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Abstract 

Recent interest in studying the nonlinear effects of intelligence, surveillance, and 

reconnaissance in combat models has prompted researchers to employ vertical 

aggregation in object-oriented simulations. Traditional horizontal aggregation falls short 

for its inability to provide accurate means for nonlinear functions. Averaging a group of 

objects that exhibit nonlinear behavior provides a linear approximation to the mean, 

which is not necessarily the expected value of the underlying nonlinear function. Vertical 

aggregation explicitly models individual objects, thus preserving their nonlinear 

behaviors. 

In this research, a validation procedure is derived to study the aptness of vertical 

aggregation methods. Validation is carried out by comparison with a control, considered 

model truth, since it contains no vertical aggregation. Response surfaces are mapped for 

the control and the hypothesized model. Family confidence intervals are used to test the 

hypothesis that the difference between the two is zero. 

An illustrative example is presented using a homogeneous combat scenario 

embellished with experimental factors. Metamodels are derived using the method of 

least squares and validated prior to drawing inferences. Simultaneous inferences are 

drawn between the ith regression coefficient of two models. The results suggest 

fascinating avenues for further study. 

vm 



TOWARD VALIDATING VERTICAL AGGREGATION 

IN OBJECT ORIENTED SIMULATION 

I.    Problem 

Introduction 

Models represent reality to varied degrees of accuracy. Simplifying assumptions 

are essential to properly scope an analysis project. The intent of simplification is to 

improve the efficiency of the analysis with minimal degradation in output fidelity. Thus, 

a model with the most detail imaginable will be the least efficient and most accurate - 

given that those details are themselves accurate. Then as the model moves from more to 

less detail, the efficiency should increase as the fidelity of the output decreases. Good 

analysts will find a balance that best suits the problem being studied. The trick is to cut 

the details that have the least impact on the measures being studied - a difficult task since 

their impact is not clear in the first place. 

Such difficulty does not vanish when the analyst chooses the System 

Effectiveness Analysis Simulation (SEAS). However, with SEAS the analyst has a tool 

with which to cut the detail while reportedly maintaining the utmost integrity in the 

measures being studied. If used correctly, theory suggests that the analyst may 

significantly reduce the detail of the model while maintaining essential complex 



interactions between the model's objects. Thus, output that is largely dependent on such 

interactions will be a good representation of the more complicated model's output. 

The Vertical Slice Methodology 

The vertical slice methodology is an artistic analytical method for reducing a 

complicated model to its simplest form. Reduction is accomplished by object scaling - 

deleting a large number of redundant objects in the simulation. The model builder 

creates a simulation using a representative quantity of each object class. How different 

objects are scaled is largely dependent on the scenario and problem under consideration. 

It is not necessary - or likely - that all objects be scaled by the same factor. It is, 

however, necessary to maintain proportionality among objects with respect to their 

dependencies and interactions. To that end, the analyst must understand how the objects' 

threads are manifested in the simulation. When properly understood, this manifestation 

may be adequately captured with much less redundancy. 

In setting down some guidelines for constructing a "vertical slice" 
scenario...the most important objective is to capture in a balanced manner 
the significant dependencies and interactions among forces, sensors, 
weapons and targets....[T]he analyst constructs a "vertical slice" by 
removing the majority of objects (e.g., 4 out of 5) across all units on the 
battlefield. The objective of this approach is to allow non-linear 
interactions among units. (SMC/XR:1). 

Applying the vertical slice methodology, the analyst may realize an 80% to 90% 

reduction in the number of entities or objects simulated. Interactions between objects 

may be reduced by perhaps 98% or more. Thus, the vertical slice methodology allows 

the analyst to drastically reduce the processing time of a simulation. Theory postulates 



when slices are properly built, great run-time reduction may be realized without altering 

those measures of effectiveness central to the analysis. 

Object Scaling is Simple 

Consider a simple system to illustrate the problem (Figure 3). The goal is to shore up a 

dyke in the shortest time possible. A group of 60 people is assembled in six lines often 

people each. Suppose 6,000 sandbags are passed through the lines to be placed on the 

dyke. The period of interest is the time between the first sandbag entering and the last 

sandbag leaving the system. 

One method for constructing a computer simulation of this problem will model 

each of the 60 individuals as a separate object. The resulting full-scale object model may 

give the most realistic simulation. Unfortunately, it is also the most processor-intensive 

simulation. 

An alternative method will group objects of similar type and performance into 

separate classes. Since all objects in this example belong to a single class, each of the six 

lines should have similar - if not identical - performance. If each line operates 

independently, then one line may be modeled instead of six. By reducing the system to 

one line often people with 1,000 sandbags - objects and input reduced by one-sixth - the 

simulation will yield similar output - the average time to completion should not be 

significantly different. Unfortunately, the central limit theorem implies that scaling the 

model down will increase the variance of the average time to completion from the full- 

scale model since there are now fewer independent lines operating during each trial. The 



degree of variance increase will be a function of the input parameters and their statistical 

distributions (Wackerly et al., 1996:328). 

Object scaling is simple to apply to independent objects in a simple system. The 

scaled model is easier to build and verify. The simulation executes much faster, allowing 

the analyst to quickly remedy scaling induced variance increases through increased 

repetition. The resulting scaled model output gives the analyst essentially the same 

information as the full-scale model. Now, when faced with a system that is not so 

simple, how does one enjoy these benefits without losing the very complexity being 

analyzed? 

The OODA Loop Holds the Key 

To understand how to scale complex systems the analyst must understand the 

interactions between the system's objects. Each object has a decision cycle - often 

referred to as an OODA loop - during which it observes, orients, decides, and acts. The 

cycle is illustrated in Figure 1. The interactions and dependencies in a complex system 

are defined by the interaction of these loops (Tighe, 1999:6-20). 

1.) Observe 

3.) Decide 

Figure 1 The OODA Loop 



As Figure 2 shows, the simplest interaction occurs directly between two isolated objects. 

An object is influenced by - and has influence on - a second object. The actions of each 

feed the observations - and ultimately the actions - of the other. The two OODA loops 

are connected, though there need not be a two-way connection. Any one-on-one duel may 

exhibit such interaction of decision cycles. 

^ ^ 

M/ 

1                           ' 
1.) Observe 

^\ 

» V V 
i 
\ ^J 4.) Act 2.) Orient 
\              ^ 1.) Observe 
\/* 1 
\f \           V J 

3.) Decide 4/ 
4.) Act 2.) Orient 

\ ) 

3.) Decide 

Figure 2 OODA Loops Interact 

Figure 3 depicts the interactions in the dyke example. Assume a simple system in 

which interactions are confined to within each line. Each object has at most three objects 

to observe: itself and those adjacent to it in line - as seen in Figure 4. An object orients 

itself by comparing its observations to its rules. It then decides among three actions: 

catch, wait, or throw. The lack of interaction between OODA loops from one line to the 



Each circle represents the OODA Loop of an object. Objects influence the 
decision cycle of other objects only where their loops cross. Sandbags 

Influence 

Figure 3 Example Interactions 

■ The first (or last) object 
in a line can only affect 
the decision cycle of the 

adjacent object in the 
same line. 

Objects in the 
line are affected 
by the actions of 
objects in front of 
and behind them. 

They also have 
an affect on those 

objects.  

Figure 4 Exploded View of Interactions 

next implies that the lines are independent. Thus, scaling to one line is justified. (Of 

course, the closed form solution for a single line can be easily found. The example is 

intended only to introduce the reader to the subject.) 



Building a "Slice " is Difficult 

A vertical slice is not interesting in simulations with no complex dependencies or 

interactions. In such a case - as in the above example - the vertical slice methodology is 

merely object scaling. A true vertical slice scenario will not be needed until there is a 

need to study a complex - not necessarily adaptive - system. Such complexity can be 

illustrated by adding rules to the dyke example. 

Suppose that each person in the dyke example is subject to infrequent random 

events that cause incapacitation for some period of time. Allow the sandbags to be 

diverted to surrounding lines. Suppose that each person may pass 90° to either side or 

45° forward to circumvent an incapacitated person (see Figure 5) and prohibit the 

sandbags from being passed further than one line from their original line. 

Four possible paths. 

1— Incapacitated. 

