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Real-Time Concurrent Processes 

Executive Summary 
This section provides an executive summary of the work performed during the period April 1997 
through March 2000. This section also outlines future work activities that may result in additional 
significant advances and benefits. A more extensive summary appears in an attached paper[15], 
various technical details are described in attached papers[12, 13, 14]. 

The first goal of the work described in this report was to analyze the schedulability of real-time 
systems that cannot be easily modeled using traditional scheduling theory. Traditional real-time 
task models cannot easily handle variability and uncertainty in clock and computation and com- 
munication times, synchronizations (rendezvous) between tasks, remote procedure calls, anomalous 
scheduling in distributed systems, dynamic reconfiguration and reallocation, end-to-end deadlines, 
and timeouts and other error handling behaviors. 

The second goal was to verify software implementations of systems. Task schedulers and communi- 
cations protocols are reactive components that respond to events like interrupts, service calls, task 
completions, error detections, etc. We would like to model important implementation details such 
as control logic and data variables in the code. We would like the mapping between model and code 
to be clear and simple to better assure that the model really does describe the implementation. 

Discrete event concurrent process models are widely used to model control flow within and interac- 
tions between concurrent activities. Classical discrete event concurrent process models do not deal 
with resource allocation and scheduling or data variables, which limits their usefulness for real- 
time systems and makes it awkward to model some implementation details. Classical preemptive 
scheduling models do not deal with complex task sequencing and interaction, which limits their 
usefulness for describing distributed systems and implementation details. Discrete time models 
have been developed for real-time scheduling of concurrent processes[10, 5, 4, 11], and some work 
has been done on dense time real-time process algebras[3, 6]. This report describes the use of dense 
time linear hybrid automata models to perform schedulability analysis and to verify implementation 
code. 

The first problem we faced was the modeling of resource allocation and scheduling behaviors using 
hybrid automata. The applicability in principle of hybrid automata to the scheduling problem 
was already known[2], but the examples published in the research literature did not deal with 
some important practical problems. We wanted a model that would admit a variety of complex 
allocation as well as scheduling algorithms, e.g. load balancing, dynamic priorities. We wanted 
to be able to change the allocation and scheduling algorithms easily without changing the models 
of the real-time tasks themselves. We wanted to minimize the number of states and variables 
added to model allocation and scheduling. We found it most general and efficient to extend the 
definition of hybrid automata to include resource allocation and scheduling semantics rather than 
try to model the scheduling function as a hybrid automaton. The result is a very powerful model 
that admits distributed heterogeneous systems with a great variety of dynamic reallocation and 
scheduling algorithms, and our experience confirms that hybrid automata models are well-suited 
to this domain. This is described in detail in attached papers[12, 13]. 

We use integration variables to record the accumulated compute time of tasks in preemptively 
scheduled systems. Allowing integration variables is known to make the reachability problem 
undecidable[9, 7]. We were curious about whether analysis of real-time allocation and scheduling 
in distributed heterogeneous systems is itself a fundamentally difficult problem, or if general linear 
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hybrid automata are more powerful than is really necessary for this problem. We were able to 
show that the reachability problem becomes decidable when some simple pragmatic restrictions are 
placed on the model. The proof is by reduction to a discrete time finite state automaton, which 
establishes an equivalence between dense time and discrete time models for this problem with these 
restrictions. However, there remain some interesting open questions in this area. This is described 
in greater detail in an attached paper[12]. 

The second problem we faced was the computational difficulty of performing a reachability anal- 
ysis. We began our work using an existing linear hybrid automata analysis tool, HyTech[8], but 
found ourselves limited to very small models. We developed and implemented a new reachability 
method that was significantly faster, more numerically robust, and used less memory. However, 
our prototype tool allows only constant rates (not rate ranges) and does not provide parametric 
analysis. We further increased the size of model we could analyze by applying some results from 
traditional scheduling theory to condition the models, and by using a simple partial order reduction 
technique. These results are described in detail in an attached paper[13]. 

Using this new reachability procedure we were able to accomplish one of our goals: the modeling and 
verification of a piece of real-time software. We developed a hybrid automata model for that portion 
of the MetaH real-time executive that implements uniprocessor task scheduling, time partitioning 
and error handling[l]. We successfully analyzed these models, uncovering several, implementation 
defects in the process. There are limits on the degree of assurance that can be provided, but in 
our judgement the approach may be significantly more thorough and significantly less expensive 
that traditional testing methods. This result suggests the technology has reached the threshold of 
practical utility for the verification of small amounts of software of a particular type. These results 
are described in detail in an attached paper[14]. 

There are two major areas of activity that may yield significant future benefits. These are discussed 
in somewhat more detail in attached papers[13, 14]. 

Our results to date are, in our judgement, adequate to verify certain pieces of software of real- 
world size and complexity, but not yet adequate to verify large pieces of software or perform a 
schedulability analysis for a distributed system of useful size. There are, however, several approaches 
that might increase by another two orders of magnitude or more the size of problem that can be 
analyzed. Our preliminary work has shown how conditioning a model by conservatively changing 
the numeric parameters can significantly reduce the complexity of analysis; and how the use of a 
partial order reduction method adapted to hybrid automata can reduce the complexity of analysis. 
We and others have explored methods that approximate a set of polyhedra by a single containing 
polyhedra. Success to date has been limited, our experience has been that it is difficult to achieve 
significant reductions in solution complexity while at the same time retaining sufficient accuracy. 
However, we believe approximation methods can be refined to achieve this. We also need to extend 
our methods to support ranges of variable rates, to provide parametric analysis, and to make more 
convenient a variety of practical tasks such as specification and debugging and visualization. 

The methods we have developed are likely to be applicable to domains other than just hard real- 
time scheduling. Hybrid automata models have been widely discussed in the research literature for 
certain types of feed-back control problems, our improved reachability analysis methods may enable 
practical application in some cases. Our basic approach of adding domain semantics might work for 
other applications whose models include many concurrent processes. Our approach to scheduling 
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is to categorize general and easily computed policies applied to a class of related problems, rather 
than attempt to synthesize a specific controller for a specific problem. Planning and scheduling, 
for example, has traditionally relied on computationally intensive off-line generation of static plans 
that are not dynamically adaptable to contingencies that occur during execution. This domain 
might benefit from an approach similar to that used for real-time scheduling, where a very efficient 
and analytically verifiable (if not always optimal) policy is used to rapidly make decisions on-line. 
Another new domain of applicability is software testing, where points selected from the reachable 
set of regions produced from a model could be used for automatic test generation. 
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Using Extended Linear Hybrid Automata 
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Abstract 
Linear hybrid automata are finite state automata 

augmented with real-valued variables. Transitions be- 
tween discrete states may be conditional on the val- 
ues of these variables and may assign new values to 
variables. These variables can be used to model real 
time and accumulated task compute time as well as 
program variables. Although it is possible to encode 
preemptive fixed priority scheduling using existing lin- 
ear hybrid automata models, we found it more general 
and efficient to extend the model slightly to include 
resource allocation and scheduling semantics. Under 
reasonable pragmatic restrictions for this problem do- 
main, the reachability problem is decidable. The proof 
of this establishes an equivalence between dense time 
and discrete time models given these restrictions. We 
next developed a new reachability algorithm that sig- 
nificantly increased the size of problem we could ana- 
lyze, based on benchmarking exercises we carried out 
using randomly generated real-time uniprocessor work- 
loads. Finally, we assessed the practical applicabil- 
ity of these new methods by generating and analyz- 
ing hybrid automata models for the core scheduling 
modules of an existing real-time executive. This ex- 
ercise demonstrated the applicability of the technology 
to real-world problems, detecting several errors in the 
executive code in the process. We discuss some of the 
strengths and limitations of these methods and possi- 
ble future developments that might address some of the 
limitations. 

1    Introduction 
The first goal of the work described in this pa- 

per was to analyze the schedulability of real-time sys- 
tems that cannot be easily modeled using traditional 

"This work has been supported by the Air Force Office of 
Scientific Research under contract F49620-97-C-0008. This pa- 
per appears in the proceedings of the NASA Langley Formal 
Methods Workshop, June 2000. 

scheduling theory. Traditional real-time task mod- 
els cannot easily handle variability and uncertainty in 
clock and computation and communication times, syn- 
chronizations (rendezvous) between tasks, remote pro- 
cedure calls, anomalous scheduling in distributed sys- 
tems, dynamic reconfiguration and reallocation, end- 
to-end deadlines, and timeouts and other error han- 
dling behaviors. 

The second goal was to verify software implemen- 
tations of systems. Task schedulers and communica- 
tions protocols are reactive components that respond 
to events like interrupts, service calls, task comple- 
tions, error detections, etc. We would like to model 
important implementation details such as control logic 
and data variables in the code. We would like the map- 
ping between model and code to be clear and simple 
to better assure that the model really does describe 
the implementation. 

Discrete event concurrent process models are widely 
used to model control flow within and interactions be- 
tween concurrent activities. Classical discrete event 
concurrent process models do not deal with resource 
allocation and scheduling or data variables, which lim- 
its their usefulness for real-time systems and makes 
it awkward to model some implementation details. 
Classical preemptive scheduling models do not deal 
well with complex task sequencing and interaction, 
which limits their usefulness for describing distributed 
systems and implementation details. Discrete time 
models have been developed for real-time schedul- 
ing of concurrent processes[23, 13, 11, 31], and some 
work has been done on dense time real-time pro- 
cess algebras[10, 14]. This paper describes the use of 
dense time linear hybrid automata models to perform 
schedulability analysis and to verify implementation 
code. 

The first problem we faced was the modeling of re- 
source allocation and scheduling behaviors using hy- 
brid automata.   The applicability in principle of hy- 



brid automata to the scheduling problem was already 
known[4]. We wanted a model that would admit 
a variety of complex allocation as well as schedul- 
ing algorithms, e.g. load balancing, priority inheri- 
tance. We wanted to be able to change the allocation 
and scheduling algorithms easily without changing the 
models of the real-time tasks themselves. We wanted 
to minimize the number of states and variables added 
to model allocation and scheduling. We found it most 
general and efficient to extend the definition of hybrid 
automata to include resource allocation and schedul- 
ing semantics rather than try to model the scheduling 
function as a hybrid automaton. 

We use integration variables to record the accumu- 
lated compute time of tasks in preemptively sched- 
uled systems. Allowing integration variables is known 
to make the reachability problem undecidable[22, 17]. 
We were curious about whether analysis of real-time 
allocation and scheduling in distributed heterogeneous 
systems is itself a fundamentally difficult problem, or 
if general linear hybrid automata are more powerful 
than is really necessary for this problem. We were 
able to show that the reachability problem becomes 
decidable when some simple pragmatic restrictions are 
placed on the model. 

The second problem we faced was the computa- 
tional difficulty of performing a reachability analysis. 
We began our work using an existing linear hybrid 
automata analysis tool, HyTech[18], but found our- 
selves limited to very small models. We developed 
and implemented a new reachability method that was 
significantly faster, more numerically robust, and used 
less memory. However, our prototype tool allows only 
constant rates (not rate ranges) and does not provide 
parametric analysis. 

Using this new reachability procedure we were able 
to accomplish one of our goals: the modeling and ver- 
ification of a piece of real-time software. We devel- 
oped a hybrid automata model for that portion of the 
MetaH real-time executive that implements unipro- 
cessor task scheduling, time partitioning and error 
handling[l]. We successfully analyzed these models, 
uncovering several implementation defects in the pro- 
cess. There are limits on the degree of assurance that 
can be provided, but in our judgement the approach 
may be significantly more thorough and significantly 
less expensive that traditional testing methods. This 
result suggests the technology has reached the thresh- 
old of practical utility for the verification of small 
amounts of software of a particular type. 

However, we do not believe existing reachability 
methods are adequate yet for schedulability analysis 

of real systems. In our judgement, we would need to 
be able to analyze systems having a few dozen tasks 
on a few processors in order for the technology to be- 
gin finding use in this area. We discuss approaches 
that might lead to such improvements. 

2    Resourceful Hybrid Automata 
A hybrid automaton is a finite state machine aug- 

mented with a set of real-valued variables and a set 
of propositions about the values of those variables. 
Figure 1 shows an example of a hybrid automaton 
whose discrete states are preempted, executing and 
waiting; and whose real-valued variables are c and t. 
Waiting is marked as the initial discrete state, and c 
and t are assumed to be initially zero. 

Each of the discrete states has an associated set of 
differential equations, e.g. c = 0 and t — 1 for the 
discrete state preempted. While the automaton is in 
a discrete state, the continuous variables change at the 
rates specified for that state. 

Edges may be labeled with guards involving con- 
tinuous variables, and a discrete transition can only 
occur when the values of the continuous variables sat- 
isfy the guard. When a discrete transition does occur, 
designated continuous variables can be set to desig- 
nated values as specified by assignments labeling that 
edge. 

A discrete state may also be annotated with an 
invariant constraint to assure progress. Some dis- 
crete transition must be taken from a state before 
that state's invariant becomes false. For example, the 
hybrid automaton in Figure 1 must transition out of 
state computing before the value of c exceeds 100. 

The hybrid automata of interest to us are called 
linear hybrid automata because the invariants, guards 
and assignments are all expressed as sets of linear con- 
straints. The differential equations governing the con- 
tinuous dynamics in a particular discrete state are re- 
stricted to the form x € [l,u] where [l,u] is a fixed 
constant interval (our current prototype tool is fur- 
ther restricted to a singleton rate, x = [1,1]). 

We want to verify assertions about the behavior of 
a hybrid automaton. Although it is possible in general 
to check temporal logic assertions[4], we make do by 
annotating discrete states and edges with sets of linear 
constraints labeled as assertions. These constraints 
must be true whenever the system is in a discrete state 
or whenever a transition occurs over an edge. 

The cross-product construction used to compose 
concurrent finite state processes can be extended in 
a fairly straight-forward way to systems of hybrid au- 
tomata. The invariant and assertion associated with a 
discrete system state are the conjunction of the invari- 



if selected ifc>75 

if t= 1000 
and unselected 

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task 

ants and assertions of the individual discrete states. 
The guards, assertions and assignments of synchro- 
nized transitions are the conjunction and union of the 
guards, assertions and assignments of the individual 
discrete co-edges. If there is a conflict between the rate 
assignments of individual discrete states, or a conflict 
between the variable assignments of co-edges, then 
the system is considered ill-formed. Note that con- 
current hybrid automata may interact through shared 
real-valued variables as well as by synchronizing their 
transitions over co-edges. 

The application of interest in this paper is the anal- 
ysis and verification of real-time systems. Figure 1 
shows an example of a simple hybrid automata model 
for a preemptively scheduled, periodically dispatched 
task. A task is initially waiting for dispatch but may 
at various times also be executing or preempted. The 
variable t is used as a timer to control dispatching 
and to measure deadlines. The variable t is set to 0 
at each dispatch (each transition out of the waiting 
state), and a subsequent dispatch will occur when t 
reaches 1000. The assertion t < 750 each time a task 
transitions from executing to waiting (each time a task 
completes) models a task deadline of 750 time units. 
The variable c records accumulated compute time, it 
is reset at each dispatch and increases only when the 
task is in the computing state. The invariant c < 100 
in the computing state means the task must complete 
before it receives more than 100 time units of processor 
service, the guard c > 75 on the completion transition 
means the task may complete after it has received 75 
time units of processor service (i.e. the task compute 
time is uncertain and/or variable but always falls in 
the interval [75,100]). 

In this example the edge guards selected and 

unselected represent scheduling decisions made at 
scheduling events (called scheduling points in the real- 
time literature). These decisions depend on the avail- 
able resources (processors, busses, etc.) being shared 
by the tasks. There are several approaches to intro- 
duce scheduling semantics into a model having several 
concurrent tasks. 

Scheduling can be introduced using concepts taken 
from the theory of discrete event control[26]. A con- 
current scheduler automaton can be added to the sys- 
tem of tasks. The scheduling points in the task set 
become synchronization events at which the scheduler 
automaton can observe the system state and make 
control decisions. Many high-level concepts from dis- 
crete event control theory carry over into this domain, 
such as the importance of decentralized control and 
limited observability in distributed systems. 

Discrete event control theory provides an approach 
to synthesize optimal controllers, which in this do- 
main translates to the automatic construction of 
application-specific scheduling algorithms. However, 
classical discrete event control theory does not deal 
with time. The theory has been extended to synthesize 
nonpreemptive schedulers for timed automata[9, 2], 
but this excludes preemptively scheduled systems. It 
is possible to develop scheduling automata by hand 
using traditional real-time scheduling policies such as 
preemptive fixed priority. Some examples have been 
given in the literature, where each distinct ready queue 
state is modeled as a distinct discrete state of the 
scheduler automaton [4]. This would allow a very large 
class of scheduling algorithms to be modeled, but the 
size of the scheduler automaton may grow combinato- 
rially with the number of tasks. 

It is possible to model preemptive fixed priority 



scheduling by encoding the ready queue in a variable 
rather than in a set of discrete states. A queue vari- 
able is introduced that will take on only integer values. 
At each transition where a task i is dispatched, 2l is 
added to this queue variable; at each transition where 
task i completes, 2% is subtracted. The queue vari- 
able can be interpreted as a bit vector whose ith bit is 
set whenever task i is ready to compute. There is no 
separate scheduler automaton, the scheduling protocol 
is modeled using additional guards and states in the 
task automata. This is the approach we took when 
we started our work using HyTech. This encodes a 
specific scheduling protocol into each task model, and 
adds additional discrete states, variables and guards 
to the model. It is awkward to model any scheduling 
policy other than simple preemptive fixed priority. 

In the end, we found it simpler and more general 
to define a slightly extended linear hybrid automata 
model that includes resource scheduling semantics [28]. 
The discrete state composition of the task set is per- 
formed before any scheduling decisions are made. A 
scheduling function is then applied to the composed 
system discrete state to determine the variable rates 
to be used for that system state. In essence, the com- 
posed system discrete state is the ready queue to which 
the scheduling function is applied, very much analo- 
gous to the way run-time scheduling algorithms are 
applied in an actual real-time system. It is not nec- 
essary to have different discrete states for preempted 
and computing, since this information is now captured 
in the variable rates. It is not necessary to model a 
scheduling algorithm as a finite state control automa- 
ton added to the system, it is not necessary to encode a 
specific scheduling semantics into the task automata. 
One simply codes up a scheduling algorithm in the 
usual way and links it with the rest of the reachabil- 
ity analysis code. This approach significantly reduces 
the number of discrete states in the model (from 3' 
for our HyTech models to 2* for our extended models, 
where t is the number of tasks). This also simplifies 
the modeling of the desired scheduling discipline. The 
details of this model and its semantics are recorded 
elsewhere[28]. 

3    Decideability 
Most traditional real-time schedulability problems 

are solvable in polynomial time or are NP-complete. 
However, hybrid automata models that allow multiple 
rates and integration variables are undecideable[22, 
17]. The hybrid automata models we are using are 
much more powerful than traditional allocation and 
scheduling models, and most existing tasking and 
scheduling models can be viewed as special cases of 

the more general hybrid automata model. This raises 
the question of whether the schedulability problem for 
complex interacting tasks that are dynamically allo- 
cated in distributed heterogeneous systems is in fact 
undecideable, or whether models of such systems are 
decideable special cases of the more powerful linear 
hybrid automata models. 

The undecideability of hybrid automata reachabil- 
ity analysis was proved by reducing the reachability 
problem for two-counter machines, which is known to 
be undecideable, to the reachability problem for hy- 
brid automata[22, 17]. The construction used in the 
proof is fairly straightforward in our slightly extended 
model and can be accomplished using a single pro- 
cessor. However, a pragmatic real-time system de- 
signer would reject the theoretical construction as a 
bad design because it relies in places on exact equal- 
ity comparisons between timers and accumulated com- 
pute times. In a real system, these would be regarded 
as race conditions or ill-defined behaviors. The prob- 
lem becomes decideable given a few simple practical 
restrictions, which are captured in the following theo- 

Theorem 1 The reachability problem is decideable 
for resourceful linear hybrid automata if the following 
conditions hold. 

• The set of possible outputs of the scheduling func- 
tion for each possible system discrete state is finite 
and enumerable. 

• For every task activity integrator variable, the 
rate interval remains fixed between resets of that 
integrator (i. e. the scheduler does not dynamically 
reallocate any task activity in mid-execution to a 
new resource having a different rate for that ac- 
tivity). 

• For every task activity integrator variable, every 
edge guard is a set of rectangular constraints of 
the form x € [l,u], and either the edge guard has 
a non-singular interval (x £ [I, u] with I < u) 
or else the rate interval for x is non-singular (i. e. 
system behavior does not depend on exact equality 
comparisons with exact drift-free clocks or execu- 
tion rates). 

• However, we allow as a special exception task ac- 
tivity integrator variables with singular rate inter- 
val and singular rectangular edge guards, provid- 
ing the integrator variable is only reset or stopped 
or restarted at a transition having at least one 
edge guard y € [m, m] with [m, m] and y singu- 
lar (y may but need not be x), and for every such 



singular constraint on that edge x = ky for some 
positive integer k (i.e. some types of noninteract- 
ing or harmonically interacting behaviors may be 
modeled exactly). 

