
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

QOS MANAGEMENT WITH
ADAPTIVE ROUTING

FOR
NEXT GENERATION INTERNET

by

Henry C. Quek

March 2000

Thesis Advisor:
Second Reader:

Geoffrey Xie
Bret Michael

Approved for public release; distribution is unlimited.

XjnC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
QOS MANAGEMENT WITH ADAPTIVE ROUTING FOR NEXT GENERATION
INTERNET

6. AUTHOR(S)
Henry C. Quek

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DARPA and NASA

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
G417

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUnON/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
Statement A

13. ABSTRACT (maximum 200 words)
Up till today, the Internet only provides best-effort service, where traffic is processed as quickly as possible, with no guarantee as to

timeliness or actual delivery. As the Internet develops into a global commercial infrastructure, demands for guaranteed and differentiated
network quality of service (QoS) will increase rapidly. Several QoS service models have been developed to provide and support QoS in
the Internet, namely: Integrated Service (IntServ), Differentiated Service (DiffServ) and Multiprotocol Label Switching (MPLS). QoS
routing, such as Widest-Shortest Path, Shortest-Widest Path and Shortest-Distance Path, is required in order to support QoS and optimize
the network resource utilization.

The Server and Agent based Active network Management (SAAM) system is a network management system designed for the next
generation Internet. It is capable of supporting all types of service. It will be able to control and optimize the utilization of the network
through resource allocation and adaptive QoS routing.

This thesis describes a design and implementation of the QoS Management component of a SAAM Server. This component
optimizes the utilization of network resources and supports the various service classes in a cohesive manner. It utilizes an adaptive
routing strategy to balance the network load.

14. SUBJECT TERMS Next Generation Internet, Integrated Services, Differentiated Service, MPLS,
Quality of Service, Flows, Networks, Routing

15. NUMBER OF
PAGES 287

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

QOS MANAGEMENT WITH ADAPTIVE ROUTING
FOR

NEXT GENERATION INTERNET

Henry C. Quek
Republic of Singapore's Ministry of Defense

B. Eng. University of Leeds (UK), 1995

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author:

Approved by:
Geoffrey Xie, Thesis Advisor

Sn^Mc^UJl
Bret Michael, Second Reader

7k t
Dan Boger, Ctafrman

Department of Computer Science

in

IV

ABSTRACT

Up till today, the Internet only provides best-effort service, where traffic is

processed as quickly as possible, with no guarantee as to timeliness or actual delivery. As

the Internet develops into a global commercial infrastructure, demands for guaranteed

and differentiated network quality of service (QoS) are increasing rapidly. Several QoS

service models have been developed to provide and support QoS in the Internet, namely:

Integrated Service (IntServ), Differentiated Service (DiffServ) and Multiprotocol Label

Switching (MPLS). QoS routing, such as Widest-Shortest Path, Shortest-Widest Path and

Shortest-Distance Path, is required in order to support QoS and optimize the resource

utilization.

The Server and Agent based Active network Management (SAAM) system is a

network management system designed for the next generation Internet. It is capable of

supporting all types of service. It will be able to control and optimize the utilization of the

network through resource allocation and adaptive QoS routing.

This thesis describes a design and implementation of the QoS Management

component of a SAAM Server. This component optimizes the utilization of network

resources and supports the various service classes in a cohesive manner. It utilizes an

adaptive routing strategy to balance the network load.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. AN OVERVIEW OF SAAM 1

1. SAAM Server 2
2. SAAM Router 3

C. GOAL OF THE SAAM PROJECT 3
1. Integrated And Differentiated Services 4
2. Optimal Use Of Resources 4
3. Automated Fault Detection And Timely Recovery 4
4. Support of Incremental Deployment •. 4

D. SCOPE OF THIS THESIS 5
E. MAJOR CONTRIBUTIONS OF THIS THESIS 6
F. ORGANIZATION 6

E. RELATED TOPICS 7
A. QUALITY OF SERVICE ROUTING 7

1. Goals of QoS Routing: 8
2. Strategies of QoS Routing 8
3. Path Selection Schemes of QoS Routing 9

B. INTERNET QUALITY OF SERVICE MODELS 10
1. Integrated Service 10
2. Differentiated Service 12
3. Multiprotocol Label Switching 16

C. SIMILARITIES AND DIFFERENCES OF QOS MODELS 17

JJJ. SAAM QOS MANAGEMENT DESIGN 19
A. NEW MESSAGES REQUIRED 19

1. SAAMPacket Format 20
2. ResourceAllocation Message 21
3. FlowRequest Message 23
4. FlowResponse Message 25
5. FlowTermination Message 25
6. Management of Service Level Spec 26

B. SAAM QOS MANAGEMENT 26
1. Resource Management 29
2. Processing of IntServ Flows 30
3. Processing of DiffServ Flows 32
4. Path Selection With Adaptive Routing 34

IV. SAAM QOS MANAGEMENT IMPLEMENTATION 35
A. NEW MESSAGES 35

1. ResourceAllocation Class 35
2. FlowRequest Class 35

vii

3. FlowResponse Class 35
4. FlowTermination Class 35
5. SLSTableEntry Class 36
6. PacketFactory Class 36
7. ControlExecutive Class 36

B. RESOURCE MANAGEMENT , 36
1. Server Class 36
2. ClassObjectStructure Class 37

C. PATH SELECTION WITH ADAPTIVE QoS ROUTING 37
1. ClassObjectStructure Class... 37

D. MANAGEMENT OF FLOWS 38
1. Server Class 39
2. ClassObjectStructure Class 40

E. MANAGEMENT OF SERVICE LEVEL SPEC 40
i. SLS Class 40
2. SLSTable Class 40
3. SLSDbase Class 40
4. Ftfe/O Class 41
5. Server Class 41

F. INTERSERVICE RESOURCE BORROWING r 42

V. TEST AND VERIFICATION t 43
A. MESSAGE VERIFICATION TEST , 43

1. Test Requirements 43
2. Test Results 44

B. QOS MANAGEMENT A1GORITHM TEST 44
1. Test Requirements 44
2. Test Results 45

VI. CONCLUSION 47
A. LESSIONS LEARNED 47

1. Working With Large Project 47
2. Requirement Of Powerful Server 47

B. FUTURE WORK 47
1. Scheduler Capabilities At The Router 48
2. A Bridge Between The Customer And The Server 48
3. Security 48
4. Fault Recovery 48
5. Re-routing Of Flows During Interface Failure 48

APPENDLX A - CURRENT INTERNET ROUTING PROTOCOL 49
A. Routing Information Protocol (RIP) 49
B. Open Shortest Path First (OSPF) 50
C. Border Gateway Protocol 51

APPENDIX B - SAAM SERVER.SERVER CLASS CODE 53

viii

APPENDIX C - SAAM MESSAGE.RESOURCEALLOCATION CLASS CODE 93

APPENDK D - SAAM MESSAGE.FLOWREQUEST CLASS CODE 97

APPENDK E - SAAM MESSAGE.FLOWRESPONSE CLASS CODE 105

APPENDK F- SAAM.MESSAGE.FLOWTEPJVDNATION CLASS CODE 111

APPENDK G - SAAM.MESSAGE.SLSTABLEENTRY CLASS CODE 113

APPENDK H-SAAM.MESSAGE.MESSAGE CLASS CODE 117

APPENDK I - SAAM SERVER.CLASSOBJECTSTRUCTURE CLASS CODE 121

APPENDK J - SAAM SERVER.SERVER.DIFFSERV PACKAGE CODE 163

APPENDK K - SAAM CONTROL.CONTROLEXECUTTVE CLASS CODE 177

APPENDK L- SAAM CONTROLPACKETFACTORY CLASS CODE 215

APPENDK M - SAAM CONTROLMAINGUI CLASS CODE 233

APPENDK N - SAAM UTIL.FILEIO CLASS CODE 239

APPENDK O - SAAM.DEMO.DEMO_lSERVER_lROUTER CLASS CODE 243

APPENDK P - SAAM.DEMO.SENDFLOWAGENT CLASS CODE 251

APPENDK Q - SAAMDEMO.QOSDEMO PACKAGE CODE 255

LIST OF REFERENCES 267

INITIAL DISTRIBUTION LIST 269

ix

LIST OF FIGURES

Figure 1.1 -An example of SAAM network architecture 2
Figure 1.2-SAAM Server and Router interaction 3
Figure 1.3-Incremental Deployment of SAAM 5
Figure 2.1 - Integrated Service Router Model 11
Figure 2.2 - Differentiated Service Field in IPv4 Header 12
Figure 2.3 - Type of Service Field 13
Figure 2.4 - Traffic classification and conditioning 14
Figure 2.5 - MPLS Header 17
Figure 3.1 - SAAM Packet Structure 21
Figure 3.2 - Resource Allocation Message 22
Figure 3.3 - Flow Request for DiffServ flow 23
Figure 3.4 - Flow Request for IntServ flow 23
Figure 3.5 - Service Level Spec Parameters 23
Figure 3.6 - Differentiated Service Code Point Format 24
Figure 3.7 - Disposition Action Parameters 24
Figure 3.8 - FlowResponse Message Format 25
Figure 3.9 - FlowTermination Message Format 25
Figure 3.10 - SLSTableEntry Message Format 26
Figure 3.11 - Flow Chart of SAAM QoS Management Algorithm 27
Figure 3.12 - Pie Chart illustration of SLP resource allocation 30
Figure 3.13 - Statistical Distribution of the aggregate throughput of DD flows 32
Figure 5.1 - One Server and One Router Topology 43
Figure 5.2 - One Server and Three Router Topology 44

XI

Xll

LIST OF TABLES

Table 1 - Similarities and Differences of QoS Models 17
Table 2 - Table of Symbols 28

XXll

XIV

ACKNOWLEDGEMENTS

I would like to acknowledge the financial support of the Defense Advanced

Research Projects Agency and the National Aeronautics and Space Agency for the

purchase of the equipment used in this thesis.

Many thanks to Dr. Geoffrey Xie for his constant willingness to teach and advise

me with my research. His guidance and enthusiasm has helped to carry this project to

completion.

I would also like to acknowledge the contribution and help that Mr. Cary Colwell

and Mr. Liu Wenzhi had rendered in various parts of my project.

I thank the Ministry of Defense of Singapore for this opportunity that they have

given me to learn and further my education in a conducive environment like this - The

Naval Postgraduate School.

I am most grateful to my wife and daughter, Celestin and Vanessa, whose love

and support were essential during the development and writing of this thesis. Their

patience throughout my course of study is truly appreciated.

I would also like to thank my parents for their love and sacrifice, without whom

neither of us would have the opportunity that we are both enjoying today.

Last but not the least, I thank God, for his grace, without which I would be lost

and would not have this opportunity to do what I have accomplished.

xv

XVI

I. INTRODUCTION

A. BACKGROUND

The Internet started in the mid 1980s with ARPANET and NSFNET

interconnected together. Many other networks joined in later. Up till today, the Internet

only provides best-effort service, where traffic is processed as quickly as possible, with

no guarantee as to timeliness or actual delivery. As the Internet developed into a global

commercial infrastructure, demands for guaranteed and differentiated quality of service

(QoS) have increased rapidly. It is now apparent that the control system of the Internet

needs to be upgraded to provide the various types of QoS demands.

Several QoS service models have been developed recently to define the scope and

guide the implementation of QoS in the Internet. They are: Integrated Service (IntServ),

Differentiated Service (DiffServ), and Multiprotocol Label Switching (MPLS). IntServ is

characterized by resource reservation while the later two are characterized by per hop

behaviors [6].

QoS routing, such as Widest-Shortest Path (WSP), Shortest-Widest Path (SWP)

and Shortest-Distance Path (SDP), is required in order to support QoS and optimize the

utilization of network resources such as link bandwidth. WSP selects a path with the least

number of hops, while SWP selects a path with the largest available bandwidth. Shortest-

Distance Path selects a path with the lowest distance computed using a predefined

distance function.

Server and Agent based Active network Management or SAAM, is a network

management system for the next generation Internet, which will be able to support all

service classes that are defined for the future Internet. It will be able to control and

optimize the utilization of the network through resource allocation and adaptive QoS

routing.

B. AN OVERVIEW OF SAAM

SAAM is an intelligent network management system, which comprises a

hierarchy of servers and lightweight routers that are partitioned into regions (see Figure

1.1). The key feature of SAAM is that all network management decisions are carried out

at the servers, which lightens the workload on the routers (hence we called them

lightweight routers). SAAM also allows sophisticated software solutions to be deployed

to servers to implement network QoS (both IntServ and DiffServ) and to optimize the use

of resources without overextending the routers.

A hierarchical network
of SAAM servers:
each of which manages
QoS sensitive traffic for a
small set of routers

Lightweight routers:
let server decide how
to route QoS
sensitive traffic

Figure 1.1 -An example of SAAM network architecture

SAAM Server

Each SAAM Server is analogous to a helicopter that monitors and directs the

commuting traffic over an area. It maintains a global view about the performance of the

routers' data paths in its region using a path information base (PIB). With this view, the

server will be able to carry out QoS routing or re-routing, and direct traffic to the best

path between a source and destination. The best path may be the least congested path

among all possible paths such that the transit time meets the application requirement, or

one that will optimize the resources availability.

ServiceLevelSpec (SLS) Dbase

ServiceLevelSpec (SLS) Table
Jow^jputing^jable

Path nförina6'onBase(PJBJ!^ä

Datagram Routing Table

'Älanaeemeoi.w?S6rv

k (e:gs QöS iouöng)jj

Figure 1.2 - SAAM Server and Router interaction

2. SAAM Router

Each SAAM Router is analogues to a local traffic controller at an intersection or

access ramp. All traffic that wishes to enter the Internet will have to be admitted by the

routers, which in turn seek approval from the server that is in control of the region (see

Figure 1.2). If an MServ flow is admitted, a path along with a flow id will be selected for

it by the server. If necessary, messages will be sent from the server to all the routers

along the path to update their Flow Routing Tables. If a new DiffServ flow is admitted, a

Service Level Spec (SLS) will be assigned to it by the server. A message will be sent

from the server to the edge router to update their SLS Tables.

C. GOAL OF THE SAAM PROJECT

The goal of the SAAM project, under which this research is conducted, is to

provide various types of QoS to applications while optimizing network resource

utilization through a central resource management system with adaptive routing.

Specifically, SAAM seeks to achieve the following objectives:

1. Integrated And Differentiated Services

In SAAM, each link is logically partitioned into various service level pipes, with a

specific share of network resources allocated to each, to support various service classes.

A SAAM server supports an IntServ flow by finding a feasible path that is able to support

the QoS requirements of the flow and making the necessary reservation of resources

along the path. DiffServ flows are more difficult to manage because there are two types

of DiffServ flows: Static SLS and Dynamic SLS. For a Static SLS flow, the admission

control and policing are actually done at the edge router where the flow enters the

network. However, for a dynamic SLS flow, the server will carry out the admission

control and delegate the policing to the edge router. SAAM Servers will maintain and

update the SLS Table needed for both static and dynamic SLS at the routers.

2. Optimal Use Of Resources

By maintaining an accurate region-wide view of the network performance and

resource availability, SAAM server will be able to dynamically route or re-route traffic to

optimize the use of its resources. This is the major advantage that SAAM has over current

network architecture, which is based on stand-alone routers.

3. Automated Fault Detection And Timely Recovery

As mentioned earlier, SAAM Server is the decision-making element that manages

the whole network region. It controls all the routers in its region and maintains the path

information base for all the routes. Hence, it is critical that any fault in the region,

particularly in the server, be detected timely and recovery action taken as soon as

possible. The fault detection method employed in SAAM is based on an Accelerated

Heartbeat Protocol [17].

4. Support of Incremental Deployment

The SAAM architecture is designed to allow network engineers to incrementally

replace the legacy network infrastructure, providing improvements of network

performance to those ISPs that adopt SAAM. An ISP has total control over the operation

of its own SAAM server (see Figure 1.3). The super server acts like an advisory center

providing only performance enhancing advice to the internal servers. Incremental

deployment of SAAM requires it to support and cooperate with legacy systems in terms

of protocols.

l'^^rSuper^AÄMSferver ::\

**g)%?\

Sender

Figure 1.3 - Incremental Deployment of SAAM

D. SCOPE OF THIS THESIS

The primary goal of this thesis is to develop an efficient QoS management

algorithm and integrate it into the existing SAAM architectural design. In order to

manage the resources efficiently, a SAAM Server will need to be able to adapt its routing

algorithm under varying network conditions. Hence this thesis also studies the use of an

adaptive QoS routing strategy to optimize the network utilization.

E. MAJOR CONTRIBUTIONS OF THIS THESIS

The results of this research have the potential to be integrated into a system that

will benefit every user of the Internet. Though the concepts of DiffServ and IntServ have

been developed by the Internet Engineering Task Force (IETF), the actual

implementation of them has not been widespread. The feasibility of integrated support of

DiffServ and IntServ has been investigated for a single SAAM network region. The

results provide strong evidences that the two service models can coexist in SAAM.

F. ORGANIZATION

This thesis is divided into several chapters.

• Chapter II discusses the related topics of QoS routing and QoS models.

• Chapter m describes the design of a QoS Management component for SAAM.

• Chapter IV describes the implementation of the QoS Management component.

• Chapter V discusses the tests conducted.

• Chapter VI concludes with words on the results obtained, lessons learned and

the future work needed.

II. RELATED TOPICS

In order for SAAM to support and integrate well with the Internet, SAAM

developers need to have a basic knowledge of the current Internet routing protocol (see

appendix A) and its future developments. In this chapter, various QoS routing algorithms

and the three most accepted Internet QoS models are discussed.

A. QUALITY OF SERVICE ROUTING

Network usage has grown rapidly over the years and demands are ever increasing.

Despite the advances of technology in expanding the physical bandwidth limitation of the

network, there is always a tendency for it to be overloaded. Therefore applications

requiring certain network performance guarantees will have unsatisfactory results using -

best effort networks. The solution to this problem, is Quality-of-Service (QoS).

Routing deployed in the current Internet is focused mainly on connectivity and

typically supports only the "best effort" datagram service (see Appendix A). The routing

protocol uses "shortest path routing", which chooses an optimized path based on a single

arbitrary metric (e.g. administrative weight or hop count). QoS or QoS-based Routing, as

defined in RFC2386, is a routing mechanism under which paths for flows are determined

based on some knowledge of resource availability in the network as well as the QoS

requirement of flows.

Many have thought that Resource ReSerVation Protocol (RSVP) [8] is a form of

QoS routing. The fact is that RSVP is just a protocol that supports the reservations of

resources across an IP network. RSVP provides a method for the application to interact

with the network for requesting and reserving network resources; it does not provide a

mechanism for determining a network path that has adequate resources to accommodate

the requested QoS.

QoS routing is different from RSVP. It allows the determination of a path that has

a good chance of accommodating the requested QoS. However, it does not include a

mechanism to reserve the required resources.

1. Goals of QoS Routing:

The goals of QoS routing are:

• To find a feasible path; A path is feasible if the unused bandwidth of all links

on the path is higher than the requested bandwidth [3].

• To select a feasible path (when more than one exists) that will lead to a better

overall resource efficiency and optimize resource utilization.

According to RFC 2386, QoS routing must extend the current Internet routing

paradigm in three basic ways:

• It must be able to support traffic using integrated-service class of services, i.e.

the integration of QoS services and best effort services. Additional routing

metrics, such as transit delay and available bandwidth, may have to be made

available and distributed.

• It should maintain the use of current path even when a better path is found so

long as it meets the requirements of the existing traffic. This is to avoid

unnecessary traffic shifts between alternate paths so as to prevent routing

oscillations and prevent variation of delay and jittering which may be

experienced by the end user.

• It should support alternate routing which the current Internet protocol does not

by keeping a list of possible alternate paths for re-routing.

2. Strategies of QoS Routing

There are three main strategies of QoS routing: Source Routing, Distributed

Routing, and Hierarchical Routing. These are classified according to how the state

information is maintained and how the search of feasible paths is carried out.

a) Source routing

In Source Routing, each node maintains the complete global state. The

global state includes the network topology and state information of every link. A feasible

path is computed at the source node based on the global state. A control message is then

sent to establish the path chosen. A link state protocol is used to update the global state in

all the nodes along the path.

Source routing avoids the complexity of distributed computing by simply

maintaining a global state and computes the path locally. However, the state information

at each node has to be current. Failure of this will result in not finding an existing feasible

path. Hence, the global state has to be frequently updated, resulting in large overhead and

scalability problem.

b) Distributed routing

In Distributed routing, the path is computed by a distributed computation.

Control messages are exchanged among the nodes. State information is kept at each node

and collectively used for path selection. Routing is done on a hop-by-hop basis.

Because of distributed computing, the response time can be made shorter

and the algorithm more scalable. However, when global states at different nodes are

inconsistent, loops may occur.

c) Hierarchical routing

In Hierarchical routing, nodes are clustered into hierarchical groups. Each

node maintains an aggregated global state, which contains the state information of the

nodes in the same group and the aggregate information of other groups. Source routing is

used to find a feasible path, which may contain logical nodes representing other groups.

A control message is sent along the path to establish it. If the border node of a group

representing a logical node receives the message, it expands the path through that group.

Hierarchical routing is used to overcome the problem of scalability that

source routing has. It retains many of the advantages of source routing. It has the

advantages of distributed routing because many nodes share routing computation.

3. Path Selection Schemes of QoS Routing

There are three main types of QoS routing: Widest-Shortest Path, Shortest-Widest

Path, and Shortest-Distance Path. These are classified according to how the state

information is maintained and how the search of feasible paths is carried out.

9

• Widest-Shortest Path (WSP) is one that selects a path with the minimum hop

count and, if there are multiple such paths, the one with the largest available

bandwidth. This scheme emphasizes preserving network resources by

choosing the shortest paths first.

• Shortest-Widest Path (SWP) is one that selects a path with the largest

available bandwidth and, if there are multiple such paths, the one with the

minimum hop count. This scheme emphasizes load balancing by choosing the

widest paths first.

• Shortest-Distance Path (SDP) is one that selects a path with the lowest

distance computed such that the distance of a it-hop path P is

k i

dist(P)^-

where r, is the available bandwidth of link i

This scheme makes a trade-off between SWP and SDP. It favors shortest

paths when the network load is heavy and widest paths when the network load

is medium.

B. INTERNET QUALITY OF SERVICE MODELS

There are generally three widely accepted QoS service models that are being

studied for the Internet: Integrated Service (IntServ), Differentiated Service (DiffServ)

and Multiprotocol Label Switching (MPLS). As the future Internet may be comprised of

these types of service classes, SAAM developers need to consider how these services are

to coexist in one SAAM region. In order to answer this question, one shall first seek to

understand what these service models are and how they differ.

1. Integrated Service

Integrated Service or IntServ is characterized by resource reservation. The

network has to set up paths and reserve resources before application data can be sent.

RSVP is the signaling protocol for setting up paths and reserving resources. The

philosophy of this model is that routers need to be able to reserve resources in order to

10

provide special QoS for specific state in the routers. Hence, IntServ capable routers must

have flow-specific state in them. IntServ may be viewed as a guaranteed service class

which requires fixed delay bound, or a controlled-load service class which requires

reliable and enhanced best-effort service.

a) Operation of Integrated Service

IntServ is implemented by four main components: the resource reservation

protocol, the admission control, the classifier, and the packet scheduler. Figure 2.1 shows

the diagram of an IntServ Router model.

RoEtittg Protoc ol Adittisaoa Control

Background
functions

RisariaSea
Protocol

MKagemÄt:

Agent

Inbound lint;

: .■:a5$--9/..-.,*iMfe ~ « *_ *. . ,
v..-■■:■ ,:--.,r'--.jT.--.V:> '>m&-?£M- St-^-M
rTorwardinlBaüi-fP^p ft|-i

Figure 2.1 - Integrated Service Router Model

A resource reservation protocol is required to set up paths and reserve

resources before data can be sent. Admission control decides whether a request for

resources can be granted. If granted, the classifier will perform multifield classification

and put the packet in a specific queue based on the classification. The packet scheduler

will then schedule the packet accordingly to meet the QoS requirements.

11

b) Problems of Integrated Service

IntServ routes packets on a per flow basis. Hence, the amount of state

information increases with the number of flows, and requirements on the routers are high.

All routers must have all the four components - RSVP, admission control, MF

classification, and packet scheduling - to support IntServ. Therefore, in order for IntServ

to work, all routers in the network must be IntServ capable. This means, deployment of

IntServ domain has to be done all at the same time. Progressive deployment is difficult

though possible.

2. Differentiated Service

Difficulty in implementing and deploying IntServ brought about Differentiated

Service or DiffServ. In DiffServ, packets are marked differently according to its class

specified in the Type of Service (TOS) field within the IP header (see Figure 2.2). This

means that each service class of DiffServ has separate queue instead of having one queue

per flow for the case of IntServ.

0 . .■■■■! -'. ■.'■'.■■:*:. '"■■■;..■.& '■'

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8:;9 0 12 34 ST 6''~Vl «9 O 1
+-+-+-+-+—1—+-+-+—1--+- | | -+ —h-^-+-+-+-+-+-+-H--+-+-H--+-+--h-H-—t—t—+

I Version | IHL | Type of Service | Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+—H-+-+-+-+-+-+-+-+-+-+-+-+-+-+-H 1-- +—(-
I Identification |Flags| Fra^nent Offset |

■*—+—I 1—+-+-+-+-+—I K-H—+-H 1 h-H 1 H—+-+_+_+-+_+_H 1—+-+-H (.-+_+

I Time to Live | Protocol | Header Checksum |
H—H—H—+-+-+-+-H—+—t—H 1 1—H 1 1--+_+-H (.-H |—H H-+-H 1—H—H—+—H-H h
I Source Address |

"• 1 1 1--+-H h-+-+—H-+-H t—i 1—+-+-H h-H h _+_+_+ _+_+_+_+_+_, ,._+_+

I Destination Address |
H 1—+-+-+-+-+-+-+-(—+-+-+-+—) 1~+—{ (._+_+_+_+_) H-+-4. _+_+_(—'+.-+-J+

• Options | Padding |

Figure 2.2 - Differentiated Service Field in IPv4 Header

Figure 2.3 shows the specification of the TOS field. PHB field value specifies the

Per-hop Behavior (PHB) to be allotted to the packet within the provider's network. Its

behavior name are 00000 for default, and 11100 for Expedited Forwarding (EF). Router

implementations should treat the 5-bit PHB field as an index to be used in selecting a

12

particular packet handling mechanism. DiffServ flows are all for unidirectional traffic

only. They are for traffic aggregates, not individual micro-flows

01234567
+ + + + + + + + +
|IN | PHB | CU |
+ + + +- -+ + + +

IN: in (1) or out (0) of profile
PHB: per-hop behavior
CU: currently unused (reserved)

Figure 2.3 - Type of Service Field

a) Requirements of Differentiated Service

In order to receive differentiated services, the customer must have a

service level agreement (SLA) with the service provider or ISP. A SLA is a profile

(policing profile) describing the rate at which traffic can be submitted at each service

level. Packets submitted in excess of this profile may not be allotted the service level

requested. Each SLA has a Service Level Specification or SLS which defines the

technical specification part of the contractual SLA.

SLSs may be static or dynamic. Static SLSs are the norm at the present

time. They are instantiated as a result of negotiation between human agents representing

provider and customer. A static SLS is first instantiated at the agreed upon service start

date and may periodically be renegotiated (on the order of days or weeks or months). The

SLS may specify that service levels change at certain times of day or certain days of the

week, but the agreement itself remains static. A Dynamic SLS, on the other hand, may

change frequently. Such changes may result for example, from variations in offered

traffic load relative to preset thresholds or from changes in pricing offered by the

provider as the traffic load fluctuates. A Dynamic SLS changes without human

intervention and thus requires an automated agent and protocol, for example, a bandwidth

broker to represent the differentiated service provider's domain.

13

An important subset of a SLS is the traffic conditioning specification or

TCS, which specifies the detailed service parameters for each service level such as

expected throughput, drop probability, latency. In addition to the details in the TCS, the

SLS may specify more general service characteristics such availability/reliability,

encryption services, routing constraints, authentication mechanisms, etc.

b) Operation of Differentiated Service

At the ingress of the ISP networks, packets are classified, policed, and

possibly shaped according to the specification given in the SLS. The traffic classification

and conditioning process is as depicted in Figure 2.4. If a packet traverse from one

domain to another, its DS field may be remarked as determined by the SLS between the

two domains.

Meter

Classifier Marker ISiÄi
Shaper/
Dropper

Figure 2.4 - Traffic classification and conditioning

Classifiers select packets based on some portion of their packet header and

steer packets matching some classifier rule to another traffic conditioner for further

processing. There are two types of classifiers: Multi-Field (MF) classifiers which can

classify on the DS byte as well as any one of a number of header fields (like a RSVP

classifier), or Behavior Aggregate (BA) classifiers which classify only on patterns in the

DS byte.

14

Markers set the DS byte to a particular bit pattern, adding the marked

packets to a particular differentiated services behavior aggregate.

Policers: monitor the dynamic behavior of the packets steered to them by

a classifier and take an action (usually remarking or dropping packets) based on the

relationship of measured properties of the packet stream to configured properties (e.g.,

rate and burst). Policers are generally placed after either type of classifier: after MF

classifiers (e.g., at a host/network or site/provider boundary) or after BA classifiers (e.g.,

at a provider/provider boundary).

Shapers cause conformance to some configured traffic properties (e.g.,

token bucket). Like policers, shapers are generally placed after either type of classifier.

Only one of the two primitives, policers or shapers, would be expected to appear in the

same traffic

c) Types of Service Class

Currently, three types of service class has been identified for DiffServ:

• Premium Service. Premium Service is a peak limited, low delay

service, resembling a leased line. It is for application requiring low-

delay and low-jitter service. Possible application for such a service

class are videoconference, fixed size transfer in fixed time, virtual

leased line, and low delay applications.

• Assured Service. Assured Service .is characterized by a rate and burst

profile. Application that may use this service class are those that need

to transfer fixed file size in desired time or "better than best effort"

applications

• Olympic Service. Olympic Service is further divided into three level

of services - gold, silver and bronze; in decreasing order of congested

link share. When encountering a congested link, packets with

"Olympic gold" service will get a larger share of the link than packets

sent using the "Olympic silver" service which gets a larger share of the

link than packets sent using the "Olympic bronze" service.

15

d) Advantages ofDiffServ over IntServ

DiffServ has only a limited number of service classes (due to the size of

the DS field) as compared to IntServ. Consequently, the amount of state information,

which is proportional to the number of classes, is much less than that for IntServ where

the state information is proportional to the number of flows. This makes DiffServ more

scalable than IntServ.

Deployment of DiffServ can be done in an incremental manner. DS-

incapable routers will simply ignore the DS field of the packets and treat them as best-

effort service.

3. Multiprotocol Label Switching

Multiprotocol Label Switching, or MPLS, is a label-swapping, packet forwarding

scheme evolved from Cisco's Tag Switching [6]. Classification, forwarding, and services

for the packets are based on a fixed length label, which is appended in front of network

protocol header. The network protocol may be IP or others, therefore MPLS is protocol

independent. MPLS is very similar to DiffServ in that it also affects per hop behavior to

provide QoS.

a) MPLS Operation

MPLS needs a Label Distribution Protocol (LDP) to distribute labels to set

up label switched paths (LSPs). LSP setup may be control-driven (i.e., triggered by

control traffic such as routing updates) or data-driven (i.e., triggered by the request of a

flow). A forwarding table indexed by labels is constructed as a result of the label

distribution. Each forwarding table entry specifies how a packet carrying the indexing

label is to be processed.

Packets are labeled at the ingress or edge routers of a MPLS capable

domain. Each MPLS packet has a 32-bit label header as shown in Figure 2.5.

16

01234567890123456789012345678901
4-4-

Label
I I I I I I 1 1 I I I

CoS B
++

TTL
++

Label : Label value, 20 bits
CoS : Class of Service, 3 bits
B : Bottom of Stack, 1 bit
TTL : Time to live, 8 bits

Figure 2.5 - MPLS Header

The MPLS header is encapsulated between the link layer header and the

network layer header. An MPLS-capable router, called the label-switched router (LSR),

examines only the label in forwarding the packet [6].

C. SIMILARITIES AND DIFFERENCES OF QOS MODELS

In summary, the similarities and differences of the three QoS models are tabulated

in Table 1 below.

IntServ DiffServ MPLS

State info, is proportional
to no. of flows which can
be very large

State info, is proportional
to no. of service class
which is limited

State info, is proportional
to no. of label switched
paths which can be large

Resources are already
reserved hence router's
work is minimum

Most of the work occurs
at the border router

Label is assigned by and
switched at transit routers

Router must be IntServ
capable

Router need not be
DiffServ capable

Router must be MPLS
capable

Require resource
reservation

No resource reservation
needed

No resource reservation
needed

IP Protocol only IP Protocol only Any network protocol

Table 1 - Similarities and Differences of QoS Models

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

ni. SAAM QOS MANAGEMENT DESIGN

Two categories of service classes have been defined for the Internet: 1) Integrated

Service and 2) Differentiated Service. MPLS, as mentioned in previous chapters, is a

form of Differentiated Service. The SAAM server is designed to support all these

services and it will deploy the necessary functionality to the SAAM routers. The

coexistence of these services is possible by partitioning a link into different logical

service level pipes [15] and assigns them to different services.

The SAAM server needs to coordinate resource allocations among different QoS

services. It performs two levels of link bandwidth allocation. At the top level, the server

must allocate bandwidth to each service level pipe. At the next level, the server must

allocate bandwidth to individual flows or customers that share one service level pipe.

There are actually more network resources than just link bandwidth (e.g., buffer

space and CPU time), however because of time constraints, this thesis is focused only on

link bandwidth. There are also more QoS requirements than just throughput (e.g.,

queueing delay and loss rate). In this thesis, we assume that appropriate packet

scheduling algorithms and admission control criteria will be used to ensure that other

QoS requirements of a flow will be met if sufficient bandwidth is allocated to the flow.

One may ask how much is sufficient. That is the role played by the Alpha parameter in

our admission control equations.

In order to optimize the use of network resources under varying network

conditions, the SAAM server should employ an adaptive QoS routing algorithm.

Adaptive QoS routing refers to the ability to dynamically switch to a new QoS routing

algorithm, such as Shortest-Widest Path [12], Widest Shortest Path [12] or Short-

Distance Path [12], based on the current network conditions. QoS routing that satisfies

multiple constraints have been proved to be NP-complete. [12]

A. NEW MESSAGES REQUIRED

In the previous chapter, we pointed out that IntServ and dynamic SLS of DiffServ

need a reservation protocol to request and reserve resources. In SAAM, a user or

19

application requests for resources and the server makes reservation of the required

resources. A reservation protocol is needed to facilitate communications between the two

entities. The SAAM server will send ResourceAllocation messages to those routers under

its control to allocate trunk capacity to various SLPs.

An application requiring IntServ or dynamic SLS at an end host will trigger a

request through an edge router, which functions as a bridge between the application and

the server. The request is forwarded from the edge router to the server in a FlowRequest

message. Upon receiving the message, the server performs admission control for the

request, trying to find a path that can support the QoS parameters and resource

requirements encoded in the request message. The server then informs the edge router of

the result (i.e. acceptance or rejection, etc) by sending it a FlowResponse message. If the

request for an IntServ flow is accepted, the response message will contain a. flow id that

the packets of this flow should carry in their header. When the application is done with

the flow, it may trigger the edge router to send a FlowTermination message to the server

to explicitly request the server to release the resouces allocated to the flow.

1. SAAMPacket Format

The packet format used in the SAAM emulator [15] is shown in Figure 3.1. The

original payload structure (third row in the figure) is inherently inefficient. Its Type Id

can only have a value of 0 for SAAM messages or 1 for Resident Agent class file. The

new payload structure has less overhead and has a Type Id that ranges between 1 to 16 -

see Appendix H for all SAAM message types in the saam.message.message class. Note

that the original payload structure is still supported for backward compatibility.

20

SAAMPacket
8 Varied

Header Payload

SAAMHeader
8

Time
Stamp

1

#of
Messages

Original structure of payload portion
1 1 Name

Length
2 Bytecode Length

Typejd Name
Length

Name of
Classfile

Bytecode
Length

Bytecode

New structure of payload portion
l 2 Bytecode length

Typejd Bytecode length Bytecode

Figure 3.1 - SAAM Packet Structure

2. ResourceAIlocation Message

In order for the server to have full control over the resources available in the

region, it sends ResourceAIlocation messages to the routers under its control to initialize

their trunk allocations as soon as the control channel to its routers has been established.

The server also creates a Path Information Base (PIB) [15] based on initial feedbacks

from the routers.

Figure 3.2 shows an example of a ResourceAIlocation message for five service

levels. This message contains three fields. The first field is the Typejd for this message

(which is 16). The second is the bytecode length of the bytecode that follows in the third

field. The bytecode is made of an array of 4-byte integers, specifying the amount of

bandwidth allotment (in Kbps) for each service level. In this example, the second field

contains the value of 20, which is equivalent to the number of service level pipes (five for

this example) multiplied by four.

21

1

Type_Id Bytecode Length
20

Bytecode
16 5*4 = 20 Service Level Allotment Parameters for each SDP

Figure 3.2 - Resource Allocation Message

For this thesis, the initial allotments used are as follows:

• 0. IB,™1 for SLP2 of Control flows (SAAM messages)

• 0.46™« for SLP of IntServ flows

• (ÜB™* for SLP of DiffServ flows

• (UB^ for SLP of Best Effort flows

• 0 for SLP of others (e.g. tagged packets, etc)

These amounts are determined based on the following assumptions:

• Control traffic consumes less than O.lBmax.

• IntServ flows may be charged more than others because of their

guaranteed performance.

• DiffServ flows may be charged more than best effort traffic.

• ISPs do not want starvation of the best effort service.

• Tagged packets should have the lowest priority and may be transmitted

only if other SLPs are idle.

As the network resources are utilized, there may be a need to adjust the current

resource allotments given to the various SLPs. The conditions that would trigger such

adjustments will be discussed later. If the packet scheduler employed at the routers is rate

based (e.g., Weighted Fair Queueing, Virtual Clock, Self-Clocked Fair Queueing, etc),

then the server will need to send new ResourceAllocation messages to all the routers

when adjustments are made. Otherwise, if the packet scheduler employed is priority

1 Bnux is the total link bandwidth.
SLP is the acronym for Service Level Pipe.

22

based, no ResourceAllocation message will be send to the router as packets with the

highest priority will be serviced first.

3. FIowRequest Message

After allocating resources to various service level pipes at each link, the server is

ready to receive and process flow requests. When a flow request is received, the server

needs to determine which service the request is for. The existing flow request message

does not provide sufficient information for the server to do so [15]. Hence a new flow

request message format needs to be in place. The new FIowRequest message format

includes a service level field. However, the requirements for an IntServ flow would differ

from that of a DiffServ flow. A DiffServ flow request should contain the User id of the

requestor and the requested ServiceLevelSpec (SLS) instead of the delay, loss rate and

throughput requirements (see Figure 3.3 and 3.4 respectively).

1 2 16 16 8 1 4 7-11

Type
Bytecode
Length

Source Destination
Time
Stamp

Service
Level

User
Id

ServiceLevelSpec

1 = Contort
2 = IntServ
3 = DiffServ
4 = BestEffort
5 = Others

Figure 3.3 - Flow Request for DiffServ flow

1 2 16 16 ' 8 1 4 4 4

Type
Bytecode
Length

Source Destination Time
Stamp

Service
Level

Delay Loss
Rate

Throughput

Figure 3.4 - Flow Request for IntServ flow

1 4 1 1/2/5

DSCP Profile Scope Disposition of non-conforming traffic

Figure 3.5 - Service Level Spec Parameters

23

The IETF Internet Draft on DiffServ recommends a service level specification

(see Figure 3.5) to have a minimum of four fields. The first field is the differentiated

service code point or DSCP (see Figure 3.6) that will be used to tag the packets for a

specific DiffServ service class. Bit X)' of the DSCP indicates whether the packet is in or

out of the profile specified for it. Bit 1 to 5 is used for per hop behavior (PHB). Bit T is

for delay priority packet. Bit T is for throughput priority packet. Bit 3' is for loss rate

priority (i.e. minimum loss rate). Bit 6 and 7 are currently not used.

Bit Position
0 1 2 3 4 5 6 7

IN PHB CU
l = in
0 = out

Figure 3.6 - Differentiated Service Code Point Format

The second field contains the Profile that specifies the amount of throughput (in

Kbps) that this service class is allowed to consume. The third field specifies the Scope to

which this service level spec is applicable. The last field defines the disposition action

that is to be taken when the profile given is exceeded by the actual flow traffic (see

Figure 3.7). If the action is to discard, then no other parameter is necessary. If the action

is to remark, then the new DSCP to be used will be required. If the action is to reshape,

then the shaping profile to be used will need to follow (e.g. shaping the profile to

200Kbps from 500Kbps).

1 0/1/4
Action -/New DSCP/Shaping Profile

1 - Discard
2 - Remark
3 - Shape

Figure 3.7- Disposition Action Parameters

24

4. FlowResponse Message

When the server receives an IntServ or DiffServ flow request, it will execute the

respective admission control and sends a flow response back to the edge router that

forwarded the request. The flow response message will notify the router the result of the

flow request along with other information that may be required. Figure 3.10 shows the

FlowResponse message format. The first field is the Type_Id for this message (which is

8). The second is the Result field that contains the result of the admission control carried

out by the server. If the result is an acceptance of a DiffServ flow request, the next field

will contain the SLS allocated for it. If the result is an acceptance of an IntServ flow

request, the Flow_Id allocated to the new flow will follow.

1 2 8 1 7-11/3

Typejd
Bytecode
Length

Time
Stamp

Result SLS/Flow_Id

8 0 - Service Unknown
1 - IS Accepted
2 - DS Accepted
3 - Negotiated
4 - Unreachable
5 - SLA not available

Figure 3.8- FlowResponse Message Format

5. FlowTermination Message

When an application is done with the flow assigned to it, it will trigger the edge

router to send a FlowTermiination message to the server so that the server can update its

PUB and releases the resources that have been allocated to the flow. Figure 3.9 shows the

FlowTermination message format. Note that a bytecode length field is not required for

this case as the message size is fixed.

1 3

TypeJOD Flow_Id

12

Figure 3.9 - FlowTermination Message Format

25

6. Management of Service Level Spec

After the resources have been pre-allocated, the server - which stores and

maintains information for all the DiffServ customers including their respective Service

Level Agreements (SLAs) - will need to send the SLS Tables to all edge routers. The

edge routers then store this SLS Table for admission control and policing of customers

who have signed up for DiffServ.

The mechanism for the server to do that is by sending SLSTableEntry messages to

the edge routers. Figure 3.10 shows the SLSTableEntry message format. The first field is

the Typejd for this message (which is 17). The second is a Userjd. The third field

contains the SLS to be used for the customer with the User Id.

l

Type_Id Bytecode
Length User Id

7-11/4

SLS/Node_Id

17

Figure 3.10 - SLSTableEntry Message Format

The server needs to know when the user is done with the dynamic SLS allocated.

The router sends a SLSTableEntry message that contains a Nodejd as its third field to

the server, which uses it to identify the user who has no need of the SLS assigned to him

any more. Hence the server will update its SLS database by deleting the user from the

SLS Table of the node with that Nodejd.

B. SAAM QOS MANAGEMENT

The flow chart that describes SAAM's QoS management process is shown in

Figure 3.11. The function of the QoS management component may be broken down into

several parts:

• Resource management

• Path selection with adaptive QoS routing

• Processing of IntServ flow.

• Processing of DiffServ flow.

26

(Start V Initialize Trunk Reservation

Waiting for new request
Send How

Response to
Requester

Figure 3.11 - Flow Chart ofSAAM QoS Management Algorithm

27

Throughout the rest of this chapter, the various QoS management functions will

be discussed and presented using the following mathematical notations.

Symbol

B

a

ß

R

f

f*

CC

D

DD

DS

BF

N

Definition

Set of active flows

Loading factor of a service class

Expanding factor of a service class

Borrowing factor of a service class

Trunk allocation of a service class

Bandwidth requirement of a flow

An arbitrary flow

The flow being requested

SAAM Control Channel

Integrated Service

Differentiated Service

Dynamic SLA portion of Differentiated Service

Static SLA portion of Differentiated Service

Best Effort Service

Number of customers/applications

Table 2 - Table of Symbols

For example,

Bi denotes the set of active flows for IntServ

CDD denotes the trunk allocation for the DiffServ Dynamic SLA service.

28

1. Resource Management

Suppose the maximum trank capacity of the link in consideration is Cmax. Then

we have

Cj+C^Ccc+C^ZC^ (1)

Assume that O.lCmax is allocated to the SAAM control channel and O.lCmax is

allocated to the best effort service as its minimum share of the link. Then the maximum

bandwidth that may be allocated to guaranteed service is

Q+C^OJC^ (2)

The maximum throughput that may be allocated for IntServ flows is

Y,Rf^aiCi (3)

The maximum throughput that may be allocated for Static and Dynamic DiffServ

flows are given by equation 4 and 5 respectively.

^Rf<aDSCDS (4)
feBDS

^,Rf<aDDCDD (5)

CDS is determined a priori to exactly meet the requirements of the DS flows, and

the admission criteria for it is given by equation 6.

" DS^DS = ^DS^DS (")

For example, if Cmax - 100Mbps, then C/ may be allocated an initial minimum

throughput of O.lCmax or 20Mbps. This will allow for twenty IntServ flows of 1Mbps

each. Similarly, Co may be given an initial minimum throughput of O.lCmax, where Cos

and CUD each get O.lCmax. Hence the whole trunk capacity may be viewed as a pie chart

29

illustrated in Figure 3.12. As the utilization of the network progresses, the unallocated

throughput, which is 0.3Cmax, may be dynamically allocated to Q or CD. Note that Q and

CD could increase until equilibrium is reached where there is no unallocated throughput.

I3SAAM Control Channel
D Static SLS
■ Best Effort

Unallocated
30%

Best Effort
20%

■ IntServ
D Dynamic SLS
H Unallocated

SAAM Control
Channel

10%

IntServ
20%

Static SLS
10%

Dynamic SLS
10%

Figure 3.12 - Pie Chart illustration ofSLP resource allocation

2. Processing of IntServ Flows

After identifying the type of service request to be a IntServ flow request, the

server will look for all the possible physical paths that are able to reach the destination

requested. If no path is available, then the server will notify the client that the destination

is unreacheable.

If the destination is reacheable, the server will look for the best path that is able to

meet the QoS requested such that

^Rf+Rr<(ZiCj (7)

If the best path is not able to meet the QoS requested, the server will check if the

request may be met by increasing Q by a small factor of ß, such that,

30

(8)

where the typical value for ß{ derived from equation 8 is given by,

2jRf+Rf*
A=^a 1 (9)

If Ci cannot be increased this way because there is no sufficient unallocatated

bandwith, the server will check if inter-service borrowing may be carried out such that

the request may be met by borrowing some bandwidth from the DS portion of DiffServ.

The new admission control condition becomes

J^Rf+RfZajiCi+PnC,»)
fee,

(10)

where PDDCDD specifies the maximum amount that may be borrowed and pDD is given

by

2X+0.2JX
A>D = 1-

feBD feBD

^DD^DD
(11)

Equation 11 is based on the statistical theory of confidence intervals, which states

that the probability of the population mean between two bounds, e.g. kj and fe, is given

by the confident coefficient 1-x, where x is the significance level [18]. For our case, we

assume that the throughput of the DD flows in the near future follows a normal

distribution with a mean of ^Rf and variance of a2. Consider the confidence interval
feBD0

of 0, 5X+2<7
feBDD

(see Figure 3.13). From the Table A.2 and Table A.3 of [18] on the

quintiles of the unit normal distribution, the throughput of DD flows in the near future

will fall in the interval of 5X-20-, YjRf+2a

feBDD f^BDD

with a probability of 0.9546.

31

Consequently, the throughput will fall in the interval of 0, 5X+20-
feBDD

with an even

higher probability of (1 - (1 - 0.9546) / 2) = 0.9773. Therefore, we set the boundary for

borrowing to be ^Rf + 2a (see Figure 3.13). Furthermore, since the number of active
feBa

DD flows is large, a should be small relative to the mean. We assume that

c = 0.1 2 Rf > which leads to equation 11 for determining pDD.
f*BDD

Probability
Distribution

Capacity that may be
/ borrowed

Throughput
► (kbps)

2cr 2a
aDD^~DD

Figure 3.13 - Statistical Distribution of the aggregate throughput of DD flows

If Inter-Service borrowing cannot be done, then the server will compute the new

rejection rate for the service requested. If the rejection rate exceeds a specified rejection

threshold, the server will make a log of the event to indicate that the network may need to

be upgraded.

3. Processing of DiffServ Flows

After identifying the type of service request to be a DiffServ flow request, the

server will look for all the possible physical paths that are able to reach the destination

requested. If no path is available, then the server will notify the client that the destination

is unreacheable.

