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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

DIVERGENCE OF SWEPT WINGS

By Franklin W. Diederich and Bernard Budiansky
SUMMARY

An analysie of the divergence of swept untapered and tapered wings
with stiffnesses varying as the fourth power of the chord has been
performed and checked experimentally. The results are pregented in a
get of charts and approximate formulas suitable for quick egstimates of
the divergence dynamic pressure and hence the divergence gpeed.

.These results indicate that the divergence speed drops rapidly
as sweepforward increases to about 40° but that wings with moderate or
large sweepback cannot diverge. The location of the elastic axis is
found to affect the divergence speed most at low angles of sweep, where
movement of the elastic axis forward (or the aerodynamic center aft)
raises the divergence speed. The effect of wing taper is to increase
the divergence speed of essentially unswept wings and to decrease the
divergence speed of wings with moderate and large angles of sweep in
the case of the prescribed stiffness variation. Evidence is presented
to indicate that these effects may not be observed for actual stiffness
variations, in which cases a more refined analysis must be resorted to.

INTRODUCTION

The emphasis on the use of sweptback or sweptforward wings for
high—speed flight has created widespreasd interest in the seroelastic
behavior of swept wings. The present paper is concerned with the
theoretical determination of one of the most fundamental aeroelastic
rarameters, the wing divergence speed..

The  divergence of wings or tail surfaces is an instability
phenomenon which results from the interaction of aerodynsmic and
structural forces. If a wing or tail is given a deflection of
arbitrary magnitude, the aerodynamic forces often act in such a way
a8 to increase the given deflection, whereas the structural forces
always tend to decrease the deflection. Since the aerodynamic forcegs
increase with the flying speed, whereas the structural forces are
" independent of 1t, a speed will often exist at which the two sets of:
forces are exactly in balance, so that they tend to maintain the given
deflection. This speed is known as the divergence speed, since any
further increase in speed causes the aerodynamic forces to predominate
over ‘the restrainihg structural forces and tends to increase any
deformation until structural failure occurs.



The theory of divergence of unswept wings has reached a considerable
HE S degree of refinement. Since H. Reissner's original analysis of the
. problem (reference 1), a great deal of material has been published on
et this subject both in the United States and in Great Britain (for instance,
* references 2, 3, and 4); the latest methods treat arbitrary stiffness
e ot variation (reference 2) and account for aerodynamic induction
(references 3 and 4). '

The analysis of the divergence of swept wings 1s complicated by
the fact that, unlike the case of unswept wings, the alr forces depend
on the bending deformations as well as on the twisting deformations.
A first approximation to the solution of the problem is presented in .
reference 5 by means of a "semirigid" approach that does not take into
account spanwise variatlion of the wing distortion.

The present paper gives the results of a more exact analysis that
congiders the effect of elastic bending and twisting along the wing span.
Theoretical derivations are given for the divergence speeds of swept
wings with constant chord and constant flexural and torsional stiffnesses
along the span, as well as for swept wings with linearly varying chords
and with flexural and torsional stiffnesses varying quartically with
the chord. The results of the theoretical anslysis are presented in

-, curves of nondimensional parameters from which the divergence speed can
be estimated for a given design.

In order to verify the theory and establish the effects of the
agsumptions involved, a limited number of tests were mads in the
Langley L4.5~foot flutter research tunnel'on models of constant chord
and stiffness at low Mach numbers. The results of these tests are
presented and are compared with the theory.
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a dimensionless parameter
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dp

chord at effective root (fig. 1), feet
effective chord at tip (fig. 1), feet

effective bending stiffness in planes perpendicular to
elagtic axis, pound—feet

bending stiffness at effective root, pound—feet2

distance from elagtic axis to aerodynamic center
(positive forward), fraction of chord

effective torsional stiffnesgs. in planes perpendicular to
elastic axis, pound—feetb

torsional stiffness at effective root, pound—feetg

chord ratio, c/cp

constants

running air load albng elastic axis, pounds per foot
length of one wing along elastic axis (see fig. 1), feet
free—stream Mach number |

critical Mach number of section perpendicular to
elastic axis

section lift—curve slope, per radlan
effective section lift—curve slope, per radian

dynamic pressure, pounds per square foot (%V?)

