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1. Summary 
The project was started in September 1996. Its goal was to develop techniques 
for continual reallocation of resources to maintain application performance 
despite statically unpredictable change in resource demands. It was targeted to 
multiple application systems executing on HPC (High Performance Computing) 
platforms. It was anticipated that such adaptive capability would be needed in 
military systems such as SC-21. 

As planned for this project, we built on the results of a previous program, called 
Adaptive Resource Allocation (ÄRA). In ARA, we developed techniques for 
dynamic reallocation of resources to single parallel applications, structured as 
multi-pipelines, executing on a high-performance parallel machine. We extended 
ARA results to systems with multiple applications and multiple machines 
connected over a network. 

In October 1997, with DARPA approval, we decided to merge the technical effort 
on this project with the RTARM project funded under Quorum. This did not affect 
the core statement of work for ARM, but led to a 6-month extension of its 
completion date from November 1998 to May 1999. ARM still focused on 
developing an approach based on adaptation models, and addressed best-effort 
resource allocation in an environment with partitionable rather than shared 
resources. However, parallel HPC platforms were de-emphasized in favor of 
general distributed computing platforms. Some of the work we had completed, in 
particular the software infrastructure for managing multiple MPI-based 
applications, became less relevant. 

Results from ARM are being integrated into RTARM. The layered architecture of 
ARM has given way to a hierarchical architecture characterized by uniformity 
across different levels. The MPI-based communication infrastructure in ARM has 
given way to a CORBA ORB infrastructure. While ARM implementation was 
targeted to Unix machines connected over Ethernet, the target platform for 
RTARM consists of Wndows NT machines networked over ATM. 

The work was performed jointly by Honeywell Technology Center and Georgia 
Institute of Technology, under Honeywell direction. This report describes only the 
work performed under ARM; hence, it represents an intermediate snapshot of the 
larger merged research. 

2. Report layout 
The report contains the following sections. A brief description of each section is 
given below to establish context before details are presented. The list of sections 
follows the list of tasks in the statement of work. 

•   Program Objective - This section describes the general characteristics of 
the targeted applications and the overall problem that ARM addresses. 



• Adaptation Models - This section describes those attributes of 
applications and the underlying resources that are needed by ARM. Four 
distinct models are described - 

1. Application Execution Models capture the manner in which applications 
consume resources. 

2. Performance and Timing Models capture the performance 
requirements of applications in a system. 

3. Decision Models contain information about run-time detection of 
significant transitions in performance. 

4. Resource Allocation Models determine how to allocate and reallocate 
resources across applications and within applications 

5. Enactment Models describe when and how a new allocation should be 
brought into effect, given the potential cost and perturbation of 
reallocation. 

The main motivation for separating information into these models was to 
support a flexible architecture for ARM with plug and play capability. 

• ARM Architecture: This section describes the layered adaptation 
architecture we developed. Each layer engages in negotiation, service 
translation, real-time monitoring and adaptation. 

• Real-Time Instrumentation: We present an overview of the existing real- 
time instrumentation system, SPI, and describe the changes we made to it 
for ARM. 

• ARM Run-Time System: This section describes the main components of 
the run-time support for adaptive resource management, including the 
software infrastructure. 

• Demonstrations: This section describes the applications we demonstrated 
to show proof of ARM concepts. 

Finally, we have attached a set of papers that represent the work performed 
under this project or built upon it. 

3. Program Objective 
Future defense systems will likely be characterized by dynamic variability in the 
performance demands of their applications. Many embedded DoD applications 
will be reactive, as they must interact with changes in an external physical 
environment. Often their run-time behavior will also be heavily data-dependent, 
depending on scene parameters, sensor modality, range to target, etc. 
Consequently, their computing resource requirements will tend to vary 
considerably during execution, and for the most part be statically unpredictable. 

We refer to such systems as deployable systems. Given their time-varying and 
irregular resource needs, it will be necessary to manage resources dynamically. 



Without dynamic adaptation in resource allocation, either computing platforms for 
deployable systems will have to be oversized or they will fail to meet the 
application requirements. In addition, in future military systems, the demand for 
higher agility will further require applications to be adaptive. 

Effective management of computing resources in such an environment, and the 
adaptation of individual application subsystems is a challenging task. Deployable 
systems are different from the computing systems used in ground-based 
command and control operations over geographical dispersed areas. In 
deployable systems, applications are often interdependent; the performance 
requirements are usually stringent, and the applications tend to be more dynamic 
because they are embedded in a potentially rapidly changing environment. 

The objective of ARM was to provide adaptive resource management 
mechanisms for specific models of applications, computing environments and 
resource usage. Adaptation is viewed in terms of continual allocation and 
reallocation of resources among the applications constituting a system to meet 
system-wide objectives. 

4. Adaptation Models 

4.1       Application Models 

An application model determines how resources are requested and consumed. 
Some applications may be distributed across multiple computers. For example^ 
the front end of a sensor-based application may be implemented on a SIMD 
machine, whereas the back end object processing is often implemented on 
general purpose MIMD machines. We assume that the data-parallel components 
of applications are implemented on MIMD computers as SPMD programs, which 
is a common style for hand-written codes as well as codes produced by 
compilers for parallel languages such as HPF. 

Multiple applications may run simultaneously on a computer. The nodes of a 
computer may be partitioned across applications using either space multiplexing 
or time multiplexing. In our research, we limited ourselves to space sharing as it 
much more common in commercial HPC computers. Time-sharing is beset with 
severe performance penalties due to context switching and the difficulty of co- 
scheduling an application's tasks on multiple nodes on multiple computers. 

Workload Model 
The workload is a simplified multi-pipeline where individual stages may be 
tagged as parallel programs. A pipeline is an acyclically connected set of stages^ 
A stage has zero or more inputs and zero or more outputs. Stages are connected 
bv connecting an output of one stage to an input of another. No inputs or outputs 
are unconnected. Signal sources are modeled as stages with no input signal 
sinks as stages with no output. Currently, we assume that there is only one 
source and one sink. 
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Figure 1: Multi-Pipeline 

The intent is to use a recursive definition, so that even a connected subset of 
stages or just one stage, may be viewed as a pipeline. Invocation of a stage is 
input-driven. Output is always invocation-driven. 

The more complicated the model is, the more complicated is the service request 
translation (SRT). We decided to stay with simpler models because SRT was not 
the central focus of our research. 

Stage Stage * 

Figure 2: A pipeline is a recursive structure of stages 

• The workload consists of a set of multi-pipeline applications, each with 
end-to-end QoS requirements. 

• A multi-pipeline is a DAG of stages, each stage with zero or more in arcs 
(inputs), computational load, and zero or more out arcs (outputs). 

• Stage invocation may be periodic (allowed only for source stages) or input- 
driven. An input-driven stage is invoked when a specified number of 
arrivals occur on each of its inputs. 

• Computational load in a stage varies, depending on data sizes at input, 
and data-dependence. 

• A stage issues output once after every invocation. The output data size 
may vary depending upon input data sizes. 

• For parallel stages, a description of the parallelism in it. 

Parallel programs are often described as task graphs (TG) consisting of tasks 
linked by communication edges. Task graphs have no temporal information 
about when the communications take place. We decided to use the Temporal 
Communication Graph (TCG) concept from Origami, which provides an unrolling 
of static task graphs in time. TCG and TG are static, in that the number of tasks 
and edges between them do not change at run-time. 

Our target description expresses parallel computations as a function of the 
number of processors on which it is mapped. Our objective in a specification 
mechanism for temporal information was that we could provide a communication 
traffic description to NetEx (i.e. source, destination, and traffic pattern) when we 
transitioned from ARM to RTARM. 



Stage       S1 
SO 

S2 S3 S4 

Figure 3: Workload Model: Pipeline with Parallel Stages 

We use an enhanced version of TCG that makes it into a template for 
instantiation based on the number of processors allocated to it. 

4.2 Performance and Timing Models 

QoS is multi-dimensional, each dimension viewed as a range of values - low, 
high and a set of thresholds that define points at which some specific action is to 
be taken. For example, a drop in QoS below a threshold might trigger adaptation. 

QoS includes quality dimensions and service dimensions. The quality dimensions 

include - 

• Throughput as a function of input rate, reckoned at output. 

• End-to-end latency between source and sink. 

Service dimensions include per-stage specification of - 

• Computational load as a function of input data sizes, and specification for 
each output data size as a function of input data sizes. 

• Invocation rate 

4.3 Decision Models 
A critical component of the relocation process is the decision model that 
determines when a reallocation of resources is necessary. As described earlier, 
applications are modeled as an acyclic graph of data-parallel tasks. Data frames 
are pipelined through this graph and each of these data-parallel tasks can be 
further structured as a collection of subtasks, each running on an individual 
processor. The number of subtasks within a task varies as processors are 
dynamically allocated to and deallocated from the original task. The subtasks are 
instrumented to provide performance measurements in real-time. Detectors 
process these instrumented streams of data to produce detection events each 
siqnaling a major change in performance metrics. Decision models process these 
streams of detection events to determine if resource reallocation is necessary, 
and if so, to initiate procedures for the computation and enactment of new 
reallocations. In ARM, we address the reallocation of processors among tasks to 
maintain minimal frame latency through the task graph. 



The majority of existing research on resource allocation and reallocation is 
focused on algorithms that determine how to most effectively allocate or 
reallocate resources. There is an extensive literature on dynamic resource 
allocation, typically in the context of load balancing algorithms. Strategies 
typically focus on where tasks must be scheduled as function of available 
resources. Research that is more recent has studied dynamic processor 
scheduling algorithms in multiprocessor systems and even algorithms for 
dynamic control of communication resources in parallel/distributed applications. 

These resource allocation algorithms rely on the existence of a mechanism that 
determines when they are invoked, for example, at task arrival time. This does 
not permit reaction to run-time load variations within the application. We decided 
that for run-time reallocation, it is critical to be able to determine when such 
resource reallocation algorithms should be invoked during task execution. 
Accurate timing can avoid thrashing during transient workload changes, permit 
low latency reallocation, and in some instances preempt performance 
degradation by predicting reallocation needs. 

Georgia Tech developed a combination of a low-latency decision model that is 
reactive in nature with a relatively more complex decision model that is predictive 
in nature. The model is quite insensitive to transient workload shifts or "spikes", 
thereby reducing ineffective reallocations. The model is also quite effective in 
predicting impending workload changes. Thus, the decision model can be 
"tuned" based on some knowledge of the application behavior. Using a synthetic 
benchmark generator, we experimentally demonstrated an increase in 
performance and a decrease in overhead across a range of input data 
parameters. While the current implementations are focused on a class of 
computationally intensive sensor-processing applications, these decision models 
are more generally applicable to asynchronous, event-driven computational 
models. 

By coupling the reactive Bayesian model with the predictive Markovian model, 
we create a multi-level decision model capable of improving the performance of 
adaptive resource managers under a variety of input conditions. Under average 
input conditions, both models contribute to decrease the end-to-end latency of 
input frames and reduce the decision and enactment overhead. Toward the 
extremes, the Bayesian model proves more applicable to high noise 
environments and the Markovian model better suited to low noise environments. 
In these situations, the less suited model provides good backup support for the 
more effective model. 

Under low noise conditions, the Bayesian level keeps track with the baseline 
model while the Markovian level pushed the system toward more acceptable 
performance states. Under high noise conditions, the Bayesian level filters a 
much larger percentage of the input spikes while the Markovian level ensured 
performance did not fall below the real-time specifications. Over a wide range of 
input streams, the coupled model is shown to maintain or improve the latency 
performance while decreasing the number of false triggers and unnecessary 
resource reallocations. 



Ideas for future work include methods for dynamically varying the Bayesian and 
Markovian thresholds in response to the current task-level resource allocation, 
and implementing mechanisms for the Markovian model to suggest appropriate 
resource allocations for the predicted steady-state behaviors. 

4.4      Resource Allocation Models 

It is desirable that the underlying machines appear to the applications as one 
virtual machine that can be customized according to their individual and 
collective needs. This customizing should take place under control of the 
applications as well as automatically when a significant change in resource 
demands or availability is detected by the resource management system 
cognizant of applications characteristics. 

4.4.1. Allocation and Assignment 
Mapping an application to a heterogeneous target platform is a two-part problem: 

• Allocation, which concerns the partitions of individual machines that are 
allocated to individual applications 

. Assignment, which concerns the mapping of software components to 
specific processing resources, and may involve consideration of 
interprocessor communication behavior of the applications. We will use the 
term allocation (or mapping, configuration) to include both allocation and 
assignment from hereon. 

The ARM system should provide continual on-line reallocation of resources to 
meet the overall mission objectives. The following types of events may trigger 
resource reallocation - 

• Arrival and departure of applications 
.    Request by applications e.g. when an application knows it is about to enter 

a significantly different phase of computation 
.   Based on potential performance shortfalls detected by the ARM 

• Request by the user, e.g. on a mode change 

ARM can be effective only if the overhead of reallocation is significantly lower 
than the cost of doing no reallocation. Sufficiently fast algorithms are needed to 
compute a new allocation. Because of resource reallocation, application 
components may migrate across heterogeneous computers, with possibly 
significant change in the application's performance. 

4.4.2. Resource Models 
We adopted a hierarchical resource model, with a flat allocation model. For every 
resource in the system, a certain amount of resource is free, tested (for 
reservation) or reserved. For illustration, if a resource manager manages each 
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resource, one can represent a parallel machine like the Cray T3D as a machine 
where the unit of allocation is the node. 

Node Manager 
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Memory 
Resource 
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Node Manager 
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Figure 4: Illustration of Resource Model 

Similarly, one can represent an IBM SP2 with several nodes, where the unit of 
allocation is a percentage of processor allocation. 

5. ARM Architecture 
ARM is divided into multiple layers, including an application layer and one or 
more resource layers. The application layer (A-Layer) is concerned with resource 
management issues relating to specific application models, and performance of 
the entire application rather than its parts. The resource layer (R-Layer) is 
common across many different application models, and encapsulates any 
hierarchy in the resources. For example, system layers in a network protocol 
stack belong in the R-Layer, and multiprocessor clusters may treat the cluster 
and individual multiprocessors as different layers. Potentially, there may also be 
a separate mission layer, which addresses mission-level objectives and tradeoffs 
across applications to achieve them. For now, only the A-layer and R-layer are 
considered. 

Each layer is characterized by: workload model, QoS model, service requests, 
request translation and generation, negotiation and resource allocation, real-time 
monitoring, adaptation models and policies, and enactment. Note that the layered 
architecture described in this report has been generalized under RTARM to a 
hierarchical architecture. 



The following sections describe the layers in more detail. It is currently assumed 
that the target applications are sensor-based multiple pipelines. Each layer 
receives a service request, translates it, and attempts to provide that service by 
negotiating for the services provided by lower layers. Existing already admitted 
requests might have to be squeezed through adaptation to release enough 
resources to admit new requests. 

Mission-Level RM 

Application-Level RM 

Resource-Level RM Resource 
Hierarchy 

Figure 5: Layered Resource Management Architecture 

Once a request is admitted and enacted, real-time monitoring allows the 
workloads and delivered QoS to be measured. Adaptations are triggered when 
the delivered QoS falls outside acceptable threshold regions. As described in the 
detailed sections, there is commonality among the possible adaptations. The 
Enactment component is responsible for bringing adaptations into effect. 

Inter-Application 
Adaptation 
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Negotiate 
Translate 

Allocator 

Detect 

Translate 

I 
Inter-Application 

Adaptation 

Monitor 

Figure 6: Resource Management Components in Every layer 

Figure-6 shows the main components in each layer. The {R, A) arrows indicate 
the flow of service request and monitored or actual {QoS, Workload} respectively 

across layers. 

5.1       Mission-Level RM 
A mission is a set of applications, some of which may interact with one another 
The set is dynamic as applications may arrive and depart dynamically. RM for 
applications is viewed in the context of a global m.ss.on-wide objective^ 
Temporally a mission may have several phases, with possibly different 
objectives and constituent applications. Transition between phases may be 



triggered by any of the general trigger conditions considered in ARM, i.e., 
operator action, detected failure to meet current objective, etc. 

Services provided by the M-Layer 

The M-layer manages the underlying resources in such a manner as to meet 
mission-level objectives. This service may be viewed as being provided to a 
mission (rather than to individual applications). QoS parameters associated with 
the service are chosen to represent the mission-level objectives. An example of a 
mission-level objective is to maximize the overall value of the application set. 

5.2      Application-Level RM: A-Layer 

Applications may have different programming- or computational models. For this 
effort, an application is a multiple pipeline, with possibly a reconfigurable 
structure, as described in Section 4. The A-layer does not understand missions, 
but manages resources for applications to meet their individual QoS 
requirements. 

Services provided by the A-Layer 

The A-layer provides resource management for individual applications or their 
components. It translates the incoming service request and QoS requirements 
and generates requests to the R-Layer are for computational services, memory, 
and network services. The requests may be made for each service separately, or 
jointly. For example, the request for computation and memory services may be 
made together if the A-Layer wishes to constrain the allocation to be co-located. 

The A-layer also monitor application-level QoS of individual applications, which 
requires computing this QoS from information about the delivered QoS from the 
R-layer. Hence, the A-layer must at least monitor the actual values for all 
components in the application representation. Note that we are assuming 
composability of application-level QoS from its component-level QoS, which is a 
valid assumption for the multi-pipeline applications. 

Adaptation triggers include QoS violation of entire application or substructures, 
explicit request from the M-Layer, and detection of failure in lower layers. The A- 
layer decides if application-level adaptation is needed. Possible adaptations are: 

• Adjust the requested QoS of the application components in a way that 
does not violate application-level QoS delivered to the upper layer. Such 
adjustment may be localized to a subset of an application or it may be 
application-wide. 

• Without changing requested QoS, use the services of the R-Layer to 
perform ARA-style redistribution of already allocated resources. This is 
based on transfer of resources from application components experiencing 
better than requested QoS, to components with worse than requested 
QoS. 

10 



5.3      Resource-Level RM: R-Layer 

The R-layers represent resource hierarchies. In general, a platform consists of 
computers connected over networks. Each computer may be a Symmetric Multi- 
Processor (SMP), a distributed memory massively parallel machine (MPP), or a 
uniprocessor. Networks may include LAN's and high-performance interconnects 
providing shared memory. 

A SMP consists of processors and memory shared among all processors. A 
distributed memory MPP consists of MPP-nodes connected by a MPP-network, 
where MPP-nodes consist of one or more processors and memory shared 
between them. A workstation consists of a processor and memory. 

Service provided by the R-Layer 

The R-Layer manages computing, network and memory resources for whole or 
subsets of multi-pipeline structured applications. The R-Layer does not 
understand applications, although can do application-wide resource management 
when the pipeline structure submitted to it is for an entire application. The QoS 
parameters in the request from the A-Layer are those associated with multi- 
pipeline application components (e.g. nodes, arcs) and structures. 

Requests to the R-Layer are for computational services, memory, and network 
services. The requests may be made for each service separately, or jointly. For 
example, the request for computation and memory services may be made 
together if the A-Layer wishes to constrain the allocated resources to be co- 
located. 
The R-layer translates incoming service request QoS parameters to QoS 
parameters for individual processors and links, for example in the case of MPP's. 
The R-Layer monitors the delivered performance and performs low-level 
adaptation. As in all layers, adaptation triggers include QoS violation, and explicit 
request from the A-Layer. 

5.4      Architecture Evolution 

As mentioned earlier, the layered architecture described in Section 4 has been 
generalized into a hierarchical architecture for resource management. As 
applications are built on top of services and services may be built on top of lower 
level services resource management for the entire system is viewed as a 
hierarchy of service managers. Each node in the hierarchy can provide support 
for admission control, QoS translation, resource allocation, real-time monitoring, 
adaptation and enactment. The attached paper "Hierarchical architecture for real- 
time adaptive resource management" describes the generalized RTARM 
architecture. 

11 



6. Real-Time Instrumentation 
We used the Honeywell Scalable Programmable Instrumentation (SPI) system 
for real-time monitoring. SPI offers the capability of monitoring a heterogeneous 
system in terms of traditional metrics such as latency and execution times, as 
well as metrics that depend on application semantics. Compared with other 
monitoring approaches, SPI allows the construction and evaluation of arbitrary 
detectors using predefined as well as user-defined actions and it also allows 
distributed coordination of all instrumentation activity and data. 

Under this effort, we extended SPI in several ways - extensions to accommodate 
dynamically arriving and departing applications, and integration with the resource 
management system. 

Georgia Tech used their Falcon system for real-time monitoring. Falcon can 
detect significant changes in a number of performance metrics. These monitors 
produce instrumented streams of sampled parameter values. Sample parameters 
include subtask execution time, subtask communication time, communication 
volume, input frame rates, and other measures of application performance or 
resource utilization. It is also possible to monitor application-specific measures 
such as the frequency of specific message types, access patterns to internal data 
structures or any other measure that is representative of the application's 
resource usage. Detectors operate on these streams to produce detection events 
corresponding to potentially significant deviations in performance guarantees. 

7. ARM Run-Time System 

This section describes implementation of the main components of the ARM run- 
time system, including the ARM Layers, Multi-Application Infrastructure, and the 
ARM Control Infrastructure. 

7.1       Multi-Application Infrastructure 

The core of this implementation is an infrastructure to control the processes of an 
MPI application dynamically by shrinking and expanding the number of 
processes in a graceful manner. We used the LAM version of MPI because of the 
dynamic process spawning capability that it provides to the user. This 
infrastructure contains a two-level resource manager system (system resource 
manager and application resource manager). 

This infrastructure allows multiple applications to co-exist on the system under 
the control of a system resource manager. The system level resource 
management layer is between application level resource management and the 
operating system(s). The objective of the system resource manager is to 
continuously monitor and keep up the overall performance level as defined by the 
mission. This SW architecture is as shown in the following Figure. It enables: 

• Applications to be spawned on multiple (distributed) processors 
• Applications to receive a given QoS 
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- Negotiation between the resource manager and the application 
- Dynamic reconfiguration of the number of application processes as and 

when the need arises 
• Perform dynamic feedback adaptation operations within an application 

ARM assumes that the application programs use MPI (not necessarily the LAM 
version). All application processes must call the ARM initialization procedure 
when they start and a termination procedure when they exit. 

7.1.1. ARM Server 
We implemented a central ARM server (system resource manager) and built 
utilities (and APIs) through which multiple application programs can execute in a 
controlled manner. Currently the server provides the following run-time services: 

• Admit new applications 

• Expand (grow) current application in size 

• Shrink current application in size 

A user or an application agent can request these services. At any point of time, 
the server maintains information about resources, applications and the binding of 
resources to applications. It also maintains two request queues: one for the 
currently active applications and one for newly admitted applications. These 
queues are maintained for only those requests that require new (additional) 
resources. For example, admit and expand both requires resources. In the case 
of shrink, the request is handled immediately. Four types of triggers invoke the 
scheduler. 

• After an application admission 

• After an application departure 

• After an application shrinkage 

• After an application expansion request 

Currently, we have a simple FCFS scheduler that first considers the queue for 
the active applications, and then considers the queue for new applications for 
scheduling. 

7.1.2. ARM Agent 
ARM Agent is spawned automatically by the ARM server. Currently, for every 
application, the server spawns one agent, which in turn spawns the application 
processes We also implemented synchronization protocols for information 
exchange among the ARM Server, ARM Agents, and the application processes. 

Application Growth: The growth of an application (in terms of number of 
processes) can be initiated either by the server or by the agent. We have defined 
two types of protocols for their synchronization - a synchronous protocol and an 
asynchronous protocol. In the synchronous protocol, the server issues a "grow" 
command to the agent, which then informs all the application processes. If the 
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agent gets back acknowledgement from all of the application processes within a 
certain time, it sends back an acknowledgement to the server. If this 
acknowledgement is received by the server before its timer expires, it send a 
commit message to the agent which then does the same to all of application 
processes and then the grow process takes place. In case the timer expires in 
either the server or the agent, they issue a cancel message to the appropriate 
parties immediately. 

