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 SUMMARY

The Karmén-Pohlhausen integral method, as applied to compressible
laminar boundary layers, was simplified by an analysis similar to the
incompressible.Holstein-Bohlen method. Although this simplification is
helpful for many calculations, it is of greatest value when conditions
at the edge of the boundary layer are known from experimental measure-
ments. The analysis was conducted under the assumptions of a Prandtl
number of 1, zero heat transfer, and a linear viscosity-temperature
relation; velocity profiles are approximated by a fourth-degree
polynomial.

Results are presented so that velocity and temperature profiles,
momentum and displacement thicknesses, and wall shear stress can be
calculated for flows over two-dimensional bodies with arbitrary free-
stream velocity distributions. The results are also applicable to
flows over three-dimensional bodies with axial symmetry through the use
of Mangler's transformation. ' . ,

INTRODUCTION

Present-day theory of compressible laminar boundary layers permits
the serodynamicist to make satisfactory boundary-layer calculations for
flows with zero pressure gradients. Exact solutions of the boundary-
layer equations for flows with streamwise pressure gradients, however,
exist only for several specific pressure distributions (reference 1).
Solutions of the laminar-boundary-liayer equations for flows with arbi-
trary pressure gradients are of ever increasing importance because it
has been suggested that at sufficiently high altitudes and speeds lami-
nar boundary layers can exist at very high Reynolds numbers (refer—
ence 2), and because the pressure gradients encountered over most wings
and bodies are not approximated by any of the aforementioned exact
solutions.
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The lack of exact solutions for flows with arbitrary streemwise
bressure gradients necessitates the use of spproximate solutions. The
Kérmin~Pohlhausen method has long been found to yield -satisfactory solu-
tions for incompressible flows, provided that the separation point is
not approached. Howarth (reference 1) has recently applied this method
to compressible flows.

The solution of the incompressible or compressible boundary-layer
equations by the Kdrmin-Pohlhausen method is complex because 1t involves
the numerical solution of a cumbersome differential equation, and
because it involves second derivatives of the free-stream velocity,
which cannot be determined with any accuracy if the free-stream velocity
is known only from experimental messurements. For incompressible

© fluids, these difficulties have been overcome by the Holstein-Bohlen

simplification (reference 3), which eliminates the second derivatives
of the free-stream velocity end simplifies the differentisl equation.

In the present report of an analysis made at the NACA Lewis labo-
ratory, the Holstein-Bohlen simplification is applied to the Kérmén-
Pohlhausen method for compressible fluids. The momentum-~-integral equa-
tion is derived using the transformation of Howarth (reference 1)
together with a more general viscoslty~-temperature relation than that
used in reference 1. The greater part of the analysis presented fol-
lows along the lines of reference 1, but the emphasis herein is placed
on simplifying the final results of the snalysis so that they can easily
be applied to any practical problem.

Although the present analysis is carried out for two-dimensional
flows, it can be applied to three-dimensional flows with axial symmetry
by using the transformation of Mangler (see appendix A). Under this
trensformation, a three-dimensional body with a glven pressure gradient
1s transformed to a related two-dimensional body. The results of the
present study can be applied to this two-dimensional body.

SYMBOLS

The following symbols are used in this report:

a speed of sound
o proportionality factor used in equation (1)
S specific heat at constant pressure

£(My) function defined by equation (28)

- d
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£1.(M)
£a(0)
£(n)
h

® K X

B

function defined by equation (28)

function defined by equation (28)

function defined by equation (20)

increment of length

summation index

arbltrary constant

thermal conductivity

Mach number

transformation variable defined by equation (9)
Prandtl number, ucp/k

static pressure

radial coordinate

Sutherland's constant (216° F)

static temperature

velocity in x- and y-directions, respectively

cartesian coordinates measured along body and perpendicular to
body, respectively

function defined by equation (25)

ratio of specific heats

boundsry-layer thickness in x,n coordinate system
function defined by equation (19) |
boundary-layer thickness in X,y coordinate system
boundary-layer displacement thickness

n/A
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® function defined by equation (18)

