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Hypothermia 

Man has a complex, physiologically coordinated system designed to maintain 

a core temperature of 37°C.  Despite the amazing capacity and responsiveness of 

the thermoregulatory system, human health is frequently challenged by cold stress 

leading to hypothermia.   Recently, unpredictable climatic conditions were 

responsible for the deaths of five mountaineers on Mount McKinley. The incidence 

of hypothermia is not limited to cold latitudes.  Hypothermia may occur in even 

tropical regions.  For example, in Tijuana, Mexico, in 1989, an usually cold 

night resulted in a number of hypothermic deaths.  These incidents are only two 

examples of the countless times environmental conditions have caused hypothermia 

that resulted in injury or death.  Add to this the many cases of cold water 

exposure and hypothermia secondary to trauma, and it is clear that accidental 

hypothermia due to environmental cold conditions is a very real concern for 

clinicians. 

External factors, however, are not the only causes of hypothermia. Indeed, 

hypothermia is frequently the result of anesthesia or drugs that interfere with 

internal thermoregulatory mechanisms. Annually, between one and seven million 

patients in postanesthetic care units experience mild hypothermia (Voelsang and 

Hayes 1989) . The expense and threat to human health, especially in patients with 

compromised conditions associated with cardiovascular, endocrine, and 

degenerative disorders, is just beginning to be recognized and evaluated (Feroe 

and Augustine 1991). This review will focus on the current understanding of 

human thermoregulation, the common basis for understanding various categories of 

hypothermia, and therapeutic approaches to its management and treatment.. 

Physiology of Thermoregulation in Cold Environments 

The body's physiologic systems are most efficient at 37°C; any drop in core 

temperature will decrease overall functioning. Core temperature decreases of 1 

to 2°C (36° to 35°C) define the initial stage of hypothermia. When core 

temperature reaches 25°C, ventricular fibrillation or asystole can occur 

spontaneously (Bangs 1984).  Although it is commonly assumed that hypothermia 
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occurs more frequently in northern latitudes, it is a concern in all settings and 

seasons.   Even at a "comfortable" ambient temperature of 22°C, there is a 

substantial temperature gradient of 15°C between the core and the environment. 

Without adaptive behavioral and physiological responses, the core temperature 

will eventually fall.   The "core" is generally considered the "collective" 

temperature of the internal organs (Nicholson and Iserson 1991) .  The right 

atrium, esophagus, rectum, vagina, bladder, and tympanic membrane are some of the 

sites used to measure core temperature. Although the right atrium is considered 

the most accurate site, it is not practical in most circumstances.  Other sites 

have disadvantages as well; the rectal site will lag other core temperatures, 

such as esophageal (Nicholson and Iserson 1991); the esophageal reading may be 

falsely elevated during heated inhalation (Kaufmann 1982); tympanic measurement, 

considered by some to indicate brain temperature, is affected by environmental 

and mechanical factors, such as facial fanning and cerumen (Shiraki et al. 1988) . 

Models of thermoregulatory systems are used to explain multiple responses 

to cold stress, hypothermia, and rewarming (Bligh 1985).  During cold stress, 

thermal receptors of the skin and viscera  (heart,  liver)  transmit their 

respective inputs to specific brain and spinal cord sites.  These signals are 

then integrated with brain and spinal cord temperature (Figure 1).  These data 

are then compared to a preset thermal range (set point) programmed to maintain 

a certain core (brain, visceral) temperature. Supporting physiological evidence 

for the set-point process  is controversial  (Bligh 1985).   Although the 

hypothalamus contains major nuclei that integrate thermal signals, other sites 

(e.g., spinal cord) also help coordinate cold responses. For example, shivering 

can be induced in "spinal" animals (Simon 1966), and recently the clonus in 

paraplegic patients has been shown to be identical to human shivering (Pozos and 

Iaizzo 1991) .  In all models of thermoregulation in a cold environment, the cold- 

sensing skin receptors play a principal role in triggering heat conservation by 

both behavioral and physiological responses.  In addition to activation of the 
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peripheral cold receptors,  visceral and brain temperature receptors also 

contribute. 

Behavioral manifestations such as emotional or motor responses are 

considered the first reactions to cold stimulus. The mechanism for these 

behavioral changes is not well understood but are critical for survival and vary 

tremendously between individuals. Initial cold activation of the 

thermoregulatory system includes tachycardia, vasoconstriction (resulting in 

hypertension and thermogenesis), shivering, hyperventilation, and increased 

catecholamine release (resulting in increased core temperature). 

