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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE 1925 

LINE-VORTEX THEORY FOR CALCULATION OF 

SUPERSONIC DOWNWASH 

By Harold Mirels and Rudolph C. Haefeli 

SUMMARY 

The perturbation field induced by a line vortex in a super- 
sonic stream and the downwash behind a supersonic lifting surface 
are examined for the purpose of establishing approximate methods 
for determining the downwash behind supersonic wings. 

Lifting-line methods are presented for calculating super- 
sonic downwash. An unbent lifting line (horseshoe-vortex system) 
is used to compute the downwash behind rectangular and triangular 
wings and the results are compared with the exact linearized solu- 
tions. The chordwise position of the lifting line giving the 
best average agreement with the exact solution is noted for each 
wing. A bent lifting line is used to approximate the triangular 
wing, and the results are in good agreement with the exact solu- 
tion except for points within l/2 chord of the wing trailing edge. 
The use of a bent lifting line seems promising for obtaining 
accurate estimates of the downwash behind swept wings. 

INTRODUCTION 

Several methods for obtaining the downwash behind supersonic 
wings based on linearized theory have been presented. These 
methods utilize conical superposition (reference l), doublet dis- 
tributions (references 2 and 3), or vortex distributions (refer- 
ences 4 and 5). Each of these methods has certain disadvantages. 
Conical superposition is restricted to wings having plan forms 
composed of straight-line segments and is cumbersome for other 
than trapezoidal or triangular plan forms. The doublet and vortex 
distributions apply to arbitrary plan forms, but provide integral 
expressions for downwash that are generally very tedious to eval- 
uate. The complexity of these expressions indicates that there is 
a need for a straight-forward procedure for obtaining reasonably 
accurate, if not exact, downwash solutions. 
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A logical approach to the development of a simplified super- 
sonic downwash theory is to derive the supersonic analogues of the 
line-vortex procedures that have proved valuable in subsonic theory. 
Certain differences exist, however, "between the properties of 
vortices in a supersonic stream and vortices in a subsonic stream. 
Similarly, the downwash fields behind subsonic and supersonic wings 
differ in certain respects. These differences must be investigated 
before an extension of subsonic techniques is possible. 

The present report,prepared at the NACA Lewis laboratory, has 
three main objectives: (1) The downwash field induced by a super- 
sonic line vortex of constant slope is derived and discussed; 
(2) the downwash behind a supersonic lifting surface is examined 
and related to the downwash field induced by line vortices; and 
(3) lifting-line methods for computing downwash are presented and 
calculations based on these methods are compared with the exact 
linearized solutions. Zero-thickness wings (lifting surfaces) are 
considered throughout. 

SYMBOLS 

The following symbols are used throughout this report: 

X,Xi 

y>yi ) Cartesian coordinate system 

z,z± 

u 

V 

w 

i 

T 
k 

I 

perturbation velocities 

} unit vectors 

components of vortex vector (three-dimensional field) 
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r " 
T*  > components of vortex vector (vortex sheet) 

"b     wing span 

C     function used in evaluation of finite part of divergent 
integral (equation (7)) 

Cp local wing pressure coefficient 

ce effective chord of hent lifting line 

cr root chord of wing 

E complete elliptic integral of second kind with modulus 

2cr 

Gi(m) = 
(Yi - m1X1)(ß2m1Y1 - Xj) 

ri   RYi " ^i)2 + C1 - ß2mi2)Zi2] 

-1 xi*i Gi(°)  - „    ,    o o, ri  (Yi2 + Z±
2) 

L(y) spanwise lift distribution 

M free-stream Mach number 

m sJ ope of line vortex or lifting line 

r±  = ^Xi2 - ß2Yi2 - ß2Zi2 

U     free-stream velocity (taken in x-direction) 

Xi =   x - x^ 

Yi =  y - y± 

Zj =   z - z^ 
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a angle of attack 

ß cotangent of Mach angle   yVr - 1 

€ integration Interval 

K circulation 

qp perturbation-velocity potential 

Acp cpT - cpB 

p free-stream density 

0 cross-sectional area of vortex tube 

T spanwise distribution of ving circulation 

Tm wing circulation at midspan 
o      p    * p J*/« 

CO resultant vorticity (£ + T] + * ) 

fT finite part of divergent integral 

0 line integral along closed curve 

Subscripts: 

a,b points of intersection of forward Mach cone with line vor- 
tex, lifting line, or edge of vortex sheet 

B "bottom surface of z = 0 plane 

C line integration 

i = 1,2,3 ... n points on vortex lines 

1 plan-form leading edge 

S surface integration 

T top surface of z = 0 plane 

t plan-form trailing edge 

V volume integration 

o     variable of integration 

«C 

H 
H 
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Superscripts: 

value of function at point of discontinuity when approach- 
ing from negative y-direction 

value of function at point of discontinuity when approach- 
ing from positive y-direction 

THEORY 

General Vortex-Field Relations 

The equations relating velocity and vorticity distributions 
in a slightly perturbed supersonic stream are derived in refer- 
ences 4 and 5. These relations are summarized in the following 
section. The velocity field is assumed to consist of a major 
supersonic free-stream velocity U (taken in the positive 
x-direction) plus small perturbation velocities u, v, and w 
such that the linearized equations of motion are applicable. 

Three-dimensional vortex field. - The velocity field in vector 
form is 

q ■ (U + u) i + vj + wk (1) 

The vortex vector field W is defined as the curl of the velocity 
vector. Thus 

55 = V X q 

= |T+ TJJ +.£k (2) 

where 

&■ 

_ /ow  dv) 
6 " \3y" " oTy 

/du  oV 
* = B7 - ox"j 

t      /dv  du\ 
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Vortex lines are lines that are tangent at all points to the local H 

vortex vector and are determined from the equation JH 

dx  dy_  dz f*\ 

i = 11 = t {z) 

Eeference 4 presents the following integral expressions for 
the perturbation velocities induced "by the three-dimensional vortex 
field: 

ß2     r  (Z T) - it) 
U ö " 27 \L T3 ^o ^o dzo (4a) 

/    V xo 

ß2       r  (X{  - Z   |) 
V *   - toil r5 ^o **> too «*> 

where 

2 (Y^VO 
w " " §T I   /    3 ^o d7o **o (4c) 

v ro 

X0 = x - x0 

?n = y  - 7r 

zo = z  - zo 

ro " VXo2  - ß V  " ß V 

The subscript    o    indicates a variable of integration.    The inte- 
gration is conducted over the volume    Y    included in the forward 
Mach cone from the point    x,y,z.    That is, 

coaW 2+z/ 
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The symbol /     designates the finite part of a divergent inte- 
gral. (See references 4, 6, or 7.) The procedure for obtaining 
the finite part is systematized in reference 7 as follows: 

The integrals in equations (4a) to (4c) are of the form 

A(x0) 
dXr (x2 - x0)3/2 ^ 

(5) 

The upper limit in equation (5) corresponds to limits on the Mach 
cone in equations (4a) to (4c). The finite part of this integral 
is 

A(x ) 

[Y-Ii       (x2 - x> ^ 
(6) 

= -J(xi) - C 

where 

C =  lim 

x0—>
x2 

2A(x2) 

Vx2 " xo 
J(x0) (?) 

