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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE 1925

LINE-VORTEX THEORY FOR CALCULATION OF
SUPERSONIC DOWNWASH

By Harold Mirels and Rudolph C. Haefelil

SUMMARY

The perturbation field induced by a line vortex in a super-
gonic stream and the downwash behind a supersonic lifting surface
are examined for the purpose of establishing approximate methods
for determining the downwash behind supersonic wings.

Lifting-line met>~ds are presented for calculating super-
gonic dowvnwash. An unbent 1ifting line (horseshoe-vortex system)
is used to compute the downwash behind rectangular and triangular
wings and the results are compared with the exact linearized solu-
tions. The chordwise position of the lifting line giving the
best average agreement with the exact solution is noted for each
wing. A bent lifting line is uséd to approximate the triangular
wing, and the results are in good agreement with the exact solu-
tion except for points within 1/2 chord of the wing trailing edge.
The use of a bent lifting line seems promising for obtaining
accurate estimates of the downwash behind swept wings.

INTRODUCTION

Several methods for obtaining the downwash behind supersonic
wings based on linearized theory have been presented. These
methods utilize conical superposition (reference 1), doublet dis-
tributions (references 2 and 3), or vortex distributions (refer-
ences 4 and 5). Each of these methods has certain disadvantages.
Conical superposition is restricted to wings having plan forms
composed of straight-line segments and is cumbersome for other
than trapezoidal or triangular plan forms. The doublet and vortex
distributions apply to arbitrary plen forms, but provide integral
expressions for dovnwash that are generally very tedlous to eval-
vate. The complexity of these expressions indicates that there is
a need for a straight-forward procedure for obtaining reasonably
accurate, if not exact, downwash solutions.
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A logicel approach to the development of a simplified super-
soni¢ downwash theory is to derive the supersonic analogues of the
line-vortex procedures that have proved valuable in subsonic theory.
Certain differences exist, however, between the properties of
vortices in a supersonic stream and vortices in a subsonic stream.
Similarly, the downwash fields behind subsonic and supersonic wings
differ in certaln respects. These differences must be investigated
before an extension of subsonic techniques is possible.

The present report,prepared at the NACA Lewis laboratory, has
three main objectives: (1) The downwash field induced by a super-
sonic line vortex of constant slope is derived and discussed;

(2) the downwash behind & supersonic lifting surface is examined
and related to the downwash field induced by line vortices; and
(3) 11fting-line methods for computing downwash are presented and
calculations based on these methods are compared with the exact
linearized solutions. Zero-thickness wings (lifting surfaces) are
considered throughout.

SYMBOLS
The following symbols are used throughout this report:
X,Xy
Y,¥4 Cartesian coordinate system
Zy24
u

perturbation velocities

:} unit vectors

4

Ll

v ] e

components of vortex vector (three-dimensional field)

-

-n
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G4 (0)

Gy (m)

L(y)

%q

components of vortex vector (vortex sheet)

wing span

function used in evaluation of finite part of divergent
integral (equation (7))

local wing pressure coefficient
effective chord of bent lifting line
root chord of wing

complete elliptic integral of second kind with modulus
2
1 -<%h_>
2cy

(¥ - meXy) (B°myYy - Xy)
ry [(vy - m%y)% + (- $Pmi2)2,7]

A 4y
spanwige 1ift distribution
free~-gtream Mach number

slope of line vortex or lifting line

VX2 - B%ys2 - pPz,?

free-stream velocity (taken in x-direction)

X - Ii
J =1
Z - Zi
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o angle of attack

B cotangent of Mach engle \MZ - 1
€ integration interval

K . circulation

P perturbation-velocity potential

Ap Pp ~P3p

p free -gtream density

c crogs-sectional area of vortex tube

r spanwise distribution of wing circulation
Tha wing circulation at midspan

w resultant vorticity (t2 + nz + Qz)l/z

finite part of divergent integral

jg‘ line integral along closed curve

Subscripts:

a,b points of intersection of forward Mach cone with line vor-
tex, 1lifting line, or edge of vortex sheet

B bottom surface of z = O plane

c line iﬁtegration

1=1,2,3. . .n points on vortex lines

1 plan~form leading edge

S surface integration

T top surface of z = 0 plane
t plan-form trailing edge

<

volume integration

o variable of integration

w1118
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Superscripts:

- value of function at point of discontimuity when approach-
ing from negative y-direction

+ value of function at point of discontinuity when approach-
ing from positive y-direction

THEORY
General Vortex-Field Relations

The equations relating velocity and vorticity distributions
in a slightly perturbed supersonic stream are derived in refer-
ences 4 and 5. These relations are summarized in the following
section. The velocity field is assumed to consist of & major
supersonic free-stream velocity U (taken in the positive
x-divection) plus small perturbation velocities u, v, and w
such that the linearized equations of motion are applicable,

Three-dimensiohal vortex field. - The velocity field in vector
form is

= (U+u)i+v]+wk | (1)

The vortex vector field ® 4s defined as the curl of the velocity
vector. Thus

VXq

g1+ nd + Lk | (2)

®

&3
oy
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Vortex lines are lines that are tangent at all points to the local
vortex vector and are determined from the equation

2116 °

dx dy _dz
E"n‘g (3)

Reference 4 presents the following integral expressions for
the perturbation velocities induced by the three-dimensional vortex
fleld:

2 (zn-10)
B f 0 o)
u= - = ———dx_dy. dz (4a)
2n v rOS o Yo “o
2 (xt-2¢)
- - B —o> o>
V= o- f 3 dx, dy, dzg (4b)
v o
2 (Y .t -X_n)
____@__ 0 (o)
LA f =3 dx, 4y, dzq (4c)
v o
where
X, =X = X
Yo=5 -7,
Zo=z-zo

To =N,

The subscript o indicates a variable of integration. The inte-
gration is conducted over the volume V included in the forward
Mach cone from the point x,y,z. That is,

