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NATIONAL ADVISOEY COMMITTEE FOE AERONAUTICS 

DIVEBGENCE OF SWEPT WINGS 

By Franklin W. Diederich and Bernard Budiansky 

SUMMARY 

An analysis of the divergence of swept untapered and tapered wings 
with stiffnesses varying as the fourth power of the chord has teen 
performed and checked experimentally. The results are presented in a 
set of charts and approximate formulas suitable for quick estimates of 
the divergence dynamic pressure and hence the divergence speed. 

.These results indicate that the divergence speed drops rapidly 
as sweepforward increases to about k0°  but that wings with moderate or 
large sweepback cannot diverge.  The location of the elastic axis is 
found to affect the divergence speed most at low angles of sweep, where 
movement of the elastic axis forward (or the aerodynamic center aft) 
raises the divergence speed. The effect of wing taper is to increase 
the divergence speed of essentially unswept wings and to decrease the 
divergence speed of wings with moderate and large angles of sweep in 
the case of the prescribed stiffness variation. Evidence is presented 
to indicate that these effects may not be observed for actual stiffness 
variations, in which cases a more refined analysis must be resorted to. 

INTRODUCTION 

The emphasis on the use of sweptback or sweptforward wings for 
high-speed flight has created widespread interest in the aeroelastic 
behavior of swept wings. The present paper is concerned with the 
theoretical determination of one of the most fundamental aeroelastic 
parameters, the wing divergence speed.. 

The' divergence of wings or tail surfaces is an instability 
phenomenon which results from the interaction of aerodynamic and 
structural forces. If a wing or tail is given a deflection of. 
arbitrary magnitude, the aerodynamic forces often act in such a way 
as to increase the given deflection, whereas the structural forces 
always tend to decrease the deflection. Since the aerodynamic forces 
increase with the flying 3peed, whereas the structural forces are 
independent of it, a speed will often exist at which the two sets of 
forces are exactly in balance, so that they tend to maintain the given 
deflection.  This speed is known as the divergence speed, since any 
further increase in speed causes the aerodynamic forces to predominate 
over the restraining structural forces and tends to increase any 
deformation until structural failure occurs. 
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The theory of divergence of unswept wings has reached a considerahle 
degree of refinement. Since H. Eeissner's original analysis of the 
problem (reference l), a great deal of material has been published on 
this subject both in the United States and in Great Britain (for instance, 
references 2, 3,  and k);   the latest methods treat arbitrary stiffness 
variation (reference 2) and account for aerodynamic induction 
(references 3 and k). 

The analysis of the divergence of swept wings is complicated by 
the fact that, unlike the case of unswept wings, the air forces depend 
on the bending deformations as well as on the twisting deformations. 
A first approximation to the solution of the problem is presented in 
reference 5 by means of a "semirigid" approach that does not take into 
account spanwise variation of the wing distortion. 

The present paper gives the results of a more exact analysis that 
considers the effect of elastic bending and twisting along the wing span. 
Theoretical derivations are given for the divergence speeds of swept 
wings with constant chord and constant flexural and torsional stiffnesses 
along the span, as well as for swept wings with linearly varying chords 
and with flexural and torsional stiffnesses varying quartically with 
the chord. The results of the theoretical analysis are presented in 
curves of nondimensional parameters from which the divergence speed can 
be estimated for a given design. 

In order to verify the theory and establish the effects of the 
assumptions involved, a limited number of tests were made in the 
Langley 4.5—foot flutter research tunnelvon models of constant chord 
and stiffness at low Mach numbers. The results of these tests are 
presented and are compared with the theory. 

SYMBOLS 

A aspect ratio (=--§E2S  ) 
\Total area/ 

/q. cos^Am e-ic^L2^ 
a dimensionless parameter   .,      z  

\   (GJ)P      J 

aD value of parameter a at divergence 

q. cos2AmecrL3tan A\ 

(El). 
dimensionless parameter 

d-D value of parameter d at divergence 

chord, measured perpendicular to elastic axis, feet 
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(El)r 

el 

chord at effective root (fig. l), feet 

effective chord at tip (fig. 1), feet 

effective 'bending stiffness in planes perpendicular to 
elastic axis, pound—feet 

bending stiffness at effective root, pound—feet2 

distance from elastic axis to aerodynamic center 
(positive forward), fraction of chord 

GJ effective torsional stiffness in planes perpendicular to 
elastic axi3, pound—feet2 

(G-j) torsional stiffness at effective root, pound—feet2 

k chord ratio,     c/cr 

K^_, Kg constants 

I running air load along elastic axis, pounds per foot 

L length of one wing along elastic axis (see fig. l), feet 

M free—stream Mach number 

Mcr critical Mach number of section perpendicular to 
elastic axis 

IOQ section lift—curve slope, per radian 

MQ effective section lift—curve slope, per radian 

q dynamic pressure, pounds per square foot (o* ) 

q-p, dynamic pressure at divergence, pounc 3 per square foot 

%2 

V free—stream velocity, feet per second 

V-r, free—stream velocity at divergence, feet per second 

V/Y component of free—stream velocity normal to elastic axis, 
feet per second 

y distance along elastic axis (see fig. l), feet 

«i 
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ae effective angle of attack of a section perpendicular to 
elastic axis, radians 

