW DATUM
	WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: <u>cloue</u> y Odor: Other Comments:	
4[]	WELL EVACUATION: Method: Peristaltic pump Volume Removed: Observations: Water (slightly very)cloudy	
	Water level (rose - fell - no change) Water odors: Other comments:	

•

Monitoring Well No. <u>MLIA-11</u> (Cont'd)

SAMPLE EXTRACTION METHOD:

- [] Bailer made of:___
- N Pump, type:_ Peristeltic

[] Other, describe:

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

ON-SITE MEASUREMENTS: 6[]

DIRECT INSTRUMENT READINGS

	Time	0830	0839	0850	0902	0115	0930	Measured With
	Temp (°C)	14.8	22.4	22.8	22.6	22.5	22,7	YST Model SS
	pН	6.31	6.37	6.36	6.34	6.31	6.31	Orion 250t
uhmos?	Cond (µS/cm) -	220	190	175	175	180	180	VIST medel 33
	Do (mg/L)	12.7%	ר. ר%	5.2%	0.34	0.31	0.24	YST Model JS
	Redox (mv)	122.5	-225.4	-270.4	-265.0	-300.4	-264.9	Orien 250A
	gallons purged	init.	Igal.	<u>a.5</u>	5.0	7.5	10.0	

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			
		· · · · · ·	

40 mL SAMPLE CONTAINERS (material, number, size): Co VOA'S 1 pely 7[] 750ml poly 1,000 mL **ON-SITE SAMPLE TREATMENT:** 8[] [] Filtration: Method_____ Containers:_____ Method Containers: Preservatives added: [] Method_____ Containers:_____ 9[] CONTAINER HANDLING: Container Sides Labeled **Container Lids Taped** [] Containers Placed in Ice Chest ø 10[] OTHER COMMENTS:

5[]

	Sampling Location Sampling Dates	
GROUND V	VATER SAMPLING RECORD - MONITORING WELL MUA - 13	
DATE AND	OR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: <u>2-19-98</u> , 1998 <u>1146</u> a.m/p.m. OLLECTED BY: G.A.K. of <u>Parsons ES</u>	(number)
DATUM FC	R WATER DEPTH MEASUREMENT (Describe):	
MONITORI	NG WELL CONDITION: [] LOCKED: WELL NUMBER (IS IS NOT) APPARENT STEEL CASING CONDITION IS: Easy INNER PVC CASING CONDITION IS: WATER DEPTH MEASUREMENT DATUM (IS - IS NOT) APPARENT [] DEFICIENCIES CORRECTED BY SAMPLE COLLECTOR [] MONITORING WELL REQUIRED REPAIR (describe):	
Check-off 1 🕅	EQUIPMENT CLEANED BEFORE USE WITH DI water Items Cleaned (List):All meter protes	
2[]	PRODUCT DEPTH	
	WATER DEPTH	FT. BELOW DATUM
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance: در المحمل مح Odor: حلين محلي Other Comments:	
4[]	WELL EVACUATION: Method: <u>Peristallic pump</u> Volume Removed: <u>Cereallous</u> Observations: Water (slightly - very) cloudy Water level (rose - fell - no change) Water odors: <u>Other comments</u> :	

Monitoring Well No. <u>mwA-13</u> (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of:_____
- Pump, type:_ Peristaltic

 Other, describe:______

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6[] **ON-SITE MEASUREMENTS:**

DIRECT INSTRUMENT READINGS

:	Time	1110	1118	1128	1133	1139	1145	Measured With
	Temp (°C)	20.5	20.6	20.3	20.2	20.2	20.2	YSE DO Makel SS
	рН	6.05	6.04	6.03	6.03	6.03	6.01	Orion 250A
umhos >	Cond (µS/cm)	210	245	ads	220	215	210	YSE Model 33
	Do (mg/L)	0.77	0.47	0.35	0.40	0.41	0.39	YSF model SS
	Redox (mv)	-308.8	-239.7	-172.2	- 172.0	-171.0	-172.9	Orion 250A
	gallons purged	init	1221.	2.50	3.5	5.0	6.0	

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide			
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			

SAMPLE CONTAINERS (material, number, size): 5 3 40mL VOA 7[]

8[] ON-SITE SAMPLE TREATMENT:

[]	Filtration:	Method Method	Contain Contain	
[]	Preservatives a	ided:		
		Method	Contain	ers:

9[] CONTAINER HANDLING:

- Container Sides Labeled
- **Container Lids Taped** []
- Containers Placed in Ice Chest []

10 [] OTHER COMMENTS:

	Sampling Location Sampling Dates
GROUND W	ATER SAMPLING RECORD - MONITORING WELL <u>MUNA-14</u> (number)
DATE AND SAMPLE CO WEATHER:	DR SAMPLING: [X] Regular Sampling; [] Special Sampling; TIME OF SAMPLING: <u>)-14-48</u> , 1998 <u>1505 a.m./p.m.</u> DLLECTED BY: $\epsilon \cdot A \cdot K$, of <u>Parsons ES</u> <u>P. Closly</u> <u>GOO</u> R WATER DEPTH MEASUREMENT (Describe):
MONITORI	NG WELL CONDITION: [] LOCKED: المجمع المحافظ (IS - IS NOT) APPARENT STEEL CASING CONDITION IS: Could
	INNER PVC CASING CONDITION IS:
Check-off 1 []	EQUIPMENT CLEANED BEFORE USE WITH DF water Items Cleaned (List):
2[]	PRODUCT DEPTHFT. BELOW DATUM Measured with:
	WATER DEPTHFT. BELOW DATUM Measured with: <u>Solins+ Water Ler. Ind</u>
3[]	WATER-CONDITION BEFORE WELL EVACUATION (Describe): Appearance:
4 []	WELL EVACUATION: Method: <u>Peristaltic</u> <u>prop</u> Volume Removed: Observations: Water (slightly very cloudy Water level (rose - fell - no change) Water odors: <u>slightly - medication</u> Other comments;