32

If the destination is reacheable, the server will look for the best path that is able to

meet the QoS requested to admit a new dynamic SLA such that

^Rf+Rr<aDDCDD (12)
feBDD

If the best path is not able to meet the QoS requested, the server will check if the

request may be met by increasing CDD by a small factor of ßDD such that,

^Rf+Rft<(l + ßDD)aDDCDD (i3)
fzBDD

where the typical value for ßDD derived from equation 13 is given by

5X +Rf*

If CDD cannot be increased due to insufficient unallocated bandwidth, the server

will check if inter-service borrowing may be carried out such that the request may be met

using the admission condition given by equation 15.

^R^Rf^a^iPjCj+C^) (is)
feBDD

where by the same argument used to derive equation 11, p; is given by

p !_*& **<><> (16)

If inter-service borrowing cannot be done, then the server will compute the new

rejection rate for the service requested. If the rejection rate exceeds specified rejection

threshold, the server will make a log of the event to indicate that the network may need to

be upgraded.

33

When a DD flow is admitted, the associated SLS is sent to the edge router for

policing and shaping of the DiffServ flow.

4. Path Selection With Adaptive Routing

Path selection refers to choosing the "best" path among the set of feasible paths

that are able to support the QoS parameters specified in a flow request. The path selection

algorithm in the current SAAM prototyped server code will be reused as much as

possible. However, the algorithm only selects the first possible path found in the PIB.

Hence, the algorithm for QoS Routing [12] will be added.

As mentioned in Chapter 2, there are three main types of QoS routing schemes:

Widest-Shortest Path (WSP), Shortest-Widest Path (SWP), and Shortest-Distance Path

(SDP) [12]. In order for the server to select the appropriate routing scheme, it needs to

monitor the network resources, e.g. the packet loss rate and delay, queue length, etc, on

an interface. A high rate of dropped packets is an indication of a bottlenecked link; so

does a large queue length.

SWP will be the default scheme since it emphasizes on preserving network

resources by choosing the shortest paths first. WSP will be the choice of scheme when

the load in the network is unbalanced since it emphasizes load balancing by choosing the

widest paths first. As SDP makes a trade-off between the WSP and SWP, it will be left

for future investigation.

34

IV. SAAMQOS MANAGEMENT IMPLEMENTATION

A Java based SAAM server and router prototype has been developed by previous

graduates. In this chapter, the various additions and modifications to the prototype

pertaining to QoS management, will be discussed. Note that there will be many
references to the previous chapter.

A. NEW MESSAGES

A ResourceAllocation class, a FlowTermination class and an SLSTableEntry class

are added to saam.message package. The existing FlowRequest and FlowResponse

classes are modified to implement the new message format described in the previous
chapter.

1. ResourceAllocation Class

The ResourceAllocation class is an extension of the Message abstract class (see

Appendix H). This class is used by the server to instantiate a ResourceAllocation message

object. The message is sent to every router to allocate resources for various service level

pipes at each of its outgoing links (interfaces) (see Appendix C).

2. FlowRequest Class

The current FlowRequest class is modified to include constructors and all the

necessary data members for IntServ and DiffServ flow requests (see Appendix D).

3. FlowResponse Class

The current FlowResponse class is modified to include constructors and all the

necessary data members for IntServ and DiffServ flow responses (see Appendix E).

4. FlowTermination Class

A new FlowTermination class is created under the

class extends the abstract Message class (see Appendix F).
saam.message package. This

35

5. SLSTableEntry Class

A new SLSTableEntry class is created under the saam.message package. This

class extends the abstract Message class (see Appendix G).

6. PacketFactory Class

The processPacket() method and the append(Message me) method have been

modified to handle the new types of messages (see Appendix L).

7. ControlExecutive Class

The requestFlow() method has been modified to handle the new types of

FlowRequest messages (see Appendix K). A new processMessage(byte[] bytes, String

message) method is added to process all the new messages.

B. RESOURCE MANAGEMENT

1. Server Class

The methods added to this class (see Appendix B) are:

a) public void initializeResourceAllocation(IPv6Address address)

This method is used to send a resource allocation message to a router with

the IPv6Address specified in the parameter to initialize the amount of resources allocated

to its service level pipes.

b) public void sendResourceAllocation(IPv6Address destination,

int[] allocatedJhroughput)

This method is used to send a resource allocation message to the router

with the specified destination address to update the amount of resources it has been

allocated for its service level pipes.

36

2. ClassObjectStructure Class

The methods added to this class (see Appendix I) are:

a) public void updateEjfectiveQoSOfPath(intpathJd, int

effectiveDelay, int effectiveLossRate, int

effectiveThroughputRemaining)

This method is used to update the effective QoS parameters of a path.

C. PATH SELECTION WITH ADAPTIVE QOS ROUTING

Path selection in QoS Management refers to finding a feasible path that is able to

support the QoS parameters specified in a flow request. The ClassObjectStructure class

currently has a method called getPathThatCanSupportFlowRequest(int source_router, int

destination_router, FlowRequest myFlowRequest) that returns the path_id of a path that

is able to support the QoS parameters specified in myFlowRequest. However, for

backward compatibility, a new method called getPathThatSupportFlowRequest(int

sourcejrouter, int destinationjrouter, FlowRequest myFlowRequest) will be added to the

ClassObjectStructure class to handle the two new types of flow requests.

As mentioned in Chapter 2, there are three main types of QoS routing schemes:

Widest-Shortest Path (WSP), Shortest-Widest Path (SWP), and Shortest-Distance Path

(SDP). Since the shortest path and widest path are easily obtainable from the current PIB

implementation in SAAM, the selection between Widest-Shortest Path and Shortest-

Widest Path shall be implemented first.

1. ClassObjectStructure Class

The methods added to this class (see Appendix I) are:

37

a) public int getPathThatSupportFlowRequestfint source_router,

int destination_router, FlowRequest myFlowRequest)

This method determines if there is a path that can support a particular flow

request. A returns value of -1 mean the destination requested for is not reachable. A

return value of zero indicates that the destination is reachable but no path can support the

QoS parameters requested.

b) private int determineBestPath(Path newPath, int newPathld,

Path bestPath, int bestPathld)

This method returns the pathjd of the best path between newPath and

previous bestPath with the type of routing algorithm used (WSP or SWP).

c) public int getRemainingThroughput(IPv6Address address, byte

service_level)

This method returns the remaining throughput of an interface with the

address and service_level specified in the parameters.

d) public IPv6Address[] getPathAddress(int pathjd)

This method returns an array of interfaces' address that forms a path the

the path_id in the parameter.

e) public Hashtable getAUPossiblePaths(int source jrouter, int

destination _router)

This method returns a hashtable of all possible paths for the sourcejrouter

and destination_router specified in the parameters.

D. MANAGEMENT OF FLOWS

In SAAM, routers send flow requests to the server, while the server carries out

admission control and sends flow responses back to the routers. When a message

38

received at the server node is identified to be a flow request, the ControlExecutive will

create an instance of it and call the processFlowRequest() method of the Server class. If

the flow request message is identified as one for IntServ, the server will execute the

admission control process IS_Admission() in the Server class. If the flow request is

identified as one for DiffServ, it will execute the admission control process

DS_Admission(). If neither is the case, the server will process the flow request before for

backward compatibility.

1. Server Class

Two new methods are added to this class (see Appendix B)

a) private void DS_Admission(int source, int destination,

FlowRequestflow_request)

This method is carries out the admission control for a DiffServ flow

request. If a request is accepted, a new SLS will be created and added to the SLS

database. The sendSLSEntryf) method will then be called to install the flow state at the

edge router. In all cases, the server will call sendFlowResponse() to notify the edge

router of the outcome of the admission control.

b) private void IS_Admission(int source, int destination,

FlowRequestflowjrequest)

This method carries out the admission control for an IntServ flow request.

If a request is accepted, a call to updateRouteri) will be made to install the necessary

state information for the new flow to each router on the flow path.

c) public void receiveFlowTermination(intflow_id)

This method is called when the router receives a FlowTermination

message to remove iheflow_id specified in the parameter from the PIB.

39

2. ClassObjectStructure Class

A method is added to this class.

a) public void deleteAssignedFlow(int flow_id){

This method is called by receiveFlowTermination(int flowjd) to remove

the flowjd specified in the parameter from the PIB.

E. MANAGEMENT OF SERVICE LEVEL SPEC

A new package is created for the purpose of supporting DiffServ. The new

package is located under saam.server named diffserv (see Appendix J). It is comprised of

three classes.

1. SLS Class

This class is used to store information according to the specification required for a

service level spec (SLS).

2. SLSTable Class

This class extends the Java HashTable class to create a hash table of SLS objects.

It is used by every edge router to keep track of all the SLSs assigned for various

customers that use the router as the entrance to the network.

3. SLSDbase Class

This class extends the Java HashTable class to create a hash table of SLSTable

objects. It is maintained and used by the server to keep track of all the SLSs assigned for

various customers.

In addition to saam.server.diffserv package, a new FilelO class has been added to

the saam.util package (see Appendix N) and new methods have been added to the server

class of saam.server package (see Appendix B).

40

4. FüelO Class

This class provides the methods to read/write to a file.

5. Server Class

The new methods added (see Appendix B) are:

a) private void setupSLSDbase()

After the server has been instantiated, it then calls this method to set up its

SLS database.

b) private void addSLSTable(StringTokenizer st)

This method is called by setupSLSDbase() to set up its SLS database.

c) private boolean SLA_avaüable(int sourceNode, int throughput)

This method is used to check if the resources at the sourceNode is

sufficient to support new SLS.

d) private void sendSLSTable(IPv6Address routerld, Integer

nodelD)

This method is used to send SLSTable that is associated to the router

specified in the parameters.

e) private void sendSLSTableEntry(IPv6Address routerld, int

userjd, SLS sis)

This method is used to send a SLSTableEntry message that contains the

user_id and SLS to the specified in the parameters.

41

f) public void receiveSLSTableUpdate(SLSTableEntry message)

This method is called when the router receives a SLSTableEntry message

that contains the userjd and SLS from the server.

g) private SLS addSLS(lnteger source, FlowRequestflow_request)

This method is used to add a SLS to the SLSDbase when a new SLS can be

admitted.

h) private void deleteSLS(Integer nodejd, int userjd)

This method is used to delete or remove a SLS from the SLSDbase when a

SLSTableEntry message is identified as a SLS withdrawal message type..

F. INTERSERVICE RESOURCE BORROWING

Inter-service resource borrowing between IntServ and DiffServ is a difficult

subject that has never been fully studied before. As an initial step, only IntServ will be

allowed to borrow resources from DiffServ.

42

V. TEST AND VERIFICATION

As the focus of this thesis is on the server, it will be more efficient to limit the test

environment locally at the server. This will also make it possible to verify the test results

obtained. However, in order to verify the correctness of processing the new message

types, a simple test topology of a server and at least one router is required.

A. MESSAGE VERIFICATION TEST

1. Test Requirements

The simple test topology that we used is shown in Figure 5.1, where the number

in square brackets is the MAC address of the interface while the numbers to its left is the

IPvöAddress of that interface. A Demo_lServer_lRouter class (see Appendix O) is

created to function as the demo station that stands up the server and router according to

the test topology. A SendFlowAgent class (see Appendix P) is then used to send the

required resident agents to both the router and server nodes. After the resident agents

have been installed at the routers, the router designated as the sender will send a flow

request to the server. The server responds with a flow response. The result is verified by

comparing it to the expected flow response result. The server also sends other router-

bound messages (i.e. SLSTableEntry and ResourceAllocatiori) to the router, and the router

sends server-bound messages (i.e. SLSTableEntry and FlowTermination) to the server to

test if these messages are handled correctly.

SAAM SAAM
Router Server

4£E4 °'2 L1J 0....1 [0] gpr|
KIP* * KB«

Figure 5.1 - One Server and One Router Topology

43

2. Test Results

Several problems were encountered during the initial testing. These were largely

due to programming error like mishandling of packet format or error in appending packet

information. After the teething problems were resolved, the message were verified to be

correctly received and processed by both the server and the router.

B. QOS MANAGEMENT ALGORITHM TEST

1. Test Requirements

A server and three router topology shown in Figure 5.2 is used. This test topology

is simple and yet adequate to test our QoS management algorithm.

3....1 [6]

2....2 [5]

2....1 [4]

3...2 [7]
SAAM
Server

Figure 5.2 - One Server and Three Router Topology

A new packet called server.demo.QoSDemo package (see Appendix Q) that

consists of four classes have been developed to setup and carry out the test sequence.

• QoSDemo class

This is the main class that instantiate a FourNodes object to set up the

topology and run the test.

44

• FourNodes class

This class sets up the interfaces for the four nodes and creates four

NodeThreads object (one for each node) that sends Hello messages [15] to set

up the test topology.

• NodeThread class

This class is responsible for generating flow requesters using the

RequesterThread class. It waits for a response and verify the result.

• RequesterThread class

This is a threaded class that will generate a request or a series of requests. It

will wait for a response for each request sent and process it depending on the

result contained in the flow response received.

The processHello() method of the server class is reused to build up the PIB for

the test. No actual sending and receiving of messages will be done in this local host test.

This is to eliminate any possible message handling errors that may affect the testing,

since the primary goal of this test is to verify the QoS managemetn algorithm. To do so,

the test will start from the processflowrequest() method of the server class, to simulate

that the server have received a flow request and will be carrying out the respective

admission control for the type of flow request received. Hence if the message handling

have been verified to be in order, the success of this test means that the whole QoS

management process will function correctly.

2. Test Results

It has been verified that the server is able to build up the PIB correctly as before

with the Hello messages received. The admission control for IntServ and DiffServ are

processed respectively to the type of service request. The resource allocation are in order

and the requests are admitted according to the condition laid done in the previous

chapters.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

VI. CONCLUSION

An efficient QoS management algorithm has been implemented into SAAM. Our

tests showed that the SAAM Server is now able to adapt its routing algorithm under

varying network conditions.

A. LESSIONS LEARNED

SAAM is a huge project. It is developed by people from very different

technological background. It has a great potential to be deployed in a few years time. A

lot of lessons have been learned from its test and development. Some of the lessons

learned are highlighted here.

1. Working With Large Project

Development of such a huge project like SAAM requires much coordination and

cooperation from its project mates. Mutual encouragement and support have contributed

much to its success despite the many difficulties encountered. The professor, being the

leader of the team, has played a vital role of keeping the team in track and providing the

necessary support and motivation.

2. Requirement Of Powerful Server

As more and more capabilities are added to SAAM server, the need for the server

to be installed on a powerful PC has been more and more necessary. It is recommended

that server code be deployed on faster machine in order to have a reasonable test bed.

B. FUTURE WORK

The SAAM prototype has come a long way to the current functional system.

However, there are still several areas that may be improved upon.

47

1. Scheduler Capabilities At The Router

The current version of SAAM router does not have the scheduler algorithm to

support the resource allocation and reservation carried out by the server. Adding a rate-

based scheduler (e.g., WFQ or Virtual Clock) to the priority-based scheduler currently

deployed will enable it to do so.

2. A Bridge Between The Customer And The Server

The SAAM router needs to have the capability to translate user/application

requirements to an equivalent type of flow request for the server. This should be provided

to the user/host in a transparent manner.

3. Security

In any commercial system, the importance of its security has been well

highlighted in the recent attempts to flood network providers like YAHOO!, CNN, etc. in

February 2000. Likewise, in order for SAAM to be accepted for deployment, it needs to

be secured. SAAM server must be secured enough to prevent hackers from terminating

.its services. Its PIB must be well guarded from malicious attack such as illegal

alterations. Similarly, its SLS database must be well guarded.

4. Fault Recovery

When the SAAM primary server goes down, the backup server needs to be able to

take over control and reassign those flows affected. Currently, the backup server is only

able to detect failure of the primary server.

5. Re-routing Of Flows During Interface Failure

The SAAM server needs to be able to re-route flows that may be affected by a

link failure. This feature is currently not available.

48

APPENDIX A - CURRENT INTERNET ROUTING PROTOCOL

It is clear that some form of QoS Routing is required to provide quality of service

in the Internet. Generally, there are two main category of Internet routing protocol: Best

Effort Routing and QoS routing. Some popular best effort routing and QoS routing

developed are presented here.

There are several types of best effort routing protocol being developed over the

years. Examples of these protocols include: the Interior Gateway Routing Protocol

(IGRP), the Enhanced Interior Gateway Routing Protocol (EIGRP), the Open Shortest

Path First (OSPF) protocol, the Exterior Gateway Protocol (EGP), the Border Gateway

Protocol (BGP), the OSI Routing protocol, the Advanced Peer-to-Peer Networking

protocol, the Intermediate System to Intermediate System (IS-IS) protocol, and the

Routing Information Protocol (RIP). Among these, the common ones are the RIP, OSPF

and BGP. The later is used as a Interdomain Routing Protocol while the other two are

used as a Intradomain Routing Protocol.

A. ROUTING INFORMATION PROTOCOL (RIP)

Currently there are RIP version 1 (RIPvl) and RIP version 2 (RIPv2) protocols

running in the Internet. RIPvl was one of the first dynamic routing protocols used in the

Internet. It was developed as a technique for passing around network reachability

information of relatively simple topologies. In RIP, routing information is passed

between routers using the User Datagram (UDP) transport protocol.

Routers running RIP send and receive reachability information every 30 seconds

on UDP port 520. An update message is sent to all the router's neighbors whenever an

update from another router causes changes to its forwarding table. RTP is actually a

straightforward implementation of distance-vector routing with a link cost of 1. It always

finds the route with the minimum number of hops. RIP does not take the link speed or

traffic level into consideration. Valid distances are from 1 to 15, with 16 representing

infinity or unreachable. Thus RIP is limited to running on fairly small networks (i.e.

networks that do not have paths longer than 15 hops). With the introduction and use of

49

subnets and Classless Inter-Domain Routing (CIDR), RIPv2 is developed to support it,

since RDPvl cannot be used with variable length subnetting.

RIPvl is a simple distance vector protocol. It has been enhanced with various

techniques, including Split Horizon and Poison Reverse in order to enable it to perform

better in somewhat complicated networks. However, being a simple distance vector

protocol, it will run into difficulty. First and foremost, it will occasionally have to count

to infinity in order to purge bad routes. This delays the convergence of routing. To ensure

quick convergence, RIPvl defines infinity as 16 hops. That means that networks with

diameters larger than 16 cannot use RIPvl. Even getting close to that limit can cause

confusion for some implementations. The way to overcome this problem to use RIPv2.

RFC 1723 recommends that RIPvl be used only in networks with simple topologies and

simple reachability.

RIPvl includes no security functions while RIPv2 includes a mechanism for

authenticating the sender of the routing information. Sites which are worried about the

vulnerability of their routing infrastructure and which feel they must run a RIP-like

protocol should use RIPv2.

B. OPEN SHORTEST PATH FERST (OSPF)

OSPF is a link-state routing protocol. As such, it calls for the sending of Link

State Advertisements (LSAs) to all other routers within the same hierarchical area of a

domain. In OSPF, LSAs are refreshed at a minimum of every 30 minutes. New

advertisements are sent out more frequently when some part of the topology changes. As

OSPF routers accumulate link state information, they use the Shortest Path First (SPF)

algorithm to calculate the shortest path to each node. OSPF is designed to run internal to

a single Autonomous System; hence it is classified as an Interior Gateway Protocol

(IGP). The OSPF protocol has been designed for the TCP/IP Internet environment,

including explicit support for CIDR and the tagging of externally-derived routing

information.

As a link state routing protocol, OSPF contrasts with RIP, which is a distance

vector routing protocol. Routers running the distance vector algorithm send all or a

portion of their routing tables in routing update messages, but only to their neighbors.

50

Link state algorithm flood routing information to all nodes in an AS. However, each

router sends only that portion of the routing table that describes the state of its own links.

C. BORDER GATEWAY PROTOCOL

The first Interdomain Routing Protocol was the Exterior Gateway Protocol (EGP).

EGP has many limitations and forces a tree-like topology onto the Internet. Hence EGP

was replaced by the Border Gateway Protocol (BGP) which treats the Internet as an

arbitrarily interconnected set of ASs. There are several versions of BGP and the current

version is 4.

The Border Gateway Protocol (BGP), defined in RFC 1771, enables loop-free

interdomain routing between Autonomous Systems (AS). Its purpose is to exchange

reachability information with other ASs. The concept of reachability is analogous to a

statement that "the network could be reached through this AS." Each AS may run its own

intradomain routing protocol. They may have different routing metrics and thus

impossible to calculate meaningful path costs for a path that crosses multiple ASs.

Routers in an AS can also use multiple interior gateway protocols to exchange routing

information inside the AS and an exterior gateway protocol to route packets outside the

AS. Routers that belong to the same AS and running BGP to exchange reachability

information are said to be running Internal BGP (D3GP). Routers that belong to different

AS and running BGP are said to be running External BGP (EBGP).

To appreciate the significance of BGP, let us assume that you are administering

an AS and that it is connected to the Internet without running BGP to its provider. A

default route towards the provider will have to be created. All non-local packets will go

out via the interface specified by the router. Its provider will probably put static routes

towards it, and redistributes those static routes into their IGP, and consequently into BGP

that's probably connected to another AS upstream. Under this situation, if you have any

address space "inside" of your provider's larger "netblock" or "aggregate", you won't be

able to advertise it to the outside world specifically - your provider will only advertise

their larger block. If you have other networks, your provider will just statically announce

those routes to the world.

51

However, if you have BGP running with your provider, you will be able to gather

all the routes your providers have while they can listen to your route announcements and

then redistribute some or all of those to their neighbors and customers. The net difference

is that they can now advertise a more specific route for you. This is important as the

primary rule of IP routing is "The most specific route always wins".

52

APPENDIX B - SAAM SERVER.SERVER CLASS CODE

//23Feb2000[Henry] - modified FlowRequest and FlowResponse,
// added SLSDbase, etc
// Feb 2000 [akkoc] - modified
//01august99[vrable] - created

package saam.server;

import saam.EmulationTable;
import saam.Translator;
import saam. *;

import saam.net.*;
import saam.message.*;
import saam.control.*;
import saam.event.*;
import saam.router. *;
import saam.util.*;
import j ava.net.*;
import j ava.ut i1.*;
import j ava.io.*;

import saam.server.diffserv.*;

/**
* The Server is an object within the SAAM architecture that
* maintains a picture of the network for use in assigning flows to

paths.
*/

public class Server implements Runnable{

//declare class variables

/** Contains what is known about the network. */
//private PathlnformationBase PIB;
private ClassObjectStructure PIB;

/** Enables the Server to receive and send particular types of
messages. */
private ControlExecutive controlExec;

/** A maximum number of hops that a search for different paths may-
take. */
private int Hmax = 4;

/**
* Used to lookup what flow id should be used to send out control

messages
* to specified routers.
*/

private Hashtable flowLookUp = new Hashtable();

53

/** Used to assign the right number of service level pipes to
interfaces in

* this SAAM region. Only used during initialization — later were
assume

* SLPs are known to routers
*/

private int numOfServiceLevels = 5;//4;

public static final byte NUMBEROFSERVICELEVELS = 5;
public static final byte CONTROL_SERVICELEVEL = 0;
public static final byte IS_SERVICELEVEL = 1;
public static final byte DS_SERVICELEVEL = 2;
public static final byte BE_SERVICELEVEL = 3;
public static final byte OTHER_SERVICELEVEL =4; //e.g. tagged

packets

public static float[] throughputRatioForSL = new
float[NUMBEROFSERVICELEVELS];

/** The database that stores all SLS allocated in the network */
private SLSDbase slsDbase;
/** A reusable SLSTable for temperary storage of all SLS of a node */
private SLSTable slsTable;
/** The vector containing all flow request and response result */
private Vector flowTableData = new VectorO;

private int IS_RejectionRate = 0;
private int DS_RejectionRate = 0;
public static int IS_REJECTIONTHRESHOLD = 3;
public static int DS_REJECTIONTHRESHOLD = 4;

private FilelO logfile; //added by Henry
private Date date = new Date(); //added by Henry (used for logfile)

/**

* The value assigned to flow ids that can not be supported. This
should be

* switched over to 0 as soon as routers are converted.
*/

//added by Henry
public static int FLOWUNSUPPORTABLE = 0;
public static int FLOWNUNREACHEABLE = -1;
public static int FLOWNEGOTIABLE = -2;

// public static float INCREMENTALFACTOR = l.lf;
// public static float NEGOTIABLEFACTOR = 0.75f;
// public static float BORROWABLEFACTOR = O.lf;
// public static float DS_LOWUTILITYFACTOR = 0.5f;
public static float DS_LENDINGFACTOR = 0.05f;
public static int FLOWNOTSUPPORTABLE = 99; //no longer used

Z***,

public static int INITIALDELAY = 0;
public static int INITIALLOSSRATE = 0;
public static int INITIALTHROUGHPUT = .10000;

public Static int RETURNFLOWDELAY =50;

54

public static int RETURNFLOWLOSSRATE = 50;
public static int RETURNFLOWTHROUGHPUT = 1000;

public static int ROUTERNOTINPIB = 0;

public static int NOSUPPORTABLEPATHINPIB = 0;

public static int SERVERNODEID = 1;

public static int FLOWTOSERVER = 0;

public static int PSUEDORANDOMSOURCEPORT = 8000;

public static int INITIALPATHID = 0;

public static int INITIALHEIGHTOFSEARCH = 1;
public static int INCREMENTATIONOFSEARCH = 1;
public static int DESTINATIONNODE = 0;

public static int INITIALZERO = 0;

/** Defines with the appropriate IPv6 address of this server. */
//private String serverIPv6 = controlExec.getServerlPO .toStringO ;
// private String serverIPv6 = "99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1";

/** Time when the all possible paths were found. */
private long timeOfLastPIBBuild = System.currentTimeMillis();

/**

* The amount of time that we want to have between rebuilding of
paths. This

* is not currently implemented.
*/

private long timeBetweenPIBBuilds = 120000; // 2 minutes (or 120 sec)

/** A boolean that will allow the showing of comments. */
private boolean showComments = true;

private SAAMRouterGui gui;

/**
* added by hasan uysal to process lsa for the
*/

private Hashtable IPv6ToIntIdTable=new Hashtable();

// 2000 akkoc added
private int sequenceNumber = 1;
private static final int CTS = 0; //SINCE ITS SERVER BY ITSELF
private int hopCount;

private static byte serverType;
private static int flowld;
private static byte metricType;
private static int cycleTime;

55

private static int globalTime;

//l Feb 2000 akkoc added
private IPv6Address Serverld;

boolean cofMesOK=false;
Object theLock = new Object();
Thread configThread;

/**

* Constructs a server that will use a specified type of Path
'Information

* Base. The PIB may be in the form of a database structure
(which

* requires an existing ODBC configured local database) or a class
* object structure. The control executive is the interface to the

IPv6
* protocol stack, in order for messages to flow to and from the

network.
* The final step taken is the deletion of all existing data, which

is
* important only in a database structure since a class object

structure is
* volatile.
* ©param type The type of structure that the PIB is to assume.
* ©param controlExec The control executive that will exchange

messages
* with this server.
*/

public Server(String type, ControlExecutive controlExec){
//if (type == "database")

//PIB = new DatabaseStructure();
//else

PIB = new ClassObjectStructureO ;

this.controlExec = controlExec;
gui=new SAAMRouterGui("Server");

// lfeb 2000 akkoc added
Serverld = controlExec.getRouterld();

PIB.deleteAllData();

initResourceAllocation();
this.slsDbase = new SLSDbaseO;
setupSLSDbase();
logfile = new FilelOO;
logfile.openToWrite("server\\log.dat");

}

//Added by Henry for testing only
public Server(SAAMRouterGui gui, ControlExecutive controlExec,

ClassObjectStructure PIB, SLSDbase slsDbase){
this.gui = gui;
this.controlExec = controlExec;
this.PIB = PIB;

56

PIB.deleteAllData() ;

initResourceAllocation();
this.slsDbase = slsDbase;
//setupSLSDbase();
logfile = new FilelOO;
logfile.openToWrite("server\\log.dat");
showComments = false;

}

/**
* Assigns respective bandwidth allocation for various service levels
*/

private void initResourceAllocation(){
//initialize amount of trunk allocation
throughputRatioForSL[CONTROL_SERVICELEVEL] = O.lf;//Control Packets
throughputRatioForSL[IS_SERVICELEVEL] = 0.2f;
throughputRatioForSL[DS_SERVICELEVEL] = 0.2 f;
throughputRatioForSL[BE_SERVICELEVEL] = 0.2f;
throughputRatioForSL[OTHER_SERVICELEVEL] = Of; //Tag Packets

}

//INTSERV
//DIFFSERV
//BESTEFFORT

//***

// These methods handle external network communications from routers
//***
*****/

/**
*****/

//Hasan UYSAL

/**
* Receives link state advertisement messages from router and

processes the
* service level pipe status information that they contain. It begins

by
* checking to see if a router with the interface address described

by this
* LSA is known to the PIB. If such a router is known to exist, it

then
* checks to see if the service level pipe described by this LSA is

known to
* the PIB. If the service level pipe is known, then update its

status.
* Otherwise, add the SLP with the specified QoS characteristics.

Finally,
* update the effective QoS for the paths that pass over this service

level
* pipe by calling the determineEffectiveQoSForPaths().
* dparam router A representation of a router as defined by an LSA.
*/

public synchronized void processLSA(LinkStateAdvertisement LSA) {

57

System.out.println("Started ProcessLSA");
//who is the generating router
IPv6Address routerld = LSA.getMyIPv6();
gui.sendText("An LSA arrived at "+System.currentTimeMillis()+" from

"+routerId.toString());
long startTs,endTs;

Vector IntLSAs = LSA.getLSAs() ;
Vector ips = new Vector();

boolean newRouter = false;
int nodeld = ROUTERNOTINPIB;
String keyStr = routerld.toString();

startTs=System.currentTimeMillis();

//check if IPv6ToIntIdTable contains this router
if(!IPv6ToIntIdTable.containsKey(keyStr)){
System.out.println("This router is not in my table. \nTaking

InterfaceLSAs from LSA message.");
Enumeration enum = IntLSAs.elements();
while(enum.hasMoreElements()){

InterfaceLSA tempLsa=(InterfaceLSA)enum.nextElement();
IPv6Address tempIp=tempLsa.getIP() ;
ips.add(templp);

}
//check if there is a router with these interafces
//this means we removed an interface which was a router id

earlier and
//routerid has changed in the table
nodeId=PIB.doesRouterExist(ips);

//if the router is not in the pib it is a new one
if(nodeId==this.ROUTERNOTINPIB){
System.out.println("Router is a new router.");
newRouter = true;
nodeId=PIB.getNewNodeld();
this.IPv6ToIntIdTable.put(keyStr,new Integer(nodeld));

}
else{ //it is not a new one this lsa is a second copy of the

removal LSA
return;

}
}//if

if(newRouter){
gui.sendText("this is a new router and will be aded to the

PIB.");
//addd all interfaces to the PIB and compute the Paths
int Idlnt = ((Integer)IPv6ToIntIdTable.get(keyStr)).intValue();
InterfaceLSA newlnterface=null;
Enumeration enum=IntLSAs.elements();
while(enum.hasMoreElements()){
newlnterface=(InterfaceLSA)enum.nextElement();
this.checkAndAdd(Idlnt,newlnterface) ;

}

58

findAllPossiblePathsO;
determineEffectiveQoSForPaths();
//Added by Henry
System.out.println("initializing Resources of router "+routerId);
initializeResourceAllocation(routerld);
if (!routerld.equals(Serverld)){
System.out.println("sending SLSTable to router...");
sendSLSTable(routerld, new Integer(nodeld));

}

return;
}

System.out.printIn("in ProcessLSA 2");

//it may be a new or an old router take the int id of the router
nodeld = ((Integer)IPv6ToIntIdTable.get(keyStr)).intValueO;

Enumeration IsalnterfaceEnum = IntLSAs.elements();
while(IsalnterfaceEnum.hasMoreElements()){

InterfaceLSA
curlnterface=(InterfaceLSA) IsalnterfaceEnum.nextElement();

byte type = curInterface.getLSAType();
gui.sendText("Type of the InterfaceLSA is "+(int)type);
switch(type){
case InterfaceLSA.ADD:

checkRouterld(routerld,IntLSAs);
checkAndAdd(nodeld,curlnterface);
if(JnewRouter){ //another interface is added to the router

//PIB will be updated
findAllPossiblePaths();
determineEffectiveQoSForPaths();

}
break;

case InterfaceLSA.UPDATE:
updatePIB(nodeld,curlnterface);

break;

case InterfaceLSA.REMOVE:
checkRouterld(routerld,IntLSAs);
removelnterfaceFromPIB(nodeld,curInterface);

break;

default:
gui.sendText("Interface LSA type is not a recognized type.");

}//end switch
}//end while

System.out.println("end of ProcessLSA");
} //end processLSA

private void checkRouterld(IPv6Address routerld,Vector iLsaVector){
IPv6Address tempIP;
IPv6Address templd=new IPv6Address();

59

InterfaceLSA tempIntLsa;
byte[] idBytes;
byte[] tempBytes;
Enumeration enum=iLsaVector.elements();
while(enum.hasMoreElements()){

tempIntLsa = (InterfaceLSA)enum.nextElement();
if(tempIntLsa.getLSAType()==InterfaceLSA.REMOVE){

continue;
}
tempIP=tempIntLsa.getIP();
idBytes=tempId.getAddress();
tempBytes= tempIP.getAddress();
for(int i=0;i<IPv6Address.length;i++){

if(idBytes[i]>tempBytes[i]){
break;

}
if(idBytes[i]<tempBytes[i]){

tempId=tempIP;
break;

}
}

}

if(templd.equals(routerld)){//there is no change in id
return;

}
//there is change in the router id
//old router id has to be changed from the table
int

knownId=((Integer)IPv6ToIntIdTable.get(routerld.toStringO)).intValue()

IPv6ToIntIdTable.remove(routerld.toString());
routerId=tempId;
IPv6ToIntIdTable.put(templd.toString(),new Integer(knownld));

}//end checkRouterld()

private void checkAndAdd(int nodeld,InterfaceLSA curlnterface){

IPv6Address ip=curInterface.getIP();
int bandwidth=this.INITIALZERO;
//Is this interface in my Path Information Base

bandwidth = curlnterface.getBandwithO;

if(IPIB.doesLinkExist(ip)){
PIB.addLink(ip,bandwidth);

}//end inner if

//now add interface
PIB.addlnterface(nodeld,ip);

//added by Henry
for (int service_level = 0;

service_level < NUMBEROFSERVICELEVELS; service_level++){
PIB.addSLP(ip, service_level, INITIALDELAY, INITIALLOSSRATE,

60

// INITIALTHROUGHPUT);

(int)(throughputRatioForSL[service_level]*INITIALTHROUGHPUT));
}

}

private void updatePIB(int nodeld,InterfaceLSA iLsa){
byte slps=iLsa.getNumOfSLPs() ;
Vector slpVector=iLsa.getSLPs();
IPv6Address ip=iLsa.getIP();
for(int i=0;i<slps;i++){

SLPLSA slpLsa=(SLPLSA)slpVector.elementAt(i);
byte slpNumber=slpLsa. getSLPNum () ;
byte utilization=slpLsa.getUtilization();
short delay = slpLsa.getDelay{) ;
short lossRate = slpLsa.getLossRate();

PIB.updateSLP(ip,slpNumber,delay,(int)(lossRate/100),(utilization/2));
}

}

private void removelnterfaceFromPIB(int nodeld,InterfaceLSA
curInterface){

gui.sendText("Removing interface from PIB.");
removePathsTraversinglnterface(curInterface);
removeLinkFromPIB(curInterface.getIP());
removelnterfaceFromNode(curInterface.getIP()) ;

}

private void removePathsTraversinglnterface(InterfaceLSA iLsa){
gui.sendText("Removing Paths using the interface from PIB.");
for(int i=0;i<iLsa.getNumOfSLPs() ; i++){
Vector pathIds=PIB.getAllPathldsThatTraverseSLP(iLsa.getIP(),i);

ClassObjectStructure cos=(ClassObjectStructure)PIB;
cos.deletePathsTraversinglnterface(pathlds);

}
}

private void removeLinkFromPIB(IPv6Address ip){
gui.sendText{"Removing linkof the interface from PIB.");
IPv6Address netIP=ip.getNetworkAddress();
ClassObjectStructure cos=(ClassObjectStructure)PIB;
cos.links.remove(netIP.toString());

}

private void removelnterfaceFromNode(IPv6Address ip){
gui.sendText("Removing Interface from nodes.");
ClassObjectStructure cos=(ClassObjectStructure)PIB;
cos.nodes.remove(ip.toString());

}

61

/**Used only by Henry to build up PIB for local test
* Receives Hello messages from routers and then processes them. It

starts
* building a vector of IPv6Addresses from the interfaces included in

the
* Hello message. This vector is passed to the PIB's

doesRouterExist() which
* determines if a router with any of these interfaces have been

identified
* before. If this is a new router, a new unique node id is

assigned.<p>
* For each of the interfaces identified in the Hello message, if

this
* interface was is not known to the PIB, check to see if the

corresponding
* link is known to the PIB. If this link is not known to the PIB,

add it.
* Next, add the new interface between the node and link. Also, add

each
* service level pipe that is assigned within this SAAM region.<p>
* The next step is to rebuild the paths that are possible across the

network
* now considering this new hello message. The frequency of these

rebuilds is
* not a major concern in a controlled environment, but will need to

be
* addressed later. Finally, a flow request is create and received

for
* communicating back to this node. This is only possible if the

PIB's
* determineAHPossiblePaths () has been executed after the processina

of this .
* particular hello message, if this a new router. After all paths to

each
* known router are found, we finish this method with a call to
* determineEffectiveQoSForPaths(). The call to
* determineEffectiveQoSForPaths() ensures that even if no QoS

parameters are
* known about these new parts of the network, that at least some

initial
* values will be assigned. This initialization allows the new paths

to be
* assigned if needed.
* ©param hello An initialization message from a router.
*/

public void processHello(Hello hello) {

long start, finish;
Vector interfaces;
int node_id = INITIALZERO;
InterfacelD mylnterface;
int bandwidth = INITIALZERO;
IPv6Address address = new IPv6Address();
Vector IPv6Addresses = new VectorO;
boolean newRouter = true;
FlowRequest myFlowRequest = new FlowRequest();

62

// capture the start time of processing a hello
start = System.currentTimeMillis();

// produce a vector of IPv6Addresses
interfaces = hello.getlnterfacelDs();
for (int i = INITIALZERO; i < interfaces.size(); i++){
address = ((InterfacelD)interfaces.elementAt(i)).getIPv6();
IPv6Addresses.addElement(address);

}

// check if router exists and if so, return it's node id, else
return 0

node_id = PIB.doesRouterExist(IPv6Addresses);

//if the router does not exist in PIB
if (node_id == ROUTERNOTINPIB){

// assign it a new node id
node_id = PIB.getNewNodeldO ;

} else {
newRouter = false;

}

// run through all of the LSA interfaces
for (int i = INITIALZERO; i < interfaces.size(); i++) {
mylnterface = (InterfacelD)interfaces.elementAt(i);
address = myInterface.getIPv6();
// if a new interface is not found in the PIB, then ...
if (!PIB.doesInterfaceExist(address)){
bandwidth = mylnterface.getBandwidth();
address = mylnterface.getIPv6();
//if the link is not contained in the PIB, then add it
if (!PIB.doesLinkExist(address)){
PIB.addLink(address, bandwidth);

}
// now add the interface between the node and the link
PIB.addlnterface(node_id, address);
// now add each service level pipe
for (int service_level = 0;
service_level < NUMBEROFSERVICELEVELS; service_level++){
PIB.addSLP(address, service_level, INITIALDELAY,

INITIALLOSSRATE,
//INITIALTHROUGHPUT);

(int)(throughputRatioForSL[service_level]*INITIALTHROUGHPUT));
}

} // end if
} //end interfaces for

// capture the hello processing finish time
finish = System.currentTimeMillis();
gui.sendText("Server: processHello: Time required = "

+(finish-start)+" milliseconds.");

//time since last PIB build is > 2 min and if node did not exist
before

63

//if ((timeOfLastPIBBuild - System.currentTimeMillis())
>timeBetweenPIBBuilds

//
newRouter){

// rebuild all possible paths
findAllPossiblePaths();

// determine effective QoS of each path
determineEffectiveQoSForPaths();

// construct a new flow to this router
/*try{
myFlowRequest = new

FlowRequest(IPv6Address.getByName(serverIPv6),
address,System.currentTimeMillis(),RETURNFLOWDELAY,
RETURNFLOWLOSSRATE,RETÜRNFLOWTHROUGHPUT);

} catch(UnknownHostException uhe){
System.err.println("Server: main: UnknownHostException: " +

uhe) ;
}
processFlowRequest(myFlowRequest) ; */

//}

} //end processHello

&&

/ **

* Receives and processes flow requests from applications. It begins
* by finding a source and a destination router. These routers may be

where
* the applications are residing themselves, which is our standard

situation.
* The application could, however, reside on some host that is not

registered
* with the PIB as a router. In this case, the appropriate source or
* destination router would be a router connected to the same link

<p>
* The PIB is checked to ensure that there is the effective QoS

available on
* some path to satisfy the request. If a satisfactory path is found,

a new
* unique flow id is assigned and this new flow is associated with

that path.
* Each router in the path is retrieved and a new flow routing table

entry is
* sent to each. If no path can provide the requested level of QoS,

then the
* flow is assigned to zero, which will be interpreted by IPv6 as

best effort
* traffic. Finally, a flow response is sent back to the application

to
* inform it of its assigned flow id. If the flow id that is return

is zero,
* it will be the application's responsibility to either lower it QoS

request
* or to send its traffic as best effort.

64

* ©param flow_request The message requesting the establishment of a
flow.

*/
public void processFlowRequest(FlowRequest flow_request) {

int source_router, destination_router, path_id,
flow_id=FLOWNUNREACHEABLE;

long start, finish;
byte service_Type;

// capture the start time of processing a flow request
start = System.currentTimeMillis();

// find a router on the same subnet as the source host
source_router =

PIB.findARouterOnLink(flow_request.getSourcelnterface());

// find a router on the same subnet as the destination host
destination_router =

PIB.findARouterOnLink(flow_request.getDestinationlnterface()) ;

//added by Henry
service_Type = flow_request.getServiceLevel(); //a service request?

if (showComments){
gui.sendText("Server: processFlowRequest: from node "

+source_router+"for service level "+service_Type);
}

if (service_Type == IS_SERVICELEVEL) {
IS_Admission(source_router, destination_router, flow_request);

}
else if (service_Type == DS_SERVTCELEVEL) {
DS_Admission(source_router, destination_router, flow_request);

}

/A**/

//else if (service_Type == CONTROL_SERVICELEVEL) {
else { //for backward compatibility, no reason for other service

level
path_id = PIB.getPathThatCanSupportFlowRequest(source_router,

destination_router, flow_request);
// if a path can support this request, then...
if(path_id != NOSUPPORTABLEPATHINPIB){

// assign a flow id to the request
flow_id =

PIB.getNewFlowId(path_id,source_router,destination_router,
flow_request);

updateRouter(source_router, destination_router, path_id,
flow_id);

}// end if
}// end if

//Old code follows
//give routers time to finish updating tables
try{

65

Thread.sleep(2000);
}catch(InterruptedException ie){
gui.sendText(ie.toString());

}
//if the source of this flow is the server,

if (source_router == SERVERNODEID) {
// then add this new flow to hash table for later lookup
if (showComments){
gui.sendText("Server: processFlowRequest: use flow "+flow_id

+" to send to node "+destination_router);
}
if (destination_router == SERVERNODEID) {

flow_id = FLOWTOSERVER;
}
flowLookUp.put(new Integer(destination_router),new

Integer(flow_id));
sendFlowResponse(flow_request, flow_id);

}

// capture the flow request processing finish time
finish = System.currentTimeMillisO;
gui.sendText("Server: processFlowRequest: Time required = "

+(finish-start)+" milliseconds.");
}

/**

* Determines and updates the flow routing table in all the routers
* affected by the flow.
* ©param source_router The router requesting for the flow.
* ©param destination_router The destination of a flow.
* ©param path_id The path of a flow
*/

private void updateRouter(int source_router, int destination_router,
int path_id, int flow_id) {

Vector slps_in_path;
SLPSequence currentSLPSequence,nextSLPSequence = new SLPSequence()
int SLP_source_router, SLP_destination_router, service_level;
IPv6Address link_id = new IPv6Address();
IPvöAddress next_hop;
IPv6Address sourceAddress;

// determine each router in path
// transmit Flow Routing Table Entry to it
slps_in_path = PIB.getSLPSequenceOfPath(path_id);
// for each router in the path, send a FRTE update
for (int index = INITIALZERO; index < slps_in_jpath.size();

index++){
// assign new sip sequence object
currentSLPSequence = (SLPSequence)slps_in_path.elementAt(index),-

//if not the last link..
if (index+1 != slps_in_path.size()){
nextSLPSequence = (SLPSequence)slps_in_path.elementAt(index+1);

II retrieve values from this object

66

SLP_source_router = currentSLPSequence.getSourceRouter();
link_id = currentSLPSequence.getLinkldO;
service_level = currentSLPSeguence.getServiceLevel();

// if not the last link...
if (index+1 != slps_in_path.size()){

SLP_destination_router = nextSLPSeguence.getSourceRouter();
} else {

// else it is the destination node of the flow
SLP_destination_router = destination_router;

}
// determine destination address for next hop
next_hop = PIB.getlnterfaceAddress(SLP_destination_router,

link_id);

// determine source address
sourceAddress = PIB.getlnterfaceAddress(SLP_source_router,

link_id);

// send the flow routing table entry update
sendFRTEUpdate(sourceAddress, flow_id, next_hop, service_level);

} // end for

//give routers time to finish updating tables
try{
Thread.sleep(2000);

}catch(InterruptedException ie){
gui.sendText(ie.toString()) ;

}

}//end updateRouter

/**
* Receives flow termination from routers and then processes them.
*/

//public void receiveFlowTerminationO { }

/**Henry
* Receives flow termination from routers and then processes them.
* synchronized for testing
*/

public synchronized void receiveFlowTermination(int flow_id) {
gui.sendText("receiveFlowTermination for flow_id: "+flow_id);
PIB.deleteAssignedFlow(flow_id);

}

/* *Henry
* Receives a SLSTableEntry message from a router that contains
* the SLS that is to be removed from a SLSTable in the SLSDbase.
*/

public void receiveSLSTableUpdate(SLSTableEntry message) {
int user_id = message.getUserldO ;
int node_id = message.getNodeld();
gui.sendText("receivedSLSTableUpdate for user: "+user_id

+" at Node "+node_id);

67

deleteSLS(new Integer(node_id), user_id);

/**Henry
* Used for local test to remove a SLS from a SLSTable in the

SLSDbase.
*/

public synchronized void receiveSLSTableUpdate(int user_id) {
Vector allNodeld = PIB.getAllRouterlds();
gui.sendText(-receivedSLSTableUpdate for user: "+user_id);
//deleteSLS(allNodeld, user_id);
for (int i=0; i<allNodeId.size(); i++) {
Integer node_id = (Integer)allNodeld.elementAt(i);
deleteSLS(node_id, user_id);

}
. }

/**Henry
* Admission control for Integrated Service flows
* ©param source The node id of the source router
* ©param destination The node id of the destination router
* ©param flow_request The flow request message
* ©return The flow response that contain the result of the
* admission control.
*/

private synchronized FlowResponse IS_Admission(int source,
int destination, FlowRequest flow_request) {

int flow_id = FLOWNUNREACHEABLE;
int supporting__path = 0;
int used_throughput = 0;
byte result = FlowResponse.UNREACHEABLE;
FlowResponse response;
Vector sips;
IPv6Address[] pathAddress;
SLP nextSLP;
int path_id = 0;

gui.sendText("\nProcessing IS Admission Control...");
int throughput = flow_request.getRequestedThroughput();
IPv6Address sourceAddress = flow_reguest.getSourceInterface();
//find a physical path that can reach the destination requested
supporting_path = PIB.getPathThatSupportFlowRequest(source,

destination, flow_request);
gui.sendText("Requested throughput = " + throughput);
//if destination is unreacheable
if (supporting_path == FLOWNUNREACHEABLE) {
gui.sendText("UNREACHEABLE!");
sendFlowResponse(flow_request, flow_id,

F1owResponse.UNREACHEABLE);
result = FlowResponse.UNREACHEABLE;
response = new FlowResponse(flow_request.getTimeStamp() ,

result, flow_id);
}
else if (supporting_path == FLOWUNSUPPORTABLE) {

//destination is reacheable but network cannot meet
//log down event

68

gui. sendText ("FLOWUNSUPPORTABLE rejected.") ;
sendFlowResponse(flow_reguest, flow_id, FlowResponse.REJECTED);
result = FlowResponse.REJECTED;
response = new FlowResponse(result, flow_id);
gui.sendText("Request cannot be met event logged.");
IS_RejectionRate++;
gui.sendText("IS_RejectionRate: "+IS_RejectionRate);
if (IS_RejectionRate > IS_REJECTIONTHRESHOLD) {
gui.sendText("IS_REJECTIONTHRESHOLD exceeded");

>
logfile.write(""+date.toString()+"

"+flow_request.toString()+"\n");
}
else {
gui.sendText("Path that support flow request = "

/*+ flow_request*/ + supporting_path);
//get all interface addresses of the path
pathAddress = PIB.getPathAddress(supporting_path);
// assign a flow id to the request
flow_id = PIB.getANewFlowId(supporting_path, source,

destination, flow_request);
//update PIB (observed values will be updated by LSA update
for (int i=0; i<pathAddress.length; i++) {
IPv6Address address = pathAddress[i];
gui.sendText("RemainingThroughput (before) for Interface: "

+pathAddress[i]+" = "+PIB.getRemainingThroughput(
//pathAddress[i], Server.IS_SERVICELEVEL));
address, Server.IS_SERVICELEVEL));

PIB.updateRemainingBWOfAllPaths(pathAddress[i],
Server.IS_SERVICELEVEL, throughput);

PIB.updateSLP(pathAddress[i], Server.IS_SERVICELEVEL,
flow_request.getRequestedDelay(),
flow_request.getRequestedLossRate(), throughput);

gui.sendText("AllocatedThroughput for Interface: "
+pathAddres s[i]+" = "+ throughput);

gui.sendText("RemainingThroughput (after) for Interface: "
+pathAddress[i]+" = "+PIB.getRemainingThroughput(
//pathAddress[i], Server.IS_SERVICELEVEL));
address, Server.IS_SERVICELEVEL));

}
//update flowTable of all routers in the path
updateRouter(source, destination, supporting_path, flow_id);
sendFlowResponse(flow_request, flow_id,

FlowResponse.IS_ACCEPTED);
result = FlowResponse.IS_ACCEPTED;
response = new FlowResponse(flow_request.getTimeStamp(), result,

flow_id);
}
return response;

}

/**Henry
* Admission control for Integrated Service flows
* @param source The node id of the source router
* ©param destination The node id of the destination router
* ©param flow_request The flow request message
* ©return The flow response that contain the result of the

69

* admission control.
*/

public synchronized FlowResponse IS_Admission(
FlowRequest flow_request) {

FlowResponse response;
int source =
PIB.findARouterOnLink(flow_request.getSourcelnterface());

// find a router on the same subnet as the destination host
int destination =
PIB.findARouterOnLink(flow_request.getDestinationlnterface());

response = IS_Admission(source, destination, flow_request);
return response;

}

/**

* Admission control for Differentiated Service flows
* @param source The node id of the source router
* @param destination The node id of the destination router
* @param flow_request The flow request message
* ©return The flow response that contain the result of the
* admission control.