2 2
XOZ BA/YO + Zo
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The symbol / designates the finite part of a divergent inte-~
gral. (See references 4, 6, or 7.) The procedure for obtaining
the finite part is systematized in reference 7 as follows:

The integrals in equations (4a) to (4c) are of the form

A(x,) |
‘(xz - x,)3/2 o - ®
X

The upper limit in equation (5) corresponds to limits on the Mach

cone in equations (4a) to (4c). The finite part of this integral
is :

T ~2 A(x,) o
T (xz - xo)37§-dx° (€)
X
= -J(xl) -C
‘where
C= lim 2A(xp)

— - J(x,) 7
X512 IVXZ - Xgo (xO , )

The term J(x,;) 1s the indefinite integral of equation (5) and
J(x1) is the indefinite integral evaluated at the lower limit.
The jJustification for thls procedure is presented in references 4,
6, and 7. It can be shown that finite parts are treated in a
menner similar to that for ordinary integrals. The rules of addi-
tion, differentiation under the integral sign, transformation of
variables, and integration by parts apply.

Vortex sheet. - If vorticity exists as a surface of velocity
discontimity in the 2z, = O plane, then outside this plane, ¢,
1, and { are all zero, but in the zp =0 plane { = 0 whereas
¢t and n are infinite. However, the limits
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g' = lim ¢ dz,
dzo——eo

n'' = lim q dzg
dzo——+0

are finite end are given by (reference 5)

gl

Vg = Vr
(8)

|

-1

Up -~ Up

The subscripts T and B designate velocities on the top and
bottom surfaces of the 2z, = O plane, respectively. The perturba-
tion velocities induced by the vortex sheet are obtained by sub-
stituting equation (8) in equations (4a) to (4c). In particular,
the vertical-perturbation-velocity field (upwash) is given by

2 Y t' - X.n'
B o o'l

— &, dy, (9)
0

The area of integration S includes all the vorticity in the
forwerd Mach cone from Xx,y,z. .

Line vortex. - The vortex lines through all points on an
infinitely small closed curve bound a vortex "tube." The circu-
lation '

K= W0

(where @ = (gz + nz + Qz)l/z ig the resultant vorticity and ©
is the infinitesimal crogs-sectional area of the tube) is constant
at all points along the tube. The vortex-vector components at
eny point, in terms of the differential distance di, along the
vortex tube, are

d‘KO
£= w0z,
dy,
=g
dz
L= 0
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The elemental volume 18 dx,dyodzo = 0dly. A line vortex is gen-
erated by allowing the cross section of the vortex tube to approach
zero while maintaining ®wO constant. The upwash induced by such
a line vortex is found by substituting the preceding expressions
into equation (4¢) and equals

N

p2 K(Y, dx, - X, dy,)
w = es cmmem —
2n 3

(10)
c Yo

where the integration is conducted along the portion of the line
vortex within the forecone from x,y,z. A line vortex cannot
terminate within a fluid flow field but must either form a closed
curve or extend to infinity or a boundary of the field.

Upwash Induced by Line Vortices

Complicated velocity fields can be generated by the linear
superposition of relatively simple fields. It will therefore prove
useful for subsequent developments to determine the upwash field
induced by line vortices of constant slope.

Line vortex of constant slope and strength, - The upwash at
X,¥,z due to & line vortex of constant slope m and strength
K, intersecting the forward Mach cone at xy,,yp, (fig. 1) is
(from equation (10))

2 mé (y-mx)dy,

b
W= = e———
an [ [(1-822)7,2 + 2m(pPmy-x)y, + n? (a2 -BP52 -p242)| 3/2
| 0

(11)

The integration is performed in appendix A and yields

- .5 - ~_(y - mx) (Bzmy - X) (12)
2 o2y - 2228 g - m)2 4 (1 - uR)a? |
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The finite part of the integral in equation (11) is obtained by
substituting the lower limit into the indefinite integral (appen-
dix A). No contribution appears from the upper limit. By a trans-
lation of coordinates, the upwash due to a line vortex from xj,y;
that intersects the forward Mach cone at xp,y, (fig. 2(a)) is
found to be

" (T - mfy) (2myy - Xp)
V= Z 52y 2] (13)
ry [(Yl-mxl) +(l—Bm)z]
where
j=x-x7
Hh=vy-mn

Ty =A[ Xlz - Bzle - Bzzz

By superposition (fig. 2) of a positive line vortex K from
X1,y &end a negative vortex -K from x3,y2, the upwash due to
a line-vortex segment not intersecting the forward Mach cone 1s

v = §'—f;- [Gz(m) - Gl(m)] (14)

where the notation

(Y3 - m%y) (BPmyYy - Xy)
ry (33 - miXg)? + (1 - Bmyf) 247 ]

Gy (m) = (15)

is used. The subscript for G indicates the appropriate sub-
scripts for X, Y, Z, r, and m.

Equation (14) applies for any line vortex of constant etrength
and slope. The circulation K 1s positive when the vortex vector
is in the direction of integration. When the line vortex inter-
sects the forecone, the corresponding limit (infinite Gy(m) term)
18 neglected by application of the finite-part concept.

Line vortex of constant slope but varying strength. - Line
vortices may coincide to form a resultant line vortex whose cir-
culation is the sum of the strengths of the superposed components.
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The general line vortex is then one of variable strength K along
the line x, = xo(y,) baving the local slope my = dyo/dx,. The
upwash induced by the segment from x7,y3 to xp,y2 may be written

J2
2 k(Yo - moXe)
W=~ %{ 3 4y, (18)
m T, :
A

The evaluation of equation (16) is generally tedious. For the
particular case of constant slope, however, this equation may be
integrated by parts to yield a useful expression for upwash, Inas-
mich as :

BE(Y, - mXy) _ aGo(m)
mor03 dyo

the Integration by parts gives

J2 J2
w = ..21;? {‘o [Go(m)]} - f G, (m) aéy% dy, (17)
yL N

The term Ky [:Go(m)] is disregarded at a limit corresponding to a
point on the forward Mach cone.

