
Real-Time Concurrent Processes

Final Technical Report

31 March 2000

Contract Number F49620-97-C-0008

Prepared For

U.S. Air Force Office of Scientific Research
Directorate of Mathematics and Space Sciences

800 North Randolph Street
Arlington, VA, 22203-1977

Prepared By

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

20000622 115

Real-Time Concurrent Processes
Final Technical Report

Contract Number F49620-97-C-0008

Prepared for

Capt. Alex Kilpatrick
Program Manager, Software and Systems
U.S. Air Force Office of Scientific Research
800 North Randolph Street
Arlington, VA, 22203-1977
freeman.kilpatrick@afosr.af.mil
(703) 696-6565

Prepared by

Steve Vestal
Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418
steve.vestal@honeywell.com
(612) 951-7049

REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response
gathering and maintaining the data needed, and completing and reviewing the collection of informatii
collection of information, including suggestions for reducing this burden, to Washington Headquarter:
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budgi

AFRL-SR-BL-TR-00-

1. AGENCY USE ONLY (Leave blank) REPORT DATE

27 March 2000
4. TITLE AND SUBTITLE

Real-Time Concurrent Processes

3.
£££/

ata sources,
spect of this
15 Jefferson
503.

Final Technical Report 1 Apr 97 to 31 Dec 99

6. AUTHOR(S)

Steve Vestal

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Technology Center
3660 Technology Drive
Minneapolis, NM 55418

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/NM
801 N. Randolph St, Rm 732
Arlington, VA 22203-1977

5. FUNDING NUMBERS

F49620-97-C-0008
2304/FS

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-97-C-0008

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Discrete event concurrent process models are widely used to model control flow within and interactions between concurrent
activities. Classical discrete event concurrent process models do not deal with resource allocation and scheduling or data
variables, which limits their usefulness for real-time systems and makes it awkward to model some implementation details.
Classical preemptive scheduling models do not deal with complex task sequencing and interaction, which limits their
usefulness for describing distributed systems and implementation details. Discrete time models have been developed for
real-time scheduling of concurrent processes [10, 5,4. 11], and some work has been done on dense time real-time process
algebras [3,6]. This report describes the use of dense time linear hybrid automata models to perform schedulability analysis
and to verify implementation code.

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Real-Time Concurrent Processes

Executive Summary
This section provides an executive summary of the work performed during the period April 1997
through March 2000. This section also outlines future work activities that may result in additional
significant advances and benefits. A more extensive summary appears in an attached paper[15],
various technical details are described in attached papers[12, 13, 14].

The first goal of the work described in this report was to analyze the schedulability of real-time
systems that cannot be easily modeled using traditional scheduling theory. Traditional real-time
task models cannot easily handle variability and uncertainty in clock and computation and com-
munication times, synchronizations (rendezvous) between tasks, remote procedure calls, anomalous
scheduling in distributed systems, dynamic reconfiguration and reallocation, end-to-end deadlines,
and timeouts and other error handling behaviors.

The second goal was to verify software implementations of systems. Task schedulers and communi-
cations protocols are reactive components that respond to events like interrupts, service calls, task
completions, error detections, etc. We would like to model important implementation details such
as control logic and data variables in the code. We would like the mapping between model and code
to be clear and simple to better assure that the model really does describe the implementation.

Discrete event concurrent process models are widely used to model control flow within and interac-
tions between concurrent activities. Classical discrete event concurrent process models do not deal
with resource allocation and scheduling or data variables, which limits their usefulness for real-
time systems and makes it awkward to model some implementation details. Classical preemptive
scheduling models do not deal with complex task sequencing and interaction, which limits their
usefulness for describing distributed systems and implementation details. Discrete time models
have been developed for real-time scheduling of concurrent processes[10, 5, 4, 11], and some work
has been done on dense time real-time process algebras[3, 6]. This report describes the use of dense
time linear hybrid automata models to perform schedulability analysis and to verify implementation
code.

The first problem we faced was the modeling of resource allocation and scheduling behaviors using
hybrid automata. The applicability in principle of hybrid automata to the scheduling problem
was already known[2], but the examples published in the research literature did not deal with
some important practical problems. We wanted a model that would admit a variety of complex
allocation as well as scheduling algorithms, e.g. load balancing, dynamic priorities. We wanted
to be able to change the allocation and scheduling algorithms easily without changing the models
of the real-time tasks themselves. We wanted to minimize the number of states and variables
added to model allocation and scheduling. We found it most general and efficient to extend the
definition of hybrid automata to include resource allocation and scheduling semantics rather than
try to model the scheduling function as a hybrid automaton. The result is a very powerful model
that admits distributed heterogeneous systems with a great variety of dynamic reallocation and
scheduling algorithms, and our experience confirms that hybrid automata models are well-suited
to this domain. This is described in detail in attached papers[12, 13].

We use integration variables to record the accumulated compute time of tasks in preemptively
scheduled systems. Allowing integration variables is known to make the reachability problem
undecidable[9, 7]. We were curious about whether analysis of real-time allocation and scheduling
in distributed heterogeneous systems is itself a fundamentally difficult problem, or if general linear

Honeywell Technology Center

Real-Time Concurrent Processes

hybrid automata are more powerful than is really necessary for this problem. We were able to
show that the reachability problem becomes decidable when some simple pragmatic restrictions are
placed on the model. The proof is by reduction to a discrete time finite state automaton, which
establishes an equivalence between dense time and discrete time models for this problem with these
restrictions. However, there remain some interesting open questions in this area. This is described
in greater detail in an attached paper[12].

The second problem we faced was the computational difficulty of performing a reachability anal-
ysis. We began our work using an existing linear hybrid automata analysis tool, HyTech[8], but
found ourselves limited to very small models. We developed and implemented a new reachability
method that was significantly faster, more numerically robust, and used less memory. However,
our prototype tool allows only constant rates (not rate ranges) and does not provide parametric
analysis. We further increased the size of model we could analyze by applying some results from
traditional scheduling theory to condition the models, and by using a simple partial order reduction
technique. These results are described in detail in an attached paper[13].

Using this new reachability procedure we were able to accomplish one of our goals: the modeling and
verification of a piece of real-time software. We developed a hybrid automata model for that portion
of the MetaH real-time executive that implements uniprocessor task scheduling, time partitioning
and error handling[l]. We successfully analyzed these models, uncovering several, implementation
defects in the process. There are limits on the degree of assurance that can be provided, but in
our judgement the approach may be significantly more thorough and significantly less expensive
that traditional testing methods. This result suggests the technology has reached the threshold of
practical utility for the verification of small amounts of software of a particular type. These results
are described in detail in an attached paper[14].

There are two major areas of activity that may yield significant future benefits. These are discussed
in somewhat more detail in attached papers[13, 14].

Our results to date are, in our judgement, adequate to verify certain pieces of software of real-
world size and complexity, but not yet adequate to verify large pieces of software or perform a
schedulability analysis for a distributed system of useful size. There are, however, several approaches
that might increase by another two orders of magnitude or more the size of problem that can be
analyzed. Our preliminary work has shown how conditioning a model by conservatively changing
the numeric parameters can significantly reduce the complexity of analysis; and how the use of a
partial order reduction method adapted to hybrid automata can reduce the complexity of analysis.
We and others have explored methods that approximate a set of polyhedra by a single containing
polyhedra. Success to date has been limited, our experience has been that it is difficult to achieve
significant reductions in solution complexity while at the same time retaining sufficient accuracy.
However, we believe approximation methods can be refined to achieve this. We also need to extend
our methods to support ranges of variable rates, to provide parametric analysis, and to make more
convenient a variety of practical tasks such as specification and debugging and visualization.

The methods we have developed are likely to be applicable to domains other than just hard real-
time scheduling. Hybrid automata models have been widely discussed in the research literature for
certain types of feed-back control problems, our improved reachability analysis methods may enable
practical application in some cases. Our basic approach of adding domain semantics might work for
other applications whose models include many concurrent processes. Our approach to scheduling

Honeywell Technology Center

Real-Time Concurrent Processes

is to categorize general and easily computed policies applied to a class of related problems, rather
than attempt to synthesize a specific controller for a specific problem. Planning and scheduling,
for example, has traditionally relied on computationally intensive off-line generation of static plans
that are not dynamically adaptable to contingencies that occur during execution. This domain
might benefit from an approach similar to that used for real-time scheduling, where a very efficient
and analytically verifiable (if not always optimal) policy is used to rapidly make decisions on-line.
Another new domain of applicability is software testing, where points selected from the reachable
set of regions produced from a model could be used for automatic test generation.

Honeywell Technology Center

Bibliography

[1] MetaH User's Guide, Honeywell Technology Center, 3660 Technology Drive, Minneapolis, MN,
www.htc.honeywell.com/metah.

[2] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho, "Automatic Symbolic Verification of
Embedded Systems," IEEE Transactions on Soßware Engineering, vol. 22, no. 3, March 1996,
pp 181-201.

[3] Patrice Bremond-Gregoire and Insup Lee, "A Process Algebra of Communicating Shared Re-
sources with Dense Time and Priorities," University of Pennsylvania Department of Computer
Science Technical Report MS-CIS-95-08, June 1996.

[4] S. Campos, E. Clarke, W. Marrero, M. Minea and H. Hiraishi, "Computing Quantitative
Characteristics of Finite-State Real-Time Systems," Real-Time Systems Symposium, December
1994.

[5] Andre N. Fredette and Ranee Cleaveland, "RSTL: A Language for Real-Time Schedulability
Analysis," Proceedings of the Real-Time Systems Symposium, December 1993.

[6] Andre N. Fredette, A Generalized Approach to the Analysis of Real-Time Computer Systems,
Ph.D. Dissertation, North Carolina State University, March 1993.

[7] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri and Pravin Varaiya, "What's Decideable
About Hybrid Automata?" Proceedings of the 27th Annual ACM Symposium on Theory of
Computing, 1995.

[8] Thomas A. Henzinger, Pei-Hsin Ho and Howard Wong-Toi, "HyTech: The Next Generation,"
Real-Time Systems Symposium, December 1995.

[9] Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine, "Integration Graphs: A Class of Decideable
Hybrid Systems," in R. L. Grossman, A. Nerode, A. P. Ravn and H. Rischel, editors, Hybrid
Systems, Lecture Notes in Computer Science 736, Springer-Verlag, 1993.

[10] Insup Lee, Patrice Bremond-Gregoire and Richard Gerber, "A Process Algebraic Approach
to the Specification and Analysis of Resource-Bound Real-Time Systems," Department of
Computer Science, University of Pennsylvania.

[11] Jin Yang, Aloysius K. Mok and Farn Wang, "Symbolic Model Checking for Event-Driven Real-
Time Systems," ACM Transactions on Programming Languages and Systems, vl9, n2, March
1997.

Real-Time Concurrent Processes

[12] Steve Vestal, "Linear Hybrid Automata Modeling of Dyanamic Real-Time Allocation and
Scheduling in Distributed Heterogeneous Systems," Honeywell Technology Center, 1998.

[13] Steve Vestal, "A New Linear Hybrid Automata Reachability Procedure," Honeywell Technol-
ogy Center, 1999.

[14] Steve Vestal, "Formal Verification of the MetaH Executive Using Linear Hybrid Automata,"
to appear Real-Time Applications Symposium, May 2000.

[15] Steve Vestal, "Modeling and Verification of Real-Time Software Using Extended Linear Hybrid
Automata," to appear NASA Langley Formal Methods Workshop, June 2000.

Honeywell Technology Center

Modeling and Verification of Real-Time Software

Using Extended Linear Hybrid Automata

Steve Vestal
steve.vestal@honeywell.com

Honeywell Technology Center
Minneapolis, MN 55418*

Abstract
Linear hybrid automata are finite state automata

augmented with real-valued variables. Transitions be-
tween discrete states may be conditional on the val-
ues of these variables and may assign new values to
variables. These variables can be used to model real
time and accumulated task compute time as well as
program variables. Although it is possible to encode
preemptive fixed priority scheduling using existing lin-
ear hybrid automata models, we found it more general
and efficient to extend the model slightly to include
resource allocation and scheduling semantics. Under
reasonable pragmatic restrictions for this problem do-
main, the reachability problem is decidable. The proof
of this establishes an equivalence between dense time
and discrete time models given these restrictions. We
next developed a new reachability algorithm that sig-
nificantly increased the size of problem we could ana-
lyze, based on benchmarking exercises we carried out
using randomly generated real-time uniprocessor work-
loads. Finally, we assessed the practical applicabil-
ity of these new methods by generating and analyz-
ing hybrid automata models for the core scheduling
modules of an existing real-time executive. This ex-
ercise demonstrated the applicability of the technology
to real-world problems, detecting several errors in the
executive code in the process. We discuss some of the
strengths and limitations of these methods and possi-
ble future developments that might address some of the
limitations.

1 Introduction
The first goal of the work described in this pa-

per was to analyze the schedulability of real-time sys-
tems that cannot be easily modeled using traditional

"This work has been supported by the Air Force Office of
Scientific Research under contract F49620-97-C-0008. This pa-
per appears in the proceedings of the NASA Langley Formal
Methods Workshop, June 2000.

scheduling theory. Traditional real-time task mod-
els cannot easily handle variability and uncertainty in
clock and computation and communication times, syn-
chronizations (rendezvous) between tasks, remote pro-
cedure calls, anomalous scheduling in distributed sys-
tems, dynamic reconfiguration and reallocation, end-
to-end deadlines, and timeouts and other error han-
dling behaviors.

The second goal was to verify software implemen-
tations of systems. Task schedulers and communica-
tions protocols are reactive components that respond
to events like interrupts, service calls, task comple-
tions, error detections, etc. We would like to model
important implementation details such as control logic
and data variables in the code. We would like the map-
ping between model and code to be clear and simple
to better assure that the model really does describe
the implementation.

Discrete event concurrent process models are widely
used to model control flow within and interactions be-
tween concurrent activities. Classical discrete event
concurrent process models do not deal with resource
allocation and scheduling or data variables, which lim-
its their usefulness for real-time systems and makes
it awkward to model some implementation details.
Classical preemptive scheduling models do not deal
well with complex task sequencing and interaction,
which limits their usefulness for describing distributed
systems and implementation details. Discrete time
models have been developed for real-time schedul-
ing of concurrent processes[23, 13, 11, 31], and some
work has been done on dense time real-time pro-
cess algebras[10, 14]. This paper describes the use of
dense time linear hybrid automata models to perform
schedulability analysis and to verify implementation
code.

The first problem we faced was the modeling of re-
source allocation and scheduling behaviors using hy-
brid automata. The applicability in principle of hy-

brid automata to the scheduling problem was already
known[4]. We wanted a model that would admit
a variety of complex allocation as well as schedul-
ing algorithms, e.g. load balancing, priority inheri-
tance. We wanted to be able to change the allocation
and scheduling algorithms easily without changing the
models of the real-time tasks themselves. We wanted
to minimize the number of states and variables added
to model allocation and scheduling. We found it most
general and efficient to extend the definition of hybrid
automata to include resource allocation and schedul-
ing semantics rather than try to model the scheduling
function as a hybrid automaton.

We use integration variables to record the accumu-
lated compute time of tasks in preemptively sched-
uled systems. Allowing integration variables is known
to make the reachability problem undecidable[22, 17].
We were curious about whether analysis of real-time
allocation and scheduling in distributed heterogeneous
systems is itself a fundamentally difficult problem, or
if general linear hybrid automata are more powerful
than is really necessary for this problem. We were
able to show that the reachability problem becomes
decidable when some simple pragmatic restrictions are
placed on the model.

The second problem we faced was the computa-
tional difficulty of performing a reachability analysis.
We began our work using an existing linear hybrid
automata analysis tool, HyTech[18], but found our-
selves limited to very small models. We developed
and implemented a new reachability method that was
significantly faster, more numerically robust, and used
less memory. However, our prototype tool allows only
constant rates (not rate ranges) and does not provide
parametric analysis.

Using this new reachability procedure we were able
to accomplish one of our goals: the modeling and ver-
ification of a piece of real-time software. We devel-
oped a hybrid automata model for that portion of the
MetaH real-time executive that implements unipro-
cessor task scheduling, time partitioning and error
handling[l]. We successfully analyzed these models,
uncovering several implementation defects in the pro-
cess. There are limits on the degree of assurance that
can be provided, but in our judgement the approach
may be significantly more thorough and significantly
less expensive that traditional testing methods. This
result suggests the technology has reached the thresh-
old of practical utility for the verification of small
amounts of software of a particular type.

However, we do not believe existing reachability
methods are adequate yet for schedulability analysis

of real systems. In our judgement, we would need to
be able to analyze systems having a few dozen tasks
on a few processors in order for the technology to be-
gin finding use in this area. We discuss approaches
that might lead to such improvements.

2 Resourceful Hybrid Automata
A hybrid automaton is a finite state machine aug-

mented with a set of real-valued variables and a set
of propositions about the values of those variables.
Figure 1 shows an example of a hybrid automaton
whose discrete states are preempted, executing and
waiting; and whose real-valued variables are c and t.
Waiting is marked as the initial discrete state, and c
and t are assumed to be initially zero.

Each of the discrete states has an associated set of
differential equations, e.g. c = 0 and t — 1 for the
discrete state preempted. While the automaton is in
a discrete state, the continuous variables change at the
rates specified for that state.

Edges may be labeled with guards involving con-
tinuous variables, and a discrete transition can only
occur when the values of the continuous variables sat-
isfy the guard. When a discrete transition does occur,
designated continuous variables can be set to desig-
nated values as specified by assignments labeling that
edge.

A discrete state may also be annotated with an
invariant constraint to assure progress. Some dis-
crete transition must be taken from a state before
that state's invariant becomes false. For example, the
hybrid automaton in Figure 1 must transition out of
state computing before the value of c exceeds 100.

The hybrid automata of interest to us are called
linear hybrid automata because the invariants, guards
and assignments are all expressed as sets of linear con-
straints. The differential equations governing the con-
tinuous dynamics in a particular discrete state are re-
stricted to the form x € [l,u] where [l,u] is a fixed
constant interval (our current prototype tool is fur-
ther restricted to a singleton rate, x = [1,1]).

We want to verify assertions about the behavior of
a hybrid automaton. Although it is possible in general
to check temporal logic assertions[4], we make do by
annotating discrete states and edges with sets of linear
constraints labeled as assertions. These constraints
must be true whenever the system is in a discrete state
or whenever a transition occurs over an edge.

The cross-product construction used to compose
concurrent finite state processes can be extended in
a fairly straight-forward way to systems of hybrid au-
tomata. The invariant and assertion associated with a
discrete system state are the conjunction of the invari-

if selected ifc>75

if t= 1000
and unselected

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task

ants and assertions of the individual discrete states.
The guards, assertions and assignments of synchro-
nized transitions are the conjunction and union of the
guards, assertions and assignments of the individual
discrete co-edges. If there is a conflict between the rate
assignments of individual discrete states, or a conflict
between the variable assignments of co-edges, then
the system is considered ill-formed. Note that con-
current hybrid automata may interact through shared
real-valued variables as well as by synchronizing their
transitions over co-edges.

The application of interest in this paper is the anal-
ysis and verification of real-time systems. Figure 1
shows an example of a simple hybrid automata model
for a preemptively scheduled, periodically dispatched
task. A task is initially waiting for dispatch but may
at various times also be executing or preempted. The
variable t is used as a timer to control dispatching
and to measure deadlines. The variable t is set to 0
at each dispatch (each transition out of the waiting
state), and a subsequent dispatch will occur when t
reaches 1000. The assertion t < 750 each time a task
transitions from executing to waiting (each time a task
completes) models a task deadline of 750 time units.
The variable c records accumulated compute time, it
is reset at each dispatch and increases only when the
task is in the computing state. The invariant c < 100
in the computing state means the task must complete
before it receives more than 100 time units of processor
service, the guard c > 75 on the completion transition
means the task may complete after it has received 75
time units of processor service (i.e. the task compute
time is uncertain and/or variable but always falls in
the interval [75,100]).

In this example the edge guards selected and

unselected represent scheduling decisions made at
scheduling events (called scheduling points in the real-
time literature). These decisions depend on the avail-
able resources (processors, busses, etc.) being shared
by the tasks. There are several approaches to intro-
duce scheduling semantics into a model having several
concurrent tasks.

Scheduling can be introduced using concepts taken
from the theory of discrete event control[26]. A con-
current scheduler automaton can be added to the sys-
tem of tasks. The scheduling points in the task set
become synchronization events at which the scheduler
automaton can observe the system state and make
control decisions. Many high-level concepts from dis-
crete event control theory carry over into this domain,
such as the importance of decentralized control and
limited observability in distributed systems.

Discrete event control theory provides an approach
to synthesize optimal controllers, which in this do-
main translates to the automatic construction of
application-specific scheduling algorithms. However,
classical discrete event control theory does not deal
with time. The theory has been extended to synthesize
nonpreemptive schedulers for timed automata[9, 2],
but this excludes preemptively scheduled systems. It
is possible to develop scheduling automata by hand
using traditional real-time scheduling policies such as
preemptive fixed priority. Some examples have been
given in the literature, where each distinct ready queue
state is modeled as a distinct discrete state of the
scheduler automaton [4]. This would allow a very large
class of scheduling algorithms to be modeled, but the
size of the scheduler automaton may grow combinato-
rially with the number of tasks.

It is possible to model preemptive fixed priority

scheduling by encoding the ready queue in a variable
rather than in a set of discrete states. A queue vari-
able is introduced that will take on only integer values.
At each transition where a task i is dispatched, 2l is
added to this queue variable; at each transition where
task i completes, 2% is subtracted. The queue vari-
able can be interpreted as a bit vector whose ith bit is
set whenever task i is ready to compute. There is no
separate scheduler automaton, the scheduling protocol
is modeled using additional guards and states in the
task automata. This is the approach we took when
we started our work using HyTech. This encodes a
specific scheduling protocol into each task model, and
adds additional discrete states, variables and guards
to the model. It is awkward to model any scheduling
policy other than simple preemptive fixed priority.

In the end, we found it simpler and more general
to define a slightly extended linear hybrid automata
model that includes resource scheduling semantics [28].
The discrete state composition of the task set is per-
formed before any scheduling decisions are made. A
scheduling function is then applied to the composed
system discrete state to determine the variable rates
to be used for that system state. In essence, the com-
posed system discrete state is the ready queue to which
the scheduling function is applied, very much analo-
gous to the way run-time scheduling algorithms are
applied in an actual real-time system. It is not nec-
essary to have different discrete states for preempted
and computing, since this information is now captured
in the variable rates. It is not necessary to model a
scheduling algorithm as a finite state control automa-
ton added to the system, it is not necessary to encode a
specific scheduling semantics into the task automata.
One simply codes up a scheduling algorithm in the
usual way and links it with the rest of the reachabil-
ity analysis code. This approach significantly reduces
the number of discrete states in the model (from 3'
for our HyTech models to 2* for our extended models,
where t is the number of tasks). This also simplifies
the modeling of the desired scheduling discipline. The
details of this model and its semantics are recorded
elsewhere[28].

3 Decideability
Most traditional real-time schedulability problems

are solvable in polynomial time or are NP-complete.
However, hybrid automata models that allow multiple
rates and integration variables are undecideable[22,
17]. The hybrid automata models we are using are
much more powerful than traditional allocation and
scheduling models, and most existing tasking and
scheduling models can be viewed as special cases of

the more general hybrid automata model. This raises
the question of whether the schedulability problem for
complex interacting tasks that are dynamically allo-
cated in distributed heterogeneous systems is in fact
undecideable, or whether models of such systems are
decideable special cases of the more powerful linear
hybrid automata models.