The term J(x0) is the indefinite integral of equation (5) and 
J(XL) is the indefinite integral evaluated at the lower limit. 
The justification for this procedure is presented in references 4, 
6, and 7. It can he shown that finite parts are treated in a 
manner similar to that for ordinary integrals. The rules of addi- 
tion, differentiation under the integral sign, transformation of 
variables, and integration by parts apply. 

Vortex sheet. - If vorticity exists as a surface of velocity 
discontinuity in the z0 = 0 plane, then outside this plane, |, 
TJ, and £ are all zero, but in the zc = 0 plane £ = 0 whereas 
| and TJ are infinite. However, the limits 
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|* =  lim  I dz0 
dz. 

lim r\  dz0 
dz0—^0 

are finite and are given "by (reference 5) 

TJ' « Uj - XL- B 

(8) 

The subscripts T and 
bottom surfaces of the 

B designate velocities on the top and 
= 0    plane, respectively.    The perturba- 

tion velocities induced by the vortex sheet are obtained by sub 
stituting equation (8)  in equations  (4a) to (4c).    In particular, 
the vertical-perturbation-velocity field (upwash)  is given by 

w = *0r -VJ' 
tan dyf O) 

The area of integration S includes all the vorticity in the 
forward Mach cone from x,y,z. 

Line vortex. - The vortex lines through all points on an 
infinitely small closed curve bound a vortex "tube." The circu- 
lation 

K  = <oa 

l/2 
(where ü) = (|2 + r\2  + £2)    is the resultant vorticity and C 
is the infinitesimal cross-sectional area of the tube) is constant 
at all points along the tube. The vortex-vector components at 
any point, in terms of the differential distance dZ0 along the 
vortex tube, are 

dx„ 
I = CO 

CO 

t-a> 

dlc 

dyc 
dlc 

dzc 

dT 
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The elemental volume is dx0dy0dz0 = adl0. A line vortex is gen- 
erated by allowing the cross section of the vortex tube to approach 
zero while maintaining (üC constant. The upwash induced "by such 
a line vortex is found "by substituting the preceding expressions 
into equation (4c) and equals 

it(y0 ta0 - z0 ayj 

*oS 

where the integration is conducted along the portion of the line 
vortex within the forecone from x,y,z. A line vortex cannot 
terminate within a fluid flow field hut must either form a closed 
curve or extend to infinity or a boundary of the field. 

TJpwash Induced by Line Yortices 

Complicated velocity fields can he generated by the linear 
superposition of relatively simple fields. It will therefore prove 
useful for subsequent developments to determine the upwash field 
induced by line vortices of constant slope. 

Line vortex of constant slope and strength. - The upwash at 
x,y,z due to a line vortex of constant slope m and strength 
K, intersecting the forward Mach cone at x^^yb (fig. 1) is 
(from equation (10)) 

ß2K / f m2 (y-mx)dy0 ^^^ 
V = " 2rt "   [(l-ß2m2)y0

2 + 2m(ß2my-x)y0 + m
2(x2-ß2y2-ß2z2)] 3/2 

(ID 

The integration is performed in appendix A and yields 

W=  -2« 
K (y - mx)   (ß2my - x)    (12) 

(x2 - ßV  - ß2z2)V2   [(y - mx)2 + (1 - ß2m2)z2] 
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The finite part of the integral in equation (11) is obtained "by 
substituting the lover limit into the indefinite integral (appen- 
dix A). No contribution appears from the upper limit. By a trans- 
lation of coordinates, the upwash due to a line vortex from x^y^ 
that intersects the forward Mach cone at x^y-jj (fig. 2(a)) is 
found to "be 

w = - 2rt 
(Yi - nSi)(ß2mYi - Xi) 

where 

(Y! -mXi)2+ (1 -ß2m2) z2] 

Xj - x - xi 

*L - y - 7i 

(13) 

=1 ='/x1
2  - ß2Yx

2 -ß2z2 

By superposition (fig. 2) of a positive line vortex K from 
xi,yi and a negative vortex -K from X2,7z> *^e upwash due to 
a line-vortex segment not intersecting the forward Mach cone is 

W ss 2rt Ggtm) - G^m)] (14) 

where the notation 

Gi(m) = 
(Yi - m1Xi)(ß2miY1 - X±) 

r±  [(Yi - miXi)2 + (1 - ß2mi2) Z^J 
(15) 

is used. The subscript for G indicates the appropriate sub- 
scripts for X, Y, Z, r, and m. 

Equation (14) applies for any line vortex of constant strength 
and slope. The circulation K is positive when the vortex vector 
is in the direction of integration. When the line vortex inter- 
sects the forecone, the corresponding limit (infinite Gj[(m) term) 
is neglected by application of the finite-part concept. 

Line vortex of constant slope but varying strength. - Line 
vortices may coincide to form a resultant line vortex whose cir- 
culation is the sum of the strengths of the superposed components. 
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The general line vortex is then one of variable strength K along 
the line x0 = x0(y0) having the local slope mo = dy0/dx0. The 
upwash induced "by the segment from X].,yi to Xg,y2 may "be written 

72 
P- , ,   "ftp - i°o£o) , 

moro 

The evaluation of equation (16) is generally tedious. For the 
particular case of constant slope, however, this equation may he 
integrated "by parts to yield a useful expression for upwash. Inas- 
much as 

ß2(Y0 -mj.0)  ^dG0(m) 

Vo3    " dy° 

the integration "by parts gives 

w = G0(m)^dyo)       (17) 

The term KQ |jGr0(in)]  is disregarded at a limit corresponding to a 

point on the forward Mach cone. 