T\ semispan position along elastic axis (V/L) 

T local dihedral angle, radians, or slope of wing deflection 
curve at elastic axis (see fig. l) 

A angle of sweep measured to elastic axis, positive for 
sweepback, degrees 

^ taper ratio  (c^/c^ 

p density of air stream, slugs per cubic foot 

<P angle of twist in a plane perpendicular to elastic axis, 
radians 

THEORETICAL RESULTS 

Untapered Swept Wings 

A theoretical analysis of the divergence of a swept wing of uniform 
chord (fig. 1(a)) and stiffness is contained in the appendix. The 
analysis involves the following limitations and assumptions: 

(a) Aerodynamic induction is taken into account only insofar as 
an over-all correction is applied to strip theory 

(b) Aerodynamic as well as elastic forces are "based on the 
assumption of small deflections 

(c) The wing is clamped at the root perpendicular to a straight 
elastic axis (see fig. 1(a)), and all deformations are given by the 
elementary theories of bending and of torsion about the elastic axis. 

Within the limitations of these assumptions an exact theoretical 
solution for the divergence speed is obtained. The solution consists 
of a relationship between two nondimensional parameters, 

qD cos
2Amee2Cr L

2 



and 

«Iß cos2AmecrL3tan A 
d> " —(571  (2) 

which ia presented in figure 2. 

It i3 aeen that the ratio of these parameters 

aD 

(GJ)r~ ~ L ~ 
elcr _(El)r 

tan A (3) 

depends only on the known geometrical and physical parameters of the 
problem.  Thus, from the theoretical plot of a^ against dD/aD shown 

in figure 3, the divergence speed can be obtained for any particular 
uniform wing.  In order to cover the entire range of values of the 
independent parameter, it is convenient to .plot dD against ap/dD for 

large positive and negative values of dp/ap. 

Tapered Swept Wing3 

A theoretical solution for the divergence speed of linearly tapered 
swept wings (see fig. 1(b)) has also been effected in the appendix. 
The assumptions listed in the foregoing section apply to this case as 
well. The bending and torsional stiffnesses are assumed to vary as 
the fourth power of the chord; this variation is realized for a wing 
having geometrically similar cross sections, such as a solid wing or one 
all structural dimensions of which are proportional to the local chord. 

Theoretical curves similar to those of figure 3, relating the 
nondimensional parameters aD and dp,  have been computed for swept 

wings having taper ratios X    of 0.2, 0.5, and 1.5. The various branches 
of these curves, together with those for the uniform wing (taper 

ratio 1.0) are, for convenience, given separately in figure k(&),   k(h), 
and l*-(c) . 

Effective Lift-Curve Slope 

In the calculations of the lift acting on the individual wing sections, 
it has been assumed that the aerodynamic interaction of the sections may be 
neglected if an over-all span correction is made to the section lift-curve 
slope.  Thus, the value of me to be used is the two-dimensional value mQ. 
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for sections normal to the elastic axis multiplied "by a suitable correction 
factor. In reference 2, Shornick, in computing the divergence speed of 
unswept wings by strip theory, applies the aspect-ratio correction 

A 

me =  mo 
| + 2 

For the case of an unswept uniform wing with | = 3.A, this assumption 

yields a divergence speed that differs by less than 1 percent from the 
result calculated by Hildebrand and Reissner (reference 3) by lifting-line 
theory.  (The parameter ß calculated by lifting-line theory in reference 3 

may he compared directly with / ap \ — of the present paper.) 

Equation (h)  may he extended to swept wings by means of the reasoning 
used in reference 6. If the air forces are considered to act in planes 
perpendicular to the elastic axis instead of parallel to the plane of 
symmetry, the following relation is obtained 

% = ^o 
A + k  cos A 

(ha) 

This approximation for finite-epan effect may be used for subsonic and 
subcritical Mach numbers. For supersonic and supercritical Mach numbers, 
it is inapplicable;  no span correction is available at present for these 
speed ranges. Neglect of the finite-span effects, however, will always 
tend to give conservative results. 

Location of the Effective Root 

If the results of the preceding analysis are applied to an actual 
wing, it is necessary to assume that the wing is clamped along a line 
perpendicular to the elastic axis. From the data and the analysis 
presented in reference 7 it appears that the amount of wing twist can 
be estimated closely by assuming the wing to be clamped at a line 
through the intersection of the elastic axis and the side of the fuselage, 
if the carry-through structure is fairly rigid. 