Vasoconstriction of the periphery, in effect, increases the periphery's 

insulating layer, which protects the core and creates additional thermogenesis. 

In addition, shivering thermogenesis from muscle contraction will maintain core 

temperature. Simultaneously, release of catecholamines and thyroid hormones 

increase cellular metabolism (Paton 1983). Paradoxically, protective clothing 

(gloves, parkas, etc.), whose purpose is to minimize cold receptor activation, 

may promote the insidious onset of hypothermia. The swimmer in cold water may 

become hypothermic as the wet suit and his or her swimming will inhibit 

shivering. Similarly, placing warm blankets on a shivering patient blunts the 

thermal drive toward increased thermogenesis. In both of these cases, the lack 

of cold-receptor activation will prevent heat-producing and -retaining responses 

to counteract the cold environmental challenge. 

Various drugs (e.g., ethanol or anesthetics) will influence 

thermoregulation and cause physiological responses similar to those triggered by 

a cold challenge. Since "cold-minimizing" responses are triggered by neural 

integrating centers monitoring a difference between core and periphery, thermal 

responses may also be triggered by cooling the core relative to the skin. 

Ingestion of a cold slush, or inspiring cold air (as in the case of deep sea 

divers) , will cause a decrease in core temperature and initiate the same 

responses as cooling the skin. 
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Hypothermia may also result from increased body heat associated with 

exercise in an overdressed situation that results in sweating, dehydration, and 

subsequent body cooling. 

As hypothermia develops, thermoregulatory systems are initially excited, 

then progressively depressed (Table 1) (Paton 1983). There is significant 

individual variability in the clinical manifestations, but whether hypothermia 

is induced clinically or accidentally, this sequence is commonly the final 

result. For example, some hypothermic subjects at 34°C rectal temperature will 

be completely coherent, whereas others will exhibit signs of short-term memory 

deficit; however, both will expire eventually due to asystole or ventricular 

fibrillation when their core temperature reaches values in the range of 25-28°C. 

Classification 

Hypothermia can be classified into two main types: accidental and 

iatrogenic (clinical). 

Accidental hypothermia is a consequence of two predominant mechanisms 

(Golden 1983). One involves the relatively cold environment overwhelming the 

normal physiological and behavioral responses to cold stress (primary 

hypothermia) (Figure 2) . In the other, some or all of the physiological systems 

that maintain.a core temperature of 37°C are compromised (secondary hypothermia) 

and thus cannot respond appropriately to the thermal environment (Figure 3). 

Secondary hypothermia is brought on by one or more of three body processes: 

decreased heat production, impaired thermoregulation, or increased heat loss 

(e.g., vasodilation). As Table 2 illustrates, secondary hypothermia is a major 

challenge to physicians, since it actually masks the underlying pathology. 

Although many causes induce accidental hypothermia, most cases are drug-induced. 

For example, ethanol intoxication is a leading cause of hypothermia, since it 

promotes vasodilation and, more importantly, blunts normal behavioral responses. 

Iatrogenic hypothermia is the result (deliberate or inadvertent) of 

physician action in which the patient is cooled, usually by surgical/anesthetic 
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manipulation resulting in temperatures as low as 30°C. Some iatrogenic cooling, 

such as in cardiac bypass surgery, utilizes hypothermia's multifaceted effects 

on physiologic systems to enhance recovery in situations that would be lethal 

under normothermic conditions. Due to the sheer number of operations performed 

each year, iatrogenic hypothermia is by far the largest category. 

Since patients may tolerate various levels of body cooling, hypothermia has 

been divided into three categories - mild, moderate, and severe (Table 1) based 

on the presence of certain physiological signs at various core temperatures. The 

rationale for this division is based on the observation that individuals with 

chronic exposure experience significant fluid and electrolyte changes. 

Hypothermia may be induced over an acute (< six hours) or a chronic (> six hours) 

period of time (Golden 1983); this separation is arbitrary. 

Although accidental and iatrogenic are the predominant types of 

hypothermia, other classifications have been used to describe various 

environmental situations or unique patient conditions that promote hypothermia. 