Equation (17) is a generalization of equation (14) to account 
for variations in strength along a line vortex of constant slope. 
Both equations are of fundamental importance "because appropriate 
distributions of such line vortices will he used to simulate a 
supersonic lifting surface. 

Characteristics of upwash field due to supersonic line vortex. - 

1. Infinite line vortices of constant strength and slope. An 
infinite line vortex inclined supersonically (|ßm|>l) to the free 
stream is shown in figure 3(a). Because "both limits in equation (14) 
are neglected, the upwash induced "by this line vortex is zero. This 
result agrees with the indications of ohlique-airfoil theory "because 
the perturbation velocities are zero downstream of the envelope of 
the Mach cones from the trailing edge of a two-dimensional airfoil 
inclined supersonically to the free stream. 
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The infinite-line vortex along the line (y0 - yi) ■ m(x0 - xj) 
(fig. 3(h)), inclined suhsonically (|ßm|<l), has one limit that 
intersects the forward Mach cone whereas the other extends to 
infinity. The upwash is then, for 0<ßm<l, 

H 
r-4 

v = - £     lim     G0(m) 2« x0—*- 
y0—>-» 
x0—>-« 

_  ,   K       V1 - P2*2 <Y1 - ■*!> (18) 
2*  (Y1 - mXi)2 + (1 - ß2m2)  z2 

vhere xi,yi is a point on the line vortex. The upwash is infinite 
along the line vortex. For m = 0, equation (18) "becomes 

K   Yl 
2« Yi2 + z2 

which is identical with the expression for upwash due to an infinite 
vortex parallel to the stream (along the line y = y^) in an incom- 
pressible field. 

These results indicate that the "behavior of the infinite super- 
sonic line vortex for  |ßm|>l is completely different from that of 
the incompressible flow vortex. However, when |ßm|<l, "both vortices 
have similar upwash properties in the vicinity of the vortex line 
and are, in fact, identical for m = 0. 

2. Bent line vortices. The upwash due to a "bent line vortex 
(fig. 3(c)) of constant strength is 

w = &  [(SidO - G!(m+)] (20) 2« 

where m^" and m.]* designate the slopes of the line vortex before 
and after the bend at xi,y^. The term r^ appears as a factor in 
the denominator of equation (20) so that the upwash exists only in 
the aftercone from x^,y^ and is infinite on the cone surface 
(except in the z = 0 plane). This infinite value of upwash is 
not to be confused with the infinity introduced at the intersection 
of the line vortex with the forward Mach cone, which is eliminated 
by application of the finite-part concept. 
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Linearized Supersonic-Wing-Theory Relations 

The perturbation velocities on supersonic lifting surfaces 
(zero-thickness wings) have teen evaluated for a large variety of 
plan forms. (See, for example, references 7 to 9.) Those results 
will now he utilized to determine the vortex field generated by a 
lifting surface. 

Velocity potential. - If the boundary conditions for a lifting 
surface are specified in the z = 0 plane, the u and v veloc- 
ities are antisymmetric and the w velocities are symmetric about 
this plane. Thus the velocities on the top and bottom surface of 
the z as 0 plane are related by 

Urp = -uB 

vT = -vB 

Vm «s W, Urn B 

(21) 

The discontinuities in  u and v constitute a vortex sheet. 
Because the flow is everywhere irrotational, except across this 
sheet, a perturbation-velocity potential cp can be so defined that 

d<P = aj dx + ^ dy + g dz 

«udx + vdy + wdz 

(22) 

When the undisturbed flow field upstream of the wing is considered 
to be of zero potential, and the boundary condition requiring that 
Urj, = u-jj = 0 off the wing (antisymmetry of u and zero lift off 
wing) is applied, the potential in the z = 0 plane may be obtained 
by integrating along lines of constant y. 

Oprp =s  /   Urp dX 

(23) 

*B - f    *B dx 
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where xj is the equation of the leading edge as a function of y. 
From equation (23) it nay he concluded that 

1. Everywhere in z ■ 0 plane except "behind the wing leading 
edge cpT «q>B m  0. 

2. At a given span station <Prp and <?>B remain constant for 
all values of x downstream of the trailing edge. 

Lines of constant potential for rectangular and triangular wings 
are shown in figure 4. 

Vortex lines. - The equation for the vortex lines (from equa- 
tion (3)) is 

V dx - I' dy = 0 (24) 

When the following expressions (equations (8), (21), and (22)) are 
substituted 

£• = -(vT - vB) . -2 gS. „ 2 ^ 

T) = uj - uB = 2 ^__ = -2 .£-_ 

the equation for the vortex lines "becomes 

dqpn äcftn äqfc dqfo 
^dx + ^-dy^^-dx + ^r-dyBO (25) 

Comparison with equation (22) shows that equation (25) represents 
lines of constant potential. Thus the vortex lines coincide with 
the lines of constant potential in the z » 0 plane. 

Circulation. - The circulation included between two points 
x1,y1 and X2,yg on a wing is given by 

K=©udx + vdy + wdz (26) 

The path of integration is arbitrary except that the path should 
cross the z » 0 plane only at the two specified points. If the 
integral is taken along the top and bottom surfaces of the z = 0 
plane, 

f 
H 
H 
H 
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3^2 *1>V1 

(UIJI dx + vT dy) + /     (uB dx + vB dy) 

xi>yi ^2,y2 

- ^T,2 -^,1) + (°PB,1 -^,2) - A*2 ~ «*>1 (27) 

where Acp equals qprp - cpg and represents the jump in potential at 
the point. The quantity A<p is, in fact, the doublet potential 
(reference 2)., so that the net circulation between two points equals 
the difference in the doublet potential between those points. The 
equivalence of a doublet distribution and a vortex distribution 
indicates that the flow about a lifting surface can be calculated en 
either basis. 

Circulation ana lift. - The lift per unit span is given by the 
chordwise integration 

L(y) = ipU2 /  (Cp^B - Cp/r) dx (28) 

After substitution of the linearized values for pressure coefficient 

2UT   2 *% 
CP,T ■ " — = '" if W 

2uB   2 ^ 
°p,B = " u s 'ü¥" 

and integration, equation (28) becomes, because tiXfh  = 0, 

L(y) = pU Aq^. (29) 

The factor Acpt is the circulation included between the leading 
and trailing edges at the spanwise station under consideration. 
When this circulation is designated T, equation (29) becomes 

L(y) = pur (30) 
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which is the familiar incompressible-flow relation. Also 

dr_d((pT -q.B)t 

dy     dy 

- -(e')t (31) 
Equation (31) relates the shed vorticity to the rate of change of 
spanwise loading. 