The bending deflections are estimated in reference 7 by considering 
the wing supported flexibly at a line through the innermost point of the 
trailing edge (in the case of a sweptback wing) or of the leading edge 
(in the case of a sweptforward wing). This effect may be taken into 
account in the preceding analysis by modifying the root boundary conditions 
If the carry-through structure is fairly rigid the resulting divergence 
speed is the same, for all practical purposes, as the value obtained by 
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considering the wing mounted rigidly at a line through the intersection of 
the elastic axis and the side of the fuselage. This line•is consequently 
considered the effective root of an actual wing, as shown in figure l(c). 

APPLICATION OF THE THEORETICAL RESULTS 

Selection of the Aerodynamic Parameters 

Both the section lift—curve slope HIQ and the aerodynamic center 
(and consequently the distance from the aerodynamic center to the elastic 
axis., ej)    vary with Mach number and, in the transonic range at least, 
with the angle of attack. The parameters should "be chosen at the angle 
of attack near the design value which yields the most conservative results. 
The choice of the Mach number depends on the purpose for which the 
divergence speed or dynamic pressure is calculated. 

If the divergence speed is calculated for its own sake, the parameters 
should "be chosen at the Mach number corresponding to the divergence speed; 
resort to a trial and error procedure may therefore be necessary.  If, on 
the other hand, it is desired to calculate the divergence speed or dynamic 
pressure as a reference value for one of the other aeroelastic phenomena, 
the aerodynamic parameters should be chosen at the Mach number of interest 
for the particular phenomenon. The dynamic pressure calculated in this 
manner will not usually be the true value but appears to be the divergence 
value only at the given Mach number and will vary with Mach number.  If 
the variation of this reference divergence dynamic pressure qp is 

plotted against Mach number and the actual dynamic pressure q is plotted 
on the same graph, the intersections of the two lines will determine the 
true values of the divergence Mach number and dynamic pressure; this 
procedure therefore constitutes another way of calculating the divergence 
speed. Such a plot is shown in figure 5 for a straight and a sweptforward 
wing designed for high—speed flight. 

The values of the aerodynamic parameters are best obtained from 
experimental section data for the lift and pitching moment of the given 
section at the Mach number of interest. If such data are not available, 
the section lift—curve slope mQ may be approximated by the Glauert— 
Prandtl and Ackeret relations in the subsonic and supersonic regions, 
respectively, and by an arbitrary constant value which depends on the 
critical Mach number in the transonic region, as indicated in figure 6. 
The aerodynamic center is located near the quarter—chord point at subsonic 
speeds and at k-0  to k-5  percent of the chord at supersonic speeds. Its 
location at transonic speeds is not well established; it may move forward 
of the quarter-chord point, however, before receding to the supersonic 
position. 
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Use of the Curves 

The aerodynamic parameters are selected for a given Mach number and 
the section lift-curve slope is corrected for finite span effects in the, 
manner previously indicated. With these parameters and the given geometric 
parameters the ratio dD/aD may be determined from equation (3). The 

value of aD or dp is then obtained from figure k  and the divergence 
dynamic pressure calculated from either of the two following relations: 

ID = aD 

XD 

(GJ)3 

mgCpL^ cos2A elcr 

(El), 

meCjUi-5 cos A 
cot A 

(5) 

(5a) 

The divergence speed is given by the relation 

(6) 

If the value of qD as calculated in this manner is negative the 
wing cannot diverge, since a negative dynamic pressure does not correspond 
to any real speed. A negative value, however, is still useful as a 
reference value. 

Unless the wing under consideration is solid or has geometrically 
similar cross sections along the span, it must be kept in mind that the 
actual divergence speed or dynamic pressure may be below that calculated 
by this method for reasons cited subsequently in the "DISCUSSION." 

Use of Approximate Formulas 

The relation between the values aD and dp may be approximated 
closely by a straight line. The agreement between the exact curves and 
curves representing the linear relation is seen in figures 2 and 3 in the 
case of a uniform wing. From the linear approximation an expression for 
the divergence dynamic pressure may"be obtained of the following form: 

ID 
(G-J)r 

m 0^3 cos A !lcr 

Kl 

1 
Y    (GJ)r /   L   > 

2  (EI)r VelCry 
tan A 

(7) 
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where the constants K]_ and K2 are given in the following table: 

X % Kg 

0.2 2.81 0.6l4 
• 5 2.74 .497 

1.0 2.V7 • 390 
1.5 2.22 .326 

Equation (7) may he used with almost the same accuracy as the curves 
of figure k.    This equation should he particularly convenient for calculating 
the stiffnesses required for a given value of the dynamic pressure at 
divergence. 