In the asynchronous protocol, the server is optimistic and sends only a single 
message to the agent and the agent is responsible to inform the server 
asynchronously about the success or failure of the operation. If the message 
does not reach the agent due to any reason, the server learns that only when the 
application departs. 

Application Shrinkage: As with application growth, shrinking can be initiated 
either by the server or by the agent. If an agent is the initiator, it asynchronously 
informs the server, which then makes an update. If the server is the initiator, it 
goes through the protocols. For shrink we have implemented two protocols 
similar to those for application growth. 

7.1.3. ARM Control Infrastructure 
This implementation consists of the ARM layers for admission and adaptation 
control. This package consists of several integrated modules - admission control, 
real-time monitoring, and feedback adaptation. The ARM layers (A-Layer and the 
R-layers) are bundled as a single library package used by a centralized ARM 
controller for admitting new applications. The new applications request the 
service through an ARM server. The ARM controller was implemented as an 
Event-Action machine of the SPI (Scalable Programmable Instrumentation) 
system, which was extended to handle dynamic arrival of the processes to be 
monitored. The control software architecture is as shown in the following figure: 
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Figure 7: ARM Control Infrastructure 

To start ARM, the LAM daemon is started by the user with the required hardware 
configuration. The user then starts the SPI loader, which starts the SPI main EA 
machine, the ARM controller, and the other required SPI EA machines. In the 
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current implementation, there is a single ARM controller instance and multiple 
monitor instances. Each ARA monitor is associated with the set of application 
processes and a SPI real-time display. 

To start an application, a user uses a client utility, which establishes connection 
with the ARM controller and forwards the user's request for admission, shrinkage 
or expansion. A new initialization protocol is added to all application processes to 
facilitate communication from the ARM controller to the application processes. 
This protocol requires application processes to establish a socket connection to 
the ARM controller. The application processes then continuously look for 
remapping messages from the ARM controller on this socket during execution. 

7.2      ARM Layers 
The control of a layer's functionality is embedded within a manager for that layer. 
These layer managers are responsible for allocation of resources and adaptation, 
using the services of the lower layer wherever necessary. 

7.2.1. A-Layer 
In the ARM implementation, the interface to the A-layer is through an object 
(class) called AppManager. The AppManager manager is a specialization of the 
Manager class. It contains objects such as the negotiator, allocator, enactor, 
detector and adaptor. The AppManager also has a reference to the R-layer 
manager (ResManager). This reference is created during the instantiation of the 
AppManager. The application (task) requests service from the A-layer using the 
method TestAndHoldQ of the AppManager object. The AppManager assigns an 
ID (task id), then uses its negotiator object to request appropriate service from 
the R-layer (since the A-layer by itself does not have resources). 

The Negotiator translates the application request into one that is understood by 
the R-layer. This translation is called the forward translation and it involves 
translating task structures along with workloads and QoS. After translation, the 
negotiator makes a request to the R-layer manager through the reference 
maintained by the AppManager. Once the request returns, the negotiator 
translates back the assigned QoS into the one understood by the A-layer 
(backward translation). After this, the control passes back to the AppManager, 
which then reviews the returned QoS and returns it to the requesting task along 
with a task identifier. Further interaction between the requester and the 
AppManager takes place through the following methods using the assigned task 
id- Reserve (), Release (), Abort (). Whenever resources are allocated, the 
AppManager maintains the task structures corresponding to the two layers along 
with their task ids and the resource allocation (QoS allocation) info in a hash 
table indexed by the task id. This is part of the TestAndHold () method. The task 
model understood by the A-layer is the 'App' class, which inherits from both 
Task' class and the 'Graph' class. 
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7.2.2. R-Layer 
The entry point for this layer is the ResManager object. It contains handles to the 
actual resources (managed by appropriate managers). The purpose of this object 
is strictly to provide a body for embedding the main control loop of the R-layer. 
The A-layer requests service from this object using the method TestAndHold (). 
The task model in R-layer is called the execution graph and is represented as a 
class named ExecGraph. The ResManager calls the negotiator of this layer to 
make request to the actual resource managers. 

7.3      ARM Controller 

The ARM controller is responsible for admission control and starting of 
application processes. Once applications processes are started, they send 
performance information to the ARM controller through SPI channels established 
during initialization phase of the application process. Depending on the 
application id (which is assigned by the ARM controller) of the process that is 
sending data, the performance data is routed to an appropriate monitor. Each 
application is assigned one monitor. When the ARA monitor decides to remap an 
application, it sends the new mapping to the ARM controller for that application. 
For this purpose, it uses a TCP/IP channel established between itself and all the 
application processes as part of the application initialization protocol. 

8. Demonstrations 

We developed three demonstrations for this project. The first demonstration was 
given in October 1997 on a network of Sun Solaris machines as shown in the 
Figure below. It showed QoS-based admission control and dynamic resource 
allocation for multiple synthetic sensor-based MPI applications. 

SPI 

Application 
process creation on 

Solaris stations 

Solaris Processes 

Figure 8: Vertical slice demonstration in October 1997 
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The vertical slice implementation included - a) a layered architecture for 
management of processor resources, b) admission control including QoS 
translation, and c) dynamic reconfiguration based on feedback of actual QoS 
(real-time monitoring, detection, and reallocation) within individual applications. 

Georgia Tech contributed two demonstrations focusing on the utility of the 
technology and techniques developed in this project. They developed several 
additional applications with the objective of demonstrating specific levels of 
improvement. 

Decision Models 
Experiments using a synthetic workload generator and the statically defined 
decision model parameters yielded promising results. With the Bayesian decision 
model we realized an overall reduction in unsuccessful invocations of the cost 
evaluator and number of unnecessary resource reallocations. This allowed more 
cycles for useful computation and masked the use of the more complex 
Markovian decision process. Experiments with frame latency showed similar or 
improved performance compared with the simple decision model for a 
significantly lower number of remappings. 

Integration of the reactive Bayesian model with the predictive Markovian model 
improved latency and reduced false reallocations under a variety of input 
conditions Under average input conditions, both models contributed to 
decreasing end-to-end latency and reducing the decision and enactment 
overhead. The Bayesian model proved better in high noise environments and the 
Markovian model proved better in low noise environments. In these situations, 
the less suited model provided good backup support for the more effective 
model Under high noise conditions, the Bayesian level filtered a much larger 
percentage of input spikes while the Markovian level ensured that performance 
did not fall below the real-time specifications. 

Vision Application 
Georgia Tech evaluated some of their adaptation techniques on a vision 
application called Pfinder. The application consisted of a camera function X- 
interface handler, and image processing functions. Adaptation was performed by 
reconfiguring the application mapping based on on-line monitoring of data flow 

rates. 

Evolution of Demonstrations 
Since the merger of this project with Real-Time Adaptive Resource Management 
(RTARM) in 1997 we targeted our demonstrations to the new hierarchical 
resource management architecture. A description of the technical features of the 
demonstrations is given in the attached papers. 
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9. Publications 
The following publications based on this work are attached. Some of the 
publications describe research derived only partly from this project, and contain 
the results of subsequent continuing work. 

• D. Ivan Rosu, K. Schwan, S. Yalamanchili, and R. Jha, "On adaptive 
resource allocation for complex real-time applications", in Proceedings of 
the 18th IEEE Real-Time Systems Symposium, San Francisco, December 
1997. 

• D. Paul, S. Yalamanchili, K. Schwan, and R.Jha, "Decision models for 
adaptive resource management in multiprocessor systems". 

• M. Cardei, I. Cardei, R. Jha, and A. Pavan, "Hierarchical Feedback 
Adaptation For Real Time Sensor-based Distributed Applications" 

• I. Cardei, R. Jha, M. Cardei, and A. Pavan, "Hierarchical Architecture For 
Real-Time Adaptive Resource Management". 
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Abstract 

Resource allocation for high-performance real-time ap- 
plications is challenging due to the applications' data- 
dependent nature, the dynamic changes in their external 
environment, and the limited resources available of the 
embedded systems on which they run. These challenges 
may be met by use of Adaptive Resource Allocation (ARA) 
mechanisms that can promptly adjust resource allocation to 
changes in applications' resource needs, whenever there is a 
risk of failing to satisfy the application's timing constraints. 
Although not decided by the application, such adjustments 
satisfy the application's adaptation capabilities. ARA elim- 
inates the need for 'over-sizing' real-time systems to meet 
worst-case application needs. This paper proposes an ap- 
plication model used to describe the application "s resource 
needs and its adaptation capabilities. The model also de- 
scribes the runtime variation of application needs. The pa- 
per also proposes a satisfiability-driven set of performance 
metrics for capturing the impact of ARA mechanisms on the 
performance of real-time applications. The relevance of the 
proposed metrics set is demonstrated experimentally, us- 
ing an adaptive, synthetic application designed to represent 
time-critical applications in C'V systems. 

1. Introduction 

Motivation. The resource management problems for real- 
time and embedded applications are exacerbated by the dy- 
namic changes in their external environment and by the 
restrictions on resource availability. One commonly used 
solution is the worst-case resource allocation. In many 
cases this is not a realistic option because of the exceedingly 

•Funded in pan by DARPA through the Honeywell Technology Center 
underContractNo. B09332478 and Contract No. B09333218,andbyNSF 
equipment grants CDA-9501637, CDA-9422033 and ECS-9411846. 

high resource estimates resulted from complex interactions 
among the application components. If static resource al- 
location is not viable, adaptive methods must be used to 
adjust resource allocation to changes in the application's 
needs, therefore reducing the likelihood of failing to meet 
its real-time constraints. 
Contributions. This paper describes and evaluates models 
and mechanisms for Adaptive Resource Allocation (ARA) 
in the context of high performance, embedded applications. 
We consider applications with data-dependent execution, 
driven by event streams, composed by multiple, possibly 
parallel interacting components. Runtime changes in event 
rates and more importantly, in the data content of these 
events cause important changes in the resource needs of var- 
ious application components. For such applications, it is 
simply not feasible to model accurately the per-event pro- 
cessing and communication needs. This class of applica- 
tions includes radar systems [26], robots [7, 35, 39], target 
recognition, multi-object tracking, hypothesis testing [25]. 

ARA mechanisms can be used to promptly adjust re- 
source allocation to changes in applications' resource needs, 
whenever there is a risk of failing to satisfy the application's 
timing constraints. Although not decided by the applica- 
tion, these adjustments satisfy its adaptation capabilities 
and eliminate the need for 'over-sizing' real-time systems 
to meet worst-case application needs. 

This paper describes a novel model for capturing an ap- 
plication's adaptation capabilities by specifying the resource 
needs corresponding to each acceptable configuration. In 
addition, the model permits to capture the runtime varia- 
tion of the resource needs caused by unexpected changes in 
application behavior. 

Given the real-time nature of the applications targeted by 
this research, we propose to evaluate the ARA mechanisms 
by their impact on the satisfiability of the applications' real- 
time constraints. Specifically, we submit that it is essential to 
consider the latencies with which ARA mechanisms respond 
to changes in application needs when attempting to restore 
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the satisfiability of real-time constraints. The quality of 
ARA decisions is evaluated with respect to how fast the 
application can return to acceptable performance and how 
good the performance in steady state is compared to the 
levels imposed by applications' real-time requirements. 

In this study we identify elements that contributed to the 
effectiveness of ARA methods and heuristics. More specifi- 
cally, we experimentally show the effects of early detection, 
enactment overhead, and incremental reallocation heuris- 
tics. Assumptions and Experimental Environment. In 
this work we assume that a multi-machine environment is 
destined to a single, complex application. As aresult, perfor- 
mance perturbations are produced only by dynamics in the 
application's external environment or by changes in resource 
availability due to failures or explicit removals/additions. 
We also assume the explicit use of admission control mech- 
anisms to guarantee sufficient resources to meet an applica- 
tion's initial required performance levels. 

The models and heuristics proposed here are evaluated in 
the context of a centralized ARA controller. Online moni- 
toring is performed with mechanisms described in [14]. Ex- 
periments are conducted with a synthetic application run- 
ning on a cluster of workstations. The application is de- 
signed by Honeywell in the context of high performance 
C3/1 applications[25]. 
Related research. Previous work has described frameworks 
and mechanisms that facilitate the creation and use of online 
adaptation heuristics for real-time applications [5, 18, 22], 
including mechanisms for runtime monitoring, adaptation 
enactment, and mechanisms that ensure the reliable exe- 
cution of applications [5, 22] or maintain high application 
throughput [18]. In comparison, the focus of this paper is 
not to define new frameworks, but instead, to define models 
and methods to be used in such frameworks and to analyze 
their effect on the adaptive applications. 

Extensive research has addressed the problem of dynamic 
resource allocation for both the real-time [1, 3, 4, 9, 15, 17, 
31.40] and the non-real-time [13, 23, 27, 34] domains, typ- 
ically considering dynamic resource allocation in the con- 
text of load balancing. However, the methods developed in 
these studies do not fit our target application model. This 
is because our model assumes that the resource needs of 
a time-constrained task, even when generated by the same 
type of event may vary throughout the execution of the ap- 
plication. This variability prevents us from using a periodic 
task model [15, 17] in which performance requirements are 
fixed throughout an application's execution, and therefore 
worst-case needs have to be considered. It also prevents 
us from using a sporadic task model, as in the real-time 
[9, 31, 40] or the non-real-time [13, 34, 23] domains, be- 
cause of the high overhead of taking resource allocation 
actions at each task arrival. In addition, the specification of 
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a real-time parallel task, as needed for an application com- 
ponent, is either too complex - in the real-time models, or 
incomplete - in the not-real-time models, because it does 
not describe the interaction among the parallel models of 
the same component. 

Resource reallocation triggered by runtime variation of 
application needs has received less attention. The schemes 
proposed for both real-time [4,32,17] and non-real-time [18, 
23, 27, 38] domains do not consider the transitory effects of 
reallocation mechanisms on the satisfiability of application's 
performance constraints. In contrast, they are primarily 
interested in using adaptations to attain optimal average- 
case performance. 
Overview of paper. In the remainder of this paper, we 
first identify the application and the ARA model driving our 
research (Section 2). In Section 3, we describe two impor- 
tant components of the application model used for ARA: 
the application resource usage model and the application 
adaptation model. In Section 4 we identify specific ARA 
performance criteria derived from the real-time nature of 
our target application. Last, in Section 5, we demonstrate 
by experiments the relevance of these criteria and identify 
methods that help improve ARA performance. 

2. Real-Time Applications and ARA 

Application Model. Our research targets reactive, high per- 
formance applications that must meet well-defined real-time 
constraints in dynamic execution environments. Each such 
application consists of multiple interacting components ca- 
pable of executing in a distributed environment consisting 
of parallel machines, embedded-system components (e.g., 
signal processors), and user interface stations (e.g., work- 
stations). Components are either sequential or parallel tasks 
and their resource needs may be data-dependent varying 
with changes in the rate or content of data inputs. In re- 
sponse, many components are programmed such that they 
can adapt their resource needs at runtime, by changes in 
their execution mode, algorithms or specific attributes such 
as the level of parallelism or communication protocols. 

An application's execution is driven by event streams 
produced by the external environment or application com- 
ponents. Each event stream is processed by a fixed set of 
components, with fixed precedence constraints described by 
a communication graph. The input pattern of a stream may 
vary with changes in the execution environment. We use 
the term intra-communication to name the communication 
among parallel modules of the same application compo- 
nent, and the term inter-communication to name the com- 
munication between the component and its neighbors in the 
communication graph. We assume that, for each event, the 
intra-communication happens throughout the event process- 
ing while the inter-communication happens in a burst at the 
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end of the source component computation. 
The application's performance requirements are defined 

by constraints with respect to event rate, end-to-end latency, 
and inter-component relative completion delays. Each tim- 
ing constraint may have specific bounds on its miss rate 
and/or burst. 

1500 Hz 
Missile 

4 Hz/'' 

• • ■> QntercepO 

Sensor/actuator 

App. component 

Figure 1. Radar Application 

Sample Application. One sample application driving this 
research is a radar system. Figure I presents part of such a 
system, as described in [26]. Detection, Track Mt and Track 
Identifaie computation-intensive tasks, each well suited for 
parallel implementation [25]. Over time, their processing 
and communication needs vary with the number and char- 
acteristics (e.g., amplitude, direction) of dwells. Given the 
nature of their computation [25], these tasks can adapt by 
changes in their levels of parallelism. 

The main event streams in the radar system are (l) the 
input from the radar, (2) the input from the missile tracking 
device, and (3) the missile control requirements. Timing 
constraints concern necessary event rates and processing 
latencies. For instance, the rate of the radar input is 1500Hz, 
and the missile control events must be sent at a rate of 
4Hz. Additional constraints are: a 0.2 second-bound on the 
latency between Detect-tng a potential missile and engaging 
Search Control, and 0.5 seconds bound on the execution of 
Engage. 

The radar system is one of the many applications con- 
cerned with processing signals from a sensor suite, forming 
hypothesis about and assessing the situation, and taking 
an appropriate response based on data observed and pro- 
cessed over a period of time. Other examples are multi- 
hypotheses tracking and image understanding[25]. Often 
the front end of these applications consist of signal process- 
ing stages whose computational needs are predictable, as 
they are independent of the signal values. However, com- 
putations at the back end depend on the semantic content of 
the signal values, being often heavily data-dependent. 
Specific Resource Allocation Problems. The application 
model presented above poses interesting resource allocation 
problems. First, the event-stream-based execution makes 
viable the option of using long term resource allocation. 
Alternatively, a short term resource allocation based on dy- 
namic real-time scheduling decisions [31,3, 40], is prone 
to add a too much overhead to each event processing, in 

particular because the application components might often 
be parallel tasks executing in a distributed environment. 

Second, the worst-case based allocation, the typical ap- 
proach used in complex real-time systems, might not be 
appropriate for any application in our targeted class. In the • 
context of data-dependent resource needs, it might be very 
difficult to evaluate the worst-case needs with enough accu- 
racy to ensure both a safe execution and acceptable resource 
utilization. For example, in the radar system (see Figure 1), 
Track Init has very data-dependent needs as they vary with 
the number of dwell returns above a selected threshold and 
the ambiguity of spurious tracks. Thereby, the worst-case 
needs depended on the worst-case execution scenario, which 
makes them hard to evaluate and possibly very large com- 
pared to the needs of a typical execution scenario. 

Our solution to these problems is to use adaptive re- 
source allocation (ARA). By taking advantage of the appli- 
cation's adaptation capabilities, this method permits using 
long-term resource reservations while accommodating run- 
time changes in resource needs. 
Adaptive Resource Allocation. ARA is a resource man- 
agement paradigm that takes advantage of an application's 
ability of runtime adaptation in order to accommodate dy- 
namic resource needs and to satisfy the system goals with 
respect to performance and resource utilization. In the con- 
text of our target application model, the goal of ARA is to 
insure that, at any time, the performance requirements of the 
application are satisfied. 

In our approach, the ARA infrastructure can satisfy two 
types of resource requests: explicit and implicit. An ex- 
plicit request is issued by the application upon a component 
arrival to the system, or whenever the application deems 
necessary to adjust its resource usage. An implicit request 
is issued by the ARA infrastructure itself, when changes in a 
component's resource needs considerably increase the like- 
lihood of failing to satisfy of the application's performance 
requirements. 

The implicit requests, and sometimes also the explicit 
ones, are satisfied by adjustments of the resource allocation 
of one or more application components decided by the ARA 
infrastructure itself. Such adjustments are called automatic 
because they are not explicitly required by the application. 
They are performed only when otherwise the performance 
constraints of the application are very likely to be violated, 
and they observe strictly the application/component specific 
adaptation capabilities. For example, an automatic adjust- 
ment might be performed when, due to the lack of resources 
in the system, a new application component can not be ac- 
commodated unless the allocation of other components is 
reduced. Similarly, an automatic adjustment can be trig- 
gered by an unexpected change in the execution environ- 
ment that causes a change in the resource needs that can not 
be accommodated in the current configuration. For exam- 
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pie, a change in the content of the input data may cause an 
increase of event processing time for a particular compo- 
nent that would require extending the component's level of 
parallelism in order to keep with the event rate. 

In an alternative approach[5], the resource management 
infrastructure can satisfy only explicit requests, but it can 
provide the application with information on its observed 
resource usage. The resource usage adjustment decisions 
are made by the application itself. 

In contrast, our automatic adjustments based approach 
permits to move part of the burden of the adaptation de- 
cisions from the application to the resource management 
infrastructure. A similar approach is taken in [18, 17] and, 
also, in our previous work [32]. The benefit of this approach 
is that unexpected changes in the application's resource 
needs are likely to receive faster response. Compared to 
the application, the resource management infrastructure has 
faster access to all the information related to the resource 
availability and current resource usage pattern of each ap- 
plication component. In addition, the application overhead 
with tracking the runtime variation of its requirements is 
eliminated. The drawback is that, compared to application- 
level decisions, the ARA decisions may fail to produce the 
most appropriate resource assignment for each particular 
situation. Likewise, ARA may result in changes in resource 
allocations not necessary for the good performance of the 
application. However, the models and mechanisms em- 
bedded in an ARA infrastructure can help minimize these 
drawbacks. 

Internal        Detection 
Application i  

Model    i Allocation 
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Figure 2. Centralized ARA controller 

In order to achieve its functionality, the ARA infrastruc- 
ture should include mechanisms for: (1) collecting infor- 
mation about application resource usage and resource avail- 
ability; (2) detecting significant variations in application 
resource usage; (3) inferring the cause of observed varia- 
tions and assessing the necessity of an automatic adjustment 
of the resource usage; (4) making decisions about resource 
assignments and automatic resource allocation adjustments; 
(5) notifying the application about significant changes in 
its resource usage; (6) notifying the application and the re- 
source providers about changes in resource allocation and 
assisting them in the enactment of these changes. We assume 
that each application component capable of runtime adap- 

tations has specific reconfiguration procedures that can be 
triggered by notifications of reallocation decisions received 
from the ARA infrastructure. 

The ARA functionality is based on knowledge of the ap- 
plication characteristics. These characteristics are described 
by an internal application model. Besides the structure of 
the application (components, event streams, communica- 
tion graphs) and its performance requirements, the model 
describes for each application component,.the acceptable 
configurations (i.e., those instances of resource allocation 
that permit it to perform correctly) and the runtime varia- 
tion of resource requirements. The model is used for the 
interpretation of monitored information, the estimation of 
system performance upon changes in resource allocation, 
and the guidance of decision heuristics. The internal appli- 
cation model is importantly influencing the way the ARA 
infrastructure can override the drawback with respect to the 
appropriateness of its decisions, and the execution overheads 
of the ARA mechanisms. 

The performance of the overall ARA infrastructure and 
of each of its mechanisms reflects in the enabled applica- 
tion performance not only by how appropriate the resource 
allocation decisions are but also by how fast the ARA in- 
frastructure responds to unexpected changes in application 
behavior. A short response time helps to reduce the in- 
tervals in which the application does not satisfy its timing 
constraints and to remain within the acceptable miss rate 
limits. Delayed ARA decisions or decisions that take too 
long to be enacted are less likely to reduce the risk of failing 
to satisfy the application's timing constraints. 

In our work, the ARA functionality is provided by a 
module called ARA controller. This module can have a dis- 
tributed or a centralized architecture. Figure 2 depicts a 
centralized controller, similar to the one used in our exper- 
iments. The controller's interaction with the application is 
restricted to monitoring and reallocation enactment. 