Submersion hypothermia, for example, denotes that the victim drowns in cold 

water, and because of rapid core cooling, has a chance for recovery that may 

extend to 45 minutes (impossible in a normothermic situation). Water immersion 

hypothermia, induced by the person floating in water, signifies a much faster 

cooling rate than that caused by ambient air, and poses different rewarming 

problems. Mountain hypothermia denotes that the cold-stressed climber may suffer 

from sleep deprivation, dehydration, malnourishment, and low oxygen 

concentration. Pediatric hypothermia refers to the following characteristics of 

this patient group: large surface area to volume, inability to shiver, and 

underdeveloped central nervous system. Urban or geriatric hypothermia emphasizes 

the elderly's lack of mobility, decreased muscle mass, dehydration, and possible 

malnutrition. 
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Hypothermia's Double-Edged Sword 

Although hypothermia may eventually lead to death, depending upon its 

degree and the rate at which it is induced, it can extend the limits of 

survivability by: 1) depressing metabolism, and subsequently diminishing oxygen 

demand and delivery; or 2) altering other systems, such as membrane stability 

(Leonov et al. 1990). Consequently, treatment of the hypothermic victim poses 

an interesting clinical challenge. He or she may survive pathophysiologic 

conditions (e.g., hypoxia) that would be otherwise lethal (i.e., during 

normothermia). However, during the rewarming process, the increased core 

temperature may trigger cold-suppressed pathology. Nevertheless, cases of 

patient survival (with core temperatures as low as 15.2°C in primary, and 9°C in 

iatrogenic hypothermia) are striking examples of the degree to which body cooling 

can be reversed (Danzl, Pozos, and Hamlet 1989) . 

Pre-Hospital Management 

Pre-hospital hypothermic resuscitation is as important as in-hospital 

management. The abiding principles are governed by recognition of the depressive 

effects of low body temperature on cardiopulmonary physiology and metabolism. 

These factors dictate the mechanics of rescue, examination, insulation, and 

transport (Steinman 1986). Core temperature measurement (e.g., rectal, 

esophageal) in the field is currently impractical, pending evaluation and 

refinement of new techniques. If circumstances suggest significant or chronic 

exposure, an irritable myocardium and metabolic depression are likely. In 

chronic hypothermia, transporting the patient is extremely risky (Solomon et al. 

1989) . 

Accurate assessment of ventilation and perfusion is critical in the field. 

Pre-hospital triage should be reserved for patients for whom the potential 

benefit of immediate cardiac pulmonary resuscitation (CPR) clearly exceeds the 

attendant hazards of transport and delay. Profound depression of respiration 

mimics apnea.  Similarly, extreme bradydysrhythmias, coupled with peripheral 
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Initiate CPR in accidental hypothermia unless: 

1. "Do Not Resuscitate" status is documented and verified. 

2. Obvious lethal injuries are present. 

3. Chest wall depression is impossible. 

4. Any signs of life are present. 

5. Rescuers are endangered by evacuation delays or altered triage 

conditions. 

Optimal field rewarming is an art based on practicality, and its primary 

aim is temperature stabilization. It can increase the risk of initiating 

elevated resultant electrolytes (hyperkalemia), cardiovascular (ventricular 

fibrillation) responses, or a hypothermia-suppressed pathology that might not be 

treatable in the field. Hypothermia induces changes in the electrocardiogram 

which might not be correlated with cardiac muscle function and consequent 

perfusion. This phenomena is called perfusing rhythms. In patients with 

perfusing rhythms, field thermal stabilization and passive external rewarming 

(PER) will minimize further heat loss via radiative, conductive, convective, and 

evaporative routes (Mills 1980) . When available, heated, humidified oxygen 

inhalation will eliminate respiratory heat loss, but will also suppress 

shivering. Most patients will benefit from both supplemental oxygenation, and 

a crystalloid challenge with heated 5% dextrose in normal saline (Shields and 

Sixsmith 1990) . If prolonged field exposure is inevitable, external truncal heat 

application may be the only viable option (Hamlet 1987). 

Hospital Management 

Hypothermia diagnosis should be confirmed by core temperature measurement 

and continuous monitoring of all vital signs (Nicholson and Iserson 1991). Pre- 

rewarming considerations should focus on clinical presentations that are 

inconsistent with hypothermia (Table 2). Disproportionate tachycardia implies 

hypovolemia, hypoglycemia, or a drug overdose. Inappropriate hyperventilation 

may reflect a central nervous system lesion or organic acidosis (DKA, LA). A 

loss of consciousness  inconsistent with the temperature may result from 

7 
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Hospital Management 

Hypothermia diagnosis should be confirmed by core temperature measurement 

and continuous monitoring of all vital signs (Nicholson and Iserson 1991) . Pre- 

rewarming considerations should focus on clinical presentations that are 

inconsistent with hypothermia (Table 2). Disproportionate tachycardia implies 

hypovolemia, hypoglycemia, or a drug overdose. Inappropriate hyperventilation 

may reflect a central nervous system lesion or organic acidosis (DKA, LA). A 

loss of consciousness inconsistent with the temperature may result from 

toxicologic, traumatic, or infectious impairment of the central nervous system. 