EXPEKEMEBTAL EESULTS 

As a check on the theory several divergence tests on uniform swept 
wings were made in the Langley k.5-foot flutter research tunnel.  In the 
first series of tests a thin plate of 2kS-T  aluminum alloy, 5 inches 
by 30 inches by 0.126 inch, was held in the tunnel essentially as 
shown in figure 1(a); the angle of sweep was varied by means of the 
rotating root fixture. The experimental divergence dynamic pressure was 
taken to be the highest value at which the wing would remain in an 
undeflected position when the root section was at zero angle of attack 
relative to the true air stream. From the experimental data obtained, 
shown in table I, the divergence dynamic pressure is plotted against the 
angle of sweep in figure 7(a). The variation of divergence dynamic 
pressure with sweep obtained from the theory of the present paper is 
also shown in figure 7(a). No experimental data have been obtained for 
sweepback; the wing fluttered, rather than diverged, at zero sweep, and 
flutter would undoubtedly be critical at any angle of sweepback. However, 
the agreement between the present theory and experiment for angles of 
sweepforward up to k0° ±3  excellent. 

A similar series of tests was run for another rectangular aluminum 
wing, h  inches by 2k  inches by O.O977 inch.  (See table I.) The results 
given in figure 7(b) also show good agreement between theory and experiment. 

A third series of tests was run on flat-plate aluminum models, 
5 inches by 30 inches by 0.125 inch, that were not rectangular, but were 
clamped at the root, and cut at the tip parallel to the wind stream 
(fig. 1(c)). A separate model was used for each angle of sweep, but 
the length along the leading edge was held constant at 30 inches. These 
wing plan forms do not correspond to those assumed for the theory, but 
they do represent more closely conventional swept^wing plan forms. The 
experimental results are presented in table I and plotted in figure 7(c). 
The theoretical variation of the divergence dynamic pressure with sweep 
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obtained by using the effective root discussed previously (root A of fig. 7(c)) 
is shown by the solid-line curve. The variation obtained from theory if* 
the effective root is considered to be at the line through the innermost 
point of the leading edge (root B of fig. 7(c)) is shown by the dash-line 
curve. It appears that the use of root A yields conservative results for 
all sweep angles of practical concern, but that the results obtained by 
using root B are on the average in somewhat better agreement with the test 
data for low and medium angles of sweepforward. 

The curves of figure 7 are based on calculated values of (GJ)r 

and (El)r. The section aerodynamic center was assumed to be at 

the c/k    point, so that ei is O.25. A section lift slope of 2n was 

assumed and corrected for span effects as shown in equation (ha). 
Compressibility effects were neglected in all comparisons, since the 
test Mach numbers were too low to warrant a correction. 

DISCUSSION 

The aerodynamic and structural assumptions made impose limitations 
on the accuracy of the analysis.  The aerodynamic assumptions are 
concerned with the magnitude of the deflections involved as well as the 
treatment of the aerodynamic induction and compressibility effects. The 
assumption of small deflections made in obtaining the effective velocity 
component VA  (see appendix, equation (A5a)) yields results which are 

too low at high angles of sweep. The air forces are consequently 
underestimated and the divergence speed is overestimated. The correction 
for aerodynamic induction is only approximate; it is simple to make 
however, and yields good experimental agreement. For most airplanes the 
divergence speed lies in the transonic or supersonic region, where the 
induction effects are greatly diminished, so that no correction need 
ordinarily be applied. The manner in which compressibility is taken into 
account in the analysis has not been checked experimentally and is 
consequently somewhat uncertain. 

The location of the aerodynamic center may not be known very 
accurately; fortunately, however, the divergence speed of a swept wing 
is not very sensitive to the aerodynamic-center location at large angles 
of sweep, as may be seen from figure 4(c). The change in dD, and hence 
the change in divergence speed, will be found to be fairly small even for 
rather large changes in the value of e±    produced by changes in the 

aerodynamic-center location or elastic-axis location. At low angles of 
sweep the effect of the location of the aerodynamic center relative to 
the elastic axis is much more pronounced; movement of the elastic axis 
•forward or the aerodynamic center rearward will tend to raise the 
divergence speed. If the aerodynamic center is behind the elastic axis, 
negative values will usually be obtained for the dynamic pressure at  . 
divergence, so that divergence will be impossible. 
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The most important of the structural assumptions involves the existence 
of a straight elastic axis, which permits "bending and torsion to "be treated 
independently. This assumption appears warranted in most cases. Although 
the exact location of this axis is often difficult to ascertain, only an 
approximate value is needed in view of the foregoing consideration, at 
least for large angles of sweep. Near the wing root, where the elastic- 
axis location is most uncertain, -swept wings are so stiff that the location 
is immaterial. 

The assumption of the effective root at the location indicated in 
figure l(c) (root A of fig. 7(c)) leads to conservative results. This 
assumption appears, therefore, to be preferable to the assumption of the 
root at a point farther outboard, such as root B of figure 7(c). On the 
other hand, the assumption of the effective root B leads to results which, 
at least in the case of the flat—plate models tested, agree somewhat more 
closely with experiments for angles of sweepforward up to about h^°. 