‘dynamic pressure at divergence, pounc 3 per square foot

()

free—ﬂtreamAvelocity; feet per second
free—gtream velocity at divergence, feet per second

component of free—stream velocity normal to elastic axis,
feet per second

distance along elastic axis (see fig. 1), feet



SR effective angle of attack of a section Perpendicular to
elastic axis, radians

1 semispan position along elastic axis (y/1>

r local dihedral angle, radians, or slope of wing deflection

curve at elastic axis (see fig. 1)

A angle of sweep measured to elastic axis, positive for
sweepback, degrees :

A taper ratio (?t/c£>

o} : density of air stream, slugs per cubic foot

o) angle of twist in a plane perpendicular to elastic axis,
' radians 3

THEORETICAL RESULTS

Untapered Swept Wings

A theoretical analysis of the divergence of a swept wing of uniform
chord (fig. 1(a)) and stiffness is contained in the appendix. The
analysis involves the following limitations and agsumptions:

(a) Aerodynamic induction is taken into account only  insofar as
an over—all correction is applied to strip theory

(p) Aerodynamic as well as elastic forces are based on the
agssumption of small deflections

(c) The wing is clamped at the root perpendicular to a straight
elastic axis (see fig. 1(a)), and all deformations are given by the
elementary theories of bending and of torsion about the elastic axis.

Within the limitations of these agsumptions an éxact theoretical
solution for the divergence speed is obtained. The solution consiasts
of a relationship between two nondimensional parameters, '

ap cos?AmeelcrzL2

ap = P (1)




and
ap cosaAmecrL3tan.A
(B1),

dp = (2)

which is presented in figure 2.

It is seen that the ratio of these parameters

dD (GJ)r

ap  |(EI),
depends only on the known geometrical and physical parameters of the
problem., Thus, from the theoretical plot of ap against dD/aD shown

in figure 3, the divergence speed can be obtained for any particular
uniform wing. In order to cover the entire range of values of the
independent parameter, it is convenient to plot dp agailnst aD/dD for

:——L—] tan A (3)
r

elc

large positive and negative values of dp/ap.

Tapered Swept Wings

A theoretical solution for the divergence speed of linearly tapered
swept wings (see fig. 1(b)) has also been effected in the appendix.
The assumptions listed in the foregoing section apply to this case as
well. The bending and torsicnal stiffnesses are assumed to vary as
the fourth power of the chord; this variation is realized for a wing
having geometrically similar cross sections, such as a solid wing or one
all structural dimensions of which are proportional to the local chord.

Theoretical curves similar to those of figure 3, relating the
nondimensional parameters ap and dp, have been computed for swept
wings having taper ratios A of 0.2, 0.5, and 1.5. The various branches
of these curves, together with those for the uniform wing (taper
ratio 1.0) are, for convenience, given separately in figure 4(a), L(b),
and 4(c). ‘ '

Effective Lift-Curve Slope

In the calculations of the 1ift acting on the individual wing sectiong,
1t has been assumed that the aerodynamic interaction of the sections may be
neglected if an over—all span correction is made to the section lift—curve
slope. Thus, the value of Dy to be used is the two-dimensional value mg-




for sections normal to the elastic axis multiplied by a suitable correction
factor. In reference 2, Shornick, in computing the divergence speed of
unswept wings by strip theory, applies the aspect-ratlo correction

A
2
mezmoA (u)
5 + 2
For the case of an unswept uniform wing with %-: 3.14, this assumption

yields a divergence speed that differs by less than 1 percent from the
result calculated by Hildebrand and Reissner (reference 3) by lifting-line
theory. " (The parameter B calculated by 1lifting—line theory in reference 3

may be:compared directly with |/ ap \/;2 of the present paper. )

Equation (L) may be extended to swepl wings by means of the reasoning
used in reference 6. If the air forces are considered to act in planes
perpendicular to the elastic axis instead of parallel to the plane of
symmetry, the following relation is obtained

A ' '
- (ka)
e = Mo A+ Lk cosA

This approximation for finite—span effect may be used for subsonic and
gubcritical Mach numbers. For supersonic and gsupercritical Mach nunbers,
it is inapplicable; no span correction is available at present for these
speed ranges. Neglect of the finite—span effects, however, will always
tend to give conservative results. ‘

Location of the Effective Root

If the results of the preceding analysis are applied to an actual
wing, it is necessary to assume that the wing 1s clamped along a line
perpendicular to the elastic axis. From the data and the analysis
presented in reference T 1t appears that the amount of wing twist can
be estimated closely by assuming the wing to be clamped at a line
through the intersection of the elastic axis and the side of the fuselage,
. if the carry—through structure is fairly rigid.