2 . boundary-layer momentum thickness

A Pohlhausen parameter

K absolute viscosity ;

v kinematic viscosity

P mass density

T shear stress

o transformed stream function

¥ stream function -

Subscripts:

0 conditions at stagnation point

1 conditions at outer edge of boundary layer

s standard condition

w condition at solid boundary
ASSUMPTIONS

" The folioﬁing'aséﬁmptions'aie mede ih additioﬁ té the usual
boundary-layer assumptions in order to make the problem amenable to
solution: S : , : S '

(1) The Prandtl number of the fluid is.equal to 1. It has been
shown in reference 4 that this assumption has no appreciable effect on
flat-plate skin-friction calculations if the fluid is air (for M<5),
but the assumption does limit the accuracy of heat-transfer calcula-
tions and temperature distributions. ' , ' ' '

(2) The heat transfer at the.solid boundary is equal to zero.
This assumption should be reasonable for meny practical applications.

9822
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(3) The viscosity and temperature are related linearly by the fol-
lowing expression:

L o_o%
=C o (1)

Chapman and Rubesin (reference 5) have shown that solutions of the
boundary-layer equations based on equation (l) agree well with reality
for flat-plate flows if the constant C is determined by matching
equation (1) with Sutherland!s relation at the solid boundary so that

e Ges)
Ny wsw @

This assumption should a1sb be reasonsble for the case of flows w1th
streamwise pressure gradients because the wall temperature tw is con~
stant as a consequence of assumptions (1) and (2).

ANATYSTS

Compressible laminar—béundaryhlayer equations. - The momentum equa-
tion describing the flow in the boundary layer is

du . du_  ldp 12 du ~ ‘
US}—C+V6§_—-E-— F(HS}—T ' ‘ ) (3)

The equation of continuity is
2 (ou) + 2 (ov) = 0 (+)

The flow of heat is described bykthe‘energy equation, which is

A particular solution of the energy equation can be obtained by multi-
plying equation (3) by pu and adding the result to equation (5), and
by letting the Prandtl number equal 1. This solution is

ul
2 * °p t = constant (6)

and corresponds to the case where the heat transfer at the solid bound-
ary is equal to zero.
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The equation of state can be expressed as

D pt

£ B 7

Ps  Pg b (n
The Bernoulli equation, which applies at the outer edge of the

boundary layer, is

du
d; 1
...2 = - plul — (8)

Iransformation of Howarth. - In reference 1 Howarth introduces a
trensformation which, when applied to equation (3), yields an equation
similar to the incompressible momentum equation. In the present report
the transformation is modified slightly to include the proportionslity
factor C in equation (1). The transformation variables are

L]

X X

1 (9)
2| t

1 (R %s 4
AT (?;) o ¥ Y

where n alters the scale in the direction normal to the surface. The
derivatives are expressed as follows:

o]
L]

o) ) 9 on d
8 y = EX)n-l-Si 511
(10)

ol

v () <%

Before transforming equation (3) it is convenient to introduce a stream

function V(x,y) which satisfies equation (4). This function is

defined by
9
Psg 3%

- Ps g%

pu

(11)
pv

G82<
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In terms of the transformed coordinate system, a function ¢(x,n) can
be defined as

L
e,y) = AfT(Z) pen) (12)

From equations (10), (11), and (12),

-

Z2A55

-

' (13)
ps,/pcgé ggan d ,,pC
V=-—5—[5£ X+ n O% +¢B§ Ds J
and, as shown in reference 1, from equations (1), (7), (8), (10),
and (13), the momentum equation becomes
a 2 3
CE BT N TR IR B
&1 2&12 dn? on>
The temperature term in this equation can be expressed in the form
2 2
ujé-u - - 2
B or g =1 2 I () (15)
1 % "1 231 L,
from which
duy r-1 .2 v-1 o9\
Sgég EQ ey |:1+le' 25:2;'
) 28.1
(18)

