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AFIT/GOR/ENS/OOM-09 

Abstract 

. As advances in technology are made, the cockpits of the aircraft in the Air 

Force inventory have become increasingly complex. Consequently, mental demands 

on the pilot have risen. In a worst case scenario, the pilots have been so saturated 

with inputs they have actually forgotten to carry out the fundamentals of flying, such 

as G-straining maneuvers, resulting in several fatalities. Recent research in this area 

has involved collecting psychophysioloical features, such as electroencephalography 

(EEG), heart, eye and respiration measures, in an attempt to identify pilot mental 

workload. This thesis focuses on feature selection and reduction of the psychophys- 

iological features and subsequent classification of pilot mental workload on multiple 

subjects over multiple days. A stepwise statistical technique and the signal-to-noise 

(SNR) saliency metric were used to reduce the number of features required for classifi- 

cation. Factor analysis was used to compare the variables chosen by the discriminant 

procedure and the SNR saliency metric as applied to a neural network. A total of 

151 psychphysiological features were derived from data collected in an actual flight 

study. The original flight study contained three workload levels, low, medium and 

high. These levels were aggregated into two categories of pilot mental workload, 

low/medium and high. Mental workload associated with each flight segment was 

determined by difficulty of the task in conjunction with subjective measures from 

the pilots that participated in the study. 

xu 



Feature Selection for Predicting 

Pilot Mental Workload 

/.   Introduction 

1.1    Statement of Problem 

This research continues the effort to use artificial neural networks and statistical 

classifiers to classify pilot mental workload. This thesis expands upon previous work 

[11,14] using multivariate discriminant models and feedforward multilayer neural 

networks to classify mental workload using data collected from an actual flight. One 

proposed research question is: Can we construct a classifier that is robust enough to 

account for individual variations from day to day? Stated in other words, is one net 

sufficient to predict day to day? A second and perhaps more interesting question is: 

Can we form one classifier that is robust enough to account for variations between 

pilots? Studies were conducted using data obtained on two individual pilots, each 

pilot flying on two different days. 

Many elements go into determining the answer to the stated research questions. 

The first element that must be considered is the development of a parsimonious set 

of salient input features into a classifier [14]. Screening techniques are used to reduce 

the number of input features while still maintaining the power to accurately classify. 

More questions are raised when considering different screening techniques. Does 

this set of input features differ depending upon which screening technique is used? 

Do the input features remain the same from day to day? Do the input features 

remain the same when predicting across pilots? The input features considered 

in this research are psychophysiological features to include brain electric activity, 
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heart rate, respiration, and eye blink measures. Another element to consider is the 

classification accuracy. Does one classifier consistently produce better results? If 

so, how robust is this classifier to "messy" input data? 

1.2   Background 

The advanced fighter jets the Air Force currently uses today are technologically 

mindboggling compared with the early reconnaissance craft used in the first World 

War. Along with this technological advancement comes a greater demand on the 

operator of the craft. As technology advances it is incorporated into the cockpits 

of Air Force aircraft. With this incorporation comes the need for the pilot to split 

his attention between many different tasks. When this attention gets divided and 

the pilot gets into a stressful or mentally demanding state, a potential for mental 

overload presents itself. One of the most devastating examples of mental overload is 

found in studies on pilots of fighter aircraft. Pilots have become so involved in trying 

to pay attention to everything that is happening they forget to perform basic tasks, 

such as G-force straining maneuvers. As a result, pilots have lost consciousness 

and consequently lost their lives. One pilot was so concerned about this matter, 

he conducted a personal study after losing consciousness due to G-forces himself [2]. 

His study revealed that over a period of 10 years there were 14 GLOC(G induced 

loss of consciousness) incidents. All but one of these occurred during mentally 

demanding portions of flight. This mental overload was the only common factor 

in all 13 cases. In order to save pilot lives, an effort is being made to create an 

advanced warning system to notify the pilot of a potential mental overload. 

The Air Force Research Laboratory(AFRL)/Human Effectiveness Directorate 

(HE) at Wright-Patterson Air Force Base, Ohio is one of the leading research facil- 

ities in mental workload analysis [1]. AFRL/HE has conducted numerous studies 

using physiological features to determine mental workload. The physiological fea- 

tures determined most influential in classifying workload level are: brain electrical 
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activity, heart rate, breath rate, and eye blink measures [13,28-32]. These features 

have been determined in various laboratory, simulator and flight settings. Current 

AFRL/HE efforts involve the Wright-Patterson Aero Club flying Piper Cubs. Data 

was collected using 10 pilots flying a specified route on two separate days. The pi- 

lots wore special equipment to monitor and record brain electrical data, heart rate, 

breath rate and eye blink measures. No known research has ever been done to see if 

a classifier constructed using data from one day will yield acceptable results trying to 

predict mental workload using data from a second day. Similarly, no known research 

has been done to examen how a classifier will perform trying to predict across pilots. 

Previous research has used feedforward multilayer perceptron (MLP) neural 

networks to classify workload level using flight simulator data. Studies have shown 

that physiological features vary in importance in laboratory settings versus flight 

settings [29]. If accurate flight classifications are to be made, actual flight data 

must be used. The differences in the laboratory and flight data suggest that several 

physiological measures must be included to accurately classify mental workload in 

multitask, mentally demanding situations such as flight. 

Neural networks are inspired by the workings of the human brain. Inputs into 

the net are weighted according to importance, causing the net to classify the input 

data into any number of output states. This type of classification could be used 

in the cockpit to classify pilot mental workload. If the classification of input data 

can be practically implemented into the cockpit for everyday use, the potential to 

forewarn an operator of potential overload could save lives. 

1.3   Research Objectives 

Flight data has been gathered concerning pilot workload. As mentioned before, 

classification efforts thus far have concentrated on using simulator data. The next 

step is to classify the flight data using the same analysis procedures as were used for 

the simulator data (statistical and MLP classifiers).  The flight data contains a lot of 
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input information. Investigations are done using screening methods to reduce this 

set of input features to a manageable set that yields adequate accuracy, yet not be 

overwhelming. While using the entire set of input features may give a more precise 

picture of the mental state the pilot is experiencing, it could be very time consuming 

to use all of the features to classify workload levels. It is also important to keep in 

mind that some warning system is going to be placed in an aircraft. The system 

has to be small enough and fast enough to notify the pilot of mental overload while 

the pilot still has time to react. By cutting down on the number of input features 

required, the warning system will be that much faster as well as more practical. So 

far, discussion has focused on screening out the input features for one set of data, 

one pilot. It will also be helpful to obtain a set of input features that holds for all 

pilots, not just one, so a standardized system can be integrated into the cockpit. 

After a set of features is chosen as input for the neural network, the data is 

broken into different sets for training of the network. Typically a training set, a 

test set and a validation set are created. The first set is used to train the network, 

the second to test that the network has been adequately trained and the third to 

validate that the network actually works the way it is supposed to. The second set 

of data, the test set, is crucial to creating a neural network. This data set allows 

the creator of the network to avoid the possible problem of overfitting the neural 

network. 

1.4    Research Methodology 

The first step in this research takes the raw data and preprocess it into a usable 

form. This is done using Fast Fourier Transforms (FFTs). Much of the data is 

continuous or near continuous. It has to be cut into more manageable segments to 

be input into a classifier. The second step takes the processed data and develops a 

parsimonious set of input features. There are several saliency measures available for 

this task.  The saliency measures considered in this thesis are a discriminant stepwise 
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screening method run in the statistical program SAS, and the signal to noise ratio 

(SNR) saliency measure. The SNR saliency metric is the chosen saliency measure 

in Laine's thesis [4,14]. Once that we have our set of input features, the data is 

analyzed two different ways. One way is using multivariate discriminant analysis. 

This gives us a statistical classifier method. The multivariate analysis includes 

both linear and quadratic classifiers. The second way involves a feedforward MLP 

neural network. A comparison of classification accuracies will be done between both 

classification methods. 

1.5   Results 

The results of this research could bring the Air Force one step closer to saving 

one of our greatest resources - our pilot's lives. At the very least it will give an idea 

as to which classification model will be most practical to implement in the assessment 

of pilot mental workload. 
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II   Background and Literature Review 

2.1 Introduction 

The background and literature review gives detailed information on all subjects 

pertinent to this research effort. The first section gives a brief background on neural 

networks. The second section concentrates on feedforward multilayer perceptron 

neural networks, while the third section focuses on saliency screening methods for 

the input features. The fourth section touches on multivariate analysis. Finally, the 

last section gives a detailed description of the psychophysiological features considered 

as inputs for this research. 

2.2 Neural Networks - Background 

Neural networks are inspired by the workings of the brain. The brain is 

composed of a network of neurons [18]. A neuron in the brain receives input from 

other neurons. This causes the neuron to fire and send signals to other neurons in 

the chain. This is the basis of how we learn. As our experiences grow, connections 

between neurons strengthen and weaken. The neurons are not "aware" of what 

has happened as a whole, they are only capable of responding in a certain manner 

when that situation or a similar situation presents itself. This pattern of learning 

is the basic principle that the neural network is built upon. In the 1940's, Warren 

McCulloch and Walter Pitts first explored the computational capabilities of networks 

by creating a network made of model neurons [17]. Their simple model had the 

neuron fire when the sum of its inputs exceeded a threshold. They thought that 

models of this type not only appropriately modeled symbolic logic, but were also 

adequate for modeling perception and behavior. 

In the 1950's, a man named Frank Rosenblatt voiced his concern about models 

like McCullogh and Pitts' [18]. He thought these types of models to be unbiological. 

They required precise connections and timings and didn't take into account the 
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Sensory Cells Association Cells Response Cells 

Figure 2.1     Perceptron 

unpredictability and randomness of a real biological system, namely a real neural 

network [18]. Rosenblatt's idea was to create a neural network able to distinguish 

between similar and different experiences. This approach resulted in the creation of 

Rosenblatt's perceptron. The simplest version of this perceptron is formed of three 

layers, shown in Figure 2.1. 

The first layer consists of sensory cells. The sensory cells are connected, on a 

random basis, to the next layer that contains the association cells. These association 

cells are in turn connected, again in a random fashion, to response cells in the third, 

or response layer. These response cells produce the output of the network. This 

new idea of a "perceptron" began the process of accurately assessing the true nature 

of mental functions. Although it was on the right track to accurately portraying 

true mental functions, the perceptron was limited to learning how to classify linearly 

separable functions. If the region was not linearly separable, such as the exclusive-or 

(XOR) problem, as shown in Figure 2.2, the perceptron could not correctly classify 

all cases.   A way had to be found to correct this problem. 

Researchers continued to work on different network designs in an attempt to 

solve this problem. Finally in 1986, over 30 years after the perceptron was first con- 
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Figure 2.2     XOR Classification Problem. 

ceived, three researchers, David Rumelhart, Geoffrey Hinton, and Ronald Williams 

announced the discovery of a method for allowing networks to discriminate between 

classes for nonlinearly separable regions. Their "backward propagation of errors" 

method, or backpropagation, led to modern day neural networks. Backpropagation 

is simply a gradient search method on the error surface produced after training. The 

goal is to minimize error. That is, to get the network to classify accurately as often 

as possible. The ability to adaptively minimize error makes the neural network a 

highly used tool in classification efforts today 

The basic network used in this research is the feedforward multilayer perceptron 

neural network, shown in Figure 2.3. There are three layers to the network: the 

input layer; the hidden node layer; the output layer. Inputs, typically of various 

orders of magnitude, are fed into the network via the input nodes. These nodes 

pass inputs via a weighted branch to hidden layer nodes. The hidden nodes then 

calculate the weighted sum of all inputs received and sends this sum through an 

activation function. In order for the network to consider all inputs equally, the 

activation function squashes the inputs into a small range.   Modified inputs are now 
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Figure 2.3     Multilayer Perceptron Neural Network with Bias 

sent from the hidden node layer to the output layer via weighted branches and an 

output is produced. As seen in Figure 2.3, the flow is entirely in a forward direction. 

There are no cycles back to the input nodes hence the name feedforward multilayer 

perceptron (MLP) neural network. 

2.2.1    Definitions. 

basic definitions. 

Before proceeding, it will be helpful to establish some 

Activation function - a mathematical function that takes the weighted acti- 

vation values entering a unit, sums them, and translates the result to a position 

along a given scale. The activation function will often squash the summed value 

to a specified range (typically, 0 to 1, or -1 to 1) and is consequently also known 

as the squashing function [22]. 

Weights - connections of varying strength that carry activation information 

between network units [22] 
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• Backpropagation - method that uses a gradient descent along the error sur- 

face to find the optimal values for the weights [8,11,18,22] 

• Epoch - one presentation of the entire training set to a neural network [22] 

• Batch mode learning - the entire training set is presented, a single average 

error value is calculated, and the network is updated once according to that 

average error [22] 

• Feedforward neural network - a neural network in which the flow of acti- 

vation is in a single direction [14] 

• Momentum - method that improves the training time of the backpropagation 

algorithm while enhancing the stability of the process (helps in avoiding local 

minima in the error surface) [22,26] 

• Learning rate - used with momentum to enhance the backpropagation algo- 

rithm by telling the network how slowly to progress (avoids jumping over the 

solution with momentum) [22] 

• Sigmoid activation function - an activation function that squashes its input 

into a range, typically from 0 to 1 or from 1 to -1 [22] 

2.3   Feedforward Multilayer Perceptron Neural Network 

The basic construction of the MLP neural network was presented in the last 

section. The next step is to delve deeper into the inner workings of the neural 

network and examine it from input nodes, weight connections, hidden layer nodes, 

and finally the output nodes. 

2.3.1 Input Nodes. Each training set presented to a neural network will 

enter the network via input nodes. Some amount of preprocessing is generally 

required on the input data. One common preprocessing step is the standardization 

of the data before presentation to the neural network.   The standardization will take 
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out any bias that may be caused by individual units of the inputs. When presented 

with data each input node takes one feature that helps determine the output of 

the network. For example, suppose a network has been constructed to determine 

whether or not it is likely to rain. Let's say that the inputs for this network are 

temperature, weather forecast (barometric pressure), and the amount of rain that 

historically falls that time of the year. The network will perform calculations on this 

set of inputs to determine whether or not it is likely to rain that day. The inputs in 

this example all have different units. The temperature input is going to be quite a 

bit larger than the amount of rain input. Preprocessing will standardize the data. 

This enables the neural network to consider each input equally. In addition to the 

input nodes for each feature, the input layer also contains a bias that is typically set 

to 1.0. The purpose of this bias is to set inputs into the correct range for the next 

layer's activation function. This is true whether the next layer is the hidden node 

or the output layer. Data leaves the input layer via a series of connecting weights 

that bring the data to the hidden node layer. 

2.3.2 Weight Initialization. If the network has never been used before 

(no backpropagation has been performed) it is necessary to assign initial values to 

the weight connections leading from the input nodes to the hidden layer nodes and 

from the hidden nodes to the output layer. There is a smart way to assign initial 

weights that will give the best possible start for the network to begin learning. The 

quickest way to begin is to set initial values such that the weighted sum of inputs 

into the next layer is close to zero for every node, regardless of input [18]. This 

weighted sum is fed into an activation function in the next layer. The activation 

function(often the logistic activation function, discussed later) causes the output of 

that node to be close to 0.5. The desire for the output to be close to 0.5 is two-fold. 

First, we don't know what the actual output of the node should be. A midrange 

value is the safest to start with. In the case of the output node, a midrange value 

minimizes the squared error.   This is good since our goal with the neural network 
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is to minimize the error between classifications of the neural network and the actual 

classifications. Second, we want to avoid extreme output values because they will 

have very small error derivatives [18]. Error derivatives are the foundation of the 

backpropagation algorithm. If the error derivatives are small, the weight changes 

are small, thus learning could take a long time. A midrange output of 0.5 is as far 

from the extremes as we can get. 

Notice in Figure 2.3 that there are weighted connections from each input node 

to each hidden node. The theory behind this is that every input will have some 

effect on the hidden layer nodes. The weights determine the size of this impact. 

The accepted strategy is to make the initial weights very small for the first layer. 

A starting range of -0.05 to 0.05 is typically used [11,14]. Backpropagation adjusts 

these weights to the correct values as determined by the neural network. 

Weighted connections also lead from all hidden layer nodes to the output nodes. 

As stated earlier, having weights connecting input and hidden layer nodes close 

to zero causes the output of the hidden nodes to be near zero. Half the weights 

connecting the hidden layer nodes and output nodes should have weights set to 1 

and the other half to -1. If there are an odd number of nodes, the bias weight 

should be set equal to 0. This ensures the output nodes generate values close to the 

midrange of the activation function. 

There is one important factor to keep in mind when initializing the weights. 

Never set all the weights equal to each other. If all the weights in the first layer 

are equal, all hidden nodes see the exact same input, and produce the exact same 

output. Thus the contribution to error is the same across all the sub-networks. 

Since a network learns based on the error derivatives, if they are all the same, all 

weight adjustments will be the same and we fall into a vicious cycle. As a result, 

the network will be unable to solve a nonlinear problem. 
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2.3.3 Hidden Nodes. There axe not a set number of hidden nodes that go 

in the hidden node layer. If too few hidden nodes are included, the network may 

not be able to solve the problem. That is, the network will be unable to correctly 

classify data sets presented to it. If the network contains too many hidden nodes, 

overfitting of the data can occur. The concept of overfitting will be discussed in 

depth later, but it basically means that the network will only be able to solve for 

the data it is trained on and lose flexibility in accounting for data that may be 

slightly different. While there is no known algorithm for deciding the number of 

nodes that should be added to the hidden layer of the neural network, it has been 

shown that a single hidden layer is sufficient to approximate any response surface, 

as long as it contains an adequate number of hidden nodes [11,14]. There are a 

few algorithms designed to set upper limits on the number of hidden nodes required 

for a neural network. Kolmogorov's theorem is one such algorithm. Kolmogorov's 

theorem proves the upperbound for the number of hidden nodes will never be more 

than twice the number of input nodes [22]. A separate theory on the number of 

hidden nodes is presented in Steppe's work [20]. Her upperbound on the number of 

hidden nodes is shown in the following equation. 

HN < °£l± (2.1) 
M + 1 v     ' 

where P is the number of exemplars and M is the number of features presented as 

inputs into the model. This equation works well unless the number of features is 

large and the number of exemplars is small. In these situations Equation 2.1 may 

underestimate the number of hidden nodes necessary to handle the complexity of 

the problem. Both Kolmogorov's and Steepe's methods for hidden node selection 

are only heuristic techniques. The selection of the number of hidden nodes is very 

much an art form and depends on the complexity of the problem at hand. 
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Figure 2.4     Activation Functions. 

2.3.4 Activation Function. Each hidden node receives a weighted sum of 

the inputs. At each node, this weighted sum passes through an activation function. 

Let's consider three different activation functions: the linear, the logistic and the 

hyperbolic tangent (Figure 2.4). 

