
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DISTRIBUTED RELATIONAL DATABASE SYSTEM
OF OCCASIONALLY CONNECTED DATABASES

by

Pavel Bielecki

March 2000

Thesis Advisor:
Second Reader:

C. Thomas Wu
Chris Eagle

DTXC QUALITY INSPECTED 4
20000612 012

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 2000

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE Distributed Relational Database System
of Occasionally Connected Databases

6. AUTHOR(S) Bielecki, Pavel

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Troop Command at the Presidio of Monterey requires an information system that will provide

timely and accurate data about all serviced troop activities with students and permanent party stationed at
the Defense Language Institute Foreign Language Center. Data sources that could provide required
information already exist, but are physically spread over the Presidio, are maintained in diverse formats, and
are not interconnected. Some data sources, maintained by other activities located at the Presidio, are
available on the Campus Area Network. As new technologies emerged, it became possible to integrate all
available data sources into a heterogeneous distributed information system, in which some information will
be shared, while other information will be under some degree of local control. This thesis studies the
feasibility of such an information system, and proposes one possible implementation.

14. SUBJECT TERMS

Distributed Database, Heterogeneous Database System, PowerBuilder 7, SQL Server 7
15. NUMBER OF
PAGES

192

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL

Approved for public release; distribution is unlimited

DISTRIBUTED RELATIONAL DATABASE SYSTEM
OF OCCASIONALLY CONNECTED DATABASES

Pavel Bielecki
Computer Specialist

Directorate of Information Management
Defense Language Institute Foreign Learning Center

and Presidio of Monterey

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author:

Approved by:

(tfaJjtffo'jUc+l w
Pavel Bielecki

C. visor

Chris Eagle, Second Revie^r

Dan Boger, Chal
Department of Computer SfcieYice

IV

ABSTRACT

The Troop Command at the Presidio of Monterey requires an information system

that will provide timely and accurate data about all serviced troop activities with students

and permanent party stationed at the Defense Language Institute Foreign Language

Center. Data sources that could provide required information already exist, but are

physically spread over the Presidio, are maintained in diverse formats, and are not

interconnected. Some data sources, maintained by other activities located at the

Presidio, are available on the Campus Area Network. As new technologies emerged, it

became possible to integrate all available data sources into a heterogeneous distributed

information system, in which some information will be shared, while other information will

be under some degree of local control. This thesis studies the feasibility of such an

information system, and proposes one possible implementation.

VI

TABLE OF CONTENTS

I. INTRODUCTION .1
A. BACKGROUND 1
B. SCOPE 2
C. ORGANIZATION OF THESIS 3

II. INFORMATION SYSTEM ANALYSIS 5
A. HARDWARE 5
B. SOFTWARE 6
C. INTERFACE 7

1. Goal.! 7.
2. Features 7
3. User Analysis S
4. Task Analysis S
5. Functional analysis .1.1

D. DATA COMMUNICATION 12

III. KNOWLEDGE SYSTEMS 13
A. INTRODUCTION 13
B. DBMS .14

1. Overview 1.4
2. Preferred DBMS Requirements .15
3. DBMS Classification .19
4. Selection of RDBMS 22

C. DATABASE MODEL 24
1. Overview 24
2. Relational Database Model 25
3. Data Structure 25
4. Normal Forms 26
5. Data Integrity 28
6. Data Definition Language 30
7. Data Manipulation 3D
8. Data Control Language 3.1

D. DATABASE SCHEMA 32
1. Local Database Schema .32
2. Global Database Schema 32

E. ACCESS CONTROL 34
1. SQL Access Control 34

F. USING VIEWS FOR ACCESS CONTROL .40
1. Overview .4.1
2. Updatable vs. Read - Only Views 42
3. Using Access Control Table for Filtering Data in Views .43
4. Implementation of Views .4.5
5. Stored Procedures 54

VII

IV. CLIENT SERVER ARCHITECTURE 61
A. TWO-TIER MODEL 6.1
B. MULTI-TIER MODEL 6.1
C. SELECTION OF CLIENT SERVER MODEL 62

V. DEVELOPING DATABASE APPLICATION IN POWERBUILDER 7 63
A. OVERVIEW 63
B. POWERBUILDER OBJECTS AND CONTROLS 63
C. POWERSCRIPT LANGUAGE 66

1. Overview 66
2. Classes, Properties, and Methods 67
3. Global Variables and Functions 68
4. Garbage Collection 68

D. COMMUNICATING WITH DBMS 68
1. Transaction Object 68
2. Transaction Object and Stored Procedures .70
3. DBMS Interfaces 7.1

E. BUILDING THE MILDB APPLICATION .74
1. Application Architecture 7.4
2. Application Object 74
3. DataWindow Objects 7.7
4. Global Functions 82
5. Menus .88
6. User Objects 96
7. Windows .107
8. Using Pipelines for Data Synchronization 134
9. Running the MILDB Application 150

VI. CONCLUSION .153

BIBLIOGRAPHY 155
APPENDIX A 157
APPENDIX B 165
INTITIAL DISTRIBUTION LIST 183

VIII

ACKNOWLEDGEMENTS

I would like to thank my thesis advisors, Professor Thomas C. Wu and LCDR

Chris Eagle, for their guidance and insightful comments.

I would also like to express my gratitude to the Command Group of the Presidio

of Monterey and the management of the Directorate of Information Management for

giving me the opportunity to pursue a degree in computer science.

I want to express special thanks to my mentor, Pat Golden, for sparking my

interest in the field of knowledge systems, and for the generosity with which he

continues to share his expertise.

I dedicate this thesis to my children, Vit, Adela, and Julie. I hope it will inspire

them to pursue higher education.

IX

I. INTRODUCTION

A. BACKGROUND

Numerous local databases are maintained simultaneously by military units at the

Presidio of Monterey (POM). Each database implements its own proprietary database

schema, and data are stored in a variety of formats (Paradox, Excel, MS Access,

proprietary file system, Word document, etc.). Often, one local database consists of

several unconnected mini databases. Because of such diversity, integration of these

databases into one interconnected system is virtually impossible. As a result, data

cannot be shared between units, nor can be queried by global users at the troop

command level. In order to allow querying the data by global users, and to allow sharing

of data between the units, these databases need to be integrated into one database

system.

A standard database, named Military Student Database (MILDB), that contains

all logical data items needed to be maintained by each unit, has been designed and

locally implemented at some units. MILDB users continuously update and query their

local databases. However, many data items, normally entered into MILDB at the unit

level, already exist in a networked database maintained elsewhere at the Presidio of

Monterey. In order to allow effective data sharing between these local databases and

networked databases, they need to be integrated into one heterogeneous, distributed

database system. Selection of appropriate database management systems that will

support heterogeneous queries will be proposed. Since only some MILDB users have

permanent access to Campus Area Network (CAN), while other users will connect to

CAN only occasionally via modem, MILDB databases need to synchronized. Mechanism

1

for reliable, bi-directional synchronization of heterogeneous databases will be, therefore,

proposed.

B. SCOPE

The scope of this thesis is to design and implement an information system,

consisting of a multitude of local MILDB databases occasionally connected to a central

MILDB database. This database system will be supported by a single interface which will

be installed on every user's workstation, and will have the capability to communicate

with both the central and local MILDB databases.