This result should not be surprising. The ability 
to test for exact equality is known to add theoretical 
power to dense time temporal logics [3], and similar 
restrictions are known to make certain other hybrid 
automata models decideable[25]. The proof of this 
theorem, which we provide elsewhere[28], is by reduc- 
tion to a discrete time finite state automaton. 

4    Reachability Analysis 
A state of a linear hybrid automaton consists of a 

discrete part, the discrete state at some time t; and 
a continuous part, the real values of the variables at 
time t. It turns out that, although this state space 
is uncountably infinite, the reachable state space for 
a given linear hybrid automaton is a subset of the 
cross-product of the discrete states with a recursively 
enumerable set of convex polyhedra in W1 (where n is 
the number of variables) [4]. A region of a linear hy- 
brid automaton is a pair consisting of a discrete state 
and a convex polyhedron, where convex polyhedra can 
be represented using a finite set of linear constraints. 
Model checking consists of enumerating the reachable 
regions for a given linear hybrid automaton and check- 
ing to see if they satisfy the assertions. 

Figure 2 depicts the basic sequence of operations 
that, given a starting region (a discrete state and a 
polyhedron defining a set of possible values for the 
variables), computes the set of values the variables 
might take on in that discrete state as time passes; 
and computes a set of regions reachable by subsequent 
discrete transitions. 

The first step is the computation of the time suc- 
cessor polyhedron from the starting polyhedron (of- 
ten called the post operation). For each point in the 
starting polyhedron, the time successor of that point 
is a line segment beginning at that point whose slope 
is defined by the variable rates specified for the dis- 
crete state. This is the set of variable values that 
can be reached from a starting point by allowing some 
amount of time to pass. The time successor of the 
starting polyhedron is the union of the time successor 
lines for all points in the starting polyhedron. A ba- 
sic result of linear hybrid automata theory is that the 
time successor of any convex polyhedron is itself a con- 
vex polyhedron (which in general will be unbounded 
in certain directions) [4]. 

The second step is the intersection of the time suc- 
cessor polyhedron with the invariant constraint asso- 

ciated with the discrete state. Polyhedra are easily 
intersected by taking the union of the set of linear 
constraints that define the two polyhedra. This is the 
time successor region that is feasible given the invari- 
ant specified for the discrete state. 

The remaining steps are used to compute new re- 
gions reachable from this feasible time successor re- 
gion by some transition over an edge. For each edge 
out of the current discrete state, the associated guard 
is first intersected with the feasible time successor re- 
gion. This polyhedron, if nonempty, defines the set 
of all variable values that might exist whenever the 
discrete transition could occur. Any variable assign- 
ments associated with the edge must now be applied 
to this polyhedron. This is done in two phases. First, 
a variable to be assigned a new value x := I is uncon- 
strained (often called the free operation). This oper- 
ation leaves unchanged the relationships between all 
other variables, i.e. the polyhedron is projected onto 
the subspace 5ftn_1 of the remaining variables. This 
result is then intersected with the constraint x = I. 
This polyhedron, together with the discrete state to 
which the edge goes, is a new region for which the 
above steps may be repeated. In general a set of as- 
signments whose right-hand sides are linear formula 
are allowed, with some restrictions. The variables to 
be assigned are unconstrained and the resulting poly- 
hedra are then intersected with the appropriate linear 
constraints in some order. With care, fairly complex 
sequences of assignments to program variables can be 
modeled on a single edge [30]. 

The overall method begins at the initial region of 
a hybrid automaton. The operations described above 
are applied to enumerate feasible time successor re- 
gions and the new regions reachable from these via 
discrete transitions. As new regions are enumerated, 
they must be checked to see if they have been visited 
before (otherwise the method will not terminate even 
when there are a finite number of regions). This is 
done by comparing the discrete states of regions for 
equality, and by checking to see if the new polyhedron 
is contained in the polyhedron of a previously visited 
region. 

The earliest reachability tool of which we are aware, 
HyTech, represented polyhedra as finite sets of linear 
constraints [4]. Operations on polyhedra used quan- 
tifier elimination, a method to manipulate and make 
decisions about systems of linear constraints in which 
some of the variables are existentially quantified. Sub- 
sequent tools, Polka and a later version of HyTech, 
used a pair of representations: the traditional system 
of linear constraints together with polyhedra gener- 
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Figure 2: Hybrid Automata Reach Forward Operations 

ators consisting of sets of vertices and rays[16, 18]. 
Different operations required during reachability are 
more convenient in the different representations, and 
methods are used to convert between the two as 
needed. 

Both of these methods are subject to the theoreti- 
cal risk that some polyhedra operations may require a 
combinatorial amount of time. Another potential per- 
formance problem occurs when the reachable discrete 
state space is completely enumerated first followed by 



an enumeration of the polyhedra. This might result 
in enumerating discrete states that are actually not 
reachable due to edge guards involving the continuous 
variables. Finally, in our experiments we found that a 
significant fraction of a set of benchmark schedulabil- 
ity problems we tried to solve using HyTech resulted 
in numeric overflow errors. 

We developed a new set of algorithms for the poly- 
hedra operations used during reachability analysis and 
implemented a prototype on-the-fly reachability anal- 
ysis library. Our prototype operates on lists of linear 
constraints of the form I < e < u where I and u are 
fixed constant integer bounds and e = C\X\ + C2X2 + ... 
is a linear formula with fixed constant integer coeffi- 
cients. Our current algorithms restrict variable rates 
to be fixed scalar constants, x = i rather than the 
more general is [l,u]. 

We convert a polyhedron P into Post(P, x), the 
time successor of P given a vector of variable rates 
x, by applying the two steps 

1. Let each constraint Z» < e» < Ui where e'j ^ 0 be 
written so that e; > 0, which can be achieved by 
multiplying the constraint by -1 if needed. For 
each distinct pair of constraints 

'i _i &i _i t*i 

where e'i > 0 and ij > 0, add to the set the 
constraint 

2. Replace each constraint I < e <u where e > 0 by 
I < e < 00. 

We compute Free(P, a;), the result of unconstraining 
variable x in polyhedron P, using the two steps 

1. Let each constraint I < e < u in P where e has an 
instance of x be written in the form l<cx — e'< 
u, where e' involves the remaining variables and 
their coefficients and c > 0. For every distinct 
pair of such constraints in P 

fcj ^ CjX      6i 21 l^i 

combine the two in a way that cancels the x terms, 
adding to Free(P, x) the constraint 

Cj t^ G^   Utj       ^^      Cr^C' ^7 "i ^^ ^i l"i       (-"i"i 

2. Each constraint I < e < u where e has no in- 
stances of variable x is added to Free(P, a;). 

These algorithms might be viewed as general- 
izations of the difference methods used for timed 
automata[12, 8] and exhibit some similarity to 
the pragmatic algorithm used earlier for quantifier 
elimination [4]. Our prototype invokes a Simplex al- 
gorithm as part of the operations to test for feasibility 
and containment. We use a bounds tightening pro- 
cedure to reduce the size of the constraint list after 
certain operations and to rapidly detect most infeasi- 
ble polyhedra. Simplex-based reduction and feasibil- 
ity testing is only applied when the bounds tightening 
procedure is ineffective. Details of our reachability 
analysis methods and implementation and proofs of 
correctness are documented elsewhere[29]. 

We benchmarked our prototype tool against 
HyTech and Verus[ll] (a discrete timed automata 
reachability analysis tool that uses BDD techniques) 
using randomly generated uniprocessor workloads con- 
taining mixtures of periodic and aperiodic tasks. Fig- 
ure 3 shows the percentage of problems that were 
solved by each of the tools, together with the primary 
reasons that solution was not achieved. Figure 4 com- 
pares the time required for solution for problems that 
were solved by all the tools using a logarithmic scale (a 
point appears for both HyTech and our prototype only 
for problems that were solved by both). We further 
increased the size of model we could analyze by ap- 
plying some results from traditional scheduling theory 
to simplify the models, and by using a simple partial 
order reduction technique, these results are reported 
elsewhere [2 9]. 

5    Verifying the MetaH Executive 
MetaH is an emerging SAE standard language for 

specifying real-time fault-tolerant high assurance soft- 
ware and hardware architectures [1, 24, 27]. Users 
specify how software and hardware components are 
combined to form an overall system architecture. This 
specification includes information about one or more 
configurations of tasks and message and event connec- 
tions; and information about how these objects are 
mapped onto a specified hardware architecture. The 
specification includes information about timing behav- 
iors and requirements, fault and error behaviors and 
requirements, and partitioning and safety behaviors 
and requirements. 

Our current MetaH toolset, illustrated in Figure 5, 
can generate and analyze formal models for schedula- 
bility, reliability, and partition isolation. The toolset 
can also configure an application-specific executive to 
perform the specified task dispatching and schedul- 
ing, message and event passing, changes between alter- 
native configurations, etc. Unlike many conventional 
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systems that rely on a large number of run-time ser- 
vice calls to configure a system by dynamically cre- 
ating and linking to tasks, mailboxes, event channels, 
timers, etc., our toolset builds most of this informa- 
tion into an application-specific executive. There are 
relatively few run-time service calls, and the effects of 
these are tailored based on the specified application 
architecture and requirements. 

Our MetaH executive supports a reasonably com- 
plex tasking model using preemptive fixed priority 

scheduling theory[5, 6, 7]. Among the features rele- 
vant to this study are period-enforced aperiodic tasks, 
real-time semaphores, mechanisms for tasks to initial- 
ize themselves and to recover from internal faults, and 
the ability to enforce execution time limits on all these 
features (time partitioning). Slack stealing in support 
of aperiodic and incremental tasks is also supported, 
but as we will mention later these were not modeled 
or verified. 

Figure  6  shows  the  high-level  structure  of the 
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MetaH executive. The core task scheduling operations 
are implemented by module Threads, e.g. start, dis- 
patch, complete. These operations implement tran- 
sitions between the discrete task scheduling states, 
e.g. dispatch may transition a task from the await- 
ing dispatch state to the computing state. These op- 
erations must take into account details such as the 
task type, optional execution time enforcement, event 
queueing, etc. Module Threads invokes operations 
in module Time_Slice, which encapsulates arithmetic 
operations and tests on two execution time accumula- 
tors maintained by the underlying RTOS and hard- 
ware for each task:   an accumulator that increases 

while a task executes, and a time slice that decreases 
while a task executes. Time_Slice may set these vari- 
ables to desired values using services provided through 
the MetaH RTOS interface. If time slicing is en- 
abled for a task, then a trap will be raised by the 
underlying hardware and RTOS when the time slice 
reaches zero. This trap is handled by one of the oper- 
ations in Threads. Module Clock_Handler is periodi- 
cally invoked by the underlying system (it is the han- 
dler for a periodic clock interrupt) and makes calls to 
Threads to dispatch periodic tasks and start and stop 
threads at mode changes. Modules Events, Modes 
and Semaphores contain data tables and operations 



to manage user-declared events, dynamic reconfigura- 
tion, and semaphores. 

We produced hybrid automata models for the 
Threads and Time_Slice modules, about 1800 lines 
of code. We did not write a separate model using a 
special modeling language, instead we inserted calls 
to build the model into the executive code itself. For 
example, in the code that implements the dispatch 
operation there is logic to decide if a task can be 
dispatched, assignments to change program variables, 
and calls to set the time slice and execution time coun- 
ters. Into this code we inserted a call to a modeling 
procedure to create an edge between the correspond- 
ing states of the linear hybrid automata model. The 
guards for this edge are the conditional expressions 
appearing in the code, and the assignments on this 
edge are the assignments appearing in the code. This 
provides a high degree of traceability between the im- 
plementation and the model. 

The generation of the hybrid automata models re- 
sembled all-paths unit testing. We developed several 
simple application specifications that included most 
(but not all) of the tasking features. We wrote a test 
driver that exercised all relevant paths in the core 
scheduling modules. For each application specifica- 
tion, the test driver thus triggered the generation of a 
linear hybrid automata model of the possible behav- 
iors of the core scheduling operations for a particular 
combination of tasks and features. 

The conditions we checked during reachability 
analysis were that all deadlines were met whenever 
the schedulability analyzer said an application was 
schedulable; no accessed variables were unconstrained 
(undefined) and no invariants were violated on entry 
to a region; and no two tasks were ever in a semaphore 
locking state simultaneously. Assertion checks appear- 
ing in the code were modeled by edges annotated with 
assert False. 

We also collected information about which edges 
were used by some transition during reachability anal- 
ysis and compared this with all the possible edges that 
might be created (all instances of calls inserted into 
the code to create edges). This allowed us to insure 
that all modeled portions of the code were covered by 
at least one reachability analysis. 

A total of 14 real-valued variables and 15 discrete 
states were defined to model each task. No single task 
model used all 14 variables and 15 states, different 
task types with different specified options used differ- 
ent combinations. Figure 7 shows the simplest lin- 
ear hybrid automata model we generated, a periodic 
task with period and deadline of lOOOOOus, compute 

time between 0 and 90000us, recovery time between 
0 and lOOOOus. States are also annotated with pro- 
cessor scheduling priorities, which are not shown here. 
The variable rates were derived from the scheduling 
priorities by the analysis tool, which used preemptive 
fixed priority scheduling semantics for this study. Ta- 
ble 1 summarizes the complete set of applications we 
analyzed. A more detailed discussion of the modeling 
methods and results is provided elsewhere[30]. 

We discovered nine defects in the course of our ver- 
ification exercise. Four of these were tool defects, two 
that could cause bad configuration data to be gener- 
ated and two that could cause erroneously optimistic 
schedulability models to be generated. Six of these 
defects could cause errors only during the handling 
of application faults and recoveries, three of these six 
only in the presence of multiple near-coincident faults 
and recoveries. In our judgement, of the nine defects 
we found, one would almost certainly have been de- 
tected by moderately thorough requirements testing, 
while three would have been almost impossible to de- 
tect by testing due to the multiple carefully timed 
events required to produce erroneous behavior. The 
other five may have been detected by thorough re- 
quirements testing of fault and recovery features, pro- 
viding the tester thought about possible execution 
timelines and arranged for tasks to consume carefully 
selected amounts of time between events. 

There are a number of significant limitations on the 
degree of assurance provided. In our initial exercise, 
we chose not to model many behaviors that could have 
been modeled in a fairly straight-forward way, e.g. 
mode changes, inter-processor communication proto- 
col, non-preemptable executive critical sections. In 
some cases different behaviors and subsystems can be 
modeled and analyzed almost independently, but it is 
not clear at what point the reachability analysis will 
become intractable as the extent of the model grows. 
Some behaviors might be more difficult to model, e.g. 
slack scheduling. The MetaH processor interface, un- 
derlying RTOS and hardware are unlikely to be fully 
model-able for a variety of practical and technical rea- 
sons. The MetaH tools were not verified, only a few 
specific generated modules and reports for a few ex- 
ample applications. Although our approach provides 
good traceability between code and model, there is 
still a very real possibility of modeling errors. The 
reachability analysis tool may contain defects; we dis- 
covered two in our tool in the course of this work. 
The modeled code does not change from application 
to application, and the analyzed applications fully ex- 
ercised the code model, but to rigorously assert this 
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Figure 7: Generated Hybrid Automata Model for a Simple Periodic Task 

Description Discrete 
States 

Distinct 
Polyhedra 

Sparc Ultra-2 
CPU Seconds 

one periodic task 7 7 0 
one periodic task, enforced execution time limits 7 10 0 
one periodic task, enforced execution time limits, one semaphore 8 29 15 
one period-enforced aperiodic task 9 18 0 
one period-enforced aperiodic task, enforced execution time limits 9 27 2 
one period-enforced aperiodic task, enforced execution time limits, one 
semaphore 

11 124 125 

two periodic tasks 36 60 3 
two periodic tasks, enforced execution time limits 36 108 24 
two periodic tasks, one with period transformed into two pieces, 41 97 10 
two periodic tasks, one shared semaphore 48 118 36 
two periodic tasks, one with period transformed into two pieces, enforced 
execution time limits 

41 174 87 

two periodic tasks, one with period transformed into four pieces, enforced 
execution time limits, recovery limit greater than compute limit 

40 334 103 

two tasks, one periodic and one period-enforced aperiodic 44 623 115 
two periodic tasks, one with period transformed into four pieces, enforced 
execution time limits 

41 351 170 

two tasks, one periodic and one period-enforced aperiodic, enforced ex- 
ecution time limits 

44 425 184 

two tasks, one periodic and one period-enforced aperiodic, one shared 
semaphore 

70 638 840 

two periodic tasks, one with period transformed into two pieces, enforced 
execution time limits, one shared semaphore 

55 963 5658 

Table 1: Modeled Applications 



code is correct for all possible applications would re- 
quire some sort of induction argument. Even if the 
source code is correct, defects in the compiler, linker 
or loader software could introduce defects into the ex- 
ecutable image. 

Nevertheless, we estimate that the effort required 
for this exercise was roughly comparable to that re- 
quired for traditional unit testing, but the results were 
more thorough than would have been achieved using 
traditional requirements testing. The method must be 
used in conjunction with traditional verification tech- 
niques such as testing, but it is at least intuitively 
reasonably easy to distinguish requirements that will 
be verified using hybrid automata from requirements 
that must be verified using other techniques. 

6    Future Work 
Our experience leads us to believe that linear hy- 

brid automata are very powerful and well-suited for 
this domain. We were able to achieve one of our goals, 
the modeling and verification of a piece of real-world 
real-time software, with a number of limitations. We 
do not believe we have achieved the other goal yet, 
modeling and schedulability analysis for complex dis- 
tributed systems of real-world size. However, there are 
a number of potential future developments that might 
reduce the verification limitations and provide useful 
schedulability analysis capabilities. 

It should be possible to use the set of reachable 
regions produced by the analysis tool to automatically 
generate tests. This could significantly reduce the cost 
and increase the quality of requirements testing (which 
might still be required by the powers-that-be). Such 
tests could also detect defects that could not be found 
by model analysis, such as defects in the compiler, 
linker, loader, RTOS or hardware. One of the issues 
that must be confronted is the ease of constructing, 
running and observing the results of tests; for example, 
in theory one might encounter transitions in the model 
that occur only when two values are extremely close, 
which could be practically impossible to do in a test. 
Another issue is that such tests would not take into 
account the internal logic of unmodeled modules such 
as the RTOS; a systematic method for testing multiple 
points within each reachable polyhedron might help 
address this. 

There are a number of potentially useful improve- 
ments in analysis methods and tools. Approximation 
and partial order methods might significantly increase 
the size of the model that could be analyzed[16, 19, 
15, 29]. Preprocessing models to modify numeric pa- 
rameters in certain ways can result in much more eas- 
ily solved models [29].   It is possible to apply theo- 

rem proving methods to linear hybrid automata[21], 
and some work has been done on dense-time process 
algebras[10, 14]. Decomposition and induction meth- 
ods currently being explored for discrete state models 
might be extensible to linear hybrid automata. There 
are a number of possible ways to visualize and navigate 
the reachable region space that would be of practical 
assistance during model development and debugging 
and during reviews. Concise APIs and support for in- 
line modeling could reduce both the modeling effort 
and the number of modeling defects. 

Changes will inevitably be required to the design, 
implementation and verification processes to make 
good use of these methods. Much of the benefit of 
other formal methods has been due to subsequent 
changes in development methods that resulted in more 
verifiable and defect-free specifications, designs and 
code in the first place. An important and not com- 
pletely technical question is how verification processes 
might be changed to beneficially use these methods. 
What evidence would be required, for example, to con- 
vince a development organization or regulatory au- 
thority to replace selected existing verification activ- 
ities with modeling and analysis activities, or to add 
modeling and analysis to current verification activi- 
ties? 
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Abstract 
We propose that suitably extended linear hybrid au- 

tomata provide a powerful way to model dynamic real- 
time allocation and scheduling in distributed heteroge- 
neous systems, and that the associated theory can be 
used to address questions about the complexity of de- 
ciding various properties of such systems. In support 
of this we present a linear hybrid automata model of 
such systems and show that, with reasonable pragmatic 
restrictions, the schedulability problem is decidable. 

1    Introduction 
Most concurrent process models do not deal with 

resource allocation and scheduling [21, 15], while most 
real-time preemptive scheduling models do not deal 
with complex process sequencing and interaction[18, 
6]. This paper presents a dense time hybrid automata 
model that allows systems of concurrent processes to 
be dynamically allocated and preemptively scheduled 
for real-time execution on a heterogeneous set of re- 
sources. The model is powerful enough to allow a va- 
riety of scheduling disciplines, including nonpreemp- 
tive, preemptive fixed priority, and earliest deadline. 
The model is powerful enough to allow a variety of 
dynamic reallocation algorithms. The model allows 
compute times to be specified using intervals, which 
makes them suitable for use in multiprocessor systems 
that exhibit anomalous scheduling behavior [12]. We 
allow timer rates to vary nondeterministically within 
specified ranges, so that clock drift and uncertainty 
can be modeled. Tasks, their internal behaviors, and 
their external interactions can be modeled as concur- 
rent finite state machines, which allows modeling of 
remote procedure calls, rendezvous, state-dependent 

"This work has been supported by the Air Force Office of 
Scientific Research under contract F49620-97-C-0008. 

variations in compute time, and implementation de- 
tails of code for synchronization and communication 
protocols. 