Figure 5 Possible Sandbag Paths Around a Blockage 

The system thus changes from a simple one with 108 possible interactions to a 

complex one with 760 possible interactions. In the complex system, 32 objects have 16 

interactions each. Eight objects in the same system have only six interactions each. By 



contrast, the simple system had 12 objects with two interactions each, and 48 objects with 

four interactions each. Each line in the simple system is independent and identical. 

Notice the new complex structure of the system in Figure 6. The lines are now highly 

dependent and not identical. Lines one and six have probabilistically identical paths. 

Six interactions x 8. _ Sixteen interactions x 32. 

4K ^5)£ ^L6J 

Figure 6 Interactions and Dependencies in the Complex System 



A sandbag placed into the system in line one will have the same expected number 

of passes to get through if placed in line six - they belong to the same class. Lines two, 

three, four and five belong to a second class. A vertical slice of the dyke example would 

have two classes - outer lines and inner lines. One might construct a half-scale scenario 

with two inner lines and one outer. A second outer line - a dummy - could be used to 

preserve the interactions that define an inner line. 

Further the illustration of complexity by allowing each person to see and judge - 

randomly and imperfectly - the actions and status of the surrounding people in a two or 

three-person radius. Add a supervisor to direct and an assistant for surveillance and 

reporting. Finally, allow the entities to adapt. The closer the system gets to reality the 

more complex it becomes and the more difficult it is to scale. 

The example illustrates the heuristic nature of the vertical slice methodology. 

Analysts face problems - even in such a simplistic example: 1. It is difficult to scale 

objects that interact on a basis other than one-to-one. Object scaling becomes more 

difficult as the number of interactions and disparity among them increases. 2. Methods 

for scaling behaviors - such as perception and judgement - are not straightforward. The 

method will depend upon how the object is employed. 

The SEAS Approach 

The SEAS Analyst Manual reports that SEAS is not intended for modeling all 

objects on the battlefield. "Rather, we take a representative 'vertical slice'.. .from the... 

commander down to the air or ground platform level." The manual argues that by 

representing ".. .the range of heterogeneous interactions on the main campaign in the 



scaled-down 'vertical-slice,' then the full battle is primarily the sum of homogeneous 

copies ofthat slice." With this approach, it is important that the slices be independent 

(SMC/XR:3). Any departure from independence may seriously corrupt the analysis. 

Thus, each slice must represent every inter-dependent complexity the analyst wishes to 

study. Complex issues modeled in one slice must be separable from those in all other 

slices. 

Topic 

The Vertical Slice Methodology used in the System Effectiveness Analysis 

Simulation (SEAS) is not well known. Little guidance exists to relate theory to 

application. Where guidance does exist, it has not been validated by rigorous analytical 

methods. 

This study explores the effects of object scaling in intelligence surveillance and 

reconnaissance (ISR) modeling. It investigates a specific object scaling scheme with 

respect to its suitability for preserving the characteristics of the region of interest. Special 

attention is given to nonlinear effects of ISR and the sensor-to-shooter link in combat as 

modeled in SEAS (Frisco, 1999). 

Purpose 

The research presented here is intended as a first step in validating object-scaling 

techniques. This paper will illustrate a validation method suitable for evaluating current 

object-scaling techniques. The validation method presented will give researchers a 

powerful tool for validating good - and repairing flawed - techniques. 
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Significance 

It is essential that analysts are able to show how, when, and why a particular 

scaling technique is used. Conducting analysis while lacking proper connection with 

theoretical guidelines results in questionable conclusions that are difficult to explain. 

Current scaling methods involve symmetric or asymmetric vertical slices. In particular, 

the analyst may scale certain objects by one factor and other objects by a different factor 

in order to obtain results that feel right. (We saw an asymmetric vertical slice when the 

complex dyke example was scaled.) While the methods by which analysts choose such 

asymmetric object scaling schemes may be well founded, no prior research exists on 

which to assert the propriety of their methods. 

This effort will advance the analytic community's understanding of object-scaling 

in computer modeling. It will establish a link between theory and application of the 

vertical slice methodology. It will present analysts with a straightforward procedure to 

validate emerging concepts before applying them. This procedure may be employed in a 

piece-wise fashion - testing only the questionable methods within a particular scenario. 

In this way, analysts may avoid misdirected analysis and misleading presentation that 

could cost the Air Force gravely in terms of time and money wasted pursuing the wrong 

path toward Space Force modernization. 

Scope 

This initial investigation will lay the groundwork for SEAS validation. Scaling 

theory application has not been validated with respect to its ability to preserve the 

11 



characteristics of the region of interest. A necessary foundation for validation of SEAS is 

the validation of the use of the vertical slice methodology on which SEAS is based. 

As an initial exploration, this effort will be well focused. A relatively simple, 

largely object-independent scenario is used as compared to those used in SEAS-based 

analysis. The variability of outcomes within each design point is kept low. The 

investigation is limited to applying scaling to physical objects on the battlefield - e.g. 

numbers of tanks, aircraft and weapons - and the space in which they operate. It will 

demonstrate a robust validation method that is not limited by the characteristics of the 

experimental region. 

12 



II.   Related Literature 

The analytic community's understanding of non-linear interactions between 

objects in complex systems is still emerging. Up to this point, much of the development 

of this paper is based upon unpublished expert opinion and conjecture of those involved 

with the development of object scaling techniques. The author learned much about 

vertical aggregation from Capt. Eric Frisco, SMC/XRI, Dr. Robert H. Weber, The 

Aerospace Corporation, and through the work of Dr. Louis Moore, Rand Corporation. 

A vertical slice study conducted by Dr. Moore is discussed below. It is followed 

by a review of important concepts relative to the problem presented here. The discussion 

is intended as a review in the areas of simulation output analysis, error in statistical tests, 

multiple comparison with a control, and response surface metamodels. 

SEAS Vertical Slice Study 

Dr. Louis Moore of RAND previously conducted a symmetric object-scaling 

study in SEAS using a simple case of 9 ground attack aircraft versus 243 armored 

vehicles at full, one-third, one-ninth, and approximately one-eighteenth scale. The study 

focused on three points: 

1.) The percentage of vehicles killed. 
2.) The run-time speed advantage gained by scaling. 
3.) The requirements for mitigating the scaling-induced increase in variance. 

The study found that the average percentage of vehicles killed was only affected 

in the smallest slice. Dr. Moore also found the standard deviation decreased as the 

number of objects increased. Finally, he shows that the ninth-scale scenario is the best 

13 



choice for accuracy and efficiency. The study draws no conclusions about the aptness of 

the ninth-scale slice over any range of input parameter values (1999). 

Comparison of Simulation Output 

Much of the work on comparing simulation output is limited to comparing output 

from: 

1.) Two different models at the same single design point. 
2.) Several different models at the same single design point. 
3.) The same model at different design points. 
4.) The same model at several different design points. 
5.) Two different models at several different design points. 

None of these applies in comparing two models over the entire design region. 

While one might apply the Bonferroni approach to multiple comparisons to cover the 

design region, it gives no information about the trends occurring between the design 

points (Banks et al., 1996:475-97; Law and Kelton, 1991:582-603). 

Errors in Statistical Tests 

Statistical texts define two different errors that can be committed when 

conducting a statistical test. The first error - a Type I error - is made when a true 

hypothesis is rejected. The second error is made when a false hypothesis is accepted. 

This is referred to as a Type II error (Wackerly et al., 1996: 413). 

14 



Comparison with a Control 

An important and controversial issue when making comparisons with a control 

involves controlling Type I errors. Some statisticians feel it is not necessary to adjust for 

dependence among comparisons in a single experiment. Analysts from the simulation 

camp are no doubt familiar with familywise error rate (FWE) and per comparison error 

rate (PCE). Recall that FWE is the probability of at least one Type I error and PCE is the 

expected proportion of Type I errors. Now consider that neither of these takes into 

account the dependence among multiple comparisons with one control - e.g. a single 

experiment (Proschan and Follman 1995). 

If the single experiment for the control goes awry - because of a coding error, a 

bad random seed, or whatever - then both comparisons in the experiment will be biased. 

Thus, we find a higher conditional probability of making an error in the second 

comparison given a mistake was made in the first comparison and so on. In this light, it 

appears wise to use an independent control for each comparison. 