It will be taken into account that different system and performance requirements

will apply for the central and local databases. The first step is the selection of

appropriate database management system for each database. Chapter III, part B

addresses this issue. The central database will contain data from all Units and will also

contain other information, not related to MILDB. The second step, described in section E

and F of Chapter III of this thesis, is to design and implement a strict system of access

control which will provide information to users on need-to-see basis. The third step is to

develop a user friendly and intuitive interface that will provide means for easy data

updates, quick retrieval of data into canned or custom reports, and for bi-directional data

synchronization. Section V of this thesis documents the development of the MILDB

application interface.

C. ORGANIZATION OF THESIS

Chapter I: Introduction. Describes the project and identifies major areas of

concern. Indicates steps that will be taken to resolve the project.

Chapter II: Information System Analysis. Provides analysis of hardware and

software requirements on a workstation of a typical MILDB user. Detailed requirements

for MILDB graphical user interface are also specified.

Chapter III: Knowledge Systems. Provides a general overview of database

management systems (DBMSs), and major components of relational DBMS model.

Selection of DBMS for local MILDB and the central database is proposed and justified.

Data security is studied, and mechanism for controlling data access is proposed.

Chapter IV: Client Server Architecture. Applicability of two-tier and multi-tier

architecture to MILDB is studied. Selection of client server model is made and justified.

Chapter V: Developing Database Application in PowerBuilder 7. Provides an

overview of major features in PowerBuilder 7 for Windows. Describes how was

PowerBuilder applied to develop the MILDB application interface, and to perform

database transactions. Database connectivity through major database interfaces is also

studied.

Chapter VI: Conclusion. Summarizes lessons learned, and proposes areas for

further research.

THIS PAGE INTENTIONALLY LEFT BLANK

II. INFORMATION SYSTEM ANALYSIS

A. HARDWARE

Initially, local record keeping at Unit level was performed on PCs fitted with Intel

386 or 486 processor, 4MB to 8MB RAM, and 80 to 120 MB hard drive. 14in monitor

was a standard. This was sufficient to run DOS, or simple Windows-based applications

running in Windows 3.1 environment. At the time of implementation of the thesis, all

potential users of MILDB were equipped with workstations having the following

parameters:

Processor: Pentium 266 MHz

RAM: 64 MB

Hard Drive: 8 GB

(Modem): 33.3 K

(Network card): Ethernet 3COM 10-100

Monitor: 17"

Workstations are connected to Campus Area Network (CAN) via network card, or

via modem. The central database was at the time of implementation of this thesis

running on HP server fitted with four processors.

In order to take advantage of new hardware capabilities of the typical

workstation, the original version of MILDB was redesigned and upgraded to

PowerBuilder 7. This, in turn, set new minimum hardware requirements for workstations

intended to run MILDB:

Processor: Pentium 90 MHz +

RAM: 32 MB

Hard Drive: 7 MB

Monitor: 17"

Operating System: WIN 95+ or WINT NT 4+

B. SOFTWARE

The typical MILDB user uses PC with the following software preinstalled:

Operating System: Windows NT 4.0 Workstation

Service Pack 4 or higher

Other Essential Software: Office 97 with

Microsoft Access 97

Hard Drive 32 bit ODBC Administrator

It is apparent that the typical user of MILDB at POM works on a workstation that

exceeds the minimum hardware and software requirements for running a PowerBuilder 7

application.

C. INTERFACE

1. Goal

Develop a Windows based, event driven GUI as the sole means of

communication with a database to be used by military personnel with computer skills

ranging from novice to expert, who should become at least 80% proficient in using all

GUI's features (i.e., be able to readily locate specific function feature and use it

effectively) after less than 30 min of introductory briefing.

2. Features

• Maintains records of service members in three distinct areas: Administration,

Physical Training, and Dormitory Assignment. Maintaining records includes:

create new or locate existing record of service member, enter/update data,

deactivate or permanently delete a record.

• Generates and displays canned (pre-designed) or ad hoc query reports.

• Prints a report, or exports report as a text file.

• Allows display/modification of data of personnel grouped by individual units

(viewed only by personnel from the unit), and also make all data from all units

available to global users at troop command level. At troop command level, also

generate summary reports across all units.

• Minimizes the need of typing by providing optional selection from list of entries

whenever practical/functional.

3. User Analysis

Users of the interface will be military personnel with computer skills

ranging from novice to advanced level., ranking from enlisted personnel to senior

officers. Users with lower ranks, who will use MILDB daily, may fluctuate relatively often

(every few months). Officers with higher ranks may be using the system only

sporadically. Therefore, the interface has to be simple and intuitive enough, so that the

primary users (enlisted personnel) can use the system effectively after less than 30 min

of training, and occasional users (officers) will be able to reach the desired information

easily without any outside help.

Enlisted personnel (local users) will perform data entry and maintenance, and will

generate reports at the unit level. Senior personnel (global users) will mostly generate

summary reports.

No specific typing skills are required. It is assumed that all users will, as a

minimum, have high school diploma.

4. Task Analysis

a. Display interface, retrieve data in following record

categories:

(1) Admin/Biographical

• Inprocessing (biographical data, previous training, etc.).

• Individual Information (pregnancy counseling, family care, chapter

discharge).

• Individual History (training, flags, qualifications, disciplinary actions).

• Outprocessing (deactivate record, permanently delete record).

• Reports/Schedules (rosters, reports, training plans).

(2) Physical Training

• Weight Control (male & female separately), data entry and evaluation.

• Army Physical Fitness Test (APFT), data entry and evaluation.

• Profiles, data entry.

• Profiles, custom query.

• Individual's weight history (report).

• Individual's APFT history (report).

• APFT, custom query.

• Weight Control, custom query.

• Physical Training, custom query.

(3) Dormitory Assignment

• Check person in.

• Check person out.

• Show assigned and available rooms.

• Show unassigned personnel.

b. Enter new service member into database (a(1) only)

• Display fields for data entry.

• Verify validity of data (SSN, dates, class name).

• List entry options (when feasible).

. Automate data entries (DOB -> age, ZIP -> city name).

c. Locate a service member in database (a(1) and a(2))

• Retrieve & display list of all personnel in unit (Company).

• Retrieve & display list of all personnel in sub-unit (platoon).

• Retrieve & display individual's records of specific category.

d. Enter/Modify data

• Indicate field to be filled/modified.

• Verify data validity (SSN, date format, class name).

• Allow entries for group of records whenever feasible.

e. Save changes to records

• Verify validity of data.

• Save changes to individual or multiple records.

f. Generate reports

• Retrieve & display data in pre-designed reports.

• Retrieve & display data in ad hoc query reports.

• Display list of data items available for query.

• Generate custom report.

g. Print reports

h. Export report data to a text file

10

5. Functional analysis

a. Display interface for record category

• Open window (new window for each group).

• Setup window for Admin/Bio.

• Setup window for Physical Training.

• Setup window for Dormitory Assignment.

b. Enter new service member into database (a(1) only)

Setup Admin/Bio for new record.

c. Locate a service member in database (a(1) and a(2))

Show personnel in unit/sub-unit.

Retrieve data for selected/highlighted individual in currently active window.

d. Enter/Modify data - Verify validity of data.

Navigate to the next field.

e. Save changes to records.

Update database.

f. Generate reports

Setup data-viewer window for specific report.

11

For ad hoc query:

• Open Query Builder window.

• Retrieve/display list of table columns.

• Build query from selected data items.

• Retrieve/display data.

. g. Print reports

• Call PRINTO utility in active window.

h. Export report data to a text file

• Call EXPORTQ utility in active window.