In the next sections we will address the internal appli- 
cation model and the performance evaluation of an ARA 
infrastructure. Both these issues have significant impact on 
how the ARA can help an adaptive application to cope with 
unexpected changes in its resource usage and with restriction 
in resource availability. 

3. Internal Application Model 

This section describes the first novel contribution of our 
research. We propose models describing the application re- 
source usage and its adaptation capabilities, both part of the 
internal application model maintained by the ARA infras- 
tructure: 

• The resource usage model (RUM) describes an appli- 
cation's expected the computational and communica- 
tion needs and their runtime variation. 
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• The adaptation model (AM) describes an applica- 
tion's acceptable configurations in terms of expected 
resource needs and application-specific enacting over- 

heads. 
The RUM is used in the ARA decision making process 

to evaluate the current application's resource needs and to 
determine how the performance requirements will be sat- 
isfied. The AM permits the ARA controller to decide ap- 
propriate resource allocation adjustments without incurring 
any negotiation overhead as it is the case with other resource 
management solutions that support runtime adaptations! 19]. 
In addition, the provision for estimations of the adaptation 
overheads permits the ARA controller to understand and 
evaluate tradeoffs between alternative adaptation strategies. 
In the remainder of this section we describe the two models. 

3.1. The Resource Usage Model 

Background. The resources available to the application 
are nodes and the communication links between them. A 
node is characterized by its speed (MIPS or MFLOPS) and 
the size of the local memory. Each node uses a schedul- 
ing policy able to guarantee the resource reservations and 
to provide feedback to the application on its actual resource 
usage, as those proposed in [20, 24]. A communication link 
provides a unidirectional connection between two nodes. 
It is characterized by one or more protocols (e.g., reliable, 
FIFO unreliable), with known available bandwidth and cost 
of I/O operations at each end-point - a constant per-message 
overhead and a per-byte overhead. For simplicity, the cur- 
rent RUM is based on uniprocessor nodes. Shared-memory 
multi-processors are modeled as sets of nodes, with equally 
distributed memory resources and connected by very high- 
speed communication links. 
Model Formulation. The RUM describes the resource 
needs for each pair of application component and event 
stream. In the followings such a pair will called "a compo- 

nent". 
Each component is described as an internally parallel 

task, with multiple cooperating modules that are indepen- 
dent from the point of view of resource allocation. The 
component's resource needs are described by two models - 
static RUM and dynamic RUM. The static RUM describes 
the expected computation and communication needs of the 
component, while the dynamic RUM captures the runtime 
variation of the component's needs with respect to the static 

RUM. 
The parameters of the static RUM are the following: 
• parallelism level; 
• execution time; 
• intra-communication protocol; 
• intra-communication maximum message size sent; 
• intra-communication total size sent; 
• total number of intra-communication messages sent; 

• inter-communication protocol; 
• inter-communication size sent; 
• total number of inter-communication messages sent; 
• processor speed factor. 

The inter-communication related parameters are defined 
separately for each component following in the event's com- 
munication graph. 

The static RUM is specified by the application as part of 
an explicit request for resources. Its parameters can be es- 
timated using traditional approaches like algorithm analysis 
or code profiling. The processor speed factor describes the 
performance of the node used for profiling. 

Each parameter of the static RUM is assumed to be 
the largest value over the corresponding parameters of all 
the component's modules. This is equivalent to assuming 
that all modules have identical resource needs, the intra- 
component communication between any pair of modules is 
identical, and a module's incoming communication is the 
sum of all messages sent by all the other modules. 

These assumptions keep the model safe and simple. 
However, the static RUM can be easily extended to describe 
the needs of each module of the application component. It 
can also be extended to include additional resource types as 
memory. 

The dynamic RUM refers to those parameters of the static 
RUM that are likely to vary at runtime due to unexpected 
changes in input data content. The model is described by: 

• execution factor; 
• intra-component total size factor; 
• intra-component maxim message size factor: 
• inter-component total size factor. 

Each factor represents the ratio between the maximum 
monitored performance of the corresponding metric over 
an application specific time interval and the static RUM 
specifications. The dynamic RUM is maintained by the 
ARA controller based on monitoring data received from the 
application. 
Model Discussion. Given the static RUM, the ARA con- 
troller can obtain a good estimate of the component's com- 
putation and communication needs and use this informa- 
tion together with information on the event's input pat- 
tern and on the component deadline, to make per-resource 
schedulability analysis and reservations. The computation 
needs include the execution time and the computation re- 
lated to performing the communication. The latter is esti- 
mated based on the number of I/O operations and the total 
amount transferred. The communication needs result di- 
rect from the model. Different from the typical real-time 
connection model [2], the static RUM does not model the 
intra-communication burst (the inter-communication being 
assumed bursty). This parameter is only related to the mem- 
ory needs on the nodes and in the network. We ignore it 
because it can be substituted - for the node, by adding a 
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memory parameter to the static RUM, and - for the network, 
by specifying a 'maximum message size' large enough to 
cover the maximum burst. 

The dynamic RUM permits the ARA controller to make 
appropriate automatic adjustments even when the observed 
resource needs are larger than the application specifications. 
Such a situation may appear when the static RUM does not 
describe the worst-case needs, either because it was not pos- 
sible to estimate them accurately or because the programmer 
decided so, possibly driven by the very small likelihood of 
situations where the needs get close to the worst-case limit. 

The information needed to maintain the dynamic RUM 
could be obtained with low monitoring overhead from the 
instrumentation of the communication library. 
Related Work. The resource usage model introduced here 
improves upon the deficiencies of real-time task models used 
in previous research [37, 10, 11, 16, 21] that do not permit 
for a low-complexity description of a parallel component. 
According to such models, a parallel application component 
should be described by a set of tasks with precedence con- 
straints, each with fixed computation and communication 
needs, and with the I/O operations occurring only at the 
beginning and the end of a task (or event) execution. This 
would require each parallel component to be decomposed 
into multiple, small granularity tasks. If feasible, such com- 
plex decomposition would significantly increase the ARA 
decision overhead Despite its reduced level of detail that 
keeps the model simple and the decision overhead low, the 
RUM permits good estimates of the task performance. 

The RUM also improves on previous parallel task mod- 
els used in load balancing or task assignment problems 
[12, 17, 6, 27, 28, 29, 36] that do not describe the intra- 
communication needs. By considering these needs, the 
RUM enables a better resource management and a better 
estimation of the communication effects on the application 
performance. 

3.2. Adaptation Model 

Model Formulation. • The adaptation model describes the 
acceptable configurations and the corresponding adaptation 
overheads for each pair of application component and event 
stream. 

An acceptable configuration is described by: (1) config- 
uration id, used by the ARA controller to notify the appli- 
cation about the changes in its resource allocation; (2) static 
RUM, specifies the resource needs as described in Sec- 
tion 3.1; (3) adaptation overheads, described separately for 
module start-up and shut-down. The adaptation overheads 
are described by: the amount of state to be transferred, and 
the execution time of the corresponding procedures (exclud- 
ing communication). 

The adaptation model is specified by the application upon 
an explicit request for resources. For each application com- 
ponent several acceptable configurations may be described. 
The ARA assumes that the static RUMs for all configura- 
tions in an adaptation model are compatible, in the sense of 
describing the requirements of solving the same problem in 
different configurations. 
Model Discussion. The set of acceptable configurations 
permits automatic adjustments of a component resource us- 
age without negotiation. The adaptation overhead permits 
the ARA infrastructure to estimate and control the enact- 
ment overheads, which can affect the short-term application 
performance. 
Related Work. The inclusion of the adaptation overhead 
in the description of an acceptable configuration makes our 
model different from other schemes that allow the appli- 
cation to specify a set of acceptable configurations [1] at 
resource request time. 

Our current model does not allow to specify the "value" 
each particular configuration brings to the application as in 
[1]. This is motivated by the current goal of our ARA: sat- 
isfy the application's performance requirements and with no 
concern for the overall "value" of the application. Anyway, 
our adaptation model can be easily extended to include a 
value parameter as well. 

Background. Each adaptive application component has 
several acceptable configurations. In general, the overhead 
of instantiating a new configuration has an application- 
independent and an application-dependent part. The 
application-independent overheads include the start-up of 
a new parallel module and the resource reservations (on the 
host and in the network). The application-dependent over- 
heads, called here adaptation overheads, are determined by 
the component-specific reconfiguration procedures. We as- 
sume these are primarily determined by state transfers and 
initializations, and are significant when switching between 
configurations with different level of parallelism. We also 
assume that the ARA controller can evaluate the application- 
independent overheads. 

3.3. Using the Models 

We briefly describe how the RUM and the adaptation 
model are used by the ARA infrastructure. Details can be 
found in [33]. 

The application requests an initial resource allocation 
by specifying an adaptation model. Based on the current 
resource availability, the ARA controller chooses an accept- 
able configuration, performs the corresponding reservations 
and notifies the application. 

At runtime, each component is described by a current 
RUM. The static RUM corresponds to the acceptable con- 
figuration selected by the last allocation decision. The dy- 
namic RUM is maintained based on the current static RUM 
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and monitoring information. 
When the likelihood of failing to satisfy the application's 

performance requirements increases above an application 
specific acceptable threshold, the ARA controller can de- 
cide an automatic adjustment of the application's resource 
allocation. 

During the ARA decision, for each component, the static 
RUMs of its acceptable configuration are scaled by the cor- 
responding dynamic RUM parameters. If for some compo- 
nent the current usage is larger than the current static RUM, 
the scaled static RUMs will describe needs larger than the 
initial specifications, prone to fit better the new application 
behavior. On the other hand, if the current needs of some 
component are lower than the specifications, the scaled static 
RUMs will describe smaller needs, enabling the ARA con- 
troller evaluate the unused resources and to take advantage 
of them in providing other components/applications with 
better service. 

4. ARA Performance Characterization 

The second contribution of our research is the proposal 
of a satisfiability-driven approach to evaluating the perfor- 
mance of an ARA infrastructure, different from the typical 
optimality-driven approach. In the context of a real-time ap- 
plication, we claim that the ARA infrastructure's reactivity 
is often more important than the optimality of its decisions. 
In addition, each ARA decision instance is equally important 
to the application, therefore we do not consider appropriate 
to measure the performance by averages over a large set of 
instances. 

Our experiments show that delays in adjusting the re- 
source allocation to changes in the application behavior in- 
crease the delays to reaching a safe steady state. Thereby, 
resource allocation characterized by large decision and en- 
actment overheads, as an optimal decision is very likely to 
generate, increases the likelihood of failing to satisfy the 
application's timing constraints. For instance, in a hetero- 
geneous distributed system, an optimal minimization of the 
end-to-end latency may require migrating all or many of the 
application components to more appropriate nodes. Such a 
reallocation decision may not be appropriate if during the 
enactment more events than acceptable miss their deadlines. 

Focusing on the satisfiability of the application's perfor- 
mance requirements, we evaluate the performance of the 
ARA infrastructure by its response to a single variation in 
the application behavior that increases the risk of violat- 
ing the performance requirements, called critical variation. 
Specifically, we consider the following metrics (see Fig- 

ure 3): 
• reaction time - the period between the occurrence of 

the critical variation and the completion of the cor- 
recting reallocation enactment; 

acceptable upper 
bound Enactment 

Completion 
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Time    Recovery 

Time 
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Figure 3. Performance Metrics for the evalua- 
tion of an automatic ARA decision 

• recovery time - the interval between the enactment 
completion and the restoration of an acceptable per- 
formance level; 

• performance laxity - the difference between the re- 
quired performance, and the steady state performance 
after reallocation; 

A good ARA controller is expected to have a low reaction 
time, low recovery time and large performance laxity. 

These metrics reflect the effect of ARA mechanisms on 
the application's performance constraints satisfiability: re- 
covery time and performance laxity relate to the quality 
of ARA reallocation decision, while reaction time relates 
to the overall ARA mechanisms: detection, decision, and 
enactment. 

None of the above metrics can completely describe the 
ARA controller's performance. Specifically, performance 
laxity cannot measure the transitory effects of reallocation, 
while reaction time and recovery time do not reflect steady 
state improvement. Moreover, trade-offs exist between fo- 
cusing on performance laxity vs. reaction time. Optimal 
performance laxity may result in reaction times that exceed 
acceptable delays due to high decision or enactment over- 
heads. 

When interested in characterizing the whole controller's 
performance, not only a single instance of critical variation, 
the reaction time and recovery time can be estimated by their 
maximums and the performance laxity by its minimum over 
all instances of critical variations. 

The proposed metrics set is relevant for a real-time ap- 
plication. Poor reaction time and recovery time increase the 
time interval during which the application's performance 
constraints are not satisfied. Poor performance laxity in- 
creases the risk of failing to satisfy the constraints. Next 
section will demonstrate by experiments the relevance of 
reaction time. 

Another interesting issue about the ARA infrastructure's 
performance is the necessity of automatic adjustments. The 
perturbation induced on the application by a not-necessary 
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adjustment increases the risk failing to meet the constraints. 
Unfortunately, many times to assess the necessity of an ad- 
justment requires knowledge on the future evolution of the 
system, which typically is not available. For instance a sin- 
gular spike in CPU needs should not trigger an increase of 
the resource allocation for the corresponding component. 
We do not include this metric in our set, but we consider it 
when designing the mechanisms of ARA infrastructure. The 
necessity metric is related to detection and state assessment 
mechanisms (see Section 2). 
Related Work. Previous studies considering automatic ad- 
justments for ARA of real-time applications [17, 18] typi- 
cally compare the performance attained with ARA against 
optimal solutions: [18] considers the performance loss with 
respect to an ideal ARA mechanism with instantaneous de- 
tection, optimal decision, and no overheads, while [17] fo- 
cuses only on the optimality of the allocation decision. In 
contrast, we submit that the optimality of dynamic resource 
management is less important than the fact that an applica- 
tion's timing constraints are better satisfied. 

5. Factors for ARA Reaction Time 

In this section we consider the detection and the real- 
location decision mechanisms and show how their design 
can affect the reactivity of the ARA controller, and con- 
sequently, the satisfiability of an application's performance 
requirements. Previous ARA related studies either con- 
sidered application specific detection as a black-box[27], or 
performed detection mechanisms periodically at application 
independent intervals[17, 32]. Our experiments show that 
the ARA infrastructure performance is improved if the ap- 
plication characteristics and the current state are considered 
when choosing the methods for detection and allocation de- 
cision. In addition, our experiments show that the reaction 
time, component of satisfiability-driven metric set proposed 
in Section 4 is a relevant performance metric: the better 
the ARA infrastructure reaction time, the better application 
performance. 

The experimental results reported in this study are ob- 
tained with a synthetic, distributed application designed by 
Honeywell in the context of high performance C*I applica- 
tions [25]. The application performs on a cluster of eleven 
UltraSPARC-I Model 170 workstations with an MPI-1 inter- 
face over 100Mbit switched Ethernet links. The application 
consists of multiple communicating components connected 
by an acyclic graph of communication links. Each com- 
ponent can adapt its execution to span over any number of 
processors. Each component module executes the following 
steps: (1) receive a message from each of the modules of 
the predecessor components, (2) execute according to the 
computation and intra-component communication pattern 
specific to its component, (3) send a message to each of the 

modules of the successor components. 

Figure 4. Configuration of Synthetic 
Application: 6-stage pipeline 

In the following experiments the synthetic application has 
a pipeline configuration (see Figure 4). All events have the 
same type. They are periodically produced by the Source, 
consumed by the Sink and processed by the intermediate 
components. For each component, the step (2) mentioned 
above consists of: (2.1) exchanging a message with all of 
the modules in the same component; (2.2) computating for 
an amount of time that depends on: the parallelism level 
of the component and corresponding speedup coefficient; 
(2.3) exchanging messages as in (2.1). A stochastic model 
is used to emulate a step-like data-dependent variation of 
computation and communication needs. 

Enactment is performed on event boundaries. The mo- 
ment of performing the enactment (i.e., the id of the event be- 
fore whose processing the resource exchange is performed) 
is determined by event currently processed by the clos- 
est predecessor of all of the components participating in 
the resource exchange. This method minimizes the en- 
actment overhead because it requires no synchronization 
among donors, receivers and the components with which 
they communicate. 

The adaptation overhead is small and identical for all 
components. In consequence, we do not consider it in re- 
allocation decisions, but we do consider the application- 
independent resource reallocation overhead. 

In the followings, "acceptable limit" for a particular per- 
formance metric is the upper bound derived from a corre- 
sponding performance constraint. In all the experiments the 
acceptable miss burst is one. 

5.1. Detection 

In this section we address the effect of early detection. 
The performance of a detection method is evaluate by: 
promptness - how soon after its occurrence, the critical vari- 
ation is signaled; trustworthiness — what ratio of signaled 
variations is critical. The prompter the detector the earlier 
the detection is, and in consequence, the lower the ARA 
infrastructure's reaction time is. Detector trustworthiness is 
related to the necessity of the reallocation actions: the trust- 
worthier the detector, the less risk to make a not-necessary 
adjustment. In the following experiments, any detection 
signal is triggering an automatic adjustment. 

Promptness is more important than trustworthiness 
when the timing constraints are being violated. Figure 5 
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Figure  5.   Promptness  vs.      trustworthiness: 
threshold-driven vs. variation-driven detector 

Figure 6. Effects on latency: component- 
based detector vs. direct detector 

presents the influence of detection promptness on the end- 
to-end latency variation when the execution time of the bot- 
tleneck component is critical (i.e., very close to its events' 
inter-arrival intervals). We experiment with two detectors: 
a threshold-driven detector, which checks the sample value 
against the acceptable limit, and a variation-driven detector, 
which is similar to the Sobel detector used for edge-detection 
in computer vision [8,30]. Among the two, the edge detector 
is prone to be trustworthier: it uses a range of points before 
and after the point if interest, uses smoothing techniques to 
eliminate the effects of noise.   Unfortunately, these tech- 
niques result in a poor promptness. The threshold-driven is 
likely to be untrustworthy because it is sensitive to noise, but 
it is definitely prompt. The impact of a prompter detector 
is demonstrated in Figure 5 which shows (e.g., see Event 
ID 80) that the number of events failing the end-to-end la- 
tency constraint can be much larger with the variation-driven 
detector (smoothing size is 5, and sample-range size is 11). 

On the other hand, a trustworthy detector can be used 
to detect changes in the application behavior which do not 
immediately cause the performance constraints to be vio- 
lated, but which increase the risk of such a situation.   In 
our experiment, a change in execution time which caused 
the end-to-end latency to get within 10<7r of the acceptable 
limit (see Event ID 25), is signaled by the variation-driven 
detector and triggers a reallocation which reduces the la- 
tency to more than 15% below the acceptable threshold. A 
threshold-driven can not be used for detecting changes that 
are not critical but increase the risk of failing to satisfy the 
performance constraints because of its sensitivity to spikes. 

Promptness can be affected by method used to evalu- 
ate the metric of interest. Consider a performance metric 
that can be evaluated either directly or by composing several 
independent metrics. For instance, end-to-end latency can 
be measured directly or as it can be evaluated by the sum of 
execution and communication overheads of each application 

component on the event path. Consequently, for detection, 
one can take a direct approach by using the metric itself (e.g., 
the observed latency), or a component-based approach by 
using the component metrics (e.g., the observed execution 
of each application component on the event path). 

The component-based approach is prompter than the di- 
rect approach and such improved performance results in 
shorter reaction times (see Figure 6, where component As 
execution time increases). In particular, the difference is 
significant when the event path is long (in terms of latency) 
and the critical variation occurs early on the path. 

5.2. Reallocation Decision 

In this section we address the effects of considering en- 
actment overheads and of using state-specific incremental 
heuristics for deciding automatic adaptations and corre- 
sponding resource allocations. 
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Figure 7. Influence of enactment over- 
head on reallocation results 
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Reallocation heuristics that are aware of the enact- 
ment overheads result in improved performance.  Low 
enactment overhead improves reaction time, and reduces 
the risks of failing to meet application's timing constraints 
during the enactment period. Figure 7 shows the end-to- 
end latency variation with two decision heuristics distinct in 
their awareness of enactment overhead: First, the 'single- 
pair' heuristic (SPH) tries to accommodate a critical vari- 
ation with a two-component transaction, which is likely to 
result in lower enactment overhead than transactions involv- 
ing more components. Second, the 'fair-decrease' heuristic 
(FDH) tries to be fair about reducing the number of pro- 
cessors available to different application components but it 
ignores the enactment overhead. 

To accommodate a step increase of component A's com- 
putation needs (see Figure 4), the SPH decides a 2-node 
transfer from component C to A, while the FDH decides a 
1 -node transfer from each of the components C and D to 
B. Both heuristics lead to similar steady state performance. 
However, the enactment overhead with FDH (23 msecs) is 
larger than with SPH (18 msecs). Thus, the number of events 
failing their latency requirements with FDH is larger. 

Application-state driven incremental decisions can re- 
duce the reaction time. An incremental decision can take 
advantage of the current system state in determining which 
components must receive or are allowed to donate resources. 
Such decisions usually provide more rapid response to per- 
formance perturbations than decisions which are computed 
using no history information [6, 17]. 

Simple incremental heuristics, such as determining a re- 
ceiver and then searching for an appropriate donor, can give 
acceptable results with low decision overhead depending 
upon the order in which the components are checked. How- 
ever, the effectiveness of an ordering criterion varies with 
the system state. We experiment with two ordering criteria: 
(1) by actual execution time, AE, and (2) by execution time 
variation with reallocation. EV. 

In a rate-critical state, the primary goal of reallocation is 
to reduce the maximum execution time in the system. Thus, 
the bottleneck component needs to receive resources, and 
these resources can be taken from any other component, 
provided the resulting execution time does not violate the 
acceptable rate requirement. AE helps to focus immediately 
on the highest and lowest execution time components, while 
EV may search longer as it is very likely that the bottleneck 
will not realize the best improvement. In our experiment, 
AE order produces an acceptable reallocation after one try 
(1.34 msecs), while EV takes 4 tries (1.58 msecs). Note 
that in this experiment, a configuration analysis takes only 
0.080 msecs. We expect this overhead to be larger for more 
complex application structures, when more complex timing 
requirements than end-to-end latency and maximum achiev- 
able event rate are considered. 

In a latency-critical situation, the goal is to improve the 
sum of the execution times of all of the components on the 
critical path. The best solution with a two-pair transaction 
is to give resources to the component expected to have the 
largest reduction in execution time, and to take these re- 
sources from the component expected to have the lowest 
increase in execution time. By following this rule, the EV 
heuristic finds the best transaction after one try (2.56 msecs), 
while the AE takes 4 tries (2.83 msecs). 

6. Contributions and Future Work 

This paper considers the problem of ARA for high- 
performance real-time applications executing in dynamic 
environments. Applications consist of multiple parallel 
tasks with data-dependent resource needs. Our contribu- 
tions are: 

• present experimental results that demonstrate the im- 
portance of focusing on the response time of the re- 
source allocation mechanisms rather than the optimal- 
ity of their decisions, when real-time constraints must 
be satisfied. 

• define an application resource usage model that per- 
mits to describe parallel real-time tasks and enables 
good reallocation decisions even when the observed 
performance is larger than the specified values. 

• define an adaptation model that makes possible auto- 
matic ARA decisions and permits to evaluate the im- 
pact of enacting these decisions on the application's 
timing constraints. 

• define a novel set of performance metrics to evaluate 
ARA performance by focusing on the satisfiability of 
the application's timing constraints. These metrics 
are reaction time, recovery time, performance laxity. 

• identify factors related to detection and decision tech- 
niques which can influence the degree to which an 
application meets its real-time constraints. These fac- 
tors are: early detection, enactment overhead, state- 
specific incremental decision heuristics. 