We use a linear hybrid automata model, extended 
in certain ways to more directly model resource allo- 
cation and scheduling of real-time tasks in distributed 
heterogeneous systems. We use a concurrent finite 
state automaton model of the processes, to which we 
add a set of continuous variables to model time and 
accumulated work, a set of resources to service the ac- 
tivities comprising each process, and a function that 
specifies how activities are allocated to and scheduled 
on each resource. We allow allocation and schedul- 
ing choices to dynamically change at any discrete sys- 
tem event. The schedulability problem for a real-time 
system can be reduced to the problem of determin- 
ing whether a discrete system state is reachable in a 
model. 

Accumulated execution time is modeled using con- 
tinuous variables that can be stopped and started, 
which is known to make the reachability problem un- 
decidable for linear hybrid automata. However, the 
classical construction used to prove undecidability in- 
cludes features that would be considered defects in 
the design of an actual system. We prove that the 
reachability problem is decidable given various restric- 
tions on the use of equality comparisons in transition 
guards, where these restrictions are reasonable in prac- 
tice for most systems. Our proof makes use of a dis- 
crete time finite automaton construction and may be 
of some interest in relating continuous time and dis- 
crete time models. 

The construction used in our proof does not yield 
a practical algorithm for testing discrete state reacha- 
bility and hence schedulability. Rather, the purpose of 
this paper is to provide some work that illustrates two 
theses.   First, appropriately extended linear hybrid 



automata models provide a powerful way to describe 
many aspects of systems that are beyond the reach of 
current theory. Second, linear hybrid automata mod- 
els may be useful in exploring the computational com- 
plexity of complex resource allocation and scheduling 
problems. For example, our work leaves open ques- 
tions about the decidability of systems in which tasks 
are dynamically reallocated between processors of dif- 
ferent rates in mid-execution, and the decidability of 
systems whose scheduling decisions are based in part 
on comparisons between accumulated compute times. 

There is a substantial body of work on the use 
of discrete timed automata models for real-time 
systems[8, 10, 17, 20, 19, 22]. Our work is dis- 
tinguished from this by our use of a dense time 
model. Some work exists on dense time process 
algebras [11, 7], we use an automata model. There 
is also a large body of work on timed and linear hy- 
brid automata[2, 3, 1, 4, 13]. We extend these models 
to include resource allocation and scheduling and fo- 
cus on the modeling and analysis of these aspects of 
real-time distributed heterogeneous systems. 

2    Real-Time Concurrent Automata 
We use real numbers R to model time, but we as- 

sume that values appearing in model specifications or 
manipulated by computer are rationals. We make use 
of intervals of rational numbers, elements of which are 
written as [a, b], a < b. We will overline interval vari- 
ables to distinguish them from rational variables, e.g. 
a; is a real-valued or rational-valued variable while x 
denotes some rational interval [a, b]. 

We use several sets of objects as variables whose 
values change at discrete instants of time. For a set 
of variables V whose values range over R we use a set 
of assignment functions {a\a : V —> R}, where each 
a specifies a particular association of values with ob- 
jects. An assignment operation v <— r at some time t 
changes the assignment function in effect. We some- 
times use subscripts to distinguish assignment func- 
tions before and after assignment operations, e.g. a* 
becomes ai+i after assignment v 4— r where oti+\(v) = 
r. 

An important class of assignments are those for ob- 
jects whose range R = (5R+ —> K+) is a set of func- 
tions that map nonnegative real time to nonnegative 
scalar real values. In such cases a(v) is a function and 
a(v)(t) is the value of that function at time t. The 
assignment operation v <- f changes the time-varying 
function associated with variable v. 

The basic elements of our real-time concurrent au- 
tomata model are a finite set of process variables that 
range over finite sets of activities, a finite set of inte- 

grators that range over real-valued functions of time, 
a finite set of resources to service process activities, 
and a finite set of edges that determine the possible 
discrete changes in system state. 

• P = {pi, p2, • • •, Pm } is a finite set of discrete state 
variables that we will call processes. Each process 
Pi ranges over a finite set of states or locations 
A, = {an, OJ2, • • •, dim } that we will call activities. 
If the boolean predicate init(aij) is true then a^- 
is said to be an initial activity of pi. We require 
there be at least one initial activity in each Ai. 
Distinct activity sets are disjoint, Ai f\ Aj = 0, i ^ 
j. The set of all activities in a system is A — 
\J{ Ai, and the discrete state space of a system 
is A® = Ai x A2 x ■ • • x Am. We use {a \ a : 
P —> A,a(pi) e Ai} as the set of functions that 
associate each process with a current activity, and 
we sometimes write ay- G a to mean a(pi) = a^. 
When a(pi) = ay- changes to a'(pi) = aik we 
say that activity ay completes and activity a^ is 
dispatched. 

• X = (Xt = {xi,X2,-- ■ ,xn})\JA is a finite set 
of function-valued state variables that we will 
call integrators. We use T = {v | v : X —> 
(5R+ —>• 5R+)} to associate a real-valued function 
of time with each integrator. The integrators 
x\, X2, • ■ ■, xn will be used as resetable clocks or 
timers, and integrators a^ will be used to record 
accumulated work performed on activity a^ (i.e. 
activities in A are associated with time-varying 
functions by assignments in J-). 

Rather than directly specify an assignment u(x) 
for an integrator x, we will instead specify the 
value at some point u(x)(t) together with con- 
straints on the derivative i/{x). For functions 
that satisfy the Lipshitz conditions, the value at 
a point plus the derivitive is sufficient to uniquely 
determine the function (i.e. v(x) = J v(x) plus a 
suitable constant). 

• T, = {li,l2, • ■ • ,lk} is a finite set of labels or letters. 
Elements of E will be used to label activity dis- 
patches and completions in the various processes. 
It is sometimes helpful to think of S as contain- 
ing disjoint subsets EPi of letters that are associ- 
ated exclusively with individual processes pi plus 
additional letters used to label joint or synchro- 
nized dispatches and completions involving mul- 
tiple processes. 

• R = {r\,r2, ■ ■ ■ ,rn} is a finite set of resources. 
The partial assignments II = {ir \ n : (A [J E) —> 



(R [) {</>})} specify whether an activity is execut- 
ing and, if so, on which resource. If n(a) = r then 
activity a is executing on resource r, if ir(a) = <f> 
then a is not executing. The range of assignments 
in II also includes a set E of edges that we will dis- 
cuss shortly, where 7r(e) ^ <j> means that an edge is 
enabled. Note that the form of II restricts an ac- 
tivity to be executing on at most one resource, al- 
lows a resource to be concurrently executing more 
than one activity, and allows multiple edges to be 
concurrently enabled. 

The allocation and scheduling function s : 2E x 
A® -> II maps a set of edges and a set of cur- 
rent activities to an element of II. The allocation 
and scheduling function, which is a parameter of 
the model, will be evaluated at each activity com- 
pletion to determine a new value for it. We use 
s(ao) to denote the initial allocation and schedul- 
ing decision for a given choice of initial activities 
ao. 

The function Q(ri,ajk) € I+ specifies an interval 
containing the rate or speed at which resource r^ 
can service activity a,jk- When ir(a) = r then a 
is accumulating service from resource r at some 
rate in the interval <D(r, a). We overload Q and 
apply it to timers as well, where Q{x) e I+ is 
some interval of possible rates for timer x. We 
sometimes abuse notation and write simply ü(x) 
for x an activity as well as a timer when the re- 
source n is implicitly bound or quantified. Q is 
fixed in a model and does not change over time. 

• £,:A®x.FxII->-J4®x.FxIIisa mapping 
between system state values that defines the pos- 
sible discrete transitions of a system. We will 
define this mapping using a finite subset 

EC Ax 2{(x'5) ! se*.«^ > xY,xAx2x 

whose elements we will call edges. 

An edge 

e = (aij,C = {(x, c)\x£X,c€l+},l, aik, TICX) 

means that at time t, a system in which process pi 
is executing activity o^ and v[x)[t) e c for a spec- 
ified subset of the integrators might complete ac- 
tivity dij, dispatch activity an-, and change v{x) 
so v(x)(0) = 0 for a specified subset of the inte- 
grators. This discrete event is labeled Z. We use 
e.src, e.C, e.l, e.dst and e.lZ to conveniently refer 
to specific elements of edge e. 

We use E{a) = {e | e.src e a} to denote the set 
of edges whose source activities are current in the 
discrete system state a. We use Ei(a) = {e € 
E(a) | e.l — 1} to denote the set of edges labeled 
with I € E whose source activities are current. 
Similarly, we use Ci{a) = (J e.C to be the union of 
all the constraints (x, c) for all edges e S Ei(a), 
and TZi (a) = (J e.lZ to be the set of all the inte- 
grators to be reset for all edges e € Ei(a). We 
sometimes refer to a set £7 (a) as a set of coedges. 

Note that edges do not allow a direct specification 
of changes to v at transition events. In our model 
v will be determined by ir and Q. 

A discrete system state of a real-time concurrent 
automata is defined by specifying current activities for 
all processes, functions for all integrators, and alloca- 
tion and scheduling choices for activities and edges, 

S = ({a, v, TT)) 

We sometimes use <S.a, S.v and S.ir to denote partic- 
ular elements of a system state S. 

A trace or run of a system is a sequence of states 

where Si is the state between times t{ and ti+\ at 
which discrete transition events occur. «So at to = 0 
is the initial system state. Each discrete system state 
represents a possibly uncountably infinite number of 
continuous states and can be thought of as a continu- 
ous function of time with value <S,(£) = ((a*, !>»(*), TTJ)) 

at time U<t< t»+i. 
What state is the system in at exactly ij? An in- 

tuitively appealing approach is to say that adjacent 
intervals have appropriately matched open and closed 
ends, e.g. [0,*i), [ti,<2], (h,h),--'- Such traces are 
called strongly monotonic[4]. However, we need to 
deal with sequences of simultaneous transitions that 
all happen at the same instant of time. We therefore 
adopt a weakly monotonic trace semantics in which 
all these intervals are closed-ended. This means a sys- 
tem is in multiple, temporally indistinguishable states 
at transition instants: at time U there may be two 
value assignments for an integrator, two current ac- 
tivities for a single process, etc. The mapping from 
true time to system state is thus not a 1-to-l function 
even along a single execution trace. The value of inte- 
grator x in state <Sj at time 4j is Vi{x)(ti) and at time 
ij+i is Vi(x)(ti+i), the latter also being the value of 
z/j+i(a;)(i;+i) when x is not reset at time U+\. 

We can now define system dynamics by specifying 
the set of all possible traces of a given real-time con- 
current automaton. 



«So, the initial state of a possible trace, is any state 
((ao,i>o,fl'o)) where 

\/p G P, init(ao(p)) 
7To = s(ao) 
VzeX,!/o(x)(0)=0 

VxGX,t€5R+, 
v<s{x)(t) 

v0{x){t) = 0 

G w(a;i) 
€ ö>(7r0(x),a;) 

if xt G Xt 

if x G ao 

The function ^o(z) is specified by an initial condition 
at time to together with a derivative function 0{x). 
The integrator derivative 0{x) is a continuous inte- 
grable function whose value stays within the specified 
interval. The service rate v(x) for an executing activ- 
ity may vary within an interval that depends on the 
activity and the resource (i.e. on IT). The service rate 
for non-executing activities is 0. 

A trace <So -4 ■ ■ ■ -4 <S; can progress to a new system 
state <Sj+i by a transition labeled I over coedges E[(cti) 
at time U+i if Ei{a{) ^ 0 and the following conditions 
hold. 

• Ve G Ei{ai),iri(e) ^ (j> 

• Ve G Ei(ai),-Ki{e.svc) ^ <j> 

• V(z,c) eCi(ai),u(x)(ti+i) G c 

The next state <S;+i is 

\/PeP,ai+1(p) 
\ a\ 

dst    for e.src = cti(p), e G Ei(a 
(p)    otherwise 

Let u(x)([ti,tj]) denote the function u(x) in the in- 
terval [U, tj\. If uo(x), v\{x), ■ • • is a sequence of v as- 
signments for integrator x with state transitions oc- 
curring at times t\,t2,--- then we call the function 
given by the union of vo(x)([to,ti]),i'i(x)([ti,t2]), • • • 
the trajectory of integrator x. We use x{t) to denote 
the trajectory of x. The trajectory x{t) is what is 
usually thought of as the value of x over time as the 

A ^oyx) T ^system operates, 
otherwise 

3    Reachability 
Contemporary models of hybrid automata associate 

with each discrete state bounds on the values of con- 
tinuous variables. These are used to force progress, to 
prevent a system from staying in a discrete state with- 
out ever taking a transition. Reachability can also be 
defined in terms of the total state space, i.e. whether 
both a discrete state and a set of variable values sat- 
isfying some equation can be reached. 

For our purposes, however, we can restrict our- 
selves to considering the problem of whether a dis- 
crete state is reachable or not. What we can do is 
add discrete states that represent violations of a de- 
sired assertion, where the edges to those states have 
guards constructed so that the discrete state is reach- 
able only when the assertion fails. For example, we 
can add to each process a state representing a missed 
deadline. From each activity we add an edge to this 
state, where the guard on this edge is that the dead- 
line has elapsed but the maximum compute time has 
not been accumulated. This discrete state is reachable 
only if these conditions can occur in the system. 

7ri+i =s(Ei(ai),aj) 

Vx6l,!/i+1(x)(0) = 
f 0 if x G Ki(ai 
\ i>i(x)(ti+i)    otherwise 

VxeI,teR+,< 

vi+i(x)(t) e Q(xi) if Xi G Xt 

vi+i(x)(t) G ü)(iri+i(x),x)    if x G ai+ 

A i"i+i 
i>i+i{x){t) = 0 otherwise 

Each time-varying function Vi+\{x) is uniquely deter- 
mined by the value Vi+i(x)(ti+i) and the choice of 
derivative function üi+i(x). The nondeterminism is in 
the choice of transition time t,+i, choice of transition 
edge(s), and choice of derivative functions. Note that 
the only values of 7r(a) used to determine v are the val- 
ues for current activities a G a, values for non-current 
activities are ignored. 

4    Modeling Real-Time Systems 
In this section we outline how our model can be 

used to describe actual systems. We focus on mod- 
eling computer system processes and resources rather 
than environment processes, although the formalism is 
also intended to model environment timing. We begin 
by providing an example of a simple periodic process 
executing on a uniprocessor, illustrated graphically in 
Figure 1. 
tx\ Wft model a processor using a pair of resources, rx 

to service the executing activity and rw to service ac- 
tivities that are waiting for events (think of waiting 
as a kind of activity). 7r(a) = rx for at most one a, 
the activity selected for execution by the scheduling 
policy. 7r(a) = rw for all waiting activities, which are 
all serviced concurrently without contention. 7r(a) — <f> 
for compute activities that have been dispatched but 
not selected for execution by the scheduling policy. As 
mentioned earlier, 7r(a) is only relevant for a a current 
activity, and we adopt the convention that ir(a) = <j> 



xi€ [0,6] 

compe [2,4] 

Xi€ [8,8] 

Xj-«-0 

comp -*-() 

Figure 1: Periodic Process 

if a is not a current activity. 

We model a periodic process as a pair of alter- 
nating activities comp and wait, where comp is the 
initial activity. Comp is also used as an integrator 
that records the amount of work performed on ac- 
tivity comp. f(comp) is initially zero and is reset at 
each new dispatch of activity comp, so z/(comp)(f) is 
the work performed up to time t since the most recent 
dispatch. The edge constraint comp G [2,4] in figure 1 
means that activity comp cannot complete until the 
accumulated work falls somewhere between 2 and 4, 
the actual execution time being otherwise variable or 
uncertain. We also use a timer x\ in figure 1 to model 
deadlines and periodic dispatching. The constraint 
x\ G [0,6] imposes a preperiod deadline of 6 on the 
computation, the constraint xi G [8,8] causes comp to 
be dispatched 8 units of time after the previous dis- 
patch (x\ is initially 0 at the first dispatch and is reset 
to 0 at each subsequent dispatch). 

Figure 2 shows one possible sequence of -K and v 
assignments for two periodic processes scheduled pre- 
emptively with a deadline monotonic fixed priority as- 
signment. For current compute activities (those that 
have been dispatched but not completed), 7r(a) = rx 

for the highest priority activity a and ir(b) = <j> for all 
lower-priority activities b. For all current wait activ- 
ities ir(a) = rw. The vertical lines show where tran- 
sition events occur. Timer and processor rates are 
assumed close to 1 in this graph, so accumulated work 
increases at about the same rate as elapsed real time 
when an activity is executing (the functions for timers 
are not shown in figure 2, they look like ramp func- 
tions with periods of 8 and 16). 

Figures 1 and 2 impose no constraints on, and 
never reset, z/(wait). We assume 7r executes all cur- 
rent waiting activities on rw, and i^(wait) can be used 

to record accumulated wait time for these activities. 
Constraints on these values can be used to impose lim- 
its on wait time when desired. 

We use non-singular interval constraints on accu- 
mulated compute time to model uncertainty or vari- 
ability in execution times. An activity completes after 
some varying and/or uncertain number of processor 
cycles that corresponds to some execution time value 
in the specified interval. When the activity completes 
the process transitions to a new activity. A rendezvous 
between two computing activities occurs only when 
they complete at exactly the same instant, which in 
practice would require that one activity busy-wait for 
the other. A common implementation, in which the 
first activity to reach a rendezvous point waits until a 
suitable partner is ready, could be modeled by intro- 
ducing a waiting activity as the source for edges with 
global labels. A specific rendezvous semantics will in 
general have associated modeling guidelines and re- 
strictions, and the scheduling function s may need to 
enable and disable edges appropriately. 

The model is powerful enough to admit many com- 
mon scheduling disciplines, including preemptive fixed 
priority and earliest deadline. However, schedulers 
that make decisions based in part on accumulated or 
actual compute times, such as least laxity and slack 
scheduling, cannot be modeled since v is not a param- 
eter of the scheduling function s (we shall motivate 
this exclusion later in the paper). 

A single contention-free wait resource can be shared 
in multiprocessor models, so that n processors and 
busses can be modeled with n + 1 resources (except 
when wait resources having distinct rates are needed). 
The modeling of heterogeneous systems is supported 
by the ability to specify different service rates for dif- 
ferent activities and resources. Using intervals rather 



x, € [0,6] 

compjC [2,4] 

xi* [8,8] 
xi«-0 
comp. -«-0 

I     waitj     ) 

x2e [0,12] 
comp2 € [4,6] 

x2e [16,16] 
x2-*- 0 
comp2 -*-0 
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(     wai^     j 

wait 2 

comp 2 

waiti 

comp i 

*(a) = rx - 

"(a) = rw  

16 24 32 

v (comp i)   

v (comp2) ■■«""'""■"""■■ 

16 24 32 

Figure 2: Values for ix and v using Deadline Monotonie Scheduling 

than scalars allows timer drift to be modeled in dis- 
tributed systems. Timers and processors are distinct 
objects in the modeling formalism, e.g. there is no con- 
cept of a timer being associated with or accessible only 
from a specific processor. Any such assumptions or re- 
strictions need to be reflected in specific models. 

5    Decidability 

A recurring result of hybrid automata theory is the 
undecidability of the discrete state reachability prob- 
lem for reasonably general models. We now show that 
the reachability problem for our model is undecid- 
able. We then give pragmatically reasonable restric- 
tions that make the problem decidable. Our decidabil- 



ity proof is based on the construction of a finite-state 
discrete time machine whose reachability is equiva- 
lent to that of a given continuous time system, and 
so as a side-effect we show that our decidable con- 
tinuous time model is fundamentally no more power- 
ful than a (combinatorially large) finite-state discrete 
time model. Before giving this proof, however, we 
first outline a proof of the known undecidability re- 
sult. This provides some insight into the restrictions 
we impose to achieve decidability. 

Theorem 1 Given arbitrary a' € A® it is undecid- 
able if there exists a trace containing a state S where 
S.a = a! (it is undecidable if the discrete system state 
a' is reachable). 

Proof 1 The discrete state reachability problem for 
hybrid automata is known to be undecidable if there 
is a choice of at least two rates for different integra- 
tors, or if one integrator can be stopped and later 
continued[16, 13]. Our model allows both. The proof 
is by reduction to the reachability problem for two- 
counter machines. 

A two-counter machine is a finite-state control aug- 
mented with two non-negative integer counters. A 
transition in the finite-state control may be condi- 
tioned on either counter being zero, and a transition 
may increment or (for non-zero counters) decrement 
either counter. A two-counter machine is equivalent 
in power to a Turing machine, and the reachability 
problem for two-counter machines is undecidable. 

