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1.        Introduction 

A special (EOARD) contract was issued by the Department of the Air Force (AFMC) 
in 1994 to the University of Manchester on the above topic. 

The final report was due in January 1995 but due to the researcher leaving to take 
up another post in December 94 and the fact that Professor Tomlinson left the 
University of Manchester to take up the Head of Departments post at the University 
of Sheffield in October 1995 resulted in a significant delay. The author wishes to 
apologise to the EOARD for this delay. 

Due to the delay, the final report has been kept as succinct as possible covering the 
Technical Brief, Technical Achievements and Conclusions/Recommendations. 

Appendices are attached which contain the principal output from the work. 
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2. Technical Brief 

The principal objectives were as follows: 

• To investigate the use of a hybrid active damping method based on PZT patches 
actuating a constrained layer damper as shown in Figure 1 and referred to as 
ACLD. The alternative version is the concept that is being actively researched in 
the USA by Baz, Inman, Wang, Tsou etc, as shown in Figure 2. 

• To derive mathematical models of the ACLD system for the active damping 
control of structures. 

• To apply the principles experimentally to beam and plate type structures. 

3. Technical Achievements 

All of the objectives were achieved and surpassed.    In particular the following 
aspects are worthy of note: 

(i)        Mathematical models for both longitudinal and flexural hybrid constrained 
layer/piezoceramic active damping concepts have been developed using 
analytical (Rayleigh-Ritz) and FE models and validated experimentally. 
These are described in Technical Papers Numbers 1 and 2 in Appendix 1. 

(ii)       The methodology was applied to a plate structure representing an aircraft 
instrument panel and the first three modes of vibration (two flexure, one 
torsion) were effectively suppressed using the hybrid method. The results 
are described in the Technical Paper Number 3 Appendix II. 

(iii)      the technology has been extended to ring structures (i.e. applicable to aero 
engines) as described in Technical Papers Numbers 4 and 5 in Appendix III. 

4. Conclusions and Recommendations 

1. The concept of hybrid (passive constrained layer and active) damping 
appears to hold significant potential. 

2. Correctly designed passive constrained damping provides authority over the 
higher frequency modes. However, the addition of actuators, in this case 
PZT patches, placed at appropriate locations (maximum curvature points) on 
top of the constraining layer produces clear benefits. 

3. The benefits can be described by two aspects: 

(a) increased damping control over a wide frequency range. 
(b) the ability to implement simple control algorithms arising from the 

inherent stability of the system from the constrained layer damping. 

4. All of the objectives defined in the original work programme have been 
achieved and surpassed; the concepts being extended to ring type 
structures. 



Recommendations 

Further work should be carried out to investigate the following in relation to optimisation, 
namely:- 

• the size (coverage) of the constrained layer material which is activated by the PZT 
patches and its optimal location, 

• a detailed comparison between the two approaches to active damping, namely PZT 
actuators (or equivalent) applied to viscoelastic material directly (the 'USA' method) 
or, as in our case, PZT actuators applied to the constraining layer which constrains 
the viscoelastic damping material. 
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Modelling of a Hybrid 
Constrained Layer/Piezoceramic 
Approach to Active Damping 
It has been shown that significant reductions in structural vibration levels can be 
achieved using a hybrid system involving constrained layer damping and active 
control with piezoceramics. In this paper, mathematical models based on the Rayleigh 
Ritz approach, are developed to describe the longitudinal and flexural vibration 
behaviour of a cantilevered beam when excited using piezoceramic patches bonded 
to a constrained layer damping treatment. Predictions of static and steady state 
dynamic behaviour, obtained using the models are validated by comparison with 
results from finite element analysis and laboratory experiments. The models are then 
used in open loop and closed loop velocity feedback control simulations to demon- 
strate the improvements in stability and performance achieved using this method over 
that achieved using conventional active control. 

1    Introduction 
The active control of structural vibration using induced strain 

actuators has been the subject of many studies in the last decade. 
It has been shown that significant reductions in the vibration 
levels of beams and plates can be achieved in this way. Theoreti- 
cal models have been developed to represent the interaction of 
the actuator and the parent structure. These have been used for 
optimisation and to develop control strategies. 

Piezoelectric ceramic patches, such as lead zirconate titanate 
(PZT), are often chosen as induced strain actuators as they are 
compact and have a wide frequency range. 

In the active control of lightly damped structures, the stabil- 
ity, robustness and disturbance rejection of the control strategy 
employed are critical to its success. In control system design 
for light, flexible structures the spillover, where unmodelled 
higher order modes are destabilised by the energy from the 
control system, must be minimised. Spillover effects in the 
control of vibrating structures were first discussed by Balas 
[1]. These issues have indicated the need for damping to be 
introduced in active control systems. 

Efforts have been made to reduce structural vibration by 
actively enhancing the performance of passive constrained layer 
damping [2, 3, 4, 5]. Passive constraining layer methods reduce 
vibration by dissipating energy through hysteresis loss in a con- 
strained viscoelastic layer. Effectiveness depends on the amount 
of shear induced in the viscoelastic material through the relative 
motion of the parent structure and constraining layer. 

One method that has been used successfully is to bond PZT 
actuator material to a stiff constraining layer which is in turn bonded 
to the structure by a thin viscoelastic layer [6]. The relative motion 
of the constraining layer, and hence the shear in the viscoelastic 
layer, can be increased by activating the PZT material. Strains in- 
duced in the constraining layer in this way also develop bending 
moments, owing to their eccentricity from the neutral axis, which 
can be used to control vibrations. Thus, two mechanisms occur in 
this "active damping" approach. Significant reductions in resonant 
amplitudes have been demonstrated by applying this strategy to 
beams and plates using simple velocity feedback [7]. The "active 
damping" concept, as defined in this paper, is shown in Fig. 1. 

,J Now at the University of Sheffield, UK. 
2 Now at the Sheffield Hallam University, UK. 
Contributed by the Technical Committee on Vibration and Sound for publica- 

tion in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received Feb. 
1995; revised Sept. 1995. Associate Technical Editor: J. Mottershead. 

The experimental work carried out in this field [3, 5, 7] has 
indicated that effectiveness is dependent on the dimensions, 
positioning and material properties of the viscoelastic, PZT and 
constraining layers. The complexity of the problem has high- 
lighted the need for an accurate model which can be used to 
investigate the effect of parameter variations and to draw com- 
parisons with other methods for optimisation and control strate- 
gies. 

In addition to the advantages gained from the increase in the 
inherent damping of the structure, it has been shown that by 
placing actuators on a constraining layer rather than bonding 
them directly to the structure, significantly higher feedback volt- 
ages can be used before the actuators saturate and the system 
becomes unstable [7]. 

Previous work has adapted existing theory for the vibration 
of sandwich beams to include piezoelectric actuators to act as 
the constraining layer [8]. This normally results in modifica- 
tions of the sixth order partial differential equations for vibration 
systems as developed in the late 1960s [8]. The effort required 
to solve these problems is considerable. 

For application of active damping with structures more com- 
plex than simple beams and plates, finite element analysis may 
prove the most efficient [10, 11]. However when the require- 
ment of the model is for investigation of the characteristics of 
the active damping concept, to assess its advantages against 
other possible configurations and to carry out studies involving 
parameter variations, a finite element model lacks the flexibility 
to do these operations easily. For example, a study into the 
effect of viscoelastic layer thickness on overall performance 
would require a separate finite element mesh to be created for 
each case. 

This paper presents a model which uses the Rayleigh-Ritz 
assumed series method to analyze the situation where a visco- 
elastic layer and a stiff constraining layer with an additional 
PZT patch are used to create an "active damping" mechanism. 

The model obtained is verified by comparison between pre- 
dicted dynamic behaviour and that obtained from laboratory 
tests. A comparison is also made between the static and modal 
behaviour predicted by the model and that estimated using a 
commercial finite element package. 

2   Theoretical Modelling 
The analysis presented is for a rectangular section cantile- 

vered beam with symmetrically placed constraining layers and 
PZT actuator patches as shown in Fig. 2. 
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Fig. 2   Cantilevered beam used for analysis 

Initially, .motion in the longitudinal direction is considered. 
This is achieved by activating the PZTs on either side of the 
beam in phase with each other with the same input signal. A 
model is also derived for flexural motion. In this case, the 
polarity of the signal to one of the actuators is reversed thus 
creating a net bending moment around the neutral axis of the 
beam. 

Fig. 3   Deformation of the beam in longitudinal motion 

2.1 Longitudinal Motion. The variation in the longitudi- 
nal displacement in the beam and constraining layer is assumed 
to be respectively, 

ur{x, t) = X rj(t)-4>j(x) = <f>Tr   and 

uc(x,t)=£cj(t)-4,j(X) = iJ,Tc (1) 

7 = 1 

The vectors <f>, iff are of assumed shape functions and r, c are 
vectors of unknown time varying coefficients. 

It is assumed that the PZT and constraining layers have com- 
patible deformations as shown in Fig. 3, giving the relationship 
for strain, e as 

P(Scom) c 

duc 

~dx~ 
= uc 

and similarly for the beam, 

dur        , 
eb = — = "r 

ox 

(2) 

(3) 

where ' denotes dldx. 

Nomenclature 

English Letters 

A = cross sectional area 
C = damping matrix 
E = Young's modulus 

FE = finite element 
G = shear modulus 

7 = second moment of area around 
'x' axis 

K = stiffness matrix 
L = length of beam 

M = mass matrix 
P = voltage-to-force transformation 

vector 
PZT = Lead Zirconate Titanate 

(piezoelectric actuator) 
RR = Rayleigh Ritz 

T = kinetic energy 
U = potential (strain) energy 

V33 = voltage across PZT 
a,, a2 = limits of viscous and constrained 

layers on the beam 
b,, b-, = limits of PZT on the beam 

b = vector of beam coefficients in 
flexural motion 

c = vector of constraining layer 
coefficients in longitudinal motion 

da = piezoelectric charge constant 
q = vector of generalised coordinates 
r = vector of beam coefficients in 

longitudinal motion 
t = time 

r, = thickness (subscript indicates layer 
in question) 

u = longitudinal displacement 
w = flexural displacement 

Greek letters 

y = shear strain 
e = normal strain 

77 = material loss factor 
\i = da/tp 
a = normal stress 
T = shear stress 

<f> = vector of shape functions for 
longitudinal displacement of the 
beam 

ip = vector of shape functions for 
flexural displacement of the 
beam 

i/r = vector of shape functions for 
longitudinal displacement of the 
constraining layer 

f2ex = frequency of harmonic excitation 

Subscripts 

b = beam 
c = constraining layer 
p = PZT 
r = beam (in longitudinal motion) 
v = viscoelastic layer 

Superscripts 

T = matrix or vector transpose 
', " = first and second spatial 

derivatives {dldx and d2/dx2) 
', " = first and second time derivatives 

(dldt and d2/dt2) 
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The viscoelastic layer is assumed to carry shear stress only 
which is constant across the layer. Referring to Fig. 3, the shear 
strain, y, is 

layer in Eqs. (2), (3), (4) and (5) into Eq. (8) the total strain 
energy is found to be, 

7v = 
uc — u, U= Ub + 2{UV+ Uc+ Up) (9) 

(4) 
where 

The PZT actuators are assumed to be linear over the operating 
range. In induced strain applications it is common to use rf3, 
type actuators i.e. strain output in the "1" direction is perpen- 
dicular to the direction of poling "3" and hence the applied 
field. For one dimensional (simple) extension the piezoelectric 
equations reduce to; 

U„ 2dx 

e,=^ + V33    or Zgtom   =   —-  +   PV (5) 

where d31 is the piezoelectric charge coefficient, V33 the applied 
voltage and ji = d^ltp. This is analogous to thermally induced 
strain. This implies that although in this analysis piezoelectric 
actuators have been used, any linear induced strain actuator 
could be used. 

The equations of motion are derived using Lagrange's equa- 
tion. As there are no external forces (the force applied by the 
PZT is included as an applied strain) or gyroscopic terms and 
there is no added damping (only hysteretic material damping 
being considered), Lagrange's equation reduces to: 

= \ f  EbAbu'2 

2. Jo 

Uv = I P G„A„yldx = i f2 G^i^^dx 
L J°t 2 Ja,       V    u   I 

Uc = - \ ' EcAcu'c
2dx    Up = \ I 2 EpAp(u'c - ßV)2dx 

£ Ja, 2 J b, 

where £ is Young's modulus, G is shear modulus and A refers 
to the cross-sectional area. 