The bending deflections are estimated in reference 7 by considering
the wing supported flexibly at a line through the innermost point of the
trailing edge (in the case of a sweptback wing) or of the leading edge
(in the case of a sweptforward wing). This effect may be taken into
account in the preceding analysis by modifying the root boundary conditions.
If the carry-through structure is fairly rigid the resulting divergence
speed is the same, for all practical purposes, as the value obtained by



considerihg the wing mounted rigidly at a line through the intersection of
the elastic axls and the side of the fuselage. This line is consequently
considered the effective root of an actual wing, as shown in figure 1(c).

APPLICATION OF THE THEORETICAL RESULTS

Selection of the Aerodynamic Parameters

Both the sectlon lift—curve slope m,; and the aerodynamic center

(and consequently the distance from the aerodynemic center to the elastic
axis, e]) vary with Mach number and, in the transonic range at least,
with the angle of attack. The parameters should be chosen at the angle

of attack near the design value which yilelds the most conservative results.
The choice of the Mach number depends on the purpose for which the
divergence speed or dynamic pressure 1s calculated.

If the divergence speed 1s calculated for its own sake, the parameters
gshould be chosen at the Mach number corresponding to the divergence apeed;
resort to a trial and error procedure may therefore be necessary. If, on
the other hand, it 1s desired to calculate the divergence speed or dynamic
pressure as a reference value for one of the other aeroelastic phenomena,
the aerodynamic parameters should be chosen at the Mach number of interest
for the particular phenomenon. The dynamic pressure calculated in this
manner wlll not usually be the true value but appears to be the divergence .
value only at the given Mach number and will vary with Mach number. If
the varlation of this reference divergence dynamic pressure qp is

plotted against Mach number and the actual dynamic pressure ¢ 1s plotted
on the same graph, the intersections of the two lines will determine the
true values of the divergence Mach number and dynamic pressure; this
procedure therefore constitutes another way of calculating the divergence
speed. Such a plot is shown in figure 5 for a straight and a sweptforward
wing designed for high—speed flight.

The values of the aerodynamic parsmeters are best obtained from
experimental section data for the 1ift and pitching moment of the given
section at the Mach number of interest. If such data are not avallable,
the section lift—curve slope ¥, may be approximated by the Glauert—
Prandtl and Ackeret relations in the subsonic and supersonic regions,
regpectively, and by an arbltrary constant value which depends on the
critical Mach number in the transonic region, as indicated in figure 6.
The aerodynamic center is located near the quarter~chord polnt at subsonic
speeds and at 40 to 45 percent of the chord at supersonic gpeeds. Its
location at transonic speeds is not well established; it may move forward
of the quarter-—chord point, however, before receding to the supersonic
pogition.




Use of the Curves

The serodynamic parameters are selected for a given Mach number and
the gection lift—curve slope is corrected for finite span effects in the,
manner previously indicated. With these parameters and the given geometric
parameters the ratio dD/aD may be determined from equation (3). The
value of ap or dp 1s then obtained from figure 4 and the divergence

dynamic pressure calculated from either of the two following relations:

m.c, L cos“A €1%r
-y —Ze oo s (58)
MeCpL” cosA .

The divergence speed is given by the relation

a9
VD = 575 (6)

If the value of gqp as calculated in thils manner is negative the
wing cannot diverge, since a negative dynamic pressure does not correspond
to any real speed. A negative value, however, is still useful .as a
reference value.

Unless the wing under consideration is solid or has geometrically
gimilar cross sections along the span, it must be kept in mind that the
actual divergence speed or dynamic pressure may be below that calculated
by thils method for reasons.clted subsequently in the "DISCUSSION.™

Use of Approximate Formulas

The relation between the values ap eand dp may be approximated
clogsely by a straight line. The agreement between the exact curves and
curves representing the linear relation is seen in figures 2 and 3 in the
cagse of a uniform wing. From the linear approximation an expression for
the divergence dynamic pressure may be obtained of the following form:

"

_ (GT) < >
dp = o (7)
m CrLB CosgA 1*r _Kp (GJ)r < L tan A
(EI)

€1



~where the constants KX; and Ko are given in the following table:

A Ky K>

0.2 2.81 0.614
.5 2.7k Lot
1.0 2.47 .390
1.5 | 2.22 .326

~ Equation (7) may be used with almost the same accuracy as the curves
of figure 4. Thisg equation should be particularly convenient for calculating
the stiffnesses required for a given value of the dynamic pressure at
divergence.