The essence of the proof of the undecidability of 
the discrete state reachability problems for continu- 
ous time systems is to construct, for a given two- 
counter machine, a continuous time system that en- 
codes counter value c as an integrator value ^TT- In- 
crements and decrements of counters in the original 
two-counter machine are implemented by halving and 
doubling integrators in the continuous time system. 
Any solution of the discrete state reachability prob- 
lem for continuous time systems could thus be used 
to solve the reachability problem for two-counter ma- 
chines, which would contradict the undecidability of 
the latter problem. 

The state transition diagram of the two-counter 
machine is modified by adding continuous variables 
for each of the counters, a clock variable that is used 
to synchronously drive transitions in the constructed 
hybrid automaton, plus a temporary variable. The 
proof relies on constructions for assigning the value of 
one variable to another, for doubling the value of a 
variable, and for halving the value of a variable. 

Figure 3 illustrates the construction for doubling 
a variable by showing the time line for the values of 

z=2x 

(1)    (2) (3) 

Figure 3: Construction for Doubling a Value 

three variables. The guard for every edge in the con- 
structed hybrid automaton has a clause that restricts 
transitions to occur only when the clock equals 1, and 
the clock is reset at each transition. Edges are added 
to all states so that whenever a counter variable equals 
1 then it is reset. The counter value encoded into a 
variable is the log of the inverse of the value of that 
variable at each clock reset, minus one. The value can 
be viewed as encoded in the phase shift between the 
clock and the counter variable, where each counter 
variable is reset x time units before the clock reset, 
x = S^+i- 

To double a value, a doubling variable z is reset to 
0 at the same time as the variable x whose value is to 
be doubled. This point is marked (1) in the figure. At 
the next clock reset, the rate for this variable is set to 
0, marked (2), causing it to store the encoded counter 
value. The rate is set back to 1 when the counter 
variable is reset, marked (3). This occurs x time units 
before the clock reset, so at the next clock reset the 
doubling variable has a value of 2x. 

A variable value is halved by setting a halving vari- 
able to 0 at some nondeterministic time, then doubling 
that value, then having an edge and guard that allow 
a transition only if the doubled value equals the value 
being halved (which leaves the original nondeterminis- 
tically set halving variable equal to the desired value.). 

The above construction is possible with a fairly sim- 
ple continuous time system model, one with two pro- 
cesses on a single processor and all integrator rates 
equal to 1 (except suspended activities with integra- 
tor rates of 0). However, it would be difficult to im- 
plement such a construction in practice because it is 
difficult to trigger an event only if and when two timer 
equality tests, or equality tests for a timer and an ac- 
cumulated execution time, succeed at the same instant 
(as is done to halve an integrator to simulate a decre- 
ment). In fact such conditions are usually avoided in 
the design of actual real-time systems. The ability to 
test for equality is known to add theoretical power and 



complexity to continuous time temporal logics [5]. We 
next prove that the reachability problem becomes de- 
cidable if we place pragmatic restrictions on the ability 
to do exact equality tests. 

Theorem 2 The discrete state reachability problem is 
decidable for a continuous time system if the following 
conditions hold. 

model, 

VpeP,init(a0(p)) 
VZGX,I/O(Z)(0) = 0 

7T0 = s(ao) 

• The set of possible outputs of the scheduling func- 
tion s for each possible set of input values is finite 
and can be enumerated. 

• For every integrator x £ A the rate interval üj{x) 
is fixed between resets of that integrator (i.e. the 
scheduler does not dynamically reallocate any ac- 
tivity in mid-execution across processors having 
different rates for that activity). 

• For every integrator x, either every edge con- 
straint (x, c) for x has a non-singular interval c, 
or else the rate interval w{x) is non-singular (i.e. 
system behavior does not depend on exact equality 
comparisons with exact drift-free timers or execu- 
tion rates). 

• However, we allow as a special exception integra- 
tors whose rate interval and some of whose edge 
constraints are singular, providing the integrator 
is only reset or stopped or started at a transition 
having at least one edge constraint (y, d) with d 
andü)(y) singular (y may but need not be x), and 
for every such singular constraint on that edge 
u)(x) = kü)(y) for some positive integer k (i.e. 
some types of noninteracting or harmonically in- 
teracting behaviors may be modeled exactly). 

Let {ci,C2,---} be the set of all non-zero non- 
infinite end-points of edge constraint intervals that 
appear in a model, let {wi,W2,---} be the set of 
all non-zero non-infinite end-points of rate intervals 
that appear in a model, and let {£*:,■••} be the 
set of ratios where there is some integrator x that 
can have minimum or maximum non-zero non-infinite 
rate u)j and is compared on some edge with an in- 
terval having non-zero non-infinite end-point c,. It 
is known that for any finite set of rational numbers 
there exists a unique greatest common divisor, itself 
a rational number, where every element of the set 
is an integer multiple of this greatest common divi- 
sor. Let A be the greatest common divisor of the 
set {ci,C2, • • • ,LJ\,UJ2, ■ ■ ■, £v, • • •}, and let M be the 
largest of {ci,C2, • • •}. We use [q\&. (MA) to denote 
the largest integer multiple of A less than or equal to 
(smallest integer multiple of A greater than or equal 
to) some rational number q. 

A discrete time system progresses from system state 
S[ to a new system state S'i+1 by a transition along 
coedges JE/(C^) if the same conditions given earlier for 
edge transitions in the continuous time system hold. 
The next discrete time state S'i+1 is 

Proof 2 We construct a finite-state discrete time sys- 
tem in which a discrete system state is reachable iff 
that same discrete system state is reachable in a given 
continuous time system. The reachability problem for 
the continuous time system can then be answered by 
exhaustively searching the reachable state space of the 
finite-state system. The assumptions of the theorem 
make it possible to approximate any continuous tra- 
jectory x(t) with a piece-wise linear trajectory that 
satisfies the same set of rate and edge constraints and 
enables the same set of transitions. We first present 
the construction and then prove the equivalence of the 
continuous time and discrete time reachable discrete 
state spaces. 

The initial states <SQ of the discrete time model at 
time 0 are identical to those of the continuous time 

Vn <=  P n       (n\-i   e-dSt     f°r e-SrC = Qi(P)' e € El(Oi) vp e r, al+1 [P) - | ^    otherwise 

Vz€A>i+i(a:) = { °.(a;) 

7Ti+i = s(El(cti),Cti) 

if x e fti(cti) 
otherwise 

If the scheduling function s is nondeterministic then 
there is actually a set of successor states, one for each 
possible scheduling decision. By assumption this set 
is finite and enumerable. 

In addition to transitions over edges, the discrete 
time system can progress by allowing another A unit 



of time to pass, 

Va; € X,ui+i(x) = < 

Ui(x) + nA 

i>i(x) + nA 

Vi{x) 

if Vi{x) < M, 
Xi € Xt, 
nA e tj(xi) 

for n€ Z+ 

if fi(x) < M, 
Xi c CKj, 

nA € ö)(7rj(x),x) 
for n € Z+, 

Tti(x)^(p 
otherwise 

Note that this construction permits states in which 
time has progressed past the point at which any edge 
transition could occur out of some given discrete state. 
This does not affect the reachable discrete state space. 
However, we do require that all integrators advance to- 
gether whenever a A time unit passes. It is convenient 
to do this as part of an otherwise standard construc- 
tion of a single automaton from the set of concurrent 
discrete time automatons. 

The state space of the final finite-state dis- 
crete time automaton is A\ x A^ x • • • x Am x 
{0, A, 2A, • • ■, M, M + A, ■ • ■ M + nA}|x|, where each 
system state consists of the discrete state of each pro- 
cess and the quantized value of each integrator. For 
each possible transition over a set of coedges in the 
discrete time concurrent system, there is a transition 
in the single automation that changes some of the dis- 
crete states. For each A transition, all integrator val- 
ues increase using one of the transitions defined above 
for each integrator, i.e. every integrator x increases by 
some nA in the allowed rate interval. Another way to 
think of this is that the integrators behave like finite- 
state processes whose states are {0,A,2A,• ■-,M}, 
and all such processes synchronously perform A tran- 
sitions. This is a finite-state automaton and so the 
discrete state reachability problem is decidable. 

We will first make some useful observations about 
this automaton and then prove the theorem. 

Figure 5 illustrates the relationship between the 
values an integrator takes on in the continuous time 
and the discrete time systems. The shaded zone indi- 
cates a set of points that can be reached from some 
starting point by all continuous time trajectories x(t) 
whose derivatives stay within the specified, bounds. 
The slopes of the upper and lower bounding lines are 
integral multiples of A. If the rate interval is singu- 
lar then this region and its bounding lines are a single 
line. 

In the discrete time system, transition times and 
integrator values at transitions are restricted to a set of 

mesh points (iA,jA),i,j € Z+, illustrated by vertical 
and horizontal gray lines in Figure 5. Integrator slopes 
are restricted to integer multiples of A that fall within 
the specified rate intervals (always including the exact 
minimum and maximum rates), which are illustrated 
in the figure by three wide dark lines with slopes A, 2A 
and 3A. The latticework of thin dark lines illustrate 
the piece-wise linear trajectories x'(t) of the discrete 
time system, where x'(t) < M + nA for all x for some 
finite n in the discrete time system. Any of the mesh 
points that fall within the region bounded by the lines 
of maximum and minimum rate are reachable in the 
discrete time system. We refers to these regions as the 
rate-feasible regions for the continuous time and the 
discrete time systems, the latter being a set of mesh 
points. 

The requirement that A be a divisor of {^S---} 
means that the line of slope Uj that passes through 
the origin crosses the line x = Cj at a mesh point. The 
intersection Cj = o>,i occurs at time t = —, and since 
this is an integer multiple of A then so is t. Every 
Cj is also an integer multiple of A, and so the point 
(CJ , t) is a mesh point in the discrete time system. This 
is true for every rate interval end-point u>j and every 
constraint interval end-point c^. This is illustrated in 
Figure 5 by two dark gray lines labeled c% and ci- We 
will call a horizontal line x — Ci for some constraint 
end-point Cj a line of constraint. 

This is also true for any line of slope uij that is dis- 
placed by an integer multiple of A from the origin, i.e. 
any line of slope ujj that passes through a mesh point 
on the t axis also passes through a mesh point on ev- 
ery line of constraint x = c%. The converse statement 
is also useful: through every mesh point on any line 
of constraint x = Ci there is a line of slope ujj for ev- 
ery u)j that passes through a mesh point on the t axis 
and passes through a mesh point on every other line 
of constraint. 

Suppose a line x = uit, with slope u appearing in 
some rate interval in the model, passes through some 
mesh point on the t axis (and so through a mesh point 
when crossing every line of constraint). Given some 
point x' = u>t' on this line as illustrated in Figure 4, we 
can move backwards down the line to (|_*'JA> L^'JW)» 

the nearest mesh point below; and we can move for- 
wards up the line to ([*']A, T^'lw)) the nearest mesh 
point above. Because this line only crosses lines of 
constraint at mesh points, all the points on the line 
segment between (|_£'JA, L

X
'JW) and ([i'l A> fa'lw)' and 

these two mesh points themselves, fall on, or on the 
same side of, all lines of constraint. For any nonsingu- 
lar edge constraint, all of the points on this line seg- 
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Figure 4: Mesh Points can be Reached Without Cross- 
ing Lines of Constraint 

ment will satisfy that edge constraint if any of them 
do. 

We now argue that a discrete state is reachable in a 
continuous time system that satisfies the assumptions 
of the theory iff that same discrete state is reachable 
in the corresponding discrete time system. 

Half of this is easy to argue. Every trace of the 
discrete time system is also a trace of the continuous 
time system, so if a discrete state is reachable in the 
discrete time system then it is reachable in the con- 
tinuous time system. 

For the other half of the proof, we need to show 
that for every trace of a continuous time system there 
is a trace in the discrete time system that reaches the 
same discrete state. For this we argue that for every 
trajectory x(t) in any continuous time trace there is a 
discrete time trajectory x(t)' that is close enough to 
x{t) to enable the same sequence of edge transitions 
in the same order in the discrete time system. 

We are actually going to show something a 
bit stronger, that every continuous time trace is 
bounded both above and below by a discrete time 
trace. Consider the set of transitions occurring at 
times tiltti2,--- in a time interval [j A, (j + 1)A] in 
the continuous time system, with integrator values 
xi(U„),X2(tin),--m satisfying the edge constraints of 
each transition at time iin (illustrated in Figure 6). 
We show that for each integrator the same set of tran- 
sitions are enabled at both time |£IJA and at time 

\U}A in the discrete time system. Since both options 
exist for every integrator, it is possible for all edge 
transitions in [jA, (j + 1)A] (each of which in general 
will constrain multiple integrators) to occur at either 
jA or (j + 1)A in the same order as in the continuous 
time system. 

We argue that for every integrator x and every tran- 
sition at time t there is a mesh point at |^JA and a 
mesh point at |Y|A that falls within the rate-feasible 
region of the discrete time automaton and satisfies the 
same edge constraints as the value x(t). We argue this 
by induction over the sequence of transitions along 
each trajectory x(t), assuming it is true for x(ti) when 
proving it is true for x(U+i). We argue this in three 
cases: first, when ü(x) is singular and no constraint 
(x, c) is singular; second, when neither Q(x) nor any 
constraint (x,c) are singular; and finally, when ü(x) 
is not singular but some constraints (x, c) may be sin- 
gular. 

Figure 7 illustrates the argument for the first case, 
when Q{x) is singular but there are no singular con- 
straints (x, c). In the basis case, both systems start 
with a:(0) = 0 and identical values for ü)(x), so the 
rate-feasible regions are identical. For any transition 
at time U the values x{\ti\&) and X^IA) are mesh 
points of the discrete time system. As noted earlier, 
every line of slope H>{x) crosses every applicable line of 
constraint at a mesh point. This condition, illustrated 
by the horizontal lines labeled C\ and C2 in the figure, 
will be maintained as an induction invariant. As noted 
earlier we may reach, but cannot cross over, any ap- 
plicable constraint end-point by following x{t) down 
to the mesh point x{\ti\/\) or up to the mesh point 
^(MA)- Consequently, both of these mesh points 
also satisfy the same set of edge constraints as x(ti) in 
the continuous time system. 

The preceding argument establishes the basis case, 
and in fact holds for all transitions up to the first point 
at which TT(X) is set to <fi or at which x is reset to 0. 
Whenever this occurs, however, the value of the con- 
tinuous time x(t) always falls between two reachable 
and feasible piece-wise lines in the discrete time sys- 
tem, as illustrated in Figure 7. For if ir(x) becomes 
null at some time ti then the discrete time zero-slope 
line from x(\ti\ A) must lie below and the discrete time 
zero-slope line from x(\ti]&) must lie above the zero- 
slope line from x(i,) in the continuous time system. 
If TT(X) becomes non-null at some later time tj > ti 
a similar argument holds. The continuous time line 
from x(tj) now falls between some pair of discrete time 
lines separated by a distance of A, and so there is al- 
ways a discrete time mesh point on one of these lines 



x(t) 

Figure 5: Spaces Reachable by x(t) in Continuous vs Discrete Systems 



Figure 6: A Continuous x(t) with Three Transitions in [jA, (j + 1)A] 

in any interval [[^JA, T^IA] in which some succes- 
sor transition at time tk > tj can occur. All these 
possible discrete time trajectories are being nondeter- 
ministically explored by the discrete time automaton. 
A similar argument holds when TT(X) = ^ initially (be- 
coming non-zero later) and when x is reset. 

When -K(X) becomes non-null or when x is reset, the 
upwardly-sloping lines from the mesh points on either 
side of x(t) in the discrete time system are always 
parallel to the previous line segments of slope UJ(X) and 
are displaced to the right by an integer multiple of A. 
As explained earlier, this means these lines still have 
the property that they cross lines of constraint only at 
mesh points, and so the assumptions of the induction 
are preserved for subsequent transition points. 

Figure 8 illustrates the argument for the second 
case, when neither H>(x) nor any constraint (x, c) is 
singular.   We apply the argument of the preceding 

case to the lines defined by the lower and upper rates 
of ü)(x), the lines that define the boundary of the con- 
tinuous time rate-feasible region. Since both the up- 
per and lower bounding lines of the continuous time 
rate-feasible region are contained by rate-feasible lines 
in the discrete time system, the entire continuous 
time rate-feasible region is contained within the dis- 
crete time rate-feasible region for each integrator. For 
any continuous x{t) through the continuous time rate- 
feasible region, for any point x{U) at time ti, there is 
always some near-by mesh point in the discrete time 
rate-feasible region at [£JJA, and one at \U]&, where 
both mesh points fall on the same side of every hor- 
izontal line defined by an applicable constraint end- 
point. 

Figure 9 illustrates the argument for the third case, 
when a constraint interval (x, c) may be singular pro- 
viding LJ(X) is not. We again argue by induction over 



x(t) 

discrete time 
trajectories and 

mesh poij 

continuous time 
i trajectory 

Figure 7: Case when u(x) but no (x,c) is singular 
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Figure 9: Case when no Q{x) but some (x, c) are singular 



the transition points along the continuous time trajec- 
tory x(t). For the basis, recall that lines of maximum 
and minimum rate passing through mesh points on 
the t axis are equal to applicable lines of constraint 
only at mesh points. If u>(x) is non-singular then 
these points of intersection must be separated by at 
least A at the lowest line of constraint. We maintain 
as an induction invariant that the two lines bound- 
ing the rate-feasible region in the discrete time case 
pass through either the same or adjacent mesh points 
on the t axis, which means they always pass through 
nonadjacent mesh points on every applicable line of 
constraint. This insures that whenever x(t) is exactly 
equal to any line of constraint, the two mesh points on 
either side (which satisfy the same equality constraint) 
are reachable in the discrete time system. The exis- 
tence of two discrete time mesh points on either side 
of any x(t) when it crosses a line of constraint thus 
holds for all transitions starting from the initial state 
up to the point at which x(t) is reset or changes slopes 
from something in ü>(x) to 0 or back again. 

Either a continuous time x(t) is reset or changes 
slope to 0 or back between two lines of constraint or 
exactly on a line of constraint. If the former, the ar- 
gument of the second case applies and there are al- 
ways two rate-feasible discrete time lines satisfying the 
induction assumptions on either side of any contin- 
uous time x(t). If the latter, then x(t) in the con- 
tinuous time system falls along the line of constraint 
and passes through rate-feasible mesh points until the 
slope of x(t) becomes non-zero again. As illustrated in 
Figure 9, the discrete time system explores trajectories 
from both mesh points on either side of a continuous 
time transition that occurs when x(t) equals a line of 
constraint and that resets x(t) or changes its slope. 

The conditions of the final exception force the con- 
tinuous time trajectories for the constrained integra- 
tors to also be discrete time trajectories. Requiring 
the rate interval Q(x) to be singular forces x(t) to con- 
sist of line segments between transition events. The 
restrictions on edge constraints only allow x(t) to be 
reset or to change slope at mesh points. For any tran- 
sitions occurring at continuous time t' along edges that 
impose constraints on such integrators, either one of 
the applicable constraints is singular in which case ti 
is a discrete time; or none of the applicable constraints 
are singular in which case the transition could occur 
at either of [t/\ A or \t/~\ A as argued previously for case 
one above. 

6    Remarks 
Our decidability result leaves two obvious open 

questions. 

First, this result only allows dynamic reallocation 
between processors of different rates when a process is 
dispatched and its accumulated compute time variable 
reset to zero. 

Second, scheduling disciplines that rely on com- 
parisons of accumulated compute times are not sup- 
ported. Edge guards of the form x < y+c would allow 
decisions to be based on comparisons involving accu- 
mulated compute times. We note such guards can be 
used in timed automata, which are decidable[2, 9]. 
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Abstract 
We present a new on-the-fly method for reachability 

analysis of linear hybrid automata with constant rates. 
The novelty of our methods lie in the algorithms used to 
manipulate polyhedra, and in our encoding of domain- 
specific behavior (real-time scheduling in our case) into 
the model semantics. Our polyhedra operations can be 
performed in polynomial time, typically quadratic in the 
number of continuous variables in a model. Encoding 
scheduling into the model semantics allows us to sig- 
nificantly reduce the size of the overall system discrete 
state space. We benchmarked a prototype of our method, 
HyTech, and Verus using a randomly generated set of 
classical real-time uniprocessor workloads. We also ex- 
perimented with two optimization methods, a simplifi- 
cation of model parameters using results from real-time 
scheduling theory, and a simple form of partial order 
reduction. When we started our work using HyTech 
we were able to consistently analyze workloads having 
4 concurrent tasks (81 reachable discrete states), using 
our prototype together with these optimization methods 
we were able to consistently analyze workloads having 
13 concurrent tasks (8192 reachable discrete states). 