® and

2 3
T _g gl 3¢
Zalz an
With the exception of the term within the bracket, equation (16) is
identical in form to the incompressible momentum equation.
Momentum-integral equation. - The momentum~-integral equation is

obtained by integrating each term of equation (16) from the solid
boundary to the outer edge of the boundary layer (see reference l):

- du M -
ulzgsc@+ula;[®(-—%‘-— v o* (1+%M12)] = vg (%E)W (17)
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where

A
® = (l‘_%)%dn (18)
. 0 , . :
a |
u . ;
oX = 1-—1\dn
5 ( ul) . (19)

The auxiliary functions © and A¥ are similar to the momentum thick-
ness 6 and the displacement thickness ©&* in the physical coordinate
system. * : ‘

Modified Karmén-Pohlhausen solution. - In order to solve equa-
tion (17) by the Kdrmdn-Pohlhausen method it is necessary to introduce
the variable n = n/A and to assume that u/u; is a polynominal in 7.
As 1n the method of Pohlhausen, this polynomial is taken to be of the
fourth degree. The coefficients of the polynomial are determined from
the following boundary conditions:

n = 0: u=0
By (0 p1 g\, % o
T \Lt e M) s el T Ve o
n = A: u=u
du _ éEE =0
om T yp2
Thus the following form is obtained for the velocity profile:
u : s
o = Tn) = 2n - 205w pt o [g n (l—n)‘ﬂ (20)

where the parameter A ie defined as

du ' .
= _._!: _Y_:.:!: a . .
= - (1+,2 Ml) , (21)

< E%

. G822
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Transformation to the n-coordinate and subsequent integration in equa-
tions (18) and (19) yield

A A =By o
®= 335 (57 -3 144) (22)
' N -
* S - A
VAN —A( 120) (23)
and it is found that I .
au) ul( X) |
=—=1{(2 +4 (24)
=), " a2t E

Equations (22), (23), and (24) could be applied to equation (17)
direc¢tly and the result would be a differential equation for A (ref-
erence l) A simpler solutlon can be obtained by applying the substi-
tution of Holstein-Bohlen:

or, from equafions (22) and (21. ' o . o .‘ : :
2 . ’ - - .v
| 315‘ ~ 144 : e T (26)
dug [, ¥-1 y1 1 My 2
Tx 2 R

Equation (17) is multipiied by @/ulvl,‘and equations (25) and (26) are
substituted in the resulting expression to yield

u
28 am[-ow . 5] 2()

Then, from equations (22), (23),7and (24),

% = % [I”l()\) £(My) + fz(xil (27)

ey
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where
) L)
= 1 N Y A
fl()\) = )‘[3_15 (37 -3 - 1—44-)]
fo(A) = L [z7 .2 _ §l§ o _ 2\ % _lE P (28)
2 = 315 3~ 144 15 © 120
(M ) Mlz - 4 J
fiM)=
2+ (Y-l) Mlz
and
5 (0
_ 21 B (29)
duy N -
ax t M

Equations (27) and (29) can now be integrated simultaneously, and A
can be obtained as a function of x by a method of numerical integra-
tion given in detail in appendix B. The functions fy(\) and fao()\)
are graphically presented in figure 1 and are tabulated in table I;
£(My) is tebulated in table II. Boundary-layer variables are still in

the transformed system of coordinates, however, and a transformation to
the physical (x,y) coordinates is required.

Inverse transformation to physical coordinates. - The distance
normal to the surface can be obtained from equation (9):

or

GRZ3
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But, from equation (15),

to_ g LTy 2 u )2
T - 1+ M [; - (;1):] (30)

8
=1+ Ewm?l1- > oy ot (31)
1 i=2
where
2
A 2
2
a3=--%—-2k
SNE 4
34—ﬁ+—§' 8
2
35=——5;\ +%)'\'+4:
5\2
a6=ﬁ-§)\ 4
A2 B .
a7=-—é—+-—5--—
1D
5.8='3—6""3'+l

(The functions a; are tabulated in table I and presented graphically
in fig. 2.)