EXPERIMENTAL RESULTS

As a check on the theory several divergence tests on uniform swept
wings were made in the Langley L4.5-foot flutter research tunnel. In the
first series of tests a thin plate of 24S-T aluminum alloy, 5 inches
by 30 inches by 0.126 inch, was held in the tunnel essentially as
shown in figure 1(a); the angle of sweep was varied by means of the
rotating root fixture. The experimental divergence dynamic pressure was
taken to be the highest value at which the wing would remain in an
§ undeflected position when the root section was at zero angle of attack
L : relative to the true air stream. From the experimental data obtained,

k shown in table I, the divergence dynamic pressure is plotted against the

§ angle of sweep in figure T7(a). The variation of divergence dynamic

s pressure with sweep obtalned from the theory of the present paper is

“ also shown in figure T7(a). No experimental data have been obtained for
sweepback; the wing fluttered, rather than diverged, at zero sweep, and
flutter would undoubtedly be critical at any angle of sweepback. However,
the agreement between the present theory and experiment for angleg of
sweeplorward up to 40° iz excellent.

A similar series of tests was run for another recténgular aluminum
wing, L inches by 24 inches by 0.0977 inch. (See table I.) The results
given in figure 7(b) also show good agreement between theory and experiment.

A third series of tests was run on flat—plate aluminum models,
5 inches by 30 inches by 0.125 inch, that were not rectangular, but were
clamped at the root, and cut at the tip parallel to the wind stream
(fig. 1(c)). A separate model was used for each angle of sweep, but
the length along the leading edge was held constant at 30 incheas. These

wing plan forms do not correspond to those assumed for the theory, but
: they do represent more closely conventional swept—wing plan forms. The
- experimental results are presented in table I and plotted in figure T(c).

The theoretical variation of the divergence dynamic pressure with sweep
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obtained by using the effective root discussed previously (root A of rig. 7(c))
is shown by the golid=line curve. The variation obtained from theory if

the effective root is considercd to be at the line through the innermost

point of the leading edge (root B of fig. 7(c)) is shown by the dash-line
curve. It appears that the use of root A yields conservative results for

all sweep angles of practical concern, but that the results obtained by

using root B are on the average in somewhat better agreement with the test
data for low and medium angles of sweepforward.

The curves of figure 7 are based on oalculatedvvalues of (GJ)r

and (EI)r. The section aerodynamic center was assumed to be at
the c/h point, go that ey 1s 0.25. A section 1lift slope of 2n was

assumed and corrected for span effects as shown in equation (k4a).
Compressibility effects were neglected in all comparisons, since the
test Mach numbers were too low to warrent a correction.

DISCUSSION

The aerodynamic and structural assumptions made impose limitations
on the accuracy of the analysis. The aerodynamic assumptions are
concerned with the magnitude of the deflections involved as well ag the
treatment of the aerodynamic induction and compressibility effects. The
agssumption of small deflections made in obtaining the effective velocity
component Vp (see appendix, equation (A5a)) yields results which are

too low at high angles of sweep. The alr forces are consequently
underestimated and the divergence speed is overestimated. The correction
for aerodynamic induction is only approximate; it is simple to make,
however, and yields good experimental agreement. For most alrplanes the
divergence speed lies in the transonic or supersonic region, where the
induction effects are greatly diminished, so that no correction need
ordinarily be applied. The manner in which compressibllity is taken into
account in the analysis has not been checked experimentally and is
consequently somewhat uncertain.