The undecideability of hybrid automata reachabil-
ity analysis was proved by reducing the reachability
problem for two-counter machines, which is known to
be undecideable, to the reachability problem for hy-
brid automata[22, 17]. The construction used in the
proof is fairly straightforward in our slightly extended
model and can be accomplished using a single pro-
cessor. However, a pragmatic real-time system de-
signer would reject the theoretical construction as a
bad design because it relies in places on exact equal-
ity comparisons between timers and accumulated com-
pute times. In a real system, these would be regarded
as race conditions or ill-defined behaviors. The prob-
lem becomes decideable given a few simple practical
restrictions, which are captured in the following theo-

Theorem 1 The reachability problem is decideable
for resourceful linear hybrid automata if the following
conditions hold.

• The set of possible outputs of the scheduling func-
tion for each possible system discrete state is finite
and enumerable.

• For every task activity integrator variable, the
rate interval remains fixed between resets of that
integrator (i. e. the scheduler does not dynamically
reallocate any task activity in mid-execution to a
new resource having a different rate for that ac-
tivity).

• For every task activity integrator variable, every
edge guard is a set of rectangular constraints of
the form x € [l,u], and either the edge guard has
a non-singular interval (x £ [I, u] with I < u)
or else the rate interval for x is non-singular (i. e.
system behavior does not depend on exact equality
comparisons with exact drift-free clocks or execu-
tion rates).

• However, we allow as a special exception task ac-
tivity integrator variables with singular rate inter-
val and singular rectangular edge guards, provid-
ing the integrator variable is only reset or stopped
or restarted at a transition having at least one
edge guard y € [m, m] with [m, m] and y singu-
lar (y may but need not be x), and for every such

singular constraint on that edge x = ky for some
positive integer k (i.e. some types of noninteract-
ing or harmonically interacting behaviors may be
modeled exactly).

This result should not be surprising. The ability
to test for exact equality is known to add theoretical
power to dense time temporal logics [3], and similar
restrictions are known to make certain other hybrid
automata models decideable[25]. The proof of this
theorem, which we provide elsewhere[28], is by reduc-
tion to a discrete time finite state automaton.

4 Reachability Analysis
A state of a linear hybrid automaton consists of a

discrete part, the discrete state at some time t; and
a continuous part, the real values of the variables at
time t. It turns out that, although this state space
is uncountably infinite, the reachable state space for
a given linear hybrid automaton is a subset of the
cross-product of the discrete states with a recursively
enumerable set of convex polyhedra in W1 (where n is
the number of variables) [4]. A region of a linear hy-
brid automaton is a pair consisting of a discrete state
and a convex polyhedron, where convex polyhedra can
be represented using a finite set of linear constraints.
Model checking consists of enumerating the reachable
regions for a given linear hybrid automaton and check-
ing to see if they satisfy the assertions.

Figure 2 depicts the basic sequence of operations
that, given a starting region (a discrete state and a
polyhedron defining a set of possible values for the
variables), computes the set of values the variables
might take on in that discrete state as time passes;
and computes a set of regions reachable by subsequent
discrete transitions.

The first step is the computation of the time suc-
cessor polyhedron from the starting polyhedron (of-
ten called the post operation). For each point in the
starting polyhedron, the time successor of that point
is a line segment beginning at that point whose slope
is defined by the variable rates specified for the dis-
crete state. This is the set of variable values that
can be reached from a starting point by allowing some
amount of time to pass. The time successor of the
starting polyhedron is the union of the time successor
lines for all points in the starting polyhedron. A ba-
sic result of linear hybrid automata theory is that the
time successor of any convex polyhedron is itself a con-
vex polyhedron (which in general will be unbounded
in certain directions) [4].

The second step is the intersection of the time suc-
cessor polyhedron with the invariant constraint asso-

ciated with the discrete state. Polyhedra are easily
intersected by taking the union of the set of linear
constraints that define the two polyhedra. This is the
time successor region that is feasible given the invari-
ant specified for the discrete state.

The remaining steps are used to compute new re-
gions reachable from this feasible time successor re-
gion by some transition over an edge. For each edge
out of the current discrete state, the associated guard
is first intersected with the feasible time successor re-
gion. This polyhedron, if nonempty, defines the set
of all variable values that might exist whenever the
discrete transition could occur. Any variable assign-
ments associated with the edge must now be applied
to this polyhedron. This is done in two phases. First,
a variable to be assigned a new value x := I is uncon-
strained (often called the free operation). This oper-
ation leaves unchanged the relationships between all
other variables, i.e. the polyhedron is projected onto
the subspace 5ftn_1 of the remaining variables. This
result is then intersected with the constraint x = I.
This polyhedron, together with the discrete state to
which the edge goes, is a new region for which the
above steps may be repeated. In general a set of as-
signments whose right-hand sides are linear formula
are allowed, with some restrictions. The variables to
be assigned are unconstrained and the resulting poly-
hedra are then intersected with the appropriate linear
constraints in some order. With care, fairly complex
sequences of assignments to program variables can be
modeled on a single edge [30].

The overall method begins at the initial region of
a hybrid automaton. The operations described above
are applied to enumerate feasible time successor re-
gions and the new regions reachable from these via
discrete transitions. As new regions are enumerated,
they must be checked to see if they have been visited
before (otherwise the method will not terminate even
when there are a finite number of regions). This is
done by comparing the discrete states of regions for
equality, and by checking to see if the new polyhedron
is contained in the polyhedron of a previously visited
region.

The earliest reachability tool of which we are aware,
HyTech, represented polyhedra as finite sets of linear
constraints [4]. Operations on polyhedra used quan-
tifier elimination, a method to manipulate and make
decisions about systems of linear constraints in which
some of the variables are existentially quantified. Sub-
sequent tools, Polka and a later version of HyTech,
used a pair of representations: the traditional system
of linear constraints together with polyhedra gener-

starting
polyhedron

starting
discrete state

Step 1: Time Successor

Step 2: Intersection with Invariant Step 3: Intersection with Guard

assign X , := [4,5]

JJSXjf Guard then x i= t4'5] kjll J*LxJf Guard then X := [4,5] ^J>L

Step 4: Unconstrain Assigned Variable Step 5: Intersect with Assignment Constraint

Figure 2: Hybrid Automata Reach Forward Operations

ators consisting of sets of vertices and rays[16, 18].
Different operations required during reachability are
more convenient in the different representations, and
methods are used to convert between the two as
needed.

Both of these methods are subject to the theoreti-
cal risk that some polyhedra operations may require a
combinatorial amount of time. Another potential per-
formance problem occurs when the reachable discrete
state space is completely enumerated first followed by

an enumeration of the polyhedra. This might result
in enumerating discrete states that are actually not
reachable due to edge guards involving the continuous
variables. Finally, in our experiments we found that a
significant fraction of a set of benchmark schedulabil-
ity problems we tried to solve using HyTech resulted
in numeric overflow errors.

We developed a new set of algorithms for the poly-
hedra operations used during reachability analysis and
implemented a prototype on-the-fly reachability anal-
ysis library. Our prototype operates on lists of linear
constraints of the form I < e < u where I and u are
fixed constant integer bounds and e = C\X\ + C2X2 + ...
is a linear formula with fixed constant integer coeffi-
cients. Our current algorithms restrict variable rates
to be fixed scalar constants, x = i rather than the
more general is [l,u].

We convert a polyhedron P into Post(P, x), the
time successor of P given a vector of variable rates
x, by applying the two steps

1. Let each constraint Z» < e» < Ui where e'j ^ 0 be
written so that e; > 0, which can be achieved by
multiplying the constraint by -1 if needed. For
each distinct pair of constraints

'i _i &i _i t*i

where e'i > 0 and ij > 0, add to the set the
constraint

2. Replace each constraint I < e <u where e > 0 by
I < e < 00.

We compute Free(P, a;), the result of unconstraining
variable x in polyhedron P, using the two steps

1. Let each constraint I < e < u in P where e has an
instance of x be written in the form l<cx — e'<
u, where e' involves the remaining variables and
their coefficients and c > 0. For every distinct
pair of such constraints in P

fcj ^ CjX 6i 21 l^i

combine the two in a way that cancels the x terms,
adding to Free(P, x) the constraint

Cj t^ G^ Utj ^^ Cr^C' ^7 "i ^^ ^i l"i (-"i"i

2. Each constraint I < e < u where e has no in-
stances of variable x is added to Free(P, a;).

These algorithms might be viewed as general-
izations of the difference methods used for timed
automata[12, 8] and exhibit some similarity to
the pragmatic algorithm used earlier for quantifier
elimination [4]. Our prototype invokes a Simplex al-
gorithm as part of the operations to test for feasibility
and containment. We use a bounds tightening pro-
cedure to reduce the size of the constraint list after
certain operations and to rapidly detect most infeasi-
ble polyhedra. Simplex-based reduction and feasibil-
ity testing is only applied when the bounds tightening
procedure is ineffective. Details of our reachability
analysis methods and implementation and proofs of
correctness are documented elsewhere[29].

We benchmarked our prototype tool against
HyTech and Verus[ll] (a discrete timed automata
reachability analysis tool that uses BDD techniques)
using randomly generated uniprocessor workloads con-
taining mixtures of periodic and aperiodic tasks. Fig-
ure 3 shows the percentage of problems that were
solved by each of the tools, together with the primary
reasons that solution was not achieved. Figure 4 com-
pares the time required for solution for problems that
were solved by all the tools using a logarithmic scale (a
point appears for both HyTech and our prototype only
for problems that were solved by both). We further
increased the size of model we could analyze by ap-
plying some results from traditional scheduling theory
to simplify the models, and by using a simple partial
order reduction technique, these results are reported
elsewhere [2 9].

5 Verifying the MetaH Executive
MetaH is an emerging SAE standard language for

specifying real-time fault-tolerant high assurance soft-
ware and hardware architectures [1, 24, 27]. Users
specify how software and hardware components are
combined to form an overall system architecture. This
specification includes information about one or more
configurations of tasks and message and event connec-
tions; and information about how these objects are
mapped onto a specified hardware architecture. The
specification includes information about timing behav-
iors and requirements, fault and error behaviors and
requirements, and partitioning and safety behaviors
and requirements.

Our current MetaH toolset, illustrated in Figure 5,
can generate and analyze formal models for schedula-
bility, reliability, and partition isolation. The toolset
can also configure an application-specific executive to
perform the specified task dispatching and schedul-
ing, message and event passing, changes between alter-
native configurations, etc. Unlike many conventional

HyTech \ Verus Prototype

!■■■ solved

'''•"'' ' numeric error

:¥:W:W:W Other

'•"•'•'•"■'•"•••'■"•'• memory > 300M

cpu > 1 hr

3 4 5 6

number of tasks in workload

Figure 3: Percentage of Generated Problems That Were Solved

4096

1024
HyTech average -»-

Verus average -+-
prototype average -e-

HyTech o
Verus +

prototype o

3 4
number of tasks

Figure 4: Solution Times for Problems That Were Solved

systems that rely on a large number of run-time ser-
vice calls to configure a system by dynamically cre-
ating and linking to tasks, mailboxes, event channels,
timers, etc., our toolset builds most of this informa-
tion into an application-specific executive. There are
relatively few run-time service calls, and the effects of
these are tailored based on the specified application
architecture and requirements.

Our MetaH executive supports a reasonably com-
plex tasking model using preemptive fixed priority

scheduling theory[5, 6, 7]. Among the features rele-
vant to this study are period-enforced aperiodic tasks,
real-time semaphores, mechanisms for tasks to initial-
ize themselves and to recover from internal faults, and
the ability to enforce execution time limits on all these
features (time partitioning). Slack stealing in support
of aperiodic and incremental tasks is also supported,
but as we will mention later these were not modeled
or verified.

Figure 6 shows the high-level structure of the

reengineered

automatically
generated >

hand-coded

source component
repository^

executive
configurer

application
builder

load
image

graphical
editor

textual
editor

workspace HW/SW
binder

schedulability
modeler

schedulability
analyzer

reliability
modeler

reliability
analyzer

partition isolation
modeler

partition isolation
analyzer

 1

hybrid automata
modeler

reachability
analyzer

analysis results

Figure 5: MetaH Toolset

Threads

Time Slice

Events

Semaphores

Modes

MetaH RTOS interface

POSIX or Ada95 or other kernel

hardware

Figure 6: MetaH Executive Structure

MetaH executive. The core task scheduling operations
are implemented by module Threads, e.g. start, dis-
patch, complete. These operations implement tran-
sitions between the discrete task scheduling states,
e.g. dispatch may transition a task from the await-
ing dispatch state to the computing state. These op-
erations must take into account details such as the
task type, optional execution time enforcement, event
queueing, etc. Module Threads invokes operations
in module Time_Slice, which encapsulates arithmetic
operations and tests on two execution time accumula-
tors maintained by the underlying RTOS and hard-
ware for each task: an accumulator that increases

while a task executes, and a time slice that decreases
while a task executes. Time_Slice may set these vari-
ables to desired values using services provided through
the MetaH RTOS interface. If time slicing is en-
abled for a task, then a trap will be raised by the
underlying hardware and RTOS when the time slice
reaches zero. This trap is handled by one of the oper-
ations in Threads. Module Clock_Handler is periodi-
cally invoked by the underlying system (it is the han-
dler for a periodic clock interrupt) and makes calls to
Threads to dispatch periodic tasks and start and stop
threads at mode changes. Modules Events, Modes
and Semaphores contain data tables and operations

to manage user-declared events, dynamic reconfigura-
tion, and semaphores.

We produced hybrid automata models for the
Threads and Time_Slice modules, about 1800 lines
of code. We did not write a separate model using a
special modeling language, instead we inserted calls
to build the model into the executive code itself. For
example, in the code that implements the dispatch
operation there is logic to decide if a task can be
dispatched, assignments to change program variables,
and calls to set the time slice and execution time coun-
ters. Into this code we inserted a call to a modeling
procedure to create an edge between the correspond-
ing states of the linear hybrid automata model. The
guards for this edge are the conditional expressions
appearing in the code, and the assignments on this
edge are the assignments appearing in the code. This
provides a high degree of traceability between the im-
plementation and the model.

The generation of the hybrid automata models re-
sembled all-paths unit testing. We developed several
simple application specifications that included most
(but not all) of the tasking features. We wrote a test
driver that exercised all relevant paths in the core
scheduling modules. For each application specifica-
tion, the test driver thus triggered the generation of a
linear hybrid automata model of the possible behav-
iors of the core scheduling operations for a particular
combination of tasks and features.

The conditions we checked during reachability
analysis were that all deadlines were met whenever
the schedulability analyzer said an application was
schedulable; no accessed variables were unconstrained
(undefined) and no invariants were violated on entry
to a region; and no two tasks were ever in a semaphore
locking state simultaneously. Assertion checks appear-
ing in the code were modeled by edges annotated with
assert False.

We also collected information about which edges
were used by some transition during reachability anal-
ysis and compared this with all the possible edges that
might be created (all instances of calls inserted into
the code to create edges). This allowed us to insure
that all modeled portions of the code were covered by
at least one reachability analysis.

A total of 14 real-valued variables and 15 discrete
states were defined to model each task. No single task
model used all 14 variables and 15 states, different
task types with different specified options used differ-
ent combinations. Figure 7 shows the simplest lin-
ear hybrid automata model we generated, a periodic
task with period and deadline of lOOOOOus, compute

time between 0 and 90000us, recovery time between
0 and lOOOOus. States are also annotated with pro-
cessor scheduling priorities, which are not shown here.
The variable rates were derived from the scheduling
priorities by the analysis tool, which used preemptive
fixed priority scheduling semantics for this study. Ta-
ble 1 summarizes the complete set of applications we
analyzed. A more detailed discussion of the modeling
methods and results is provided elsewhere[30].

We discovered nine defects in the course of our ver-
ification exercise. Four of these were tool defects, two
that could cause bad configuration data to be gener-
ated and two that could cause erroneously optimistic
schedulability models to be generated. Six of these
defects could cause errors only during the handling
of application faults and recoveries, three of these six
only in the presence of multiple near-coincident faults
and recoveries. In our judgement, of the nine defects
we found, one would almost certainly have been de-
tected by moderately thorough requirements testing,
while three would have been almost impossible to de-
tect by testing due to the multiple carefully timed
events required to produce erroneous behavior. The
other five may have been detected by thorough re-
quirements testing of fault and recovery features, pro-
viding the tester thought about possible execution
timelines and arranged for tasks to consume carefully
selected amounts of time between events.

There are a number of significant limitations on the
degree of assurance provided. In our initial exercise,
we chose not to model many behaviors that could have
been modeled in a fairly straight-forward way, e.g.
mode changes, inter-processor communication proto-
col, non-preemptable executive critical sections. In
some cases different behaviors and subsystems can be
modeled and analyzed almost independently, but it is
not clear at what point the reachability analysis will
become intractable as the extent of the model grows.
Some behaviors might be more difficult to model, e.g.
slack scheduling. The MetaH processor interface, un-
derlying RTOS and hardware are unlikely to be fully
model-able for a variety of practical and technical rea-
sons. The MetaH tools were not verified, only a few
specific generated modules and reports for a few ex-
ample applications. Although our approach provides
good traceability between code and model, there is
still a very real possibility of modeling errors. The
reachability analysis tool may contain defects; we dis-
covered two in our tool in the course of this work.
The modeled code does not change from application
to application, and the analyzed applications fully ex-
ercised the code model, but to rigorously assert this

ifT = 100000

T:=0,C:=0,XT:=0

Figure 7: Generated Hybrid Automata Model for a Simple Periodic Task

Description Discrete
States

Distinct
Polyhedra

Sparc Ultra-2
CPU Seconds

one periodic task 7 7 0
one periodic task, enforced execution time limits 7 10 0
one periodic task, enforced execution time limits, one semaphore 8 29 15
one period-enforced aperiodic task 9 18 0
one period-enforced aperiodic task, enforced execution time limits 9 27 2
one period-enforced aperiodic task, enforced execution time limits, one
semaphore

11 124 125

two periodic tasks 36 60 3
two periodic tasks, enforced execution time limits 36 108 24
two periodic tasks, one with period transformed into two pieces, 41 97 10
two periodic tasks, one shared semaphore 48 118 36
two periodic tasks, one with period transformed into two pieces, enforced
execution time limits

41 174 87

two periodic tasks, one with period transformed into four pieces, enforced
execution time limits, recovery limit greater than compute limit

40 334 103

two tasks, one periodic and one period-enforced aperiodic 44 623 115
two periodic tasks, one with period transformed into four pieces, enforced
execution time limits

41 351 170

two tasks, one periodic and one period-enforced aperiodic, enforced ex-
ecution time limits

44 425 184

two tasks, one periodic and one period-enforced aperiodic, one shared
semaphore

70 638 840

two periodic tasks, one with period transformed into two pieces, enforced
execution time limits, one shared semaphore

55 963 5658

Table 1: Modeled Applications

code is correct for all possible applications would re-
quire some sort of induction argument. Even if the
source code is correct, defects in the compiler, linker
or loader software could introduce defects into the ex-
ecutable image.

Nevertheless, we estimate that the effort required
for this exercise was roughly comparable to that re-
quired for traditional unit testing, but the results were
more thorough than would have been achieved using
traditional requirements testing. The method must be
used in conjunction with traditional verification tech-
niques such as testing, but it is at least intuitively
reasonably easy to distinguish requirements that will
be verified using hybrid automata from requirements
that must be verified using other techniques.

6 Future Work
Our experience leads us to believe that linear hy-

brid automata are very powerful and well-suited for
this domain. We were able to achieve one of our goals,
the modeling and verification of a piece of real-world
real-time software, with a number of limitations. We
do not believe we have achieved the other goal yet,
modeling and schedulability analysis for complex dis-
tributed systems of real-world size. However, there are
a number of potential future developments that might
reduce the verification limitations and provide useful
schedulability analysis capabilities.

It should be possible to use the set of reachable
regions produced by the analysis tool to automatically
generate tests. This could significantly reduce the cost
and increase the quality of requirements testing (which
might still be required by the powers-that-be). Such
tests could also detect defects that could not be found
by model analysis, such as defects in the compiler,
linker, loader, RTOS or hardware. One of the issues
that must be confronted is the ease of constructing,
running and observing the results of tests; for example,
in theory one might encounter transitions in the model
that occur only when two values are extremely close,
which could be practically impossible to do in a test.
Another issue is that such tests would not take into
account the internal logic of unmodeled modules such
as the RTOS; a systematic method for testing multiple
points within each reachable polyhedron might help
address this.

There are a number of potentially useful improve-
ments in analysis methods and tools. Approximation
and partial order methods might significantly increase
the size of the model that could be analyzed[16, 19,
15, 29]. Preprocessing models to modify numeric pa-
rameters in certain ways can result in much more eas-
ily solved models [29]. It is possible to apply theo-

rem proving methods to linear hybrid automata[21],
and some work has been done on dense-time process
algebras[10, 14]. Decomposition and induction meth-
ods currently being explored for discrete state models
might be extensible to linear hybrid automata. There
are a number of possible ways to visualize and navigate
the reachable region space that would be of practical
assistance during model development and debugging
and during reviews. Concise APIs and support for in-
line modeling could reduce both the modeling effort
and the number of modeling defects.

Changes will inevitably be required to the design,
implementation and verification processes to make
good use of these methods. Much of the benefit of
other formal methods has been due to subsequent
changes in development methods that resulted in more
verifiable and defect-free specifications, designs and
code in the first place. An important and not com-
pletely technical question is how verification processes
might be changed to beneficially use these methods.
What evidence would be required, for example, to con-
vince a development organization or regulatory au-
thority to replace selected existing verification activ-
ities with modeling and analysis activities, or to add
modeling and analysis to current verification activi-
ties?

References
[1] MetaH User's Guide, Honeywell Technology Cen-

ter, 3660 Technology Drive, Minneapolis, MN,
www.htc.honeywell.com/metah.

[2] K. Altisen, G. GöBler, A. Pnueli, J. Sifakis, S.
Tripakis and S. Yovine, "A Framework for Sched-
uler Synthesis," Real-Time Systems Symposium,
December 1999.

[3] Rajeev Alur, Tomas Feder and Thomas A. Hen-
zinger, "The Benefits of Relaxing Punctuality,"
Proceedings of the Tenth Annual ACm Symposium
on Principles of Distributed Computing, Montreal,
Quebec, August 19-21, 1991.

[4] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin
Ho, "Automatic Symbolic Verification of Embed-
ded Systems," IEEE Transactions on Soflware En-
gineering, vol. 22, no. 3, March 1996, pp 181-201.

[5] Pam Binns, "Scheduling Slack in MetaH," Real-
Time Systems Symposium, work-in-progress ses-
sion, December 1996.

[6] Pam Binns,
"Incremental Rate Monotonie Scheduling for Im-

proved Control System Performance," Real-Time
Applications Symposium, 1997.

[7] Pam Binns and Steve Vestal, "Message Passing
in MetaH using Precedence-Constrained Multi-
Criticality Preemptive Fixed Priority Scheduling,"
submitted Real-Time Applications Symposium.

[8] Johan Bengtsson and Fredrik Larsson, UPPAAL,
A Tool for Automatic Verification of Real-Time
Systems, DoCS 96/97, Department of Computer
Science, Uppsala University, January 15, 1996.

[9] B. A. Brandin and W. M. Wonham, "Supervisory
Control of Timed Discrete-Event Systems," IEEE
Transitions on Automatic Control, v39, n2, Febru-
ary 1994.

[10] Patrice Bremond-Gregoire and Insup Lee, "A
Process Algebra of Communicating Shared Re-
sources with Dense Time and Priorities," Univer-
sity of Pennsylvania Department of Computer Sci-
ence Technical Report MS-CIS-95-08, June 1996.

[11] S. Campos, E. Clarke, W. Marrero, M. Minea and
H. Hiraishi, "Computing Quantitative Character-
istics of Finite-State Real-Time Systems," Real-
Time Systems Symposium, December 1994.