The insensitivity of the divergence speed to the relative location 
of the aerodynamic center and the elastic axis indicates that the effects 
of bending predominate at large angles of sweep (actually at large values 
of dp/ap). Even at low values of sweep, bending is quite significant; 
the divergence phenomenon of swept wings should therefore be referred 
to as "bending—torsion" divergence rather than "torsional" divergence 
as in the case of unswept wings. 

The stiffness variation used in the analysis for tapered wings 
(El and GJ vary as c^)  is realized for wings with geometrically 
similar cross sections; it is obtained for solid wings and closely 
approximates that of actual wings with a taper'ratio of the order of 0.2. 
For higher taper ratios, actual wings are more flexible at the tip than 
the fourth—power variation would dictate. In order to investigate this 
effect, the parameter aj) has been plotted against taper ratio in figure 8 

for unswept wings with stiffness variations dictated by constant bending— 
stress levels. The assumption has been made that the torsional stiffness 
is proportional to the flexural stiffness which, in turn, is based on a 
load distribution given by strip theory. The computations for the 
divergence speed were performed by a method similar to that of reference 2. 
Figure 8 indicates that the divergence speed of wings with this type of 
stiffness distribution is in general lower than that obtained for wings 
the stiffness of which follows the quartic variation. The divergence speed 
of actual wings may be expected to lie between the two curves of figure 8 
and will in general be lower than that for wings the stiffness of which 
follows the fourth—power variation. This point must be considered when 
figure k  is used; the results furnished by the curves of figure k  may be 
somewhat unconservative for actual wings. 

The effect of sweep may be seen from figures 3* ^,  and 7« Figures 3 
and h  show that as the sweep angle (and hence the parameter dp/ap) is 
increased negatively, that is, toward increased 3weepforward, the 
parameter ap (and hence the divergence speed) decreases rapidly, all 
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other physical parameters remaining the same. Beyond a certain angle of 
sweepforward the cos A term in the parameter aD becomes dominant 

and tends to increase the divergence speed again as seen in figure 7. 
Sweptback vings with a value of dD/aD larger than about 2 and positive 
values of elf    which normally correspond to subsonic speeds, cannot 
diverge; nor can any sweptback or unswept wing diverge for negative values 
of ei which may exist at supersonic speeds. In either case a negative 
divergence dynamic pressure is obtained. This fact does not preclude 
the possibility of flutter in these cases, however. 

The effect of taper on the divergence of swept wings of the assumed 
stiffness variation (GJ and EI varying as c^) is seen from figure k. 
For positive values of 6l (subsonic case) and positive or small negative 

values of the sweep angle, conventional taper increases the divergence 
speed; for all other configurations it decreases the divergence speed. 
The effects of inverse taper are the opposite of those of conventional 
taper. These considerations must be modified in the case of actual 
wings, because of their deviation from the assumed stiffness distribution 
so that either the curves of figure k must be used with some degree of  ' 
conservatism or more refined analyses must be' resorted to. 

Although the low-^peed wind-tunnel tests for divergence have been 
performed only on uniform wings, they serve to corroborate the theoretical 
analysis for uniform wings and hence, indirectly, that for tapered wings, 
since the assumptions are the same in either case. The rapid decrease 
of divergence speed with increase in sweepforward agrees with the predicted 
variation both qualitatively and quantitatively (up to about k0°  sweep- 
forward) . This agreement indicates that the assumptions made concerning 
the structural and aerodynamic behavior (at low speeds) are justified. 
At values of sweepforward above about 1^0° the observed increase in 
divergence speed falls short of the predicted increase. This observation 
agrees qualitatively with the' statement made previously that the analysis 
would tqnd to overestimate the divergence speed for large angles of sweep. 

It is difficult to make a direct comparison with the results of the 
simplified approach of reference 5, but it is quite apparent that since 
the method of this report takes account of the spanwise variation of 
bending and twisting it should furnish more reliable results. If the 
first natural bending and torsion frequencies of a uniform cantilever 

beam are substituted in the expression for —2r 0f reference 5 a 
YD 

relation may be obtained for qD which will have both the same form as 
equation (7) and the same value of K±    if a proper finite-«pan correction 

is applied; the value of Kg, however, will be O.299 instead of O.39O, 

as determined by the theory of this paper for the uniform wing (X  = l'o) 
so that the effect of sweep will be underestimated somewhat. This      ' 
discrepancy indicates that, if the results of a semirigid analysis are 
applied to actual swept wings, a certain amount of caution must be exercised. 
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CONCLUDING- REMARKS 

On the "basis of certain assumptions theoretical results have "been 
obtained, for the divergence of uniform and. tapered wings. These results 
are presented in the form of charts and approximate formulas suitable 
for obtaining quick estimates of the divergence dynamic pressure or speed. 
A limited number of low-speed, wind-tunnel tests on untapered models give 
good agreement with the theoretical results for angles of sweepforward 
up to k0°  and appear to justify the assumptions made in the analysis. 
The results indicate the following conclusions: 

1. The divergence speed drops rapidly as sweepforward increases up 
to about k0°.    Wings with sweepback beyond a fairly low value cannot 
diverge. 