Conversely, areflexia ascribed to hypothermia may, in fact, indicate spinal cord 

injury (Danzl, Pozos, and Hamlet 1989). 

In patients without protective airway reflexes, pre-oxygenation and gentle 

handling during tracheal intubation may help avert arrhythmias (Figure 4). In 

a multicenter survey of 428 cases, 97 of 117 intubated patients were below 32°C 

(considered the key temperature to induce ventricular fibrillation), and yet, 

none developed ventricular fibrillation (Danzl et al. 1987). Since hypothermia 

influences smooth muscle activity, a cold-induced ileus and rectal spasm 

invalidate abdominal examination. Gastric and bladder catheterization help 

assess and address expected ileus and fluid shifts. 

Continuing hematologic and electrolyte evaluation is necessary, except in 

mild cases. There appear to be no safe clinical predictors of trends or values. 

Ultrastructural cellular damage, coupled with altered perfusion, often explains 

a variety of elevated serum enzymes, amylase, and lipase (Danzl et al. 1987). 

Predicting the acid-base profile of hypothermic patients is difficult. The 

pH is usually acidotic due to: 1) respiratory system depression, 2) increased 

solubility of C02 in blood as temperature decreases, 3) lactate generation from 

shivering and decreased tissue perfusion, and 4) acid excretion. However, in one 

study of 135 cases, 32% were acidotic, and 25% alkalotic (Miller, Danzl, and 

Thomas 1981). The controversy of whether to correct arterial blood gas 

parameters for decreasing core temperature has been resolved. Relative acid-base 
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balance is reflected by an uncorrected pH=7.4, and pCO2=40 mm Hg at all 

temperatures (Swain 1988; White 1983). This is termed the "alpha-stat" or 

"ectotherm" approach (Kroncke, Nichols, and Mendenhall 1986) . Since the neutral 

point of water at 37°C is pH=6.8, a 0.6 pH unit offset normally exists between 

the cell and body fluids. Maintaining this offset under progressively declining 

temperatures results in the relative alkalinity of tissues, since the neutral 

point of water rises as the temperature drops. This process optimizes enzymatic 

functions and preserves distribution of critical metabolic intermediates (pK 4.6 

+ 9.2), while maintaining transport systems and cellular waste disposal (Delaney 

et al. 1989). Conversely, maintaining the temperature-corrected pH at 7.4 and 

40 mm Hg during hypothermia depresses cerebral blood flow, coronary blood flow, 

and cardiac output, and increases the incidence of ventricular fibrillation. 

Thus, temperature correction of arterial blood gases is unnecessary and 

potentially deleterious. 

Although it is often thought that hypothermia-induced vasoconstriction 

reduces bleeding, hypothermia actually enhances the tendency to bleed. Cold 

hemagglutination and coagulopathies reflect a variety of processes not well- 

understood (Poulos and Mollitt 1991; Ferrara et al. 1990). Platelet activity 

declines in a linear fashion and fibrinolysis increases as temperature decreases. 

A "DIC-type" syndrome is characterized by a prolonged prothrombin time, partial 

thromboplastic time, and bleeding time with hypofibrinogenemia (Patt, McCroskey, 

and Moore 1988). Hypothermia also retards the coagulation enzymatic cascade, 

stiffens red blood cells, and induces primary fibrinolysis (Reed et al. 1990). 

Clinically significant thrombocytopenia may result from both direct marrow 

suppression and hepatosplenic sequestration. Platelet thromboxane B2 production 

is also temperature-dependent (Valeri et al. 1987) . Paradoxically, rewarming the 

hypothermic patient reverses the hypothermia-induced thrombocytopenia and 

decreases clotting time. 
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Rewarming Techniques 

Although it is thought that duration of exposure is a prime factor in 

determining which kind of rewarming will reverse hypothermia most effectively, 

no data exists to support this contention. The pivotal treatment decision is 

between passive and active rewarming. Choice of method is based on the degree 

of expertise and experience of a particular group and available facilities, 

rather than on the degree of hypothermia (Golden 1983) (Figure 4). 

Since chronic hypothermia induces fluid sequestration, direct application 

of heat to the extremities can extinguish peripheral vasoconstriction (that can 

overwhelm a depressed cardiovascular system with volumetric, metabolic, and 

electrolyte flux demands). Thus, limiting heat application to the trunks of 

acutely hypothermic patients minimizes the systemic physiologic concerns that 

often accompany active, total-body external rewarming. 