Equation (17) is a generalization of equation (14) to account
for variations in strength along a line vortex of constant slope.
Both equations are of fundamental importance because appropriate
distributions of such line vortices will be used to simlate a
supersonic lifting surface.

Characteristics of upwash field due to supersonic line vortex., -

1. Infinite line vortices of constant strength and slope. An
infinite line vortex inclined supersonically (|Bm/21) to the free
gtream is shown in figure 3(a). Because both limits in eguation (14)
are neglected, the upwash induced by this line vortex is zero. This
result agrees with the indications of oblique-airfoil theory because
the perturbation velocitiles are zero downstream of the envelope of
the Mach cones from the trailing edge of a two-dimensional airfoil
inclined supersonically to the free stream. ‘
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The infinite-line vortex along the line (y, - y1) = m(xo - x3)
(fig. 3(b)), inclined subsonically (|Pmi<1l), has one limit that
intersects the forward Mach cone whereas the other extends to
infinity. The upwash is then, for 0<fm<1,

W= -2 lim Go(m)
xo'_°9'-m
yo"‘""m

kN1 - 8% (1 - mE;)

= o smem
on (Yl - mxl)z + (l - Bsz) 22

(18)

vhere x3,¥9 1s a point on the line vortex. The upwash is infinlte
along the line vortex. For m = O, equation (18) becomes

X T

W = + g =
2 y 2 4 42

(19)

which is identical with the expression for upwash due to an infinlte
vortex parallel to the stream (along the line y = y;) in an incom-
pressible field.

These results indicate that the behavior of the infinite super-
sonic line vortex for |Bm|>1 is completely different from that of
the incompressible flow vortex. However, when |Pml|<l, both vortices
have similar upwash properties in the vicinity of the vortex line
and are, in fact, identical for m = O.

2. Bent line vortices. The upwash due to a bent line vortex
(fig. 3(c)) of constant strength is

v = o @) -6 (n*) (20)

vhere m~ and m* designate the slopes of the line vortex before
and after the bend at x3,y;. The term 1r; appears as a factor in
the denominator of equation (20) so that the upwash exists only in
the aftercone from x,;,y; and is infinlte on the cone surface
(except in the z = 0 plane). This infinite value of upwash is

not to be confused with the Infinity Introduced at the Intersection
of the line vortex with the forward Mach cone, which is eliminated
by application of the finite-part concept.

1116

L
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Linearized Supersonic-Wing-Theory Relations

The perturbation velocities on supersonic lifting surfaces
(zero-thickness wings) have been evaluated for a large variety of
plan forms. (See, for example, references 7 to 9.) Those results
will now be utilized to determine the vortex field generated dy a
1ifting surface.

Velocity potential. - If the boundary conditions for a lifting
surface are specified in the 2z = 0 plane, the u and v veloc=-
ities are antisymmetric and the w velocities are symmetric about
this plane. Thus the veloclties on the top and bottom surface of
the 2z = 0O plene are related by

up = -up
Wqp = Vg

The discontinmities In wuw and v constitute a vortex sheet.
Because the flow is everywhere irrotational, except across this
sheet, a perturbation-velocity potential ¢ can be so defined that

op P
dq>=3§-dx+3§dy+§dz\ (22)

=udx +vdy + wdz

When the undisturbed flow field upstreem of the wing is considered
to be of zero potential, and the boundary condition requiring that

=ug = 0 off the wing (entisymmetry of u and zero 1ift off
wing) is applied, the potential in the 2z = O plane may be obtained
by integrating along lines of constant y. :

X

Prp =f up dx
x
1 .
(23)
xz )
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where /xl is the equation of the leading edge as a function of y.
From equation (23) it may be concluded that

1. Everywhere in z = O plane except behind the wing lesding
edge ®Pq =Pp = 0.

2. At a given span station ®p and ®p remaln constant for
all values of x downstream of the tralling edge.

Lines of constant potential for rectangular and triangular wings
are shown in figure 4.

Vortex lines., - The equation for the vortex lines (from equa-
tion (3)) is

n'dx - ¢'dy=0 (24)

When the following expressions (equations (8), (21), and (22)) are
substituted

PRt
T]'=uT-uB=2§r_=-2.;?£

the equation for the vortex lines becomes

3%3%3%5%

ai—dx+3y—-dy=ax dx + =0 (25)

Comparison with equation (22) shows that equation (25) represents
lines of constant potential. Thus the vortex lines coinclde with
the lines of constant potential in the 2z = 0 plane.

Circulation. - The circulation included between two points
X,¥1 end X,,yz on a wing is given by

n=jl§ud.x+vdy+wdz (26)

The path of integration is arbltrary except that the path should
cross the z = 0 plane only at the two specified polnts. If the
integral is taken along the top and bottom surfaces of the z =0

plane,

1116™
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X272 | : X151 '
K= (up dx + wp dy) + (ug dx + vg dy)
X1, X2,32
= (Pp 2 -Pp 1) + @3 -Pp2) = 4% - &y (27)

‘where APD equals ®Op -®p and represents the jump in potential at |

the point. The quantity A9 1s, in Pact, the doublet potential
(reference 2), so that the net circulation between two points equals
the difference in the doublet potential between those polnts. The
equivalence of a doublet distribution and a vortex distribution .
indicates that the flow about a 1lifting surface can be calculated on
elther basis.

Circulation anu 1lift. - The 1ift per unit span 1is given by the
chordwise integration

xt
L(y) = zo0% (Cp,p = Cp,r) ax (28)
xy

After substitution of the linesrized values for pressure coefficient

CP}T =°77% TTvx
ZuB %
ox

and integration, equation (28) becomes, because Acpz =
L(y) = oU Amy, : | (29)

The factor Mpy 1is the circulation included between the leading
end tralling edges at the spanwise statlion under consideration.
When this circulation is designated I, equation (29) becomes

L(y) = oul (30)
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which is the familiar incompressible-flow relation. Also

ar _ d(@p 'CPB)t
dy dy
= (vT - vB)t
= -(E')t (31)

Equation (31) relates the shed vorticity to the rate of change of
spanwise loading.