2. Moving the elastic axis forward raises the divergence speed 
appreciably for low angles of sweep but has less effect at higher sweep 
angles. Wings with the elastic axis forward of the aerodynamic center 
(supersonic case) can only diverge for moderate or large angles of 
sweepforward. 

3. For most practical cases, the effect of conventional taper is to 
increase the divergence speed of essentially unswept wings and to decrease 
the divergence speed of wings with moderate and large angles of sweep if 
the stiffness varies as the chord to the fourth power. For stiffness 
variations closer to the ones which are obtained for actual wings, this 
effect may not be observed. In order to obtain accurate results in these 
cases a more refined analysis must be resorted to. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., April 16, 19^8 

Franklin W. Diederich 
Aeronautical Research Scientist 

Bernard Budiansky  (7 
Structural Engineer 

Approved: 
Richard V. Rhode 

Chief of Aircraft Loads Division 

£. ^u^^^f^^t 
Eigene E. Lundquist . 

Chief of Structures Research Division 

epp 



•  ri  • 

• •     • • •    • • ••• 
• •   •• • •     • 
• a 

• •      • • •   • • •• 

Ik 

APEEHDIX 

ANALYSIS OF THE DIVERGENCE OF SWEPT WHJGS 

f Assumptions 

The analysis involves the following limitations and assumptions: 

(a) Aerodynamic induction is taken into account only insofar as 
an over-all correction is applied to strip theory 

(b) Aerodynamic as well as elastic forces are based on the 
assumption of small deflections 

(c) The wing is clamped at the root perpendicular to a straight 
elastic axis (see fig. 1), and all deformations are 
considered to he given "by the elementary theories of 
tending and of torsion about the elastic axis 

Aerodynamic Forces 

In keeping with assumptions (a) and (b), the force per unit width 
on a wing section in a plane perpendicular to the elastic axis resulting 
from bending and twisting deformations is given by 

2=meae£vA2c (Al) 

where ae and YA are the effective angle of attack and the component 

of the free-etream velocity in the plane perpendicular to the elastic 
axis, respectively. If the free-stream velocity is resolved into three 
components, one along the local tangent to the elastic axis, one parallel 
to the chord, and one perpendicular to the other two, the effective 
angle of attack may be obtained as the ratio of the third component to 
the second and the effective velocity as the vector sum of the two 
components.  Thus, 

,       sin cp cos A - cos 9 sin r sin A tan <xe = . ^2) 
cos cp cos A + sin 9 sin T  sin A 

and 

VA    = V     [(cos cp co3 A + sin cp sin F  sin A)2 

+ (sin -j  cos A - cos cp sin T sin A)2 (A3) 

The most convenient way of obtaining these relations is probably by use 
of vector analysis. " 



K> 

& 

For small values of ©  and r these relations simplify to 

ae =9 - r tan A (Ak) 

. ". VA = 7 cos A ^1 + ae
2 (A5) 

= V cos A (A5a) 

so that, for small deflections, equation (Al) can he expressed as follows: 

I =  (p - T tan A) mel^cos^Vc (A6) 

The moment of this force ahout the elastic axis is assumed to be 
given by the product lejc.    The presence of a moment at zero lift due 

to camber will not affect the results in any manner, since the divergence 
speed depends only on the rates at which the aerodynamic and structural 
forces increase with the deformations. 

Differential Equations 

^ The differential equations of bending and torsion of the wing 
referred to the elastic axis are 

% A2   /^T dT 

& vEI WJ ■ l M 

d    / n -r   dSD 

£ l0J w) " -leic <A8) 

respectively.  Substituting the small-deflection expression for  2 
(equation (A6)) into equations (A7) and (A8) yields the two simultaneous 
differential equations: 

EI —) = |Y2cos2AmeC (cp - T tan A) (A9) 
dy2 

JL (GJ 20 = -|Y2 cos^e^2 (<p - r tan A)      (A10) 

These equations are subject to the following boundary conditions: 

Zero local dihedral and twist at the root, 

r (o) = o (AH) 

r (0) = 0 (Alia) 
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(El —)   = 0                      (A12) 

• • 
(GJ &)         = 0                    (A12a) 

(El i-I ]   = 0                   (A12b) 

y=L 

Equations (A9) and (AlO) may "be solved by numerical methods for 
any arbitrary stiffness and chord variation. In the case of untapered 
wings and linearly tapered wings with the stiffnesses varying as the 
chord to the fourth power, they can be solved directly, as shown in the 
following sections. 

f Solution for Uniform Wings 

If the bending stiffness, the torsional stiffness, and the chord 

i of the wing have constant values of (El)r,  (GJ)r,  and cr, respectively, 
along the wing span, equations (A9) and (AlO) become 

r"' tan A = d(cp - T tan A)              (AI3) 

cpit = _a(cp _p tan A)            (AlU) 

where the differentiation denoted by the prime is with respect to r\  = 2. 

and the two dimensionless parameters a and d are defined by 

q cos^nigexCp L2 

(GJ)r 

q cos^\m cTi3tan A 
A                                                                                                   (hlf-) 

(El)r 

Differentiating equation (Al4) once and combining it with equation (A13) 
yields the single differential equation 

m 
06«"+ aae« + dae = 0              . (A17) 

* where aR - rp — F tan A. 



