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FIGURES AND ILLUSTRATIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Shows a top view of a photorefractive crystal with a 10 micron laser beam
passing through it. The top of the pictures shows the beam expanding due to
diffraction. The bottom of the picture shows what happens when a voltage is
applied to the crystal. The beam is seen to trap at 10 microns and form a spatial
soliton.

Shows the experimental apparatus used to fix or make permanent the self-
induced waveguides. The argon-ion laser is used to produce both a soliton
beam and a background beam used to excite charge to the head-to-head domain
regions and lock the domain pattern.

Shows the beam profile at the entrance face; at the exit face without an applied
voltage; at the exit face with an applied voltage; and at the exit face after fixing
the waveguide.

On the left is shown that an input higher order mode is not guided by the fixed
waveguide. This demonstrates that the fixed waveguide is single mode
waveguide. On the right is the beam profile of a HeNe beam injected into the
waveguide. As is easily seen, the waveguide does an excellent job in guiding
beams that do not induce a waveguide of their own.

On the left is show two input beam in the horizontal plane of the crystal. The
two beam are seen to give a combined diffracted output. However, when a
voltage is applied the two beam are seen to merge at the output forming one
soliton beam. When this waveguide is fixed, a Y-junction is formed in the

crystal. The output profile remains the same independent of one or two inputs.

Shows that the Y-junction can be operated in reverse. One input HeNe beam is
shown splitting into two beams. The two output HeNe beams mirror the two

input waveguide forming argon-ion laser beams

The same situation as in figure 5 except that the two input beams are now in the
vertical plane. Together, figures 5 and 7 show that we are able to
simultaneously fix or make permanent any array of waveguides in the crystal,

thus making possible optical circuitry in the bulk.
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SUMMARY OF THE MOST IMPORTANT RESULTS

The photorefractive waveguide is created by a steady state screening photorefractive
soliton. Steady state screening photorefractive solitons occur when an external voltage is applied
to a photorefractive crystal and the electric field is partially screened within the incident light
beam due to the higher conductivity created by the light-induced excited charge carriers. As a
result of the different electric field values within and around the optical beam the refractive index
is correspondingly modified via the Pockels effect. The resulting modified index distribution
then traps the optical beam.

While there are many applications that depend on the fact that 2-D photorefractive
waveguides are self-induced and easily erased, for parametric generation it would be
advantageous to have a permanently induced 2-D waveguide in the crystal. For example, one
can envision a 2-D waveguide that can maintain a 10-micron beam diameter over long
propagating distances (Fig. 1.) and, therefore, high conversion efficiency for low intensity optical
beams. By playing with paraelectric to ferroelectric phase transition we have found it possible to
make permanent waveguides in our photorefractive crystals. At the same time we are also trying
to create alternate ferroelectric planes to quasi-phase match.

Prior to the present work, all photorefractive solitons explored were supported by trapped
charge carriers. In other words, the waveguide structure induced by the solitons always
disappeared if the applied field was turned off while the crystal is still illuminated. This is
because the trapped electrons are re-excited and eventually and experience transport due to
diffusion alone, which gives rise to a charge distribution that cannot support solitons. For many
applications, however, it is essential to actually "impress" the waveguide structure into the
crystalline lattice, by moving ions. In principle, two methods can be employed for transforming
the electronic waveguide structure into an ionic deformation: ion drift and ferroelectric space-
modulated poling. We have recently successfully employed the latter method and were able to
permanently fix the waveguide structure (as induced by a soliton) into an ionic structure, which
survives in room temperature when the applied field is removed, even upon intense illumination.
On the other hand, these permanent waveguide can be easily erased (when desired) by applying
fields that are larger than the coercive field in the dark (or upon uniform illumination).

The apparatus (Fig. 2.) consisted of an argon laser, focusing optics, and an optical
imaging system. The focused 12u beam diameter on the input face of the lem SBN:75 crystal
normally expanded due to diffraction to about 100p on the exit face. When a voltage was
applied, the beam self-trapped and formed a photorefractive spatial soliton as the beam diameter
at the output face was reduced to 12pu. When the applied electric field was switched off, the

remaining screening space charge field in the region of the 12p beam flipped the domains, so
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that in this region, the crystal was oppositely poled and the charge at the head-to-head domain
walls caused an electric field to be created in the original applied field direction. As a result, a
waveguide was fixed in the crystal and guided the laser light with zero applied voltage and no
background beam of any type. The beam diameter on the crystal entrance face is shown on the
left of Fig. 3, the diffracted output beam in the center, while the diameter at the exit face after
fixing is on the right. This waveguide showed no sign of diminishing after 24 hours of use, but
could be erased using a large electric field and uniform illumination applied to the crystal. Fig. 4
shows the fixed wave guide guiding a HeNe laser beam while Figs. 5, 6 and 7 show a fixed y-
junction. Together, these express the most important results from our study which is that we can
create 10 micron waveguides in every direction throughout the crystal forming optical
waveguide circuitry throughout the bulk.

Our future plan is to use the “fixed” waveguide to produce highly efficient parametric
generation in SBN:75 using quasi-phase matching. This can be accomplished by reversing the
domains and fixing in alternate 3p planes along the propagation direction. In fact, we had hoped
to complete this part before the project ended but doing a through job of fixing waveguides took
more time than desired.

MANUSCRIPTS
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