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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2531 

SIMPLIFIED METHOD FOR CALCULATION OF COMPRESSIBLE 

LAMINAR BOUNDARY LAYER WITH ARBITRARY 

FREE-STREAM PRESSURE GRADIENT 

By George M. Low 

SUMMARY 

The Karman-Pohlhausen integral method, as applied to compressible 
laminar "boundary layers, was simplified by an analysis similar to the 
incompressible-Holstein-Bohlen method. Although this simplification is 
helpful for many calculations, it is of greatest value when conditions 
at the edge of the boundary layer are known from experimental measure- 
ments. The analysis was conducted under the assumptions of a Prandtl 
number of 1, zero heat transfer, and a linear viscosity-temperature 
relation; velocity profiles are approximated by a fourth-degree 
polynomial. 

Results are presented so that velocity and temperature profiles, 
momentum and displacement thicknesses, and wall shear stress can be 
calculated for flows over two-dimensional bodies with arbitrary free- 
stream velocity distributions. The results are also applicable to 
flows over three-dimensional bodies with axial symmetry through the use 
of Mangier's transformation. 

INTRODUCTION 

Present-day theory of compressible laminar boundary layers permits 
the aerodynamicist to make satisfactory boundary-layer calculations for 
flows with zero pressure gradients. Exact solutions of the boundary- 
layer equations for flows with streamwise pressure gradients, however, 
exist only for several specific pressure distributions (reference l). 
Solutions of the laminar-boundary-layer equations for flows with arbi- 
trary pressure gradients are of ever increasing importance because it 
has been suggested that at sufficiently high altitudes and speeds lami- 
nar boundary layers can exist at very high Reynolds numbers (refer- 
ence 2), and because the pressure gradients encountered over most wings 
and bodies are not approximated by any of the aforementioned exact 
solutions. 
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The lack of exact solutions for flows with arbitrary streamwise 
pressure gradients necessitates the use of approximate solutions. The 
Karman-Pohlhausen method has long been found to yield satisfactory solu- 
tions for incompressible flows, provided that the separation point is 
not approached. Howarth (reference l} has recently applied this method 
to compressible flows. 

to 

The solution of the incompressible or compressible boundary-layer        2j 
equations by the Karman-Pohlhausen method is complex because it involves 
the numerical solution of a cumbersome differential equation, and 
because it involves second derivatives of the free-stream velocity, 
which cannot be determined with any accuracy if the free-stream velocity 
is known only from experimental measurements. For incompressible 
fluids, these difficulties have been overcome by the Holstein-Bohlen 
simplification (reference 3), which eliminates the second derivatives 
of the free-stream velocity and simplifies the differential equation. 

In the present report of an analysis made at the NA.CA Lewis labo- 
ratory, the Holstein-Bohlen simplification is applied to the Karman- 
Pohlhausen method for compressible fluids. The momentum-integral equa- 
tion is derived using the transformation of Howarth (reference l) 
together with a more general viscosity-temperature relation than that        * 
used in reference 1. The greater part of the analysis presented fol- 
lows along the lines of reference 1, but the emphasis herein is placed 
on simplifying the final results of the analysis so that they can easily 
be applied to any practical problem. 

Although the present analysis is carried out for two-dimensional 
flows, it can be applied to three-dimensional flows with axial symmetry 
by using the transformation of Mangier (see appendix A). Under this 
transformation, a three-dimensional body with a given pressure gradient 
is transformed to a related two-dimensional body. The results of the 
present study can be applied to this two-dimensional body. 

SYMBOLS 

The following symbols are used in this report: 

a     speed of sound 

C     proportionality factor used in equation (l) 

Cp    specific heat at constant pressure 

f(Mi)  function defined by equation (28) 



» 
KACA TK 2531 'i 

fl(X) function defined by equation (28) 

f2(X) function defined by equation (28) 

f(TJ) function defined by equation (20) 

h increment of lengthy 

i summation index 

K arbitrary constant 

k thermal conductivity 

M Mach number 

n transformation variable defined by equation (9) 

Pr Prandtl number, |iCp/k 

p static pressure 

r radial coordinate 

S Sutherland's constant (216° F) 

t static temperature 

u,v velocity in x- and y-directions, respectively 

x,y cartesian coordinates measured along body and perpendicular to 
body, respectively 