•

Monitoring Well No. <u>mwk-14</u> (Cont'd)

SAMPLE EXTRACTION METHOD: 5[]

- [] Bailer made of:___
- M
 Pump, type:__Peristeltic

 []
 Other, describe:______

Sample obtained is [X] GRAB; [] COMPOSITE SAMPLE

6[] **ON-SITE MEASUREMENTS:**

DIRECT INSTRUMENT READINGS

1						1 m 6 1	N.C
	Time	1448	1452	1455	H58	150	Measured With
	Temp (°C)	23.2	23.3	23.3	23.4	23.4	
	pН	5.59	5.58	5.57	5,56	5.56	
uhmosa	Cond (µS/cm)	75	75	72	70	00	
	Do (mg/L)	0,20	0.19	0.20	0.20	0.20	
	Redox (mv)	-243.5	- 219.3	- 238.8	-243.8	-244.0	
	gallons purged	init.		1.0	1.5	3.0	E gallens
				CUE	MICTDV	DECITIC	•

FIELD CHEMISTRY RESULTS

Analyte	Dilution?	Concentration	Observations/Notes
(1) Sulfate			
(2) Sulfide		· ·	
(3) Nitrate			
(4) Nitrite			
(5) Manganese			
(6) Ferrous Iron			
(7) Total Iron			
(8) Alkalinity			
(9) Carbon Dioxide			
(10) Chloride			

Additional Comments:

7[1	SAMPLE CONTAINERS (material, number, size): 3 40 m L V	OAS	

8[] **ON-SITE SAMPLE TREATMENT:**

[]	Filtration: Method Method	Containers:
[]	Preservatives added:	
	Method	Containers:

CONTAINER HANDLING: 9[]

- Container Sides Labeled M
- Container Lids Taped []
- Containers Placed in Ice Chest N

10[] OTHER COMMENTS:

SAN	VIPL	ΕĽ)ATE
-----	-------------	----	------

SAMPLE I.D.

7	20148	
N	W8-1	
	<u> </u>	MW 8-1

TIME SAMPLED O TIME ANALYSIS START O TIME ANALYSIS END

0830

FILTERED (circle)

COLOR / ODOR:

PES NO CLEAN / SULFUR OVDON

HACH DR/700 Measurements:

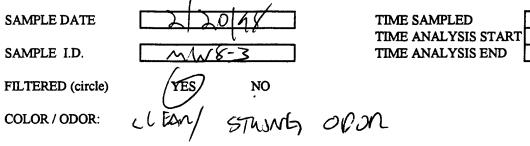
Analyte	Program	Range	Dilution	Reading	Concentration		Blank ^{1/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	1	0.09	().09	mg/L	sample
						mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L	1	6.0	-0.0	mg/L	sample
						mg/L	sample
Sulfate	45.000	0 - 100 mg/L	1	17.00	(1,00	mg/L	DPor 50mg/L
						mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L		0.135	0.235	mg/L	DI
						mg/L	DI
HACH Titr Alkalinity	Sample Siz	ze = [C nalein Alkalinity)0	Titrate with	l. 6 N H ₂ SO ₄ digits digits total digits		
	Digit M	Iultiplier X Total	Digits = To	tal Alkalinity (mg/L) = 73		
CHEMetric Ammonia	s Color Tes	ts:			0.6	ppm	
		Technician:		BL			

^{a/} Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

SAMPLE DA		x 120 MW8-1	lar Dul]	TIME SAMPLED TIME ANALYSIS S TIME ANALYSIS F		0250 0905 0924
FILTERED (circle)	YES	NO				
COLOR / OD	OOR:	CLER	m/s	Sulfun	~600		
HACH DR/7	00 Measur		(
Analyte	Program	Range	Dilution	Reading	Concentration	1	Blank ^{s/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	<u> </u>	0.09	0.09	mg/L	sample


•

		U				¥	
						mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L		12.0	.U.O	mg/L	sample
						mg/L	sample
Sulfate	45.000	0 - 100 mg/L	7	1700	16.91	mg/L	DI)or 50mg/L
						mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L	(0.225	0.225	mg/L	DI
		-				mg/L	DI
HACH Titr Alkalinity	Sample Si Phenolpht BGR	halein Alkalinity			digits digits total digits		
	Digit N	Iultiplier X Total	Digits = To	tal Alkalinity (mg/L) =)4	
CHEMetric Ammonia	s Color Tes	ts: Technician:	-	BL	<u></u>	6 ppm	

^{a'} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

1O

HACH DR/700 Measurements:

Analyte	Program	Range	Dilution	Reading	Concentration		Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L			1.10	mg/L	sample
		[mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L	1	0.0	0.0	mg/L	sample
		[mg/L	sample
Sulfate	45.000	0 - 100 mg/L	L	4.74	4,79	mg/L	D) or 50mg/L
				•		mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L	5	0.228		mg/L	DI
		[mg/L	DI

HACH Titrations:

Alkalinity Sample Size = (OO)Phenolphthalein Alkalinity BGR

Titrate with	.6 NH2SO4
0	digits
228	digits
<u> </u>	total digits

ppm

d

Digit Multiplier X Total Digits = Total Alkalinity (mg/L) = 2×8

CHEMetrics Color Tests:

Ammonia

Technician:

^{2/} Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b'} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

SAMPLE DATE

SAMPLE I.D.