D. DATA COMMUNICATION

The current trend at POM is to connect every workstation to CAN. However, until

this happens, some workstations need to connect to CAN via modem through telephone

network, using terminal Server Access Controller System (TSACS). Such connections

are not intended for continuous 24hr/day operation. Also, the typical database

transaction executed via TSACS takes seconds or minutes, rather than milliseconds or

seconds. Many MILDB transactions require retrieval of several reference data, before

other queries can be formulated and executed. This would lead to significant time delays

in execution of MILDB transactions, which would also make the use of the central

database impractical. Rather, users without permanent connection to CAN should work

on a local MILDB database, and regularly synchronize data with the central database.

12

III. KNOWLEDGE SYSTEMS

A. INTRODUCTION

Database is a collection of data serving some specific purpose. When applied in

information system, this collection is usually also formally structured. In order to be

considered a database, data don't have to reside in one location only. Rather, as it

becomes typical today, data can be geographically distributed among several data

repositories.

In order to be able to retrieve a specific data item from database, one can

engage in devising a software that will find the physical location of data in data

repository, read appropriate number of bytes, and format the output into a form,

intelligible to the end user. A commercial database file system is an example of such

approach. Then, according to some estimates, up to 80% of a typical business

application is dedicated to coding a file access mechanism and to editing and validating

the input data, while only about 20% of the application logic is dedicated to formatting

and processing data before being displayed as output.

However, the mechanics of data storage and retrieval can be separated from

database application and delegated to a separate software system, the Database

Management System (DBMS). The database client application can then focus on

business logic, data manipulation and presentation, while DBMS will store, modify, or

extract data from database.

13

B. DBMS

1. Overview

Typical contemporary DBMS provides means for defining the type and layout of

each data item (entity) to be stored in the database. These properties (attributes) can be

referred to by a name (i.e., column name in a table). Data items (entities) are organized

into larger wholes (tables, or relations). Various relationships and dependencies can be

defined between tables (relations). Definitions of entities, definitions of relations, and

relationships are parts of database schema, which is stored and maintained in a system

catalog. There are several tasks to be accomplished during implementation of a

database:

Planning (define entities, relations, interdependencies, etc.).

Construct a database (implement the plan).

Populate the database with data (store initial data).

Query the database (request, store new, or update existing data).

Maintain the database (compact the database, add/remove indexes, etc).

To fulfil these tasks, we communicate with the DBMS using a language that

DBMS understands. To create database objects (tables, indexes, and so on) we use

Data Definition Language (DDL). In order to determine which values are present in a

database at any given time, we use Data Manipulation Language (DML). Another

language, Data Control language (DCL), is a set of commands that determine whether a

user has appropriate permissions to perform a particular action. In reality, these

languages are not separate. Rather, they are divisions of commands of a single

14

language, Structure Query Language (SQL). SQL standard is defined by ANSI (the

American National Standard Institute). Ail commercial DBMSs have to conform to SQL-

89 standard. It is desirable, however, that new DBMSs conform to a newer, SQL-92

standard. Various business applications and tool kits designed to interact with databases

also provide a set of powerful commands that fulfil most of the tasks that SQL does. But

they use simpler, more English-like languages, called fourth-generation languages

(4GLs). Examples of such tool kits include PowerBuilder from Sybase, Visual Basic from

Microsoft, Windows/4GL from Computer Associates, SQL-Forms from Oracle, and

others. In this project, PowerBuilder 7 for Windows will be used.

2. Preferred DBMS Requirements

a. Interoperability

(1) Hardware

The DBMS should run on a variety of hardware platforms, fitted

with one or more processors of no particular type. It should run on a single, off-line

workstation, as well as in a multi-tier environment. It should also be capable of

interoperating with legacy systems at both the data and application level.

(2) Database

Without requiring a separate installation procedure, the DBMS

should provide the following functioning:

• Heterogeneous data access (select data from more then one database in a

single query, either using native build-in mechanisms, or Open Database

Connectivity interface).

15

Transaction Integration (complete a query submitted using different kinds of

query languages [SQL, Oql], or interface languages [HTML, Java]).

Replication (ability of data modifications to non-native data stores, without the

necessity of installing additional software).

Messaging System (ability to remotely notify administrators about system

errors, or other messages via, for example, e-mail).

Jb. DBMS Engine

• Automatic, Transparent Database Tuning

Based on usage patterns, reorganize data and index pages to improve

performance, allocate additional memory space as needed, reclaim unused disk

space in database files, verify integrity of data possibly compromised by

hardware or software errors, cache the most frequently called stored procedures,

verify data integrity by checking the structural integrity of data objects.

• Index Auto-Create

Based on usage patterns, optimize accessing data by creating/dropping indexes

that are not part of the original design.

16

• Database Statistics

Automatically gather statistics about distribution of the data in the database for

use by query optimizer, or database administrator.

• Dynamic Configuration

Continuously coordinate with the operating system a re-allocation of main

memory, data and procedure cache.

• Locking

Based on the data amount, automatically determine the best locking strategy of

records.

• Query Processor

Automatically optimize index maintenance, constraint checking, and parallel data

load operations during import/export of large volume of data.

• Cursors

Enable locating/update of a record within a result set by supporting relative

positioning indicated by graphical user interface.

• Table Design

Allow adding/removing columns regardless of data type, at any time and in any

order, without loosing any data stored in database.

17

c. Administration

• Interface

Provide intuitive graphical interface for performing even elaborate administrative

tasks.

• Scriptable Administration

Execute commands written in a variety of scripting languages, such as Java,

Pearl, VB Script, etc.

• Multi-server Administration

Provide the ability to administer a multitude of subscribed servers from any

workstation that has the administrative interface.

d. Data Movement

Integrate tools for data export/import from any type of data store.

Transform/translate the data as it is moved from source to destination.

e. Data Warehousing

DBMS should include facility for creating, accessing, and manipulating a

multidimensional database

f. Replication

DBMS should allow to replicate data to non-native data stores without the

necessity to install additional software.

18

g. Tools

• Data Tools

Provide graphical tools for creation of database tables, queries, views, stored

procedures, database diagrams, etc.

• Maintenance Tolls

Provide intuitive graphical interface for various administrative tasks, such as

database creation, maintenance, performance tuning, replication setup, etc.

3. DBMS Classification

Range of data managed by DBMS may vary from simple to complex. Application

that manipulates data may do so by means of queries, or without queries. In order to

categorize few basic DBMSs, we will assume that data are either simple or complex, and

application requires queries or does not require queries. Then we can describe four

basic DBMS applications that manage:

a. Simple Data with Queries

A text editor is an example of a "no query" application. Text editor merely

opens a file, and either overwrites the existing content with a new one, or appends the

file content.

b. Simple Data without Queries

Simple data are those that can be expressed using standard data types

found in SQL-89 or SQL-92. They can be captured in a two-dimensional table such as:

19

CREATE TABLE Sailors(

Name varchar(30),

SSN varchar(9),

Rank varchar(5),

Unit varchar(2),

DOB date,

Weight integer);

CREATE TABLE Units(

Unit varchar(2),

CmdrSSN varchar(9),

Location varchar(10));

To find all sailors serving at certain location (for example, POM), we can

send the following query to the database:

SELECT name

FROM Sailors

WHERE Unit in (SELECT Unit

FROM Units

WHERE location = 'POM');

This type, or more complex, queries can be found in typical "business

data processing" applications.

20

c. Complex Data without Queries

Typical application that falls into this category is CAD, where the

computer must handle many interconnected items, some of which are complex

themselves. Changes to any item could require extensive modifications to other items, in

order for integrity of drawings to be maintained.

d. Complex Data with Queries

A digital library of pictures is a good example of unifying both complex

items and queries. Each picture is scanned, and the location of each picture and location

of selected features within the picture are recorded. User may query the database to find

all pictures from specific area, or all pictures that contain certain feature.