Z function defined by equation (25) 

X ratio of specific heats 

A boundary-layer thickness in x,n coordinate system 

A* function defined by equation (19) 

8 boundary-layer thickness in x,y coordinate system 

5* boundary-layer displacement thickness 

T) n/A 



NACA TU 2531 

function defined by equation (l8) 

"boundary-layer momentum thickness 

Pohlhausen parameter 

absolute viscosity 

kinematic viscosity 

mass density 

shear stress 

transformed stream function 

stream function 

Subscripts: 

0 conditions at stagnation point 

1 conditions at outer edge of boundary layer 

s     standard condition 

v     condition at solid boundary 

0 

0 

X 

V- 

v 

P 

T 

ro 
CO 
en 

ASSUMPTIONS 

The following assumptions are made in addition to the usual 

boundary-layer assumptions in order to make the problem amenable to 
solution: 

(1) The Prandtl number of the fluid is-equal to 1. It has been 
shown in reference 4 that this assumption has no appreciable effect on 
flat-plate skin-friction calculations if the fluid is air (for M<5), 
but the assumption does limit the accuracy of heat-transfer calcula- 
tions and temperature distributions. 

(2) The heat transfer at the solid boundary is equal to zero. 
This assumption should be reasonable for many practical applications. 
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(3) The viscosity and temperature are related, linearly by the fol- 
lowing expression: 

k-°% w 
Chapman and Rubesin (reference 5) have shown that solutions of the 
boundary-layer equations based on equation (l) agree well with reality 
for flat-plate flows if the constant C is determined by matching 
equation (l) with Sutherland's relation at the solid boundary so that 

-N t„ TtTT 
s) 

(t-TsJ <2> 

This assumption should also be reasonable for the case of flows with 
streamwise pressure gradients because the wall temperature t^ is con- 
stant as a consequence of assumptions (l) and (2). 

ANALYSIS 

Compressible laminar-boundary-layer equations. - The momentum equa- 
tion describing the flow in the boundary layer is 

du ... du    1 dp , 1 d (    du^ r-?\ u 3- + v -5- = ^ + — -s- I H T-I (3) ox    oy p dx  p dy V dy/ \  / 

The equation of continuity is 

4 ^ + 3y- <pV> = ° (4) 
The flow of heat is described by the energy equation, which is 

P cp 
/ dt    dt\    dp , d /- dt\   / du\2        ,_. 

A particular solution of the energy equation can be obtained by multi- 
plying equation (3) by pu and adding the result to equation (5), and 
by letting the Prandtl number equal 1. This solution is 

u2 
-s- + Cp t = constant (6) 

and corresponds to the case where the heat transfer at the solid bound- 
ary is equal to zero. 
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The equation of state can be expressed as 

-E_ _ _fi_ _L 
Ps  Ps % 

The Bernoulli equation, which applies at the outer edge of the 
boundary layer, is 

dp dul 
dx " - plul dF 

(7) 

(8) 

ro 
CO 
CD 
01 

Transformation of Howarth. - In reference 1 Howarth introduces a 
transformation which, when applied to equation (3), yields an equation 
similar to the incompressible momentum equation. In the present report 
the transformation is modified slightly to include the proportionality 
factor C in equation (l). The transformation variables are 

x = x 

O) 

where n alters the scale in the direction normal to the surface. The 
derivatives are expressed as follows: 

o )    = ö- ^      bn o- 
^x/y     ^xjn   ^x cE 

1 
2 to a ö 1    /p \2 "ts   Ö 

oy      VC \pBJ     t   dn J 

(10) 

Before transforming equation (3) it is convenient to introduce a stream 
function ty(x,y) which satisfies equation (4). This function is 
defined by 

pu = ps ^ 

pv = - p8 || 

(H) 
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In terms of the transformed coordinate system, a function 0(x,n) can 
be defined as 

1 
,2 

From equations (lO), (ll), and (12), 

00 

(12) 

u = 3n 

v = "^(I^nl) + ^(^) 
(13) 

and, as shown in reference 1,  from equations (l), (7), (8), (lO), 
and (13), the momentum equation becomes 