FILTERED (circle)

COLOR / ODOR:

2/2/98	
MWA-4	
YES	NO
CLEAN	000n

TIME SAMPLED TIME ANALYSIS START TIME ANALYSIS END

ppm

HACH DR/700 Measurements:

Analyte	Program	Range	Dilution	Reading	Concentration	Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	1	0.05	OOS mg/L	sample
					mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L	1	00	0.) mg/L	sample
-		_			mg/L	sample
Sulfate	45.000	0 - 100 mg/L	1	2.11	211 mg/	DLor 50mg/L
		_			mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L	25	0.065	mg/L	DI
		-	~~~		mg/L	DI

HACH Titrations:

Alkalinity Sample Size = 100 Phenolphthalein Alkalinity BGR

Titrate with	1. 6 NH2SO4
Ō	digits
164	digits
164	total digits

Digit Multiplier X Total Digits = Total Alkalinity $(mg/L) = \frac{16}{2}$

CHEMetrics Color Tests:

Ammonia

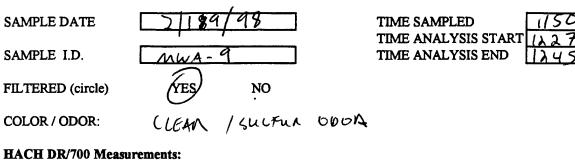
Technician:

 $^{{\ensuremath{\omega}}\prime}$ Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b'} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

SAMPLE DA	ATE	220/98	····]	TIME SAMPLED TIME ANALYSIS ST	
SAMPLE I.	D.	MW8-5]	TIME ANALYSIS EN	
FILTERED ((circle)	YES	NO			
COLOR / OI	DOR:	CLEAN	154	WHT O	oon	
HACH DR/	700 Measur		·			
Analyte	Program	Range	Dilution	Reading	Concentration	Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	(0,33		mg/L sample
						mg/L sample
Manganese	52.13.1	0 - 20.0 mg/L		0.0	······································	mg/L sample
C16-4-	45 000	0 100		3 (mg/L sample
Sulfate	45.000	0 - 100 mg/L	{	3.8.		mg/L D) or 50mg/L mg/L DI or 50mg/L
Sulfide	61 12 1	0 - 0.600 mg/L	22			mg/L DI di Somg/L mg/L DI
Sumue	01.12.1	0 - 0.000 mg/L	<u> </u>	<u>· IIA</u>		mg/L DI
		L				
HACH Titra	ations:				1	
Alkalinity	Sample Si	ze = (100)		Titrate with	· G NH ₂ SO ₄	
5	-	halein Alkalinity		(2	digits	
	BGR			32	digits	
				31	total digits	
	1.0	ר כ	7			
Digit Multiplier X Total Digits = Total Alkalinity (mg/L) =						
CHEMetric	s Color Tes	its:				
Ammonia					2	ppm
		Technician:		BL		
	^{e/} Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.					


^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

5

SAMPLE D	ATE	$\left[\frac{2}{19}\right]$	98]	TIME SAMPLED	1505
SAMPLE I	D.	MWA-	6	כ	TIME ANALYSIS START TIME ANALYSIS END	1520
FILTERED	(circle)	YES	ŅO			
COLOR / O	DOR:	CLEAR	NO	opon		
HACH DR/	700 Measu	rements:				
A 1.	-	_				
Analyte	Program		Dilution	Reading	Concentration	Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L		1.46	mg/L	sample
					mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L	t	0.0	mg/L	sample
a 16 i					mg/L	sample
Sulfate	45.000	0 - 100 mg/L		30.11	mg/Ł	DP or 50mg/L
					mg/L	