from which

, +1
y=A Ppctl['](l+_—2—ml)-——MlZl+l] (32)
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where A is obtained from equation (21). The boundary-layer thickness
is determined by letting 1n equal 1:

N Y B
5 = AN 2| 42122 M;2 (-0.0001A2 - 0.0094A + 0.4175)|  (33)
P ts 2 :

The momentum thickness is defined as

p1‘*1(' )d‘y
0
A
t ) -,
t_lh/ic SN WP
s p o uy U

t c
N2 g | | (34)
tg D ' :

D
i

i}

and the displacement thickness is

e 20| [ [ e

pC
; [A* + A(Y ) 42 (-0.0001\2 - 0.0094\ + O. 4175)] (35)

5%

It

hal
tS

I

The wall shear stress <ty 1s defined as.

(%),

'pC (o
i, (5,

«
It

Utg o fpC A
‘TA/E; (2 +-é) (36)

-

G822
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The separation point is defined as the point where the shear stress
vanishes, or, from equation (36), where A = -l1l2. It is emphasized,
however, that the Kdrmdn-Pohlhausen solution has been found to be quite
inaccurate in the neighborhood of a séparation point.

SUMMARY OF METHOD

The results of this study will be summarized in the order they are
needed for the solution of a particular problem. It is assumed that all
du o
free-stream conditions ul’VEE%’ My, ty, pi) are kpdwn functions of x.

The standard conditions (vg, Dg, tg) are selected as mean values of the
free-stream conditions. Next X 1is determined as a function of x by

solving equations (27) and (29) numerically:

az _ 2 [fl(x) f(Ml) + fz(le ‘ (27)

dx uy

1(0) | (29)

2= Fuy r-1 . 2

- where

2 2\ »
-1 [ 2_522 2, 2
(0 = 3% (5 3 144)(2 15 +~120) (28)
o) = 2%
(M) = -
2 + (y-1) Mlz J

A suggested procedure for solving equation (27) is presented in appen-
dix B. All functions of N and M, are tabulated in tables I and II.

Once A 1is known as a function of x, the following functions can
be found:

- Av
A = = (21)

duy -1 . 2
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2
‘ A A9
® =315 (37 3 144) (22)
36 - A
* -
N -A( 120) (23)

and

pLC &
5 A ,,s [1+Y1M2(00001x2_ooos4X+04175):l (33)

pC
0 = _l -8
tg P

I\/ps [A* + A( )M 2 (-0.0001A\% - 0.0094\ + O. 4175] (35)
_ ul“s” ,pC ( A
Ty = —x P, 2 + 6) (38)

and, for assumed values of 0SS 1

2o oon - 203 4 nd < ._3]
ul-zn 295 + 1 +x[6n(ln) (20)

RN RS PR A
tl_1+ = M [1 (ul)] (30)

The velocity and temperature profiles can then be found in terms of the
Physical (x,y) coordinate system by the following relation:

® (34)

8*

ll

8

‘—A P.ii]: 1 I:_lMZ Y;le l+l (32)
y = ths" M) -3 121

i=2

G823
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where
2
A2
8.3=—?-2)\
52 e,
I R
2
a5=‘%" T
2
a6=—-—i)2\ - 3\ + 4
2
a7=-%+—?—4
A2
a8=-3%-—3+l
SPECTAL CASES
Solution near a stagnation point. - In the immediate neighborhood

of a stagnation point, u; 1is equal to zero and the incompressible
solution must apply. This solution is (reference 3):

N

= 7.052

0.077
= Tuy/ax , (7)

a%uy fax?

-0.0652 m— J

Flat-plate solution. - In the case of the flat plate, A = 0 a~d
the conditions at the outer edge of the boundary layer are constant and
equal to the standard condition(s). Equation (27) therefore becomes
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az 2
o= = £1(0) £(M;) + fz(o)]
_ 0.470
U
and
7= 220X (38)
nul - .