For each of these case studies, a different DBMS is suited:

• Simple Data without Queries File System

• Simple Data with Queries Relational DBMS

• Complex data without Queries Object-oriented DBMS

• Complex Data with Queries Object-relational DBMS

All data in MILDB can be captured in 2-dimensional relations that will be

queried. Relational DBMS (or, RDBMS) will be, therefore, studied and implemented.

21

4. Selection of RDBMS

Units will maintain their data either in a local database running on a workstation,

or in the central database running on a network server. Each local database will hold

data on several hundreds of personnel. The central database will hold data on personnel

measured in thousands. Local MILDB database will hold approximately 5 MB of data,

and can be managed by a small DBMS, such as Microsoft Access. However, more

involved queries, such as:

DELETE FROM training

WHERE ssn NOT IN (SELECT ssn

FROM admin);

can take minutes to complete even on a local database, which would be unacceptable

for the central database, which will be queried simultaneously by many users. More

powerful and effective database engine is needed for the central MILDB database.

Microsoft SQL Server 7 was chosen to manage the central database. Brief description

of selected DBMSs follows.

a. Microsoft Access 97

Microsoft Access can contain all its objects in a single file (.mdb). For this

reason it is sometimes called a database container. Advantage of this fact is that the

database file can be, when needed, easily transferred from one workstation to another

and continue to function at the new location without any further special arrangements or

interruption. The MDB file can also be easily backed up by making a simple copy to a

different location, or can be forwarded to a different location for repair, in case the user is

not experienced enough to perform such operation on site. Access 97 contains build-in

22

features for easy data import/export from external non-native data stores, as well as for

linking external data sources to the database without actually importing the data. MS

Access also provides access control features. Access control will not be implemented on

a local MILDB database, since access to this database will already be controlled by the

authentication procedure of the operating system.

System requirements for optimum performance:

Processor: Pentium

RAM: 16-20MB (under Windows 95+)

32 MB (under Windows NT 3.51+)

HARD Disk: 70 MB (for full installation of Access)

10 MB (for database file)

Operating System: Windows 95+

Windows NT 3.51 +

Hardware and software specifications of typical user's workstation meet,

and exceed, the system requirements for MS Access 97.

b. Microsoft SQL Server 7

This product has evolved from DBMS developed by another relational

DBMS vendor, Sybase. By today's standards, the SQL Server 7 meets many of the

preferred requirements listed earlier in this secton. Its strengths include ease of use

and, more significantly, its support of very large databases. SQL Server has build-in

features such as dynamic self-management, high performance on-line backup, support

of heterogeneous queries and English queries, data warehousing, data transformation

23

services, and others. SQL Server 7 is able to take advantage of multi-processor servers,

and claims to be able to access directly up to 32 GB of memory by using 64-bit

addressing. This by far exceeds the needs of the central MILDB database, which will in

the future hold records (current and historic) measured in tens of thousands. However,

SQL Server will be also utilized to manage other databases as well.

System requirements for optimum performance:

Processor: Pentium 166 MHz +

RAM: 32 MB minimum

(64 MB recommended)

HARD Disk: 70 MB (minimal installation)

160 B (typical installation)

Operating System: Windows 95+

Windows NT 4.0+

Service pack 4 or later

Other: Internet Explorer 4.01 +

Network server that meets and exceeds these requirements was procured.

C. DATABASE MODEL

1. Overview

From technical point of view, DBMSs can widely differ. Major types of DBMSs

are: relational, network, flat, hierarchical, and object-oriented. Each type vary by the way

the DBMS internally organizes information, which in turn can determine how quickly and

24

flexibly a user can extract information from database. In previous section we have

concluded that relational DBMSs will be applied in this project. It is, therefore, the

relational data model that will now be further investigated.

2. Relational Database Model

Relational database model has three main parts: structure, integrity, and data

manipulation. Data structure defines the form for representing the data. Data integrity

defines mechanisms for ensuring validity of stored data. Data manipulation provides

means for manipulating data in database.

3. Data Structure

All information is stored and presented to users as two-dimensional relations

(tables). Individual records (or tuples) in relations, equivalent to rows in tables, consist

of fields (equiv. to columns in tables). The order of records in relations is immaterial.

Each field (column) refers to an attribute. Attribute signifies the properties of the field,

such as data type (char, integer, date), size, default value and, most significantly, the

name of the field. This allows future references by database applications to this

collection of attribute properties by a single name without knowing how a particular data

item is stored in database.

Each tuple is a set of attribute-and-value pairs. The number of tuples in a relation

is called cardinality. Since the ordering of tuples is immaterial, rows cannot be identified

by row number. But each tuple can be uniquely identified by a set of attribute-and-value

pairs, provided that no two tuples in a relation are the same. The minimum set of

25

attributes, whose values uniquely identify each tuple in a relation, is called a (candidate)

key. If more than one candidate keys in a relation can be identified, one of them is

arbitrarily chosen as the primary key of the relation.

Properties of relations can be summarized as follows:

• Each relation contains only one record type.

• Each relation has a fixed number of columns which are uniquely and explicitly

named. Each attribute name within a relation is also unique.

• No two rows in a relation are identical.

• In each row, every attribute is atomic, that is, it has only one value set that

cannot be further decomposed. Thus, no repeating groups are allowed.

• Ordering of rows is immaterial.

• Ordering of columns is immaterial.

4. Normal Forms

In theory, no two rows in a relation are identical. Also, within one row, no two

columns are identical. This notion is easy enough to implement in a database having

one or very few tables. This is rarely the case in a real-life database. By creating a

multitude of tables with interrelated information, one can easily be fooled into believing

that not only each single row in every relation is unique, but also that each attribute-

value pair is unique simply by giving the attribute a different name in another (or event

the same) relation. Then, the same information may be duplicated on several locations,

which leads to wasted resources and, more importantly, to inconsistent data updates.

Process of splitting relations with redundant information into two or more relations

26

without the redundancy is called normalization. A normal form is a way of classifying a

table by its functional dependencies, which means: if I know the value of one attribute, I

can always determine the value of another.

There are five main normal forms for relations:

• First Normal Form

Each attribute value is atomic. It cannot be a set, or other composite structure. By

definition of data structure in relational database, each relation meets this criterion.

• Second Normal Form

Each relation is in at least the first normal form, and in addition, each non-key

attribute depends on the entire primary key.

• Third Normal Form

Each relation is in at least the second normal form, and in addition, each non-key

attribute depends only on the primary key.

• Fourth Normal Form

Each relation is at least in the third normal form, and in addition, there is no more

than one multi-valued data item in the relation.

• Fifth Normal Form

A relation meeting the fifth normal criterion cannot be split into two or more tables

(with each having its own primary key) without loss of information.

27

5. Data Integrity

Relational DBMS employs a mechanism which ensures that all data to be stored

are valid. As a minimum, it needs to ensure that each attribute value is valid, check that

the set of values in a tuple is unique, and that relationsdesigned to be interrelated have,

in fact, consistent values within each tuple that relates them.

a. Primary Key

Primary key is the only means of addressing a specific tuple within a

relation. Therefore, in order to be unique, none of the primary key attributes can be null.

b. Domain

For some fields it may be useful to determine not only a data type, but

also a range of permissible values. The following example demonstrates how declaring

a domain can limit all possible values of "Location" to just a few, and ensure that valid

entries for "Weight" are within permissible range:

CREATE TABLE Sailor(

Ssn char(9) NOT NULL UNIQUE

Location char(10) CHECK

(Location IN ('Monterey','Carmel','Pacific Grove','Seaside',

'Del Ray Oaks'/Salinas')),

Weight integer CHECK

(Weight > 100 AND Weight < 200));

SQL-92 allows users to create domains as objects in a schema. Then, columns in tables

can be declared as types of domain, rather than data types.