Linear activation functions are only used when the data set is known to be 

linearly separable. The linear activation function is simply: 

f(a) = a (2.2) 

with a derivative of: 

/» = 1 (2.3) 

While the linear activation function benefits from its simplicity, it is unable to handle 

data sets that are not linearly separable. The ideal activation function is a sigmoid 

(S-shaped) [11,18,22,26].   The sigmoid is chosen to account for the "noise saturation 
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dilemma" [26]. When inputs have varying magnitudes, we encounter the noise 

saturation dilemma. For example, going back to the sample inputs for our rain 

example, temperature could be 45 °F, while typical amount of rain at that time of 

year could be something small, like 0.01 inches. A sigmoid function will take care 

of the input magnitude difference by putting small values in the central area of the 

sigmoid function (around zero) and larger near the extremes of the function. As the 

input into the activation function grows in magnitude, it is squashed into smaller 

parts of the extremes. 

There are three desirable characteristics of the sigmoid function. It is bounded 

(by 0 and 1 or -1 and 1), monotonically increasing, and differentiable everywhere. 

This last characteristic is important because the backpropagation algorithm requires 

that the activation function be differentiable everywhere. There are many sigmoid 

functions, however, the most commonly used is the logistic function: 

/M = ^ (2.4) 

The logistic function squashes the input into the range from 0 to 1. The first 

derivative of logistic function is very simple to calculate.   It is given as: 

f'(a) = f(a)[l-f(a)} (2.5) 

Since, the input into every hidden node is a weighted sum of the inputs, we know 

the value of a, the input into the logistic function. 

dj = 2_] Wijli + Bias (2.6) 
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where 

dj   =   summed weighted inputs (including bias term) entering the activation function 

Wij   =   weight from node i to node j 

Ij   =   input from node i 

Equation 2.6 holds true at the hidden nodes, as well as the output nodes. While 

the logistic function is seen most frequently, other sigmoid functions are also used. 

One example is the hyperbolic tangent: 

f(a) = tanh(a) = L^£ (2.7) 

The hyperbolic tangent squashes the input into the range of-1 to 1 as opposed to the 

0 to 1 range given by the logistic function. The first derivative is easy to calculate 

for tanh(a): 

f'(a) = 1 - [/(a)]2 (2.8) 

So far we have journeyed from input nodes, through the first set of weights, 

to the hidden nodes. At the hidden nodes, we saw how the sum of the weighted 

inputs is processed through an activation function. These values are next sent to 

the output nodes via weighed branches. At the output nodes, similar calculations 

are made with another activation function. 

Now we have a complete picture of the MLP neural network that we will be 

working with as well as its initial settings. It is now time to concentrate on how a 

MLP neural network actually learns. The algorithm that drives the learning process 

for a neural network is called backpropagation. 
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2.3.5 Backpropagation. In general, backpropagation is a way to find the 

optimal values of the weights that connect our neural network together. Inputs are 

fed into the neural network via the input nodes. They travel along the weight 

branches to the hidden layer nodes and then through more weight branches to the 

output nodes. The idea is to train the network before using it for actual classification. 

A training set with known class membership is presented to the network. After the 

initialization phase, the training set will be sent through the network. The output 

generated by the network is then compares with the desired output. The difference 

between these two values defines an error surface for the problem. This error 

determines how the weights are going to change. Backpropagation uses a gradient 

descent to find the minimum error on the error surface. 

Initially, all data received should be separated into three different sets: training, 

training-test, and validation. Allocation of the data to each set will be discussed in 

detail in a later section. The training set is used to train the neural network. An 

input vector xp is randomly selected for input to the neural network. The input 

vector xp is the pth. vector of the training set. This input vector is now sent through 

the network where the weights are set at the settings mentioned in Section 2.3.2. 

The instantaneous output error, £p, associated with xp is calculated using the pth. 

vector of observed outputs, zp
k, and the corresponding vector of desired outputs, 

dp
k. In this context p represents the pth. input vector of data, and k represents the 

number of output nodes. The number of output nodes typically equals the number 

of classes.   The calculation for instantaneous error, ep, is given as: 

el = £« - 4? (2-9) 
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where 

<fk   =   the desired output vector associated with the pih input vector 

z\   =   the observed output vector associated with the pth input vector 

K   =   the number of output nodes 

Now that the error surface is defined, the next step is to follow gradient along 

the path of steepest decent. This path is determined by taking the partial derivative 

of the error surface, e%, with respect to our weights. The calculations for the 

partial derivative of the error surface, 6, depends on which layer of weights are being 

considered. The following calculations show 6 for both the hidden layer to output 

layer weights and the input layer to hidden layer weights. For the hidden layer to 

output layer weights case we use, 

tl = {di-z{)z{(l-z{) (2.10) 

while in the input layer to hidden layer weights case we use, 

# = *i(l "*})£**Wd    for/c = l,...,K (2.11) 

where 

{w2jk)old = the old weight from hidden node j to output node k 

It is important to note that the partial derivatives for the error surface take on 

these equations if the activation functions in the network are sigmoid functions. If the 

activation functions are linear, the partial derivatives take on a slightly different form. 
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Hidden layer to output layer weights (linear activation function): 

6l = K-4) (2.12) 

Input layer to hidden layer weights (linear activation function): 

^ = E^K2
fc)°

W  far * = !,...,# (2.13) 

After finding the gradient decent direction, these partial derivatives can be used to 

update the weight parameters in the network. The weight updates are given as: 

Hidden layer to output layer weights: 

(v%)™ = (v>%)M + v6Wj (2.14) 

Input layer to hidden layer weights: 

(vtj)
new = (v>}j)

M + v61tf (2.15) 

where 

{w2-k)new = the updated weight from hidden node j to output node k 

(w^k)
old = the old weight from hidden node j to output node k 

(wlj)new = the updated weight from input node i to hidden node j 

(wjj)°ld = the old weight from input node i to hidden node j 

T) = the learning rate, or the training step size 

xv
{ = the zth input feature of the pth input vector 

xXj = /(y~] wjjrii) - the output of hidden node j (i = 1,..., M) 
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In the equations above, a new parameter, 77, was introduced. This is the 

learning rate, or the training step size for the neural network. It typically takes on 

values between zero and one. The learning rate dictates the proportion of error that 

will be used to update weights during backpropagation. It is a balance between 

learning speed and stability of the system [22]. The size of 77 controls how fast the 

network learns. If 77 is large, the network learns faster, however there is a chance of 

getting stuck oscillating around a local minimum in the error surface. In this case 

the network won't improve much as more training vectors are presented to it. If 77 

is small there is less chance of oscillating around a local minimum, however there is 

increased computational time. Additionally, if 77 is too small, there is the chance of 

getting stuck in a local minimum and missing the true minimum of the error surface. 

A typical learning rate value is 77= 0.25 [11,14,22]. 

2.3.5.1 Momentum. Momentum in the backpropagation algorithm 

can be helpful in speeding up convergence and avoiding any local minima in the error 

surface [27]. The concept behind momentum is to make more conservative changes 

in the weights. Momentum causes the weight changes to be affected by the size of 

the previous weight changes [22]. As a consequence, a new term, a, is introduced as 

the momentum term in our weight updating equations. This momentum parameter 

is a constant that determines the effect of past weight changes on the current weight 

change [14]. The new weight update equations, with the momentum term, are given 

as: Hid- 

den layer to output layer weights: 

[W(t + 1)%)™ = [w(t)%]M + nffe) + aA[w(t - \)%)M'M (2.16) 

Input layer to hidden layer weights: 

[W(t + i)\.]™ = MOy" + vttf + ^A[w(t - 1)ÜM'M (2.17) 
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where 

[w(t + l)2
jk]new = the updated weight at epoch t+1 from hidden node j to output node k 

[w(t + l)\3]
new = the updated weight at epoch t+1 from input node i to hidden node j 

[w(t)23k)
old = the old weight at epoch t from hidden node j to output node k 

[w(t)\J]
old = the old weight at epoch t from input node i to hidden node j 

t = the training epoch 

a = the momentum term 

and 

AN* - l)%]old'°ld   =   l(Ht)%)°ld - (w(t - l))k)
old'old] 

weight change from epoch t-1 to epoch t 

AH* - ljy*«" = [{w{t)\3y
ld - (W(t - i)i)oW'oM] 

weight change from epoch t-1 to epoch t 

Notice from Equations 2.16 and 2.17 that, unlike instantaneous weight changes, the 

momentum term is used to change the weights in combination with batch mode 

learning. In batch mode learning the entire training set is presented to a network 

once and then the error is calculated. The momentum term, a, is set between 0 and 

1. If a — 0, the current weight changes are not affected by past weight changes 

at all. If a = 1, the weight change is set equal to the last weight change plus the 

current gradient [14]. While a high value of a reduces the risk of getting stuck in a 

local minimum, there is an increased risk of overshooting the actual minimum of the 

error surface.   Typically, the momentum term is set at a value of a = 0.9 [11,14,22]. 

2.3.6    Training the Neural Network.      After the data has been preprocessed, 

it is used the train the network.  The data can be divided into three groups: a training 
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set, a training-test set, and a validation set. The purpose of the training set is, as 

its name implies, to train the neural network. That is, to establish appropriate 

weights for classification on a validation set. The training-test set is used to avoid 

overfitting of the neural network. Overfitting will be discussed in a later section. 

The validation set is used to make sure the network is producing expected output. 

There are many ways to divide the data set into these three groups. One method 

is to use two-thirds of the data for testing and one-third for validation. Typical 

divisions have been: the training set - 40%, the training-test set - 30%, and the 

validation set - 30%.   Values of 50/25/25 have also been used. 

After the division of the data has been decided, training of the network can 

begin. Naturally, there is some point when the training of the network will have to 

stop. To stop training, we limit the number of epochs presented to the neural net- 

work. This limit is determined by measuring the error. Error distances (differences 

between observed output and actual output) are sampled and averaged over fixed 

interval of epochs. If the average error distance for the most recent fixed interval 

is not better than (less than) that for the previous fixed interval, the conclusion 

can be drawn that no progress is being made and training should be stopped [27]. 

Training on a neural network can also be stopped when the average training error 

has reached a predetermined target value [22]. The training-test set can also be 

used to determine when the neural network has been sufficiently trained. Training 

of the network will begin with the training set. Every so often, the training can 

pause and the training-test set can be presented to the network to get a measure 

or error. As long as the error keeps reducing, training should continue. As soon 

as the error begins to climb, training should stop. When the error begins to climb, 

overfitting of the network is occurring. Just as it is possible to overfit a model in 

regression analysis, it is possible to overfit a neural net. Overfitting means that the 

network has been trained so well on the training set, it doesn't have the flexibility 

to accurately model other examples, even if they are just a bit different from the 
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examples presented in the training set. For example, say we are training a network 

to classify animals into the groups dogs or cats. As a training set we present char- 

acteristics of a Dalmation and an alley cat. Say the network was not stopped in 

time and overfitting has occurred. We have a new set of inputs that we want to 

try and classify as a dog or a cat. Say this validation set consists of Dobermans 

and alley cats. Since we overtrained the network we get a 100% classification on 

the alley cats, however all of the Dobermans are not recognized as dogs. The only 

dogs the network will recognize are Dalmations. Since we have no predictive power 

at all, this network must be scrapped. As soon as an increase in error is observed, 

training should stop and the weights should be set at the values that produced the 

lowest error on the training-test sample [18]. 

2.4    Saliency Metrics and Saliency Screening Methods 

Not only is architecture of the neural network important, but the quality of 

the input data is also very important. A parsimonious, salient set of data is desired 

as input into a neural network. Many times an abundance of data is collected in a 

study but only some of that data is actually used in the classification process. The 

other data has little or no effect on the final classification. Not only may there be a 

lot of data to go through, there is also a potential for a lot of noise to be contained 

in the data. When dealing with models a general principle always holds: GIGO, 

"garbage-in, garbage-out." This simply means that we want the best possible data 

to enter our network. If garbage is put into the neural network, garbage is exactly 

what will come out. To avoid the "garbage-in, garbage-out" dilemma it is necessary 

to perform screening on the set of input features. Screening allows the set of input 

features to be reduced resulting in a parsimonious, salient set of features, as well as 

cutting down on the network runtime.   We discuss three saliency metrics: 

• Ruck's saliency metric 

• Tarr's saliency metric 
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• Signal-to-Noise Ratio (SNR) saliency metric 

Each saliency metric uses a different method to rank order the set of input 

features.   These metrics will be discussed in turn below. 

2.4-1 Ruck's Saliency Metric. Ruck's saliency metric sums the network 

outputs with respect to a given feature using a trained neural network [5,14,19,21]. 

Ruck's saliency metric is computed as follows: 

^EEEESW^) 
P     M     R     K 

where 

(2.18) 

P — the number of exemplars 

M — the number of input features 

R = the number of steps that the range of each feature is uniformly divided into 

K — the number of network outputs 

The derivative in the equation is evaluated at the ptYi input exemplar and trained 

neural network weights, w. Below is Ruck's derivative in detail. 

ft?2 

g = zfc(l-zfc)E^K (2.19) 
3 

where 

<5j = x](\- x}j) where x] is the output of node j in the hidden layer 

Zfc = the output of the node k in the output layer 

Wjk = the weight connecting the hidden layer with the output layer 

wlj = the weight connecting the input layer with the hidden layer 
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The features axe rank ordered according to the average saliency metrics over several 

training cycles (typically about 30) [5,14,19]. 

2.4-2 Tarr's Saliency Metric. Tarr's saliency metric steps away from the 

derivative and is based solely on the weights. This tactic is taken from the hypothesis 

that the features that are most important will have bigger weights leading from the 

input layer to the hidden node layer. The features that are not so important have 

small weights leading from the input layer to output layer [21]. Tarr's metric is a 

summation of the squared values of weights connecting the features input node to 

the hidden layer nodes [5,14,19].   The formulation is given as follows: 

Ti = EK)2 (2-20) 
3=1 

where 

Ti   =   the Tarr saliency metric for input feature i 

w\j   =   the first layer weight between input node i and hidden node j 

As with Ruck's metric, features are rank ordered according to their saliency. Large 

values of Tj(Aj for Ruck's measure) imply the feature is salient, while small values 

of T{ imply the feature is not salient. The effectiveness of weight-based saliency 

depends on two things [19]: 

1. in}, (for all i, j) must be from a trained neural network of appropriate complex- 

ity. 

2. Input features must be normalized to have approximately the same ranges. 

2.4-3 Signal-to-Noise Ratio (SNR) Saliency Metric. The SNR saliency 

metric operates on the same general principal as Tarr's metric [?]. That is, the 

metric relies on the sum of squared weights connecting the input node layer to the 

2-20 



hidden node layer. The signal-to-noise ratio does take a new twist on calculating a 

saliency measure. The SNR relies on a direct comparison of a feature to an injected 

noise feature.   The calculation for the SNR is as follows: 

SNRi = 10log r'j-1' I3' (2.21) 

where 

SNRi = the saliency metric for the ith feature 

J = the number of hidden nodes 

wjjj = the weight connecting the injected noise feature, x^, to the hidden node layer 

wjj = the weight connecting the input feature, xi: to the hidden node layer 

The SNR works in the following fashion. A random noise feature (distributed 

UNIF(0,1)) is added to the existing input vector. The weights connected to the 

noise input node should be relatively small because the added noise contributes 

nothing to the overall process being evaluated. On the otherhand if the feature is 

salient, then its weights are relatively large. So in the case of a salient feature the 

SNR is a large number on top of a small number. The resulting ratio is significantly 

larger than zero, which indicates the feature's saliency. In contrast, nonsalient fea- 

tures create a ratio close to one,. indicating a nonsalient feature. Like Ruck's and 

Tarr's metrics, the SNR ranks orders the features based on saliency value. 

Having assigned saliency values to the input features, screening methods are 

applied to sort through the features and decide which to keep and which to toss. 

There are three different screening methods discussed in the following sections. They 

are: 

• Belue-Bauer [5] 

• Steepe-Bauer [19] 
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• Signal-to-Noise screening method [4] 

2.4-4 Belue-Bauer Screening Method. The Belue-Bauer screening method 

makes use of an injected noise feature to distinguish between salient features and 

nohsalient features [5,21]. The following is the procedure used to determine the 

significant feature inputs: 

1. Introduce noise feature to the original set of features. 

2. Train the neural network. 

3. Compute the saliency of all features (use Ruck's or Tarr's saliency metrics). 

4. Repeat steps 2 and 3 at least 30 times (with weights being randomly initialized 

and training and test sets being randomly selected at the beginning of each 

training cycle). 

5. Assume the average saliency of the noise feature is normally distributed. Find 

upper one-sided (a x 100) percent confidence interval for the mean value of 

the saliency of noise. 

6. Choose only those features whose average saliency values falls outside of this 

confidence interval. 

7. Retrain the network with salient features. 

Salient features will have means significantly different from the noise feature 

(it will not fall within the confidence interval.) The noise feature will be close to 

zero while the salient feature will not. Ruck's or Tarr's metric can be used for this 

screening method. Even though they measure saliency differently, the outputs are 

pretty much the same when the Belue-Bauer screening method is applied. 

2-4-5 Steepe-Bauer Screening Method. The Steepe-Bauer screening method 

applies a Bonferroni approach to calculating the statistical significance of a feature 

[19,21].   The Bonferroni approach considers a hypothesis on a 'family' of tests.   In 
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this case, the family of tests looks for a difference in the means of the actual feature's 

saliency and the injected noise feature's saliency. The Bonferroni approach is applied 

to M individual hypothesis tests to achieve a predetermined 'family' significance level 

of a.   The Bonferroni critical value is defined as a t-statistic as follows: 

B  = t°L v 

where v = N -1, t = the t-statistic with v degrees of freedom, and N = number of 

neural networks. 

The following is the procedure for the Steepe-Bauer screening method: 

1. Augment feature set with noise feature, x^. 

2. Use the augmented set to train N neural networks. 

3. For each candidate feature, test whether the candidate feature's average saliency 

is different that the noise feature's average saliency. 

• Compute test statistic t*. This statistic is based on the difference between 

the two feature saliencies. More can be found in Steppe's feature screening 

article [19]. 

• Evaluate the test statistic using the Bonferroni critical value, B. 

i. if t* < B feature i considered nonsalient 

ii. if t* > B feature i considered salient 

4. Eliminate nonsalient features. 

5. Retrain neural network using only the salient features. 

Step 2 mentions training N networks. It has been found that N=10 is sufficient. 

Slightly modified versions of Ruck's and Tarr's saliency metrics were used to assign 

feature saliency. 
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2.4- 6 Signal-to-Noise Ratio Screening Method. The SNR screening method 

is less statistically rigorous than the previously mentioned methods [14,21], however, 

it does have some important advantages. The SNR screening method follows these 

steps: 

1. Add a Uniform(0,l) noise feature, xN, to the original feature set. 

2. Standardize all features to zero mean and unit variance. 

3. Randomly initialize the weights between -0.001 and 0.001. 

4. Randomly select the training and test sets. 

5. Begin training neural network. 

6. After each epoch, compute the SNR saliency measure for each input feature. 

7. Interrupt training after saliency metric values stabilize. 

8. Compute the test set classification error. 

9. Identify the feature with the lowest SNR value and remove it from further 

training. 

10. Continue training the neural network. 

11. Repeat steps 6-9 until all of the features in the original set have been removed. 

12. Compare reaction of the test set classification error rate to the removal of the 

individual features. 

13. Retain the first feature whose removal caused a significant increase in the test 

set classification error rates as well as all features that were removed after that 

first salient feature. 