From equations (25) and (34), the momentum thickness is

‘ VlXC
6 = 0.685 (39)
, u1

The boundary-layer thickness is found from equations (22), (34),

and (33) to be
vy xC _
- 5. 836A/ L [1 +0.417 My (lz—l)] (40)

The displacement thickness, from equatlons (23) end (35), is

vy xC
= 1. 75&/—«- [1 + 1,592 Tzl) Ml?] (41)

and, from equation (56), the wall shearing stress is found to be

Ughy ulC

Tw = 72,518 Vyix (42)

Velocity and temperature profiles can be found as functions of 1 by
letting N vanish in equations (20) and (30), respectively. The rela-
tion of 71 and y can then be obtained from equation (32). The error
introduced in the flat-plate solution by assuming that the velocity
profile is a fourth-degree polynomial can be deduced by comparing these
results with the results of reference 5:

- S A
6 = 0.664 - S B R 'M.-(43)
B "1 A R SO R

. 9822




2285

NACA TN 2531 17

v, xC '
1 Y-1 ,
* — 4=
5% = 1.73/\/ o |1 + 1.372( 5 ) Mlzl (44)
MqUg ulC .
= 5N 2

Equations (43) and (45) apply for any Prandtl number, whereas equa-
tion (44) espplies for Pr = 1 only. '

It can therefore be seen that the results of the present analysis
are quite accurate for the case of zero pressure gradient. No definite
conclusions for the nonzero pressure gradient case can be made, however.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 8, 1951




18 NACA TN 2531

APPENDIX A

TRANSFORMATION OF MANGLER

The laminar-boundary-layer equations for three-dimensional flows
with axial symmetry are

—=du_,-du__1dp,10 (- Al
SV S de‘+b‘asr‘(“a§) ()
d oy D =
5% (prou) + a‘&'_ (pI'OV) = 0 (AZ)
— -3 =3t = S d [T 3\, - [ 2
°°P|:“$<+"?-y: “ﬁ*?v(k?;)”(%) (1)

vhere the bar is used to differentiate the three-dimensional from the
two-dimensional quantities, and ro(x) defines the radial coordinate of

the body in a meridional plane. The continulty equation is satisfied
by the following stream function:

- = Y
U = =t
Iy P ?y
(a4)
ro PV = - %ﬁ
The following transformation variables were introduced by Mangler
(unavailable report):
X
x = K& rof (%) ax
_ (a5)
vy =Kxrg(x)y

where KX 1is an arbitrary constant. Thus

6822
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) o
= = K
%oy
where the prime indicates differentiation with respect to =.

It is further assumed that

p(%,7) = p(x,y)
Wx,y) = t(x,y)
w(x,y) = p(x,y)
p(%,7) = o(x,y)
¥(%7) = 3 ¥(x,y)

‘Equations (A1), (A2), and (A3) can then be transformed to the following
form:

ou du _ 1dp , 1290 du
11'8'}2+Vg'y—-sa—_}-{+'5dy(ud—y) (AG)
2 (pw) + & (ov) = 0 (a7)
3t d [ 3t 2
pep (U + v By) =u gg + 35 (k By) 0 %5) (a8)
where
u(x,y) = U(%,7)
(49)

A P yrot _ . _
V(X)Y) = Kr‘é v X:Y) - —K-r—O—z u XJY)

Equations (A6), (A7), and (A8) are now identical to equations (3), (4),
and (5). The solution of these equations, as presented in the text of
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this report, therefore applies to the three-dimensional problem, but
the final results must be retransformed to the three-dimensional quan-
tities. The boundary-layer thickness & is not defined in a solution
of the differential boundary-layer equations, but its definition is
required for the solution of the integral equation. The transformation
of B can best be accomplished by examining the velocity profiles:

:E:E_("i)
Uy \3
From equation (A9), however,
@ 3
B Y
It therefore follows that
y.3
5 ©
whence, from equation (A5),
& = Kry(x) 5 (A10)

The momentum thickness is tfansformed as follows:

S—- — o
A(=Y _ u _pu —
e(x), ) Uy ( Blﬁl) ~
- Jo
®
1 u pu
= == — (1 -
Kro Jp W ( plul) Y
- == 6(x) (a11)
Kr '

S822
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and similarly,

1

Kro,S*(x)

ol

E3

)
]

o (A12)
Ty(®) = Krg wy(x)

where the quantities without the bar (representing two-dimensional
quantities) are given by equations (33) to (36).