28

c. Foreign Key and Referential Integrity

When all of the valid values in one field of a relation (for example, Rank in

Admin table) have to exist in a field of another relation (for example, Rank in

ListOfRanks table), it can be said that the first field references the second and is,

therefore, called a foreign key. The field to which it refers to is called its parent key.

Names of the foreign and the parent key do not have to be the same. The parent key in

the referenced table has to have either the UNIQUE or the PRIMARY KEY constraint in

the table's definition, in order to ensure having unique values.

Some DBMSs implement referential triggered actions that have update

effects and delete effects. These specify what happens when a parent key value in the

referenced relation is modified or deleted. There are four options:

• SET NULL (sets to NULL all foreign keys that reference a parent key if it was

modified or deleted).

• SET DEFAULT (same as above, but instead to set the referencing fields to

null, foreign key values are changed to a preset default value).

• CASCADE (a change in the parent key value automatically triggers the same

change in foreign key values).

• NO ACTION (the foreign value doesn't change, and if this would violate

referential integrity, change of the parent key is disallowed).

29

6. Data Definition Language

Data Definition Language (DDL) commands allow to perform the following tasks:

• Create, alter, and drop databases and database objects.

• Grant and revoke access privileges and roles.

• Establish auditing options.

• Add comments to data dictionary.

DLL statements automatically update system catalog tables of DBMS.

7. Data Manipulation

As stated earlier, the Data Manipulation Language (DML) is not a language of its

own. Rather, it is a subset of SQL. DML allows formulation of update queries and select

queries. Here are four basic DML statements:

• To add a tuple

INSERT INTO <relation> VALUES <set of values> ;

• To remove a tuple(s)

DELETE FROM <relation>

WHERE <condition on attributes>;

• To modify tuple(s)

UPDATE SET <set of new values> IN <relation>

WHERE <condition on attributes>;

30

• To select tuple(s) and join

SELECT <attributes>

FROM <relation(s)>

WHERE <selection criteria>;

Some aggregate functions that are used with SELECT:

COUNT, MIN, MAX, AVG, SUM, etc.

Set operations:

[NOT] IN, [NOT] EXISTS, CONTAINS (subset check), UNION, INTERSECT,

MINUS.

8. Data Control Language

Data Control language (DCL) consists of statements that control security and

concurrent access to data in relations. Common DCL commands are:

• COMMIT (instructs the DBMS to make permanent all data changes resulting

from DML statement executed by a transaction).

• CONNECT (connects user to database).

• GRANT (assigns access privileges to a database user).

31

• REVOKE (revokes access privileges to database).

• ROLLBACK (reverses the effect of any DML command executed

by a transaction, provided that backward log exists and is actively used).

• LOCK / UNLOCK TABLE (locks/unlocks a table from being accessed

by other database users).

D. DATABASE SCHEMA

Database schema of a distributed database needs to be studied in two contexts:

• Design of individual databases.

• Integration of collection of databases into a global schema.

1. Local Database Schema

Database schema of individual databases contains logical description of data

stored in a database. The schema defines the names of data items, their sizes and other

attributes, and also identifies the relationships among the items.

Database schema of a local MILDB database is documented in Appendix B.

2. Global Database Schema

Local MILDB databases will be queried only by local users. Local users with

proper privileges, local replicators, will replicate selected data items into the central

database, where they will become available to global users. Local replicators will also

replicate certain data from central database into their local MILDB, where it will become

available to other local users. Data exchange will occur between tables in local MILDBs,

32

and views found in the central database. Figure 1 shows partial global database

schema.

LOCAL MILDB

APFT wc TRNG ADMIN

i L i k. i L i i

y r 1 r 1

VIEWS
CENTRAL

DATABASE

r
APFT wc TRNG ADMIN

1 r 1 ' 1

BAS

r

tETA BLES

r y r
APFTBASE WCBASE TRNGBASE ADMINBAS

E
1

1
STORED

PROCEDURES

GetSUIDQ
ChangeSSNQ

IslnAdminBaseO -
1 r

w
UNIT AUTH

£

Figure ?1. ninhal Datal- J V.hfima

33

E. ACCESS CONTROL

The goal of this portion of thesis is to establish a firm access control to MILDB

database and its data. Data are to be displayed to users on need-to-see basis. This

means that after gaining access to MILDB database via login procedure, users will be

allowed to view and manipulate only certain columns, and within the scope of these

columns only those rows, that the user is authorized to see and manipulate.

1. SQL Access Control

As mentioned earlier, database access control is implemented by a set of DCL

commands. Generally speaking, DBMS administrator (a user with the ultimate control

over any database managed by DBMS) can create other users and give them certain

privileges. A user, who creates a table, has control over this table (is the table's owner),

and can in turn grand various privileges on this table to other users. Privileges are

authorization identifiers that determine, whether or not a particular user can perform a

given SQL command from DDL, DML, or DCL set of commands. Privileges are given

and taken away by GRANT and REVOKE SQL commands. Two basic SQL statements

can be used:

GRANT <privilege type> ON <object> TO <user id> ;

REVOKE <privilege type> ON <object> TO <user id> ;

34

a. SQL Access Control

As mentioned earlier, database access control is implemented by a set of

DCL commands. Generally speaking, DBMS administrator (a user with the ultimate

control over any database managed by DBMS) can create other users and give them

certain privileges. A user, who creates a table, has control over this table (is the table's

owner), and can in turn grand various privileges on this table to other users. Privileges

are authorization identifiers that determine, whether or not a particular user can perform

a given SQL command from DDL, DML, or DCL set of commands. Privileges are given

and taken away by GRANT and REVOKE SQL commands. Two basic SQL statements

can be used:

GRANT <privilege type> ON <object> TO <user id> ;

REVOKE <privilege type> ON <object> TO <user id> ;

To grant and maintain privileges for every individual database user separately would be

too time consuming and could become too complex. Therefore, DBMSs implement a

notion of group (or role, in SQL Server 7) to which privileges can be granted. Individual

users can be added to, or removed from, the group and automatically inherit or lose a

set of privileges granted to the group.

b. SQL Server 7 Access Control

Similar to principles implemented in other DBMSs, a user needs first to

gain access to DBMS, after which he/she can perform operations on a database

determined by the role he/she has been assigned. SQL Server 7 also introduces new

special role, the application role, which will be studied later in this section.

35

c. Security Modes

To gain access to the SQL Server 7 engine, the user has to pass an

authentication test. Two authentication methods can be implemented on the SQL Server

engine in general, and on individual databases: Windows NT Server Authentication

mode, and Mixed mode.

When Windows NT Server Authentication mode is applied, the engine checks,

whether the Windows NT login ID of a user (who must have previously logged in on a

Windows NT workstation) has been granted access to the database engine. Therefore,

the user is not challenged by a separate login dialog box when he/she tries to connect to

database via some interface, because his/her Windows login ID is automatically used.

When Mixed mode is applied, the user is challenged by a login dialog box. After

login ID and password (PSW) is submitted, the engine tries first to authenticate the user

via Windows NT authentication. If the login ID is not in Windows NT authentication

database, the engine checks its internal user database.

d. Roles

Notion of group is in SQL Server 7 replaced by role. Groups are used in

Windows NT operating system, where they have a function parallel to typical DBMS, but

applying only to privileges related to the operating system. Entire NT groups can be

assigned to SQL Server roles. Permissions granted, revoked, or denied to a role

automatically apply to all users and groups assigned to "play" this role. Roles can be

further nested.