14. Retrain the neural network with only the parsimonious set of saliency input 

features. 

There are many advantages to the SNR screening method and SNR metric. 

The SNR screening method is a quick, rough initial screening of the input features. 
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This quick estimate gets rid of any apparent noise. The SNR is especially useful 

when time is of the issue and it is more important to rapidly screen out unwanted 

features than to get the best possible feature set. The SNR screening method is 

also interruptible. It is designed such that the user can stop in the middle of the 

process and remove unwanted features. Once again, this cuts down on the processing 

time and gives an initial rough estimate. The Belue-Bauer [5] and Steepe-Bauer [19] 

screening methods provide a finer tuned screening. After the SNR screening method 

is applied, the Belue-Bauer or Steepe-Bauer screening method can be used to screen 

out any borderline or questionable features. 

This research effort uses the SNR metric and screening method. While sta- 

tistical methods are not the backbone of this screening method, the SNR metric 

has been found to be fairly robust as shown by Sumrell [21]. Factors considered 

included the number of hidden nodes, learning rate, and momentum rate. Sumrell 

found that the SNR metric is fairly robust across all network architectures. The 

number of hidden layer nodes and changes in the learning rate had marginal changes 

in classification accuracy. However, it was also noticed that high momentum rates 

resulted in poor classification. The recommendations passed on by Sumrell include 

using N to 3N hidden nodes (N is the number of input features), a learning rate 

between 0.1 and 0.9, and a momentum rate between 0.1 and 0.5 [14]. 

2.5   Multivariate Discriminant Analysis 

Discriminant analysis is a "technique for classifying individuals or objects into 

mutually exclusive and exhaustive groups based on an observed set of independent 

variables [3]." The goal behind discriminant analysis is to attach a scalar score to 

each object. This section discusses how that score is calculated and the conditions 

surrounding that calculation. Then we investigate each variable's contribution to 

forming the discriminant score. Finally, we look at estimating the error rate asso- 

ciated with a discriminant function. 
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2.5.1 Discriminant Score. As mentioned above, it is desired to get a scalar 

score for each object in the data set. This score will determine to which group the 

object belongs.   This score ideally holds certain attributes: 

• a linear combination of the object's attributes 

• the mean of the two groups are as far apart as possible 

• small variance 

Performing discriminant analysis can be summed up in a few simple steps: 

1. Check for multivariate normality.   This is a must for discriminant analysis. 

2. Check to see if £x = £2, where £, is the covariance structure for group i. 

This is not a hard requirement to perform discriminant analysis as there are 

discriminant methods that can be utilized if £x ^ £2. 

3. Compute the discriminant function. 

4. Validate the discriminant function. 

Several discriminant methods can be used to form the discriminant function. 

The discriminant function used in this research effort is the quadratic discriminant 

function. The quadratic discriminant function has several advantages that make 

it favorable over other methods. One advantage to the quadratic discriminant 

function is that it is does not require £1 = £2. Another advantage to the quadratic 

discriminant function is that it allows classification if the different groups are not 

linearly separable. An example of this is the XOR problem, shown earlier in Figure 

2.2.   The formula for calculating the quadratic discriminant scores is, 

d?(K) = -\ In |£,| - \{X - ^)T^~l(X - £) + InPz (2.22) 
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where 

d® = the quadratic discrimiant score for group i 

Ej = the covariance structure for group i 

X_ = the new exemplar 

/Tj = the estimation of mean for group i 

Pi = the prior probability of belonging to group i 

If Pi is equal for each group then the lnP, can be dropped from Equation 

2.22. This situation occurs when the number of samples from each group are equal. 

Likewise, if the covariance structures for each group are equal, the pooled covariance 

structure is used in place of the individual covariance matrices. The pooled structure 

can be computed as, 

:(2Ld(\)X-d(\) + Kd(2)'Xd(2)) (2.23) N   + N2 - 2{     d(1)     d(1) d{2)^d{2)) 

where 

S = the pooled covariance estimate 

N\ = the sample size from group 1 

iV~2 = the sample size from group 2 

Xjri) = the centered data matrix from group i 

Once the quadratic discriminant score, df, has been computed for all i, the exemplar 

is classified into the group that has the highest dQ score. As with artificial neural 

networks, creating a salient group of input features for discriminant classification 

can lead to a better probability of correct classification. The next section discusses 

ways to assess which variables are important for classification. 
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In addition to the quadratic score discussed above, a linear score can be ob- 

tained from Equation 2.22 with a few minor modifications. The linear classifier as- 

sumes that the covariance matrices for each group are statistically equal (T,\ = S2). 

The equality of the covariance matrices leads to a few terms being dropped out of 

the quadratic score.   The final linear classifier looks like, 

4(X)   =   tfZ-'X + Wi (2.24) 

Wi   =   -^S-^ + m^) 

where 

d\ = the linear discriminant score for group i 

jx{ = the estimator of mean for group i 

S = the estimated pooled covariance matrix 

Pi = the prior probability of belonging to group i 

The principle for classifying new exemplars using the quadratic score also applies to 

the linear score. A new exemplar receives a linear score for each group. The highest 

dl score for the new exemplar indicates which group that observation is classified 

into. Further discussion on discriminant analysis to include the computation of 

discriminant scores can be found in Bishop, 1995 [6]. 

2.5.2 Variable Contribution. As previously mentioned, a higher probability 

of correct classification can be obtained if redundant variables are removed from for- 

mation of the discriminant score. In order to remove variables, variables significant 

to classification must be determined. Traditional approaches to determine vari- 

able contribution use group means and univariate F-values for each variable and/or 

magnitudes of standardized discriminant weights. Although traditional, there are 

problems with these methods.   If the variables are intercorrelated, the conclusions 
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obtained by these traditional methods can be misleading [10]. For example, if stan- 

dardized discriminant weights are found and the variables are inter correlated, the 

discriminant weight will be split between the two variables. This can make both 

variables seem to contribute marginally to the discriminant function when in reality 

only one is important. F-values can also be inaccurate because interdependence 

is ignored. Another way to determine variable contribution is to use discriminant 

loadings. Discriminant loadings are defined as "correlation of a variable with the 

discriminant function [10]." The loadings can give an accurate feel for which vari- 

ables are actually important to that function. The discriminant loadings can handle 

variable intercorrelation better than traditional methods. They are also easier to 

interpret than standardized discriminant weights. One final method to determine 

variable contribution is to use partial F-values. Recall that tests based on uni- 

variate F-values are unable to adequately handle inter correlated variables. Partial 

F-values partition out the variance of a variable that is already explained by other 

variables [10]. In other words, it takes the intercorrelation out of consideration and 

just reports the variation due to the variable of interest. 

Out of the three methods mentioned above, Dillon and Goldstein [10] prefer 

the discriminant loading method. It gives a simple interpretation of how important 

each variable is to the discriminant function without being affected by variable inter- 

correlation. However, there is one inherent problem with the method of discriminant 

loadings. The calculation of the loadings require calculation of discriminant weights. 

These discriminant weights can only be calculated if the covariance structure for each 

group are statistically equal, meaning the pooled covariance structure can be used 

(see Equation 2.23). If it is shown that the covariance structure of the groups are 

not equal, discriminant loadings cannot be used. 

2.5.3 Error Rate Estimation of Multivariate Discriminant Classifiers. Af- 

ter the proper variables have been screened out and a discriminant function is formed, 

an estimate of the error rate can be obtained.   This estimate gives insight into the 
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ability of the discriminant function to classify data. There are several ways of ob- 

taining an estimate for the error rate. Three methods are discussed here. These 

methods are: resubstitution, data splitting, and Lachenbruch's holdout procedure. 

The resubstitution estimate of error rate for a discriminant function is a simple 

calculation. The error rate is simply the proportion of misclassified observations, 

using all the original data. This method can be most easily explained by examining 

a confusion matrix, shown below. 
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Figure 2.5     Confusion Matrix 
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The estimate of the error rate is most commonly known as the apparent error rate 

(APER).  The APER can be calculated as follows: 

APER=Nl7! + N*! (2.25) 
ni+n2 

One failing of the resubstitution method is that it tends to underestimate the actual 

error rate. 

The second method for error rate calculation is data splitting. With this 

method, the total data set is split into two sub-sets. The first sub set (usually | of 

the total data set) is used to construct the classification rule. The remaining data 

(the | that is left) is used to validate that discriminant function. This validation can 

also be done using a confusion matrix and the APER. This APER obtained using 

the validation set will be a bit more accurate than the APER obtained using the 

resubstitution method. One variation of this method is to randomly split the data 

multiple times. An APER can be obtained for every validation set and an average 

APER is computed. This gives a better feel for the true error rate associated with 

the discriminant function. These estimates are consistent and unbiased. However, 

a large data sample is required to accomplish multiple splits of the data [10]. 

The last estimation of the error rate can be obtained using Lachenbruch's 

holdout procedure. In this procedure all but one observation from the total data set 

is used to form the discriminant function. The observation held out is then passed 

through the function and assigned to a group. This procedure is repeated for all m 

points in the data set. After all data points have been classified, an estimate of the 

expected actual error rate can be obtained. The equation for the expected actual 

error rate is, 

E(AER) = ^+* (2 26) 
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where 

( ff) 
Nim     =   the number of misclassifications m of objects of group i 

Ni    =   the number in group 1 

iV2   =   the number in group 2 

This holdout procedure yields a nearly unbiased estimate of the misclassification 

probabilities [10], but can be computationally intense if the data set is very large. 

Dillon and Goldstien [10] state that data splitting and the Lachenbruch holdout 

procedure are most reliable for estimating error rates associated with a discriminant 

function. 

2.6   Psychophysiological Features 

A tremendous amount of research has been done investigating the effects of 

mental workload on physiological features. Measures of these physiological responses 

have been associated with psychological states, thus the term, psychophysiological 

features: psycho meaning "mental activities or processes [24]" and physiological 

meaning "all the functions of a living organism and their parts [23]." Several recent 

research efforts have concentrated on analysis of psychophysiological responses in 

multi-task environments [9,13,28-32]. Psychophysiological methods have several 

advantages when studying multiple task environments. These advantages include: 

the measures are continuous (they can be collected throughout the study); the col- 

lection of the features does not inhibit the subject from completing the primary task 

(they are non-inhibitive); the features are relatively robust; and the features are easy 

to collect [28]. From the variety of physiological features that can be monitored, 

the following measures are often collected: 

• Cardiac Measures 

• Respiratory Measures 
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• Hormone Measures 

• Ocular Measures 

• Brain Activity Measures 

2.6.1 Cardiac Measures. Measures of the heart have been used in multi- 

task environments as early as 1932 when heart rate was used to measure pilot re- 

sponses during flight [9]. Since then, several studies have been conducted measuring 

heart rate in the flight environment [13,28,29,32]. Heart rate has been shown to be 

sensitive to several variables including, landing at different airports, refueling during 

transatlantic helicopter flights, using autopilot to land aircraft, simulated instru- 

ment landings, pilot versus copilot flying the aircraft, combat missions, and surface 

attack training missions [9]. In general, heart rate increases as cognitive workload 

increases. Typical high workload flight segments are takeoffs, landing, touch and go, 

etc. [13,28,29,32]. A second cardiac measure that can be obtained is the heart rate 

variation (HRV). The heart rate variability is the variation of the heart rhythm. In 

general, HRV is thought to decrease as mental workload increases. However, there 

is a lot of controversy surrounding the use of HRV as a viable psychophysiological 

feature. 

One problem encountered in using HRV is the question of how to measure HRV. 

Multiple measures of HRV are available; perhaps as many as 26 measures [28]. It 

is unclear if some measures are better than others, if there is one best measure, or 

if certain measures should be used in certain situations. One widely used measure 

of HRV is a spectral analysis. It is thought that spectral analysis may be useful in 

determining mental workload, however, this fact has yet to be proven for the multi- 

task environment [9]. Another problem that has been encountered in measuring 

HRV is the different results that have come out of studies. Some studies show 

that there is a definite advantage to collecting HRV, others suggest that there is 

no advantage to collecting HRV.   For example, a study (summarized in Damos) 
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was conducted on underwater diving while performing a task [9]. Two sets of 

subjects were used, inexperienced divers and experienced divers. The inexperienced 

divers showed that HRV did indeed decrease while performing the task in the water. 

However, the experienced divers showed no change in HRV. Another study reported 

in Damos suggested that HRV may decrease due to aging, making HRV questionable 

after a certain age. The biggest controversy surrounding HRV is whether or not 

it adds anything to the study beyond considering just heart rate, especially in the 

multi-task environment. Many studies suggest that heart rate may be more sensitive 

to changes in cognitive workload, implying that heart rate alone may be an adequate 

measure [9,28,29]. 

2.6.2 Respiratory Measures. Few studies have been conducted on the use 

of respiration as a measure for cognitive workload. Those that have been conducted 

suggest that respiration rate increases as workload increases [9,28,32]. Respiration 

measures are typically collected using bands that strap around the chest of the sub- 

ject. Tasks that involve voice communications can create a potential problem in 

measuring respiration because speech disrupts the pattern of breathing [9]. It has 

been suggested that voice analysis be used as a measure of cognitive workload. Fa- 

tigue and stress due to increased workload are thought to cause measurable changes 

in voice pattern [9]. 

2.6.3 Hormone Measures. A few studies have been done measuring the 

hormone levels in a subject [9]. A high mental workload indicates that a very stressful 

situation has been presented to a subject. In response to stress, the sympathetic 

nervous system is stimulated. This stimulation causes the adrenal glands to release 

hormones into the blood stream. These hormone levels can then be collected after 

the task has been completed and a determination can be made on the workload that 

was experienced by the subject during the task. Hormone levels can be collected via 

blood, urine, or saliva samples.   Even though hormone measures are very definitive 
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when it comes to determining mental workload, there is a major drawback. Hormone 

levels cannot be collected until after the task has been completed. Collection of 

hormone levels after a multi-task study can be almost a moot point. Such tasks 

usually contain several levels of mental workload from low to overload. It could 

be difficult or near impossible to try and correlate the hormone levels with specific 

events. Because of these limitations, hormone levels are not typically collected and 

used in trying to classify mental workload in certain multi-task environments such 

as flight. 

2.6.4 Ocular Measures. Measures of eye blinks have been collected in sim- 

ulations as well as in actual flight environments [9,13,31,32]. In general, it has been 

found that as visual demands increase both blink rate and blink duration decrease. 

Blink duration is defined as the time spent blinking. The subject can process more 

information and will not miss information if the blinks are less frequent and very 

fast. There are a few problems that can arise when measuring eye blinks. First of all, 

eye blink measures may be very good measures of mental workload when examining 

tasks that involve processing visual information. They may not be as informative 

when the tasks involve cognitive workload [9]. Curious results have also been re- 

ported when examining flight versus ground segments of a task [9,32]. It was shown 

that there were higher blink rates during the flight segments. This was initially 

thought to contradict the theory that as cognitive workload increases blink rate de- 

creases. However, this apparent contradiction is thought to be due to the increased 

visual information that is inherent with flight. When blink rates were examined in 

the flight only, the trend of decreased blink rate during increased workload levels did 

indeed hold [9]. Another result that has been observed in studies is the sensitivity of 

blink rate versus blink duration in high workload environments. It looks as though 

blink duration is more dependent on the amount of visual information that is being 

presented to the subject, regardless of the actual cognitive workload that is being 
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presented [32].   Blink rate may actually be more sensitive to the actual cognitive 

workload level than blink rate [9]. 

2.6.5 Brain Activity Measures. Perhaps one of the most significant psy- 

chophysiological features is the brain electrical activity. The brain has constant 

electrical signals running across it. By placing electrodes on the scalp, measures 

of these electric impulses can be recorded. A continuous plot of these impulses can 

be created. This plot of microvolt changes over time is known as an electroen- 

cephalograph (EEG). The EEG has been used in multiple studies in the multi-task 

environment involving mental workload levels [9,11,13,14,30,32]. "EEG normally 

includes a composite of waveforms that demonstrate a frequency range of 1 to 40 

Hz [9]." When used for evaluating mental workload status, frequency ranges of 1 to 

40 Hz are typically considered. According to Jared Lambert, AFRL/HE, frequen- 

cies below 1 Hz are usually associated with eye blinks and frequencies above 40 Hz 

are attributed to muscle movement. As mentioned before the EEG is a continuous 

composite of waveforms. All of the frequencies above are squashed into one wave. 

The range of 1 - 40 Hz can be separated into 5 power bands of frequencies that can 

be measured via EEG.  Table 2.1 gives a breakdown of these distinct power bands. 

Table 2.1     Frequency Band Designations. 
Band Symbol Frequency 
Delta A 1-3 Hz 
Theta e 4-7 Hz 
Alpha a 8-12 Hz 
Beta ß 13-30 Hz 

UltraBeta fiß 31-42 Hz 

Table 2.1 represents the power at each frequency typically included in analy- 

sis. However, the raw EEG must be transformed from its initial composite waveform 

to these individual bands. When considering EEG measures, the continuous EEG 

measure is typically broken down into segments such that the average amplitude of 

power for each given band can be determined [12,15].  Fourier transforms are used for 
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conversion of sinusoidal, time-domain waveforms into frequency-domain waveforms. 

Any continuous wave can be written as a linear combination of sinusoidal waves, 

therefore our composite wave, time series EEG can be described in terms of the 

frequency components of the signal [12,15]. The classical mathematical approach 

to Fourier analysis can be very frustrating for all but the simplest waveforms. The 

calculations can get very intensive. Interpolation of 2m data points using classical 

methods requires (2m)2 multiplications and (2m)2 additions. If the waveform con- 

tains thousands of data points, the calculations can run into the millions. As an 

alternative, complex waveforms can be sampled and digitized with a waveform dig- 

itizer. When the waves are digitized, FFTs (Fast-Fourier Transforms) can be used 

to evaluate the wave. In 1965, J.W. Cooley and J.W. Tukey described the FFT 

algorithm. Compared to the brute force classical method of calculation, the FFT 

requires on the order of (m log2 m) multiplications and (m log2 m) additions. If the 

waveform contains thousands of points, the calculations will stay in the thousands. 

Note that m is a power of 2 (m = 2k). Alternative methods for Fourier analysis are 

done on numbers of data points that are not a power of 2. This is a considerable 

improvement over the millions of calculations done with the classical method of cal- 

culation [7]. Fourier transforms of the EEG data provide the power bands that are 

typically used in the analysis of mental workload in multi-task environments. 

Generally, the alpha (a) and theta (9) bands have been most useful in the 

measuring of mental workload. Alpha band activity has been found to decrease 

with increased cognitive demands while theta band activity tends to increase during 

increased cognitive demands [9,13]. On the other hand, during low workload levels, 

alpha band activity is shown to increase while both theta and beta (ß) band activity 

decrease [9]. 