Another concern is core temperature afterdrop (the continued fall in core 

temperature after rewarming is instituted), which might further decrease the 

myocardial temperature and lead to ventricular fibrillation (Olsen 1988) . The 

explanation of afterdrop is still under debate with evidence suggesting it is a 

purely physical or physiological phenomenon (Golden 1983; Hayward, Eckeson, and 

Kemna 1984) . Afterdrop does not always occur during rewarming, since it depends 

on such factors as degree of hypothermia and the method of rewarming. 

Passive external rewarming is appropriate in mild cases of hypothermia. 

Covering and insulating the skin minimizes further heat loss in a patient who 

must maintain a steady rate of rewarming by utilizing their metabolism (Shields 

and Sixsmith 1990; Erickson and Yount 1991) . Sufficient endogenous thermogenesis 

is usually impossible below 32°C because of hypothermia-induced poikilothermia. 

Active rewarming involves direct transfer of exogenous heat to the patient, 

either externally or internally. Options for active external rewarming (AER) 

include forced air, electric or plumbed heating blankets, radiant heat sources, 

and immersion (Romet and Hoskin 1988; Hauty, et al. 1987). Although conditions 

mandating active rewarming are noted in Figure 4, mild hypothermia may also be 

10 
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treated using active rewarming techniques. Clinical concerns accompanying these 

rewarming technologies range from thermal injury (burns) of hypoperfused 

vasoconstricted skin, to the difficulty of monitoring and administering therapy 

to a patient immersed in warm water (Danzl, Pozos, and Hamlet 1989; Miller, 

Danzl, and Thomas 1980) . 

Detrimental tissue oxygenation factors abound, especially with the demands 

of rewarming. The shift to the left of the oxyhemoglobin dissociation curve 

impedes oxygen release. Tissue hypoperfusion through vasoconstricted plexi 

offers additional impedance. The "functional" value of hemoglobin at 28°C is 

only 40% of what it would be at 37°C (Danzl, Pozos, and Hamlet 1989) . Caloric 

heat transfer during infusion of intravenous fluids during peak flow at 40°C to 

42°C is marginal. One liter of fluid at 42°C infused into a 70 kg patient (60% 

total body weight) at 28°C will raise the core temperature only one third of one 

degree. In volume-depleted or exsanguinated patients, single, counter-current 

heat exchanges will efficiently heat and deliver crystalloids and colloids. 

Active core rewarming (ACR) techniques deliver heat internally. Options 

include airway rewarming, heated infusions and irrigation, diathermy, and 

extracorporeal rewarming (ECR). Airway rewarming with heated, humidified oxygen 

< 45°C is a valuable adjunct. It should be emphasized that this latter method 

does not increase body temperature and, at best, will minimize body heat loss 

from the respiratory system. Only complete humidification maximizes the limited 

amount of transferable heat. Humidified airway rewarming helps decrease 

pulmonary secretion viscosity and cold-induced bronchorrhea, while stimulating 

pulmonary cilia. Hypothermie ventilation-perfusion mismatch, depressed 

respiratory minute volume, and atelectatic changes are attenuated without adverse 

effects on surfactant (Lloyd 1991) . Heated inhalation is a commonly selected 

rewarming adjunct coupled with PER in mild cases, and with other, more invasive 

techniques in severe cases (Miller, Danzl, and Thomas 1980; Otto and Metzler 

1988) . 

11 
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Peritoneal dialysate at 40 to 45°C conducts heat efficiently to the 

intraperitoneal structures (Moss et al. 1986) . The common procedure is to infuse 

at least 20 cc/kg up to 2L, allow it to thermally equilibrate for 20 minutes, and 

aspirate. Double-catheter systems with outflow suction yield exchange rates 

approaching 6L/hr. The patient's size and physiological status impact the 

rewarming rate, which ranges from 2 to 3°C/hr. Unique considerations include 

direct rewarming of hepatic detoxification enzymes, and manipulation of serum 

potassium fluctuations. Generally, this invasive technique is reserved for 

rewarming severely hypothermic patients and for combination rewarming of 

nonperfusing patients (Otto and Metzler 1988) . Caloric transfer resulting from 

irrigation of either end of the gastrointestinal tract or the urinary bladder is 

ineffective. Limitations are imposed by available surface area, absorption- 

induced fluid, and electrolyte fluxes. 