APPLICATIONS TO CALCULATIONS OF 

SUPERSONIC DOWNWASH 

The vertical perturbation velocities due to a supersonic line 
vortex of constant slope have "been presented in a form that permits 
analytical or mechanical evaluation (equations (14) and (17)). The 
vortex distribution associated with a lifting surface has also heen 
discussed. These relations will he used to develop exact and approx- 
imate methods for calculating downwash "behind lifting surfaces at 
supersonic speeds. 

Downwash an Infinite Distance "behind Wing 

The vertical-perturbation-velocity field "behind a supersonic 
lifting surface (from equation (9)) is 

 r dx0 dy0 - 
r ° xo 

(32) 

g- dxo dy0 

where the integration over the plan form is designated "by Sp and 
over the wake hy Sy. As x "becomes infinite,  X0 also "becomes 
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infinite in the integral for the "bound (plan form) vortices. This 
integral then "becomes zero "because X0 is of higher order in the 
denominator than in the numerator. Thus, only the integration over 
the trailing vortex sheet contributes to the vertical perturbation 
velocities at infinity. The trailing vortex sheet may "be con- 
sidered to consist of elemental vortices of infinite length along 
y = constant lines, each having the strength 

an 
dK a |' dy0 «s - "T—- dy0. The vertical perturbation velocity at 

^vo 
«,y,z due to the elemental vortex along y « y0 is, from equa- 
tion (19) 

dw ?o 
2rt    YQ2 + z2 

so that the vertical-perturbation-velocity field at infinity is 
given by 

(33) 

where "b/2 is the semispan. The velocity field ohtained from 
equation (33) is identical to that induced by a subsonic wing with 
the given span loading. The velocity field at infinity is thus 
independent of Mach number (excluding the influence of Mach number 
on dr/dy0). This result has "been derived in references 1 and 2 
by other methods. The evaluation of equation (33) is relatively 
simple and may he used to approximate the downwash several chords 
"behind a supersonic wing. 

Regions of Infinite Downwash 

Approximate solutions may modify or introduce singularities 
in the downwash field. It is therefore of interest to estahlish 
the regions for which linearized theory indicates an infinite 
downwash. 

Infinite downwash in z ■ 0, plane. - The vertical perturba- 
"bation velocities in the z = 0 plane that exist an infinite 
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distance "behind a wing having a discontinuity in dr/dy0 vill 
first be considered. These velocities are determined from the 
equation 

w = 
dr/dyc 

^o (34) 

The Cauchy principal value is required for points on the vortex 
sheet. For the particular case of triangular loading (fig. 5(a)) 

dr 
4y0 

2R m 

in the integration interval ■l^o and 

dr 
<*y0 

21k 
b 

in the interval 0<yo<|- (rm is the circulation at the midspan). 

When these values for -r— are substituted in equation (34), the 
°-y o 

integral yields 

v = IS *b 
logg 

y2 - 

(35) 

Infinite upwash exists along the lines y = ±b/2 whereas infinite 
downwash exists along the line y = 0. These infinite values are 
due to the discontinuities in the spanwise vorticity distribution 
and apply for all points on these lines downstream of the wing 
trailing edge. 

In general, if (dr/dy0)~ and (dT/dy0)
+ represent a dis- 

continuity in the rate of change of spanwise loading at station 
y = yj, infinite vertical perturbation velocities will exist along 
y = yi downstream of the trailing edge. For (dr/dy0)"<(dT/ay0)* 
infinite upwash will exist, and for (dr/dy0)" >(dr/dy0)

+ infinite 
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to 
H 
H 
H 

downwash will exist along this line. Such discontinuities in 
dr/dy0 originate "both at a wing tip and at those points along a 
supersonic trailing edge where the plan-form slope is discontinuous 
and the local-wing-pressure coefficient is not equal to zero. This 
discontinuity in vorticity may he verified "by the methods employed 
in reference 1 for finding the upwash and sidewash directly behind 
a supersonic trailing edge. 

The discontinuity in shed vorticity at the tips of an ellip- 
tically loaded wing is a special case of the previously stated rule 
governing infinite vertical perturbation velocities in the z « 0 
plane. For wing loading given by 

r-rJi-£70« 

the shed vorticity is 

4 p 

dr  " 7  m y° 
äy0 *-;U2 

and the vertical-perturbation-velocity field at infinity, in the 
z s 0 plane, is 

w = 
jtb 

Integration yields 

w = 
*m 

for 

y<? 
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and 

for 

As indicated in figure 5(1)), the vertical perturbation velocity is 
discontinuous at y« ±b/2, tu'b is "bounded for all points on the 
vortex sheet. 

Infinite downwash on Mach cone from wing tip. - Reference 3 
indicates infinite vertical perturbation velocities on the down- 
stream Mach cones from the tips of a triangular wing. This result 
will now he extended to apply to any wing tip formed by the inter- 
section of a subsonic leading edge and a supersonic trailing edge 
provided that the slope of the subsonic edge is not zero at the 
tip (fig. 6). 

The contribution to the vertical-perturbation-velocity field 
due to the bending of an elemental vortex at the trailing edge 
(fig. 6) is, from equation (20), 

dw 2« [o0(m-) - Go(0)] (36) 

where 

-1 
G0(°> - =r XQXO 

b <T < + z<) 

The vertical perturbation velocity at a point on the Mach cone from 
this tip due to the bending of the vortices is found by integrating 
(along the trailing edge) 

w Gn(m") - Go(0) 
dr. 

ay0 (37) 
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Equation (37) in the expanded form becomes 

(T0 - VXoJOV *o " *o>     xo*c lo 
(Y0 - mo-Xo)

2 + (1 - ß2m0-
2)z2  Y0

2 + z2 
i dr . 
r0 dy0 

ayc 

(38) 

The limits of Integration are roots of r0, so that the factor 
l/r0 Is singular of order l/2 at the limits and the integral is 
improper (assuming (n^'iy . 0 / 0). The convergence of the integral 

depends on the nature of dr/dy0 at the limits. Appendix B shows, 
however, that dT/dy0 is also singular of order l/2 at the tip. 
The combined singularity causes equation (38) to diverge at the 
upper limit and results in logarithmically infinite vertical per- 
turbation velocities on the Mach cone from the tip. The divergence 
is a consequence of both the singularity in dl/dy0 and the singu- 
larity on the Mach cone from a bend in the elemental line vortex. 