When more than two comparisons are made in a single experiment, Proschan and 

Follman (1995) show that the number of errors is more variable. The expected number of 

errors is the same as with comparisons made under separate experiments, but the variance 

is larger for the single experiment comparisons. Thus, extreme results are more likely 

under the dependent situation (Proschan and Follman, 1995:4). 

Luckily, we may minimize the difference in the way the numbers of errors are 

distributed between these situations by choosing k, the sample size of the control, 

properly. Proschan and Follman site Dunnett (1955), who ".. .has shown that power is 

maximized when the ratio of the control group sample size to the sample size in each 

15 



other group is approximately square root of k." Therefore, we want a larger sample size 

for our control group. This is intuitive, since a larger sample-size yields a better estimate. 

Now, when making two comparisons in a single experiment and using the best sample 

size for the control, a single control can be used with little difference in the expected 

number of errors. 

Errors in Multiple Comparisons 

Sato (1996) gives a historical account of the developing treatment of errors in 

statistical analysis. A survey of literature on the subject of multiple comparisons reveals 

an emphasis on controlling Type I error rates. Sato points out that such an emphasis 

increases the risk of missing significant effects. Hochberg and Tamhane (1987) discuss 

several examples of comparisons with regard to the type of error to control. They note 

that in the case of comparing noncompeting treatments with a control, one should be 

concerned with the PCE. This follows despite the statistical dependence among 

comparisons since the interpretation of either comparison is unaffected by the other. 

Response Surface Metamodels 

It is important to recognize the limits associated with the use of metamodels. Law 

and Kelton treat metamodels with a certain amount of skepticism. They produced a good 

surface depiction of their example simulation using 420 equally spaced points on a grid, 

compared with an invalid metamodel derived from a four point designed experiment. 

They eventually show the reader a compromising 36-point grid that gives a balance 

between an invalid metamodel and a super-valid metamodel derived from an inefficient 

16 



design (1991:679-89). A complex scenario may require a complicated design to derive a 

valid metamodel efficiently. Many efficient designs, which produce good metamodels, 

can be found in the statistical literature. Choosing and implementing a design depend 

upon the purpose of the metamodel and the region being studied. For additional 

treatment of this subject, see Design Considerations on page 28. The reader is also 

referred to Neter, et al. 1996:1284; Kleijnen, 1987:147-50,312-37 and Myers and 

Montgomery, 1995:284-7,306-11,314 for discussions on rotatability; orthogonality; D- 

optimality; design region; and design choice. 

17 



III.   Methodology 

The method applied in this research assumes that a progression of simplifying 

assumptions occurs after which the analyst is left with the model to be used in a study. 

The progression begins with a true system - as it exists in reality or as it is imagined to be 

in the future. Next, simplifying assumptions allow the system to be modeled - call this 

the full-scale model or model truth, though this model is not intended for coding. Finally, 

the full-scale model is reduced using scaling techniques such as the vertical slice 

methodology to permit it to be coded and run. 

Analysis Using Computer Models 

In studying a complex system using a computer model, analysts may vary one or 

more of the system parameters and observe the effect of those changes on the output. 

Various techniques allow the analyst to affect a mapping of the solution space. Such a 

mapping may provide significant insight to the decision-maker only to the degree that the 

mapped solution space agrees with the true solution space. Unwanted disagreement - 

aside from that accounted for and understood - necessarily implies a flawed mapping. 

Any conclusions drawn from analyzing a flawed surface will themselves be flawed. 

Model Truth as the Control 

When modeling future systems, whether any difference from reality exists is 

necessarily unknowable. Therefore, comparison of the model as coded to reality will be 

impossible. Instead, assume - as usual - that the difference from reality is accounted for 
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in reported assumptions and is well understood. Then the greatest truth at the analyst's 

disposal is model truth - the true scenario given simplifying assumptions, prior to 

reduction via any postulated scaling technique. Model truth is defined by the full-scale 

model - an overwhelming model in terms of numbers of objects and interactions. 

The output from this full-scale model is the nearest thing to reality that is 

controllable and testable. Thus, the full-scale model will serve as the control - the basis 

for comparison with all models that claim to parallel it. 

The Nature of the Study 

This study is confirmatory in nature. A specific scaling technique has been 

proposed. An experiment must be conducted to test each technique. When a flawed 

scaling scheme is accepted, a Type II error is committed. With the method presented 

here and in the context of a confirmatory study, it is more important that few Type II 

errors are made. If- instead - the analyst wishes to conduct exploratory analysis with 

this technique, then more Type II errors should be allowed. The newly discovered 

scaling schemes found would then be analyzed further (Hochberg, Tamhane, 1987:6). 

Deriving the Map 

In a given validation study it is necessary, but may not be sufficient to perform point-wise 

comparison. Such a comparison may show a significant difference between a control and 

a scaled model, compelling a researcher to incorrectly abandon the postulated scaling 

technique. Unfortunately, a rejection so made will end the research process without 

having afforded the researcher every potential insight. Significant insight is 
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readily available via comparison of the response surfaces of the models in question. 

Thus, a surface - or at least a curve - will be mapped for a control and each proposed 

technique. 

Simulation output is generated at each point in a designed experiment (refer to 

Figure 7 Fitting a Metamodel). The method of least squares is performed to derive a 

regression function. The input parameters are the same in both the regression and the 

simulation. The mapping is considered a metamodel - a mathematical representation of 

the simulation input-output transformation. Now, by performing analysis on the 

regression function we may analyze the entire region of interest (Kleijnen, 1987:147-50). 
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Regression Model Assumptions 

Before inferences can be drawn from a regression model, the following 

assumptions must be satisfied: 

1.) Collinearity does not exist among the columns of X. 
2.) Linear regression is applicable. 
3.) The simulation responses have constant variance. 
4.) The simulation responses are independent. 
5.) The simulation responses are normally distributed. 
6.) The regression model is correctly specified. 

Collinearity ofX 

Experimental design in simulation studies allows the researcher complete control 

over the independent variables. Consequently, the columns of X will be independent. 

Linearity of Regression Parameters 

The regression function should be linear in ß. Linearity in the regression 

parameters may be preexisting. Otherwise, a transformation on X may remedy the 

inadequacy. Residual analysis will reveal the need for corrective measures. 

Constant Variance among Simulation Responses 

It may not be clear at the outset whether the constant variance assumption will be 

satisfied. Kleijnen argues that it is not realistic to assume stochastic simulations will 

exhibit constant variance among responses. However, the results presented below will 

show that the dissimilitude in the sample variances of this study were far below 

Kleijnen's predicted factor of 100 or more. In the event that constant variance is not 

safely satisfied, the analyst may give more weight to the more reliable observations and 
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vice-versa. Kleijnen shows that weighted least squares gives an unbiased estimator for ß, 

with the inverse of the ith estimated response variance as the ith weight (1987:162-6). 

An important caveat exists for Kleijnen's transformation in the context of 

comparing metamodels. If one can safely assume that the variance is similarly 

distributed from the control to the proposed model, then the transformation is safe to use. 

Otherwise, a different transformation will be performed on each set of responses. The 

resulting metamodels will not be suitable for comparison, since the relationships among 

them will have been distorted. Alternatively, the number of replications should be 

adjusted until the assumption of constant variance is satisfied. 

Simulation Responses Independent and Normally Distributed 

This study uses random seeds to obtain independent responses. The responses 

must be checked for normality prior to drawing inferences from the regression function. 

The normality assumption should be assessed during residual analysis. 

Regression Model Specification 

The regression model must be correctly specified. A priori knowledge of the 

shape of the solution space is helpful. Alternatively, a few well-chosen screening runs 

will reveal enough important features of the space to suggest the proper regression model. 

After the model is fit, the analyst must assess its adequacy. Classical statistical 

techniques may be used in addition to those developed specifically for metamodeling. 

Kleijnen suggests the following z* statistic for validating the regression model by 

comparison with the standard normal variable. 
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Where i-\...n. The numerator is the difference between the predicted response 

(using the regression model) and the actual simulation response. The denominator is the 

estimated standard error for the difference in population means. The comparison may be 

made at each design point by leaving the point out during the least squares estimation - 

the ith row vector xt is deleted from the design matrix (1987:187-9). The Bonferroni 

inequality gives a lower bound for the family confidence coefficient - the probability that 

all inferences are correct simultaneously (Neter et al., 1996:153-5). 