Substituting the kinetic and potential energy terms from Eqs. 
(7) and (9) into the Lagrange Eq. (6) gives the equation of 
motion for the beam as 

[M]q + [K]q = PV (10) 

where 

M = 

K 
f Jo 

CL 2  f2 1   C2 

mb<p<f)Tdx + -        m$<$>Tdx -        rr^S^dx 
Jo 3 Jo, 3 Ja, 

If"2, 2  C"2 C2 f*2 
-       m$4> dx -       mjpijiTdx + 2        mctptpTdx + 2       mP4/ifiTdx 
J  Ja, i  Ja, Jo, J0| 

EbAbW
Tdx + 2 f2 ^ 4><f> Tdx -2 f2 ^ UTdx 

"a,        'v Ja,        tv 

-2 
J a, 'v 

i/f(f)Tdx 2  f 
2 \9^L Wr + E^rrAdx + 2 f2 EpApr^'Tdx 

Ja,     L      '» J Jb. 

dt\dqj       8q, (6) 

where q, are generalised coordinates, T is kinetic energy and U 
is potential energy. 

The kinetic energy of the composite beam is the sum of the 
kinetic energy in each layer of the composite beam, i.e. 

T = Tb + 2 {7„ + Tc + Tp (7) 

where, 

Tb = -  \    mbufdx    T„ = -        rr% —  dx 
*■ Jo 2 J0[ 3 

1   f1 1   P2 
Tc = -I     mcucdx    Tp = -        mpu

2
cdx 

1 Jo, 2 Jb, 

where m refers to mass per unit length. The velocity of the 
viscoelastic layer is assumed to vary linearly across its thick- 
ness. 

The strain (potential) energy of each layer can be obtained 
from, 

U = j I (stress X elastic strain) d vol (8) 
J volume 

Substituting the relationships developed for the strain in each 
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P = 

Jb, 
ApfMp'dx 

The shape functions for the series expansions are assumed 
as clamped-free longitudinal beam modes, namely 

Fig. 4   Deformations of the beam in flexural motion 
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<t>j(x) = 4>j{x) = sin 
(2j- 1)7T 

2L 

Table 1 

r,    j = 1, 2, (ID 

Note that the mathematical model will not represent the de- 
tailed load diffusion around the ends of the PZT and con- 
straining layers accurately. However, the overall behaviour of 
the beam to the PZT activation should be adequately represented 
if sufficient terms are used in the series expansion. 

This model can also approximate the case where the actuators 
are bonded directly to the beam. This can be done by setting 
the constraining layer thickness to zero and by giving the shear 
layer the dimensions and properties of a stiff bonding layer 
such as cyanoacrylate. 

Hysteretic damping is assumed in all members of the compos- 
ite beam and this is included in the model using complex modu- 
lus notation, i.e. 

E = E'(l + iri) (12) 

where E is the complex modulus of elasticity, E' is the storage 
modulus and 77 is the loss factor. Assuming harmonic motion yields, 

£q = £'(q + njq) = E'   q + (13) 

where fi„ is the frequency of excitation. 
Assuming steady state motion, this assumption can be applied 

to each layer of the composite beam in the stiffness matrix 
yielding the effective viscous damping matrix. 

I Component Coverage over 
length 

Cross Scciion 
(mm x mm) 

Density 
(kg/m3) 

Young's 
Modulus (GPa) 

| Beam- 0.158 m long 0- 1 38 x 3.175 2700 70 

| Viscoelasiic 0- 1 38 x 0.202 1600 0.009' 

H Constraining Layer 0- 1 38 x 0.254 2700 70 

U Piezo-aciuaior" 0.4 - 0.7 38 x 0.400 7800 70 

* Young's Modulus of 3 MPa used for dynamic behaviour, Poisson's Ratio 
set at 0.499 
** Piezoelectric charge coefficient assumed to be -18CT12 C/N 

Oi,) is zero. Once again the PZT and constraining layer are 
assumed to have compatible deformations. 

The flexural motion is approximated by, 

uc(x, t) = I, Cj(t)-4/j(x) = i(iTc    and 
;=i 

"«. 
w(x, 0 = !>,(/)-<ftU) = Vrb (15) 

j=i 

where, 

.     (2j -   1)7T 
i//, = sin x; v' 2L 

j = 1, 2, 3 

C = 
f Jo 

EbAbr,hVVJdxA-2 
J a, tv 

_2 rG^fi^r^ 
J at tv 

It should be noted that the stiffness and loss factor of viscoelas- 
tic materials vary with frequency. These values are obtainable 
for most commercial materials from the material reduced fre- 
quency master curve [12]. 

2.2 Flexural Motion. The same approach is now applied 
to flexural deformations of the beam which result when the 
signals applied to the PZT on either side of the beam are of 
opposite polarity. These deformations are shown in Fig. 4. 

It is assumed that the flexural stiffness of the viscoelastic, 
PZT and constraining layers about their mid surfaces is negligi- 
ble and that the lateral deflection (w) of all layers is equal. 
Shear deformation and rotary inertia of the beam are not in- 
cluded. From symmetry the nett longitudinal motion of the beam 

1   uc-- - 
---> SX 

1 

1 -^1* 
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1 
1          -" '">? 

1 

-5 

Fig. 5   Shear angle of the viscoelastic layer in flexural motion 
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ipj(x) = a, sin ( -j- x ) + a2 cos 

+ a, sinh + a4 cosh ( — x 

These are normal mode shapes for a cantilevered beam in longi- 
tudinal and flexural motion respectively. The constants \ and 
a are tabulated in books such as Blevins [13]. 

From Fig. 5 the shear angle of the viscoelastic layer is, 

dw     du 
dx      dz 

dw     uA - 
dx t„ 

uB 

also, 

hence, 

uA = uc + 
tc + t„ dw 

"dx'' 

th   dw 
uB = ub + -• — 

2   dx 

tDdw , tD 

 ^L = £.;   tD = tb + 2tv + tc + tp   (16) 
t„ tv 

The kinetic energy expression becomes, 

T=[T„ + 2{TV + TC + rp)]n„ura. + [2[TV + Tc + 7>}],ong 
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Fig. 6   Static longitudinal deflection of beam and constraining layer 
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Fig. 7   Static flexura! deflection of beam and longitudinal deflection of constraining layer 

if 
2 Jo 

mbw
2dx 

+ 2 \ 2 J    <"W" + m^2dx + 9        mpw2dx 

y'°"s»ul - 2 j - J    m, c—  dx 

+ -J     mcu
2

cdx + -J 2 mpu
2

pdx\    (17) 

The strain energy expression is, 

U= Ub + 2{UV+ Uc+ Up) 
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'„ = ]- \   Eblb{w"Ydx    Uv = - \"\VGV 

u, + w , tD\   2 

dx 

i C°2 

U' = 2)., 

1      f"2 
= 2 J    AP

E
P(

U 

AcEc(u'c)
2dx 

c2 - 2u'cfiV + ß2V2)dx        (18) 

where / is the second moment of area of the beam cross section. 
Once again, substituting into Lagrange's equation and including 

hysteretic damping gives the steady state equation of motion. 

[M]q + [C]q + [K]q = PV (19) 
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M = 

mbiptpTdx + 2 I    (mv + mc)(ptpTdx 
Jo Ja, 

fb2 t2  C"2 

+ 2        mpipipTdx + ~2 I    niyip'ip'Tdx 
Jb, 6   J a, 

h. f2 

6   Ja, 
m^ipip' Tdx 

f <> a, 

mjjjtp' Tdx 
2 C"2 C"2 r*2 

-       m4nl)Tdx + 2       mc^
Tdx + 2        mp<p<pTdx 

3 Ja. *»a. Jb. 

K = 

I 2 AvGjD       T 

"a, tv 

v a 

2 AvGjD 
ip<p'Tdx p r AÄ 

J., L tf 
t/ziA7 + AcEc>p'<p'T dx + 2 \    ApEpip'4i'Tdx 

ne: 

EbIbT]b<p ip 'dx +        ——j—ip'ip'Tdx  -r1-^ y'>pTdx 
J0 Ja, 2r„ Ja, t„ 

f2 AVG,T)JD 
 -2 <I»P   dx 

Ja, l„ 
+ 2  I' EpApr)„ilf'4,'Tdx 

Jb, 

r ApEpßip'dx q = 

3    Validation of the Mathematical Model 
The model which has been developed includes approxima- 

tions for the deformations of the beam, both longitudinally and 
in flexure, and also includes assumptions regarding the nature 
of the stresses and strains developed. The use of the approach 
employed must be validated. Thus, the Rayleigh-Ritz (RR) 
model, developed in the previous section, is now compared with 
results obtained from both finite element analysis and physical 
experiments. 

3.1 Comparison With Finite Element Analysis. Finite 
element (FE) models were used to predict the natural frequen- 
cies and mode shapes of the composite beam in both longitudi- 
nal and flexural motion. The models were also used to find the 
deflections caused by static voltages applied to the PZT actua- 
tors: equal magnitude and polarity for longitudinal deflection 
and equal magnitude but opposite polarity for flexural deflec- 
tion. These results were then compared with output from the 
RR model. Dimensions and material properties of the beam are 
given in table 1. 

A mesh of 40 X 4, eight noded, isoparametric membrane 
elements was used to model the cantilever beam. Layers one 
element thick were used to model the viscoelastic material, 
constraining layers and PZT actuators. In the case of longitudi- 
nal motion, in order to replicate simple extensional behaviour, 
all nodes were constrained to move in the longitudinal direction 
only and Poisson's ratio was set to zero. 

The characteristic strain induced in a structure, when a volt- 
age is applied across the activating piezoelectric material, was 
considered analogous to a thermal strain. The piezoelectric ef- 

fect was therefore simulated on the FE model via thermal load- 
ing. This approach is acceptable if the piezoelectric patch is 
assumed to be linear. 

3.1.1. Static Behaviour. Figure 6 shows the extension in- 
duced along the length of the beam and constraining layer when 
a static 1 volt potential was applied to the PZTs. This was 
represented in the FE model by setting the thermal coefficient 
of expansion of the PZT equal to d3l/tp (the other coefficients 
being set to zero) and then subjecting the structure to a 1°C 
temperature rise. The results obtained using the RR method 
match the FE prediction closely. It was found that as the PZT 
patch size was reduced the number of assumed shapes used to 
represent the constraining layer extension had to be increased 
to retain accuracy. Nine shapes were used in the example pre- 
sented. 

The flexural deflection of the beam and the longitudinal de- 
flection of the constraining layer induced by applying a static 
1 volt potential to the PZTs (with an opposite polarity for each 
PZT) is shown in Fig. 7. Once again the close agreement be- 
tween RR and FE results indicate the validity of the RR ap- 
proach. 

3.1.2. Dynamic behaviour. Comparisons of the first four 
natural frequencies and mode shapes for both longitudinal and 
flexural motion, found using FE and RR are shown in Figs. 8 
and 9, respectively. These figures show that both methods give 
very similar results, thus validating the RR approach for ob- 
taining natural frequencies and mode shapes. The constraining 
layer motion in this case also shows good agreement. 

A full dynamic frequency response analysis was not possible 
as the finite element package used did not allow harmonic ther- 
mal loading. 

3.2 Experimental Comparison. The experimental veri- 
fication of the Rayleigh Ritz models developed involved excit- 
ing the beams by applying a band limited random voltage signal 
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Fig. 8   Longitudinal natural frequencies and mode shapes 

to the actuators to give the open loop frequency response. Val- 
ues predicted by the theoretical model were compared with 
those obtained experimentally. 

Two aluminium beams suspended in the vertical plane from 
fixed supports were tested. A length of constrained layer damp- 
ing was applied to both faces of one of the beams, and PZT 
patches then attached to the constraining layer. For the other 
beam, the PZT patches were attached directly to the beam sur- 
face. The experimental layout is shown in Fig. 10. 

The dimensions and physical properties of the beam with the 
damping treatment applied are shown in Table 2. The other 
beam was identical excluding the constrained layer damping 
treatment. y   6 

The PZT actuators were excited using a 0-100 kHz random 
voltage signal of approximately 100V peak-to-peak; the actua- 
tors were driven in phase to excite the longitudinal modes, then 
out of phase to excite the flexural modes. A d.c. bias voltage 
of approximately 120 volts was applied to the actuators to avoid 
any danger of depolarisation. A second amplifier was included 
to ensure that actuation levels at either side of the beam were 
equal in magnitude: gains were selected to give minimum flex- 
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ural motion when the actuators were driven in phase, and mini- 
mum longitudinal motion when the actuators were driven out 
of phase. A small accelerometer, connected to a Bruel and Kjaer 
charge amplifier, was attached to the tip of each beam in an 
appropriate orientation to measure either the flexural or longitu- 
dinal motion. 