Certain roles in SQL Server are predefined:

36

Fixed Server roles allow to perform various tasks on the SQL Server;

Fixed Database roles allow to perform administrative tasks on individual databases.

User-Defined role is customized set of privileges that allows its "players"

to perform various tasks on a single database. User-defined roles are local to each

database.

Public Role provides a default (but customizable) set of permissions to a

user who has not been assigned any other role.

Application Role allows to restrict access to data based on the application

through which a user gained access to the database. Regardless of the role that the

user might have been assigned to in the database, his/her role privileges are temporarily

suspended for as long as he/she stays connected to the database via the application.

Both security modes (Windows NT or Mixed) can be used by the application, but no

"live" users can be associated with this role, since it is the application that has its own

log ID and PSW. Typically, this log ID and PSW is hidden from users. Application role

allows great flexibility to database administrators. It may, for example, allow less

restrictive access to be granted to the application, since actions of its users will be

controlled by the application, which can prevent them from performing malicious action

or honest mistake. When connected through some other interface, the same users can

have much more restrictive permissions (for example, read-only on certain tables).

e. Permissions

Login ID allows user to merely connect to SQL Server. A database user ID (same

as login ID most of the time, but can be different), on the other hand, allows a user to

access a specific database. But it is the set of permissions that allow a user to access

37

and manipulate objects within the database. Permissions can be assigned to individual

users, or to roles and groups (meaning, Windows NT groups). SQL Server recognizes

three different types of permissions: statement, object, and implied.

• Statement Permissions

Statement permissions allow users to execute commands typically found in DDL.

Statement permissions include the following self-explanatory Transact-SQL (see further)

statements: CREATE DATABASE, CREATE DEFAULT (creates default value),

CREATE PROCEDURE, CREATE ROLE, CREATE TABLE, CREATE VIEW, BACKUP

DATABASE, and BACKUP LOG.

Transact-SQL is Microsoft's version (dialect) of standard SQL-92. It is used for

communicating between applications and SQL Server. A notable addition to standard

SQL, found in Transact-SQL, are commands related to creating and manipulating stored

procedures.

• Object Permissions

Object permissions include commands most commonly found in DML. They

consist of the following Transact-SQL statements: DELETE, EXECUTE, INSERT,

REFERENCE (ability to link tables), SELECT, UPDATE.

• Implied Permissions

Implied permissions are those that users automatically inherit just by the fact that

they were assigned to a fixed server or database role, or because a particular user is an

owner of a database object. Implied permissions cannot be assigned. Rather, a

particular user needs to be included into a build-in fixed group that already has the

permissions (i.e., database administrators).

38

f. Permission Precedence

Permissions can not only be granted and revoked, they can also be

specifically denied. For example: a group of users has been assigned a role with a given

set of permissions. We don't want one user from the group to have access to a certain

view. Instead of removing that particular user from the group (because, possibly, it is

more convenient to keep him in the group, so that he can perform some other chores

assigned to this group in a different role), we can explicitly deny this user an access to

that particular view.

Generally, the effect of permissions granted to a user is cumulative, with

the exception of explicit denial of a permission. Denied access to an object overrules any

permission the user would otherwise had by belonging to a group or role that enjoys that

permission. If a user was denied access to an object in one group or role, he is

automatically denied the same access in any other group or role, without the necessity

to re-apply this denial in these other groups or roles. Permissions can be also denied to

a group or role, for example, a troublejnakers role.

g. Ownership Chain

Whoever creates an object in a database, becomes the database object

owner of the created object. If one user creates, for example, a table, then creates a

view based on that table, and then creates a stored procedure that draws from that view,

he/she is the owner of all three objects in the ownership chain, anon-broken ownership

chain. If, on the other hand, userl creates a table (userl becomes the owner of this

table), then user2 creates a view from that table (user2 owns the view), and yet another

user, user3, creates a stored procedure that draws from the view (user3 owns the stored

39

procedure), such chain of ownership is in SQL Server 7 called a broken ownership

chain. These two distinct cases have some implications: If the chain of ownership is

non-broken, the owner of these objects needs to grant the permission only to the highest

object in the chain (the stored procedure) in order to allow another user to operate on it.

Appropriate permissions (SELECT, etc.) will automatically propagate down the chain. If,

on the other hand, the chain of ownership is broken, in order to be able to grant

permissions on the stored procedure, the owner3 of the stored procedure needs to

obtain appropriate permissions from owner2 of the view, who in turn needs to obtain

proper permissions from the owner of the base table, ownerl. This situation is to be

avoided. In order to prevent broken ownership chain, the fixed database role, the

db_owner role, should be used. Anyone assigned to the db_owner role can create,

manage, and manipulate any object within a database.

F. USING VIEWS FOR ACCESS CONTROL

Access to data in a database can be controlled by granting proper permissions

on selected objects, such as tables and, more recently, even on individual columns. To

maintain desired set of permissions on every table and even columns could become too

time consuming complex. The same effect can be achieved in a much simpler way, by

using views.

40

1. Overview

Views are virtual tables that display selected columns from one or more

underlying tables. Only the definition of the view is permanently stored in the database.

The view itself is constructed and populated with data only when it is called upon.

Because views are virtual tables, they can be used the same way as the regular tables

are: they can be used separately, or joined with another table or view; they can be used

in unions; a view can also serve as a base table for another view. The only limitation is

that not every view is updatable, as will be investigated in the next paragraph. Views are

used extensively in the MILDB project.

Basic syntax for creating a view is:

CREATE VIEW <view name>

AS <query expression>

[WITH CHECK OPTION];

There are few restrictions on the SELECT clause in a view definition. It cannot:

• include ORDER BY, COMPUTE, or COMPUTE BY clauses.

• Include INTO keyword.

• Reference a temporary table.

Some DBMSs put more restrictions on view's definition.

Objects, referenced in view definition, must exist before the view can be created.

In SQL Server, the SELECT clause can be of any complexity and can also include

functions. If the optional WITH CHECK OPTION is specified, the view has to be

41

updatable. SQL Server also provides WITH ENCRYPTION option, which encrypts the

CREATE VIEW statement in system tables. Also, in SQL Server, the definition of a view

can be modified without having to drop and recreate the view, and therefore the

permissions assigned to the original view are not lost and don't have to be re-

established.

2. Updatable vs. Read - Only Views

In order for a view to be updatable, every row in the view has to be associated

with exactly one row in the underlying base table. Naturally, a view which is based on a

SELECT statement that contains, say, a UNION, does not meet this criterion and cannot

be updated. View in SQL Server are updatable if:

• SELECT statement does not contain agregate functions (COUNT, MAX, etc).

Agregate functions can be used, however, in a subquery in the FROM clause.

• SELECT statement does not contain GROUP BY, UNION, DISTINCT, or

TOP.

• SELECT statement does not contain derived columns, such as those using

functions, additions, or subtraction operators.

• FROM clause in the SELECT statement references at least one table.

A view of a view is updatable only if the source view is also updatable. UPDATE,

INSERT, and DELETE statements can be executed only on a view that is updatable.

UPDATE and INSERT statement must be written in such a way, that it modifies data in

only one of the underlying base tables.