Sulfide	61.12.1	0 - 0.600 mg/L	(0.18	mg/L	DI
					mg/L	DI
HACH Titra	ations:					
Alkalinity	Sample Siz	ze = 100	ר	Titrate with /	6	
	-	halein Alkalinity		1000000000000000000000000000000000000		
	BGR	alem Alkannity			digits	
	DOK			30	digits	
				30	total digits	
Digit Multiplier X Total Digits = Total Alkalinity (mg/L) = 30						
CHEMetrics	Color Tes	ts:				
Ammonia					Ô 8 ppm	
		Technician:	BL			
^a / Sulfate, and	sulfide blau	nks contain respe	ctive reagent	s;		

Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

Analyte	Program	Range	Dilution	Reading	Concentration	n	Blank ^{s/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	1	0.23	0.23	mg/L	sample
						mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L		0.0	0.0	mg/L	sample
						mg/L	sample
Sulfate	45.000	0 - 100 mg/L	. 7	13.66	13.66	mg/L	DDer 50mg/L
						mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L	1	0.540	0.590	mg/L	DI
						mg/L	DI
HACH Titrations:AlkalinitySample Size = $ OO $ Titrate with $1, 6$ N H ₂ SO ₄ Phenolphthalein Alkalinity BGR O digits 7λ digits 7λ total digits							
OWENGAS	Digit Multiplier X Total Digits = Total Alkalinity $(mg/L) = 2$						
CHEMetric	s Color Tes	ts:					1
Ammonia					0.4	ppm	
		Technician:	BL				

^{a/} Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

3

SAMPLE DATE	2/20/98	· · · · · · · · · · · · · · · · · · ·	TIME SAMPLED TIME ANALYSIS START	0915
SAMPLE I.D.	MWA-10	ग	TIME ANALYSIS END	1017
FILTERED (circle)	YES	NO		
COLOR / ODOR:	CLEAR/	NOODA		
HACH DR/700 Measur	rements:			

Analyte	Program	Range	Dilution	Reading	Concentratio	n	Blank ^{a/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L	1	4.14	4.14	mg/L	sample
						mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L		0.0	0.0	mg/L	sample
						mg/L	, sample
Sulfate	45.000	0 - 100 mg/L		7,38	7.35	mg/L	DPor 50mg/L
						mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L		0.027	0.027	mg/L	DI
						mg/L	DI

HACH Titrations:

Alkalinity Sample Size = $(\mathcal{O}\mathcal{O}$ Phenolphthalein Alkalinity BGR

Titrate with (ις N H ₂ SO ₄
0	digits
207	digits
207	total digits

ppm

Digit Multiplier X Total Digits = Total Alkalinity (mg/L) = ろのア

CHEMetrics Color Tests:

Ammonia

Technician:

BC

^a Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

SAMPLE DATE

SAMPLE I.D.

MWA-1 NO TIME SAMPLED TIME ANALYSIS TIME ANALYSIS

	0940
START	1020
END	1105

ppm

FILTERED (circle) COLOR / ODOR:

YELLOW / STANK ODDA ATE

HACH DR/700 Measurements:

Analyte	Program	Range	Dilution	Reading	Concentration	n	Blank ^{s/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L		6.47	0.47	mg/L	sample
						mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L	ì	0.0	0.0	mg/L	sample
						mg/L	sample
Sulfate	45.000	0 - 100 mg/L	1	38.5	38.5	mg/L	DDor 50mg/L
		[mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L[0.405		mg/L	DI
		[,			mg/L	DI

HACH Titrations:

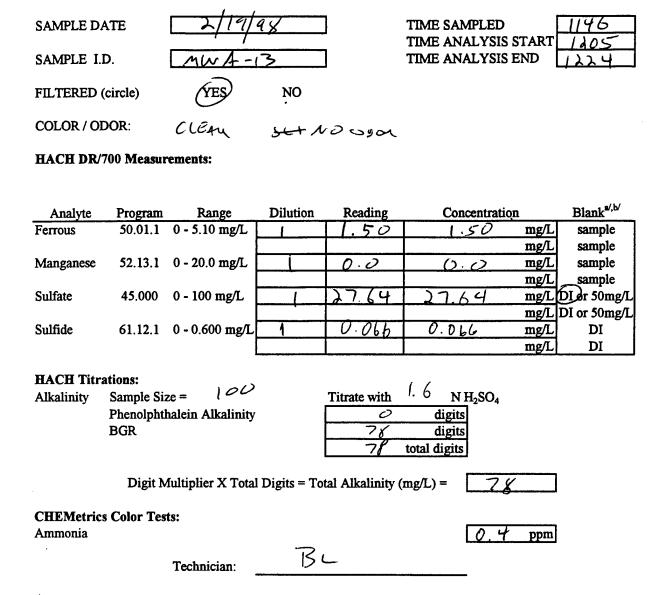
100 Alkalinity Sample Size = Phenolphthalein Alkalinity BGR

Titrate with	1.6 NH ₂ SO ₄
$\Box Q$	digits
52	digits
52	total digits

Digit Multiplier X Total Digits = Total Alkalinity (mg/L) = 52

BL

CHEMetrics Color Tests:


Ammonia

Technician:

^a Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b'} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

^a Sulfate, and sulfide blanks contain respective reagents;

Ferrous iron and manganese blanks are without reagents.

^{b'} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

4

SAMPLE DATE		2119/98]	TIME SAMPLED TIME ANALYSIS START	1505
SAMPLE I.D.		MWA-14		TIME ANALYSIS END		
FILTERED (circle)		YES	NO			
COLOR / ODOR:		700 D	ANK (SEDIME	NT ON NATURAL	cown
COLOR/ODOR: TO DANK (SEDIMENT ON NATURAL COWN) HACH DR/700 Measurements: TO SAMPLED - FILTENED (LERONTADELY						
Analyte	Program	Range	Dilution	Reading	Concentration	Blank ^{•/,b/}
Ferrous	50.01.1	0 - 5.10 mg/L			mg/L	
					mg/L	sample
Manganese	52.13.1	0 - 20.0 mg/L			mg/L	sample
		[mg/L	sample
Sulfate	45.000	0 - 100 mg/L			mg/L	DI or 50mg/L
		[mg/L	DI or 50mg/L
Sulfide	61.12.1	0 - 0.600 mg/L			mg/L	DI
		_			mg/L	DI
		-				
HACH Titrations:						
Alkalinity	Alkalinity Sample Size =			Titrate with $N H_2 SO_4$		
-	Phenolphthalein Alkalinity			digits		
	BGR			digits		
				total digits		
Digit Multiplier X Total Digits = Total Alkalinity (mg/L) =						
CHEMetrics Color Tests:						
Ammonia					ppm	
Technician:						
² Sulfate, and sulfide blanks contain respective reagents; Ferrous iron and manganese blanks are without reagents.						

^{b/} Ferrous, and manganese blanks should be diluted accordingly if samples are diluted.

APPENDIX D AQUIFER SLUG TEST INPUT AND OUTPUT

MW8-3 WITHDRAWAL Data Set: I:\KEE-AOCA\SLUGTESTMW8-3WB.AQT Date: 08/21/98 Time: 12:24:24	PROJECT INFORMATION Company: Parsons Engineering Science Client: <u>AFCEE</u> Project: 731854.06 Test Location: Keesler AFB, BX Ser Sta Test Well: <u>MW8-3</u> Test Date: <u>2/18/98</u>	SOLUTIONAquifer Model:UnconfinedSolution Method:Bouwer-RiceK= 29.04 ft/dayy0= $\overline{0.9132}$ ft	DATA Anisotropy Ratio (Kz/Kr): <u>1</u> .	ATA Water Column Height: 8.14 ft Wellbore Radius: 0.3333 ft Gravel Pack Porosity: 0.15
		7 0.8	AQUIFER DATA Anisotr	WELL DATA Water Wellbo Grave
		0.533 0.667	4	
		0.4 D.4		