Thoracic cavity lavage is an attractive alternative warranting 

investigation for nonperfusing patients (Otto and Metzler 1988; Hall and Syverud 

1990). Continuous bilateral afferent and efferent thoracostomy tube irrigation 

will transfer heat rapidly (Iversen et al. 1990) . Mediastinal and direct cardiac 

lavage should be considered only when ECR is indicated, but is not a viable 

option. 

The technique of extracorporeal rewarming via cardiopulmonary bypass 

guarantees perfusion coupled with a steep rewarming curve (Althaus et al. 1982; 

Walpoth et al. 1990), and should be considered for cardiac arrest patients, or 

for those with multiple system trauma, frozen extremities, rhabdomyolysis, or 

profound hypothermia (Hauty et al. 1987). The availability of heparin-bonded 

circuits expands horizons and simplifies coagulative titration (Del Rossi, 

Cernaianu, and Vertrees 1990). Bypass flow rates should be initiated at 2 to 3 

L/min, and gradually increased up to 6L/min (Long 1992). Thawing is brisk, 

ranging from 4 to more than 9.5°C/hr (Splittgerber et al . 1986). Endothelial 

leakage may necessitate massive volume supplementation, and extreme hyperkalemia 

will mandate hemodialysis. 

12 
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Percutaneous cannulation of vessels with two-way flow catheters is another 

rewarming technique (Gregory et al. 1991; Gentilello and Rifley 1991). 

Accelerated rewarming potentially exacerbates hemolysis, disseminated 

intravascular coagulation, acute tubular necrosis, and adult respiratory distress 

syndrome. ECR should be discontinued if intravascular thrombosis is identified 

or CPR contraindications appear. 

Rewarming Issues 

Most hypothermic patients have depressed thirst, increased vascular 

permeability, fluid sequestration, and elevated blood viscosity (2%/l°C 

hypothermia). Adequate crystalloid/colloid resuscitation is particularly 

critical in chronic or secondary hypothermia (Bangs 1984). Therefore, it is safe 

to assume initially that most patients will benefit from rapid volume expansion 

during rewarming; however, due to the system's fragility, as well as the 

potential of other complications, it is important to monitor for evidence of 

fluid overload. 

Pharmacologic activity in hypothermic patients differs from normothermia 

and is largely temperature-dependent. Protein-binding increases, enterohepatic 

circulation and renal excretion are altered, and target organs become 

physiologically less responsive. During profound hypothermia, rewarming can 

transform substandard therapeutic activity (e.g., insulin or digoxin) to toxicity 

(Wang 1983). Since the vasculature should be maximally constricted to minimize 

heat loss, pharmacological manipulations are usually avoided. Low-dose 

catecholamine infusions potentially jeopardize frostbitten tissues, and should 

be reserved for refractory hypotensions disproportionate to the temperature 

(Chernow et al. 1983). 

A variety of atrial arrhythmias that present with a slow ventricular 

response are common (Danzl et al. 1987). Unless pre-existent, these rhythms 

should be considered innocuous and left untreated, since they inevitably convert 

spontaneously  during  rewarming.     The  issues  surrounding  ventricular 

13 
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antiarrhythmic selection, dosage, rate of infusion, toxicity, and prophylaxis are 

unresolved.  Bretylium tosylate has documented antiarrhythmic activity during 

hypothermic conditions in several animal studies, with two clinical cases of 

spontaneous chemical defibrillation reported (Murphy, Nowak, and Tomlanovich 

1986).  Lidocaine appears far less effective.  Bradyarrhythmias will refract 

atropine.  Transvenous intracardiac pacing of a perfusing rhythm is extremely 

hazardous; transthoracic pacing would seem preferable, but only as a last resort. 

Acute cold stress stimulates cortisol and adrenal corticotrophic hormone 

(ACTH) secretion.  Functional adrenal insufficiency is difficult to establish, 

since false diagnosis can occur due to cold-induced adrenal unresponsiveness to 

ACTH (Felicetta, Green, and Goodner 1980).  Considerations preceding empiric 

replacement should include a history of steroid dependence,  suspicion of 
* 

hypoadrenocorticism, or an inexplicable failure to rewarm. 

Carefully consider hypothermic myxedema in chronically hypothyroid patients 

with an infectious, metabolic, traumatic, or toxicologic stress. Suggestive 

physical stigmata should be sought; they occur most frequently in the elderly and 

in females. Hypothermia usually increases both the contraction and relaxation 

times of the Achilles tendon reflex, but interestingly, the relaxation phase is 

particularly prolonged in hypothermic myxedema (MacLean, Taig, and Emslie-Smith 

1973) . Previously undiagnosed patients, or those whose rate of rewarming is 

slower than predicted, present a therapeutic challenge. Avoid empiric therapy 

with parenteral 1-thyroxin, but remain aware that delayed recognition and therapy 

often increases the risk to a euthyroid hypothermic patient (Danzl, Pozos, and 

Hamlet 1989). 