APPLICATIONS TO CALCULATIONS OF
SUPERSONIC DOWNWASH

The vertical perturbation velocities due to a supersonlc line
vortex of constant slope have been presented in & form that permits
enalytical or mechanical evaluation (equations (14) and (17)). The
vortex distribution associated with a lifting surface has also been
discussed. These relations will be used to develop exact and approx-
imate methods for calculating downwash behind 1lifting surfaces at
supersonic speeds.

Downwash an Infinite Distance behind Wing

The vertical-perturbation-velocity field behind & supersonic
1ifting surface (from equation (9)) is

2 (Yot - Xon')
w=-§;f 2 30 dx, dyo -
r

Sp o}

2 Y, ¢
¢l e
Sy Yo

where the integration over the plan form is designated by Sp and
over the wake by S,. As x becomes infinite, X, also becomes

(32)
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infinite in the integral for the bound (plan form) vortices. This
integral then becomes zero because X, is of higher order in the
denominator than in the numerator. Thus, only the integration over
the tralling vortex sheet contributes to the vertical perturbation
velocities at infinity. The trailing vortex sheet may be con-
gidered to consist of elemental vortices of infinlte length along
Yy = constant lines, each having the strength

aR = g' dyog_.d-_r_.

- o+ The vertical perturbation velocity at
o .

- ®,y,z due to the elemental vortex along y = yo 1is, from equa-

tion (19)

-4r,
iy, 7°) 1,

2x 2 2
Yo + 2z

dw =

80 that the vertical-perturbation-velocity fleld at infinity is
glven by '

]
2

¥, ar ay
b Yoz + 22 4y 7°

(33)

where 'b/2 is the semispan. The velocity field obtained from
equation (33) is identical to that induced by a subsonic wing with
the gliven span loading. The velcoecity field at infinity is thus
independent of Mach number (excluding the influence of Mach number
on dI/dy,). This result has been derived in references 1 and 2
by other methods. The evaluation of equation (33) is relatively
simple and may be used to approximate the downwash several chords
behind a supersonic wing.

Regions of Infinite Downwash
Approximate solutions may modify or introduce singularities

in the downwash field. It is therefore of interest to establish
the regions for which linearized theory indicates an infinite

- dovnwash,

 Infinite downwash in 2z = O plane, - The vertical perturba-
bation velocities in the 2z = O plane that exist an infinite
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distance behind a wing having a discontimuity in 4I/dy, will
first be considered. These velocities are determined from the
equation

b
2

ar/ay,
w=- 'él:? __Y_O_P_ 4y, (34)

o]
2

The Cauchy principal v2lue is required for points on the vortex
sheet. For the particular case of triangular loading (fig. S(a))

b
in the integration interval -7<y,=<0 and

ar _ _Zm

ay, b
in the interval 0< Fo—% (T, 1s the circulation at the midspan).
When these values for %‘— are substituted in equation (34), the

o

integral ylelds

In 2

W = = loge (35)

2
b
-

Infinite upwash exists along the lines y = 4+b/2 whereas infinite
downwash exlists along the line y = O. These infinite values are
due to the discontinuities in the spanwise vorticity distribution
and apply for all points on these lines downstream of the wing
trailing edge.

In general, if (dT/dy,)” end (aT/dy,)* represent a dis-
contimity in the rate of change of spanwise loading at station
¥ =¥, Iinfinite vertical perturbation velocities will exist a.long
y = y, downstream of the trailing edge. For (aI/dy,)” <(al/dy,)
_ infinite upwash will exist, and for (dT/dy,)” >(dI/dy,)* infinite
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downwash will exist along this line. Such discontinnities in
al/dy, originate both at a wing tip and at those points along &
supersonic trailing edge where the plan-form slope is discontinuous
and the local-wing-pressure coefficlent is not equal to zero. This
discontinuity in vorticity may be verified by the methods employed
in reference 1 for finding the upwash and sidewash directly behind
& supersonic trailing edge.

The discontinuity in shed vorticity at the tips of an ellip-
tically loeded wing 1s a special case of the previously stated rule

governing infinite vertical perturbation velocities in the 2z =0
plane. For wing loading given by

’ 4 2
P=Pm l - 'bzyo

the shed vorticity 1s

. _ir. 5
ar  _pe °°°
dyo 4 2

l-bz yO

and the vertical-perturbation-veloclty field at infinity, in the
2 = 0 plene, is

_ Yo &¥o
:tbz L&,
/v ¥, R
2
Integration yields
ye-m
)

for

bl<z
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for

As indicated in figure 5(b), the vertical perturbation velocity is
discontimious at y = £b/2, but is bounded for &ll points on the
vortex sheet,

Infinite downwash on Mach cone from wing tip. - Reference 3
indicates infinite vertical perturbation veloclties on the down=-
stream Mach cones from the tips of a triangular wing. This result
will now be extended to apply to any wing tip formed by the inter-
section of a subsonic leading edge and a supersonic trailing edge
provided that the slope of the subsonic edge is not zero at the
tip (fig. 6).