*/
private synchronized FlowResponse DS_Admission(

int source, int destination, FlowRequest flow_request) {
int[] supportable_paths;
int supporting_path = 0;
int used_throughput = 0;
Vector sips;

FlowResponse response;
IPv6Address[] pathAddress;

SLP nextSLP;
int path_id = 0;

gui.sendText("\nProcessing DS Admission Control...");
int throughput = flow_request.getRequestedThroughput();
IPv6Address sourceAddress = flow_request.getSourcelnterface();
//find a physical path that can reach the destination requested
supporting_path = PIB.getPathThatSupportFlowRequest(source,

destination, flow_request) ;
gui.sendText("Path that support flow request: "

+ flow_request + " is " + supporting_path);
if (supporting_path == FLOWNUNREACHEABLE) { //if destination is

unreacheable
gui.sendText("UNREACHEABLE!");
sendFlowResponse(flow_request, FlowResponse.UNREACHEABLE, null);
response = new FlowResponse(flow_request.getTimeStamp(),

FlowResponse.UNREACHEABLE);
}
else if (supporting_path == FLOWUNSUPPORTABLE) {

//log down event
sendFlowResponse(flow_request, FlowResponse.SLA_NOT_AVAILABLE,

null);
response = new FlowResponse(flow_request.getTimeStamp(),

FlowResponse.SLA_NOT_AVAILABLE);

70

gui.sendText("Request cannot be met event logged.");
DS_Rej ectionRate++ ;
gui.sendText("DS_RejectionRate: "+DS_RejectionRate);
if (DS_RejectionRate > DS_REJECTIONTHRESHOLD) {
gui.sendText("DS_REJECTIONTHRESHOLD exceeded");

}
logfile.write(""+date.toString()+"

"+flow_reguest.toString()+"\n");
}
else {

//get all interface addresses of the path
pathAddress = PIB.getPathAddress(supporting_path);
//update PIB (should be done by LSA update
for (int i=0; i<pathAddress.length; i++) {
gui.sendText("RemainingThroughput (before) for Interface: "

+pathAddress[i]+" = "+PIB.getRemainingThroughput(
pathAddress[i], Server.DS_SERVICELEVEL));

PIB.updateRemainingBWOfAllPaths(pathAddress[i],
Server.DS_SERVICELEVEL, throughput);

PIB.updateSLP(pathAddress[i], Server.DS_SERVICELEVEL,
flow_request.getReguestedDelay () ,
flow_request.getRequestedLossRate(), throughput);

gui.sendText("AllocatedThroughput for Interface: "
+pathAddres s[i]+" = "+ throughput);

gui.sendText("RemainingThroughput (after) for Interface: "
+pathAddress[i]+" = "+PIB.getRemainingThroughput(
pathAddress[i], Server.DS_SERVICELEVEL));

}
//create a new ServiceLevelSpec and add it to the SLSDbase
SLS newSLS = addSLS(new Integer(source), flow_reguest);
slsDbase.displaySLSTable(); //display SLSDbase
controlExec.updateSLSTableO; //only needed for displaying

SLSTable
sendFlowResponse(flow_reguest, FlowResponse.DS_ACCEPTED, newSLS);
response = new FlowResponse(flow_request.getTimeStamp(),

FlowResponse.DS_ACCEPTED, flow_request.getUser(), newSLS);
}
return response;

}

/**
* Admission control for Differentiated Service flows
* ©param source The node id of the source router
* ©param destination The node id of the destination router
* ©param flow_request The flow request message
* ©return The flow response that contain the result of the
* admission control.

*/
public synchronized FlowResponse DS_Admission(FlowRequest

flow_request) {
FlowResponse response;

int source =
PIB.findARouterOnLink(flow_reguest.getSourcelnterface());

// find a router on the same subnet as the destination host

71

int destination =
PIB.findARouterOnLink(flow_reguest.getDestinationlnterface ()) ;

response = DS_Admission(source, destination, flow_request);
return response;

}

/**

* Read data in SLSDbase and store inside various SLSTables
*/

private void setupSLSDbase() {
BufferedReader bufReader;
String slsData;
StringTokenizer st;
FilelO filelO = new FilelO();
filelO.openToRead("server\\diffserv\\SLSDbase.dat");
//read from database file
String title = filelO.readLineO;
//gui.sendText("SLSDbase.dat contains: ");
//gui.sendText(title);
slsData = filelO.readLineO;
while (slsData != null) {

st = new StringTokenizer(slsData);
//gui.sendText(slsData);
addSLSTable(st);
//read next line of string from file
slsData = filelO.readLineO;

}
}

/**

* Adds a SLSTable with the information given in the StringTokenizer
* into the SLSDbase
* @param st
*/

private void addSLSTable(StringTokenizer st) {
//create SLS Dbase with the information
Integer nodelD = new Integer (st.nextTokenO) ;
slsTable = slsDbase.getSLSTable(nodelD);
while (st.hasMoreTokens()) {

if (slsTable != null) {
slsTable.addSLS(st.nextToken().hashCode(), //user_id

st.nextTokenO); //service class
//slsDbase.displaySLSTable(nodelD);
}
else {
slsTable = new SLSTable();
//System.out.print("SLSTable created: ");
slsTable. addSLS (st.nextTokenO .hashCodeO, //user_id

st.nextTokenO); //service class
slsDbase.addSLSTable(nodelD, slsTable);

}
}

}

72

/**

* Adds a SLS to the SLS_Dbase with the parameters given
* @param source The node_id of the router
* @param flow_request The flow request associated to the router
* ©return The SLS object created from the parameters
*/

private SLS addSLS(Integer source, FlowRequest flow_request) {
SLS newSLS = new SLS(flow_request.getRequestedThroughput(),

flow_request.getReguestedLossRate(),
flow_request.getRequestedDelay());
SLSTable slsTable = slsDbase.getSLSTable(source);
if (slsTable != null) {

slsTable.addSLS(flow_request.getUser(), newSLS);
}
else {

slsTable = new SLSTable();
slsTable.addSLS(flow_request.getUser(), newSLS);
slsDbase.addSLSTable(source, slsTable);
gui.sendText("New SLSTable: " + slsTable.toString());

}
slsDbase.displaySLSTable();
return newSLS;

}

/**
* Remove the SLS from the SLSTable of the node_id and user_id
* given in the parameters
* @param node_id The node_id of the router
* @param user_id The user_id of the user/application
*/

private void deleteSLS(Integer node_id, int user_id) {
SLSTable slsTable = slsDbase.getSLSTable(node_id);
if (slsTable == null) {
gui.sendText("SLSTable of node " + node_id + " not found");

}
else {

slsTable.deleteSLS(user_id);
}
slsDbase.displaySLSTable(); //display SLSDbase
controlExec.updateSLSTableO;//only needed for displaying SLSTable

}

//***

// These methods handle external network communications to routers
//***
*******/

/**
* Sends a flow routing table entry update message to a router. This

message
* provides the router the required information to forward packets

based on
* its flow id.
* ©param sourceAddress The router that will receive the FRTE update.

73

* @param flow_id The id assigned to the flow in question.
* ©param next_hop The IPv6 address of the next node in the path.
* @param service_level The service level that this flow is assigned

to.
*/

public void sendFRTEUpdate(IPv6Address sourceAddress, int flow_id,
IPv6Address next_hop, int

service_level) {
FlowRoutingTableEntry myFRTE = new FlowRoutingTableEntry(flow_id,

(byte)service_level,
next_hop);

if(showComments){
//gui.sendText("Server: sendFRTEUpdate: flowLookUp hashtable:") ;
//gui.sendText(""+flowLookUp);
gui.sendText("Server: sendFRTEUpdate: "+myFRTE);

}
if (serverType == 0) {///Primary Server

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec.listenToRandomPort(this);

short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = sourceAddress;
// take steps to determine what flow id to send the packet on
Vector interfaces = new Vector();
interfaces.addElement(destHost) ;
int destNodeld = PIB.doesRouterExist(interfaces);
//int flowIdToSendltOn = ((Integer)flowLookUp.get
// (new Integer(destNodeld))).intValueO;
int flowIdToSendltOn = getServerFlowId();
try{

controlExec.send(this,myFRTE, flowIdToSendltOn,
(short)sourcePort,

destHost, destPort);
}catch (FlowException fe){
System.err.println(fe.toString());

}
if (showComments){
gui.sendText("Server: sendFRTEUpdate: FRTE for flow " + flow_id

+ " sent to interface "+sourceAddress);
gui.sendText(" with next hop= "+next_hop

+" on service level "+service_level+" via flow
n+flowIdToSendItOn);

}
}//end if serverType
else {

gui.sendText("I'm Backup Server");
}

}

of
* Sends a flow response to the requesting application to notify it

* its newly assigned flow id. A flow id of zero is used to indicate
that the

* flow cannot be supported. Once a flow response message is
instantiated and

74

* a source and destination port is defined, the control executive's
send()

* is called to send it to the destination host.
* ©param flow_request The flow request message that was received.
* @param flow_id The flow id that is assigned to the flow request.
*/

public void sendFlowResponse(FlowRequest flow_request, int flow_id){
if(showComments){

//gui.sendText("Server: sendFlowResponse: flowLookUp
hashtable:") ;

//gui.sendText(n"+flowLookUp);
gui.sendText("Server: sendFlowResponse with flow_id:"+flow_id);

}
FlowResponse response = new ,

FlowResponse(flow_request.getTimeStamp(),
flow_id);

if (serverType == 0) {///Primary Server
int sourcePort = PSUEDORANDOMSOURCEPORT;

//controlExec.listenToRandomPort(this);
short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = flow_request.getSourceInterface();
// take steps to determine what flow id to send the packet on
Vector interfaces = new Vector();
interfaces.addElement(destHost);
//int destNodeld = PIB.doesRouterExist(interfaces);
//int flowIdToSendltOn = ((Integer)flowLookUp.get
// (new Integer(destNodeld))).intValueO;
int flowIdToSendltOn = getServerFlowIdO;
try{
controlExec.send(this, response, flowIdToSendltOn,

(short)sourcePort,
destHost, destPort);

}catch(FlowException fe){
System.err.println(fe.toString());

}
if (showComments){
gui.sendText(""//"Server: sendFlowResponse: Flow response "

+ response + " from SourcePort: "+sourcePort+" to "+destHost
+ " sent via flow "+fIowIdToSendItOn);

}
}//end if serverType
else {
gui.sendText("I'm Backup Server");

}
}

/**Henry
* Sends a flow response to the requesting application to notify it

of
* its newly assigned flow id. A flow id of zero is used to indicate

that the
* flow cannot be supported. Once a flow response message is

instantiated and
* a source and destination port is defined, the control executive's

send()
* is called to send it to the destination host.
* @param flow_request The flow request message that was received.

75

* ©pararn flow_id The flow id that is assigned to the flow request
*/

public void sendFlowResponse(FlowRequest flow_request,
int flow_id, byte result){

//modified by Henry for IntServ
if(showComments){

//gui.sendText("Server: sendFlowResponse: flowLookUp
hashtable:");

//gui.sendText(""+flowLookUp);
gui.sendText("Server: sendFlowResponse with flow_id:"+flow_id);

FlowResponse response = new
FlowResponse(flow_request.getTimeStamp(),

flow_id);
Vector data = new Vector();
data.add{flow_request.getSourcelnterface().toString());
data.add(flow_request.getDestinationlnterface().toString());
data.add{"IntServ");
data.add(""+flow_request.getRequestedThroughput{));
data.add("Result: n+response.getResult());
//data.add(""+flow_request.getUser()) ;
//data.add(""+response.getFlowId());
flowTableData.add(data);
controlExec.updateFlowTable(flowTableData);
if (serverType == 0) {///Primary Server

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec.listenToRandomPort(this);

short destPort.= ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = flow_request.getSourcelnterface();
// take steps to determine what flow id to send the packet on
//Vector interfaces = new Vector();
//interfaces.addElement(destHost);
//int destNodeld = PIB.doesRouterExist(interfaces);
//int flowIdToSendltOn = ((Integer)flowLookUp.get
// (new Integer(destNodeld))).intValue();
int flowIdToSendltOn = getServerFlowId();
try{
controlExec.send(this, response, flowIdToSendltOn,

(short)sourcePort, destHost, destPort);
}catch(FlowException fe){
System.err.println(fe.toString());

}
if (showComments){
gui.sendText("Server: sendFlowResponse: Flow response "+

response);
gui.sendText(" with length = "+response.length()

+" from SourcePort: "+sourcePort+" to "+destHost
+ " sent via flow n+flowIdToSendItOn);

}
}//end if serverType
else {
gui.sendText("I'm Backup Server");

}
}//end sendFlowResponse

//Added by Henry
/**

76

* Sends a flow response to the requesting application to notify it
of

* its newly assigned service level spec (SLS). Once a flow response
* message is instantiated and a source and destination port is

defined,
* the control executive's send{) is called to send it to the

destination host.
* @param flow_request The flow request message that was received.
* dparam result The outcome of the admission control to the flow

request.

*/
public void sendFlowResponse(FlowRequest flow_request, byte result,

SLS newSLS){
FlowResponse response;

//create a response message for DiffServ
if (newSLS == null) {
response = new FlowResponse(flow_request.getTimeStamp(), result);

}
else {

response = new FlowResponse(flow_request.getTimeStamp(),
result, flow_request.getUser() , newSLS);

}
if(showComments){

//gui.sendText("Server: sendFlowResponse: flowLookUp
hashtable:");

//gui.sendText(""+flowLookUp);
gui.sendText("Server: sendFlowResponse: "+response);

}
Vector data = new Vector();
data.add(flow_request.getSourcelnterface().toString());
data.add(flow_request.getDestinationInterface().toString());
data.add("DiffServ");
data.add(""+flow_request.getRequestedThroughput());
data.add{"Result: "+response.getResult());
//data.add(""+flow_request.getUser());
//data.add(""+response.getFlowId()) ;
flowTableData.add(data);
controlExec.updateFlowTable(flowTableData);
if (serverType == 0) {///Primary Server

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec.listenToRandomPort(this);

short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = flow_request.getSourcelnterface();
// take steps to determine what flow id to send the packet on
//Vector interfaces = new Vector();
//interfaces.addElement(destHost);
//int destNodeld = PIB.doesRouterExist(interfaces);
//int flowIdToSendltOn = ((Integer)flowLookUp.get

// (new Integer(destNodeld))).intValue();
int flowIdToSendltOn = getServerFlowId();
try{
controlExec.send(this, response, flowIdToSendltOn,

(short)sourcePort, destHost, destPort);
}
catch(FlowException fe){

System.err.println(fe.toString());
}

77

if (showComments){
gui.sendText("Server: sendFlowResponse: Flow response "

+ response + " from SourcePort: "+sourcePort+n to n+destHost
+ " sent via flow n+flowIdToSendItOn);

}
}//end if serverType
else {
gui.sendText("I'm Backup Server");

}
}//end sendFlowResponse

/**by Henry
* Sends a resource allocation message to the router with the address
* specified in the parameter to initialize the amount of resources

it
* has been allocated for its service level pipes.
*/

public void initializeResourceAllocation(IPv6Address node_id){
int routerID;
if (showComments){
gui.sendText("Server: initializeResourceAllocation ");

}
int[] allocated_throughput = new int[NUMBEROFSERVICELEVELS];
for (int i=0; i<allocated_throughput.length; i++) {
allocated_throughput[i] =

(int)(throughputRatioForSLfi]*INITIALTHROUGHPUT);
}
sendResourceAllocation(node_id, allocated_throughput);
//Vector routerlDs = PIB.getAllRouterlds();
for (int i=0; i<allocated_throughput.length; i++) {
//routerlD = ((Integer)routerlDs.get(i)).intValue();
routerlD =

((Integer)IPv6ToIntIdTable.get(node_id.toString())).intValue();
Vector interfacelDs = PIB.getRouterlnterfaces(routerlD);
gui.sendText("routerID = "+routerID+" has interface:

"+interfaceIDs);
for (int j=0; j<interfaceIDs.size(); j++) {

IPv6Address address = (IPv6Address)interfacelDs.get(j);
PIB.updateSLP(address, i, INITIALDELAY, INITIALLOSSRATE,

//INITIALTHROUGHPUT);
allocated_throughput[i]);

}
}

}//end initializeResourceAllocation

/**by Henry
* Sends a resource allocation message to the router to update the
* amount of resources it has been allocated for its service level

pipes.
* ©param destination The IPv6Address of the router
* dparam allocated_throughput The amount of resources it has been
* allocated for its service level pipes.
*/

public void sendResourceAllocation(IPv6Address destination,
int[] allocated_throughput){

78

if (serverType == 0) {///Primary Server
ResourceAllocation myRA = new

ResourceAllocation(allocated_throughput);
int sourcePort = PSUEDORANDOMSOURCEPORT;

//controlExec.listenToRandomPort(this);
short destPort = ControlExecutive.SAAM_CONTROL_PORT;
IPv6Address destHost = destination;
int flowIdToSendltOn = getServerFlowId() ;
if (showComments){
gui.sendText("Server: sendResourceAllocation: RA " +myRA+

" sent to interface "+destination+" via flow
"+fIowIdToSendItOn);

}
try{
controlExec.send(this, myRA, fIowIdToSendItOn,

(short)sourcePort, destHost, destPort);
}
catch (FlowException fe){

System.err.println(fe.toString());
}

}//end if
}//end sendResourceAllocation

/**by Henry
* Sends the SLS information contained in the SLSTable of the router
* specified in the parameter to it using SLSTableEntry messages
* @param routerld The IPv6Address of the router
* @param nodelD The node_id of the router
*/

private void sendSLSTable(IPv6Address routerld. Integer nodelD) {
IPv6Address destHost = routerld;
slsTable = slsDbase.getSLSTable(nodelD);
if (serverType == 0) {///Primary Server

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec.listenToRandomPort(this);

short destPort = ControlExecutive.SAAM_CONTROL_PORT;
int fIowIdToSendItOn = getServerFlowId();
if (showComments){
gui.sendText("Server: sendSLSTable to "+destHost+

" via flow "+fIowIdToSendItOn);
}
Enumeration e = slsTable.keys();
// for each of the user in the SLSTable
while(e.hasMoreElements()){

Integer user_id = (Integer)e.nextElement();
SLS sis = slsTable.getSLS(user_id.intValue());
SLSTableEntry mySLSMessage = new

SLSTableEntry(user_id.intValue(), sis);
try{

controlExec.send(this, mySLSMessage, fIowIdToSendItOn,
(short)sourcePort, destHost, destPort);

Thread.sleep(lOOO);
}
catch (FlowException fe){

System.err.println(fe.toString());
}

79

catch(InterruptedException ie){
}

}//end while
}//end if

}//end sendSLSTable

/**Henry
* Sends a SLS to the router specified in the parameter using a
* SLSTableEntry message to update its SLSTable
* @param routerld The IPv6Address of the router
* @param user_id The user/application that has been assigned the

SLS
* ©param sis The SLS that is being assigned to the

user/application
*/

private void sendSLSTableEntry(IPv6Address routerld, int user_id, SLS
sls){

IPv6Address destHost = routerld;
if (serverType == 0) {///Primary Server

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec.listenToRandomPort(this);

short destPort = ControlExecutive.SAAM_CONTROL_PORT;
int fIowIdToSendItOn = getServerFlowId();
if (showComments){
gui.sendText("Server: sendSLSTableEntry to "+destHost+

" via flow n+flowIdToSendItOn);
}
SLSTableEntry mySLSMessage = new SLSTableEntry(user_id, sis);
try{

controlExec.send(this, mySLSMessage, flowIdToSendltOn,
(short)sourcePort, destHost, destPort);

Thread.sleep(1000);
}
catch (FlowException fe){

System.err.println(fe.toString());
}
catch(InterruptedException ie){
}

}//end if
}

/**Henry (not used at the moment)
* Sends a SLSTableEntry message to the all the routers to update the
* SLSTable it has for its differentiated service level pipes.
* @param flow_request The flow request message that was received.
* ©param result The outcome of the admission control to the flow

request.
*/

public void sendSLSMessage(IPv6Address[] pathAddress, int user_id,
SLS sis){

SLSTableEntry mySLSMessage = new SLSTableEntry(user_id, sis);
if (serverType == 0) {///Primary Server

int sourcePort = PSUEDORANDOMSOURCEPORT;
//controlExec.listenToRandomPort(this);

short destPort = ControlExecutive.SAAM_CONTROL_PORT;
for (int i=0; i<pathAddress.length; i++) {

80

IPv6Address destHost = pathAddress[i] ;
// take steps to determine what flow id to send the packet on
Vector interfaces = new Vector();
interfaces.addElement(destHost);
int destNodeld = PIB.doesRouterExist(interfaces);
//int flowIdToSendltOn = ((Integer)flowLookUp.get

// (new Integer(destNodeld))).intValueO;
int fIowIdToSendItOn = getServerFlowId();

try{
controlExec.send(this,mySLSMessage, fIowIdToSendItOn,

(short)sourcePort, destHost, destPort);
}
catch (FlowException fe){

System.err.println(fe.toString());
}

}
/*
if (showComments){
gui.sendText("Server: sendSLSMessage " +

" to interface "+destination);
gui.sendText(" via flow "+fIowIdToSendItOn);

} */
}//end if

}//end sendSLSMessage

//***

// These methods handle internal manipulation of data describing
network status
//***
*******/

/ **
* Determines all of the possible paths that exist between any source

and
* destination router in the network. This determination is based on

the
* physical definition of the network that is provided by the hello

messages
* received from the routers and stored within the PIB. The paths

that are
* found are then recorded in the PIB for fast assignment of flows

later.<p>
* All node ids are first retrieved from the PIB. For each service

level, we
* build an array of parents of each node. A parent is node that is

directly
* connected. Those directly connected nodes would have service level

pipes
* that would need to be passed through to get to the child node in

question.
* This parent array is used to populate a path table. Each node id

is
* assigned as the final destination of path and all of the different

paths

81

* are then found by working out from this destination. For each of
these

* destination nodes, a call is made to processPathO to find all the
valid

* paths that go to this destination node. We make the call with a
specified

* height of search of 1.
*/

public void findAllPossiblePaths() {
long start, finish;
int NumberOfRouters;
int max_slp_id = INITIALZERO;
/** A count of the highest path id assigned so far. */
int max_path_id = INITIALZERO;
int service_level = INITIALZERO;

/** A vector of the routers that are known by the db. */
Vector V = new Vector();

/** A vector of the parent routers for each given destination
router. */

Hashtable parent;

// capture the start time of processing a path data
start = System.currentTimeMillis();

// reset the maximum path id assigned so far to zero
max_path_id = INITIALPATHID;

V = PIB.getAllRouterldsO ;
//gui.sendTextCServer: findAllPossiblePaths: has routers =

"+V.toString());

//retrieve COUNT of routers
NumberOf Routers = V.sizeO;

//find all possible paths for each service level
//max_slp_id = (new Integer(PIB.findMaxServiceLevel())).intValue();
max_slp_id = NUMBEROFSERVICELEVELS;
//gui.sendText("Server: findAllPossiblePaths: has max_slp_id =

"+max_slp_id);

for (service_level = INITIALZERO; service_level < max_slp_id;
service_level++){

//build parent array of each SLP at this service level
parent = PIB.getParents(V, service_level);

//gui.sendText("Server: findAllPossiblePaths: has parents =
"+parent.toString()) ;

//populate path table
.for (int index = INITIALZERO; index < NumberOfRouters; index++){

int heightOfSearch = INITIALHEIGHTOFSEARCH;
int aPathf] = new intfHmax + INCREMENTATIONOFSEARCH];
aPath[DESTINATIONNODE] =

((Integer)V.elementAt(index)).intValueO;
processPath(parent, aPath, heightOfSearch,service_level);

82

}
}

// capture the path data processing finish time
finish = System.currentTimeMillisO ;
gui.sendText("Server: findAllPossiblePaths: Time required = "

+(finish-start)+" milliseconds.") ;

timeOfLastPIBBuild = finish;

}

* Processes all valid paths that arrive at the destination node
within some

* range of hops. For each parent of the node at the distance of
* heightOfSearch from the destination, a check is made to ensure

that adding
* this new parent will cause no cycle. If this checks out, then that

parent
* can be added and a new path can be assigned. The service level

pipes in
* this new path are identified and their sequence numbers in this

path are
* recorded to the PIB. Next, a check is made to see if the height of

the
* search is less than the server's max search height of Hmax. If it

is less,
* the method recursively calls itself with an incremented

heightOfSearch
* variable.
* @param parent Contains each router and a list of other
* routers that are directly attached to them.
* Oparam aPath[] An array contain a path from a source node,
* aPath[heightOfSearch], to a destination node, aPath[0].
* ©param heightOfSearch The number of nodes in the path so far.
* dparam service_level The level of service assigned to a flow.
*/

public void processPath(Hashtable parent,
int aPath[], int heightOfSearch, int

service_level){
IPv6Address link_id;
int justARouter;
int sequence_number;
int path_id;
Enumeration W = ((Vector)parent.get(

new Integer(aPath[heightOfSearch-
1]))).elements();

while (W.hasMoreElements()) {
justARouter = ((Integer)W.nextElement()).intValue();
if (causeNoCycle(aPath, heightOfSearch, justARouter)) {

// assign this router as the source in this path
aPath[heightOfSearch] = justARouter;

// record the new path id, etc.

83

path_id = PIB.getNewPathId(justARouter,
aPath[DESTINATIONNODE]);

{

// run through the SLP's and record their sequence
for (int index = heightOfSearch; index >DESTINATIONNODE; index-

// determine link_id of this SLP
link_id = PIB.getLinkBetween(aPath[index],

aPath[index-
INCREMENTATIONOFSEARCH]);

// assign the SLP its sequence number
sequence_number = heightOfSearch - index;
PIB.assignSLPSequence(service_level, aPath[index],

link_id, path_id, sequence_number);
}
if (heightOfSearch < Hmax) {
processPath(parent, aPath,

heightOfSearch+INCREMENTATIONOFSEARCH,

service_level);
}

}
}
if (showComments){
gui.sendText("Server: processPath: paths at depth of

"+heightOfSearch
+ " from node "+aPath[DESTINATIONNODE]+" is completed.");

}
}

/**

* Checks to ensure that the addition of a specified new node to a
specified

* path does not result in a cycle being created. This check is
completed by

* the new node is already a member of the list of nodes in the path
already.

* @param aPath[] An array contain a path from a source node,
* aPath[heightOfSearch], to a destination node, aPath[0].
* @param heightOfSearch The number of nodes in the path so far.
* ©param justARouter The proposed next node in for a new path.
* ©returns noCycles True if no cycles are created by the addition of
* justARouter.
*/

public boolean causeNoCycle(int aPath[], int heightOfSearch,
int justARouter){

boolean noCycles = true;
for (int index = INITIALZERO; index < heightOfSearch; index++){

if (justARouter == aPath[index]){
if (showComments){
gui.sendText("Server: causeNoCycle: adding "+justARouter

+" to get to "+aPath[DESTINATIONNODE]+- via "
+aPath[heightOfSearch-INCREMENTATIONOFSEARCH]
+" at a height of "+heightOfSearch+" caused cycle!");

}

84

return noCycles = false;
}

}
if (showComments){

gui.sendText("Server: causeNoCycle: adding "+justARouter
+ " as hop #II+heightOfSearch+" to get to

-+aPath[DESTINATIONNODE]
+ " via n+aPath[heightOfSearch-INCREMENTATIONOFSEARCH]
+" does not cause cycle.");

}
return noCycles;

}

/ **
* Determines what the effective QoS on each path in the PIB is. For

each
* path, the service level pipes that compose it are retrieved. Then,

for
* each of these service level pipes, we total up the delay and loss

rate.
* The effective throughput remaining is determined by finding the

minimum
* difference between the observed throughput and the target

throughput of
* each service level pipe.
*/

public void determineEffectiveQoSForPaths(){
long start, finish;
Vector path_ids;
Integer myPathld;
Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO,
minThroughputRemaining = INITIALZERO;

// capture the start time of processing a path data
start = System.currentTimeMillis();

// for each path
path_ids = PIB.getAllPathldsO ;
//gui.sendText("determineEffectiveQoSForPaths: allPathlds =

"+path_ids);

for (int indexl = INITIALZERO; indexl < path_ids.size(); indexl++){

// for each path
myPathld = (Integer)path^ids.elementAt(indexl);
//gui.sendText("myPathld: "+myPathId);

//SLPs = PIB.getSLPsOfPath(myPathld.intValue());
SLPs = PIB.getSLPsOfAPath(myPathld.intValue());
//gui.sendText("SLPs: "+SLPs);

for (int index2 = INITIALZERO; index2 < SLPs.sizeO; index2++) {
//gui.sendText("Taking the sip "+index2);

85

}

mySLP = (SLP)SLPs.elementAt(index2);
//gui.sendText("sip is taken");
// add delay to total delay
totalDelay = totalDelay + mySLP.getDelay();
//gui.sendText("delay is taken"+totalDelay);
// add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP.getLossRate();

// find min throughput
throughput = mySLP.getThroughput();

targetThroughput = mySLP.getAllocatedThroughput();

throughputRemaining = targetThroughput - throughput;

if (throughputRemaining < minThroughputRemaining ||
minThroughputRemaining == INITIALZERO){

minThroughputRemaining = throughputRemaining;
}

}

//gui.sendText{"setEffectiveQoSOfPath with minThroughputRemaining

// +minThroughputRemaining);

PIB.setEffectiveQoSOfPath(myPathld.intValue(),
totalDelay, totalLossRate, minThroughputRemaining);

totalDelay = INITIALZERO;
totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

// capture the path data processing finish time
finish = System.currentTimeMillis();
gui.sendText("Server: determineEffectiveQoSForPaths: Time required

+(finish-start)+" milliseconds.");

}

/**

* Determines the effective QoS for just those paths that pass over
the

* specified service level pipe. For each path, the service level
pipes that

* compose it are retrieved. Then, for each of these service level
pipes, we

* total up the delay and loss rate. The effective throughput
remaining is

* determined by finding the minimum difference between the observed
* throughput and the target throughput of each service level pipe.
* ©param address The address of the interface containing this

service level.
* ©param service_level The service level of this SLP
*/

86

public void determineEffectiveQoSForPaths(IPv6Address address, int
service_level){

long start, finish;
Vector path_ids;
Integer myPathld;
Vector SLPs;
SLP mySLP;
int totalDelay = INITIALZERO, totalLossRate = INITIALZERO,

throughput = INITIALZERO, targetThroughput = INITIALZERO,
throughputRemaining = INITIALZERO, minThroughputRemaining =

INITIALZERO;

// capture the start time of processing a path data
start = System.currentTimeMillis();

// for each path
path_ids = PIB.getAllPathldsThatTraverseSLP(address,

service_level);

for (int indexl = INITIALZERO; indexl < path_ids.size(); indexl++){

// for each link
myPathld = (Integer)path_ids.elementAt(indexl);

//SLPs = PIB.getSLPsOfPath(myPathld.intValueO);
SLPs = PIB.getSLPsOfAPath(myPathId.intValue());

for (int index2 = INITIALZERO; index2 < SLPs.size(); index2++){

mySLP = (SLP)SLPs.elementAt(index2);

// add delay to total delay
totalDelay = totalDelay + mySLP.getDelay();

// add loss rate to total loss rate
totalLossRate = totalLossRate + mySLP.getLossRateO ;

// find min throughput
throughput = mySLP.getThroughput();

targetThroughput = mySLP.getAllocatedThroughput();

throughputRemaining = targetThroughput - throughput;
if (throughputRemaining < minThroughputRemaining ||

minThroughputRemaining ==
INITIALZERO){

minThroughputRemaining = throughputRemaining ,-
}

}

PIB.setEffectiveQoSOfPath(myPathld.intValue(),totalDelay,totalLossRate,

minThroughputRemaining) ;
totalDelay = INITIALZERO;

87

>

totalLossRate = INITIALZERO;
minThroughputRemaining = INITIALZERO;

}

// capture the path data processing finish time
finish = System.currentTimeMillis() ;
gui.sendText("Server: determineEffectiveQoSForPaths: Time required

+(finish-start)+" milliseconds.");

/**

* Returns the String representation of this Server.
* ©return The String representation of this Server.
*/

public String toString(){
return "Server";

}

//methods below are added by akkoc
/**

* Creates thread for dem sending from the server.
* ©return void.
*/

public void autoConfigO {
configThread = new Thread(this,"AutoConfig") ;
configThread.start();

}//end of autoconfig

/**

* Triggers DCM sending, and provides continues resreshment of SAAM
region

* with DCM messages.
* ©return void.
*/

public void run(){
gui.sendTextC\n Server will send first DCM after 60 sees");
System.out.println("\n Server will send first DCM after 60 sees");
try{

//gui.sendText("thread is sleeping now ");
configThread.sleep(30000) ;
//gui.sendText("thread woke up after 30 sees so start sending

");
System.out.println("thread woke up after 50 sees so start

sending ");
}catch(InterruptedException ie){}

//while(true) {

try{
Vector tableEntries =

controlExec.getEmulationTable().getEmTable();
System.out.printlnC Emulatin table ok ");

Enumeration es = tableEntries.elements();
while(es.hasMoreElements()) {

EmulationTableEntry ent = (EmulationTableEntry)
es.nextElement();

88

//destination adress determined from emulationtable entry
IPv6Address des = new

IPv6Address(ent.getNextHopIPv6().getAddress());
gui.sendText(" Destination of DCM is "+des.toString());
System.out.println(" Destination of DCM is "+des.toString());
byte[] nextHopBytes = des.getAddress();
Vector interfaces = new VectorO;
interfaces = this.controlExec.getlnterfacesO;

IPv6Address slnt;
for(int i=0;i<interfaces.size();i++){

Interface thislnterface = (Interface)interfaces.get(i) ;
//cycle through all interfaces checking network address

against nextHop.
int match = 0;
byte[] outboundlnterfaceBytes =

thislnterface.getID().getIPv6().getAddress() ;
int bytesToCheck = 5;

for(int index=0;index<bytesToCheck;index++){
if((nextHopBytes[index]&0xFF)==

{outboundlnterfaceBytes[index]&0xFF)){
match++;

}//if
}//inner for

if(match== bytesToCheck){
slnt = new

IPv6Address(thisInterface.getID().getIPv6().getAddress());
sendDown(slnt,des);

}//if
}//outer for

}// end while
}catch(UnknownHostException e){
gui.sendText(e.getMessageO+"inside catch of DCM start up using em

table ");
}//try-catch

try{
Thread.sleep(this.cycleTime); //from demostation

}catch(InterruptedException ie){
gui.sendText("thread sleep problem");

}

//}//end of while providing continues DCM sending

}// end run()

/**
* Retruns flowid of server.
* ©return ind serverflow id.
*/

public int getServerFlowId(){
return flowid;

}

89

* Returns type of server(0-> for Primary, l-> for Backup)
* ©return byte value.
*/

public byte getServerType(){
return serverType;

}

/**

* Method to send the DCM message using controlExecutive sendDCM
method

* ©return void.
*/

public void sendDown{IPvöAddress srcint,IPvöAddress des) {

DCM myDCM = new

DCM(flowId,ServerId,metricType,srcInt,CTS,globalTime,

getSeguenceNumberForDcmSending()) ;
gui.sendTextCDCM with SQ is sent

"+this.getSeguenceNumberForDcmSending()) ;
setSeguenceNumberForDcmSending() ;
short sourcePort = ControlExecutive.SAAM_CONTROL_PORT;
short destPort = ControlExecutive.SAAM_CONTROL_PORT;

try{
controlExec.sendDCM(this, myDCM, getServerFlowId(),

sourcePort,des, destPort);
gui.sendTextCDCM has been sent");

>catch(Exception fe){
System.err.println(fe.toString());

}

}//end sendDown()

/**

* Method for setting proper value to put in DCM message for sequence
* number field
* ©return void.
*/

private void SetSeguenceNumberForDcmSending(){
seguenceNumber++;
if(sequenceNumber == 65535) sequenceNumber = 0;

/**

* Method for returning current sequence number value
* ©return int value.
*/

private int getSeguenceNumberForDcmSending(){
return sequenceNumber;

}

90

* Method for receiving required values from demosation for server
settings

* Also this method is used for server to place an entry for itself
* in the servertable
* ©return void.
*/

public synchronized void processConfiguration (Configuration con){
System.out.println("Inside server processCONFIGURATION ");
serverType = con.getServerTypeO ;
flowld = con.getFlowId();
metricType = con.getmetricType();
cycleTime = con.getCycleTimeO ;
globalTime = con.getGlobalTimeO ;

AutoConfigurationExecutive ace =
controlExec.getAutoConfigurationExecutive();

ace.createNewServerlnformation(flowld, controlExec.getRouterld());
System.out.println("Process of the Configuration message is OK.");
autoConfig() ;

}// end processConfigurtaion

}//end of Server class

91

THIS PAGE INTENTIONALLY LEFT BLANK

92

APPENDIX C - SAAM MESSAGE.RESOURCEALLOCATION CLASS CODE

//9Feb2000[Henry] - Modified
//13Dec99[Henry] - Created

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;

/**

* A ResourceAllocation message to allocate resouces for various
* service level pipes.
*/

public class ResourceAllocation extends Message{

/** The number of service level to be allocated for */
private byte numberOfSL = 0;

/** The byte array which stores the message parameters */
private byte[] bytes;

/** The integer array which stores the message parameters */
private int[] service_allotment;

/**
* No-args constructor used by the server.
*/

public ResourceAllocation(){
super(Message.RESOURCEALLOCATIONJTYPE);

}

/**
* Constructs a ResourceAllocation message with the parameters
* supplied.
* @param allotment The array of allocated throughput associated
* with this Message.
*/

public ResourceAllocation(int[] allotment) {

super(Message.RESOURCEALLOCATIONJTYPE);
this.service_allotment = allotment;
this.numberOfSL = (byte)allotment.length;

for (int i=0; i<numberOfSL; i++){
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(allotment[i]));
}

}

/**
* Construct this Message from a byte array that is presumed
* to conform to the proper format for this Message. Presumably,

93

* this constructor is called when the receiving PacketFactory
* gets the byte array that represents this Message - a byte
* array that was presumably generated when the sender of this
* Message called the getBytesO method after creating this
* Message and before sending it.
*/

public ResourceAllocation(byte[] bytes) {

super(Message.RESOURCEALLOCATION_TYPE);
this.bytes = bytes;
int pointer=0;
int index = 0;
this.numberOfSL = (byte)(bytes.length/4);
this.service_allotment = new intfnumberOfSL];
while (pointer<bytes.length) {

service_allotment[index++] = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer+=4;
}

/**

* Returns the service allotment associated with this event.
* ©return The service allotment associated with this event.
*/

public int[] getServiceAllotment(){
return service_allotment;

}

f **

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytesO {
return bytes;

}

/**

* Returns the number of service levels of this Message.
* ©return The number of service levels of this Message.
*/

public byte getNumOfServiceLevels(){
return numberOfSL;

}

/ **

* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length;

}
catch(NullPointerException npe){
return 0;

}
}

94

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
String service_allocated =

"ResourceAllocation for the various sips are:\n";

for (int i=0; i<service_allotment.length; i++){
service_allocated = service_allocated+"Service Level "+i

+n = "+service_allotment[i]+"\n";
}
return service_allocated;

}

}//end of ResourceAllocation class

95

THIS PAGE INTENTIONALLY LEFT BLANK

96

APPENDIX D - SAAM MESSAGE.FLOWREQUEST CLASS CODE

//14Dec99[Henry] - Added declaration for service_level,
// and new constructors that assigns
// value to it.
//01Aug99[Dean] - Created..

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;
import saam.server.diffserv.*;
import saam.server.*;

/**

* An Object desiring to communicate within a SAAM network
* will call the requestFlow method in the ControlExecutive
* The ControlExecutive will then construct a FlowReguest
* Message and send it to the server.
*/

public class FlowReguest extends Message{

/** The address of the sender */
private IPv6Address source_interface = new IPv6Address();
/** The address of the receiver */
private IPv6Address destination_interface = new IPv6Address();

/** The level of service negotiated */
private byte service_level = Server.IS_SERVTCELEVEL;

/** The average delay negotiated */
private int reguested_delay = 0;
/** The average rate of packet loss negotiated. */
private int requested_loss_rate = 0;
/** The rate of data negotiated. */
private int requested_throughput = 0;

/** The service level spec for the flow. */
private SLS sis;

/** The hashcode that represent the user of this SLS */
private int user_id = 0;

/** The byte array which stores the message parameters */
private byte[] bytes;

/** The time when this message is created */
private long time_stamp;

/** The byte length of an IntServ FlowReguest */
private static final int INTSERV_SIZE = 53;

/ **

97

* No-Args constructor which constructs a FlowRequest using
* the default values for all fields. <p>
* source_interface = IPv6Address.DEFAULT_HOST;
* destination_interface = IPv6 Address.DEFAULT_HOST;
* requested_delay = 0;
* requested_loss_rate = 0;
* requested_throughput = 0;
* etc
*/

public FlowRequest() {
super(Message.FLOWREQUEST_TYPE) ;
time_stamp = System.currentTimeMillis();
sis = new SLS(reguested_throughput,

requested_loss_rate, requested_delay);
}

/**

* Constructs a IntServ FlowRequest using the parameters supplied.
* ©param source_interface The IPv6Address of the source.
* ©param destination_interface The IPv6Address of the destination.
* ©param time_stamp The 8 byte time stamp.
* ©param requested_delay The maximum delay reuested.
* ©param requested_loss_rate The maximum loss rate requested.
* ©param requested_throughput The maximum throughput requested
*/

public FlowRequest(IPv6Address source_interface,
IPv6Address destination_interface,
long time_stamp,
int requested_delay,
int requested_loss_rate,
int requested_throughput){

//set all instance variables
this(source_interface, destination_interface,

Server.IS_SERVICELEVEL, time_stamp, requested_delay,
requested_loss_rate, requested_throughput);

}

/ **

* Constructs a FlowRequest using the parameters supplied.
* ©param source_interface The IPv6Address of the source.
* ©param destination_interface The IPv6Address of the
* destination.
* ©param time_stamp The 8 byte time stamp.
* ©param requested_delay The maximum delay reuested.
* ©param requested_loss_rate The maximum loss rate
* requested.
* ©param requested_throughput The maximum throughput
* requested.
*/

public FlowRequest(IPv6Address source_interface,
IPv6Address destination_interface,
byte service_level,
long time_stamp,
int requested_delay,
int requested_loss_rate,
int requested_throughput){

98

//set all instance variables
super(Message.FLOWREQUEST_TYPE);
this.source_interface = source_interface;
this.destination_interface = destination_interface;
this.service_level = service_level;
this.time_stamp = time_stamp;
this.requested_delay = requested_delay;
this.requested_loss_rate = requested_loss_rate;
this.requested_throughput = requested_throughput;

convertToBytes(source_interface, destination_interface,
service_level, time_stamp, requested_delay,

requested_loss_rate, requested_throughput);
}

/**
* Constructs a DiffServ FlowRequest using the parameters
* supplied.
* @param source_interface The IPv6Address of the source.
* @param destination_interface The IPv6Address of the
* destination.
* ©param time_stamp The 8 byte time stamp.
* dparam user_id The user identification number.
* dparam requested_delay The maximum delay reuested.
* @param requested_loss_rate The maximum loss rate requested.
* ©param requested_throughput The maximum throughput requested.
*/

public FlowRequest(IPv6Address source_interface,
IPv6Address destination_interface,
long time_stamp,
int user_id,
int requested_delay,
int requested_loss_rate,
int requested_throughput){

//set all instance variables
super(Message.FLOWREQUESTJTYPE);
this.source_interface = source_interface;
this.destination_interface = destination_interface;
this.service_level = Server.DS_SERVICELEVEL,•
this.time_stamp = time_stamp;
this.user_id = user_id;
this.sis = new SLS(requested_delay,

requested_loss_rate, requested_throughput);
this.requested_delay = sls.getDelay();
this.requested_loss_rate ■= sls.getLossRateO;
this.requested_throughput = sls.getProfileO;
convertToBytes(source_interface, destination_interface,

service_level,time_stamp, user_id, sis);
}

/**
* Constructs a DiffServ FlowRequest using the parameters
* supplied.
* @param source_interface The IPv6Address of the source.
* @param destination_interface The IPv6Address of the
* destination.