[12] David L. Dill, "Timing Assumptions and Verifica-
tion of Finite-State Concurrent Systems," Interna-
tional Workshop on Automatic Verification Meth-
ods for Finite State Systems, Grenoble, France,
June 12-14, 1989, also in Lecture Notes in Com-
puter Science 407, J. Sifakis (Ed.), Springer-
Verlag, pp 197-212.

[13] Andre N. Fredette and Ranee Cleaveland,
"RSTL: A Language for Real-Time Schedulability
Analysis," Proceedings of the Real-Time Systems
Symposium, December 1993.

[14] Andre N. Fredette, A Generalized Approach to
the Analysis of Real-Time Computer Systems,
Ph.D. Dissertation, North Carolina State Univer-
sity, March 1993.

[15] Nicolas Halbwachs, Pascal Raymond and Yann-
Eric Proy, "Verification of Linear Hybrid Systems
by Means of Convex Approximations," Workshop
on Verification and Control of Hybrid Systems,
Piscataway, NJ, October 1995.

[16] Nicolas Halbwachs, Yann-Erik Proy and Patrick
Roumanoff, "Verification of Real-Time Systems
using Linear Relation Analysis," Formal Methods
in System Design, 11(2):157-185, August 1997.

[17] Thomas A. Henzinger, Peter W. Kopke, Anuj
Puri and Pravin Varaiya, "What's Decideable
About Hybrid Automata?" Proceedings of the 27th
Annual ACM Symposium on Theory of Comput-
ing, 1995.

[18] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, "HyTech: The Next Generation," Real-
Time Systems Symposium, December 1995.

[19] Thomas A. Henzinger and Pei-Hsin Ho, "A Note
On Abstract Interpretation Strategies for Hybrid
Automata," Hybrid Systems II, also Lecture Notes
in Computer Science 999, Springer-Verlag, 1995.

[20] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, "A User Guide to HyTech," University
of California at Berkeley,
www.eecs.berkeley.edu/~tah/HyTech

[21] Thomas A. Henzinger and Vlad Rusu, "Reach-
ability Verification for Hybrid Automata," Pro-
ceedings of the First International Workshop on
Hybrid Systems: Computation and Control, also
Lecture Notes in Computer 1386, Springer-Verlag,
1998.

[22] Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine,
"Integration Graphs: A Class of Decideable Hy-
brid Systems," in R. L. Grossman, A. Nerode, A.
P. Ravn and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, Springer-
Verlag, 1993.

[23] Insup Lee, Patrice Bremond-Gregoire and
Richard Gerber, "A Process Algebraic Approach
to the Specification and Analysis of Resource-
Bound Real-Time Systems," Department of Com-
puter Science, University of Pennsylvania.

[24] Bruce Lewis, "Software Portability Gains Real-
ized with MetaH, an Avionics Architecture De-
scription Language," 18th Digital Avionics Sys-
tems Conference, St. Louis, MO, October 24-29,
1999.

[25] Anum Puri and Pravin Varaiya, "Decidability of
Hybrid Systems with Rectangular Differential In-
clusions," Department of Electrical Engineering
and Computer Science, University of California,
Berkeley, CA.

[26] Peter J. G. Ramadge and W. Murray Wonham,
"The Control of Discrete Event Systems," Proceed-
ings of the IEEE, v77, nl, January 1989.

[27] Steve Vestal, "An Architectural Approach for In-
tegrating Real-Time Systems," Workshop on Lan-
guages, Compilers and Tools for Real-Time Sys-
tems, June 1997.

[28] Steve Vestal, "Linear Hybrid Automata Mod-
els of Real-Time Scheduling and Allocation in
Distributed Heterogeneous Systems," Honeywell
Technology Center, 3660 Technology Drive, Min-
neapolis, MN 55418, 1999.

[29] Steve Vestal, "A New Linear Hybrid Automata
Reachability Procedure," Honeywell Technology
Center, 3660 Technology Drive, Minneapolis, MN
55418, 1999.

[30] Steve Vestal, "Formal Verification of the MetaH
Executive Using Linear Hybrid Automata," Hon-
eywell Technology Center, Minneapolis, MN
55418, December 1999.

[31] Jin Yang, Aloysius K. Mok and Farn Wang,
"Symbolic Model Checking for Event-Driven Real-
Time Systems," ACM Transactions on Program-
ming Languages and Systems, vl9, n2, March
1997.

Linear Hybrid Automata Modeling

of Dynamic Real-Time Allocation and Scheduling

in Distributed Heterogeneous Systems

Steve Vestal
vestal_steve@htc.honeywell.com
Honeywell Technology Center

Minneapolis, MN 55418*

Abstract
We propose that suitably extended linear hybrid au-

tomata provide a powerful way to model dynamic real-
time allocation and scheduling in distributed heteroge-
neous systems, and that the associated theory can be
used to address questions about the complexity of de-
ciding various properties of such systems. In support
of this we present a linear hybrid automata model of
such systems and show that, with reasonable pragmatic
restrictions, the schedulability problem is decidable.

1 Introduction
Most concurrent process models do not deal with

resource allocation and scheduling [21, 15], while most
real-time preemptive scheduling models do not deal
with complex process sequencing and interaction[18,
6]. This paper presents a dense time hybrid automata
model that allows systems of concurrent processes to
be dynamically allocated and preemptively scheduled
for real-time execution on a heterogeneous set of re-
sources. The model is powerful enough to allow a va-
riety of scheduling disciplines, including nonpreemp-
tive, preemptive fixed priority, and earliest deadline.
The model is powerful enough to allow a variety of
dynamic reallocation algorithms. The model allows
compute times to be specified using intervals, which
makes them suitable for use in multiprocessor systems
that exhibit anomalous scheduling behavior [12]. We
allow timer rates to vary nondeterministically within
specified ranges, so that clock drift and uncertainty
can be modeled. Tasks, their internal behaviors, and
their external interactions can be modeled as concur-
rent finite state machines, which allows modeling of
remote procedure calls, rendezvous, state-dependent

"This work has been supported by the Air Force Office of
Scientific Research under contract F49620-97-C-0008.

variations in compute time, and implementation de-
tails of code for synchronization and communication
protocols.

We use a linear hybrid automata model, extended
in certain ways to more directly model resource allo-
cation and scheduling of real-time tasks in distributed
heterogeneous systems. We use a concurrent finite
state automaton model of the processes, to which we
add a set of continuous variables to model time and
accumulated work, a set of resources to service the ac-
tivities comprising each process, and a function that
specifies how activities are allocated to and scheduled
on each resource. We allow allocation and schedul-
ing choices to dynamically change at any discrete sys-
tem event. The schedulability problem for a real-time
system can be reduced to the problem of determin-
ing whether a discrete system state is reachable in a
model.

Accumulated execution time is modeled using con-
tinuous variables that can be stopped and started,
which is known to make the reachability problem un-
decidable for linear hybrid automata. However, the
classical construction used to prove undecidability in-
cludes features that would be considered defects in
the design of an actual system. We prove that the
reachability problem is decidable given various restric-
tions on the use of equality comparisons in transition
guards, where these restrictions are reasonable in prac-
tice for most systems. Our proof makes use of a dis-
crete time finite automaton construction and may be
of some interest in relating continuous time and dis-
crete time models.

The construction used in our proof does not yield
a practical algorithm for testing discrete state reacha-
bility and hence schedulability. Rather, the purpose of
this paper is to provide some work that illustrates two
theses. First, appropriately extended linear hybrid

automata models provide a powerful way to describe
many aspects of systems that are beyond the reach of
current theory. Second, linear hybrid automata mod-
els may be useful in exploring the computational com-
plexity of complex resource allocation and scheduling
problems. For example, our work leaves open ques-
tions about the decidability of systems in which tasks
are dynamically reallocated between processors of dif-
ferent rates in mid-execution, and the decidability of
systems whose scheduling decisions are based in part
on comparisons between accumulated compute times.

There is a substantial body of work on the use
of discrete timed automata models for real-time
systems[8, 10, 17, 20, 19, 22]. Our work is dis-
tinguished from this by our use of a dense time
model. Some work exists on dense time process
algebras [11, 7], we use an automata model. There
is also a large body of work on timed and linear hy-
brid automata[2, 3, 1, 4, 13]. We extend these models
to include resource allocation and scheduling and fo-
cus on the modeling and analysis of these aspects of
real-time distributed heterogeneous systems.

2 Real-Time Concurrent Automata
We use real numbers R to model time, but we as-

sume that values appearing in model specifications or
manipulated by computer are rationals. We make use
of intervals of rational numbers, elements of which are
written as [a, b], a < b. We will overline interval vari-
ables to distinguish them from rational variables, e.g.
a; is a real-valued or rational-valued variable while x
denotes some rational interval [a, b].

We use several sets of objects as variables whose
values change at discrete instants of time. For a set
of variables V whose values range over R we use a set
of assignment functions {a\a : V —> R}, where each
a specifies a particular association of values with ob-
jects. An assignment operation v <— r at some time t
changes the assignment function in effect. We some-
times use subscripts to distinguish assignment func-
tions before and after assignment operations, e.g. a*
becomes ai+i after assignment v 4— r where oti+\(v) =
r.

An important class of assignments are those for ob-
jects whose range R = (5R+ —> K+) is a set of func-
tions that map nonnegative real time to nonnegative
scalar real values. In such cases a(v) is a function and
a(v)(t) is the value of that function at time t. The
assignment operation v <- f changes the time-varying
function associated with variable v.

The basic elements of our real-time concurrent au-
tomata model are a finite set of process variables that
range over finite sets of activities, a finite set of inte-

grators that range over real-valued functions of time,
a finite set of resources to service process activities,
and a finite set of edges that determine the possible
discrete changes in system state.

• P = {pi, p2, • • •, Pm } is a finite set of discrete state
variables that we will call processes. Each process
Pi ranges over a finite set of states or locations
A, = {an, OJ2, • • •, dim } that we will call activities.
If the boolean predicate init(aij) is true then a^-
is said to be an initial activity of pi. We require
there be at least one initial activity in each Ai.
Distinct activity sets are disjoint, Ai f\ Aj = 0, i ^
j. The set of all activities in a system is A —
\J{ Ai, and the discrete state space of a system
is A® = Ai x A2 x ■ • • x Am. We use {a \ a :
P —> A,a(pi) e Ai} as the set of functions that
associate each process with a current activity, and
we sometimes write ay- G a to mean a(pi) = a^.
When a(pi) = ay- changes to a'(pi) = aik we
say that activity ay completes and activity a^ is
dispatched.

• X = (Xt = {xi,X2,-- ■ ,xn})\JA is a finite set
of function-valued state variables that we will
call integrators. We use T = {v | v : X —>
(5R+ —>• 5R+)} to associate a real-valued function
of time with each integrator. The integrators
x\, X2, • ■ ■, xn will be used as resetable clocks or
timers, and integrators a^ will be used to record
accumulated work performed on activity a^ (i.e.
activities in A are associated with time-varying
functions by assignments in J-).

Rather than directly specify an assignment u(x)
for an integrator x, we will instead specify the
value at some point u(x)(t) together with con-
straints on the derivative i/{x). For functions
that satisfy the Lipshitz conditions, the value at
a point plus the derivitive is sufficient to uniquely
determine the function (i.e. v(x) = J v(x) plus a
suitable constant).

• T, = {li,l2, • ■ • ,lk} is a finite set of labels or letters.
Elements of E will be used to label activity dis-
patches and completions in the various processes.
It is sometimes helpful to think of S as contain-
ing disjoint subsets EPi of letters that are associ-
ated exclusively with individual processes pi plus
additional letters used to label joint or synchro-
nized dispatches and completions involving mul-
tiple processes.

• R = {r\,r2, ■ ■ ■ ,rn} is a finite set of resources.
The partial assignments II = {ir \ n : (A [J E) —>

(R [) {</>})} specify whether an activity is execut-
ing and, if so, on which resource. If n(a) = r then
activity a is executing on resource r, if ir(a) = <f>
then a is not executing. The range of assignments
in II also includes a set E of edges that we will dis-
cuss shortly, where 7r(e) ^ <j> means that an edge is
enabled. Note that the form of II restricts an ac-
tivity to be executing on at most one resource, al-
lows a resource to be concurrently executing more
than one activity, and allows multiple edges to be
concurrently enabled.

The allocation and scheduling function s : 2E x
A® -> II maps a set of edges and a set of cur-
rent activities to an element of II. The allocation
and scheduling function, which is a parameter of
the model, will be evaluated at each activity com-
pletion to determine a new value for it. We use
s(ao) to denote the initial allocation and schedul-
ing decision for a given choice of initial activities
ao.

The function Q(ri,ajk) € I+ specifies an interval
containing the rate or speed at which resource r^
can service activity a,jk- When ir(a) = r then a
is accumulating service from resource r at some
rate in the interval <D(r, a). We overload Q and
apply it to timers as well, where Q{x) e I+ is
some interval of possible rates for timer x. We
sometimes abuse notation and write simply ü(x)
for x an activity as well as a timer when the re-
source n is implicitly bound or quantified. Q is
fixed in a model and does not change over time.

• £,:A®x.FxII->-J4®x.FxIIisa mapping
between system state values that defines the pos-
sible discrete transitions of a system. We will
define this mapping using a finite subset

EC Ax 2{(x'5) ! se*.«^ > xY,xAx2x

whose elements we will call edges.

An edge

e = (aij,C = {(x, c)\x£X,c€l+},l, aik, TICX)

means that at time t, a system in which process pi
is executing activity o^ and v[x)[t) e c for a spec-
ified subset of the integrators might complete ac-
tivity dij, dispatch activity an-, and change v{x)
so v(x)(0) = 0 for a specified subset of the inte-
grators. This discrete event is labeled Z. We use
e.src, e.C, e.l, e.dst and e.lZ to conveniently refer
to specific elements of edge e.

We use E{a) = {e | e.src e a} to denote the set
of edges whose source activities are current in the
discrete system state a. We use Ei(a) = {e €
E(a) | e.l — 1} to denote the set of edges labeled
with I € E whose source activities are current.
Similarly, we use Ci{a) = (J e.C to be the union of
all the constraints (x, c) for all edges e S Ei(a),
and TZi (a) = (J e.lZ to be the set of all the inte-
grators to be reset for all edges e € Ei(a). We
sometimes refer to a set £7 (a) as a set of coedges.

Note that edges do not allow a direct specification
of changes to v at transition events. In our model
v will be determined by ir and Q.

A discrete system state of a real-time concurrent
automata is defined by specifying current activities for
all processes, functions for all integrators, and alloca-
tion and scheduling choices for activities and edges,

S = ({a, v, TT))

We sometimes use <S.a, S.v and S.ir to denote partic-
ular elements of a system state S.

A trace or run of a system is a sequence of states

where Si is the state between times t{ and ti+\ at
which discrete transition events occur. «So at to = 0
is the initial system state. Each discrete system state
represents a possibly uncountably infinite number of
continuous states and can be thought of as a continu-
ous function of time with value <S,(£) = ((a*, !>»(*), TTJ))

at time U<t< t»+i.
What state is the system in at exactly ij? An in-

tuitively appealing approach is to say that adjacent
intervals have appropriately matched open and closed
ends, e.g. [0,*i), [ti,<2], (h,h),--'- Such traces are
called strongly monotonic[4]. However, we need to
deal with sequences of simultaneous transitions that
all happen at the same instant of time. We therefore
adopt a weakly monotonic trace semantics in which
all these intervals are closed-ended. This means a sys-
tem is in multiple, temporally indistinguishable states
at transition instants: at time U there may be two
value assignments for an integrator, two current ac-
tivities for a single process, etc. The mapping from
true time to system state is thus not a 1-to-l function
even along a single execution trace. The value of inte-
grator x in state <Sj at time 4j is Vi{x)(ti) and at time
ij+i is Vi(x)(ti+i), the latter also being the value of
z/j+i(a;)(i;+i) when x is not reset at time U+\.

We can now define system dynamics by specifying
the set of all possible traces of a given real-time con-
current automaton.

«So, the initial state of a possible trace, is any state
((ao,i>o,fl'o)) where

\/p G P, init(ao(p))
7To = s(ao)
VzeX,!/o(x)(0)=0

VxGX,t€5R+,
v<s{x)(t)

v0{x){t) = 0

G w(a;i)
€ ö>(7r0(x),a;)

if xt G Xt

if x G ao

The function ^o(z) is specified by an initial condition
at time to together with a derivative function 0{x).
The integrator derivative 0{x) is a continuous inte-
grable function whose value stays within the specified
interval. The service rate v(x) for an executing activ-
ity may vary within an interval that depends on the
activity and the resource (i.e. on IT). The service rate
for non-executing activities is 0.

A trace <So -4 ■ ■ ■ -4 <S; can progress to a new system
state <Sj+i by a transition labeled I over coedges E[(cti)
at time U+i if Ei{a{) ^ 0 and the following conditions
hold.

• Ve G Ei{ai),iri(e) ^ (j>

• Ve G Ei(ai),-Ki{e.svc) ^ <j>

• V(z,c) eCi(ai),u(x)(ti+i) G c

The next state <S;+i is

\/PeP,ai+1(p)
\ a\

dst for e.src = cti(p), e G Ei(a
(p) otherwise

Let u(x)([ti,tj]) denote the function u(x) in the in-
terval [U, tj\. If uo(x), v\{x), ■ • • is a sequence of v as-
signments for integrator x with state transitions oc-
curring at times t\,t2,--- then we call the function
given by the union of vo(x)([to,ti]),i'i(x)([ti,t2]), • • •
the trajectory of integrator x. We use x{t) to denote
the trajectory of x. The trajectory x{t) is what is
usually thought of as the value of x over time as the

A ^oyx) T ^system operates,
otherwise

3 Reachability
Contemporary models of hybrid automata associate

with each discrete state bounds on the values of con-
tinuous variables. These are used to force progress, to
prevent a system from staying in a discrete state with-
out ever taking a transition. Reachability can also be
defined in terms of the total state space, i.e. whether
both a discrete state and a set of variable values sat-
isfying some equation can be reached.

For our purposes, however, we can restrict our-
selves to considering the problem of whether a dis-
crete state is reachable or not. What we can do is
add discrete states that represent violations of a de-
sired assertion, where the edges to those states have
guards constructed so that the discrete state is reach-
able only when the assertion fails. For example, we
can add to each process a state representing a missed
deadline. From each activity we add an edge to this
state, where the guard on this edge is that the dead-
line has elapsed but the maximum compute time has
not been accumulated. This discrete state is reachable
only if these conditions can occur in the system.

7ri+i =s(Ei(ai),aj)

Vx6l,!/i+1(x)(0) =
f 0 if x G Ki(ai
\ i>i(x)(ti+i) otherwise

VxeI,teR+,<

vi+i(x)(t) e Q(xi) if Xi G Xt

vi+i(x)(t) G ü)(iri+i(x),x) if x G ai+

A i"i+i
i>i+i{x){t) = 0 otherwise

Each time-varying function Vi+\{x) is uniquely deter-
mined by the value Vi+i(x)(ti+i) and the choice of
derivative function üi+i(x). The nondeterminism is in
the choice of transition time t,+i, choice of transition
edge(s), and choice of derivative functions. Note that
the only values of 7r(a) used to determine v are the val-
ues for current activities a G a, values for non-current
activities are ignored.

4 Modeling Real-Time Systems
In this section we outline how our model can be

used to describe actual systems. We focus on mod-
eling computer system processes and resources rather
than environment processes, although the formalism is
also intended to model environment timing. We begin
by providing an example of a simple periodic process
executing on a uniprocessor, illustrated graphically in
Figure 1.
tx\ Wft model a processor using a pair of resources, rx

to service the executing activity and rw to service ac-
tivities that are waiting for events (think of waiting
as a kind of activity). 7r(a) = rx for at most one a,
the activity selected for execution by the scheduling
policy. 7r(a) = rw for all waiting activities, which are
all serviced concurrently without contention. 7r(a) — <f>
for compute activities that have been dispatched but
not selected for execution by the scheduling policy. As
mentioned earlier, 7r(a) is only relevant for a a current
activity, and we adopt the convention that ir(a) = <j>

xi€ [0,6]

compe [2,4]

Xi€ [8,8]

Xj-«-0

comp -*-()

Figure 1: Periodic Process

if a is not a current activity.

We model a periodic process as a pair of alter-
nating activities comp and wait, where comp is the
initial activity. Comp is also used as an integrator
that records the amount of work performed on ac-
tivity comp. f(comp) is initially zero and is reset at
each new dispatch of activity comp, so z/(comp)(f) is
the work performed up to time t since the most recent
dispatch. The edge constraint comp G [2,4] in figure 1
means that activity comp cannot complete until the
accumulated work falls somewhere between 2 and 4,
the actual execution time being otherwise variable or
uncertain. We also use a timer x\ in figure 1 to model
deadlines and periodic dispatching. The constraint
x\ G [0,6] imposes a preperiod deadline of 6 on the
computation, the constraint xi G [8,8] causes comp to
be dispatched 8 units of time after the previous dis-
patch (x\ is initially 0 at the first dispatch and is reset
to 0 at each subsequent dispatch).

Figure 2 shows one possible sequence of -K and v
assignments for two periodic processes scheduled pre-
emptively with a deadline monotonic fixed priority as-
signment. For current compute activities (those that
have been dispatched but not completed), 7r(a) = rx

for the highest priority activity a and ir(b) = <j> for all
lower-priority activities b. For all current wait activ-
ities ir(a) = rw. The vertical lines show where tran-
sition events occur. Timer and processor rates are
assumed close to 1 in this graph, so accumulated work
increases at about the same rate as elapsed real time
when an activity is executing (the functions for timers
are not shown in figure 2, they look like ramp func-
tions with periods of 8 and 16).

Figures 1 and 2 impose no constraints on, and
never reset, z/(wait). We assume 7r executes all cur-
rent waiting activities on rw, and i^(wait) can be used

to record accumulated wait time for these activities.
Constraints on these values can be used to impose lim-
its on wait time when desired.

We use non-singular interval constraints on accu-
mulated compute time to model uncertainty or vari-
ability in execution times. An activity completes after
some varying and/or uncertain number of processor
cycles that corresponds to some execution time value
in the specified interval. When the activity completes
the process transitions to a new activity. A rendezvous
between two computing activities occurs only when
they complete at exactly the same instant, which in
practice would require that one activity busy-wait for
the other. A common implementation, in which the
first activity to reach a rendezvous point waits until a
suitable partner is ready, could be modeled by intro-
ducing a waiting activity as the source for edges with
global labels. A specific rendezvous semantics will in
general have associated modeling guidelines and re-
strictions, and the scheduling function s may need to
enable and disable edges appropriately.

The model is powerful enough to admit many com-
mon scheduling disciplines, including preemptive fixed
priority and earliest deadline. However, schedulers
that make decisions based in part on accumulated or
actual compute times, such as least laxity and slack
scheduling, cannot be modeled since v is not a param-
eter of the scheduling function s (we shall motivate
this exclusion later in the paper).

A single contention-free wait resource can be shared
in multiprocessor models, so that n processors and
busses can be modeled with n + 1 resources (except
when wait resources having distinct rates are needed).
The modeling of heterogeneous systems is supported
by the ability to specify different service rates for dif-
ferent activities and resources. Using intervals rather

x, € [0,6]

compjC [2,4]

xi* [8,8]
xi«-0
comp. -«-0

I waitj)

x2e [0,12]
comp2 € [4,6]

x2e [16,16]
x2-*- 0
comp2 -*-0

1 '

(wai^ j

wait 2

comp 2

waiti

comp i

*(a) = rx -

"(a) = rw

16 24 32

v (comp i)

v (comp2) ■■«""'""■"""■■

16 24 32

Figure 2: Values for ix and v using Deadline Monotonie Scheduling

than scalars allows timer drift to be modeled in dis-
tributed systems. Timers and processors are distinct
objects in the modeling formalism, e.g. there is no con-
cept of a timer being associated with or accessible only
from a specific processor. Any such assumptions or re-
strictions need to be reflected in specific models.