* 

•• The general solution of this equation is 
•• 

IT 

% = /_ Aie 

i=l 

where the r^'s are the roots of the characteristic equation 

r3 + ar + d = 0 

and the A^'s are arbitrary constants. 

The 'boundary conditions for equation (AI7) are: 

From equations (All) and (Alia) 

03(0) = 0 

From equations (A12) and (A12a) 

ae«(l) = 0 

From equations (Alk)  and (A12h) 

ae"(l)+aOe(D = 0 

Substituting equation (AI8) into these "boundary conditions gives 

(Al8) 

(A19) 

(A20) 

(A20a) 

" (A20b) 

Aj = 0 
1=1 

r^e x  = 0 £ 
i=i 

)       (r±
2 + a)Aie

ri = 0 

(A21) 

i=l 

The condition for divergence is that there he a nonvanishing 
solution for the Ai

,s; that is, a solution for which c% is not 

zero along the entire span. Therefore, one or more of the A}'s must 
he different from zero (see equation (AI8)).  Hence, the determinant of 
the coefficients of the A^'s  in equations (A21) must vanish. Thus, 

•t 
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1 1 1 

r-[_eri r2 r2e d- r3e 3 

fr-j2 + a)eri (r2
2 + aje 2 

(r3
2 + a)er3 

= 0 (A22) 

Critical combinations aD and dD of the parameters a and d 

are obtained if the combinations give rise to roots r-i,    r2,  and r? 

for equation (A19) such that equation (A22) or its expanded equivalent 
is satisfied. The curve of ap against d© ' in figure 2 constitutes a 
plot of these critical combinations; points on the curve were computed 
"by assuming values of &j)    and solving for dp by trial. 

Solution for Tapered Wings 

For tapered wings the chord varies linearly and the bending and 
torsion stiffnesses are assumed to vary as the fourth power of the chord. 
Then, 

c = kc-> 

where 

k = 1 - (1 - X)T) 

and X    is the taper ratio c^/cr. Furthermore, 

GJ = (Gj)rk
4 

El = (El)^ 

The differential equations  (A<?)  and (AlO)  then become 

tan A k3rm + Sk2?"   + 12KT» - dpfl   + (%>  = 0 

k ep" + ^kcp'  + ajcp    - a^tf1 tan  A   = 0 

where 

(A23) 

(A24) 

afp   = 

dp 

(1-x)2 

d 

(1-X)3 
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The differentiations denoted "by the primes in equations (A23) and (A24) 
are with respect to k rather than T^. This procedure places the 
differential equations in the form of the Euler (or Cauchy) equations, 
which are easily tractable mathematically. 

Differentiating equation (A2k)   once, .multiplying it "by k, and 
combining the result with equations (A23) and (A2k)  yields a single 
differential equation in a^: 

k3ae««' + 8k
2ae" + (12 + aT)kae« + (2aQ. - 4p)ae = 0     (A25) 

The solution of this equation is 

3 

% = YlBikSi (A26> 
1=1 

where the SJ/S are the roots of 

s(s - l)(s - 2) + 8s(s - 1) + (12 + agOs + (2^ - dp) = 0 

or 

s3 + 5s2 + (6 + aij,)a + (2arp - dp)  = 0 

and the    B^'s    are arbitrary constants. 

The boundary conditions are: 

From equations (All) and (Alia) 

ae(l) = 0 

From equations (A12) and (A12a) 

ae'(X) = 0 

From equations (k2k),   (A12a) and (A12b) 

A,2ae"(X) + aTae(\) = 0 

Substituting equation (A26) into the boundary conditions gives 

(A27) 

(A28) 

(A28a) 

(A28b) 

L    Bi = ° 
1=1 

3 

Yl  SiBi XS±  = 0 

1=1 

3 
)   |si(si - 1) 
i=i 

+ ap B±\  -1 = 0 

(A29) 
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Setting the determinant of the coefficients of the- B^s in 
equation (A29) equal to zero yields, after some simplification, 

s,X 

S-i^ + 

sl 

1 + ^r Xs! 