The output of the high voltage amplifier was reduced to one 
fiftieth for measurement purposes using a resistor bridge net- 
work. The velocity/voltage frequency response function was 
measured at 4096 equally spaced frequency points over the 
bandwidth using a DIFA Scadas data acquisition system linked 
to a HP340 computer running LMS software. A range of 0-10 
kHz for axial excitation and 0-100 Hz for the flexural case 
encompassed the first four modes of each. 

Experimental results and theoretical predictions are presented 
in Figs. 11, 12, 13 and 14. Comparison of the results show that 
the RR model predicted the resonant frequencies accurately A 
good prediction of peak heights was also achieved. 

Slight variations in peak heights can be attributed to the 
lightly damped nature of the structures and the presence of 
factors that were not modelled such as friction at the clamped 
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MODE         FREQUENCY  (Hz) SHAPE 

FE               RR 
1 

0.8 
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0.2 
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C 
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0.5 1 
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1 
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0.5 

3                 1623              1634 
0 
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i 

\                         1       \ 

/ 

/ 
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0 

-0.5 h/\ 
/ 
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dotted lines = RR approximation •1 

! 
0                            0.5 1 

Fig. 9   Flexural natural frequencies and mode shapes 

base. The 'noise' on the experimental results may be as a result 
of interaction with the support frame on which the beams were 
hung and also in the case of the longitudinal results, from flex- 
ural modes not completely cancelled. The effect of the acceler- 
ometer mounted on the beam tip was investigated for the longi- 
tudinal case by adding a two gram lumped mass in the theoreti- 
cal model. The frequency response function is shown in Fig. 
15. This shows that the differences in frequency for the higher 
modes (in the 5-10 kHz range) can be attributed, in part, to 
the effect of the added mass. 

4 Investigation of Performance in Relation to Active 
Damping 

The model has been developed to enable "active damping," 
as defined in this paper, to be investigated. Part of the investiga- 
tion includes a comparison with conventional active control. 
The reduction in vibration levels achieved for a cantilever beam 
subject to a base excitation is investigated using the Rayleigh 
Ritz mode, modified to include base motion. Although many 
configurations and control strategies are possible, a full, optim- 

ised parametric study would require a paper on its own and is 
therefore not attempted here. 

The study presented here considered two beam configura- 
tions: 

(i) with actuators bonded directly to the beam (case A) and 
(ii) with actuators bonded to a constraining layer (case B). 

The dimensions and materials used in the simulation are shown 
in Table 3. 

The tip velocity was the feedback signal used throughout the 
investigation. This signal, derived from an accelerometer, was 
used following earlier investigations [7] which showed that 
velocity feedback provided the most effective control over a 
large number of modes. The location of the actuator has also 
been investigated previously [7] where it was shown that the 
points of maximum curvature at each mode yield the most 
effective control action. Clearly there must be a compromise 
between the positions required for the different modes to be 
attenuated, but in the case of a simple beam such a point can 
be identified. Earlier work has also shown that co-located actua- 
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Frequency  (Hz) 

Fig. 15   Frequency response for beam with PZTs bonded to the con- 
straining layer allowing for accelerometer mass-flexural motion 

Feedback Gain 

Fig. 16    BeamA-tip/base transmissibility 

Experimental work [2] has shown that the maximum feed- 
back gain that can be used is limited not only by instability of 
resonant modes but also by PZT material non-linearity at high 
voltage and the maximum available voltage itself. Figure 18 
shows the variation of actuator voltage required to achieve a 
desired feedback gain when the base excitation has a peak accel- 
eration of 0.5 g over the bandwidth. Beam A required much 
higher voltages to reach the same gain levels than beam B. For 
example, if the maximum voltage was limited to 200V (400V 
peak-to-peak) the maximum feedback gains possible would be 
50 for beam A and 270 for beam B. This shows that placing 
actuators on a constraining layer (beam B) not only gives im- 
proved reduction in resonant peaks for the same feedback gain 
but also^gives the higher gains (and hence further reduction of 
resonance peaks) for the same voltage. 

5    Conclusions 
In this paper mathematical models have been developed to 

describe the longitudinal and flexural steady state vibration of 

Table 2 

PZT on Constraining Layer 

Component Material Coverage 
(m) 

Cross Section 
(mm x mm) 

Density 
(kg/m') 

Mod. of 
Elasticity' 

(GPa) 

Loss 
Factor 

Beam Aluminium 0- 1 38 x 3.175 2700 70 0.001 

Viscoelastic ISD 112 ~ 0.275-0.525 38 X 0.127 1600 0.0001- 
0.01 

0.5- 1.1 

Constr. Layer Aluminium 0.275-0.525 38 X 0.254 2700 70 0.001 

Piezo- Actuator PZT'" 
Sonox P5 

0.385-0.115 30 X0.1 7700 62.5 (E„) 0.011 

* The values quoted correspond to the shear modulus for ISD 112 and Young's 
modulus for the other materials. 
" ISD 112 is a commercial viscoelastic manufactured by the 3M company. 
Purchased as a CLD preparation including the aluminium constraining layer. 
"" Sonox P5 is manufactured by Hoechst CeramTec. 

Table 3 

Component Material Coverage 
(nun) 

Cross Section 
(mm X mm) 

Density 
(kg/m-) 

Mod. of 
Elasticity 

(GPa) 

Loss 
Factor 

Beam Aluminium 0-300 38 x 3.175 2700 70 0.004 

Viscoelastic* ISD 112  . 0-300 38 x 0.127 1600 0.0001- 
0.01 

0.5 - 1.1 

Constr. Layer" Aluminium 0-300 38 X 0.254 2700 70 0.004 

Piezo- Actuator PZT 
Sonox P5 

90-120 30 X 0.4 7700 62.5 (E„> 0.011 

Feedback Gain 
Frequency  (H;; 

Fig. 17    Beam ß-tip/base transmissibility 
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beams with actuators bonded to a constrained layer damping 
treatment. The validity of these models has been verified stati- 
cally and dynamically through finite element analysis and exper- 
imental work. 

The derived models provide a convenient tool for the evalua- 
tion of the benefits of the "active damping" concept. The mod- 
els allow the basic improvement in stability to be evaluated. 
The advantages have been shown to be; 

(i) the improved attenuation over a wider range of fre- 
quency, 

(ii) the reduction in control voltage to achieve the required 
attenuation, 

(iii) the reduced sensitivity of the system stability yields a 
more robust control system, 

(iv) the use of the passive constraining layer provides re- 
dundancy in the case of actuator failure or other control 
loop malfunctions. 

The active control of a beam is relatively straightforward. The 
next stage in the work will be to extend the models to plates so 
that more realistic vibration control problems can be evaluated. 
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Abstract. The work described in this paper is concerned with controlling the strain 
of the constraining layer of a composite structure in such a way as to enhance the 
shear generated in the viscoelastic material and hence improve the overall 
damping of the composite structure. 

The results have indicated that this concept of active damping produces very 
effective levels of vibration suppression. In the case of cantilever beams the 
vibration levels in the first two modes can be almost eliminated when velocity 
feedback of the beam tip is used. The results show that the addition of active 
control and passive damping in a single structure combines the advantages of 
passive damping in the higher modes and active control in the lower modes. In 
addition active damping as defined in this paper produces a fail-safe mechanism in 
case of instability occurring in the feedback loop since a considerable level of 
passive damping is always present. 

Notation 

A area 
E Young's modulus 
e actuator force per unit voltage 
b width of beam 
ds\ voltage constant 
G shear modulus 
h! distance, neutral axis of beam to actuator 

»'. j mode number 
K amplifier gain 
L beam length 
m mass per unit length 
M total applied moment 

P thickness of piezoceramic pads 

1i generalized coordinate 
r, s constants 
t time 
V(t) voltage driving the piezoceramic 
X coordinate 

y displacement in the plane of bending 
a actuator moment per unit voltage 

Y shear angle 

P density 
€ strain 

n loss factor 
A displacement 
COi ith natural frequency 

f, ith damping ratio of the composite beam 
<5, added damping due to velocity feedback 
<pi{x) ith mode shape function 

£2 displacement function 
*P objective function. 

1. Introduction 

Many advances have been made in the use of piezoelectric 
ceramics and piezoelectric polymers in vibration and 
control problems. Theoretical models have been developed 
[1,2] to predict the behaviour of an actively controlled 
structure consisting of alternate layers of piezoelectric 
sensors and actuators connected to the structure. These 
types of structure are often referred to as smart structures. 

In the area of smart structures the concept of active 
damping has received considerable attention in the past 
few years. Active damping can be achieved by using 
piezoelectric materials to induce extra damping in a 
structure, hence reducing the vibration levels at resonance 
in various modes of vibration. Extra damping can be 
created in a structure in a number of ways. The most 
common method is to apply forces to the structure which 
are 90 degrees out of phase to the motion of the structure. 

The technique used in this study is to enhance the 
damping of a passive element in the structure by active 
means. This can be done effectively when constrained- 
layer damping (CLD) is used. The constraining layer is 
bonded to the structure using a viscoelastic material which 
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Viscoelastic Materia 
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PASSIVE DAMPING 

Piez 

Deformed Structure 
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Figure 1. Basic mechanism of active damping. 

acts as a passive damping element. By actively controlling 
the motion of the constraining layer, increased damping via 
shear energy dissipation is obtained. There are two ways 
of achieving this. One is to use a piezoelectric polymer as 
the constraining layer and control its motion by applying 
the appropriate voltage across it [3,13,14]. The second 
technique is to use piezoelectric materials bonded to a 
metallic constraining layer and is the approach used in the 
present study. 

2. Active damping 

Consider a piezoceramic element bonded to the constraining 
layer of ä beam. The viscoelastic material between the 
beam and the constraining layer is subject to shear as a 
result of the constraining layer. The piezoceramic can be 
used to control the strain of the constraining layer and hence 
the amount of shear in the viscoelastic material as shown 
in figure 1. 

If we consider the forced vibration of the beam, the 
force applied by the piezoceramic (PZT) element on the 
beam produces a bending moment M which is a function 
of the applied voltage V(t) [4] 

-M     +M 

M = a{<t>\{x1)-4>'i(x\))V(t) 
= 0CiV(t) (1) 

where a = eh', h! is the distance between the neutral axis 
of the composite beam and the piezoactuator and e is the 
actuator force per unit applied voltage. If the normal modes 
of the structure $,■ are known, the flexural vibration at any 
point x can be represented by 

y{x, t) ^qi{t)4>i{x) 
i = \ 

where qt is the generalized coordinate [5,6]. The choice 
of the feedback signal, V(t), determines the damping and 
stiffness properties of the composite structure. If the 
feedback voltage is proportional to the velocity of the tip 
of the beam i.e. 

V(t) = -Ky(L, t) 
oo 

= - K X>(f)<ft (L) 
1=1 

the equation of motion can then be written as 

(3) 

qi(t) + (2^(üi+Si)qi(t)+cofqi(t) 

where 

/o m(pf(x)dx 
(4) 

Si 
f0 m<pf(x)dx 

(2) 

It can be seen from equation (4) that the overall effect of 
velocity feedback is an extra term added to the damping 
coefficient (<$,-) [9-11]. 

Several experiments were carried out on aluminium 
beams (150 mm x 38 mm x 3 mm) in order to investigate 
the active damping concept. The emphasis was on 
developing a good practical understanding of the way 
an actively damped beam behaved with various feedback 
signals and beam actuator/sensor configurations. 

The piezoelectric element was a SONOX P5 single- 
layer plate (30 mm x 30 mm x 0.4 mm) bonded to 
the constraining layer using X60 strain gauge glue at a 
location x = 0.25L from the root of the beam, where 
the curvature of the beam in the first two modes is 
appreciable. The constraining layer used in the experiment 
was SOUNDFOIL (manufactured by SOUNDCOAT Co) 
which consisted of aluminium foil of thickness 0.254 mm 
coated with modified copolymer of thickness 0.05 mm 
which was applied directly to the beam. 

Typical results are shown in figure 2. Three cases are 
shown: a beam with no feedback and no added damping 
(simple beam), a beam with CLD but no feedback (passive 
damping), and finally a beam with CLD and feedback control 
(active damping). Considering the beam with CLD only it 
can be seen that the second mode is attenuated significantly 
more than the first mode. This is not surprising because the 
particular passive damping element used performed better 
at higher frequencies. The normalized damping ratio i.e. 
the damping ratio in each mode to that of the simple beam 
(i.e. the beam with no added passive or active damping) 
is 3.9 in the first mode and 7.7 in the second mode. With 
active damping the normalized damping ratios in the first 
and second mode are 26 and 22 respectively. Table 1 
summarizes these results. It can be seen that active damping 
significantly reduces the vibration levels in the first two 
modes. 