2.6.6 Summary of Psychophysiological Features. Overall it has been shown 

that the use of multiple measures of psychophysiological features give a greater in- 

sight into the mental workload level of a subject over the use of separate mea- 
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sures [9,29,31]. Among the psychophysiological features that have been discussed, 

cardiac measures, respiratory measures, ocular measures, and brain activity measures 

seem to be the most readily available and least intrusive for measuring workload level 

in multi-task environments. Once again, the hormone measure may not be practical 

in the multi-task arena. Because of the different stresses created on a subject in 

multi- task environments, the use of multiple measures should give a more complete 

picture of the actual cognitive load of the subject. One important fact remains 

to be discussed when considering psychophysiological features for study. This is 

the difference in laboratory studies and actual studies. It has been discovered that 

while laboratory data provides useful observations and theories, it is better to collect 

real world data to analyze real world scenarios. Comparisons between laboratory 

data and real world data has shown that while they produce similar effects on some 

physiological variables, they can produce different effects on others [29]. These differ- 

ences support the notion to use real world measures to analyze real world scenarios 

rather than trying to extrapolate real world answers from the laboratory data [28]. 

This difference in laboratory data and actual real world data also supports the no- 

tions that several physiological measures should be used when evaluating complex 

situations [29]. 
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III.   Data Collection and Preprocessing 

This chapter discusses the experiment and data collected by AFRL/FPL. The first 

section explains the conditions and purpose of the experiment. The second section 

discusses the raw physiological features collected during the experiment. This chap- 

ter also examens the preprocessing that was required on all the EEG, heart, eye and 

respiration data. The fourth section summarizes what the final input data matrix 

looks like, whether it be the input matrix into a neural network or a statistical clas- 

sifier. Finally, an investigation is presented that details some of the properties of 

the data, to include the input feature correlations and the potential for outliers. 

3.1    The Experiment 

The experiment conducted by AFRL/HE was an actual flight experiment. The 

Wright-Patterson Aero Club had ten volunteers step forward as subjects for the ex- 

periment. The research lab created a predetermined flight route containing varying 

workload levels. Each of the ten volunteers flew the same flight route two times, on 

different days. The flight segment itself was divided into 22 two-minute segments. 

A technician from AFRL flew with the pilots, monitoring data collection and tran- 

sitions between workload levels. In addition to the pilot and the lab technician, a 

copilot was present for safety reasons, but was not part of the experiment. Each 

two-minute segment within the flight has a certain workload level associated with it. 

Appendix A lists the flight segments and their associated workload levels. 

The flight route was designed to contain three distinct workload levels: low, 

medium and high. The lab determined what difficulty level to associate with each 

flight segment. In addition to receiving the lab's input on the workload level as- 

sociated with each flight segment, each pilot's subjective measure of the workload 

level associated with each flight segment was also provided. Appendix B shows the 

pilot's subjective measures of workload level associated with each flight segment. 
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There were some discrepancies between workload levels according to the lab versus 

those according to the pilot. For example, the lab determined the VFR touch-and- 

go portion of the flight to be a high workload level, and the IFR airwork portion 

of the flight as a medium workload level. However, the pilots rated both the IFR 

airwork and VFR touch-and-go segments as high workload. A compromise had to 

be reached between what the lab thought was hard and what the pilots thought was 

hard. The touch-and-go segment of the flight was thought to be hard by the pilots 

and by the lab. Using this point as the minimum high workload level for all high 

workload levels, a line was drawn through the VFR touch-and-go segment across 

the page, as seen in Figure B.l in Appendix B.. For the purposes of this research, 

all flight segments below that line are considered medium and low workload levels. 

Everything above the line is considered a high workload level. 

Transitions between flight segments raise another concern about measuring 

workload levels. Transitions between workload levels are not instantaneous. The 

pilot doesn't go from cruise to a touch-and-go instantaneously. It is possible that 

the actual workload level will transition in the middle of a flight segment. What 

this means is, the pilot could be flying in the cruise segment, and the physiological 

readings will begin to register a change in mental workload level before he actually 

gets to the touch-and-go segment. For the purposes of this thesis effort, all tran- 

sitions are considered to be instantaneous, although it is realized that classification 

error could be caused by the uncertainty of the transitions between flight segments. 

3.2   Data Collected 

Several different physiological features were collected for this experiment in- 

cluding electroencephalography (EEG) electrode readings. The pilot was required 

to wear a special cap fitted with 29 electrodes. Figure 3.1 shows a diagram of the 

head fitted with the numerous electrodes. 
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Figure 3.1     Electrode Placement 

Each electrode has a specific name associated with it. The location and naming 

of the electrode sites are based on the International 10-20 system [14]. The EEG 

locations are labeled with a letter (sometimes two) followed by a number. The letter 

designates the brain region, while the associated number indicates the placement of 

the electrode on the left or right side of the brain. If the number is even, the electrode 

is on the right side of the brain; odd numbers indicate the left side. The bigger the 

number, odd or even, the further away the electrode is from the center of the brain, 

center meaning font nose to back.. The middle has no numerical designator. The 

letter " Z" indicates the middle of the brain. The following table lists the meaning 

of the letters associated with each electrode. 

)le 3.1 EEG Identifi 
Letter Location 

C Central 
F Frontal 
0 Occipital 
P Parietal 
T Temporal 
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After the pilot was fitted with the electrode cap, raw EEG data was collected and 

sent through a program called Manscan 4.0. This program filters out undesirable 

artifacts from the signal.   Examples of undesirable artifacts include eye movement 

and muscle movements caused by the pilot's head moving around during flight. 

In addition to the raw EEG data collected, eye, respiration, and heart data was 

also collected and assembled in electronic files. These files report the elapsed time in 

milliseconds between event. An event is a heart beat, eye blink, or a breath taken. 

In addition to the elapsed time between events, other factors are collected with each 

physiological feature. The respiration data also includes minimum and maximum 

amplitudes associated with each breath, the eye data includes the amplitude and the 

duration of each eye blink, and the heart data only includes the time between heart 

beats in milliseconds. 

3.3   EEG Processing 

The goal is to create one set of features that can be used as inputs into ei- 

ther a statistical classifier or an artificial neural network. Before this could be 

accomplished, a certain amount of preprocessing had to be done to make the code 

"usable" 

Recall that there are 29 electrode sites. The data file provided was raw EEG 

data collected in two minute segments. An example of the raw EEG data is shown 

in Figure 3.2. 

In the raw data file, two extraneous readings are also collected. These read- 

ings are Horizontal Electro-oculography (HEOG) and Vertical Electro-oculography 

(VEOG). HEOG and VEOG are readings on horizontal and vertical eye move- 

ments. These readings were collected in order to take out artifacts in the data due 

to eye movement. Since these are not EEG readings, they are simply deleted from 

consideration. 
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RAW EEG DATA 
Approach Flight Segment, Electrode T8 
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Figure 3.2     Raw EEG Signal from Electrode T8 during the Approach Flight Seg- 
ment 

The raw data that is collected has a time dependency associated with it. In 

order to use the EEG data as features into a classifier, time dependency needs to be 

removed from the data. This can be accomplished by passing the raw data through 

a Fast Fourier Transform (FFT). The FFT takes the data from a time domain 

to a frequency domain. Transforming into a frequency based domain will enable 

estimates of power to be obtained. An FFT was performed on each EEG signal 

for every one second of raw data. According to the Nyquist sampling theorem, 

estimates for power can only be made for frequencies up to /s/2, where fs is the 

sampling frequency [16]. The data provided was collected at a sampling frequency 

of 256 Hz. Thus, according to the Nyquist theorem, estimates for power can be 

made up to 128 Hz. Matlab code was written to perform 1 second FFTs on all raw 

EEG data. This produces power estimates from 1 to 128 Hz. An example of power 

estimates by frequency band over a one second window is shown in Figure 3.3, which 
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is known as a periodogram. Recall that the frequency bands shown on the diagram 

were listed in the previous chapter. 

Frequency Band 
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Figure 3.3     FFT at One Electrode for One Second 

For the purposes of this research, frequencies from 1 - 40 Hz will be used. 

The x - axis of Figure 3.3 is frequency in Hz. The vertical lines separate each 

frequency band, as discussed in the last chapter. The y-axis of the figure represents 

power, expressed in fiV2 (microvolts2). The power estimates were calculated in the 

following manner: an FFT was performed on the raw EEG data over one second 

intervals. Then the absolute value of the transformed data was squared, giving a 

power estimate for that one second of data. The final power estimates that were 

kept were from 1 - 128 Hz, because of the Nyquist theorem. 

The periodogram provides a visual picture of the estimate of the power con- 

tained in the signal. As with any estimation technique, there is a certain amount 

of error associated with the estimate obtained. The periodogram estimate of power 

(either looking at it visually or mathematically) has a large amount of variance as- 
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sociated with it. Unfortunately, the amount of variance does not decrease as the 

number of sample sizes increase [16]. In other words, if the FFT of the signal 

is taken more frequently, say once every half a second, the variance of the power 

estimate is not reduced. The variance in the power estimates can be reduced by 

breaking the signal into sections (take one second FFTs) and averaging the power 

in these separate sections. The more sections that are averaged, the lower the vari- 

ance in the resulting power estimate [16]. The length of the signal (the frequency 

at which it was sampled) limits the number of separate sections the signal can be 

divided into. As a result, overlapping signals can be added to increase the number 

of sections. The overlapping sections are statistically dependent, resulting in some 

higher variance. The number of sections settled on depends on how much variance 

the researcher is comfortable with. 

In order to decrease the amount of variance in the power estimate, it was 

decided that the signal would be broken into one-second sections. Then the power 

estimate obtained would be averaged over ten-second windows. In order to obtain 

some amount of further variance reduction, overlapping windows were also included 

in the analysis. Recall that although these sections are statistically dependent, 

resulting in higher variance, the more sections the signal is separated into, the lower 

the variance. Ten seconds of data was averaged, then five seconds were skipped 

over and the next ten seconds were averaged. This is shown graphically Figure 3.4. 

Thus, in this research, each two minute window will initially have 120 one-second 

power estimates. These power estimates are averaged with 12 non-overlapping 10- 

second windows and 11 overlapping 10 second windows. Therefore, the net result is 

a total of 23 exemplars of averaged power for each two-minute segment; for a total 

flight this comes to 506 exemplars (22 two-minute segments). 

After acquiring the total power for one second of data, the power for each of the 

five frequency bands must be collected. In essence, a filter is created to remove only 

the power in the frequency bands that are relevant to this research effort.  The power 
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Figure 3.4     Power Estimate Windows 

estimates for each frequency band are obtained just by summing all power estimates 

within the given range of frequencies for that particular band. For example, if a 

power estimate is collected for the delta band, all power readings given by the FFT 

between 1 and 4 Hz are summed together giving a total power reading for the delta 

band for that one second of data. The power is then averaged over 10 seconds with 

the overlapping windows figured in. The final bit of processing is to transform the 

data using the logio of the averaged power for each 10-second window. An example 

of a fully processed two-minute block of data is shown in Figure 3.5. 

The y-axis is logio of average power in microvolts2 (/W2), for each bandwidth, 

and the x-axis represents seconds. After fully preprocessing the raw EEG data, the 

end result is five bandwidths at 29 electrode locations resulting in 145 different EEG 

variables. These variables are labeled according to electrode and bandwidth. For 

example, the first variable would be electrode C3, delta bandwidth. A summary 

of the steps needed to preprocess the raw EEG data is shown in the flow diagram, 

Figure 3.6. 
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Figure 3.5     Processed EEG Signal Containing 5 Seconds of Overlap 

3.4    Physiological Feature Processing 

This section discusses the preprocessing performed on the heart eye and res- 

piration files, resulting in six distinct additional features used for classification of 

mental workload level. 

3.4.I Cardiac Measures. The raw heart files contain heartbeat intervals. 

This is the time (in milliseconds) in between heartbeats for each two minute segment. 

Preprocessing yields two distinct physiological heart features: heart rate (in beats 

per minute) and heart rate variability. Recall that heart rate variability can be 

thought of as how often the heart beats. In order to create exemplars with all 

physiological features considered over the same time period, the heart features are 

calculated over the same 10 second windows as the raw EEG data. Matlab code was 

written to create 23 overlapping 10 second windows for average heart rate and heart 

rate variability. Recall that processing the raw EEG revealed that 23 overlapping 

windows are created per two minute flight segment. 
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Raw EEG Data 
AFRL/HE provided the raw data file consisting of 29 electrode 
channels sampled at 256 Hz for each two-minute segment of 
flight data. 

(29 electrodes x 30,720 observations 
= 890,880 observations per two minute segments) 

Using all 29 electrodes, take FFT every second and gather an 
estimate of power by squaring the absolute value of the FFT 
and collecting only the real part ofthat data.  Because of the 
nyquist theorem, this power estimates for I -128 Hz for the 29 
electrodes. 

For every second, compute the total power observed for each 
frequency band (A,8,a,ß,uß) by summing up the one-second 
power estimates for each frequency band. 

(29 electrodes x 5 frequency bands x 120 seconds 
= 17,400 power estimates for the frequency bands) 

Compute the 10 seconds averages of power for each frequency 
band, including 5 seconds of overlap. Finally, take the login of 
the average power 

(29 electrodes x 5 frequency bands x 23 exemplars 
= 3335 total exemplars in one two-minute segment) 

Figure 3.6     Raw EEG Data Processing 

First, we consider the variable, average heart rate. Matlab code identifies all 

observed beats within a given 10 second window and calculates the average interval 

between beats over that 10 second window. This interval is then transformed into 

beats per minute by inverting the average time between beats (in milliseconds) and 

multiplying by 60,000 milliseconds (the number of milliseconds per minute). The 

final output is average heart rate in each 10 second window. A graphic example 

of the average heart rate for a single two minute segment is shown in Figure 3.7. 

Recall that each point (connected by the line) is an averaged heart rate over a 10 

second window. 

The second heart variable, heart rate variability, is a little more difficult to 

calculate. A first order polynomial is fit using ordinary least squares to all time 

intervals between heart beats in any given 10 second window. Then the slope of 

this polynomial is used to estimate the change in heart rate. The magnitude of this 

change can now be used as an estimate of heart rate variability during any 10 second 
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Figure 3.7     Heart Rate 

window. The absolute value of the slope of the polynomial serves as the measure of 

heart rate variability [14]. A graphic example of processed heart rate variability is 

shown in Figure 3.8. 
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Figure 3.8     Heart Rate Variability 

A summary of the steps taken to process the raw heart data provided can be 

seen in Figure 3.9. 
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Heart Rate Data 

AFRL/HE provided the raw data file consisting of the time 
between beats, in milliseconds, for each two-minute flight 

segment. 

Calculate Beats per Minute 
Calculate the average time between beats (in milliseconds) for 

each 10 second window. Next, invert this average time 
between beats and multiply by 60,000 milliseconds per minute 

to obtain beats per minute (bpm). 

Calculate Heart Rate Variability 
Fit a first order polynomial using ordinary least squares to the 

observed inter-beat intervals for each 10 second window. Take 
the absolute value ofthe slope of the polynomial. The 

magnitude ofthe slope is used as a measure of heart rate 
variability. 

Figure 3.9     Raw Heart Data Processing 

3.4-2 Ocular Measures. The raw eye data files provided by AFRL/FPL 

contained three distinct measures of eye movement: blink interval (time in millisec- 

onds between blinks), blink amplitude, and blink duration. Preprocessing yields 

two physiological ocular features: the number of blinks per time interval, and the 

average time between blinks. Matlab code was written to preprocess the ocular 

data over the 10 second windows with five seconds of overlap to remain consistent 

with the EEG data. The number of blinks is calculated by simply identifying and 

counting the number of blinks in each 10 second window. A graphic example of the 

number of blinks per 10 second window for one two-minute segment can be seen in 

Figure 3.10. 

The next feature calculated is the average time between blinks. This calcu- 

lation can be a complicated one. Three scenarios are possible. First, if two or 

more blinks occur within a 10 second window, the average time between blinks is 

3-12 



Approach Segment 

5.5 

\ 
/   \ 
/      \ 

/ \ 

/ \ 

\      / / w\. 
I \ I \ I 

40 60 80 
Tim e in S econds 

Figure 3.10     Observed Eye Blinks 
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Figure 3.11     Average Time Between Blinks 
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calculated. Second, if only one blink occurs in a given 10 second window, the prior 

blink is found and the time between these two blinks is used. Finally, if no blinks 

occur in a 10 second window the time of the last blink is subtracted from the time 

at the end of the current 10 second window. In other words, if no blinks occurred, 

the time recorded is the time the subject has gone without blinking [14]. A graphic 

example of the inter-blink intervals(IBLIs) is shown in Figure 3.11. Figure 3.12 

summarizes the preprocessing done on the raw eye data files. 

Ocular Data 
AFRL/HE provided the raw data file consisting of time between 
blinks (in milliseconds), amplitude, and duration of each blink, 

for each two minute flight segment 

Calculate Numberof Blinks 
Count the number of blinks in each 10 second window. 

Calculate Average Time Between Blinks 
For each 10 second window, calculate the average time between 

blinks in the interval. If one blink occurred, use the time 
between the last blink and the one blink in the interval. If no 

blinks occurred, subtract the time of the last blink from the end 
of the current window. 

Figure 3.12     Ocular Data Processing 

3.4.3 Respiration Measures. Two respiration features are processed out 

of the raw respiration file. The raw respiration file contains the time between 

breaths (in milliseconds), the minimum breath amplitude and the maximum breath 

amplitude. The two respiration features obtained are: the number of breaths per 

unit time, and a measure of the average time between breaths. 

These features are processed exactly the same way as the ocular data. The 

average number of breaths is simply the number of breaths taken per 10 second 
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interval. The average time between breaths follows the same three scenarios as 

the eye-blink data. If there are two or more breaths per 10 second window, the 

average time between the breaths is recorded. If there is only one breath taken 

in the current window, the time between the current breath and the last breath 

is recorded. Finally, if there are no breaths are recorded in the current interval, 

the time of the last breath is subtracted from the end of the current 10 second 

window. Like the time between blinks, this represents the time the subject has gone 

without breathing. Figure 3.13 is a representative plot of the number of breaths 

per 10 second interval over a two minute flight segment. A plot of the average time 

between breaths over a two minute segment is shown in Figure 3.14. Figure 3.15 is 

a flow chart containing the procedures for processing the raw respiration data. 
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Figure 3.13     Number of Breaths 

3.5   Summary of Processed Features 

After processing the raw data, a total of 151 psychophysiological features are 

formed.    These features are used to discriminate between mental workload levels. 
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Figure 3.14    Average Time Between Breaths 

Respiration Data 
AFRL/HE provided the raw data file consisting of time between 

breaths (in milliseconds), minimum breath amplitude and 
maximum breath amplitude, for each two minute flight segment 

Calculate Number of Breaths 
Count the number of breaths in each 10 second window. 

Calculate Average Time Between Breaths 
For each 10 second window, calculate the average time between 

breaths in the interval. If one breath occurred, use the time 
between the last breath and the one breath in the interval. If no 
breaths occurred, subtract the time of the last breath from the 

end of the current window. 

Figure 3.15     Respiration Data Preprocessing 
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In addition to the 151 features present, a uniform(0,l) random variable is added. 

This random variable represents random noise used in the signal-to-noise screening 

method. Recall that a ratio will be used to determine variable contribution by 

comparing the weights of the input variable to the weights of the noise variable. 

The smaller the ratio, the less important that input is to the overall classification of 

mental workload level. Also included as a variable is the actual workload level of 

the current flight segment. This variable is labeled as 1.0 if the feature belongs to 

the low/medium mental workload group and labeled as 2.0 if the feature belongs to 

the high mental workload group. This workload level variable is in the first column 

simply because the code was written to recognize the first column as the column 

that contains the identifier for the group the exemplar is associated with. Recall 

that this is required for artificial neural networks to perform the backpropagation 

learning method, and is also required for the discriminant analysis to compute the 

error rate.   A truncated version of the final input matrix is shown in Table 3.2. 