The location of the aerodynamic center may not be known very
accurately; fortunately, however, the divergence speed of a swept wing
is not very sensitive to the aerodynamic—center location at large angles
of sweep, as may be seon from figure 4(c). The change in dp, and hence
the change in divergence gpeed, will be found to be fairly smasll even for
rather large changes in the value of e1 produced by changes in the

aerodynamic—center locatlon or elastic—axis location. At low angles of
sweep the effect of the location of the aerodynamic center relative to
the elastic axis is much more pronounced; movement of the elastic axis
forward or the aerodynamic center rearward will tend to raise the
divergence speed. If the aerodynamic center is behind the elastic axis,
‘negative values will usually be obtained for the dynamic pressure at
divergence, so that divergence will be impossible.
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The most important of the gtructural assumptions involves the existence
of a gtraight elastic axis, which permits bending and torsion to be treated
independently. This assumption appears warranted in most cases. Although
- the exact location of this axis 1s often difficult to ascertain, only an
approximate value is needed in view of the foregoing consideration, at
" least for large angles of gweep. Near the wing root, where the elastic—
axis location is most uncertain, -swept wings are so stlff that the location
is immaterial.

) The assumption of the effective root at the location indicated in
figure 1(c) (root A of fig. T(c)) leads to conservative results. This
agsumption appesrs, therefore, to be preferable to the assumption of the
root at a point farther outboard, such as root B of figure 7(c). On the
other hand, the assumption of the effective root B leads to results which,
at least in the case of the flat—plate models tested, agree somewhat more
clogely with experiments for angles of sweepforward up to about 45 ’

The insensitivity of the divergence speed to the relative location
of the aerodynamic center and the elastic axis indicates that the effects
of bending predominate at large angles of sweep (actually at large values
of dD/aD). Even at low values of sweep, bending is quite significant;
the dlvergence phenomenon of swept wings should therefore be referred
to as "bending—torsion" divergence rather than "torsional" divergence
as 1n the case of unswept wings.

The stiffness variation used 1in the analysis for tepered wings
(EI and GJ very as c*) is realized for wings with geometrically
similar cross sections; it is obtalned for solid wings and closely
approximates that of actual wings with a taper ratio of the order of 0.2.
" For higher taper ratios, actual wings are more flexible at the tip than
the fourth—power variation would dictate. In order to investigate this
effect, the parameter ap has been plotted agalnst taper ratio in figure 8

for unswept wings with stiffness variations dictated by constanlt bending—
gtress levels. The assumption has been made that the torsional stiffness
is proportional to the flexural stiffness which, in turn, is based on &
load distribution given by strip theory. The computations for the
divergence speed were performed by a method simllar to that of reference 2.
Figure 8 indicates that the divergence speed of wings with this type of
stiffness distribution is in general lower than that obtained for wings
the stiffness of which follows the quartic variation. The divergence speed
of actual wings may be expected to lie between the two curves of figure 8
and will in general be lower than that for wings the stiffness of which

. follows the fourth-power variation. This point must be considered when
figure 4 is used; the results furnished by the curves of figure L4 may be
gsomewhat unconservative for actual wings.

The effect of sweep may be seen from Tigures 3, 4, and 7. Figures 3
and 4 show that as the sweep angle (and hence the parameter dp/ap) is
increased negatively, that l1s, toward increased sweepforward, the '
parameter ap (end hence the divergence speed) decreases rapldly, all
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other physical parameters remaining the same. Beyond a certain angle of
sweepforward the cos A term in the Parameter ap becomes dominant

and tends to increase the divergence speed again as seen in Tigure 7.
Sweptback wings with a value of dD/aD larger than sbout 2 and positive

values of ej, which normally correspond to subsonic speeds, canmnot

diverge; nor can any sweptback or unswept wing diverge for negative values
of e7 which may exist at supersonic speeds. In either case a negative
divergence dynamic pressure is obtained. This fact does not preclude

the possibility of flutter in these cases, however.

The effect of taper on the divergence of swept wings of the assﬁmed

stiffness variation (GJ and EI varying as cu) is seen from figure L,
For positive valueg of ey (subsonic case) and positive or small negative

values of the sweep angle, conventional taper increases the divergence
speed; for all other configurations it decreases the divergence speed.

The effects of inverse taper are the opposite of tyose of conventional
taper. These considerations must be modified in the case of actual
wings, because of their deviation from the assumed stiffness distribution,
80 that elther the curves of figure L must be used with some degree of
conservatism or more refined analyses must be resorted to.