3. Assessing the performance of active damping 

The active damping mechanism is provided by a 
combination of extra induced shear strain in the constrained 
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These produce an axial strain 

dA 
fr   = 

dx (8) 

The shear forces produce a change in the stress in the 
constraining layer such that 

The resulting axial stress is 

crx = E3ex = £3 

Frequency 

Figure 2. Active damping with single actuator. 

Table 1. Comparison of the damping ratios 
the first two modes of vibration using active 
damping. a 

1kHz 

dA 

~dx' 

in 

Normalized damping ratio 

Beam type 

Simple beam 1 
Beam with CLD        3.9 
Active damping 25.8 

First mode     Second mode 

1 
7.7 

22.4 

LiE 
NA.. 

:ar Angle 

'NA 

Figure 3. Local active damping with symmetrical actuators. 

layer ar.s.ng from a combination of the bending-induced 
shear and the additional shear from the active deformation 
of the PZT element. In order to determine the effect of the 
induced shear in isolation from the induced-bending effects 
a symmetrical arrangement can be used as shown in figure 3 
where the actuation moments cancel leaving only the axial 
forces to produce the axial deformation of the constraining 

For small strains the axial deformation is 

A = d2y2. (5) 

The shear forces acting on the constraining layer are 

Fs = G2y2A2 (6) 

where 
G2 = G2R(\ +J7ll). (7) 

Combining equations (9) and (10) results 

G2y2 

in 

d2A 

dx2 
d?E 3 £3 

(9) 

(10) 

(11) 

Now if we assume harmonic excitation of the piezoceramic 

A = Ce~jkx 
with k = 

then 
VE3//O2 

G2y2 G2y2 

k2d3E3      a>2p3d3 

Using the standard equations for a PZT plate 

V 
^max  — 

d4 

therefore 

A — VL 

d4 

Combining equations (13) and (15) results in 

Yi = ^3^W^I 
02^4 

(12) 

(13) 

'(14) 

(15) 

(16) 

The energy dissipated per cycle in the viscoelast.c layer due 
to the axial motion can be expressed as [12] 

WA = 7ir)2G2Kd2 y2\
2 

— nr)iG2Rd2 
u2PidiVmaxLdv 

G2d4 
(17) 

The shear angle associated with the bending of the beam is 

Yi 
ßaE3d3k

2 

(E3d3d2k
2 + G2)' 

The energy dissipated per cycle due to the bending i: 

WB=nn2G2Rd2\ytf. 

(18) 

(19) 

3 
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100 

Frequency 1kHz 

Figure 4. Assessing the efficiency of single or dual PZT 

element excitation: (a) dual element excitation; (b) sinqle 
element excitation. 

The   condition   for   dissipating   extra   energy   in   the 
constrained-layer material is 

Yi 

co2p3 Vr 

> 1 

«£<^3I 

ßaG2d4E3k
2 (E^djk2 + G2 (20) 

3.1. Experimental tests 

In order to test the efficiency of cancelling the induced 
bending moments, the configuration shown in figure 4 
was used whereby a random excitation signal was applied 
to both elements simultaneously and then to the top PZT 

element only (the beam being stationary). The results of the 
experiment showed that when the same signal was applied 
to both elements the resulting spectrum was almost fiat as 
indicated by figure 4(a), proving that the dynamic bending 
moments had been effectively cancelled. When the signal 
was applied to only the top element the dynamics of the 
beam were excited and the flexural modes were excited as 
shown in figure 4(b). 

To assess the effectiveness of the induced shear 
damping an experiment was carried out in which active 
damping with symmetrical actuators was compared to 
active damping with a single actuator and passive damping. 
The test configuration was the cantilever beam which was 
excited at its base and the acceleration transmissibility 
between the tip of the beam and the base excitation was 
recorded. A band-limited random signal 0-1 kHz was used. 
The results are shown in figure 5 and summarized in table 2. 
It can be seen that a significant percentage of the reduction 
in the amplitude of vibration in the first mode is due to 
the induced shear. The effect is less significant in the 
second mode. It is possible to improve the damping in 
the second mode by choosing a more suitable location for 
the piezoceramic element. 

An added benefit of the constraining layers arises from 
the fact that it is possible to increase the feedback gain 
without inducing instability. Figure 6 shows the results of 
an experiment in which two identical beams were used, one 
with no constraining layer and the other with a global (full 

i       i       i 1 1 1 1 r 

Active  CLD  with   no  Induced   B.ndlng 
(shear only) 

Active   CLD   with   Indued   B.ndlng 

Passive   CLDv 

_ iKnz 
Frequency 

Figure 5. Active damping with and without bendina 
moments. a 

Table 2. Reduction in the amplitude in the first two 
modes of vibration using active damping with and 
without bending moments. 

Beam type 

Beam with rj 
passive damping 
Active damping 48 
with pure shear 
Active damping with     84 
shear and bending 

Reduction in amplitude (%) 

First mode    Second mode 

0 

15 

82 

. 100 
E+3 

>. 
25 

A   -   No   constraining   layer   (CL)   with   U0V   feedback 

B   =   Global   CL  with   140V   feedback 

C .=  Global  CL  with   340V  feedback 

Frequency 
1kHz 

Figure 6. Maximum reduction in the tip velocity with and 
without constrained-layer damping. 

coverage) constraining layer in which the beam tip velocity 
was obtained. It can be seen that with the constraining- 
layer material the feedback voltage could be increased by a 
factor of almost 2.5, with a corresponding reduction in the 
tip velocity, before saturation of the PZT element occurred. 

4. Effect of actuator location 

Because the strain in the constraining layer is modified 
by the piezoceramic element attached to it, the maximum 
differential strain across the viscoelastic layer can be 
generated at a location on the beam where the maximum 
surface strain occurs.    Consider the area of the beam 



covered by the piezoceramic pad. The optimum location for 
the pad is where the difference between the displacement 
at every cross section along the length of the piezoceramic 
pad and on the beam surface is a maximum. The beam 
surface strain is proportional to the curvature and hence 
the displacement at any point on the beam surface of an 
element of length dx is 

Use of active constrained-layer damping for controlling resonant vibration 

AB =<t>"(x)dx. (21) 

Assuming a linear distribution of strain in the piezoceramic 
pad, the extension of an element length Sx at any point on 
the ceramic is 

Ap = (rx + s)Sx (22) 

where r and s are constants. The relative displacement of 
the piezoceramic element and the beam surface at any point 
can be written as 

AR = AB - Ap = [<j)"(x) = (rx + s)] dx.       (23) 

The total relative displacement which is a measure of the 
induced shear in the viscoelastic material is 

£2=  /    [4>"{x)-(rx+b)]dx=<l>'(x2)-<l>'(Xl) 
„2 

-f •>Xi 

-KM) + ^{x2~x2) (24) 

where *, and x2 represent the coordinates of the ends of 
the piezoceramic element on the beam and a and b are 
constants depending on the piezoceramic element properties 
and dimensions.  The objective is to maximize the above 
expression over the length of the beam in every mode 
If a single element is to be used to control more than 
one mode then the effectiveness of active damping can be 
formulated as an objective function with a separate term 
for each mode, where the term corresponding to each mode 
has a weighting factor. The weighting factors determine the 
relative reduction of amplitude required in each mode. If a 
single mode is selected then the weighting factors for all the 
other modes are set to zero and the optimization problem 

:   reduces to finding the position where the curvature is a 
maximum in that particular mode. The objective function 
can be written as 

* = I>«n»- (25) 
A numerical search technique can be used to solve this 
problem. The objective function can be plotted against the 
location of the actuator to find the maximum or minimum 
points where the gradient is equal to zero. Figure 7 shows 
the objective function plotted for the first two modes with 
A., - 1 and X2 = 0.2. It can be seen that the objective 
function has a maximum value at xl = 0. The next local 
maximum is at xy = 0.4. 

To demonstrate the validity of the above discussion an 
experiment was carried out in which two beams of length 
L, covered with constrained-layer damping material and 
with a piezoceramic element attached to the constraining 
layer were used. The piezoceramic element on one beam 
was placed at 0.25L from the clamped end and on the 
second beam at 0.4L. A periodic random signal was applied 
to an excitor driving the clamped end of each beam and 
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ST6 7; °bjective function based on the location of a single actuator. 
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the tip velocity was used as the feedback signal to the 
PZT elements. The acceleration transmissibility transfer 
function between the beam tip and the base was measured 
for each beam and was compared to the transfer function of 
an identical beam without an active element. The results are 
shown in figure 8. It can be seen that the vibration levels 
have been reduced considerably in both beams compared 
to the beam with passive damping. A closer examination 
of the results reveal that the beam with the piezoceramic 
element located at 0.25L produces a lower resonance peak 
in the first mode of vibration and a higher peak in the 
second mode compared to the beam with the piezoceramic 
element located at 0.4L. 

5. Conclusions 

The use of active piezoceramic elements combined with 
passive constrained-layer damping materials has been 
shown to produce very effective levels of damping in a 
cantilever beam. 

Vibration levels in the first and second bending modes 
of forced vibration of the beams have been reduced 
significantly. These reductions in the vibration levels can 
only be achieved when the hybrid system of piezoceramic 
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materials   is   used   with   the  constrained-layer  damping 
material. 

Combining an active element with a passive damping 

mechanism has the ultimate advantage of providing a 
failsafe mechanism and allows greater feedback gains to be 

used, resulting in improved vibration reduction capabilities. 
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ABSTRACT 

as defined in this paper produces a fail safe mechanism in case of instability oc^urrint in th,  Ll   i ,        ^ 
passive damping is always present. insiaouity occurring m the feedback loop since 
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NOTATION 

Area 
Young's modulus 
Width 
Thickness 
Shear modulus 
Mode number 

Amplifier gam with acceleration and velocity feedback respectively 
Beam length J 

Mass per unit length 
Total applied moment 
Generalised coordinate 
Time 
Voltage driving the piezoceramic 
Coordinate 
Displacement in the plane of bending 
Constant depending on the geometry of the beam 
Shear angle 
Density 
Strain 
Displacement 
*'   natural frequency 
_'|   damping ratio of the composite beam 
i    mode shape function 
Displacement function, Objective function 
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1. INTRODUCTION 

Many advances have been made in the use of piezoelectric ceramics and piezoelectric polymers in vibration and 
control problems. Theoretical models have been developed1 to predict the behaviour of an actively controlled 
structure consisting of alternate layers of piezoelectric sensors and actuators connected to the structure. These types 
of structure are often referred to as smart structures. 

In the area of smart structures the concept of active damping has received considerable attention in the past few years 
Active damping can be achieved by using piezoelectric materials to induce extra damping in a structure, hence 
reducing the vibration levels at resonance in various modes of vibration. Extra damping can be created in a structure 
in a number of ways. The most common method is to apply forces to the structure which are 90 degrees out of phase 
to the motion of the structure. 

The technique used in this study is to enhance the damping of a passive element in the structure by active means 
This can be done effectively when constrained layer damping is used. The constraining layer is bonded to the structure 
using a viscoelastic material which acts as a passive damping element. By actively controlling the motion of the 
constraining layer, increased damping via shear energy dissipation is obtained. There are two ways of achieving this 
One is to use a piezoelectric polymer as the constraining layer and control its motion by applying the appropriate 
voltage across it . The second technique is to use piezoelectric materials in addition to a constraining layer. The 
latter approach is used in the present study. 

2. ACTIVE DAMPING 

Consider a piezoceramic pad bonded to the constraining layer of a beam. The viscoelastic material between the beam 
and the constraining layer is subject to extra shear as a result of the constraining layer. The piezoceramic can be used 
to control the strain of the constraining layer and hence the amount of shear in the viscoelastic material as shown in 
Fig.l. 

If we consider the forced vibration of the beam, the force applied by the piezoceramic (TZT) on the beam produces 
a bending moment M which is a function of the applied voltage, V(t)3, 

M = ccfolOCj) - «j>;(xx)}V(t) 

= a.V(t) 

(1) 

where a is a constant depending upon the dimensions of the beam and the constraining layer. 