50 fti   _ 5£ ■&£ 
an. öxon " ox ^n2 

dun 
ui dx 

l(±-JC-4&\aV   &£ a 2an bn2J on3 (14) 

The temperature term in this equation can be expressed in the form 

.£.-•,.. ui2"u      n . r-i M 2    r- T~  = 1 + -r- r  = 1 + —r- MT  
tx 2Cp  t-L 2 2a a2 VW (15) 

from vhlch 

50 52(2 
in one 

50 520 
ul 

du^ 

* On2        x ^ 

r 

[-^2-^(lT- 
2aj_2      ön2 S an 

(16) 

With the exception of the term within the bracket, equation (16) is 
identical in form to the incompressible momentum equation. 

Momentum-integral equation. - The momentum-integral equation is 
obtained by integrating each term of equation (16) from the solid 
boundary to the outer edge of the boundary layer (see reference l): 
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e = 

A* = U'' *) dn 
(18) 

(19) 

DO 
CO 
CD 
Oi 

The auxiliary functions © and A* are similar to the momentum thick- 
ness 0 and the displacement thickness 6* in the physical coordinate 
system. 

Modified Karman-Fohlhausen solution. - In order to solve equa- 
tion (17) "by the Kanaan-Pohlhausen method it is necessary to introduce 
the variable T] = n/A and to assume that u/u-j_ is a polynominal in TJ. 

As in the method of PohUaausen, this polynomial is taken to be of the 
fourth degree. The coefficients of the polynomial are determined from 
the following boundary conditions: 

n = 0: u = 0 

ai dx \^+ 2 Mi y B ön3 

^u 
Ön2 

n = A: U = U]_ 

3n on2 
= 0 

Thus the following form is obtained for the velocity profile: 

^ = f(ti) = 2ii - 2n3 + n4 +x Ö n ^>3] (20) 

where the parameter X is defined as 

X = A2 

vs 

dul / 
dx   ! 1 + r-i 

2 (21) 
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Transformation to the i\-coordinate and subsequent integration in equa- 
tions (18) and (19) yield 

0=315 

T56 -\A 

V i2°; •     ^ = M^H (23) 
and it is found that 

Equations (22), (23), an(i (24) could be applied to equation (l?) 
directly and the result would be a differential equation for X (ref- 
erence l). A simpler solution can be obtained by applying the substi- 
tution of Hoistein-Bohlen: 

>=@2As 'V (25) 

or,  from equations  (22) and (2l), 

_1_Y37  -2--.5X!} 
L515-.V      ;   ---5      144/ 

duj_ 
dx~ (l+^M^) 

(26) 

Equation (l7) is multiplied by 0/u1v1,. and equations (25) and (26) are 

substituted in the resulting expression to yield 

Then, from equations (22), (23), and (24), 
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vhere 

f200 

f(Mi) = 

'N 

2X + X' 
15  120 120 i 

MX
2 - 4 

2 + (r-1) Mx
2 

(28) 

and 

Z = 
*i(x) 

£(^*) 
(29) 

Equations (27) and (29) can now be integrated simultaneously, and X 
can "be obtained as a function of x by a method of numerical integra- 
tion given in detail in appendix B. The functions fi(x) and f2(x) 
are graphically presented in figure 1 and are tabulated in table I; 
f(Ml) is tabulated in table II. Boundary-layer variables are still in 

the transformed system of coordinates, however, and a transformation to 
the physical (x,y) coordinates is required. 

Inverse transformation to physical coordinates. - The distance 
normal to the surface can be obtained from equation (9): 

ety dn 

d*i 

ro 
DO 
00 
Ol 

or 

Pb« *1 
P    tf 

nn 

^o 
*i 

dT) 
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But, from equation (15), 

L.i + ]£Ml*[i - (t)] <30> 
J5        and, from equation (20), 

8 

f^^^V-Mi1 (31) 

where 

tl 2      *   V i=2 

*2      2 -    ,   . 
a2=36+3X+4 

\2 
&3 = 6 

- 2X 

a4 = 
5X2 ^ 
12 

4X 
3 

8 

a5 = 
5X2 
9 

5X 
■+-3 

+ 4 

a6 = 
5\2 
12 

3X + 4 

a7 = 
X2 
6 

5X 
■ 4 

a8 = 
X2 
36 3 + 1 

(The functions a.±    are tabulated in table I and presented graphically 

in fig. 2.) 