Therefore, if it is desired to determine any of the boundary-layer
characteristics at a distance X from the nose of an axially symmetric
body, the corresponding two-dimensional distance x is first found from
equation (A5). The two-dimensional quantities (&, &%, 6,'rw, and so
forth) are then found using equations {33) to (36), and are transformed
to the three-dimensional quantities at X through the use of equa-
tions (A10) to (Al2). The transformation applies for flows with or
without streamwise pressure gradients.
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APPENDIX B

SOLUTION OF DIFFERENTIAL EQUATION BY RUNGE-KUTTA METHOD

The Runge-Kutta method of finite differences (reference 6) has
been found to be very satisfactory for solving equation (27). It is
believed that a detailed discussion of the method, as applied to the
present problem, will be of help to the reader.

It is suggested that a table of the following form be used:

(1) [(2)] (3) |(4)] (5) (6) (7) (8) |(9)| (10)|(11)

x |ug g;% M (£(g) |1 + I%l M; 2 z £ 0] A [E200)] &
1 o Zo Xp
2| nf/2 Zo + % kg ko
3| n/2 Z + 3 kp kg
4| n Zo + kg ky
5| h Z ky
6n + 2 Z + 2 iy X,
7+ 2 7y + 3 kp ks
8| 2h Z1 + k3 kg

The distance along the body (x) is subdivided into a number of incre-
ments h, and the free-stream varisbles up, duj/dx, and M; at each

point are tabulated in columns (2), (3), and (4). Column (5) follows
from equation (28), and column (6) is easily tabulated. Columns (1)
to (6) can be tebulated for all x, whereas for columns (7) to (11),
each row must be calculated separately.

The value of Zg = @OZ/VS (column (7), row 1) is given by equa-
tion (37) for stagnation-point flow, or is equal to zero if @y = O.
The value of f7(A) (column 8) is obtained from equation (29), or in

column notation,

£1(0) = (7)(3)(8)

Gg8ee
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Columns (9) and (10) are obtained from figure (1). Column (11)
lists the Runge-Kutta parameter k, which in column notation is

k = -(%— ((8)(5) + (10))~h

Rows 1 to 4 can now be completed in this menner. At the completion of
row 4 the total increment in Z can be computed using the following
equation:

1
AZ =% (ky + 2kp + 2kz + ky)

The entire process is théen repeated for rows 5 to 8. The value of Zl
(column (7), row 5) is equal to Zy + AZ. The procedure is carried out

for all increments of x, and as a result A is obtained as a function
of x.
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NACA TN 2531

TABLE II - FUNCTIONS OF M;

[r = 1.4§g

My féi M 2|1 + IE; M 2| e(y) || My fii M2[1 + Iéi M 2] £ (M)
ol o 1.000 |-2.000 [|2.2] 0.968 1.968 |0.213
.2| .008 1.008  |-1.974 [|2.4| 1.152 2.152 .409
4| 032 1.032  |-1.861 [|2.6] 1.352 2.352 .589
6| .072 1.072  |-1.698 ||2.8] 1.568 2.568 .748
.8| .128 1.128  |-1.489 [|3.0] 1.800 2.800 .893
1.0| .200 1.200  [-1.250 |[3.2]| 2.048 3.048 |1.024
1.2| .288 1.288 -.994 |[3.4] 2.312 3.312  |1.141
1.4] .392 1.392 -.733 ||3.6] 2.592 3.592  |1.247
1.6 .512 1.512 -.476 ||3.8] 2.880 3.880 |1.343
1.8| .648 1.648 -.231 |[4.0] 3.200 4.200 |1.500
2.0| .800 1.800 0
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Figure 1. - Auxiliary functions used 1in equation (27).
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