If the normal modes of the structure 4 are known, the flexural vibration at any point x can be represented by 

y(x,t) = Eq^Cx) (2) 
i 

vhere the generalised coordinate q. must satisfy equation S4-5. The choice of the feedback signal, V(t) determines 
he damping and stiffness properties of the composite structure. If the feedback voltage is proportional to' the velocity 
>f the tip of the beam i.e. 
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V(t) = -Ky(L,t) 

= -K £ 4,(0*i(L) 
l-i 

(3) 

The equation of motion can then be written as; 

qfi) + (2^ * r\.)qfi.) * <a}qfi) = 
"«i^E qiW^CL) 

)"t 

Jm(j)idx 

(4) 

It can be seen from Equation 4 that the overall effect of velocity feedback is an extra term added to the damping 
coefficient". v  b 

Several experiments were carried out on aluminium beams (150 mm x 38 mm x 3 mm) in order to investigate the 
active damping concept. The emphasis was on developing a good practical understanding of the way an actively 
damped beam behaves with various feedback signals and beam actuator/sensor configurations. 

The piezoelectric actuator was a sonox P5 single layer plate (30 mm x 30 mm x 0.4 mm) bonded to the constraining 
layer using X60 strain gauge glue at a location of x = 0.25L; where the curvature of the beam in the first two modes 
is appreciable. The constraining layers used in this experiments was SOUNDFOIL (manufactured by SOUNDCOAT 
Co) which consisted of aluminium foil of thickness 0.010" coated with modified copolymer of thickness 0.002" which 
was applied directly to the beam. 

Conttremfng Liycr 

VucocUstie 

Structure 

Defamed Structure 
PASSIVE DAMPING 

Deformed Structure 
ACnVE DAMPING 

Figure 1 - Basic Mechanism of Active Damping 

Typical results are shown in Fig.2. Three cases are shown, a beam with no feedback and no added damping (simple 
»earn), a beam with CLD but no feedback (passive damping), and finally a beam with CLD and feedback control 
active damping). Considering the beam with CLD only it can be seen that the second mode is attenuated significantly 
nore than the first mode. This is not surprising because passive damping elements tend to perform better at higher 
requencies. The normalised damping ratio i.e. the damping ratio in each mode to that of the simple beam (i e the 
»earn with no added passive or active damping) is 3.9 in the first mode and 7.7 in the second mode. With active 
lamping the normahsed damping ratios in the first and second mode are 26 and 22 respectively. Table 1 summarises 
nese results. 
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It can be seen that active damping can reduce the vibration levels in the first two modes effectively. 

3. ASSESSING THE PERFORMANCE OF ACITVE DAMPING 

The active damping mechanism is provided by a combination of extra induced shear strain in the constrained layer 
arising from a combination of the bending induced shear and the additional shear from the active deformation of the 
PZT element  In order to assess the effect of the induced shear in isolation from the induced bending moments a 
symmetrical arrangement can be used as shown in Fig3. 

. 100 
E+3 

U    1 

MAG 

x2 

^ Simple Bearr^ 

Passive Damping 

Active Damping. 

\ ii 
XFR FUNC LIN 

Figure 2 - Active Damping with Single Actuator 

1kHz 

Table I - Comparison of the Damping Ratios in the First Two Modes of 
Vibration Using Active Damping 

Beam Type Normalised Damping Ratio 
First Mode                                     Second Mode 

Simple Beam 1 1 

Beam with CUD 3.9 7.7 

Active Damping 25.8 22.4 

Viscoelastic Layer       Piezoceramic Constraining Layer 

Piezoceramic 

Figure 3 - Beam with Symmetrical Actuators to Cancel Induced Bending Moments 
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Consider a system where the piczoceramic is active over the constraining layer (CL) section on both sides of the 
beams. The actuation moments cancel leaving only the axial forces to produce the axial deformation of the combined 
piezoceramic and 

^ &*«$-''• ;"v .••.■■• WC*J 

Figure 4 - Local Active Damping with Symmetrical Actuators 

constraining layer, A. For small strains the deformation is, 

A = d272 

The shear forces acting on the CL are; 

Fs = G2T2A2 

where. 

(5) 

(6) 

These produce an axial strain, 

G2 = G
2R(

J
 + tiz) (7) 

3A 

The shear forces produce a change in «he stress in the CL such that 

(8) 

dai 
A ~ix~ = °2Y2b3 

Now 

(9) 
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(10) 

Combining eqns 9 and 10 results in 

d2A   =   g2?2 

dx2     <% 

Now if we assume harmonic excitation of the piezoceramic pads, 

(11) 

A = Ce 'I** ;    with k = O) 

E3 

P3 

Then, 

A = 
r2?2 °2T2 

k2d3E3 a)2p3d3 

Using the standard eqns for a PZT plate 

(13) 

W = "d 
max 

ax ~     u31 (14) 

Therefore 

A = €maxL = "d31 
V.L 

(15)      I 

Combining eqns 13 and 15 results in 

?2 
w2P3d3 VrnaxL d31 

G2d4 

The energy dissipated per cycle in the viscoelastic layer due to the axial motion can be expressed as [11] 

(16) 

WA   =  ,r V2  G2R  d2   \y2\ 

=TT ij2 G2R d2 
(17)        i 
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The shear angle associated with the bending of the beam is 

?2 
aE3d3d2k2

/3 

d2(E3d3d2k2
+G2) 

(18) 

The energy dissipated per cycle due to bending is, 

I a WB = X7j2 G2Rd2|72| (19) 

The condition for dissipating extra energy in the constrained layer material is 

Hi Y2 
/ 

> 1 

(20) 

(E3d2d3k Z+G2) 
/SaG^Ejk ■ 

3.1 Experimental Tests 

In order to test the efficiency of cancelling the induced moments, the configuration shown in Fig. 3 was used whereby 
a random excitation signal was applied to the top PZT element and then to both elements simultaneously. The results 
of the experiment showed that when the same signal was applied to both elements the resulting spectrum was almost 
flat proving that the dynamic bending moments had been effectively cancelled. 

To assess the effectiveness of the induced shear damping an experiment was carried out in which active damping with 
symmetrical actuators was compared to active damping with single actuator and passive damping. The results are 
shown in Fig. 5. It can be seen that a significant percentage of the reduction in the amplitude of vibration at the first 
mode is due to the induced shear alone. The effect is less significant in the second mode. It is possible to improve 
the damping in the second mode by choosing a more suitable location for the piezoceramic pad. However this may 
have detrimental effects on the damping in the first mode (see section 4). 

.200 
E+3 
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Active CLD with no Induced Bend in 
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Figure 5 - Active Damping with and without Bending Moments 

44/SPIEVol. 2193 



T™t!t^Ä^^^ 
Beam Type 

Beam with 
Passive Damping 

Active Damping 
with Pure Shear 

Reduction in Amplitude/Percentage 
FlrStMode Second Mode 

Active Damping with 
Shear and Bending 

-trol is defined as a^^^^ 
material between the pad ^Ü^^^tä^Äl^"^ ^ ^ ^--edTa^dampt 
IevelsVor each mechanism. IT* objectiveof ht ZwaT,f °Ut t0 ,nvf ^ the Station on the actuato^aef 
feedback loop saturated and to note the appüedvo^JU T™? ^ ampÜfier *ab UP 4° the point wherethe 
saturation voltagewas 140 Voltspeak to%7^U1T,'< V f^ ^ f°r the a^ively controUed beam he 
peak to peak.   » resuIted ^ ^ZS^»^^^^^^^^* 

compared to the actively controlled beam. he amPLtude °f vibration at the tip of the bean^ 

4. EFFECT OF ACTUATOR LOCATION 

stram occurs. Consider the area of the beam cc>ZS£T   • '°n °n the beam where the maximum surface 
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placement at any point on the beam surface o7^^7^^^ to *e CU™tu~ -d hence the 

// 
^B = 4>" (x)dx 

(21) 

^--...»^.p^^.^^^^^^^^^ 

The relative displacement of the 

Ap = (ax+b)5x 

piezoceramic and the beam surface at any point can be 

(22) 

written as, 

AR =AB -A 

the total relative displacement which i. is a 

= W (x)-(ax+b)Jdx 

measure of induced shear in (he viscoelastic 

(23) 

material is, 
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r fi = / W' (x)-(ax+b)]dx = ^ V(Xi) _ 
T "T   +b(x2~x2) (24) 

where xj and x2 represent the coordinates of the PnHc „f ,1.     • 

of amphtude required fa each mode. If a sSZ? '     ^ u^1^ fact0re Pennine the relat terXt,? 

* =£x.o.2 

(25) 

For exampie, for the first two modes the objective function is, 

(26) 

at xt - 0. The next local maximum is at x* = 0.4. ^ the °bjeCtive ****» ^ a maximum valut 

To demonstrate the validity of the ahn    A- 
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Figure 6 - Objective Function Based on the Location of A Single Actuator 
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Figure 7 - Effect of Actuator Location on Active Damping with Single Actuator 

SPIEVol. 2193/147 



.250 
e+2 

MAG 

»             "T r— 

Simple plate 

1 

 1— -i—i—i—i—i— 

\ Actively damped plate 

- 

//           : 

i                         i __*--*! OL. . , JL" 
XFR FUNC LIN 200Hz 

Figure 8 - Active Damping Applied to a plate structure 

5. CONCLUSIONS 

The use of piezoceramicpads combined with.passive constrained layer damping materials and an appropriate feedback 
circuit has been shown to produce very effective levels of damping in cantilever beams. 

Vibration levels in the first and second bending modes of forced vibration of beams/plates have been reduced 
significantly. These significant reductions in the vibration levels of the two modes can only be achieved when the 
hybrid system of piezoceramic materials is used with the constrained layer damping material. 

Combining an active element with a passive damping mechanism has the ultimate advantage of providing a failsafe 
mechanism and allows greater feedback gains to be used, resulting in improved vibration reduction capabilities. 
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Passive and active constrained layer damping of ring type structures 

Jem A. Rongong and Geoffrey R. Tomlinson 

Department of Mechanical Engineering, University of Sheffield, Sheffield Si 3JD, UK. 

ABSTRACT 

The performance of constrained layer damping treatments can be enhanced by optimising the segment length or 
through active control by inducing strains in the constraining layer. This paper investigates the effect of these 
methods on the flexural and extensional modes of a ring over a wide frequency range. Finite element models are 
first verified experimentally and then used in parametric studies. It is shown that segmentation of the constraining 
layer does not increase the maximum damping obtainable for a particular configuration but alters the mode number 
at which the maximum occurs. It is also shown that the optimum viscoelastic layer stiffness for active constrained 
layer damping is higher than that for the passive case. 

Keywords: constrained layer damping, active constrained layer damping, viscoelastic materials, sandwich rings, 
finite element, vibration damping 

1     INTRODUCTION 

Surface treatments involving materials that display viscoelastic characteristics can be used to attenuate vibrations 
in many structures such as aircraft panels, car bodies and space vehicles. A constrained layer damping (CLD) 
treatment is formed by sandwiching a thin, compliant layer of viscoelastic material between a stiff constraining 
layer and the vibrating structure. Relative motion between the constraining layer and the structure deforms the 
viscoelastic material thereby dissipating energy. 

The performance of CLD when used to suppress flexural vibrations in beams and plates has been extensively studied 
over the last forty years. Early work1-2 identified shear deformation in the viscoelastic layer as being the principal 
mechanism for energy dissipation. The loss factor of a structure treated with CLD was shown to depend not only 
on the loss factor of the viscoelastic material but also on the thickness and elastic moduli of the viscoelastic and 
constraining layers. Subsequent work has found that when the viscoelastic layer is soft and thick, significant levels 
of damping can be obtained through transverse extensional deformations in the viscoelastic layer.3'4 

Studies considering partially covered beams have shown that the total coverage does not always result in the highest 
loss factors.5 Efforts have been made to identify the optimum length of a CLD treatment applied to a beam. The 
first analyses assumed a uniform strain distribution in the base structure to derive an expression for the optimum 
length.6 It has recently been shown that if the strain in the base structure is non-uniform, this optimum length is 
significantly increased.7 

In the last decade active constrained layer damping (ACLD) methods have received considerable attention.8-13 An 
ACLD approach enhances the shear deformation in the viscoelastic layer by inducing appropriate strains in the 
constraining layer. This is usually achieved either by using a piezoelectric material to form the constraining layer or 
by bonding a piezoelectric actuator to an existing passive constraining layer.10 The strain in the piezoelectric actuator 



and hence the deformation of the constraining layer can then be controlled by varying the electric potential across 
the piezoelectric material. Polyvinylidine fluoride (PVDF) film8,9 and lead zirconate titanate (PZT) patches11'12 

have been used successfully as actuators to control vibrations in beams and plates. Significant improvements in 
performance over passive CLD have been demonstrated. 