1    Introduction 
Linear hybrid automata are finite state automata 

augmented with variables whose values change contin- 
uously in a way that depends on the current discrete 
state. The values of the continuous variables can af- 
fect, and can be affected by, discrete transitions be- 
tween discrete states. Linear hybrid automata can be 
subjected to a reachability analysis to verify that a 
given set of assertions is true of a system. In gen- 
eral, a semi-decision procedure must be used since 
the reachability problem for linear hybrid automata is 
undecidable[14] (as opposed to timed automata, which 
are decideable[3]). It can be shown, however, that rea- 
sonable pragmatic restrictions make models for real- 

*This work has been supported by the Air Force Office of Sci- 
entific Research under contract F49620-97-C-0008. 

time allocation and scheduling in distributed heteroge- 
neous systems decideable[23]. 

Linear hybrid automata can be used to model many 
kinds of dynamical systems, but the problem of partic- 
ular interest to us is the modeling and schedulability 
analysis of real-time systems. The continuous variables 
of a linear hybrid automaton can be used as timers to 
control task dispatching and detect missed deadlines, 
and as so-called integration variables to record accumu- 
lated task compute time. Linear hybrid automata are 
sufficiently powerful to model a number of interesting 
system features, such as remote procedure calls, ren- 
dezvous between tasks, variations in compute time as a 
function of internal task state, and distributed synchro- 
nization and communication protocols. Reasonably de- 
tailed models of source code can be written, and linear 
hybrid automata are also useful for verifying implemen- 
tations of such things as time-dependent protocols and 
scheduling kernels[24]. 

The reachable state space for a linear hybrid automa- 
ton is a set of regions, where each region consists of a 
discrete state plus a polyhedron that defines a set of pos- 
sible values for the continuous variables. We present a 
reachability procedure that represents polyhedra as sys- 
tems of linear inequalities. We present new algorithms 
for computing the polyhedron that results when time is 
allowed to pass and variable values change at specified 
rates; and the polyhedron that results when a variable 
is unconstrained and removed from the system. These 
algorithms might be viewed as generalizations of the 
difference methods used for timed automata[8, 3] and 
exhibit a vague similarity to the pragmatic algorithm 
used earlier for quantifier elimination [2]. We present an 
algorithm to decide if one polyhedron is contained in 
another. We present a reduction algorithm to simplify 
the set of constraints that represent a polyhedron. Our 
prototype is an on-the-fly tool that enumerates regions 
as they are encountered, rather than first enumerating 
the complete reachable discrete state space and then 
enumerating the reachable polyhedra for each discrete 



State. However, our procedure restricts variable rates 
to be specified constants in each discrete state and does 
not provide parametric analysis [15]. 

We also discuss different ways that real-time schedul- 
ing can be incorporated into a linear hybrid automata 
model, including a novel way of adding scheduling se- 
mantics to create an extended resourceful linear hybrid 
automata model. Extending the semantics of the model 
rather than trying to write a standard linear hybrid au- 
tomata model of a scheduling protocol both reduces the 
size of the region space and allows a much broader range 
of scheduling protocols to be modeled. 

We randomly generated a sequence of uniprocessor 
workloads consisting of periodic and aperiodic tasks 
scheduled using preemptive fixed priority. For each 
of these we generated a linear hybrid automata model 
whose assertions were satisfied only for schedulable task 
sets. These models were analyzed using a prototype im- 
plementation of our procedure. All these task sets were 
amenable to analysis using the exact characterization 
algorithm[18], which we used to double-check our re- 
sults. We submitted the same models to HyTech[15], a 
linear hybrid automata tool; and to Verus[7], a discrete 
timed automata tool. 

We also experimented with two optimization meth- 
ods. First, traditional uniprocessor preemptive priority 
scheduling theory says that we can replace execution 
time and event inter-arrival intervals with their worst- 
case values. Second, we experimented with a simple 
partial order reduction method. 

The earliest reachability tool of which we are aware, 
HyTech, represented polyhedra as finite sets of linear 
constraints [2]. The operations performed on these poly- 
hedra used quantifier elimination, a formal way to al- 
gebraically manipulate and make decisions about sys- 
tems of linear inequalities in which some of the vari- 
ables are existentially quantified. Polka and a later 
version of HyTech used a pair of representations, the 
traditional system of linear inequalities together with 
polyhedra generators consisting of sets of vertices and 
rays[12, 15]. Different operations required during reach- 
ability are more convenient in the different representa- 
tions, and methods are used to convert between the two 
as needed. These previous methods are subject to the 
theoretical risk that some polyhedra operations may re- 
quire a combinatorial amount of time, although we did 
not test for this in our experiments. Our polyhedra op- 
erations are all doable in polynomial time (although we 
used the Simplex algorithm in our prototype), typically 
quadratic in the number of constraints used to represent 
a polyhedron. 

A variety of differences between the tools and cer- 
tain aspects of our use of them make direct comparisons 
questionable, and we experimented only with a partic- 

ular class of problem. Keeping these caveats in mind, 
we were able to solve problems with our prototype tool 
an order of magnitude more quickly than with HyTech, 
which was perhaps three orders of magnitude faster than 
Verus without automatic variable reordering. Perhaps 
as importantly, our prototype tool was more numeri- 
cally robust and used significantly less memory, it never 
failed due to numeric overflow or memory exhaustion. 
We were able to solve problems that HyTech and Verus 
could not solve. When we began our work using HyTech 
we were able to consistently solve systems of 4 tasks hav- 
ing 81 reachable discrete system states. Using our proto- 
type tool together with some experimental optimization 
methods, we were able to consistently solve systems of 
13 tasks having 8192 reachable discrete states. In our 
judgement this is not yet adequate for schedulability 
analysis but is at the threshold of utility for simple but 
practical verification problems[24]. Our work suggests 
that future improvements could result in further signif- 
icant increases in the size of solvable problem, and we 
discuss this in our concluding section. 

2    Resourceful Hybrid Automata 
A hybrid automaton is a finite state machine aug- 

mented with a set of real-valued variables and a set 
of propositions about the values of those variables. 
Figure 1 shows an example of a hybrid automaton 
whose discrete states are preempted, executing and 
waiting; and whose real-valued variables are c and t. 
Waiting is marked as the initial discrete state, and c 
and t are assumed to be initially zero. 

Each of the discrete states has an associated set of 
differential equations, e.g. c = 0 and i = 1 for the dis- 
crete state preempted. While the automaton is in a 
discrete state, the continuous variables change at the 
rates specified for that state. 

Edges may be labeled with guards involving contin- 
uous variables, and a discrete transition can only oc- 
cur when the values of the continuous variables satisfy 
the guard. When a discrete transition does occur, des- 
ignated continuous variables can be set to designated 
values as specified by assignments labeling that edge. 

A discrete state may also be annotated with an in- 
variant constraint to assure progress. Some discrete 
transition must be taken from a state before that 
state's invariant becomes false. For example, the hy- 
brid automaton in Figure 1 must transition out of state 
computing before the value of c exceeds 100. 

The hybrid automata of interest to us are called 
linear hybrid automata because the invariants, guards 
and assignments are all expressed as sets of linear con- 
straints. The differential equations governing the con- 
tinuous dynamics in a particular linear hybrid automa- 
ton discrete state are restricted to the form x € [l,u] 
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Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task 

where [l,u] is a fixed constant interval. Our method 
further restricts this to a singleton rate, x = i. 

We want to verify assertions about the behavior of 
a hybrid automaton. Although it is possible in general 
to check temporal logic assertions [2], we make do by 
annotating discrete states and edges with sets of lin- 
ear constraints labeled as assertions. These constraints 
must be true whenever the system is in a discrete state 
or whenever a transition occurs over an edge. 

The cross-product construction used to compose con- 
current finite state processes can be extended in a fairly 
straight-forward way to systems of hybrid automata. 
The invariant and assertion associated with a discrete 
system state are the conjunction of the invariants and 
assertions of the individual discrete states. The guards, 
assertions and assignments of synchronized transitions 
are the conjunction and union of the guards, assertions 
and assignments of the individual discrete co-edges. If 
there is a conflict between the rate assignments of indi- 
vidual discrete states, or a conflict between the variable 
assignments of co-edges, then the system is considered 
ill-formed. Note that concurrent hybrid automata may 
interact through shared real-valued variables, as well as 
by synchronizing their transitions over co-edges. 

The application of interest in this paper is the analy- 
sis and verification of real-time systems. Figure 1 shows 
an example of a simple hybrid automata model for a pre- 
emptively scheduled, periodically dispatched task. A 
task is initially waiting for dispatch but may at various 
times also be executing or preempted. The variable t is 
used as a timer to control dispatching and to measure 
deadlines. The variable t is set to 0 at each dispatch 
(each transition out of the waiting state), and a sub- 
sequent dispatch will occur when t reaches 1000. The 
assertion t < 750 each time a task transitions from ex- 
ecuting to waiting (each time a task completes) mod- 
els a task deadline of 750 time units.   The variable c 

records accumulated compute time, it is reset at each 
dispatch and increases only when the task is in the com- 
puting state. The invariant c < 100 in the computing 
state means the task must complete before it receives 
more than 100 time units of processor service, the guard 
c > 75 on the completion transition means the task may 
complete after it has received 75 time units of processor 
service (i.e. the task compute time is uncertain and/or 
variable but always falls in the interval [75,100]). 

In this example the edge guards selected and 
unselected represent scheduling decisions made at 
scheduling events (often called scheduling points in the 
real-time literature). These decisions depend on the 
available resources (processors, busses, etc.) being 
shared by the tasks. There are several approaches to 
introduce scheduling semantics into a model having sev- 
eral concurrent tasks. 

Scheduling can be introduced using concepts taken 
from the theory of discrete event control [20]. A concur- 
rent scheduler automaton can be added to the system 
of tasks. The scheduling points in the task set become 
synchronization events at which the scheduler automa- 
ton can observe the system state and make control de- 
cisions. Many high-level concepts from discrete event 
control theory carry over into this domain, such as the 
importance of decentralized control and limited observ- 
ability in distributed systems. 

Discrete event control theory provides an approach 
to synthesize optimal controllers, which in this domain 
translates to the automatic construction of application- 
specific scheduling algorithms. However, classical dis- 
crete event control theory does not deal with time. The 
theory has been extended to synthesize nonpreemptive 
schedulers for timed automata[4, 1], but this excludes 
preemptively scheduled systems. It is possible to de- 
velop scheduling automata by hand using traditional 
real-time scheduling policies such as preemptive fixed 



priority. Examples have been given in the literature, 
where each distinct ready queue state is modeled as 
a distinct discrete state of the scheduler automaton [2]. 
This would allow a very large class of scheduling al- 
gorithms to be modeled, but the size of the scheduler 
automaton may grow combinatorially with the number 
of tasks. 

It is possible to model preemptive fixed priority 
scheduling by encoding the ready queue in a variable 
rather than in a set of discrete states. A queue variable 
is introduced that will take on only integer values. At 
each transition where a task i is dispatched, 2% is added 
to this queue variable; at each transition where task i 
completes, 2l is subtracted. The queue variable can be 
interpreted as a bit vector whose ith bit is set whenever 
task i is ready to compute. There is no separate sched- 
uler automaton, the scheduling protocol is modeled us- 
ing additional guards and states in the task automata. 
This is the approach we took when we started our work 
using HyTech. This encodes a specific scheduling pro- 
tocol into each task model, and adds additional discrete 
states, variables and guards to the model. It is awk- 
ward to model any scheduling policy other than simple 
preemptive fixed priority without inheritance. 

In the end, we found it simpler and more general to 
define a slightly extended linear hybrid automata model 
that includes resource scheduling semantics[23]. The 
discrete state composition of the task set is performed 
before any scheduling decisions are made. A scheduling 
function is then applied to the composed system dis- 
crete state to determine the variable rates to be used 
for that system state. In essence, the composed system 
discrete state is the ready queue to which the schedul- 
ing function is applied, very much analogous to the way 
run-time scheduling algorithms are applied in an actual 
real-time system. It is not necessary to have different 
discrete states for preempted and computing, since this 
information is now captured in the variable rates. It 
is not necessary to model a scheduling algorithm as a 
finite state control automaton added to the system, it 
is not necessary to encode a specific scheduling seman- 
tics into the task automata. One simply codes up a 
scheduling algorithm in the usual way and links it with 
the rest of the reachability analysis code. This approach 
significantly reduces the number of discrete states in 
the model and simplifies the modeling of the desired 
scheduling discipline. The formal details of this model 
and its semantics are recorded elsewhere[23]. 

3    Reachable Regions 
A state of a linear hybrid automaton consists of a 

discrete part, the discrete state at some time t; and a 
continuous part, the real values of the variables at time 
t.   It turns out that, although this state space is un- 

countably infinite, the reachable state space for a given 
linear hybrid automaton is a subset of the cross-product 
of the discrete states with a recursively enumerable set 
of convex polyhedra in 3Rn (where n is the number of 
variables) [2]. A region of a linear hybrid automaton is a 
pair consisting of a discrete state and a convex polyhe- 
dron, where convex polyhedra can be represented using 
a finite set of linear constraints. Model checking consists 
of enumerating the reachable regions for a given linear 
hybrid automaton and checking to see if they satisfy the 
assertions. 

Figure 2 depicts the basic sequence of operations 
that, given a starting region (a discrete state and a 
polyhedron defining a set of possible values for the vari- 
ables), computes the set of values the variables might 
take on in that discrete state as time passes; and com- 
putes a set of regions reachable by subsequent discrete 
transitions. 

The first step is the computation of the time suc- 
cessor polyhedron from the starting polyhedron (often 
called the post operation). For each point in the starting 
polyhedron, the time successor ofthat point is a line seg- 
ment beginning at that point whose slope is defined by 
the variable rates specified for the discrete state. This 
is the set of variable values that can be reached from 
a starting point by allowing some amount of time to 
pass. The time successor of the starting polyhedron is 
the union of the time successor lines for all points in 
the starting polyhedron. A basic result of linear hybrid 
automata theory is that the time successor of any con- 
vex polyhedron is itself a convex polyhedron (which in 
general will be unbounded in certain directions) [2]. 

The second step is the intersection of the time succes- 
sor polyhedron with the invariant constraint associated 
with the discrete state. Polyhedra are easily intersected 
by taking the union of the set of linear constraints that 
define the two polyhedra. This is the time successor re- 
gion that is feasible given the invariant specified for the 
discrete state. 

The remaining steps are used to compute new re- 
gions reachable from this feasible time successor region 
by some transition over an edge. For each edge out of 
the current discrete state, the associated guard is first 
intersected with the feasible time successor region. This 
polyhedron, if nonempty, defines the set of all variable 
values that might exist whenever the discrete transition 
could occur. Any variable assignments associated with 
the edge must now be applied to this polyhedron. This 
is done in two phases. First, a variable to be assigned 
a new value x := I is unconstrained (often called the 
free operation). This operation leaves unchanged the 
relationships between all other variables, i.e. the poly- 
hedron is projected onto the subspace 5Rn_1 of the re- 
maining variables. This result is then intersected with 
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Figure 2: Hybrid Automata Reach Forward Operations 

the constraint x = I. This polyhedron, together with the 
discrete state to which the edge goes, is a new region 
for which the above steps may be repeated. In general a 
set of assignments whose right-hand sides are linear for- 
mula are allowed, with some restrictions. The variables 
to be assigned are unconstrained and the resulting poly- 
hedra are then intersected with the appropriate linear 

constraints in some order. With care, fairly complex 
sequences of assignments can be modeled on a single 
edge [24]. 

The overall method begins at the initial region of a 
hybrid automaton. The operations described above are 
applied to enumerate feasible time successor regions and 
the new regions reachable from these via discrete tran- 



sitions. As new regions are enumerated, they must be 
checked to see if they have been visited before (other- 
wise the method will not terminate even when there are 
a finite number of regions). This is done by compar- 
ing the discrete states of regions for equality, and by 
checking to see if the new polyhedron is contained in 
the polyhedron of a previously visited region. This is 
summarized in Figure 3. 

4    Operations on Polyhedra 
In the following descriptions we use X to denote a 

set of real-valued variables x\, X2, ...zn, X to denote an 
assignment of integer rates to these variables, e = c\X\ + 
C2X2 + ... + cnxn a linear formula over X with integer 
coefficients, and e the rate or derivative of this formula 
given some X(e = c\x\ + cix\ 4- ... + cnx'n). We use 
f € 5R™ to denote some specific point in K™, a specific 
assignment of values to X. We use f f <$ as a short- 
hand notation for f + XS, the point reached from f 
after allowing 6 time to pass given variable rates X. 
We use P to denote a set of constraints and the phrase 
"polyhedron P" to refer to the set of all solutions to the 
system of constraints P. We sometimes abuse notation 
and write f € P to mean the point f is in the polyhedron 
P, f satisfies the system of constraints P. 

4.1    Time Successor 
The time successor of a set of constraints given con- 

stant rate X is computed in two steps. 

1. Let each constraint Z; < e* < U{ where e* ^ 0 be 
written so that e"; > 0, which can be achieved by 
multiplying the constraint by -1 if needed. For each 
distinct pair of constraints 

i ^*** ^i ^**- tij 

'j S Gj < Uj 

where e* > 0 and e,- > 0, add to the set the con- 

• For each f € P, for each 6 > 0, f t S € P' (allow- 
ing any amount of time to pass for any point that 
satisfies P yields a point that satisfies P'). 

• For each f' € P' there exists some 8 > 0 such that 
f I 6 £ P (every point in P' is reachable from 
some point in P by allowing some amount of time 
to pass). 

Proof: We show the first part by demonstrating that 
none of the constraints modified or introduced by the 
algorithm are invalidated by allowing time to pass from 
any initial value f € P. Step 1 adds constraints that are 
already implied by existing constraints in P, so these 
are all satisfied by any f G P. Applying step 1 results 
in a polyhedron that has the same solution set as P. 
After step 2, every constrained expression with zero rate 
appears unchanged in P', every constrained expression 
with positive rate is unbounded so that no amount of 
time can make the modified constraint infeasible. This 
proves the first part of the theorem. 

We show the second part by demonstrating that 
f' e P' implies there exists some S > 0 such that 
f' J, S e P. Observe that every constraint I < e < u 
where e = 0, including every constraint added in step 
1, appears in both P and P'. The values of the con- 
strained expressions, and hence the feasibility of these 
constraints, remain unchanged as time passes. What 
we need to show is that every f' that satisfies the set of 
constraints in P' that were loosened to k < e; < 00 in 
step 2 can be taken back in time by some 6 > 0 to a 
point f I S that satisfies the original constraints. That 
is, we need to show there exists a single value 6 > 0 
such that all of 

h < e; — eiS < Ui 

are feasible for every point f' £ P'. We can rewrite 
these constraints as 

straint 

Gjli C^Lfco    ^**    CiCj CiC,        ■   C1 U>i Cj t T 

h < e, — did < Ui 
=    li — a < —6i5 <U{ - e, 
=      ei — k> aid > Ci — Ui (1) 

2. Replace each constraint I < e < u where e > 0 by 
/ < e < 00. 

The rate of each constrained expression added in the 
first step is 0, so the second step only applies to con- 
straints that were in the original polyhedron. The num- 
ber of operations required by the algorithm is quadratic 
in the number of constraints whose expressions have 
non-zero rate. 
Theorem: Let P be a satisfiable set of constraints, and 
let P' be computed from P using the above algorithm. 
Then 

There exists a value of S > 0 that satisfies all these 
inequalities when evaluated at f' if there exists a value 
for S that simultaneously falls between the upper and 
lower bounds of all these constraints. This can occur 
when no lower bound exceeds any upper bound, which 
can occur when the set of constraints 

a-U   >  ei~ui 

is feasible for all pairs i and j. For i = j this reduces 
to Ui > h, always true when P is feasible. For i ^ j we 
can rewrite these as 

Cj'cj       c-i(Zj ^_ Cjli ßiUn 



Entry.Region, 

New_Region: Region; 

Successor.Polyhedron, 

Constrained_Polyhedron, 

Guarded_Polyhedron, 

Unconstrained.Polyhedron, 

Assigned_Polyhedron: Polyhedron; 

Examined, 

To_Be_Examined: set of Region; 

Examined := empty; 

To_Be_Examined := initial region; 

while Not_Empty (To_Be_Examined) loop 

Entry.Region := Choose_And_Remove_0ne_0f (To_Be_Examined); 

Add_To_Set (Examined, Entry_Region); 

Successor.Polyhedron := Time_Successor (Entry.Region.Polyhedron); 

Constrained_Polyhedron := Intersect (Successor.Polyhedron, Entry_Region.Discrete_State.Invariant); 

Check_Region_Assertion (Entry_Region.Discrete_State, Constrained_Polyhedron); 

for each Transition in Entry_Region.Discrete_State.Transitions_From loop 

Guarded_Polyhedron := Intersect (Constrained_Polyhedron, Transition.Guard); 

if Not_Empty (Guarded_Polyhedron) then 

Check_Transition_Assertion (Transition, Guarded_Polyhedron); 

Unconstrained_Polyhedron := Unconstrain (Guarded_Polyhedron, Transition.Assignments.Variables); 

Assigned_Polyhedron := Intersect (Unconstrained_Polyhedron, Transition.Assignments); 

New_Region.Discrete_State := Transition.To_Discrete_State; 

New_Region.Polyhedron := Assigned_Polyhedron; 

for each Previous_Region in Union (Examined, To_Be_Examined) loop 

if Contained_In (New_Region, Previous_Region) then 

goto next Transition loop; 

end if; 

end loop; 

Add_To_Set (To_Be_Examined, New.Region); 

end if; 

end loop; 

end loop; 

Figure 3: High-Level Region Enumeration Procedure 

These were added to P' in step 1 and, since the rate 
of their constrained expressions is 0, remain unchanged 
by step 2 in P'. These constraints are thus satisfied for 
every f' G P', so there exists a 5 > 0 that satisfies the 
constraints in (1), and this 5 is such that f' I S G P. 