The contribution to the vertical-perturbation-velocity field
due to the bending of an elemental vortex at the tralling edge
(fig. 6) 1s, from equation (20),

ar
dyg Yo ‘
av = - 19-2—;- [Go(m") - GO(O)] (36)
where
G‘ (o) = xOYO

ro (Y2 + 20°)

The vertical perturbation velocity at a point on the Mach cone from
this tip due to the bending of the vortices is found by integrating
(almmg the trailing edge)

0
1 - ar '
W= - 5;‘/y‘ [Go(m ) - GO(O)J a-y—; d.yo (37)
a
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Equation (37) in the expanded form becomes

0

3

v -l (Yo - mgX,) (Bzmwo- Y, - %) XY, d

+
2x (Y, -~ mgXp)2 + (1 - BPug2)z2 Y 2 + 22| To

1 .
T, 4y,

&

0
e, °

(38)

The limits of Integration are roots of r,, so that the factor
1/r, 1is singular of order 1/2 at the limits and the integral is
improper (assuming (mo')yo < 0 # 0). The convergence of the integral

depends on the nature of dI/dy, at the limits. Appendix B shows,
however, that dI'/dy, 1s also singular of order 1/2 at the tip.
The combined singularity causes equation (38) to diverge at the
upper limit and results in logarithmically infinite vertical per-
turbation velocities on the Mach cone from the tip. The divergence
1s a consequence of both the singularity in 4aI/dy, and the singu-
larity on the Mach cone from a bend in the elemental line vortex.

The infinite vertical perturbation velocities on the Mach cone
from the tip do not appear in the 2z = 0 plane inasmch as equa-
tion (38) then reduces to

0
- N, 2 2er 2
-1-_- mo Xo -!B YO ar
2x (Yo - mg Xp)Yo dy, °©
e,

W=

and the singularity due to ry 18 no longer present.

Approximate Downwash Solutions

Several approximate methods for obtaining downwash were con-
sidered. Methods based on a lifting line seem the most promising

~and are discussed in the following sections. A bent 1lifting line

is proposed for determining the downwash behind e swept wing and
an unbent 1ifting line (horseshoe vortex system) for determining
the downwash behind an unswept wing. These methods are applied to
compute the downwash behind triangular and rectangular wings and
the results are compared with the exact linearized solutions.
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A 1ifting line concentrates the chordwise loading into a line.
Thus the bound circulation is represented by & line vortex of vari-
able strength (K = I' = upt), whereas the trailing-vortex system
maintains the same vorticity (¢' = -dI'/dy,) but now originates at
the line rather than at the trailing edge.

Bent lifting line. - A lifting line approximating the section

centers of pressure
Xy,
, (CP:B - CP)T)(x - xz) dx

xcp = Il + Xab
/ (CP)B - CP:T) ax

X1

seems to be a reasonsble representation of a sweptback or swept-
forward wing. In order to facilitate downwash calculations, the
line of section centers of pressure can be approximated by two
stralght-line segments, each connecting an end point to the mid-
point of the line. The result is a bent lifting line (fig. 7) of
span b and effective chord ¢ (x-distance between midpoint and
end points of lifting line). For & sweptback lifting line, the
slopes at the midpolint are

0= =55

Zce

(mo7)y,,

+ D
(mg )yo 0 = Zcg

The vertical perturbation velocitles induced by the bound
vortices cen be determined from equation (17) and equal

J
T b
5 =0 ") - + -1 ar
W= 2% [:Go(m ) G'O(m ):lyo =0 2% Go(m) _d-yo dyo (59)
Ja

where the integration is conducted along the 1ifting line (figs. 8(a)

and 8(b)). The vertical perturbation velocities induced by the
tralling-~vortex system are obtained from

ottt
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w

Ip
1 ar
= / G, (0) ave dy, (40)
T,

The term Go(0) is as defined for equation (36) and the Integration
is again conducted along the lifting line. The vertical perturba-
tion velocities induced by the complete lifting-line system (bound

and trailing vortices) are then the sum of equations (39) and (40)
and equal

b
T
v = = [Go(m) - Go(m")] Jg=0" 23,-‘-/ [Go(m) - Go(0)] %?P; ay,
Jy
: (41)

The value my = (mo') =0 is used for the integration interval

Jo
Ja<¥o<0 and my = (m*)y - o 1is used for the interval
OS yos y‘bo ° -

Equation (41) is the expression for the vertical perturbation
velocities behind a swept wing using the bent-lifting-line approxi-
mation. This equation can also be considered as derived from a
superposition of & system of bent line vortices of constant strength
(equation (20)), as indicated in figure 9. The nonintegral term of
equation (41) is then the contribution of the bent line vortex of
strength I'p, whereas the integral term represents the contribution

of the elemental line vortices of strength %5;-dyb.
. o'

The integral term of equation (41) may be evaluated by analyt-
ical or mechanical methods. When mechanical methods are used, the
singularities in the integrand must be isolated. Suitable proce-
dures for isolating the commonly encountered singularitles are as
follows:

(1) Singularity due to intersection of forward Mach cone with
1ifting line. The integrand in equation (41) is infinite at the
intersection of the forward Mach cone and the lifting line (for
z # 0). The contribution 3w of the integral, for the interval
Tp - p<¥o<¥ (fig. 8(a)), to the vertical perturbation velocity
field may be written S
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for
Pmy>1,
Jp ‘Iy'b
‘ _ a2 v L a2 2ye
8o _ m ol ny(x - Bm y) - (1 - p°m )y
7 :
o | efm2 -1 by \(7 - mx)2 (1 - P 2)el|
Y ~¢p o~ €p
2m, 4 / (ﬁzmo2 - 1) €
= —————— gin
p2m 2 -1 \/2 Eno(x - BPmgy) - (1 - ﬂzmoz)'yb]
for
Pmg = 1,
T yb
dy, | m, \/z(y - mgX)y, + mozxz - yz - 28
o y - moX
Yp - b | b = %
R s
oA\lm X - ¥

where m, 1s the slope of the liftingline at jyp. A similar pro-
cedure applies for the singularity et yg.