Snl" 

/  ?      \ASp (sg + a-pjA, c- 

1 

is3 

2 ■ - Us3 S3  + am 

= 0 (A30) 

Equation (A30) is very similar to the corresponding determinantal 
equation (A22) for untapered wings. For particular values of the taper 
ratio \,     it determines critical combinations of a and d.  Calcu- 
lations have "been carried out for taper ratios of 0.2, 0.5, and 1.5, and 
the results are given "by the curves of ap against djj/aj) and dp 
against an/di) in figures k(a),   k(l>),   and k(c),   together with the 
results of the analysis for the uniform wing (taper ratio 1.0). 



21 
. •••• 

• • • • 

• • • 
• • • • ••• 
•• •• 
• •  a 

REFERENCES 

1. Eeissner, E.:  Neuere Probleme aus der Flugzeugstatik.  Z.F.M., Jahrg. 17, 
Eeft 7, April lU, 1926, pp. 13.7-1^6; Jahrg. 17, Heft 9, May lU, 1926, 
pp# 179_i85; Jahrg. 17, Heft l8, Sept. 23, 1926, pp. 33^393, and 
Jahrg l8, Eeft 7, April lU, 1927, pp. 153-158. 

2. Shornick, Louis H.: The Computation of the Critical Speeds of Aileron 
Reversal, Wing Torsional Divergence and Wing-Aileron Divergence. 
MR No. ENG—M-51/VF18, Addendum 1, Materiel Center, Army Air Forces, 
Dec. 19, 19^2. 

3. Eildebrand, Frances B., and Reissner, Eric.:  The Influence of the 
Aerodynamic Span Effect on the Magnitude of the Torsional- 
Divergence Velocity and on the Shape of the Corresponding Deflection 
Mode. NACA TN No. 926, 1<M. 

h.  Pugsley, A. G., and Naylor, G. A.:  The Divergence Speed of an Elastic 
Wing. R. & M. No. 1815, British A.R.C., 1937- 

5. Fettis, Eenry E.:  Calculations of the Flutter Characteristics of 
Swept Wings at Subsonic Speeds. MR No. TSEAC5-4595-2-9, 
Air Materiel Command, Army Air Forces, May 13, 19h6. 

6. Toll Thomas A., and Queijo, Manuel J.: Approximate Relations and ^»t^cv\ Aw^ 
Charts for Low-Speed Stability Derivatives of Swept Wings. 
NACA TN No./T#7, 19^8. 

1*^7.   Zender, George, and Libove, Charles:  Stress and Distortion Measurements 
in a K50  Swept Box Beam Subjected to Bending and to Torsion. 
NACA TN No. 1525, 191+8. 



..t. 
TABLE I.- RESULTS OF DIVERGENCE TESTS 
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-A 
(deg) 

ID 
(experiment) 
(lb/sq. ft) 

ID 
(calculated) 
(lb/sq ft) 

Series 1 

5 in.  "by 30 in. "by 0.126 in.;  square tips;  e-j_ = 0.25; 

(GJ)r = 13,330 lb-in.2;   (EI)r = 8,830 l"b-in.2 

0 
5.0 

11+.7 
30.0 
1+5.0 
55.9 
55.9 
63.2 

a112.80 
83.20 
kk. 21 
26.50 
21+.1+1 
21+.84 
21+.95 
26.65 

178.6 
8O.7 
1+0.9 
27.0 
26.2 
31.1 
31.1 
39-7 

Series 2 

1+ in. "by 24 in.  "by O.O977 in.;  square tips;  ej_ = 0.25; 
(Gj)r = 4,980 1-b-in.2;   (El)r = 3,300 lb-in.2 

0 
5.0 

11+.7 
30.0 
1+5.0 
60.0 
69.6 

aio6.90 
76.99 
1+3.10 
26.51 
22.44 
23.36 
23.74 

I63.I 
73.8 
37.4 
24.7 
23.8 
32.0 
50.5 

Series  3 

5 in.  "by 30 in. "by 0.125 in.;  tips parallel to plane 
of symmetry;  e^ = 0.25; 

(Gj)r = 13,050 lb-in.2;   (El)r = 8,560 lb-in.2 

5.6 
15.5 
30.1 
1+5.2 

b59.7 
7I+.6 

79.87 
1+1.80 
31.72 
28.90 

c38.l8 
5I+.62 

Root A Root B 

74.0 
38.3 
26.5 
25.3 
33.7 
79-3 

74.8 
40.8 
30.3 
32.8 
53.1 

232.4 

aFlutter. 
bModel thickness, 0.123 inch. 
cCorrected for discrepency in thickness, 

.NACA 
-Ay- 
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(a)   Assumed constant-chord 
wing. 

Effective /    j     3 
root    / 

/ 
/ 

< 

(b)   Assumed tapered wing. 

Aerodynamic center 
Shear center 

- Elastic axis 

(c)   Actual wing. 

Figure 1.-   Definitions of geometrical parameters. 
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(a)   Negative values of   dD/aD. 

Figure 4.-   Divergence of swept wings. 
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Figure 5. -   Divergence of a straight and a sweptforward wing. 
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Figure 8.-   Effect of taper on the divergence of unswept wings. 