- - - - -	CEREMENT CON TRACTOR DE CONTRACTOR DE CONTRA	0.133 0.267	ss: <u>17.1</u> ft	ient: <u>1.643</u> ft 0.08333 ft <u>10.</u> ft
	Displacement (ft)	0.01	Saturated Thickness:	Initial Displacement: 1.643 Casing Radius: 0.08333 ft Screen Length: 10. ft

Data Set: I:\KEE-AOCA\SLUGTEST\MW8-3WB.AQT Title: MW8-3 WITHDRAWAL Date: 08/21/98 ime: 12:24:34

PROJECT INFORMATION

Company: Parsons Engineering Science Client: AFCEE Project: 731854.06 Location: Keesler AFB, BX Ser Sta Test Date: 2/18/98 Test Well: MW8-3

AQUIFER DATA

Saturated Thickness: 17.1 ft Anisotropy Ratio (Kz/Kr): 1

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MW8-3

X Location: 0 ft Location: 0 ft

> **Observation Data** Time (min) Displacement (ft) 1.643 0. 0.0033 1.606 1.52 0.0066 1.517 0.01 1.419 0.0133 1.35 0.0166 1.305 0.02 1.236 0.0233 0.0266 1.214 0.03 1.151 1.109 0.0333 0.0366 1.049 1.024 0.04 0.967 0.0433 0.0466 0.929 0.05 0.885 0.847 0.0533 0.831 0.0566 0.822 0.06 0.0633 0.787 0.0666 0.885

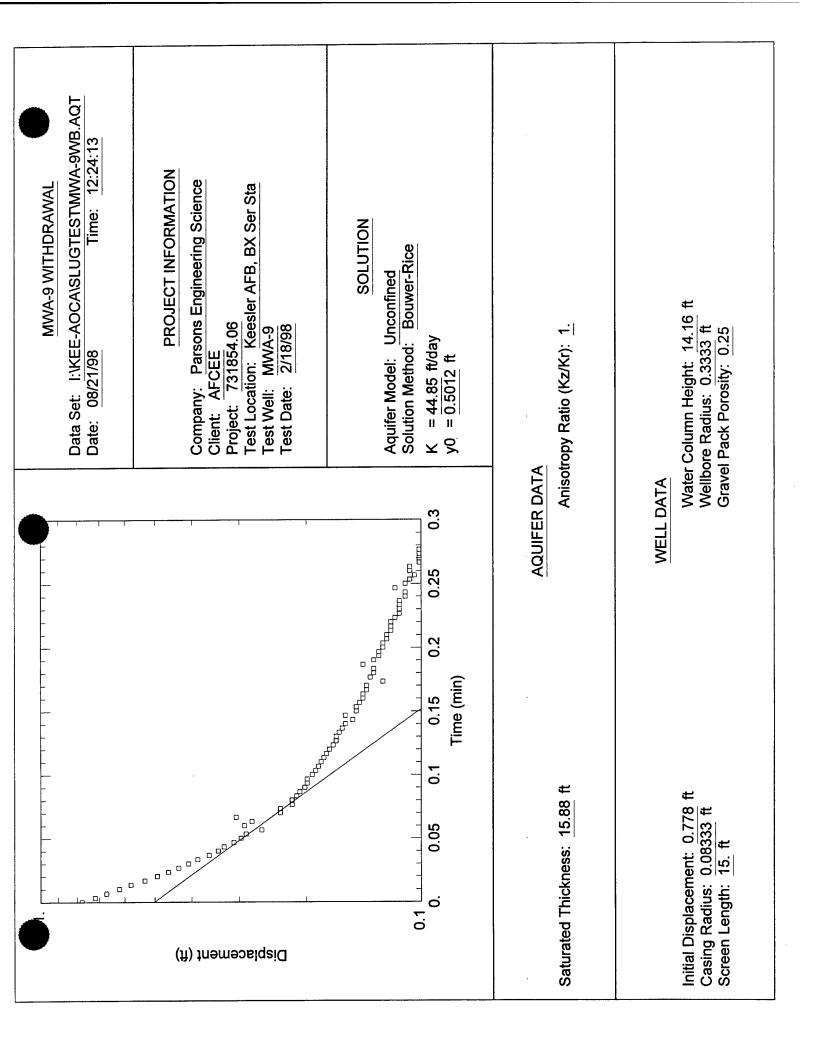
AQTE	SOLV for	Windows		MW8-3 WITHDRAWAL
0).07	0.929		
0.0	0733	0.907		
	0766	0.879		
0	.08	0.806		
0.0	0833	0.714		
0.0	0866	0.689		
).09	0.658		
	0933	0.566		
	0966	0.579		
	0.1	0.534		
	1033	0.528		
	1066	0.49		
).11	0.493		•
	1133	0.449		
	1166	0.43		
).12	0.414		
	1233	0.392		
	1266	0.383		
).13	0.373		
	1333	0.375		
	1366	0.348		
).14	0.348		
		0.335		
	1433 1466	0.319		
	1400).15	0.313		
	1533°	0.304		
	1555	0.297		
).16 1622	0.272 0.272		
	1633			
	1666	0.256 0.237		
).17 4722			
	1733	0.24 0.225		
	1766	0.225		
).18 4822	0.221		
	1833			
	1866	0.206 0.199		
).19 4022			
	1933	0.196		
	1966	0.174		
	0.2	0.193		
	2033	0.177		
	2066	0.168		
).21	0.161		
	2133	0.155		
	2166	0.152		
).22	0.142		
	2233	0.142		
	2266	0.136		
).23	0.133		
	2333	0.123		
0.	2366	0.127		

MW8-3 WITHDRAWAL

 0.24	0	.123
0.2433		0.12
0.2466		.114
0.25		.114
0.2533		.108
0.2566		.105
0.26		.101
0.2633		.108
0.2666		.095
0.2000		.095
0.2733		.092
0.2755		.089
0.2700		.086
0.2833		.082
0.2855		.002
0.2800		.076
		.076
0.2933		.073
0.2966 0.3).073).07
).07).07
0.3033		.067
0.3066		
0.31		.067
0.3133		.063
0.33		.054
0.3466		.048
0.3633		.044
0.38		.035
0.3966		.032
0.4133		.029
0.43		.026
0.4466	_	.022
0.4633	-	.019
0.48		.016
0.4966		.016
0.5133		.013
0.53		.013
0.5466		0.01
0.5633		0.01
0.58		.007
0.5966		.007
0.6133		.007
0.63		.007
0.6466		.007
0.6633		.003
0.68		.003
0.6966		.003
0.7133		.003
0.73		.003
0.7466		.003
0.7633		.003
0.78	0	.003

0.7966

SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

0.

Estimated Parameters

Parameter	Estimate	
K	29.04	ft/day