The models and heuristics presented in this paper are 
shown useful in the context of processor reallocation for an 
adaptive, synthetic applications designed to represent time- 
critical applications in C3I systems. In the future, we plan 
to apply them to other types of adaptive applications as a 
complex, distributed computer vision application. We also 
plan to integrate the insights and mechanisms presented here 
into a broader framework for resource management destined 
for systems where multiple real-time applications coexist, 
and where the ARA mechanisms described in this paper are 
used in conjunction with online negotiation mechanisms. 
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Abstract 

This paper addresses the problem of effective, on-line adaptive resource manage- 
ment in parallel/distributed architectures. The class of applications is very data- 
dependent, resulting in highly dynamic demands for available resources. Adaptive 
resource management is an alternative to engineering real-time systems toward worst- 
case application behaviors. To meet performance constraints, the system mus react 
swiftly to run-time load variations and accurately redistribute resources m real-time. 
We propose decision models that operate on dynamically monitored performance data 
to determine when resource relocation is necessary. The proposed decision models 
operate at two levels. The first is a low-level approach involving a Bayesian probabilis- 
tic decision model. The second is a high-level approach based upon state transitions 
and a Markovian decision model. The framework for our evaluation is a synthetic en- 
vironment capable of simulating event driven, multitask applications where each task 
is partitioned into subtasks executing on individual processors. 

1    Introduction 
Thk research addresses a class of parallel applications that can be modeled as a collection 
of^ult ok^tecedence-constrained data-parallel tasks or stages. We encounter such classes 
o ren tri-n daudependent applications that are very sensitive to run-time changes m 
event rates and input data content [4]. Consequently, execution is heavily data dependent 
rdimDOseshUh dvnamic resource demands upon the host system. A primary example 
rfÄTa^tionTare real-time defense systems that must constantly react tc> changes 

dVenÄ^^ 
-A SSerf^ÄrncS 1^ÄÄ= 
^^tSSS^X^'^^ —ltinsin si^ificant variation of the computatlonal 
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load. Because of their data-dependent nature, the resource requirements of the parallel tasks 
will vary significantly during run time. 

A possible solution to meeting the performance requirements of such applications is to 
statically assign enough resources to accommodate the worst case application behavior. This 
solution is often infeasible because of the excessive level of resources required to address all 
possible situations [4]. The alternative is adaptive resource management to re-allocate lim- 
ited resources dynamically in response to an application's needs. In real-time environments, 
efficient, low latency reallocation is crucial to the ability of such applications to meet dead- 
lines. A critical component of this reallocation process is the decision model that determines 
when a reallocation of resources is necessary. 

Our work is based on the operational model depicted in Figure 1. Applications are 
modeled as an acyclic graph of data-parallel tasks. Data frames are pipelined through 
this graph and each of these data-parallel tasks can be further structured as a collection 
of subtasks, each running on an individual processor. The number of subtasks within a 
task varies as processors are dynamically allocated to and deallocated from the original 
task. The subtasks are instrumented to provide performance measurements in real-time. 
These instrumented streams of data are processed by detectors that produce detection events 
signaling major changes in performance metrics. Decision models process these streams of 
detection events to determine if resource reallocation is necessary, and if so, to initiate 
procedures for the computation and enactment of new reallocations. In this paper we only 
address the reallocation of processors among tasks to maintain a minimal frame latency 
through the task graph. 

The majority of existing research on resource allocation and reallocation is focused on 
algorithms that determine how to most effectively allocate or reallocate resources. There 
is an extensive literature on dynamic resource allocation, typically in the context of load 
balancing algorithms (for example see [8, 15, 21, 12, 18, 9]). Strategies typically focus on 
where tasks must be scheduled as function of available resources. More recent research 
has studied dynamic processor scheduling algorithms in multiprocessor systems[14. 13] and 
even algorithms for dynamic control of communication resources[16] in parallel/distributed 
applications. These resource allocation algorithms rely on the existence of a mechanism 
that determines when they are invoked, for example, at task arrival time. This does not 
permit reaction to run-time load variations within the application. We argue that for run- 
time reallocation, it is critical to be able to determine when such resource reallocation 
algorithms must be invoked during task execution. Accurate timing can avoid thrashing 
during transient workload changes, permit low latency reallocation, and in some instances 
preempt performance degradation by predicting reallocation needs. This focus on decision 
models complements (and is distinguished from) the recent work on the online adaptation of 
systems for real-time applications[18, 19]. Such frameworks incorporate mechanisms for run- 
time monitoring, adaptation enactment, and processor reallocation. We argue that effective 
decisions models must be incorporated into such frameworks if they are to be successfully 
applied to online adaptive resource management functions. 

This paper proposes the effective use of decision models for dynamic resource allocation 
in high-performance parallel/distributed systems. Specifically this paper proposes a combi- 
nation of a low latency decision model that is reactive in nature with a (relatively) more 
complex decision model that is predictive in nature. We show that such a model is quite 
insensitive to transient workload shifts or "spikes", thereby reducing ineffective reallocations. 
The model is also quit effective in predicting impending workload changes. Experiments are 
presented that relate characteristic of the application, such as noise, and parameters of the 
decision model. Thus, the decision model can be "tuned" based on some knowledge of the 
application behavior. Using a synthetic benchmark generator, we experimentally demon- 
strate an increase in performance and a decrease in overhead across a range of input data 
parameters. While the current implementations are focused on a class of computationally 
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intensive sensor-processing applications, these decision ^dels are more B^y »p^ble 
to asynchronous event-driven computational models. Throughout this paper the presenta 
tio^Slreb^on a;; automatic target recognition (ATR) application to illustrate the behavior 

of the proposed model. 

application layer 

* instrumented streams ▼ resource rr anager 

/• Detection 
Decision <— 

Relocation 

. Enactment J 

contribution 

Figure 1: Operational model for dynamic resource allocation 

The remainder of this paper is organized as follows. Section 2 provides a description of our 
svstem aSecture and the problem we are addressing. In section 3, we provide a detailed 
descr^üon of oUr proposed decision models. Lastly, section 4 presents our experimental 
results and a review of the contributions of this paper. 

2    Problem Description 

2.1     System Overview 
We consider an ATR application processing a stream of sensor data frames    The vision 
processTng must extract targets from the background terrain and maintain +track and ident 
ficauon information. The gSal is to maintain a certain processing frame rate. As illustrated 
fn Figure 1resource realisation is managed by a system consisting of four major compo- 
tipntcr rlptpction decision, reallocation, and enactment. 
liengurrS moSmg is accomplished by a real-time J^^J^^ 
detect significant changes in a number of performance metrics [o] [6]. These monitors pro 
duce nSmented streams of sampled parameter values. Sample V^^^^^ 
execution time subtask communication time, communication volume input frame rates, and 
Xf meases of application performance or resource utilization. We may also choose to 
mon to™ appUcation-Specific measures such as the frequency of specific message types access 
rTtterns to internal data structures or any other measure that is representative of the ap- 
SsiSS usage. Detectors operate on these streams to produce detection events 
tovrtmnZlt^oLLlly significant deviations in performance guarantees. Decision.mod- 
eranalvzfstreaTof detection events to make assertions about the current global state and 
els analyze S™UIJ f  h   svstem. If a decision to reallocate is made, a cost 
Ä2Ä*^ SÄtiärfiSSice assignments. In this paper we only consider 
ffiSl of processors to tasks. Tasks are data parallel and the number of subtasks 
of a ta k isWtthe number of processors assigned to that the task. This new resource 
fsstgnmen must then be enacted and adopted by the system. In this case processors within 
oneS mav be reallocated to another task to maintain the frame rate. 
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2.2 Problem Definition 
Monitoring and detection occur constantly as data frames move through the task pipelines. 
Decision models must constantly react to the detection event streams being produced by the 
detectors. However, the cost evaluation and resource reallocation only occur if the decision 
model signals the reallocation module. There is some computational overhead involved in 
calculating a new resource mapping, so ideally one would only incur this penalty under the 
assurance of improved overall system performance. Because of imperfect monitors and noisy 
input, it is difficult to determine accurately the optimal times to initiate a remapping. An 
effective reallocation decision policy must weigh the costs of remapping against the potential 
performance benefits [3]. In a worst-case scenario, a reallocation may be enacted only to 
discover that the previous conditions were transient and the system is more unbalanced than 
before remapping. 

There are two competing factors governing the reallocation decision process. The first 
is the desire for fast detection and reaction. This is important because of the real-time 
requirements of the majority of these applications. Long and complex decision algorithms can 
result in large decision and enactment overheads. This overhead can cause multiple events 
to miss their deadlines because of quickly changing environmental conditions. In addition, 
many of the dynamic input conditions are highly transient and unstable. For example, 
background foliage that appears only in a few successive image frames can produce sudden, 
transient change in the processing workload. Therefore, the second important factor is the 
global performance of the application using the new resource mapping. Ideally, new resource 
mappings will lead to configurations which are stable and improve the long-term performance 
of the application. While quick decisions may result in locally improved performance, they 
are by nature not globally cognizant, i.e., will the change in terrain features persist for a 
relatively long period of time? Thus, it is possible to continually make locally optimal task- 
based decisions while the overall performance of the application steadily moves toward a less 
efficient state. 

2.3 Solution Strategy/Approach 
This paper proposes the use of a decision model structured as two component models. The 
first is a Bayesian decision model, which operates at the lower-level of the decision process. 
This probabilistic model acts as a filter between the monitoring system and the reallocation 
module to reduce false detection and incorrect decisions. This will increase the stability of 
the application and reduce the amount of unnecessary overhead incurred by reallocation in 
response to false detections. The second is a Markovian decision model which operates at a 
higher level of the decision process. The Markovian model is designed to keep track of global 
application performance by monitoring the state transitions of various performance metrics. 
Using the state transition data, the Markovian model is able to predict the steady-state 
system performance and react to potential future performance degradations. 

3    Decision Models 
The simplest decision model in our framework (Figure 1) has been optimized for low la- 
tency rather than high accuracy decisions. In this model, referred to as the baseline model, 
any detection event immediately triggers a cost evaluation and potential reallocation. It is 
apparent that this decision model can lead to unnecessary overhead, in part because the 
cost evaluation penalty is incurred every time a detection event occurs. Often, because of 
imperfect monitors, a' detection event is not indicative of the overall performance falling 
beneath the required limit.   In this situation, referred to as false detection, the overhead 
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involved in cost evaluation is incurred with no potential for benefit. In response, we propose 
a two-level decision model for such systems. The first model is an adaptation of a Bayesian 
decision model originally formulated by Nicol [2]. The second is a Markovian decision model 
formulated to predict global trends in application performance. 

3.1    Bayesian model 
There are several sources of difficulty that can make the baseline decision model ineffective. 
First the application may be subject to transient load spikes. Since the application is data 
dependent, it is sensitive to any changes in the input stream. A problem occurs with noisy 
data or "spikes" that represent transient load changes rather than a stable shift in compu- 
tational loads. In such situations, a detection event may not be indicative of a longer term 
change in load, necessitating a resource reallocation. Rather, it may represent a transient 
condition, in which case a reallocation may actually negatively affect performance. In terms 
of our ATR example, changes in scenery can result in input spikes. In the absence of new 
targets, these spikes are transient and should not be grounds for reallocation. An effective 
resource management svstem must be capable of discerning stable computational shifts from 
spikes Second, the detectors themselves possess some degree of unreliability. It is possible 
for detectors both to generate a false detection event or fail to detect a genuine detection 
event. Increasingly accurate detectors are computationally intensive and increase the latency 
between the occurrence of a load imbalance and corresponding detection. On the other hand, 
simple load detectors may not be effective in accurately detecting stable load changes. Ihey 
can significant^ raise computation overhead by increasing the number of false detections. 
The proposed Bayesian decision model will allow for quick detection of critical events using 
simpler detectorswhile reducing reports of false detections. 

3.1.1    Model description" 

Faced with computational overhead and potentially poor performance in the event of an 
unnecessary reallocation. it is not beneficial to run the cost evaluator on the basis of a sin- 
gle positive report. As illustrated in Figure 2, the Bayesian decision model adds an extra 
component, operating as a smart filter, to the system. In this proposed configuration, a col- 
lection of monitors still record execution parameters as frames pass through the application. 
However in this scheme, all detection events pass through the smart filter. The smart filter 
uses a Bavesian decision model to determine if the cost evaluator should be invoked. It is 
the goal of the smart filter to minimize the number of false detections passed to the cost 
evaluator Ideally, the cost evaluator will only be signaled if a potential remapping benefit 
is very likely. Conversely, whenever a remapping benefit becomes likely, the cost evaluator 
should be signaled as soon as possible. 

\t each frame time, we compute the probability that performance can be improved by 
reallocating resources. This probability is referred to as the gain probability and is repre- 
sented bv the svmbol pn [2]. The Bavesian decision process must constantly strengthen or 
weaken the gain probability based onlv on information from the detectors and information 
about the qualitv of their detections. These detectors operate on the instrumented streams 
returned from the monitors and look for various metrics at the task level. While the overall 
application behavior mav be within real-time bounds, the detectors can notice if a specific 
task's performance starts to decrease. By operating at the lower level, this model can de- 
termine improved resource mappings even if the real-time requirements are not immediately 
threatened. 
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Figure 2: Block diagram of the Bayesian decision model. 

3.1.2    Model calculation 

To implement this Bayesian model, three distinct parameters must be defined [2]. 

1. d> - The probability that a performance gain can be realized by remapping after the 
current frame, given that it has not been realizable in the previous frame. 

2. a - The probability of the detectors prematurely reporting a remapping condition. 

3. ß - The probability of the detectors failing to report an existing remapping condition. 

The parameters a and ß encompass the fact that the detectors contain some inherent in- 
accuracy. Based on the above parameters, we calculate the probability pn that a performance 
gain can be realized on frame n based upon the results returned by the detectors. 

First, we define the pretest probability, pa, that a performance gain is achievable on frame 
n, given that pn-\ = p : 

Pa(p) =p+{l-p)4> 

Bayes: Theorem states that for two events A and B, the probability of .4 given B is: 

P(A | B) = 
P(B | A) ■ P(A) 

P(B | A) ■ P{A) + P{B | Ac) ■ P{AC) 

Now. if the detectors return a positive remapping report, we want to calculate the prob- 
ability that an actual performance gain exists. Using the above notation, A is the event 
where a performance gain exists and B is the event of a positive report. Therefore, P(A) is 
given by the pretest probability, pa, and P(B \ A) is given by the probability of an accurate 
positive report. Since ß is the probability of the detectors failing to report a gain condition, 
(1 — ß) is the probability that the detectors accurately report a gain condition. P(AC) is the 
complement of P(A), which is given by (1 — pa). Lastly, P(B \ Ac) is the probability that a 
positive report is returned given that no remapping gain exists. Recall that this is the exact 
definition of the parameter a. Substituting these expressions into Bayes' Theorem gives us 
the following gain probability for a positive report: 

Pn = 
(l-ß)-Pa(p) 

(l-ß)-Pa(p)+Of(l-Pa(p)) 

Using similar logic, the gain probability in the event of a negative report can be computed 
as follows: 
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ß-Pa(p) 
Pn~ /3-Pa(p) + (l-a)-(l-P«CP)) 

In either case, this probability, pn, represents a weighted measure of the po entral for a 
remapping gain tö exist after frame n. When pn crosses a suitable threshold level, it is deemed 
Sv that a remapping gain exists. This in turn justifies a cost evaluation to determine if 
a beUefresomce aXcltfon is realizable. If so, the reallocation module is signaled and the 
remapping is enacted. 

3.2    Markovian model 
Bavesian decision models are sensitive to the accuracy of model parameters and as such are 
Smented at a low level within the application. These models tend to be reactive as they 
S for events signaled bv the detectors. At a higher level of abstraction, we can track the 
SÄÄS blsed on the degree to which user specified performance bounds are 
met Card this end, we formulate a Markovian decision model. This model is predictive 
St usLperformance state data to predict the future behavior of the apphcatiom In term 
of our ATR application, the Markovian model analyzes scenic trends. While an individual 
Scene may notprovide much information, a collection of scenes ^^nde^t^ 
future direction and the resources that may be required by specific asks^ The Markovian 
model uses these trends to predict the need for a resource reallocation before it actualh 

occurs. 

3.2.1    Model description 

Bv working at the lower level, the Bayesian model is able to d^c^mfroved'ZZ"X^n 
pings even when the application is conforming to the real-time specifications The Ma kovian 
model, which operates at a higher level, is triggered solely by the level of conformityvith 
the real-time bounds. It will only trigger a remapping if the application is; predic: ed to 
violate these bounds with a high probability. The Markovian decision model can be Mewed 
ftJtchdog for the Bayesian model. If the Bayesian model is able to maintain perfo- 
mance within the desired specifications, the Markovian model will nre^nt

erfhl
e
M^koWan 

if the svstem performance appears to threaten the real-time specificat ions, the Markovian 
model will override the Bavesian model and force a resource reallocation.  An example of 

**» pr^ra^c?di^of the system incorporating the Markovia.dec.ion 
model Its primary function is to monitor specific evaluation metrics of global application 
performance eg. 'end-to-end frame latency. This is done by comparing actual measured 
staistks with the real-time specifications. The ratio of the measured statistic to the deseed 
bound serves as a metric of the level of conformity of the application. This level of conformity 
^s then used to rrlp he application into one of a set of previously defined performance 
Lies These performance states and the transitions between them provide the underlying 
framework of the Markovian model. 

The inherent differences between the two decision models enable them to be coupled in 
a svnerVistic manner. The Bayesian model is constantly checking the detection streams and 
uDdatTnEthe^akL probability When the gain probability exceeds a threshold it signifies 
a hifh potential forPa remapping gain. To take full advantage of this potential and reduce 
the cLnce of missed deadlines "the Bayesian model is coupled with a simple reallocation 
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Figure 3: Block diagram of the coupled decision model. 

algorithm to provide a low latency solution. While these decisions allow a quick response 
and often provide an immediate improvement, they may not represent the best resource 
allocation. To correct for this, the Markovian model is invoked at periodic intervals. If the 
predicted performance of the application is sufficiently poor, a (relatively) more complex 
reallocation algorithm can be invoked. This algorithm performs a more extensive (and 
therefore costlier) assessment of remapping potential. In these instances, a high quality 
remapping which can provide system-wide improvement is more effective than a high speed 
decision which can provide immediate but local improvement. 

3.2.2    Model calculation 

We first provide an intuition about the application of the model through the following ex- 
ample. Consider the state space of an ATR application as represented in Figure 4 where we 
wish to maintain a frame analysis rate above 33 frames/sec. Therefore, we must maintain 
end-to-end frame latencies below 0.03 seconds. The maximum frame latency we expect is .10 
seconds and the latency range is divided into five states. States 0, 1, and 2 are considered 
acceptable and states 3 and 4 are considered unacceptable. 

acceptable states unacceptable states 

.00 - .01       .01 - .02      .02 - .03      '      .03 - .04      .04 - .05 

Figure 4: A high level example of the Markovian decision process. 

Over time, frames are periodically generated by the source and injected into the system. 
At specific instances, referred to as frame intervals, completed frames are consumed at the 
sink. The time between frame generation and consumption is the end-to-end frame latency 
which we are trying to control. At each frame interval, the monitored information streams 
can be used to generate a current snapshot of the application in terms of frame latency 
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performance. This snapshot is used to categorize the system as residing in a particular per- 
formance state." As shown in Figure 4, the range of performance states is easily partit oned 
into a collection of acceptable and unacceptable states. As the data content of themput 
frames varies over time, the current performance state of the system will fluctuate. Resource 
relocation is used to improve the performance of the system when it resides in an unac- 
ceptable state. The goal of the Markovian model is to predict when the system is moving 
toward an unacceptable state and to avoid it by triggering a resource relocation in advance 
This is accomplished by recording statistics about the state transitions experienced by he 
application. Using the state transition information and Markov theory, we can predict the 
sreadv-state behavior of the application. At periodic intervals, this ^-g^^f» 
is used to determine if resource ^allocation is necessary. This interval is referred to as the 
Markov invocation interval. .   „•,• ff 

The following description is based on sensor applications where data frames are arming 
at some rate. The model can be generalized in a straightforward manner to more general 
event driven applications [4] where the events such as a frames may arrive asynchronously 
rather than at a fixed rate.  , A      ,   , 

Given the number of states (n), the maximum performance measurement (p) and the 
current performance measurement (p), the current state is determined by: 

n 

M 

To ensure proper operation, anv performance measurement exceeding p is automatically 
categorized into the largest state. Note that in this model, Performance metrics are mapped 
to states numbered from 0 to n - 1. There is a natural mapping for metrics such.aslateng 
since higher latency values map to higher numbered states. The mapping may be different tor 
metricsgsuch as throughput where lower throughput values map to higher numbered state 
so that we have a consistent interpretation of higher numbered states corresponding to lower 

PerTh?Markovian decision model tracks the efficiency of the current mapping by calculating 
the performance state of the system as described above. These performance states can 
be viewed as a Markov chain, with the application transitionmg between them at eacli 
frame time based upon the current data and resource mapping. As the application moves 
between the performance states, the Markov model maintains statistics about the state 
transitions. With this information, at any point during execution, the Markov model has an 
accurate picture of the state transition probabilities of the Markov chain. These trans turn 
probabilities are conditional probabilities for the system to transition to a particular state 
given the current state of the system. If there are n states in the Markov chain, than he 
collection of all possible one-step transitions can be collected in an nxn matrix called the 
state, transition matrix. This state transition matrix can then be used to calculate the the 
steady-state probability vector. 

S = [po Pi P2   • • • Pn-2 Pn-l] 

The steadv-state probabilities predict, based on the current picture of the system the 
probability of the system settling in each state. This provides a measure of the long-term 
global application behavior. While the Bayesian attempts to make locally optimal decisions, 
the steXstate probabilities may show that the system is heading towards an increasingly 
unbalanced state The steadv-state probabilities are examined to determine whether real- 
bcation i^T necessary. We use the following approach which accounts for the gradient of 
unacceptable states." A detailed description of the model can be found m J7J. 

Using the steady-state vector, the following inner product is computed. 
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ÜJ = 

i=l 
51 Pi 

The above computation produces a weighted state, u. If this weighted state falls within 
the set of undesirable states, then a reallocation is invoked. By basing its decisions upon 
the steady-state probabilities, the Markovian decision model represents a predictive process, 
while the Bayesian decision model represents a reactive process. 

3.3    Model Parameters 
For these decision models to correctly determine when a remapping gain is probable, they 
must have accurate knowledge of certain application-specific parameters. For the Bayesian 
model, these are 6. a, and ß as discussed earlier, and they are measures of how often a 
remapping gain is achievable and how accurately the detectors can recognize this situation. 
For the Markovian model, the number and range of performance states and the threshold 
between acceptable and unacceptable states must be defined. In addition, the statistics for 
transitions between these states and the duration of the interval between Markov invocations 
are necessary for calculating the steady-state distribution. 

A detailed explanation of the experiments to determine these parameter values can be 
found in [7]. For our experiments, the following values were used for the Bayesian parameters: 

a = 0.125037    ß = 0.34588    4> = 0.09500 

Our experiments use Markov chains consisting of 20 states representing the frame latency. 
To provide a reasonable tolerance for an occasional missed deadline and a stricter tolerance 
for any consecutive misses, the Markov demarcation threshold was chosen to be 12. The 
frequency of change in the input stream is characterized by a parameter called the stability 
interval. The stability interval refers to the number of frames over which the application 
remains stable, i.e., does not require reallocation. As the Markovian decision model is 
essentially sampling the input stream at each invocation, this translates to a Markovian 
invocation interval of half the length of the input stability interval. 