99

* ©param time_stamp The 8 byte time stamp.
* ©param user_id The user identification number.
* @param sis The type of SLS requested for.
*/

public FlowRequest(IPv6Address source_interface,
IPv6Address destination_interface,
long time_stamp,
int user_id,
SLS sis) {

//set all instance variables
super(Message.FLOWREQUEST_TYPE);
this.source_interface = source_interface;
this.destination_interface = destination_interface;
this.service_level = Server.DS_SERVICELEVEL;
this.time_stamp = time_stamp;
this.user_id = user_id;
this.sis = sis;
this.requested_delay = sis.getDelay();
this.requested_loss_rate = sls.getLossRate();
this.requested_throughput = sls.getProfileO;
convertToBytes(source_interface, destination_interface,

service_level, time_stamp, user_id, sis) ;

/**

* Construct this Message from a byte array that is presumed to
conform

* to the proper format for this Message. Presumably, this
constructor

* is called when the receiving PacketFactory gets the byte array
that

* represents this Message - a byte array that was presumably
generated

* when the sender of this Message called the getBytes() method after
* creating this Message and before sending it.
*/

public FlowRequest(byte[] bytes)
throws UnknownHostException{
super(Mes sage.FLOWREQUESTJTYPE);
this.bytes = bytes;
int pointer=0;
try{
source_interface = new IPv6Address(Array.
getSubArray(bytes»pointer,IPv6Address.length));

pointer += IPv6Address.length;
destination_interface = new IPv6Address(Array.

getSubArray(bytes,pointer,pointer+IPv6Address.length));
pointer += IPv6Address.length;
service_level = bytes[pointer++];
time_stamp = PrimitiveConversions.getLong(
Array.getSubArray(bytes,pointer, pointer+8));

pointer += 8;
if (bytes.length == INTSERV_SIZE) {
requested_delay = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;

100

requested_loss_rate = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
requested_throughput = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

}
else {
user_id = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
byte DSCP = bytes[pointer++];
int profile = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
byte scope = bytes[pointer++];
byte action = bytes[pointer++];
if (action == SLS.REMARK) {

sis = new SLS(DSCP, profile, scope,
action, bytes[pointer]);

}
else if (action == SLS.SHAPE) {

sis = new SLS(DSCP, profile, scope,
action, PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4)));

}
else {

sis = new SLS(DSCP, profile, scope, action);
}

}
}
catch(UnknownHostException uhe){

throw new UnknownHostException(uhe.toStringO);
}

}

/**
* Convert this IntServ FlowRequest to its byte array form
* using the parameters supplied.
* ©param source_interface The IPv6Address of the source.
* @param destination_interface The IPv6Address of the
* destination.
* dparam time_stamp The 8 byte time stamp.
* dparam requested_delay The maximum delay reuested.
* @param reguested_loss_rate The maximum loss rate requested.
* ©param requested_throughput The maximum throughput requested.
*/

private void convertToBytes (IPv6Address source_interface,
IPvöAddress destination_interface,
byte service_level,
long time_stamp,
int reguested_delay,
int requested_loss_rate,
int requested_throughput){

//build the byte array
bytes = Array.concat(source_interface.getAddressO,

destination_interface.getAddress()) ;

101

bytes = Array.concat(bytes, service_level) ;
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(time_stamp));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(requested_delay));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(requested_loss_rate));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(requested_throughput));

/**

* Convert this DiffServ FlowReguest to its byte array form
* using the parameters supplied.
* ©param source_interface The IPv6Address of the source.
* ©param destination_interface The IPv6Address of the
* destination.
* ©param time_stamp The 8 byte time stamp.
* ©param user_id The user identification number.
* ©param sis The type of SLS requested for.
*/

private void convertToBytes (IPv6Address source_interface,
IPv6Address destination_interface,
byte service_level,
long time_stamp,
int user_id,
SLS sis){

//build the byte array ^
bytes = Array.concat(source_interface.getAddressO,

destination_interface.getAddress());
bytes = Array.concat(bytes, service_level);
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(time_stamp));
bytes = Array.concat(bytes, //user_id.getBytes());

PrimitiveConversions.getBytes(user_id));
bytes = Array.concat(bytes, sls.getSLSBytes());

/**

* Returns the IPv6Address of the source.
* ©return The IPv6Address of the source.
*/

public IPv6Address getSourcelnterface(){
return source_interface;

}

/**

* Returns the network address associated with the source
* IPv6Address
* ©return The network address associated with the source
* IPvöAddress
*/

public IPvöAddress getSourceLink(){
return source_interface.getNetworkAddress();

}

102

/**

* Returns the IPv6Address of the destination.
* ©return The IPv6Address of the destination.
*/

public IPv6Address getDestinationlnterface(){
return destination_interface;

}

/ **
* Returns the network address associated with the
* destination IPv6Address
* ©return The network address associated with the
* destination IPv6Address
*/

public IPv6Address getDestinationLinkO{
return destination_interface.getNetworkAddress();

}

/**
* Returns the 8 byte time stamp associated with this Message.
* ©return The 8 byte time stamp associated with this Message.
*/

public long getTimeStamp(){
return time_stamp;

}

/ **
* Returns the 1 byte service_level associated with this Message.
* ©return The 1 byte service_level associated with this Message.
*/

public byte getServiceLevel(){
return service_level;

}

/**
* Returns the 4 byte user_id associated with this Message.
* ©return The 4 byte user_id associated with this Message.
*/

public int getUser(){
return user_id;

}

/**
* Returns the requested delay associated with this Message.
* ©return The requested delay associated with this Message.
*/

public int getRequestedDelay(){
return requested_delay;

}

/**
* Returns the requested loss rate associated with this Message.
* ©return The requested loss rate associated with this Message.
*/

public int getRequestedLossRate(){
return requested_loss_rate;

}

103

* Returns the requested throughput associated with this Message.
* ©return The requested throughput associated with this Message.

public int getRequestedThroughput(){
return requested_throughput;

}

/**

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message
*/

public byte[] getBytes(){
return bytes;

}

/**

* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

}
}

/**

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message

public String toString(){
String flow_request = "Source: - + source_interface.toString() +

",\n\t Destination: " + destination_interface.toString() +
",\n\t TS: " + time_stamp + ", Service Level; " + service_level

+ ", D: " + requested_delay + ", LR: " +
requested_loss_rate + ", T: " + requested_throughput;

//it is a Differentiated Service
if (service_level == Server.DS_SERVICELEVEL) {

flow_request = flow_request+", "+sls.toString();

return flow_request;
}

}//end of FlowRequest class

104

APPENDIX E - SAAM MESSAGE.FLOWRESPONSE CLASS CODE

//12Decl999[Henry] - Modified (a lot have changed)
//HDecl999 [Dean, John or Cary] - Created

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;

import saam.server.diffserv.*;
import saam.server.*;

/**

* A Response to a flow request simply contains the timestamp
* that was sent with the corresponding FlowRequest, and
* the new flow id that has been assigned to the Object
* requesting the flow.
*/

public class FlowResponse extends Message{

//add by Henry for possible status of flow response
public static final byte SERVICE_UNKNOWN = 0;
public static final byte IS_ACCEPTED = 1;
public static final byte DS_ACCEPTED = 2;
public static final byte REJECTED = 3;
public static final byte NEGOTIATED = 4;
public static final byte UNREACHEABLE = 5;
public static final byte SLA_NOT_AVAILABLE = 6;

/** The byte length of an IntServ flow response */
public static final int INTSERV_SIZE = 13; //8+1+4

/**
* Message format:
* 1 8-11 / 3-17
* Result Service_Level_Spec / Flow_Id
.*/

//added by Henry for result field of flow response
private byte result = SERVICE_UNKNOWN;

/** The flow_id assigned for the flow. */
//will be truncated to 3 bytes by IPv6Header

private int flow_id = Server.FLOWNUNREACHEABLE;

/** The average delay negotiated */
private int delay = 0;
/** The average rate of packet loss negotiated. */
private int loss_rate =0;
/** The rate of data negotiated. */
private int throughput = 0;

105

/** The service level spec for the flow. */
private SLS sis;

/** The hashcode that represent the user of this SLS */
private int user_id = 0;

/** The byte array which stores the message parameters */
private byte[] bytes;

/** The time when this message is created */
private long time_stamp;

/**

* No-args constructor used by the server.
*/

public FlowResponse(){
super(Message.FLOWRESPONSE_TYPE);

}

/**

* Constructs a FlowResponse with the parameters supplied.
* ©param time_stamp The 8 byte time stamp associated with
* this Message.
* @param flow_ID The flow associated with this Message.
*/

public FlowResponse(long time_stamp, int flow_id){

super(Message.FLOWRESPONSE_TYPE);
this.time_stamp = time_stamp;
this.flow_id = flow_id;

bytes = Array.concat(
PrimitiveConversions.getBytes(time_stamp),
PrimitiveConversions.getBytes(flow_id));

}

/**For DiffServ
* Constructs a DiffServ FlowResponse with the parameters
* supplied (used when result == SERVICE_UNKNOWN
* /REJECTED/UNREACHEABLE/SLA_NOT_AVAILABLE).
* @param time_stamp The 8 byte time stamp associated with
* this Message.
* @param result The result associated with this Message.
*/

public FlowResponse(long time_stamp, byte result){
this(time_stamp, result, 0);

}

/**

* Constructs a FlowResponse with the parameters supplied
* (used when result == IS_ACCEPTED).
* Oparam time_stamp The 8 byte time stamp associated with
* this Message.
* @param flow_id The flow associated with this Message.
* ©param result The result associated with this Message.
*/

public FlowResponse(long time_stamp, byte result,

106

int flow_id){

super(Message.FLOWRESPONSE_TYPE);
this.time_stamp = time_stamp;
this.result = result;
this.flow_id = flow_id;

bytes = Array.concat(bytes,
PrimitiveConversions.getBytes(time_stamp)) ;

bytes = Array.concat(bytes, result);
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(flow_id));
}

/**

* Constructs a FlowResponse with the parameters supplied.
* for QoS negotiation (used when reult == NEGOTIATED.
* ©param time_stamp The 8 byte time stamp associated with
* this Message.
* ©param flow_id The flow associated with this Message.
* ©param result The result associated with this Message.
* ©param delay The maximum delay negotiable.
* ©param loss_rate The maximum loss rate negotiable.
* ©param throughput The maximum throughput negotiable.
*/

public FlowResponse(long time_stamp, byte result,
int delay, int loss_rate, int throughput){

super(Message.FLOWRESPONSE_TYPE);
this.time_stamp = time_stamp;
this.result = result;
this.delay = delay;
this.loss_rate = loss_rate;
this.throughput = throughput;

bytes = Array.concat(bytes,
PrimitiveConversions.getBytes(time_stamp));

bytes = Array.concat(bytes, result);
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(delay));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(loss_rate));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(throughput));
}

/**
* Constructs a FlowResponse with the parameters supplied.
* ©param time_stamp The 8 byte time stamp associated with
* this Message.
* ©param result The result associated with this Message.
* ©param user_id The user identification number.
* ©param sis The type of SLS requested for.
*/

public FlowResponse(long time_stamp, byte result,
int user_id, SLS sis){

107

super(Message.FLOWRESPONSE_TYPE);
this.time_stamp = time_stamp;
this.result = result;
this.sis = sis;
this.user_id = user_id;
this.flow_id = 0;

bytes = Array.concat(bytes,
PrimitiveConversions.getBytes(time_stamp));

bytes = Array.concat(bytes,result);
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(user_id));
bytes = Array.concat(bytes,sis.getDSCP());
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(sis.getProfile()));
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(sis.getScope())) ;
byte action = sls.getDispositionAction();
bytes = Array.concat(bytes,action) ;
if (action == SLS.REMARK) {
bytes = Array.concat(bytes,sis.getActionByte());

}
else if (action == SLS.SHAPE) {
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(sis.getActionlnt())
}

* Construct this Message from a byte array that is presumed
* to conform to the proper format for this Message. Presumably,
* this constructor is called when the receiving PacketFactory
* gets the byte array that represents this Message - a byte
* array that was presumably generated when the sender of this
* Message called the getBytes() method after creating this
* Message and before sending it.
*/

public FlowResponse(byte[] bytes)
throws UnknownHostException{
super(Message.FLOWRESPONSE_TYPE);
this.bytes = bytes;
int pointer=0;
time_stamp = PrimitiveConversions.getLong(
Array.getSubArray(bytes,pointer, 8));

pointer = pointer + 8;
//System, out. print In (time_stamp+n; "+pointer) ,-
//added by Henry
result = bytes[pointer++];
//System.out.println(result+"; "+pointer);
//System.out.println(bytes.length);
if (bytes.length <= INTSERVJSIZE) {
//System.out.println("Retreving flow_id");

flow_id = PrimitiveConversions.getlnt(
//Array.getSubArray(bytes, pointer, bytes.length));
Array.getSubArray(bytes,pointer, pointer+4));

}
else {

108

user_id = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
byte DSCP = bytes[pointer++];
int profile = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
byte scope = bytes[pointer++];
byte action = bytes[pointer++];
if (action == SLS.REMARK) {

sis = new SLS(DSCP, profile, scope,
action, bytes[pointer]);

}
else if (action == SLS.SHAPE) {

sis = new SLS(DSCP, profile, scope, action,
PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4)

}
else {

sis = new SLS(DSCP, profile, scope, action);
}

}

/**
* Returns the 8 byte time stamp associated with this Message.
* ©return The 8 byte time stamp associated with this Message.
*/

public long getTimeStamp(){
return time_stamp;

}

/**
* Returns the flow ID associated with this event.
* ©return The flow ID associated with this event.
*/

public int getFlowId(){
return flow_id;

}

/** added by Henry
* Returns the result associated with this event.
* ©return The result associated with this event.
*/

public byte getResult{){
return result;

}

/** added by Henry
* Returns the result associated with this event.
* ©return The result associated with this event.
*/

public int getUserId(){
return user_id;

}

109

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

/**

* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

}
}

/ **

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){

String flow_response = "This flow response message contains: "
+", Result = "+result+", Time Stamp = "+time_stamp;

if (flow_id != 0) { //is it an Integrated Service
flow_response = flow_response+", Flow_ID = "+flow_id;

}
else if (sis != null) { //it is a Differentiated Service

flow_response = flow_response+", ServiceLevelSpec = "
+sls.toString();

}
return flow_response;

}

}//end of FlowResponse class

110

APPENDIX F - SAAM.MESSAGE.FLOWTERMINATION CLASS CODE

//14Feb2000[Henry] - Created,

package saam.message;

import java.net.UnknownHostException;
import saam.net.*;
import saam.util.*;
import saam.server.diffserv.*;

/**
* A FlowTermination is sent by the router to the server to
* inform the server that a flow will no longer be used..
*/

public class FlowTermination extends Message{

/**
* Message format:
* 3
* Flow_Id
*/

/** The flow_id assigned for the flow. */
private int flow_id = 0; //will be truncated to 3 bytes

//by PacketFactory

/** The service level spec for the flow. */
private SLS sis;

/** The byte array which stores the message parameters */
private byte[] bytes;

/**
* No-args constructor used by the server.
*/

public FlowTermination(){
super(Message.FLOWTERMINATION_TYPE);

}

/**
* Constructs a FlowTermination with the parameters supplied.
* ©param time_stamp The 8 byte time stamp associated with
* this Message.
* ©param flow_ID The flow associated with this Message.
*/

public F1owTermination(int f1ow_id){

super(Message.FLOWTERMINATIONJTYPE);
this.flow_id = flow_id;

bytes = Array.concat(bytes,
PrimitiveConversions.getBytes(flow_id));

}

111

* Construct this Message from a byte array that is presumed
* to conform to the proper format for this Message. Presumably,
* this constructor is called when the receiving PacketFactory
* gets the byte array that represents this Message - a byte
* array that was presumably generated when the sender of this
* Message called the getBytes() method after creating
* this Message and before sending it.
*/

public FlowTermination(byte[] bytes)
throws UnknownHostException{
this.bytes = bytes;
int pointer=0;

flow_id = PrimitiveConversions.getInt(
Array.getSubArray(bytes,pointer, pointer+4));

/**

* Returns the flow ID associated with this event.
* ©return The flow ID associated with this event.
*/

public int getFlowId{){
return flow_id;

}

/**

* Returns The byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

/**

* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

}
}

/**

* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
String flow_termination =

"This flow termination message contains: Flow_ID = "+flow_id;
return flow_termination;

}

}//end of FlowTerminatin class

112

APPENDIX G - SAAM.MESSAGE.SLSTABLEENTRY CLASS CODE

// 8Feb2000[Henry] - Modified
// 10Jan2000[Henry] - Created

package saam. message;

import saam.server.diffserv.*;
import saam.util.*;

/**
* A SLSTableEntry Message that contains the SLS that will
* be sent to the router to update its SLSTable.
*/

public class SLSTableEntry extends Message{

/** The service level spec for the flow. */
private SLS sis;

/** The integer value that uniquely identifies the user
who owns this SLS */
private int user_id = 0;

/** The integer value that uniquely identifies the node
who owns this SLS */
private int node_id = 0;

/** The byte array which stores the message parameters */
private byte[] bytes;

/** The byte length of a SLSTableEnry which has a SLS
that is to be removed from the SLSTable */
public static final int REMOVE_SLS_TYPE = 8;

/ **
* Constructs a SLSTableEntry with the parameters supplied.
* @param sis The SLS to be contained in this message
*/

public SLSTableEntry(int user_id, int node_id){
super(Message.SLSTABLEENTRYJTYPE);
this.user_id = user_id;
this.node_id = node_id;

bytes = Array.concat(PrimitiveConversions.getBytes(user_id),
PrimitiveConversions.getBytes(node_id));

}

/**
* Constructs a SLSTableEntry with the parameters supplied.
* ©param sis The SLS to be contained in this message
*/

public SLSTableEntry(int user_id, SLS sls){
super(Message.SLSTABLEENTRYJTYPE);
this.user_id = user_id;
this.sis = sis;

113

bytes = Array.concat(PrimitiveConversions.getBytes(user_id),

sis.getSLSBytes()) ;

/**

* Construct this Message from a byte array that is presumed
* to conform to the proper format for this Message. Presumably,
* this constructor is called when the receiving PacketFactory
* gets the byte array that represents this Message - a byte
* array that was presumably generated when the sender of this
* Message called the getBytes() method after creating
* this Message and before sending it.
*/

public SLSTableEntry(byte[] bytes) {
this.bytes = bytes;
int pointer=0;
user_id = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
if (bytes.length == REMOVE_SLS_TYPE) {
node_id = PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4));

pointer += 4;
}
else {
byte DSCP = bytes[pointer++];
int profile = PrimitiveConversions.getlnt(

Array.getSubArray(bytes,pointer, pointer+4));
pointer += 4;
byte scope = bytes[pointer++];
byte action = bytes [pointer++] ,-
if (action == SLS.REMARK) {

sis = new SLS(DSCP, profile, scope,
action, bytes[pointer]);

}
else if (action == SLS.SHAPE) {

sis = new SLS(DSCP, profile, scope, action,
PrimitiveConversions.getlnt(
Array.getSubArray(bytes,pointer, pointer+4)));

}
else {

sis = new SLS(DSCP, profile, scope, action);
}

}
}

/**

* Returns the user_id stored in this Message
* ©return The user_id stored in this Message
*/

public int getüserld(){
return user_id;

}

114

* Returns the user_id stored in this Message
* ©return The user_id stored in this Message
*/

public int getNodeId(){
return node_id;

}

/**
* Returns the SLS stored in this Message
* ©return The sis stored in this Message
*/

public SLS getSLS(){
return sis;

} ■ '

/ **

* Returns the byte array representation of this Message.
* ©return The byte array representation of this Message.
*/

public byte[] getBytes(){
return bytes;

}

/**
* Returns the length of this Message.
* ©return The length of this Message.
*/

public short length(){
try{
return (short)bytes.length;

}catch(NullPointerException npe){
return 0;

}
}

/**
* Returns a <code>String</code> representation of this Message.
* ©return The <code>String</code> representation of this Message
*/

public String toString(){
String slsMessage;
if (node_id == 0) {

slsMessage = "This SLSTableEntry message contains: "
+ "Userld = " + user_id + sis.toString();

}
else {

slsMessage = "This SLSTableEntry message contains: "
+ "Node_id = " +node_id;

}
return slsMessage;

}

}//end of SLSTableEntry class

115

THIS PAGE INTENTIONALLY LEFT BLANK

116

APPENDIX H - SAAM.MESSAGE.MESSAGE CLASS CODE

//10Jan2000[Henry] - Added declaration for SERVICELEVELSPEC_TYPE
//13Dec99[Henry] - Added declaration for FLOWRESPONSE_TYPE and
RESOURCEALLOCATION_TYPE
//08Dec99[Efain] - Added declarations
//01Aug99[Dean] -Created..

package saam.message;

/**

* The Message class provides a convenient way for Objects to
communicate
* with one another over a SAAM network. The standard JDK does not

currently
* provide a means to serialize objects over UDP. This class does just

that.
* Subclasses need to be written as follows to enable this

functionality:
*
* 1. Provide a constructor that accepts a byte array as its only

parameter.
* 2. Override the getBytes method in such a way that it returns a byte

array
* that contains the values of the variables to be transferred.
* 3. Ensure that the constructor mentioned above is set up to properly
* parse the byte array and rebuild the variables as they were

originally.
* 4. Ensure that the length method returns the actual length of the

byte array.
*/

public abstract class Message{

//for default type to support old version
public static final byte MESSAGE_DEFAULT_TYPE = 1;

//for fault tolerance
public static final byte HEARTBEAT_QUERY_TYPE = 2;
public static final byte HEARTBEAT_RESPONSE_TYPE = 3;

//for control channel construction
public static final byte UCMJTYPE = 4
public static final byte DCMJTYPE = 5
public static final byte PARENT_NOTIFICATION_TYPE= 6
public static final byte RESERVEDIJTYPE = 7

//following types reserved for flow reservation
public static final byte FLOWRESPONSE_TYPE = 8;
public static final byte FLOWREQUEST_TYPE = 9;
public static final byte RESERVED4_TYPE = 10
public static final byte RESERVED5_TYPE = 11
public static final byte FLOWTERMINATIONJTYPE = 12

117

//following types reserved for probing
public static final byte RESERVED7_TYPE = 13
public static final byte RESERVED8_TYPE =14
public static final byte RESERVED9_TYPE = 15

//following types reserved for resource manegememnt
public static final byte RESOURCEALL.OCATION_.TYPE = 16
public static final byte SLSTABLEENTRYJTYPE = 17
public static final byte RESERVED12_TYPE = 18

//following types are reserved for security
public static final byte RESERVED13_TYPE = 19
public static final byte RESERVED14JTYPE = 20
public static final byte RESERVED15_TYPE =21
public static final byte RESERVED16_TYPE = 22

/**

* type is a byte value to represent different type of messages
*/

protected byte type;

/**

* No-args constructor initializes the type to a default value which
is 1.

* @param none
*/

public Message(){

type = MESSAGE_DEFAULT_TYPE ;

}//end Message()

/**

* Constructs a Messagee with the supplied type_id parameter.
* ©param type_id byte value representing different types of messages

public Message(byte type_id){

this.type = type_id;

}//end Message()

/**

* Returns the type value.
* ©return byte the type value.
*/

public byte getType(){

return type;

118

}//end getType()

/ **
* Sets the type value to the parameter given.
* ©param type_id byte value which represents the message type.
* ©return void
*/

public void setType(byte type_id){

type = type_id;

}//end setType()

/**
* Abstract method. Returns the length of this Message.
* ©param none
* ©return short the length of this Message.
*/

public abstract short length();

/**
* Abstract method. Returns The byte array representation of this

Message.
* ©param none
* ©return byte[] the byte array representation of this Message.
*/

public abstract byte[] getBytes();

/ **
* Returns a String representation of this Message.
* ©param none
* ©return String the String representation of this Message
*/

public String toString(){

return "Message";

}//end toStringO

}//end class Message

//end Message.Java

119

THIS PAGE INTENTIONALLY LEFT BLANK

120

APPENDIX I - SAAM SERVER.CLASSOBJECTSTRUCTURE CLASS CODE

//23Feb2000[Henry] - modified
/'/ 13Dec99 [Henry] - Changed setTargetThroughput to
setAllocatedThroughput
// Added getPathsThatSupportFlowRequest
// 09Dec99 [Xie] - Modified getNewFlowID()

package saam.server;

import saam.net.*;
import saam.message.*;
import saam.util.*;
import java.net.*;
import java.sql.*;
import j ava.ut i1.*;
import j ava.io.*;

/**
* The ClassObjectStructure is a Path Information Base object

within the
* SAAM architecture that performs operations on class objects

containing the
* information needed to obtain a picture of the network for use in

assigning
* flows to paths.
*/

public class ClassObjectStructure extends PathInformationBase{

/** Contains all of the known router nodes. */
•Hashtable nodes;
/** Contains all of the known router interfaces. */
Hashtable interfaces;
/** Contains service level pipes. */
Vector sips;
/** Describes the QoS parameters for a service level pipe. */
SLP_QoS slp_qos;
/** Contains all of the known links. */
Hashtable links;
/** Contains all of the constructed paths. */
Hashtable paths;
/** Describes the characteristics of a path. */
Path path;
/** Contains all of the assigned flows. */
Hashtable flows;
/** Describes the QoS characteristics of an assigned flow. */
Flow_QoS flow_qos;
/** Contains a sequence of service level pipes. */
Vector SLP_Sequence;
/** Describes a service level pipe. */
ServiceLevelPipe sip;
/** A boolean that will allow the showing of comments. */
private boolean showComments = false;
private SAAMRouterGui gui;

121

public static final int MIN_APP_FLOW_ID = 65;
public static final int MAX_FLOW_ID = 16777215; // 2A24 - 1
protected int newAppFlowID;

private static final int WSPath = 0; //Widest-Shortest Path
private static final int SWPath = 1; //Shortest-Widest Path

//public static float[] throughputForSL;
private static float[] loadingfactor;
private static float[] increasingfactor;
private static float[] borrowingfactor;

/**

* The SLP_QoS defines the QoS charateristics of a service
level pipe.

*/
private class SLP_QoS {

/** The maximum delay expected on this SLP. */
int targetDelay=0;
/** The maximum loss rate expected on this SLP. */
int targetLossRate=0;
/** The amount of bandwidth that this SLP should be able to

provide. */
int targetThroughput=0;
./** The amount of delay being observed at this SLP. */
int observedDelay=0;
/** The loss rate being observed at this SLP. */
int observedLossRate=0;
/** The utilization being observed at this SLP. */
int observedutilization=0;
/** The service level of this SLP. */
int serviceLevel=0; //Added by Henry
public String toString(){

return "SLP_QoS:target D="+targetDelay+", LR="+targetLossRate+",
m_ n

+targetThroughput+", observed D="+observedDelay+",
LR="+observedLossRate

+", U=n+observedUtilization+", SL="+serviceLevel;
}

}

/**

* The Path defines the characteristics of a path.
*/

private class Path {
/** The first router in the path. */
int sourceRouter=0;
/** The last router in the path. */
int destinationRouter=0;
/** The total delay a flows traversing this path experiences. */
int effectiveDelay=0;
/** The totoal loss rate a flow traversing this path experiences.

"/
int effectiveLossRate=0;
/** The amount on bandwidth still available on this path. */
int effectiveThroughputRemaining=0 ;
/** The flows that are assigned to this path. */

122

Hashtable flows = new Hashtable();
/** The sequence of service level pipes that make up this path. */
Vector SLPSequence = new VectorO;
public String toString(){

return "Path: from n+sourceRouter+" to "+destinationRouter+" with
flows:"

+flows;
}

}

/**

* The Flow_QoS defines the QoS characteristics of a flow.
*/

private class Flow_QoS {
/** The maximum amount of delay that the flow is expected to

experience. */
int negotiatedDelay=0;
/** The maximum loss rate that the flow is expected to experience.

*/
int negotiatedLossRate=0;
/** The maximum amount of bandwidth that a flow is expected to

consume. */
int negotiatedThroughput=0;
/** The average delay experienced by a flow. */
int observedDelay=0;
/** The loss rate experienced by a flow. */
int observedLossRate=0;
/** The amount of bandwdith being consumed by a flow. */
int observedThroughput=0;

}

/**
* The ServiceLevelPipe defines characteristics of a service

level
* pipe.
*/

private class ServiceLevelPipe {
/** The IPv6 address of the interface. */
IPv6Address address;
/** The level of service that this SLP expects to provide to flows.

*/
int serviceLevel=0;

}

//***

// These methods are used to initialize the path information base.
//***
*******/

/**
* Constructs a ClassObjectStructure object that will be used to

manipulate
* the class objects of this path information base.
*/

public ClassObjectStructure(){

123

}

gui = new SAAMRouterGui("PIB");
newAppFlowID = MIN_APP_FLOW_ID;
//if (showComments){
gui.sendText("PIB: ClassObjectStructure: Constructor executed ")

//}
setLoadingFactor();
//setlncreasingFactorO ;
//setBorrowingFactor();

//Henry
public ClassObjectStructure(SAAMRouterGui gui){

this.gui = gui;
newAppFlowID = MIN_APP_FLOW_ID;
//if (showComments){
gui.sendText("PIB: ClassObj ectStructure: Constructor executed.");

//}
setLoadingFactor();
//setlncreasingFactorO ;
//setBorrowingFactor();

}

public void setLoadingFactor() {
loadingfactor = new float[Server.NUMBEROFSERVICELEVELS];
loadingfactor[Server.CONTROL_SERVICELEVEL] = If; //Control Packets
loadingfactor[Server.IS_SERVICELEVEL] =' 0.7f; //INTSERV
loadingfactor[Server.DS_SERVICELEVEL] = 0.9f; //DIFFSERV
loadingfactor[Server.BE_SERVICELEVEL] = If; //BESTEFFORT
loadingfactor[Server.OTHER_SERVICELEVEL] = Of; //Tag Packets

/* public void setlncreasingFactorO {
increasingfactor = new float[Server.NUMBEROFSERVICELEVELS];
increasingfactor[Server.CONTROL_SERVICELEVEL] = Of; //Control

Packets
increasingfactor[Server.IS_SERVICELEVEL] = O.lf; //INTSERV
increasingfactor[Server.DS_SERVICELEVEL] = O.lf; //DIFFSERV
increasingfactor[Server.BE_SERVICELEVEL] = Of; //BESTEFFORT
increasingfactor[Server.OTHER_SERVICELEVEL] = Of; //Tag Packets

}
public void setBorrowingFactor() {

borrowingfactor = new float[Server.NUMBEROFSERVICELEVELS];
borrowingfactor[Server.CONTROL_SERVICELEVEL] = Of; //Control

Packets
borrowingfactor[Server.IS_SERVICELEVEL] = O.lf; //INTSERV
borrowingfactor[Server.DS_SERVICELEVEL] = O.lf; //DIFFSERV
borrowingfactor[Server.BE_SERVICELEVEL] = Of; //BESTEFFORT
borrowingfactor[Server.OTHER_SERVICELEVEL] = Of; //Tag Packets

}*/

/**

* Removes all current path data from the database.. Its most
commonly used

* during initialization of a SAAM server for a new network.
*/

public void deleteAllData() {
nodes = new Hashtable();
links = new Hashtable();

124

paths = new Hashtable();
interfaces = new Hashtable();
if (showComments){
gui.sendText("PIB: deleteAllData: All data deleted.");

}
initializeAllocationO ; •

}

/**
* Removes all current path data from the database.. Its most

commonly used
* during initialization of a SAAM server for a new network.
*/

public void initializeAllocationO {
}

//***

// These methods are used to process link state advertisements from
routers
//***
*******/

/**
* Determines whether a given router exists yet within the PIB.
* Sparam IPv6Addresses A vector of interface addresses contained

within
* a Hello or an LSA message.
* ©returns node_id The id of the node containing at least one of the
* interface addresses in the vector that was passed.
*/

public int doesRouterExist(Vector IPv6Addresses){
Integer myNodeld;
int node_id = 0;
IPv6Address myIPv6Address;
// for each of the interface IPv6 addresses that were passed in
for (int i = 0; i < IPv6Addresses.size(); i++) {
myIPv6Address = (IPv6Address)IPv6Addresses.elementAt(i);
Enumeration e = nodes.keys();
// for each of the node ids in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
// if any of its address equals the address that was passed in
if (myNode.containsKey(myIPv6Address.toString())){
node_id = myNodeld. intValueO ;

}
}

}
if (showComments){

if (node_id != 0)
gui.sendText("PIB: doesRouterExist: Router " +node_id+ "

exists.");
else

gui.sendText("PIB: doesRouterExist: Router is not in
database.");

125

}
return node_id;

/**

* Finds an unassigned node id and adds it to the PIB. It is commonly
used

* for assigning a new node_id to a previously unknown router.
* ©returns max_node_id An unassigned router id.
*/

public int getNewNodeld(){
int max_node_id = 0;
Enumeration e = nodes.keys();
// for each of the node ids in the PIB
while(e.hasMoreElements()){

Integer myNodeld = (Integer)e.nextElement();
//if the id is greater than the max
if (max_node_id < myNodeld.intValue{))

// then assign it as the max
max_node_id = myNodeld.intValue();

}
// increment the max to get a new max
max_node_id++;
// enter this node id into the PIB
nodes.put(new Integer(max_node_id), new Hashtable()) ;
if (showComments){
gui.sendTextCPIB: assignNewNodeld: Router's id assigned: "

+ max_node_id);
}
return max_node_id;

}

/**

* Determines whether a given interface exists yet within the PIB.
* ©param myIPv6Address The interface address contained within a

hello or LSA
* message.
* ©returns found True if the interface address already exists within

the PIB.
*/

public boolean doesInterfaceExist(IPv6Address myIPv6Address){
boolean found = false;
Integer myNodeld;
Enumeration e = nodes.keys() ;
// for each node in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement{) ;
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if any of its interface addresses equal LSA interface address
if (myNode.containsKey(myIPv6Address.toString()))

found = true;
}
if (showComments){

if (found)
gui.sendTextCPIB: doesInterfaceExist: Interface "

+ myIPv6Address.toString() + " is found.");
else

126

gui.sendText("PIB: doesInterfaceExist: Interface "
+ myIPv6Address.toString() + " is not found.");

}
return found;

}

/**
* Determines whether a given link exists yet within the PIB.
* ©param address The IPv6 address of an interface.
* ©returns found True if the link address already exists within the

PIB.
*/

public boolean doesLinkExist(IPv6Address address){
boolean found = false;
//if the links known to the PIB contains this address
if (links.containsKey(address.getNetworkAddress().toString()))

found = true;
if (showComments){

if (found)
gui.sendText("PIB: doesLinkExist: Link "

+ address.getNetworkAddress() + " is found.");
else

gui.sendText("PIB: doesLinkExist: Link "
+ address.getNetworkAddressO + " is not found.");

}
return found;

}

/**
* Adds a new link to the PIB.
* ©param address The IPv6 address of an interface.
* ©param max_bandwidth The max transmission rate over this network

segment.
*/

public void addLink(IPv6Address address, int max_bandwidth){
// add the link entry to the hash table
links.put(address.getNetworkAddress().toString(),new

Integer(max_bandwidth));
if (showComments){
gui.sendText("PIB: addLink: Link " + address.getNetworkAddress()

+ " is added.") ;
}

}

/**
* Adds a new interface to the PIB.
* ©param node_id The id of the router whose interface is being

added.
* ©param address The IPv6 address of an interface.
*/

public void addlnterface(int node_id, IPv6Address address){
// get the node assigned to this node id
Hashtable myNode = (Hashtable)nodes.get(new Integer(node_id));
// add this new interface to the node
myNode.put(address.toString(), new Vector());
if (showComments){

127

gui.sendText("PIB: addlnterface: Interface "+ address + " is
added.");

}
}

/**

* Determines whether a service level pipe exists yet within the PIB.
* ©param address The IPv6 address of an interface.
* ©param service_level The level of service that this logical pipe

is
* providing.
* ©returns found True if this SLP is already in the PIB.
*/

public boolean doesSLPExist(IPv6Address myIPv6Address, int
service_level){

boolean found = false;
Integer myNodeld = new Integer(0);
Enumeration e_node_ids = nodes.keys();
// for each of the node ids in the PIB
while(e_node_ids.hasMoreElements()){
myNodeld = (Integer)e_node_ids.nextElement();
Hashtable Interfaces = (Hashtable)nodes.get(myNodeld);
//if this interface's address equals the interface address of

this sip
if (Interfaces.containsKey(myIPv6Address.toString())){
Vector sips = (Vector)Interfaces.get(myIPv6Address.toString());
// if this interface has more service levels than this service

level
if (sips.size() >= service_level) {

found = true;
}

}
}
if (showComments){

if (found)
gui.sendText("PIB: doesSLPExist: SLP from router -

+ myNodeld + " is found.");
else
gui.sendTextCPIB: doesSLPExist: SLP from router "

+ myNodeld + " is not found.");
}
return found;

}

/**

* Updates the status of a known SLP's delay, loss_rate, and
.throughput.

* ©param address The IPv6 address of an interface.
* ©param service_level The level of service that this logical pipe

is
* providing.
* ©param delay The average delay experienced by a packet's stay in

the
* particular SLP outbound queue.
* ©param loss_rate The average loss_rate experienced by packets in a
* particular SLP.

128

* ©param throughput The average throughput provided by a particular
SLP.

*/
public void updateSLP(IPv6Address address, int service_level, int

delay,
int loss_rate, int throughput){
Integer myNodeld = new Integer(0) ;
Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement() ;
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if this node contains an interface with the address passed in
if (myNode.containsKey(address.toString())) {
Vector mylnterface = (Vector)myNode.get(address.toString());
//if this interface has more service levels than this service

level
if (mylnterface.size() >= service_level) {

slp_qos = (SLP_QoS)myInterface.elementAt(service_level);
// update it with these new values
slp_qos.observedDelay = delay;
slp_qos.observedLossRate = loss_rate;
slp_qos.observedUtilization = throughput;
mylnterface.setElementAt(slp_qos,service_level);
//mylnterface.insertElementAt(slp_qos,service_level);
if (showComments){
gui.sendText("PIB: updateSLP: SLP " + service_level

+ " is assigned delay="+delay+",loss_rate="+loss_rate
+ ",throughputs"+throughput);

}
}

}
}
if (showComments){
gui.sendText("PIB: updateSLP: SLP " + service_level +" is

updated.");
}

}

/**Henry
* Updates the status of a known SLP's delay, loss_rate, and

throughput.
* @param address The IPv6 address of an interface.
* ©param service_level The level of service that this logical pipe

is
* providing.
* ©param delay The average delay experienced by a packet's stay in

the
* particular SLP outbound queue.
* ©param loss_rate The average loss_rate experienced by packets in a
* particular SLP.
* ©param throughput The average throughput provided by a particular

SLP.
*/

public void updateSLP(IPv6Address address, byte service_level, int
delay,

int loss_rate, int throughput){

129

Integer myNodeld = new Integer(0) ;
Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if this node contains an interface with the address passed in
if (myNode.containsKey(address.toString())){
Vector mylnterface = (Vector)myNode.get(address.toString());
//if this interface has more service levels than this service

level
if (myInterface.size() >= service_level) {

slp_qos = (SLP_QoS)mylnterface.elementAt(service_level);
// update it with these new values
slp_qos.observedDelay = delay;
slp_qos.observedLossRate = loss_rate;
slp_qos.observedUtilization = throughput

/*slp_qos.targetThroughput*/
+ slp_qos.observedUtilization;

mylnterface.setElementAt(slp_qos,service_level);
if (showComments){
gui.sendTextCPIB: updateSLP: SLP " + service_level

+ " is assigned delay="+delay+",loss_rate="+loss_rate
+ ",throughput="+throughput);

}
}

}
}
if (showComments){
gui.sendText("PIB: updateSLP: SLP " + service_level +" is

updated.");
}

}//end updateSLP

/**

* Updates the target attributes of a known SLP's delay, loss_rate,
* and throughput.
* ©param address The IPv6 address of an interface.
* ©param service_level The level of service that this logical pipe

is
* providing.
* ©param delay The targeted delay experienced by a packet's stay in

the
* particular SLP outbound queue.
* @param loss_rate The targeted loss_rate experienced by packets in

a
* particular SLP.
* ©param throughput The targeted throughput provided by a particular

SLP.
*/

public void updateSLPTarget(IPv6Address address,
byte service_level, int delay, int loss_rate, int throughput){
Integer myNodeld = new Integer(0);
Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();

130

Hashtable myNode = (Hashtable)nodes.get(myNodeld);
// if this node contains an interface with the address passed in
if (myNode.containsKey(address.toStringO)){
Vector myInterface = (Vector)myNode.get(address.toStringO);
//System.out.printIn("My interface = "+myInterface);
//if this interface has more service levels than this service

level
if (myInterface.size() > service_level) {

slp_qos = (SLP_QoS)myInterface.elementAt (service_level);
Systern.out.printIn("PIB: updateSLPTarget (before): SLP QoS =

" + slp_qos);
// update it with these new values
slp_qos.targetDelay = delay;
slp_qos.targetLossRate = loss_rate;
slp_qos.targetThroughput =

slp_qos.targetThroughput+throughput;
System.out.println("PIB: updateSLPTarget (after): SLP QoS = "

+ slp_qos);
mylnterface.setElementAt(slp_qos,service_level);
if (showComments){
gui.sendText("PIB: updateSLPTarget: SLP " + service_level
//System.out.println("PIB: updateSLPTarget: SLP " +

service_level
+ " is assigned delay="+delay+",loss_rate="+loss_rate
+ ",throughput="+throughput);

}
}

}
}
i f (showComment s){
gui.sendText("PIB: updateSLPTarget: SLP "

+ service_level +" is updated.");
}

}//end updateSLPTarget

/**
* Adds a previously unknown SLP to the PIB along with its targeted

QoS.
* ©param address The IPv6 address of an interface.
* @param service_level The level of service that this logical pipe

is
* providing.
* @param target_delay The average delay experienced by a packet's

stay in the
* particular SLP outbound queue.
* ©param target_loss_rate The average loss_rate experienced by

packets in a
* particular SLP.
* @param target_throughput The average throughput provided by a

particular SLP.
*/

public void addSLP(IPv6Address address, int service_level, int
target_delay,

int target_loss_rate, int target_throughput){
int delay = 0, loss_rate = 0, throughput = 0;
Integer myNodeld = new Integer(0);
Enumeration e = nodes.keys();

131

// for each node in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
// if any interface has this same IPv6 address
if (myNode.containsKey(address.toStringO)){
Vector myInterface = (Vector)myNode.get(address.toString());
SLP_QoS slp_qos = new SLP_QoS();
slp_qos.targetDelay = target_delay;
slp_qos.targetLossRate = target_loss_rate;
slp_qos.targetThroughput = target_throughput;
slp_qos.observedDelay = delay;
slp_qos.observedLossRate = loss_rate;
slp_qos.observedUtilization = throughput;
slp_qos.serviceLevel = service_level; //Henry
// add this new sip to this interface
mylnterface.insertElementAt(slp_qos,service_level);

}
}
if (showComments){
// System.out.println("PIB: addSLP: SLP " + service_level + " is

added to "
gui.sendText("PIB: addSLP: SLP " + service_level + " is added to

ii

+address);
}

}

/* *Henry
* Gets the least bandwitdth possible for a path that traverse an

array of
* interfaces
* ©param address The array of interface address
* ©param service_level The service level of this path
* ©return The remaining throughput that may be allocated
*/

public int getRemainingThroughput(IPv6Address[] address, byte
service_level){

int remainingThroughput = 0;
for (int i=0; i<address.length; i++) {

int throughput =
getRemainingThroughput(address[i],service_level);

if (remainingThroughput < throughput) {
remainingThroughput = throughput;

}
}
return remainingThroughput;

}

/* *Henry
* Gets the least bandwitdth possible for a path that traverse the
* interface specified
* ©param address The interface address
* ©param service_level The service level of this path
* ©return The remaining throughput that may be allocated
*/

132

public int getRemainingThroughput(IPv6Address address, byte
service_level){

//, int delay, int loss_rate, int throughput){
int remainingThroughput = 0;
Integer myNodeld = new Integer(0);
Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if this node contains an interface with the address passed in
if (myNode.containsKey(address.toString())){
Vector mylnterface = (Vector)myNode.get (address. toStringO) ;
//System.out.println("getRemainingThroughput: for interface "

// + address + ", SL = " + service_level + " of node #"+
myNodeld);

//if this interface has more service levels than this service
level

if (mylnterface.size() >= service_level) {
slp_qos = (SLP_QoS)mylnterface.elementAt(service_level);
// update it with these new values

//System.out.println("PIB: resourcelsAvailable: SLP " +
service_level

// + " is available for
delay>="+delay+",loss_rate>="+loss_rate

/ / + " / throughput<=" + (slp_qos". targetThroughput-
slp_qos.observedUtilization));

if (slp_qos.serviceLevel == service_level) {
//slp_qos.observedDelay <= delay &&
//slp_qos.observedLossRate <= loss_rate &&

remainingThroughput = slp_qos.targetThroughput
- slp_qos.observedUtilization;

//System.out.println("getRemainingThroughput:
targetThroughput = "

// +slp_qos.targetThroughput+", observedUtilization = "
// +slp_qos.observedUtilization);

}
}

}
}
//System.out.printIn("getRemainingThroughput: remainingThroughput =

n

// +remainingThroughput);
return remainingThroughput;

}

/**Henry
* Gets the unallocated throughput of the interface specified
* @param address The interface address
* ©return The amount throughput unallocated
*/

public int getUnallocatedThroughput(IPv6Address address){
//, int delay, int loss_rate, int throughput){
int available_throughput =

Server.INITIALTHROUGHPUT;//Unallocated_allotment;
Integer myNodeld = new Integer(0);

133

Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){

myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if this node contains an interface with the address passed in
if (myNode.containsKey(address.toStringO)){
Vector myInterface = (Vector)myNode.get(address.toStringO);
for (int service_level=Server.CONTROL_SERVICELEVEL;

service_level<Server.NUMBEROFSERVICELEVELS; service level++)
{

//if this interface has more service levels than this
service level

slp_qos = (SLP_QoS)myInterface.elementAt(service_level);
//System.out.println("slp_qos = "+slp_qos);
// update it with these new values
available_throughput = available_throughput

- slp_qos.targetThroughput;
//System.out.println("available throughput =

"+available_throughput);
}//end for

}
}//end while
//System.out.println("getUnallocatedThroughput:

"+available_throughput);
return available_throughput;

}

//***

// These methods are used to process a flow request from a host
//***
*******/

I**

* Finds a router id that has an interface to on the same link as the
host

* making a flow request.
* @param address The IPv6 address of the interface of the host

requesting
* the flow.
* ©returns ARouter The router id of the first router found on this

link.
*/

public int findARouter0nLink(IPv6Address address){
int ARouter = 0;
Integer myNodeld = null;
// check to see if requesting host is a router itself

Enumeration e = nodes.keys();
// for each of the node ids in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if any of its address equals the address that was passed in
if(myNode.containsKey(address.toString())){
ARouter = myNodeld.intValueO ;

134

}
}
// otherwise, find any other router on the same subnet
if (ARouter == 0){

e = nodes.keys();
// for each of the node ids in the PIB
while(e.hasMoreElements()){
myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
Enumeration addresses = myNode.keys();
// for each of these interfaces
while (addresses.hasMoreElements()){

String nextAddress = (String)addresses.nextElement();
try{
//if this interface's network address equals that of the

link
if

(IPv6Address.getByName(nextAddress) .getNetworkAddress () .toStringO .equa
ls(

address.getNetworkAddress().toString())){
ARouter = myNodeld.intValue();

}
}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}
}

}
}
if (showComments){
gui.sendText("PIB: findARouterOnLink: Router "

+ ARouter + " is found on same link " +
address.getNetworkAddress()

+ " as host " + address);
}
return ARouter;

}

/**
* Determines if there is a path that can support a particular flow

request.
* A value of zero is returned if no path can support this QoS.
* ©param source_router The node id of a router on the same physical

link as
* the source host.
* ©param destination_router The node id of a router on the same

physical
* link as the destination host.
* ©param myFlowRequest A host's request for the establishment of a

flow.
* ©returns path_id The id of a path that can support this request.
*/

public int getPathThatCanSupportFlowRequest(int source_router,
int destination_router, FlowRequest

myFlowRequest){
int path_id = 0;
// for each path in the PIB

135

Enumeration e_path_ids = paths.keys();
while (e_path_ids.hasMoreElements()){

Integer nextPathld = (Integer)e_path_ids.nextElement();
Path nextPath = (Path)paths.get(nextPathld);
// if it has the same source and destination router
// and its effective delay and loss rate is less than this

request
// and its throughput remaining is more than the requested

throughput
if (nextPath.sourceRouter == source_router &&

nextPath.destinationRouter == destination_router &&
nextPath.effectiveDelay <= myFlowRequest.getRequestedDelayO

&&
nextPath.effectiveLossRate <=

myFlowRequest.getRequestedLossRate() &&
nextPath.effectiveThroughputRemaining

>=
myFlowRequest.getRequestedThroughputO){

path_id = nextPathld.intValue();
}

}
if (showComments){

if (path_id != 0){
gui.sendText("PIB: getPathThatCanSupportFlowRequest: "

+ "Flow request from "+source_router+" to
"+destination_router

+" with delay<="+myFlowRequest.getRequestedDelay()+n, LR<="
+myFlowRequest.getRequestedLossRate()+", RT>="
+myFlowRequest.getRequestedThroughput()+,lcan be supported on

path: "
+ path_id);

}
else{

gui.sendText("PIB: getPathThatCanSupportFlowRequest: -
+ "Flow request cannot be supported.");

}
}
return path_id;

}

/* *Henry
* Determines if there is a path that can support a particular flow

request.
* A value of -1 is returned if the destination is unreacheable.
* A value of zero is returned if no path can support this QoS.
* ©param source_router The node id of a router on the same physical

link as
* the source host.
* ©param destination_router The node id of a router on the same

physical
* link as the destination host.
* ©param myFlowRequest A host's request for the establishment of a

flow.
* ©returns path_id The id of a path that can support this request.
*/

public int getPathThatSupportFlowRequest(int source_router,

136

int destination_router, FlowRequest myFlowRequest){
System.out.println("\ngetPathsSupportingFlowRequest for: ");
System.out.printin("request: "+myFlowRequest);-
Vector supportingPaths = new Vector();
Vector borrowablePaths = new Vector();
int path_id = Server.FLOWNUNREACHEABLE;
int bestPathld = path_id;
Path bestPath = null;

Hashtable possiblePaths = getAllPossiblePaths(source_router,
destination_router);

if (!possiblePaths.isEmptyO) {
int requested_throughput =

myFlowRequest.getRequestedThroughput{);
bestPathld = Server.FLOWUNSUPPORTABLE;
// for each possible path
Enumeration e_path_ids = possiblePaths.keys();
while (e_path_ids.hasMoreElements()){