4.2    Unconstrain 
To unconstrain a variable x we must remove all con- 

straints that contain that variable. However, there may 
be constraints between other variables that are tran- 
sitively implied by a set of removed constraints. For 
example, l\ < y — x < u\ and h < x — z < u^ imply 
h + h < V — z < ui + U2, this information must be 
preserved before removing the constraints involving x. 
We unconstrain a variable x in a set of constraints P 
by constructing a new set of constraints P' using the 
following steps. 

1. Let each constraint I < e < u in P where e has an 
instance of x be written in the form l<cx — e'<u, 
where e' involves the remaining variables and their 
coefficients and c > 0.   For each distinct pair of 

such constraints in P 

i ^"^ *-ri"j       "i ^*^ ">% 

t A   ^*»   l^A JU C A   ^^-   U A 

combine the two in a way that cancels the x terms, 
adding to P' the constraint 

C"jLjj       C-^UiA ^^ C/^CA        LsA(z"i ^^ C-A (JLji       C"itA 

2. Each constraint I < e < u where e has no instances 
of variable x is added to P'. 

Let X \ x refer to the set of variables X minus the 
variable x, and let f \ x for f G SRn refer to the n — 1 
vector of values that are identical to f with the value 
for variable x removed. 
Theorem: Let P be a feasible set of difference con- 
straints, and let P' be computed from P by applying 
the above algorithm to unconstrain the variable x. If 
f G P then f\x G P', and if f \x G P' then there exists 
some value for variable x such that f G P. 



Proof: We will show that f £ P iff f \ x € P' for some 
value for x. 

Each constraint added to P' in step 1 is implied by 
some pair of constraints in P. Constraints added in 
step 2 are the same in P and P'. Consequently, every 
constraint in P' is implied by one or two constraints in 
P, and every value f € P thus satisfies the constraints 
in P'. To state this another way, the constraints added 
to P' are never any tighter than constraints that occur 
in P. Note that this means P' is feasible since P is 
assumed feasible. 

For the second part of the proof, consider a value 
f\x € P'. We need to show there exists some value for 
variable x such that f satisfies all of the constraints 

[]   ^-  C*j«// C?   ^^*   l*j (2) 

in P. There will exist a value for x that satisfies the 
above constraints if there is a value for x that simulta- 
neously satisfies every pair of constraints 

'i+gj    <  X  <   Ui+ei 

^±2i < x < Uj+e,- 
—        —       C,' 

where c;,Cj > 0. For i = j this reduces to l{ < Ui, 
which always holds when P is feasible. For i ^ j we can 
rewrite these as 

—        Oifc^ C-j tAo   ^^   Ojt-7 CT cj 

These were all added to P' in step 1 and are all satisfied 
for every f\a; S P' (P' is feasible as noted above). There 
thus exists a value for x that satisfies the constraints in 
(2), and this value is such that f € P. 
4.3 Intersection 

The intersection of the solution sets for two systems 
of constraints Pi and Pi is the set of values that satisfies 
both systems of constraints, which is the set of solutions 
to Pi (J Pi (the union of the sets of constraints has as 
its solution the intersection of the corresponding poly- 
hedra). This can be done in linear time. 
4.4 Feasibility 

The feasibility of a set of inequalities P can be de- 
termined as a side-effect of solving the associated linear 
programming problem with some trivial objective func- 
tion, e.g. max ^ Xi given P for the variables a;, appear- 
ing in P. 

We note that feasibility testing seems fundamentally 
as hard as linear programming [6]. Each linear program- 
ming problem has an associated dual problem of the 
same size, with the property that only optimal solutions 
are feasible for both. Thus, any feasibility test capable 
of identifying a feasible solution can be used to solve a 
linear programming problem by applying that test to 

the union of the constraints of the original problem and 
its dual. 

We discovered by experiment that guessing a set of 
variable values (the mid-point of each rectangular con- 
straint) then evaluating the constraints using those val- 
ues was an effective approximate test. This test can 
quickly confirm that certain polyhedra are feasible, and 
our experiments suggest that perhaps half of all feasibil- 
ity tests could be resolved using this method. However, 
feasibility testing accounted for a relatively small por- 
tion of the overall execution time of our prototype, and 
this approximation had no significant impact. 
4.5    Containment 

Given two sets of constraints J (inner) and O (outer) 
we want to determine if every solution to J is also a 
solution to O (whether the polyhedron J is contained 
in the polyhedron O). We do this using the following 
algorithm. 

1. If it can be (quickly) determined that I and O do 
not intersect, then / cannot be contained in O. 

2. If O contains variables that do not appear in J then 
terminate with a negative result. 

3. For each constraint I < e < u in O solve the lin- 
ear programming problems £/ = min e given / and 
xu = max e given /. If / < £/ and u > xu for ev- 
ery constraint in O then polyhedron J is contained 
in polyhedron O. Otherwise, the algorithm ter- 
minates with a negative result when the first con- 
straint from O is found that does not pass this test. 

The first step is a prefilter to efficiently detect certain 
common cases where J obviously cannot be contained 
in O. We did not do an exact feasibility test, only an 
approximate one that quickly checks to see if the in- 
tersection is definitely infeasible (discussed later). Our 
experience suggests that over 80% of all containment 
tests are resolved by this prefilter. This was impor- 
tant for our prototype, which spent most of its time 
searching for containing polyhedra (the loop for each 
Previous-Region in Figure 3). 

To establish the correctness of the final step we prove 
the following. 
Theorem: For each constraint I < e < u in O let 
xi = min e given J and xu = max e given / be solutions 
to linear programming problems. Every feasible value 
for I is also a feasible value for O iff / < e(xi) and 
u > e{xu) for every constraint I < e < u in O. 
Proof: Suppose / < e(x{) and u > e(xu) for every con- 
straint I < e < u in O. It is known that optimal values 
for the objective function of a linear programming prob- 
lem are achieved at some boundary vertex or facet of the 
polyhedron / (or else the value of the objective function 



is unbounded). For xi = mine given I the value of e 
at every point in the polyhedron is bounded below by 
e(xi), and for xu = max e given I the value of e at every 
point in the polyhedron is bounded above by e(xu) (or 
else the value of e is unbounded below or above, respec- 
tively). If I < e(xi) and u > e(xu) then every point in 
the polyhedron I satisfies the constraint I < e < u in 
O (where we allow I or u to be — oo or oo respectively). 
If this holds for all constraints in O then every feasible 
value for I also satisfies all the constraints of O. 

4.6 Assertion Checking 
An assertion A where A is a system of linear con- 

straints can be evaluated for a given polyhedron P by 
seeing if P is contained in A. Conjunctions and dis- 
junctions of sets of linear inequalities can be evaluated 
in the obvious way. 

4.7 Reduction 
The time successor and unconstrain operations may 

cause a quadratic increase in the number of constraints. 
An essential element of our procedure is the use of an 
algorithm to reduce the number of constraints used to 
represent a polyhedron by identifying and eliminating 
redundant constraints. We combine a fast but approxi- 
mate bounds tightening procedure with a more effective 
but expensive Simplex-based procedure to detect and 
eliminate redundant constraints. 

An important part of our procedure is the initial use 
of an efficient bounds tightening procedure to simplify 
sets of constraints [5]. For each pair of constraints 

»i _ ej _ t*i 

if there exist integers Cj, Cj > 0 such that Cjej = Cjej = 
e then these constraints can be replaced by the single 
constraint 

max(cili,Cjlj) <e< mm(aui,CjUj) 

There are two such rules, one for c; > 0 and one for 
Cj < 0 (CJ can always be made positive). Our pro- 
totype implementation maintains polyhedra as lists of 
constraints that are lexicographically sorted by variable, 
so that any two linearly dependent constraints will ap- 
pear adjacent in the list. This bounds tightening oper- 
ation is applied during each intersection operation (im- 
plemented as a linear-time merge of two sorted lists), 
including each time a new constraint is added to a con- 
straint list. 

The time successor and unconstrain operations add 
constraints that are differences of existing constraints, 
and in practice many of these added constraints are re- 
dundant with each other.   These two algorithms fre- 

quently add triplets of the form 

Hj _ &i Cj ^ ll-ij 

Ijk S €j - efc < Ujk 

Hk S: &i ~Gk< uik 

(3) 

where the third constraint may be implied by the sum of 
the first two (ignoring constant multipliers). Similarly, 
the first constraint of the triplet 

lij ^ cj       Gj ^ t/jj 

. < ej < Uj 

^i _b &i _: **i 
h — CJ (4) 

may be implied by the difference of the other two con- 
straints. We can check for these implications and use 
them to tighten constraints and eliminate redundant 
constraints. This could be viewed as an approximate 
generalization of the shortest path algorithm used to 
simplify bounded difference matrices [8, 3]. 

More precisely, for each triplet of constraints 

tj  ^ cj j^ Z4j 

tj S ej S uj 

if there exist integers Cj, Cj, Ck > 0 such that Cje, — Cjej = 
Cfcöfc then constraint Ik < efc < Uk can be replaced by 

min(cfc/fc,Cjij - CjUj) < ckek < max(cfcUfc,CjUj - Cjlj) 

There are four such rules, one for each combination of 
possible signs for Cj and Cj (c/t can always be made pos- 
itive). Linear dependence is transitive in the sense that 
when dependence is detected, each of the three can be 
tightened using similar formulas involving the other two. 

Checking all possible triplets would be 0(n3) in the 
number of constraints. Instead, we record with most 
constraints two references Tj and Tj to two other con- 
straints with whose sum it is likely to be linearly de- 
pendent. For each constraint added by the time suc- 
cessor operation, Tj and Tj are the two constraints dif- 
ferenced to form that constraint. For each constraint 
added by the unconstrain operation, we search for con- 
straints that have the same variables as the two that 
were differenced except for the variable being uncon- 
strained. Our experience suggests that reasonable Tj 
and Tj can be identified for most constraints involving 
two or more variables. 

Let (e, T,Tj) be a constraint e and its associated 
Tj,Tj references. We iterate over all triplets of con- 
straints (ei,Tj,Tj),(e2,Tj,Tfc),(e3,Tj,Tfc) to produce 
candidates likely to have the form shown previously in 
(3). We also iterate over all triplets (e,Ti,Tj),Ti,Tj. 
Each triplet is checked for linear dependence, which can 
be determined by solving a simple 2x2 system of linear 



equations involving the coefficients of variables common 
to the three constraints. Where linear dependence is de- 
tected, each of the constraints has its bounds tightened 
using the bounds implied by the appropriate linear com- 
bination of the other two constraints. 

In our prototype we associate with each constraint 
in the list its index or numeric position in the list. The 
pair (Ti,Tj) is kept in a canonical order where the index 
of Ti is less than the index of Tj. We produce a list 
of references to the constraints that is lexicographically 
sorted by the index values for (Tj, Tj). Using this sorted 
list, it is possible to iterate over triplets of constraints 
in quadratic time. 

In our prototype the constraint list is ordered so that 
all constraints involving the same variables are adja- 
cent to each other. Each time we check a triplet of 
constraints ei,ej,ek for linear dependence, we check all 
triplets having the same variables as the set e;, ej, ek and 
not just those three individual constraints. Our experi- 
ence suggests this heuristic is worth the additional cost, 
which tends to be relatively small since subsequences of 
constraints involving identical sets of variables tend to 
be relatively short. 

In general, multiple such iterations may be needed 
to find a fixed point at which no constraint bounds are 
tightened any further. Our experience suggests this can 
in fact be limited to a small fixed number, such as 3, 
without any significant impact. 

As constraints are tightened, a note is made for each 
bound as to whether that bound is implied by other 
nonredundant constraints on the list. For example, if 
h < e, < Ui and e^ = ej + efc and /, = lj + Ik then the 
lower bound k is implied by the other two constraints 
and is redundant, providing lj < ej and Ik < e^ are 
not marked as redundant. A final pass is performed 
to replace all redundant lower and upper bounds by 
-co and oo respectively. All constraints where both the 
lower and upper bounds are redundant are deleted (our 
implementation always retains the tightest rectangular 
constraint for every variable appearing in a polyhedron 
for book-keeping reasons). 

If, during any bounds tightening operation, u < I for 
any constraint I < e < u then the system is definitely 
not feasible. This feasibility test is not exact, it is possi- 
ble for I < u for every constraint in an infeasible system 
of constraints. However, we use this as a fast test to 
quickly detect many cases of infeasibility, including the 
prefilter for our containment test. Our experience sug- 
gests that about ^ of all feasibility tests can be decided 
in this manner, or about 80% if the containment pre- 
filter is also counted. 

If the above bounds tightening procedure fails to 
reduce the number of constraints in a polyhedron to 
less than half the average number of constraints in all 

polyhedra, then our prototype tool applies a more ex- 
pensive but more effective procedure. For each con- 
straint I < e < u in P solve the linear program- 
ming problems xi = min e given P — {/ < e < u} and 
xu = max e given P — {I < e < u}. Ifl<xi and u > xu 

then I < e < u is redundant and is removed. Our 
experience suggests that over 95% of all reductions are 
performed using the bounds tightening procedure alone, 
but it is nevertheless essential to include this more effec- 
tive procedure. Without this, our prototype was some- 
times unable to complete an analysis due to the presence 
of a few polyhedra for which bounds tightening was in- 
effective, where these few polyhedra formed a brick wall 
that prevented complete reachability analysis. 

5    Implementation Notes 
We implemented our prototype in a compiled lan- 

guage, Ada 95. We represented constraint bounds and 
coefficients using 64 bit integers. We used a sparse vec- 
tor representation that only stores non-zero coefficients. 
Polyhedra were represented as doubly linked lists of con- 
straints. The set of reached regions was stored by hash- 
ing the discrete system state, then storing a list of poly- 
hedra for each discrete system state. 

Our primal/dual Simplex algorithm used double pre- 
cision floating point and a sparse matrix representation. 
The Simplex algorithm is used only as a decision pro- 
cedure, it does not compute any values that appear in 
any polyhedra. Nevertheless, this is a notable theoret- 
ical shortcoming in our prototype, which would ideally 
use rational arithmetic for the Simplex procedure. In 
this application large numbers of polyhedra have de- 
generate vertices, and our experience suggests that the 
Simplex implementation must include methods to deal 
with degeneracy[9, 17]. 

Efficient and robust computation of greatest common 
divisors (GCDs) during polyhedra reduction proved in- 
teresting and important enough to merit some com- 
ment. If two numbers are represented as products 
of their prime factors X = 2XlZX2bX3... and Y = 
2yi3y25y3... then the exponents in the prime factoriza- 
tion of their GCD is the min of the exponents of the 
two values[ll], 

GCDfX Y) = 2min(Xl,!/1)3min(X2'!/2)5min(X3'!/3) 

When computing the prime factorization of Y for the 
purpose of obtaining a GCD, it is only necessary to de- 
termine the exponents out to the last non-zero exponent 
of X, e.g. when computing GCD(12, Y) it is only nec- 
essary to compute the prime factors y\ and \ji- This is 
because all the remaining prime factor exponents for 12 
are 0, and min(0,j/fc) = 0 for any yk- When comput- 
ing the GCD of all numbers appearing in a constraint 
we first sort those numbers in ascending order, which 



greatly reduces the need to determine the exponents of 
the larger prime factors of the larger numbers. However, 
we still encounter constraints having very large and rel- 
atively prime values, too large to be factored using any 
reasonably sized table of prime numbers. In this case we 
apply Euclid's algorithm to adjacent pairs of numbers in 
the sorted list in a way that reduces the length by half, 
e.g. GCD(Xi, X2), GCD(X3, X4),.... This increases the 
likelihood the two numbers submitted to Euclid's algo- 
rithm have about the same magnitude. This halved list 
of sorted numbers is then processed recursively. 

A new polyhedron is added to the list of regions for 
a discrete state only when it is not contained in an 
existing region. However, the new polyhedron might. 
contain a previously visited polyhedron. We check for 
this condition for all polyhedra that are still on the to- 
be-examined list and remove any polyhedra that are 
contained in the newly added one. We access the to- 
be-examined list in first-in-first-out order (depth-first 
search), which seems to result in a slightly higher per- 
centage of to-be-examined polyhedra being removed 
than when using a first-in-first-out order (breadth-first 
search). 

6    Benchmark Results 
To exercise our prototype we randomly generated a 

series of 100 linear hybrid automata models for tradi- 
tional uniprocessor workloads consisting of repetitively 
dispatched noninteracting harmonic tasks. Each task 
had minimum and maximum period and compute time 
values whose magnitudes reflected a reasonable level of 
real-world precision (e.g. period of 400 with a compute 
time range of [61, 73]). Aperiodic tasks were distin- 
guished from periodic tasks by having unequal minimum 
and maximum periods. Although schedulability in this 
case is known to be a function of the maximum compute 
time only, we generated both minimum and maximum 
compute times because this is significant in distributed 
systems and verification problems, and this affects the 
set of reachable regions. Tasks were scheduled using a 
deadline monotonic preemptive fixed priority discipline. 

We wrote a translator to the input specification lan- 
guage for HyTech, a linear hybrid automata reachability 
tool[2, 15]. Each task had four discrete states: com- 
puting, waiting, preempted, and rescheduling. In addi- 
tion to the timer and accumulated compute time vari- 
ables for each task, we introduced a single integer-valued 
queue variable whose nth bit is set when the nth task is 
enqueued. Using this queue variable and a reschedule 
synchronization event, we were able to specify preemp- 
tive fixed priority scheduling in a compositional model 
of the system. Models were analyzed using the -o2 op- 
tion to reduce the incidence of numeric overflow. 

With reasonable practical restrictions,  continuous 

time hybrid automata models of fairly complex real- 
time scheduling and allocation problems can be reduced 
to equivalent and decideable discrete time models[23]. 
We also wrote a translator to the input specification 
language for Verus, a discrete timed automata reacha- 
bility tool[7]. Scheduling was performed by introduc- 
ing an additional task for this purpose, as described in 
the literature and in examples that come with the tool. 
We extended the default number of bits to 20, with a 
corresponding increase in the number of boolean state 
variables. We were unable to use the -r option to au- 
tomatically reorder variables, which is cited as being 
almost essential to achieve good performance. The rea- 
son is that this option is normally used as models are 
developed and grow incrementally, our initial experi- 
mentation suggests that the time required to do this 
from scratch for a full-blown model greatly exceeds the 
time required to analyze the model without automatic 
variable reordering. 

We generated two variants of this set of models. One 
set included both feasible and infeasible problems. We 
used this set to check that all these tools, plus a tra- 
ditional exact characterization schedulability analysis 
algorith[22], agreed. We generated another set that in- 
cluded only feasible problems. This set forced all tools 
to explore the entire reachable region space and was 
used for benchmarking purposes. 

The ability of these tools to solve the generated feasi- 
ble models is summarized in Figure 4. This figure shows 
the percentage of models that were solved as a function 
of the number of tasks. We imposed a time limit of 1 
hour and a memory limit of 300 megabytes all tools. 
Tool failures also occurred due to numeric overflow and 
other problems. 

Figure 5 shows the solution times in seconds as a 
function of the number of tasks for those models that 
were solved by all of the tools at each plotted point, 
using a logarithmic scale. That is, the figure does not 
include solution times for models that were solved by 
our prototype but not by HyTech. We include both 
individual problem solution times and a line showing 
the average solution times. The solution times for a 
fixed number of tasks (a fixed number of variables and 
reachable discrete states) vary significantly because the 
number of regions can vary significantly due to even 
small changes in the values of numeric parameters such 
as task periods. 

We do not believe our results are sufficient to con- 
clude there is any inherent superiority of continuous over 
discrete time models. BDD techniques are sensitive to 
variable ordering, and there may be a predictable vari- 
able ordering for problems of this particular type that 
yields significantly better performance. There are gen- 
eralizations of BDD, such as IDD, that may have better 
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performance[21]. 

It is difficult to do a direct comparison between the 
methods we employ and those found in HyTech because 
there is no one single difference. 

Our polyhedra operations are restricted to constant 
fixed rates. HyTech allows rate ranges to be specified 
and supports parametric analysis. 

On this particular set of benchmarks, our prototype 
used less memory and was more numerically robust. 
However, these symptoms may not be due to funda- 
mental differences, they might both be local and easily 

fixed artifacts of the current HyTech implementation. 
Improved numeric robustness might also be due to our 
use of a floating point Simplex implementation, a theo- 
retically questionable aspect of our current prototype. 