5 Decidability

A recurring result of hybrid automata theory is the
undecidability of the discrete state reachability prob-
lem for reasonably general models. We now show that
the reachability problem for our model is undecid-
able. We then give pragmatically reasonable restric-
tions that make the problem decidable. Our decidabil-

ity proof is based on the construction of a finite-state
discrete time machine whose reachability is equiva-
lent to that of a given continuous time system, and
so as a side-effect we show that our decidable con-
tinuous time model is fundamentally no more power-
ful than a (combinatorially large) finite-state discrete
time model. Before giving this proof, however, we
first outline a proof of the known undecidability re-
sult. This provides some insight into the restrictions
we impose to achieve decidability.

Theorem 1 Given arbitrary a' € A® it is undecid-
able if there exists a trace containing a state S where
S.a = a! (it is undecidable if the discrete system state
a' is reachable).

Proof 1 The discrete state reachability problem for
hybrid automata is known to be undecidable if there
is a choice of at least two rates for different integra-
tors, or if one integrator can be stopped and later
continued[16, 13]. Our model allows both. The proof
is by reduction to the reachability problem for two-
counter machines.

A two-counter machine is a finite-state control aug-
mented with two non-negative integer counters. A
transition in the finite-state control may be condi-
tioned on either counter being zero, and a transition
may increment or (for non-zero counters) decrement
either counter. A two-counter machine is equivalent
in power to a Turing machine, and the reachability
problem for two-counter machines is undecidable.

The essence of the proof of the undecidability of
the discrete state reachability problems for continu-
ous time systems is to construct, for a given two-
counter machine, a continuous time system that en-
codes counter value c as an integrator value ^TT- In-
crements and decrements of counters in the original
two-counter machine are implemented by halving and
doubling integrators in the continuous time system.
Any solution of the discrete state reachability prob-
lem for continuous time systems could thus be used
to solve the reachability problem for two-counter ma-
chines, which would contradict the undecidability of
the latter problem.

The state transition diagram of the two-counter
machine is modified by adding continuous variables
for each of the counters, a clock variable that is used
to synchronously drive transitions in the constructed
hybrid automaton, plus a temporary variable. The
proof relies on constructions for assigning the value of
one variable to another, for doubling the value of a
variable, and for halving the value of a variable.

Figure 3 illustrates the construction for doubling
a variable by showing the time line for the values of

z=2x

(1) (2) (3)

Figure 3: Construction for Doubling a Value

three variables. The guard for every edge in the con-
structed hybrid automaton has a clause that restricts
transitions to occur only when the clock equals 1, and
the clock is reset at each transition. Edges are added
to all states so that whenever a counter variable equals
1 then it is reset. The counter value encoded into a
variable is the log of the inverse of the value of that
variable at each clock reset, minus one. The value can
be viewed as encoded in the phase shift between the
clock and the counter variable, where each counter
variable is reset x time units before the clock reset,
x = S^+i-

To double a value, a doubling variable z is reset to
0 at the same time as the variable x whose value is to
be doubled. This point is marked (1) in the figure. At
the next clock reset, the rate for this variable is set to
0, marked (2), causing it to store the encoded counter
value. The rate is set back to 1 when the counter
variable is reset, marked (3). This occurs x time units
before the clock reset, so at the next clock reset the
doubling variable has a value of 2x.

A variable value is halved by setting a halving vari-
able to 0 at some nondeterministic time, then doubling
that value, then having an edge and guard that allow
a transition only if the doubled value equals the value
being halved (which leaves the original nondeterminis-
tically set halving variable equal to the desired value.).

The above construction is possible with a fairly sim-
ple continuous time system model, one with two pro-
cesses on a single processor and all integrator rates
equal to 1 (except suspended activities with integra-
tor rates of 0). However, it would be difficult to im-
plement such a construction in practice because it is
difficult to trigger an event only if and when two timer
equality tests, or equality tests for a timer and an ac-
cumulated execution time, succeed at the same instant
(as is done to halve an integrator to simulate a decre-
ment). In fact such conditions are usually avoided in
the design of actual real-time systems. The ability to
test for equality is known to add theoretical power and

complexity to continuous time temporal logics [5]. We
next prove that the reachability problem becomes de-
cidable if we place pragmatic restrictions on the ability
to do exact equality tests.

Theorem 2 The discrete state reachability problem is
decidable for a continuous time system if the following
conditions hold.

model,

VpeP,init(a0(p))
VZGX,I/O(Z)(0) = 0

7T0 = s(ao)

• The set of possible outputs of the scheduling func-
tion s for each possible set of input values is finite
and can be enumerated.

• For every integrator x £ A the rate interval üj{x)
is fixed between resets of that integrator (i.e. the
scheduler does not dynamically reallocate any ac-
tivity in mid-execution across processors having
different rates for that activity).

• For every integrator x, either every edge con-
straint (x, c) for x has a non-singular interval c,
or else the rate interval w{x) is non-singular (i.e.
system behavior does not depend on exact equality
comparisons with exact drift-free timers or execu-
tion rates).

• However, we allow as a special exception integra-
tors whose rate interval and some of whose edge
constraints are singular, providing the integrator
is only reset or stopped or started at a transition
having at least one edge constraint (y, d) with d
andü)(y) singular (y may but need not be x), and
for every such singular constraint on that edge
u)(x) = kü)(y) for some positive integer k (i.e.
some types of noninteracting or harmonically in-
teracting behaviors may be modeled exactly).

Let {ci,C2,---} be the set of all non-zero non-
infinite end-points of edge constraint intervals that
appear in a model, let {wi,W2,---} be the set of
all non-zero non-infinite end-points of rate intervals
that appear in a model, and let {£*:,■••} be the
set of ratios where there is some integrator x that
can have minimum or maximum non-zero non-infinite
rate u)j and is compared on some edge with an in-
terval having non-zero non-infinite end-point c,. It
is known that for any finite set of rational numbers
there exists a unique greatest common divisor, itself
a rational number, where every element of the set
is an integer multiple of this greatest common divi-
sor. Let A be the greatest common divisor of the
set {ci,C2, • • • ,LJ\,UJ2, ■ ■ ■, £v, • • •}, and let M be the
largest of {ci,C2, • • •}. We use [q\&. (MA) to denote
the largest integer multiple of A less than or equal to
(smallest integer multiple of A greater than or equal
to) some rational number q.

A discrete time system progresses from system state
S[to a new system state S'i+1 by a transition along
coedges JE/(C^) if the same conditions given earlier for
edge transitions in the continuous time system hold.
The next discrete time state S'i+1 is

Proof 2 We construct a finite-state discrete time sys-
tem in which a discrete system state is reachable iff
that same discrete system state is reachable in a given
continuous time system. The reachability problem for
the continuous time system can then be answered by
exhaustively searching the reachable state space of the
finite-state system. The assumptions of the theorem
make it possible to approximate any continuous tra-
jectory x(t) with a piece-wise linear trajectory that
satisfies the same set of rate and edge constraints and
enables the same set of transitions. We first present
the construction and then prove the equivalence of the
continuous time and discrete time reachable discrete
state spaces.

The initial states <SQ of the discrete time model at
time 0 are identical to those of the continuous time

Vn <= P n (n\-i e-dSt f°r e-SrC = Qi(P)' e € El(Oi) vp e r, al+1 [P) - | ^ otherwise

Vz€A>i+i(a:) = { °.(a;)

7Ti+i = s(El(cti),Cti)

if x e fti(cti)
otherwise

If the scheduling function s is nondeterministic then
there is actually a set of successor states, one for each
possible scheduling decision. By assumption this set
is finite and enumerable.

In addition to transitions over edges, the discrete
time system can progress by allowing another A unit

of time to pass,

Va; € X,ui+i(x) = <

Ui(x) + nA

i>i(x) + nA

Vi{x)

if Vi{x) < M,
Xi € Xt,
nA e tj(xi)

for n€ Z+

if fi(x) < M,
Xi c CKj,

nA € ö)(7rj(x),x)
for n € Z+,

Tti(x)^(p
otherwise

Note that this construction permits states in which
time has progressed past the point at which any edge
transition could occur out of some given discrete state.
This does not affect the reachable discrete state space.
However, we do require that all integrators advance to-
gether whenever a A time unit passes. It is convenient
to do this as part of an otherwise standard construc-
tion of a single automaton from the set of concurrent
discrete time automatons.

The state space of the final finite-state dis-
crete time automaton is A\ x A^ x • • • x Am x
{0, A, 2A, • • ■, M, M + A, ■ • ■ M + nA}|x|, where each
system state consists of the discrete state of each pro-
cess and the quantized value of each integrator. For
each possible transition over a set of coedges in the
discrete time concurrent system, there is a transition
in the single automation that changes some of the dis-
crete states. For each A transition, all integrator val-
ues increase using one of the transitions defined above
for each integrator, i.e. every integrator x increases by
some nA in the allowed rate interval. Another way to
think of this is that the integrators behave like finite-
state processes whose states are {0,A,2A,• ■-,M},
and all such processes synchronously perform A tran-
sitions. This is a finite-state automaton and so the
discrete state reachability problem is decidable.

We will first make some useful observations about
this automaton and then prove the theorem.

Figure 5 illustrates the relationship between the
values an integrator takes on in the continuous time
and the discrete time systems. The shaded zone indi-
cates a set of points that can be reached from some
starting point by all continuous time trajectories x(t)
whose derivatives stay within the specified, bounds.
The slopes of the upper and lower bounding lines are
integral multiples of A. If the rate interval is singu-
lar then this region and its bounding lines are a single
line.

In the discrete time system, transition times and
integrator values at transitions are restricted to a set of

mesh points (iA,jA),i,j € Z+, illustrated by vertical
and horizontal gray lines in Figure 5. Integrator slopes
are restricted to integer multiples of A that fall within
the specified rate intervals (always including the exact
minimum and maximum rates), which are illustrated
in the figure by three wide dark lines with slopes A, 2A
and 3A. The latticework of thin dark lines illustrate
the piece-wise linear trajectories x'(t) of the discrete
time system, where x'(t) < M + nA for all x for some
finite n in the discrete time system. Any of the mesh
points that fall within the region bounded by the lines
of maximum and minimum rate are reachable in the
discrete time system. We refers to these regions as the
rate-feasible regions for the continuous time and the
discrete time systems, the latter being a set of mesh
points.

The requirement that A be a divisor of {^S---}
means that the line of slope Uj that passes through
the origin crosses the line x = Cj at a mesh point. The
intersection Cj = o>,i occurs at time t = —, and since
this is an integer multiple of A then so is t. Every
Cj is also an integer multiple of A, and so the point
(CJ , t) is a mesh point in the discrete time system. This
is true for every rate interval end-point u>j and every
constraint interval end-point c^. This is illustrated in
Figure 5 by two dark gray lines labeled c% and ci- We
will call a horizontal line x — Ci for some constraint
end-point Cj a line of constraint.

This is also true for any line of slope uij that is dis-
placed by an integer multiple of A from the origin, i.e.
any line of slope ujj that passes through a mesh point
on the t axis also passes through a mesh point on ev-
ery line of constraint x = c%. The converse statement
is also useful: through every mesh point on any line
of constraint x = Ci there is a line of slope ujj for ev-
ery u)j that passes through a mesh point on the t axis
and passes through a mesh point on every other line
of constraint.

Suppose a line x = uit, with slope u appearing in
some rate interval in the model, passes through some
mesh point on the t axis (and so through a mesh point
when crossing every line of constraint). Given some
point x' = u>t' on this line as illustrated in Figure 4, we
can move backwards down the line to (|_*'JA> L^'JW)»

the nearest mesh point below; and we can move for-
wards up the line to ([*']A, T^'lw)) the nearest mesh
point above. Because this line only crosses lines of
constraint at mesh points, all the points on the line
segment between (|_£'JA, L

X
'JW) and ([i'l A> fa'lw)' and

these two mesh points themselves, fall on, or on the
same side of, all lines of constraint. For any nonsingu-
lar edge constraint, all of the points on this line seg-

1

/ "

l/fvdt'l

i f

co=3A
 ■ ■ ►

Figure 4: Mesh Points can be Reached Without Cross-
ing Lines of Constraint

ment will satisfy that edge constraint if any of them
do.

We now argue that a discrete state is reachable in a
continuous time system that satisfies the assumptions
of the theory iff that same discrete state is reachable
in the corresponding discrete time system.

Half of this is easy to argue. Every trace of the
discrete time system is also a trace of the continuous
time system, so if a discrete state is reachable in the
discrete time system then it is reachable in the con-
tinuous time system.

For the other half of the proof, we need to show
that for every trace of a continuous time system there
is a trace in the discrete time system that reaches the
same discrete state. For this we argue that for every
trajectory x(t) in any continuous time trace there is a
discrete time trajectory x(t)' that is close enough to
x{t) to enable the same sequence of edge transitions
in the same order in the discrete time system.

We are actually going to show something a
bit stronger, that every continuous time trace is
bounded both above and below by a discrete time
trace. Consider the set of transitions occurring at
times tiltti2,--- in a time interval [j A, (j + 1)A] in
the continuous time system, with integrator values
xi(U„),X2(tin),--m satisfying the edge constraints of
each transition at time iin (illustrated in Figure 6).
We show that for each integrator the same set of tran-
sitions are enabled at both time |£IJA and at time

\U}A in the discrete time system. Since both options
exist for every integrator, it is possible for all edge
transitions in [jA, (j + 1)A] (each of which in general
will constrain multiple integrators) to occur at either
jA or (j + 1)A in the same order as in the continuous
time system.

We argue that for every integrator x and every tran-
sition at time t there is a mesh point at |^JA and a
mesh point at |Y|A that falls within the rate-feasible
region of the discrete time automaton and satisfies the
same edge constraints as the value x(t). We argue this
by induction over the sequence of transitions along
each trajectory x(t), assuming it is true for x(ti) when
proving it is true for x(U+i). We argue this in three
cases: first, when ü(x) is singular and no constraint
(x, c) is singular; second, when neither Q(x) nor any
constraint (x,c) are singular; and finally, when ü(x)
is not singular but some constraints (x, c) may be sin-
gular.

Figure 7 illustrates the argument for the first case,
when Q{x) is singular but there are no singular con-
straints (x, c). In the basis case, both systems start
with a:(0) = 0 and identical values for ü)(x), so the
rate-feasible regions are identical. For any transition
at time U the values x{\ti\&) and X^IA) are mesh
points of the discrete time system. As noted earlier,
every line of slope H>{x) crosses every applicable line of
constraint at a mesh point. This condition, illustrated
by the horizontal lines labeled C\ and C2 in the figure,
will be maintained as an induction invariant. As noted
earlier we may reach, but cannot cross over, any ap-
plicable constraint end-point by following x{t) down
to the mesh point x{\ti\/\) or up to the mesh point
^(MA)- Consequently, both of these mesh points
also satisfy the same set of edge constraints as x(ti) in
the continuous time system.

The preceding argument establishes the basis case,
and in fact holds for all transitions up to the first point
at which TT(X) is set to <fi or at which x is reset to 0.
Whenever this occurs, however, the value of the con-
tinuous time x(t) always falls between two reachable
and feasible piece-wise lines in the discrete time sys-
tem, as illustrated in Figure 7. For if ir(x) becomes
null at some time ti then the discrete time zero-slope
line from x(\ti\ A) must lie below and the discrete time
zero-slope line from x(\ti]&) must lie above the zero-
slope line from x(i,) in the continuous time system.
If TT(X) becomes non-null at some later time tj > ti
a similar argument holds. The continuous time line
from x(tj) now falls between some pair of discrete time
lines separated by a distance of A, and so there is al-
ways a discrete time mesh point on one of these lines

x(t)

Figure 5: Spaces Reachable by x(t) in Continuous vs Discrete Systems

Figure 6: A Continuous x(t) with Three Transitions in [jA, (j + 1)A]

in any interval [[^JA, T^IA] in which some succes-
sor transition at time tk > tj can occur. All these
possible discrete time trajectories are being nondeter-
ministically explored by the discrete time automaton.
A similar argument holds when TT(X) = ^ initially (be-
coming non-zero later) and when x is reset.

When -K(X) becomes non-null or when x is reset, the
upwardly-sloping lines from the mesh points on either
side of x(t) in the discrete time system are always
parallel to the previous line segments of slope UJ(X) and
are displaced to the right by an integer multiple of A.
As explained earlier, this means these lines still have
the property that they cross lines of constraint only at
mesh points, and so the assumptions of the induction
are preserved for subsequent transition points.

Figure 8 illustrates the argument for the second
case, when neither H>(x) nor any constraint (x, c) is
singular. We apply the argument of the preceding

case to the lines defined by the lower and upper rates
of ü)(x), the lines that define the boundary of the con-
tinuous time rate-feasible region. Since both the up-
per and lower bounding lines of the continuous time
rate-feasible region are contained by rate-feasible lines
in the discrete time system, the entire continuous
time rate-feasible region is contained within the dis-
crete time rate-feasible region for each integrator. For
any continuous x{t) through the continuous time rate-
feasible region, for any point x{U) at time ti, there is
always some near-by mesh point in the discrete time
rate-feasible region at [£JJA, and one at \U]&, where
both mesh points fall on the same side of every hor-
izontal line defined by an applicable constraint end-
point.

Figure 9 illustrates the argument for the third case,
when a constraint interval (x, c) may be singular pro-
viding LJ(X) is not. We again argue by induction over

x(t)

discrete time
trajectories and

mesh poij

continuous time
i trajectory

Figure 7: Case when u(x) but no (x,c) is singular

x(t)

discrete time \
trajectories region
and meSh points

continuous time
trajectory i

Figure 8: Case when UJ(X) and (x, c) are not singular

x(t)

k 1

Figure 9: Case when no Q{x) but some (x, c) are singular

the transition points along the continuous time trajec-
tory x(t). For the basis, recall that lines of maximum
and minimum rate passing through mesh points on
the t axis are equal to applicable lines of constraint
only at mesh points. If u>(x) is non-singular then
these points of intersection must be separated by at
least A at the lowest line of constraint. We maintain
as an induction invariant that the two lines bound-
ing the rate-feasible region in the discrete time case
pass through either the same or adjacent mesh points
on the t axis, which means they always pass through
nonadjacent mesh points on every applicable line of
constraint. This insures that whenever x(t) is exactly
equal to any line of constraint, the two mesh points on
either side (which satisfy the same equality constraint)
are reachable in the discrete time system. The exis-
tence of two discrete time mesh points on either side
of any x(t) when it crosses a line of constraint thus
holds for all transitions starting from the initial state
up to the point at which x(t) is reset or changes slopes
from something in ü>(x) to 0 or back again.

Either a continuous time x(t) is reset or changes
slope to 0 or back between two lines of constraint or
exactly on a line of constraint. If the former, the ar-
gument of the second case applies and there are al-
ways two rate-feasible discrete time lines satisfying the
induction assumptions on either side of any contin-
uous time x(t). If the latter, then x(t) in the con-
tinuous time system falls along the line of constraint
and passes through rate-feasible mesh points until the
slope of x(t) becomes non-zero again. As illustrated in
Figure 9, the discrete time system explores trajectories
from both mesh points on either side of a continuous
time transition that occurs when x(t) equals a line of
constraint and that resets x(t) or changes its slope.

The conditions of the final exception force the con-
tinuous time trajectories for the constrained integra-
tors to also be discrete time trajectories. Requiring
the rate interval Q(x) to be singular forces x(t) to con-
sist of line segments between transition events. The
restrictions on edge constraints only allow x(t) to be
reset or to change slope at mesh points. For any tran-
sitions occurring at continuous time t' along edges that
impose constraints on such integrators, either one of
the applicable constraints is singular in which case ti
is a discrete time; or none of the applicable constraints
are singular in which case the transition could occur
at either of [t/\ A or \t/~\ A as argued previously for case
one above.

6 Remarks
Our decidability result leaves two obvious open

questions.

First, this result only allows dynamic reallocation
between processors of different rates when a process is
dispatched and its accumulated compute time variable
reset to zero.

Second, scheduling disciplines that rely on com-
parisons of accumulated compute times are not sup-
ported. Edge guards of the form x < y+c would allow
decisions to be based on comparisons involving accu-
mulated compute times. We note such guards can be
used in timed automata, which are decidable[2, 9].

References
[1] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin

Ho, "Automatic Symbolic Verification of Embed-
ded Systems," IEEE Transactions on Software
Engineering, vol. 22, no. 3, March 1996, pp 181-
201.

[2] Rajeev Alur and David Dill, "The Theory of
Timed Automata," in J.W. de Bakker, C. Huiz-
ing, W.P. de Roever and G. Rozenberg (Eds.),
Real Time: Theory in Practice, LNCS 600
(Springer-Verlag, 1992).

[3] Rajeev Alur and David L. Dill, "A Theory of
Timed Automata," Theoretical Computer Sci-
ence 126, 1994.

[4] Rajeev Alur and Thomas A. Henzinger, "Logics
and Models of Real Time: A Survey," Real Time:
Theory in Practice, J.W. de Bakeer, K. Huizing,
W.-P. de Roever and G. Rozenberg, eds., Lec-
ture Notes in Computer Science, Springer-Verlag,
1992.

[5] Rajeev Alur, Tomas Feder and Thomas A. Hen-
zinger, "The Benefits of Relaxing Punctuality,"
Proceedings of the Tenth Annual ACm Sympo-
sium on Principles of Distributed Computing,
Montreal, Quebec, August 19-21, 1991.

[6] Neil C. Audsley, Alan Burns, Robert I. Davis,
Ken W. Tindell and Andy J. Wellings, "Fixed
Priority Pre-emptive Scheduling: An Historical
Perspective," Real-Time Systems, 8, 1995.

[7] Patrice Bremond-Gregoire and Insup Lee, "A
Process Algebra of Communicating Shared Re-
sources with Dense Time and Priorities," Uni-
versity of Pennsylvania Department of Computer
Science Technical Report MS-CIS-95-08, June
1996.

[8] S. Campos, E. Clarke, W. Marrero and M.
Minea, "Computing Quantitative Characteristics

of Finite-State Real-Time Systems," Department
of Computer Science, Carnegie Mellon University.

[9] David L. Dill, "Timing Assumptions and Ver-
ification of Finite-State Concurrent Systems,"
International Workshop on Automatic Verifica-
tion Methods for Finite State Systems, Grenoble,
France, June 12-14,1989, also in Lecture Notes in
Computer Science 407, J. Sifakis (Ed.), Springer-
Verlag, pp 197-212.

[10] Andre N. Fredette and Ranee Cleaveland,
"RSTL: A Language for Real-Time Schedulabil-
ity Analysis," Proceedings of the Real-Time Sys-
tems Symposium, December 1993.

[11] Andre N. Fredette, A Generalized Approach to
the Analysis of Real-Time Computer Systems,
Ph.D. Dissertation, North Carolina State Univer-
sity, March 1993.

[12] R. L. Graham, "Bounds on Multiprocessing Tim-
ing Anomalies," SIAM Journal of Applied Math-
ematics, Vol. 17, No. 2, March 1969.

[13] Thomas A. Henzinger, Peter W. Kopke, Anuj
Puri and Pravin Varaiya, "What's Decideable
About Hybrid Automata?" Proceedings of the
27th Annual ACM Symposium on Theory of
Computing, 1995,
http://www-cad.eecs.berkeley.edu/"tah/Publications/
whats_decidable_about_hybrid_automata. html

[14] M. G. Harbour, M. H. Klein and J. P. Lehoczky,
"Fixed Priority Scheduling of Periodic Tasks with
Varying Execution Priority," IEEE Real-Time
Systems Symposium, December 1991.