Integer nextPathld = (Integer)e_path_ids.nextElement();
Path nextPath = (Path)possiblePaths.get(nextPathld);
// for each sip
for (int index = 0; index < nextPath.SLPSequence.size();

index++){
ServiceLevelPipe nextSLP =

(ServiceLevelPipe)nextPath.SLPSequence.elementAt(index);
// if it has the same source and destination router
// and its effective delay and loss rate is less than this

request
if (nextSLP.serviceLevel == myFlowRequest.getServiceLevel(]

//nextPath.sourceRouter == source_router &&
//nextPath.destinationRouter == destination_router &&
nextPath.effectiveDelay <=

myFlowRequest.getRequestedDelay() &&
nextPath.effectiveLossRate <=

myFlowRequest.getRequestedLossRate()){
//find optimum path
bestPathld = determineBestPath(nextPath,

nextPathld.intValue(),
bestPath, bestPathld);

if (bestPathld == nextPathld.intValue()) {
bestPath = nextPath; //update bestPathld
System.out.println("bestPath: n+bestPathId);

System.out.println("bestPath.effectiveThroughputRemaining= "
+bestPath.effectiveThroughputRemaining);

}
//if its throughput remaining is able to admit the

requested throughput
if ((int)(bestPath.effectiveThroughputRemaining

*loadingfactor[myFlowRequest.getServiceLevel()])
>= myFlowRequest.getRequestedThroughput()){

path_id = bestPathld;
}
//if increasing capacity can support request
else if (resourcelsAvailable(bestPath, bestPathld,

getlncreasableThroughput(bestPathld,

137

myFlowRequest.getServiceLevel(),

bestPath.effectiveThroughputRemaining+requested_throughput))){
if (!supportingPaths.contains(new Integer(bestPathld))){

supportingPaths.add(new Integer(bestPathld));
}

}
else {

if (iborrowablePaths.contains(new Integer(bestPathld))){
borrowablePaths.add(new Integer(bestPathld));

}
}

}
}//end for

}//end while
//if increasing capacity can support request
if (path_id == Server.FLOWUNSUPPORTABLE && bestPath != null){

//if increasing capacity can support request
if (!supportingPaths.isEmpty()){

//increase resource allotement
path_id =

((Integer)supportingPaths.firstElement()).intValue();
updateSLPTarget(myFlowRequest.getSourcelnterface(),
myFlowRequest.getServiceLevel(),
myFlowRequest.getRequestedDelayO,
myFlowRequest.getRequestedLossRate(),
myFlowRequest.getRequestedThroughput());

}
//if inter-service borrowing can support request
else if (IborrowablePaths.isEmptyO) {

//inter-service borrowing
path_id =

((Integer)borrowablePaths.firstElement()).intValue();
updateSLPTarget(myFlowRequest.getSourcelnterface(),
myFlowRequest.getServiceLevel(),
myFlowRequest.getRequestedDelay(),
myFlowRequest.getRequestedLossRate(),
myFlowRequest.getRequestedThroughput());

}
}//end if

}//end if

if (showComments){
if (path_id > Server.FLOWUNSUPPORTABLE){
gui.sendText("PIB: getPathThatSupportFlowRequest: "

+ "Flow request from "+source_router+" to
"+destination_router

+" with delay<="+myFlowRequest.getRequestedDelay()+", LR<="
+myFlowRequest.getRequestedLossRate()+", RT>="
+myFlowRequest.getRequestedThroughput()+"can be supported on

path:
+ path_id);

}
else{

gui.sendText("PIB: getPathThatSupportFlowRequest:
+ "Flow request cannot be supported.");

}

138

}
System.out.printin("SupportingPaths: "+supportingPaths);
System.out.printin("BorrowablePaths: "+borrowablePaths);
return path_id;

}//end getPathThatSupportFlowRequest

/**

* Returns the incrementable throughput
* ©param path_id The id of the path in question.
* ©param service_level
* ©param throughput
* ©return The incrementable throughput
*/

private int getlncreasableThroughput(int path_id,
byte service_level, int throughput) {

int allocated_throughput = getAllocatedThroughputOfAPath(path_id);
float loaded_throughput =

loadingfactor[service_level]*allocated_throughput;
double beta = getlncreasingFactor(throughput, loaded_throughput);
System.out.println("allocated_throughput = "+loaded_throughput

+", sum of throughput required = "+throughput+n, beta = "+beta);
double incremental_throughput = (1+beta)*loaded_throughput;
System.out.println("getlncreasableThroughput: "+

incremental_throughput);
return (int)incremental_throughput;

}

/**Henry
* Return the factor to be used for increasing the resource

allocation
* ©param throughput
* ©param allocated_throughput
* ©return The increasing factor to be used
*/

private double getlncreasingFactor(int throughput, float
allocated_throughput) {

if (allocated_throughput == 0) return 0;
else return (throughput/allocated_throughput - Id);

}

/**Henry
* Returns the borrowable throughput
* ©param path_id The id of the path in question.
* ©param service_level
* ©param throughput
* ©return The borrowable throughput
*/

private int getBorrowableThroughput(int path_id,
byte service_level, int inter_service_level, int

throughput) {
int allocated_throughput = getAllocatedThroughputOfAPath(path_id);
float loaded_throughput =

loadingfactor[service_level]*allocated_throughput;
double gamma = getBorrowingFactor(throughput, loaded_throughput);
double borrowable_throughput = (1+gamma)*loaded_throughput;

139

System.out.printin("allocated_throughput = "+loaded_throughput
+", sum of throughput required = "+throughput);

return (int)(gamma*allocated_throughput);
}

/**Henry
* Return the factor to be used for borrowing resources
* ©param throughput
* ©param allocated_throughput
* ©return The borrowable factor to be used
*/

private double getBorrowingFactor(int throughput, float
allocated_throughput) {

if (allocated_throughput == 0) return 0;
return Id-((throughput+0.2*throughput)/allocated_throughput);

}

/* *Henry
* Checks if resources along a path is more than the throughput

specified
* ©param path
* ©param path_id
* ©param throughput
* ©return TRUE is unallocated throughput is more than that

specified
*/

public boolean resourceIsAvailable(Path path, int path_id, int
throughput){

int available_throughput = Server.INITIALTHROUGHPUT;
int unallocated_throughput = 0,-

System.out .println("resourcelsAvailable: throughput =
"+throughput);

IPv6Address[] addresses = getPathAddress(path);
for (int i=0; i<addresses.length; i++) {
unallocated_throughput = getUnallocatedThroughput(addresses[i]);
if (available_throughput>unallocated_throughput) {
available_throughput = unallocated_throughput;
System.out.println("available throughput =

"+available_throughput);
}

}
if (available_throughput > throughput){
return true;

}
return false;

}

public boolean interServiceResourcelsAvailable(
Path path, int path_id, int throughput){

int available_throughput = Server.INITIALTHROUGHPUT;
int unallocated_throughput = 0,-

System.out .println("resourcelsAvailable: throughput =
"+throughput);

IPv6Address[] addresses = getPathAddress(path);
for, (int i=0; ioddresses .length; i++) {

140

unallocated_throughput = getUnallocatedThroughput(addresses[i]);
if (available_throughput>unallocated_throughput) {
available_throughput = unallocated_throughput;
System.out.println("available throughput =

"+available_throughput);
'}

}
if (available_throughput > throughput){
return true;

}
return false;

}

/**Henry
* Returns the path id of the best path between newPath and previous

bestPath
* considering the type of algorithm used (WSPath or SWPath)
* Oparam newPath The new path to be considered
* @param newPathld The path id of the new path
* @param bestPath The best path previously chosen
* ©param bestPathld The path id of the best path
* ©return The path id of the result
*/

private int determineBestPath(Path newPath, int newPathld,
Path bestPath, int bestPathld) {

int pathSelection = WSPath; //default
if (bestPath == null) { //not a valid path

System.out.print("Throughput:
"+newPath.effectiveThroughputRemaining

+", #ofHops: "+newPath.SLPSequence.size()+", the only");
bestPath = newPath;
bestPathld = newPathld;

}
else {

if (pathSelection == WSPath) { //Widest-Shortest Path
if (newPath.effectiveThroughputRemaining >

bestPath.effectiveThroughputRemaining) {
System.out.print("Throughput:

"+newPath.effectiveThroughputRemaining
+", #ofHops: "+newPath.SLPSequence.size()+", ");

bestPath = newPath;
bestPathld = newPathld;
}
else if (newPath.effectiveThroughputRemaining ==
bestPath.effectiveThroughputRemaining &&
newPath.SLPSequence.size() < bestPath.SLPSequence.size()) {
Sys tern.out.print("Throughput:

"+newPath.effectiveThroughputRemaining
+", #ofHops: "+newPath.SLPSequence.size()+", new");

bestPath = newPath;
bestPathld = newPathld;

}
}
else { //use Shortest-Widest Path

//may be selected if rejection rate exceeds certain threshold
if (newPath.SLPSequence.size() < bestPath.SLPSequence.size()) {

141

System.out.print("Throughput:
"+newPath.effectiveThroughputRemaining

+"#ofHops: "+newPath.SLPSequence.size()+", ");
bestPath = newPath;
bestPathld = newPathld;

}
else if (newPath.SLPSequence.sizeO ==

bestPath.SLPSequence.size() &&
newPath.effectiveThroughputRemaining >
bestPath.effectiveThroughputRemaining) {
System.out.print("Throughput:

"+newPath.effectiveThroughputRemaining
+", #ofHops: "+newPath.SLPSequence.size()+", ");

bestPath = newPath;
bestPathld = newPathld;

}
}

}
return bestPathld;

}

/*Henry
* Returns all the possible paths between source_router and
* destination_router in a Hashtable.
* @param source_router The source node id
* ©param destination_router The destination node id
* ©return Hashtable of all the possible paths
*/

public Hashtable getAllPossiblePaths(int source_router,
int destination_router){

Hashtable pathArray = new Hashtable();
// for each path in the PIB
Enumeration e_path_ids = paths.keys();
//System.out.println(-getAllPossiblePaths: "+paths);
while (e_path_ids.hasMoreElements()){

Integer nextPathld = (Integer)e_path_ids.nextElement();
Path nextPath = (Path)paths.get(nextPathld);
if (nextPath.sourceRouter == source_router &&

nextPath.destinationRouter == destination_router){
pathArray.put(nextPathld, nextPath);

}
}
//System.out.println("getAllPossiblePaths: pathArray="+pathArray);
return pathArray;

}

/**Henry
* Remove the flow_id given in the parameter from the PIB
* dparam flow_id The flow_id of the assigned flow
*/

public void deleteAssignedFlow(int flow_id){
Integer myflowld = new Integer(flow_id);
Vector allPaths = getAllPathlds{);
for (int i=l; i<allPaths.size(); i++) { //path ids start from 1

// now assign this flow to this path
Integer myPathld = (Integer)allPaths.elementAt(i);

.142

//System.out.println("Pathld n+myPathId.toString());
//Path myPath = (Path)allPaths.get(myPathId.intValue());

Path myPath = (Path)paths.get(myPathld);
//System.out.println("deleteAssignedFlow is checking path

n+myPath);
if (myPath.flows.remove(myflowld) != null) {

System.out.printlnCFlowId "+myflowId+ " removed");
if (showComments){
gui.sendText("PIB: deleteAssignedFlow: Flow "

+ flow_id + " is deleted from path.");
}

return; //found
}

}
}//end deleteAssignedFlow

/**Xie
* Finds an unassigned flow id and assigns this new flow to a path.
* ©param path_id The id of a path that can support this request.
* @param source_router The node id of a router on the same physical

link as
* the source host.
* ©param destination_router The node id of a router on the same

physical
* link as the destination host.
* ©param myFlowRequest A host's request for the establishment of a

flow.
* ©returns max_flow_id The id that is being assigned to this flow.
*/

public int getNewFlowId(int path_id, int source_router,
int destination_router, FlowRequest

myFlowReguest){
/*

int max_flow_id = 0;
Enumeration e_path_ids = paths.keys();
// for each path in the PIB
while (e_path_ids.hasMoreElements()){

Integer nextPathld = (Integer)e_path_ids.nextElement();
Path nextPath = (Path)paths.get(nextPathld) ;

Enumeration e_flow_ids = nextPath.flows.keys();
// for each of the flows on this path
while (e_flow_ids.hasMoreElements()){

Integer nextFlowId = (Integer)e_flow_ids.nextElement();
//if this flow id is greater than the current max flow id
if (nextFlowId.intValue() > max_flow_id){
max_flow_id = nextFlowId.intValue();

}
}

}
// now increment to get an unassigned flow id
max_flow_id++;

*/
// wrap around if necessary
if (newAppFlowID >= MAX_FLOW_ID)

newAppFlowID = MIN_APP_FLOW_ID;
else

newAppFlowID++;

143

*

// now assign this flow to this path
Path myPath = (Path)paths.get(new Integer(path_id));
Flow_QoS myFlowQoS = new Flow_QoS();
myFlowQoS.negotiatedDelay = myFlowRequest.getRequestedDelay();
myFlowQoS.negotiatedDelay = myFlowRequest.getReguestedLossRate();
myFlowQoS.negotiatedDelay = myFlowRequest.getRequestedThroughput();
myPath.flows.put(new Integer(newAppFlowID),myFlowQoS);
if (showComments){

gui.sendText("PIB: assignNewFlowId: Flow "
+ newAppFlowID + " is assigned to path n+path_id);

}
return newAppFlowID;

}

/**Henry
Finds an unassigned flow id and assigns this new flow to a path,
©param path_id The id of a path that can support this request.

* ©param source_router The node id of a router on the same physical
link as

* the source host.
* ©param destination_router The node id of a router on the same

physical
* link as the destination host.
* ©param myFlowRequest A host's request for the establishment of a

flow.
* ©returns max_flow_id The id that is being assigned to this flow.
*/

public int getANewFlowId(int path_id, int source_router,
int destination_router, FlowRequest

myFlowRequest){
// wrap around if necessary
if (newAppFlowID >= MAX_FLOW_ID)
newAppFlowID = MIN_APP_FLOW_ID;

else
newAppFlowID++;

// now assign this flow to this path
Path myPath = (Path)paths.get(new Integer(path_id));
Flow_QoS myFlowQoS = new Flow_QoS();
myFlowQoS.negotiatedDelay = myFlowRequest.getRequestedDelay();
myFlowQoS.negotiatedDelay = myFlowRequest.getReguestedLossRate();
myFlowQoS.negotiatedDelay = myFlowRequest.getRequestedThroughput();
myPath.flows.put(new Integer(newAppFlowID),myFlowQoS);
if (showComments){

gui.sendText("PIB: assignNewFlowId: Flow "
+ newAppFlowID + " is assigned to path "+path_id);

}
return newAppFlowID;

}

/**

* Retrieves the sequence of SLP that make up a given path.
* ©param path_id The id of the path in question.
* ©returns slps_in_path A vector of SLPs that compose this path.
*/

public Vector getSLPSequenceOfPath(int path_id){

144

int sequenceNumber = 0;
IPv6Address link_id = null;
Vector slps_in_path = new Vector();
// get the sequence of sips that compose the path
Path path = (Path)paths.get(new Integer(path_id));
// for each sip
for (int index = 0; index < path.SLPSequence.size(); index++){
ServiceLevelPipe nextSLP =

(ServiceLevelPipe)path.SLPSequence.elementAt(index);
// instantiate a sip sequence object
SLPSequence SLP_Sequence = new SLPSequence();
// set the sip sequence values
SLP_Sequence.setServiceLevel(nextSLP.serviceLevel);
// find what node this sip is attached to...
Enumeration e = nodes.keys();
int node_id = 0;
// for each of the node ids in the PIB
while(e.hasMoreElements()){

Integer myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
if (myNode.containsKey(nextSLP.address.toString())){
node_id = myNodeld.intValue();
link_id = nextSLP.address.getNetworkAddress();

}
}

SLP_Sequence.setSourceRouter(node_id);
SLP_Sequence.setPathId(path_id);
SLP_Sequence.setLinkId(link_id);
SLP_Sequence.setSequenceNumber(sequenceNumber);
if (showComments){
gui.sendText("PIB: getSLPSequenceOfPath: adding

°+SLP_Sequence);
}
// add it to the vector
slps_in_path.addElement(SLP_Sequence);
// increment for the next sip
sequenceNumber++;

}
if (showComments){
gui.sendText("PIB: getSLPSequenceOfPath: SLP sequence of path

"+path_id
+" has "+path.SLPSequence.size()+" hops.");

}
return slps_in_path;

}

/**Henry
* Returns a vector of the SLPs that forms the path_id
* @param path_id The path id
* ©return The vector of the SLPs
*/

public Vector getSLPAddressOfPath(int path_id){
int sequenceNumber = 0;
IPv6Address link_id = null;
Vector slps_in_path = new Vector();
// get the sequence of sips that compose the path

145

Path path = (Path)paths.get(new Integer(path_id));
// for each sip
return slps_in_path = getSLPAddressOfPath(path);

/**Henry
* Returns a vector of the SLPs that forms the path_id
* ©param path The path
* ©return The vector of the SLPs
*/

public Vector getSLPAddressOfPath(Path path){
Vector slps_in_path = new Vector();
// for each sip
for (int index = 0; index < path.SLPSequence.size(); index++){
ServiceLevelPipe nextSLP =

(ServiceLevelPipe)path.SLPSequence.elementAt(index);
//SLP nextSLP = (SLP)path.SLPSequence.elementAt(index);
// add it to the vector
slps_in_path.addElement(nextSLP.address);

}
return slps_in_path;

}

/**Henry
* Returns the IPv6Addresses of the SLP sequence that forms the

path_id
* ©param path_id The path id
* ©return The IPv6Addresses of the SLP sequence
*/

public IPv6Address[] getPathAddress(int path_id){
//SLP nextSLP;
IPv6Address[] pathAddress = null;
Vector sips = getSLPAddressOfPath(path_id);
if (Islps.isEmptyO) {
pathAddress = new IPv6Address[sips.size()];
for (int i=0; i<slps.size{); i++) {
pathAddress[i] = (IPv6Address)sips.get(i);
if (showComments){
gui.sendTextCPIB: getPathAddress: Interface " +

pathAddress[i]);
}

}
}
return pathAddress;

}

/**Henry
* Returns the IPv6Addresses of the SLP sequence that forms the

path_id
* ©param path_id The path id
* ©return The IPv6Addresses of the SLP sequence
*/

public IPv6Address[] getPathAddress(Path path){
//SLP nextSLP;
IPv6Address[] pathAddress = null;
Vector sips = getSLPAddressOfPath(path);
if (Islps.isEmptyO) {

146

pathAddress = new IPv6Address[sips.size()];
for (int i=0; i<slps.size(); i++) {
pathAddress[i] = (IPv6Address)sips.get(i);
if (showComments){
gui.sendText("PIB: getPathAddress: Interface " +

pathAddress[i]) ;
}

}
}
return pathAddress;

}

I**
* Retrieves the IPv6 address of an interface.
* @param node_id The id of the router whose interface is being

queried.
* ©param link_id The network portion of the IPv6 address of an

interface.
* ©returns address The address of the interface that connects this

node and
* link.
*/

public IPv6Address getlnterfaceAddress(int node_id, IPv6Address
link_id){

IPv6Address address = new IPv6Address();
IPv6Address tempAddress = null;
String nextAddress;
Hashtable node_interfaces = (Hashtable)nodes.get(new

Integer(node_id));
Enumeration e_addresses = node_interfaces.keys();.
// for each of these interfaces
while (e_addresses.hasMoreElements()){

nextAddress = (String)e_addresses.nextElement();
try{

tempAddress = IPv6Address.getByName(nextAddress);
}catch(UhknownHostException uhe){
gui.sendText(n"+uhe);

}
//if this interface's network address equals that of the link
if

(tempAddress.getNetworkAddressO.toStringO.equals(link_id.toString()))
{

address = tempAddress;
}

}
if (showComments){
gui.sendText("PIB: getlnterfaceAddress: Interface " + address

+ " connects " + node_id + " to link " + link_id);
}
return address;

}

//***

// These methods are used to determine all possible paths across the
network

147

/**

* Retrieve all of the router ids assigned by the PIB so far
* ©returns V A vector of all assigned router ids.
*/

public Vector getAHRouterlds () {
Vector V = new Vector();
Integer myNodeld;
Enumeration e = nodes.keys();
// for each node id in the PIB
while(e.hasMoreElementsO) {
myNodeld = (Integer) e.nextElement (■) ;
// add it to the vector
V.addElement(myNodeld);

}
if (showComments){
gui.sendText(»PIB: getAllRouterlds: All router ids returned-")•
gui.sendText(""+v);

}
return V;

}

/**

* Retrieves the maximum service level of this SAAM region
* ©returns max_slp_id The numerically highest service level id

assigned.
*/

public int findMaxServiceLevel(){
int max_slp_id = 0;
Hashtable myNode = new Hashtable();
Enumeration el,e2;
el = nodes.elements();
// for each node in the PIB
while(el.hasMoreElements()){
myNode = (Hashtable)el.nextElement();
e2 = myNode.elements();
// for each interface of this node
if (e2.hasMoreElements()){
Vector mylnterface = (Vector)e2.nextElement();
// determine the maximum number of service levels
if (max_slp_id < mylnterface.size())
max_slp_id = mylnterface.size()-1;

}
if (showComments){
gui.sendText("PIB: findMaxServiceLevel: The max service level is

+ max_slp_id);
}
return max_slp_id;

}

/**

148

* Retrieves an array of parents for each router. A parent is a
directly

* connected node.
* ©param V A vector of all router ids.
* ©param service_level The level of service for which paths are

being built
* for.
* ©returns parent A hashtable of vectors containing the parents of

each router.
*/

public Hashtable getParents(Vector V, int service_level){
Hashtable nodel = new Hashtable();
Hashtable node2 = new Hashtable();
Vector myVector = new Vector();
Enumeration el_interface_ids,e2_nodes,

e2_node_ids,e3_interface_ids;
IPv6Address link_id = null;
Integer node_id;
String address;
Hashtable parent = new Hashtable();
// for each "destination" node in vector V
for (int index = 0; index < V.sizeO; index++) {
myVector = new Vector();
// get this destination node's interfaces in order to know
// all of its directly connected links
nodel = (Hashtable)nodes.get (V.elementAt(index));
el_interface_ids = nodel.keys();
// for each interface (or directly connected link...)
while (el_interface_ids.hasMoreElements()){

try{
link_id = IPv6Address.getByName(

((String)el_interface_ids.nextElement())).getNetworkAddress();
}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}
//get all nodes that that are also connected to the link
e2_nodes = nodes.elements();
e2_node_ids = nodes.keys();
// for each node in the PIB
while (e2_nodes.hasMoreElements()){

node2 = (Hashtable)e2_nodes.nextElement();
node_id = (Integer)e2_node_ids.nextElement();
e3_interface_ids = node2.keys();

// for each interface on this node
while(e3_interface_ids.hasMoreElements()){

address = (String)e3_interface_ids.nextElement();
try{

IPv6Address tempAddress =
IPv6Address.getByName(address).getNetworkAddress();

// if this interface is also connected to this link
// and this node is not the "destination" node
if ((link_id.toString().equals(tempAddress.toString()))

&&
!node_id.equals(V.elementAt(index))){

// add it to the parent vector of this "destination"
node

149

myVector.addElement(node_id);
} //end if

}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}
} // end while e3_interface_ids

} // end while e2_nodes
} // end while el_interfaces
parent.put(V.elementAt(index),myVector);

} // end for
if (showComments){
gui.sendText("PIB: getParents: Parent hashtable returned:");
gui.sendText(""+parent);

}
return parent;

/**

* Assigns a path from a source and to a destination.
* ©param source_router The node_id of the source of the path.
* ©param destination_router The node_id of the destination of the

path.
* ©returns max_path_id The id to be assigned to this new path.
*/

public int getNewPathld(int source_router,int destination_router){
int max_j?ath_id = 0;
Integer path_id;
Enumeration e_path_ids = paths.keys();
// for each path in the PIB
while (e_path_ids.hasMoreElements()){
path_id = (Integer)e jpath_ids.nextElement();
// if this path id is greater than the max so far
if (max_path_id < path_id.intValue())
max_path_id = path_id.intValue();

}
// increment to get unassigned path id
max_path_id++;
Path path = new Path();
path.sourceRouter = source_router;
path.destinationRouter = destination_router;
// add this new path to the PIB
paths.put(new Integer(max_path_id),path);
if (showComments){
gui.sendText("PIB: getNewPathld: Path " + max_path_id + " from

+source_router+" to "+destination_router+" is inserted.");

return max_path_id;
}

/**

* Identifies the id of the physical link between two adjacent
routers. If no

* link exists between a source and destination router, the default
address

* of all zeros is returned.
* ©param source_router The node_id of a router.
* ©param destination_router The node_id of an adjacent router.

150

* ©returns subnet The link id between this source and destination.
*/

public IPv6Address getLinkBetween(int source_router, int
destination_router){

IPv6Address subnet = new IPv6Address() ;
String source_address, destination_address;
Hashtable source_node = (Hashtable)nodes.get(new

Integer{source_router));
Hashtable destination_node =

(Hashtable)nodes.get(new
Integer(destination_router));

Enumeration e_source_interfaces = source_node.keys();
// for each interface assigned to this source node in the PIB
while (e_source_interfaces.hasMoreElements()){

source_address = (String)e_source_interfaces.nextElement();
Enumeration e_destination_interfaces = destination_node.keys();
// for each interface assigned to this destination node in the

PIB
while (e_destination_interfaces.hasMoreElements()){

destination_address =

(String)e_destination_interfaces.nextElement();
try{
//if this destination interface equals this source interface
if

(IPv6Address.getByName(source_address).getNetworkAddress().toStringO.e
quals(

IPv6Address.getByName(destination_address).getNetworkAddress().toString
■())){

// get the network address
subnet =

IPv6Address.getByName(source_address).getNetworkAddress();
}

}catch (UnknownHostException uhe){
gui.sendText(""+uhe);

}
}

}
if (showComments){
gui.sendText("PIB: getLinkBetween: Link between " + source_router

+ " and " + destination_router + " is " + subnet);
}
return subnet;

}

/**
* Assigns a service level pipe sequence entry in the building of a

path.
* ©param service_level The level of service for which paths are

being built
* for.
* ©param source_router The node_id of the source of the SLP.
* ©param link_id The subnet that this SLP goes over.
* ©param path_id The id assigned to the path.
* ©param sequence_number The number assigned to specify the sequence

of this

151

* SLP in the path.
*/

public void assignSLPSequence(int service_level, int source_router,
IPv6Address link_id, int path_id, int sequence_number){
// get this path object
Path myPath = (Path)paths.get(new Integer(path_id));
ServiceLevelPipe sip = new ServiceLevelPipe();
sip.address = getlnterfaceAddress(source_router, link_id);
sip.serviceLevel = service_level;
// add this sip to the sequence of sips in this path
myPath.SLPSequence.insertElementAt(slp, sequence_number);
if (showComments){
gui.sendTextCPIB: assignSLPSequence: SLP#" +service level+" from

n

+ source_router + " to link " + link_id + " on path " + path_id
+ " is assigned sequence number " + sequence_number);

}

// These methods are used to determine the effective QoS of paths
//***
*******/

/**

* Retrieves a vector of all path ids constructed by the PIB.
* ©returns path_ids All of the path ids known to the PIB.
*/

public Vector getAllPathlds(){
Vector path_ids = new VectorO;
Enumeration e_path_ids = paths.keys();
// for each path
while (e_path_ids.hasMoreElements()){

// add it to vector
path_ids.addElement(e_path_ids.nextElement());

}
if (showComments){
gui.sendTextCPIB: getAllPathlds: paths in PIB:");
gui.sendText(""+path_ids);

}
return path_ids;

}

/**

* Retrieves the SLPs that make up a given path.
* ©param path_id The id of the path in question.
* ©returns slps_in_path The SLPs that make up the path.
*/

public Vector getSLPsOfPath(int path_id){
Vector slps_in_path = new VectorO;
SLP mySLP = new SLP() ;
int node_id = 0;
Path path = (Path)paths.get(new Integer(path_id));
// for each of the sips in this path
for (int index = 0; index < path.SLPSequence.size(); index++){

152

ServiceLevelPipe sip =
(ServiceLevelPipe)path.SLPSequence.elementAt(index);

// set the values for delivery to the server
mySLP.setServiceLevel(sip.serviceLevel);
mySLP.setAddress(sip.address);
Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){

Integer myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
// if this node contains this interface IPv6 address
if (myNode.containsKey(sip.address.toString()))
node_id = myNodeld.intValue();

}
// with this node's id, get its interfaces
Hashtable interfaces = (Hashtable)nodes.get(new

Integer(node_id));
// get vector of slp_qos
Vector sips = (Vector)interfaces.get(sip.address.toStringO);
// get slp_qos for this particular sip
SLP_QoS slp_qos = (SLP_QoS)sips.elementAt(sip.serviceLevel);
// set QoS of this sip for delivery to the server
mySLP.setAllocatedThroughput(slp_qos.targetThroughput);
mySLP.setDelay(slp_qos.observedDelay);
mySLP.setLossRate(slp_qos.observedLossRate);
int observedThroughput = slp_qos.observedUtilization / 100

*
slp_qos.targetThroughput /10;

mySLP.setThroughput(observedThroughput);
if (showComments){
gui.sendText("PIB:getSLPsOfPath: path - + path_id + ": address

n

+slp.address+n, service_level "+slp.serviceLevel+" observed
values:");

gui.sendText("PIB:getSLPsOfPath: D = "+slp_qos.observedDelay
+"ms, LR = " +slp_qos.observedLossRate+"%, U = "
+ slp_qos.observedUtilization / 10
+ "%, T = n+observedThroughput+"kbpsn);

}
// add this sip to the vector for delivery to the server
slps_in_path.addElement(mySLP);

}
i f (showComment s){
gui.sendText("PIB: getSLPsOfPath: SLP in path " + path_id +":");
gui.sendText(""+slps_in_path);

}
return slps_in_path;

}

/* *Henry
* Retrieves the SLPs that make up a given path.
* ©param path_id The id of the path in question.
* ©returns slps_in_path The SLPs that make up the path.
*/

public Vector getSLPsOfAPath(int path_id){
Vector slps_in_path = new Vector();
SLP mySLP = new SLP{);

153

int node_id = 0;

//System.out.println("inside getSlpsOfaPath getting the paths from
the paths table");

Path path = (Path)paths.get(new Integer(path_id));

//System.out.println("Paths are taken Now I will process each
path.");

// for each of the sips in this path
for (int index = 0; index < path.SLPSequence.size(); index++){
ServiceLevelPipe sip =

(ServiceLevelPipe)path.SLPSequence.elementAt(index);
// set the values for delivery to the server
mySLP.setServiceLevel(sip.serviceLevel);
mySLP.setAddress(sip.address);
Enumeration e = nodes.keys();
// for each of the nodes in the PIB
while(e.hasMoreElements()){

Integer myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
//if this node contains this interface IPv6 address
if (myNode.containsKey(sip.address.toString()))
node_id = myNodeld.intValue();

}
//System.out.println("Node_id getSLPsOfAPath: " + node_id);
// with this node's id, get its interfaces
Hashtable interfaces = (Hashtable)nodes.get(new

Integer(node_id));
//System.out.println("interfaces are taken from the nodes

table");
//gui.sendText("interfaces are taken from the nodes table");
// get vector of slp_qos
Vector sips = (Vector)interfaces.get(sip.address.toString());
//gui.sendText("SLPs getSLPsOfAPath: " + sips.size());
// get slp_qos for this particular sip
//gui.sendText("I am going to take SLPqos of "

+slp.serviceLevel);
SLP_QoS slp_qos = (SLP_QoS)sips.elementAt(sip.serviceLevel);
//gui.sendText("the qos of the SLP is "+ slp_qos.toString());
//gui.sendText("SLPQos is taken from the sip.");
// set QoS of this sip for delivery to the server
mySLP.setAllocatedThroughput(slp_qos.targetThroughput);
mySLP.setDelay(slp_qos.observedDelay);
mySLP.setLossRate(slp_qos.observedLossRate);
int observedThroughput = slp_qos.observedUtilization;
mySLP.setThroughput(slp_qos.observedUtilization);
if (showComments){
gui.sendText("PIB:getSLPsOfAPath: path " + path_id + ": address

+slp.address+", service_level "+slp.serviceLevel+" observed
values:");

gui.sendText("PIB:getSLPsOfAPath: D = "+slp_qos.observedDelay
+"ms, LR = " +slp_qos.observedLossRate+"%, U = "
+ slp_qos.observedUtilization / 10
+ "%, T = "+observedThroughput+"kbps");

}
// add this sip to the vector for delivery to the server

154

slps_in_path.addElement (mySLP) ;
}
if (showComments){
gui.sendText("PIB: getSLPsOfAPath: SLP in path " + path_id +":");
gui.sendText(""+slps_in_path);

}
return slps_in_path;

}

/**Henry
* Returns the amount of throughput allocated to a path.
* ©param path_id The id of the path in question.
* ©returns allocated_throughput The allocated throughput of a path.
*/

public int getAllocatedThroughputOfAPath(int path_id){
// byte service_level, int delay, int loss_rate, int throughput){
Vector slps_in_path = new Vector();
SLP mySLP = new SLP();
int allocated_throughput = 0; •
int minAllocatedThroughput = Server.INITIAL/THROUGHPUT;

slps_in_path = getSLPsOfAPath(path_id);
//gui.sendText("SLPs: "+SLPs);

for (int index2 = 0; index2 < slps_in_path.size(); index2++){
//gui.sendText("Taking the sip "+index2);
mySLP = (SLP)slps_in_j?ath.elementAt(index2);
//System.out.println("mySLP = "+mySLP);
// find allocated_throughput throughput
allocated_throughput = mySLP.getAllocatedThroughput();
if (allocated_throughput < minAllocatedThroughput){
minAllocatedThroughput = allocated_throughput;
//System.out.println("minAllocatedThroughput =

n+minAllocatedThroughput);
}

}
return minAllocatedThroughput;

}

/**Henry
* Retrieves the SLPs that make up a given path.
* ©param path_id The id of the path in question.
* ©returns slps_in_path The SLPs that make up the path.
*/

public void updateSLPsOfAPath(int path_id,
byte service_level, int delay, int loss_rate, int throughput){

Vector slps_in_path = new Vector();
SLP mySLP = new SLP();
int node_id = 0;

//System.out.printIn("inside getSlpsOfaPath getting the paths from
the paths table");

Path path = (Path)paths.get(new Integer(path_id));

//System.out.println("Paths are taken Now I will process each
path.");

// for each of the sips in this path

155

for (int index = 0; index < path.SLPSequence.size(); index++){
ServiceLevelPipe sip =

(ServiceLevelPipe)path.SLPSequence.elementAt(index);
// set the values for delivery to the server
slps_in_path = getSLPSequenceOfPath(path_id);
for (int i=0; i<slps_in_path.size(); i++) {
mySLP = (SLP)slps_in_path.get(i);
if ((byte)mySLP.getServiceLevel()==slp.serviceLevel){
mySLP.setDelay(delay);
mySLP.setLossRate(loss_rate);
mySLP.setAllocatedThroughput(throughput);

}
System.out.println("updated SLP = n+mySLP);

}
}

Records the calculated effective quality of service parameters for

particular path.
©param path_id The id of the path in question.
©param effectiveDelay The effective delay that can be expected

when
* transmiting a flow over this path.
* ©param effectiveLossRate The effective loss rate that can be

expected when
* transmiting a flow over this path.
* ©param effectiveThroughputRemaining The effective throughput

capacity that
* was not being used at last observation.
*/

public void setEffectiveQoSOfPath(int path_id, int effectiveDelay,
int effectiveLossRate, int effectiveThroughputRemaining){
// get this path
Path path = (Path)paths.get(new Integer(path_id));
// set its effective QoS
path.effectiveDelay = effectiveDelay;
path.effectiveLossRate = effectiveLossRate,•
path.effectiveThroughputRemaining = effectiveThroughputRemaining;
if (showComments){
gui.sendText("PIB: setEffectiveQoSOfPath: path "+path_id

+" effectively has D = " + effectiveDelay
+ "ms, LR = " + effectiveLossRate
+ "%, remaining T = " + effectiveThroughputRemaining+nkbps");

- }

//Henry
/**

* Records the calculated effective quality of service parameters for
a

* particular path.
* ©param path_id The id of the path in question.
* ©param effectiveDelay The effective delay that can be expected

when

156

* transmiting a flow over this path.
* ©param effectiveLossRate The effective loss rate that can be

expected when
* transmiting a flow over this path.
* ©param effectiveThroughputRemaining The effective throughput

capacity that
* was not being used at last observation.
*/

public void updateEffectiveQoSOfPath(int path_id, int effectiveDelay,
int effectiveLossRate, int effectiveThroughputRemaining){
// get this path
Path path = (Path)paths.get(new Integer(path_id));
// set its effective QoS
path.effectiveDelay = effectiveDelay;
path.effectiveLossRate = effectiveLossRate;
//path.effectiveThroughputRemaining = effectiveThroughputRemaining;
path.effectiveThroughputRemaining =

path.effectiveThroughputRemaining
- effectiveThroughputRemaining;

if (showComments){
gui.sendText("PIB: updateEffectiveQoSOfPath: path n +path_id

+" effectively has D = " + effectiveDelay
+ "ms, LR = " + effectiveLossRate
+ "%, remaining T = " + effectiveThroughputRemaining+"kbps");

}
}

/**

* Retrieves a vector of all path ids that travses the specified SLP.
* ©param address The IPv6 address of an interface.
* ©param service_level The level of service that this logical pipe

is
* providing.
* ©returns path_ids All of the path ids that traverse this SLP.
*/

public Vector getAllPathIdsThatTraverseSLP(IPv6Address address,
int

service_level){
Vector path_ids = new Vector();
Enumeration e_paths = paths.elements();
Enumeration e_path_ids = paths.keys();
// for each path
while (e_paths.hasMoreElements()){

Path path = (Path)e_path_ids.nextElement();
Integer path_id = (Integer)e_path_ids.nextElement();
// get the sequence of sips that make up this path
Vector sips = path.SLPSequence;
// for each of each of these sips
for (int index = 0; index < slps.sizeO; index++) {
ServiceLevelPipe sip = (ServiceLevelPipe)sips.elementAt(index);
// if this sip's interface address equals this address
if (sip.address.equals(address)){

// add it to the vector
path_ids.addElement(path_id);

}
}

}

157

if (showComments){
gui.sendText("PIB: getAllPathldsThatTravseSLP: paths over

"+address
+"'s service level #"+ service_level);

gui.sendText(""+path_ids);
}
return path_ids;

}

/**Henry
* Records the calculated effective quality of service parameters for

a
* particular path.
* ©param path_id The id of the path in question.
* ©param effectiveDelay The effective delay that can be expected

when
* transmiting a flow over this path.
* ©param effectiveLossRate The effective loss rate that can be
* expected when transmiting a flow over this path.
* ©param effectiveThroughputRemaining The effective throughput
* capacity that was not being used at last observation.
*/

public void updateRemainingBWOfPath(int path_id, byte service_level,
int requestedThroughput){

IPv6Address[] pathAddress;
int remainingThroughput = 0;
// get this path
Path path = (Path)paths.get(new Integer(path_id));
pathAddress = getPathAddress(path_id);
remainingThroughput = getRemainingThroughput(

pathAddress, service_level);
System.out.println("RemainingThroughput: "+remainingThroughput);
path.effectiveThroughputRemaining = remainingThroughput

- requestedThroughput;
System.out.println("Updated RemainingThroughput: "

+path.effectiveThroughputRemaining);
if (showComments){

gui.sendText("PIB: updateRemainingBWOfPath: path "+path_id
+ "%, remaining T = " +

path.effectiveThroughputRemaining+"kbps");
}

}

/**Henry
* Updates all paths that using the source interface
* ©param source The interface of the source
* ©param service_level The service level of the path
* ©param requestedThroughput The throughput allocated
*/

public void updateRemainingBWOfAllPaths(IPv6Address source,
byte service_level, int requestedThroughput){

IPv6Address[] pathAddress;
int remainingThroughput = 0;
// get this path
Vector allPath - getAllPathldsThatTraverseSLP(source,

service_level);
for (int i=0; i<allPath.size(); i++) {

158

Integer path_id = (Integer)allPath.get(i);
Path path = (Path)paths.get(path_id);
pathAddress = getPathAddress(path_id.intValue());
remainingThroughput = getRemainingThroughput(pathAddress,

service_level);
//System.out.print(", RemainingThroughput:

"+remainingThroughput);
path.effectiveThroughputRemaining = remainingThroughput

- requestedThroughput;
//System. out.println(", Updated RemainingThroughput:

"+path.effectiveThroughputRemaining);
//System.out.print("Pathld: n+path_id.toString());
//System.out.println(" "+path.toStringO);

}
}

/**Henry
* Retrieves a vector of all path ids that travses the specified SLP.
* ©pararn address The IPv6 address of an interface.
* dparam service_level The level of service that this logical pipe

is
* providing.
* ©returns path_ids All of the path ids that traverse this SLP.
*/

public Vector getAllPathIdsThatTraverseSLP(IPv6Address address,
byte /*int*/

service_level){
Vector path_ids = new Vector() ;
Enumeration e_paths = paths.elements() ;
Enumeration e_path_ids = paths.keys();
// for each path
while (e_path_ids.hasMoreElements()){

Path path = (Path)e_paths.nextElement();
Integer path_id = (Integer)e_path_ids.nextElement();

//System.out.println("PIB: getAllPathldsThatTravseSLP: path_id = "
+path_id.toString()) ;

// get the sequence of sips that make up this path
Vector sips = path.SLPSequence;
// for each of each of these sips
for (int index = 0; index < slps.sizeO ; index++){
ServiceLevelPipe sip = (ServiceLevelPipe)sips.elementAt(index);
//if this sip's interface address equals this address
if (slp.serviceLevel == service_level &&

sip.address.equals(address)){
// add it to the vector
path_ids.addElement(path_id);

}
}

}
if (showComments){
gui.sendText("PIB: getAllPathldsThatTravseSLP: paths over

"+address
+"'s service level #"+ service_level);

gui.sendText(""+path_ids);
}

159

//System, out. println("PIB: getAllPathldsThatTraVseSLP:"
+path_ids.toString());

return path_ids;
}

Z/**,^^.^.^

// These methods are used to retrieve various other info
//***^41tjtA
*******/

/**

* Retrieves a vector of all interface addresses attached to this
router.