HyTech first enumerates the reachable discrete state 
space then enumerates the polyhedra. We do on-the-fly 
reachability, which may suppress enumeration of some 
discrete system states for some problems because edge 
guards may prevent transitions that would otherwise 
occur in the purely discrete model. However, in our set 
of benchmarks all of the discrete states were reached 
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anyway. 
By making scheduling a part of the model semantics 

rather than a part of the model itself, we reduced the 
size of the discrete state space from 3* to 2* where t 
is the number of tasks.1 We cannot say with certainty 
how much of the performance improvement might be 
due to our different polyhedra operations versus the 
incorporation of scheduling semantics into the model. 
Figure 6 shows a plot of solution time versus number of 
reachable discrete system states rather than number of 
tasks, which seems to suggest the two different sets of 
polyhedra operations are about equally efficient. How- 
ever, our prototype may be operating on more complex 
polyhedra, since information encoded in discrete states 
in HyTech must now be encoded in the polyhedra in 
our prototype. Also, with fewer discrete states, the set 
of polyhedra that must be checked for containment for 
each discrete state is larger for our prototype (the loop 
that searches for containing polyhedra accounts for most 
of the execution time). It may or may not be the case 
that some of HyTech's numeric problems occur when 
attempting to operate on polyhedra that are difficult 

1 Although each task in the HyTech model had four discrete 
states, transitions to rescheduling states were forced to be simul- 
taneous in many cases, and the size of the reachable discrete state 
space was only 3' instead of 4*. 

for those algorithms in some fundamental way. 

Classical uniprocessor schedulability analysis meth- 
ods rely on the fact that analysis can be performed 
using only minimum periods and maximum compute 
times[19]. We simplified our models in this way. In 
our models there were frequently cases where periodic 
tasks were simultaneously dispatched. We added a test 
for these cases and performed such transitions concur- 
rently, which is a partial order reduction method. Fig- 
ure 7 compares the average solution times with and 
without these methods using a logarithmic scale. All 
solved problems were shown for all tools and methods 
at each point for which more than 75% of the problems 
were solved. The partial order method alone is actu- 
ally slower than the unoptimized version for the task 
sets that could be analyzed in less than 1 hour, presum- 
ably because the time required to operate on polyhe- 
dra and the number of regions dominated the growth 
in the number of discrete system states to the extent 
that the additional testing required for simultaneous 
transitions (which requires among other things extra 
feasibility tests) is not worth the reduction in discrete 
state space size. As the figure suggests, partial order 
reduction did result in a somewhat higher percentage 
of problems being solved within one hour. The use of 
worst case values is significantly beneficial, this signifi- 
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cantly reduces the number of enumerated regions. What 
this figure does not show is that this also significantly 
reduces the variability in number of regions and solu- 
tion times. The figure shows that the two optimization 
methods are complementary and synergistic. 

Figure 8 shows the average and maximum number of 
constraints required to represent polyhedra as a function 
of the number of tasks in a model. These experiments 
suggest that in practice the size of constraint sets grows 
roughly linearly with the size of models of this type. 

7    Remarks 
Our prototype tool and benchmarking exercises used 

only forward reachability analysis. It should be possible 
to perform a backward reachability analysis by using 
negated rates in the time successor operation, which 
would essentially run time backwards to obtain the time 
predecessor of a polyhedra[2, 3]. 

We attempted to generate problems that intuitively 
resembled real-world schedulability problems, but ran- 
domly generated problems may not be reflective of prob- 
lems that would be encountered in practice. Moreover, 
the models we generated were precisely what would 
not be analyzed using linear hybrid automata tech- 
niques, since these models were amenable to analysis 
using traditional methods. Experience is needed with 
models that include features such as distributed exe- 
cution, remote procedure calls, rendezvous, etc., the 
kinds of models for which we intended this analysis 
technique. Our preliminary experience with some sim- 
ple distributed scheduling problems and with a software 
verification exercise suggests that our method works as 
well on these problems as on the uniprocessor bench- 
marks discussed in this paper [24]. 

We observed an increased ability to solve problems 
when only maximum compute times and minimum pe- 
riods were used, which classical preemptive fixed prior- 
ity theory tells us is sufficient for noninteracting tasks 

on uniprocessors. It is known that this is not true in 
certain multi-processor situations[10], and this is likely 
inadviseable when applying these methods to verifica- 
tion problems. It would be useful to identify more gen- 
eral conditions under which selected intervals in a model 
could be replaced by a scalar, or be expanded to a con- 
taining interval, in a way that significantly reduces the 
number of regions. 

We added scheduling semantics to a linear hybrid au- 
tomata model rather than explicitly modeling schedul- 
ing behavior using standard hybrid automata. The ba- 
sic idea, which is to determine the variable rates (or 
edge guards or assignments) using a computable func- 
tion of the composed system discrete states rather than 
a simple union of rates (or edge guards or assignments) 
specified in separate automata, might be applicable in 
other problem domains. 

Our results suggest that the computational complex- 
ity of performing a reachability analysis does not lie in 
the complexity of the individual polyhedra operations 
but in the possible combinatorial explosion in the num- 
ber of reachable regions, at least in practice in the prob- 
lem domain we studied. Our work illustrates how the 
incorporation of domain semantics into the model and 
the use of a partial order reduction method can be ef- 
fective in reducing the growth in the size of the discrete 
state space. An on-the-fly method might reduce the dis- 
crete state space size in some problem domains, but not 
in the one we studied. Several other researchers have ex- 
plored methods that automatically approximate sets of 
polyhedra using a containing polyhedron to reduce the 
growth in the region space size[12, 16, 13], although we 
found during some preliminary experiments with some 
simple methods that it was difficult to simultaneously 
achieve acceptable accuracy and significant performance 
improvements. Our work illustrates another approach, 
conservative modifications to model parameters to bet- 
ter condition a model, that also holds some promise. 
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Abstract 
MetaH is a language and toolset for the develop- 

ment of real-time high assurance software. There is an 
associated executive that is automatically configured by 
the tools to perform the task and message scheduling 
specified for an application. Linear hybrid automata 
are finite state automata augmented with real-valued 
variables. Transitions between discrete states may be 
conditional on the values of these variables and may 
reassign variables. These variables can be used to 
model real time and accumulated task compute time 
as well as program variables. We developed a con- 
current linear hybrid automata model for that portion 
of the MetaH executive software that implements task 
scheduling and time partitioning. A reachability analy- 
sis was performed to verify selected properties for a se- 
lected set of application configurations. The approach 
combines aspects of testing and verification and auto- 
mates much of the modeling and analysis. There are 
limits on the degree of assurance that can be provided, 
but the approach may be more thorough and less ex- 
pensive than some traditional testing methods. 

1    Introduction 
Linear hybrid automata are finite state automata 

augmented with variables whose values change contin- 
uously in a way that depends on the current discrete 
state[4]. A variable's value may stay fixed in a given 
discrete state (have a rate or derivative of 0), or a vari- 
able's value may change continuously as time passes 
at a rate that may vary from discrete state to discrete 
state. Discrete transitions between discrete states may 
be conditional on the values of these variables and may 
reassign selected variables. Linear hybrid automata 
can be subjected to a reachability analysis to verify 
that a given set of assertions is true of a system. In 
general a semi-decision procedure must be used since 
the reachability problem for linear hybrid automata is 
undecidable[12], although it can be shown that reason- 
able pragmatic restrictions make fairly general models 
for real-time allocation and scheduling in distributed 
heterogeneous systems decidable[24]. 

Linear hybrid automata can be used to model many 
kinds of dynamical systems, but the problem of inter- 
est in this paper is the modeling of software that per- 

*This work has been supported by the Air Force Office of 
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forms a real-time scheduling function. The continuous 
variables of a linear hybrid automaton can be used to 
model real time to specify deadlines, can be used as 
so-called integration variables to record accumulated 
compute time as tasks are preemptively scheduled, can 
be used to model hardware timers, and can be used 
to model program variables that appear in the soft- 
ware itself. Linear hybrid automata provide a concise 
and intuitive notation for describing complex real-time 
system structures and behaviors. 

MetaH is an emerging SAE standard language 
for real-time fault-tolerant high assurance software 
architectures^, 19, 20, 23]. Users specify how soft- 
ware and hardware components are combined to form 
an overall system. Our MetaH toolset can generate 
and analyze formal models for schedulability, relia- 
bility, and partition isolation. The toolset can also 
configure an application-specific executive to perform 
the specified task dispatching and scheduling, message 
and event passing, changes between alternative con- 
figurations, etc. Our executive supports a reasonably 
complex tasking model using preemptive fixed priority 
scheduling, including various forms of controlled time- 
slicing, error recovery, and time partitioning[5, 6, 7]. 

The core scheduling modules of the MetaH execu- 
tive implement a set of discrete operations on tasks: 
start, stop, dispatch, complete, etc. These opera- 
tions implement transitions between the discrete task 
scheduling states, e.g. dispatch may transition a task 
from the awaiting_dispatch state to the computing 
state. Continuously varying quantities, such as ac- 
cumulating compute times and decreasing time slices, 
must also be modeled. We inserted calls to build a lin- 
ear hybrid automata model of the executive code into 
the code itself. We developed several simple applica- 
tion specifications that included most (but not all) of 
the tasking features. We wrote a test driver that ex- 
ercised all relevant paths in the core scheduling mod- 
ules. The test driver thus triggered the generation of 
a linear hybrid automata model of all possible behav- 
iors of the core scheduling operations for each appli- 
cation. We applied a reachability analysis algorithm 
to detect missed deadlines and a few other types of 
errors. Several defects were discovered, most involv- 
ing incorrect handling of specific patterns of single and 
near-coincident multiple application-level faults, a few 
involving subtle timing defects such as race conditions. 

Our primary new result is that this actually worked, 



and was moreover accomplished with a moderate and 
practical amount of effort. Linear hybrid automata 
reachability analysis is computationally and numer- 
ically a much more difficult problem than discrete 
state reachability analysis[13,10], but using a recently 
developed method we were nevertheless able to ana- 
lyze fairly detailed models of a piece of software of 
real-world complexity[25]. Our work suggests that 
this technology has reached the threshold of practi- 
cal applicability, at least for the verification of small 
amounts of software of a particular type. 

A secondary result is our verification method, which 
combines aspects of testing and formal methods. Our 
approach provides a high degree of traceability be- 
tween code and model, automates certain aspects of 
model generation, and integrates reasonably well with 
the overall process and toolset. 

We include a discussion of limitations on our re- 
sults. We excluded many features from our initial 
modeling exercises, notably slack scheduling, inter- 
processor communication and dynamic reconfigura- 
tion. There are many potential defects of various types 
that our verification exercise could not have detected, 
and it is necessary to use this approach with other 
complementary verification methods. However, the ef- 
fort required is relatively modest (perhaps comparable 
to unit testing), while the results seem more thorough 
and less expensive than what we believe would have 
been achieved using requirements testing of the ver- 
ified features. We close with a discussion of possible 
future developments that may address some of the cur- 
rent limitations on applicability and thoroughness. 

2    Linear Hybrid Automata 
Figure 1 shows an example of a linear hybrid au- 

tomaton. In addition to the discrete states preempted, 
executing and waiting there are also real-valued 
variables c and t. This example models a preemp- 
tively scheduled task, where c records the accumulated 
compute time (the total time spent in the executing 
state since the most recent dispatch transition) and t 
is a timer used to control periodic dispatching and to 
assert a deadline will be met. We need linear hybrid 
automata rather than the more tractable timed au- 
tomata because we need integrator variables to model 
preemptive scheduling [3]. 

A discrete state may be annotated with an assign- 
ment of rates to the continuous variables of the au- 
tomaton. The timer t in this example has rate 1 in 
all states, while c has rate 1 only when the task is ex- 
ecuting and 0 otherwise. Discrete states may also be 
annotated with invariants to assure progress. In this 
example the invariant of state executing is that the 
value of c does not exceed 100, which models a task 
that never requires more than 100 units of compute 
time to complete. 

Edges between discrete states may be guarded by a 
set of linear constraints over the real-valued variables. 
A transition can occur over an edge only when the 
variable values satisfy the guard. The guard if c > 
75 in this example models a task that computes for at 
least 75 units of time before completing (i.e. the task 
in this example may compute for a nondeterministic 
amount of time in the interval [75,100]). Edges may 

also be labeled with assignments to real-valued vari- 
ables, such as the resets of c and t on the edge that 
models a dispatch event for the example task. 

Both discrete states and edges may be labeled with 
assertions, sets of linear constraints that should always 
be satisfied whenever the system is in the labeled dis- 
crete state and whenever a transition occurs over the 
labeled edge. 

In this example the edge guards "selected" and "un- 
selected" represent decisions made and actions taken 
by a task scheduler. The scheduler could be modeled 
as a concurrent control automaton[3]. It is also pos- 
sible to encode preemptive fixed priority scheduling 
in a compositional hybrid automata task model us- 
ing a shared queue variable together with scheduling 
guards on certain edges. However, we find it simpler 
and more general to add the desired scheduling se- 
mantics to a concurrent hybrid automata model and 
analyzer[24]. Our analyzer annotates individual task 
discrete states with resource and priority assignments 
and applies the desired scheduling semantics during 
the reachability analysis of a system composed from 
many tasks. Variable rates are computed by a schedul- 
ing function that looks at the states of all tasks in the 
composed system and returns the set of rates to use for 
that composed discrete state, very much analogous to 
the way run-time scheduling decisions are computed 
using a queue of ready tasks. 

More formally, a state of a linear hybrid automaton 
consists of a discrete part, the discrete state at some 
time t; and a continuous part, the real values of the 
variables at time t. It turns out that, although this 
state space is uncountably infinite, the reachable state 
space for a given linear hybrid automaton is a subset 
of the cross-product of the discrete states with a re- 
cursively enumerable set of polyhedra in 5Rn (where 
n is the number of variables) [4]. A region of a lin- 
ear hybrid automaton is a pair consisting of a discrete 
state and a polyhedron, where polyhedra can be rep- 
resented using a finite set of linear constraints. Model 
checking consists of enumerating the reachable regions 
for a given linear hybrid automaton and checking to 
see if they satisfy the assertions. There is no guar- 
antee that this enumeration will terminate, but if it 
does then assertions have been verified in all possible 
regions reachable by the hybrid automaton. 

Figure 2 depicts the basic sequence of operations 
that, given a starting region (a discrete state and a 
polyhedron defining a set of possible values for the 
variables), computes the set of values the variables 
might take on in that discrete state as time passes; 
and computes a set of regions reachable by subsequent 
discrete transitions. 

The first step is the computation of the time suc- 
cessor polyhedron from the starting polyhedron (of- 
ten called the post operation). For each point in the 
starting polyhedron, the time successor of that point 
is a line segment beginning at that point whose slope 
is defined by the variable rates specified for the dis- 
crete state. This is the set of variable values that 
can be reached from a starting point by allowing some 
amount of time to pass. The time successor of the 
starting polyhedron is the union of the time succes- 
sor lines for all points in the starting polyhedron.  A 
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Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task 

basic result of linear hybrid automata theory is that 
the time successor of any polyhedron is itself a poly- 
hedron (which in general will be unbounded in certain 
directions) [4]. 

The second step is the intersection of the time suc- 
cessor polyhedron with the invariant constraint associ- 
ated with the discrete state, yielding the time succes- 
sor region that is feasible given the specified invariant. 
Polyhedra are easily intersected by taking the union of 
the set of linear constraints that define the two poly- 
hedra. 

The remaining steps are used to compute new re- 
gions reachable from this feasible time successor re- 
gion by some transition over an edge. For each edge 
out of the current discrete state, the associated guard 
is first intersected with the feasible time successor re- 
gion. This polyhedron, if nonempty, defines the set 
of all variable values that might exist whenever the 
discrete transition could occur. Any variable assign- 
ments associated with the edge must now be applied 
to this polyhedron. This is done in two phases. First, 
a variable to be assigned a new value x := I is uncon- 
strained (often called the free operation). This oper- 
ation leaves unchanged the relationships between all 
other variables, i.e. the polyhedron is projected onto 
the subspace 5R™-1 of the remaining variables. This 
result is then intersected with the constraint x = I. 
This polyhedron, together with the discrete state to 
which the edge goes, is a new region for which the 
above steps may be repeated. In general a set of as- 
signments whose right-hand sides are linear formula 
are allowed, with some restrictions. The variables to 
be assigned are unconstrained and the resulting poly- 
hedra are then intersected with the appropriate linear 
constraints in some order. As we will see, this allows 
us to model fairly complex sequences of assignments 
to program variables. 

Analysis begins at the initial region of a hybrid au- 
tomaton. The operations described above are applied 
to enumerate feasible time successor regions and the 
new regions reachable from these via discrete transi- 
tions. As new regions are enumerated, they must be 

checked to see if they have been visited before (other- 
wise the method will not terminate even when there 
are a finite number of regions). This is done by com- 
paring the discrete states of regions for equality, and 
by checking to see if the new polyhedron is contained 
in a previously enumerated polyhedron for that dis- 
crete state. 

There are previously developed tools that perform 
a reachability analysis for linear hybrid automata[13, 
10]. The work described in this paper uses new reach- 
ability analysis methods we developed that enabled us 
to analyze larger problems[25]. Our tool incorporates 
scheduling semantics and allows sequences of assign- 
ments on edges. 

3    MetaH 
MetaH is a language for specifying software and 

hardware architectures for real-time, time-and-space 
partitioned, fault-tolerant, scalable multi-processor 
systems. Developers specify how a system is composed 
from software components like tasks and packages and 
hardware components like processors and memories. 
An associated toolset performs syntactic and semantic 
checks, generates and analyzes various models of the 
system, and automatically tailors a system executive 
to integrate all the components together as specified. 
Figure 3 shows the current toolset. 

Low-level software constructs of the MetaH lan- 
guage describe source components written in a tradi- 
tional programming language (currently Ada, C and 
C++). The source components themselves are de- 
veloped using other methods and specialized tools, 
e.g. reengineered, autocoded[19, 20]. Subprogram and 
package specifications describe the aspects of source 
modules that are needed to integrate them into a 
system, e.g. name of the file containing the source 
code, nominal and maximum compute times on vari- 
ous kinds of processors, stack and heap requirements. 
Events (user-specified enumeration literals used in cer- 
tain service calls) and ports (buffer variables used to 
hold message values) can appear within source mod- 
ules and must be accurately specified (the tools will 
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Figure 2: Hybrid Automata Reach Forward Operations 

parse selected source files and check for consistency 
with the specifications). 

The higher-level software constructs of the MetaH 
language are processes, macros and modes. Processes 
group together source modules that are to be sched- 
uled as either periodic or aperiodic tasks. A pro- 
cess is also the basic unit of fault containment, and 
memory protection and compute time enforcement are 
supported for some target processor configurations. 
Macros and modes group processes, define connections 
between events and ports, and define equivalences be- 
tween packages that are to be shared between pro- 
cesses.   The difference between macros and modes is 

that macros run in parallel with each other, while 
modes are mutually exclusive and are used to spec- 
ify alternative run-time configurations. Event con- 
nections between modes are used to define hierarchi- 
cal mode transition diagrams, where mode changes at 
run-time can stop or start processes or change connec- 
tions. 

MetaH allows hardware architectures to be spec- 
ified using memory, processor, channel, and device 
components grouped into systems. Hardware objects 
may have ports, events or packages in their interfaces. 
Software and hardware ports and events can be con- 
nected to each other, and software can access hard- 
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ware packages (hardware packages provide hardware- 
dependent service calls). Hardware descriptions iden- 
tify (among other things) hardware-dependent source 
code modules for device drivers, and code to provide a 
standard interface between the automatically config- 
ured executive and the underlying real-time operating 
system. 

A simple software/hardware binding tool assigns to 
hardware those software objects in a specification that 
are not explicitly assigned, possibly subject to user- 
specified constraints. 

Using information contained in the MetaH speci- 
fication and produced by the executive configuration 
tool, the schedulability modeler generates a detailed 
preemptive fixed priority schedulability model of the 
application. The model includes all scheduling and 
communication overheads. The schedulability analy- 
sis algorithm we currently use is an extension of the 
exact characterization algorithm[18, 22]. Our analysis 
tool produces sensitivity analysis information describ- 
ing how compute times may be changed while pre- 
serving (or in order to achieve) schedule feasibility; 
and it allows processes to be decomposed into com- 
ponent source modules and provides analysis data for 
individual source modules. 

The MetaH language includes a construct called an 
error model, which allows users to specify sets of fault 
events and error states and behaviors. Objects within 
a specification can be annotated to specify the error 
model, specific fault rates to use for that object, and 
consensus expressions to model voting protocols and 
fault-tolerance requirements. We have a prototype re- 
liability modeling tool that generates a stochastic con- 
current process reliability model[16, 21]. A subset of 
the reachable state space of this stochastic concurrent 
process is a Markov chain that can be analyzed using 

existing tools and techniques[16, 17]. 
MetaH can support time and space partitioning[l]. 