The infinite vertical perturbation velocities on the Mach cone 
from the tip do not appear in the z = 0 plane Inasmuch as equa- 
tion (38) then reduces to 

m"^ "o \/xo " ß Yo dT 
W e *- '   (Y0 - mo-X0)Y0 dyc ** 'o 

and the singularity due to r0 is no longer present. 

Approximate Downwaeh Solutions 

Several approximate methods for obtaining downwash were con- 
sidered. Methods based on a lifting line seem the most promising 
and are disoussed in the following sections. A bent lifting line 
is proposed for determining the downwash behind a swept wing and 
an unbent lifting line (horseshoe vortex system) for determining 
the downwash behind an unswept wing. These methods are applied to 
compute the downwash behind triangular and rectangular wings and 
the results are compared with the exact linearized solutions. 
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A lifting line concentrates the chordwise loading into a line. 
Thus the hound circulation is represented hy a line vortex of vari- p 

ahle strength (K = T « Apt), whereas the trailing-vortex system j_, 
maintains the same vorticity (£' = -dT/dy0) hut now originates at H 

the line rather than at the trailing edge. o> 

Bent lifting line. - A lifting line approximating the section 
centers of pressure 

<cp,B " Cp,T> ta 

seems to he a reasonahle representation of a swepthack or swept- 
forward wing. In order to facilitate downwash calculations, the 
line of section centers of pressure can he approximated hy two 
straight-line segments, each connecting an end point to the mid- 
point of the line. The result is a "bent lifting line (fig. 7) of 
span h and effective chord ce (x-distance hetween midpoint and 
end points of lifting line). For a swepthack lifting line, the 
slopes at the midpoint are 

(mo")y0 = 0 - " g^- 

and 

<mo+>y0 = o = icT 

The vertical perturbation velocities induced hy the hound 
vortices can he determined from equation (17) and equal 

y 

w - jj» [G0<»-) - G0(»+)] 7o m  o - &  f * G0(m) §-o dy0  (39) 
Jya 

where the integration is conducted along the lifting line (figs. 8(a) 
and 8(h)). The vertical perturbation velocities induced hy the 
trailing-vortex system are ohtained from 
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■*b 

* ■ 27 / " M°) ^ «7o <40> 

The term G0(°) 
is as cLefined for equation (36) and the integration 

is again conducted along the lifting line. The vertical perturba- 
tion velocities induced "by the complete lifting-line system (bound 
and trailing vortices) are then the sum of equations (39) and (40) 
and equal 

VL y* 

w = £ [a0(*-) - Go(m+)]  . o - ST /  K(m) - G°(°)] It dyo 
^ya 

(41) 

The value nu = (m ~)    n is used for the integration interval 
° yo = u 

ya<yo<0    and   n^ = (v^^j   - Q    is used for the interval 
o^y0^yb- 

Equation (41) is the expression for the vertical perturbation 
velocities behind a swept wing using the bent-lifting-line approxi- 
mation. This equation can also be considered as derived from a 
superposition of a system of bent line vortices of constant strength 
(equation (20)), as indicated in figure 9. The nonintegral term of 
equation (41) is then the contribution of the bent line vortex of 
strength Tm   whereas the integral term represents the contribution 

of the elemental line vortices of strength   —— dyn. 
4y0 * 

The integral term of equation (41) may be evaluated by analyt- 
ical or mechanical methods. When mechanical methods are used, the 
singularities in the integrand must be isolated. Suitahle proce- 
dures for isolating the commonly encountered singularities are as 
follows: 

(1) Singularity due to intersection of forward Mach cone with 
lifting line. The integrand in equation (41) is infinite at the 
intersection of the forward Mach cone and the lifting line (for 
z / 0). The contribution Sw of the integral, for the interval 
yt - e-^yo^y-b (fig. 8(a)), to the vertical perturbation velocity 
field may be written 
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for 
ßmo>l; 

_yb 
dyQ 

r„ 

y-b -€*> 

m. 

^/ß2*o2 " 1 

sin' -1 
mo(x - ß

2moy)-(l - ß2mo
2)yo 

ßm0^(y -m0x)
2 (1 - ß2^2)*2 

y* 

y^ 

2m, 

^2*o2 " 

sin x 
(ß<V - 1) 6, 

[2 [mod - ß^y) - (1 - ßV)^] 

for 

*D 

*y0 

ßmo = 1, 

mo y2(y - :°töx)y0 + MQ2*2 - y2 

y - moX 

y-b - eb yt - eb 

2€i 
m, o^m0x - y 

where m0 is the slope of the lifting line at yj>. A similar pro- 
cedure applies for the singularity at ya. 

(2) Singularity in dr/dy0 at wing tip. The vertical pertur- 
bation velocity at a point vhose forward Mach cone intersects the 
edges of the trailing vortex sheet (fig. 8(b)) is obtained from 

equation (41) by integration between the limits - T?<J0<£.    If 

dT/dy0 is singular at these limits, the singularity may be isolated 
by a procedure similar to that used in equation (42). Thus, the 
contribution to the vertical perturbation velocity field, from the 

integration interval s- - c^ < yQ< s-, may be written 
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8w = 

_1_ 
2rt 

b 
.2 

1-t 
[G0(«) - Go(0)]   - |[o0(m) - Go(0) 

S   [G°W 

b 

y° = 2Jb dJ? ~ 6b 

dTd7o 
(43) 

where 

b 
.2 

'b 
2 

d^dy° (r) 
y0 = I - £b 

- £i 

(3) Singularity at points on vortex sheet. The Cauchy prin- 
cipal value of the integral (equation (41)) is required for deter- 
mining the vertical perturbation velocity at a point on the vortex 

sheet  z = 0, - £<y<f-. For this case, considering the interval 

y - e<y <y + e (fig. 8(c)), the contribution of the integral to 
the vertical-perturbation-velocity field is 

-y + e 

6w = + ±- 
2* 

mQ yx0
2  - ß2Yp

2 dr 

(Y0 - *J.ono    dy0 

dy0 
(44) 

If dr/dy0 can be approximated by the first two terms of the 
Taylor's expansion 
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H 
W 

and € is sufficiently small that 

moVXo2  - ßV s - 1 
(Y0 - m^) 

equation (44) may be written 

y + e 

y - e 
(«'I. - , " Y° Si,, . = y 

y 

äyr 

(45) 

Inasmuch as &T/&y0 is an odd function in y0 for a wing symmet- 
rical about the midspan, dT/dy0 is either discontinuous or zero 
for y0 = 0. If dr/dy0 is discontinuous, the vertical perturba- 
tion velocities are infinite along this line. 