* @param node_id The node id of the router in question.
* ©returns IPv6Addresses The interface addresses of this node
*/

public Vector getRouterlnterfaces(int node_id){
Vector IPv6Addresses = new Vector();
Hashtable myNode = (Hashtable)nodes.get(new Integer(node_id));
Enumeration e = myNode.keys();
// for each interface on this node
while(e.hasMoreElements()){

String myAddress = (String)e.nextElement();
try{

// add it to the vector
IPv6Addresses.addElement(IPv6Address.getByName(myAddress));

}catch(UnknownHostException uhe){
gui.sendText(""+uhe);

}
}
if (showComments){
gui.sendText("PIB: getRouterlnterfaces: interfaces of node "

+node_id+" returned:");
gui.sendText(""+IPv6Addresses) ;

}
return IPv6Addresses;

}

/**

* Deletes a specified router from the PIB.
* @param node_id The node_id of the router to be deleted
*/

public void deleteARouter(int node_id){
nodes.remove(new Integer(node_id));
if (showComments){
gui.sendText(-PIB: deleteARouter: node -+node_id+" deleted.");

}

/**

* this method is added by Hasan UYSAL
* it deletes all the paths that use a certain interface
*/

public void deletePathsTraversinglnterface(Vector pathlds){
for(int i=0;i<pathlds.size();i++){
paths.remove(pathlds.elementAt(i));

160

/**

* Retrieves a vector of all physical link ids known to the PIB.
* ©returns v_links All of the known links in the network.
*/

public Vector getAllLinklds(){
Vector v_links = new Vector();
Enumeration e = links.keys();
// for each interface on this node
while(e.hasMoreElements()){

String myAddress = (String)e.nextElement();
try{

// add it to the vector
v_links.addElement(IPv6Address.getByName(myAddress));

}catch(UnknownHostException uhe){
gui.sendText(""+uhe) ;

}
}
if (showComments){
gui.sendText("PIB: getAllLinklds: all link ids:");
gui.sendText(""+v_links);

}
return v_links;

}

/**
* Retrieves a vector of all routers attached to a specific phyical

link.
•* @param link_id The IPv6 address of the link in question.
* ©returns routerlds The ids of routers that are directly attached

to this
* link.
*/

public Vector findRouters0nLink(IPv6Address link_id){
Vector routerlds = new Vector();
Enumeration e = nodes.keys();
// for each of the node ids in the PIB
while(e.hasMoreElements()){

Integer myNodeld = (Integer)e.nextElement();
Hashtable myNode = (Hashtable)nodes.get(myNodeld);
Enumeration addresses = myNode.keys();
// for each of these interfaces
while (addresses.hasMoreElements()){

String nextAddress = (String)addresses.nextElement();
try{

// if this interface's network address equals that of the
link

if
(IPv6Address.getByName(nextAddress).getNetworkAddress().toString()

.equals(link_id.toString())){
routerlds.addElement(myNodeld);

}
}catch(UnknownHostException uhe){
gui.sendText("■+uhe);

161

}
}

}
if (showComments){
gui.sendText("PIB: findRoutersOnLink:routers on

link"+link_id+":") ;
gui.sendText(""+routerIds);

}
return routerlds;

}

}//end of ClassObjectStructure

162

APPENDIX J - SAAM SERVER.SERVER.DIFFSERV PACKAGE CODE

//HDecl999 [Henry] Created

package saam.server.diffserv;

import saam.net. *;
import saam.util.*;

/**

* The SLS class stores the ServiceLevelSpec parameters that
describes
* that describe the type differential service class.
*/

public class SLS {

/**
* SLS format:
* 1 | 4 | 1 | 2/5 |
* DSCP Profile Scope Disposition of non-conforming traffic
*/

/** The code point assigned to this particular SLS. */
private byte DSCP = 0;

/"
* DSCP field:
* Bit position
* 0 | 1 2 | 3 | 4 | 5 | 6 | 7 |
* IN | PHB | CU |

* IN in (1) or out (0) of profile
* PHB Per Hop Behavior
* CU currently unused (reserved)
* Bit 1 Delay Priority
* Bit 2 Throughput Priority
* Bit 3 Loss Priority
*/

public static final byte GOLD_CLASS = 112; //01110000
public static final byte SILVER_CLASS = 96; //01100000
public static final byte BRONZE_CLASS = 64; //01000000

private static final
private static final
private static final
private static final
private static final
private static final
private static final
private static final
private static final

int GoldClass_profile = 1000; //kbps
int GoldClass_lossRate = 1; //packet
int GoldClass_delay = 1; //1ms
int SilverClass_profile = 500; //kbps
int SilverClass_lossRate ■= 5; //packet
int SilverClass_delay = 5; //1ms
int BronzeClass_profile = 100; //kbps
int BronzeClass_lossRate = 10; //packet
int BronzeClass_delay = 10; //1ms

/** The loss rate associated to this particular SLS. */
private int lossRate = BronzeClass_lossRate;

163

/** The loss rate associated to this particular SLS. */
private int delay = BronzeClass_delay;

/** The maximum throughput for this SLS */
private int profile = 0;

/** The extend where this SLS is applicable */
private byte scope = 0;

/*•* The private class that contains the disposition info for this
SLS. */
private Disposition disposition;

/** The negotiated data rate planned for this SLS. */
public static final byte DISCARD = 1;
public static final byte REMARK = 2;
public static final byte SHAPE = 3;

/**

* A private class.which store the action to be taken when the
profile

* has been violated.
*/

private class Disposition {
byte DSCP = 0;
int profile = 0;
byte action = 0;

public Disposition (byte type){
action = type;

}

public Disposition (byte type, byte new_DSCP){
action = type;
DSCP = newJDSCP;

}

public Disposition (byte type, int target_profile){
action = type;
profile = target_profile;

}

}

/**

* Constructs a SLS object without any arguments.
*/

public SLS(){
this.DSCP = BRONZE_CLASS;
this.disposition = new Disposition(DISCARD);

}

/**

* Constructs a SLS object using the parameters that are passed.
* ©param DSCP The DS code point for this SLS
* ©param profile The max. throughput in Mbps allowed for this SLS

164

* ©param scope The area which this SLS is applicable to.
* ©param action The action to be taken when profile is exceeded
*/

public SLS(byte DSCP, int profile, byte scope, byte action){
this.DSCP = DSCP;
this.profile = profile;
this.scope = scope;
this.disposition = new Disposition(action);

}

/**
* Construct a SLS given a DSCP that is presumed to be supported
* or a default class profile will be assumed.
* ©param DSCP The DS code point of this SLS
*/

public SLS(byte DSCP){
this.DSCP = DSCP;
if (DSCP == GOLD_CLASS) {

this.profile = GoldClass_profile;
this.disposition = new Disposition(DISCARD);

}
else if (DSCP == SILVER.CLASS) {

this.profile = SilverClass_profile;
this.disposition = new Disposition(DISCARD);

}
else {

this.profile = BronzeClass_profile;
this.disposition = new Disposition(DISCARD);

}
}

/**
* Constructs a SLS object using the parameters that are passed.
* ©param DSCP The DS code point for this SLS
* ©param profile The maximum throughput negotiated
* ©param lossRate The maximum loss rate negotiated
* ©param delay The maximum delay negotiated
*/

public SLS(int profile, int lossRate, int delay){
if (profile > SilverClass_profile &&

lossRate < SilverClass_lossRate &&
delay < SilverClass_delay) {

this.DSCP = GOLD_CLASS;
this.profile = GoldClass_profile;
this.lossRate = GoldClass_lossRate;
this.delay = GoldClass_delay;
this.disposition = new Disposition(DISCARD);

}
else if (profile > BronzeClass_profile &&

lossRate < BronzeClass_lossRate &&
delay < BronzeClass_delay) {

this.DSCP = SILVER_CLASS;
this.profile = SilverClass_profile;
this.lossRate = SilverClass_lossRate;
this.delay = SilverClass_delay;

165

*

*

this.disposition = new Disposition(DISCARD);
}
else {

this.DSCP = BRONZE_CLASS;
this.profile = BronzeClass_profile;
this.lossRate = BronzeClass_lossRate;
this.delay = BronzeClass_delay;
this.disposition = new Disposition(DISCARD);

}

/**

* Constructs a SLS object using the parameters that are passed.
- ©param DSCP The DS code point for this SLS
©param profile The max. throughput in Mbps allowed for this SLS
©param scope The area which this SLS is applicable to.
©param action The action to be taken when profile is exceeded

- ©param new_DSCP The new DS code point to use for action
*/

public SLS(byte DSCP, int profile, byte scope, byte action,
byte new_DSCP){

this.DSCP = DSCP;
this.profile = profile;
this.scope = scope;
this.disposition = new Disposition(action, new_DSCP);

/**

* Constructs a SLS object using the parameters that are passed.
* ©param DSCP The DS code point for this SLS
* ©param profile The max. throughput in Mbps allowed for this SLS
* ©param scope The area which this SLS is applicable to.
©param action The action to be taken when profile is exceeded
©param new_profile The throughput for reshaping action

*/
public SLS(byte DSCP, int profile, byte scope, byte action,

int new_profile){
this.DSCP = DSCP;
this.profile = profile;
this.scope = scope;
this, disposition = new Disposition (action, new_profile) ,-

*

/**

* Returns the DSCP of this Service Level Spec
* ©return byte
*/

public byte getDSCP(){
return DSCP;

}

/**

* Returns the DispositionAction of this Service Level Spec
* ©return byte
*/

166

public byte getDispositionAction(){
return disposition.action;

}

/**
* Returns the ActionByte of this Service Level Spec
* ©return byte
*/

public byte getActionByte(){
return disposition.DSCP;

}

/ **
* Returns the Actionlnt of this Service Level Spec
* ©return int
*/

public int getActionlnt(){
return disposition.profile;

}

/**
* Returns the LossRate of this Service Level Spec
* ©return int
*/

public int getLossRate(){
return lossRate;

}

/**
* Returns the Delay of this Service Level Spec
* ©return int
*/

public int getDelay(){
return delay;

}

/**
* Returns the Profile of this Service Level Spec
* ©return int
*/

public int getProfileO {
return profile;

}

/**
* Returns the Scope of this Service Level Spec
* ©return byte
*/

public byte getScope(){
return scope;

}

/**
* Returns the byte array that represents this Service Level Spec
* ©return byte[]
*/

public byte[] getSLSBytes(){

167

byte[] bytes;
bytes = Array.concat(this.DSCP,

PrimitiveConversions.getBytes(this.profile));
bytes = Array.concat(bytes, this.scope);
bytes = Array.concat(bytes, this.disposition.action);
if (disposition.action == REMARK) {
bytes = Array.concat(bytes,getActionByte());

else if (disposition.action == SHAPE) {
bytes = Array.concat(bytes,

PrimitiveConversions.getBytes(getActibnlnt()));

return bytes;
}

/**

* Generates the string representation of this service level spec.
* ©returns SLS The string representation of this service level sr>ec
*/ '

public String toString(){

String SLS = "\nSLS: DSCP = "+DSCP
+", Profile = "+profile+"kbps, Scope = "+scope+
", Disposition.Action = "+disposition.action;

if (disposition.DSCP != 0){
SLS = SLS + ", Disposition.new_DSCP = "+disposition.DSCP;

else if (disposition.profile != 0){
SLS = SLS + ", Disposition.new_Profile = "+disposition.profile;

return SLS;
}

}//end of SLS class

168

//HDecl999 [Henry] - Created

package saam.server.diffserv;

import saam.message.*;

import saam.util.*;

import java.util.*;

/**

* The SLSTable class is used store a list of customers'

* SLS and provide operations for maintaining the list.
*/

public class SLSTable extends Hashtable{

/** The SLS to be added */
private SLS sis;

/** The amount of throughput that has been assigned. */
private int throughput_utilized = 0;

/**
* Constructs a SLSTable object without any arguments.which
* will create a new Hastable.
*/

public SLSTable(){
}

/**
* Adds a SLS that corresponds to the type of service class given
* for the user specified in the parameters to this SLS Table
* and update the amount of throughput utilized so far
* ©param user
* ©param service_class
*/

public void addSLS(int user. String service_class){
if (service_class.eguals{1,Gold")) {
this.sis = new SLS(SLS.GOLD_CLASS) ;

}
else if(service_class.equals("Silver")) {

this.Sis = new SLS(SLS.SILVER.CLASS) ;
}
else {

this.sis = new SLS(SLS.BRONZE_CLASS) ;
}
put(new Integer(user), sis); //store SLS

169

throughput_utilized = throughput_utilized + sls.getProfileO;

/**

* Adds a SLS for the user specified in the parameters to this
* SLS Table and update the amount of throughput utilized so far
* ©param user The int of the user
* ©param service_class The service class for the user
* ©param profile The throughput required for this SLS
* ©param scope The scope for this SLS
* ©param action The action to be taken when the profile is
* exceeded.
*/

public void addSLS(int user, byte service_class, int profile,
byte scope, byte action){

this.sis = new SLS(service_class, profile, scope, action);
put(new Integer(user), sis); //store SLS
throughput-utilized = throughput_utilized + profile;

}

/**

* Adds a SLS for the user specified in the parameters to this
* SLS Table and update the amount of throughput utilized so far
* ©param user The int of the user
* ©param SLS The new SLS to be added
*/

public void addSLS(int user, SLS sis){
this.sis = sis;
put(new Integer(user), sis); //store SLS
throughput_utilized = throughput_utilized + sls.getProfileO;

/**

* Adds a SLS for the user specified in the parameters to this
* SLS Table and update the amount of throughput utilized so far
* ©param user The int of the user
* ©param service_class The service class for the user
* ©param profile The throughput required for this SLS
* ©param scope The scope for this SLS
* ©param action The action to be taken when the profile is
* exceeded.
* ©param new_DSCP The new DSCP to use for the action
*/

public void addSLS(int user, byte service_class, int profile,
byte scope, byte action, byte new_DSCP){

this.sis = new SLS(service_class, profile, scope, action,
new_DSCP);

put(new Integer(user), sis); //store SLS
throughput_utilized = throughput_utilized + profile;

/ **

* Adds a SLS for the user specified in the parameters to this
* SLS Table and update the amount of throughput utilized so far
* ©param user The int of the user
* ©param service_class The service class for the user

170

* @param profile The throughput required for this SLS
* ©param scope The scope for this SLS
* @param action The action to be taken when the profile is
* exceeded.
* @param target_throughput The throughput to be used to shape
* the traffic
*/

public void addSLS(int user, byte service_class, int profile,
byte scope, byte action, int target_throughput){

sis = new SLS(service_class, profile, scope, action,
target_throughput);

putfnew Integer(user), sis); //store SLS
throughput_utilized = throughput_utilized + profile;

}

/**
* Get the SLS that matches the user passed in the parameter.
* @param user The int of the user.
* ©return The SLS of the user.
*/

public SLS getSLS(int user){
if (isEmptyO) {
System.out.printIn("SLS Table is empty.");

}
else{

sis = (SLS)get(new Integer(user)) ;
if (sis == null){
System.out.printIn("SLS for "+user+" is not in SLS Table.");

}
}
return sis;

}

/**
* Get the amount of throughput that have been assigned
* ©return The amount of throughput that have been assigned
*/

public int getAssignedThroughput(){
return throughput_utilized;

}

/**
* Retrieves the SLS contained in the SLS Table that matches the
* user specified in the parameter, and update the

throughput_ut i1i z ed.
* ©param user The int of the user.
*/

public void deleteSLS(int user){
if (isEmptyOH
System.out.println("SLS Table is empty.");

}
else{

sis = (SLS)get(new Integer(user));
if (sis == null){
System.out.println("SLS for "+user

171

+" is not in SLS Table.");

}
else{

//update throughput_utilized
throughput_utilized = throughput_utilized - sls.getProfileO;
remove(new Integer(user));

}
}

/ * *

* Generates the string representation of this SLS Table.
* ©returns SLS_table The string representation of this SLS Table.
*/

public String toString(){
return "\nSLSTable contains: "+super.toString();

}

}//end SLSJTable

172

//HDecl999 [Henry] - Created

package saam.server.diffserv;

import saam.message.*;
import saam.util.*;
import j ava.ut i1.*;

/**
* The SLSDbase class is used store a list of routers'
* SLSTable and provide operations for maintaining the list.
*/

public class SLSDbase extends Hashtable{

/** The SLSTable to be added */
private SLSTable SLS_table;

/** The GUI for displaying the SLSTables. */
private SLSTableGui gui;

/** The vector table used by the GUI. */
private Vector tableGui;

/** The vector of names stored in the vector table */
private Vector names = new Vector();

/** The integer array that specifies the column widths for
the table. */
private int[] columnWidths = {60,120,60,60,60,60};

/**
* Constructs a SLSDbase object without any arguments.which
* will create a new Hastable.
*/

public SLSDbase() {
names.add("NodelD");
names.add("UserID");
names.add("DSCP");
names.add("Profile■);
names.add("Scope");
names.add("Disposition");
tableGui = new Vector();

}

/**
* Adds a SLSTable for the router with the node_id specified
* in the parameters and update the amount of throughput
* utilized so far
* @param node_id The id that identifies the router.
* ©param sls_table The SLSTable of the router.
*/

public void addSLSTable(Integer node_id, SLSTable sls_table){
//System.out.println("addSLSTable:");
this.SLS_table = sls_table;
if (get(node_id) == null) {

//System.out.println("new SLSTableGui created");

173

gui = new SLSTableGui("Node"+node_id.toStringO,
names, columnWidths);

tableGui.add(node_id.intValue() -1, gui);
}
else {

gui = (SLSTableGui)tableGui.elementAt(
node_id.intValue()-1) ;

}
put(node_id, SLS_table); //store SLS_Table

}

I **
* Used to display the SLSTables
*/

public void displaySLSTable(){
Integer node_id;
if(!isEmpty{)) { '

for(Enumeration e = keys(); e.hasMoreElements();){
node_id = {Integer)e.nextElement();
gui = (SLSTableGui)tableGui.elementAt(

node_id.intValue()-1);
gui.fillTable(getTable(node_id));

}//end for
}

}

/**

* Get the SLSTable associated to the node_id specified in the
* parameter.
* @param node_id The node which the SLSTable belongs to
* ©return A vector of the SLS
*/

public Vector getTable(Integer node_id){
SLSTable entry;
if(isEmpty()) return null;
Vector table = new Vector(size());
entry = getSLSTable(node_id);
for(Enumeration e2 = entry.keys(); e2.hasMoreElements();){

int skey = ((Integer)e2.nextElement()).intValue();
SLS entry2 = (SLS)entry.getSLS(skey);
Vector oneRow = new Vector();
oneRow.add(node_id.toString()) ;
oneRow.add(""+skey) ;
oneRow.add(""+entry2.getDSCP());
oneRow.add(""+entry2.getProfile());
oneRow.add(""+entry2.getScope());
oneRow.add(n"+entry2.getDispositionAction());
table.add(oneRow) ;

}//end for
return table;

}//getTable()

/**

* Get the SLSTable that matches the router's node_id passed
* in the parameter.
* @param node_id The id that identifies the router.

174

* ©return The SLSTable that matches the router's node_id.
*/

public SLSTable getSLSTable(Integer node_id){
if (isEmptyO) {

//System.out.println("SLS Dbase is empty.");
SLS_table = null;

}
else{

SLS_table = (SLSTable)get(node_id);
/*if (SLS_table == null){
System.out.println("SLS Table for router node_id = "

+node_id+" is not in SLS Dbase.");
}*/

}
return SLS_table;

>

/**
* Retrieves the SLSTable contained in the SLS Dbase that
* matches the node_id specified in the parameter.
* ©param node_id The id that identifies the router.
*/

public void deleteSLSTable(Integer node_id){
if (isEmptyO) {
System.out.println("SLS Dbase is empty.");

}
else{

SLS_table = (SLSTable)get(node_id);
if (SLS_table == null){

System.out.println("SLS Table for router node_id = "
+node_id+" is not in SLS Dbase.");

}
else{

remove(node_id);
}

}
}

/**
* Generates the string representation of this SLS Dbase.
* ©returns The string representation of this SLS Table.
*/

public String toString(){
return "SLSDbase contains: " + super.toString();

}

}//end SLSDbase class

175

THIS PAGE INTENTIONALLY LEFT BLANK

176

APPENDIX K - SAAM CONTROL.CONTROLEXECUTIVE CLASS CODE

//23Feb2000[Henry] - modified
// Feb 2000[akkoc] - modified
// 0lAug99 [Vrable] - Created

package saam.control;

import Java.net.UnknownHostException;
import java.net.InetAddress;
import Java.util.*;
import j ava.lang.*;

import saam.Translator;
import saam.router.*;
import saam.net.*;
import saam.message.*;
import saam.residentagent.*;
import saam.residentagent.router.*;

import saam.event.*;
import saam.util.SAAMRouterGui;
import saam.util.Array;

import saam.util.PrimitiveConversions;
import saam.EmulationTable;

import saam.server.*;

/**
* The ControlExecutive maintains control over the event handling

mechanism
* within the saam protocol stack by acting as a registrar for Objects

that
* wish to communicate on Channels or emulated ports.<p>
* The ControlExecutive receives all ResidentAgents destined for any of

the
* router interfaces the ControlExecutive instantiates. Before

instantiating these
* agents, the ControlExecutive could be programmed to perform various

policy
* adherence checks such as disallowing agents whose package name is
* saam.control for example. A check such as this would prevent agents

from
* accessing the Channel class directly and circumventing the Channel
* registration process.<p>
* The ControlExecutive passes a copy of itself to each ResidentAgent

that it
* instantiates, thus allowing the agent access to the

ControlExecutive's
* public methods. Through the use of these methods, ResidentAgents

can
* register to talk on or listen to SAAM ports or Channels, request

flows,

177

* send Messages or SAAMPackets, register as MessageProcessors, or
retrieve
* various types of information from the ControlExecutive.<p>
* The ControlExecutive also receives all Message Objects that are

destined

* for this router. A Hashtable of MessageProcessors is maintained to
* determine which processor to pass an incoming Message to.<p>
*/

public class ControlExecutive
implements MessageProcessor, SaamTalker, SaamListener{

/ / some well-known UDP ports
public static final int ECHO_PORT = 7;
public static final int DISCARD_PORT s 9;
public static final int DAYTIME_PORT = 13;
public static final int TIME_SERVER_PORT = 37
public static final int DNS_PORT = 53
public static final int WWW_HTTP_PORT = 80
public static final int CHAT_PORT = 531;

//saam ports/channels
public static final int HIGHEST_WELL_KNOWN_PORT
public static final int MAX_PORT
public static final int SAAM_CONTROL_PORT

= 8000;
public static final int ROUTER_STATUS_CHANNEL

80000;

= 1023;
= 65531;

/ **

* The ControlExecutive registers with itself as a MessageProcessor
capable of

* processing messages of the following types.
*/

private static final String[] messageTypes =
{"saam.message.InterfacelD",
"saam.message.ServerID",
"saam.message.FlowResponse",
"saam.message.DemoHello",
"saam.message.DCM",
"saam.message.UCM",
"saam.message.ParentNotification",
"saam.message.TimeScale",
"saam.message.ServiceLevelSpec",
"saam.message.ResourceAllocation",
"saam.message.InterfaceFailure",
"saam.message.TestMessage",
};

private static final boolean ROUTER_UP = true;
private static final boolean ROUTER_DOWN = false;

/**

* The initial status of the router is false. As key router
components

* are added, this status is updated to reflect the router's ability
* to route packets.

178

*/
private boolean routerStatus = ROUTER_DOWN;

/*
The following boolean variables represent the status of the elements

necessary
to stand up a router.

*/
private boolean helloMessageReceived;
private boolean arpCacheReady;
private boolean flowRoutingTableReady;
private boolean emulationTableReady;
private boolean outboundlnterfaceReady;

private int interfaceCount;
private int numberOfSchedulersPresent;
private int nextlnboundlnterface;
private SAAMRouterGui gui;
private MainGui mainGui;
private PacketFactory packetFactory;
private PacketFactory packetFactoryOut;
private TransportInterface transportlnterface;
private ResidentAgent arpCache;

private static RoutingAlgorithm routingAlgorithm;

private Interface currentlnterface;

private Object theLock= new Object();//critical section lock

//added by Henry
private Server server;
private String sender; //The sender of a flow agent

//below are added by akkoc
. private AutoConfigurationExecutive autoConExec;
private int timeScale;
private static RouterBoundCtrlChTable rotBonConTable;
private IPv6Address routerId= new IPv6Address();
private static EmulationTable emTable;
private boolean isServer = false;
private ServerTable serverTable;

//Hasan UYSAL
LsaGenerator IsaGuy;

/**
* If a ServerlD Message comes from the DemoStation,
* the IPv6Address associated with that ServerlD will
* be set as the dest in the IPv6Header of packets sent out
* on Server-bound flow, otherwise, the default IPv6Address
* will be set as the dest.
*/

// private IPv6Address serverIP = new IPv6Address(); //Akkoc removed

I **

179

* The ServerlD will be sent by the DemoStation. //Akkoc removed
*/

// private ServerlD serverlD; //Akkoc removed

/**

* The Vector that contains Interfaces that have been instantiated on
* this router. Default size = 4.
*/

private Vector interfaces = new Vector(4);

/**

* The Vector of IDs for each interface that has been instantiated on
* this router. Default size =4.
*/

private Vector interfacelDs = new Vector(4);

/**

* The Vector of talkers that have passed the registration process
and

* are authorized to talk on channels.
*/

private Vector activeTalkers = new Vector();

/**

* The Hashtable of ResidentAgents that have been instantiated by the
* ControlExecutive.
*/

private Hashtable agents = new Hashtable();

/**

* The Hashtable of ResidentAgentCustomers that have registered to
receive

* ResidentAgent replacements as they arrive.
*/

private Hashtable agentCustomers = new Hashtable();

/**

* The Hashtable of MessageProcessors that have registered with this
* ControlExecutive.
*/

private Hashtable messageProcessors =
new Hashtable();

/**

* The Hashtable of Channels that have been instantiated by this
ControlExecutive.

*/
private Hashtable activeChannels = new Hashtable();

/**

* The Hashtable of channels that a given SaamTalker is registered to
talk on.

*/
private Hashtable channelsTalkerHas = new Hashtable();

/**

180

* The Hashtable of channels that a given SaamListener is registered
to listen on.

*/
private Hashtable channelsListenerHas = new Hashtable();

/**
* The Hashtable of Objects that have requested flows.
*/

private Hashtable flowRequestors = new Hashtable();

/**
* The Hashtable of Objects that have been assigned flows.
*/

private Hashtable assignedFlows = new Hashtable();

/**
* Instantiates and sets up communication with all Objects that are

necessary
* to allow the ControlExecutive to start receiving ResidentAgents

and Messages.
*/

public ControlExecutive(){
mainGui = new MainGui(this,"SAAM Router Prototype");
gui = new SAAMRouterGui(toString());
transportlnterface = new Transportlnterface(this);
//for receiving inbound packets
packetFactory = new PacketFactory(this);
packetFactoryOut = new PacketFactory();

emTable =new EmulationTableO ;
arpCache = new ARPCache() ;
serverTable = new ServerTable(this);
autoConExec = new AutoConfigurationExecutive(this);

//this should eventually become a ResidentAgent
routingAlgorithm = new RoutingAlgorithm(this, arpCache);

//Here is where the ControlExecutive registers itself as a
MessageProcessor

registerMessageProcessor(this);

/* Enable Talking on the channel that the Translator is listening
on for

router status updates.*/
try{
addTalkerToChannel(this, ROUTER_STATUS_CHANNEL);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}

try{
//Get ownership of the SAAM_CONTROL_PORT so other applications
//cannot. When the Transportlnterface sees a packet destined
//for this port, it will not forward the packet directly on
//the SAAM_CONTROL_PORT, rather, it will forward the packet

181

//to the PacketFactory on the
ProtocolStackEvent.PACKETFACTORY_CHANNEL

moni torPort(thi s, SAAM_CONTROL_PORT);
gui.setTextField("Monitoring emulated port "+SAAM_CONTROL_PORT);

}catch(PortAccessDeniedException pade){
gui.sendText(pade.toString()) ;

}

//Hasan UYSAL
IsaGuy = new LsaGenerator(this) ;

mainGui.updateDisplay();
}//ControlExecutive()

/**

* Returns the IPv6Address of the server controlling this router
* ©return The IPv6Address of the server controlling this router
*/

/* public IPv6Address getServerIP(){
return serverIP;

} */ // akkoc removed

/**

* Returns the Servertable maintained by the router
* ©return ServerTable containing the entries
*/

public synchronized ServerTable getServerTable(){
return ServerTable;

}

/**

* Returns the Servertable maintained by the router
* ©return ServerTable containing the entries
*/

public String getSender(){
return sender;

}

/**

* Returns the timesacle value for those requiring it
* ©return int timescale value
*/

public int getTimeScale(){
return timeScale;

}
/**

* Returns the EmulationTable of the router
* ©return EmulationTable containing the entries
*/

public synchronized EmulationTable getEmulationTable(){
return emTable;

}

/**

* To let know whether to behave as router or server for classes
* requiring that information
* ©return boolean value

182

*/
public boolean getlsServer(){

return isServer;
}

/ **

* Returns the Router idd for the router
* ©return IPv6Address of the router .
*/

public IPv6Address getRouterld(){
return this.routerId;

}

/ **
* Hasan UYSAL
* returns the reference to lsa generator
*/

public LsaGenerator getGenerator(){
return IsaGuy;

}

/**

* Returns the status of the ARPCache.
* ©return The status of the ARPCache ResidentAgent. (if the

ARPCache
* contains an entry that corresponds to the next hop for Server-

bounded
* flow, this method returns true).
*/

public boolean getArpCacheStatus(){
return arpCacheReady;

. }

/**

* Returns the status of the EmulationTable.
* ©return The status of the EmulationTable. (if the EmulationTable
* contains an entry that corresponds to the next hop for Server-

bound
* flow, this method returns true).
*/

public boolean getEmulationTableStatus(){
return emulationTableReady;

}

/**
* There are three tables in every SAAM router: The ARPCache, the

EmulationTable,
* and the FlowRoutingTable. Each of these tables notifies the

ControlExecutive
* when it is ready to serve the router. When all of these tables

are ready and
* a few other conditions are met, the ControlExecutive sends a

notification to
* the Translator.
* ©param o The Object sending the update.
* ©param status The status of o.
*/

183

public void updateCoreServiceStatus(
Object o, boolean status){

String className = o.getClass().getName();
if(className.equals(

"saam.residentagent.router.ARPCache")){
arpCacheReady = status;
updateRouterStatus();

}else if (className.equals("saam.Translator")){
emulationTableReady = status;
updateRouterStatus();

}
//do nothing if another Object called this method

}

// methods below are modified/killed by [akkoc]
/**

* The FlowRoutingTable uses this method to notify the
ControlExecutive when it

* is ready to serve the router.
* dparam o The Object sending the update.
* Uparam serverBoundNextHop The IPv6Address of the next hop

associated with
* Server-bound flow.
*/

/* public void updateCoreServiceStatus(Object o, IPv6Address
serverBoundNextHop){

String className = o.getClass().getName();
this.serverBoundNextHop = serverBoundNextHop;
boolean status = (serverBoundNextHop.equals(

new IPv6Address()))? false:true;
flowRoutingTableReady = status;
//the following logic does not work for some reason...
//I think it's the ArpCache.query method
if(!arpCacheReady){
if(routingAlgorithm.checkARPCache(
new ARPCacheEntry(serverBoundNextHop))){
arpCacheReady=true;

}
}
updateRouterStatus();

} */

/**

* Returns the IPv6Address representing the next hop associated with
* Server-rbound flow.
* ©return The IPv6Address representing the next hop associated with
* Server-bound flow.
*/

/* public IPv6Address getServerBoundNextHop(){
return serverBoundNextHop;

} */

//Henry
public void updateSLSTable(){
mainGui.updateSLSTables();

184

}.

public void updateRouterSLSTable(){
mainGui.updateRouterSLSTable();

}

//Henry
public void updateFlowTable(Vector data){
mainGui.updateFlowTables(data);

}

/**
* Performs a series of checks to determine the status of the router

and
* then updates the status accordingly.
*/

private synchronized void updateRouterStatus(){

// used only to define whether router is up or not
// displayRouterStatus() ;
/* String myAddress = null;
try{
myAddress = InetAddress.getLocalHost().getHostAddress();

}catch(UnknownHostException uhe){} */

//compare local address with the address of the server. If the
//two addresses are the same and there is at least one interface
//to process traffic, then the outbound interface for this server

is ready.

//19Dec99[akkoc] - logic belowhas been changed ace, to new
paradigm

// if there is at leat one interfce ready then out bound interface
is ready

//OLD
/* if(myAddress.equals(serverID.getIPv4()) &&

(interfaces.size()>=1)){
outboundlnterfaceReady=true;

}else if-
//otherwise, compare the network portion of the IPv6Address of

the next
//hop associated with Server-bound flow to the network portions

of the
//IPv6Addresses of the interfaces on this router. If there is a

match,
//the outbound interface is ready.

(routingAlgorithm.determineOutboundlnterface(interfaces,
serverBoundNextHop)!=null){
outboundlnterfaceReady=true;

} */
//NEW

if(interfaces.size()>=1){
outboundlnterfaceReady=true;

}
//if all the conditions are met, notify the Translator that the

router

185

//is ready.
if(helloMessageReceived && arpCacheReady && emulationTableReady &&

outboundlnterfaceReady) {

if(routerStatus==ROUTER_DOWN) {
//need to bring router status up since it satisfies all

criterias
routerStatus=ROUTER_UP;

//notifying Translator
RouterStatusEvent event = new

RouterStatusEvent(toString(),this,
ROUTER_STATUS_CHANNEL,routerStatus);

try{
talk(event);

}catch(ChannelException ce){
gui.sendText(ce.toString());

');

}
IsaGuy.startAction();
gui.sendText("Router is still UP NOW..

}else{
routerStatus=ROUTER_DOWN;
//bringRouterDown();
gui.sendText("Router is still down..."),-

}
}

}// end of method

/**

* Displays the current status of the router.
*/

private void displayRouterStatus(){
gui.sendText("\nCurrent Router Status:");
gui.sendText(" helloMessageReceived: "+helloMessageReceived);
gui.sendText(" arpCacheReady:
gui.sendText(" fIowRoutingTableReady:

fIowRoutingTableReady);
gui.sendText(" emulationTableReady:
gui.sendText(" outboundlnterfaceReady:

outboundInterfaceReady+
"\n");

}

"+arpCacheReady);
" +

"+emulationTableReady);
" +

the
* In the SAAM architecture, traffic cannot be sent between hosts if

* hosts are not assigned flows. This method provides the mechanism
by

* which hosts request flows from the SAAM server. With the
information

* provided in the parameters, this method constructs a
saam.message.FlowReguest.

* It then sends that FlowReguest to the protocol stack for
transmission to

* the SAAM server. Note: If the requestor is not listening to a
port, the

* requestor should first call the listenToRandomPort method for a
port assignment.

186

* ©param requestor The Object requesting the flow.
* ©param sourcePort The local port that requestor is listening on.
* ©param destHost The IPv6Address of the destination.
* ©param requestedDelay The amount of delay the requestor will

tolerate.
* ©param requestedLossRate The rate of loss the requestor will

tolerate.
* ©param requestedThroughput The amount of throughput the requestor

will tolerate.
*/

public synchronized long requestFlow(ResidentAgent requestor,
short sourcePort, IPv6Address destHost, int requestedDelay,

int requestedLossRate, int requestedThroughput)
throws FlowException{

long timeStamp = System.currentTimeMillis();
flowRequestors.put(new Long(timeStamp),requestor);
IPv6Address sourceHost =

((InterfacelD)interfacelDs.get(0)).getIPv6{);
FlowRequest request = new FlowRequest(

sourceHost,destHost,timeStamp,

requestedDelay,requestedLossRate,requestedThroughput);

//FlowRequests travel on Server-bound flow,
short destPort = (short)SAAM_CONTROL_PORT;
gui.sendText("requestFlow to: source = "+sourceHost+", dest =

"+destHost);
Vector channelsToServer = serverTable.getTable();
for (int i=0; i<channelsToServer.size(); i++) {

Vector channelToAServer = (Vector)channelsToServer.get(i);
int serverBoundFlowId =

Integer.parselnt((String)channelToAServer.get(0));
try{
IPv6Address serverIPv6 =

IPv6Address.getByName ((String)channelToAServer.get(2));
gui.sendText C'\t\tServerBoundFlowId =

n+serverBoundFlowId+1', ServerIPvö = "+serverIPv6);
//send(this, request, MainServerBoundCtrlFlowID,

sourcePort,serverIP,destPort);
send(this, request, serverBoundFlowId+1, sourcePort,

serverIPv6, destPort);
}catch(FlowException fe){
gui.sendText(fe.toString());

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString()) ;

}
}
return timeStamp;

}

/**
* In the SAAM architecture, traffic cannot be sent between hosts if

the
* hosts are not assigned flows. This method provides the mechanism

by

187

* which hosts request flows from the SAAM server. With the
information

* provided in the parameters, this method constructs a
saam.message.FlowRequest.

* It then sends that FlowRequest to the protocol stack for
transmission to

* the SAAM server. Note: If the requestor is not listening to a
port, the

* requestor should first call the listenToRandomPort method for a
port assignment.

* dparam requestor The Object requesting the flow.
* Gparam sourcePort The local port that requestor is listening on.
* @param destHost The IPv6Address of the destination.
* @param requestedDelay The amount of delay the requestor will

tolerate.
* ©param requestedLossRate The rate of loss the requestor will

tolerate.
* ©param requestedThroughput The amount of throughput the requestor

will tolerate.
*/

public synchronized long requestFlow(ResidentAgent requestor,
short sourcePort, IPv6Address destHost, int user_id, int

requestedDelay,
int requestedLossRate, int requestedThroughput)

throws FlowException{

long timeStamp = System.currentTimeMillis();
flowRequestors.put(new Long(timeStamp)»requestor);
IPv6Address sourceHost =

((InterfacelD)interfacelDs.get(0)).getIPv6(); .
//Request a DiffServ flow
FlowRequest request = new FlowRequest(sourceHost, destHost,

timeStamp,
user_id, requestedDelay, requestedLossRate,

requestedThroughput);

//FlowRequests travel on Server-bound flow,
short destPort = (short)SAAM_CONTROL_PORT;
gui.sendTextCrequestFlow to: source = "+sourceHost+", dest =

"+destHost);
Vector channelsToServer = serverTable.getTable();
for (int i=0; i<channelsToServer.size(); i++) {

Vector channelToAServer = (Vector)channelsToServer.get(i);
int serverBoundFlowId =

Integer.parselnt({String)channelToAServer.get(0)) ;
try{
IPv6Address serverIPv6 = IPv6Address.getByName(

(String)channelToAServer.get(2));
gui.sendText(n\t\tServerBoundFlowId = n+serverBoundFlowId+

", ServerIPv6 = n+serverIPv6);
//send(this, request, MainServerBoundCtrlFlowID,

sourcePort,serverIP,destPort);
send(this, request, serverBoundFlowId+1,

sourcePort, serverIPv6, destPort);
}catch(FlowException fe){
gui.sendText(fe.toString());

}catch(UnknownHostException uhe){

188

gui.sendText(uhe.toString());
}

}
return timeStamp;

}

/**
* Objects that have been assigned flows can send Messages with this

method.
* In order to use this method, Objects must first request a flow

using the
* reguestFlow method; and then receive a flow assignment from the

server
* ©param sender The Object sending the message.
* ©param message The subclass of saam.message.Message to be sent.
* ©param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* ©param sourcePort The port on the local machine that sender is

listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*/

public synchronized void send(Object sender, Message message,
int flowID, short sourcePort, IPv6Address destHost,
short destPort) throws FlowException{

if(sender.getClass().getName().equals(
"saam.residentagent.router.LsaGenerator")){
sender = this;

}
gui.sendText("\nSending Message...");
//PacketFactory packetFactory = new PacketFactory{);

packetFactoryOut.append(message);

SAAMPacket saamPacket = null;
try{

saamPacket = new SAAMPacket(
packetFactoryOut.getBytes()) ;

}catch(UnknownHostException uhe){
throw new FlowException(sender+

" Problem building packet n+flowID);
}

//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportlnterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
gui.sendText("» Message payload size = " +

v6Packet.getPayload().length);
try{

saamPacket = new SAAMPacket(v6Packet.getPayload());
}catch(UnknownHostException uhe){
throw new FlowException(sender+

" Problem building packet "+flowID);
}

189

send(sender,v6Packet);

/**

* this method is written by Hasan UYSAL
* it sends the extra LSA to the server
*/

public void sendLSA(LinkStateAdvertisement lsa){

packetFactory.append(lsa.getBytes());

SAAMPacket saamPacket=null;
try{
saamPacket = new SAAMPacket(packetFactory.getBytes());

}catch(UnknownHostException ex){
gui.sendTextPCan not create SAAMPacket ControlExecutive

sendLSA().");
return;

}

Vector servers=serverTable.getServerEntries() ;
Enumeration serversEnum=servers.elements();
while(serversEnum.hasMoreElements()){

ServerTableEntry
serverEntry=(ServerTableEntry)serversEnum.nextElement() ;

int flowId=serverEntry.getFlowId();
IPv6Address serverIp=serverEntry.getServerAddress();

try{

send(this,saamPacket,flowld,(short)SAAM_CONTROL_PORT,serverlp,(short)SA
AM_CONTROL_PORT);

}catch(FlowException fe){
gui.sendTextCCan not send SAAMPacket ControlExecutive

sendLSA()"+
" to server with flowld "+flowId+" and IP

"+serverlp.toString());
}

}
}//end sendLSA()

/**

* Objects that have been assigned flows can send DCM messages with
this method.

* ©pararn sender The Object sending the message.
* ©param message The DCM message to send
* ©param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* ©param sourcePort The port on the local machine that sender is

listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.

190

public synchronized void sendDCM(Object sender, DCM message, int
flowID,

short sourcePort, IPv6Address destHost, short
destPort)

throws
FlowException{

//PacketFactory packetFactory = new PacketFactory();
packetFactoryOut.appendDCM(message);
SAAMPacket saamPacket = null;
long time = System. currentTimeMiHis () ;
byte numMessages= 1;
SAAMHeader saamHeader = new SAAMHeader(time,numMessages);
try{

saamPacket = new SAAMPacket{saamHeader,
packetFactoryOut.getDCMBytes());

}catch(Exception uhe){
throw new FlowException(sender+ " Problem building packet

"+flowID);
}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
. gui.sendText("» DCM Message payload size = " +

v6Packet.getPayload().length);
gui.sendText("» DCM Message IN IPV6 from size is = " +

v6Packet.getBytes().length) ;

send(sender,v6Packet);

} //end of sendDCM

/**
* Objects that have been assigned flows can send UCM messages with

this method.
* @param sender The Object sending the message.
* @param message The UCM message to send
* ©param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* ©param sourcePort The port on the local machine that sender is

listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*

public synchronized void sendUCM(Object sender, UCM message, int
flowID,

short sourcePort,IPv6Address destHost, short
destPort)

throws
FlowException{

//PacketFactory packetFactory = new PacketFactory();
packetFactory.appendUCM(message);
SAAMPacket saamPacket = null;
long time = System.currentTimeMillis() ;

191

byte numMessages= 1;
SAAMHeader saamHeader = new SAAMHeader(time,numMessages);
try{

saamPacket = new SAAMPacket(saamHeader,
packetFactory.getUCMBytes());

}catch (Exception uhe) {
throw new FlowException(sender+

" Problem building packet n+flowID);
}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
gui.sendTextC» UCM Message payload size = " +

v6Packet.getPayload().length);
gui.sendText(">> UCM Message IN IPV6 from size is = n +

v6Packet.getBytes().length);
send(sender,v6Packet);

} //end of sendUCM
*/

/**

* Huseyin UYSAL
*
*/

public void sendUCM(byte noMes,byte [] bytes,int flowld,IPv6Address
dest){

packetFactoryOut.appendUCM(noMes,bytes);
SAAMPacket saamPacket=null;
try{
saamPacket=new SAAMPacket(packetFactoryOut.getBytes()) ;

}catch(UnknownHostException he){
gui.sendText("Exception while creating saam packet at sendUCM.");

try{

sendfthis,saamPacket,flowld,(short)SAAM_CONTROL_PORT,dest,(short)SAAM C
ONTROL_PORT);

}catch(FlowException fe){
gui.sendText("Colud not send the UCM to the Server "+(flowld-l));

}

/**

* Objects that have been assigned flows can send PN messages with
this method.

* ©param sender The Object sending the message.
* @param message The PN message to send
* @param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* ©param sourcePort The port on the local machine that sender is

listening on.

192

* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*/

public synchronized void sendPN(Object sender, ParentNotification
message,

int flowID, short sourcePort, IPv6Address destHost , short
destPort)

throws
FlowException{

//PacketFactory packetFactory = new PacketFactory ();
packetFactory.appendPN(message);
SAAMPacket saamPacket = null;
long time = System.currentTimeMillis();
byte numMessages= 1;
SAAMHeader saamHeader = new SAAMHeader(time,numMessages);
try{
saamPacket = new SAAMPacket(saamHeader,

packetFactory.getPNBytes()) ;
}catch(Exception uhe){

throw new FlowException(sender+
" Problem building packet "+flowID);

}
//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
IPv6Packet v6Packet = transportlnterface.buildIPv6Packet(sender,

saamPacket,flowID,sourcePort,destHost,destPort);
gui.sendText("» PN Message payload size = " +

v6Packet.getPayloadO .length) ;
gui.sendText("» PN Message IN IPV6 from size is = " +

v6Packet.getBytes().length);
send(sender,v6Packet);

}//end sendPN

/**
* Objects that have been assigned flows can send SAAMPackets with

this method.
* In order to use this method, Objects must first request a flow

using the
* requestFlow method; and then receive a flow assignment from the

server
* ©param sender The Object sending the message.
* ©param saamPacket The SAAMPacket to be sent.
* ©param flowID The flow ID that has been assigned for traffic from

sender
* destined for destHost.
* ©param sourcePort The port on the local machine that sender is

listening on.
* ©param destHost The IPv6Address of the destination.
* ©param destPort The port to which destHost is listening.
*/

public synchronized void send(Object sender, SAAMPacket saamPacket,
int flowID, short sourcePort, IPv6Address destHost,
short destPort) throws FlowException{

193

//call the send method that takes an IPv6Packet,
//using the IPv6Packet constructed by the Transportinterface
gui.sendText("Sending SAAM Packet...");
IPv6Packet v6Packet = transportInterface.buildIPv6Packet(sender,
saamPacket,flowID,sourcePort,destHost,destPort);

send(sender,v6Packet);
}//send()

/**

* Objects that have been assigned flows can send IPv6Packets with
this method.

* In order to use this method, Objects must first request a flow
using the

* requestFlow method; and then receive a flow assignment from the
server.

* note: If the packet is destined for an Interface that is one this
router,

* the packet will be delivered without flow id verification.
* @param sender The Object sending the message.
* ©pararn ipv6Packet The IPv6Packet to be sent.
*/

public synchronized void send(Object sender, IPv6Packet ipv6Packet)
throws FlowException{

int flowID = ipv6Packet.getHeader().getFlowLabel();
//verify that the sender owns the flowID
gui.sendText("Sending IPv6 Packet on flow n+flowID);
if(!routingAlgorithm.isApplicationLayerPacket(ipv6Packet)){
ResidentAgent agent = (ResidentAgent)assignedFlows.get(

new Integer(flowID));
if(sender.getClass().getNameO.equals("saam.server.Server")

|| (agent!=null&&agent.equals(sender)) || sender.equals(this)){
//Here we forward the packet to an inbound interface
//so it will be processed just as if it were an inbound
//packet.
ProtocolStackEvent event = new ProtocolStackEvent(

sender.toString() , this,
ProtocolStackEvent.getFromNICToInterfaceChannel(
nextlnboundlnterface),
ipv6Packet.getBytes());

try{
gui.sendText("\n» Enqueuing packet for transmission at

channel" +
event.getChannel_ID());

gui.sendText(- » nextlnboundlnterface = " +
nextInboundInterface+" flowid is "+flowID);

talk(event);
}catch(ChannelException ce){
gui.sendText(ce.toString());

}
// routingAlgorithm.routelnboundPacket(ipv6Packet.getBytes());

nextlnboundlnterface++;
if(nextlnboundlnterface>=interfaces.size()){
nextlnboundlnterface=0;

}
}else {

194

gui.sendText(sender+
" doesn't own flow n+flowID);

throw new FlowException(sender+
" doesn't own flow "+flowID);

}
}else{

//this packet is destined for an Interface on this router, to go
outside

//so we forward it to the Transportinterface for delivery
//on the proper emulated UDP port.

IPv6Header v6Header = ipv6 Packet .getHeaderO ;

if(v6Header.getSource().toString().equals(IPv6Address.DEFAULT_HOST)){

v6Header.setSource(((Interface)interfaces.get(0)).getlDO.getIPv6 ());
ipv6Packet.setHeader(v6Header) ;

}

//gui.sendText("received app. layer packet from application
layer");

gui.sendText("\nforwarding to Transportinterface");

SAAMPacket saamPacket = null;
try{

saamPacket = new SAAMPacket(ipv6Packet.getPayload());

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}
ProtocolStackEvent event = new ProtocolStackEvent{

sender.toString(),
//here we trick the Transportinterface into thinking this
//event came from the routingAlgorithm. Also, since the
//routingAlgorithm is already registered to talk on this
//channel, we make it past the security check that ensures
//the talker is registered on the channel.
routingAlgorithm,ProtocolStackEvent.
FROM_ROUTINGALGORITHM_TO_TRANSPORTINTERFACE_CHANNEL,

ipv6Packet.getBytes()) ;
try{

talk(event);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}

}//send()

/**
* In order to send a flowRequest or any other type of traffic in a

SAAM network.

195

* sending Objects must be listening to a port. This method assigns
Objects a

* random port that is higher than the highest well-known port, but
no higher than

* MAX_PORT.
* ©param listener The SaamListener requesting a random port.
*/

public int listenToRandomPort(SaamListener listener){
int port = listenToRandomChannel(

listener, HIGHESTJffiLL_KNOWN_PORT+l,MAX_PORT);
try{

//the Transportinterface must be able to talk on the new port in
order

//to deliver traffic to the listener
addTalkerToChannel(transportlnterface, port);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
return port;

//also register the Transportinterface as a talker on
//this port.

}//listenToRandomPort()

/**

* Ports reside on Channels 0-MAX_PORT; any Channel higher than
MAX_PORT

* is a Channel that is not associated with a port. Examples of this
are

* the communications Channels within the protocol stack.
* ©param listener The SaamListener requesting a random channel.
* Note: Since this method is private, only the ControlExecutive can
* assign listeners to a random channel.
* ©param lowestChannel The lowest channel in the range to be

selected from.
* ©param highestChannel The highest channel in the range to be

selected from.
*/

private int listenToRandomChannel(
SaamListener listener, int lowestChannel,

int highestChannel){
int channelFound = 0;
boolean exception = true;
while(exception){

try{
channelFound = (lowestChannel+(
new RandomO).nextlnt(highestChannel-lowestChannel));

addListenerToChannel(listener, channelFound);
exception = false,-

}catch(Exception e){}
}//while()
return channelFound;

}//listenToRandomChannel()

/**

* Returns the array of Strings representing the class
* names of the messages this Object will register to process.
* ©return The array of Strings representing the class names

196

* of the messages this Object will register to process.
*/

public synchronized String[] getMessageTypes(){
return messageTypes;

}//getMessageTypes()

/**

* This private method is used by the ControlExecutive to perform the
* steps necessary to instantiate an Interface.
* @param id The InterfacelD that will be assigned to the interface

being
* instantiated. If an Interface with this id is already up, the

request
* will be ignored.
*/

private void standUpInterface(InterfacelD id){
boolean alreadyActive = false;
for (int i=0;i<interfacelDs.size();i++){
if(((InterfacelD)interfacelDs.get(i)).equals(id)){
alreadyActive = true;
break;

}
}

if(!alreadyActive){
interfacelDs.add(id);
gui.sendText(" Instantiating interface["+interfaceCount++ +"]");
gui.sendText(" IPv6Address: "+id.getIPv6().toString()) ;

Interface thislnterface = new Interface(this, id);
interfaces.add(thislnterface) ;
updateRouterStatus (') ;
routingAlgorithm.addlnterface(thislnterface);
try{
addTalkerToChannel(this,

ProtocolStackEvent.getFromNICToInterfaceChannel(
interf aces, size ()-1)) ,- .