Table 3.2     Truncated Feature Matrix 
Feature Number Name Description Units 

1 group 1 if Group 1 / 2 if Group 2 none 
2 C3d Power in A Band at C3 logioW 
3 C3t Power in 9 Band at C3 logioOiV) 
4 C3a Power in a Band at C3 logio^V51) 
5 C3b Power in ß Band at C3 log^/iV) 
6 C3ub Power in (iß Band at C3 l°g10(MV2) 
7 C4d Power in A Band at C4 logio^V51) 
8 C4t Power in 0 Band at C4 logio^V*) 
9 C4a Power in a Band at C4 logiofaV) 
10 C4b Power in ß Band at C4 logioOiV) 
11 C4ub Power in (iß Band at C4 log10(^) 

146 hr Heart Rate bpm 
147 hrv Heart Rate Variability A sec per 10-sec 
148 blnks Number of Eye-Blinks # blinks per 10-sec 
149 ibli Inter-blink Interval seconds 
150 brths Number of Breaths # breaths per 10-sec 
151 ibri Inter-breath Interval seconds 
152 noise Random Uniform(0,l) none 
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3.6   Initial Data Inspection 

The statistical program, JMP, was used to investigate the properties inherent 

in the input data, specifically, correlations between input variables. JMP was also 

used to find potential outliers in the input data set. A sample of the correlations 

between a few input variables is shown in Table 3.3. 

Table 3.3     Sample Correlation Matrix 
Correlations 

Variable C3d C4d C5d C6d CZd 
C3d 1 0.4439 0.4506 0.4324 0.4308 
C4d 0.4439 1 0.9909 0.9598 0.9691 
C5d 0.4506 0.9909 1 0.9744 0.9757 
C6d 0.4324 0.9598 0.9744 1 0.9966 
CZd 0.4308 0.9691 0.9757 0.9966 1 

The correlation between two variables is a measure of the linear dependence 

between the two variables. Positive correlation implies that X\ increases as X2 

increases; negative correlation indicates X\ decreases as X2 increases. If the cor- 

relation is zero, there is no linear dependence between X\ and X2 [25]. Table 3.3 

gives some insight into the correlations between a few of the variables in the input 

feature set. The bold values indicate the variables that have a high correlation. 

As the table shows, there is very high correlation between many of the variables. 

Investigation into the entire EEG feature set reveals that there is high correlation 

between almost all of the input variables. This information could be useful as an 

insight into how many features may eventually be kept as classification features. 

An investigation into the question of potential outliers was also conducted. 

The Mahalanobis distance was calculated for each observation. The formula for 

computing the Mahalanobis distance is as follows: 

Isi  — \%i       •Eave)^      \~i       ^ave) (3.1) 
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where 

Xi   =   the vector of values at observation i 

%ave   —   the sample mean 

S   =   the sample covariance matrix 

The Mahalanobis distances are used because they explicitly account for correlations 

between variables. Figure 3.16 is a plot of the Mahalanobis distances for all obser- 

vations. Even though there looks to be one outlier in the data set, the data point 

is close enough to the line that it is not considered a problem. 
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Figure 3.16     Plot of Mahalanobis Distances for all Input Features 

3.7   Summary of Findings 

This chapter stepped through the preprocessing steps that are needed for, not 

only the raw EEG data, but also the heart, eye and respiration data. After initial 

inspection, it looks as though the physiological features indeed react to increased 

workload level as discussed in the last chapter. Specifically, heart rate increases 

with increased workload level; eye blinks decrease with increased workload level; the 

number of breaths tend to increase as mental workload level increases.    The next 

3-19 



chapter investigations interbreath, interblink, and interbeat intervals to determine 

how important these features are in classifying mental workload level. Chapter 

4 also presents a methodology to determine which electrodes at which frequency 

levels are important for classifying mental workload levels. Finally we look at the 

methodology used in classifying the observations of two pilots over the two days of 

flight. 
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IV.   Methodology and Results for Single Pilot Workload Classification 

This chapter investigates the methodologies used to classify mental workload. These 

methodologies use the psychophysiological features processed as discussed in the 

previous chapter. In addition to discussing the initial modeling efforts using dis- 

criminant analysis and MLP neural networks, we explore different variable selection 

efforts. Screening efforts using both discriminant methods and the signal-to-noise 

ratio (SNR) screening method introduced in Chapter 2 are shown. Finally a factor 

analysis is conducted on the data set to gain further insight on the variables chosen. 

4-1    Initial Modeling Efforts 

After preprocessing the raw data, initial efforts are made to determine how well 

mental workload levels can be predicted. This initial investigation is accomplished 

using the data for pilot one on day one. This particular data set was used as it was 

the first available. The following sections examine the methodologies and results 

of classification on mental workload using a two class discriminant model and a two 

class MLP neural network. 

4.I.I Quadratic Discriminant Model. A description of multivariate dis- 

criminant analysis was given in Chapter 2. Quadratic discriminant scores are used 

to classify a new exemplar as belonging to one of two groups. In our case, group 

one consists of the low/medium workload segments and group two consists of the 

high workload segments. Creating the model is a fairly simple process. The first 

step is to split the data set into a training set and a testing set. This training 

set is necessary to build the discriminant model. The second step is to gather the 

necessary components to derive a generic discriminant score for each group.   Recall 
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that the equation for the discriminant scores is, 

d?(K) = —lnlEil - \(X -^)TE-l(X - fr) + InPx (4.1) 

where 

df = the quadratic discrimiant score for group i 

Ej = the covariance structure for group % 

X_ = the new exemplar 

fii = the estimation of mean for group i 

Pi = the prior probability of belonging to group i 

The covariance structures (Ej), the estimation of the mean (/T^), and the posterior 

probabilities (Pi), for each group i, are determined using the training data set. These 

are the necessary components for forming the generic discriminant scores for each 

group. The final step is to determine which group the exemplar belongs to based 

on the discriminant scores or a comparison of the posterior probabilities. 

A discriminant score for each exemplar in the testing data set is obtained for 

each group using the components obtained from the training set. After all of the 

discriminant scores have been calculated for each exemplar in the testing data set, 

the scores are converted to probabilities that will be used for classification of that 

exemplar into a certain group. This probability is called the posterior probability, 

and is found using the equation below. 

i       expf-^X-^E-1^-^.)] 
P3(X) = ^^      _ (4-2) 

5^ferexp[^(x-^rl(x-^)] 
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where 

Pj(X) = the posterior probability of class membership 

K = the number of classes 

J = the population number (1 or 2) 

X — the new exemplar for classification 

Ej = the covariance structure for group j 

/L = the estimation of mean for group j 

7Tj = the event of belonging to population j 

For the two group case i = j = K = 1,2. After the probabilities are calculated 

for each exemplar, the exemplar is ready to be classified into group 1 or group 2. 

For each exemplar, the posterior probabilities of belonging to group 1 or group 2 

are compared {pi(X) compared to P2p0)- If Pi(X) > p2{X), the exemplar is 

classified as belonging to group 1. Similarly, ii p2{X) > p\{X) the exemplar is 

classified as belonging to group 2. All exemplars in the testing data set are then 

classified as group 1 or group 2. A classification accuracy (CA) can be obtained 

after all exemplars have been classified. The CA is simply the number of exemplars 

belonging to group 1 classified as group 1 plus the number of exemplars belonging to 

group 2 classified as group 2 all divided by the total number of exemplars presented 

from the test data set. The following equation shows the calculation of classification 

accuracy. 

CA = ^£+^2 (4.3) 
n 
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where 

CA 

Nw 

N2c 

n   = 

classification accuracy 

the number in group 1 classified as group 1 

the number in group 2 classified as group 2 

the total number of exemplars in test data set 

As mentioned before, the data set from the first pilot on his first day of flight 

was used to test the quadratic discriminant model. All 151 variables were presented 

to quadratic discriminant code written in Matlab. When an attempt was made to 

determine how well the classifier performed, we quickly ran into a problem. When 

attempting to calculate the discriminant scores, we got a warning that the covariance 

matrices were very close to singular, meaning the determinant was very close to zero 

(on the order of 10-19). This minuscule value created problems when classifying 

the exemplars. The quadratic classifier calculates the log of the determinant of 

the covariance matrix in the formation of the classifier. If the matrix is close to 

singular, the determinant is close to zero and we run into the problem of taking the 

log of zero. The classification accuracy from this run was calculated at 59%. The 

confusion matrix given in Figure 4.1 shows a real problem.        As we can see the 
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Figure 4.1     CA of 151 variables for Quadratic Discriminant Model 

classification of exemplars belonging to group 1 is 100% and the classification of the 

exemplars belonging to group 2 is 0%.   This is caused by the near singularity of the 
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covariance matrix. This problem is thought to be due to the computing accuracy 

of Matlab. It is simply not accurate enough to calculate the determinant of the 

covariance matrices for a data set with so many highly correlated features. It will 

be shown later that when the number of features used as inputs is reduced, the 

quadratic discriminant model works quite well. 

4.1.2 Linear Discriminant Model. In addition to the quadratic discrimi- 

nant model, a linear discriminant model can also be used to classify mental workload 

level. Recall from Chapter 2 that the equation for the linear discriminant score can 

be calculated as follows: 

d\(X)   =   tfS-'X + w, (4.4) 

Wi   =   -i/Z^S-^ + lnfPO 

where 

d[ = the linear discriminant score 

/Ij = the estimator of mean for group i 

S = the pooled covariance matrix 

P{ = the prior probability of belonging to group i 

As with the quadratic classification method, the data set is split up into a training 

and test set. The training set is used to form the estimation of the means for 

each group (£), the posterior probabilities (Pl) and to form the pooled covariance 

matrix , Equation 2.23. After calculating these parameters, new exemplars from 

the test set are presented to the linear discriminant model {d\) for classification. 

As before, a score is computed for each exemplar with respect to the two workload 

groups. Once all exemplars have linear discriminant scores for both groups, the 

scores within the groups are converted to probabilities as shown in Equation 4.2. 
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Once again, the greatest probability for a given exemplar indicates the group the 

exemplar is classified into. 

As mentioned before, the data set from the first pilot on his first day of flight 

was used to test the linear discriminant model. All 151 variables (including the 

exemplar's group) were presented to linear discriminant code written in Matlab. 

The data was split 60% for training and 40% for testing the linear discriminant 

model formed from the training set. Right away we ran into a problem trying to 

use the linear discriminant function. Like the quadratic function, the covariance 

matrix was very close to being singular (on the order of 10~20). This caused enough 

of a problem that the linear discriminant model was not able to finish running and 

get a final classification accuracy or confusion matrix. Later it is shown the linear 

discriminant model does work when the number of input features are reduced. 

4-1.3 MLP Neural Network Models. All neural network modeling was 

performed using Matlab version 5.3 with the Neural Network Toolbox version 3 

according to the techniques outlines in Chapter 2. The MLPs formed for this 

research are feedforward MLPs with an input layer, a hidden node layer and an 

output layer. The input layer has one node for every input feature. The output 

layer contains one node for every output group. The only variable in the neural 

network is the number of hidden nodes the network will contain. The activation 

function at the hidden and output nodes is the log-sigmoid activation function. As 

a reminder, this activation function is given by: 

l + e~a 

The log-sigmoid activation function will generate outputs from zero to one, as shown 

in Figure 2.4. All data was also normalized to a mean of zero and standard deviation 

of one. Finally, the first column of each data matrix indicates the group to which 

the exemplar belongs. Again we use 1 for low/medium workload level and 2 for high 
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workload level. Table 4.1 below summarizes the initial MLP architecture. Notice 

there are two output nodes. The network actually computes probabilities of an 

exemplar belonging to a certain class. Thus the output of the network will be in the 

form of percentages between zero and one. In a two class problem, for example,the 

output will be in a vector form. If the output is classified as group 1, the output 

vector will look like [1 0]. If the exemplar is classified as group 2, the output vector 

will look like [0 1]. In actuality, the network will never reach exact determinant 

values of zero or one. The actual output will look something like [0.9 0.1]. The 

network then assigns the exemplar to the group with the highest probability, in this 

example that would be group 1. Technically, only one output node is needed for a 

two class problem, however this code uses two output nodes. 

Table 4.1     Initial MLP Architecture 
Layer Number of Nodes 
Input 151 

Hidden 151 
Output 2 

After the initial architecture is set, the training parameters for the network 

must be determined. For the purposes of just getting the network to run, the 

weights are initialized to values between -0.05 and 0.05. The neural network uses 

a batch mode learning method. This means that all exemplars are presented to 

the neural network. After they all pass through, the error is calculated and all 

weights and bias terms are updated according to that error, as discussed in Chapter 

2. A momentum term is also included to address the problem of getting stuck in 

local minimums on the error surface. The momentum term was set to 0.9. Other 

parameters that need to be set for network training include the maximum number 

of epochs to train (set to 1000), the number of early stopping epochs (set to 50), and 

the number of hidden nodes (initially set to 151). The number of early stopping 

epochs is used to tell the network to pause and look at the sum of square error (SSE) 

for the training and internal validation sets.    As long as the SSE for both sets is 
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Table 4.2     Initial Parameter Settings 
Parameter Setting 

Weights -0.05 to 0.05 
Learning Rate Adaptive 

Momentum 0.9 
Early Stopping Epochs 50 

Maximum Training Epochs 1000 

decreasing, the network will continue training. As soon as the network detects an 

increase in the internal validation SSE while the training SSE decreases, it will stop 

training.   A summary of the parameter settings is shown in Table 4.2. 

After the architecture and parameter settings were selected, we addressed the 

issue of splitting up the data set. The full data set was initially divided using a 

60-40 split. That is 60% for training and 40% for testing. The training data set was 

further divided up 50-50, meaning, 50% for training and 50% for internal validation. 

In Chapter 2 it was mentioned that it is common for the test set to be somewhere 

between 25-30% of the original data set. Since the data sets were not very large, the 

testing set was kept a little larger than normal. Additionally, since the number of 

group 1 and group 2 exemplars were not equal, when the data sets were spilt up into 

training, testing and validation sets, the Matlab code made sure to keep the same 

proportions of group 1 to group 2 equal in all data sets that were formed. 

The MLP neural network worked well compared to the quadratic and linear 

classification efforts. The network stopped training after 113 epochs. Figure 4.2 

shows how the internal validation SSE started to level off after about 60 epochs. 

The network probably trained for a longer time because the early stopping epoch 

check was ordered every 50 epochs. 

Figure 4.2 illustrates the training SSE, internal validation SSE and the test 

SSE. We expected the test SSE to be a little larger than the internal validation SSE 

because that data set is totally independent from the data set that was used to form 

the neural network.    The classification accuracy for the test data set was 81.28%. 
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Figure 4.2     Initial MLP Training 

This is a marked improvement over the 59% obtained with the quadratic discriminant 

model. Figure 4.3 illustrates the confusion matrix for the MLP classification. As 

we can see, the neural network predicted group 1 accurately 85% of the time and 

predicted group 2 accurately 76% of the time. 

4-1-4 Summary of Initial Efforts. Three models were used as classifiers for 

the two group problem. Group 1 is low/medium mental workload level and group 

2 is high mental workload level. All models were presented the full 151 features 

from the data set. At first inspection it seems that the MLP may be the best model 

for our classification efforts. The MLP gave a decent classification accuracy of 81% 

while the quadratic model only output a 59% CA. Recall that the linear classifier 

did not work at all for all 151 features presented.    Even though it seems that the 
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Figure 4.3     Confusion Matrix for Initial MLP 

MLP may be the best model for classification, the reduction of features will present 

better insight into how well the quadratic and linear models perform. 

4-2   Feature Screening Efforts 

As with the initial modeling efforts, both discriminant methods and neural 

networks are used in screening features out of the original 151 included in the data 

set. 

4.2.1 Discriminant Screening Effort. The discriminant feature screening 

method was accomplished using the SAS version 6 program. One of the options 

in SAS is to run a procedure called STEPDISC on the input data file. What this 

procedure does is it takes every input feature and considers each feature for entry 

into an "optimal" feature set. The procedure passes through the entire data set 

and, based on a set of p-values and a criteria that those p-values must meet, selects 

one variable for entry into this "optimal" feature set. It then goes through the 

entire data set again, minus the variable it picked during the first pass, and selects 

another variable for entry. The STEPDISC procedure iterates through this process 

until no p-values meet the specified criteria. This implies that no more variables 

can be entered into the "optimal" feature set. Procedure STEPDISC can be run 

one of three ways, forward, backward and mixed. The method that was used in this 

research effort was the forward method.   An important note of interest is that SAS 
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is very sensitive to how the data set is set up as far as the number of spaces between 

columns, carriage returns and so forth. Because of this sensitivity, the data set for 

entry into the SAS program was passed through a small Fortran code that simply 

took out any extra spaces and carriage returns present in the data. The Fortran 

code is presented in Appendix C. STEPDISC was first performed on the data set 

for the pilot 1 on the first day. The results show a dramatic drop from 151 to 34 

variables.   These variables are listed in Table 4.3. 

Table 4.3     Variables Left After SAS Screening Procedure 
Variable Variable Variable 

C3a CZub P4ub 
C3u F3d P8d 
C4t F3b P9d 
C4a F3t P9ub 

C4ub F4d P04a 
C5b F4a P04b 
C6d F4b PZt 
C6t F8d PZa 
C6a F8t PZub 

C6ub FC2a HR 
czt 02d BLNKS 

BRTHS 

In order to get a good feel of how any particular classifier is doing (linear, 

quadratic or MLP) we need to be fairly confident about the classification accuracy's 

each model is reporting. We want to get a 95% confidence interval about the mean 

using n runs of a particular model. The amount of runs we want to run is driven 

by the central limit theorem (CLT). The CLT theorem states that the probability 

distribution for our mean classification accuracy is approximately normal when the 

sample size is "large". The question is, what exactly is large? It has been shown that 

the distribution for the mean approaches normality as the sample size approaches 

n = 30 or larger [25]. Therefore, if we run each classifier 30 times, we can get a 

95% confidence interval about the mean classification accuracy using the normality 

assumption to calculate the lower and upper bounds of the confidence interval.   The 
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lower and upper bounds for a 95% confidence interval when n = 30 are shown in the 

formula below. 

where 

CI = CA±za/2(-= 
n 

(4.5) 

CA   = 

Za/2 

a 

n   = 

the mean classification accuracy over n runs 

the z-value from normal tables 

the desired confidence level (0.05 for 95% CI) 

the standard deviation of observed classification accuracies 

the number of runs 

All confidence intervals will be calculated in this manner. 

4-2.1.1 Linear and Quadratic Classification. The purpose of screen- 

ing is to be able to accurately predict mental workload level, with a minimal loss 

of classification accuracy. Recall, the classification accuracy was not very good for 

either the linear or quadratic discriminant models with all 151 variables included. 

These models were run again, using the 34 variables SAS printed out as important. 