Protected address spaces and special scheduling tech- 
niques are used in a way that allows certain guaran- 
tees to be made about fault containment. If it can be 
shown that a defect in one component cannot possibly 
cause incorrect behavior in another component, then 
it is possible to simplify or eliminate certain verifica- 
tion activities. The partition isolation modeling and 
analysis tool checks such conditions. We note that 
the MetaH executive, which enforces partitioning and 
was the object of our formal verification work, must 
be verified to the highest level. 

4    MetaH Executive Modeling 
Figure 4 shows the high-level structure of the 

MetaH executive. The core task scheduling operations 
are implemented by Threads, e.g. start, dispatch, 
complete. Threads invokes operations in TimeJ51ice, 
which encapsulates arithmetic operations and tests 
on two execution time accumulators maintained by 
the underlying RTOS and hardware for each task: 
an accumulator that increases while a task executes, 
and a time slice that decreases while a task executes. 
Time_Slice may set these variables to desired val- 
ues using services provided through the MetaH RTOS 
interface. If time slicing is enabled for a task, 
then a trap will be raised by the underlying hard- 
ware and RTOS when the time slice reaches zero. This 
trap is handled by one of the operations in Threads. 
Clock_Handler is periodically invoked by the underly- 
ing system (it is the handler for a periodic clock inter- 
rupt) and makes calls to Threads to dispatch periodic 
tasks and start and stop threads at mode changes. 
Events, Modes and Semaphores contain data tables 
and operations to manage user-declared events, dy- 
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namic reconfiguration, and semaphores. 
Most of these modules include code that is au- 

tomatically generated by the configuration tool and 
code that is common across all applications. Threads, 
Time_Slice and Semaphores use only generated data 
tables, all the executable code is common to all appli- 
cations. Modes contains only generated data tables 
and no executable code at all. Clock-Handler in- 
cludes some automatically generated case statements 
that periodically call Threads operations at different 
rates in different modes. Events includes some auto- 
matically generated case statements to vector events 
to the proper Threads operations in different modes. 

As Figure 4 illustrates, Threads provides the core 
scheduling operations that are invoked by the other 
modules. Only Threads and Time_Slice make calls 
to underlying RTOS services such as suspend, resume, 
and set priority. All trap and interrupt events even- 
tually result in calls to Threads operations. Threads 
and Time-Slice account for about 1800 of the 2800 
lines of non-application-specific, non-target-specific 
code in the executive. It is these two modules for 
which we created linear hybrid automata models. 

In essence, each Threads operation is a kind of 
event that transitions a thread from one schedul- 
ing state to another. Threads implements 13 basic 
scheduling operations on tasks. Figure 5 illustrates 
the general code structure for an operation. There is 
a global array that maintains state information about 
each task, including the scheduling state (there are 
15 scheduling states). For example, the Dispatch 
operation in Figure 5 will transition a thread in the 
Awaiting-Dispatch state to the Computing state. 

Figure 5 also illustrates how the operation can be 
influenced by other factors, such as the application 
developer's choice for the handling of dispatch events 
that arrive for an aperiodic process while it is still ser- 
vicing a previous event. Many decisions made during 
execution are dependent on the task subtype (peri- 
odic, transformed periodic, incremental periodic, pe- 
riod enforced aperiodic, slack scheduled aperiodic). 
Much of the data used to make decisions in the code is 
contained in declarations and tables generated by the 

MetaH toolset. In particular, an array of static data 
is generated that describes for each task its subtype, 
whether it has enforced execution time limits and what 
they are, its scheduling priority, the semaphores it is 
allowed to lock and unlock, etc. 

The implementation is complicated by the fact 
that the task state transition diagram is hierarchi- 
cal rather than flat. The scheduling states associ- 
ated with semaphore locking and unlocking, and with 
the controlled time-slicing of period transformed and 
slack scheduled tasks, form sub-state-machines that 
can be called, subprogram-like, from any of the start- 
ing or computing or recovering states. A state variable 
(Return_To_State in Figure 5) is used in the code to 
record the return state. (The current executive imple- 
mentation does not supported nested semaphore lock- 
ing-) 

Rather than write a separate model of this code 
using a specialized modeling language, we inserted 
model-building calls into the Threads and Time_Slice 
code. For example, the code in Figure 5 had a call in- 
serted to a subprogram that would create an edge be- 
tween the Await_Dispatch and the Computing mod- 
eling states for the task identified by the Thread pa- 
rameter. A test driver was written that first created 
discrete model states for all tasks in the application, 
then called each Threads operation. Subprograms 
were added to Threads so that this test driver could 
first explicitly set the values of any relevant internal 
state variables. The test driver called every operation 
on every thread with every possible setting of mod- 
eled internal state variables. To put this another way, 
the test driver exercised every modeled path through 
the Threads and Time-Slice code, thereby including 
in the model every possible modeled transition that 
might occur at run-time for every task. 

A special target processor specification was devel- 
oped that provided a null MetaH processor interface, 
except that the test driver was substituted for the 
normal code to begin application execution. From 
the user's perspective, a new target processor speci- 
fication was added to the MetaH library, where the 
execution of an application built for this processor re- 



Thread_State_Type is 

record 

Scheduling_State: State.Type; 

Dispatch.Enqueued: Boolean; 

Return_To_State: State.Type; 

end record; 

State: array (Thread_ID_Type) of Thread_State_Type; 

procedure Dispatch (Thread: Thread_ID_Type; 
Busy_Option: Option.Type) is 

begin 
case State(Thread).Scheduling_State is 

when Awaiting.Dispatch => 

State(Thread).Scheduling.State := Computing; 

Time_Slice.Dispatch (Thread); 

MetaH_Processor_Interface.Resume (Thread); 

when Computing => 

case Busy_Option is 

when Ignore_Dispatch => 

null; 
when Enqueue_Dispatch => 

State(Thread).Enqueue_Dispatch := True; 

when Raise_Fault => 
Threads.Thread_Error (Thread, Lost_Event); 

end case; 

when ... => 

end case; 

end Dispatch; 

Figure 5: Thread Code Structure 

suited in the generation and analysis of a linear hybrid 
automata model for that application (after a few spe- 
cial modeling fields added to the task data tables were 
filled in by hand). The modeling and analysis for any 
specific application specification is thus largely auto- 
mated and appears as a new analysis tool as illustrated 
in Figure 3. 

The timing of the calls to some Threads operations 
is important. Periodic tasks are dispatched at a speci- 
fied rate by the Clock_Handler, a module that we did 
not model explicitly. The behavior (but not the de- 
tailed code structure) of Clock-Handler is implicitly 
modeled using timer variables for each task, where 
a guard on each dispatch model edge enables a dis- 
patch transition only when the timer equals the spec- 
ified task period, and an assignment on each dispatch 
model edge then resets that timer to zero (recall the 
use of variable t in Figure 1). Timer variables are also 
used to model the timing of certain period transfor- 
mation and period enforcement operations. 

The models specified that starting, computing, re- 
covering and locking times might be anywhere be- 
tween zero and the nominal values in the specification. 
For systems with enforced execution times, we speci- 
fied nominal compute values that would cause dead- 
lines to be missed if any limit was improperly enforced. 
The nominal compute times exceeded the enforced 
maximum compute times in these specifications (not 
what one would normally encounter), and the toolset 
was directed to use enforced rather than nominal com- 

pute times for schedulability analysis. For aperiodic 
tasks the model allowed the period between succes- 
sive dispatch events to be any value between half the 
enforced period and twice the system hyperperiod. 

We also introduced model variables for certain pro- 
gram variables that appear in the implementation 
code. For example, the variable that records whether 
an event is enqueued for an aperiodic task was mod- 
eled (this is a bounded queue, currently bounded at 
a single event). Guards involving this variable de- 
termine whether a busy aperiodic task transitions to 
the Awaiting-Dispatch, Computing or Recovering 
state when it becomes possible to service another 
event. The variable that records the Return_To .State 
for the semaphore locking and period transformation 
sub-state-machines was modeled. This variable is as- 
signed on every edge that enters one of these sub-state- 
machines. Edges appear in the model from these sub- 
states back to every possible calling state, where a 
guard determines which state is actually transitioned 
to based on the value of the Return_To_State variable. 

Finally, we introduced variables to model controlled 
time slicing and execution time enforcement. This was 
the most complicated aspect of our modeling work, 
partly because there is some nested program logic 
split between Threads and Time_Slice, and partly 
because there are some subtle issues involved in mod- 
eling the complex sequences of assignments that ap- 
pear in the code. Even then we simplified our problem 
by not modeling slack scheduling and excluding slack- 
scheduled task types in our analyses. 

In order to enforce blocking time bounds, the 
MetaH executive can enforce semaphore locking time 
limits that are distinct from overall compute time lim- 
its. One of the most complex time variable manipu- 
lations involves the saving and restoring of execution 
time information when semaphores are locked and un- 
locked. The exact set of assignments performed by the 
lock and unlock operations is determined by program 
logic (modeled using multiple edges, guards and as- 
signments), but one sequence of assignments that is 
sometimes executed at a lock is 

Previous_Time_Slice(T) := Time_Slice(T); 

Previous_Execution_Time(T) := Execution_Time(T); 
Time_Slice(T) := Locking.Limit (T, S); 

followed at the unlock by 

Time_Slice(T) := Previous_Time_Slice(T) 

- (ExecutionJTime(T) 

- Previous_Execution_Time(T)); 

TimeJSlice appears on both the right-hand and 
the left-hand side of the first block of assign- 
ments. These assignments must be modeled in 
multiple phases: free Previous_Time_Slice and 
Previous_Execution_Time; intersect the constraints 
Previous_Time_Slice = Time_Slice and 
Previous_Execution_Time = Execution-Time; and 
then a final assignment (free then constrain) to 
Time_Slice. It was not necessary to introduce inter- 
mediate discrete states to model a sequence of assign- 
ments, but it was necessary to extend the reachability 
tool to allow sequences of assignments on a transition 
edge. 



A second and more subtle effect is due to the 
semantics of time succession. Time-Slice and 
Execution-Time are not normal program variables, 
they are time-varying accumulators maintained by the 
underlying RTOS using hardware timers. Whenever 
task T is executing, the values of these variables change 
at rates of-1 and 1 respectively. In the unlock assign- 
ment, if we simply imposed the constraint 

Time_Slice(T) = Previous_Time_Slice(T) 
- (Execution_Time(T) 

- Previous_Execution_Time(T)); 

then during the next time successor operation at 
which task T is executing, both Time_Slice and 
Execution-Time would change. The time succes- 
sor operation will maintain this constraint between 
the two time-varying variables as time passes. How- 
ever, what we really want to model is that the 
value of Time_Slice depends on what the value of 
Execution-Time was at a particular instant of time, 
the most recent unlock of the semaphore. In order to 
do this we must introduce a zero-rate sampling vari- 
able and model the assignment as if it had been coded 

Sampled_Execution_Time(T) := Execution_Time(T); 

Time_Slice(T) := Previous_Time_Slice(T) 

- (Sampled_Execution_Time(T) 

- Previous-Execution_Time(T)); 

The assignment constraint imposed at the time of 
this transition will constrain Time-Slice relative to 
zero-rate variables only as time passes. The value of 
Time_Slice as time passes will depend on the sampled 
execution time when the unlock occurred rather than 
on the time-varying ExecutionJTime accumulator. 

A total of 14 real-valued variables and 15 discrete 
states were denned to model each task. No single task 
model used all 14 variables and 15 states, different 
task types with different specified options used dif- 
ferent combinations. In order to minimize the num- 
ber of variables that had to be manipulated during 
reachability analysis, we inserted free operations for 
selected variables on selected edges to undefine and 
remove them from the model (e.g. Return_To_State 
was freed on each edge leading out of one of the sub- 
state-machines). Figure 6 shows the simplest linear 
hybrid automata model we generated, a periodic task 
with period and deadline of lOOOOOus, compute time 
between 0 and 90000us, recovery time between 0 and 
lOOOOus. States are also annotated with processor 
scheduling priorities, which are not shown here. The 
variable rates were derived from the scheduling prior- 
ities by the analysis tool, which used preemptive fixed 
priority scheduling semantics for this study. 

The conditions we checked during reachability 
analysis were that all deadlines were met whenever 
the schedulability analyzer said an application was 
schedulable; no accessed variables were undefined and 
no invariants were violated on entry to a region; and 
no two tasks were ever in a semaphore locking state 
simultaneously. In addition, the code itself includes 
some assertion checks. These were modeled by edges 
annotated with assert False. 

Current reachability analysis methods are not capa- 
ble of analyzing applications of real-world complexity 

involving several tasks. However, the modeled code 
does not change from application to application, only 
the configuration tables that it uses. Our goal was 
to obtain some assurance that this fixed code is cor- 
rect using a specific finite set of verification exercises. 
We developed a set of MetaH application specifica- 
tions for one and two task systems that modeled a 
variety of combinations of task subtypes and tasking 
options, described in Table 1. Our results to date are 
a hybrid between testing and verification, where we 
verify the code for a specific set of configuration ta- 
bles for a specific set of applications. Each exercise 
verifies correctness for all possible compute times and 
event sequences that are possible in each application 
configuration. 

We defined a verification coverage metric to in- 
crease our assurance of correctness. We collected 
information about which edges were used by some 
transition during reachability analysis and compared 
this with all the possible edges that might be created 
(all instances of calls inserted into the code to cre- 
ate edges). This metric determined if a piece of code 
was modeled by an edge that appears in the model 
and also insured that some analysis examined possi- 
ble run-time transitions over that edge, analogous to 
measuring path coverage during unit testing. Edges 
used to model internal code assertion failures caused 
no run-time transitions. A few edges were not used 
because we omitted dynamic reconfiguration from our 
exercise, one edge would have been used only under 
overload conditions. After examining this data for our 
initial set of applications, we discovered that two addi- 
tional configurations were needed to achieve complete 
coverage of the remaining edges, one of which revealed 
a defect that had gone undetected. 

5    Results 
We discovered nine defects in the course of our ver- 

ification exercise. Four of these were tool defects, two 
that could cause bad configuration data to be gener- 
ated and two that could cause erroneously optimistic 
schedulability models to be generated. Six of these 
defects could cause errors only during the handling 
of application faults and recoveries, three of these six 
only in the presence of multiple near-coincident faults 
and recoveries. 

We have not performed a systematic unit testing 
of the threads operations, but we believe the effort re- 
quired for our modeling and analysis is roughly compa- 
rable. The effort required to develop test drivers and 
test cases that will drive execution along all paths is 
probably comparable. Unit testing does not require 
the insertion of modeling code, but does sometimes 
require the development of code to set internal vari- 
ables and observe intermediate results. Also, we did 
not have to determine acceptable results for each unit 
test. 

We have not performed a systematic requirements 
testing of the MetaH toolset and executive, but we be- 
lieve the approach outlined in this paper provides more 
thorough defect detection than is likely to be achieved 
in practice using requirements testing of the features 
we modeled. The thoroughness of requirements test- 
ing depends partly on the available resources and 
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Figure 6: Generated Hybrid Automata Model for a Simple Periodic Task 

Description Discrete 
States 

Distinct 
Polyhedra 

Sparc Ultra-2 
CPU Seconds 

one periodic task 7 7 0 
one periodic task, enforced execution time limits 7 10 0 
one periodic task, enforced execution time limits, one semaphore 8 29 15 
one period-enforced aperiodic task 9 18 0 
one period-enforced aperiodic task, enforced execution time limits 9 27 2 
one period-enforced aperiodic task, enforced execution time limits, one 
semaphore 

11 124 125 

two periodic tasks 36 60 3 
two periodic tasks, enforced execution time limits 36 108 24 
two periodic tasks, one with period transformed into two pieces, 41 97 10 
two periodic tasks, one shared semaphore 48 118 36 
two periodic tasks, one with period transformed into two pieces, enforced 
execution time limits 

41 174 87 

two periodic tasks, one with period transformed into four pieces, enforced 
execution time limits, recovery limit greater than compute limit 

40 334 103 

two tasks, one periodic and one period-enforced aperiodic 44 623 115 
two periodic tasks, one with period transformed into four pieces, enforced 
execution time limits 

41 351 170 

two tasks, one periodic and one period-enforced aperiodic, enforced ex- 
ecution time limits 

44 425 184 

two tasks, one periodic and one period-enforced aperiodic, one shared 
semaphore 

70 638 840 

two periodic tasks, one with period transformed into two pieces, enforced 
execution time limits, one shared semaphore 

55 963 5658 

Table 1: Modeled Applications 



partly on the experience and perversity of the indi- 
viduals doing the testing. In our judgement, of the 
nine defects we found, one would almost certainly have 
been detected by moderately thorough requirements 
testing, while three would have been almost impossi- 
ble to detect by testing due to the multiple carefully 
timed events required to produce erroneous behavior. 
The other five may have been detected by thorough 
requirements testing of fault and recovery features, 
providing the tester thought about possible execution 
timelines and arranged for tasks to consume carefully 
selected amounts of time between events. 

Structured review (inspection, walk-through) is an- 
other common and highly effective method for detect- 
ing defects. In some ways our modeling effort resem- 
bled a semi-formal review of the design and code. The 
generated linear hybrid automata models, which we 
printed in a readable form, provided a good abstract 
description of the scheduling behavior. This descrip- 
tion had good intuitive traceability both to the code 
and to some of the original requirements specifications. 
We recommend that the approach outlined in this pa- 
per be broadly construed to include explicit review of 
the design, code and linear hybrid automata models. 
One of the defects we detected was discovered during 
a review of the linear hybrid automata model rather 
than by reachability analysis. 

We did not explicitly model the details of 
Clock-Handler or Events, which are generated 
application-specific modules. We modeled the mode 
change (dynamic reconfiguration) that occurs at sys- 
tem start-up but not any application-triggered mode 
changes. Our models did not account for the fact that 
executive operations require a small but finite amount 
of time and are performed non-preemptively. We did 
not model any multi-processor behaviors. These can 
all be modeled in a fairly straight-forward and intu- 
itive way using linear hybrid automata, but we cannot 
say at what point the models would become unanalyz- 
able using our current reachability methods. Whether 
or not slack scheduling or complex priority inheritance 
protocols could be easily modeled is an open question. 

There are many non-scheduling executive behav- 
iors that were not modeled, including some behav- 
iors supported in part by code in Threads such as 
message copying, instrumentation, and status report- 
ing. In our judgement, it is fairly easy to informally 
distinguish between specified behaviors that are mod- 
eled, and specified behaviors that are not modeled and 
would need to be verified using traditional require- 
ments testing or other methods. 

A number of limitations would exist even with the 
most detailed and complete linear hybrid automaton 
model. Some sort of induction argument is needed 
to establish correctness of the scheduling code for all 
possible application configurations. The MetaH pro- 
cessor interface, underlying RTOS and hardware were 
not modeled and are unlikely to be fully model-able 
for a variety of practical and technical reasons. The 
MetaH tools were not verified, only a few specific gen- 
erated modules and reports for a few example appli- 
cations. Although our approach provides good trace- 
ability between code and model, there is still a very 
real possibility of modeling errors.   The reachability 

analysis tool may contain defects; we discovered two 
in our tool in the course of this work. Even if the 
source code is correct, defects in the compiler, linker 
or loader software could introduce defects into the ex- 
ecutable image. 

6    Future Work 
It should be possible to use the set of reachable re- 

gions produced by the analysis tool to automatically 
generate tests. This could significantly reduce the cost 
and increase the quality of requirements testing (which 
might still be required by the powers-that-be). Such 
tests could also detect defects that could not be found 
by model analysis, such as defects in the compiler, 
linker, loader, RTÖS or hardware. One of the issues 
that must be confronted is the ease of constructing, 
running and observing the results of tests; for exam- 
ple, in theory one might encounter transitions in the 
model that occur only when an accumulated execution 
time is exactly equal to some fixed value, which would 
be practically impossible to do in a test. Another issue 
is that such tests would not take into account the in- 
ternal logic of unmodeled modules such as the RTOS; 
a systematic method for testing multiple points within 
each reachable polyhedron might help address this. 

There are a number of potentially useful improve- 
ments in analysis methods and tools. Approximation 
and partial order methods might significantly increase 
the size of the model that could be analyzed[10, 14, 
11, 25]. It is possible to apply theorem proving meth- 
ods to linear hybrid automata[15], and some work has 
been done on dense-time process algebras[8, 9]. De- 
composition and induction methods currently being 
explored for discrete state models might be extensi- 
ble to linear hybrid automata. There are a number 
of possible ways to visualize and navigate the reach- 
able region space that would be of practical assistance 
during model development and debugging and during 
reviews. Concise APIs and support for in-line mod- 
eling could reduce both the modeling effort and the 
number of modeling defects. 

Changes will inevitably be required to the design, 
implementation and verification processes to make 
good use of these methods. An important and not 
completely technical question is how verification pro- 
cesses might be changed to beneficially use these meth- 
ods. What evidence would be required, for example, 
to convince a development organization or regulatory 
authority to replace selected existing verification ac- 
tivities with modeling and analysis activities, or to 
add modeling and analysis to current verification ac- 
tivities? 
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