The passive damping supplied by the viscoelastic layer gives significant advantages over a purely active control 
approach, in which the actuators are bonded directly to the structure. In particular the effect of spillover,14 where 
uncontrolled modes become unstable, is significantly reduced using ACLD. Theoretical and experimental comparisons 
have also been made between ACLD and active control of a structure with passive CLD.11'13 These studies have 
shown that the stiffness of the viscoelastic layer is critical to the transfer of control effort from the actuator to the 
base structure. 

Ring type structures are often found as components in rotating machinery. Vibrations developed can excite flexural 
modes of high nodal diameter. Recent studies15 have shown that for a particular CLD treatment a graph of loss factor 
against damping shows two maxima as in figure 1.  The first peak occurs when shear damping of the viscoelastic 

(0 
w 
o 

shear deformations dominant 

radial deformations dominant 

Nodal Diameter 

Figure 1: Typical plot of loss factor against nodal diameter for a ring with CLD 

layer is optimised and the second when radial deformations become significant. The height of the peaks are affected 
mainly by the loss factor of the viscoelastic material and the flexural stiffness of the constraining layer. The modes 
at which these peaks occur depend mainly on the stiffness (in shear or extensional deformation) of the viscoelastic 
layer. 

This paper examines the effect of methods used to enhance the performance of CLD, namely segmentation and 
ACLD, on the flexural (and extensional) modes of a ring. Frequency domain experimental and theoretical results 
are used to investigate the damping achieved over a large number of vibration modes. Numerical studies using finite 
element (FE) analysis are carried out to identify generic behaviour. The validity of the FE analysis methods used 
are then verified experimentally. 

2    MODELLING VISCOELASTIC BEHAVIOUR 

The mechanical properties of viscoelastic materials vary with both frequency and temperature. This behaviour can be 
modelled accurately in the frequency domain using the complex modulus obtained from the material master curve. 
Figure 2 shows the master curve or international plot for the shear modulus of 3M ISD112 - a popular damping 
material. The complex shear modulus G* (w) is defined as, 

G'(u) = G'(l+jV) (1) 
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Figure 2: Shear modulus master curve for ISD 112 

where G' and r\ are the storage modulus and loss factor respectively. These values can be used directly to carry out 
harmonic forced response calculations for viscoelastic structures. 

Modal strain energy (MSE) analysis is an approximate method for obtaining loss factor and natural frequency data 
from a FE model.16 It is based on an elastic analysis involving free eigenmodes and is therefore computationally 
inexpensive. Assuming low levels of damping in the base structure and constraining layer the loss factor of a ring 
with a CLD treatment can be estimated using, 

Vtotal 
rjrUr + T)cUc + VvUy 

Utotal 
'Vv 

Uv 

u, total 
(2) 

where rj is the loss factor, U is the modal strain energy and the subscripts r, c and v refer to the ring, constraining 
layer and viscoelastic layer respectively. It can be shown that the MSE method assumes proportional damping17 

and that it is the first order approximation to a full asymptotic solution.18 It also does not allow for the frequency 
dependence of the viscoelastic material: to get correct values the eigenvalue calculation must be carried out for each 
mode using the material properties at that particular frequency. MSE analysis has been used successfully to predict 
the damping in the first thirty modes of steel-polyurethane-steel sandwich rings.15 

3    SEGMENTED CLD 

MSE analysis was used to estimate the loss factors of rings covered with CLD made up of 2, 4, 8 and 16 segments. 
The basic dimensions are presented in table 1. Two dimensional, eight noded biquadratic finite elements were used 

Part radius 
(mm) 

thickness 
(mm) 

width 
(mm) 

density 
(kg/m3) 

Young's modulus 
(GPa) 

Poisson's ratio 

Ring 182.5 2.5 25 7860 205 0.3 
Viscoelastic layer 0.127 25 1000 variable 0.499 
Constraining layer 0.254 25 2700 70 0.33 

Table 1: Dimensions and material properties 

to model the CLD treated rings. Convergence studies found that the first thirty vibration modes could be calculated 
accurately using 240 elements around the circumference of the composite ring.  The viscoelastic and constraining 



layer were each one element Through the thickness, single elements were sufficient to model the viscoelastic and 
constraining layers and two were required for the ring. 
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Figure 3: Loss factors of ring with segmented constraining layer E„ = 15 MPa (*** unsegmented, ooo segmented) 

Figures 3, 4 and 5 show the modal loss factor against frequency of these rings for different values of viscoelastic layer 
Young's modulus (E„). Results for segmented CLDs are marked with an 'o' and are compared with the unsegmented 
case marked with an asterisk. 

The values of Young's modulus for the viscoelastic layer were chosen to illustrate the effect of segmentation on the 
double humped damping curve of figure 1. Figure 3 shows the first (shear) peak, figure 4 shows the start of the 
second (radial deformation) peak and figure 5 focuses on the area to the left of the first peak where the stiffness of 
the viscoelastic layer is higher than the optimum value. Note that the modes with very low loss factors near 4, 6, 10 
and 15 kHz are extension modes. 

In general, for flexural modes coinciding with the shear peak as in figure 3, segmentation offers no advantages as the 
configuration is optimised: in fact shorter segments lead to a lower peak. Figure 4 shows that in the trough between 
the peaks and on the second peak the segment length has very little effect. For modes to the left of the shear peak, 
where the loss factors achieved are suboptimal because the viscoelastic layer is either too thin or the shear modulus 
is too high, reducing the segment length improves the damping. This effect is most noticeable in figure 5. It is 
interesting to note that this improvement in damping achieved with segmentation never exceeds the height of the 
shear peak. This indicates that optimum performance can be achieved without segmenting the constraining layer, 
but by selecting the suitable values for the thickness and modulus of the viscoelastic layer. However in practice it is 
not always possible to do this - a designer is limited to real materials - and when this occurs segmentation can be 
used to shift the optimum peak to the required modes. 

For extension modes, figures 3 and 5 show that increasing the number of segments, or alternatively reducing the 
segment length significantly improves the loss factor achieved. 

From these graphs it can be seen that a pair of modes close in frequency but with significantly different damping 
levels often occur when a segmented CLD is used: for example, in figure 3 the ring with the 16 segment CLD has 
two modes near 1 kHz that have loss factors of 0.015 and 0.035 respectively. 
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These are in fact modes with the same nodal diameter (8) but the positioning of the nodes with respect to the 
segments differs. The higher loss factor corresponds to the mode in which the nodes are aligned with the gaps 
between the CLD segments. Figure 6 shows the difference between these modes: mode 16 gives a significantly lower 
level of damping than mode 17. This behaviour only occurs when the nodal diameter of the vibration mode is a 
multiple of half the number of segments. 

Mode 16 (1076 Hz) Mode 17 (1101 Hz) 

Figure 6: 8 nodal diameter mode shapes for ring with 16 segment CLD 

4    VERIFICATION OF MSE METHOD FOR THE SEGMENTED CLD TREATMENT 

To validate the numerical methods used in the previous section a comparison was made between the natural fre- 
quencies and loss factors obtained using MSE analysis to those obtained from direct forced response calculations and 
experimental results. 

Four 250 mm length strips of aluminium backed ISD 112 damping tape were applied evenly to a steel ring. Dimensions 
and material properties are given in table 1 and figure 2. The ring was then suspended on soft elastic (free-free) 
supports and excited with an electrodynamic shaker using a 0-2 kHz band limited random noise source. The 
experimental layout is shown in figure 7. The response was measured using a minature accelerometer and frequency 
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power amplifier 
Gearing & Watson 

S«S:f*?K 
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Figure 7: Schematic diagram of experimental set-up 
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Figure 8: Modal loss factors with a 4 segment constrain- 
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response data was obtained using a PC based Fourier transform analyser. Estimates of natural frequency and modal 
loss factor for the first eight modes were made by fitting a single degree of freedom curve to the mobility plot. This 



method gave good results as the resonances were well separated. Interactions with torsion modes and the support 
structure made measurements unreliable for higher modes (above 1.5 kHz). Three successive tests were made with 
the stinger rod of the shaker attached at different points on the ring. This was to investigate the pairs of modes 
of the same nodal diameter but different loss factors discussed in the previous section. With reference to figure 6 
an excitation point opposite a gap between the segments was selected to drive modes with the lower loss factor. 
The second driving point was placed opposite a point half way along a segment (to excite the modes with higher 
damping) and a final point was fixed exactly between the first two points. 

Theoretical predictions were made using both a direct forced response calculation (modal values obtained by curve 
fitting) and also using MSE analysis. Values for frequency dependent shear modulus of ISD 112 at 19° C were 
obtained from the international plot (figure 2). With the MSE method, the frequency dependent behaviour was 
included by following an iterative process calculating each eigenvalue in turn using the correct value for the elastic 
modulus of the viscoelastic material. 

Comparisons of the results from the three different methods are presented in figures 8, 9 and 10. These figures show 
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Figure 9: Modal loss factors with a 4 segment constrain- 
ing layer: driving point opposite the centre of a segment 

Figure 10:   Modal loss factors with a 4 segment con- 
straining layer: half way between previous points 

good agreement between the experimental and theoretical forced response results. Figure 8 shows that when the 
excitation is at a gap between segments the behaviour follows the modes with lower damping obtained using MSE 
analysis. In figure 9 it can be seen that when the driving point is at the midpoint of a segment, the modes (apart 
from 4 nodal diameters at 250 Hz) excited correspond to the ones with higher damping. Finally figure 10 shows that 
for a driving point in a different position the loss factors obtained are between the limits indicated from an MSE 
analysis. In general it can be concluded that the results obtained using MSE analysis are valid and that for modes 
where the nodal diameter is a multiple of half the number of segments, the damping depends on the positioning of 
the exciting force. 

5    ACTIVE CONSTRAINED LAYER DAMPING (ACLD) FOR A RING 

The linear relationship linking stress, strain and electric field for piezoelectric materials can be written in tensor form 
as, 

e = sBa + dE (3) 
where e is the strain, sE the compliance at constant electric field, a the strain, d piezoelectric strain constants and 
E the applied electric field. For ACLD applications it is common to use a thin plate-like piezoelectric actuator poled 
in the thickness direction. Under these conditions the relationship can be simplified considerably. A voltage applied 
across the thickness of such an actuator bonded to a structure induces strains in the structure proportional to the 
d3i strain constant. 



Various different control strategies have been employed in studies on ACLD. The work presented here is an initial 
study on the effect of activating the constraining layer on a wide range of modes of a ring. A voltage proportional 
to the radial velocity on the ring is used to control the strain deformation of a small piezoceramic (PZT) patch 
bonded to the constraining layer as shown in figure 11. A similar system has been used with considerable success 
to control first two modes of a cantilever beam.10   Figure 12 shows a schematic diagram of the velocity feedback 
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Figure 11: Velocity feedback control system Figure 12: Schematic diagram of velocity feedback strategy 

strategy employed. The object is to minimise the output velocity x0 with respect to the force F. As the set input 
±i is zero, the model can be expressed mathematically as, 

XQ 

~F 

G 
1 + HP (4) 

Note that .this model assumes linear behaviour and ignores the effect of voltages generated by the actuator when it 
is deformed. Equation 4 indicates that it is possible to calculate the controlled response by measuring the mobility 
G{= ^p-) and the response to piezoelectric excitation P(= &■) separately. 

To verify this model G and P were calculated numerically for the ring used in the previous section with a 5 mm PZT 
actuator bonded to the centre of one of the constraining layer segments. Measurements of these functions were made 
experimentally using a band limited 0-5 kHz random noise signal. As before, the velocity was obtained by using an 
accelerometer and integrating the signal, and the force F was measured using a force transducer. The piezoelectric 
drive voltage was amplified to approximately 100 V peak-to-peak. Dimensions and material properties of the PZT 
actuator are shown in table 2. The magnitude and phase of these responses predicted numerically are compared with 

length 
(mm) 

thickness 
(mm) 

density 
(kg/m3) 

d3i 
(10-12 C/N) 

Young's modulus 
(GPa) 

Poisson's ratio 

5 0.4 7700 -180 62.5 0.3 

Table 2: Dimensions and material properties for Sonox P5 PZT actuator 

the experimental values in figures 13 and 14. The figures show good agreement verifying the models used. 