The original data set was modified to include only the 34 important variables and a 

column identifying to which group the exemplar belongs. As mentioned above, 95% 

confidence intervals were calculated for both the linear and quadratic discriminant 

classifiers.   The results of these classifiers are shown in Table 4.4. 

Table 4.4     Average CA for Pilot 1, Day 1 using SAS variables 
CI Measure 

Upper 95% limit 
Mean 

Lower 95% limit 

Linear 
81.337 

81.4815 
81.62596 

Quadratic 
82.20803 
82.3280 
82.44806 
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As we can see, the linear and quadratic classifiers both performed much better 

on the reduced set of variables then on the original set of variables. Statistically, 

the quadratic classifier performs better, however, the difference is not huge. Either 

method could be used and be considered a fairly good classifier. 

4-2.1.2 MLP Classification. A new MLP was created using the 34 

variables suggested by the SAS STEPDISC procedure. The MLP setup was similar 

to the initial MLP approach. In addition to trying the MLP on 34 variables to 

obtain classification accuracy, the number of hidden nodes also varied. This was 

done to see how classification accuracy is affected by the number of hidden nodes. 

Since there is no set algorithm for the number of hidden nodes in a neural network, 

the number of hidden nodes was determined using Kolmogorov's Theorem, and the 

upperbound method as discussed in Chapter 2. Kolmorogorov's Theorem states 

that the number of required hidden nodes is never more than twice the inputs. This 

reasoning led to 34 and 64 hidden nodes, as shown in Table 4.5. The upper bound 

approach, using Equation 2.1, yields 

H < 0.5P-1 = 0.5 * (152)-1 = 2 14 

M+l 34 + 1 

Recall that P is the number of exemplars in the training set and M is the number of 

input features. Therefore, the third set of hidden nodes will be equal to 2. Table 4.5 

shows 95% confidence intervals on the mean classification accuracy using the MLP 

with these proposed number of hidden nodes. 

Table 4.5     MLP Classification with 34 Input Features and Varying Hidden Nodes 
Number of Hidden Nodes Lower 95% Limit Mean Upper 95% Limit 

2 80.7865 80.9392 81.0917 

34 82.3446 82.5132 82.6817 

68 82.4424 82.5794 82.7162 
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Table 4.5 shows that the networks with 34 and 68 nodes perform about the 

same. Since the confidence intervals for the 34 and 68 hidden nodes overlap, we 

can say that the mean classification accuracy for these two MLPs are statistically 

equal. Notice that the MLP with 2 hidden nodes performs around 81%. Although 

this is lower than the other two, a decision has to be made as to whether or not 

this difference is important enough to warrant the addition of 32 additional hidden 

nodes. Looking at the average classification accuracy, another thing that we notice 

in Table 4.5 is that there really is not too much of a difference between the linear, 

quadratic or MLP classifiers for this set of data. It looks at though no matter which 

one we use, we are going to get a fairly good classification accuracy for the data set. 

4.2.2 Signal-to-Noise Screening Effort. In addition to using a discriminant 

analysis to pick which variables were important to the problem, a SNR screening 

method was also used. The data set consists of the 151 input features, a column 

indicating group membership and an extra column that is a random uniform(0,l) 

noise feature which will be used in the SNR screening method. The algorithm for 

the SNR screening method can be found in Chapter 2. 

Using the SNR screening method is more of an "art form" than the stepwise 

discriminant method that SAS uses. The stepwise discriminant function uses statis- 

tical methods to determine a salient set of input features. This set of input features 

will not change no matter how many times the set is presented to the STEPDISC 

procedure. The SNR screening method works a bit differently. Step 12 in the SNR 

algorithm says to compare the reaction of the test classification error rate to the 

removal of the individual features. In order to determine how many features to keep 

we look at a plot of the classification accuracy versus the number of input features. 

What we look for is a drop off in the classification accuracy. Often times there is 

not a clear spot where this cut off will be drawn. Figure 4.4 shows an example of 

this situation. 
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Figure 4.4     SNR Screening for Pilot 1, Day 1 

Notice that the classification accuracy dips down and then rises up again at 

about 28 features and again at 18 features. We must determine where to draw the 

cutoff for the number of features. In this case the number of features were cut off 

at 14. A vertical line is drawn on Figure 4.4 to indicate this cutoff point. The 

number of features picked using the SNR screening method is a decrease from the 

34 variables the stepwise discriminant method picked. The 14 variables picked by 

the SNR are listed in Table 4.6. 

It is interesting to note that 10 of the 14 variables selected using the SNR 

method match the subset using STEPDISC. We will look at this later. Linear, 

quadratic and MLP classifiers were all used to determine how well the 14 variables 

picked by the SNR screening method classified pilot mental workload. Once again, 

each classifier ran thirty times to obtain a confidence interval about the true classi- 
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Table 4.6     SNR Variables 
Variable Variable 

C6d P9b 
C6a P04a 
C6b P04b 

C6ub PZt 
CZa T8ub 
P4ub HR 
P8d BRTHS 

fication accuracy.   The results for the linear and the quadratic classifiers are shown 

in Table 4.7. 

Table 4.7     Average CA for 
CI Measure 

Upper 95% Limit 
Mean 

Lower 95% Limit 

'Hot 1, Day 1 using SNR variables 
Linear 
73.7605 
73.9418 
74.1231 

Quadratic 
78.2081 
78.3862 
78.5644 

Notice the drop in classification accuracy using the 14 SNR variables compared 

to the 34 used by the SAS discriminant method. In addition to the linear and 

quadratic discriminant classifiers, an MLP was also used with the 14 SNR variables. 

The structure of the neural network is unchanged from the initial setup except for 

the number of input features and hidden nodes. Once again the number of hidden 

nodes varies. The first number of hidden nodes is simply equal to the number of 

input features. The second number of hidden nodes is obtained using the equation 

for an upperbound on hidden nodes (Equation 2.1).   The results are: 

Table 4.8     MLP CA using 14 Input Features with Varying Hidden Nodes 
Number of Hidden Nodes Lower 95% Limit Mean Upper 95% Limit 

8 81.2465 81.4418 81.6371 
14 81.5587 81.7857 82.0127 

Once again, notice that there is no statistical difference in the results based on 

the number of hidden nodes used for classification.   Furthermore, we see that using 
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14 variables, the MLP classified with practically the same accuracy as with the 34 

variables. This is very interesting since the linear and quadratic classifiers did not 

fair as well (Table 4.7). This result suggests that when the number of input features 

was large, the separation of the different groups (high and low) were fairly linear in 

nature, something both the linear and quadratic classifiers could handle. When the 

number of features decreased significantly, the data set begins to twist out of that 

linear state, and the neural network is the only classifier that has a structure that 

allows adaptation to such a data set. 

Recall that the SNR approach found 10 of the 14 variables are contained in the 

set that SAS picked. A question arises from this situation: Why aren't all the SNR 

variables contained in the set that SAS picked? Recall from Chapter 3 that the 

variables have a large amount of correlation between them. This degree of correlation 

suggest the variables have some underlying, unknown factor in common. In order 

to study the inter-relationships of the variables with possible underlying factors, a 

factor analysis was conducted on the variables picked by the stepwise discriminant 

method combined with the variables picked by the SNR screening method. 

4-2.3 Factor Analysis. The idea behind factor analysis is that all variables 

in a data set are explained by some group of underlying factors. This means that 

although the data set from the pilot workload study has 151 variables in reality there 

may be only, say 10, underlying factors. Each variable in the data set has a certain 

amount of variance that is associated with it. Factor analysis assumes that some 

of this variance is due to some common variance (how the variable covaries with 

each factor) and some unique variance that is specific to the individual variable [3]. 

Figure 4.5 gives a pictorial concept of factor analysis. 

Using the FACTOR procedure in SAS, a factor analysis was performed on the 

entire data set. The analysis was done in SAS using the FACTOR procedure. This 

procedure allows manual or automatic selection of the number of factors desired. 
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Figure 4.5     Pictoral View of Factor Analysis 

This automatic selection is based on a minimum eigenvalue criteria. When factor 

analysis is first performed on a data matrix, the output contains a certain number 

of factors. These factors form a space that each variable is contained in. By a 

space we mean that, if there are two factors, each variable is in two-space and has 

an associated (Fi,F2) value associated with it. This can be thought of as (x,y) 

coordinates for a point in Euclidean space. If there are three factors output from 

the factor analysis, each variable is located in three-space and has an associated 

(F!,F2,F3) value associated with it. These values are the factor loadings of each 

variable. We can think of each variable as being projected on one of the main axes 

(i.e., Fi or F2, etc.). This projection indicates how much that variable's variance is 

explained by that underlying factor. So, if the factor loading for a variable is high, 

the variable is highly correlated with some underlying, unknown factor. Conversely, 

if the factor loading is low, the variable is not highly related to that factor. Figure 

4.6 presents a pictorial representation of this concept. This figure only represents 

two-space as an example but can be easily expanded to encompass higher dimensions. 

When factor analysis is first performed, the loadings can be somewhat ambigu- 

ous. It sometimes is not clear which variables are associated with which factors. 

Consider the following example. Factor analysis is performed on three variables with 

the results shown in Table 4.9. Notice that on first inspection it looks like the variable 

Xi is associated with factor 1 and X2 is associated with factor 2. However, when 

we try to determine which factor X3 is explained by, it is difficult to say because the 
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Figure 4.6     Initial Factor Analysis 

Table 4.9     Hypothetical Initial Factor Analysis 
Variable Fi F2 

X: 0.8 0.2 
x2 0.3 0.7 
x3 0.5 0.5 

factor loadings spread it equally across both factors 1 and 2. This result is difficult 

to interpret. In order to be able to interpret the actual loadings, an orthogonal 

rotation of the space formed by the factor axis can be performed. Theoretically, 

variance of a data set and the factor solution of that data set does not change after 

one rigid rotation. A rigid, or orthogonal, rotation maintains a 90° angle between 

all axes. Figure 4.7 shows an orthogonal rotation of the factor axes. Once again 

this example is shown in two-space. The most common orthogonal rotation scheme 

is called the varimax rotation and is an option in the FACTOR procedure in SAS. 

The factor loadings after the varimax rotation are shown in Table 4.10. Now we can 

clearly see that Xi and X2 are both related to some underlying common factor, Fi 

and X3 is related to an independent factor, F2. Now that we have an understanding 

of factor analysis, we can apply the technique on the pilot mental workload data set. 
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Figure 4.7     Orthogonal Rotation of the Factor Axes 

Table 4.10     Factor Loadings After Orthogonal Rotation 
Variable Fi F2 

Xi 0.9 0.1 
x2 0.85 0.15 
x3 0.25 0.75 

4-2.3.1 Factor Analysis on Screened Variables. We use a factor anal- 

ysis on the entire data set to determine how the two variable sets (one from the 

stepwise discriminant analysis and one from the SNR screening method) relate to 

each other. The proposition is that even though the 34 variables from the stepwise 

discriminant method did not contain all of the 14 variables from the SNR screening 

method, the factor analysis will show that there are some unknown common factors 

linking the variables from both methods together. The entire data set, pilot 1 on 

day 1, was presented to the SAS FACTOR procedure using the varimax orthogonal 

rotation option.   The results are presented in Table 4.11. 

The factor analysis on the screened variables implies that there might be 

seven underlying factors driving the selection of the important factors for workload 

classification. This result helps explain why the two screening methods (discriminant 

and SNR) chose different variables in some cases.   Even though different variables 
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Tab e 4.11     Factor Anal} rsis for Pilot 1, Day 1 
Fi F2 F4 F7 F8 F10 F11 

C3a 0.91925 
C3ub 0.92112 
C4t 0.92221 
C4a 0.90737 

C4ub 0.91235 
C5b 0.89917 
C6d 0.92472 
C6t 0.95489 
C6a 0.93599 
C6b 0.93869* 

C6ub 0.94298 
czt 0.94761 
CZa 0.94571* 

CZub 0.91677 
F3d 0.94 08 
F3t 0.94062 
F3b 0.92287 
F4d 0.91212 
F4a 0.9074 
F4b 0.90508 
F8d 0.81474 
F8t 0.81648 

FC2a 0.93462 
02d 0.93349 

P4ub 0.54652 0.68469 
P8d 0.65732 0.56736 
P9d 0.62883 0.62791 
P9b 0.73838* 

P9ub 0.90234 
P04a 0.69661 
P04b 0.72042 
PZt 0.7172 0.61551 
PZa 0.91157 

PZub 0.91504 
T8ub 0.86147* 
HR 0.77191 

BLNKS 0.90791 

BRTHS -0.79302 
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were reported as important, notice that all of these variables lie in similar dimensions. 

This shows that even though the screening efforts give differing results, the same basic 

dimensions that drive the data set are being covered. 

In order to help interpret the factor analysis, we consulted Dr. Glen Wilson, 

head of the research effort at AFRL/HE. First we had to understand the functions 

of the various parts of the brain. Figure 4.8 is a representation of the electrode 

placement used in this experiment.   The nomenclature for the electrodes, as intro- 

^FW) (^FCT) ^PW; x 

I   Fl     I   F3     |   (   FZ    |     (   F4    H  F8 \ v_y vw vw  \^y v_y     x 

f  T7    I   CS    f  C3    V-H   CZ   ¥¥{   C4   M  C6    IT«    W WWW   vW vW ww 

1  01   ^i      '' OZ   j       ' 02 
v...-'   v._y   W.V    •■ 

Figure 4.8     Electrode Placement 

duced in Chapter 3, is: F - frontal, C - central, T - temporal, P - parietal, and 0 - 

occipital. The electrodes are placed in such a manner as to try and capture what 

the brain goes through when mental workload level increases. The frontal area of 

the brain (covered by the electrodes that start with F) is where planning activities 

and higher order cognitive functions occur. It is the decision making area. The 

central (C) part of the brain drives motor functions, such as moving legs, feet, hands, 

etc. The temporal (T) and occipital (0) portions of the brain are associated with 

auditory and visual functions, respectively.   Finally, the parietal (P) portion of the 
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brain is the association area. An example of association would be looking at an 

apple. We look at the apple and the vision is processed in the occipital area. This 

processed signal leaves the occipital area and travels through to the parietal area 

where our brain then tells us that the thing we are looking at is an apple. 

Now that we have an understanding of how each area of the brain works we 

can try to draw conclusions as to what each factor means. Figure 4.9 shows a 

scheme of the electrodes contained in Factor 1. The light shaded electrodes indicate 

variables that were picked by both the SAS discriminant screening procedure and 

the SNR screening procedure. The darker electrodes are variables that were picked 

only by the SAS procedure. Notice that most of the variables are in the central 

and frontal area. The frontal area is associated with planning and the central with 

motor skills. It is possible that the first factor can be explained by planning actions 

during flight and the muscular movements associated with these actions that need to 

be performed. A good summary might be that factor 1 is associated with decision 

making and the actions performed as a result of those decisions. 

A 
TFPI J r?czj Cfnj 

©•© 

©•A    ••©© 
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Figure 4.9     Factor 1 for Pilot 1, Day 1 
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Notice in Table 4.11 that factor 4 is a complete subset of factor 2. Figure 4.10 

illustrates all electrodes in factors 2 and 4. Once again, the darker shades indicate 

the electrodes that are picked by only the SAS stepdiscrim procedure. The lighter 

shaded electrodes indicate the variables that were picked by both the SAS discrimi- 

nant procedure and the SNR screening procedure. Notice that these electrodes are 

generally located in the parietal portion of the brain. Recall that the parietal region 

is the region associated with associations. Therefore, we can conclude that factors 

2 and 4 might be driven by some lower level association process. 

A 
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Figure 4.10     Factors 2 and 4 for Pilot 1, Day 1 

Referring back to Table 4.11, notice that factor 10 contains the electrode P04. 

This may indicate that this factor somehow related to vision and association. The 

other three factors each contain only one peripheral measure each. It is clear to 

see that factor 7 is associated with heart measures, factor 8 is associated with eye 

measures, and factor 11 is associated with respiratory measures. Therefore we have 

possible explanations for each underlying factor. 
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4-3   Summary of Findings 

This chapter has presented classification efforts for pilot mental workload. Ini- 

tial efforts used both discriminant and neural networks, and all 151 variables. Initial 

screenings were conducted on the variables using the SAS discriminant procedure, 

STEPDISC, and the SNR screening feature using an MLP. Our first observation was 

that the discriminant method chose to retain more variables than the SNR screening 

method. Secondly we find that almost all the SNR variables were contained in the 

set chosen by the discriminant procedure. In order to gain some insight on why 

the different methods chose different variables, factor analysis was conducted on the 

data set. The factor analysis revealed that all the variables, from both SAS and 

the SNR screening method, could be explained by 6 or 7 underlying factors. This 

means that even though the methods were choosing different variables, the same 

underlying, driving factors were found. Next we attempted to interpret what these 

underlying factors represent. Using the knowledge of the workings of the brain, each 

factor was coupled with a possible explanation. 

An additional insight was gained from the factor analysis. As mentioned 

before, the factor analysis showed how each variable, whether from the SAS screening 

method or the SNR screening method, lay on one of 7 factors. Additionally, every 

factor contained at least one variable that was in both the SAS and SNR variable 

sets. Once again linear, quadratic and neural classifications models were used to 

get an estimate of the classification accuracies using the variables contained in both 

the SAS and the SNR screening methods. The variables used in this classification 

effort are listed in Table 4.12. 

The following table gives an overall summary of this classification effort as 

well as the previous classification efforts. This gives a clear representation and 

summary of how classification accuracy is affected by the number of input variables. 

The MLP structures all contain the number of hidden nodes equal to the number 
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Table 4.12     Common Variables from SAS and SNR, Pilot 1, Day 1 
Variable Variable 

C6d P04a 
C6a P04b 

C6ub PZt 
P4ub HR 
P8d BLNKS 
P9d 

of input features.   Recall that classification with all 151 variables was not possible 

using the linear classifier. 

Table 4.13 Summary of Analysis for Pilot 1, '. Dayl 
Analysis 95% CI Linear Quadratic MLP 

Initial 
151 vars 

Lower 
N/A N/A 

78.33 
Mean 78.50 
Upper 78.67 

SAS 
34 vars 

Lower 81.34 82.21 82.34 
Mean 81.48 82.33 82.51 
Upper 81.63 82.45 82.68 

SNR 
14 vars 

Lower 73.76 78.21 81.56 
Mean 73.94 78.39 81.79 
Upper 74.12 78.56 82.01 

Factor Analysis 
10 vars 

Lower 74.10 74.57 77.55 
Mean 74.25 74.78 77.79 
Upper 74.40 74.98 78.03 

Factor Analysis 
6 vars 

Lower 69.7956 71.1286 73.9074 
Mean 69.9339 71.2566 74.0741 
Upper 70.0722 71.3847 74.2408 

Notice in Table 4.15 that there is an additional classification attempt using 6 

variables from the factor analysis. This classification effort represents an attempt to 

use only one variable associated with each factor. There are only 6 variables since 

the only factors used were those that contained variables chosen by both SAS and 

the SNR screening method. The thought behind this classification method was that 

each factor identifies a specific dimension that drives the data. It was hypothesized 

that perhaps we only need one variable from each factor for classification.     The 
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variables were chosen based on the factor loading associated with that factor. The 

variable with the highest factor loading was deemed the "most important." Notice 

that for factor 4 in Table 4.11 the highest loading is on variable PZt with a value 

of 0.61551. However, PZt was also the variable with the highest loading for factor 

2. Therefore, the factor chosen to represent factor 4 was P8d. Additionally, since 

factor 8 did not have a variable shared by both the SAS and SNR screening methods, 

that factor was not represented in the final analysis. Table 4.14 lists the variables 

used and the factor each represents in the classification analysis using 6 variables. 