Post-Rewarming Considerations 

Cardinal historical, physical, vital sign, and laboratory cues suggesting 

an antecedent or coexistent infection are variably misleading. Inflammatory 

responses are minimized. In the absence of fever and tachycardia, rigors mimic 

shivering.   Similarly,  impaired marrow release, neutrophil circulation and 

14 
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migration, and bacterial phagocytosis produce leukopenia. Because of the 

resultant infectious complications, some clinicians have abandoned therapeutic 

maintenance of cerebra-protective hypothermia in near-drowning victims (Bohn et 

al. 1986). The indications for, and the extent of, pan-culturing must be 

liberalized from normothermia. A clinical picture consistent with secondary 

hypothermia, or failure to rewarm, should arouse suspicion. Antimicrobial 

prophylaxis is often warranted in neonates and the elderly (Kramer, Vandijk, and 

Rosin 1989; Gautam et al. 1989). 

Disposition is predicated on the etiology and severity of hypothermia. 

Patients rewarmed from mild primary hypothermia are dischargeable to a warm 

environment. Those with a more severe temperature depression, or with secondary 

hypothermia (Table 2), usually require prolonged evaluation and monitoring 

(Danzl, Pozos, and Hamlet 1989) . 

Outcome 

Successful resuscitation of patients with accidental hypothermia requires 

careful consideration of any pre-existent or cold-induced pathophysiology. 

Hypothermia is both masked by and masquerades as a variety of processes. The 

challenge lies in both its recognition and in the implementation of a versatile 

approach to therapy. Resuscitative permutations entail simultaneous and 

sequential use of numerous rewarming modalities. Assessing the potential for 

recovery would be dually valuable. Clearly, "some people are dead when they're 

cold dead," and implementation of cardiopulmonary bypass would be inappropriate 

(Auerbach 1990). Furthermore, selection bias affects interpretation of the 

therapeutic response attributed to specific rewarming modalities. Therefore, the 

concept of a validated Hypothermia Outcome Score is attractive (Danzl et al. 

1987). Reported grave prognostic indicators, such as trauma, infection, toxin 

ingestion, or hyperkalemia (> 10 mg/L) variably impact survival (Hauty et al. 

1987; Jurkovich et al. 1987; Schaller, Fischer, and Perret 1990). Unlike the 

discovery of intravascular thrombosis, their isolated presence does not justify 
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aborting initial resuscitative efforts. Hence, the old dictum, "No one is dead 

until they are warm and dead," should be considered until the patient has been 

rewarmed to 30 to 32°C (Southwick and Dalglish 1980). 

Hypothermia in the Surgical Patient - Perioperative Hypothermia 

Although this review focuses on the accidental hypothermia victim, most of 

the treatment and rewarming issues also apply to iatrogenic hypothermia. The 

major difference lies in the fact that in iatrogenic hypothermia, the clinician 

is aware of the cause, duration, and magnitude of the hypothermic condition. 

There has been increased awareness among anesthesia and surgical personnel 

of hypothermia's consequences, such that steps are being taken to minimize 

hypothermia in the operating room. General anesthesia causes mild hypothermia 

by interfering with hypothalamic control (Imrie and Hall 1990), whereas regional 

anesthesia may provoke hypothermia by increased vasodilation in the operating 

room's cool environment (Sessler and Ponte 1989). 

In perioperative situations, cold-induced metabolic increase adds an 

additional burden to the patient both physiologically and psychologically. In 

one study, an analysis of the subjective reactions of patients arriving in the 

recovery room revealed that approximately 60% had a clear recollection of 

"freezing to death" (Jurkovich et al. 1987). However, these heat-producing 

mechanisms could be counterproductive in a clinical setting. Myocardial oxygen 

consumption is increased, and postoperative hypertension may develop with 

consequent myocardial ischemia in patients with myocardial disease. Active 

rewarming techniques and various shiver-suppressing medications are commonly 

used. Although a majority of these patients demonstrate similar thermal 

responses (as if in primary hypothermia), isolated cases of postoperative shaking 

not representing shivering indicate that additional studies in these areas are 

warranted (Schaller, Fischer, and Perret 1990; Southwick and Dalglish 1980). 