4    Performance Evaluation 
This section compares the performance of the decision models under varying input conditions. 
Our experimental platform consisted of two components. An 8-node IBM SP-2 was used for 
our empirical studies which generated the application specific model parameters. The "ATR 
application" was a synthetic workload generator that can be configured to represent a range 
of ATR workloads. Simulations were run with the synthetic workload generator running 
on a uniprocessor. Our synthetic workload generator allows us to compare the different 
models while changing a number of important input characteristics. The two primary input 
characteristics we investigated were rate of change of workload and the presence of noise. 
Rate of change refers to how frequently the input frames cause substantial workload changes 
in the tasks of the application requiring reallocation. Noise refers to both the frequency and 
size of input workload spikes. These parameters were chosen because they are most applicable 
to the types of event-driven applications that these models are designed to improve. They 
are also characteristics for which values can often be ascertained a priori. For example we 
may know the maximum rate at which new targets can appear in the scene or we may know 
something about he quality of the detectors and sensors, or be familiar with texture of the 

40 



terrain. The factors affect the presence of workload spikes and rate at which we can expect 
stable shifts in workload. 

Three sets of experiments were performed in this section. The first set of experiments 
were designed to evaluate the improvement of the Bayesian decision model over the sim- 
ple model used as our baseline. The second set of experiments were designed to illustrate 
the predictive capabilities of the Markovian decision model and its ability to improve ap- 
plication performance when used in conjunction with the Bayesian model. The final set 
of experiments test the fully coupled Bayesian and Markovian models under various input 
conditions characterized by their rate of change and the presence of noise. For comparison 
purposes, the baseline decision model refers to the model where every detection event invokes 
a cost evaluation. 

4.1    Bayesian model 
The following graphs illustrate performance improvements provided by the Bayesian model 
over the baseline decision model. Figure 5 demonstrates the reduction in false detection 
percentage achieved by the Bayesian model. Figures 6 and 7 indicate the end-to-end latency 
of the injected frames and the number of resource reallocations required to achieve that 
latency using each decision model. These graphs provide a comparison of the number of 
resource reallocations enacted by the decision models in response to identical input streams. 
Figure 8 plots the end-to-end frame latencies for both models on the same axes. This graph 
is used to compare the overall performance of the two models. 
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Figure 5: An illustration of the false detection rate for the two decision models. 

It is apparent from Figure 5 that the Bayesian decision model significantly reduces the 
percentage of unnecessary invocations of the cost evaluator. The smart filter is able to 
successfully pare the number of detection events that will not result in a remapping gain, 
thereby reducing the amount of unnecessary cost evaluation overhead. Furthermore, by 
decreasing the the total number resource reallocations, the Bayesian model also reduces the 
amount of unnecessary reallocation overhead. This is accomplished by filtering the detectors 
response to noise and input spikes. The baseline decision model often reacts to input spikes 
by reallocating resources at frames where the spike is detected and on immediately successive 
frames. This behavior represents unnecessary reallocation overhead as the input spikes are 
transient and provide very limited rewards following a resource reallocation. 
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The combination of reducing both false detection percentage and unnecessary realloca- 
tions improves the behavior of the application in a number of ways. First, less computation 
time is spent in the cost evaluation module, and ultimately more processing power can be 
used for useful computation. Second, by ensuring that the cost evaluate* is invoked only 
when there is a high probabilitv for a remapping gain, a more complex evaluation mechanism 
can be enacted with (relatively) less overhead. The following two figures compare the num- 
ber of resource reallocations required by the baseline and Bayesian models and the latency 
characteristics under which the reallocations occur. 
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Figure 6: An illustration of frame latency and reallocation points for the baseline model. 
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Figure 7: An illustration of frame latency and reallocation points for the bayesian model. 

To fullv understand the benefits of the Bayesian decision model, one must look at the 
remapping" behavior of the system along with the frame latency through the system. Figure 
6 shows that the baseline decision model remaps a total of 29 times, while Figure 7 shows 
that the Bavesian decision model remaps a total of 18 times. This reduction in the num- 
ber of resource reallocations primarily results from the filtering of detection events directly 
associated with the presence of input spikes. 

Because of their transient nature, input spikes cause detection events based upon con- 
ditions that do not persist after the short duration of the spike.   Spikes can lead to new 
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resource allocations predicated on information which is not indicative of a long-term behav- 
bral change  Resource relocations resulting from input spikes do not provide large enough 
pertomance benefits to justify their enactment overhead.   However, given that an input 
S r^s alreadv caused a remapping, it may not be necessary to automatically remap after 
he splk  ÄeS^Stuatio?? A spike-based relocation may not provide an increase 
n performance but it also may not perturb the system enough to cause a decrease in pe - 

formance   I* iI not alwavs beneficial to reallocate resources immediately following an input 
soike becauseth:b2 may not outweigh the enactment overhead. Because input spikes 
Sodu«^eaSy detectable changes both on the way up and on the way down, the «ample 
S 31 invokes a resource reallocation both before and after the spike   The 
smart filtTrembedded in the Bayesian decision model allows it to reduce the number of imial 
rSons to mPurspikes   Despite this, large or long-lasting spikes will cause the Bayesian 
model to react   In these situations, the Bayesian model may also filter post-spike reasons 
Ttttvtorullnce benefits are not significant enough to warrant ^Ttn^t" al numSerof 
utilizing both pre- and post-spike filtering, the Bayesian model reduces the total number 01 
resource^ reactions and the effect of their enactment overhead on frame latency. Figure 8 
shows a:^SÄ »d-t^cnd frames latency for the baseline and the Bayesian decision 

m°Fture 8 demonstrates that the Bayesian model provides consistently improved latency 
nerformance ovTr the course of the application's execution. The Bayesian decision model 
£Äs t££ Reacting to input spXs and -k^m art^ ^ ^m 
model The benefits of the Bavesian decision model are twofold First it can proviae 
Ädend-SSd latency performance during execution^ Second it significantly reduces 
the number of resource ^allocations necessary to provide this performance. 
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Figure 8: A comparison of frame latencies for the baseline and Bayesian models 

The ability to filter the effects of input spikes is at the heart of the Bayesian model s 
imnnrad ioerfonnance  A trade-off exists between filtering input spikes and reacting to real 
mproved Penor™an^  ~ .    -. -  th   Bavesian model is not able to filter very large 
l0ad Cl anS- innut sXs    Aping to fiTter these conditions could result in a large 
::ÄÄaS£*cted. This potential is illustrated in Figure 
dr^frames 50 through 100. This is the only case in our tests for which the simple mode 
nrovideb™tte? performance than the Bayesian model. In this situation the Bayesian model 
fi tTedla detection event signifving a stable load change and was therefore slow to react to 
SSactualcoTdZ:i  ke%ron.Mg scheme used to fine tune the Bayesian parameters to 
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this application limits the occurrence of this situation to an initial startup transient of the 
Bayesian model or after extended periods of stable input with no activity. An important 
feature of the Markovian model is its ability to detect these remaining occurrences and reduce 
their effect to negligible levels. 

4.2    Addition of the Markovian model 
This section presents the results of coupling the Bayesian and Markovian decision models. 
Figure 9 demonstrates the potential of the coupled model over the pure Bayesian model. 
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Figure 9:  A comparison of frame latencies between the Bayesian model and the coupled 
model 

As illustrated, the two experiments show similar performance until frame 175. Up to this 
point, the application has been conforming to the real-time specifications and the Markovian 
model invocations have continually predicted acceptable performance. All resource realloca- 
tion have resulted from the Bayesian models. At frame 175, the coupled system invokes the 
Markovian model and it predicts that system performance is heading toward an unaccept- 
able state. This results in a remapping which is represented by the latency drop in Figure 
9. Following this decision, the coupled model has a better resource allocation than the pure 
Bayesian model. This is confirmed by the lower end-to-end frame latency shown in Figure 9. 
For the next 175 frames, the Markovian model is again inactive as the application is within 
the real-time bounds. Both systems are again making purely Bayesian decisions, which ac- 
counts for the similarity in the shapes of the two graphs. When the Markovian model is 
invoked at frame 350, it again predicts that the system is heading toward an unacceptable 
state. Another Markovian reallocation occurs, which accounts for the slight deviation in the 
shape of the graphs between frames 350 and 400. The pure Bayesian system shows an in- 
creasing latency slope beginning around frame 360, while the coupled system does not show 
an increase in latency until around frame 385. 

These results clearly show the ability of the Markovian model to monitor the global appli- 
cation performance and initiate a new resource allocation when the real-time specifications 
are threatened. This predictive capacity makes the Markovian model perfectly suited to act 
as a watchdog over the Bayesian model. 
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4.3    Coupled model performance 
This section presents a final set of results. We have demonstrated both the benefits of the 
Bavesian model over the baseline model and the benefits of adding a Markovian watchdog 
to the Bavesian process. We now investigate the performance of the coupled decision model 
with respect to two important input parameters: input rate of change and noise. Ihese 
two conditions represent important dimensions of the applications that may utilize adaptive 
resource management/For our ATR application, we want to maintain an acceptable frame 
rate in the presence of both a high number of targets (input rate) and a large amount of 
scenic variations (input noise). ,o nTO 

A particular input stream can be described in terms of the range of rate of change 
and noise. We studied the performance of the coupled model under average and extreme 
conditions as illustrated in in Figure 10. 
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Figure  10:    A representation of the input characteristics for our experiments and 
reference to the corresponding figures. 

Our first experiments consisted of testing the coupled decision model on "average" input 
streams with median values for rate of change and noise. The input streams used in these 
experiments have stabilitv intervals on the order of 50 frames and input spike probabilities on 
the order of 15 percent. Performance results from these experiments comparing the behavior 
of the coupled and baseline models are provided in Figure 11. 

\s evidenced in Figure 11, the coupled decision model is able to improve end-to-end 
frame latencv throughout the course of execution. Under conditions containing median 
levels for both input rate of change and noise, both the Bayesian and the Markovian models 
contribute toward improved performance. By reducing the total number of decisions and 
improving decision quality and timing, latency performance is improved while decision and 
enactment overhead is reduced. . 

The following two experiments investigate input streams with a low probability ol input 
noise The average probability of input spikes used in these experiments was 5 percent. We 
further divided these experiments into input streams containing either a high or low rate 
of input change. Low rate of change input streams used stability intervals on the order of 
100 frames, while high rate of change input streams used stability intervals on the order 
of 20 frames Figure 12 compares the results from the low noise and low rate of change 
experiments/and Figure 13 compares the results from the low noise and high rate of change 
experiments. 
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Figure 11: A comparison of frame latencies between the baseline model and the cou- 
pled model under average input conditions. 
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Figure 12: A comparison of frame latencies between the baseline model and the cou- 
pled model with low rate and low noise. 

Under low noise conditions, the coupled decision model performs significantly better 
than the baseline decision model. The reduction in input spikes resulting from the low- 
noise behavior reduces the dependence on the Bayesian smart filter. In these experiments, 
the Markovian model contributes more significant decisions than the Bayesian model. Low 
levels of noise increase the accuracy of the Markovian predictions. This allows the Markov 
model to make better decisions about when and where to best allocate resources. Figure 12 
demonstrates that good Markovian decisions can significantly improve the performance in a 
low rate of change input stream. Because of the low rate of change, both the baseline and 
Bayesian models do not receive many detection events and therefore do not trigger/enact 
many reallocations. The Markovian model is able to push the system into a more globally 
efficient state which persists because of the low input variation. Figure 13 demonstrates 
that in a low noise environment the coupled decision model is also effective for a high rate 
of input change. By adjusting the sampling frequency of the Markovian model to account 
for the increased input data rate, the coupled model is able improve the performance of the 
application over a large number of frames. 

The final two experiments investigate input streams with a high probability of input 
noise. The average probability of input spikes used in these experiments was 50 percent. We 
further divided these experiments into input streams containing either a high or low rate 
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Figure 13: A comparison of frame latencies between the baseline model and the cou- 
pled model with high rate and low noise. 

of input change Low rate of change input streams used stability intervals on the order of 
i00 frames while high rate of change input streams used stability intervals on the order 
of 20 frSs Figure 14 compares the results from the high noise and low rate of change 
äpÄS'and^Sire 15 compares the results from the high noise and high rate of change 

experiments. 
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Figure 14: A comparison of frame latencies between the baseline model and the cou- 
pled model with low rate and high noise. 

Because of the high levels of noise in these two experiments, the improvements in end- 
to end frame latencv are not as prominent as in previous experiments. Under these input 
condtifns the BTvesian model is more effective than the Markovian model. The frequency 
o?th nput spikesEtsthe accuracy of the Markovian predictions The increased noisei aso 
results^ an g eater number of lower-level resource relocations. These additional realloca- 
Ss ensure thatthe Markov statistics are initialized more frequently, thereby limiting the 

A rf^t^pnPsVas a oredictor However, the Markovian model does serve an important 
"^^t^^S^Tü^edded smart filter in the Bayesian model attempts 
Lfi^r out thTinpSt noise, the Markovian model acts as a backup to ensure that it does not 
StS^iSgS&aS load changes. Any sustained performance levels violating the real-time 
specifications will still be corrected by the Markovian model. 
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Figure 15: A comparison of frame latencies between the baseline model and the cou- 
pled model with high rate and high noise. 

While these figures demonstrate improved latency performance for the coupled decision 
model, additional benefits are not apparent from the graphs. The filtering properties of the 
Bayesian model along with the Markovian backup allow the coupled model to achieve better 
latency performance in a fraction of the cost evaluations and resource reallocations required 
by the baseline model. 

Our experiments demonstrate the effectiveness of the coupled model across a range of 
input conditions. The total number of resource reallocations and the number of false detec- 
tions are both significantly reduced. These reductions are accomplished while maintaining 
improved latency performance. The reduction in both detection and enactment overhead 
allow more processing cycles for useful work without sacrificing any latency performance. 
This is significant in that these experiments are not based on a fixed number of processor 
cycles distributed between useful computation and allocation. In a practical implementation 
with real applications, we expect that the latency improvements using a fixed number of 
processors will be greater since the cycles saved by effective detection and prediction will 
directly reduce the latency. 

5    Conclusions and Future Research 
Clearly, there is a need for efficient adaptive resource mechanisms to be used with data- 
dependent, real-time applications. The mechanisms must be responsive to change and yet 
accurate in their remapping requests. These quality requirements place a great deal of 
pressure on the remapping decision model. Current implementations of simple decision 
models might not be able to meet increasingly stringent real-time requirements. This paper 
proposes an improved decision process to provide increasingly accurate resource mappings 
while maintaining low decision latency and overhead. 

Experiments using a synthetic workload generator and the statically defined model pa- 
rameters yielded promising results in multiple categories. An overall reduction in the per- 
centage of unsuccessful invocations of the cost evaluator and number of unnecessary resource 
reallocations was realized with the Bayesian decision model. This allows more cycles for use- 
ful computation and can mask the use of the more complex Markovian decision process. 
Experiments with frame latency showed similar or improved performance compared with 
the simple decision model for a significantly lower number of remappings. 

By coupling the reactive Bayesian model with the predictive Markovian model, we cre- 
ate a multi-level decision model capable of improving the performance of adaptive resource 
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managers under a variety of input conditions. Under average input conditions, both models 
contribute to decrease the end-to-end latency of input frames and reduce the decision and 
enactment overhead. Toward the extremes, the Bayesian model proves more applicable to 
high noise environments and the Markovian model better suited to low noise environments^ 
In these situations, the less suited model provides good backup supportf^ the more effective 
model Under low noise conditions, the Bayesian level keeps track with the baseline model 
while the Markovian level pushed the system toward more acceptable performance states. 
Under high noise conditions, the Bayesian level filters a much larger percentage of the in- 
put spikes while the Markovian level ensured performance did not fall below the real-time 
specifications. Over a wide range of input streams, the coupled model is shown to maintain 
or improve the latency performance while decreasing the number of false detections and 
unnecessarv resource reallocations. . .     ,, 

Future work in the context of this system will include methods for dynamically varying the 
Bavesian and Markovian thresholds in response to the current task-level resource allocation. 
Wellso plan to implement mechanisms allowing the Markovian model to suggest appropriate 
resource allocations for the steady-state behaviors it currently predicts. In addition, we are 
currently working on an 3-D tracking system that will allow us to test these decision models 
in the framework of an actual application. 
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ABSTRACT 

Mission-critical distributed applications must be able to adapt to mission dependent variations in resource 

demands as well as dynamic changes in resource availability. A middleware layer designed to provide QoS-aware 

resource management facilitates application development and follows the current industry trend towards cost- 

effective COTS-based implementations. This paper presents the Real Time Adaptive Resource Management system 

(RTARM1), developed at the Honeywell Technology Center. The RTARM system supports provision of integrated 

services for real-time distributed applications and offers services for end-to-end QoS negotiation, QoS adaptation, 

real-time application QoS monitoring and hierarchical QoS feedback adaptation. In this paper, we focus on the 

hierarchical architecture of RTARM, its flexibility, internal mechanisms and protocols that enable management of 

resources for integrated services. The architecture extensibility is emphasized with the description of several service 

managers, including an object wrapper build around the NetEx real-time network resource management system 

developed by the Texas A&M University. We use practical experiments with a distributed Automatic Target 

Recognition application and a synthetic pipeline application to illustrate the impact of RTARM on the application 

behavior and to evaluate the system's performance. 

Key words: adaptive resource management, distributed real-time applications, integrated services, QoS negotiation 

and adaptation, hierarchical feedback adaptation 
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managers, including an object wrapper build around the NetEx real-time network resource management system 

developed by the Texas A&M University. We use practical experiments with a distributed Automatic Target 

Recognition application and a synthetic pipeline application to illustrate the impact of RTARM on the application 

behavior and to evaluate the system's performance. 

Key words: adaptive resource management, distributed real-time applications, integrated services, QoS negotiation 

and adaptation, hierarchical feedback adaptation 
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1.   Introduction 

Current distributed mission-critical environments employ heterogeneous resources thatare shared by a host of 

diverse applications cooperating towards a common mission goal. These applications are generally a mix of hard-, 

soft- and non-real-time applications with different levels of criticality and have a variety of structures, ranging from 

periodic independent tasks, multimedia streams and parallel pipelines, to event-driven method-invocation 

communicating modules. The applications usually tolerate a range of Quality of Services (QoS) and are ready to 

trade off QoS in favor of the most critical functions they perform. The distributed systems must be able to evolve 

and adapt to the high variability in resource demands and criticality of the applications as well as to the changing 

availability of resources. 

The current industry trend is to build distributed environments for mission-critical applications using "Common- 

Off-the-Shelf" (COTS) commercial hardware and software components. A middleware layer above the COTS 

components provides consistent management for the system resources, decreases complexity and reduces 

development costs. 

This paper presents the Real Time Adaptive Resource Management system (RTARM), developed at the 

Honeywell Technology Center, that implements a general middleware architecture/framework for adaptive 

management for integrated services aimed to real-time mission-critical distributed applications. 

The RTARM system has the following basic features [4]: (1) scalable end-to-end criticahty-based QoS contract 

negotiation that allows distributed applications to share common resources while maximizing their utilization and 

execution quality; (2) end-to-end QoS adaptation that dynamically adjusts application resource utilization 

according to their availability while optimizing application QoS; (3) integrated services for CPU and network 

resources with end-to-end QoS guarantees; (4) real-time application QoS monitoring for integrated services and (5) 

plug-and-play architecture components for easy extensibility for new services. 

The resource management architecture for RTARM uses an innovative approach that unifies heterogeneous 

resources and their management functions into a hierarchical uniform abstract service model [4]. The building 

block of the architecture is the Service Manager (SM). It encapsulates a set of services and their management 

functions and exports a common interface to clients and other service managers. This facilitates recursive 

hierarchies, in which heterogeneous services are integrated bottom-up. A higher-level service manager aggregates 

services provided by itself and its lower-level SMs and provides clients with a higher-level QoS representation. 

In this paper, we focus on the architecture, protocols and implementation of an RTARM prototype that supports 

integrated services for real-time distributed applications. It runs as a middleware on a network of workstations and 

uses CORBA for portable communication. A major contribution of our work is the hierarchical feedback adaptation 

mechanism [1] that provides efficient dynamic QoS control for distributed data-flow applications. We illustrate the 

RTARM capabilities with a practical experiment with an Automatic Target Recognition (ATR) [8] distributed 

application and with a synthetic pipeline demonstration application. 
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Other efforts for building adaptive management systems for heterogeneous resources are GRMS [5,6], ARA 

[8,10], and QualMan [9]. GRMS is a precursor of RTARM. It introduced the uniform resource model and the 

atomic ripple scheduling protocol. Its hierarchical architecture reflects the application data flow and does not offer 

feedback adaptation. ARA considers a discrete set of runtime configurations for distributed applications and does 

feedback adaptation by resource reallocate. The ARA architecture is non-recursive and differs considerably from 

the uniform RTARM architecture by using proxies for specific service providers. QualMan is designed for 

multimedia applications and defines two basic resource management components, the resource scheduler and the 

QoS broker, that adhere to a uniform resource model without considering deeper recursive structures and QoS 

composition. 

The rest of this paper is organized as follows. Section 2 describes the RTARM hierarchical architecture, system 

models and interfaces. Section 3 presents the architecture of a SM and describes the CPU, network and a higher- 

level SM. Section 4 continues with experiments involving an ATR application and synthetic pipeline applications 

that emphasize the RTARM capabilities. The paper concludes in Section 5 with a discussion and future plans. 

2.   The RTARM System Architecture 

We have designed and implemented the RTARM system prototype as a middleware layer above the operating 

system and network resources. The middleware approach provides the benefit of flexibility and portability but the 

increased distance to the basic resources makes fine-grained control difficult. The RTARM servers, developed in 

C++, run as user-level processes on Windows NT workstations and export a CORBA (Orbix [7]) interface to clients 

and applications. The RTARM model differentiates between clients and applications. A client is any entity that 

issues a request for services and negotiates a QoS contract that defines the allocated services. An application 

consumes services reserved by a client on its behalf and continuously cooperates with the resource management 

system to achieve the best available QoS while maintaining its runtime parameters within the contracted region. 

The QoS contract may change during the application lifetime. 

2.1 The Service Manager Hierarchy 

The RTARM system employs a hierarchical resource management architecture that facilitates provision of 

integrated services over heterogeneous resources. The uniform resource model [4] defines a recursive structural 

entity called Service Manager (SM) that encapsulates a set of resources and their management mechanism. At the 

bottom of the hierarchy are SMs that provide management functions for basic resources, such as CPU or network 

resources, and directly control resource utilization by application components. Higher level services are assembled 

on top of lower-level services, giving rise to a service hierarchy. 

Resources as well as negotiation requests are treated uniformly across the entire hierarchy. Higher-level service 

managers (HSM) may act as clients for lower-level SMs (LSM). The hierarchy allows dynamic configuration as 

new service managers can join the system at any time. A request for an integrated service sent to an HSM may 

require resources from lower-level service providers. The admission protocol builds a virtual spanning tree over the 
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SM hierarchy that remains valid for the entire application lifetime. The SM 

hierarchy forms a directed acyclic graph, with SM as nodes and edges 

represented by the "uses-services-from" relation. 

Figure 1 illustrates a simple RTARM hierarchy with two LSMs, a CPU and 

a Network SM, at the bottom of the hierarchy. Two clients request services 

from the two HSMs while applications are consuming CPU and network 

resources. Section 3 describes the service managers in more detail. 

There are several benefits from a hierarchical, recursive, resource 

management architecture. First, services with complex QoS representations are 

easier to implement on top of basic services. Complex distributed applications 

benefit from a richer representation of QoS. It simplifies the application design and facilitates consistent resource 

management for QoS-incompatible applications. Regardless of how complex the application architecture and QoS 

semantics are at the top of the SM hierarchy, at the bottom of the hierarchy everything translates to QoS requests 

for basic services (CPU and network in our implementation). 

The hierarchical architecture of RTARM scales well with large distributed environments. Many SMs grouped in 

clusters may benefit from service localization and avoid communication bottlenecks. Sharing of LSMs between 

HSMs adds redundancy, fault tolerance and load balancing. 