[15] C. A. R. Hoare, Communicating Sequential Pro-
cesses, Prentice Hall, 1985.

[16] Y. Kesten, A. Pnueli, J. Sifakis and S. Yovine,
"Integration Graphs: A Class of Decideable Hy-
brid Systems," in R. L. Grossman, A. Nerode, A.
P. Ravn and H. Rischel, editors, Hybrid Systems,
Lecture Notes in Computer Science 736, Springer-
Verlag, 1993.

[17] Insup Lee, Patrice Bremond-Gregoire and
Richard Gerber, "A Process Algebraic Approach
to the Specification and Analysis of Resource-
Bound Real-Time Systems," Department of
Computer Science, University of Pennsylvania.

[18] C. L. Liu and J. W. Layland, "Scheduling
Algorithms for Multiprogramming in a Hard

Real-Time Environment," JACM, 20(1), January
1973.

[19] Gavin Lowe, "Specification and Proof of Priori-
tized, Timed CSP," Oxford University Comput-
ing Laboratory Technical Report PRG-TR-17-92,
http://www.comlab.ox.ac.uk/oucl/publications/tr/TR-

[20] Nancy A. Lynch and Mark R. Tuttle, "An Intro-
duction to Input/Output Automata," MIT Tech-
nical Memo MIT/LCS/TM-373, also CWI Quar-
terly, 2(3), September 1989.

[21] Robin Milner, Communication and Concurrency,
Prentice Hall, 1989.

[22] Jin Yang, Aloysius K. Mok and Farn Wang,
"Symbolic Model Checking for Event-Driven
Real-Time Systems," ACM Transactions on Pro-
gramming Languages and Systems, vl9, n2,
March 1997.

A New Linear Hybrid Automata Reachability Procedure

- Draft of March 14, 2000 -

Steve Vestal
steve.vestal@honeywell.com

Honeywell Technology Center
Minneapolis, MN 55418*

Abstract
We present a new on-the-fly method for reachability

analysis of linear hybrid automata with constant rates.
The novelty of our methods lie in the algorithms used to
manipulate polyhedra, and in our encoding of domain-
specific behavior (real-time scheduling in our case) into
the model semantics. Our polyhedra operations can be
performed in polynomial time, typically quadratic in the
number of continuous variables in a model. Encoding
scheduling into the model semantics allows us to sig-
nificantly reduce the size of the overall system discrete
state space. We benchmarked a prototype of our method,
HyTech, and Verus using a randomly generated set of
classical real-time uniprocessor workloads. We also ex-
perimented with two optimization methods, a simplifi-
cation of model parameters using results from real-time
scheduling theory, and a simple form of partial order
reduction. When we started our work using HyTech
we were able to consistently analyze workloads having
4 concurrent tasks (81 reachable discrete states), using
our prototype together with these optimization methods
we were able to consistently analyze workloads having
13 concurrent tasks (8192 reachable discrete states).

1 Introduction
Linear hybrid automata are finite state automata

augmented with variables whose values change contin-
uously in a way that depends on the current discrete
state. The values of the continuous variables can af-
fect, and can be affected by, discrete transitions be-
tween discrete states. Linear hybrid automata can be
subjected to a reachability analysis to verify that a
given set of assertions is true of a system. In gen-
eral, a semi-decision procedure must be used since
the reachability problem for linear hybrid automata is
undecidable[14] (as opposed to timed automata, which
are decideable[3]). It can be shown, however, that rea-
sonable pragmatic restrictions make models for real-

*This work has been supported by the Air Force Office of Sci-
entific Research under contract F49620-97-C-0008.

time allocation and scheduling in distributed heteroge-
neous systems decideable[23].

Linear hybrid automata can be used to model many
kinds of dynamical systems, but the problem of partic-
ular interest to us is the modeling and schedulability
analysis of real-time systems. The continuous variables
of a linear hybrid automaton can be used as timers to
control task dispatching and detect missed deadlines,
and as so-called integration variables to record accumu-
lated task compute time. Linear hybrid automata are
sufficiently powerful to model a number of interesting
system features, such as remote procedure calls, ren-
dezvous between tasks, variations in compute time as a
function of internal task state, and distributed synchro-
nization and communication protocols. Reasonably de-
tailed models of source code can be written, and linear
hybrid automata are also useful for verifying implemen-
tations of such things as time-dependent protocols and
scheduling kernels[24].

The reachable state space for a linear hybrid automa-
ton is a set of regions, where each region consists of a
discrete state plus a polyhedron that defines a set of pos-
sible values for the continuous variables. We present a
reachability procedure that represents polyhedra as sys-
tems of linear inequalities. We present new algorithms
for computing the polyhedron that results when time is
allowed to pass and variable values change at specified
rates; and the polyhedron that results when a variable
is unconstrained and removed from the system. These
algorithms might be viewed as generalizations of the
difference methods used for timed automata[8, 3] and
exhibit a vague similarity to the pragmatic algorithm
used earlier for quantifier elimination [2]. We present an
algorithm to decide if one polyhedron is contained in
another. We present a reduction algorithm to simplify
the set of constraints that represent a polyhedron. Our
prototype is an on-the-fly tool that enumerates regions
as they are encountered, rather than first enumerating
the complete reachable discrete state space and then
enumerating the reachable polyhedra for each discrete

State. However, our procedure restricts variable rates
to be specified constants in each discrete state and does
not provide parametric analysis [15].

We also discuss different ways that real-time schedul-
ing can be incorporated into a linear hybrid automata
model, including a novel way of adding scheduling se-
mantics to create an extended resourceful linear hybrid
automata model. Extending the semantics of the model
rather than trying to write a standard linear hybrid au-
tomata model of a scheduling protocol both reduces the
size of the region space and allows a much broader range
of scheduling protocols to be modeled.

We randomly generated a sequence of uniprocessor
workloads consisting of periodic and aperiodic tasks
scheduled using preemptive fixed priority. For each
of these we generated a linear hybrid automata model
whose assertions were satisfied only for schedulable task
sets. These models were analyzed using a prototype im-
plementation of our procedure. All these task sets were
amenable to analysis using the exact characterization
algorithm[18], which we used to double-check our re-
sults. We submitted the same models to HyTech[15], a
linear hybrid automata tool; and to Verus[7], a discrete
timed automata tool.

We also experimented with two optimization meth-
ods. First, traditional uniprocessor preemptive priority
scheduling theory says that we can replace execution
time and event inter-arrival intervals with their worst-
case values. Second, we experimented with a simple
partial order reduction method.

The earliest reachability tool of which we are aware,
HyTech, represented polyhedra as finite sets of linear
constraints [2]. The operations performed on these poly-
hedra used quantifier elimination, a formal way to al-
gebraically manipulate and make decisions about sys-
tems of linear inequalities in which some of the vari-
ables are existentially quantified. Polka and a later
version of HyTech used a pair of representations, the
traditional system of linear inequalities together with
polyhedra generators consisting of sets of vertices and
rays[12, 15]. Different operations required during reach-
ability are more convenient in the different representa-
tions, and methods are used to convert between the two
as needed. These previous methods are subject to the
theoretical risk that some polyhedra operations may re-
quire a combinatorial amount of time, although we did
not test for this in our experiments. Our polyhedra op-
erations are all doable in polynomial time (although we
used the Simplex algorithm in our prototype), typically
quadratic in the number of constraints used to represent
a polyhedron.

A variety of differences between the tools and cer-
tain aspects of our use of them make direct comparisons
questionable, and we experimented only with a partic-

ular class of problem. Keeping these caveats in mind,
we were able to solve problems with our prototype tool
an order of magnitude more quickly than with HyTech,
which was perhaps three orders of magnitude faster than
Verus without automatic variable reordering. Perhaps
as importantly, our prototype tool was more numeri-
cally robust and used significantly less memory, it never
failed due to numeric overflow or memory exhaustion.
We were able to solve problems that HyTech and Verus
could not solve. When we began our work using HyTech
we were able to consistently solve systems of 4 tasks hav-
ing 81 reachable discrete system states. Using our proto-
type tool together with some experimental optimization
methods, we were able to consistently solve systems of
13 tasks having 8192 reachable discrete states. In our
judgement this is not yet adequate for schedulability
analysis but is at the threshold of utility for simple but
practical verification problems[24]. Our work suggests
that future improvements could result in further signif-
icant increases in the size of solvable problem, and we
discuss this in our concluding section.

2 Resourceful Hybrid Automata
A hybrid automaton is a finite state machine aug-

mented with a set of real-valued variables and a set
of propositions about the values of those variables.
Figure 1 shows an example of a hybrid automaton
whose discrete states are preempted, executing and
waiting; and whose real-valued variables are c and t.
Waiting is marked as the initial discrete state, and c
and t are assumed to be initially zero.

Each of the discrete states has an associated set of
differential equations, e.g. c = 0 and i = 1 for the dis-
crete state preempted. While the automaton is in a
discrete state, the continuous variables change at the
rates specified for that state.

Edges may be labeled with guards involving contin-
uous variables, and a discrete transition can only oc-
cur when the values of the continuous variables satisfy
the guard. When a discrete transition does occur, des-
ignated continuous variables can be set to designated
values as specified by assignments labeling that edge.

A discrete state may also be annotated with an in-
variant constraint to assure progress. Some discrete
transition must be taken from a state before that
state's invariant becomes false. For example, the hy-
brid automaton in Figure 1 must transition out of state
computing before the value of c exceeds 100.

The hybrid automata of interest to us are called
linear hybrid automata because the invariants, guards
and assignments are all expressed as sets of linear con-
straints. The differential equations governing the con-
tinuous dynamics in a particular linear hybrid automa-
ton discrete state are restricted to the form x € [l,u]

if selected ifc>75

if t= 1000
and unselected

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task

where [l,u] is a fixed constant interval. Our method
further restricts this to a singleton rate, x = i.

We want to verify assertions about the behavior of
a hybrid automaton. Although it is possible in general
to check temporal logic assertions [2], we make do by
annotating discrete states and edges with sets of lin-
ear constraints labeled as assertions. These constraints
must be true whenever the system is in a discrete state
or whenever a transition occurs over an edge.

The cross-product construction used to compose con-
current finite state processes can be extended in a fairly
straight-forward way to systems of hybrid automata.
The invariant and assertion associated with a discrete
system state are the conjunction of the invariants and
assertions of the individual discrete states. The guards,
assertions and assignments of synchronized transitions
are the conjunction and union of the guards, assertions
and assignments of the individual discrete co-edges. If
there is a conflict between the rate assignments of indi-
vidual discrete states, or a conflict between the variable
assignments of co-edges, then the system is considered
ill-formed. Note that concurrent hybrid automata may
interact through shared real-valued variables, as well as
by synchronizing their transitions over co-edges.

The application of interest in this paper is the analy-
sis and verification of real-time systems. Figure 1 shows
an example of a simple hybrid automata model for a pre-
emptively scheduled, periodically dispatched task. A
task is initially waiting for dispatch but may at various
times also be executing or preempted. The variable t is
used as a timer to control dispatching and to measure
deadlines. The variable t is set to 0 at each dispatch
(each transition out of the waiting state), and a sub-
sequent dispatch will occur when t reaches 1000. The
assertion t < 750 each time a task transitions from ex-
ecuting to waiting (each time a task completes) mod-
els a task deadline of 750 time units. The variable c

records accumulated compute time, it is reset at each
dispatch and increases only when the task is in the com-
puting state. The invariant c < 100 in the computing
state means the task must complete before it receives
more than 100 time units of processor service, the guard
c > 75 on the completion transition means the task may
complete after it has received 75 time units of processor
service (i.e. the task compute time is uncertain and/or
variable but always falls in the interval [75,100]).

In this example the edge guards selected and
unselected represent scheduling decisions made at
scheduling events (often called scheduling points in the
real-time literature). These decisions depend on the
available resources (processors, busses, etc.) being
shared by the tasks. There are several approaches to
introduce scheduling semantics into a model having sev-
eral concurrent tasks.

Scheduling can be introduced using concepts taken
from the theory of discrete event control [20]. A concur-
rent scheduler automaton can be added to the system
of tasks. The scheduling points in the task set become
synchronization events at which the scheduler automa-
ton can observe the system state and make control de-
cisions. Many high-level concepts from discrete event
control theory carry over into this domain, such as the
importance of decentralized control and limited observ-
ability in distributed systems.

Discrete event control theory provides an approach
to synthesize optimal controllers, which in this domain
translates to the automatic construction of application-
specific scheduling algorithms. However, classical dis-
crete event control theory does not deal with time. The
theory has been extended to synthesize nonpreemptive
schedulers for timed automata[4, 1], but this excludes
preemptively scheduled systems. It is possible to de-
velop scheduling automata by hand using traditional
real-time scheduling policies such as preemptive fixed

priority. Examples have been given in the literature,
where each distinct ready queue state is modeled as
a distinct discrete state of the scheduler automaton [2].
This would allow a very large class of scheduling al-
gorithms to be modeled, but the size of the scheduler
automaton may grow combinatorially with the number
of tasks.

It is possible to model preemptive fixed priority
scheduling by encoding the ready queue in a variable
rather than in a set of discrete states. A queue variable
is introduced that will take on only integer values. At
each transition where a task i is dispatched, 2% is added
to this queue variable; at each transition where task i
completes, 2l is subtracted. The queue variable can be
interpreted as a bit vector whose ith bit is set whenever
task i is ready to compute. There is no separate sched-
uler automaton, the scheduling protocol is modeled us-
ing additional guards and states in the task automata.
This is the approach we took when we started our work
using HyTech. This encodes a specific scheduling pro-
tocol into each task model, and adds additional discrete
states, variables and guards to the model. It is awk-
ward to model any scheduling policy other than simple
preemptive fixed priority without inheritance.

In the end, we found it simpler and more general to
define a slightly extended linear hybrid automata model
that includes resource scheduling semantics[23]. The
discrete state composition of the task set is performed
before any scheduling decisions are made. A scheduling
function is then applied to the composed system dis-
crete state to determine the variable rates to be used
for that system state. In essence, the composed system
discrete state is the ready queue to which the schedul-
ing function is applied, very much analogous to the way
run-time scheduling algorithms are applied in an actual
real-time system. It is not necessary to have different
discrete states for preempted and computing, since this
information is now captured in the variable rates. It
is not necessary to model a scheduling algorithm as a
finite state control automaton added to the system, it
is not necessary to encode a specific scheduling seman-
tics into the task automata. One simply codes up a
scheduling algorithm in the usual way and links it with
the rest of the reachability analysis code. This approach
significantly reduces the number of discrete states in
the model and simplifies the modeling of the desired
scheduling discipline. The formal details of this model
and its semantics are recorded elsewhere[23].

3 Reachable Regions
A state of a linear hybrid automaton consists of a

discrete part, the discrete state at some time t; and a
continuous part, the real values of the variables at time
t. It turns out that, although this state space is un-

countably infinite, the reachable state space for a given
linear hybrid automaton is a subset of the cross-product
of the discrete states with a recursively enumerable set
of convex polyhedra in 3Rn (where n is the number of
variables) [2]. A region of a linear hybrid automaton is a
pair consisting of a discrete state and a convex polyhe-
dron, where convex polyhedra can be represented using
a finite set of linear constraints. Model checking consists
of enumerating the reachable regions for a given linear
hybrid automaton and checking to see if they satisfy the
assertions.

Figure 2 depicts the basic sequence of operations
that, given a starting region (a discrete state and a
polyhedron defining a set of possible values for the vari-
ables), computes the set of values the variables might
take on in that discrete state as time passes; and com-
putes a set of regions reachable by subsequent discrete
transitions.

The first step is the computation of the time suc-
cessor polyhedron from the starting polyhedron (often
called the post operation). For each point in the starting
polyhedron, the time successor ofthat point is a line seg-
ment beginning at that point whose slope is defined by
the variable rates specified for the discrete state. This
is the set of variable values that can be reached from
a starting point by allowing some amount of time to
pass. The time successor of the starting polyhedron is
the union of the time successor lines for all points in
the starting polyhedron. A basic result of linear hybrid
automata theory is that the time successor of any con-
vex polyhedron is itself a convex polyhedron (which in
general will be unbounded in certain directions) [2].

The second step is the intersection of the time succes-
sor polyhedron with the invariant constraint associated
with the discrete state. Polyhedra are easily intersected
by taking the union of the set of linear constraints that
define the two polyhedra. This is the time successor re-
gion that is feasible given the invariant specified for the
discrete state.

The remaining steps are used to compute new re-
gions reachable from this feasible time successor region
by some transition over an edge. For each edge out of
the current discrete state, the associated guard is first
intersected with the feasible time successor region. This
polyhedron, if nonempty, defines the set of all variable
values that might exist whenever the discrete transition
could occur. Any variable assignments associated with
the edge must now be applied to this polyhedron. This
is done in two phases. First, a variable to be assigned
a new value x := I is unconstrained (often called the
free operation). This operation leaves unchanged the
relationships between all other variables, i.e. the poly-
hedron is projected onto the subspace 5Rn_1 of the re-
maining variables. This result is then intersected with

starting
polyhedron

starting
discrete state

Step 1: Time Successor

// / "{ guard

/

/

Step 2: Intersection with Invariant Step 3: Intersection with Guard

assign X ~ := [4,5]

JoUjf Guard then X 2:= [4,5] ^.S^ jQjji Guard then X ,,:= [4,5]

Step 4: Unconstrain Assigned Variable Step 5: Intersect with Assignment Constraint

Figure 2: Hybrid Automata Reach Forward Operations

the constraint x = I. This polyhedron, together with the
discrete state to which the edge goes, is a new region
for which the above steps may be repeated. In general a
set of assignments whose right-hand sides are linear for-
mula are allowed, with some restrictions. The variables
to be assigned are unconstrained and the resulting poly-
hedra are then intersected with the appropriate linear

constraints in some order. With care, fairly complex
sequences of assignments can be modeled on a single
edge [24].

The overall method begins at the initial region of a
hybrid automaton. The operations described above are
applied to enumerate feasible time successor regions and
the new regions reachable from these via discrete tran-

sitions. As new regions are enumerated, they must be
checked to see if they have been visited before (other-
wise the method will not terminate even when there are
a finite number of regions). This is done by compar-
ing the discrete states of regions for equality, and by
checking to see if the new polyhedron is contained in
the polyhedron of a previously visited region. This is
summarized in Figure 3.

4 Operations on Polyhedra
In the following descriptions we use X to denote a

set of real-valued variables x\, X2, ...zn, X to denote an
assignment of integer rates to these variables, e = c\X\ +
C2X2 + ... + cnxn a linear formula over X with integer
coefficients, and e the rate or derivative of this formula
given some X(e = c\x\ + cix\ 4- ... + cnx'n). We use
f € 5R™ to denote some specific point in K™, a specific
assignment of values to X. We use f f <$ as a short-
hand notation for f + XS, the point reached from f
after allowing 6 time to pass given variable rates X.
We use P to denote a set of constraints and the phrase
"polyhedron P" to refer to the set of all solutions to the
system of constraints P. We sometimes abuse notation
and write f € P to mean the point f is in the polyhedron
P, f satisfies the system of constraints P.

4.1 Time Successor
The time successor of a set of constraints given con-

stant rate X is computed in two steps.

1. Let each constraint Z; < e* < U{ where e* ^ 0 be
written so that e"; > 0, which can be achieved by
multiplying the constraint by -1 if needed. For each
distinct pair of constraints

i ^*** ^i ^**- tij

'j S Gj < Uj

where e* > 0 and e,- > 0, add to the set the con-

• For each f € P, for each 6 > 0, f t S € P' (allow-
ing any amount of time to pass for any point that
satisfies P yields a point that satisfies P').

• For each f' € P' there exists some 8 > 0 such that
f I 6 £ P (every point in P' is reachable from
some point in P by allowing some amount of time
to pass).

Proof: We show the first part by demonstrating that
none of the constraints modified or introduced by the
algorithm are invalidated by allowing time to pass from
any initial value f € P. Step 1 adds constraints that are
already implied by existing constraints in P, so these
are all satisfied by any f G P. Applying step 1 results
in a polyhedron that has the same solution set as P.
After step 2, every constrained expression with zero rate
appears unchanged in P', every constrained expression
with positive rate is unbounded so that no amount of
time can make the modified constraint infeasible. This
proves the first part of the theorem.

We show the second part by demonstrating that
f' e P' implies there exists some S > 0 such that
f' J, S e P. Observe that every constraint I < e < u
where e = 0, including every constraint added in step
1, appears in both P and P'. The values of the con-
strained expressions, and hence the feasibility of these
constraints, remain unchanged as time passes. What
we need to show is that every f' that satisfies the set of
constraints in P' that were loosened to k < e; < 00 in
step 2 can be taken back in time by some 6 > 0 to a
point f I S that satisfies the original constraints. That
is, we need to show there exists a single value 6 > 0
such that all of

h < e; — eiS < Ui

are feasible for every point f' £ P'. We can rewrite
these constraints as

straint

Gjli C^Lfco ^** CiCj CiC, ■ C1 U>i Cj t T

h < e, — did < Ui
= li — a < —6i5 <U{ - e,
= ei — k> aid > Ci — Ui (1)

2. Replace each constraint I < e < u where e > 0 by
/ < e < 00.

The rate of each constrained expression added in the
first step is 0, so the second step only applies to con-
straints that were in the original polyhedron. The num-
ber of operations required by the algorithm is quadratic
in the number of constraints whose expressions have
non-zero rate.
Theorem: Let P be a satisfiable set of constraints, and
let P' be computed from P using the above algorithm.
Then

There exists a value of S > 0 that satisfies all these
inequalities when evaluated at f' if there exists a value
for S that simultaneously falls between the upper and
lower bounds of all these constraints. This can occur
when no lower bound exceeds any upper bound, which
can occur when the set of constraints

a-U > ei~ui

is feasible for all pairs i and j. For i = j this reduces
to Ui > h, always true when P is feasible. For i ^ j we
can rewrite these as

Cj'cj c-i(Zj ^_ Cjli ßiUn

Entry.Region,

New_Region: Region;

Successor.Polyhedron,

Constrained_Polyhedron,

Guarded_Polyhedron,

Unconstrained.Polyhedron,

Assigned_Polyhedron: Polyhedron;

Examined,

To_Be_Examined: set of Region;

Examined := empty;

To_Be_Examined := initial region;

while Not_Empty (To_Be_Examined) loop

Entry.Region := Choose_And_Remove_0ne_0f (To_Be_Examined);

Add_To_Set (Examined, Entry_Region);

Successor.Polyhedron := Time_Successor (Entry.Region.Polyhedron);

Constrained_Polyhedron := Intersect (Successor.Polyhedron, Entry_Region.Discrete_State.Invariant);

Check_Region_Assertion (Entry_Region.Discrete_State, Constrained_Polyhedron);

for each Transition in Entry_Region.Discrete_State.Transitions_From loop

Guarded_Polyhedron := Intersect (Constrained_Polyhedron, Transition.Guard);

if Not_Empty (Guarded_Polyhedron) then

Check_Transition_Assertion (Transition, Guarded_Polyhedron);

Unconstrained_Polyhedron := Unconstrain (Guarded_Polyhedron, Transition.Assignments.Variables);

Assigned_Polyhedron := Intersect (Unconstrained_Polyhedron, Transition.Assignments);

New_Region.Discrete_State := Transition.To_Discrete_State;

New_Region.Polyhedron := Assigned_Polyhedron;

for each Previous_Region in Union (Examined, To_Be_Examined) loop

if Contained_In (New_Region, Previous_Region) then

goto next Transition loop;

end if;

end loop;

Add_To_Set (To_Be_Examined, New.Region);

end if;

end loop;

end loop;

Figure 3: High-Level Region Enumeration Procedure

These were added to P' in step 1 and, since the rate
of their constrained expressions is 0, remain unchanged
by step 2 in P'. These constraints are thus satisfied for
every f' G P', so there exists a 5 > 0 that satisfies the
constraints in (1), and this 5 is such that f' I S G P.