y0	0.9132	ft

Data Set: I:\KEE-AOCA\SLUGTEST\MWA-9WB.AQT Title: MWA-9 WITHDRAWAL Date: 08/21/98 Ime: 12:23:37

PROJECT INFORMATION

Company: Parsons Engineering Science Client: AFCEE Project: 731854.06 Location: Keesler AFB, BX Ser Sta Test Date: 2/18/98 Test Well: MWA-9

AQUIFER DATA

Saturated Thickness: 15.88 ft Anisotropy Ratio (Kz/Kr): 1

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MWA-9

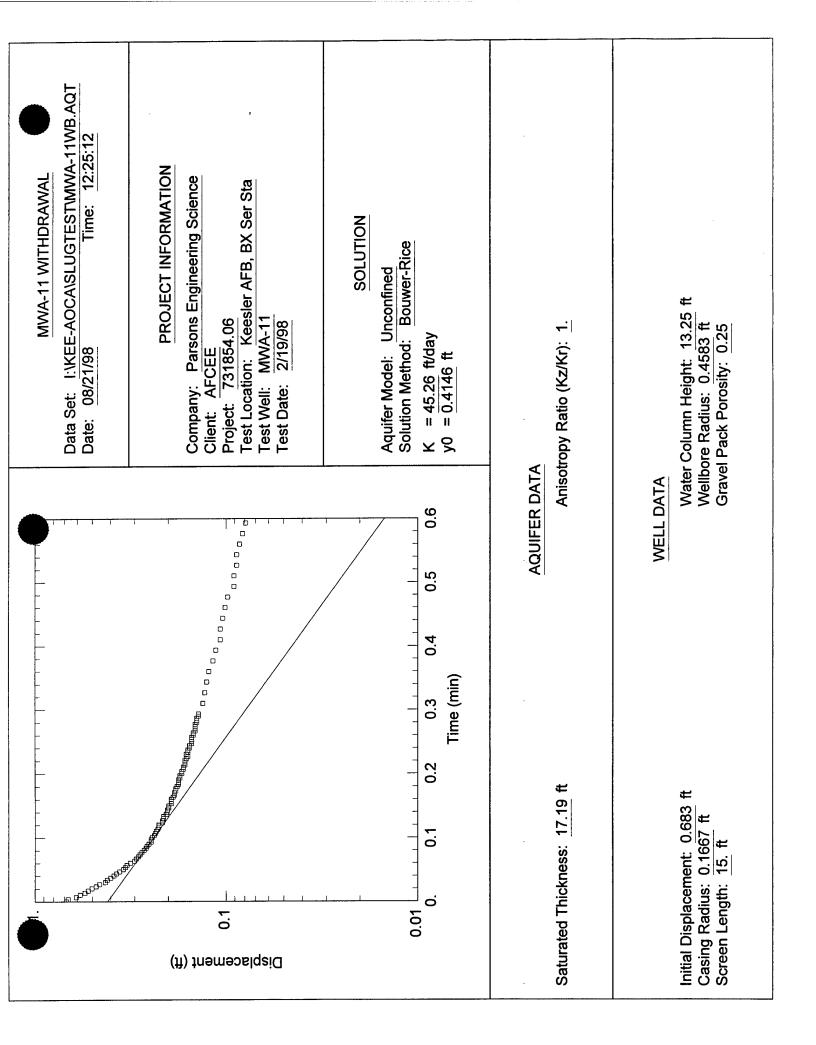
Location: 0 ft Location: 0 ft

Observation Data Time (min) Displacement (ft) 0.778 0. 0.718 0.0033 0.0066 0.67 0.62 0.01 0.578 0.0133 0.531 0.0166 0.02 0.493 0.0233 0.461 0.0266 0.433 0.03 0.408 0.0333 0.386 0.36 0.0366 0.04 0.341 0.329 0.0433 0.0466 0.31 0.05 0.297 0.0533 0.288 0.262 0.0566 0.291 0.06 0.0633 0.278 0.0666 0.306

MWA-9 WITHDRAWA	L

	0.07	0.234
	0.0733 0.0766	0.234 0.218
	0.08 0.0833	0.218 0.212
	0.0866	0.208
	0.09 0.0933	0.202 0.199
	0.0966 0.1	0.199 0.193
	0.1033	0.189
	0.1066	0.186 0.183
	0.1133	0.18
	0.1166 0.12	0.177 0.174
	0.1233 0.1266	0.17 0.167
	0.13	0.167
	0.1333 0.1366	0.164 0.161
	0.14 0.1433	0.158 0.151
	0.1466 0.15	0.158 0.148
	0.1533	0.148
	0.1566 0.16	0.145 0.142
	0.1633 0.1666	0.142 0.139
,	0.17	0.139
	0.1733 0.1766	0.126 0.136
	0.18 0.1833	0.133 0.133
	0.1866	0.142
	0.19 0.1933	0.133 0.129
	0.1966 0.2	0.129 0.126
	0.2033	0.126
	0.2066 0.21	0.123 0.123
	0.2133 0.2166	0.12 0.12
	0.22	0.12
	0.2233 0.2266	0.117 0.114
	0.23 0.2333	0.114 0.114
•	0.2366	0.114

0.24	0.11
0.2433	0.11
0.2466	0.117
0.25	0.11
0.2533	0.107
0.2566	0.104
0.26	0.107
0.2633	0.107
0.2666	0.101
0.27	0.101
0.2733	0.101
0.2766	0.101
0.28	0.098
0.2833	0.098
0.2866	0.095
0.29	0.095
0.2933	0.095
0.2966	0.091
0.3	0.091


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

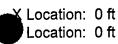
Parameter	Estimate	
K	44.85	ft/day
у0	0.5012	ft

.

Data Set: I:\KEE-AOCA\SLUGTEST\MWA-11WB.AQT Title: MWA-11 WITHDRAWAL Date: 08/21/98 me: 12:24:56

PROJECT INFORMATION

Company: Parsons Engineering Science Client: AFCEE Project: 731854.06 Location: Keesler AFB, BX Ser Sta Test Date: 2/19/98 Test Well: MWA-11


AQUIFER DATA

Saturated Thickness: 17.19 ft Anisotropy Ratio (Kz/Kr): 1

OBSERVATION WELL DATA

Number of observation wells: 1

Observation Well No. 1: MWA-11

Observation Data <u>Time (min)</u> Displacement (ft) 0 0 683

0.	0.683
0.0033	0.67
0.0066	0.607
0.01	0.579
0.0133	0.547
0.0166	0.525
0.02	0.503
0.0233	0.477
0.0266	0.458
0.03	0.427
0.0333	0.417
0.0366	0.401
0.04	0.386
0.0433	0.373
0.0466	0.36
0.05	0.344
0.0533	0.335
0.0566	0.329
0.06	0.316
0.0633	0.3
0.0666	0.294

MWA-11	WITHDRAWAL

0.07	_	0.2	
0.073		0.2	