Table 4.14     Variables Used in Final Factor Analysis 
Variable Variable 
C6ub (Fl) HR (F7) 
PZt (F2) P04b (F10) 
P8d (F4) BRTHS (Fll) 

The detailed results listed in Table 4.13 were found using data from pilot 1 on 

day 1.   Similar analysis was performed on pilot 1, day 2. 

4-4    Summary of Analysis for Single Pilots 

The processes for analysis outlined in the previous sections were applied to 

pilot 1, day 2 and pilot 4 days 1 and 2. Appendix D gives the lists of variables 

that were used for classification from the SAS screening method, the SNR screening 

method and the factor analysis. The following tables present individual summaries 

of both pilots, both days. Tables 4.15 and 4.16 are the classification summaries for 

pilot 1 and Table 4.17 and 4.18 are the classification summaries for pilot 4. 
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Table 4.15     Summary of Analysis for Pilot 1, Day 1 

Analysis 95% CI Linear Quadratic MLP 

Initial 

151 vars 

Lower 

N/A N/A 

78.33 

Mean 78.50 

Upper 78.67 

SAS 

34 vars 

Lower 81.34 82.21 82.34 

Mean 81.48 82.33 82.51 

Upper 81.63 82.45 82.68 

SNR 

14 vars 

Lower 73.76 78.21 81.56 

Mean 73.94 78.39 81.79 

Upper 74.12 78.56 82.01 

Factor Analysis 

10 vars 

Lower 74.10 74.57 77.55 

Mean 74.25 74.78 77.79 

Upper 74.40 74.98 78.03 

Factor Analysis 

6 vars 

Lower 69.80 71.13 73.91 

Mean 69.93 71.26 74.07 

Upper 70.07 71.38 74.24 
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Table 4.16     Summary of Analysis for Pilot 1, Day 2 

Analysis 95% CI Linear Quadratic MLP 

Initial 

151 vars 

Lower 

N/A N/A 

75.37 

Mean 75.52 

Upper 75.67 

SAS 

71 vars 

Lower 74.54 

N/A 

78.27 

Mean 74.83 78.51 

Upper 75.11 78.74 

SNR 

17 vars 

Lower 75.69 78.62 76.96 

Mean 75.81 78.81 77.16 

Upper 75.94 79.01 77.36 

Factor Analysis 

13 vars 

Lower 73.88 76.14 74.92 

Mean 74.07 76.29 75.15 

Upper 74.25 76.45 75.37 
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Table 4.17     Summary of Analysis for Pilot 4, Day 1 

Analysis 95% CI Linear Quadratic MLP 

Initial 

146 vars 

Lower 

N/A N/A 

97.07 

Mean 96.72 

Upper 96.38 

SAS 

79 vars 

Lower 85.47 

N/A 

97.36 

Mean 85.78 97.46 

Upper 86.09 97.55 

SNR 

5 vars 

Lower 86.62 90.75 91.67 

Mean 86.76 90.87 91.78 

Upper 86.91 90.99 91.90 

Factor Analysis 

3 vars 

Lower 86.23 90.35 90.31 

Mean 86.37 90.45 90.41 

Upper 86.51 90.55 90.51 
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Table 4.18     Summary of Analysis for Pilot 4, Day 2 

Analysis 95% CI Linear Quadratic MLP 

Initial 

151 vars 

Lower 

N/A N/A 

86.73 

Mean 86.91 

Upper 87.08 

SAS 

62 vars 

Lower 77.05 

N/A 

90.34 

Mean 77.28 90.50 

Upper 77.52 90.65 

SNR 

5 vars 

Lower 75.77 82.16 85.62 

Mean 76.05 82.33 85.76 

Upper 76.33 82.50 85.90 

Factor Analysis 

3 vars 

Lower 77.51 81.28 85.78 

Mean 77.74 81.46 85.92 

Upper 77.94 81.64 86.05 

There is one interesting point to note from the factor analysis on all pilots. 

Looking at the individual factor loadings for both pilots, both days, shown in Ap- 

pendix E, we notice similar results for pilot 1, days 1 and 2. Recall that the 

italicized variables are the variables that were picked by the SAS screening method, 

the variables with an asterick were picked by the SNR screening method and the 

bold variables are variables that were picked by both screening methods. Sum- 

marizing the results we find factor 1 contains variables concentrated in the frontal 

and central regions of the brain. Factor 2 contains variables from the parietal and 

temporal areas of the brain. The peripheral measures (heart rate, eye blinks, etc.) 

selected their own individual factors. After the factor analysis was done for pilot 1, 

we expected to see the same results for pilot 4. As we can see in Appendix E, the 

results were drastically different. Pilot 4 on the first day looks to have three main 

factors that drive the classification (factors 1, 2 and 3). Another interesting note is 

the peripheral measures.   Eye related measures, (blinks and interblink interval) are 
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located on their own factor as is interbreath interval. However, heart rate is not on 

its own factor, it is lumped in with factor 1. This observation is contrary to what 

we observed with pilot 1, that all peripherals lie on their own factor. An even more 

perplexing picture is presented when we look at the factor analysis for pilot 4 on day 

2. The peripherals are once again on their own factors, however the other factors 

are puzzling. Factor 1 seems to be important again, however, like pilot 4, day 1, 

factor 1 seems to contain most of the variables from the parietal region as well as 

most electrodes from the frontal region. Factor 2 contains variables from the frontal 

and occipital areas. Finally, factors 3, 4, and 5 contain variables from the central 

region. 

There are a couple of possible explanations for the discrepancies found in the 

factor analysis. The most feasible reason could be pilot experience. The individual 

variables could be loading on different factors because of how the pilots react to 

certain situations. For example, we noticed in the factor analysis on pilot 4, day 

1, that heart rate was not on its own individual factor like observed in the factor 

analysis on all other data sets. This could be due to the fact that stressful situations 

don't affect this pilot as much as another pilot. While heart rate was still chosen as 

a significant factor in predicting mental workload level, it is not so significant that 

it explains a different factor driving the data. 

There seems to be no correlation between the factor analysis from pilot 1 and 

pilot 4. We decided to run a factor analysis on a combined data set. This data 

set consisted of all data from pilot 1 and all data from pilot 4. One important 

issue came up when combining the data sets. The data set for pilot 4, day 1 only 

contained 146 variables. Five variables had to be removed because of bad data 

that could not be fixed. In order to perform the factor analysis on the entire data 

set, these same 5 variables had to be removed for the other three data sets. The 

following table shows the results of this factor analysis. 
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Table 4.19     Factor Analysis on Both Pilots, Both Davs 
Factor 1 Factor 2 Factor 3 Factor 9 Factor 11 

C5ub B 
C6d A 
C6a A 
C6ub A 
CZub B 
F3d B 
FC2t B 
FP2d B 
FP2a B 
FP2b X 
02d Y 
OZd B 
P3d Y 
P4ub A 
P8d A 
P8ub B 
P04a A 
P04b A 
PZt A,B 
T7a X 
HR A,B,X,Y 
BLNKS A,B 
BRTHS 
 L A,B 

All of the variables on the table are variables that were chosen by both the 

SAS screening method and the SNR screening method, regardless of which data set 

those variables came from (pilot 1, day 1; pilot 4, dayl; etc.). Instead of the factor 

loadings, the analysis contains which data set that variable came from. A indicates 

pilot 1, day 1; B indicates pilot 1, day 2; X indicates pilot 4, day 1; and Y indicates 

pilot 4, day 2. 

A nice pattern results from the total factor analysis on all four data sets. As 

we can see, there seem to be two dominant factors containing the electrodes and all 

peripheral measures are completely contained on their own factors. Once again we 

can attempt to give meaning to the factors.   The factors containing the peripheral 
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measures are explained for themselves.   Figure 4.11 gives a visual representation of 

the variables contained on factor 1.   Notice that the variables from factor 1 located 

A 
Cm J Crczj ^ES 

©# © © 

©•© •© 

Figure 4.11     Factor 1, Both Pilots, Both Days 

in the frontal, central and occipital areas of the brain. This could indicate that 

the dimension driving factor 1 is associated with higher planning, the motor skills 

associated with that planning and whatever visual information the pilot is receiving. 

Looking at the electrodes associated with factor 2 we can come to a similar analysis. 

Figure 4.12 is a visual representation of the variables contained on factor 2. 

The variables that are contained in factor 2 are solely contained in the parietal 

region and the temporal region of the brain. This could indicate that the second 

factor is driven by low level association and some auditory measures. We can see 

that even though the individual analysis for each pilot, each day showed differing 

results. The overall factor analysis indicates there may be a pattern to the variables 

that are chosen for classification. Variables from factor 1 and 2 are always chosen 

and whichever peripheral measure is chosen, they are going to fall on their own 

factors. 

This chapter has dealt with the screening methods and classification efforts on 

individual pilots, separate days.   The next chapter delves into the screening results 
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Figure 4.12     Factor 2, Both Pilots, Both Days 

and classification efforts for two scenarios. The first scenario is classification across 

days for a single pilot. The second scenario is classification across multiple pilots, 

multiple days. 
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V.   Classification and Screening Efforts for Multiple Pilots, Multiple 

Days 

While the last chapter focused on the classification and screening efforts for individual 

pilots on a single day, this chapter focuses on classification and screening efforts for 

multiple pilots, multiple days. Section one focuses on classifying mental workload 

across days for a single pilot. The second section discusses the results using one 

pilot, both days, to classify mental workload level on another pilot, both days. 

5.1    Classification for One Pilot, Across Days 

In Chapter 4, classification efforts focused on evaluating individual pilots on 

one day. The classification results were highly dependent on the pilot analyzed as 

well as on the day the pilot was analyzed. For example, pilot 4 on day 1 consistently 

classified in the 90% region with the MLPs. The classification results for pilot 4 

on day 2 were slightly lower, in the mid 80% region with the MLPs. This suggests 

that classification is highly dependent on the particular pilot on that particular day. 

One hypothesis proposed was to investigate classification efforts for a single pilot, 

across days.   The following results are strictly for pilot 1. 

5.1.1 Screening and Classification Results. As mentioned above, this clas- 

sification effort was performed solely on pilot 1. The idea was to use pilot 1, day 1 

to form classifiers to predict pilot 1, day 2. Recall in Chapter 4, screening results 

were presented on pilot 1, day 1 data for the SAS discriminant and SNR screening 

methods, as well as the factor analysis comparison. The variables from these screen- 

ing results were used for forming the classifiers and attempting to classify mental 

workload in pilot 1, day 2. Table 5.1 summarizes the classification efforts across 

days for pilot 1. 
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Table 5.1     Classification Results for Pilot 1, Across Days 
Analysis 95% CI Linear Quadratic MLP 

Initial 
151 vars 

Lower 
46.31 N/A 

59.84 
Mean 60.03 
Upper 60.22 

SAS 
34 vars 

Lower 
59.28 N/A 

59.06 
Mean 59.27 
Upper 59.48 

SNR 
14 vars 

Lower 
50.10 N/A 

54.65 
Mean 54.84 
Upper 55.03 

Factor Analysis 
10 vars 

Lower 
60.68 52.89 

55.68 
Mean 55.89 
Upper 56.11 

There is one interesting item to note about Table 5.1. Notice for the linear 

and quadratic classifiers only one value is reported. In Chapter 4 classification ef- 

forts were performed on one pilot, on a single day. In order to take into account any 

variation in the classification accuracy, the data set was split between training and 

testing data sets. The training set is used to form the discriminant classifier and the 

testing set tests how well that discriminant classifier performs. The data is then ran- 

domly shuffled and split again between training and testing data sets. This is done 

30 times in order to get a confidence interval about the mean classification accuracy. 

For this portion of the research, the data sets were a bit different. The training set 

contained all the data from pilot 1, day 1 and the testing set contained all the data 

from pilot 1, day 2. Even if we shuffle these data sets, the same data is available to 

form the discriminant classifier and to test the classifier. The discriminant methods 

don't care if the data is presented in a different order. Therefore, no matter how 

the data is presented to form the classifier, or to calculate the classification accuracy, 

the discriminant classifiers will report the same classification accuracy every single 

time.   This trend does not hold in the case of the neural network. 
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The network can be thought of as a semi-living being. Even though the 

data presented for forming the network and for calculating classification accuracies 

doesn't change, there is enough subjectivity associated with the neural network that 

the answers will be slightly different each time the data sets are presented. For 

example, the entire data set for pilot 1, day 1 is presented to form a neural network. 

The network is formed resulting in a certain number of input nodes, hidden nodes, 

output nodes and weighted connections between each layer. The initial weighted 

connections are random numbers that change each time the data set is presented 

to form the neural network. Herein lies the subjectivity of the neural network. 

This randomness results in slight changes in the final weighted connections for each 

neural network that is formed. The slight changes in the weights result in varying 

classification accuracies on the test set, pilot 1, day 2. 

5.2    Classification Across Pilots 

Thus far we have investigated classification efforts of individual pilots on one 

day (Chapter 4) and for an individual pilot across days. The next step is to investi- 

gate the hypothesis of forming one classifier that will perform adequately regardless 

of the pilot and regardless of the day. This hypothesis was tested using all data 

from pilot 1 to form the classifiers and all data from pilot 4 as new exemplars for 

classification. One modification had to be made to the data set before classification 

could begin. Recall from Chapter 4 that the data set from pilot 4, day 1 contained 

only 146 variables. Five EEG variables had to be removed because of bad sections. 

Because of the reduced data set from pilot 4, day 1, the same three variables were 

removed from pilot 1, days 1 and 2 and pilot 4, day 2 data sets. 

5.2.1 Screening and Classification Results. An attempt was made to re- 

duce the total number of variables required for classification. As presented in the 

previous chapter, both the SAS STEPDISC procedure and the SNR screening meth- 

ods were used to reduce the number of variables.   Additionally, factor analysis was 
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also used to draw a comparison between the variables using the discriminant SAS 

screening method and the SNR screening method. The variables that were picked 

by both the SAS and SNR screening methods were also used for classification. Af- 

ter the variables were acquired from the different screening methods, the data set 

was presented to each classifier, as was done in the previous chapter. Table 5.2 

summarizes classification results on the hypothesis of one net fitting across all pilots, 

all days. 

Table 5.2 Classification Resul ts Across Pilo ts 
Analysis 95% CI Linear Quadratic MLP 

Initial 
146 vars 

Lower 
50.202 N/A 

51.26 
Mean 51.61 
Upper 51.96 

SAS 
59 vars 

Lower 
48.79 N/A 

51.57 
Mean 51.94 
Upper 52.31 

SNR 
35 vars 

Lower 
53.13 N/A 

55.49 
Mean 55.78 
Upper 56.07 

Factor Analysis 
18 vars 

Lower 
52.12 55.45 

55.26 
Mean 55.45 
Upper 55.64 

Notice in Table 5.2 there are single values once again for the linear and the 

quadratic classifiers. The reason for these single numbers is the same as the reason 

given in the section above. In this case the entire pilot 1 data set is used to train the 

classifiers while the entire pilot 4 data set is used to test how well these classifiers 

perform. 

5.3   Summary of Results 

After creating classifiers and testing the performance of these classifiers on in- 

dividual pilots on a single day, the natural extension was to look at forming classifiers 

for two new scenarios: 1) investigate classifier performance on one pilot across two 
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days, and 2) investigate classifier performance across pilots, across days. The results 

are radically different from the results for classification on the individual pilots. In 

both scenarios, we barely get above 50% as a classification accuracy on the test sets. 

The highest CA measure for using pilot 1, day 1 to predict for pilot 1, day 2 was 

60.68%. The highest CA measure obtained on the case of using all of pilot 1 to 

predict for pilot 4 was 55.78%. These results suggest that the classifiers are hardly 

better than just tossing a coin and guessing what the classification of a new exemplar 

will be.. 

The poor results of the classification efforts presented in this chapter raise ques- 

tions as to why this happened. Chapter 6 extends some possible explanations and 

recommendations to fix this poor classification problem as well as recommendations 

for further research in the pilot mental workload arena. 
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VI.   Conclusions and Recommendations 

This chapter summarizes the results of this research effort. Specifically, the results 

related to the different screening techniques used for feature selection and reduc- 

tion are summarized, and a comparison is made between the results from the two 

screening methods. Additionally, results are summarized on a comparison of the 

modeling techniques used and how well each model performed as classification efforts 

moved from one pilot on one day, to multiple pilots over multiple days. Finally, 

recommendations for further research are presented. 

6.1    Screening Techniques 

The initial data set, after all preprocessing was finished, contained 151 variables 

(146 in the case of pilot 4, day 1). This is a tremendous amount of variables to 

manage. Screening techniques were used to reduce the number of features required 

for classification. The SAS stepwise selection procedure produced a statistical 

method for determining the number of features that were required for classification. 

While the SAS procedure made an initial cut into the total number of input features 

required for classification, it tended to err on the conservative side. In all cases, the 

final number of input features determined to be the salient feature set was far less 

than the number of variables initially picked by the SAS stepwise procedure. 

The second screening technique utilized was the SNR screening method. This 

method compared an injected noise feature to the features considered for input. 

The SNR screening method is a much more subjective method. The final number of 

features is determined by the researcher. The results from the SNR screening method 

gave more hope that comparable predictions could be made with an even smaller set 

of input variables as compared with the total input set or the SAS stepwise feature 

set.    In every feature reduction effort, the number of input features selected with 
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the SNR screening method were less than the number chosen by the SAS stepwise 

screening method. 

The input features chosen by the SAS stepwise procedure and the features 

chosen by the SNR screening method were not always the same for every data set 

presented to the two screening methods. The following question was asked, "Why 

are the screening methods selecting different variables?" It was proposed that 

factor analysis may provide some insight into this question. The factor analysis 

revealed that all of the significant EEG readings chosen by the screening methods 

were related to one of two factors. Variables in the central, frontal and occipital 

regions fell on factor 1. Variables from the parietal and temporal regions fell on 

factor 2. All peripheral measure fell on their own individual factors. For example, 

if heart rate, blinks, interblink interval and breaths were chosen as significant, heart 

rate and breaths would be loaded heavily on their own individual factors. Blinks 

and interblink interval would each be loaded on one common factor, since they are 

clearly related. 

The factor analysis enabled us to see that even though the screening methods 

were choosing some different variables, the main factors inherent to the data set 

were being covered. A final cut was made on the number of input features based 

on this information. The final number of input features was based on the variables 

chosen by both the SAS stepwise procedure and the SNR screening method. Table 

6.1 gives a quick summary on the reduction of features for each individual pilot for 

classification on one day. 

r rable 6.1 Factor Reduction 
Pilot/Day Initial SAS SNR Factor Analysis 

Pilot 1/Day 1 151 34 14 10 
Pilot 1/Day 2 151 71 17 13 
Pilot 4/Day 1 146 79 5 3 
Pilot 4/Day 2 151 62 5 3 
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After the main factors driving the data were determined, an attempt was made 

to attach some meaning to these factors. As mentioned before, the first factor 

contained variables from the frontal, central and occipital regions. The frontal 

region is where all higher order planning takes place. The central region is where 

the brain controls all motor skills such as arm and leg movement. The occipital 

region is the area for vision. The first factor could be explained as a dimension 

related to higher planning and the motor skills used to carry out those plans and 

any visual information that the pilot is receiving. The second factor contained 

variables from the parietal and temporal regions. The dimension underlying factor 

2 seems to indicate this factor is associated with the low level association processes 

of the brain and any auditory measures the pilot is receiving. 