A potential drawback for deep SM hierarchies comes from the increased distance between the top-most-level 

SM and bottom layer in the hierarchy. This may cause high latency for time sensitive RTARM functions, such as 

feedback adaptation and application control. 

Issues related to deadlock prevention and distributed SM synchronization have been studied for the GRMS 

project [5.6] and can be easily extended to the RTARM model. 

2.2 RTARM System Models 

QoS Model and Translation 

The quality of the interaction of a mission-critical application with a dynamic environment directly reflects its 

performance. The wide magnitude of this interaction requires a range for the quality measures. RTARM supports a 

multidimensional QoS representation, each dimension specifying an acceptable range [Qmj„, Qmax] of a quality 

parameter for the application. A set of range specifications, one per dimension, defines a QoS region. This QoS 

model facilitates resource negotiation and makes resource management more flexible. 

In the RTARM recursive hierarchy, the QoS representation at a SM reflects the type of services provided by that 

SM. An HSM translates a QoS request for integrated services into individual QoS requests for services provided by 

itself and its lower-level SMs. When the SM receives replies from its LSMs, it reassembles the returned QoS into 

its own QoS representation in a process called QoS reverse-translation. 

RTARM uses a unique implementation for QoS, which is independent of the addressed service. We define a 

QoS parameter as a set of name-value pairs, where the value part is a sequence of one or more scalar primitive data 
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values (string, short, double, etc.) and the name indicates the specific QoS dimension, such as "rate", "workload", 

"latency", etc.. 

Adaptation Model 
RTARM recognizes three situations when application QoS may be changed after admission [4]: (la) QoS 

shrinking/reduction of lower criticality applications when a new application comes; (lb) QoS 

expansion/improvement when applications depart and release resources, and (2) feedback adaptation. While (la) 

and (lb) imply contract changes and involve other applications, feedback adaptation does not change the contract 

but only varies the current operational point of the application within the contracted QoS region. Feedback 

adaptation is like closed loop control. It relies on monitoring of delivered QoS and uses the difference between 

delivered and desired QoS to adapt the application behavior. 

23 RTARM Interfaces 

Each SM implements and exports three interfaces: (1) Negotiator for admission control, collateral adaptation, 

QoS expansion and application control, such as suspend, resume and end; (2) service Manager for SM hierarchy 

set up (register/deregister SM) and (3) Monitor for application monitoring and event propagation. 

For admission control and adaptation RTARM uses a modified version of the GRMS Ripple Scheduling 

algorithm [5,6]. It consists of a transaction-based two-phase commit protocol applied recursively at each SM. The 

first phase executes a service availability test starting from the SM that received the admission request, down on the 

spanning tree that resulted from the QoS translation and request dispatch process. The available, reserved QoS 

propagates back to the initiator SM from the lowest SM layer, being reverse-translated along the way. In the second 

phase, the initiator SM assesses the success status of the reservation phase and the transaction is committed or 

aborted, implying service reservations along the spanning tree to be committed, or tobe cancelled, respectively. If 

not enough resources are available, a SM tries to adapt lower criticality applications at their minimum contracted 

QoS and use the released resources for the new application. Later, when resources become available, the SM 

expands the QoS for the most critical applications. 

Sometimes in order to admit a new, more critical application, it is enough to squeeze the QoS of only a part of 

an existing distributed application. Then changes in the high-level QoS may require collateral adaptation of other 

components of the application that do not directly impact admission of the new application. For instance, for a 

multimedia stream application having frame rate as QoS parameter, if one processing stage is adapted to the 

minimum rate, than all other stages will run at the same low rate. 

Next follows the list of calls from the RTARM CORBA interfaces: 

The RTARM Negotiator interface for admission consists of the following set of calls: 
.      booiean  admit_app(in  appld,   in  request,   out  admittedQoS)     - admit new application; it embeds 

both phases of the ripple scheduling algorithm. Return admission status. 
. boolean test reservation(in appld, in request, out admittedQoS, in candidateApps, out 

shrinked, out adaptedAppsQoS, in hsmName) - phase I of admission protocol, ry and reserve 
resources. Adapt candidateApps if necessary. Return admission status, QoS and adaptedApps. 
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• boolean commit_reservation(in appld, in operationalQoS, in adaptedApps, out shrunkAppQoS) 
and boolean  cancel_reservation (in appld,   in  adaptedApps) — phase II: commit/cancel reservation. 

The RTARM Negotiator interface for collateral shrink: 
• boolean test_adapt (in newAppName, in appsToAdapt) — phase I for collateral adaptation: shrink QoS 

for the applications in appsToAdapt list, mark for newAppName. 
• boolean commit_adapt(in newAppName, in appsToAdapt, out adaptedAppsQoS) and 

• boolean cancel_adapt (in newAppName,   in appsToAdapt)   — phase II: commit/cancel collateral 
adaptation for applications in appsToAdapt list. 

The RTARM Negotiator interface for QoS Expansion: 
• boolean test_expansion (in appld, out avaiiabieQoS) — phase I: try expansion for application appld 

and return status and avaiiabieQoS. If success, then services have been reserved. 
• boolean commit_expansion(in appld, in commitedQoS) and 

• boolean cancel_expansion (in appld) — phase II: commit expansion to committedQoS or cancel. 

The Negotiator interface for application control: 
• void end_app(in appid) -- terminate application. 
• void suspend_app(in appid) — suspend application. 
• void resume_app(in appid) — resume execution. 
• void  set_qos(in  appld,   in  newqos)      —  change application QoS. 
• QoS get_qos(in appid) — get application QoS. 

Service manager interface for the SM hierarchy setup: 
• boolean register_lsm (in name, in myParams, out hsmParams, out monitor) — register self as an 

LSM with the CORBA name at an HSM. Return HSM parameters and HSM monitor. The SM parameters 
include server name and a list of services it provides (cpu, network, pipeline,...). 

• boolean  register_hsm(in  name,   in myParams,   out   IsmParams,   in monitor)   —  register self as an 
HSM with the CORBA name at an LSM. Pass my parameters and my monitor. Return LSM parameters. 

• boolean  deregister_sm (in  smName)   —  remove SM with name smName from the list of SMs. 

A SM cannot register twice to the same SM, but can be LSM and HSM for SMs in two distinct sets. 

The Monitor interface for event communication and QoS reporting: 

• oneway void  event (in  appld,   in  originator,   in event,   in  type)   —  send event to SM Monitor. 

The next section presents the object architecture of the SM and details the implementation of a CPU, a Network 

and a Higher-level SM. 

3.   RTARM Service Managers 

3.1 The Service Manager Architecture and Implementation 

The unified resource model provides the benefits of a uniform internal architecture for all service managers 

(shown in Figure 2) and a common interface between them. 
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Figure 2. The internal object architecture of a service manager 

The arrows in the figure indicate object service requests. The components in a SM are as follows: 

• Negotiator: brokers contract admission, delegates responsibilities to other components and exports external 

RTARM CORBA interface. 

• Translator: translates higher-layer integrated QoS into lower-layer QoS representation. 

• Allocator: handles resource allocation/release when no adaptation is necessary. 

• Adapter: handles resource allocation/release with adaptation and QoS expansion/contraction. 

• scheduler: determines whether allocation of resources and expansion of application QoS are feasible. 

• Enactor: enforces changes in application QoS or status. 

• Monitor: keeps an eye on applications in execution and passes status information and QoS usage to the 

Detector. Exports external RTARM CORBA interface. 
.    Dete„or USes application runtime information (e.g. current QoS operational point) to detect significant 

changes in application operation (e.g. overload, underutilization, contract violation). Tr.ggers Feedback 

Adaoter actions. 
• Feedback    Adapter:   decides  corrective  actions  for  applications  when  their  runtime   status  changes 

significantly. 
Additional data structures exist to hold information regarding application contracts, other service managers and 

available services. 
As an illustration of the SM component interaction, Figure 3 shows object collaboration diagrams for two 

relevant interface calls for admission, test_reservation () and commit_reservation (), as they implement 

phases I and II of the admission protocol for a CPU SM. 

test reservation(QoS) I success ^test rcservationO 1 1 analyze schedulabiliryO commit reservation QoS. adaptedAp£s^ 

l.|adaptedApps'=0] 
commit reservation(QoS) 

3,sct_qos(OoS)| 

3.1 set_qos<; 4 

s%>    ^>   :Allocator 

Application Proxy 

a)Negotiator::test_reservation( 
b)Negotiator::commit_reservation() 

Figure 3. Sample collaboration diagrams for the Negotiator admission interface 
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Applications implement a simple CORBA interface that allows SMs to change their QoS and status. LSMs keep 

proxies for the application CORBA server objects. All RTARM CORBA servers and applications are started in the 

shared, multi-client activation mode. 

A SM component class has the same object interface regardless of the SM position in the hierarchy or the 

resources the SM controls. For instance, the Adapter object implements the same functions in all SMs, but in a 

way that depends actually on the scope of the SM. Not all components are required within a SM. For example, a 

Translator may exist only inside an HSM. 

RTARM provides a common object oriented execution framework that allows users to dynamically load SM 

components from shared libraries during runtime configuration. A configuration manager uses a mechanism similar 

to a Factory Method [3] to instantiate SM components. It also passes configuration information extracted from a 

configuration file to the SM components during their initialization. For all SMs there is a single executable program 

that originally contains the empty SM framework and the configuration manager. By loading specialized 

components from shared libraries, the configuration manager practically starts different SMs. We use this technique 

when we initialize the CPU, Network and Higher-level SMs with components from specific Windows NT DLLs. 

The flexibility of this piug-and-play feature permits implementation of a new SM by just replacing a set of 

components that realize a particular SM component interface, without rewriting the whole program. Writing a new 

SM component only requires the header file with the object interface, the executable program (common execution 

framework) and its corresponding library. 

Rx\V=°oCPL: uliltzalion=consianl 

3.2 The CPU Service Manager 

The CPU SM provides periodic applications access to a processor resource. Each     Rate <• 

computing node has a CPU SM, allowing concurrent applications to share a CPU. The 

application   QoS   is  bi-dimensional:   application   execution   rate  (R)  and   iteration 

execution time (W) (Figure 4). The COP   (Current Operational Point) represents the 
Workload 

current values for the multidimensional QoS. .„,,„.._  „ 
Figure 4. CPU SM QoS 

Admission and Adaptation 

The specific CPU scheduling policy is isolated within the Scheduler object and the Monitor keeps track of 

application CPU utilization. The invariant condition for admission and schedulability for n applications is 

Ii=i..nRiWj < 100% processor utilization. A more sophisticated CPU SM can be implemented at any time, by just 

using the plug-and-play feature, replacing the default Scheduler component with one specific to the scheduling 

discipline used. 

The CPU SM service allocation unit for each periodic application is the fraction of CPU utilization (R x W). The 

CPU SM communicates this information to applications and assumes they are well behaved and keep their process 

utilization below the allocated limits. The SM scheduler only assigns application rates and does not control the 

underlying OS scheduler. This policy works fine on a larger time scale and for our experimental purposes. For real- 

time performance one solution is to implement a soft real-time CPU scheduling server above the OS scheduler [9]. 
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Commercial operating systems with soft real-time capabilities, like Windows NT and Solaris, limit the scheduler 

granularity to 10-20ms. 

The CPU SM implements the Ripple Scheduling admission protocol. Because it is at the bottom of the SM 

hierarchy and has no LSMs, it does not make any other recursive calls. Adaptation and collateral adaptation 

(Sections 2.2, 2.3) reduce the application rate to the minimum contracted value. QoS expansion increases the 

application contracted QoS (rate) to the best available value. 

Feedback Adaptation 

The CPU SM controls the task rate in real-time. It cannot change the workload, which is left exclusively under 

application control. Applications send their current QoS operational point as events to the CPU SM monitor at the 

end of each periodic iteration. At any moment, the QoS COP may vary so that* xW<L, where L is the fraction of 

the contracted processor utilization. The CPU SM adjusts the COP as follows: (1) increase rate when workload 

decreases; (2) decrease rate on overload, when the workload pushes the COP outside the contracted region. 

3.3 The Network Service Manager 

We integrated the NetEx real-time network management system [2,11] from Texas A&M University into the 

RTARM system. NetEx runs as a middleware and provides connection-oriented real-time communication with 

guaranteed delay and bandwidth over COTS network infrastructure, such as ATM and switched 10/100 Mbps 

Ethernet. NetEx uses a tri-dimensional QoS: period, delay and message size 

and adds the connection source and destination network addresses to the | HSM 

connection contract. The NetEx resource management interface is, however, ~~^~tiam ^   Nt,E*°l\c; 

incompatible with the RTARM interfaces. It has different semantics and it 

does not export the two-phase commit protocol. We built an object-oriented 

wrapper [3] around NetEx that hides the incompatibilities and exports the 

RTARM interface to clients, applications and HSMs (Figure 5). The wrapper     j-^~- ; scheduler 

method can be applied to integrate any service provider in the RTARM   Figure 5-TheNetEx Object Wrapper 

architecture. 

The wrapper implements three SM components, Negotiator, Adapter and Enactor, that map the RTARM 

interface calls for admission, adaptation and expansion to the native NetEx API. NetEx does not provide feedback 

adaptation for connections, so the wrapper SM does not implement feedback adaptation either. It is important to 

note, however, that our HSM for integrated services for parallel pipeline applications implements hierarchical 

feedback adaptation. This is detailed in the next section 3.4. 

3.4 The Higher-level Service Manager for Integrated Services 

Within the RTARM service manager hierarchy, HSMs aggregate services from LSMs (CPU, Network or any 

other type of SM) and provide RTARM services to applications that need a more complex QoS representation. The 

unified resource model enables recursive deployment of HSMs. Our HSM implementation is generic and is able to 
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support various types of distributed applications with arbitrary QoS representations that map to available LSM 

QoS. The only restriction is that the Ripple Scheduling admission and adaptation procedure and the hierarchical 

feedback adaptation must not contradict the applications semantics. The QoS Translator SM component inside an 

HSM is responsible for translating a QoS request into something the LSMs understand. Replacing the translator 

component with a different one (for a different QoS representation) produces a HSM capable of supporting 

different integrated services. 

Admission and Adaptation 

Figure 6 shows the pseudo-code for the recursive two-phase admission protocol that runs at the heart of each 

HSM: 

test_reservation(reqQos, avQos, candidates, adaptedApps) ( 
translate reqQos into: LS - list of requested services from LSMs, and 

LreqQos - corresponding QoS per service. 
for each service S from LS { 

for each LSM Ism that provides service S ( 
success = lsm->test_reservation(LreqQoS[Ism], lsmAvQos[S], 

candidates that run on Ism, IsmAdaptedApps[S]) 
if success then mark admitted service and continue with next service S from LS 

) 
if service S was not admitted then ( 

cancel all previous successful admissions and 
return false 

} 
} 
// now all services from LS have been admitted 
reverse-translate and maximize the returned QoS from IsmAvQos into avQoS 
perform collateral adaptation if necessary 
return true 

) 

commipreservation(committedQos, adaptedApps) ( 
translate commitedQos into: 

Llsm - list of LSMs and 
LcommittedQos - committed QoS per service 

for each Ism from Llsm { 
lsm->commit_reservation(LcommitedQos[Ism], adaptedApps that run on Ism) 

) 
save committedQos into the application contract 

} 

Figure 6. Pseudo-code for the two-phase commit admission protocol 

The cancel_reservation () call is similar to commi preservation () and is omitted here. 

Figure 7 illustrates examples of admission of a new application with id 3 at an HSM //that has 3 LSMs, LLL2.L?. 

Applications 1 and 2 are already running at H and use services from Lu L2, LT,. For example, application 1 

(denoted with ] at //) runs also at Z, (1.1), at L2 (1.2) and Z,3 (denoted 1.3). The new application 3 requires two 

services and maps to 3.1 and 3.2. In example a) both 3.1 and 3.2 are admitted atl, and L2. Admission for 3.1 needs 

adaptation of application 1.1 on I,. This triggers collateral adaptations for 1.2 as well as 1.3, as the entire 

application 1 must be adapted. Calls 4 and 5 (testadapt) ask L2 and I3to adapt collaterally application 1. During 

the execution of commi preservation on //(call number 6), the collateral adaptation of 1 is committed on/,] and 

L2 with the two commi preservation calls plus the extra commi t_adapt call (9) to I3. Example b) shows the call 
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sequence when application 3 is accepted by I,, but rejected both by L, and L3. HSM H finally rejects 3 and returns 

false to the test  reservation call 1. 

1 -test_reservation(3) ^ 

RTARM calls: 
1,2,3,4 - test_reservation 
5-cancel reservation 

l-test_reservation(3)l   '   6-commii reserv«ion(3) 
RTARM calls: 
1,2,3 - testreservation 
4,5 - test_adapt 
6,7,8 - commit_rescrvation 
9 - commitadapt 

3.2 not admitted 

a) Successful admission of application 3 b) Failed admission of application 3 

Figure 7. Examples of the admission protocol sequence executed at an HSM 

We have implemented a Pipeline Service Manager (PSM), an HSM that aggregates services from lower-level 

SMs (CPU, Network, other HSMs) into a higher-level integrated representation suited for pipeline applications. Our 

PSM supports periodic independent tasks and periodic parallel pipeline applications, consisting of communicating 

stages in an arbitrary configuration, with a single source and a single sink node. 

We assume a sensor enters periodically data frames in the pipeline. Each frame 

is processed by a stage or a composite stage [1] (consisting of parallel strings of 

elementary stages) and then sent to the next stage. Such a pipeline application is 

depicted in Figure 8. 

■For periodic pipeline applications, we use a QoS consisting of end-to-end 

message latency and rate for the final stage. The admission contract also contains execution time for each stage as 

well as the message size for each inter-stage connection. It is the job of the pipeline translator to decompose the 

integrated-service pipeline request into CPU and network admission requests. We assume all stages use the same 

range for rate. The pipeline QoS (end-to-end latency, frame rate plus state workloads and message sizes) translates 

into CPU QoS parameters for all stages and Network QoS for all network connections. The CPU QoS rate range is 

the same as that for the pipeline frame rate. The pipeline translator uses the same rate range and a fraction of the 

end-to-end pipeline latency to generate the Network QoS parameters. 

Hierarchical Feedback Adaptation for Parallel Data-Flow Applications 

We have implemented an innovative and efficient hierarchical feedback adaptation mechanism for parallel 

pipeline applications [1]. It performs feedback adaptation at two levels in the SM hierarchy. The pipeline end-to- 

end latency is controlled at the HSM level while the CPU SMs perform CPU feedback adaptation independent of 

the HSM. 
The pipeline QoS parameter we consider critical and want to control is the end-to-end latency. As the pipeline 

evolves in time, rates of intermediate stages may change as a result of CPU SM feedback adaptation. In normal 

Figure 8. Parallel 
pipeline 
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circumstances, the input sensor period is maintained at a value greater than the current period of any stage/substage 

of the parallel pipeline application, but it can get lower because of independent CPU feedback adaptation. When 

accumulation of queues between stages increases the end-to-end latency beyond a maximum threshold, the PSM 

sets the input sensor period at the maximum value from the pipeline contract. A finite state machine in the PSM 

maintains this maximal period for a fixed time, allowing the queues to empty. Then, the PSM sets again the input 

sensor period to the maximal current period of all stages, typically lower than maximum period from the contract. 

We have proved in [1] that the end-to-end latency decreases, and that after a finite number of frames the pipeline 

enters a region of stability where the end-to-end latency and the output frame rate are within the contracted region. 

This method is simple and efficient, as the only parameter to be adjusted is the sensor input period, while the 

pipeline stages are controlled only by the corresponding CPU SM. This mechanism avoids costly communication 

and coordination between the HSM and all the CPU SMs. The information required for pipeline feedback 

adaptation is minimal: the end-to-end latency for the current frame and the maximal current period of all stages. 

We present in the next section experiments with synthetic pipeline applications and an Automatic Target 

Recognition application to estimate the performances of the RTARM system. 

4.   Experiments and Performance Evaluations 

To evaluate the RTARM system we designed two experiments. The first deals with synthetic pipeline 

applications and yields performance numbers for admission, adaptation and QoS expansion for the CPU, Network 

and Pipeline SMs. The second experiment tests feedback adaptation for parallel pipeline applications. The Forward 

Looking Infrared Automatic Target Recognition application provided an idealtestbed to prove the efficiency of our 

hierarchical feedback adaptation technique. 

The runtime environment for these experiments consists of three 450MHz Dell Workstation-400 machines, 

running Windows NT, connected via a Fore ATM switch with OC-3c (155Mbps) links. Each machine hosts a CPU 

SM. Both the network SM that controls the inter-stage communication and the pipeline SM run on one of the three 

machines. We consider their own CPU resource consumption negligible. All inter-SM CORBA communication 

uses a secondary Fast Ethernet network, so the ATM lines remain 100% available. We used the NT performance 

counter for precise measurements. 

4.1 Performance for Admission and Adaptation 

For evaluating admission, adaptation and expansion for pipeline applications we devised two scenarios. 

Scenario I. 

We tested admission of three-stage pipelines on a SM hierarchy with one HSM (P), one NSM (N) and two CPU 

SMs (C]. C:), as illustrated in Figure 9. The sequence of events is: 

1.   admit pipeline 1; no adaptation required. 
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2. admit pipeline 2 with higher criticality; stage 1.1 is adapted due to CPU constraints 

and network connections are adapted collaterally. 

3. terminate pipeline 2; pipeline 1 is expanded back to its original QoS (all stages and 

the network connections). 

4. try admission for pipeline 3 with lower criticality than 1; not enough CPU 

resources, admission is denied. 

5. terminate pipeline 1. 

Scenario 2. . 
Runs on the same environment as Scenario 1 and is similar, except the pipelines now 

have two stages and adaptation is caused only by network bandwidth constraints, not 

by CPU resource insufficiency. 

on SMC1; stages 1.2, 1.3 

Client 

Figure 9. Scenario 1 

Throughout the tests we measured the time to complete the RTARM interface calls for admission, adaptation 

and expansion for the CPU, Network and Pipeline SM. The measured time consists of the actual processing 

overhead and time to complete nested calls to: (1) application CORBA servers for the CPU SM: (2) the NetEx 

management subsystem and application CORBA servers for the Network SM (NetEx wrapper) and (3) LSMs for 

the Pipeline SM. 

The performance measurements for the Pipeline SM are listed in Table 1, for the CPU SM in Table 2 and for the 

Network SM in Table 3. All values are expressed in milliseconds. 

™TeTHreTervaTiö,n—" 
commit_reservation 
cancel_reservation 

test_expansion 
commit_expanslon 

end_app 

w/o Adaptation with Adaptation 

Table 1: Measurements for PSM 

I obi lime I Processing time'l lolaUime| processing lime 

SiH!,H   ' \l.m       '   HU.W 1MMJ  
2239.02 6.366 2376.34 11.338 

7.102 0313 
212.751 4508 
39987 4.921 

252 325 1 414 460.348 4.145 

""TesTTMervSnon^ 
commit_reservition 
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teat_adapt 
test_expansion 

commlt_expansion 
end_app 

 wlo Adaptation  | with Adaptation 
with UUkyA I wfa LUHUA | wilh WMM | w)u LUUÜÄ 
———■————,?      ' '       II H\i Tor 

0 474 
0.146 

Table 2: Measurements for CPU SM 

-BTHT 
1.397 
0 168 
0234 
0 189 
0 112 

For the PSM the "Total Time'' columns include the sequence of recursive RTARM CORBA calls to the LSMs and 

the algorithm processing overhead. Some calls may require adaptation of lower criticality applications, such as 

tesjeservationo at step 2 in scenario 1; other calls, like the expansion operations, are 100% with adaptation. 