Although the low—epeed wind—tunnel tests Ffor divergence have been
performed only on uniform wings, they serve to corroborate the theoretical
analysis for uniform wings and hence, indirectly, that for tapered wings,
 since the assumptions are the same in either case. The rapid decresse
of divergence speed with increase in sweepforward agrees with the predicted
variation both qualitatively and quantitatively (up to about 40° sweep—
forward). This agreement indicates that the assumptions made concerning
the structural and aerodynamic behsvior (at low speeds) are Justified.

At values of sweepforward above asbout 40° the observed increase in

divergence speed falls short of the Predicted increase. This observation
agrees qualitatively with the statement made Previously that the analysis
would tend to overestimate the divergence speed for large angles of sweep.

It is difficult to make a direct comparison with the results of the
simplified approach of reference 5, but it is quite apparent that since
the method of this report takes account of the spanwise variation of
bending and twisting it should furnish more reliable results. If the
first natural bending and torsion frequencies of a uniform cantilever

b
beam are substituted in the expression for iFQ of reference 5, a

D
relation may be obtained for qp which will have both the same form as

equation (7) and the same value of Ky if a proper finite—span correction
is applied; the value of Ké, however, will be 0.299 instead of 0.390,

as determined by the theory of this paper for the uniform wing (A = 1.0),

80 that the effect of sweep will be underestimated somewhat., This
discrepancy indicates that, if the results of a semirigid analysis are
applied to actual swept wings, a certain amount of caution must be exercised.

1
i
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CORCLUDING REMARKS

On the basis of certain assumptions theoretical results have been
obtained for the divergence of uniform and tapered wings. These results
are presented in the form of charts and approximate formulas suitable
for obtaining quick estimates of the divergence dynamic pressure or speed.
A limited number of low—speed wind—tunnel tests on untapered models give
good agreement with the theoretical results for angles of gweepforward
up to 40° and appear to Justify the assumptions made in the analysis.

The results indicate the following conclusions:

1. The divergence speed drops rapldly as sweepforward increases up
to about 40°. Wings with sweepback beyond a fairly low value cannot
diverge. .

2. Moving the elastic axis forward raises the divergence speed
appreciably for low angles of sweep but has less effect at higher sweep
angles. Wings with the elastic axis forward of the aerodynamic center
(supersonic case) can only diverge for moderate or large angles of
sweepforward.

3. For most practical cases, the effect of conventional taper 1s to
increase the divergence speed of esgentially unswept wings and to decrease
the divergence speed of wings with moderste and large angles of sweep if
the stiffness varies as the chord to the fourth power. For stiffness
variations closer to the ones which are obtained for actual wings, this
effect may not be observed. In order to obtain accurate results: in these
cases a more refined analysis must be resorted to.
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APPENDTX
ANALYSIS OF THE DIVERGENCE OF SWEPT WINGS

. Assumptions

The analysis involves the following limitations and agsuwmptions:

(a) Aerodynamic induction is taken into account only insofar as
an over—all correction is applied to strip theory

- (b) Aerodynsmic as well as elastic forces are based on the
assumption of small deflections

(c) The wing is clamped at the root perpendicular to a straight
elastic axis (see fig. 1), and all deformations are
considered to be given by the elementary theories of
bending and of torsion about the elastic axis

Aerodynamic Forces
In keeping with assumptions (a) and (b), the force per unit width

on a wing section in a plane perpendicular to the elastic axis resulting
from bending and twisting deformations is given by

2
l= meceigvh c ) (1)

winere (I,e

of the free-stream velocity in the plane perpendicular to the elastic
axis, respectively. If the free—stream velocity is resolved into three
componsnts, one along the local tangent to the elastic axis, one parallel
to the chord, and one perpendicular to the other two, the effective

angle of attack may be obtained as the ratio of the third component to
the second and the effective velocity as the vector sum of the two
components. Thus, '

and YA are the effective angle of attack and the component

sin® cog A — cos ¢ gin I sin A

tan ag = (42)
cos © cos A + gin® gin ' sin A
and
YAQ = Ve {ﬂcos ® cos A + sing sin I' sin A)2
+ (sin " cos A — cos © sin I’ sinil)é] (A3)

The most couvenient way of obtaining these relations :is probably by use
of vector analysis. ‘ ,
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For small values of ¢ and ' these relations gimplify to
de =@ —T tan A (Ak)
Vy =V ocos Ayl + %2 : (A5)
¥V cos A (A5a)

so that, for small deflections, equation (A1) can be expressed as follows:
1=(o ~T tan A) me—gvecos?{\c (A6)

The moment of this force about the elastic axis is assumed to be
givenfby the product lejc. The presence of a moment at zerc 1lift due

to carmber will not affect the results in any mammer, since the divergence
speed depends only on the rates at which the aerodynemic and structural
forces increase with the deformations.