}catch(ChannelException ce){
gui.sendText(ce.toString());

}
}else{
gui.sendText("Interface already active...");

}

//[Akkoc] added for router_id determination
//to check whether this new interface can be routerld
// Highest IPv6Adress has been taken as routerld
byte[] candidate = id.getIPv6().getAddress();
byte[] rid = routerld.getAddress();

for(int i=0; i<rld.length; i++){
if(candidate[i] < rld[i]) {

break;
}else if(candidate[i] > rld[i]) {

routerld = id.getIPv6();
}//end else if

} // end for

197

gui.sendText("Now router id is "+ getRouterld().toStringO)

}//standUpInterface()

* This method contains the logic needed by the ControlExecutive
* to process the Messages it is registered to process.
* @param message The subclass of saam.message.Message to be

processed.
*/
//synchroni z ed

public void processMessage(Message message){
String name = message.getClass().getNameO;

if(name.equals(messageTypes[0])){
InterfacelD id = (InterfacelD)message;:
standUpInterface(id);
updateRouterStatus();

}else if(name.equals(messageTypes[1])){
try{
// serverlD = ((ServerlD)message); // akkoc killed
// serverIP = serverlD.getIPv6(); // akkoc killed
}catch(Exception e){
gui.sendText("Error processing serverlD: "+e.toString()) ;

}
}else if(name.equals(messageTypes[2])){
gui.sendText("Got a FlowResponse.. ");
FlowResponse response = (FlowResponse)message;
long timeStamp = response.getTimeStamp();
gui.sendText("TimeStamp: n+timeStamp);
int flowID = response.getFlowId();
gui.sendText(n flowID: "+flowID);
ResidentAgent requestor =

(ResidentAgent)flowRequestors.get(new Long(timeStamp));
gui.sendText("Forwarding to Requestor: "+requestor);
if(requestor!=null){
assignedFlows.put(new Integer(flowID),requestor);

requestor.receiveFlowResponse(response);
}//else do nothing

}else if(name.equals(messageTypes[3])){
//received a saam.message.DemoHello from the DemoStation
gui.sendText("received message type: " + messageTypes[3]);
//
Vector hellolnterfaces = ((DemoHello)message).getlnterfacelDsC
for(int i=0;i<hellolnterfaces.size();i++){

InterfacelD id = (InterfacelD)hellolnterfaces.get(i);
standUpInterface(id);

}
helloMessageReceived = true; //DemoHello - CRC
updateRouterStatus();
mainGui.updateDisplay();

}

198

// below else cases are added by [akkoc]
else if(name.equals(messageTypes[4])){
gui.sendText("received message type: " + messageTypes[4]);
DCM receivedDcm = (DCM)message;
gui.sendText("Sending the message to autoConfig.");
autoConExec.processDCM(receivedDcm);
gui.sendText("DCM processed.");

}//end of else if for DCM
else if(name.equals(messageTypes[5])){
gui.sendText("received message type: " + messageTypes[5]);
UCM ucm =(UCM) message;
autoConExec.processUCM(ucm);

}//end of elseif for ucm
else if(name.equals(messageTypes[6])){ //Parent Notification
gui.sendText("\n received message type: " + messageTypes[6]);
ParentNotification pn = (ParentNotification)message;
autoConExec.processPN(pn);

}//end of elseif for parent notification
else if(name.equals(messageTypes[7])){ //Parent Notification
gui.sendText("\n received message type: " + messageTypes[7]);
TimeScale ts = (TimeScale)message;
timeScale = ts.getTimeScale();

}//end of else if for parent notification
else if(name.equals("ServiceLevelSpec")){ //ServiceLevelSpec

message
gui. sendText ("Got a ServiceLevelSpec. ");
//Router do nothing yet

}
else if(name.equals("saam.message.TestMessage")){

gui.sendText("Got a TestMessage.. ");
TestMessage testMsg = (TestMessage)message;
sender = testMsg.getSender();

}
else if(name.equals(messageTypes[10])){

//this is an interface failure message
gui.sendText("A InterfaceFailure message arrived..");
//find the interface that is failing
Enumeration enum = interfaces.elements();
InterfaceFailure failure=(InterfaceFailure)message;
while(enum.hasMoreElements()){

Interface iFace = (Interface)enum.nextElement();
InterfacelD id = iFace.getID();
IPv6Address ip = id.getIPv6();

if(ip.equals(failure.getIP())){
System.out.println("Interface with ip "+ip.toString()+" is

DOWN.");
iFace.setState(this);
return;

}
}

199

System.out.println("There is no interface with ip
"+failure.getIP().toString());

}

}//processMessage()

public void processMessage(byte[] bytes, String message){
gui.sendTextCoprocessing Message: "+ message);

if (server == null) {
try {

if(message.equals("FlowResponse")){
FlowResponse response = new FlowResponse(bytes);
gui.sendText("Received Message: "+ response);
long timeStamp = response.getTimeStamp();
gui.sendText("TimeStamp: "+timeStamp);
int flowID = response.getFlowId();
gui.sendText("flowID: "+flowID);
ResidentAgent requestor =

(ResidentAgent)flowRequestors.get(new
Long(timeStamp));

gui.sendText("Forwarding to Requestor: "+requestor);
if(requestor!=null){
assignedFlows.put(new Integer(flowID)»requestor);

requestor.receiveFlowResponse(response);
}//else do nothing
}

else if(message.equals("ResourceAllocation")){
ResourceAllocation ra = new

ResourceAllocation(bytes);
gui.sendText("Got a ResourceAllocation.. "+ra);
//do nothing yet

}
else {
gui.sendText("Unknown Router bound message.") ;
}

}
catch (UnknownHostException uhe) {

gui.sendText("Router processMessage had
UnknownHostException:"+uhe);

}
}
else {

try {
if(message.equals("FlowRequest")){

FlowRequest request = new FlowRequest(bytes);
gui.sendText("Received Message: "+ request);
gui.sendText(

"Calling Server method: processFlowRequest()");
server.processFlowRequest((FlowRequest)request);

}
else if(message.equals("FlowTermination")){

FlowTermination myFlow = new FlowTermination(bytes);
gui.sendText("Received Message: "+ myFlow);
gui.sendText(

"Calling Server method: receiveFlowTerminationO");

200

server.receiveFlowTermination(myFlow.getFlowId());
}
else if(message.equals("SLSTableEntry")){

SLSTableEntry slsEntry = new SLSTableEntry(bytes);
gui.sendText("Calling Server method:

receiveSLSTableUpdate()");
server.receiveSLSTableUpdate(slsEntry);

}
else if(message.equals("ResourceAllocation")){

ResourceAllocation ra = new ResourceAllocation(bytes);
gui.sendText("Got a ResourceAllocation.. "+ra);
//do nothing yet

}
else {
gui.sendText("Unknown Server bound message.");

}
}
catch (UnknownHostException uhe) {

gui.sendText("Server processMessage had
UnknownHostException:"+uhe);

}
}

}//processMessage()

/**

* Returns the number of Interfaces that have been stood up by this
ControlExecutive.

* ©return The number of Interfaces that have been stood up by this
ControlExecutive.

*/
public int getNumberOfInterfaces(){

return interfaceCount;
}

/**

* Makes access to RoutingAlgorithm possible for requiring classes.
* ©return RoutingAlgorithm object
*/

public synchronized RoutingAlgorithm getRoutingAlgorithmO{
return routingAlgorithm;

}

/**
* Makes access to AutoConfigurationExecutive possible for requiring

classes.
* ©return AutoConfigurationExecutive object
*/
public AutoConfigurationExecutive getAutoConfigurationExecutive(){

return autoConExec;
}

/**

* This is the method MessageProcessors use to register to process
Messages.

* The ControlExecutive retrieves the list of Messages from mp by
calling

201

* mp.getMessageTypesO .
* Gparam mp The MessageProcessor that is registering with this

ControlExecutive.
*/

public void registerMessageProcessor(MessageProcessor mp){
gui.sendText("Registering MessageProcessor: "+mp);
Object[] elementsIProcess = null;
//retrieve the list of Messages
elementsIProcess = mp.getMessageTypesO;
for(int i=0;i<elementsIProcess.length;i++){

String element = (String)elementsIProcess[i];
if(!element.equals("saam.message.FlowResponse")){
MessageProcessor oldProcessor =

(MessageProcessor)messageProcessors.put(element,mp),-
// notify old Processor that it will no longer
// receive this type of message.

}else{
if (mp.equals(this)){
messageProcessors.put(element,this);

}else{
gui.sendText{"DENIED: "+element);

}
}

}
}
//henry
public void registerMessageProcessor(Server server, MessageProcessor

mp) {
this.server = server;
registerMessageProcessor(mp);

}

/**

* ResidentAgentCustomers use this method to register to receive
Res identAgent

* updates from the ControlExecutive when they arrive. If an agent
is replaced

* with a new agent, the ControlExecutive will call the customer's
replaceAgent

* method.
* @param rac the ResidentAgentCustomer requesting registration.
*/

public void registerCustomer(ResidentAgentCustomer rac){
Object[] agentsIUse = null;
agentsIUse = rac.getAgentTypes();
for(int i=0;i<agentsIUse.length;i++){

String agent = (String)agentsIUse[i];
Vector customers = null;
synchronized(agentCustomers){

customers = (Vector)agentCustomers.get(agent);
}
if(customers == null){
customers = new Vector();
agentCustomers.put(agent,customers);

}
customers.add(rac);

202

// oldProcessor.
}

}

/**

* Replaces an existing ResidentAgent with an incoming ResidentAgent
* of the same class name. If there are multiple instances of the

existing
* agent, the replacement will occur instance for instance.
* @param classObject The Class of the incoming agent.
* @param className The class name of the incoming ResidentAgent

subclass
*/

private void replaceOldAgent(Class classObject, String className){

boolean badAgent = false;
Vector agentlnstances = new Vector();
int numberOflnstancesNeeded = 1;
if(className.equals("saam.residentagent.router.Scheduler")){
synchronized(interfaces){
numberOflnstancesNeeded = interfaces.size();

}
}
for (int i=0;i<numberOfInstancesNeeded;i++){

try{
gui.sendText("About to install new agent");
ResidentAgent newAgent = (ResidentAgent)

classObject.newInstanceO ;
newAgent.install(this);
gui.sendText("New agent installed");
agentlnstances.add(newAgent);
gui.sendText("Instances present: "+agentlnstances.toString());
numberOfSchedulersPresent++;

}catch(Exception e){
gui.sendText("ResidentAgent bad: "+e.toString());
badAgent = true;

}
}
if(!badAgent){
gui.sendText("Agent "+

(numberOfInstancesNeeded==0? "not instantiated.":"instantiated
" +

(numberOfInstancesNeeded==l? "once.": numberOfInstancesNeeded+"
times")));

boolean agentAlreadyInstalled = false;
synchronized(agents){
agentAlreadyInstalled=agents.containsKey(className);

}
if(agentAlreadylnstalled){
gui.sendText(className+" already resident");
Vector previousAgents = (Vector)agents.remove(className);
gui.sendText("Uninstalling previous agent: ");
gui.sendText("Removing from channels...");
for(int i=0;i<previousAgents.size();i++){
ResidentAgent previousAgent = (ResidentAgent)
previousAgents.get(i);

203

if(previousAgent instanceof SaamTalker){
removeTalkerFromAllChannels(

(SaamTalker)previousAgent);
}
//every ResidentAgent is a SaamListener
removeListenerFromAllChannels{

previousAgent);
ResidentAgent replacement = (ResidentAgent)

agentInstances.get(i) ;
if(previousAgent!=null){
gui.sendText("Previous agent uninstalling");
previousAgent.transferState(replacement);
previousAgent.uninstall();
previousAgent = null;

}else{
gui.sendText("No previous agent installed");

}
}

}
for (int i=0;i<numberOfInstancesNeeded;i++){
ResidentAgent replacement = (ResidentAgent)

agentlnstances.get(i);
notifyAgentCustomers(replacement, className);
gui.sendText("Notifying customers, agent: "+replacement) ;

}
agents.put(className,agentlnstances);

}
}

/**

* Here, the ControlExecutive iterates through the Vector of
* ResidentAgentCustomers and calls the replaceAgent method of
* each customer, passing the new agent.
*/

private void notifyAgentCustomers(
ResidentAgent ra, String className){
Vector customersOfThisAgent = (Vector)

agentCustomers.get(className);
if(customersOfThisAgent!=null){

for(int i=0;i<customersOfThisAgent.size();i++){
((ResidentAgentCustomer)
customersOfThisAgent.get(i)).
replaceAgent(ra);

}
gui.sendText("Agent replaced: "+ra);
gui.sendText("Customers: "+customersOfThisAgent);

}

* In this method we would reflect into the Class Object and perform
* a series of policy-related checks to determine whether or not the
* agent is safe to instantiate.
*/

private boolean examineAgent(Class classObject){
//future work..

204

return true;
}

/**
* This method is called by the Channels this Object has registered

to
* monitor when a talker sends events on those Channels.
* @param se The SaamEvent to be communicated.
*/

public void receiveEvent(SaamEvent se){

//the ControlExecutive only listens on the Channel between itself
and

//the PacketFactory. Two types of traffic are sent on this Channel,
//ResidentAgentEvents and MessageEvents

if(se instanceof ResidentAgentEvent){
Class classObject = ((ResidentAgentEvent)se).

getClassObject();
String className = classObject.getNameO ;
gui.sendText("received residentagent : "+className);
//16 Jan 2000 akkoc added to determine the serveragent installed

if(className.equals("saam.residentagent.server.ServerAgentSymetric")){
isServer = true;

}
if (examineAgent(classObject)){
gui.sendText("replacing old residentagent....");
replaceOldAgent(classObject, className);

}else{
//notify someone that the agent failed the inspection

}

}else if (se instanceof MessageEvent){

MessageEvent me = (MessageEvent)se;
String name = me.getMessage().getClass().getName();
gui.sendText("\nreceived messageevent : n+name);

// Systern.out.printIn("received messageevent : "+name);

//call the appropriate MessageProcessor to handle this Message
MessageProcessor mp = null;
mp = (MessageProcessor) messageProcessors.get(name);

try{
gui.sendText(" Calling Processor: "+mp.getClass().toString());

// System.out.println("\nCalling Processor:
"+mp.getClass().toString());

mp.processMessage(me.getMessage());
}catch(NullPointerException npe){
//notify the sender that we do not have a
//processor that is capable of processing this
//Message.
gui.sendText(" No Processor Available for " + name);

}//try-catch
}//not a ResidentAgentEvent or a MessageEvent
mainGui.updateDisplay();

205

}//receiveEvent()

/**

* Returns the Vector of Interfaces that have been instantiated by
this

* ControlExecutive.
* ©return The Vector of Interfaces that have been instantiated by

this
* ControlExecutive.
*/

public Vector getlnterfaces(){
return interfaces;

}//getlnterfaces

/**

* The order in which Interfaces are instantiated is preserved. Here
* an Object can retrieve a specific Interface by instance number.
* ©param interfaceNumber The instance number of the Interface to be
* retrieved.
* ©return The nth instance of Interface where n = interfaceNumber.
*/

public Interface getlnterface(int interfaceNumber){
return (Interface)interfaces.get(interfaceNumber);

}

/**

* Returns the Vector of InterfacelDs assigned to the Interfaces
* instantiated by this ControlExecutive.
* ©return The Vector of InterfacelDs assigned to the Interfaces
* instantiated by this ControlExecutive.
*/

public Vector getlnterfacelDs(){
return interfacelDs;

}//getlnterfaces

/**

* Returns the Enumeration of -Channels that have been instantiated
* by this ControlExecutive.
* ©return The Enumeration of Channels that have been instantiated
* by this ControlExecutive.
*/

public Enumeration getActiveChannels(){
return activeChannels.elements();

}//getActiveChannels()

/**

* Returns true if the Channel has been instantiated by this
ControlExecutive.

* ©return True if the Channel has been instantiated by this
ControlExecutive.

*/
public boolean isActiveChannel(int channel_ID){

return activeChannels.containsKey(new Integer(channel_ID));
}

/**

206

* To determine whether or not a talker is allowed to talk. If
* this method returns false, the talker will not be able to talk
* on any Channels.
* @param talker The SaamTalker to be verified.
* ©return True if the SaamTalker is allowed to talk.
*/

private boolean verifyTalker(SaamTalker talker){
return true;

}//verifyRequestor()

/**
* To determine whether or not a listener has access to a given

Channel.
* This method would be used to implement policy issues related to

access
* control.
* @param listener The listener to be verified.
* ©param channel_ID The ID of the Channel.
*/

private boolean verifyChannelAccess(
SaamListener pi, int channel_ID){
//here, we would set the policy for channel_ID access,
//i.e. we can restrict access of certain channel_ID to a
//select list of listeners, maybe a Hashtable called
//"authorizationTable" which contains a Vector of
//"authorizedListeners" and is keyed on channel_ID.
return true;

}//verifyAccess()

/**
* To determine whether or not a talker has access to a given

.Channel.
* This method would be used to implement policy issues related to

access
* control.
* @param talker The talker to be verified.
* @param channel_ID The ID of the Channel.
*/

private boolean verifyChannelAccess(
SaamTalker talker, int channel_ID){
//here, we would set the policy for channel_ID access,
//i.e. we can restrict access of certain channel_ID to a
//select list of listeners, maybe a Hashtable called
//"authorizationTable" which contains a Vector of
//"authorizedListeners" and is keyed on channel_ID.
return true;

}//verifyAccess()

/**
* As the name implies, this method removes talker from the talker
* Vectors of all Channels it has registered to talk on.
* @param talker The talker to be removed.
*/

public void removeTalkerFromAllChannels(SaamTalker talker){
if(channelsTalkerHas.containsKey(talker)){
Vector channels = null;
synchronized(channelsTalkerHas){

207

Channels =(Vector)channelsTalkerHas.get(talker);
}
Enumeration e = ((Vector)channelsTalkerHas.get(talker)).

elements();
while(e.hasMoreElements()){

Channel thisChannel = (Channel)e.nextElement();
thisChannel.removeTalker(talker);
gui.sendText(talker.toString()+

" removed from channel "+
thisChannel.getChannel_ID());

gui.sendText("The Vector: "+channels.toString());
}
channelsTalkerHas.remove(talker);

}
}

/**

* As the name implies, this method removes listener from the
listener

* Vectors of all Channels it has registered to listen on.
* @param listener The listener to be removed.
*/

public void removeListenerFromAllChannels(
SaamListener listener){

if(channelsListenerHas.containsKey(listener)){
Vector channels = null;
synchronized(channelsListenerHas){
channels = (Vector)channelsListenerHas.get(listener);

}
Enumeration e = channels.elements();
while(e.hasMoreElements()){

Channel thisChannel = (Channel)e.nextElement(),-
thisChannel.removeListener(listener);
gui.sendText(listener.toString()+

" removed from channel " +
thisChannel.getChannel_ID());

gui.sendText("The Vector: "+channels.toString());
}
channelsListenerHas.remove(listener);

}
}

/**

* SaamTalkers use this method to attach themselves to a Channel. If
this

* method succeeds, the talker will be allowed to transmit events on
this

* Channel.
* @param talker The talker requesting permission to talk on a

Channel.
* ©param channel_ID The ID of the channel to be utilized.
*/

public void addTalkerToChannel(SaamTalker talker, int channel_ID)
throws ChannelException {

if('verifyTalker(talker)){

208

throw new ChannelException("Talking Denied");'
}

//now test to see whether this channel_ID is within the
//range of channel_IDs on which this requestor is authorized
//to talk (policy issue).
if {!verifyChannelAccess(talker, channel_ID)){

throw new ChannelException("Access Denied");
}
Channel channel = null;
synchronized(activeChannels){
channel = (ChannelJactiveChannels.get(new Integer(channel_ID));

}
if(channel==null) {
channel = new Channel(channel_ID,talker);

}
activeChannels.put(new Integer(channel_ID),channel);

channel.addTalker(talker);
mainGui.updateDisplay();

if(channelsTalkerHas.containsKey(talker)){
synchronized(channelsTalkerHas){

((Vector)channelsTalkerHas.get(talker)).
add(channel);

}
}else{
Vector vectorOfChannels = new Vector();
vectorOfChannels.add(channel);
channelsTalkerHas.put(talker, vectorOfChannels);

}
// gui.sendText("Talker added:");
// gui.sendText(channel.toString()) ;

}//addTalkerToChannel()

/**
* Allows a Saamliistener to monitor an emulated UDP port
* ©param listener The listener requesting to monitor a port.
* dparam port The port to be monitored.
*/

public void monitorPort(SaamListener listener, int port)
throws PortAccessDeniedException{
//presumably, the listener has already been verified
//by the Control Executive and placed on an access
//list within the Eventcontroller. There is no such
//access list at this time.

try{
if(IhasListener(port)){
addTalkerToChannel(transportlnterface,port);
addListenerToChannel(listener, port);

// gui.sendText(listener.toString()+
// " listening to port: "+port);

}else {
gui.sendText(listener.toString()+

" denied access to port: "+port);
throw new PortAccessDeniedException("Port in use");

}
}catch(ChannelException ce){
throw new PortAccessDeniedException("Not authorized");

209

}//try-catch
}

/**

* SaamListeners use this method to attach themselves to a Channel
If this

* method succeeds, the listener will receive all events that are
sent on this

* Channel.
* ©param listener The listener requesting to monitor a Channel.
* ©param channel_ID The ID of the channel to be monitored.
*/

public void addListenerToChannel(
SaamListener listener, int channel_ID)
throws ChannelException{

if (verifyChannelAccess(listener,channel_ID)){

Channel channel = null;
synchronized(activeChannels){

channel = (Channel)activeChannels.get(new Integer(channel_ID));

if(channel==null) {
channel = new Channel(channel_ID,listener);

}

//no effect if the Channel is already on the active list
activeChannels.put(new Integer(channel_ID) ,channel) ;
channel.addListener(listener);

// gui.sendText("Listener added:");
// gui.sendText(channel.toString()) ;

if(channelsListenerHas.containsKey(listener)){
synchronized(channelsListenerHas){

((Vector)channelsListenerHas.get(listener)).
add(channel);

I
}else{
Vector vectorOfChannels = new Vector();
vectorOfChannels.add(channel);
channelsListenerHas.put(listener, vectorOfChannels);

}

}//if
}//addListenerToChannel()

/**

* Used to determine if any Objects are registered to listen on the
Channel

* with channel_ID.
* ©param channel_ID The ID of the Channel to be queried.
*/

public boolean hasListener(int channel_ID){
try{
Channel channel = null;
synchronized(activeChannels){

channel = (Channel)activeChannels.get(new Integer(channel_ID));

210

return channel.hasListeners();
}catch(NullPointerException npe){}
return (false);

}//hasListener()

/**
* Used to determine if any Objects are registered to talk on the

Channel
* with channel_ID.
* @param channel_ID The ID of the Channel to be queried.
*/

public boolean hasTalker(int channel_ID){
try{
Channel channel = null;
synchronized(activeChannels){
channel = (Channel)activeChannels.get(new Integer(channel_ID));

}
return channel.hasTalkers() ;

}catch(NullPointerException npe){}
return (false);

}//hasListener()

/**
* Once approved to communicate on a channel, a
* SaamTalker calls this method to actually broadcast
* events on the channel. A ChannelException will be
* thrown if the talker is not registered to talk on
* the channel contained in the SaamEvent.
*/

public void talk(SaamEvent event) throws
ChannelException{
// System.out.println("INSIDE TALK ...");
SaamTalker talker = event.getTalker();
int channel_ID = event.getChannel_ID();
Channel channel = null;

// synchronized(activeChannels){
synchronized(theLock) {

// Questions to Dean:
// (1) Is the above sufficient?
// (2) Does this support talking to multiple channels?
// (3) Why are more and more ">» Ready to ..." msgs printed out?

channel = (Channel)activeChannels.get(new
Integer(event.getChannel_ID()));

if (channel == null) {
gui.sendText(talker.toString()+">» has no channel.to talk");
return;

}
// }// old LOCK ENDS HERE
if(channel.isRegistered(talker)){

//order the channel to notify its listeners
gui.sendText(talker.toString()+">» is Ready to channel.talk") ;
channel.talk(event);
channel.setTimeLastUsed();

}else{

211

gui.sendText("ACCESS DENIED! Unregistered talker: " +
talker. toStringO +"\n"+

"Attempted to talk on channel
"+channel_ID);

throw new ChannelException(
talker.toString()+" not Registered on "+
"channel "+channel_ID+".") ;

}
}// new LOCK ens here

}//talk()

/**

* Displays the status of all Channels that have been instantiated by
the

* ControlExecutive. Channels are displayed in the
ControlExecutive's gui.

* @param msg The text to appear before the channels are displayed.
*/

public void displayActiveChannels(String msg){

/* gui.sendText("\n"+msg);
gui.sendText("Active channels:");
Enumeration e = activeChannels.keys();
while(e.hasMoreElements()){

Integer key = (Integer)(e.nextElement());
Channel channel =

(Channel)activeChannels.get(key);
gui.sendText(channel.toString());

}//while(e.hasMoreElements())
*/

}//displayActiveChannels()

/**

* Removes a SaamListener from the Vector of listeners associated
with the

* Channel containing channel_ID
* ©param si The SaamListener to be removed.
* ©param channel_ID The ID of the desired Channel.
*/

public void removeListenerFromChannel(
SaamListener si, int channel_ID){

Channel channel = null;
synchronized(activeChannels){

channel = (Channel)
activeChannels.get(new Integer(channel_ID));

}
channel.removeListener(si);

}//closeChannelConnection()

/**

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/

public String toString(){
return ("Control Executive");

}

212

} //end of class CONTROL EXECUTIVE

213

TfflS PAGE INTENTIONALLY LEFT BLANK

214

APPENDIX L - SAAM CONTROL.PACKETFACTORY CLASS CODE

//24Feb2000[Henry] - modified
// Feb 2000[akkoc] - modified
// 01Aug99 [Vrable] - Created
package saam.control;

import java.io.File;
import java.io.FilelnputStream;
import java.io.IOException;
import java.util.Hashtable;
import j ava.ut i1.Enumerat ion;
import Java.util.Vector;
import Java.util.TooManyListenersException;
import Java.util.StringTokenizer;
import j ava.lang.reflect.Constructor;
import java.net.UnknownHostException;

import saam.net.*;
import saam.event.*;
import saam.message.*;
import saam.util.*;
import saam.residentagent.*;

/ **

* A PacketFactory can be used to build SaamPackets for sending or
* to receive SaamPackets and extract their atomic elements. These
* atomic elements are currently one of two types: A subclass of
* saam.residentagent.ResidentAgent or a subclass of
* saam.message.Message.<p>
* A sender would instantiate a PacketFactory to build
* Saam Packets. The PacketFactory's append methods receive
* Message Objects, ResidentAgent Objects, or a String that represents
* the class name of a ResidentAgent as parameters and then dynamically
* construct the appropriate header based on the number of elements
* received and the current time. The getBytes method is used to
* retrieve the byte array that represents the SAAMPacket that has been
* constructed by this PacketFactory.<p>
* The ControlExecutive uses the PacketFactory to receive and parse
* SaamPackets.
*/
public class PacketFactory extends Thread

implements SaamTalker, SaamListener{

private final boolean guiActive = true;
private SAAMRouterGui gui;
private ControlExecutive controlExec;
private boolean started = false;
private boolean firstEvent = true;
private boolean bytesRetrieved;
private byte[] packet,DCMpacket,PNpacket,UCMpacket;
private byte numberOfMessages;
private Loader loader;
private Class message;
private SaamEvent currentEvent;

215

private Thread owner;
private static int instanceNumber;
private Object theLock = new Object();

// xie
private FIFOQueue inputQueue = new FIFOQueue(lOOO);

/**

* Use the no-args constructor to begin constructing packets
* on the sending side.
*/

//no-args constructor doesn't come for free when we have
//another constructor
public PacketFactory(){

//instanceNumber++;
gui = new SAAMRouterGui("Outbound.."+toString());
gui.setTextField("I construct outbound packets");

}

/**

* This constructor is not available to Objects outside the
* saam.control package. The ControlExecutive uses this constructor
* to receive and parse SAAMPackets. The PacketFactory passes the
* atomic elements (either ResidentAgents or Messages) up to the
* ControlExecutive for further processing.
* ©param controlExec The ControlExecutive that is to receive
* updates from this PacketFactory.
*/

PacketFactory(ControlExecutive controlExec){
//this();
gui=new SAAMRouterGui("Input.."+toString()) ;
gui.setTextField("I Listen for inbound packets");
this.controlExec=controlExec;
loader = new Loader();

//******************************

//**Listen to desired Channels**

int channel_ID =
ProtocolStackEvent.PACKETFACTORY_CHANNEL;

try{
controlExec.addListenerToChannel(this, channel_ID);
gui.sendText("Listening to channel: "+channel_ID);

}catch(ChannelException ce){
gui.sendText(ce.toString());

}//try-catch

//**Register to talk on desired Channels**
//**

channel_ID = ControlExecutive.SAAM_CONTROL_PORT;
try{

controlExec.addTalkerToChannel(this,
channel_ID);

gui.sendText("Talking enabled on channel: ■ + channel_ID);
} catch (ChannelException .ce) {

216

gui.sendText(ce.toString());
} •

//****** Husevin UYSAL **/
channel_ID = ProtocolStackEvent.FROM_PACKETFACTORYJTO_ACE;
try{

controlExec.addTalkerToChannel(this,channel_ID);
gui.sendText("Talking enabled on channel: " + channel_ID);

}catch(ChannelException ehe){
gui.sendText(ehe.toString());

}
start();

}

/**
* When instantiated to receive packets, the PacketFactory
* Thread waits until a SAAMPacket arrives, then it calls
* the processPacket method.
*

public void run(){
while(true){

try{
if(Istarted){

synchronized(theLock){
gui.sendText("Waiting...");
while([started) theLock.wait();
started=true;

}
}

}catch(InterruptedException ie){
gui.sendText(ie.toString());

}
gui.sendText("Resumed");
processPacket();

}//while(started)
}
*/

/**
* When instantiated to receive packets, the PacketFactory
* Thread waits until a SAAMPacket arrives, then it calls
* the processPacket method.
*/

public void run(){
while(true){

gui.sendText("\n Inside PacketFactory run()");
synchronized (theLock){

if (inputQueue.isEmpty()){
started = false;
try{

gui.sendText("Waiting...");
theLock.wait();
gui.sendText("Continuing") ;

}
catch(InterruptedException e){
gui.sendText("Interrupted exception catched");

}

217

}// end if

packet = (byte[]) inputQueue.dequeue();
}// end synchronization
processPacket();

}//while(true)
}

/**

* This method is called by the Channels this Object has registered
to

* monitor when a talker sends events on those Channels.
* @param se The SaamEvent to be communicated.

public synchronized void receiveEvent(SaamEvent se){

public void receiveEvent(SaamEvent se){

gui.sendText("\nGot a packet");
currentEvent=se;
//check to see if the currentThread has an owner, if it
//does, notify the owner that the event has arrived.
//otherwise, just process the packet.
if(IfirstEvent){
synchronized(theLock){

theLock.notify();
}
if(!started){

synchronized(theLock){
started=true;
theLock.notify();

}

}else{
processPacket();

}
}else{
firstEvent=false;
started=true;
start();

}
se=null;

}
*/

/**

* This method is called by the Channels this Object has registered
to

* monitor when a talker sends events on those Channels.
* ©param se The SaamEvent to be communicated.

public synchronized void receiveEvent(SaamEvent se){
*/
public void receiveEvent(SaamEvent se){

gui.sendText("\n Got a packet");

218

currentEvent = se;
ProtocolStackEvent psec = (ProtocolStackEvent)currentEvent;

byte[] newcomer = psec.getPacket();
gui.sendText("\n New packet has length = " + newcomer.length);

synchronized(theLock){
inputQueue.enqueue((Object) newcomer);
if (!started){
started = true;
gui.sendText("\n Waking up the processPacket thread");
theLock.notify();

}// end if
}

}

/**
* This method is used to extract the individual Class
* Objects that are represented in the packet. These Class
* Objects are either of type 0 (ResidentAgent) or 1 (Message).<p>
* If a ResidentAgent is received, a Class Object is created
* that represents the agent. That Class Object is then sent to
* the ControlExecutive for screening and agent instantiation.<p>
* If a Message is received, that Message is instantiated and sent
* to the ControlExecutive for further processing.
*/

private void processPacket() {
int channel = currentEvent.getChannel_ID();
String eventSource = (String)currentEvent.getSource{);

//packet is a byte array
packet = ((ProtocolStackEvent)currentEvent).getPacket();

//see saam.util for PrimitiveConversions and Array classes
long timeStamp = PrimitiveConversions.getLong(

Array.getSubArray(packet ,0,8));
numberOfMessages=packet[8] ;
gui.sendText("packet arrived: " +

"\n source: " + eventSource +
"\n channel: " + channel +
"\n size: " + packet.length +
"\n # of Messages: " + numberOfMessages +
"\n timeStamp: " + timeStamp);

//now we trim the packet by removing the header,
packet = Array.getSubArray(packet,9,packet.length) ;

//used to track the current position in the array,
int index = 0;

short length = 0;
String elementName = "";

//extract and process each atomic element of the packet
//separately. Here we assume the packet is a properly
//formatted SAAMPacket when it arrives, and that the
//length is less than the max allowed.

219

book.

for(int i=l;i<=numberOfMessages; i++){

gui.sendText("\nProcessing Element["+i+"]:");
byte type = packet[index++] ;
gui.sendText(" type: "+type);

byte[] bytes;

switch(type){
case Message.RESIDENT_AGENT:
case Message.MESSAGE_DEFAULT_TYPE:
case Message.FAILURE:

//retrieve the number of bytes the class name occupies
byte nameLength = packet[index++];

//extract the name of the class file as a byte array
byte[] elementNameArray = Array.getSubArray(

packet,index, index+nameLength);
index+=nameLength;

//convert the name back into a String
elementName = new String(elementNameArray);
gui. sendText (" Name.: " +elementName) ;

//retrieve the length of the Object
length = PrimitiveConversions.getShort(

Array.getSubArray(packet,index,index+2));
index+=2;

gui.sendText(" Length: "+length);
bytes = Array.getSubArray(packet,index,index+length);
index+=1ength;

if(type==Message.RESIDENT_AGENT){
gui.sendText("This is a ResidentAgent"),-
//Assume this class is of type ResidentAgent
try{

//Attempt to define the class using the current
//class loader.
loader.defClass(elementName, bytes);

}catch(LinkageError le){
//If the loader already has a definition for the class
//a LinkageError will be thrown. If this happens, we
//need to instantiate a new class loader and use it to
//define the class. A nice little trick we learned from
//page 55 of Jason Hunter's "Java Servlet Programming"

gui.sendText(le.toString());
gui.sendText("Class was previously loaded.. .") ;
gui.sendText("Replacing old ClassLoader...");
Loader newLoader = new Loader();
newLoader.defClass(elementName, bytes);

}
try{

220

//message is of type Class.
message = Class.forName(elementName, true, loader);

}catch(ClassNotFoundException cnfe){
gui.sendText(cnfe.toString());

}
gui.sendText(message.toString());
ResidentAgentEvent rae = new ResidentAgentEvent(

eventSource,
this,
ControlExecutive.SAAM_CONTROL_PORT,
message);

try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(rae);

}catch(ChannelException tde){
gui.sendText(tde.toString()) ;

}
}//if ResidentAgent
else if{type==Message.MESSAGE_DEFAULT_TYPE){

gui.sendText("This is a Message");
//Assume this class is of type Message.
try{

//message is of type Class.
message = Class.forName(elementName);

}catch(ClassNotFoundException cnfe){
{gui.sendText("Bytecode for: "+elementName+

" not found.");
}

}

try{
//Call the constructor from within this Class that
//takes a byte array as its only argument
Constructor cons = message.getConstructor(
new Class[] {byte[].class});

//Create the instance of this Message
Message instance =

(Message)cons.newlnstance(
new Object[] {bytes});

gui.sendText(instance.toString());
MessageEvent me = new MessageEvent(

eventSource,
this,
ControlExecutive.SAAM_CONTROL_PORT,
instance);

//send this MessageEvent on the Control port.
try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(Exception e){

221

//need to notify sender that we have no classfile
//with this name
gui.sendText(e.toString()) ;

}//try-catch
}//else if default message type '1'

//Hasan UYSAL
else if(type==Message.FAILURE){

gui.sendText("This is an InterfaceFailure message
Arrived.");

InterfaceFailure failure=new InterfaceFailure(bytes);
MessageEvent failMes=new MessageEvent(

toString(),
this,ControlExecutive.SAAM_CONTROL_PORT,
failure);

try{
controlExec.talk(failMes);

}catch(Exception ex){
gui.sendText("Problem with talking failure message.");
continue;

}
}
break;

//Henry
case Message.FLOWREQUEST_TYPE:
case Message.FLOWRESPONSE_TYPE:
case Message.RESOURCEALLOCATION_TYPE:
case Message.SLSTABLEENTRYJTYPE:

//retrieve the length of the Object
length = PrimitiveConversions.getShort(
Array.getSubArray(packet,index,index+2));
index+=2;

gui.sendText(" Length: "+1ength);
bytes = Array.getSubArray(packet,index,index+length);
index+=length;

if(type==Message.FLOWREQUESTJTYPE){
gui.sendText("This is a FlowRequest Message"),-
//processMessage(bytes, eventSource, "FlowRequest");
controlExec.processMessage(bytes, "FlowRequest");

}//flow request

else if(type== Message.FLOWRESPONSE_TYPE){
gui.sendText("This is a FlowResponse Message");

controlExec.processMessage(bytes, "FlowResponse");
//processMessage(bytes, "FlowResponse");

}//flow response

else if(type==Message.RESOURCEALLOCATION_TYPE){
gui.sendText("This is a ResourceAllocation Message");
controlExec.processMessage(bytes, "ResourceAllocation");

}// resource allocation

222

else if(type== Message.SLSTABLEENTRY_TYPE){
gui.sendText("This is a SLSTableEntry Message");
if (bytes.length == SLSTableEntry.REMOVE_SLS_TYPE) {

controlExec.processMessage(bytes, "SLSTableEntry");
}
else {

processMessage(bytes, eventSource, "SLSTableEntry");
}

}//slstableentry
break;

case Message.FLOWTERMINATION_TYPE:
length = 4;
gui.sendText(" Length: "+length);
bytes = Array.getSubArray(packet,index,index+length);
index+=1ength;

gui.sendText("This is a FlowTermination Message");
controlExec.processMessage(bytes, "FlowTermination");

break;

//Hasan AKKOC
case Message.DCM_TYPE:
case Message.PARENT_NOTIFICATION_TYPE:

if(type==Message.DCM_TYPE){
gui.sendText("This is a DCM Message");

try{
DCM dem = new DCM(packet);
•gui.sendText("DCM message ia created.");
gui.sendText(dem.toString());
MessageEvent me = new MessageEvent(eventSource, this,

ControlExecutive.SAAM_CONTROL_PORT,dcm) ;
//send this MessageEvent on the Control port.
try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);
gui.sendText("DCM is sent to ControlExecutive.");

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(Exception e){
gui.sendText(e.toString()) ;

}//try-catch
}//DCM

else if(type== Message.PARENT_NOTIFICATION_TYPE){
gui.sendText("This is a ParentNotification Message");
//Assume this class is of type Message.
try{

ParentNotification pn = new ParentNotification(packet);
MessageEvent me = new MessageEvent(eventSource, this,

223

ControlExecutive.SAAM_CONTROL_PORT,pn);
//send this MessageEvent on the Control port.
try{

gui.sendText("Forwarding on channel " +
ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}catch(Exception e){
gui.sendText(e.toString());

}//try-catch
}//PARENT notification
break;

/***i
//modified by Huseyin UYSAL

case Message.UCM_TYPE:
gui.sendText("This is a UCM Message");
int flowIdOfServer=PrimitiveConversions.getlnt(

Array.getSubArray(packet,index,index+4)) -1;
gui.sendText("Flow id of the sever is "+flowld0fServer);
if.{! controlExec. getlsServer ()) {

//I need UCM and the LSAs as a total
// need to pass the numberOfMessages to UCM handler
gui.sendText("This is a router so forwarding the packet to

ACE");

//byte [] tem = Array.concat(numberOfMessages,type);
//packet=Array.concat(type,packet);
packet = Array.concat(numberOfMessages,packet);
i=numberOfMessages;
int channelToAce =

ProtocolStackEvent.FROM_PACKETFACTORY_TO_ACE;
//create a ProtocolStackEvent and send it to ACE
ProtocolStackEvent stackEvent=new ProtocolStackEvent(

this.toString(),
this,
channelToAce,
packet);

try{
gui. sendText ("Forwarding on channel "+channelToAce) ,-
controlExec.talk(stackEvent);

}catch(ChannelException tde){
gui.sendText(tde.toString());

}
}
else{

//this is the server that UCM is destined
int numberOfRoutersInUCM=PrimitiveConversions.getlnt(

Array.getSubArray(packet,index+2 0,index+2 4));
gui.sendText("Number of reachable routers is "

+numberOfRoutersInUCM);
int UCMLength=4+16+4+4+numberOfRoutersInUCM*16;
bytes=Array.getSubArray(packet,index,index+UCMLength);

224

bytes=Array.concat(type,bytes);
index+=UCMLength;
try{
UCM ucm = new UCM(bytes);
gui.sendText("\n"+ucm.toString()) ;
MessageEvent me = new MessageEvent(

eventSource,
this,
ControlExecutive.SAAM_CONTROL_PORT,
ucm) ;

gui.sendText("Forwarding packet on channel "+
ControlExecutive.SAAM_CONTROL_PORT);

controlExec.talk(me);
}catch(Exception ex){
gui.sendText(ex.toString());

}
}//else
break;

//Huseyin UYSAL
//if it is link state Advertisement
case Message.LSA:

//i got a linkstate advertisement so I need to process
accordingly

//processLSAMessage{);
gui. sendText ("This is a Link State Advertisement".);
//Assume this class is of type Message.
IPv6Address router=null;
try{
router = new IPv6Address(Array.

getSubArray(packet,index,index+IPv6Address.length));
}catch(UnknownHostException hoe){
gui.sendText("An exception occured while forming LSApacket

at PacketFactory");
}
LinkStateAdvertisement LSA = new

LinkStateAdvertisement(router);
index+=IPv6Address.length;
byte number0flnterfaces=packet[index++];
for(int ix=0;ix<numberOfInterfaces;ix++){
byte mesType = packet[index++];
IPv6Address interfaceIP=null;
try{

interfacelP = new IPv6Address (Array.getSubArray(
packet,index,index+IPv6Address.length));

}catch(UnknownHostException ex){
gui.sendText("Exception occured while forming LSA

packet")
}
index+=IPv6Address.length;
int bandwidth = PrimitiveConversions.getlnt(Array.
getSubArray(packet,index,index+4));

index+=4;
byte numSLPs=packet[index++];
InterfaceLSA tempLSA = new InterfaceLSA(

225

interfacelP,bandwidth,mesType);
Vector V=new Vector(4);
for(int j =0;j<numSLPs;j ++){
SLPLSA slpLSA = new SLPLSA(Array.getSubArray(
packet,index,index+SLPLSA.length));

V.add(slpLSA);
index+=SLPLSA.length;

}//end for SLPLSA creation
tempLSA.insertSLP(V) ;
LSA.insertlnterfaceLSA(tempLSA);

}//end for

//I need to create a Protocol Stack event and sent this
//to control exec first chech the lsa Type

MessageEvent me = new MessageEvent(
eventSource,this,ControlExecutive.SAAM_CONTROL_PORT,LSA);

try{
gui.sendText("Forwarding on channel -

+ ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(Exception e){
gui.sendText(e.toString());

}

break;

default:
gui.sendText("Packet type unrecognized: "+type);
//packet type is unrecognized. Here we could
//extract a channel_ID that could be embedded
//in the packet, and then send the unrecognized
//element on that channel.

}//end switch
}//for

// started=false;
}//processPacket()

//Henry
private void processMessage(byte[] bytes,

String eventSource, String messageType){

//Assume this class is of type Message.
try{

//message is of type Class.
message = Class.forName("saam.message."+messageType);

catch(ClassNotFoundException cnfe){
{gui.sendText("Bytecode for: saam.message."

+messageType+" not found.");
}

}

try{

226

//Call the constructor from within this Class that
//takes a byte array as its only argument
Constructor cons = message.getConstructor(
new Class[] {byte[].class}) ;

//Create the instance of this Message
gui.sendText("Calling constructor:

"+cons.toString()) ;
Message instance =

(Message)cons,newlnstance{
newObjectf] {bytes});

gui.sendText("Instance of message created:
"+instance.toString()) ;

MessageEvent me = new MessageEvent(eventSource, this,
ControlExecutive.SAAM_CONTROL_PORT,instance);

gui.sendText(me.toString()) ;
//send this MessageEvent on the Control port.
try{
gui.sendText("Forwarding on channel "+

ControlExecutive.SAAM_CONTROL_PORT);
controlExec.talk(me);

}catch(ChannelException tde){
gui.sendText(tde.toString()) ;

}
}catch(Exception e){
//need to notify sender that we have no classfile
//with this name
gui.sendText("processMessage: "+e.toString());

}//try-catch
}

//Henry
private void processMessage(byte[] bytes, String messageType){

//Assume this class is of type Message.
try{

//message is of type Class.
message = Class.forName("saam.message." +messageType);

}
catch(ClassNotFoundException cnfe){

{gui.sendText("Bytecode for: saam.message."
+messageType+" not found.");

}
}

try{
//Call the constructor from within this Class that
//takes a byte array as its only argument
Constructor cons = message.getConstructor(
new Class[] {byte[].class});

//Create the instance of this Message
Message instance =

(Message)cons.newlnstance(
new Obj ect[] {bytes});

gui.sendText(instance.toString());
controlExec.processMessage(instance);

227

}catch(Exception e){
//need to notify sender that we have no classfile
//with this name
gui.sendText("processMessage: "+e.toString()) ;

}//try-catch
}

/**

* This method can be used to append a Message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* Upararn me The Message to be appended.
*/

public void append(Message me){
if(bytesRetrieved){
packet=null;
numberOfMessages=0 ;
bytesRetrieved = false;

}
byte type = me.getType();
String name = me.getClass().getName();
byte nameLength = (byte)name.getBytes().length;
byte[] parameters = me.getBytes();

//here we could check the length of the parameter array supplied
//with the length returned from the length() method call.
short paramLength = (short)parameters.length;
gui.sendText("\nappending "+name+" with length = "+paramLength);
//now append the Message to the packet byte array
packet = Array.concat(packet,type);
if (type <= 1) {

packet = Array.concat(packet,nameLength);
packet = Array.concat(packet,name.getBytes()) ;

}
//new packet format only requires these
if (type != (int)Message.FLOWTERMINATION_TYPE) {

//message with variable length
packet = Array.concat(packet,

PrimitiveConversions.getBytes(paramLength));
}
packet = Array.concat(packet,parameters);

//increment the count of messages in this packet
numberOfMessages++;

gui.sendText("Appended Message:" +
"\n Type: " + type +
"\n name: " + name +
"\n param length: " + paramLength +
"\n # of messages: " + numberOfMessages +
"\n packet length: " + packet.length+"\n");

} //end of append

/**For handling new SAAMPacket format
* This method can be used to append a Message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)

228

* as a byte array, call the getBytes method.
* @param me The Message to be appended.
*/

public void append(byte[] message){
if(bytesRetrieved){
packet=null;
numberOfMessages=0;
bytesRetrieved = false;

}

packet = Array.concat(packet, message);
numberOfMessages++;
gui.sendText("Appended byte type message ");

}

/**
* This method can be used to append a DCM message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getDCMBytes method.
* ©pararn downward The DCM message to be appended.
*/

public void appendDCM(DCM downward){
gui.sendText(" Appending a dem message before sending downward with

lengh");
if(bytesRetrieved){
DCMpacket=null ,-
numberOfMessages=0;
bytesRetrieved = false;

}
DCMpacket = Array.concat(DCMpacket,downward.getBytes());

}//end of appendDCm

/ **
* This method can be used to append a PN message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getPNBytes method.
* @param downward The PN message to be appended.
*/

public void appendPN(ParentNotification pn){
gui.sendText(" Appending a PN message before sending downward with

lengh");
if(bytesRetrieved){

PNpacket=null;
numberOfMessages=0;
bytesRetrieved = false;

}
PNpacket = Array.concat(PNpacket,pn.getBytes());
gui.sendText("after appending PN is "+PNpacket.length);

}//end of appendDCm

/**
* This method can be used to append a PN message to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getPNBytes method.
* ©param downward The PN message to be appended.

229

public void appendUCM(UCM upward){
gui.sendText(" Appending a UCM message before sending upward");
UCMpacket = Array.concat(UCMpacket,upward.getBytes());

}//end of appendUCM
*/

/ **
* added by Huseyin UYSAL
*
*/

public void appendUCM(byte numMes,byte[] bytes){
if(bytesRetrieved){
packet=null;
numberOfMessages=0 ;
bytesRetrieved = false;

}
packet=Array.concat(packet,bytes);
numberOfMessages=numMes;

}

/**

* This method can be used to append a ResidentAgent to an outgoing
* SAAMPacket. To later retrieve the entire packet (with header)
* as a byte array, call the getBytes method.
* dparam ra The ResidentAgent to be appended.
*/

public void append(ResidentAgent ra) throws IOException{
String name = ra.getClass().getName();
append(name);

}

/**

* This method can be used to append a ResidentAgent by name to an
* outgoing SAAMPacket. To later retrieve the entire packet
* (with header) as a byte array, call the getBytes method.
* ©param residentAgentClassName The String name of the ResidentAgent
* classfile to be appended.
*/

public void append(String residentAgentClassName)
throws IOException{
if(bytesRetrieved){
packet=null;
numberOfMessages=0;
bytesRetrieved = false;

}
byte type = 0;
String name = residentAgentClassName;
//String fileName = ".."+File.separatorChar + //for KAWA
String fileName = "..\\.."+File.separatorChar + //for Jbuilder
residentAgentClassName.replace('.',File.separatorChar);

fileName+=".class";
gui.sendText("File name: "+fileName);
FilelnputStream fis = null;
try{

fis = new FilelnputStream(fileName);

230

}catch(IOException ioe){
throw new IOException(

"Probiem reading Res identAgent: "+ fi1eName);
}
byte nameLength = (byte)name.getBytes().length;
byte[] byteCode = new byte[fis.available()];
short length = (short)fis.read(byteCode);

packet = Array.concat(packet,type);
packet = Array.concat(packet,nameLength);
packet = Array.concat(packet,name.getBytes()) ;
packet = Array.concat(packet,

PrimitiveConversions.getBytes(length));
packet = Array.concat(packet,byteCode);
numberOfMessages++;

gui.sendText("Appended ResidentAgent:" +
"\n Type: " + type +
"\n name: " + name +
"\n byteCode length: " + length +
"\n # of messages: " + numberOfMessages +
"\n packet length: " + packet.length+"\n");

}

/**
* Appends a header to the byte array. The header conforms
* to the structure of a SAAMHeader.
*/

private void appendHeader(){
byte[] timeStamp = PrimitiveConversions.getBytes(

Sy s tern.currentTimeMi11i s());
packet = Array.concat(numberOfMessages,packet);
packet = Array.concat(timeStamp,packet);
gui.sendText("Appended header:"+

"\n timeStamp: "+PrimitiveConversions.getLong(
Array.getSubArray(packet,0,8))+

"\n # of updates: n+packet[8] +
"\n packet length: "+packet.length+n\n");

}

/**
* Returns a byte array that conforms to the structure of
* a SAAMPacket.
* ©return A byte array that conforms to the structure of
* a SAAMPacket.
*/

public bytet] getBytes(){
appendHeader();
bytesRetrieved = true;
return packet;

}

/**
* Returns a byte array that conforms to the structure of a

DCMPacket.
* ©return A byte array that conforms to the structure of DCMPacket.

231

*/

public byte[] getDCMBytes(){
bytesRetrieved = true;
return DCMpacket;

}

/**

* Returns a byte array that conforms to the structure of a PNPacket.
* ©return A byte array that conforms to the structure of PNPacket
*/

public byte[] getPNBytes(){
bytesRetrieved = true;
return PNpacket;

}

/**

* Returns a byte array that conforms to the structure of a
UCMPacket.