4.2 Unconstrain
To unconstrain a variable x we must remove all con-

straints that contain that variable. However, there may
be constraints between other variables that are tran-
sitively implied by a set of removed constraints. For
example, l\ < y — x < u\ and h < x — z < u^ imply
h + h < V — z < ui + U2, this information must be
preserved before removing the constraints involving x.
We unconstrain a variable x in a set of constraints P
by constructing a new set of constraints P' using the
following steps.

1. Let each constraint I < e < u in P where e has an
instance of x be written in the form l<cx — e'<u,
where e' involves the remaining variables and their
coefficients and c > 0. For each distinct pair of

such constraints in P

i ^"^ *-ri"j "i ^*^ ">%

t A ^*» l^A JU C A ^^- U A

combine the two in a way that cancels the x terms,
adding to P' the constraint

C"jLjj C-^UiA ^^ C/^CA LsA(z"i ^^ C-A (JLji C"itA

2. Each constraint I < e < u where e has no instances
of variable x is added to P'.

Let X \ x refer to the set of variables X minus the
variable x, and let f \ x for f G SRn refer to the n — 1
vector of values that are identical to f with the value
for variable x removed.
Theorem: Let P be a feasible set of difference con-
straints, and let P' be computed from P by applying
the above algorithm to unconstrain the variable x. If
f G P then f\x G P', and if f \x G P' then there exists
some value for variable x such that f G P.

Proof: We will show that f £ P iff f \ x € P' for some
value for x.

Each constraint added to P' in step 1 is implied by
some pair of constraints in P. Constraints added in
step 2 are the same in P and P'. Consequently, every
constraint in P' is implied by one or two constraints in
P, and every value f € P thus satisfies the constraints
in P'. To state this another way, the constraints added
to P' are never any tighter than constraints that occur
in P. Note that this means P' is feasible since P is
assumed feasible.

For the second part of the proof, consider a value
f\x € P'. We need to show there exists some value for
variable x such that f satisfies all of the constraints

[] ^- C*j«// C? ^^* l*j (2)

in P. There will exist a value for x that satisfies the
above constraints if there is a value for x that simulta-
neously satisfies every pair of constraints

'i+gj < X < Ui+ei

^±2i < x < Uj+e,-
— — C,'

where c;,Cj > 0. For i = j this reduces to l{ < Ui,
which always holds when P is feasible. For i ^ j we can
rewrite these as

— Oifc^ C-j tAo ^^ Ojt-7 CT cj

These were all added to P' in step 1 and are all satisfied
for every f\a; S P' (P' is feasible as noted above). There
thus exists a value for x that satisfies the constraints in
(2), and this value is such that f € P.
4.3 Intersection

The intersection of the solution sets for two systems
of constraints Pi and Pi is the set of values that satisfies
both systems of constraints, which is the set of solutions
to Pi (J Pi (the union of the sets of constraints has as
its solution the intersection of the corresponding poly-
hedra). This can be done in linear time.
4.4 Feasibility

The feasibility of a set of inequalities P can be de-
termined as a side-effect of solving the associated linear
programming problem with some trivial objective func-
tion, e.g. max ^ Xi given P for the variables a;, appear-
ing in P.

We note that feasibility testing seems fundamentally
as hard as linear programming [6]. Each linear program-
ming problem has an associated dual problem of the
same size, with the property that only optimal solutions
are feasible for both. Thus, any feasibility test capable
of identifying a feasible solution can be used to solve a
linear programming problem by applying that test to

the union of the constraints of the original problem and
its dual.

We discovered by experiment that guessing a set of
variable values (the mid-point of each rectangular con-
straint) then evaluating the constraints using those val-
ues was an effective approximate test. This test can
quickly confirm that certain polyhedra are feasible, and
our experiments suggest that perhaps half of all feasibil-
ity tests could be resolved using this method. However,
feasibility testing accounted for a relatively small por-
tion of the overall execution time of our prototype, and
this approximation had no significant impact.
4.5 Containment

Given two sets of constraints J (inner) and O (outer)
we want to determine if every solution to J is also a
solution to O (whether the polyhedron J is contained
in the polyhedron O). We do this using the following
algorithm.

1. If it can be (quickly) determined that I and O do
not intersect, then / cannot be contained in O.

2. If O contains variables that do not appear in J then
terminate with a negative result.

3. For each constraint I < e < u in O solve the lin-
ear programming problems £/ = min e given / and
xu = max e given /. If / < £/ and u > xu for ev-
ery constraint in O then polyhedron J is contained
in polyhedron O. Otherwise, the algorithm ter-
minates with a negative result when the first con-
straint from O is found that does not pass this test.

The first step is a prefilter to efficiently detect certain
common cases where J obviously cannot be contained
in O. We did not do an exact feasibility test, only an
approximate one that quickly checks to see if the in-
tersection is definitely infeasible (discussed later). Our
experience suggests that over 80% of all containment
tests are resolved by this prefilter. This was impor-
tant for our prototype, which spent most of its time
searching for containing polyhedra (the loop for each
Previous-Region in Figure 3).

To establish the correctness of the final step we prove
the following.
Theorem: For each constraint I < e < u in O let
xi = min e given J and xu = max e given / be solutions
to linear programming problems. Every feasible value
for I is also a feasible value for O iff / < e(xi) and
u > e{xu) for every constraint I < e < u in O.
Proof: Suppose / < e(x{) and u > e(xu) for every con-
straint I < e < u in O. It is known that optimal values
for the objective function of a linear programming prob-
lem are achieved at some boundary vertex or facet of the
polyhedron / (or else the value of the objective function

is unbounded). For xi = mine given I the value of e
at every point in the polyhedron is bounded below by
e(xi), and for xu = max e given I the value of e at every
point in the polyhedron is bounded above by e(xu) (or
else the value of e is unbounded below or above, respec-
tively). If I < e(xi) and u > e(xu) then every point in
the polyhedron I satisfies the constraint I < e < u in
O (where we allow I or u to be — oo or oo respectively).
If this holds for all constraints in O then every feasible
value for I also satisfies all the constraints of O.

4.6 Assertion Checking
An assertion A where A is a system of linear con-

straints can be evaluated for a given polyhedron P by
seeing if P is contained in A. Conjunctions and dis-
junctions of sets of linear inequalities can be evaluated
in the obvious way.

4.7 Reduction
The time successor and unconstrain operations may

cause a quadratic increase in the number of constraints.
An essential element of our procedure is the use of an
algorithm to reduce the number of constraints used to
represent a polyhedron by identifying and eliminating
redundant constraints. We combine a fast but approxi-
mate bounds tightening procedure with a more effective
but expensive Simplex-based procedure to detect and
eliminate redundant constraints.

An important part of our procedure is the initial use
of an efficient bounds tightening procedure to simplify
sets of constraints [5]. For each pair of constraints

»i _ ej _ t*i

if there exist integers Cj, Cj > 0 such that Cjej = Cjej =
e then these constraints can be replaced by the single
constraint

max(cili,Cjlj) <e< mm(aui,CjUj)

There are two such rules, one for c; > 0 and one for
Cj < 0 (CJ can always be made positive). Our pro-
totype implementation maintains polyhedra as lists of
constraints that are lexicographically sorted by variable,
so that any two linearly dependent constraints will ap-
pear adjacent in the list. This bounds tightening oper-
ation is applied during each intersection operation (im-
plemented as a linear-time merge of two sorted lists),
including each time a new constraint is added to a con-
straint list.

The time successor and unconstrain operations add
constraints that are differences of existing constraints,
and in practice many of these added constraints are re-
dundant with each other. These two algorithms fre-

quently add triplets of the form

Hj _ &i Cj ^ ll-ij

Ijk S €j - efc < Ujk

Hk S: &i ~Gk< uik

(3)

where the third constraint may be implied by the sum of
the first two (ignoring constant multipliers). Similarly,
the first constraint of the triplet

lij ^ cj Gj ^ t/jj

. < ej < Uj

^i _b &i _: **i
h — CJ (4)

may be implied by the difference of the other two con-
straints. We can check for these implications and use
them to tighten constraints and eliminate redundant
constraints. This could be viewed as an approximate
generalization of the shortest path algorithm used to
simplify bounded difference matrices [8, 3].

More precisely, for each triplet of constraints

tj ^ cj j^ Z4j

tj S ej S uj

if there exist integers Cj, Cj, Ck > 0 such that Cje, — Cjej =
Cfcöfc then constraint Ik < efc < Uk can be replaced by

min(cfc/fc,Cjij - CjUj) < ckek < max(cfcUfc,CjUj - Cjlj)

There are four such rules, one for each combination of
possible signs for Cj and Cj (c/t can always be made pos-
itive). Linear dependence is transitive in the sense that
when dependence is detected, each of the three can be
tightened using similar formulas involving the other two.

Checking all possible triplets would be 0(n3) in the
number of constraints. Instead, we record with most
constraints two references Tj and Tj to two other con-
straints with whose sum it is likely to be linearly de-
pendent. For each constraint added by the time suc-
cessor operation, Tj and Tj are the two constraints dif-
ferenced to form that constraint. For each constraint
added by the unconstrain operation, we search for con-
straints that have the same variables as the two that
were differenced except for the variable being uncon-
strained. Our experience suggests that reasonable Tj
and Tj can be identified for most constraints involving
two or more variables.

Let (e, T,Tj) be a constraint e and its associated
Tj,Tj references. We iterate over all triplets of con-
straints (ei,Tj,Tj),(e2,Tj,Tfc),(e3,Tj,Tfc) to produce
candidates likely to have the form shown previously in
(3). We also iterate over all triplets (e,Ti,Tj),Ti,Tj.
Each triplet is checked for linear dependence, which can
be determined by solving a simple 2x2 system of linear

equations involving the coefficients of variables common
to the three constraints. Where linear dependence is de-
tected, each of the constraints has its bounds tightened
using the bounds implied by the appropriate linear com-
bination of the other two constraints.

In our prototype we associate with each constraint
in the list its index or numeric position in the list. The
pair (Ti,Tj) is kept in a canonical order where the index
of Ti is less than the index of Tj. We produce a list
of references to the constraints that is lexicographically
sorted by the index values for (Tj, Tj). Using this sorted
list, it is possible to iterate over triplets of constraints
in quadratic time.

In our prototype the constraint list is ordered so that
all constraints involving the same variables are adja-
cent to each other. Each time we check a triplet of
constraints ei,ej,ek for linear dependence, we check all
triplets having the same variables as the set e;, ej, ek and
not just those three individual constraints. Our experi-
ence suggests this heuristic is worth the additional cost,
which tends to be relatively small since subsequences of
constraints involving identical sets of variables tend to
be relatively short.

In general, multiple such iterations may be needed
to find a fixed point at which no constraint bounds are
tightened any further. Our experience suggests this can
in fact be limited to a small fixed number, such as 3,
without any significant impact.

As constraints are tightened, a note is made for each
bound as to whether that bound is implied by other
nonredundant constraints on the list. For example, if
h < e, < Ui and e^ = ej + efc and /, = lj + Ik then the
lower bound k is implied by the other two constraints
and is redundant, providing lj < ej and Ik < e^ are
not marked as redundant. A final pass is performed
to replace all redundant lower and upper bounds by
-co and oo respectively. All constraints where both the
lower and upper bounds are redundant are deleted (our
implementation always retains the tightest rectangular
constraint for every variable appearing in a polyhedron
for book-keeping reasons).

If, during any bounds tightening operation, u < I for
any constraint I < e < u then the system is definitely
not feasible. This feasibility test is not exact, it is possi-
ble for I < u for every constraint in an infeasible system
of constraints. However, we use this as a fast test to
quickly detect many cases of infeasibility, including the
prefilter for our containment test. Our experience sug-
gests that about ^ of all feasibility tests can be decided
in this manner, or about 80% if the containment pre-
filter is also counted.

If the above bounds tightening procedure fails to
reduce the number of constraints in a polyhedron to
less than half the average number of constraints in all

polyhedra, then our prototype tool applies a more ex-
pensive but more effective procedure. For each con-
straint I < e < u in P solve the linear program-
ming problems xi = min e given P — {/ < e < u} and
xu = max e given P — {I < e < u}. Ifl<xi and u > xu

then I < e < u is redundant and is removed. Our
experience suggests that over 95% of all reductions are
performed using the bounds tightening procedure alone,
but it is nevertheless essential to include this more effec-
tive procedure. Without this, our prototype was some-
times unable to complete an analysis due to the presence
of a few polyhedra for which bounds tightening was in-
effective, where these few polyhedra formed a brick wall
that prevented complete reachability analysis.

5 Implementation Notes
We implemented our prototype in a compiled lan-

guage, Ada 95. We represented constraint bounds and
coefficients using 64 bit integers. We used a sparse vec-
tor representation that only stores non-zero coefficients.
Polyhedra were represented as doubly linked lists of con-
straints. The set of reached regions was stored by hash-
ing the discrete system state, then storing a list of poly-
hedra for each discrete system state.

Our primal/dual Simplex algorithm used double pre-
cision floating point and a sparse matrix representation.
The Simplex algorithm is used only as a decision pro-
cedure, it does not compute any values that appear in
any polyhedra. Nevertheless, this is a notable theoret-
ical shortcoming in our prototype, which would ideally
use rational arithmetic for the Simplex procedure. In
this application large numbers of polyhedra have de-
generate vertices, and our experience suggests that the
Simplex implementation must include methods to deal
with degeneracy[9, 17].

Efficient and robust computation of greatest common
divisors (GCDs) during polyhedra reduction proved in-
teresting and important enough to merit some com-
ment. If two numbers are represented as products
of their prime factors X = 2XlZX2bX3... and Y =
2yi3y25y3... then the exponents in the prime factoriza-
tion of their GCD is the min of the exponents of the
two values[ll],

GCDfX Y) = 2min(Xl,!/1)3min(X2'!/2)5min(X3'!/3)

When computing the prime factorization of Y for the
purpose of obtaining a GCD, it is only necessary to de-
termine the exponents out to the last non-zero exponent
of X, e.g. when computing GCD(12, Y) it is only nec-
essary to compute the prime factors y\ and \ji- This is
because all the remaining prime factor exponents for 12
are 0, and min(0,j/fc) = 0 for any yk- When comput-
ing the GCD of all numbers appearing in a constraint
we first sort those numbers in ascending order, which

greatly reduces the need to determine the exponents of
the larger prime factors of the larger numbers. However,
we still encounter constraints having very large and rel-
atively prime values, too large to be factored using any
reasonably sized table of prime numbers. In this case we
apply Euclid's algorithm to adjacent pairs of numbers in
the sorted list in a way that reduces the length by half,
e.g. GCD(Xi, X2), GCD(X3, X4),.... This increases the
likelihood the two numbers submitted to Euclid's algo-
rithm have about the same magnitude. This halved list
of sorted numbers is then processed recursively.

A new polyhedron is added to the list of regions for
a discrete state only when it is not contained in an
existing region. However, the new polyhedron might.
contain a previously visited polyhedron. We check for
this condition for all polyhedra that are still on the to-
be-examined list and remove any polyhedra that are
contained in the newly added one. We access the to-
be-examined list in first-in-first-out order (depth-first
search), which seems to result in a slightly higher per-
centage of to-be-examined polyhedra being removed
than when using a first-in-first-out order (breadth-first
search).

6 Benchmark Results
To exercise our prototype we randomly generated a

series of 100 linear hybrid automata models for tradi-
tional uniprocessor workloads consisting of repetitively
dispatched noninteracting harmonic tasks. Each task
had minimum and maximum period and compute time
values whose magnitudes reflected a reasonable level of
real-world precision (e.g. period of 400 with a compute
time range of [61, 73]). Aperiodic tasks were distin-
guished from periodic tasks by having unequal minimum
and maximum periods. Although schedulability in this
case is known to be a function of the maximum compute
time only, we generated both minimum and maximum
compute times because this is significant in distributed
systems and verification problems, and this affects the
set of reachable regions. Tasks were scheduled using a
deadline monotonic preemptive fixed priority discipline.

We wrote a translator to the input specification lan-
guage for HyTech, a linear hybrid automata reachability
tool[2, 15]. Each task had four discrete states: com-
puting, waiting, preempted, and rescheduling. In addi-
tion to the timer and accumulated compute time vari-
ables for each task, we introduced a single integer-valued
queue variable whose nth bit is set when the nth task is
enqueued. Using this queue variable and a reschedule
synchronization event, we were able to specify preemp-
tive fixed priority scheduling in a compositional model
of the system. Models were analyzed using the -o2 op-
tion to reduce the incidence of numeric overflow.

With reasonable practical restrictions, continuous

time hybrid automata models of fairly complex real-
time scheduling and allocation problems can be reduced
to equivalent and decideable discrete time models[23].
We also wrote a translator to the input specification
language for Verus, a discrete timed automata reacha-
bility tool[7]. Scheduling was performed by introduc-
ing an additional task for this purpose, as described in
the literature and in examples that come with the tool.
We extended the default number of bits to 20, with a
corresponding increase in the number of boolean state
variables. We were unable to use the -r option to au-
tomatically reorder variables, which is cited as being
almost essential to achieve good performance. The rea-
son is that this option is normally used as models are
developed and grow incrementally, our initial experi-
mentation suggests that the time required to do this
from scratch for a full-blown model greatly exceeds the
time required to analyze the model without automatic
variable reordering.

We generated two variants of this set of models. One
set included both feasible and infeasible problems. We
used this set to check that all these tools, plus a tra-
ditional exact characterization schedulability analysis
algorith[22], agreed. We generated another set that in-
cluded only feasible problems. This set forced all tools
to explore the entire reachable region space and was
used for benchmarking purposes.

The ability of these tools to solve the generated feasi-
ble models is summarized in Figure 4. This figure shows
the percentage of models that were solved as a function
of the number of tasks. We imposed a time limit of 1
hour and a memory limit of 300 megabytes all tools.
Tool failures also occurred due to numeric overflow and
other problems.

Figure 5 shows the solution times in seconds as a
function of the number of tasks for those models that
were solved by all of the tools at each plotted point,
using a logarithmic scale. That is, the figure does not
include solution times for models that were solved by
our prototype but not by HyTech. We include both
individual problem solution times and a line showing
the average solution times. The solution times for a
fixed number of tasks (a fixed number of variables and
reachable discrete states) vary significantly because the
number of regions can vary significantly due to even
small changes in the values of numeric parameters such
as task periods.

We do not believe our results are sufficient to con-
clude there is any inherent superiority of continuous over
discrete time models. BDD techniques are sensitive to
variable ordering, and there may be a predictable vari-
able ordering for problems of this particular type that
yields significantly better performance. There are gen-
eralizations of BDD, such as IDD, that may have better

HyTech

80%

60%

40%

20%

Verus Prototype

I ^^^ solved

KÄiüMüs numeric error

:WA¥«W other

'•••••'•••••••'•••'••• memory > 300M

cpu > 1 hr

HVP HVP HVP HVP HVP HVP HVP HVP

12 3 4 5 6 7 8
number of tasks in workload

Figure 4: Percentage of Generated Problems That Were Solved

4096

1024

256

0.25 -

0.0625
3 4

number of tasks

Figure 5: Solution Times for Problems That Were Solved

performance[21].

It is difficult to do a direct comparison between the
methods we employ and those found in HyTech because
there is no one single difference.

Our polyhedra operations are restricted to constant
fixed rates. HyTech allows rate ranges to be specified
and supports parametric analysis.

On this particular set of benchmarks, our prototype
used less memory and was more numerically robust.
However, these symptoms may not be due to funda-
mental differences, they might both be local and easily

fixed artifacts of the current HyTech implementation.
Improved numeric robustness might also be due to our
use of a floating point Simplex implementation, a theo-
retically questionable aspect of our current prototype.

HyTech first enumerates the reachable discrete state
space then enumerates the polyhedra. We do on-the-fly
reachability, which may suppress enumeration of some
discrete system states for some problems because edge
guards may prevent transitions that would otherwise
occur in the purely discrete model. However, in our set
of benchmarks all of the discrete states were reached

16
14
12
10

8
6
4

2

HyTech average
prototype average

10 30 40 50 60
number of reachable discrete system states

90

Figure 6: Average Solution Times as a Function of the Number of Discrete System States

4096

1024

0.0625

number of tasks

Figure 7: Prototype Average Solution Times with Optimization Methods

anyway.
By making scheduling a part of the model semantics

rather than a part of the model itself, we reduced the
size of the discrete state space from 3* to 2* where t
is the number of tasks.1 We cannot say with certainty
how much of the performance improvement might be
due to our different polyhedra operations versus the
incorporation of scheduling semantics into the model.
Figure 6 shows a plot of solution time versus number of
reachable discrete system states rather than number of
tasks, which seems to suggest the two different sets of
polyhedra operations are about equally efficient. How-
ever, our prototype may be operating on more complex
polyhedra, since information encoded in discrete states
in HyTech must now be encoded in the polyhedra in
our prototype. Also, with fewer discrete states, the set
of polyhedra that must be checked for containment for
each discrete state is larger for our prototype (the loop
that searches for containing polyhedra accounts for most
of the execution time). It may or may not be the case
that some of HyTech's numeric problems occur when
attempting to operate on polyhedra that are difficult

1 Although each task in the HyTech model had four discrete
states, transitions to rescheduling states were forced to be simul-
taneous in many cases, and the size of the reachable discrete state
space was only 3' instead of 4*.

for those algorithms in some fundamental way.

Classical uniprocessor schedulability analysis meth-
ods rely on the fact that analysis can be performed
using only minimum periods and maximum compute
times[19]. We simplified our models in this way. In
our models there were frequently cases where periodic
tasks were simultaneously dispatched. We added a test
for these cases and performed such transitions concur-
rently, which is a partial order reduction method. Fig-
ure 7 compares the average solution times with and
without these methods using a logarithmic scale. All
solved problems were shown for all tools and methods
at each point for which more than 75% of the problems
were solved. The partial order method alone is actu-
ally slower than the unoptimized version for the task
sets that could be analyzed in less than 1 hour, presum-
ably because the time required to operate on polyhe-
dra and the number of regions dominated the growth
in the number of discrete system states to the extent
that the additional testing required for simultaneous
transitions (which requires among other things extra
feasibility tests) is not worth the reduction in discrete
state space size. As the figure suggests, partial order
reduction did result in a somewhat higher percentage
of problems being solved within one hour. The use of
worst case values is significantly beneficial, this signifi-

50

45

40

35

30

25

20

15

10

5

0

average o
average average -e-

maximum D
maximum maximum

4 5
number of tasks

Figure 8: Average and Maximum Number of Constraints per Polyhedra

cantly reduces the number of enumerated regions. What
this figure does not show is that this also significantly
reduces the variability in number of regions and solu-
tion times. The figure shows that the two optimization
methods are complementary and synergistic.

Figure 8 shows the average and maximum number of
constraints required to represent polyhedra as a function
of the number of tasks in a model. These experiments
suggest that in practice the size of constraint sets grows
roughly linearly with the size of models of this type.

7 Remarks
Our prototype tool and benchmarking exercises used

only forward reachability analysis. It should be possible
to perform a backward reachability analysis by using
negated rates in the time successor operation, which
would essentially run time backwards to obtain the time
predecessor of a polyhedra[2, 3].

We attempted to generate problems that intuitively
resembled real-world schedulability problems, but ran-
domly generated problems may not be reflective of prob-
lems that would be encountered in practice. Moreover,
the models we generated were precisely what would
not be analyzed using linear hybrid automata tech-
niques, since these models were amenable to analysis
using traditional methods. Experience is needed with
models that include features such as distributed exe-
cution, remote procedure calls, rendezvous, etc., the
kinds of models for which we intended this analysis
technique. Our preliminary experience with some sim-
ple distributed scheduling problems and with a software
verification exercise suggests that our method works as
well on these problems as on the uniprocessor bench-
marks discussed in this paper [24].