The methods developed were used to study the effect of viscoelastic layer stiffness on the performance of ACLD. Over 
the frequency range considered (10-5000 Hz) the elastic modului of a viscoelastic material can vary significantly: for 
example, the modulus of ISD112 increases by a factor of almost twenty. This can result in significantly different 
strain transfer behaviour between low and high modes. To investigate this effect the performance obtained using 
three different values of Young's modulus for the viscoelastic layer were compared. 
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Figure 13: Mobility (G): full line for experimental and 
dashed line for simulated data 
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Figure 14: Response to PZT excitation (P): full line for 
experimental and dashed line for numerical data 
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Figure 15: Simulated ACLD on a ring with different values of Young's modulus (dashed line for passive case) 



Figure 15 shows the simulated results of ACLD applied to a ring with a full constraining layer. It can be seen 
that although the passive damping is optimised using a Young's modulus of 15 MPa, the 150 MPa case gives better 
performance when the constraining layer is activated. This result indicates that an ACLD treatment using a real 
viscoelastic material would show improved control performance in the high frequency modes. 

6    CONCLUSIONS 

In this paper the effect of segmenting the constraining layer on the overall value of damping for a CLD treated ring 
was studied. For flexural modes it was found that segmenting improved the damping only if the viscoelastic layer is 
stiffer than the optimum case. For extension modes however segmentation always improves the damping. 

Active constrained layer damping was also considered. It has been shown that it is possible to enhance the damping 
of a large number of modes using a simple velocity feedback approach. It has also been shown that the optimal 
stiffness of the viscoelastic layer is higher for ACLD than for the passive case. 
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Abstract. Constrained layer damping treatments utilize the energy dissipative 
properties of viscoelastic materials to increase the passive damping in structures. 
This paper investigates the performance of constrained layer damping treatments 
applied to a ring. An analytical model is developed to predict the behaviour of such 
a ring over a large number of modes. Relative motion between the ring and 
constraining layer in both the circumferential and radial directions are considered. 
Predictions of steady state dynamic behaviour obtained using the model are 
validated by comparison with results from experiments and finite element analysis. 
The model is then used to evaluate the effect of various parameters on the 
damping achieved. It is shown that for any particular configuration a plot of 
damping against mode number has two maxima. These peaks occur when 
optimum values for the deformation of the viscoelastic layer are achieved firstly for 
shear and secondly for radial extension and compression. 

Nomenclature Greek 

English 
CL 
CLD 
E 
F 
G 
[K] 
[M] 
MSE 

Q 
R 
T 
U 
VL 
b 

i 
h 
i 
m 

q 
t 
t 
u 
w 
z 

constraining layer 
constrained layer damping 
Young's modulus 
force 
shear modulus 
stiffness matrix 
mass matrix 
modal strain energy 
generalized force 
radius of centroid 
kinetic energy 
strain energy 
viscoelastic layer 
width 
time varying coefficient 
time varying coefficient 

mass per unit length 
generalized coordinate 
thickness 
time 
circumferential displacement 
radial displacement 
radial distance from centreline 

Subscripts 

direct strain 
shear strain 
loss factor 
radial deformation shape function 
Poisson's ratio 
angle round ring 
mass density 
frequency 
tangential deformation shape function 

point P 
point Q 
radial 
circumferential 
constraining layer 
ring 
viscoelastic layer 

transpose 
time derivative 
space derivative 

1. Introduction 

Constrained layer damping (CLD) is widely used in 
the aerospace and automotive industries as a surface 
treatment to attenuate resonant structural vibrations. Energy 
is  dissipated  through  the deformations  of a compliant 
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Figure 1. Deformation of a sandwich ring. 

|layer of viscoelastic material, sandwiched between the 
}basc structure and a stiff constraining layer (CL). The 
(performances of such treatments have been studied by many 
j researchers. The overall damping achieved has been shown 
I not only to be dependent on the inherent damping in the 
[ viscoelastic material but also on the thickness and elastic 
| modulus of each layer. 

Sandwich beams and plates have received much 
|»ttcntion since the work of Kerwin [l] in the late 1950s. 
I'Subsequent work has often been based on the sixth order 
|partial difference equations of Mead and Markus [2], These 
[equations assume that all layers move the same amount in 
|the transverse direction, that the viscoelastic layer carries 
I Shear stress only. It has been shown that the shear 
|dcformation and rotary inertia of the structure and CL 
j«rc significant if the flexural wavelength is less than four 
^times the thickness [3,4]. More recently, studies allowing 
[•transverse extensional deformation of the viscoelastic layer 
(have shown that damping values can be higher than those 
Ijndicated by the sixth order theory when the viscoelastic 
|ayer is soft or thick [5,6]. 

Ring type structures including CLD have also received 
!J°me  attention.       System   loss   factors   and   resonance 
j frequencies for curved beams [7,8] and sandwich rings [9] 

ve been obtained. These analyses however, studied only 
e first three or four modes and to the authors' knowledge 

re have been no studies encompassing high order modes 
"n the region of 20-40 nodal diameters) that could be 
«cited by rotating machinery. 

This paper presents a study  on  the performance of 
"strained layer damping applied to a solid ring 

^tnod      ran§e °f modes-    Analytical  and finite element 
[par 6lS arC Verified experimentally and the effect of various 
I        eters on the damping achieved are investigated. 

ou(j|jiet>öiuii ui rmy viDranon nodes 

2. Modelling viscoelastic elements in structures 

The mechanical properties of viscoelastic materials vary 
with both frequency and temperature. Several theoretical 
and empirical methods have been developed to simulate 
and analyse this behaviour [10,11]. The approach used 
in this paper involves the use of the complex modulus 
which is defined by the material master curve and gives an 
accurate frequency domain model. (A time domain model 
can also be derived from this by either the use of the Fourier 
transform [12] or by curve fitting to a Prony series [11].) 
The frequency dependent complex shear modulus G*(co) is 
defined by: 

G*{co) = G\\ + r1) (1) 

where G' and rj are the frequency dependent storage 
modulus and loss factor respectively. 

The modal strain energy (MSE) method is based on an 
elastic analysis involving free eigenmodes. It is particularly 
popular for finite element studies as it is computationally 
inexpensive. The loss factor of a viscoelastic sandwich ring 
is estimated using, 

_  VrUr + rjcUc + rfyUy 
^structure — yz (2) 

^structure 

where U is the modal strain energy and the subscripts r, c 
and v refer to the ring, constraining layer and viscoelastic 
layer respectively. The added effect of the constrained layer 
damping treatment on the system loss factor can therefore 
be approximated by, 

•ladded 
1cUc + r]vUv 

U structi 
= r)v 

Uv 

USI 
as r]v » rjc-O) 

J structure 

Thus, the ratio of the strain energy in the viscoelastic 
layer to the total strain energy (referred to in this paper 
as the MSE ratio) determines the damping introduced by a 
particular configuration and allows comparisons to be made 
between different designs. 

It can be shown that the MSE method assumed 
proportional damping [13] and is limited to the analysis 
of lightly damped structures. It also does not allow for the 
frequency dependence of the elastic modulus: to get the 
correct values the eigenvalue calculation must be carried out 
for each mode using the material properties at that particular 
frequency [9]. More accurate predictions can be obtained 
by using a direct forced response calculation as this method 
includes the frequency dependent properties. However, as 
it is very time consuming it is only used in this paper to 
verify results obtained from MSE calculations. 

3. Analytical model of sandwiching ring 

This section describes an analytical model of a two- 
dimensional solid ring with a constrained layer damping 
treatment applied to it. Lagrange's equation coupled 
with the assumed modes summation method is used to 
obtain the equations of motion in generalized coordinates. 
The analysis is similar to that of He and Rao [8] for 
a curved sandwich beam but models the inertia and 
strain   in   the   viscoelastic   layer  differently.      Figure   1 
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BENDING (EVEN) - 5 nodal diameters 
EXTENSION (EVEN) - 3 nodal diameters 

BENDING (ODD) - 4 nodal diameters EXTENSION (ODD) - 0 nodal diameters 

Figure 2. Constrained layer damped ring mode types. 

shows the deformations considered in the analysis and the 
nomenclature used. 

The main assumptions in setting up the equations are 
as follows: 

(l) linear elastic behaviour in all the layers (viscoelastic 
behaviour, represented by the complex modulus, is included 
at a later stage using the correspondence principle [14]) 

(ii) extensional and shear deformations are linear 
through the thickness of the viscoelastic layer 

(iii) shear deformation of the ring and constraining layer 
is insignificant 

(iv) perfect bonding occurs between the layers. 
The variation in the displacement of the ring centreline 

in the radial and tangential directions respectively are given 
by 

Wr  = <Pr(0)gr(O (4) 

and 

ur = ^r(6)hr(t) (5) 

where <pr and ij/r describe the deformation shape (dependent 
on the angle 9) and gr and hr are time varying coefficients. 
For the constraining layer the displacements are given by, 

and 
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»c = (Pc(O)gc(t) 

uc = iJc{0)hc{t). 

(6) 

(7) 

For the viscoelastic layer, from assumption (ii), the 
deformations in the circumferential and radial directions 
are, 

and 

where 

Up+UQ       zv/ . 
 ^- + -{UQ-UP) (8) 

Wp + Wn        Z„. 
Wu =  -^L + -(WQ-WP) (9) 

^ 111 

Wp = wr 

UIQ = U)c. 

Note that the symbol ' is used to denote d/d6 and ' to 
denote the time derivative 3/9?. The kinetic energy of the 
ring is obtained from, 

x(Rr+zr)dzrd8 (10) 

where the symbols are as defined in the nomenclature. 
Similarly for the constraining layer, 

Tc=\ r f'12 PcbcLi+m^üc+^'S 
J0      J-l,/2 L \      Re Re      J  J 
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x(Rc + zc)dzcd6. (]]) 

The kinetic energy for the viscoelastic layer is obtained by 
substituting equations (8) and (9) into, 

/•2JT     /.t.,/2 

T" = *Jo    /.,    P"M"" +"'»](*''+ z»)dz''dö-   (12) 

As shear and radial strains in the ring are ignored and the 
circumferential strain at any point on the ring is given bv 
[15], y 

Ur UV zrw; 
Rr Rr+Zr Rr(Rr + Zr) 

the strain energy expression for the ring is, 

(13) 

^+ Wr zrw; 
_Rr Rr+Zr Rr(Rr + Zr) _ 

(14) 

Ur = \ / Erb, 
JO      J-tr/2 

x(/?r + Zr) dzr dd 

and for the constraining layer, 
Jf2ir    Mc/2 

'      /       Ecbc 
0      J-lc/2 

x(Rc + zc)dzcde. (15) 

For the viscoelastic layer, substituting equations (7) and 
(8) into the expressions for strain in cylindrical coordinates 
[16] give, 

LRC 
+ ZcK 

Rc + zc     Rc(Rc + zc)_ 

'- _ 'R~fYuH(u'p + U
'Q + W

P + WQJ 

+
~\

U
'Q - u'p + WQ - wp) 

and 

WQ — Wp 

(16) 

(17) 

— "_Q~
U

P      i   r, / N 

+
 -^(

W
'Q-

W
'P+

U
Q + "P) 

The strain energy is defined by, 

+GVYZ \(Rv + zv)dZvd8. 

Lagrange's equation states that, 

d_fd(T-U)\     d(T-U) 

(18) 

(19) 

dt\ dqk dqk 
= Qk (20) 

where qk are generalized coordinates, Qk the generalized 
force, T and U the kinetic and potential energy respectively. 
Examination of the energy expressions show that for this 
model, Lagrange's equations can be reduced to, 

d /3(7; + Tc + r„)\      d(Ur + Uc + Uv) 
-(- dt\ dqk 9 qk 

= Qk-   (21) 

Substituting the energy terms into equation (21) and 
taking the derivatives with respect to each of the time 
dependent variables in equations (4) to (7) gives four 
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coupled equations of motion.   These can be represented 
in matrix form as 

[M]q + [K]q = F q = [i hr (22) 

where M and K are the mass and stiffness matrices 
and F the forcing terms. For reasons of space the full 
expressions for these terms are not presented here but can 
be easily derived as shown. The correspondence principle 
is used to include the viscoelastic material behaviour. Each 
elastic modulus value that appears in the stiffness matrix is 
substituted by its corresponding complex modulus value (as 
in equation (1)) to give the full viscoelastic model for the 
sandwich ring giving, 

[M]q + [KSTORACE + iKL0SS]q = £. (23) 

The assumed modes summation method approximates the 
deformed shape using a series of comparison functions 
which must satisfy the physical boundary conditions. One 
set of suitable shape functions are the mode shapes of 
a freely vibrating ring. Applying this method to the 
displacements in equations (4) to (7) gives, 

w' = il<Pjr-gjr 
7 = 1 

n 

J = l 

n (24) 

'c ■ gjc 
y=i 

where, 

<Pjr = <Pjc = cos((j - 1)6») and r//jr = fjc 

= sin((y - 1)6») (25) 

where the mass and stiffness matrices have size An x 4«, 
n being the number of terms in the series expansion. 
However, due to the orthogonality of the comparison 
functions used, the mass and stiffness matrices become 
banded diagonal matrices and are therefore computationally 
inexpensive. 