Unbent lifting line. - The unbent lifting line (horseshoe- 
vortex system) appears to be a reasonable representation for an 
upswept wing. The use of such a lifting line considerably sim- 
plifies the calculations. 

The vertical perturbation velocities induced by an unbent 
lifting line (along the y-axis) are obtained from equation (41) 
by setting DIQ = <» and are equal to 

w as 

2_2, x Y0(r0* - ßV) cLT 
r (x2 . ß2z2)(Y 2 + z2) dy0 ay0 

(46) 

The singularities are isolated as follows: 
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(1) Singularity due to intersection of forward Mach cone with 
lifting line. 

*D 

5w = 2rt 

**-% L 

xY0(rQ
2  - ß2z2)      dr   +/ß2z2äT 

(x2 - ß2z2)(y0
2 + z2) dy0   V* Yo ^o 

y0=yfc 

dy0 

H 
H 
H 
0> 

i /ß2z2 dr x 

2n \x Y0 dy0> 

^D 
*y0 

y0=yh 
yt-eh 

where 

Jh 

*o 
'o      2.-1 gh 

rr = Fsin  V2<yh - y) 
'yh~eh 

(2) Singularity in   dr/dy0    at the tip. 

6w = 2* < 

x Yo(ro2_ß2z2) 

'h 
2-S 

r0(x2-ß2z2)(Y0
2+z2) 

x yo(ro
2-ß2z2) 

r0(x2-ß2z2)(Y0
2
+z2)J      b 

d£ 
ay. ̂ Ko + 

i_ 
2« 

x Yjr 2  - ß2z2) ox  o 

r (x2  - ß2z2)(Y 2 + z2) 
(r) 

_ h 
yo ~ 2 

yo = 2 

(3) Singularity at points on vortex sheet. 

-ns 
yG ■ y 
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The chordwise location of the unbent lifting line that -will give 
the "best average agreement with the exact linearized solution is 
still to he determined. According to the techniques used in subsonic■ 
wing theory, an unbent lifting line at the wing center of pressure 
should be a good first approximation. However, further investi- 
gation is required. It may be possible to determine the best loca- 
tion for each general class of plan forms by comparing the lifting- 
line solution with the exact linearized solution for several 
representative plan forms. 

Examples and discussion. - A bent lifting line and an unbent 
lifting line will be used to obtain solutions for the downwash in 
the y = 0 plane behind triangular wings having subsonic leading 
edges. The chordwise distribution of wing loading suggests the use 
of the bent lifting line. The unbent lifting line will be used for 
purposes of comparison. An unbent lifting line also will be used 
to compute the downwash in the y = 0 plane behind rectangular 
wings. The chordwise location of the unbent lifting line giving 
the best average agreement with the exact linearized solutions 
will be noted for both the triangular and the rectangular wings. 
In order to simplify the expressions, M = ^2 (that is, ß = 1) 
will be assumed. 

The spanwise circulation distribution for a triangular wing 

of span b and root chord cr, having subsonic (^—<l) leading 
edges, is (from equation (24) of reference 2)      r 

r-*t-W-:W 

where E is the complete elliptic integral of the second kind 

with modulus A/1 - (5T") • Tlle circulation at the midspan is 

V   = "2k Am  — 

and the rate of change of circulation is 

dr 4aU yG 

d-y0 
Eb    r" 

f 
4yQ

2 

b2 
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The expression for the vertical perturbation velocities in the 
y = 0 plane using the bent-lifting-line approximation of fig- 
ure 10(a) is 

ID 

"A 

w = 
aUb 

(&o(m+)] 

/D 

y0 

4aU 
= 0 + rtbE 

[&>+)   - Go(0)] 
y0
dy0 

(47) 

where    (m *) = —.   Equation (47) is obtained from equation (41) 
°  y«= 0   Oy, 

b 
y0= 0 

= ~r 

and the properties of an even function. The vertical-perturbation- 
velocity field behind an unbent lifting line, having the same 
loading (fig. 10(b)) is from equation (46), 

y* 

W = - 
4aU 
rtbE 

x(r0 " z > yo dy0 

'O  r0(x
2 -z2)(y0

2 + z
2) l-^y0

2 

(48) 

The spanwise circulation for a rectangular wing of aspect 

ratio —^"2 for the tip region 5- - c <y0^s- is 

7-,  A    4aU 
r = Acpt = — [y0 

+ cr - 27V2 " 2Ä2 " yoJ + c tan -1 
!-y° 

fyo + cr " 2 

(49a) 

and for 0<yo<g- - cr 

r = 2cOJ c (49b) 

Equations (49a) and (49b) were obtained from equation (20) of refer- 
ence 8. The wing is illustrated in figure 10(c). The rate of 

change of spanwise circulation for 5- - cr< y0< 5- is 
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dr    4oU   Ko + cr " 2 

The vertical-perturbation-velocity field in the y = 0 plane 
behind an unbent lifting line having this loading is 

x (r0
z - zd)  yQ   70 + °r " f 

rQ(x
2 - z2)(y0

2 + z2) y  g. - yf 

b 

*yc 

(50) 

Equation (47) was evaluated to determine the downwash along 
the line y = 0, z = 0 and along the line y = 0, z = 0.1 b 
for triangular wings with aspect ratios (2b/cr) of 1.6 and 3.2. 
Equation (48) was evaluated for the same wings at points along 
the line y = 0, z = 0. Equation (50) was evaluated at points 
along the line y = 0, z = 0 for rectangular wings with aspect 
ratios (b/cr) of 2 and 4. The integrations were performed mechan- 
ically for equations (47) and (50) and analytically for equa- 
tion (48). The results are compared with the exact linearized 
solutions obtained from references 1 to 3 in figures 11 to 14. 