We observed an increased ability to solve problems
when only maximum compute times and minimum pe-
riods were used, which classical preemptive fixed prior-
ity theory tells us is sufficient for noninteracting tasks

on uniprocessors. It is known that this is not true in
certain multi-processor situations[10], and this is likely
inadviseable when applying these methods to verifica-
tion problems. It would be useful to identify more gen-
eral conditions under which selected intervals in a model
could be replaced by a scalar, or be expanded to a con-
taining interval, in a way that significantly reduces the
number of regions.

We added scheduling semantics to a linear hybrid au-
tomata model rather than explicitly modeling schedul-
ing behavior using standard hybrid automata. The ba-
sic idea, which is to determine the variable rates (or
edge guards or assignments) using a computable func-
tion of the composed system discrete states rather than
a simple union of rates (or edge guards or assignments)
specified in separate automata, might be applicable in
other problem domains.

Our results suggest that the computational complex-
ity of performing a reachability analysis does not lie in
the complexity of the individual polyhedra operations
but in the possible combinatorial explosion in the num-
ber of reachable regions, at least in practice in the prob-
lem domain we studied. Our work illustrates how the
incorporation of domain semantics into the model and
the use of a partial order reduction method can be ef-
fective in reducing the growth in the size of the discrete
state space. An on-the-fly method might reduce the dis-
crete state space size in some problem domains, but not
in the one we studied. Several other researchers have ex-
plored methods that automatically approximate sets of
polyhedra using a containing polyhedron to reduce the
growth in the region space size[12, 16, 13], although we
found during some preliminary experiments with some
simple methods that it was difficult to simultaneously
achieve acceptable accuracy and significant performance
improvements. Our work illustrates another approach,
conservative modifications to model parameters to bet-
ter condition a model, that also holds some promise.

References
[1] K. Altisen, G. GöBler, A. Pnueli, J. Sifakis, S. Tri-

pakis and S. Yovine, "A Framework for Scheduler
Synthesis," Real-Time Systems Symposium, Decem-
ber 1999.

[2] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin
Ho, "Automatic Symbolic Verification of Embed-
ded Systems," IEEE Transactions on Soßware En-
gineering, vol. 22, no. 3, March 1996, pp 181-201.

[3] Johan Bengtsson and Fredrik Larsson, UPPAAL, A
Tool for Automatic Verification of Real-Time Sys-
tems, DoCS 96/97, Department of Computer Sci-
ence, Uppsala University, January 15, 1996.

[4] B. A. Brandin and W. M. Wonham, "Supervisory
Control of Timed Discrete-Event Systems," IEEE
Transitions on Automatic Control, v39, n2, Febru-
ary 1994.

[5] A. L. Brearly, G. Mitra and H. P. Williams, "Anal-
ysis of Mathematical Programming Problems Prior
to Applying the Simplex Algorithm," Mathematical
Programming, 8, p54-83.

[6] David Bremner, personal communication, Univer-
sity of Washington Department of Mathematics,
1999.

[7] S. Campos, E. Clarke, W. Marrero, M. Minea and
H. Hiraishi, "Computing Quantitative Characteris-
tics of Finite-State Real-Time Systems," Real-Time
Systems Symposium, December 1994.

[8] David L. Dill, "Timing Assumptions and Verifica-
tion of Finite-State Concurrent Systems," Interna-
tional Workshop on Automatic Verification Methods
for Finite State Systems, Grenoble, France, June 12-
14, 1989, also in Lecture Notes in Computer Science
407, J. Sifakis (Ed.), Springer-Verlag, pp 197-212.

[9] Saul I. Gass, Linear Programming, McGraw-Hill
Book Company, New York.

[10] R. L. Graham, "Bounds on Multiprocessing Timing
Anomalies," SI AM Journal of Applied Mathematics,
Vol. 17, No. 2, March 1969.

[11] Ronald L. Graham, Donald E. Knuth and Oren
Patashnik, Concrete Mathematics, A Foundation
for Computer Science, Addison-Wesley, 1989.

[12] Nicolas Halbwachs, Yann-Erik Proy and Patrick
Roumanoff, "Verification of Real-Time Systems us-
ing Linear Relation Analysis," Formal Methods in
System Design, 11(2):157-185, August 1997.

[13] Nicolas Halbwachs, Pascal Raymond and Yann-
Eric Proy, "Verification of Linear Hybrid Systems
by Means of Convex Approximations," Workshop on
Verification and Control of Hybrid Systems, Piscat-
away, NJ, October 1995.

[14] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri
and Pravin Varaiya, "What's Decideable About Hy-
brid Automata?" Proceedings of the 27th Annual
ACM Symposium on Theory of Computing, 1995.

[15] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, "HyTech: The Next Generation," Real-
Time Systems Symposium, December 1995.

[16] Thomas A. Henzinger and Pei-Hsin Ho, "A Note
On Abstract Interpretation Strategies for Hybrid
Automata," Hybrid Systems II, also Lecture Notes
in Computer Science 999, Springer-Verlag, 1995.

[17] James P. Ignizio, Linear Programming in Single-
and Multiple- Objective Systems, Prentice-Hall.

[18] J. Lehoczky, L. Sha and Y. Ding, "The Rate Mono-
tonic Scheduling Algorithm: Exact Characterization
and Average Case Behavior," IEEE Real-Time Sys-
tems Symposium, 1989, pp 166-171.

[19] C. L. Liu and James W. Layland, "Scheduling
Algorithms for Multiprogramming in a Hard Real-
Time Environment," Journal of the ACM, v20, nl,
January 1973, pp 46-61.

[20] Peter J. G. Ramadge and W. Murray Wonham,
"The Control of Discrete Event Systems," Proceed-
ings of the IEEE, v77, nl, January 1989.

[21] Karsten Strehl, Lothar Thiele, Dirk Ziegen-
bein, Rolf Ernst and Jürgen Teich, "Scheduling
Hardware/Software Systems Using Symbolic Tech-
niques," Proceedings of the 7th International Work-
shop on Software/Hardware Codesign, Rome, Italy,
May 3-5, 1999, pp 173-177.

[22] Steve Vestal, "Fixed Priority Sensitivity Analysis
for Linear Compute Time Models," IEEE Transac-
tions on Software Engineering, April 1994.

[23] Steve Vestal, "Linear Hybrid Automata Models
of Real-Time Scheduling and Allocation in Dis-
tributed Heterogeneous Systems," Honeywell Tech-
nology Center, 3660 Technology Drive, Minneapolis,
MN 55418, 1999.

[24] Steve Vestal, "Formal Verification of the MetaH
Executive Using Linear Hybrid Automata," Hon-
eywell Technology Center, Minneapolis, MN 55418,
December 1999.

Formal Verification of the MetaH Executive
Using Linear Hybrid Automata

Steve Vestal
steve. vestal@honey well. com

Honeywell Technology Center
Minneapolis, MN 55418*

Abstract
MetaH is a language and toolset for the develop-

ment of real-time high assurance software. There is an
associated executive that is automatically configured by
the tools to perform the task and message scheduling
specified for an application. Linear hybrid automata
are finite state automata augmented with real-valued
variables. Transitions between discrete states may be
conditional on the values of these variables and may
reassign variables. These variables can be used to
model real time and accumulated task compute time
as well as program variables. We developed a con-
current linear hybrid automata model for that portion
of the MetaH executive software that implements task
scheduling and time partitioning. A reachability analy-
sis was performed to verify selected properties for a se-
lected set of application configurations. The approach
combines aspects of testing and verification and auto-
mates much of the modeling and analysis. There are
limits on the degree of assurance that can be provided,
but the approach may be more thorough and less ex-
pensive than some traditional testing methods.

1 Introduction
Linear hybrid automata are finite state automata

augmented with variables whose values change contin-
uously in a way that depends on the current discrete
state[4]. A variable's value may stay fixed in a given
discrete state (have a rate or derivative of 0), or a vari-
able's value may change continuously as time passes
at a rate that may vary from discrete state to discrete
state. Discrete transitions between discrete states may
be conditional on the values of these variables and may
reassign selected variables. Linear hybrid automata
can be subjected to a reachability analysis to verify
that a given set of assertions is true of a system. In
general a semi-decision procedure must be used since
the reachability problem for linear hybrid automata is
undecidable[12], although it can be shown that reason-
able pragmatic restrictions make fairly general models
for real-time allocation and scheduling in distributed
heterogeneous systems decidable[24].

Linear hybrid automata can be used to model many
kinds of dynamical systems, but the problem of inter-
est in this paper is the modeling of software that per-

*This work has been supported by the Air Force Office of
Scientific Research under contract F49620-97-C-0008.

forms a real-time scheduling function. The continuous
variables of a linear hybrid automaton can be used to
model real time to specify deadlines, can be used as
so-called integration variables to record accumulated
compute time as tasks are preemptively scheduled, can
be used to model hardware timers, and can be used
to model program variables that appear in the soft-
ware itself. Linear hybrid automata provide a concise
and intuitive notation for describing complex real-time
system structures and behaviors.

MetaH is an emerging SAE standard language
for real-time fault-tolerant high assurance software
architectures^, 19, 20, 23]. Users specify how soft-
ware and hardware components are combined to form
an overall system. Our MetaH toolset can generate
and analyze formal models for schedulability, relia-
bility, and partition isolation. The toolset can also
configure an application-specific executive to perform
the specified task dispatching and scheduling, message
and event passing, changes between alternative con-
figurations, etc. Our executive supports a reasonably
complex tasking model using preemptive fixed priority
scheduling, including various forms of controlled time-
slicing, error recovery, and time partitioning[5, 6, 7].

The core scheduling modules of the MetaH execu-
tive implement a set of discrete operations on tasks:
start, stop, dispatch, complete, etc. These opera-
tions implement transitions between the discrete task
scheduling states, e.g. dispatch may transition a task
from the awaiting_dispatch state to the computing
state. Continuously varying quantities, such as ac-
cumulating compute times and decreasing time slices,
must also be modeled. We inserted calls to build a lin-
ear hybrid automata model of the executive code into
the code itself. We developed several simple applica-
tion specifications that included most (but not all) of
the tasking features. We wrote a test driver that ex-
ercised all relevant paths in the core scheduling mod-
ules. The test driver thus triggered the generation of
a linear hybrid automata model of all possible behav-
iors of the core scheduling operations for each appli-
cation. We applied a reachability analysis algorithm
to detect missed deadlines and a few other types of
errors. Several defects were discovered, most involv-
ing incorrect handling of specific patterns of single and
near-coincident multiple application-level faults, a few
involving subtle timing defects such as race conditions.

Our primary new result is that this actually worked,

and was moreover accomplished with a moderate and
practical amount of effort. Linear hybrid automata
reachability analysis is computationally and numer-
ically a much more difficult problem than discrete
state reachability analysis[13,10], but using a recently
developed method we were nevertheless able to ana-
lyze fairly detailed models of a piece of software of
real-world complexity[25]. Our work suggests that
this technology has reached the threshold of practi-
cal applicability, at least for the verification of small
amounts of software of a particular type.

A secondary result is our verification method, which
combines aspects of testing and formal methods. Our
approach provides a high degree of traceability be-
tween code and model, automates certain aspects of
model generation, and integrates reasonably well with
the overall process and toolset.

We include a discussion of limitations on our re-
sults. We excluded many features from our initial
modeling exercises, notably slack scheduling, inter-
processor communication and dynamic reconfigura-
tion. There are many potential defects of various types
that our verification exercise could not have detected,
and it is necessary to use this approach with other
complementary verification methods. However, the ef-
fort required is relatively modest (perhaps comparable
to unit testing), while the results seem more thorough
and less expensive than what we believe would have
been achieved using requirements testing of the ver-
ified features. We close with a discussion of possible
future developments that may address some of the cur-
rent limitations on applicability and thoroughness.

2 Linear Hybrid Automata
Figure 1 shows an example of a linear hybrid au-

tomaton. In addition to the discrete states preempted,
executing and waiting there are also real-valued
variables c and t. This example models a preemp-
tively scheduled task, where c records the accumulated
compute time (the total time spent in the executing
state since the most recent dispatch transition) and t
is a timer used to control periodic dispatching and to
assert a deadline will be met. We need linear hybrid
automata rather than the more tractable timed au-
tomata because we need integrator variables to model
preemptive scheduling [3].

A discrete state may be annotated with an assign-
ment of rates to the continuous variables of the au-
tomaton. The timer t in this example has rate 1 in
all states, while c has rate 1 only when the task is ex-
ecuting and 0 otherwise. Discrete states may also be
annotated with invariants to assure progress. In this
example the invariant of state executing is that the
value of c does not exceed 100, which models a task
that never requires more than 100 units of compute
time to complete.

Edges between discrete states may be guarded by a
set of linear constraints over the real-valued variables.
A transition can occur over an edge only when the
variable values satisfy the guard. The guard if c >
75 in this example models a task that computes for at
least 75 units of time before completing (i.e. the task
in this example may compute for a nondeterministic
amount of time in the interval [75,100]). Edges may

also be labeled with assignments to real-valued vari-
ables, such as the resets of c and t on the edge that
models a dispatch event for the example task.

Both discrete states and edges may be labeled with
assertions, sets of linear constraints that should always
be satisfied whenever the system is in the labeled dis-
crete state and whenever a transition occurs over the
labeled edge.

In this example the edge guards "selected" and "un-
selected" represent decisions made and actions taken
by a task scheduler. The scheduler could be modeled
as a concurrent control automaton[3]. It is also pos-
sible to encode preemptive fixed priority scheduling
in a compositional hybrid automata task model us-
ing a shared queue variable together with scheduling
guards on certain edges. However, we find it simpler
and more general to add the desired scheduling se-
mantics to a concurrent hybrid automata model and
analyzer[24]. Our analyzer annotates individual task
discrete states with resource and priority assignments
and applies the desired scheduling semantics during
the reachability analysis of a system composed from
many tasks. Variable rates are computed by a schedul-
ing function that looks at the states of all tasks in the
composed system and returns the set of rates to use for
that composed discrete state, very much analogous to
the way run-time scheduling decisions are computed
using a queue of ready tasks.

More formally, a state of a linear hybrid automaton
consists of a discrete part, the discrete state at some
time t; and a continuous part, the real values of the
variables at time t. It turns out that, although this
state space is uncountably infinite, the reachable state
space for a given linear hybrid automaton is a subset
of the cross-product of the discrete states with a re-
cursively enumerable set of polyhedra in 5Rn (where
n is the number of variables) [4]. A region of a lin-
ear hybrid automaton is a pair consisting of a discrete
state and a polyhedron, where polyhedra can be rep-
resented using a finite set of linear constraints. Model
checking consists of enumerating the reachable regions
for a given linear hybrid automaton and checking to
see if they satisfy the assertions. There is no guar-
antee that this enumeration will terminate, but if it
does then assertions have been verified in all possible
regions reachable by the hybrid automaton.

Figure 2 depicts the basic sequence of operations
that, given a starting region (a discrete state and a
polyhedron defining a set of possible values for the
variables), computes the set of values the variables
might take on in that discrete state as time passes;
and computes a set of regions reachable by subsequent
discrete transitions.

The first step is the computation of the time suc-
cessor polyhedron from the starting polyhedron (of-
ten called the post operation). For each point in the
starting polyhedron, the time successor of that point
is a line segment beginning at that point whose slope
is defined by the variable rates specified for the dis-
crete state. This is the set of variable values that
can be reached from a starting point by allowing some
amount of time to pass. The time successor of the
starting polyhedron is the union of the time succes-
sor lines for all points in the starting polyhedron. A

if selected ifc>75

assert t< 750

if t= 1000
and unselected

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task

basic result of linear hybrid automata theory is that
the time successor of any polyhedron is itself a poly-
hedron (which in general will be unbounded in certain
directions) [4].

The second step is the intersection of the time suc-
cessor polyhedron with the invariant constraint associ-
ated with the discrete state, yielding the time succes-
sor region that is feasible given the specified invariant.
Polyhedra are easily intersected by taking the union of
the set of linear constraints that define the two poly-
hedra.

The remaining steps are used to compute new re-
gions reachable from this feasible time successor re-
gion by some transition over an edge. For each edge
out of the current discrete state, the associated guard
is first intersected with the feasible time successor re-
gion. This polyhedron, if nonempty, defines the set
of all variable values that might exist whenever the
discrete transition could occur. Any variable assign-
ments associated with the edge must now be applied
to this polyhedron. This is done in two phases. First,
a variable to be assigned a new value x := I is uncon-
strained (often called the free operation). This oper-
ation leaves unchanged the relationships between all
other variables, i.e. the polyhedron is projected onto
the subspace 5R™-1 of the remaining variables. This
result is then intersected with the constraint x = I.
This polyhedron, together with the discrete state to
which the edge goes, is a new region for which the
above steps may be repeated. In general a set of as-
signments whose right-hand sides are linear formula
are allowed, with some restrictions. The variables to
be assigned are unconstrained and the resulting poly-
hedra are then intersected with the appropriate linear
constraints in some order. As we will see, this allows
us to model fairly complex sequences of assignments
to program variables.

Analysis begins at the initial region of a hybrid au-
tomaton. The operations described above are applied
to enumerate feasible time successor regions and the
new regions reachable from these via discrete transi-
tions. As new regions are enumerated, they must be

checked to see if they have been visited before (other-
wise the method will not terminate even when there
are a finite number of regions). This is done by com-
paring the discrete states of regions for equality, and
by checking to see if the new polyhedron is contained
in a previously enumerated polyhedron for that dis-
crete state.

There are previously developed tools that perform
a reachability analysis for linear hybrid automata[13,
10]. The work described in this paper uses new reach-
ability analysis methods we developed that enabled us
to analyze larger problems[25]. Our tool incorporates
scheduling semantics and allows sequences of assign-
ments on edges.

3 MetaH
MetaH is a language for specifying software and

hardware architectures for real-time, time-and-space
partitioned, fault-tolerant, scalable multi-processor
systems. Developers specify how a system is composed
from software components like tasks and packages and
hardware components like processors and memories.
An associated toolset performs syntactic and semantic
checks, generates and analyzes various models of the
system, and automatically tailors a system executive
to integrate all the components together as specified.
Figure 3 shows the current toolset.

Low-level software constructs of the MetaH lan-
guage describe source components written in a tradi-
tional programming language (currently Ada, C and
C++). The source components themselves are de-
veloped using other methods and specialized tools,
e.g. reengineered, autocoded[19, 20]. Subprogram and
package specifications describe the aspects of source
modules that are needed to integrate them into a
system, e.g. name of the file containing the source
code, nominal and maximum compute times on vari-
ous kinds of processors, stack and heap requirements.
Events (user-specified enumeration literals used in cer-
tain service calls) and ports (buffer variables used to
hold message values) can appear within source mod-
ules and must be accurately specified (the tools will

Initial region

-52-^^^ifGuard then X 2:= [^5],

Step 1: Time Successor

if »

x-x-äiKwfr-x-x

/

if Guard then X2:=[4,5]_ ^Sl if Guard then X^TA^V^i^)

Step 2: Intersection with Invariant Constraint Step 3: Intersection with Transition Guard

assign X 2 := [4,5]

if Guard then X := [4,5] Ss-Si

Step 4: Unconstrain Assigned Variable Step 5: Intersect with Variable Assignment

Figure 2: Hybrid Automata Reach Forward Operations

parse selected source files and check for consistency
with the specifications).

The higher-level software constructs of the MetaH
language are processes, macros and modes. Processes
group together source modules that are to be sched-
uled as either periodic or aperiodic tasks. A pro-
cess is also the basic unit of fault containment, and
memory protection and compute time enforcement are
supported for some target processor configurations.
Macros and modes group processes, define connections
between events and ports, and define equivalences be-
tween packages that are to be shared between pro-
cesses. The difference between macros and modes is

that macros run in parallel with each other, while
modes are mutually exclusive and are used to spec-
ify alternative run-time configurations. Event con-
nections between modes are used to define hierarchi-
cal mode transition diagrams, where mode changes at
run-time can stop or start processes or change connec-
tions.

MetaH allows hardware architectures to be spec-
ified using memory, processor, channel, and device
components grouped into systems. Hardware objects
may have ports, events or packages in their interfaces.
Software and hardware ports and events can be con-
nected to each other, and software can access hard-

reengineered

automatically
generated >

hand-coded
V

source component
repository

executive
configurer

application
builder

I
load

image

graphical
editor

textual
editor

schedulability
modeler

schedulability
analyzer

workspace HW/SW
binder

reliability
modeler

reliability
analyzer

analysis results

partition isolation
modeler

partition isolation
analyzer

j hybrid automataj
i modeler |

| reachability j
| analyzer j

Figure 3: MetaH Toolset

ware packages (hardware packages provide hardware-
dependent service calls). Hardware descriptions iden-
tify (among other things) hardware-dependent source
code modules for device drivers, and code to provide a
standard interface between the automatically config-
ured executive and the underlying real-time operating
system.

A simple software/hardware binding tool assigns to
hardware those software objects in a specification that
are not explicitly assigned, possibly subject to user-
specified constraints.

Using information contained in the MetaH speci-
fication and produced by the executive configuration
tool, the schedulability modeler generates a detailed
preemptive fixed priority schedulability model of the
application. The model includes all scheduling and
communication overheads. The schedulability analy-
sis algorithm we currently use is an extension of the
exact characterization algorithm[18, 22]. Our analysis
tool produces sensitivity analysis information describ-
ing how compute times may be changed while pre-
serving (or in order to achieve) schedule feasibility;
and it allows processes to be decomposed into com-
ponent source modules and provides analysis data for
individual source modules.

The MetaH language includes a construct called an
error model, which allows users to specify sets of fault
events and error states and behaviors. Objects within
a specification can be annotated to specify the error
model, specific fault rates to use for that object, and
consensus expressions to model voting protocols and
fault-tolerance requirements. We have a prototype re-
liability modeling tool that generates a stochastic con-
current process reliability model[16, 21]. A subset of
the reachable state space of this stochastic concurrent
process is a Markov chain that can be analyzed using

existing tools and techniques[16, 17].
MetaH can support time and space partitioning[l].

Protected address spaces and special scheduling tech-
niques are used in a way that allows certain guaran-
tees to be made about fault containment. If it can be
shown that a defect in one component cannot possibly
cause incorrect behavior in another component, then
it is possible to simplify or eliminate certain verifica-
tion activities. The partition isolation modeling and
analysis tool checks such conditions. We note that
the MetaH executive, which enforces partitioning and
was the object of our formal verification work, must
be verified to the highest level.

4 MetaH Executive Modeling
Figure 4 shows the high-level structure of the

MetaH executive. The core task scheduling operations
are implemented by Threads, e.g. start, dispatch,
complete. Threads invokes operations in TimeJ51ice,
which encapsulates arithmetic operations and tests
on two execution time accumulators maintained by
the underlying RTOS and hardware for each task:
an accumulator that increases while a task executes,
and a time slice that decreases while a task executes.
Time_Slice may set these variables to desired val-
ues using services provided through the MetaH RTOS
interface. If time slicing is enabled for a task,
then a trap will be raised by the underlying hard-
ware and RTOS when the time slice reaches zero. This
trap is handled by one of the operations in Threads.
Clock_Handler is periodically invoked by the underly-
ing system (it is the handler for a periodic clock inter-
rupt) and makes calls to Threads to dispatch periodic
tasks and start and stop threads at mode changes.
Events, Modes and Semaphores contain data tables
and operations to manage user-declared events, dy-

Threads

Time Slice

Events

Semaphores

Modes

MetaH RTOS interface

POSIX or Ada95 or other kernel

hardware

Figure 4: MetaH Executive Structure

namic reconfiguration, and semaphores.
Most of these modules include code that is au-

tomatically generated by the configuration tool and
code that is common across all applications. Threads,
Time_Slice and Semaphores use only generated data
tables, all the executable code is common to all appli-
cations. Modes contains only generated data tables
and no executable code at all. Clock-Handler in-
cludes some automatically generated case statements
that periodically call Threads operations at different
rates in different modes. Events includes some auto-
matically generated case statements to vector events
to the proper Threads operations in different modes.