0.076	6	0.2	
0.08	_	0.20	
0.083		0.20	
0.086	6	0.2	
0.09		0.2	
0.093		0.24	
0.096	6	0.24	
0.1		0.24	
0.103		0.23	
0.106	6	0.23	
0.11		0.23	
0.113	3	0.22	
0.116	6	0.22	
0.12		0.22	
0.123		0.2	
0.126	6	0.2	
0.13		0.2	
0.133	3	0.2	
0.136	6	0.20	
0.14		0.20	02
0.143	3	0.20	02
0.146	6	0.19	99
0.15		0.19	99
0.153	3	0.19	93
0.156	6	0.1	93
0.16		0.19	93
0.163	3	0.18	89
0.166	6	0.18	86
0.17		0.18	8Ġ
0.173	3	0.18	
0.176	6	0.18	83
0.18		0.1	8
0.183	3	0.1	77
0.186	6	0.1	77
0.19		0.1	77
0.193	3	0.1	74
0.196	6	0.1	74
0.2		0.1	7
0.203	3	0.1	7
0.206	6	0.10	67
0.21		0.10	67
0.213	3	0.10	
0.216	6	0.10	64
0.22		0.10	64
0.223	3	0.10	61
0.226	6	0.1	58
0.23		0.10	61
0.233	3	0.1	58
0.236	6	0.1	58

~ ~ /	0 4 5 5
0.24	0.155
0.2433	0.155
0.2466	0.151
0.25	0.151
0.2533	0.151
0.2566	0.151
0.26	0.148
0.2633	0.148
0.2666	0.145
0.27	0.145
0.2733	0.145
0.2766	0.145
0.28	0.142
0.2833	0.142
0.2866	0.142
0.29	0.139
0.2933	0.139
0.31	0.132
0.3266	0.129
0.3433	0.126
0.36	0.123
0.3766	0.117
0.3933	0.113
0.41	0.107
0.4266	0.107
0.4433	0.104
0.46	0.101
0.4766	0.098
0.4933	0.091
0.51	0.091
0.5266	0.088
0.5433	0.088
0.56	0.085
0.5766	0.082
0.5933	0.079

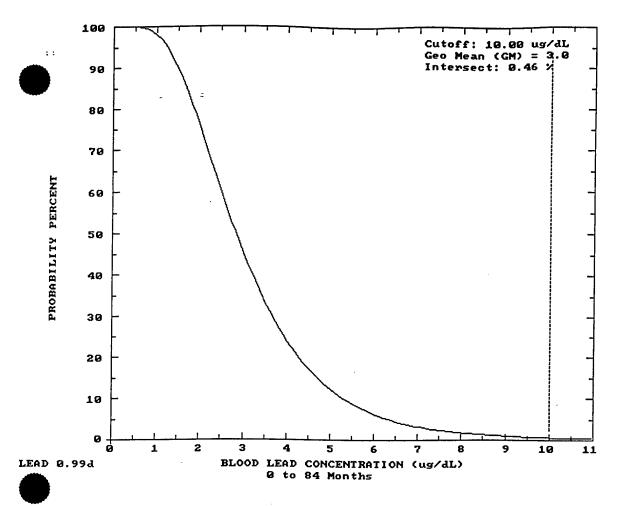
SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	45.26	ft/day
у0	0.4146	ft


APPENDIX E USEPA IEUBK MODEL INPUT AND OUTPUT

LEAD MODEL Version 0.99d

door A	IR Pb Conc: 30.0 R Parameters: Time Outdoors (1 1.0 2.0 3.0 4.0 4.0 4.0 4.0	ug Pb/m3 DEFAU percent of outdo hr) Vent. Rate 2.0 3.0 5.0 5.0 5.0 5.0 7.0 7.0	oor. e (m3/day) 1	Lung Abs. (%) 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0			
DIET: DE	FAULT						
DRINKING WATER Conc: 21.00 ug Pb/L WATER Consumption: DEFAULT							
SOIL & DUST: Soil: constant conc. Dust: Multiple Source Analysis							
Age 0-1 1-2 2-3 3-4 4-5 5-6 6-7	8.7 8.7 8.7 8.7 8.7 8.7 8.7	<pre>g) House Dust</pre>	(ug Pb/g)				
Additional Dust Sources: None DEFAULT Soil contribution conversion factor: 0.70 Air contribution conversion factor: 100.0							
PAINT Intal	ke: 0.00 ug Pb/da	y DEFAULT					
MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc:. 2.50 ug Pb/dL							
CALCULATED	BLOOD Pb and Pb (IPTAKES:					
YEAR	Blood Level (ug/dL)	Total Uptake (ug/day)	Soil+Dust (ug/da				
0.5-1: 1-2: 2-3: 3-4: 4-5: 5-6: 7:	2.7 3.3 3.2 3.1 2.9 2.8 2.7	4.93 8.10 8.71 8.77 8.80 9.28 9.69	0.31 0.48 0.48 0.49 0.37 0.33 0.31				
YEAR	Diet Uptake (ug/day)	Water Uptake (ug/day)	Paint Upt (ug/day				
0.5-1:	2.61	1.99	0.00	0.02			

1-2:	2.69	4.89	0.00	0.03
2-3:	3.04	5.12	0.00	0.06
3-4:	2.95	5.27	0.00	0.07
3-4:	2.86	5.51	0.00	0.07
6:	3.03	5.82	0.00	0.09
-7:	3.35	5.94	0.00	0.09

•

....

÷

.