from which 

W?^^M^^2g^]    w 
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where A is obtained from equation (2l). The boundary-layer thickness 
is determined by letting r\    equal 1: 

5 = A/y/-^- ^ i + Il± M-L2 (-0.0001X2 - 0.0Ö94X + 0.4175) (33) 

The momentum thickness is defined as 

Plul (i ■ i) dy 

^?XY(-t) -=-1 dn 

4#9 (34) 

and the displacement thickness is 

"= lo'1 

.4175) = ^VP   A*+ A(Ir:) Mi2 (-0-0001A2 - 

The wall shear stress TW is defined as 

-^VI(sX 

0.0094X + 0 (35) 

ul^s A /pC (0      X 
"A" VPI (2 + 6 9 (36) 

CO 
0O 
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The separation point is defined as the point where the shear stress 
vanishes, or, from equation (36), where X = -12. It is emphasized, 
however, that the Karman-Pohlhausen solution has been found to be quite 
inaccurate in the neighborhood of a separation point. 

SUMMARY OF METHOD 

The results of this study will be summarized in the order they are 
needed for the solution of a particular problem. It is assumed that all 

(       dul "\ 
free-stream conditions ^1' dx~' Ml> ^l* pl/ are kno'wn functions of x. 

The standard conditions (vg, ps, tg) are selected as mean values of the 

free-stream conditions. Next X is determined as a function of x by 
solving equations (27) and (29) numerically: 

dZ = 2_  ff^X) f(MJ + f2(X)l 
dx  u-j_ *- «J 

fi(x) z = 
duj_ 

dx~ (l^^ 

(27) 

(29) 

where 

f
2^
S3fe( 

f(Mx) = 
Mn 

37-| 

- 4 

X  5X?\T 
' 3 " 144yj 

_ §±l\(z  _ 2X _x£\ 
' 144 it-   15 120J (28) 

2 +" (r-i) Mx
2. J 

A suggested procedure for solving equation (27) is presented in appen- 
dix B. All functions/of X  and Mx are tabulated in tables I and II. 

Once X is known as a function of x, the following functions can 
be found: 

A (21) 
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0 =-A_ 315 (37  - | - §£) (32) 

and 

5 = A' A/-J- ^ I 1 +' 3Cli Ml
2   (-0.0001X2 - 0.0094X + 0.4175)1       (33) 

9 = *lA/£2£ 8 (34) 
ts  

v   P 

5* = t^V-^- LA* + A viy M!2  C-0-0001^2 - 0-0094X + 0.4175)1 (35) 

^ = ^C(-l) (») 
and,  for assumed values of    0^ T)^- 1, 

± = 2T,  -  2T,3 + ,4 + X[j I,  (l-r|)3J' (20) 

The velocity and temperature profiles can then be found in terms of the 
physical (x,y) coordinate system by the following relation: 

-^aU-^^g^] (32) 
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where 

\2  2 
a2 = 36 + 3 X + 4 

X2 
&-K    = - 2X 

to 
CO 
CD 
Ol a4 = 12" + T " 8 

5X2  5X   . a5 = - — + T + 4 

a6 = 
5XJ 
12 3X + 4 

*7 = -¥ + f-* 
X2  X  n 

a8 ~ 36 ~ 3 + 1 

SPECIAL CASES 

Solution near a stagnation point. - In the immediate neighborhood 
of a stagnation point, uj_ is equal to zero and the incompressible 
solution must apply. This solution is (reference 3): 

X0 = 7.052 

„    0.077 
Z0 = du^ta (37) 

i)o ■ -°- 
d2UT/dx2 

065E  .  ;, 
du-j^/dx J 

Flat-plate solution. - In the case of the flat plate, X = 0 a^d 
the conditions at the outer edge of the boundary layer are constant and 
equal to the standard condition(s). Equation (27) therefore becomes 
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1 = \ [fi(o) f(Ml) + f2(0)] 