Typically, the voluminous output from many simulation iterations will mask 

outlying observations. Fitting the regression model to the average response at each 

design point will eliminate masked-outliers. Kleijnen shows that the resulting regression 

model is identical when the average response is weighted by its number of replications 

(1987:195). The law of large numbers guarantees stochastic simulations will produce 

outlying observations when sufficient replications are made. This technique will help the 

analyst find true outliers - caused by coding errors and so on - quickly. 

Comparing the Solution Space 

The procedure that this study follows is shown in Figure 8. Point-wise 

comparison is conducted on experimental output according to Welch (1938) with the 
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addition of FWE control. 

Ho4-ZiF-Zjs = 0,        Vi=j (2) 

Where Z, p is the average loss ratio at point i from the full-scale experiment and 

Zj s is from the scaled-down experiment. A large number of simultaneous null 

conclusions at this point may compel the researcher to accept the scaling scheme and 

Fit Regression 
Model 

Reject 

Fail to Reject 

Scaling "Holds' 
(Weak Conclusion) 

Construct Joint 
Confidsnce Intervals 

Qnßipandßj« 

Ysk=scaled experiment k* response 

Fail to Reject 

Intervals Eto Not Overlap 
Scaling Does 

Not Hold 

Intervals Overlap 

Scaling "Holds' 
(Weak Conclusion) 

Figure 8 Statistical Validation of Scaled Scenarios 
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suspend further analysis. Conversely, statistically significant differences between the 

experiments may not be sufficient to abandon the proposed scaling scheme. Now a 

comparison of the response surfaces may lend significant insight in determining the 

suitability of the scaled scenarios to represent model-truth. Thus, the analyst maps the 

solution space of the control. 

From the section Regression Model Specification, recall that an adequate model 

must be fit. In this case, a quadratic model is proposed in two predictor variables: 

Tor = ßoF + $IFX! + $2F-X2 + %FX2! + $4FX2 2 + $5FX]X2 + EiF (3) 

Where Ytp is the ith response of the full-scale simulation. 

Next, the solution space of the scaled model is mapped, giving: 

Yjsk = fiosk + $iskXi + $2SkX2 + $3SkX
2i + $4SkX

2
2 + %SkXiX2 + ZjSk (4) 

Where Yjsk is the/* response of the lt?h scaled simulation. 

Finally, poor comparison between (3) and (4) will show that the proposed model 

yields output inconsistent with that of the control. Conversely, good comparison will fail 

to prove that the output is inconsistent. 

Thus, the point is to show whether the solution space being analyzed in the scaled 

scenario is statistically different from that of the full-scale scenario. If the method by 

which analysts build a vertical slice is flawed, then the true solution space is prone to 

distortion. If the method is sound, then the solution space should not appear different. 

Consider the response surfaces pictured in Figure 9 and Figure 10. They are 

defined by the models in (3) and (4) above. They follow similar trends, but it is clear that 

they differ from each other. Nevertheless, the difference may not be sufficient to 
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preclude the use of Ys to represent YV. In addition, the surface comparison may lend 

sufficient insight to suggest how to implement remedial measures on the scaled scenario. 

Comparison of simulation output is well represented in the literature and in texts 

on the subjects of simulation and statistical analysis. The author favors methods that 

convey insight to those that merely reject a hypothesis. Such insight will allow the 

analyst to choose an appropriate confidence level for a particular analysis. In this way, 

analysts may choose a particular scaling method based on its relative merit. 

Joint Confidence Intervals 

Comparison is made by forming joint confidence intervals on biF - bjsk - the 

difference between each regression function coefficient in the control and the scaled 

model: 

(4 -biS)±t{l-a,2g;nF+ns-P) *°(*V A) (5) 

Where g is the number of comparisons made, n is the number of responses and/? 

is the number of parameters being compared. Thus, the comparison is between boF and 

bosh biF and bisk, and so on up to bsF and bssk for the quadratic model. Note that in the 

example presented below, noncompeting scaling methods are considered exclusively for 

comparison with the control. Thus, in the case of the quadratic model in (3) and (4) with 

no adjustment for PFE, g = 6 and/? = 12. If any one of these intervals fails to contain 

zero for a choice of a* (FWE), then the scaling method may be rejected or it may be 
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studied further. On the other hand, lack of any significant difference at this point 

indicates a viable scaling scheme. 

Since SEAS is used for preliminary analyses, less robust scaling techniques may 

be acceptable at times. The analyst may find thep-value - the smallest level of 

significance, a, for which the data indicate that each parameter is different (Wackerly et 

al., 1996: 431). Thus, One p-value will be presented so that the reader may determine the 

significance of each comparison. 

Design Considerations 

Rotatability is considered as a secondary concern, since the regression model is 

not intended for predicting new responses. An orthogonal design is desirable to minimize 

the variance of the regression coefficients. A central composite design with axial points 

placed at radius a' = 1.581 will yield near-orthogonality for the quadratic model. 

Augmenting this design with a D-Optimal search in consideration of a quadratic model 

Table 1 D-Optimal Design 

Exp Point Factor 1 Factor 2 
1 -1 -1 
2 1 -1 
3 -1 1 
4 1 1 
5 -1.581 0 
6 1.581 0 
7 0 -1.581 
8 0 1.581 
9 0 0 
10 -1 -1 
11 1 -1 
12 -0.5 -0.5 
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will enhance the desired minimum variance of the regression coefficients. If 

independent, constant variance model errors hold, then maximizing the determinant of 

X'X will minimize the volume of the confidence region of b (Myers, Montgomery, 

1995:284-365). The final design is shown in Table 1. 

Scenario 

The input parameters for the SEAS scenario are summarized in table format in 

Appendix A. Blue objects are shown for identically modeled objects. When a difference 

exists, the objects are contrasted in a single table or the difference is notated. The 

scenario for experimentation is a homogeneous two-wave tank battle with close air 

support. Red is pitted against blue. 

Red Blue 

Base 

Boiider 

540 Jon r 
Unit of Tanks 

Figure 11 The Battlefield 
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Each side has: 

1.) Two hundred generic tanks divided among four units and between two bases. 
2.) Forty aircraft divided among four units and between two bases. 
3.) Identically scheduled timing events. 
4.) Identically listed targets. 
5.) Symmetrically located geographic positions. 
6.) Identical detection and kill probabilities. 
7.) Identical communication capabilities. 
8.) Identical sensors. 
9.) Identical weapons. 

The battlefield is 540 km from red base to blue base and 333 km north to south 

(refer to Figure 11). Neither weather nor terrain is modeled. Aircraft engagements are 

not simulated. As tanks from opposing sides approach the border, they are attacked from 

the air with no means of returning fire. 

Aircraft targets are prioritized according to target location. Target lists are shown 

in Appendix A, Table 7. Notice that aircraft first search for targets at the border. If no 

targets are found at the border, aircraft will next search for targets at the enemy's base. 

Aircraft will divert to targets within 250 km as sightings are received. In this scenario, 

red aircraft may receive such reports from red tanks - not efficient for this task given 

their short sensor range. Blue aircraft receive sightings from blue tanks and from 

notional satellite-based sensors with moving target indicators (MTI) - after 

embellishment. 

Excess communication queue capacity exists to avoid lost messages in the full- 

scale scenario. Aircraft hold target sightings for the expected length of their missions. 

Aircraft are not allowed to transmit target sightings to each other to help force 

independence among them. Independence is forced between geographically separated 
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units to the north and south by forcing objects to traverse the battlefield to the east and 

west and by limiting aircraft divert distance. 

The homogeneous scenario is embellished with notional blue-force space-based 

ISR assets that will shift the advantage to the blue-force. ISR assets send target location, 

speed and direction information to blue aircraft. This information cues the aircraft radar 

to the location of those targets, thus enhancing their probability of detection. 

Blue's increased ability causes them to kill reds more quickly. Red's ability is not 

altered. This necessarily implies blue's losses will diminish with their added ability. The 

simulation halts when 85% of red forces have been killed. Such a stopping criterion 

captures the blue advantage at some point during the heat of battle. If the simulation 

drones on too long, one will find red aircraft taking advantage of a target rich 

environment. 