(2) Singularity in dI'/dy, at wing tip. The vertical pertur-
bation velocity at a point whose forward Mach cone intersectes the
edges of the trailing vortex sheet (fig. 8(b)) is obtained from
equation (41) by integration between the limits = %Syoﬁlzl. If
d.I‘/dyo is singular at these limits, the singularity may be isoclated
by a procedure similar to that used in equation (42). Thus,the
contribution to the vertical perturbation velocity fleld, from the

integration interval -12-3- - <Y< -3-, may be written
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b
2
1 ar
Sw = -~ >3 [Go(m) - GO(O)] a}: dyo
b €
5 = p
b
2
1 ar
-1 [eotm) - eo(0)] - {[co(m) - GO(O)]} g e -
.;_’. - €b yO = E
b
1 2 ar
g (oo - o)) v, %o
Jo = 2 /b (43)
7%
where
b
2
ar
L a4y - - (D b
b ayg o ()yo’é'"eb
"%

(3) Singularity at points on vortex sheet. The Cauchy prin-
cipel value of the integral (equation (41)) is required for deter-
mining the vertical perturbation velocity at a point on the vortex

sheet 2 =0, - %S ys%’-. For this case, considering the interval

y - €<y <y + ¢ (fig. 8(c)), the contribution of the integral to
‘the verticel-perturbation-velocity field is

y +¢
2 2+ 2
m_AX - B7Y
Sw 1 ? O P o arl d‘yo (44)

= 4+ .
21[ ¢ YO - mOXO)YO dyo
y -

If dP/dyo can be approximated by the first two terms of the
Taylor's expansion
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]

=
(i) e f
Yo \%o/, _ ° dy 2 _
yo =Yy (o] yo =Yy
and € is sufficiently small that
) on - BzYo2 o -1
(Yo - moXy)
equation (44) may be written
"y + €
Sw - - —]-'— .d-"-I:— Y d'zr‘ dyo
= T Zx 3y °\ay 2 T,
G- I =7 Vo= 7
| ) 2
: -4 £[&T (45)
« a 2 .
yO yo = y

| Inasmuch as dI‘/d.yo is an odd function in y, for a wing symmet-
| rical about the midepan, dI/dy, is either discontimuous or zero
| for yo = 0. If dl"/dyo is discontimuous, the vertical perturba-
‘ tion velocities are infinite along this line.

Unbent 1lifting line. - The unbent lifting line (horseshoe-
| vortex system) appears to be a reasonable representation for an
upswept wing. The use of such a lifting line considerably sim-

plifies the calculations.

The vertical perturbation velocltlies induced by an unbent
lifting line (along the y-axis) are obtained from equation (41)
by setting my = and are equal to

I
1 X Yo(:"o2 = BZZZ) ar

S 2n 2 _ p2,2 2 2) 4
v, ro(x Bz)(YO + z¢) Wyo

W =

Yo - (48)

The singularities are isolated as £ollows :
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(1) Singularity due to intersection of forward Mach cone with
1ifting line.

Ip
2 2.2
T x Yo(ry” - B%2%)  4p ([3222 dl") d_yg+
2n (x2 - BZZZ)(YOZ + 22) dy, x Y, dy, ro
Tb=%b Yo
b
1 <l3222 ar ) ?_‘2_’2
2n \x Y_ dy r
o Yo/, _ ()
o= -€
=%
where
v
E-Z-O_ = .2_ Sin-l : €b
r, B 2(yp - 3)
Y’b"e'b
(2) Singularity in dI/dy, at the tip.
b r—
z .
2 2.2 2 _a2.2
o o <L x Y (r ~“-8"2%) - x Y (r ~-B%z%) (}Ldy .
26 o |rolxB-BRaf) (Y, 2+22)  |ro(xB-%22) (¥, Bra?) dy, ~°
E-Eb L y0=-2-
1 X Yo(ro2 - #%2%) (T)
= r b
2n ro(xz - BZZZ)(YOZ + ZZ) yO = é- - Gb

oo

Io 7
(3) Singularity at points on vortex sheet.

2
6w=-€-<dr
T \a 2
Yo

Yo =7

LY

9TTT
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The cliordwise location of the unbent lifting line that will give

the best average agreement with the exact llinearized solutlon is

8tlll to be determined. According to the techniques used in subsonic-
wing theory, an unbent 1lifting line at the wing center of pressure
should be a good first approximation. However, further investi-
gation is required. It may be possible to determine the best loca-
tion for each general class of plan forms by comparing the lifting-
line solution with the exact linearized solution for several
representative plan forms.

Examples and discussion, - A bent 1lifting line and an unbent
1ifting line will be used to obtain solutions for the downwash in
the y = O plane behind trianguler wings having subsonic leading
edges. The chordwise distribubion of wing loading suggests the use
of the bent 1ifting line. The unbent 1lifting line will be used for
purposes of comparison. An unbent lifting line also will be used
to compute the downwash in the y = O plane behind rectangular
wings. The chordwise location of the unbent 1ifting line giving
the best average agreement with the exact linearized solutions
willl be noted for both the triangular and the rectangular wings.
In order to simplify the expressions, M =,2 (that is, B = 1)
willl be assumed. g

The spanwise circulation distribution for a triangular wing

of span b and root chord c¢,, having subsonic <§%}-<]> leading

edges, is (from equation (24) of reference 2) r
P o=loy =F 1 -7

where E 18 the complete elliptic integral of the second kind

2
with modulus A/l = (52—) . The circulation at the midspan is
r
‘ - aUb
I = %~

and the rate of change of circulation is

dr 40U Jo
iy, Eb \/ 4y?
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The expression for the vertical perturbation velocities in the
y = 0 plane using the bent-lifting-line approximation of fig-
ure 10(a) is

Iv
- [ sy [ [Gol®) - Go()]
V= am |l I Jo Vo
Jo 0 1.4 .2
where (mo+)y 0= -(-39— Equation (47) is obtained from equation (41)
o~ r

and the properties of an even function. The vertical-perturbation-
velocity field behind an unbent 1lifting line, having the same
loading (fig. 10(b)) is from equation (46),

T 2 2y, _2
x(ry” - 2%) ¥, 4y,

w__4cruf ‘
T #bE

2 2 2 2 4 2
0 r (x° - 2°)(y, +z)(l-—-b?yo

The spanwise circulation for a rectangular wing of aspect

(48)

ratio -cP;ZZ for the tip region 12)- - cp S yosg is

and for OSyosg - Cn

I'=2a0 o, (49b)