The bent-lifting-line solutions for the triangular wings are 
shown in figures 11 and 12. The discontinuity in the curves for 
the z = 0.1 b plane (figs. 11(b) and 12(h)) designates large 
negative (upwash) values that become infinite on the Mach cone 
from the tip. as indicated in the discussion associated with 
equation (38). The agreement with the exact solutions is good 
for all points except those within l/2 chord from the trailing 
edge. The correlation is unexpected because of the large contri- 
bution of the nonintegral term of equation (47). This term is 
associated with the bending of the lifting line at the midpoint. 
This bend was artificially introduced. The agreement with the 
exact downwash solutions, however, indicates that the bent lifting 
line is a good average representation of the triangular-type wing 
(at least in regard to the downwash solution in the region of 
the line y = 0, z = 0). This method should give even better 
agreement when used to represent a sweptbac!: wing such as the one 
represented in figure 7, "because the bent lifting line would then 
more closely approximate the actual vorticity distribution. 
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The uribent-lifting-line solution for the triangular wings is 
presented in figure 13. The lifting line is placed at the 
3/4-chord point to give the "best average agreement with the exact 
linearized solution. (The center of pressure for these wings is 
at the 2/3-chord point.) The agreement is not as good as that 
obtained with the bent lifting line and indicates that the "bent 
line is more suitable for computing downwash "behind triangular 
wings. The smaller-aspect-ratio wing (2b/cr = 1.6) is in "better 
agreement with the exact linearized solution "because of the rapidity 
with which the downwash approaches the asymptotic value at infinity. 

The uribent-lifting-line solution for the rectangular wings is 
presented in figure 14. The downwash obtained with the lifting 
line at the l/2-chord point is in excellent agreement with the 
exact linearized solution. (The location of the center of pressure 
is at the 4/9-chord and lO/21-chord points for aspect ratios of 2 
and 4, respectively.) These calculations suggest that the unbent 
lifting line is well suited for computing the downwash behind 
unswept supersonic wings and that the best chordwise position for 
the unbent lifting line is at or slightly downstream of the wing 
center of pressure. 

A more accurate estimate of the downwash in the z = 0 plane 
close to the trailing edge may be obtained by judiciously fairing 
the curve obtained by the line-vortex method to the known value 
of downwash at the trailing edge. At a subsonic trailing edge 
satisfying the Kutta condition, -w/aU is unity; whereas at a 
supersonic trailing edge, -w/aU can be computed by the method 
presented in reference 1. 

It should be noted that linearized theory neglects the effect 
on the downwash of the friction wake and the displacement and dis- 
tortion of the trailing vortex sheet. An experimental program, 
such as that reported in reference 10 for wings in subsonic flight, 
is ultimately required to determine the necessary modifications to 
linearized theory that will result in good agreement between theory 
and practice. 

SUMMARY OF ANALYSIS AND APPLICATIONS 

The perturbation field induced by a line vortex in a super- 
sonic stream and the downwash field behind a supersonic lifting 
surface have been examined for the purpose of establishing approx- 
imate methods for the calculation of supersonic downwash. 
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An infinite line vortex of constant strength and slope, super- 
sonically inclined to the free stream, induces no perturbation 
field. A subsonically inclined line vortex has properties similar 
to those of a vortex in an incompressible-flow field. Bends in a 
line vortex induce infinite vertical perturbation velocities on 
the surface of the downstream Mach cone from the bend (except in 
the z = 0 plane). 

The downwash field behind a supersonic lifting surface differs 
from that behind a subsonic wing in several respects. For a super- 
sonic lifting surface, discontinuities in shed vorticity occur at 
those points along a supersonic trailing edge where the plan-form 
slope is discontinuous and the local pressure coefficient is not 
zero. These discontinuities lead to singularities in the downwash 
field in the z = 0 plane. Also, the vertical perturbation veloc- 
ities are logarithmically infinite on the downstream Mach cone 
from a wing tip formed by the intersection of a subsonic leading 
plan-form edge and a supersonic trailing plan-form edge. 

A bent-lifting-line method has been proposed for the solution 
of the downwash field behind swept wings. When applied to a 
triangular wing, this method gave results that were in very good 
agreement with the exact linearized solution for points near the 
line y » 0, z ■ 0 except for points within l/2 chord of the 
wing trailing edge. 

An unbent lifting line (horseshoe-vortex system) has been 
proposed for unswept wings. This method was applied to determine 
the downwash behind rectangular wings with aspect ratios b/cr of 
2 and 4. Excellent agreement was obtained for both aspect ratios 
by placing the lifting line at the l/2-chord point. 

Lewis Flight Propulsion Laboratory, 
National Advisory Committee for Aeronautics, 

Cleveland, Ohio, April 29, 1949. 
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APPENDIX A 

UPWASH INDUCED BY LINE VORTEX 

The upwash induced "by the line vortex segment of figure 1 is, 

^ m2(y-mx)dy0  

[(l-ß2*2^2 + 2m(ß2my-x)y0 + m
2(x2-ß2y2-ß2z2)] 

(11) 

The upper limit is at the intersection of the line vortex (y0 = mx0) 
with the trace of the forward Mach cone in the z = 0 plane 

[(x - x0)
2 - ß2(y - y0)

2 - ß2z2 = OJ and is therefore the appropriate 
root of the expression appearing in the denominator of the integrand. 
The roots are 

-m(ß2my - x) ± ßm V(y - mx)2 + (l - ß2m2)? 
7a,yb = (1 - ß2m2) 

(Al) 

so that equation (11) may "be rewritten 

p¥«(r - «0 '      \}Q    [(ya - r0H*> " ToJf'2 

From equations (6) and (7), 

(T= - J(0) - C (A3) 

where 

2(ya + y-b) 
J(0) - 

(ya - yb> V^b 
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H 
H 

0» 

and 

C -     lim 
y0—>yb 

11m 
yo—-*yb 

= 0 

f - J(yQ) 
/yy-b - 7o 

2(ya + y-b - 2yo) 
3 

v2 
jya-y-b) vyv^o 

(ya-yi>)2 ^(ya-yoHyb-yo) 

Tims 

/I-- 
2(ya + y-b) 

<ya - y-bJ V^ 
(A4) 

Substituting equation (A4) in equation (A2) and solving for v 
yields 

v  e - 2rt 
(y-mx)(ß my-x) 

(x2-ß2y2-ß2z2)2 [(y-na)2 + (l-ß2m2)z2J 

(A5) 
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APPENDIX B 

LOADING IN VICINITY OF WING TIP 

The nature of the loading in the vicinity of a wing tip formed 
"by the intersection of a subsonic leading edge with a supersonic 
trailing edge (fig. 6) is to he determined. 