0.470 
u-, 

and 

Z.= 
0,470 x 

;- UT 

From equations (25) and (34), the momentum thickness is 

/v7£c 
9 = 0.685/W-^— 

The boundary-layer thickness is found from equations (22), (34), 
and (33) to be 

5 = 5.836A/^— ll + 0.417 Mx
2 (^)i 

The displacement thickness, from equations (23) and (35), is 

B* = 1.75^/^ [l' + 1.392 (^) Ml2j 

and, from equation (36), the vail shearing stress is found to be 

.   T    
ui^i KF$ 

"w " 2.918 Vvix 

(38) 

(39) 

(40) 

(41) 

(42) 

Velocity and temperature profiles can be. found as functions of T) by 
letting \ vanish in equations (20) and (30), respectively. The rela- 
tion of TJ and y can then be obtained from equation (32). The error 
introduced in the flat-plate solution by assuming that the velocity 
profile is a fourth-degree polynomial can be deduced by comparing these 
results with the results of reference 5: 

DO 

CD 
01 

0 ■= 0.664 
VjxC 

Ui 
(«) 
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s* = i.73Ylr~ T1 + lp372 C1^) MlT (44) 

N w   5.0Ü V viX 

Equations (43) and (45) apply for any Prandtl number, whereas equa- 
tion (44) applies for Pr = 1 only. 

It can therefore "be seen that the results of the present analysis 
are quite accurate for the case of zero pressure gradient. No definite 
conclusions for the nonzero pressure gradient case can be made, however. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, August 8, 1951 
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APPENDIX A 

TRANSFORMATION OF MANGLER 

The laminar-boundary-layer equations for three-dimensional flows 
with axial symmetry are 

N 
CO 
CD 
Ü1 

PCJ) 

dx   dy  . p dx  p dy\ by J 

JL (pr0ü) + JL (pr0v) = 0 

(Al) 

(A2) 

(A3) 

where the bar is used to differentiate the three-dimensional from the 
two-dimensional quantities, and ^Q(X) defines the radial coordinate of 

the body in a meridional plane. The continuity equation is satisfied 
by the following stream function: 

 d\|r 

v = - M 

(A4) 

r0 P v = 
ox 

The following transformation variables were introduced by Mangier 
(unavailable report): 

Px 

x = KT 
v^ 0 

!(x) dx 

y = K r0(x) y 

where K is an arbitrary constant. Thus 

(A5) 
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a    K2r 2 a , yV 5 
^x °   S       rQ    oy 

of = Kro of 

where the prime indicates differentiation with respect to x. 

It is further assumed that 

P(x,y) = p(x,y) 

t(x,y) = t(x,y) 

lÄ(x,y) = n(x,y) 

pfoy) - p(x,y) 

Equations (Al), (A2), and (A3) can then be transformed to the following 
form: 

öu ,  du   1 dp , 1 5 / öu\ /.-i U^x + Vo^=-pdi + pd^^^J (A6) 

JL (pu) + |_ (pv) = o (A7) 

..    -pM-x-|) = ^X + fy(^)-(|)
2        (A3) 

where 

u(x,y) = u(x,y) 

r^y) -^(jfoy) ~^2U^yj 

(A9) 

Equations (A6), (A7), and (A8) are now identical to equations (3), (4), 
and (5). The solution of these equations, as presented in the text of 
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this report, therefore applies to the three-dimensional problem, but 
the final results must he ^transformed to the three-dimensional quan- 
tities. The boundary-layer thickness 6 is not defined in a solution 
of the differential boundary-layer equations, but its definition is 
required for the solution of the integral equation. The transformation 
of 6 can best be accomplished by examining the velocity profiles: w 

From equation (A9), however, 

JL = iL fl\ 
U-L • U-L \b) 

ui    uiW 

u _ u 
ul ~\ 

CD 
Ü7 

It therefore follows that 

I = y 
5  B 

whence, from equation (A5), 

5 = Kr0(£) 5 (A10) 

The momentum thickness is transformed as follows: 

e(x) = 

= ^ Jo ^(1_ w)dy 

= K~ Ö(x) (All) 
XU.Q 
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and similarly, 

S*(5E) = =£-. S*(x) Krr 
(A12) 

T
¥(x) = Kr0 tw(x)^ 

where the quantities without the bar (representing two-dimensional 
quantities) are given by equations (33) to (36). 