* ©return A byte array that conforms to the structure of UCMPacket.
*/

public byte[] getUCMBytes(){
bytesRetrieved = true;
return UCMpacket;

}

/**

* Returns the current length of the packet.
* ©return The current length of the packet.
*/

public int length(){
try{
return packet.length;

}catch(NullPointerException npe){
return 0;

}
}

/ **

* Returns a <code>String</code> representation of this object
* ©return The <code>String</code> representation of this object
*/

public String toString(){
return "Packet Factory";

}

}//end of PacketFactory

232

APPENDIX M - SAAM CONTROL.MAINGUI CLASS CODE

//23Feb2000[Henry] - modified

package saam.control;

import j ava.io.*;
import j ava.net.*;
import j ava.awt.*;
import j ava.awt.event.*;
import j ava.ut i1.*;
import j avax.swing.* ;
import j avax.swing.border.*;
import j avax.swing.plaf.metal.MetalBorders.*;

import saam.util.*;

class MainGui extends JFrame {//implements Runnable old

JToolBar toolbar;
JMenuBar menubar;
JMenuItem exit;
JMenu fileMenu, protocolStackMenu, routingTableMenu,

openChannelMenu, activePortMenu;
JMenu slsTableMenu; //Henry
JMenu flowTableMenu; //Henry-
Vector activeChannels = new VectorO;
Vector objectsToDisplay = new VectorO;
Vector tablesToDisplay = new VectorO;
Vector channelsToDisplay = new VectorO;
Vector portsToDisplay = new VectorO;
Vector slsTableToDisplay = new VectorO; //Henry
Vector flowTableToDisplay = new VectorO; //Henry-

String [] columnNames = {"FlowRequest_Source",
"FlowRequest_Source",

"ServiceType","FlowRequest_Throughput","FlowResponse_Result"};
int[] columnWidths = {220,220,50,50,50};
String flowTableTitle = "FlowReguest/FlowResponse Table";

SoftTableGui flowTableGui;
JPanel currentDisplay;
ControlExecutive controlExec;
String title;

MainGui(ControlExecutive controlExec, String title){
this.controlExec=controlExec;
this.title=title ;
setTitle(title);
createFileMenu();
addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

System.exit(0);
}

>) ;
Dimension dim =

233

Toolkit.getDefaultToolkit().getScreenSize();
float screenFactor = 1.3f;
setSize((int)(dim.width/(screenFactor)),

(int)(dim.height/(screenFactor)));
setLocation((int)(dim.width/2)-(int)(dim.width/(screenFactor)/2)

(int)(dim.height/2)-
(int)(dim.height/(screenFactor)12)) ;
II addlmagesO;

addRoots() ;
updateProtocolStackObjects();
setVisible(true);
Thread mainGuiThread = new Thread(title);
mainGuiThread.start();

}
// public void run(){
// }
private void setCurrentDisplay(JPanel panel){

if (currentDisplay!=null){
currentDisplay.setVisible(false);

}
setTitle("Currently displaying: "+ panel.toString());
currentDisplay = panel;
currentDisplay.setBorder(BorderFactory.createEtchedBorder());
setContentPane(new JScrollPane(currentDisplay));
currentDisplay.setVisible(true);
panel.validate();
validate();

}
void createFileMenuO {
menubar = new JMenuBar();
fileMenu = new JMenu("File");
exit = new JMenuItem("Exit");
exit.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

System.exit(0);
}

}) ;
fileMenu.add(exit);
protocolStackMenu = new JMenu("Protocol Stack");
routingTableMenu = new JMenu("Routing Tables");
openChannelMenu = new JMenu("Open Channels");
activePortMenu = new JMenu("Active Ports");
slsTableMenu = new JMenu("SLSTable"); //Henry
flowTableMenu = new JMenu("Flow Tables"); //Henry
menubar.add(fi1eMenu);

menubar.add(protocolStackMenu);
menubar.add(routingTableMenu);
menubar.add(openChannelMenu);
menubar.add(activePortMenu);
menubar.add(slsTableMenu); //Henry
menubar.add(flowTableMenu); //Henry
setJMenuBar(menubar);

}
synchronized void updateDisplay(){
updateRoutingTables();

234

updateProtocolStackObjects();
updateChannels();
updateRouterSLSTable(); //Henry

}

void updateSLSTables(){ //Henry
Vector titlesInGui = SLSTableGui.getTitles();
for (int i=0;i<titlesInGui.size();i++){
String thisTitle = (String)titlesInGui.get(i);
if(!slsTableToDisplay.contains(thisTitle)){
JMenuItem item = new JMenuItem(thisTitle);
slsTableMenu.add(item);
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(SLSTableGui.getlnstance(
ae.getActionCommand()));

}
}); . •
slsTableToDisplay.add(thisTitle);

}
}

}

void updateRouterSLSTable(){ //Henry
Vector titlesInGui = SLSTableGui.getTitles();
for (int i=0;i<titlesInGui.size();i++){
String thisTitle = (String)titlesInGui.get(i);
if{!slsTableToDisplay.contains(thisTitle)){
JMenuItem item = new JMenuItem(thisTitle);
slsTableMenu.add(item);
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(SLSTableGui.getlnstance(
ae.getActionCommand()));

}
}) ;
slsTableToDisplay.add(thisTitle);

}
}

}

void updateFlowTables(Vector data){ //Henry
flowTableGui = new SoftTableGui(flowTableTitle, columnNames,

columnWidths);
flowTableGui.displayTableData(data);

Vector titlesInGui = flowTableGui.getTitles();
for (int i=0;i<titlesInGui.size();i++){
String thisTitle = (String)titlesInGui.get(i);
if(JflowTableToDisplay.contains(thisTitle)){
JMenuItem item = new JMenuItem(thisTitle);
flowTableMenu.add(item);
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(flowTableGui.getlnstance(
ae.getActionCommand()));

}

235

});
fIowTableToDisplay.add(thisTitle);

}
}

}

void updateRoutingTables(){
Vector titlesInGui = TableGui.getTitles();
for (int i=0;i<titlesInGui.size();i++){

String thisTitle = (String)titlesInGui.get(i);
if(ItablesToDisplay.contains(thisTitle)){
JMenuItem item = new JMenuItem(thisTitle);
routingTableMenu.add(item);
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(TableGui.getlnstance(
ae.getActionCommand())) ;

}
});
tablesToDisplay.add(thisTitle);

}
}

}
void updateProtocolStackObjectsO {

Vector titlesInGui = SAAMRouterGui.gettitles();
for (int i=0;i<titlesInGui.size();i++){

String thisTitle = (String)titlesInGui.get(i);
if(iobjectsToDisplay.contains(thisTitle)){
JMenuItem item = new JMenuItem(thisTitle) ,•
protocolStackMenu.add(item) ;
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(SAAMRouterGui.getlnstance(
ae.getActionCommandO)) ;

}
});
objectsToDisplay.add(thisTitle);

}
}

}
void updateChannels(){

ChannelTableGui gui = null;
Enumeration activeChannels = controlExec.getActiveChannels(;
while(activeChannels.hasMoreElements()){

Channel channel = (Channel)activeChannels.nextElement();
int id = channel.getChannel_ID();
Vector channelContents = channel.getChannel();
String thisChannel = ""+id;
gui = new ChannelTableGui(thisChannel,

channel.getColumnHeaders() ,
channel.getColumnWidths());

gui.fillTable(channelContents);
if(id>controlExec.MAX_PORT){
updateChannelDisplay(thisChannel);

}else{
updatePortDisplay(thisChannel);

236

}
}//while

}
private void updateCharmelDisplay(String thisChannel){

if(!channelsToDisplay.contains(thisChannel)){
JMenuItem item = new JMenuItem(thisChannel);
openChannelMenu.add(item) ;
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(ChannelTableGui.getlnstance(
ae.getActionCommand()));

}
>);
channelsToDisplay.add(thisChannel);

}//if

}
private void updatePortDisplay(String thisChannel){

if(!channelsToDisplay.contains(thisChannel)){
JMenuItem item = new JMenuItem(thisChannel);
activePortMenu.add(item);
item.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent ae){

setCurrentDisplay(ChannelTableGui.getlnstance(
ae.getActionCommand()));

}
}); .
channelsToDisplay.add(thisChannel);

}//if

}
private void addlmages(){

ImageCanvas imagePanel = new ImageCanvas(
"D: Wtenchi.jpg",
"Cary, you must FIGHT!");

imagePanel.setBorder(
BorderFactory.createTitledBorder("Tenchi!")) ;

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
contentPane.add(imagePanel);

imagePanel = new ImageCanvas(
"D: Wkiyone.jpg",
"Cary, you must FIGHT!");

imagePanel.setBorder(
BorderFactory.createTitledBorder("Kiyone!"));

contentPane.add(imagePanel);

imagePanel = new ImageCanvas (
"D: Wsasami. jpg",
"Cary, you must FIGHT!");

imagePanel.setBorder(
BorderFactory.createTitledBorder("Sasami!"));

contentPane.add(imagePanel);

237

imagePanel = new ImageCanvas(
"D:\\aeka.jpg",
"Cary, you must FIGHT!");

imagePanel.setBorder(
BorderFactory.createTitledBorder("Aeka!")) ;

contentPane.add(imagePanel);

imagePanel = new ImageCanvas(
"D:\\washu.jpg",
"Cary, you must FIGHT!");

imagePanel.setBorder(
BorderFactory.createTitledBorder("Washu!"));

contentPane.add(imagePanel);

}
private void addRoots(){

ImageCanvas imagePanel . = new ImageCanvas(
"images"+
File.separatorChar+"workhard.jpg",
"Cary, you must FIGHT!");

imagePanel.setBorder(
BorderFactory.createTitledBorder(
new Flush3DBorder(),
"Java's a piece of cake, it just takes a little time!",
TitledBorder.CENTER,
TitledBorder.BELOWJTOP));

Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
contentPane.add(imagePanel);

}
class ImageCanvas extends JPanel {

Imagelcon icon;

public ImageCanvas(String imageName, String description) {
icon = new Imagelcon(imageName, description);

}
public void paintComponent(Graphics g) {

Insets insets = getlnsets();
super.paintComponent(g);
icon.paintlcon(this, g, insets.left, insets.top);

public Dimension getPreferredSize() {
Insets insets = getlnsets();
return new Dimension(

icon.getlconWidthO + insets.left + insets.right,
icon.getlconHeightO + insets.top + insets.bottom);

}
}

}//end of MainGui class

238

APPENDIX N - SAAM UTIL.FILEIO CLASS CODE

// 10Jan2000[Henry] - Created

package saam.util;

import java.util.*;
import j ava.io.*;

/**
* The FileIO is an object for file read/write operations
*/

public class FilelO {

private BufferedReader bufReader;
private PrintWriter bufWriter;
private File file;
private StringTokenizer st;

/**
* Constructs a FilelO object without any arguments.
*/

public FilelO() {
}

/**
* To open a tile for reading
* @param filename
*/

public void openToRead(String filename) {

//file = new File("..\\saam\\"+filename);//for Kawa project
file = new File(filename);//for Kawa project
try {
bufReader = new BufferedReader(new

FileReader(file.getAbsoluteFile()));
}
catch (FileNotFoundException fnf) {

System.err.println("FileNotFoundException - not Kawa project");
System.err.println(file.getAbsoluteFile());
filename = "..\\..\\n+filename;//for Jbuilder project
openToRead(filename);

}
catch (IOException ioe) {

System.err.println("IOException");
}

}

/**
* To open a file for writing
* @param filename
*/

public void openToWrite(String filename) {

239

//file = new File(" . . WsaamW'+filename) ; //for Kawa project
file = new File(filename);//for Kawa project
try {
bufWriter = new PrintWriter(new

FileWriter(file.getAbsoluteFile())) ;
}
catch (FileNotFoundException fnf) {

System.err.println("FileNotFoundException - not Kawa project");
System.err.println(file.getAbsoluteFile());
filename = "..\\..\\n+filename;//for Jbuilder project
openToWrite(filename);

}
catch (IOException ioe) {

System.err.println("IOException");
}

}

/**

* To read one line of data at a time from the file which
* has been opened for reading
* ©return The data string
*/

public String readLineO {
String input = null;
try {

input = bufReader.readLine();
}
catch (IOException ioe) {

System.err.println("IOException");
}
return input;

}

/**

* To write an object to the file which has been opened
* for writing
* ©param obj
*/

public void write(Object obj) {
bufWriter.print(obj);
bufWriter.flush();

}

/ **

* To close the file which has been opened
*/

public void close() {
try {

if (bufReader != null) {
bufReader.close();

}
else {
bufWriter.close() ;

}
}
catch (IOException ioe) {

System.err.println("IOException");

240

}
}

}//end of FilelO class

241

THIS PAGE INTENTIONALLY LEFT BLANK

242

APPENDIX O - SAAM.DEMO.DEMO_lSERVER_lROUTER CLASS CODE

//10Mar99[Henry] - Created

package saam.demo;

import saam.*;
import saam.control.*;
import saam.message.*;
import saam.residentagent.*;
import saam.router.*;
import saam.net.*;
import saam.util.*;
import j ava.net.*;
import j ava.io.*;
import Java.util.Vector;
import Java.util.Enumeration;

import saam.server.*;
import saam.server.diffserv.*;

public class Demo_lServer_lRouter{
private PacketFactory packet = new PacketFactory();

private InetAddress
destMain,destBackUp,destA,destB,destC,destD,destE; //IPv4s of ROUTERS
to stand-up

private int destEmulationPort=9002; //SAAM UDP emulation port
(IPv4 world)

private DemoGui gui = new DemoGui("Demo_lServer_lRouter");

Configuration cfMain = null; //FOR MAIN SERVER
Configuration cfBackup = null; //For Backup Server

//Different values may be sent to each server and router
private int timeScaleForMain = 250;
private int timeScaleForBackUp = 250;
private int timeScaleForRouter_A = 250;
// private int timeScaleForRouter_B = 300;
// private int timeScaleForRouter_C = 400;
// private int timeScaleForRouter_D = 400;
// private int timeScaleForRouter_E = 400;

private static final byte MAIN_SERVER_TYPE_ID = 0;
private static final byte BACK_UP_SERVER_TYPE_ID = 1;

private static final int MAIN_SERVER_FLOW_ID = 1;
private static final int BACK_UP_SERVER_FLOW_ID = 3;

private static final byte METRIC_TYPE = 0;
//Metric Type 0-> For Symmetric (first arriving best), l-> For

Hopcount

private static final int MAIN_REFRESH_CYCLE_TIME = 300;// In msec.

243

private static final int BACK_UP_REFRESH_CYCLE_TIME = 300;// In
msec.

private static final int MAIN_GLOBALTIME_TO_WAIT = 200;// In msec,
private static final int BACK_UP_GLOBALTIME_TO_WAIT = 200;// In

msec.

// coreAgents are those resident agents which all emulated players
// must receive to stand-up
private String[] coreAgents =

{"saam.residentagent.router.Scheduler",
-saam.residentagent.router.ARPCache",
"saam.residentagent.router.FlowRoutingTable"};

private String redwood = "131.120.8.153";
private String pine = "131.120.8.137";
private String cherry = "131.120.8.143";
private String oak = "131.120.8.136";
private String Sumatra = "131.120.8.134";
private String dogwood = "131.120.8.132";
private String maple = "131.120.8.142";

private String serV6 = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1";
//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1";

private String serNextHopV6 = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2";
//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2";

//For SP238
private String serNextHopV4 = pine;
private String primaryServer = maple;

/*For SP525
private String serNextHopV4 = dogwood;
private String primaryServer = Sumatra;

*/
private String routerAV6 = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2";

//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2";
private String routerANextHopV6 =

"99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1";
//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1";

//For SP238
private String routerANextHopV4 = maple;
private String routerAV4 = pine;

/*For SP525
private String routerANextHopV4 = Sumatra;
private String routerAV4 = dogwood;

*/

public static void main(String args[]){
Demo_lServer_lRouter test = new Demo_lServer_lRouter();
System.exit(0) ;

}

public Demo_lServer_lRouter(){

try{
gui.setTextField("My IP: "+

InetAddress.getLocalHost().getHostAddress());
}catch(UnknownHostException uhe){

244

gui.sendText(uhe.toString());
}

try{
destMain= InetAddress.getByName(primaryServer); //server
destBacküp= InetAddress.getByName("131.120.8.132");//backup
destA= InetAddress.getByName(routerAV4); //Router A

// destB= InetAddress.getByName("131.120.8.139"); //Router B
// destC= InetAddress.getByName("131.120.9.76"); //Router C
// destD= InetAddress.getByName("131.120.9.76"); //Router D
// destE= InetAddress.getByName("127.0.0.1"); //Router E
}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

//FIRST STAND UP SERVER!!!!!!
//Initilizing interfaces on MAIN Server
Vector serverlnterface = new Vector();
Vector serverEmTable = new Vector();
Vector serverArpCache = new Vector();
IPv6Address serlntAd = null;

byte serverMac = 0;
byte serverNextMac = 1;
try{
serlntAd = new IPv6Address(

IPv6Address. getByName (serV6) . getAddress ()) ;
IPv6Address serNextHop = new IPv6Address(

IPv6Address.getByName(serNextHopV6).getAddress()) ;
InetAddress serNextV4 = InetAddress.getByName(serNextHopV4);

//for demohello message
serverlnterface.add(new InterfaceID(' serlntAd,serverMac));
//for EmulationTableEntry message
serverEmTable.add(new EmulationTableEntry(serNextHop,serNextV4));
//for ARPCache
serverArpCache.add(new ARPCacheEntry(serNextHop,serverNextMac));

}
catch(UnknownHostException uhe){
gui.sendText(uhe.toString());
}

cfMain = new Configuration(MAIN_SERVER_TYPE_ID,
MAIN_SERVER_FLOW_ID,

METRIC_TYPE, MAIN_REFRESH_CYCLE_TIME*timeScaleForMain,
MAIN_GLOBALTIME_TO_WAIT*timeScaleForRouter_A);
//actualy any router not specificaly A

//NOW STAND-UP THE ROUTERS!!!!!!!!!
//ROUTER A
Vector routerAInterfaces = new Vector();
Vector routerAEmTable = new Vector();
Vector routerAArpCache = new Vector();
//interface-1
byte routerAMacs_l = 1;

245

byte routerANextMac_l = 0;
IPv6Address routerAInt_l = null;
try{
routerAInt_l = new IPv6Address(IPv6Address.getByName (

routerAV6).getAddress());
IPv6Address routerANextHop_l = new IPv6Address(

IPv6Address.getByName(serV6).getAddress()) ;
InetAddress routerANextV4_l =

InetAddress.getByName(primaryServer);

routerAInterfaces.add(new
InterfacelD(routerAInt_l,routerAMacs_l));

routerAEmTable.add(new EmulationTableEntry(
routerANextHop_l,routerANextV4_l));

routerAArpCache.add(new ARPCacheEntry(
routerANextHop_l,routerANextMac_l));

}
catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

// start Primary Server
InitServer(serverInterface, serverEmTable, serverArpCache,

destMain, cfMain);
// start Router A
InitRouter(routerAInterfaces, routerAEmTable, routerAArpCache,

destA, timeScaleForRouter_A);

try{
Thread.sleep(lOOOO) ;

}catch(InterruptedException ie){
gui.sendText("problem afetr initrouter thread sleep");

}

}//end DemoStation() constructor

public void InitRouter(Vector routerlnterfaces, Vector
rout erEmTable,

Vector routerArpCache, InetAddress dest, int tsForRouter){

//add router InterfacelDs — may have to use DemoHello
//messages instead
DemoHello helloMessage = new DemoHello(routerlnterfaces);
packet.append(helloMessage);

try{
//now append some ResidentAgents...
//first the agents that are necessary for the
//protocol stack
for(int i=0;i<coreAgents.length;i++){
packet.append(coreAgents[i]);

}

//then any additional agents for the specific host
packet.append("saam.residentagent.router.SLSTable");

246

}catch(IOException ioe){
gui.sendText(ioe.toString()) ;
gui.sendText(" problem in initrouter coreagents for block ");

}

packet.append(new TimeScale(tsForRouter));
//add entries to the EmulationTable
Enumeration el = routerEmTable. elements () ;
while(el.hasMoreElements()){

packet.append((EmulationTableEntry)(el.nextElement()));

} //end of while

//add entries to the ARPCache
Enumeration e2 = routerArpCache.elements();

while(e2.hasMoreElements()){
packet.append((ARPCacheEntry) e2.nextElement());

} //end of while

//by passing 250 from header of method, i can set it
// diffrent for each router

//now send the packet
byte[] packetArray = packet.getBytes();
//Note: getBytes also sets packet object up to be reused for a

new message
gui.sendText("#of messages: "+packetArray[8]);//peeks inside

packet
try{

Socket socket = new Socket(dest,destEmulationPort);
socket.setTcpNoDelay(true);

gui.sendText("destRouter = "+dest+" destEmuPort= "+
destEmulationPort);

OutputStream os = socket.getOutputStreamO;

os.write(packetArray);
// os.flush();
os.close();
socket.close();

}catch(Exception e){
gui.sendText(e.toString()) ;
gui.sendText(" problem in initrouter socket try block ");

}
gui.sendText("Packet sent to "+dest.getHostAddress()) ;
gui.sendText("Length: "+packetArray.length);

try{
Thread.sleep(packetArray.length);

}
catch(InterruptedException ie){
}

}//end InitRouterO

247

public void InitServer(Vector serverInterface, Vector
serverEmTable,

Vector serverArpCache, InetAddress destS, Configuration cf){

DemoHello helloMessage = new DemoHello(serverlnterface);
packet.append(helloMessage);

try{
//now append some ResidentAgents...
//first the agents that are necessary for the
//protocol stack
for(int i=0;i<coreAgents.length;i++){
packet.append(coreAgents[i]);

}
//then any additional agents for the specific host
packet.append("saam.residentagent.server.ServerAgentSymetric");

packet.append("saam.residentagent.server.ServerAgentHopCount");

}catch(IOException ioe){
gui.sendText(ioe.toString()) ;

}

//add entries to the Server's EmulationTable
Enumeration el = serverEmTable.elements();
while(el.hasMoreElements()){

packet.append((EmulationTableEntry) (el .nextElement()));

} //end of while

//add entries to the Server's ARPCache

Enumeration e2 = serverArpCache.elements();
while(e2.hasMoreElements()){

packet.append((ARPCacheEntry)(e2.nextElement())) ;

} //end of while

//TO SEND CONFIGURATION INFORMATION

packet.append(cf);

//now send the packet
byte[] packetArray = packet.getBytes();
//Note: getBytes also sets packet object up to be reused
//for a new message
gui.sendText("#of messages send to server :

,r+packetArray[8]) ;//peeks inside packet
try{

Socket socket = new Socket(destS,destEmulationPort);
socket.setTcpNoDelay(true);

gui.sendText("destServer = "+destS+" destEmuPort= "+
destEmulationPort);

OutputStream os = socket.getOutputStream();

248

os.write(packetArray);
// os.flushO;

os.close{);
socket.close();

}catch(Exception e){
gui.sendText(e.toString());
gui.sendText(" problem in initserver socket try block ");

}

gui.sendText("Packet sent to n+destS.getHostAddress());
gui.sendText("Length: "+packetArray.length);

}//end InitServer()

}//end class Demo_lServer_lRouter

249

THIS PAGE INTENTIONALLY LEFT BLANK

250

APPENDIX P- SAAM.DEMO.SENDFLOWAGENT CLASS CODE

//10Mar99[Henry] - Created

package saam.demo;

import saam.*;
import saam. control.*;
import saam.message.*;
import saam.residentagent.*;
import saam.router.*;
import saam.net.*;
import saam.util.*;
import j ava.net.*;
import j ava.io.*;
import java.util.Vector;
import java.util.Enumeration;

import saam.server.*;
import saam.server.diffserv.*;

/**
* A class that may be used to send resident agent(s) to the routers
*/

public class SendFlowAgent{
private PacketFactory packet = new PacketFactoryO ;

private InetAddress
destMai^destBackUp/destAjdestB^estCdestDjdestE; //IPv4s of ROUTERS
to stand-up

private int destEmulationPort=9002; //SAAM UDP emulation port
(IPv4 world)

private DemoGui gui = new DemoGui("SendFlowAgent");

Configuration cfMain = null; //FOR MAIN SERVER
Configuration cfBackUp = null; //For Backup Server

//Different values may be sent to each server and router
private int timeScaleForMain = 25;
private int timeScaleForBackUp = 25;
private int timeScaleForRouter_A = 25;
// private int timeScaleForRouter_B = 300;
// private int timeScaleForRouter_C = 400;
// private int timeScaleForRouter_D = 400;
// private int timeScaleForRouter_E = 400;

private static final byte MAIN_SERVER_TYPE_ID = 0;
private static final byte BACK_UP_SERVER_TYPE_ID = 1;

private static final int MAIN_SERVER_FLOW_ID = 1;
private static final int BACK_UP_SERVER_FLOW_ID = 3;

private static final byte METRIC_TYPE = 0;
//Metric Type 0-> For Symmetric (first arriving best), l-> For

Hopcount

251

private static final int MAIN_REFRESH_CYCLE_TIME = 2000;// In msec,
private static final int BACK_UP_REFRESH_CYCLE_TIME = 2000;// In

msec.

private static final int MAIN_GLOBALTIME_TO_WAIT = 200;// In msec,
private static final int BACK_UP_GLOBALTIME_TO_WAIT = 200;// In

msec.

// coreAgents are those resident agents which all emulated
// players must receive to stand-up
private String[] coreAgents =

{"saam.residentagent.router.Scheduler",
"saam.residentagent.router.ARPCache",
"saam.residentagent.router.FlowRoutingTable"};

private String redwood = "131.120.8.153";
private String pine = "131.120.8.137";
private String cherry = "131.120.8.143";
private String oak = "131.120.8.136";
private String Sumatra = "131.120.8.134";
private String dogwood = "131.120.8.132";
private String maple = "131.120.8.142";

private String serV6 = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1";
//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1";

private String serNextHopV6 = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2"
//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2";

//For SP238
private String serNextHopV4 = pine;
private String primaryServer = maple;

/*For SP525
private String serNextHopV4 = dogwood;
private String primaryServer = Sumatra;

*/

private String routerAV6 = "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2";
//"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2" ;

private String routerANextHopV6 =
"99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1";

//" 99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1" ;
//For SP238

private String routerANextHopV4 = maple;
private String routerAV4 = pine;

/*For SP525
private String routerANextHopV4 = Sumatra;
private String routerAV4 = dogwood;

*/
public static void main(String args[]){

SendFlowAgent test = new SendFlowAgent();
System.exit(0);

}

public SendFlowAgent(){

try{

252

gui.setTextField("My IP: "+
InetAddress.getLocalHost().getHostAddress()) ;

}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

try{
destMain= InetAddress.getByName(primaryServer); //server
destBackUp= InetAddress.getByName("131.120.8.132");//backup
destA= InetAddress.getByName(routerAV4); //Router A

// destB= InetAddress.getByName("131.120.8.139"); //Router B
// destC= InetAddress.getByName("131.120.9.76"); //Router C
// destD= InetAddress.getByName("131.120.9.76"); //Router D
// destE= InetAddress.getByName("127.0.0.1"); //Router E
}catch(UnknownHostException uhe){
gui.sendText(uhe.toString());

}

//SendTestMessages to Server
sendPacket(destMain, "saam.residentagent.router.OneWayDSFlow");

//SendTestMessages to Router
sendPacket(destA, "saam.residentagent.router.OneWayDSFlow");

}//end sendFlowAgent() constructor

/**
* Gets the IPv6Address equivalent of the string given in the
* parameter
* @param node The IPv6Address in the form of a string
* ©return IPv6Address equivalent
*/
private IPv6Address getV6Address(String node) {

IPv6Address address = null;
try{

address = new IPv6Address(
IPv6Address.getByName(node).getAddress());

}
catch(UnknownHostException uhe){

gui.sendText(uhe.toString()) ;
}
return address;

}

/**
* Sends the resident agent class file to the destination
* specified.
* ©param destS The IPv4Address of the destination
* ©param residentAgentName
*/

private void sendPacket(InetAddress destS, String
residentAgentName) {

//Test resident agent
try{

packet.append(new TestMessage(routerAV4));

253

packet.append(residentAgentName);
}catch(IOException ioe){

gui.sendText(ioe.toString());
}

//now send the packet
byte[] packetArray = packet.getBytes();

//Note: getBytes also sets packet object up to be reused for a new
message

gui.sendText("#of messages sent: "+packetArray[8]);//peeks inside
packet

try{
Socket socket = new Socket(destS,destEmulationPort);
socket.setTcpNoDelay(true);
gui.sendTextCdest = n+destS+" destEmuPort = " +

destEmulationPort) ;
OutputStream os = socket.getOutputStream();

os.write(packetArray);
// os.flush(),•

os.close();
socket.close();

}catch(Exception e){
gui.sendText(e.toString()) ;
gui.sendText(n problem in initserver socket try block ");

}
gui.sendText("Packet sent to "+destS.getHostAddress());.
gui.sendText("Length: "+packet Array.length);

try{
Thread.sleep(packetArray.length);

}
catch(InterruptedException ie){
}

}//sendPacket

}//end class SendFlowAgent

254

APPENDIX Q - SAAM.DEMO.QOSDEMO PACKAGE CODE

// 13Feb2000, Henry - Created

package saam.demo.QoSDemo;

I **
* The QoSDemo class is the main class used to test
* and verify the QoS Management classes and their functions.
*/

public class QoSDemo {

public static void main(String args[]){
FourNodes myTopology = new FourNodes();
myTopology.start() ;

} / /main

}//end QoSDemo

255

// lFeb2000, Henry - Modified
// 14Decl999, Henry - Created

package saam.demo.QoSDemo;

import java.net.UnknownHostException;
import java.util.*;

import saam.message.*;
import saam.control.*;
import saam.server.*;
import saam.net.*;
import saam.util.*;
import saam.server.diffserv.*;

/**

* The QoSDemo class is used to test and verify the SLS
* classes.
*/

public class FourNodes extends Thread{

SLS sis;
SLSDbase SLS_dbase;
FlowResponse response;
FlowReguest request;
Object[] IP = null;
Random randomGen;
int supporting_path = 0;
int numberOfNodes = 7;
int numberOfInterfaces = 0;
int numberOfLinks = 4;
int[] node_ids;// = new int[numberOfNodes3;
IPv6Address[] address;
boolean localTest = false;

ControlExecutive ce;
Server server;
ClassObjectStructure PIB;
private SAAMRouterGui gui;
private DemoGui dgui;

private NodeThread node;

/**

* Construct a four node topology for local testing
*/

public FourNodes(){
//randomGen = new RandomO;
dgui = new DemoGui("IntServ & DiffServ Demostation");
gui = new SAAMRouterGui("FourNodes");
ce = new ControlExecutive() ;
PIB = new ClassObjectStructure();
SLS_dbase = new SLSDbase();
PIB. deleteAHData () ;
server = new Server(gui, ce, PIB, SLS_dbase);
localTest = true;

}

256

/**
* Construct a four node topology for integrated testing
*/

public FourNodes(Server server){
dgui = new DemoGui("IntServ & DiffServ Demostation");
gui = new SAAMRouterGui("FourNodes");
this.server = server;

}

/**
* Starts running the demo test
*/

public void run(){
RequesterThread requester;

dgui.setTextField("Initial resources ...");
setup();
if (localTest) {

for (int i=0; i<2; i++) { //four IntServ request
requester = new RequesterThread(dgui, server,

(IPv6Address)IP[0], (IPv6Address)IP[4], 2000, 1000);
requester.start();

}
for (int i=0; i<2; i++) { //four IntServ request
requester = new RequesterThread(dgui, server,

(IPv6Address)IP[0], (IPv6Address)IP[4],
Server.DS_SERVICELEVEL, 1000, 1000);

requester.start() ;
}
//requester = new RequesterThread(dgui, server, address, 1000,

1000);
//requester.start();

requester = new RequesterThread(dgui, server,
(IPv6Address)IP[0], (IPv6Address)IP[5], 1050, 1000);

requester.start();

//unreacheable path
requester = new RequesterThread(dgui, server,

(IPv6Address)IP[0], (IPv6Address)IP[7], 2050, 1000);
requester.start();
requester = new RequesterThread(dgui, server,

(IPv6Address)IP[0], (IPv6Address)IP[7],
Server.DS_SERVICELEVEL, 1000, 1000);

requester.start();
}
requester = new RequesterThread(dgui, server,

(IPv6Address)IP[9], (IPv6Address)IP[10],
Server.IS_SERVICELEVEL, 100, 100)

requester.start();

gui.setTextField("done") ;
try{
Thread.sleep(100000) ;

}
catch(InterruptedException ie){

gui.sendText(ie.toString());

257

}

}//end run()

/**

* Setup the nodes and its interfaces
*/

private void setup(){
gui.sendText("Setting ...");
//int node_id;// = 0; //is node 1
//int interfacelD = 0;
addlPO ;
//Server
node = new NodeThread(server, Array.getSubArray(IP,10,ll));
//RouterA
node = new NodeThread(server, Array.getSubArray(IP,0,3));
//node.start();
//RouterB

node = new NodeThread(server, Array.getSubArray(IP,3,5));
//node.start();

//RouterC
node = new NodeThread(server, Array.getSubArray(IP,5,7))■
//node.start();
//node = new NodeThread(server, Array.getSubArray(IP,7,9))
//node.start();
//node = new NodeThread(server,

Array.getSubArray(IP,9,10)) ;
address = new IPv6Address[numberOfInterfaces];
//address = (IPv6Address[])IP;

}

/**

* Construct IPs that will reside on routers
*/

private void addIP(){
try{

numberOfInterfaces++ ;
IP = Array.concat(IP,
IPv6Address.getByName(//Node 1

// "99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.1"));
"99.99.99.1.0.0.0.0.0.0.0.0.0.0.0.1"));

numberOfInterfaces++ ;
IP = Array.concat(IP,

IPv6Address.getByName(//Node 1
// "99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.2"));

"99.99.99.3.0.0.0.0.0.0.0.0.0.0.0.2")) ;
numberOfInterfaces++;

IP = Array.concat(IP,
IPv6Address.getByName(//Node 1

// "99.99.99.99.7.0.0.0.0.0.0.0.0.0.0.3"));
"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2"));

numberOfInterfaces++;
IP = Array.concat(IP,

IPv6Address.getByName(//Node 2
// "99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.1"));

258

"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.1"));
numberOfInterfaces++;

IP = Array.concat(IP,
IPv6Address.getByName(//Node 2

// "99.99.99.99.1.0.0.0.0.0.0.0.0.0.0.2")),•
"99.99.99.1.0.0.0.0.0.0.0.0.0.0.0.2"));

numberOfInterfaces++;
IP = Array.concat(IP,
IPv6Address.getByName(//Node 3

// "99.99.99.99.3.0.0.0.0.0.0.0.0.0.0.1")) ;
"99.99.99.3.0.0.0.0.0.0.0.0.0.0.0.1"));

numberOfInterfaces++;
IP = Array.concat(IP,
IPv6Address.getByName(//Node 3

// "99.99.99.99.2.0.0.0.0.0.0.0.0.0.0.2")) ;
"99.99.99.2.0.0.0.0.0.0.0.0.0.0.0.2"));

numberOfInterfaces++;
IP = Array.concat(IP,
IPv6Address.getByName(//Node 4

// "99.99.99.99.4.0.0.0.0.0.0.0.0.0.0.1")) ;
"99.99.99.4.0.0.0.0.0.0.0.0.0.0.0.1"));

/*numberOfInterfaces++;
IP = Array.concat(IP,

IPv6Address.getByName(//Node 4
"99.99.99.3.0.0.0.0.0.0.0.0.0.0.0.2"));

numberOfInterfaces++;
IP = Array.concat(IP,
IPv6Address.getByName(//Node 4

"99.99.99.6.0.0.0.0.0.0.0.0.0.0.0.3"));
numberOfInterfaces++;

IP = Array.concat(IP,
IPv6Address.getByName(//Node 5

"99.99.99.4.0.0.0.0.0.0.0.0.0.0.0.2"));
numberOfInterfaces++;

IP = Array.concat(IP,
IPv6Address.getByName(//Node 5

"99.99.99.5.0.0.0.0.0.0.0.0.0.0.0.1"));
numberOfInterfaces++;

IP = Array.concat(IP,
IPv6Address.getByName(//Node 6

"99.99.99.6.0.0.0.0.0.0.0.0.0.0.0 .1"));
numberOfInterfaces++;*/

IP = Array.concat(IP,
IPv6Address.getByName(//Node 7

// "99.99.99.99.7.0.0.0.0.0.0.0.0.0.0.1")) ;
"99.99.99.7.0.0.0.0.0.0.0.0.0.0.0.1"));

numberOfInterfaces++;
IP = Array.concat(IP,

IPv6Address.getByName(//Node 7 to Server
// "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.2")) ;

"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.2"));
numberOfInterfaces++;

IP = Array.concat(IP,
IPv6Address.getByName(//Server

// "99.99.99.99.0.0.0.0.0.0.0.0.0.0.0.1"));
"99.99.99.0.0.0.0.0.0.0.0.0.0.0.0.1"));

259

catch(UnknownHostException uhe){
gui.sendText(uhe.toString()) ;
System.err.printin(uhe.toStringO);

}
}

/**

* Print the remainingThroughput of all interfaces of the service
* level specified in the parameter.
* ©param service_level The service level interested
*/

private void displayInterfaceStatus(byte service_level){
for (int i=0; i<numberOfInterfaces; i++) {

address[i] = (IPv6Address)IP[i];
dgui.sendText("Interface: " +address[i]

+ "'s remainingThroughput = "+
PIB.getRemainingThroughput(address[i], service_level));

}
}

/**

* Print the remainingThroughput of all interfaces of all service
*. level.
*/

private void displayAllInterfaceStatus(){
for (int i=0; i<numberOfInterfaces; i++) {

addressfi] = (IPv6Address)IP[i];
for (byte service_level = 0;

service_level<Server.NUMBEROFSERVICELEVELS;
service_level++){

dgui.sendText("Interface: " +address[i]
+ "'s remainingThroughput = "+

PIB.getRemainingThroughput(address[i],
service_level));

}
}

}

}//end FourNodes

260

//
// Filename : NodeThread.java
// Date : January 27, 2000
// _

package saam.demo.QoSDemo;

import Java.net.UnknownHostException;
import j ava.ut i1.*;
import saam.message.*;
import saam.control.*;
import saam.server.*;
import saam.net.*;
import saam.util.*;
import saam.server.diffserv.*,•

/**

* NodeThread class used to simulate a router which will establish
* contact with the server using a Hello message.
*/

public class NodeThread extends Thread {

/ **

* counter is an static integer and used for assigning thread numbers
*/
private static byte counter = 0;

/**

* threadNumber is an integer and used for thread numbers
*/
private byte threadNumber = 0;

private Server server;
private Random randomGen = new Random();
private Object[] address;
private Vector interfaces = new Vector();
private Hello hello;
private SAAMRouterGui gui;

/ **
* Constructor of this class.
*/
//Used only by server
public NodeThread(Server server, IPv6Address address) {

threadNumber = ++counter;
//gui = new SAAMRouterGui("NodeThread"+threadNumber);
this.server = server;
this.address = new Object[l];
this.address[0] = (Object)address;
InterfacelD interfaceld =

new InterfaceID(address, 10000, threadNumber);
interfaces.add(interfaceld);

hello = new Hello(interfaces);
//simulate server received Hello message from the router

server.processHello(hello);
}//end NodeThread()

261

public NodeThread(Server server. Object[] address) {
threadNumber = ++counter;
//gui = new SAAMRouterGui("NodeThread"+threadNumber);
this.server = server;
this.address = address;
for (int i=0; i<address.length; i++) {

InterfacelD interfaceld =
new InterfacelD((IPv6Address)address[i], 10000,

threadNumber);
interfaces.add(interfaceld);

}
hello = new Hello(interfaces);

//simulate server received Hello message from the router
server.processHello(hello);

}//end NodeThread()

/**

* Used to simulate a flow request.
*/

public void run() {
try{

Thread.sleep(lOOO) ;
RequesterThread requester =

new RequesterThread(server, address, 1000,
100);

requester.start() ;
}catch(InterruptedException ie){}

}

/**

* Returns the string representation of this class
* ©return string
*/
public String toString(){

return ("\nThread Number : " + threadNumber +"");
}//end toStringO

}//end NodeThread class

//end file NodeThread.java

262

//
//Filename : RequesterThread.Java
// Date : January 27, 2000
//

package saam.demo.QoSDemo;

import java. net. UnknownHostException ;
import j ava.util.*;
import saam.message.*;
import saam.control.*;
import saam.server.*;
import saam.net.*;
import saam.util.*;
import saam.server.diffserv.*;

/**
* RequesterThread class simulates an application requiring a service
* flow. The sequence of requesting a service flow.and responding to
* the response from the server is started by instantiating this thread
* and calling its start() method.
*/

public class RequesterThread extends Thread {

/ **
* counter is an static integer and used for assigning thread numbers
*/
private static int counter = 0;

/**
* threadNumber is an integer and used for thread numbers
*/
private int threadNumber = 0;

/**
* processTime is an integer and used for required process time of
* the thread
*/
private int processTime;

private Random randomGen = new Random();
private Server server;
private Object[] address;
private IPv6Address source;
private IPv6Address dest;
private int throughput = 0;
private byte service_level = Server.IS_SERVTCELEVEL;
private boolean dynamic = false;

private FlowRequest request;
private FlowResponse response;
private DemoGui gui;

/**
* Constructor of this class.
*/
public RequesterThread(DemoGui gui.

Server server. Object[] address.

263

int throughput, int maxProcessTime) {
this(server, address, throughput, maxProcessTime);

this.gui = gui;
}

public RequesterThread(
Server server, Object[] address,

int throughput, int maxProcessTime) {

threadNumber = ++counter;
this.server = server;
this.address = address;
this.throughput = throughput;
this.processTime = randomGen.nextInt(maxProcessTime);
dynamic = true;

}//end RequesterThreadO

public RequesterThread(DemoGui gui,
Server server, IPv6Address source, IPv6Address dest,

int throughput, int maxProcessTime) {

threadNumber = ++counter;
this.gui = gui;
this.server = server;
this.source = source;
this.dest = dest;
this.throughput = throughput;
this.processTime = randomGen.nextlnt(maxProcessTime);
dynamic = false;

}//end RequesterThreadO

public RequesterThread(DemoGui gui,
Server server, IPv6Address source, IPv6Address dest,

byte service_level, int throughput, int maxProcessTime) {

threadNumber = ++counter;
this.gui = gui;
this.server = server;
this.source = source;
this.dest = dest;
this.throughput = throughput;
this.service_level = service_level;
this.processTime = maxProcessTime;

//randomGen.nextInt(maxProcessTime);
dynamic = false;

}//end RequesterThread()

/ **

* Used to start the test sequence of sendng flow request and
* then processing the flow response result.
*/

public void run() {
if (service_level == Server.DS_SERVICELEVEL) {

264

//make a DiffServ request
gui.sendText("Requester: "+threadNumber+" is requesting

DiffServ....");
request = new FlowRequest(source, dest,

System.currentTimeMillisO, threadNumber, 1, 1,
throughput);

response = server.DS_Admission(request);
}
else {

//make a IntServ request
gui.sendText("Requester: "+threadNumber+" is requesting

IntServ....");
if (dynamic) {

request = new FlowRequest(

(IPv6Address)address[randomGen.nextlnt(address.length)],

(IPv6Address)address[randomGen.nextlnt(address.length)],
Server.IS_SERVTCELEVEL, System.currentTimeMillis{),

1, 1, throughput);
}
else {

request = new FlowRequest(source, dest,
Server.IS_SERVICELEVEL,

System.currentTimeMillis(),
1, 1, throughput);

}
response = server.IS_Admission(request);

}
byte result = response.getResult();
if (result == FlowResponse.IS_ACCEPTED) {

try {
gui.sendText("Requester: "+threadNumber+" is going

asleep for:"
+processTime+" ms of simulated

traffic time.");
sleep(processTime) ;
gui.sendText("Requester: "+threadNumber+" is sending

flow termination.");
//simulate server receiving FlowTermination message

from router
server.receiveFlowTermination(response.getFlowIdO);

}
catch (InterruptedException ie) {

//do nothing
gui.sendText(ie.toString());

}
}
else if (result == FlowResponse.DS_ACCEPTED) {

try {
gui.sendText("Requester: "+threadNumber+" is going

asleep for:"
+processTime+" ms of simulated

traffic time.");
sleep(processTime);
gui.sendText("Requester: "+threadNumber+" is sending

SLSTableEntry.");

265

//simulate server receiving FlowTermination message from router
server.receiveSLSTableUpdate(response.getUserld());

catch (InterruptedException ie) {
//do nothing
gui.sendText(ie.toString());

}
}
else {

gui.sendText("Requester: "+threadNumber+
"'s request denied, result: "+result);

}

/ **

* Returns the string representation of this class
* @param none
* ©return string
*/
public String toString(){

return ("\nThread Number : " + threadNumber +
"\nProcess Time : » + processTime + nn);

}//end toString()

}//end RequesterThread class

//end file RequesterThread.Java

266

LIST OF REFERENCES

[I] Xie, Geoffrey G. and Lam, Simon S., "Delay Guarantee of Virtual Clock Server,"

IEEE/ACM Transactions on Networking, 3(6):683-689, December 1995.

[2] Xie, Geoffrey G., Hensgen, Debra, Kidd, Taylor, and Yarger, John, "SAAM: An

Integrated Network Architecture for Integrated Services," paper presented at the

6th TFFF/TFTP International Workshop on Quality of Service, Napa, CA,

[http://www.cs.nps.navy.mil/people/faculty/xie/pub]. May 1998.

[3] QingMing Ma and Peter Steenkiste, "On Path Selection for Traffic with Bandwidth

Guarantees", Computer Science Department, Carnegie Melon University,

Pitsburgh, PA 15213, USA.

[4] Xie, Geoffrey G., Hensgen, Debra, Kidd, Taylor, and Yarger, John, "Efficient

Management of Integrated Services Using a Path Information Base."

[http://www.cs.nps.navy.mil/people/faculty/xie/pub], 14 May 1998.

[5] Labovitz, C, Malan, G.R., and Jahanian, F., "Internet Routing Instability",

Department of Electrical Enginerring and Computer Science, University of

Michigan, Oct. 1998.

[6] Xipeng Xiao, Ni, L.M, "Internet QoS: A Big Picture", Michigan State University,

Mar/Apr. 1999.

[7] Viswanathan, A., Feldman, N., Wang, Z., Callon, R, "Evolution of Multiprotocol

Label Switching", May 1998.

[8] Adiseshu, H., Parulkar, G., Yavatkar, R., "A State Management Protocol for

IntServ, DiffServ and Label Switching", Department of Computer Science,

Washington University in St. Louis, 1998.

[9] Wei Zhao, Tripathi, S.K., "Routing guaranteed quality of service connections in

integrated services packet networks", 1997.

[10] Apostolopoulos, G., Guerin, R., Kamat, S., "Implementation and performance

measurements of QoS routing extensions to OSPF', 1999.

[II] Pomavalai, C, Chakraborty, G., Shiratori, N., "QoS based routing algorithm in

integrated services packet networks", 1998.

[12] Zheng Wang, Crowcroft, J., "Quality-of-Service Routing For Supporting

Multimedia Applications", Sept. 1996.

267

[13] Shigang Chen, Nahrstedt, K., "An overview of quality of service routing for next-

generation high-speed networks: problems and solutions", University of Illinois,

November/December 1998.

[14] Francois, "IETF Multiprotocol Label Switching (MPLS) Architecture", Cisco

Systems, 1998.

[15] Dean Vrable and John Yarger, "The SAAM Architecture: Enabling Integrated

Services", Computer Science Department, Naval Postgraduate School, Sept. 1999.

[16] Pornavalai, C, Chakraborty, G., Shiratori, N., "QoS Routing Algorithm for Pre-

Computed Paths", 1997.

[17] Efraim Kati, "Fault Tolerant Approach for Development of Server Agent Based

Active Network Management (SAAM)", Computer Science Department, Naval

Postgraduate School, Mar. 2000.

[18] Raj Jain, "The Art of Computer System Performance Analysis", John Wiley &

Sons, Inc., 1991.

268

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Chairman,Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

4. Dr. Geoffrey Xie
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

5. Dr. Bret Michael
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

6. Mr. Cary Colwell
Computer Science Department, Code CS
Naval Postgraduate School
Monterey, California 93943-5100

7. Head Librarian
DTT Library
1 Depot Road, #02-01
Defence Technology Tower A
Singapore 109681

Henry C. Quek ,
Block 561, #13-271
PasirRis Street 51
Singapore 510561

Mustafa Altinkaya
Deniz Harp Okulu
Yazilim Gelistirme Merkezi
Tuzla Istanbul-TURKEY

269