16 



Hypothermia 

Future Clinical Challenges of Hypothermia 

Although hypothermia has been identified and treated since ancient times, 

its advantages and liabilities continue to challenge the clinician. Recently, 

treating mild hypothermia using cold liquid to cool the head has been reported 

to minimize the consequence of cerebral anoxia in dogs in whom ventricular 

fibrillation was induced and EEG activity had ceased for ten minutes (Leonov et 

al. 1990). The reported use of convective cooling to induce mild hypothermia in 

anesthetized dogs could be a useful tool in select neurosurgical and vascular 

surgery patients (Southwick and Dalglish 1980). 

Conversely, although beneficial effects attend mild and moderate 

hypothermia, a drop in core temperature severely stresses physiologic systems and 

will represent a continuing challenge to physicians, whether in the Emergency 

Room or the Postanesthetic Care Unit. 
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Figure Legends 

Figure 1: Model of thermoregulatory system, its reaction to cold stress, and 

resultant increase in core temperature. Shaded area demonstrates 

role of multiple central nervous system structures integrating 

various cold thermal receptor inputs. 

Figure 2: Model of effects of hypothermia on thermoregulatory system and 

resultant decrease in core temperature. 

Figure 3: Model of various sites in thermoregulatory system which can be 

compromised to induce secondary hypothermia and resultant drop in 

core temperature. 

Figure 4:   Flow diagram of recommended procedures for treatment of hypothermia. 

Table 1: Clinical signs of decreasing core temperature demonstrating 

hypothermia-induced depression of physiological systems. 

Table 2:    Various conditions that will predispose toward hypothermia. 
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Fig. 4. Advanced Hypothermie Life Support 

(^Spontaneous Respirations? J 

Trachea! Intubation 
Heated Humidified Oxygen 

Consider IV glucose, naloxone, 
flumazeni!, thiamine 

C Perfusing Rhythm?^) 

Legend 
PER = passive external rewarming 
AER = active external rewarming 
ACR = active core rewarming 

CBP = cardiopulmonary bypass 
ECR = extracorporeal rewarming 

If C-V instability; poi kilo the rm ia; T-R dysfunction; endocrinoloqic 
insufficiency; age extremes; traumatic/toxicologic vasodilation 

** ^irJ^ay rewarming; heated irrigation (peritoneal, thoracic, Gl)- IW 
ECR; CPB; diathermy (investigational). 
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TABLE    2 

FACTORS   PREDISPOSING   TO   HYPOTHERMIA 

Decreased  heat  production 

Endocrinologic  failure 
Hypopituitarism 
Hypoadrenalism 
Hypothyroidism 
Lactic  acidosis,   DKA,   AKA 

Insufficient   fuel 
Hypoglycemia 
Malnutrition 
Marasmus 
Kwashiorkor 
Physical exertion, e.g., marathon 

Neuromuscular inefficiency 
Age extremes 
Impaired shivering 
Inactivity 

Impaired thermorequlation 

Peripheral failure 
Neuropathies 
Acute spinal cord transection 

Diabetes 
Central failure/Neurologic 

CNS trauma 
CVA 
Toxicologic 
Metabolic 
Subarachnoid hemorrhage 
Pharmacologic 
Hypothermie dysfunction 
Parkinson's disease 
Anorexia nervosa 
Cerebellar lesion 
Neoplasm 
Congenital intracranial anomalies 
Multiple sclerosis 
Hypereplemic periodic paralysis 

Increased heat loss 

Environmental 
Immersion 

Nonimmersion 
Induces vasodilation 

Pharmacologic 
Toxicologic 
Erythrodermas 

Burns 
Psoriasis 
Ichthyosis 
Exfoliative dermatitis 

Iatrogenic 
Emergent deliveries 
Cold infusion 
Heat stroke treatment 

Misc associated clinical states 

Multisystem trauma 
Recurrent hypothermia 
Episodic hypothermia (Shapiro's syndrome) 
Infectious-bacterial, viral parasitic 
Pancreatitis 
Carcinomatosis 
Cardiopulmonary disease 
Vascular insufficiency 
Uremia 
Paget's disease 
Giant cell arteritis 
Sarcoidosis 
Shaken baby syndrome 
Systemic lupus 
Wernicke-Korsakoff 
Hodgkin's disease 
Shock 
Sickle cell anemia 
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recognized and evaluated. This review will focus on the current understanding of human thermoregulation, the common basis for 
understanding various categories of hypothermia, and therapeutic approaches to its management and treatment. 
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