6.2    Comparison of Classification Models 

Three classifiers were used to predict pilot mental workload. In general, the 

neural networks were the best classifier. This became especially apparent when the 

number of input features was reduced. One problem that was encountered using 

the linear and quadratic classifiers was the instance where the covariance matrices 

were nearly singular. Initial inspection of the data revealed that many of the EEG 

readings were very highly correlated with other EEG readings. This correlation 

caused the covariance matrix to be nearly singular. This condition created enough 

problems that Matlab could not use the linear or quadratic classifier for prediction. 

In comparison, the neural network was able to perform every single time, regardless 

of how high the correlation was between variables considered for classification. 

It was mentioned that the MLP was the best classifier especially when the 

number of input features was reduced. The linear classifier operates on the assump- 

tion that the covariance matrices of the two data sets are statistically equal. As 

the number of inputs are reduced, the chances the covariance matrices are equal 

begins to decline.    This results in the linear classifier not predicting as well when 
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the number of input features are reduced. In one case, the classification accuracy 

of the linear predictor varied as much as 13% from the classification accuracy of the 

neural network. The quadratic classifier is a bit more flexible than the linear clas- 

sifier. The linear classifier performs well when the data is somewhat similar (equal 

covariance structures) and the data sets linearly separable. The quadratic classifier 

is flexible in that it allows for unequal covariance structures and can adapt if the 

regions are not totally linear. However, when the structure of the inputs deviates 

from regions that can be separated by both the linear and quadratic classifier, the 

quadratic classifier performs poorly as well. The largest difference in classification 

accuracy between the quadratic classifier and an MLP was 4%. In the grand scheme 

of things, this is practically insignificant. This seems to suggest that the regions 

of interest, the regions that contain both groups, don't deviate wildly from an area 

that can be separated by a second order equation. 

The discriminant models were both limited by the assumptions of the data 

structure and in certain cases, could not even produce a viable classifier if inputs 

were highly correlated. The MLP does not care about the structure of the input 

data.   It is able to adapt to correlated data and extremely non-linear regions. 

Classification accuracies of the data depend on what data set is being presented 

for classification. If we look strictly at classification accuracy of the MLPs, the indi- 

vidual classification accuracies for the pilots varied. Classification ranged from 97% 

to 74% for an individual pilot on a single day. While classification accuracy depends 

on the structure of the input data set, it also depends on the individual pilot being 

measured. Perhaps one pilot is more experienced than another. While readings 

respond to higher mental workload levels, they may not respond as drastically as a 

pilot that is less experienced, making classification for that pilot fall on the lower 

end. 

An attempt was made to use one classifier formed for a single pilot on one 

day to predict for a second day of flight for the same pilot.     Regardless of the 
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classification method used, the results were hardly better than flipping a coin and 

guessing which workload group an exemplar belonged to. The highest classification 

accuracy ever reached was 60%. An attempt was also made to use one pilot's data 

(both days) and predict workload level for a second pilot (both days). The results 

here were equally poor. The highest classification accuracy reached was 55%. The 

poor classification raises the question, "What is causing the problem?" 

First, let's consider the scenario of trying to use one day to predict a second 

day. Heart rate was determined to be a common driving factor in all classification 

efforts. Therefore, the investigation focuses on the heart rate variable. Readings 

on heart rate were collected for the first and second days of flight. These readings 

were then plotted, as shown in Figure 6.1. 

Pilot 4 Heart Rate Comparison 
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Figure 6.1     Comparison of Heart Rate for Pilot 4 
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The vertical line on the graph indicates where workload level changes from low 

to high. One immediate observation is possible. Overall, the readings for heart 

rate on day 2 are far lower than the readings for heart rate on day 1. There are 

two horizontal lines also represented in Figure 6.1. The horizontal line in the low 

workload segment indicates the average heart rate for the low workload segments 

on day 1. This average was 136.9 beats per minute. The second horizontal line 

indicates the average heart rate for the high workload segments of flight on the second 

day. As the figure shows, this average is less than the average for the low workload 

segments on the first day, at a value of 133.4 bpm. This introduces an interesting 

dilemma. The network and statistical classifiers were all trained on day one to 

predict for day two. Since the average of the high workload heart rate readings on 

day 2 are is less than the average of the low workload heart rate readings on day 1, 

almost all of the exemplars from day 2 will be classified as low workload. This will 

lead to about a 50% classification accuracy because more than half of the flight is 

actually at a low workload. 

A similar investigation was done into the classification across pilots. Figure 

6.2 shows a pictorial view of the same dilemma. Recall that pilot 1 data was used 

to form the classifiers to predict mental workload level for pilot 4. Notice there 

are two horizontal lines in Figure 6.2. The first horizontal line is the average heart 

rate of the low workload level for pilot 4, with an average of 123.8 beats per minute. 

The second horizontal line is the average heart rate of the high workload level for 

pilot 1, with an average of 106.1 beats per minute. This indicates that almost every 

exemplar for pilot 4 will classify as a high workload level. Once again, since portions 

of the flight are indeed at a high workload level, about half of all classifications will 

be correct. The trends that we see in trying to classify across days or across pilots 

have supported the conclusion that different people act differently and people act 

differently on different days. Somehow these differences must be compensated for 

before any useful classification efforts can be made. 
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Heart Rate Comparison Across Pilots 
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Figure 6.2     Comparison of Heart Rate Across Pilots 

6.3   Recommendations 

There are several opportunities for further research on the subject presented in 

this thesis. These recommendations are made with the idea that someday a system 

could be put into a cockpit be put to practical use to save a pilot's life. 

6.3.1 Recurrent Neural Networks. The EEG and peripheral measures that 

were collected are all collected over time. For this research effort, this time de- 

pendency was removed (via a fast-Fourier transform) and classifications were made 

solely on the frequency based EEG readings. Recurrent neural networks (RNN) 

have the ability to adapt to time dependent inputs. A recurrent neural network is 

different from a feedforward neural network in that as it trains, it uses the outputs 

from each epoch as inputs to the next epoch. The RNN uses past information to 

make decisions about future classification.   The introduction of recurrent neural net- 
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works may lead to a more precise and perhaps higher classification accuracy. Some 

research on using recurrent neural networks to predict pilot mental workload was 

done in Greene's dissertation [11]. 

6.3.2 Batch Means. The data used in this research was subject to a large 

amount of preprocessing. As mentioned above, the raw EEG passed through a 

FFT. The FFT took out the time dependency and passed on a frequency based 

signal. The output was a frequency of 1-256 Hz for each second of data. The 

frequency signal was then filtered and the power was collected at five frequency 

bands. The power collected at each second was then averaged over a ten second 

interval. Some overlap was included in these power estimates in order to smooth out 

the data readings. By doing this, each ten second window is highly correlated with 

the next ten second window. One of the underlying assumptions for the classification 

models is that the data is independent. This assumption is clearly suspect early in 

the classification process. When we look at the classification results of the statistical 

classifiers compared to the classification results of the neural networks the violation 

of these assumptions did not seem to make much of a difference. Laine [14] used 

this method and classification did not seem to suffer; he frequently classified data 

at 100%. Classification accuracy did not seem to suffer that much in this research 

effort either. In one case, classification for pilot 4 on day one was as high as 97%. 

The question arises, however, about possible classification improvements using data 

that is not correlated. This suggests using batch means to calculate the average 

power estimates. There are several suggestions and algorithms that indicate what 

batch size to use. A possible result could be to average power readings using a 

batch size of 12 seconds. Of course, no overlap is included using the method of 

batch means. 

6.3.3 Classification Across Days or Across Pilots. The Air Force would 

like to implement some type of warning system into a cockpit to prevent fatalities. 
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In order for this idea to be practical two things have to happen. The classifier has 

to be almost 100% accurate 100% of the time and the classifier has to be practical. 

A classifier that has to be retrained every flight or a classifier that won't work for 

different pilots is not very practical. It was observed that classification across 

days or across pilots does not seem feasible. An investigation into the structure 

of the data showed that pilots react very differently from day to day and react 

differently compared to other pilots. For example, in Figure 6.2 we can see that, on 

average, pilot 4 has a much higher heart rate than pilot 1. These differences led to 

classification that was little better than flipping a coin to classify exemplars. Right 

now, the code written does not take into account this bias that is present in the data 

presented for classification If a way could be found to account for any bias that 

may be present in the data, prediction from day to day or from pilot to pilot looks 

feasible. 
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Appendix A.   Flight Segments and Associated Workload Level 

Table A.l     Flight Segments 
Flight Segment Workload Level 

Baseline 1 1 
Preflight 1 

Engine Start 1 
VFR Takeoff 1 

VFR Climbout 1 1 
VFR Cruise 1 

VFR Airwork 1 
Approach 1 

VFR Touch and Go 2 
VFR Climbout 2 1 

IFR Airwork 2 
IFR Cruise 2 
IFR Hold 2 

IFR DME Arc 2 
IFR ILS Tracking 2 

IFR Missed Approach 2 
IFR Climbout 1 

HS Hold 1 
HS DME Arc 1 

HS ILS Tracking 2 
Landing 2 

Baseline 2 1 

VFR Visual Flight 

IFR Instrument Flight 

HS High Speed 

DME Distance Measuring Equipment 

ILS Instrument Landing System 
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Appendix B.   Pilot Subjective Measures of Mental Workload 

Pilot Subjective Measure 

Two Minute Flight Segments 

Figure B.l     Pilot Subjective Measure 
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Appendix C.   Fortran Formatting Code 

Program makeit 

real x(151) 

do 10 ii=l,506 

read(l,*)(x(i),i=l,151),ispec 

write(2,*)(x(j),j=l,151),ispec 

10     continue 

end 
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Appendix D.   Variables Used for Classification After Screening 

Table D.l     ] Pilot 1, Day 2 SAS Screening Results 
Variable Variable Variable Variable Variable Variable 

C3b CZa F8d FP2d ozt P9a 
C3ub CZb FCld FP2a OZa P9b 
C4a CZub FClb FP2ub PlOd P03t 
C5t F3d FC2d FZub PlOb P03b 
C5b F3a FC2t IZd PlOub P03ub 

C5ub F3ub FC2b IZt P3t P04d 
C6d F4d FC2ub IZub P3a P04t 
C6t F4a FPld 02d P3ub P04a 
C6b F4b FPlt 02t P4t P04b 
CZd F7a FPlb 02a P8ub PZt 
CZt F7b FPlub OZd P9t PZub 
T8d T8b HR BLNKS BRTHS 

Table D.2     Pilot 1, Day 2 SNR Screening Results 
Variable Variable Variable 

C5ub FP2a P8ub 
CZub IZt P03a 
F3d IZb P04t 
FC2t OZd PZt 
FP2d PlOt HR 

BLNKS IBRI 
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Table D.3     Pilot 1, Day 2 Factor Analysis Results 
Variable Variable Variable 

C5ub FC2t IZt 
CZub FP2d OZd 
F3d FP2a P8ub 
P04t PZt HR 

BLNKS 

Table D.4     Pilot 4 I, Day 1 SAS Screening Results 
Variable Variable Variable Variable Variable Variable Variable 

C3t CZt F8d FZd PlOa P03d T7t 

C3b CZb FC It Old P3d P03a T7a 

C3ub CZub FCla Olt P3t P03b T7b 

C4t F3d FClub Olub P3b P04d T7ub 

C4b F3t FC2d 02d P3ub P04a T8d 

C5t F3a FC2ub 02t P4d P04b T8a 

C5ub F3b FPld 02b P4a P04ub T8b 

C6d F3ub FPlb OZd P4b PZt T8ub 

C6t F4d FPlub OZt P7b PZa HR 

C6a F4ub FP2d OZb P9t PZb BLNKS 

C6ub F7d FP2b PlOd P9a T7d IBLI 

IBRI 

Table D.5     Pilot 4, Day 1 SNR Screening Results 
Variable 

CZd 
CZa 

Variable 
FP2b 
T7a 

Variable 
HR 

Table D.6     Pilot 4, Day 1 Factor Analysis Results 
Variable 

FP2b 
T7a 
HR 
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Table D.7     J Pilot 4, Day 2 SAS Screening Results 
Variable Variable Variable Variable Variable Variable 

C3ub F3b F8a Old P7b Pzd 
C4d F4d F8ub 02d P7ub PZt 
C4b F4a FCld 02t P9b PZub 
C5a F4b FC It 02a P9ub T7d 
C5b F7d FPlt 02b P03a T7a 
C6a F7t FPlub OZt P03ub T7ub 
C6b F7a FP2d OZb P04d T8d 

C6ub F7ub FP2t OZub P04t T8a 
Czd F8d FZd P3d P04a T8ub 

Czub F8t IZt P3ub P04ub HR 
IBI BRTHS 

Table D.8     Pilot 4, Day 2 SNR Screening Results 
Variable 

02d 
P3d 

Variable 
P8d 
P03t 

Variable 
HR 

Table D.9     Pilot 4, Day 2 Factor Analysis Results 
Variable 

02d 
P3d 
HR 
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Appendix E.   Factor Loadings for Individual Pilots 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor S Factor 7 Factor 9 Factor 10 Factor 11 Factor 12 
C3t 0.88289 
C3b 0 89014 
C3ub 0.78961 
C4t 0 82782 
C4b 0 43504 0.69179 
C4t ■0 73287 

C4ub 0 53886 
CM 05095 0 54147 

C6t 0 63525 
C6a 0.5615 0 4425 

CSub 0.63755 
CZd 0.54035* 0 60935* 

CZI 0.65328 
CZa 0 66474* 

CZb 079695 

CZub 0.61711 

F3d 0.82827 

F3t 0.71455 

F3a 0.88086 

F3b -0.83082 
F3ub 0.9214 

F4d 0.89144 

F4ub 0.74941 

F7d 0 8934 

F8d 0 86274 

FC1t 0.85015 

FC1a 0.83826 

FClub 0.80587 

FC2d 0.79298 

FC2ub 0.90844 

FPId 0 83203 

FPIb 0 95329 

FPlub 0.86177 

FP2d 0.7599 

FP2b 0.S2022 
FZd -0 78053 

Old 0.74217 

Oil 0.73618 
Olub 0.59576 066707 

02d 0.71155 

021 0.67888 
02b 0 86316 

OZd 0 77888 

ozt -0.63479 
OZb 0.88345 
OZub 0 92957 
PlOd 0 92733 
P10a 0 87185 
P3d 0 84323 
P3t 0 88949 
P3b 0-77325 
P3ub 0 88584 
P4d 0.92874 0.51692 

P4a 0.87123 

P4b 0.83886 
P7b 0 90962 
P9t 0.74081 
P9a 0.91474 

P03d 0.95021 
P03a 0.90785 
P03b 0.88733 
P04d 0.92328 
P04a 0.79481 
P04b 0.90473 

P04ub 0.66907 
PZt 0 87325 
Pza 0 85368 
PZb 0.89026 
T7d 0.9164 
T7t 0.8352 
T7a 0.11511 

Figure E.l     Factor Analysis on Pilot 4, Day 1 
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 6 Factor 7 Factor 9 
C3b 0.90641 
C3ub 0.90502 
C4a 0.89246 
cst 0.73597 
C5b 0 68363 
CSub 0.85669 
C6d 0 93247 
C6t 0.93434 
C6b 0.91621 
CZd 0.91646 
czt 0.91552 
CZa 0.90639 
CZb 0.92065 
Czub 0.82498 
F3d 0.77815 
F3a 0.9)923 
F3ub 0.97065 
F4d 0.9(827 
F4a 0.92277 
F4b 0.90056 
F7a 0.85758 
F7b 0.90513 
F8d 0.79918 
FC1d 0.93787 
FC1b 0.90135 
FC 2d 0.91693 
FC2t 0.93966 
FC2b 0.90039 
FC2ub 0.90374 
FP1d 0.90783 
FP1t 0.93594 
FP1b 0.97136 
FP1ub 0.91627 
FP2d 0.90541 
FP2a 0.90361 
FP2ub 0.91015 
FZub 0.81317 
IZd 0.79265 
IZt 0.90551 
IZb 0.92763* 
IZub 0.9332 
02d 0.93689 
02t 0.88097 
02a 0.91059 
OZd 0.92567 
ozt 0.87594 
OZa 0.93058 
P10d 0.73516 
P10t 0.72457* 
P10b 0.74711 
P10ub 0.75502 
P3t 0.76228 
P3a 0.76019 
P3ub 0.69776 0.57834 
P4t 0.73045 
P8ub 0.73281 
P9t 0.88764 
P9a 0.87372 
P9b 0.90728 
P03t 0.88487 
P03a 0.86546* 
P03b 0.90145 
P03ub 0 89032 
P04d 0.87122 
P04t 0.86057 
P04a 0.61247 0.6J40» 
P04b 0.57193 0.67212 
PZt 0.86001 
Pzub 0.89851 
T8d 0.8775 
T8b 0.90539 

Figure E.2     Factor Analysis on Pilot 1, Day 2 
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Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 7 Factor 9 Factor 11 Factor 13 Factor 15 
C3ub 0.90377 
C4d 0.8874 
C4b 0.67132 
C5a -0.67954 
CSb 0.87785 
C6a 0.75065 
C6b 0.55367 
C6ub 0.664)8 
CZd 0.7259 
CZub 0.453)5 0.41048 
F3b -0.70469 
F4d 0.64197 
F4a 0.64626 
F4b 0.63777 
F7d 0.669S1 
F7t 0.67746 
F7a 0.67483 
F7ub 0.66477 
F8d 0.55272 0.48928 
F8t 0.61464 
F8a 0.94699 
F8ub 0.73503 
FC1d 0.69537 
FC1t 0.67898 
FP1t 0.76401 
FP1ub 0.84346 
FP2d 0.65278 
FP2t 0.76573 
FZd 0.59467 0.53435 
IZt 0.87857 
Old 0.656)3 
02d 0.68779 
02t 0.71047 
02a 0.76346 
02b 0 8828 
ozt 0.66082 
OZb 0.92588 
OZub 0.88969 
P3d 0.89629 
P3ub 0.84694 
P7b 0.92995 
P7ub 0.93832 
P8d 0.91456* 
P9b 0.938 
P9ub 0.90633 
P03t 0.94196* 
P03a 0.92315 
P03ub 0.89394 
P04d 0.94631 
P04t 0.85458 
P04ub 0.70966 
PZd 0.8555» 
PZt 0 88078 
Pzub 09)228 
T7d 0.94277 
T7a 0.91492 
T7ub 0.90694 
T8d 0.94948 
T8a 0.92989 
T8ub 0.52634 0.40015 
HR 0.66211 
IBI 0.7607 
BRTHS 0.86036 

Figure E.3     Factor Analysis for Pilot 4, Day 2 
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