Equations (49a) and (49b) were obtained from equation (20) of refer-
ence 8. The wing is illustrated in figure 10(c). The rate of

change of spanwise circulation for g- - Cp< yogg is

1116
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The vertical-perturbation-velocity field in the y = O plane
behind an unbent 1lifting line having this loading is

b
2
2 2
.o - 4olc,, x (ry” = 2°) ¥,
2 ro(xf - 22)(y 2 + 28)
b )
z " % ‘ (50)

Equation (47) was evaluated to determine the downwash along
the line y =0, z =0 and along the line y =0, 2 =0.1D
for triengular wings with aspect ratios (Zb/cr) of 1.6 and 3.2,
Equation (48) was evaluated for the same wings at points along
the 1ine y = 0, z = 0. Equation (50) was evaluated at points
along the line y =0, 2z = 0 for rectangular wings with aspect
ratios (b/cr) of 2 and 4. The integrations were performed mechan-
ically for equations (47) and (50) and analytically for equa-
tion (48). The results are compared with the exact linearized
solutions obtained from references 1 to 3 in figures 11 to 1l4.

The bent=-1lifting-line solutions for the triangular wings are
shown in figures 1l and 12, The discontinuity in the curves for
the z = 0.1 b plane (figs. 11(b) and 12(b)) designates large
negative (upwash) values that become infinite on the Mach cone
from the tip, as indicated in the discussion assoclated with
equation (383. The agreement with the exact solutions is good
for all points except those within 1/2 chord from the trailing
edge. The correlation is unexpected because of the large contri-
bution of the nonintegral term of equation (47). This term is
agsociated with the bending of the lifting line at the midpoint.
This bend was artificially introduced. The agreement with the
exact downwash solutions, however, indicates that the bent lifting
line is a good average representation of the triangular-type wing
(at least in regard to the downwash solution in the region of
the line y =0, 2z = 0). This method should give even better
agreement when used to represent a sweptbac!: wing such as the one
represented in figure 7, because the bent lifting line would then
more closely approximate the actual vorticity distribution.
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The unbent-lifting-line solution for the triangular wings is
pregented in figure 13. The lifting line is placed at the
3/4-chord point to give the best average agreement with the exact
linearized solution. (The center of pressure for these wings is
at the 2/3-chord point.) The agreement is not as good as that
obtained with the bent 1lifting line and Indicates that the bent
line is more suitable for computing downwash behind triangular
wings. The smaller-aspect-ratio wing (2b/cp=1.6) 1is in better
agreement with the exact linearized solution because of the rapldity
with which the downwash approaches the asymptotic value at infinity.

The unbent-lifting-line solution for the rectangular wings is
presented in figure 14. The downwash obtained with the lifting
line at the 1/2-chord point is in excellent agreement with the
exact linearized solution. (The location of the center of pressure
is at the 4/9-chord and 10/21-chord points for aspect ratios of 2
and 4, respectively.) These calculations suggest that the unbent
lifting line is well suited for computing the dowmwash behind
unswept supersonic wings and that the best chordwise position for
the unbent 1lifting line is at or slightly downstream of the wing
center of pressure.

A more accurate estimate of the downwash in the z = O plane
close to the trailing edge may be obtained by Judiciously fairing
the curve obtained by the line-vortex method to the known value
of downwash at the trailing edge. At a subsonic trailing edge
satisfying the Kutta condition, ~w/dU 1is unity; whereas at a
supersonic trailing edge, -w/aU can be computed by the method
presented in reference 1.

It should be noted that linearized theory neglects the effect
on the downwash of the friction wake and the displacement and dis-
tortion of the trailing vortex sheet. An experimental program,
gsuch as that reported in reference 10 for wings in subsonic fllght,
ig ultimately required to determine the necessary modifications to
linearized theory that will result in good agreement between theory
and practice.

SUMMARY OF ANALYSIS AND APPLICATIONS

The perturbation field induced by a line vortex in a super-
sonic stream and the doimwash field behind a supersonic lifting
surface have been examined for the purpose of establishing approx-
imate methods for the calculation of supersonic downwash.
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An infinite line vortex of constant strength and slope, super-
sonically inclined to the free stream, induces no perturbation
field. A subsonically inclined line vortex has properties similar
to those of a vortex in an incompressible-flow field. Bends in a
line vortex induce infinite vertical perturbation velocities on
the surface of the downstream Mach cone from the bend (except in

~the 2z = 0 plane).

The downwash field behind a supersonic lifting surface differs
from that behind a subsonic wing ln several respects. For a super-
sonic lifting surface, discontinuities in shed vorticity occur at
those points along & supersonic trailing edge where the plan-form
slope is discontinuous and the local pressure coefficient is not
zero. These discontimmities lead to singularities in the downwash
field in the z = 0 plane. Also, the vertical perturbation veloc-
ities are logarithmically infinite on the downstream Mach cone
from a wing tip formed by the intersection of a subsonic leading
plan-form edge and & supersonic trailing plan-form edge.

, A bent-lifting-line method has been proposed for the solution
of the downwash field behind swept wings. When applied to a
triangular wing, this method gave results that were in very good
agreement with the exact linearized solution for points near the
line y =0, z =0 except for points within 1/2 chord of the
wing trailing edge. '

An unbent 1lifting line (horseshoe-vortex system) has been
proposed for unswept wings. This method was applied to determine
the downwash behind rectangular wings with aspect ratios b/cr of
2 and 4. Excellent agreement was obtained for both aspect ratios
by placing the 1ifting line at the 1/2-chord point.