Table 2 Object Scaling Schemes 

BUnitl B2Unitl BUnit2 B2Unit2 BAirl B2Airl BAir2 B2Air2 
Quantity 

(FuU-Scale/ 
Model Truth) 

50 50 50 50 10 10 10 10 

Scheme (1) 
Quantity 

(Half-Scale) 25 25 25 25 5 5 5 5 

Quantity 
(Fifth-Scale) 

10 10 10 10 2 2 2 2 

Quantity 
(Tenth-Scale) 

5 5 5 5 1 1 1 1 

Scheme (2) 
Quantity 

(Half-Scale) 50 0 50 0 10 0 10 0 

Quantity 
(Fifth-Scale) 

20 0 20 0 4 0 4 0 

Quantity 
(Tenth-Scale) 

10 0 10 0 2 0 2 0 
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The Experiments 

An identical experiment will be ran using models of differing scale. If the theory 

underlying the vertical slice methodology holds in application, then the output from a 

well constructed scaled model should necessarily reflect that of the full-scale model 

(SMC/XR:3; Moore, 1999). Each scaling scheme will have a response surface associated 

with it. Each surface will be compared to the surface associated with the full-scale 

scenario. Candidate scaling schemes are listed in Table 2. 

Variables 

Response 

The blue loss ratio - the number of blue vehicles lost divided by red vehicles lost 

- is an appropriate Measure of Effectiveness (MOE). The scenario was designed to 

analyze loss ratio. Further, the loss ratio is expected to show a nonlinear response surface 

as blue advantage is varied. Studying blue loss ratio also avoids the possibility of 

dividing by zero. 

Factors and Levels 

Many SEAS analyses study the effects of varying selected objects' performance 

parameters such as detection probability (Pd) and cue quality. In this two-factor study, 

the first factor is per time-increment Pd of a notional space-based sensor with moving 

target detection capability - MTI Pd. The second factor is the blue aircraft ground radar 
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cue quality - the benefit derived by the cued sensor. MTI Pd varies from 0.0 to 0.1 - 

nonexistence to near perfect detection. Cue quality varies from 0.0 to 0.2 - nonexistence 

to near perfect cueing. Table 17, in Appendix A Scenario Parameters, uses the glimpse 

model to find the Pd value increase with the time a sensor field covers an object. When 

cue quality = 0.2 we find that the new Pd ~ 1.0 after the aircraft's specified 30 minute 

loiter time (Combat Modeling:4-3). 

Region of Interest and Region ofOper ability 

Many studies concentrate on the region of interest - the range over which the 

factors are to be studied. In this notional case, the factors levels are varied over the entire 

region of operability - the theoretical range over which the independent variables are 

defined (Myers, Montgomery, 1995:280). This region is easily bounded by the factors in 

this experiment. Detection probabilities lie in the range (0,1). It follows that the 

minimum factor levels will yield an expected detection probability of zero and the 

maximum factor levels will yield an expected detection probability of one. Refer to 

Appendix A, Table 17. The levels specified in Factors and Levels above will satisfy 

these conditions in this scenario. 
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IV.   Results 

The experiment described above was run for each of three different scales. Full- 

scale was run as the control. Referring again to Table 2, the fifth and tenth-scale models 

were chosen from scheme (1). An initial comparison of the simulation output was made 

according to equation (2). A large number of simultaneous null conclusions at this point 

may compel the researcher to accept the scaling scheme and suspend further analysis. 

Point-Wise Comparison 

The point-wise comparisons of the difference between the sample means from the 

experiments with the full and fifth-scale scenarios is shown in Table 3. The comparisons 

show strong evidence of a difference between the sample means at five often 

experimental points, excluding replicates. 

Table 3 Point-Wise Comparison: Full to Fifth-Scale Experiments 

Experimental 
Point A F- Zj $ s-pooled z* p-value 

1 0.0889 0.0059 15.0802 < 0.0001 
2 0.0304 0.0053 5.6860 < 0.0001 
3 0.0000 0.0054 0.0045 = 0.9964 
4 0.0212 0.0048 4.3865 < 0.0001 
5 -0.0196 0.0081 2.4028 — 0.0163 
6 0.0465 0.0047 9.8218 < 0.0001 
7 0.1023 0.0059 17.2773 < 0.0001 
8 -0.0021 0.0053 0.4035 = 0.6866 
9 -0.0020 0.0055 0.3611 = 0.7180 

10(r) 0.0758 0.0060 12.6351 < 0.0001 
ll(r) 0.0395 0.0053 7.5017 < 0.0001 

12 0.0006 0.0055 0.1143 = 0.9090 
r = replicate Family confidence coefficient,^* = 0.6673 
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Note that in this case and in Table 4 the Bonferroni family confidence coefficient,^* is a 

lower bound on the probability that ten inferences in the table - rather than twelve - are 

correct, simultaneously (Neter et al., 1996:153-5). The reason for the adjustment is the 

correlation between the pairs one-ten and two-eleven. Identical input parameters between 

experimental points suggests a high conditional probability that the second hypothesis 

test will be significant, given the first test was significant and vice-versa. 

Table 4 shows strong evidence of a difference between the sample means at six of 

ten experimental points, again excluding replicates, this time between the full and tenth- 

scale experiments. 

Table 4 Point-Wise Comparison: Full to Tenth-Scale Experiments 

Experimental 
Point Zj" F-ZjS s-pooled z* p-value 

1 0.0344 0.0059 5.7958 < 0.0001 
2 -0.0074 0.0056 1.3228 = 0.1859 
3 -0.0377 0.0056 6.7351 < 0.0001 
4 -0.0292 0.0049 5.9363 < 0.0001 
5 0.0150 0.0081 1.8493 = 0.0644 
6 -0.0082 0.0048 1.6924 = 0.0906 
7 0.0095 0.0056 1.6927 = 0.0905 
8 0.1501 0.0056 26.6061 < 0.0001 
9 -0.0462 0.0057 8.1292 < 0.0001 

10(r) 0.0314 0.0060 5.2324 < 0.0001 
ll(r) 0.0036 0.0054 0.6607 = 0.5088 

12 -0.0368 0.0056 6.6141 < 0.0001 
r = replicate Family confidence coefficient, p* = 0.9059 

Since both the fifth and tenth-scale scenarios appear to compare poorly to the 

control, a metamodel will be derived for each scale. These may lend significant insight 

in determining the suitability of the scaled scenarios to represent model-truth. 
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Surface Comparison 

The responses were transformed according to the method on page 21, since the 

assumption of constant variance could not otherwise be satisfied. The number of 

replicates was adjusted to balance: 1. The estimated variance associated with an 

estimated mean response with 2. The sample variance associated with the average loss 

ratio at that point. If not balanced, the subsequent surface comparisons would have 

misstated any significant difference. Every doubling of the number of replicates will 

halve the diagonal elements of the variance covariance matrix. Doubling the number of 

responses will change the mean square error of the regression model. The researcher 

must discover the best number of replicates by trial and error. Regression models were 

built using two replicates at each design point. Each replicate represents the first or 

second half of the replications at a design point (Neter et al., 1996:208-10). 

Residual analysis during the model-building process suggested the 

transformations: 

X*i=e-X> (6) 

For? = 1,2. 

The estimate for Z>2 lacked significance in the metamodel for the full-scale 

experiment. Next, the solution space of each proposed model was mapped. The estimate 

for b2 lacked significance in the fifth-scale metamodel. Thus, it was dropped from both 

the full and fifth-scale metamodels. In the tenth-scale metamodel 6j lacked significance. 

Some will argue that this estimate should be dropped from the tenth-scale metamodel. 