4. Theoretical and experimental validation 

The model derived in the previous section includes 
assumptions regarding the nature of the stresses and strains 
developed in the sandwich ring. This section presents the 
work carried out to validate the model both experimentally 
and using finite element analysis. The accuracy of the 
model is evaluated by considering the loss factors and 
resonance frequencies obtained over a large number of 
modes. In addition to this the trends indicated by the MSE 
analysis are compared with the frequency response. 

Excluding rigid body modes, two basic types of mode 
shape are encountered in a two-dimensional analysis of 
free rings:   these are bending and extensional.   Bending 
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Table 1. Base ring dimensions. 
7.5 mm   . 

Variables Symbol Value 

Nominal radius (mm) Rr 183.75 
Thickness (mm) t, 2.5 
Depth (mm) br 25 
Young's modulus (GPa) Er 205 
Density (kg rrr3) Pr 7860 
Poisson's ratio Vr 0.3 
Loss factor (%) 1r 0.5 

modes involve sinusoidal deflections mainly in the radial 
direction whereas in extensional modes the circumferential 
deformations dominate. Where CLD is applied to a ring, 
odd and even modes are found for each nodal diameter. 
The base ring and the constraining layer move in the same 
direction in even modes and in opposite directions in odd 
modes. Typical examples of these modes are shown in 
figure 2. 

Table 1 contains the basic dimensions of the rings used 
for model verification. The data for the various CLD 
treatments applied to them is presented in table 2. (The 
material properties of the constraining layer are identical 
to those of the base ring.) The use of several different 
configurations ensured the validity of the model over a wide 
range. 

4.1. Comparison of analytical and finite element 
analysis 

The finite element analysis results presented here were 
obtained from a two-dimensional model built using eight 
noded quadratic elements. Convergence studies using 
various mesh densities showed that a model consisting of 
two elements through the thickness of each layer and 240 
elements around the circumference was sufficient for MSE 
analysis and forced response calculations. 

Figures 3 and 4 show the comparison of results from 
the analytic and finite element models for rings A and B. 
It can be seen that there is good agreement between the 
two models both for MSE analysis and for direct forced 
response calculations. (The MSE ratio results for ring B 
for the finite element analysis stop at around 5 kHz due to 
insufficient memory on the computer used.) It can also be 
seen that the MSE ratio and the frequency response show 
similar trends: when the MSE ratio is low (as seen with 
the extension modes) the frequency response shows distinct 
modes as sharp spikes but when the MSE ratio is high the 
peaks in the frequency response disappear. 

4.2. Experimental verification 

Theoretical and experimental tests were carried out for 
rings C and D. The rings and constraining layers were 
manufactured by turning sections of a cold-forged steel pipe 
on a lathe. The void between the ring and constraining 
layer was filled with polyurethane and cured. The thinnest 
void into which the polyurethane could be introduced 
successfully was found to be 1 mm thereby setting a 
minimum thickness for the viscoelastic layer. 

viscoelastic 

constraining layer 

Figure 5. PZT attached to ring. 

The rings were suspended in the axial direction using 
soft elastic supports to simulate free boundary conditions. 
A thin strip of PZT material was glued on the inner surface 
of each ring to act as an induced strain actuator as shown 
in figure 5. The rings were then excited by applying a band 
limited random signal of 100 volts peak-to-peak across the 
PZT. This method was used because such PZT devices can 
deliver significant strains even at high frequencies and also 
because the shape of the actuator ensured that unwanted 
three-dimensional modes were not excited. The response 
was measured using a miniature accelerometer mounted in 
the radial direction. The input and output signals were 
controlled and processed using a HP300 computer running 
LMS software. A schematic diagram of the experimental 
design is shown in figure 6. 

The theoretical values of natural frequency and loss 
factor were calculated using MSE analysis. The frequency 
dependence of the material properties of polyurethane at 
22 °C are presented in figure 7. An iterative approach was 
used to find the correct values of Young's modulus and loss 
factor for each mode. The analytical model was therefore 
used to save computational time and effort. Experimentally 
the loss factors for each mode were estimated from the 
Nyquist circle to minimize the residual effects of close 
modes. 

Predicted and measured values of loss factor are 
plotted against frequency for rings C and D in figures 8 
and 9 respectively. These show fair agreement between 
theoretical and analytical values for both the bending and 
extension modes. (Extension modes can be identified as the 
modes in which the damping is near zero.) Possible causes 
for discrepancies between the results include interference 
of the support structures and a wide tolerance band on the 
viscoelastic material data. 

Overall, it can be concluded that the analytical model 
developed in the previous section can be used to give 
reasonable predictions of the behaviour of CLD treatments 
applied to rings. 

5. Parametric study 

This section presents a theoretical parametric study carried 
out on a ring with CLD to highlight the effect of each 
parameter on the damping of the structure. The ratio of 
modal strain energy between the viscoelastic layer and the 
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Figure 8. Modal loss factors for ring C. 
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Figure 9. Modal loss factors for ring D. 
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drive signal to PZT 

High Voltage Power Amplifier 

PZTx 

liv 
Ring (elastically supported) 

Accelerometer 

f > 

<\M 
V. 

LMS Software > 

HP 300 Computer 

Charge 
Amplifier 

Divide by 50 

DEFA Scadas II 
Acquisition System 

signal out 

Figure 6. Schematic diagram of experimental set-up. 

10 
Frequency (Hz) 

10 
Frequency (Hz) 

Figure 7. Material properties for polyurethane at 22=C. 
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Table 2. Properties of CLD treatments. 

Variable Symbol Ring A Ring B     Ring C Ring D 

VL thickness (mm) t„ 0.2 1 1 1 
VL modulus (MPa) Ev 50 2 50-300* 50-300* 
VL density (kg rrr3) Pv 1000 1000 1000 1000 
VL Poisson's ratio vv 0.4999 0.4999     0.4999** 0.4999** 
VL loss factor (%) riv 0.8 0.8 0.10-0.22* 0.10-0.22* 
CL thickness (mm) tc 2 1 2 1 
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Figure 10. MSE ratios of different mode types of ring B. 

full structure (the MSE ratio) is used as a performance 

indicator. The present study focuses on the bending 

modes as' extension modes tend to occur at much higher 

frequencies. Even modes typically have lower natural 

frequencies and loss factors than odd modes for all but a 

few high nodal diameter cases as can be seen in figure 10. 

This study uses the lower of the two values of MSE 

ratio recovered for even and odd modes of the same 

nodal diameter. For convenience the elastic modulus of 

the viscoelastic layer is considered to be independent of 

frequency. 

The general trend of the results is shown in figure 11. 

Two areas of high MSE ratio (and hence damping) can 

be identified, one in which the viscoelastic layer deforms 

mainly in hear and the other in which radial motion between 

the constraining layer and the ring causes significant 

radial extension and compression of the viscoelastic layer. 

Dimensions of the ring used for the parametric study are 

given in table 3. 

=   A 
shear deformations dominant 

radial deformations dominant 

Nodal Diameter 

Figure 11. Typical curve for the MSE ratio (damping) for 
bending modes of a ring with CLD. 

5.1. Viscoelastic layer modulus (Ev) 

Figure 12 shows the effect of changing the viscoelasti' 
layer modulus on the MSE ratio. When the modulus i 
high (10 < Ev < 100 MPa) shear is the predominan 
deformation in the viscoelastic layer but when it • 
low (Eu < 1 MPa) radial deformations are significant 
particularly in the higher modes. 
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50      5.5 log(Ev) 
Nodal Diameter 

Figure 12. Effect of VL modulus on bending modes (tc = 3 mm, tv = 0.127 mm). 

50      0 tr/tv 
Nodal Diameter 

Figure 13. Effect of VL thickness on bending modes (tc = 3 mm, Ev = 14 MPa). 

S.2. Viscoelastic layer thickness (t„) 

Figure 13 shows that increasing the thickness of the 
viscoelastic layer has a similar effect to reducing the 
modulus. However, the peak MSE ratio value is higher 
for a thick viscoelastic layer due to the increased amount 
°f damping material available. 

5.3. Constraining layer thickness (tc) 

Figure 14 shows that the height of the shear peak increases 
with constraining layer thickness reaching a maximum 
when the base ring and constraining layer are of equal 
thickness. This is clearly not the case for the radial 
deformation peak.   By increasing the number of modes 
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50      0 tc/tr 
Nodal Diameter 

Figure 14. Effect of CL thickness on bending modes (tv = 0.127 mm, Ev = 1 4 MPa). 

tc/tr 

Nodal Diameter 

Figure 15. Effect of CL thickness on bending modes (tv = 0.127 mm, Ev = 3 MPa). 

considered from 50 to 70 and reducing the viscoelastic 
layer modulus from 14 to 3 MPa, the effect on radial 
deformation peak can be seen as shown in figure 15. This 
figure indicates that a significant difference between the 
thicknesses of the two outer layers is desirable for radial 
deformation dependent damping. 
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5.4. Constraining layer elastic modulus and density 
(Ec and pc) 

From   figure   16   it   can   be   seen   that   increasing  the: 
constraining layer modulus improves the MSE ratio of thei 
shear peak slightly but significantly reduces the height off 
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Ec/Er 
Nodal Diameter 

Figure 16. Effect of CL modulus on bending modes (tv = 0.127 mm, Ev = 14 MPa, tc = 3 mm). 

CL density / ring density 
Nodal Diameter 

Figure 17. Effect of CL density on bending modes (tv = 0.127 mm, Ev = 14 MPa, tc = 3 mm). 

the radial deformation peak. Figure 17 shows that the 

constraining layer density has little effect on the shear peak 

but an increase density of the constraining layer increases 

the radial deformation peak probably as a result of increased 

relative motion between the outer layers. 

5.5. Summary of the parametric study 

The parametric study shows that varying the viscoelastic 
layer elastic modulus or thickness has the primary effect of 
moving the peak values to higher or lower modes. The 
peak heights are mainly dependent on the constraining 
layer thickness, modulus and density.    The first (shear) 

683 



J A Rongong and G R Tomlinson 

Table 3. Properties of sandwich ring used for parametric 
study. 

Variable 

Ring nominal radius (mm) 
Ring thickness (mm) 
VL thickness (mm) 
CL thickness (mm) 
Ring and CL Young's modulus (GPa) 
VL Young's modulus (MPa) 
Ring and CL Poisson's ratio 
VL Poisson's ratio 
Ring and CL density (kg irr3) 
VL density (kg rrr3) 

Symbol Value 

Rr 375 
t, 4 
t„ 0.127 
tc 3 
Er,   Ec 110 
Ev 14 
Vr.   Vc 0.3 
Vv 0.4999 
Pr.  Pc 4553 
Pv 1000 

peak is maximized when the fiexural rigidity of the ring 
and constraining layer are equal. The height of the 
second (radial deformation) peak depends not only on the 
rigidity but also on relative fiexural inertias of the ring and 
constraining layer and is minimized when they are equal as 
for that condition there is little relative radial motion. 

6. Conclusions and further work 

An analytic model has been developed that predicts that 
natural frequency and loss factors of a three layer sandwich 
ring. Accurate results for thin rings can be obtained even 
at high mode numbers by allowing the inner (viscoelastic) 
layer to deform both radially and circumferentially. Results 
compare well with those from finite element analysis and 
experimental work. 

Modal strain energy analysis has been used to study 
the effect of different parameters on the performance of 
constrained layer damping applied to a ring. This has 
shown that for the bending modes, a graph plotting the 
damping against mode number follows a double humped 
curve. The first peak is the well known viscoelastic layer 
shear deformation curve. The second peak is caused by 
radial deformations in the viscoelastic layer. The height 
and position of each peak depend on several variables and 
a configuration maximizing the shear peak minimizes the 
height of the radial deformation peak. 

The second peak is particularly interesting for 
applications where damping is required at high mode 
numbers or where manufacturing and material constraints 
do not allow the design to be optimized for shear—optimum 
shear configurations often require a very thin viscoelastic 
layer. A complete experimental study considering not 
only rings but also three-layer beams should be carried 
out to verify the behaviour of this second peak. Studies 
considering the performance of segmented and active 
constrained layer methods at high frequency and modal 
order would also be valuable. 
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