From Table 1 we notice that the reservation operations andend_aPP(> require extra processing work if adaptation 

is involved. Also the processing time for test_reservation() is considerably larger than all other calls since it 

involves back-and-forth QoS translation and reverse-translation. But what stands out is the large total time 

consumed for commit reservation o for a three stage pipeline application, approximately 2.3 seconds. This time 

includes the duration for commit_re3.rv.tion,) calls to the CPU SM that take more than 500ms for each pipeline 

stage (see Table 2). A CPU commit_reservation(, call actually generates a set_qos () call with the committed 

application QoS to the application stage CORBA server. The stages are not up and running when admission 

65 



happens. The Orbix daemon [7] starts the stage process and passes the CORBA server HOP TCP port number and 

IP address to the CPU SM. Only after the stage is up and initialized it is able to respond to thesetqos () CORBA 

call from the CPU SM. The time to start a Windows GUI application (the pipeline stage) on Windows NT 4.0 is 

around half a second for our test configuration. 

w/o Adaptation with Adaptation 

total  time 1 Processing time  |CUKBAtime| .\tlt\ time total time 1 Processing time 1 LUKbA time | !M.lt.\ time 

test reservation 22AI3 3.14/                           0 4U4I4 3.901                            0 44oli 
commit reservation 45.434 0.637                    44.797 0 49962 1.105                    48.857 0 

test_adapt 
test_expansion 

commit_expansion 
end_app 10.08 0.289                        0 9.791 

0.056 

33.093 
0.697 

0.056                         0 

0.355                         0 
0.697                         0 

0 

32.738 

0 

Table 3: Measurements for Network SM 

Table 3 shows time measurements for the Nework SM These are more complex since the NetEx wrapper 

communicates through TCP/IP with the NetEx Host Traffic Manager [2.11] and stages throughset_qos () CORBA 

calls (only during commit_reservation ()). The communication latency overhead caused by NetEx is comparable 

to CORBA communication overhead, between 10 and 45ms. 

We conclude that operation of the RTARM system is efficient, except thecommit_reservation () call for CPU 

applications. This major delay can be completely avoided by pre-loading the applications before the client submits 

the pipeline contract to the HSM. The overall system performance may further improve by using a faster CORBA 

implementation that guarantees real-time operation deadlines. 

4.2 Performance for Hierarchical Feedback Adaptation 

The Automatic Target Recognition Experiment 

We tested the RTARM feedback adaptation mechanism on a true mission-critical application. The ATR 

application, schematically shown  in Figure  10, processes video frames captured by a camera.and displays 

recognized targets on a display. Stage 0 (the sensor) generates frames that are passed through a series of filters and 

processing elements  up to  stage  6,  which  displays  the 

original image and the identified targets. The frames are 8- 

bit, 360x360 pixels, monochrome images, and contain a 

variable number of targets (from 3 to 50), depending on the 

frame.   Stages  4,  5  and  6  expose a variable workload, 

proportional to the number of targets, that without feedback 

adaptation would cause queue accumulations with negative 

effect on the end-to-end frame latency. 

(Zr_j52)-»0-^<!>-*€)   i=> 

End-to-End Latency Frame Arrival Period 

Figure 10. ATR pipeline application and QoS 
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Performance Metrics and Evaluation 
The ATR pipeline contract requires an acceptable output frame period interval of [1,5] s, and a frame latency of 

0.7-13 s. The seven ATR stages run at a variable workload between 0.02 and 1.5s and within the same penod 

interval [1,5] s. 
We first present timing measurements for the feedback adaptation at the CPU SM and PSM SM level (Figure 

11) We measured the processing overhead of the feedback adaptation code (part 2 in Figure 11) and the time it 

takes the SM to react from the moment it receives the current QoS from the application until its adaptation 

command is enforced (part 2 + part 3). 

CPUSM Pipeline SM 

evenltCOl't sei qos(newQoS) veni(COl') 

Application 

3 

sei i/osfne»QoSi 

CPUSM 

Figure 11. Feedback adaptation performance 
measurements. 

The measured times are displayed in Table 4. For the CPU feedback adaptation, detection and enforcing the 

QoS adaptation takes around 4.4ms. Most of the time, 3.9ms, is spent in a set_qos () operation, a two-way 

normal local CORBA call. The pipeline adaptation enforcement includes a setzest) call to the CPU SM that 

controls the sensor (or first stage) that calls directly the first stage with a set_qos „call. This explains why 

enacting pipeline QoS adaptation takes almost double than for CPU SM QoS. 

CPUSM 

Pipeline SM 

Detection and decision processing (2) 

0.508 ms 

0.859 ms 

Decision Enactment (3) 

3.914 ms 

6.816 ms 

Total Time (2+3) 

4.422 ms 

7.675 ms 

Table 4. Feedback adaptation performance results for CPU SM and PSM 
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Figure 12 displays CPU feedback adaptation for stage 4 in the ATR pipeline. The stage has variable workload that 

CPU Feedback Adaptation 

I llm« (*«eondi1 

CPU Loads Rite , Workloai 

Figure 12. CPU SM feedback adaptation for a task with variable workload 

triggers its CPU SM to change its rate. Points A indicate overload that triggers rate decrease and points B indicate 

chronic underutilization that determines rate increase. 

Enable pipeline 
feedback adaptation at 
t=764s 

Disable pipeline feedback 
adaptation at t=460s 

VWll" 
KAJ\Ju 

 Sensor Input Penod 
^_ End-to-end Latency 
_ Threshold 

Elapsed Experiment Time (seconds) 

Figure 13. Latency Variation for ATR with and without pipeline feedback adaptation 

While running the ATR application, the pipeline feedback adaptation mechanism makes sure the end-to-end 

latency and rate stay in the contracted range (Figure 13). In order to practically demonstrate its effectiveness, we 

disabled the pipeline feedback adaptation after some time while keeping the sensor input period at a sustained low 

value of 1.48s (0.67Hz). This caused accumulation of frames in stage queues that translated into an increasing end- 

to-end frame latency. While feedback adaptation was disabled we actually did not get latency measurements, so we 

drew a dotted line between points A and B. When the latency reached 30s, way above the contracted value, we re- 

enabled pipeline feedback adaptation. Immediately the PSM sensor increased the sensor input period up to 5s. The 
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latency went rapidly down (B -> C), below the threshold, after a brief spike caused by the inertia of the more than 

23 frames already in transit through the pipeline. 

Our hierarchical feedback adaptation algorithm proved to be effective and efficient. Detection, decision and 

enforcement take less than 8ms and involve only the CPU SMs for the sensor stage and the last stage that actually 

reports the latency and rate. 

5.    Conclusions 

This paper presents the middleware architecture and implementation of the RTARM system. We have focused 

on the architectural elements that enable RTARM support for integrated services: 

• the uniform service management recursive hierarchy and protocols 

• the common architecture of a service manager that facilitates rapid 00 prototyping, massive code reuse and 

features plug-and-play support for SM components. 

Then we detailed the specific service managers (CPU. Network and Pipeline SM) that constitute the RTARM 

hierarchy. Finally, we presented experiments that illustrate the practical use of the RTARM system and its 

effectiveness for a real-world Automatic Target Recognition application. We demonstrated that our hierarchical 

feedback adaptation mechanism is able to efficiently control in real time the dynamic behavior of parallel pipeline 

distributed applications. 

The clean and flexible architecture of a SM allowed us to integrate quickly a new service provider in the 

RTARM hierarchy. We built an object wrapper around the incompatible interface of the NetEx network 

management system that provided the same CORBA interface implemented by all RTARM service managers. 

We plan to port RTARM to a real-time CORBA implementation, such asWUStL TAO [12] and to optimize its 

performance. We also intend to develop more sophisticated hierarchical feedback adaptation mechanisms with 

prediction features which would further decrease the system reaction time. 
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Abstract 

This paper presents the Rea. Time Adaptive Resource Management (RTARM1, system, a middtewar. 

architecture for reafltime adaptive resource management wift support for i„.egra,ed service, developed by the 

Honeywe,, Technology Center. This system is designed for distributed computing env.ronments w ere mtsston- 

critica, appbcations must bo abie ft adapt ft mission dependent variations ,n resource demand, as we,, as dynamic 

changes in resource availability. We describe the distributed hierarchic., object-oriented arch.tecture of RTARM. 

its flexibilitv and we focus on the issue of feedback adaptation in the RTARM system. Feedback 

responsible 'for maintaining the app,ioa,io„ OoS parameters within the acceptable region and provides correct™ 

acls triggered by significant events. The main contribution of this paper ,s a hierarchic«, feedback adaption 

method tha, effieientiy controls the dynamic QoS behavior of distributed data-flow appltcafions, such as sensor- 

based data streams o, mrssion-critica, command and control application, The method works mdependently a, two 

levels in the RTARM hierarchy, a, the distributed application l.ve, and a. the CPU resource ,ev«,. Our approach ,s 

simple and efficient. There is only on. parameter that controls the apphcation QoS „ the distributed apPhcat.on 

,eve, independently, the CPU service management ,evel performs feedback adaptation ft keep processor ufibzat.on 

within acceptable ranges. We present the analytic«, mode, for feedback adaptation apP,ied ft period» d.stnbute 

data-flow apphcation, We also describe experimental results for an Automatic Targe, Recogninon d.stnbuted 

application and the impact of hierarchical feedback adaptation on the application behavior and „s QoS parameters. 

Key words: hierarchy, feedback adaptation, disputed resource management, real-time apphcation, OoS 

negotiation and adaptation. 
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1. Introduction 

Large, time-critical, distributed systems, such as defense computing environments, usually host a mix of 

application types that share common communication and processing resources. These applications exhibit ahigh 

degree of variability in performance requirements, criticality and demand fault tolerance and reliability. Building 

such a system using Common Of The Shelf (COTS) components is a challenge. In order to keep complexity under 

control, there is a definite need for an application Quality of Service-aware resource management system. 

In recent years, there have been several efforts to build adaptive resource management systems for 

heterogeneous resources with real-time constraints [2,3,4,8,9,11]. This paper presents developments of the Real 

Time Adaptive Resource Management (RTARM) system [2], designed by the Honeywell Technology Center. The 

goal of the RTARM project is to develop a hierarchical real-time adaptive resource management system, 

implemented as middleware on COTS components and to apply it to mission-critical distributed applications. 

The RTARM system defines a hierarchical resource management architecture that provides the following basic 

services [2]: (1) scalable end-to-end criticality-based Quality of Service (QoS) contract negotiation that allow 

distributed applications to share common resources while maximizing their utilization and execution quality; 

(2) end-to-end QoS adaptation that dynamically adjust application resource utilization according to their 

availability while optimizing application QoS; (3)integrated services for CPU and network resources with end-to- 

end QoS guarantees and (4) real-time application QoS monitoring for integrated services. An innovative feature of 

RTARM is the hierarchical resource management architecture that unifies heterogeneous resources and their 

management functions into a uniform abstract resource model. In this paper, we refer to services and resources 

interchangeably. The central piece of the architecture is the Service Manager, a recursive structural component. 

This encapsulates a set of services and their management functions. Because all service managers export the same 

common interface, it becomes easy to build layered hierarchies recursively, in which heterogeneous services are 

integrated bottom-up. This also helps rapid object-oriented prototyping and development. 

The RTARM approach facilitates: (1) provision of integrated services and end-to-end adaptive QoS 

management. (2) easy extensibility to offer new service types, (3) design flexibility that provides affordable plug- 

and-play for architecture components as well as third-party service providers. 

Many mission-critical distributed command and control applications, such as Automatic Target Recognition 

(ATR) [5], exhibit a degree of flexibility: they tolerate a range of QoS and resource usage above a minimum limit. 

Their performance depends on the allocated resources and they are ready to trade off some application service 

quality to save the critical services. For these applications, it is important to have a mechanism that regulates their 
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dynamic behavior and protects them from contract violations. The main contribution of this paper is a new 

hierarchical QoS-based real-time feedback adaptation method for distributed periodic data-flow applications with 

parallel-pipeline structure. We have developed an analytical model that enables control of the end-to-end QoS 

behavior for the entire distributed application by adjusting the input rate in the pipeline. This model can be 

generally applied to any type of application with data-flow pipeline structure and a compatible QoS representation, 

such as multimedia streams and distributed command and control applications. We applied this model of feedback 

adaptation to our RTARM integrated service provider and experimented with a distributed ATR application. 

Related work 

Other adaptive real-time resource management systems are GRMS [3,4], ARA [9,10] and QualMan [8]. GRMS 

has a hierarchical structure that reflects the application data flow and does not offer feedback adaptation. The ARA 

framework [10] provides feedback adaptation for applications having a discrete set of acceptable configurations 

with specific resource needs. ARA accomplishes feedback adaptation by resource relocation. [7] proposes a 

feedback adaptation method that adjusts the rate of data sent from a server to clients based on observation and 

prediction using a control-theoretical model. The system described in [6] uses digital control theory to determine 

the states of the adaptive system, which may activate control algorithms for adaptation. Another adaptive resource 

management system is QualMan [8], designed for distributed multimedia applications. 

Our work differs from these approaches at the resource management architecture level, by supporting other 

application paradigms or by the way it accomplishes feedback adaptation. 

The rest of this paper is organized as follows. In Section 2 we briefly describe the object oriented hierarchical 

architecture of the RTARM system, its interfaces and several service managers. Section 3 presents the feedback 

adaptation model and analysis for the periodic parallel-pipeline applications. Section 4 continues with the 

description of the hierarchical feedback adaptation in RTARM, the ATR experiment, performance metrics and 

evaluation and the impact of feedback adaptation on the ATR QoS. Section 5 concludes the paper and presents 

directions for future work. 

2. The Real Time Adaptive Resource Management Architecture 

We have implemented an RTARM prototype that supports periodic independent tasks and periodic parallel 

pipeline applications with real-time requirements. The RTARM system is built as a middleware layer above the 

operating system and network resources. RTARM allows service initiation requests (admission requests) from 

clients and views applications as service consumers. When a client requires a service from a service manager on 
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behalf of an application, it negotiates a QoS contract that defines the allocated services. This contract may change 

later when the application is adapted. 

The middleware approach provides the benefit of flexibility and portability but the increased distance to the real 

resources makes fine-grained control difficult. RTARM supports a multidimensional representation of QoS, defined 

by a set of parameters (e.g. rate, latency, jitter) specified as a range [QoSmin, QoSmax]. The RTARM system strives 

to allocate the best available services to applications with priority for ones that are more critical. 

Integrated 
Service 

2.1 Hierarchical Adaptive Service Management for Integrated Services 

The basic block of the RTARM recursive service manager hierarchy is the Service Manager (SM). It 

encapsulates a set of services and their management mechanism. At the bottom of the hierarchy are SMs that 

provide management functions for basic resources, such as CPU or network resources, and directly control resource 

utilization by application components. Higher level services may be built on top of lower-level services, giving rise 

to a service hierarchy. One use of a service hierarchy is to provide abstract or 

integrated resources for clients. 

Figure 1 depicts a simple runtime configuration with two different Lower- 

level SMs (LSM), a CPU and a Network SM, at the bottom of the hierarchy, 

two applications and two clients accessing services from two Higher-level 

SMs(HSM). 

Resources as well as negotiation requests are treated uniformly across the 

entire hierarchy. HSMs may act as clients for lower-level SMs that provide 

services to HSMs. The hierarchy allows dynamic configuration as new service 

managers can be added to the system anytime. Clients can directly access 

service   providers   at   any   point   in   the   hierarchy,   depending   on   their 

requirements. A request for an integrated service sent to an HSM may require resources from lower-level service 

providers. During the application admission procedure, a virtual spanning tree is built over the SM hierarchy that 

remains valid for the entire application lifetime. 

CPUSM 

Figure 1. Sample RTARM 
hierarchy 

2.2 Adaptation 

RTARM recognizes three situations when application QoS may be changed after admission [2]: (la) QoS 

shrinking/reduction of lower criticality applications when a new application comes; (lb) QoS 

expansion/improvement when applications depart and release resources, and (2) feedback adaptation. While (la) 

and (lb) imply contract changes and involve other applications, feedback adaptation does not change the contract 

but only varies the current operational point of the application within the contracted QoS region. Feedback 

adaptation is triggered only by significant changes in application behavior, such as resource overload that results in 

a lowering of QoS operating point, resource underutilization that prompts RTARM to increase the application QoS 
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operating point within the contracted QoS region and QoS contract violations that retire corrective actions. 

Section 3 and 4 present feedback adaptation in detail for pipeline .ppl.cat.ons. 

1 T The Service Manager Object Architecture and Interface 13 The Serv,ce g ^ ^.^ architecture for all serv,ce 

The unified resource model approach for R1AKM onng. ^ . .:__,:«^ 

managers and a common interface between them, implemented by us us.ng 

conceptual model of a service manager. 

CORBA. Figure 2 shows a simplified 

Translator 

Adaptor 

Data Structures: 
Service Managers 

Application Contracts 
Monitoring and FA Data 

Scheduler 
Negotiator FbAdaptor Detector 

Allocator 

Involved in 
Feedback 
Adaptation 

Involved in 
Admission 
Control and Cross- 
App Adaptation 

Enactor 
Monitor 

Fi°ure'> Service Manager simplified object model 

A se-ice naanage, is dnplentenud - • —•«' -~ "ith '0mPOnMS ,mP'OTen,ed " COmmUn,Ca,,n8 

objects. The components in a SM are as follows: 

.    Nego„a,o, brokers contract adnrission. oelega.es responsibilities „ other components and expo« external 

RTARM CORBA interface. 

.     Translator, translates higher-layer integrated QoS into .ower-.ayer QoS representation. 

• Allocator, handles resource allocation/release when no adaptation is necessary. 

• Adapter, handles resource allocation/release with adaptation and QoS expansion/contraction. 

.    Sckeduler. determines whether allocation of resources and expansion of application QoS is feasible. 

• Enactor. enforces changes in application QoS or status. 

• Mo„,,o, Keeps an eye on applied in executton and passes s^tus information and QoS osage ,o ,he 

Deteetor. Exports external RTARM CORBA interface. 

. Dm uses applicatton runtime infonnatton (e.g. current QoS operational point, to detect significant 

langes in appiilon operation (e.g. overload, underatilization, conttac, violation,. Tr^rs Feedback 

Adapter actions. 
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•    Feedback Adapter: decides corrective actions for applications when their runtime status changes significantly. 

Additional data structures exist to hold information regarding application contracts, other service managers and 

available services. 

The clear separation of functionality facilitates object reuse and flexibility. RTARM provides a common object 

oriented execution framework that allows users to dynamically load SM components (Scheduler, Adapter, ...) from 

shared libraries during runtime configuration. 

Each SM implements and exports three interfaces. (1) Negotiator: admission control, collateral adaptation, QoS 

expansion and application control, such as suspend, resume and end; (2) Monitor: application monitoring and event 

propagation; (3) ServiceManager: service manager hierarchy set up, register/deregister SM. 

RTARM uses a modified form of the Ripple Scheduling admission protocol from GRMS [3,4]. Admission, 

expansion and adaptation are transaction-based two-phase-commit protocols. User clients are shielded from the 

inter-SM admission protocol implementation details. A simple call admit_app() embeds the two phases and gives 

clients simple semantics for application admission. 

2.4 Service Manager Instances 

We currently have implemented for the RTARM project three service managers: CPU, Network and a higher- 

level, Pipeline SM. All follow the general SM internal architecture described in Section 2.3. 

CPU Service Manager 

The CPU SM provides periodic applications access to a processor resource. Each computing node has a CPU 

SM, allowing concurrent applications to share a CPU. The application QoS is bi-dimensional; the two parameters 

are application execution rate (R) and iteration execution time (W). The specific CPU scheduling policy is isolated 

within the Scheduler object and the Monitor keeps track of application CPU utilization. CPU feedback adaptation is 

presented in more detail in section 4. 

Network Service Manager 

We integrated the NetEx real-time network service manager [1,11] from Texas A&M University into the 

RTARM system. NetEx runs as a middleware and provides connection-oriented real-time communication with 

guaranteed delay and bandwidth over COTS network infrastructure, such as ATM and switched 10/100 Mbps 

Ethernet. NetEx uses a tri-dimensional QoS: period, delay and message size and adds the connection source and 

destination network addresses to the connection contract. The NetEx resource management interface is, however, 

incompatible with the RTARM interfaces. It has different semantics and it does not export the two-phase commit 

protocol. We built an object-oriented wrapper around NetEx that hides the incompatibilities and exports the 

RTARM interface to clients, applications and HSMs. 

Pipeline Service Manager 

The Pipeline Service Manager (PSM) is a higher-level SM that aggregates services from lower-level SMs (CPU, 

Network, other HSMs) into a higher-level integrated representation suited for pipeline applications. A PSM client 
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can be a user or another HSM. The QoS Translator plays an essential role inside a PSM. It translates a request for 

integrated services into individual requests dispatched to LSMs. 

Our PSM supports periodic independent tasks and periodic parallel pipeline applications, consisting of 

communicating stages in an arbitrary configuration, with a single source and a single sink node. 

For periodic pipeline applications, we use a QoS consisting of end-to-end 

message latency and rate for the final stage. The admission contract also contains 

execution time for each stage as well as the message size for each connection. It 

is the job of the pipeline translator to decompose the integrated-service pipeline       Figure 3. Parallel pipeline 
application 

request into CPU and network admission requests. 

The Ripple Scheduling «mission algorithm [3,4] fits well with our hierarchical recursive structure. A top-level 

admission request generates sequential recursive execution of the two-phase admission protocol at all intermediate 

layers in the resource allocation spanning tree. The PSM admits applications at the available QoS. The QoS 

expansion mechanism will provide later more resources to higher criticality applications and will boost their QoS 

operating point and the contracted QoS. 
The PSM also provides hierarchical feedback adaptation (presented in section 4) that continuously monitors 

application QoS parameters and controls their resource utilization, taking corrective actions if necessary. 

2.5 RTARM Flexibility and Plug-and-Play 
All service managers have a similar internal architecture and each SM component has the same programming 

interface, regardless of the SM type and the resources it manages. This uniformity permits a common execution 

framework for all SMs. During SM initialization or at runtime, a configuration manager loads components from 

shared libraries. These can easily be replaced without recompiling the whole SM. For instance, we can get a Rate 

Monotonie Ana.vsis-based CPU SM just by replacing the scheduler component. Our RTARM implementation has a 

single executable program and different SMs are instantiated just by loading RTARM SM components from 

different shared libraries. This increased flexibility allows quick prototyping and provides a plug-and-play feature 

for SM components developed by third parties. 

2.6 Discussion 
Work on the RTARM project is still in progress. The two-phase commit admission and adaptation protocols 

provide consistency and avoid the need for sophisticated synchronization between service managers. It also poses 

some scalability problems with deeper SM hierarchies. A deep SM hierarchy potentially would slow the reaction 

speed for feedback adaptation, as application monitoring information has to bubble through the hierarchy up to the 

HSM that got the admission request from the client. 

The middleware approach itself brings extra performance penalties. Direct control over resources is difficult, 

and RTARM must rely on OS services or other middleware intermediate service managers. The increased 

flexibility  portability and the chance for rapid prototyping make the middleware implementation a reasonable 

77 



compromise. The flexible SM architecture makes the implementation of the NetEx wrapper for the network SM 

easy. 

Our current RTARM implementation runs on Windows NT machines and uses CORBA for inter-process 

communication. While Windows NT proved a stable development environment, we had our problems with its 

coarse-grained process scheduler and timer functionality. On the other hand, we found that CORBA fits well to the 

RTARM architecture. We plan to port RTARM in the near future to a real-time ORB and to optimize its 

performance. 