Differential Equations
The differential equations of bending and torsion of the wing
referred to the elastic axis are

a2 ( ar ‘

2 (mgr &) -, (A7)
d{)’2 dy,

< %) - e (18)

respectively. Substituting the small—deflection expreszsion for 1
(equation (A6)) into equations (A7) and (A8) yields the two simultansous
differential equations: .

5
4 (g ar =§V20052Amec (@ =T tan A) (A9)
dy2 dy .

a do pv2 . 2 o

— (GJ ==} =—ZV  cog“An -+t A AlO
> = 57" co se1c° (o an A) - (a10)

These equations are subject to the following boundary conditions:
Zoro local dihedral and twist at the root,

0 _ - (a11)

r (o)

= (0) =0 (Al1la)
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Zero moment, torque, and shear at the free end,

Qm: dr =0 (A12)
dy, v-L
<éJ i#) =0 (Al2a)
5/,
<%I 93ﬁ> =0 (A12b)
cly2
y=L

Equations (A9) and (A10) may be solved by numerical methods for

any arbitrary stiffness and chord variation.

In the case of untapered

wings and linearly tapered wings with the stiffnesses varying as the
chord to the fourth power, they can be solved directly, as shown in the

following sections.

Solution for

Uniform Wings

If the bending étiffness, the torsional stiffness, and the chord

of the wing have constant values of
along the wing span, equations (A9)

Tt tan A

1]

Pt =

(EI)y, (GJ)y, and cp, respectively,
and (A10) become
d(p — T tan A) (A13)
—a(p — T tan A) (A1)

where the differentiation denoted by the prime is with respect to 7n = %

and the two dimensionless parameters

a and d are defined by

q cosa(&meelcrgL2

o). (A15)

q cosQAmecrL3tan A

Dif ferentiating equation (AllL) once

Al6
G0, (a16)

and combining it with equation (Al3)

yields the single differential equation

aett? + aa,t + do, =0

where a, =¢® — T tanA.

. (A17)
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The general solution of this equation 1s

@, = Efi.Aierin ' (A18)

} i=1
where the 1ri's are the roots of the characteristic equation
r3+ar+d=0 (A19)
and the A4's are arbitrary constants.
The boundery conditions for equation (Al7) are:

From equations (All) and (Alla)

a(0) =0 (A20)
From equations (Al2) and (Al2a) |
agt(l) =0 (A20a)
From equations (A1) and (A12D)
o, 't (1) +ace(l) =0 "(A20D)
Substituting equation (Al8) into these boundary conditions gives
| h
A; =0
i=1
Zf: rifhe © =0 . (A21)
i=1
i (ri® + a)Aje ~ = 0
i=1l

The condition for divergence is that there be a nonvanishing
solution for the Aj's; that is, a solutlon for which ag 1s not
zero along the entire span. Therefore, one or more of the Ajq's must

be different from zero (see equation (A18)). Hence, the determinant of
the coefficients of the Aji's in equations (A21) must vanish. Thus,
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1 1 1
T ro T
e 1 rne 1‘38 3 =0 (A22)
r
(r12 + a)e L <r22 +a)e @ (r32 + a)er3

Critical combinations ap and dp of the parameters a and d
are obtained if the combinations give rise to roots ry, Irp, and r3

for equation (Al9) such that equation (A22) or its expanded equivalent
is satisfied. The curve of ap against dp in figure 2 constitutes a
plot of these critical combinations; points on the curve were computed

by assuming values of ap and solving for dp by trial.
Solution for Tapered Wings
For tapered wings the chord varies linearly and the bending and
torsion stiffnesses are assumed to vary as the fourth power of the chord.
Then,
¢ = kcy
where
k=1-(1-=2a)q
and A is the taper ratio ci/c,. Furthermore,

6T = (GJ)pict
EI = (EI)rkl‘

The differential equations (A9) and (A10) then become

]
O

tan Al:k31“‘" + 8EY 4 1A - o] + dpo (A23)

I
o

[kecp" + bkpt + &Icp] — apl’ tan A (A2k)

where

ap = — 2
(1 -2
d
dT_.