Lewis Flight Propulsion lLaboratory, '
National Advisory Committee for Aeronsutics,
Cleveland, Ohio, April 29, 1949.
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APPENDIX A

UPWASH INDUCED BY LINE VORTEX

The upwash induced by the line vortex segment of figure 1 is,

b
B2k f B m? (y-mx)dy,,
o 0 [(l-Bzmz)aro2 + 2n(pPmy-x)y, + mz(xz-ﬁzyz-ﬁzzz)]sﬁ

(11)

The upper limit is at the intersection of the line vortex (yo = mxg)
with the trace of the forward Mach cone in the 2z = O plane

[(x - x,:,)2 - B(y - yo)2 - p%2% = O] and is therefore the appropriate
root of the expression appearing in the denominator of the integrand.
The roots are

-m(pPmy - x) + fm Vg - mx)? + (1 - 8PuP)s? (A1)

Jgsdp =
8’ (1 - pen?)
so that equation (11) may be rewritten
5 T
2
-2x(1 - p%n?) dy,
Bm“k(y - mx) o [(ya - ¥o) (7 - yo)]
From equations (6) and (7),
[T=-3(0) -c¢ (A3)

where

2(yq + 7p)

(Ta = %)% o/TaT0

J(0) =
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and
= 1im
yo—ﬁyb
= lim
yo"_\fyb
=0

Thus

35

i 2(yq + 7p - 25,)
(772 1/(Fa=o) (7o)

[3M)

3
z
(ya=7p)" 7o

I 2(yq + ¥p)

=T )2
(T = 7)° \[TaTy,

(a¢)

Substituting equation (A4) in equation (A2) and solving for w

ylelds

(v J-.mx) ( ﬁsz"x) (A5)

(2-p2s 2,2)2 [(y_mx)z v (102 zz]
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APPENDIX B

LOADING IN VICINITY OF WING TIP

The nature of the loading in the vicinity of a wing tip formed
by the intersection of a subsonic leading edge with a supersonic
trailing edge (fig. 6) is to be determined.

According to linearized theory, up

in the region of a sub-
sonic leading edge is singular of the form

1

where x; 1s the equation for the leading edge as & function of
Yo- This relation may be deduced from equation (11) of refer-
ence 10. The corresponding wing circulation is

x
r 2 o 4 (B1)
= A@t = —— x - xz B
NXo = X
x
1
The derivative of equation (Bl) 1is
2 d(xt - 11)
ay.
& - 2 (2)
' o I =Xy
where (x¢ - x3) 1s the wing chord as a function of y,. However,
(xy - x3) mst be of the form
x, =X, =3, [£(5,)] (B3)

(where [f(yo)] # 0,) 1in order to satisfy the restrictions
y 0

=
(o]

that at the wing tip

1116
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-

(a) the chord is zero

)
H
=

2]

(xy - x3) =0
t Zyo_:O

(b) the slopes of the leading and trailing edges are neither

equal
[d(xt - xz)} /o
dy, Yo = O

nor in the free-stream direction

o]
dyo Iy =0

0

Substituting equation (B3) into the denominator of equation (B2)
yields

” d(xy = x3)
ar_ dyo
o Jyo @%yoﬂ

Equation (B4) indicates that 4al/dy, 1s singular of order 1/2 at
Yo = 0 for the wing tip of figure 6.

(B4)
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Zéﬂ.ne vortex,

Jo = mMX,

Forecone trace in
Zo, =0 plane,

x-x,=8 \(y-y,)2~22

Figure l. - Geometric relations for determination of upwash
) induced by line vortex.
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Line vortex of
strength K

'l - - -E'S’?Gl(m)

(xy752)

(a) Line vortex from (x,,¥,).

Q (x19y1 )-‘
Y (ngyz )
y
Ys¥o Line vortex of
strength « K
Y
XgX, w, = .& Gg(m)

(x9¥»2)
(b) Line vortex from (xg,yz).

(xvyl) \

Line vortex of
lU (x0,¥5) strength
wWSw, + W
To¥, 1 2
’ - ﬁ[cz(m)-cl(m)]

(x57532) ~NACA -~

(¢) Line vortex from (xl,yl) to  (x5,¥5).

Figure 2, - Superposition for obtalning upwash induced by line-
vortex segment from X,,y) to X5,yo.
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(%57s2)

(a) Infinite line vortex inclined supersonically
to free stream,

(%o5¥0)

|em} <1

(x5¥52)

(b) Infinite line vortex inclined subsonically

to free stream,

(x9¥52)

(¢) Bent line vortex.

Figure 3. = Typlcal line vortices.
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Lines of constant
potential
(b) Triangular wing.

Figure 4. = Lines of constant potential for rectangular and

triangular wings.
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&
0 40
)
= 4
-
. : (a) Triangular load distribution.
2
/ “39‘50
(b) Elliptic load distribution.
- Flgure 5. - Upwash in z=0 plane an infinite distance behind wings

of triangular and elliptic loading.
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y’yo

(XX

- Elemental
vortex,

ak=.3L &
Yy Yo

Figure 6. - Wing tip formed by intersectlon of subsonic leading and

supersonic tralling plan-form edgese.
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Bent lifting

line
Centers of
e pressure
d \\\
7 ~b\s b\
e Ge’ z ’(ce"ﬁ) AN
N
4 N

Figure 7. - Bent-lifting-line approximation for sweptback wing.
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(a) Intersection of forecone with lifting line.

(b) Intersection of forecone with edge of vortex sheet.

Y’yo
XX
*0 €
(Fe"%) (Fe’%)
(x,¥,0)
(¢c) Point on vortex sheet. WNMA

Figure 8. = Improper intervals of downwash integral,
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Strength lﬁﬁ—\

Strength -[—

ay; | N

Figure 9. - Superposition of bent line vortices ylelding bent-
lifting-line representation of supersonic wing (equation (41)).
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(a) Bent-lifting-line representation of °*
triangular wing.
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2)
0,==}—
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X 21XQ
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{(b) Unbent-lifting-line representation
of triangular wing.
VA AN N\ Unbent 1lifting line
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Ve N VRN aY N
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/ . N N
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(c) Unbent-lifting-line representation of rectangular wing.
Figure 10, « Lifting~line representations of triangular and rectangular

wings,
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