3. Feedback Adaptation Model and Analysis for Pipeline Applications 

This section presents a model for periodic pipeline applications and introduces an efficient and stable method for 

feedback adaptation. We consider the end-to-end latency as the most critical QoS parameter. The main result is that 

adjusting only the period for the input sensor can control the end-to-end latency of a pipeline application. 

A pipeline application consists of stage tasks that process data sequentially. We assume a sensor enters 

periodically data frames in the pipeline. Each frame is processed by each stage in turn and then sent to the next 

stage. A clock-based pipeline assumes that each stage operation is synchronous and periodic. If a frame is available 

for processing at the beginning of a period, the stage will process and send it to the next stage(s) in the data flow. If 

no frame is available at the beginning of a period, the stage will block until the beginning of the next period, when 

it will repeat the same cycle. 

Our model ignores the network communication overhead between two stages. This assumption would not affect 

the feedback adaptation for the Automatic Target Recognition experiment because of the large disparity between 

the stage period (l-5s) and communication latency (0.05s). 

Our analysis assumes that the execution time and period of each stage are constant. These parameters may vary 

as the pipeline application evolves in time, and our analysis relates with a particular instance of time. It says that if 

starting with that moment the sensor input period is adjusted over some value, then, with the currently set 

parameters, the pipeline latency exhibit deterministic behavior. In this way, the analysis may be applied at any time 

instance for the corresponding parameters. 

Section 3.1 presents our main results and an example for the clock-based simple pipeline and section 3.2 

generalizes for clock-based pipeline with composite stages. 

We have also analyzed the event-driven pipeline model, which may be useful for other types of applications. 

This model assumes the stages are aperiodic. They may start execution of a frame whenever it becomes available. 

The results obtained for this model are similar to those of the clock-based model: the sensor input period is the only 

factor the pipeline application needs to adjust to control the pipeline end-to-end latency. Due to the space limitation, 

we do not describe this model here. 
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3.1. Clock-Based Simple Pipeline 
This section starts with the description of the clock-based pipeline application model, then presents the 

theoretical results for the control of the end-to-end pipeline latency and finalizes with an illustrative example. 

The simple pipeline consists of individual applications (stages). Each stage receives a frame, processes it and 

then sends it to the next stage in the data flow. 

Consider a pipeline with N+l stages: 

j      stageO      stage 1 stageN 

sensor rfc^Q >Q—     ...    -^Q 

Figure 4. Linear, simple pipeline 

Notations: 

N+l is total number of stages 

T is the period at which the sensor pushes frames into the pipeline. It may change over time, but we assume it stays 

constant starting with the frame with which we develop the analysis. 

C(i) is the execution (processing) time on stage i. 

T(i) is the period of stage i,   T(i) > C(i). 

W(i. n) is the waiting time for frame n, stage i. It represents the time the frame needs to wait before being processed 

by the stage i. It is greater than 0 if the stage i did not finish processing the previous frame. 

W(i. n)>0 

W(i. n) = max [ t^i, n-1) - UO-K n), 0 ],  where t0l„(i, n) is the time at which stage i produces output for 

frame n. 
S(i. n) is the synchronization time. It is the time the frame n waits to synchronize with the beginning of the next 

period, for stage i. 0 < S(i, n) < T(i) 

/(i. n) is the latency for frame n at stage i. 

/(i. n) = C(i) + W(i.n) + S(i, n) 

e(i. n) is the end-to-end latency up to and including the stage i, for frame n. 

e(i. n) = Ij=0..i Aj-n) 

L(n) is the end-to-end latency for the whole pipeline, for frame n. 

L(n) = e(N, n) = IJ=0.N /(j, n) = Ej-o..NC(j) + W W(j, n) + I^O.N SO, n) 

Definition 1: 

The pipeline is in the state Sk, where 0 < k < N, for a frame x, if for all i = 0..k the relation (1) is true. 

e(i,x)S2jH).j(CÜ) + T(j)) W 

Observation: If a pipeline is in the state Sk, then it is also in states Sk.,, Sk.2, Sk.3...., S0. 
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Definition 2: 

We define the stable region for the end-to-end latency as the interval [ 2j=0..N C(j), Ej-o..N( C(j) + T(j)) ]. 

We say the pipeline is in the stable region if its end-to-end latency is within that interval. 

If a pipeline is in the state SN for frame x then it is in the stable region, because: 

IJ=o..N C(j) < L(x) < SJ=0N( C(j) + To)) 

The left limit for L(x) is evident, because L(x) = Ij=0..N C(j) + SJ=O..N W(j, x) + ZJ=0. N S(J, x) and Sj=0..N WO, x) > 0 , 

ZjH)..N SO, x) > 0. 

From the application point of view it is important the pipeline latency be limited by an upper bound, because 

this guarantees it does not increase infinitely over time. The stable region of a pipeline corresponds to optimal 

pipeline behaviour, in the sense that its end-to-end frame latency is bounded. Next we present two theorems: the 

first one refers to the case when the pipeline is in the stable region and shows which sensor input periods maintain 

the pipeline there for the next frames. The second theorem handles the case when the pipeline is not in the stable 

region, and gives a solution which assures that the pipeline converges to the stable region after a finite number of 

frames. 

Lemma 1 proves a useful relation, used in next two theorems' proofs. 

Lemma 1: 

I/Wfi. n) > 0 then the following relation is true: 

e(i. n) = eCi, n-1) + T(i) - T (2) 

Proof: 

W(i. n) > 0 => W(i, n) = t0ll,(i, n-1) - toul(i-l, n) 

toul(i. n-1) > tou,(i-1. n) => S(i. n) = T(i) - C(i) 

/(i. n) = C(i) + W(i. n) + S(i. n) = C(i) + W(i, n) + T(i) - C(i) = W(i, n) + T(i) 

W(i. n) = tom(i. n-1) - tsensor(n-l) - tout(i-l, n) + tsensor(n-l) 

where t5enSor(x) is the time instance when the sensor pushes the frame x 

W(i. n) = e(i. n-1) - (tou,(i-l. n) - t5ensor(n-l) - T ) - T = e(i, n-1)- e(i-l, n) - T 

W(i. n) = e(i. n-1) - ( e(i-1, n) + /(i, n)) + 1(1 n) - T => W(i, n) = e(i, n-1) - e(i, n) + 1(1 n) - T 

Implies e(i. n) = e(i. n-1) + T(i)-T. 

D 

Theorem 1 refers to the case when pipeline is in the stable region. It proves that it is enough to maintain the 

sensor input period greater than the period of each stage in order to keep the pipeline in the stable region. 
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• 

Theorem 1 
If 0* pipeline is in the stable region for frame n-1 ana the sensor input period T> m^o.s W. then the pipelme 

stays in the stable region for frame n. 

Proof: 
We show more generally, that if the pipeline is in the state Sk for a frame n-1, 0 < k < N, and the input penod 

T > maXi-o..k 
T(0,then the P'Peline is in the state Sk for frame "' 

We show by induction that  e(i, n) < Zj=0..i ( C(j) + TO))    V I = 0..k 

Stepl: for i=0. We show that e(0, n) < C(0) + T(0)). 

We have one of the cases: 

W(0, n) = 0. 

S(0.n) < T(0) => W(0, n) + S(0. n) + C(0) < T(0) + C(0) => e(0. n) < T(0) + C(0) 

.    W(0, n) > 0 => e(0.n) = e(0, n-1) + T(0) - T  (use relation 2 ) 

T > max«,.* T(i) =* T(0)-T < 0 => e(0, n) < e(0, n-1) 

The pipeline is in state S, for frame n-1 =» e(0, n-1) < T(0) + C(0) => e(0. n) < T(0) + C(0) 

SteP2: suppose e(i, n) < I^o,( T(j) + CO)), for i < k. We show that e(i+l, n) < Ij-o.,->( T0>+ C0)) 

We have one of the cases: 

•     W(i+l,n) = 0 
S(i+l.n)<T(i+l)=^W(i+l.n) + S(i+l,n) + C(i+l)<T(i+l) + C(i+l) 

We know that e(i, n) < ZJ=0 i( TO) + CO)). Implies e(i+l.n) < IJ=o..i+.( TO) + CO) )■ 

.     WO+l-n)>0=>e(i+l,n) = e(i+l.n-l) + T(i+l)-T   ( use relation 2 ) 

T > maxH..K TO) => T(i+1) - T < 0 , implies e(i+l, n) < e(i+l, n-1) 

The pipeline is in state Sk for frame n-1 => e(i+l, n-1) < Ij-o..i*i( TO) + CO)) 

Implies that e(i+l, n) < Ij-o..i-i( TO) + CO) )■ 

D 

Theorem ■> refers to the case when the pipeline is not in the stable region. It provides a solution to the case when 

the pipeline latency is too high, and proves that it is enough to adjust the sensor input period in order to bring the 

pipeline end-to-end latency into the stable region, when the latency is superior limited. 

Theorem 2 
If the pipeline is NOT in the stable region for frame n-1 and starting mlh the frame n the sensor input period 

T > max^.s T(i). then the pipeline converges into the stable region after a finite number of frames. 

Proof: 

Let us note the pipeline current state I. where I * SN. 
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We show by induction that starting with frame n the pipeline behaves like: 

I-> So -> Si -► S2 -> ... ->SN 

mo   mi    m2 ITIN 

where: 

mi is the number of frames needed by the pipeline in state SM to converge in the state Sj,   0 < i < N 

m;>0, V0<i<N 

Stepl: show that I-> So after a finite number of frames m0 

Suppose I* So (otherwise we are done, with m0= 0). 

We show that for each new arriving frame x, e(0.x) decreases compared with previous frame value, until it becomes 

less than T(0) + C(0), at which time the pipeline is in state S0. 

We have one of the cases: 

• W(0, x) = 0 

e(0, x) = W(0, x) + S(0. x) + C(0) < T(0) + C(0) => starting with this frame x the pipeline is in state S0. 

• W(0, x ) > 0 

e(0, x) = e(0, x-1) + T(0) - T (use relation 2) 

T > maxi=0 NT(i) => T(0) - T < 0, implies that e(0, x) < e(0, x-1) => end-to-end latency up to the stage 0 

decreases between frames x-1 and x. 

The same process happens again over successive frames, until the pipeline gets in the state S0. The number of 

frames after which the pipeline gets in state S0 is : 

e(0)- (T(0) + C(0)) 

r-r(O) 

where e(0) is the end to end latency up to stage 0, when pipeline is in state I. 

Note: the greater the input period T, the smaller m0, so the earlier the pipeline converges to stage S0 

Step2: Suppose the pipeline is in the state Sj. We show that after a finite number of frames. mM the pipeline enters 

state Sj-i- 

Suppose the pipeline is not in S,.|(otherwise we are done with mi+i = 0) 

=> end to end latency up to the stage i+1 = e(i+l) > Zj=o...+i( T(j) + C(j)) 

We show that for each new arriving frame x,   e(i+l, x) decreases compared with previous frame value, until it 

becomes less than Zj=o..i+i( T(j) + C(j)), moment by which the pipeline is in state Si+i . 

We have one of the cases: 

•    W(i+l,x) = 0 

e(i+l, x) = e(i, x) + W(i+1, x) + S(i+1, x) + C(i+1) < e(i, x) + T(i+1) + C(i+1) 
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We know that e(i, x) < Sj-o.i( T(j) + C(j)) => e(i+l, x) < 1^..M( T(j) + C(j)) 

=> starting with this frame x the pipeline is in state S^, . 

•    W(i+l,x)>0 

e(i+l, x) = e(i+l, x-1) + T(i+1) - T (use relation 2) 

T > maxJ=0..N T(j) => T(i+1)- T < 0 => e(i+l, x) < e(i+l, x-1) 

=> end to end delay up to the stage i+1 decreases between frames x-1 and x 

The same behavior repeats over successive frames, until the pipeline gets in the state S,+1. The number of frames 

after which the pipeline gets in state Si+] is: 

e(i + \)-f,(TU) + C(j)) 

r-r(i + i) 

where e(i+l) is the pipeline end-to-end latency up to the stage i+1. at the instance the pipeline gets to state Si. 

Note: the greater the input period T, the smaller mM, so the earlier the pipeline converges in stage S,+1. 

D 
We have demonstrated that by increasing the sensor input period above the maximum period of all p.peline 

stages, the end-to-end latency converges to the stable region. The theoretical results presented before proved the 

stability of our pipeline control method. 

Example 
The next example illustrates how the pipeline end-to-end latency converges in time to the stable region when the 

input sensor period is increased above the maximum period of all stages. 

Consider the following instance of a 9 stage pipeline: 

waiting time 

T(\):       3 5 2 6 J 5 2 13 
C(i):        24 1 4232 44 

Figure 5. Example of linear pipeline 

T(i). C(i). T, latency are represented in arbitrary time units. The end-to-end latency is 164, the stable region is 

[26, 68], and maXj=o.8T(i) =11. 
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In conformity with Theorem 2, if the sensor input period is greater than 11, the end-to-end latency converges to the 

-Tin p ut= 1 2 
-Tinput= 1 3 
Tin put= 1 4 

■ lower bound stable region 
-upper bound stable region 

A'^iV^V^ 

Frame number 

Figure 6. Latency variation depending on TjnpU| 

stable region. Figure 6 shows the pipeline behavior for T = 12, 13 and 14. We can observe that the greater the 

sensor input period T is, the earlier the pipeline enters the stable region. According to theorem 1, once the pipeline 

enters the stable region, it remains there as long as T > 11. 

3.2. Generalization for Clock-Based Pipeline With Composite Stages 

This section generalizes the results achieved in the previous section. It presents the clock-based pipeline with 

composite stage model and the main results. Many distributed data-flow applications have a complex structure with 

branches and parallel substages. One example is the ATR application depicted in Figure 9. We model these 

architectures as a linear pipeline with simple and composite stages. Figure 7a. illustrates a simple stage and 7b. a 

composite stage. 

staue i 

11 

staae I stage i-1 O- 
lc, 

o^ 2^\stage i+1 

a) simple stage b) composite stage 

Figure 7. A simple and a composite pipeline stage 
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A simple stage represents a single, indivisible task that processes a frame. A composite stage i consists of 

substages arranged in parallel branches that process parts of a frame. A substage branch works like the simple linear 

pipeline presented in Section 3.1. When last substage of each branch finishes the processing, the frame is 

reassambled at stage i+1. 

We proved that for this type of pipeline the results obtained previously for clock-based simple pipeline are valid: 

setting the input period greater than the maximum period of all stages/substages guarantees the pipeline 

convergence to the stable region after a finite number of frames. Once it enters the stable region, the pipeline 

remains there as long as the sensor input period is greater than the maximum period of all stages/substages. Due to 

space limitation we do not present here the formal proofs. 

The next section describes how pipeline feedback adaptation works in RTARM applied to an ATR application. 

It gives also some measurements and performance evaluations. 

4. RTARM Hierarchical Feedback Adaptation for Pipeline Applications 

The top-most HSM that receives the admission request directly from the user client remains in control of the 

application QoS and its dynamics for its entire lifetime. That HSM is responsible for maintaining the distributed 

application's QoS within the contracted region and to improve it when possible using feedback adaptation. The 

resource management system must react quickly and adjust online the application parameters in case of allocated 

resource abuse or contract violation. 

In RTARM we have designed and implemented an efficient hierarchical feedback adaptation mechanism and 

applied it to parallel pipeline applications and independent tasks, using the results developed in section 3. The 

RTARM hierarchy consists of a pipeline HSM, a network SM and several CPU SMs acting as LSMs. The network 

SM does not provide feedback adaptation. The reserved network resources must cover the entire range of 

application rate. According to our analysis, it is possible to control the end-to-end frame latency for the entire 

pipeline just by controlling the rate of the input sensor or first stage. This allows the CPU SMs to conduct local 

feedback adaptation for each individual pipeline stage in order to provide locally the best QoS within the contracted 

range. Thus, feedback adaptation for the entire pipeline and CPU stages is conducted independently. 

CPU Service Manager Feedback Adaptation 

CPU SMs run pipeline stages just like any regular periodic independent task. In fact 

CPU SMs have no idea these tasks are part of a higher level entity, and they perform all 

RTARM functions in the same way. As mentioned in section 2.4 the CPU SM QoS 

(Figure 8) consists of rate and iteration workload (execution time), both specified as 

intervals [min, max]. The CPU SM can directly control the application rate, but cannot ^^ g ^ ^ ^ 

touch     the     application     workload.     The     CPU     SM     uses     the     product 

COP 

Requested 
region 

Feasible 
region 

Workload 
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CPU_utilization = Rate x Workload to asses schedulability. Applications send their actual QoS as events to CPU 

SM monitor at the end of each periodic iteration. The application is allocated a constant fraction I of the total 

processor time. At any time the current operational point (COP) may vary so thatÄ x W< L. The CPU SM adjusts 

the current operational point: 

• increase rate when workload decreases 

• decrease rate on overload 

Pipeline feedback adptation 

The pipeline QoS parameter we consider critical and want to control is the end-to-end latency. As the pipeline 

evolves in time, rates of intermediate stages may change as a result of CPU SM feedback adaptation. In normal 

circumstances the input sensor period is maintained at a value greater than the period of any stage/substage of the 

parallel pipeline application, but it can get lower because of independent CPU feedback adaptation. When 

accumulation of queues between stages increases the end-to-end latency beyond a maximum threshold, the PSM 

sets the input sensor period at the maximum value from the pipeline contract. A finite state machine in the PSM 

maintains this maximal period for a fixed time, allowing the queues to empty. Then, the PSM sets again the input 

sensor rate to the maximal period of all stages. In this way, we know that the end-to-end latency decreases and after 

a finite number of frames the pipeline enters the stable region (section 3). 

This method is simple and efficient, as the only parameter to be adjusted is the sensor input period, while the 

pipeline stages are controlled only by the corresponding CPU SM. This mechanism avoids costly communication 

and coordination between the HSM and all the CPU SMs. The information required for pipeline feedback 

adaptation is minimal: the end-to-end latency for the current frame and the maximal period of all stages. 

Another option for pipeline feedback adaptation would have been to let the PSM directly adjust online the rate 

for each stage. In this case the PSM would have to keep track of the current workload and rate, and maybe queue 

lengths for all stages, implying extra communication, processing overhead and lower resource utilization for CPU 

service managers. 

4.1. The Automatic Target Recognition Experiment 

We tested the RTARM system and the feedback adaptation mechanism on a true mission-critical application. 

The ATR application, schematically shown in Figure 9, 

processes  video  frames  captured   by  a  camera  and m<*   SJT\_^0_>/r>_>(S)    rz^> 

displays recognized targets on a display. Stage 0 (the cJ 

sensor) generates frames that are passed through a series 

of filters and processing elements up to stage 6, which \ \ '~ 

displays  the Original   image  and  the  identified  targets. End-to-End Latency :     Frame Arrival Period 

The frames are 8-bit monochrome images, 360x360 Figure 9: ATR pipeline application and QoS 

pixels and contain a variable number of targets (from 3 
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to 50), depending on the frame. Stages 4, 5 and 6 expose variable workload, proportional to the number of targets, 

that without feedback adaptation would generate queue accumulations with negative effect to the end-to-end frame 

latency. 

4.2. Performance Metrics and Evaluation 

The runtime environment for the ATR experiment consists of three 450MHz NT Dell Workstation 400 

machines, connected via a Fore ATM switch with OC-3c (155Mbps) links. Each machine hosts a CPU SM. Both 

the network SM and the pipeline SM run on one of those three machines, and we consider their own CPU resource 

consumption negligible. All inter-SM CORBA communication uses a secondary Fast Ethernet network, so the 

ATM lines remain 100% available. We used the NT performance counter for precise measurements. 

The ATR pipeline contract requires an acceptable output frame period interval of [1,5] s, and a frame latency of 

0.7-13 s. The seven ATR stages run at a variable workload between 0.02 and 1.5s and within the same period 

interval [1,5] s. 

We first present timing measurements for the feedback adaptation at the CPU SM and PSM SM level (Figure 

10). We measured the processing overhead of the feedback adaptation code (part 2 in Figure 10) and the time it 

takes the SM to react from the moment it receives the current QoS from the application until its adaptation 

command is enforced (part 2 + part 3). 

CPUSM Pipeline SM 

rent«01'/ set qi>\fne»<JoS/ 

1 

event fCOl'J 

Application 

set qtH-fneuiJoSf 

CPUSM 

Figure 10. Feedback adaptation performance 
measurements. 

The measured times are displayed in Table 1. For the CPU feedback adaptation, detection and enforcing the QoS 

adaptation takes around 4.4ms. Most of the time, 3.9ms, is spent in aset_qos0 operation, a two-way normal 

CORBA call. The pipeline adaptation enforcement includes *set_qos() call to the CPU SM that controls the sensor 

(or first stage) that calls directly the application with *set_qos0 call. This explains why enacting pipeline QoS 

adaptation takes almost double the time than that for CPU SM QoS. 

CPUSM 

Pipeline SM 

Detection and decision processing (2) 

0.508 ms 

Decision Enactment (3) Total Time (2+3) 

0.859 ms 

3.914 ms 

6.816 ms 

4.422 ms 

7.675 ms 

Table 1. Feedback adaptation performance results for CPU SM and PSM 
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Figure 11 displays CPU feedback adaptation for stage 4 in the ATR pipeline. The stage has a period and variable 

workload and this causes the CPU SM to change the rate. Points A indicate overloads that trigger rate decrease and 

points B indicate chronic underutilization points that determine a rate increase. 

CPU Feedback Adaptation 

Eiparlmanttim* (itcondi) 

CPU Loaa=Rat« ■ 

Figure 11. CPU SM feedback adaptation for a task with variable workload. 

While running the ATR application (Figure 12), the pipeline feedback adaptation mechanism makes sure the 

end-to-end latency and rate stay in the contracted range. In order to practically demonstrate its effectiveness, we 

disabled the pipeline feedback adaptation after some time while keeping the sensor input period at a sustained low 

value of 1.48s (0.67Hz). This caused accumulation of frames in stage queues that translated into an increasing end- 

to-end frame latency. While feedback adaptation was disabled we actually did not get latency measurements, so we 

drew a dotted line between points A and B. When the latency reached 30s, way above the contracted value, we re- 

enabled pipeline feedback adaptation. Immediately the PSM sensor increased the sensor input period up at 5s. The 

latency went rapidly down (B -> C), below the threshold, after a brief spike caused by the inertia of the more than 

23 frames already in transit through the pipeline. 

Enable pipeline 
feedback adaptation at 
t=764s 

Disable pipeline feedback 
adaptation at t=460s 

"WHS 
A-A-A-JV. 

___ Sensor Input Period 

•*■■- End-to-end Latency 
N. Threshold 

Elapsed Experiment Time (Mconds) 

Figure 12: Latency Variation for ATR with and without pipeline feedback adaptation 
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Our hierarchical feedback adaptation algorithm proved to be effective and efficient. Detection, decision and 

enforcement take less than 8ms and involve only the CPU SMs for the sensor stage and the last stage that actually 

reports the latency and rate. 

5. Conclusion 

This paper presented briefly the Real-Time Adaptive Resource Management system, its architecture and 

flexibility. We developed a feedback adaptation mechanism for distributed data-flow applications based on an 

analytical model. We proved its correctness and stability and demonstrated its effectiveness by running an 

Automatic Target Recognition parallel pipeline application on a network of workstations managed by the RTARM 

system. Our innovative pipeline control method uses minimal information about the current state of the pipeline 

application and requires only one action to correct the end-to-end frame latency. 

A direction for future work is to add prevention features to the current feedback adaptation method. Right now, 

it only takes corrective actions when the QoS falls below a threshold. Preventive actions would further decrease the 

overall pipeline reaction time. We also plan to study the feedback adaptation for parallel pipeline applications 

where several pipeline HSMs have exclusive control over parts (sub-pipelines) of the entire distributed application. 
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