As Figure 4 illustrates, Threads provides the core
scheduling operations that are invoked by the other
modules. Only Threads and Time_Slice make calls
to underlying RTOS services such as suspend, resume,
and set priority. All trap and interrupt events even-
tually result in calls to Threads operations. Threads
and Time-Slice account for about 1800 of the 2800
lines of non-application-specific, non-target-specific
code in the executive. It is these two modules for
which we created linear hybrid automata models.

In essence, each Threads operation is a kind of
event that transitions a thread from one schedul-
ing state to another. Threads implements 13 basic
scheduling operations on tasks. Figure 5 illustrates
the general code structure for an operation. There is
a global array that maintains state information about
each task, including the scheduling state (there are
15 scheduling states). For example, the Dispatch
operation in Figure 5 will transition a thread in the
Awaiting-Dispatch state to the Computing state.

Figure 5 also illustrates how the operation can be
influenced by other factors, such as the application
developer's choice for the handling of dispatch events
that arrive for an aperiodic process while it is still ser-
vicing a previous event. Many decisions made during
execution are dependent on the task subtype (peri-
odic, transformed periodic, incremental periodic, pe-
riod enforced aperiodic, slack scheduled aperiodic).
Much of the data used to make decisions in the code is
contained in declarations and tables generated by the

MetaH toolset. In particular, an array of static data
is generated that describes for each task its subtype,
whether it has enforced execution time limits and what
they are, its scheduling priority, the semaphores it is
allowed to lock and unlock, etc.

The implementation is complicated by the fact
that the task state transition diagram is hierarchi-
cal rather than flat. The scheduling states associ-
ated with semaphore locking and unlocking, and with
the controlled time-slicing of period transformed and
slack scheduled tasks, form sub-state-machines that
can be called, subprogram-like, from any of the start-
ing or computing or recovering states. A state variable
(Return_To_State in Figure 5) is used in the code to
record the return state. (The current executive imple-
mentation does not supported nested semaphore lock-
ing-)

Rather than write a separate model of this code
using a specialized modeling language, we inserted
model-building calls into the Threads and Time_Slice
code. For example, the code in Figure 5 had a call in-
serted to a subprogram that would create an edge be-
tween the Await_Dispatch and the Computing mod-
eling states for the task identified by the Thread pa-
rameter. A test driver was written that first created
discrete model states for all tasks in the application,
then called each Threads operation. Subprograms
were added to Threads so that this test driver could
first explicitly set the values of any relevant internal
state variables. The test driver called every operation
on every thread with every possible setting of mod-
eled internal state variables. To put this another way,
the test driver exercised every modeled path through
the Threads and Time-Slice code, thereby including
in the model every possible modeled transition that
might occur at run-time for every task.

A special target processor specification was devel-
oped that provided a null MetaH processor interface,
except that the test driver was substituted for the
normal code to begin application execution. From
the user's perspective, a new target processor speci-
fication was added to the MetaH library, where the
execution of an application built for this processor re-

Thread_State_Type is

record

Scheduling_State: State.Type;

Dispatch.Enqueued: Boolean;

Return_To_State: State.Type;

end record;

State: array (Thread_ID_Type) of Thread_State_Type;

procedure Dispatch (Thread: Thread_ID_Type;
Busy_Option: Option.Type) is

begin
case State(Thread).Scheduling_State is

when Awaiting.Dispatch =>

State(Thread).Scheduling.State := Computing;

Time_Slice.Dispatch (Thread);

MetaH_Processor_Interface.Resume (Thread);

when Computing =>

case Busy_Option is

when Ignore_Dispatch =>

null;
when Enqueue_Dispatch =>

State(Thread).Enqueue_Dispatch := True;

when Raise_Fault =>
Threads.Thread_Error (Thread, Lost_Event);

end case;

when ... =>

end case;

end Dispatch;

Figure 5: Thread Code Structure

suited in the generation and analysis of a linear hybrid
automata model for that application (after a few spe-
cial modeling fields added to the task data tables were
filled in by hand). The modeling and analysis for any
specific application specification is thus largely auto-
mated and appears as a new analysis tool as illustrated
in Figure 3.

The timing of the calls to some Threads operations
is important. Periodic tasks are dispatched at a speci-
fied rate by the Clock_Handler, a module that we did
not model explicitly. The behavior (but not the de-
tailed code structure) of Clock-Handler is implicitly
modeled using timer variables for each task, where
a guard on each dispatch model edge enables a dis-
patch transition only when the timer equals the spec-
ified task period, and an assignment on each dispatch
model edge then resets that timer to zero (recall the
use of variable t in Figure 1). Timer variables are also
used to model the timing of certain period transfor-
mation and period enforcement operations.

The models specified that starting, computing, re-
covering and locking times might be anywhere be-
tween zero and the nominal values in the specification.
For systems with enforced execution times, we speci-
fied nominal compute values that would cause dead-
lines to be missed if any limit was improperly enforced.
The nominal compute times exceeded the enforced
maximum compute times in these specifications (not
what one would normally encounter), and the toolset
was directed to use enforced rather than nominal com-

pute times for schedulability analysis. For aperiodic
tasks the model allowed the period between succes-
sive dispatch events to be any value between half the
enforced period and twice the system hyperperiod.

We also introduced model variables for certain pro-
gram variables that appear in the implementation
code. For example, the variable that records whether
an event is enqueued for an aperiodic task was mod-
eled (this is a bounded queue, currently bounded at
a single event). Guards involving this variable de-
termine whether a busy aperiodic task transitions to
the Awaiting-Dispatch, Computing or Recovering
state when it becomes possible to service another
event. The variable that records the Return_To .State
for the semaphore locking and period transformation
sub-state-machines was modeled. This variable is as-
signed on every edge that enters one of these sub-state-
machines. Edges appear in the model from these sub-
states back to every possible calling state, where a
guard determines which state is actually transitioned
to based on the value of the Return_To_State variable.

Finally, we introduced variables to model controlled
time slicing and execution time enforcement. This was
the most complicated aspect of our modeling work,
partly because there is some nested program logic
split between Threads and Time_Slice, and partly
because there are some subtle issues involved in mod-
eling the complex sequences of assignments that ap-
pear in the code. Even then we simplified our problem
by not modeling slack scheduling and excluding slack-
scheduled task types in our analyses.

In order to enforce blocking time bounds, the
MetaH executive can enforce semaphore locking time
limits that are distinct from overall compute time lim-
its. One of the most complex time variable manipu-
lations involves the saving and restoring of execution
time information when semaphores are locked and un-
locked. The exact set of assignments performed by the
lock and unlock operations is determined by program
logic (modeled using multiple edges, guards and as-
signments), but one sequence of assignments that is
sometimes executed at a lock is

Previous_Time_Slice(T) := Time_Slice(T);

Previous_Execution_Time(T) := Execution_Time(T);
Time_Slice(T) := Locking.Limit (T, S);

followed at the unlock by

Time_Slice(T) := Previous_Time_Slice(T)

- (ExecutionJTime(T)

- Previous_Execution_Time(T));

TimeJSlice appears on both the right-hand and
the left-hand side of the first block of assign-
ments. These assignments must be modeled in
multiple phases: free Previous_Time_Slice and
Previous_Execution_Time; intersect the constraints
Previous_Time_Slice = Time_Slice and
Previous_Execution_Time = Execution-Time; and
then a final assignment (free then constrain) to
Time_Slice. It was not necessary to introduce inter-
mediate discrete states to model a sequence of assign-
ments, but it was necessary to extend the reachability
tool to allow sequences of assignments on a transition
edge.

A second and more subtle effect is due to the
semantics of time succession. Time-Slice and
Execution-Time are not normal program variables,
they are time-varying accumulators maintained by the
underlying RTOS using hardware timers. Whenever
task T is executing, the values of these variables change
at rates of-1 and 1 respectively. In the unlock assign-
ment, if we simply imposed the constraint

Time_Slice(T) = Previous_Time_Slice(T)
- (Execution_Time(T)

- Previous_Execution_Time(T));

then during the next time successor operation at
which task T is executing, both Time_Slice and
Execution-Time would change. The time succes-
sor operation will maintain this constraint between
the two time-varying variables as time passes. How-
ever, what we really want to model is that the
value of Time_Slice depends on what the value of
Execution-Time was at a particular instant of time,
the most recent unlock of the semaphore. In order to
do this we must introduce a zero-rate sampling vari-
able and model the assignment as if it had been coded

Sampled_Execution_Time(T) := Execution_Time(T);

Time_Slice(T) := Previous_Time_Slice(T)

- (Sampled_Execution_Time(T)

- Previous-Execution_Time(T));

The assignment constraint imposed at the time of
this transition will constrain Time-Slice relative to
zero-rate variables only as time passes. The value of
Time_Slice as time passes will depend on the sampled
execution time when the unlock occurred rather than
on the time-varying ExecutionJTime accumulator.

A total of 14 real-valued variables and 15 discrete
states were denned to model each task. No single task
model used all 14 variables and 15 states, different
task types with different specified options used dif-
ferent combinations. In order to minimize the num-
ber of variables that had to be manipulated during
reachability analysis, we inserted free operations for
selected variables on selected edges to undefine and
remove them from the model (e.g. Return_To_State
was freed on each edge leading out of one of the sub-
state-machines). Figure 6 shows the simplest linear
hybrid automata model we generated, a periodic task
with period and deadline of lOOOOOus, compute time
between 0 and 90000us, recovery time between 0 and
lOOOOus. States are also annotated with processor
scheduling priorities, which are not shown here. The
variable rates were derived from the scheduling prior-
ities by the analysis tool, which used preemptive fixed
priority scheduling semantics for this study.

The conditions we checked during reachability
analysis were that all deadlines were met whenever
the schedulability analyzer said an application was
schedulable; no accessed variables were undefined and
no invariants were violated on entry to a region; and
no two tasks were ever in a semaphore locking state
simultaneously. In addition, the code itself includes
some assertion checks. These were modeled by edges
annotated with assert False.

Current reachability analysis methods are not capa-
ble of analyzing applications of real-world complexity

involving several tasks. However, the modeled code
does not change from application to application, only
the configuration tables that it uses. Our goal was
to obtain some assurance that this fixed code is cor-
rect using a specific finite set of verification exercises.
We developed a set of MetaH application specifica-
tions for one and two task systems that modeled a
variety of combinations of task subtypes and tasking
options, described in Table 1. Our results to date are
a hybrid between testing and verification, where we
verify the code for a specific set of configuration ta-
bles for a specific set of applications. Each exercise
verifies correctness for all possible compute times and
event sequences that are possible in each application
configuration.

We defined a verification coverage metric to in-
crease our assurance of correctness. We collected
information about which edges were used by some
transition during reachability analysis and compared
this with all the possible edges that might be created
(all instances of calls inserted into the code to cre-
ate edges). This metric determined if a piece of code
was modeled by an edge that appears in the model
and also insured that some analysis examined possi-
ble run-time transitions over that edge, analogous to
measuring path coverage during unit testing. Edges
used to model internal code assertion failures caused
no run-time transitions. A few edges were not used
because we omitted dynamic reconfiguration from our
exercise, one edge would have been used only under
overload conditions. After examining this data for our
initial set of applications, we discovered that two addi-
tional configurations were needed to achieve complete
coverage of the remaining edges, one of which revealed
a defect that had gone undetected.

5 Results
We discovered nine defects in the course of our ver-

ification exercise. Four of these were tool defects, two
that could cause bad configuration data to be gener-
ated and two that could cause erroneously optimistic
schedulability models to be generated. Six of these
defects could cause errors only during the handling
of application faults and recoveries, three of these six
only in the presence of multiple near-coincident faults
and recoveries.

We have not performed a systematic unit testing
of the threads operations, but we believe the effort re-
quired for our modeling and analysis is roughly compa-
rable. The effort required to develop test drivers and
test cases that will drive execution along all paths is
probably comparable. Unit testing does not require
the insertion of modeling code, but does sometimes
require the development of code to set internal vari-
ables and observe intermediate results. Also, we did
not have to determine acceptable results for each unit
test.

We have not performed a systematic requirements
testing of the MetaH toolset and executive, but we be-
lieve the approach outlined in this paper provides more
thorough defect detection than is likely to be achieved
in practice using requirements testing of the features
we modeled. The thoroughness of requirements test-
ing depends partly on the available resources and

Stopped

0 < T < 100000

if T= 100000

T:=0,C:=0,XT:=0

Figure 6: Generated Hybrid Automata Model for a Simple Periodic Task

Description Discrete
States

Distinct
Polyhedra

Sparc Ultra-2
CPU Seconds

one periodic task 7 7 0
one periodic task, enforced execution time limits 7 10 0
one periodic task, enforced execution time limits, one semaphore 8 29 15
one period-enforced aperiodic task 9 18 0
one period-enforced aperiodic task, enforced execution time limits 9 27 2
one period-enforced aperiodic task, enforced execution time limits, one
semaphore

11 124 125

two periodic tasks 36 60 3
two periodic tasks, enforced execution time limits 36 108 24
two periodic tasks, one with period transformed into two pieces, 41 97 10
two periodic tasks, one shared semaphore 48 118 36
two periodic tasks, one with period transformed into two pieces, enforced
execution time limits

41 174 87

two periodic tasks, one with period transformed into four pieces, enforced
execution time limits, recovery limit greater than compute limit

40 334 103

two tasks, one periodic and one period-enforced aperiodic 44 623 115
two periodic tasks, one with period transformed into four pieces, enforced
execution time limits

41 351 170

two tasks, one periodic and one period-enforced aperiodic, enforced ex-
ecution time limits

44 425 184

two tasks, one periodic and one period-enforced aperiodic, one shared
semaphore

70 638 840

two periodic tasks, one with period transformed into two pieces, enforced
execution time limits, one shared semaphore

55 963 5658

Table 1: Modeled Applications

partly on the experience and perversity of the indi-
viduals doing the testing. In our judgement, of the
nine defects we found, one would almost certainly have
been detected by moderately thorough requirements
testing, while three would have been almost impossi-
ble to detect by testing due to the multiple carefully
timed events required to produce erroneous behavior.
The other five may have been detected by thorough
requirements testing of fault and recovery features,
providing the tester thought about possible execution
timelines and arranged for tasks to consume carefully
selected amounts of time between events.

Structured review (inspection, walk-through) is an-
other common and highly effective method for detect-
ing defects. In some ways our modeling effort resem-
bled a semi-formal review of the design and code. The
generated linear hybrid automata models, which we
printed in a readable form, provided a good abstract
description of the scheduling behavior. This descrip-
tion had good intuitive traceability both to the code
and to some of the original requirements specifications.
We recommend that the approach outlined in this pa-
per be broadly construed to include explicit review of
the design, code and linear hybrid automata models.
One of the defects we detected was discovered during
a review of the linear hybrid automata model rather
than by reachability analysis.

We did not explicitly model the details of
Clock-Handler or Events, which are generated
application-specific modules. We modeled the mode
change (dynamic reconfiguration) that occurs at sys-
tem start-up but not any application-triggered mode
changes. Our models did not account for the fact that
executive operations require a small but finite amount
of time and are performed non-preemptively. We did
not model any multi-processor behaviors. These can
all be modeled in a fairly straight-forward and intu-
itive way using linear hybrid automata, but we cannot
say at what point the models would become unanalyz-
able using our current reachability methods. Whether
or not slack scheduling or complex priority inheritance
protocols could be easily modeled is an open question.

There are many non-scheduling executive behav-
iors that were not modeled, including some behav-
iors supported in part by code in Threads such as
message copying, instrumentation, and status report-
ing. In our judgement, it is fairly easy to informally
distinguish between specified behaviors that are mod-
eled, and specified behaviors that are not modeled and
would need to be verified using traditional require-
ments testing or other methods.

A number of limitations would exist even with the
most detailed and complete linear hybrid automaton
model. Some sort of induction argument is needed
to establish correctness of the scheduling code for all
possible application configurations. The MetaH pro-
cessor interface, underlying RTOS and hardware were
not modeled and are unlikely to be fully model-able
for a variety of practical and technical reasons. The
MetaH tools were not verified, only a few specific gen-
erated modules and reports for a few example appli-
cations. Although our approach provides good trace-
ability between code and model, there is still a very
real possibility of modeling errors. The reachability

analysis tool may contain defects; we discovered two
in our tool in the course of this work. Even if the
source code is correct, defects in the compiler, linker
or loader software could introduce defects into the ex-
ecutable image.

6 Future Work
It should be possible to use the set of reachable re-

gions produced by the analysis tool to automatically
generate tests. This could significantly reduce the cost
and increase the quality of requirements testing (which
might still be required by the powers-that-be). Such
tests could also detect defects that could not be found
by model analysis, such as defects in the compiler,
linker, loader, RTÖS or hardware. One of the issues
that must be confronted is the ease of constructing,
running and observing the results of tests; for exam-
ple, in theory one might encounter transitions in the
model that occur only when an accumulated execution
time is exactly equal to some fixed value, which would
be practically impossible to do in a test. Another issue
is that such tests would not take into account the in-
ternal logic of unmodeled modules such as the RTOS;
a systematic method for testing multiple points within
each reachable polyhedron might help address this.

There are a number of potentially useful improve-
ments in analysis methods and tools. Approximation
and partial order methods might significantly increase
the size of the model that could be analyzed[10, 14,
11, 25]. It is possible to apply theorem proving meth-
ods to linear hybrid automata[15], and some work has
been done on dense-time process algebras[8, 9]. De-
composition and induction methods currently being
explored for discrete state models might be extensi-
ble to linear hybrid automata. There are a number
of possible ways to visualize and navigate the reach-
able region space that would be of practical assistance
during model development and debugging and during
reviews. Concise APIs and support for in-line mod-
eling could reduce both the modeling effort and the
number of modeling defects.

Changes will inevitably be required to the design,
implementation and verification processes to make
good use of these methods. An important and not
completely technical question is how verification pro-
cesses might be changed to beneficially use these meth-
ods. What evidence would be required, for example,
to convince a development organization or regulatory
authority to replace selected existing verification ac-
tivities with modeling and analysis activities, or to
add modeling and analysis to current verification ac-
tivities?

References
[1] Design Guidance for Integrated Modular Avion-

ics, AEEC/ARINC 651, Airlines Electronic En-
gineering Committee/ Aeronautical Radio Inc.,
1991.

[2] MetaH User's Guide, Honeywell Technology Cen-
ter, 3660 Technology Drive, Minneapolis, MN,
www.htc.honeywell.com/metah.

[3] K. Altisen, G. Göbler, A. Pnueli, J. Sifakis, S.
Tripakis and S. Yovine, "A Framework for Sched-

uler Synthesis," Real-Time Systems Symposium,
December 1999.

[4] Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin
Ho, "Automatic Symbolic Verification of Embed-
ded Systems," IEEE Transactions on Software
Engineering, vol. 22, no. 3, March 1996, pp 181-
201.

[5] Pam Binns, "Scheduling Slack in MetaH," Real-
Time Systems Symposium, work-in-progress ses-
sion, December 1996.

[6] Pam Binns, "Incremental Rate Monotonie
Scheduling for Improved Control System Per-
formance," Real-Time Applications Symposium,
1997.

[7] Pam Binns and Steve Vestal, "Message Passing
in MetaH using Precedence-Constrained Multi-
Criticality Preemptive Fixed Priority Schedul-
ing," Honeywell Technology Center, Minneapolis,
MN 1999.

[8] Patrice Bremond-Gregoire and Insup Lee, "A
Process Algebra of Communicating Shared Re-
sources with Dense Time and Priorities," Uni-
versity of Pennsylvania Department of Computer
Science Technical Report MS-CIS-95-08, June
1996.

[9] Andre N. Fredette, A Generalized Approach to
the Analysis of Real-Time Computer Systems,
Ph.D. Dissertation, North Carolina State Univer-
sity, March 1993.

[10] Nicolas Halbwachs, Yann-Erik Proy and Patrick
Roumanoff, "Verification of Real-Time Systems
using Linear Relation Analysis," Formal Methods
in System Design, 11 (2): 157-185, August 1997.

[11] Nicolas Halbwachs, Pascal Raymond and Yann-
Eric Proy, "Verification of Linear Hybrid Systems
by Means of Convex Approximations," Workshop
on Verification and Control of Hybrid Systems,
Piscataway, NJ, October 1995.

[12] Thomas A. Henzinger, Peter W. Kopke, Anuj
Puri and Pravin Varaiya, "What's Decideable
About Hybrid Automata?" Proceedings of the
27th Annual ACM Symposium on Theory of
Computing, 1995.

[13] Thomas A. Henzinger, Pei-Hsin Ho and Howard
Wong-Toi, "HyTech: The Next Generation,"
Real-Time Systems Symposium, December, 1995.

[14] Thomas A. Henzinger and Pei-Hsin Ho, "A Note
On Abstract Interpretation Strategies for Hy-
brid Automata," Hybrid Systems II, also Lecture
Notes in Computer Science 999, Springer-Verlag,
1995.

[15] Thomas A. Henzinger and Vlad Rusu, "Reach-
ability Verification for Hybrid Automata," Pro-
ceedings of the First International Workshop

on Hybrid Systems: Computation and Control,
also Lecture Notes in Computer 1386, Springer-
Verlag, 1998.

[16] Holger Hermanns, Ulrich Herzog and Vassilis
Mertsiotakis, "Stochastic Process Algebras as a
Tool for Performance and Dependability Model-
ing," Proceedings of the IEEE International Com-
puter Performance and Dependability Symposium
(IPDS'95), April 24-26, 1995, Erlangen, Ger-
many.

[17] Allen M. Johnson, Jr. and Miroslaw Malek, "Sur-
vey of Software Tools for Evaluating Reliability,
Availability, and Serviceability," ACM Comput-
ing Surveys, v20 n4, December 1988.

[18] J. Lehoczky, L. Sha and Y. Ding, "The Rate
Monotonie Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior," IEEE
Real-Time Systems Symposium, 1989, pp 166-
171.

[19] Bruce Lewis, "Software Portability Gains Real-
ized with MetaH, an Avionics Architecture De-
scription Language," 18th Digital Avionics Sys-
tems Conference, St. Louis, MO, October 24-29,
1999.

[20] David J. McConnell, Bruce Lewis and Lisa Gray,
"Reengineering a Single Threaded Embedded
Missile Application onto a Parallel Processing
Platform using MetaH," Proceedings of the 4th

Workshop on Parallel and Distributed Real-Time
Systems, 1996.

[21] Frederick T. Sheldon, Krishna M. Kavi and
Farhad A. Kamangar, "Reliability Analysis of
CSP Specifications: A New Method Using
Petri Nets," Proceedings of AIAA Computing In
Aerospace, San Antonio, TX, March 28-30, 1995.

[22] Steve Vestal, "Fixed Priority Sensitivity Analysis
for Linear Compute Time Models," IEEE Trans-
actions on Software Engineering, April 1994.

[23] Steve Vestal, "An Architectural Approach for
Integrating Real-Time Systems," Workshop on
Languages, Compilers and Tools for Real-Time
Systems, June 1997.

[24] Steve Vestal, "Linear Hybrid Automata Mod-
els of Real-Time Scheduling and Allocation in
Distributed Heterogeneous Systems," Honeywell
Technology Center, Minneapolis, MN 1998.

[25] Steve Vestal, "A New Linear Hybrid Automata
Reachability Procedure," Honeywell Technology
Center, Minneapolis, MN 1999.