According to linearized theory, u»p in the region of a sub- 
sonic leading edge is singular of the form 

Urp 
V*o - xl 

where xj is the equation for the leading edge as a function of 
y0. This relation may be deduced from equation (11) of refer- 
ence 10. The corresponding wing circulation is 

Aq>t - 2 /       °  = 4 V^t ~xl (B1> 
Vxo " xl 

The derivative of equation (Bl) is 

dfxj. - xz) 

dr      d?o 

ay, o V^tP1" 
(B2) 

where (x^ - xj) is the wing chord as a function of y0. However, 
(it - xj) must he of the form 

*t - *i - yQ Cf M (B3) 

(where  [f (y0)]     {  0,») in order to satisfy the restrictions 
y » 0 Jo 

that at the wing tip 

a H 
H 
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(a) the chord is zero 

(xt " xz) = 0 
yo 

= 0 

(b) the slopes of the leading and trailing edges are neither 
equal 

d(xt - xz) 

dy0 

^o 
y0 = ° 

nor in the free-stream direction 

d(act - xj) 

dy 
00 

0        Jyo   „   0 

Substituting equation (B3) into the denominator of equation (B2) 
yields 

2 d(xt - xl) 

ir__       dyP 
dyo= ^y0 [f(y0)] 

(B4) 

Equation (B4) indicates that dr/dy0 is singular of order l/2 at 
y - 0 for the wing tip of figure 6. 

REFERENCES 

1. Lagerstrom, P. A., and Graham, Martha E.: Downwash and Side- 
wash Induced by Three-Dimensional Lifting Wings in Supersonic 
Flow. Rep. No. SM-13007, Douglas Aircraft Co., Inc., April 
1947. 

2. Heaslet, Max A., and Lomax, Harvard: The Calculation of Down- 
wash behind Supersonic Wings with an Application to Triangular 
Plan Forms. NACA TN 1620, 1948. 



38 NACA TW 1925 w 

H 

3. Lomax, Harvard, and Sluder, Loma: Downwash in the Vertical and 
Horizontal Planes of Symmetry behind a Triangular Wing. NACA 
TN 1803, 1949. 

4. Robinson, A.: On Source and Vortex Distributions in the Lin- 
earized Theory of Steady Supersonic Flow. Rep. No. 9, College 
Aero. (Cranfield), Oct. 1947. 

5. Robinson, A., and Hunter-Tod, J. H.:   Bound and Trailing Vor- 
tices in the Linearized Theory of Supersonic Flow and the 
Downwash in the Wake of a Delta Wing. Rep. No. 10, College 
Aero. (Cranfield), Oct. 1947. 

6. Hadamard, Jacques: Lectures on Cauchy's Problem in Linear 
Partial Differential Equations. Oxford Univ. Press (London), 
1923, pp. 133-135. 

7. Heaslet, Max A., and Lomax, Harvard: The Use of Source-Sink 
and Doublet Distributions Extended to the Solution of Arbi- 
trary Boundary Value Problems in Supersonic Flow. NACA TN 
1515, 1948. 

8. Eward, John C: Distribution of Wave Drag and Lift in the 
Vicinity of Wing Tips at Supersonic Speeds. NACA TN 1382, 
1947. 

9. Eward, John C: Theoretical Distribution of Lift on Thin Wings 
at Supersonic Speeds (An Extension). NACA TN 1585, 1948. 

10. Silverstein, Abe, Eatzoff, S., and Bullivant, W. Kenneth: 
Downwash and Wake behind Plain and Flapped Airfoils. NACA 
Rep. 651, 1939. 



NACA TN 1925 39 

U 

(0.0) 

(x#y*z) 

Line vortex, 
y0 a mx0 

Forecone trace In 
ZQ - 0 plane, 

x-x0=ßV(y-y0)2-z2 

Figure 1« - Geometric relations for determination of upwash 
induced by line vortex. 
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(xl»7l) 

(a) Line vortex from    (x-^y^). 

(x^y^ 

x*x 

(x,y,z) 

(b) Line vortex from (x2>y2)> 

Line vortex of 
strength K 

wl = -£Gl(m) 

Line vortex of 
strength   - K 

*2 B#G2<m> 

<xi»yi> 

x,x 

Line vortex of 
strength K 

w = wx +  ir2 

= ^[GgOnJ-G^infl 

U,y,z) 

(c) Line vortex from (x1,y1) to (Xg,y2). 

Figure 2. - Superposition for obtaining upwash. induced by line- 
vortex segment from x^y^ to *2»y2» 
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*»*o 

lßm| *1 

(x»y#z) 

(a) Infinite line vortex inclined supersonically 
to free stream. 

(xo#y0) y0-yi ■ »frb-*L> 

xpco 

|ßm|<l 

(x,y,z) 

(b) Infinite line vortex inclined subsonically 
to free stream* 

Slope m' (xi»yi}     A 

—y,y0 

x,x. 

Slope m+ 

(x,y,z) 

(c) Bent line vortex. 

Figure 3. - Typical line vortices. 
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(a) Rectangular wing. 
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«— Lines of constant 
potential 

(b) Triangular wing. 

Figure 4. - Lines of constant potential for rectangular and 
triangular wings. 
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H 

(a) Triangular load distribution. 

r-rVN/i-Ayo8 

(b) Elliptic load distribution. 

Figure 5. - Upwash in 2*0 plane an infinite distance behind wings 
of triangular and elliptic loading* 
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Ü 

-Supersonic trailing edge 

Elemental 
vortex, 

d«--^Ldy0 

o^ 

Figure 6. - Wing tip formed by intersection of subsonic leading and 
supersonic trailing plan-form edges. 
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lifting 
line 

Centers of 
pressure 

Figure 7. - Bent-lifting-line approximation for sweptback wing. 



46 NACA  TN    1925 

y*y„ 

Cxa»ya> 

<T\ 

(a) Intersection of forecone with lifting line* 

(x,y,z) 

(b) Intersection of forecone with edge of vortex sheet* 

y#y< 

U#y»o) 

(c) Point on vortex sheet« 

Figure 8* - Improper intervals of downwash integral« 
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Strength 

Strength -I 
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Figure 9. - Superposition of bent line vortices yielding bent- 
lifting-line representation of supersonic wing (equation (41)), 
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(a) Bent-lifting-line representation of 
triangular wing. 
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(b) Uribent-lifting-line representation 
of triangular wing. 
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(c) Uribent-lifting-line representation of rectangular wing. 

Figure 10. - Lifting-line representations of triangular and rectangular 
wings. 
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