Therefore, if it is desired to determine any of the boundary-layer 
characteristics at a distance x from the nose of an axially symmetric 
body, the corresponding two-dimensional distance x is first found from 
equation (A5). The two-dimensional quantities (6, &*, 9, %  ,  and so 

forth) are then found using equations -(33) to (36), and are transformed 
to the three-dimensional quantities at x through the use of equa- 
tions (AlO) to (A12). The transformation applies for flows with or 
without streamwise pressure gradients. 
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APPENDIX B 

SOLUTION OF DIFFERENTIAL EQUATION BY RUNGE-KUTTA METHOD 

The RuQge-Kutta method of finite differences (reference 6) has 
been found to he very satisfactory for solving equation (27). It is 
believed that a detailed discussion of the method, as applied to the 
present problem, will be of help to the reader. 

It is suggested that a table of the following form be used: 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (ii) 

X ul 
du]_ 

dx % f(Mx) 1+^KL2 Z fi(x) X f2W k 

1 0 zo kl 

2 h/2 Z0 + \ *L k2 

3 h/2 zo + \ H k3 

4 h z0 + k3 k4 

5 h Zl *L 

6 *+i Zl + 2 kl 
k2 

7 
»♦! 

zx + ^ k2 k3 
8 2h zl + k3 

k4 

The distance along the body (x) is subdivided into a number of incre- 
ments h, and the free-stream variables u.-^,  du^/dx, and M-L at each 

point are tabulated in columns (2), (3), and (4). Column (5) follows 
from equation (28), and column (6) is easily tabulated. Columns (l) 
to (6) can be tabulated for all x, whereas for columns (7) to (ll), 
each row must be calculated separately. 

The value of ZQ = ©o
2/vs (column (7), row l) is given by equa- 

tion (37) for stagnation-point flow, or is equal to zero if ©Q = 0. 

The value of f]_(X) (column 8) is obtained from equation (29), or in 

column notation, 

'^(X) = (7)(3)(6) 

DO 
ro 
CD 
Ol 
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Columns (9) and (lO) are obtained from figure (l). Column (ll) 
lists the Runge-Kutta parameter k, which in column notation is 

k = xiy ((8)(5) + (10))h 

Rows 1 to 4 can now he completed in this manner. At the completion of 
row 4 the total increment in Z can be computed using the following 
equation: 

AZ = ! (k-L + 2k2 + 2k3 + k4) 

The entire process is then repeated for rows 5 to 8. The value of Z-, 

(column (7), row 5) is equal to ZQ + AZ. The procedure is carried out 

for all increments of x, and as a result X is obtained as a function 
of x. 
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TABLE II - FUNCTIONS OF    Mx 

[j = 1.4Ö] 

Ml fv 1 + TT-1 M]L
2 f(Mx) Ml 

r_1 M 2 
2    Ml l+I^ *(Mi) 

0 0 1.000 -2.000 2.2 0.968 1.968 0.213 
.2 .008 1.008 -1.974 2.4 1.152 2.152 .409 
.4 .032 1.032 -1.861 2.6 1.352 2.352 .589 
.6 .072 1.072 -1.698 2.8 1.568 2.568 .748 
.8 .128 1.128 -1.489 3.0 1.800 2.800 .893 

1.0 .200 1.200 -1.250 3.2 2.048 3.048 1.024 
1.2 .288 1.288 -.994 3.4 2.312 3.312 1.141 
1.4= .392 1.392 -.733 3.6 2.592 3.592 1.247 
1.6 .512 1.512 -.476 3.8 2.880 3.880 1.343 
1.8 .648 1.648 -.231 4.0 3.200 4.200 1.500 
2.0 .800 1.800 0 
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Figure 1. - Auxiliary functions used In equation (27) 
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Figure 2.   - Auxiliary functions used in equations   (31)  and   (32). 
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Figure  2.   - Concluded.     Auxiliary functions used In equations   (31)   and  (32). 
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