However, since it is significant in the full-scale model it should remain to allow the 
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Table 5 Surface Comparison: Full to Fifth-Scale 

Full-Scale 
(Control) Fifth-Scale 

Est. Std 
Error 

Est. 
Std 

Error bi - bj 
S- 

pooled 
z* p-value 

Intercept 
bO 1.564 0.107 1.141 0.107 0.42 0.152 2.790 0.003 

eA-Xl 
bl 0.502 0.047 0.512 0.047 -0.01 0.067 0.146 0.442 

eA-Xl*eA-Xl 
b2 

eA-X2 
b3 0.009 0.099 0.188 0.100 -0.18 0.141 1.270 0.102 

eA-X2*eA-X2 
b4 0.109 0.018 0.086 0.018 0.02 0.025 0.947 0.172 

eA-Xl*eA-X2 
b5 -0.159 0.030 -0.116 0.030 -0.04 0.042 1.011 0.156 

Family confidence coefficient,/?* 0.825 

comparison to be made. The parameter estimates and comparisons are shown in Table 5 

and Table 6. See Figure 12 to Figure 14 for surface plots of the metamodels. 

From Table 5 notice the significant difference between the intercepts of the full 

and fifth scale metamodels. Conversely, the estimates for bi are not significantly 

different. The remaining comparisons are more difficult to judge. Still, interpretation of 

the surface comparisons may lead to refinement of the proposed scaling technique that 

currently appears promising. 

The tenth-scale metamodel in Table 6, however, appears decidedly different from 

the control. The tenth-scale simulation model would likely be dropped, as it does not 

appear to be a good substitute for model-truth. 
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Table 6 Surface Comparison: Full to Tenth-Scale 

Full-Scale 
(Control) 

Tenth-Scale 

Est. Std 
Error 

Est. 
Std 

Error 
bi - bj 

s- 
pooled 

z* p-value 

Intercept bO 1.564 0.107 1.840 0.105 -0.28 0.150 1.839 0.033 

eA-Xl bl 0.502 0.047 0.323 0.046 0.18 0.066 2.710 0.003 

eA-Xl*eA-Xl b2 

eA-X2 b3 0.009 0.099 -0.086 0.098 0.09 0.139 0.680 0.248 

eA-X2*eA-X2 b4 0.109 0.018 0.139 0.017 -0.03 0.025 1.213 0.113 

eA-Xl*eA-X2 b5 -0.159 0.030 -0.044 0.029 -0.11 0.042 2.748 0.003 

Family confidence coefficient,^* 0.920 
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Figure 12 Full-Scale Surface: Transformed Response 
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Figure 13 Fifth-Scale Surface: Transformed Response 
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Figure 14 Tenth-Scale Surface: Transformed Response 
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V.    Conclusion 

Challenges and Recommendations 

Processor Time 

Obviously, the full-scale model will run slowly on today's average personal 

computer - this is the motivation behind vertical aggregation. The validation approach at 

the center of this research requires model-truth as the control. The analyst should have 

more confidence in the control than the hypothesized scaling schemes. This turned out to 

be problematic for the example used in this paper. The control in the example did not 

exhibit reduced variance such as that experienced in Dr. Louis Moore's experiment 

(1999:3). Running additional replications - the preferred remedy - was prohibitive in 

this case. Unfortunately, an additional 2000 hours of processor time was indicated. 

Computer time will likely be the most critical resource in this type of research. 

If it is not possible to get sufficiently low variance output from the full-scale 

model in a reasonable number of replications, one should consider using an alternative- 

scale model for the control. While the full-scale scenario is clearly the best choice for the 

control - since it is by definition, model-truth - the researcher may find it necessary to 

use some less prohibitive representation. The particular scale used should obviously be 

as close to full-scale as the resources can bear. 

40 



Adjusting for Non-Constant Variance 

It is not likely that the responses from the simulation model will exhibit constant 

variance within a single experiment or from one to the next. It is highly desirable to have 

the most accurate estimates of the response with minimum constant variance across all 

experimental points. The transformation outlined in the section Constant Variance 

among Simulation Responses on page 21 results in a good metamodel for each data set. 

Unfortunately, it would result in a slightly different transformation for each model based 

on each simulation's own variance. If the distribution of variance from one model to the 

next is about the same, then a valid comparison will result. Otherwise, this 

transformation should be avoided. Here, the variance from the full-scale experiment was 

used in all three transformations. A better solution will find the number of replications at 

each point needed to obtain constant variance on all points from all experiments. The 

extra time it takes will likely pay high dividends in the certainty it lends to the 

conclusions of the analysis. 

Constant Model Specification 

A single regression model may not be appropriate for all comparisons. It may be 

difficult to find a model that is valid for all data sets. Compromise may be needed - e.g. 

a predictor variable with little effect in a scaled model may be included in both models 

being compared. If, instead, the weak predictor was left out, one model may turn out to 

be sorely misspecified, preventing any inferences from being drawn. The best solution 

will be to use the most concise model that is valid for the control. Model building skill 

will likely be the second critical resource in this type of research. 
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Validation in Practice 

The approach presented here is not applicable in validating a SEAS scenario in its 

entirety. Instead, a modular approach is recommended. The researcher who derives and 

uses vertical aggregation techniques likely has a greater need to validate one technique 

over another. Perhaps one technique has been previously validated. Still another enjoys 

expert approval - validation by consensus. These tried-and-true techniques do not need 

further validation. However, some of the more aggressive techniques - the more difficult 

to grasp or explain - are perfect candidates for such an involved method. 

Verifying Input Files 

Since the process is not automated, its execution is arduous. Each experimental 

point must have its own input file (war file). Each input file - 36 in this example - must 

be verified for accuracy. Making changes to separate war files invites coding errors that 

may corrupt the analysis. One method to prevent such errors uses one column in a 

spreadsheet for each war file so that a text string comparison function can be used to 

verify them all simultaneously. A macro can then be used to copy and save each file after 

changes are made. It may be worthwhile to build such functionality directly into the 

SEAS program. 

Summary 

The responses among the experiments in this example appear to share great 

similarities. From Figure 15 alone (Appendix B), it seems that the output is consistent 

among the different scale models. In the point-wise comparison, we found statistically 
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significant differences between many pairs of output. Practical significance is left to the 

discretion of the reader. Finally, in the surface comparison, some bias exists between the 

surface of the control and the postulated models. The high variance in a few points in the 

experimental region (Figure 16) makes the power of the surface comparisons difficult to 

judge. The comparisons themselves can be no more certain than the control. 

The method presented used one control by which to judge the merit of two 

separate simulation models without adjusting for dependence. This was acceptable since 

Type II errors - made less often - were of primary concern. In practice, the researcher 

should use independent controls or adjust sample size as outlined in Related Literature 

(Chapter 2) or as indicated by the estimated variance of the control. In simulation 

experiments, most would likely prefer combining replications for accurate estimation to 

separating them into independent, less accurate controls. In that case, a larger sample 

size will be required for the control. 

Further Research 

Prior to proceeding with research based on the example presented here, the 

replications must be adjusted among the design points to satisfy constant variance. The 

power of the current surface comparison may then be greater than that indicated in Table 

5. A finer resolution experiment may be conducted on the interesting regions of the 

space. In some regions, greater disparity seems to exist between the full and fifth-scale 

scenarios (Figure 15). It may be possible to discover conditions under which this scaling 

scheme is more or less robust. 
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Once constant variance is met, the second scaling scheme in Table 2 may be 

investigated to study the effects of scaling surface coverage of the battle. This scenario 

may also be useful to test the idea of under-scaling aircraft and decreasing weapons load 

or over-scaling aircraft and decreasing turnaround time. Independence may be removed 

allowing communication among aircraft. The communication range of tanks and divert 

range of aircraft may also be increased to remove geographical independence. 

Dependencies may be dealt with one at a time. If each of these may be overcome 

with some scaling technique, it may eventually be possible to study complex systems 

modeled with their complexity intact, yet in a scaled scenario. 

The real benefit of exploratory research comes from new discoveries. Surface 

comparisons may yield significant insights. Researchers may use such insights to remedy 

failed scaling techniques. When combined with current methods, the research presented 

here gives analysts a powerful tool for scientific discovery. 
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VI.   Appendix A Scenario Parameters 

Blue objects are shown for identically modeled objects. Objects are contrasted in 

a single table or any difference is notated. For all indicators in the following tables, 1 is 

true and 0 is false. 