(-3
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The differentiations denoted by the primes in equations (A23) and (A2kL)
are with respect to k rather than 1n. This procedure places the’
differential equations in the form of the Euler (or Cauchy) equations,
which are easily tractable mathematically.

Differentiating equation (A24) once, multiplying it by Xk, and
combining the result with equations (A23) and (A2k) yields a single
differential equation in ag:

ka4 8kPae ™ + (12 + ap)kue' + (2ap — dpdag = 0 (A25)

The solution of this equation is
@, = E Byk°1 - (426)

where the si's are the roots of
s(e =1)(s = 2) + 8s(s — 1) + (12 + ap)s + (2aq —dp) =
or '
83 + 56% + (6 + ap)s + (2ap — dp) = 0 (a27)
and the Bi's are arbitrary constants. }

The boundary conditions are:

From equations (All) and (Alla)

a. (1) = 0 (A28)
From equations (Al2) and (Al12a)
at(d) =0 (A284a)
From equations (A24k), (Al2a) and (A12b)
Magtt(A) + apag(A) = 0 (428b)
Substituting equation (A26) into the boundary conditions gives
i=1
3. . :
> eBl -0 . (a29)
i=1
3
> ) |sl(s1 - 1) + aTt BA )
i=1 ) J
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[ 1 ¥ )
A ‘
PCTI Setting the determinant of the coefficients of the By's in
% s’ equation (A29) equal to zero yields, after some simplification,
:o oo. ’
[ 4 L]
.o [
e o 1 1 1
L ] [ N 2
[ ] 0
[ 3 [ ]
s s 8
syh L oM 2 s3h73 = 0 (A30)
S ‘L2 8o 2 38
(le + aT>>\. 1 (Sg + aT>)\. <S3 + aJI:>)\. 3
Equation (A30) is very similar to the corresponding determinantal
equation (A22) for untapered wings. For particular values of the taper
ratio A, it determines critical combinations of a eand d. Calcu-
lations have been carried out for taper ratios of 0.2, 0.5, and 1.5, and
the results are given by the curves of ap against dp/ap and dp
sgainst ap/dp in figures 4(a), 4(b), and 4(c), together with the
results of the analysis for the uniform wing (taper ratio 1.0).
4
t
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e es TARLE I.— RESULTS OF DIVERGENCE TESTS
[ ..'...
*eles’ —A ap 9p
oo o0, (deg) (experiment) (calculated)
HE (1b/sq ft) (1b/sq ft)
*%e o
® [ 1]
[ ) L4
Serles 1

5 in. by 30 in. by 0.126 in.; square tips; e; = 0.25;
(GJ),. = 13,330 1b—in.%; (EI), = 8,830 1b—in.?

0 8112.80 , 178.6

5.0 83.20 80.7
4.7 Ly o1 40.9
30.0 26.50 27.0
45,0 24,41 ' 26.2
55.9 24,8l - 31.1
55.9 2Lk.95 , 31.1
63.2 26.65 ) 39.7

. Series 2

4 in. by 24 in. by 0.0977 in.; square tips; e; = 0.25;

! (GJ), = 4,980 1b-in.?; (EI),. = 3,300 1b—in.?2
0 8106.90 163.1
5.0 76.99 73.8
k.7 43.10 37.4
30.0 26.51 . oh.7
55.0 22.1h : 3.8
60.0 23,36 32.0
69.6 23. T4 50.5
Series 3

5 in. by 30 in. by 0.125 in.; tips parallel to plane
of symmetry; e = 0.25;

(&), = 13,050 1b—in.2; (EI), = 8,560 1b—in.2

Root A Root B

5.6 79.87 4.0 4.8

15.5 41.80 38.3 4o.

30.1 31.72 26.5 30.3

° 45,2 28.90 25. 3 32.8
bsg.7 ©38.18 33.7 53.1

| Th.6 5h. 62 79.3 232.4
. aFlutter. TNACAT

PModel thickness, 0.123 inch.
CCorrected for discrepency in thickness.
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Figure 1.- Definitions of geometrical parameters.
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Figure 4.- Divergence of swept wings.
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Figure 5.- Divergence of a straight and a sweptforward wing.
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