Table 7 Targets 

Objective Location Priority Weapon 
Bl Border 1 JSOW2 
B2 Border 1 JSOW2 
Bl Base 2 JSOW2 
B2 Base 2 JSOW2 

Table 8 Communication 

BlueCue 
TD/RD 

Blue/Red 
Air TC/RC 

Blue/Red 
FM TC/RC 

Channel SIGQ 
BAIRQ/ 
RAIRQ 

BUHFQ/ 
RUHFQ 

Range km 60000 300 300 
Delay min 1 0 0 

ProbabilityOK 1 1 1 
MaxMessages 30000 50000 50000 

MaxRate msgs/min 1000 1000 1000 
HoldTime min 10 1 1 

Modes TX/RX TX/RX TX/RX 
MessageType Sitreps Both Both 

Jammer 0 0 0 
Jams None None None 

Note: T = transmit, R = receive, D = data, C = communication 
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Sensors: 
1.) Blue AC GNDRDR detects ground vehicles. 
2.) B sensor is used by blue tanks to detect red tank. Each detection is communicated to 

blue aircraft as if to call in an air-strike. 
3.) The Moving Target Indicator (MTI) Space-Based Sensor detects moving targets and 

cues Blue AC GNDRDR. 

Table 9 Sensors 

Blue AC Ground 
Radar Blue Sensor MTI (Blue only) 

Min Range km 0 0 1050 
Max Range km 80 4 2500 

Degrees 88 120 60 
Cued (Blue only) 1 0 1 
Cue Range km 

(Blue only) 88 2900 

Cue Quality 
(Blue only) 

Experimental Range 
0-0.2 0-0.2 

Az Limited 1 1 0 
Az Width 160 180 

TLEm 5 5 200 
TVE m/min 0 60 50 
Prob BDA 1 0 

BD A Time min 0 0 
Active 1 0 1 
Detects 0 0 0 

MTI 0 0 1 
Land 1 1 1 
Air 0 0 1 

MaxHops 8 3 1 

Table 10 Blue Sensor Advantages 

Space-Based Embellishments Sensor Cue Embellishments 
Moving Target Indicator (MTI) 

Sensor 
MTI cues blue aircraft to location of red 

vehicles 
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Table 11 Weapons 

Gun JSOW2 
Rangern 3000 75000 

Kill Radius m 7 15 
CEPm 3 3 

Reliability 0.95 1 
Rate Of Fire round/min 2 1 

Offensive Power 5 5 
Use Limit 50 2 

Land 1 1 
Sea 0 1 
Air 0 0 

Space 0 0 
Radar 0 0 
Save 0 0 

ReArm 1 0 
Prioritize 0 1 

Coordinate Fire 1 1 
Need Local 1 1 

Missile 0 0 
Fire While Moving 0 1 

Table 12 Vehicles 

Bl (tank) B2 (tank) 

Icon 1705 1705 
Altitude 0 0 
Speed 36 36 

Fuel Capacity 1800 1800 
Fuel Use 20 20 
Fire Wait 6 6 

Land 1 1 
Sea 0 0 
Air 0 0 

Comm Blue FM RC BlueFMRC 

Comm Blue_Air_TC Blue_Air_TC 
Sensor Bsensor BSensor 

Weapon Gun Gun 
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Table 13 Aircraft 

Aircraft Blue Plane Red Plane 
Icon 1701 1703 

Altitude 7000 7000 
Speed 500 500 

Fuel Capacity 45000 45000 
Fuel Use 400 400 

Divert Range 250 250 
Loiter 30 30 

TurnAround 240 240 
Sensor Blue AC GNDRDR Red AC GNDRDR 

Weapon JSOW2 JSOW2 
Comm Blue Air RC Red Air RC 
Comm BlueCueRD 

ThreatHold 150 150 

Table 14 BlueBasel Units 

B unitl Bunit2 BAirl BAir2 

Interval 10 10 0 0 

Comm Blue FM TC Blue FM TC Blue FM TC Blue FM TC 

Comm Blue FM RC Blue FM RC Blue FM RC Blue FM RC 

Vehicle/Plane Bl (qty-50) B2 (qty-50) 
Blue Plane 

(qty-10) 
Blue Plane 

(qty-10) 

Deploy To Blue Basel Blue Basel 

Action 
to  Take Hide 3 Hide 3 

Wait Until Wavel Wave2 Begin Airl Begin Air2 

Action to Take HideO HideO 
BAFGA 

Listl 
BAFGA 

Listl 
Move To Borderl Borderl 

Wait Until Near end Near end 

Aim Mode Vel Vel 
Identica 

200 blue tan 
units are located at BlueBase2 for a total of 

ks and 40 blue aircraft in the full-scale scenario. 
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Table 15 Forces 

Bforce RForce 

Stance Pursue Pursue 
AttackRatio 0.9 0.9 

WithdrawRatio 0.9 0.9 
Interval 20 20 
Enemv Rforce BForce 

Unit BUnitl RUnitl 
Unit BUnit2 RUnit2 
Unit BAirl RAirl 
Unit BAir2 RAir2 
Unit B2Unitl R2Unitl 
Unit B2Unit2 R2Unit2 
Unit B2Airl R2Airl 
Unit B2Air2 R2Air2 

DenlovTo BlueBasel RedBasel 
WaitUntil Nearend Nearend 

Table 16 Detection Probabilities (per time step) 

Tankl Tank2 
MTT CBlue On1v> 0.04 0.04 
AC GNDRDR 0.01 0.01 

Sensor (Tank Gmri 0.03 0.015 

Table 17 Blue GNDRDR Pd Increase Due to Cue Quauty 

Original 
Pd 

Cue 
Quality 

New 
Pd 

Number of time tics with object in sensor field 
10 11 12 13 14 15 16 17 18 

0.01 0 0.01 0.096 0.105 0.114 0.122 0.131 0.14 0.149 0.16 0.17 
0.01 0.2 0.208 0.903 0.923 0.939 0.952 0.962 0.97 0.976 0.98 0.98 

Number of time tics with ohiect in sensor field 
19 20 21 22 23 24 25 26 27 

0.01 0 0.01 0.174 0.182 0.19 0.198 0.206 0.214 0.222 0.23 0.24 
0.01 0.2 0.208 0.988 0.991 0.993 0.994 0.995 0.996 0.997 -1.0 -1.0 

Table 18 Kill ProbabUities 

Tank 
JSOW2 0.5 

Gun 0.3 
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VII. Appendix B Experiment Output 

Table 19 Average Loss Ratio 

Replications 600 2000 2500 
Experimental 

Point 
Full Fifth Tenth 

1 0.315 0.349 0.404 
2 0.274 0.266 0.304 
3 0.305 0.268 0.305 
4 0.192 0.163 0.213 
5 0.637 0.652 0.617 
6 0.185 0.176 0.231 
7 0.467 0.476 0.569 
8 0.229 0.180 0.227 
9 0.265 0.219 0.263 
10 0.322 0.354 0.398 
11 0.266 0.269 0.305 
12 0.299 0.262 0.300 

Average Response 

0.6 
Ave 
Loss °-4 

Ratio 0.2 

0.0 i i i r 

1      2     3     4     5     6     7     8     9    10   11    12 

Experimental Point 

— Full -«-Fifth — Tenth 

Figure 15 Average Loss Ratio 
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Table 20 Sample Variance of Average Loss Ratio 

Replications 600 2000 2500 
Experimental 

Point Full Fifth Tenth 

1 0.0161 0.0166 0.0197 
2 0.0137 0.0166 0.0144 
3 0.0140 0.0159 0.0143 
4 0.0112 0.0111 0.0116 
5 0.0335 0.0200 0.0262 
6 0.0103 0.0124 0.0131 
7 0.0136 0.0179 0.0309 
8 0.0143 0.0118 0.0113 
9 0.0152 0.0140 0.0131 
10 0.0165 0.0172 0.0213 
11 0.0131 0.0149 0.0146 
12 0.0146 0.0135 0.0147 

Smple 
Var 

0.04 

0.03 

0.02 

0.01 

0.00 

Sample Variance 

4      5      6      7      8      9 

Experimental Point 

10    11     12 

Full Fifth ■Tenth 

Figure 16 Sample Variance of Average Loss Ratio 
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Table 21 Average Loss Ratio: 2 Replicates 

Replications 300 1000 1250 

Experimental 
Point 

Replicate Full Fifth Tenth 

1 1 0.316 0.349 0.406 
1 2 0.314 0.349 0.401 
2 1 0.277 0.269 0.301 
2 2 0.270 0.263 0.307 
3 1 0.304 0.267 0.305 
3 2 0.306 0.268 0.306 
4 1 0.194 0.165 0.211 
4 2 0.190 0.161 0.216 
5 1 0.628 0.652 0.616 
5 2 0.646 0.652 0.619 
6 1 0.180 0.173 0.229 
6 2 0.189 0.180 0.233 
7 1 0.472 0.475 0.573 
7 2 0.461 0.478 0.566 
8 1 0.223 0.178 0.227 
8 2. 0.235 0.183 0.227 
9 1 0.262 0.218 0.264 
9 2 0.268 0.219 0.261 
10 1 0.325 0.355 0.393 
10 2 0.320 0.353 0.403 
11 1 0.268 0.267 0.300 
11 2 0.264 0.272 0.310 
12 1 0.282 0.260 0.297 
12 2 0.316 0.264 0.303 
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Table 22 Sample Variance of Average Loss Ratio: 2 Replicates 

Replications 300 1000 1250 

Experimental 
Point 

Replicate Full Fifth Tenth 

1 1 0.0162 0.0163 0.0200 

1 2 0.0161 0.0170 0.0195 
2 1 0.0130 0.0163 0.0145 

2 2 0.0144 0.0169 0.0143 

3 1 0.0150 0.0162 0.0143 

3 2 0.0131 0.0157 0.0143 

4 1 0.0118 0.0109 0.0124 

4 2 0.0107 0.0113 0.0108 

5 1 0.0323 0.0193 0.0273 

5 2 0.0346 0.0207 0.0252 

6 1 0.0101 0.0121 0.0125 

6 2 0.0105 0.0126 0.0137 

7 1 0.0139 0.0181 0.0299 

7 2 0.0134 0.0177 0.0318 

8 1 0.0138 0.0110 0.0115 

8 2 0.0147 0.0126 0.0112 

9 1 0.0151 0.0141 0.0128 

9 2 0.0152 0.0138 0.0134 

10 1 0.0166 0.0166 0.0208 

10 2 0.0164 0.0178 0.0218 

11 1 0.0124 0.0148 0.0148 

11 2 0.0139 0.0151 0.0143 

12 1 0.0149 0.0130 0.0151 

12 2 0.0137 0.0140 0.0142 
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VIII. Appendix C Model Specification 

Table 23 FuU-Scale ANOVA 

Response: Y*Full 
Summary of Fit 

RSquare 0.94513 
RSquare Adj 0.93358 
Root Mean 

Square Error 0.16520 

Mean of 
Response 2.49302 

Observations (or 
Sum Wgts) 24 

Effect Test 

Source Nparm DF Sum of 
Squares 

F Ratio Prot»F 

e^XI 1 1 3.0835231 112.982 <.0001 
eA-X2 1 1 0.0002258 0.0083 0.9285 

eA-X2*eA-X2 1 1 1.0645447 39.0057 <.0001 
eA-X1*eA-X2 1 1 0.7769098 28.4665 <.0001 

Whole-Model 
Test 

Analysis of 
Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio 

Model 4 8.9326222 2.23316 81.8244 
Error 19 0.5185489 0.02729 Prot»F 

C Total 23 9.4511711 <.0001 
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Table 24 Fifth-Scale ANOVA 

Response: Y*Fifth 
Summary of Fit 

RSquare 0.96218 
RSquare Adj 0.95422 
Root Mean 

Square Error 0.16569 

Mean of 
Response 2.39983 

Observations (or 
Sum Wgts) 

24 

Effect Test 

Source Nparm DF Sum of 
Squares 

F Ratio Prob>F 

e*-X1 1 1 3.2046972 116.721 <.0001 
eA-X2 1 1 0.0974114 3.5479 0.075 

eA-X2*eA-X2 1 1 0.6565021 23.9111 0.0001 
eA-X1*eA-X2 1 1 0.4159032 15.148 0.001 

Whole-Model 
Test 

Analysis of 
Variance 

Source DF Sum of 
Squares 

Mean 
Square F Ratio 

Model 4 13.272271 3.31807 120.850 
Error 19 0.521663 0.02746 Prob>F 

C Total 23 13.793934 <.0001 
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Table 25 Tenth-Scale ANOVA 

Response: Y*Tenth 
Summary of Fit 

RSquare 0.965425 
RSquare Adj 0.958146 
Root Mean 

Square Error 
0.162138 

Mean of 
Response 

2.767661 

Observations (or 
Sum Wgts) 

24 

Effect Test 
Source Nparm DF Sum of 

Squares 
F Ratio Prob>F 

eA-Xl 1 1 1.273715 48.4508 <.0001 
eA-X2 1 1 0.020267 0.7709 0.3909 

eA-X2*eA-X2 1 1 1.722568 65.5247 <.0001 
eA-Xl*eA-X2 1 1 0.060148 2.288 0.1468 

Whole-Mode ITest 
Analysis of Variance 

Source DF Sum of 
Squares 

Mean 
Square 

F Ratio 

Model 4 13.947 3.48675 132.632 
4 

Error 19 0.499488 0.02629 Prob>F 
C Total 23 14.44649 <.0001 

56 



Table 26 Distribution Full-Scale Residual 

Quantiles 
maximum 100.00% 0.42582 Moments 

99.50% 0.42582 Mean 0 
97.50% 0.42582 Std Dev 0.15015 
90.00% 0.14543 Std Error 

Mean 
0.03065 

quartile 75.00% 0.09347 Upper 95% 
Mean 

0.0634 

median 50.00% 0.02287 Lower 95% 
Mean 

-0.0634 

quartile 25.00% -0.1101 N 24 
10.00% -0.1755 Sum 

Weights 
24 

2.50% -0.3079 
0.50% -0.3079 Test for 

Normality 
W Prob<W 

Minimum 0.00% -0.3079 Shapiro- 
Wilk W Test 

0.947569 0.2465 

-3 -2 -1 

Normal Quantile 

Figure 17 Normal Probability Full-Scale Residual 
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Table 27 Distribution Fifth-Scale Residual 

Quantiles 
maximum 100.00% 0.29024 Moments 

99.50% 0.29024 Mean 0 
97.50% 0.29024 Std Dev 0.1506 
90.00% 0.24396 Std Error 

Mean 
0.03074 

quartile 75.00% 0.12055 Upper 95% 
Mean 

0.06359 

median 50.00% -0.0365 Lower 95% 
Mean 

-0.06359 

quartile 25.00% -0.0795 N 24 
10.00% -0.1629 Sum 

Weights 
24 

2.50% -0.3184 
0.50% -0.3184 Test for 

Normality 
W Prob<W 

minimum 0.00% -0.3184 Shapiro- 
Wilk W Test 

0.963516 0.518 

0.3 ■ 

0.2 ■ 

0.1 

-0.0 

-0.1 -  

-0.2 -« 

-0.3 - Z 

-0.4 -  

ZD 
A 
V 

■   i     i h    i   i 

-3 
-1 r 

-2 -1 

Normal Quantile 

Figure 18 Normal Probability Fifth-Scale Residual 
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Table 28 Distribution Tenth-Scale Residual 

Quantiles 
maximum 100.00% 0.33088 Moments 

99.50% 0.33088 Mean 0 
97.50% 0.33088 Std Dev 0.14737 
90.00% 0.25097 Std Error 

Mean 
0.03008 

quartile 75.00% 0.08056 Upper 95% 
Mean 

0.06223 

median 50.00% -0.0189 Lower 95% 
Mean 

-0.06223 

quartile 25.00% -0.0771 N 24 
10.00% -0.1903 Sum Weights 24 

2.50% -0.2716 
0.50% -0.2716 Test for 

Normality 
W Prob<W 

minimum 0.00% -0.2716 Shapiro-Wilk 
WTest 

0.958189 0.4102 

0.4- 

0.3- 

pi 
• 

I              II            I 
.01     .05.10    .25     .5 

iii         i 
0     .75    .90.95     .99 

0.2- 

0.1 - /   /■     yS        " 

-0.0 - 
A 
V ■  / 

-0.1 - 

-0.2 - 

-0.3 - / 

-3          -2          -1           C 
1                1 

1            2           3 

Normal Quantile 

Figure 19 Normal Probability Tenth-Scale Residual 
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