42

3. Using Access Control Table for Filtering Data in Views

As mentioned earlier, views display selected columns from one or more

underlying base tables. If we have, for example, a base table named ADMINBASE that

contains biographical and other data about students from all Units, and we want to

restrict access to only those data that MILDB users need to see, we can define a view

named ADMIN that will contain only selected columns from the ADMINBASE table. Such

view will, after retrieval, contain selected data about all students in ADMINBASE. We

want to further restrict the view to display only those rows that refer.to students from a

specific Unit, or even specific platoon within that Unit, based on user's access privileges.

To achieve that, we can add another condition to the WHERE clause of the SELECT

statement. Since the ADMINBASE table contains a Unit column, the view definition

could look like this:

CREATE VIEW admin_a AS

SELECT <column selection>

FROM adminbase

WHERE Unit = A ;

Hard-coding the Unit's name into the view definition would, however, mandate

creating separate views for every Unit, and the application would then be required to

implement a mechanism that could select appropriate view based on user's privileges.

That would not be practical. We need a single view that will be used by all Units, and still

display only those rows that a particular user is allowed to see.

For this purpose, a small access authorization table was created. Itcontains user

ID of each MILDB user, and Unit and Platoon of personnel that a particular user is

43

allowed to access. Wildcard character (%) can be used as an entry in the Platoon

column to indicate access to data of all personnel in the Unit.

Authorization table definition:

CREATE TABLE mil_auth(

n_user char(8),

unit char(1),

pit char(1));

Then we can construct a WHERE clause of the ADMIN view, that will include

only those records from ADMINBASE whose Unit coincides with Unit(s) in table mil_auth

for a particular n_user. But how can we identify the n_user in the WHERE clause? For

this purpose we will invoke a special constant, built-in in most DBMSs, that has value

USER. User is the authorization ID assigned automatically to any user after he/she/it

logs on. Now we are ready to define view ADMIN as follows:

CREATE VIEW admin AS

SELECT <column selection>

FROM adminbase a

WHERE a.unit +a.plt IN

(SELECT ua.unit + ua.plt

FROM unit_auth ua

WHERE ua.n_user= USER) ;

44

4. Implementation of Views

a. General

Every table found in local MILDB database has an equivalent table in the

central SQL SERVER database, with a suffix "base". Thus, table ADMIN has its

equivalent table ADMINBASE, APFT table has an equivalent table APFTBASE, and so

on (with the exception of reference tables that have identical contents and, therefore,

keep identical names). For each (non-reference) local MILDB table was in SQL Server

database created a view having the same name and containing the same columns as

tables in local MILDB, but with a WHERE clause similar to the one described earlier.

Summary of the system of MILDB tables and views:

LOCAL MILDB CENTRAL MILDB

Table

ADMIN

APFT

BRKS_ACT

CC_TRNG

Etc.

This arrangement has another add-on benefit: Views are virtual tables

that, when properly defined, can be used just like the base tables. In fact, users may not

be even aware of whether the object they are accessing is a base table or a view. This

constitutes additional security mechanism for concealing parts of the database that may

be confidential or are superfluous to a given user's needs. Giving the views in the central

Table View

ADMINBASE ADMIN

APFTBASE APFT

BRKS_ACTBASE BRKS_ACT

CC_TRNGBASE CC_TRNG

Etc. Etc.

45

database the names equivalent to tables in local databases gives the users impression

that the central database contains tables just to meet the needs of the local MILDB.

b. Using Views in Joins

Joins are extensively used in MILDB database and in the interface application.

Joins allow to retrieve data from two or more tables based on some logical relationship

between the tables. Joins define how specific values retrieved from one tables are used

to select the rows from another table by:

• specifying the column from each table to be used in the join;

• specifying a logical operator (=, <=, <>, etc.) to be used when comparing

values from indicated columns.

Joins can be specified in the FROM or the WHERE clause. The basic

SQL-92 syntax for a join in the FROM clause is:

SELECT <co!umn selection>

FROM tablel <join type> table2 ON <join condition> ;

Join type can be INNER, OUTER, or CROSS JOIN.

The inner join returns rows only when there is at least one row from both

tables that matches the join condition. For example:

SELECT a.rank, a.name, c.task_num

FROM admin a JOIN ccjrng c

ON (a.ssn = c.ssn);

46

Rows from table ADMIN, whose SSN cannot be found in table CC_TRNG, are ignored.

The outer join, on the other hand, returns all rows from at least one of the

tables, as long as those rows meet the condition specified in the WHERE or HAVING

clause. If there is no matching row in the other table, an empty row is concatenated to

the row(s) returned from the first table. For example:

SELECT a.rank, a,name, c.taskjium

FROM admin a LEFT OUTER JOIN ccjrng c

ON (a.ssn = c.ssn);

This query will return all students from the ADMIN table. From the CC_TRNG table it will

return all task_num values for each SSN that exists both in the ADMIN and the

CC_TRNG table, and add it to the ADMIN portion of each row. For each SSN not found

in the CC_TRNG table, a NULL (or default) value will be added to such row.

Cross join returns a Cartesian product of all rows found in both joined

tables. As a consequence, it contains a lot of redundant data. It is not used in this

project.

As described earlier, a set of views was created in the central database

to act like virtual tables, equivalent to those found in local MILDB databases. Retrieving

data from each of these views separately posed no problems. However, when two views

were joined, we ran into some difficulties.

47

c. Restrictions

View ADMIN that contains biographical data provides basic information

about each student, such as rank, name, ssn, etc. For this reason it is often joined with

other tables (for example, a table containing training results) in order to give the data

some meaningful identification to the end user.

The ADMIN view was defined as:

CREATE VIEW admin as

SELECT <column selection> FROM adminbase a

WHERE EXISTS (SELECT * FROM unit_auth u

WHERE a.unit + a.plt

LIKE u.unit + u.plt AND u.n_user = USER);

Now, let's choose a table that contain some training data (i.e., cc_tmg),

and create a view that will restrict a user to seeing only rows pertinent to his/her Unit and

Platoon. Five basic view definitions can be formulated:

A. CREATE VIEW ccjrng AS

SELECT <column selection>

FROM cc_trngbase cb, adminbase ab, unit_auth u

WHERE cb.ssn = ab.ssn

AND ab.unit + ab.plt LIKE u.unit + u.plt

AND u.user = USER;

48

B. CREATE VIEW ccjrng AS

SELECT <coIumn selection>

FROM cc_trngbase cb, admin a

WHERE cb.ssn = a.ssn ;

C. CREATE VIEW ccjrng AS

SELECT <column selection>

FROM cc_trngbase cb

WHERE EXISTS (SELECT *

FROM admin a

WHERE cb.ssn = a.ssn)

D. CREATE VIEW ccjrng AS

SELECT <column selection>

FROM ccjrngbase cb

WHERE EXISTS (SELECT *

FROM adminbase ab, unit_auth u

WHERE cb.ssn = ab.ssn

AND ab.unit + ab.plt LIKE ub.unit+u.plt

AND u.user= USER);

49

E. CREATE VIEW ccjrng AS

SELECT <column selection>

FROM cc_trngbase cb

WHERE EXISTS (SELECT *

FROM admin a

WHERE cb.ssn = a.ssn);

Each of these view definitions have compiled without error, and

returned correct data when queried by statement:

SELECT * FROM ccjrng ;

Problems arose when the following queries were attempted:

SELECT a.rank, a.name

FROM admin a LEFT OUTER JOIN ccjrng c

ON (a.ssn = c.ssn) ;

SELECT a.rank, a.name

FROM admin a RIGHT OUTER JOIN ccjrng c

ON (a.ssn = c.ssn) ;

50

Results of these queries are summarized for each version of view CC_TRNG in the

following table:

VIEW DEFINITION

RESULT

LEFT OUTER JOIN RIGHT OUTER JOIN

A Error message Data returned

B Error message Data returned

C Data returned Data returned

D Data returned Data returned

E Data returned Data returned

Error message text: The table CC_TRNGBASE is an inner member of the outer-join

clause. This is not allowed if the table also participates in a regular join clause.

d. Solution to Restrictions

SQL SERVER rejects a query in which a table is an inner member of the

outer-join clause, and also participates in a regular join clause. The source of error

becomes more apparent when we include the definition of view cc_trng in the SELECT

query:

51

SELECT <column selection>

FROM admin a LEFT OUTER JOIN (SELECT <column selection

FROM cc_trngbase cb,

adminbase ab, unit_auth u

WHERE cb.ssn = ab.ssn

AND ab.unit + ab.plt

LIKE u.unit + u.plt

AND u.user = USER)

ON (cc_trngbase.ssn=a.ssn);

When version A and B view cc_trng is applied, the table CC_TRNG

participates, albeit indirectly via view definition, in the outer join of the FROM clause of

the main query, and also in a regular join of the WHERE clause of the view definition. In

versions C, D, and D of the CC_TRNG view, the table CCJRNGBASE is also a

member of a regular join, but in the subquery of the view's definition, which does not

pose a problem.

Apparently, views do not always behave as regular tables after all.

The syntax of their definition may preclude them from participating in joins with other

tables or views.

e. Performance Issues

When used in a join with the ADMIN view, the three versions of the

CC_TRNG view that returned data did not perform equally well. Performance

comparison test was conducted for version C, D, and D of the CC_TRNG view during

52

a non-business day, when no other network traffic could affect the speed of data return.

One version of the view was tested after another. Each set of tests was repeated five

times. The test query:

SELECT a.rank, c.ssn, c.taskjium, c.task_no,

c.score, c.d_tested, c,d_tran, c_n_user

FROM admin a LEFT OUTER JOIN ccjrng c

ON (a.ssn = c.ssn);

Test results are summarized in the following table:

Run

Version C Version D Version E

Time

[ms]

Efficiency

[ms/record]

Time

[ms]

Efficiency

[ms/record]

Time

[ms]

Efficiency

[ms/record]

1 44274 1.885 54519 2.321 41150 1.752

2 44254 1884 47348 2.016 43102 1.835

3 44414 1.891 47408 2.018 43573 1.855

4 44143 1.879 47408 2.018 41299 1.758

5 41910 1.784 44133 1.878 41299 1.758

Version E of the CC_TRNG view had consistently the best performance

and was, therefore, implemented in the database. Good performance of this view can be

apparently credited to the SELECT * clause in the WHERE EXISTS (SELECT * ...)

statement, which lets the query optimizer of the DBMS decide which column to use. If

some of the columns have indexes, the optimizer can use just these indexes to answer

the query and never actually look at the table itself. The syntax of the version E was

used in creating the rest of views that draw from base tables.

53

5. Stored Procedures

a. Overview

Stored procedures are sets of precompiled SQL statements that perform

some operations on the database. Stored procedures, like tables and views, are objects.

They are stored in the database, and require access permissions as any other object.

Stored procedures, like views, allow to retrieve or modify information in sources to which

the user would not normally have access. Such procedures are used in the MILDB

project. Stored procedures can also be used to perform some database housekeeping

chores and other operations on a database.

b. Implementation

Basic syntax for creating stored procedures:

CREATE PROCEDURE <procedure name>

[<input_parm1 dataType>, <input_parm2 dataType>,

<output_parm dataType OUTPUT>]

[WITH RECOMPILE]

AS

<set of SQL statements> ;

The RECOMPILE option, used in SQL Server, forces the existing stored

procedure to be recompiled if significant modifications were done to the original code.

Some stored procedures used in MILDB are simple, other are more

involved. Example of a simple procedure is islnAdminBase(), which takes a Social

54

Security Number as input parameter, and returns record_status as OUTPUT. If a given

SSN exists in ADMINBASE table, the procedure returns a letter indicating the status of

the record, otherwise it returns "?":

CREATE PROCEDURE islnAdminbase(

@newssn varchar(9), @recstat varchar(1) OUTPUT) AS

SELECT @recstat = '?'

SELECT @recstat = rec_stat

FROM adminbase

WHERE ssn = @newssn)

GO

Stored procedures can be nested. They can call other stored procedures

or system function, create and delete temporary tables, and so on. Example of a more

involved stored procedure, used in MILDB, is getSUID(), which takes two input

parameters (name of a table, and User ID), and returns as output a combination of

letters indicating set of basic permissions that the user has on a given table (S for

SELECT, U for UPDATE, I for INSERT, and D for DELETE permission). If, for example,

a user has only SELECT permission on a given table, the procedure will return "S???".

This stored procedure also calls a system stored procedure USER_NAME:

CREATE PROCEDURE getSUID(@TABLE_NAME VARCHAR(384),

@TABLE_USER VARCHAR(384), @TABLE_PERMS VARCHAR(4) OUTPUT)

AS

55

if (@TABLE_NAME is null) OR (@TABLE_USER is null)

begin

raiserror 20001 'Must provide table name and user ID.'

return

end

DECLARE @selchar(1)

DECLARE @updtchar(1)

DECLARE @insrtchar(1)

DECLARE @dltchar(1)

SELECT @sel = '?'

SELECT @updt = '?'

SELECT @insrt = '?'

SELECT @dlt = '?'

SELECT @sel = 'S' FROM sysprotects p, sysobjects o, sysusers u, sysmembers m

WHERE p.id = o.id

AND o.type in ('U'.'V'.'S') AND object_name(o.id) = @TABLE_NAME

AND user_name(u.uid) = @TABLE_USER

AND (u.uid > 0 and u.uid < 16384)

AND ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))

AND p.action = 193 /*select*/

SELECT @updt = 'U' FROM sysprotects p, sysobjects o, sysusers u, sysmembers m

WHERE p.id = o.id

56

AND o.type in ('U'/V'/S') AND object_name(o.id) = @TABLE_NAME

AND user_name(u.uid) = @TABLE_USER

AND (u.uid > 0 and u.uid < 16384)

AND ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))

AND p.action = 197 /"update*/

SELECT @insrt = T FROM sysprotects p, sysobjects o, sysusers u, sysmembers m

WHERE p.id = o.id

AND o.type in ('U'.'V'/S') AND object_name(o.id) = @TABLE_NAME

AND user_name(u.uid) = @TABLE_USER

AND (u.uid > 0 and u.uid < 16384)

AND ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))

AND p.action = 195 /"insert*/

SELECT @dlt = 'D' FROM sysprotects p, sysobjects o, sysusers u, sysmembers m

WHERE p.id = o.id

AND o.type in ('U'.V/S') AND object_name(o.id) = @TABLE_NAME

AND user_name(u.uid) = @TABLE_USER

AND (u.uid > 0 and u.uid < 16384)

AND ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))

AND p.action = 196 /"delete'/

SELECT @TABLE_PERMS = @sel + @updt + @insrt + @dlt

GO

57

The OUTPUT parameter value, returned when getSUID() procedure is

called from MILDB application, is used to automatically enable/disable the 'Save' menu

selection in the application's main menu.

Another example of a more complex stored procedure is

changeViewSsn(), which takes as input parameters an old and new SSN. The procedure

changes references to the old SSN in selected tables to a new SSN. To accomplish this

task without violating data referential integrity, the procedure creates a temporary table

#TEMPVIEWADMIN. This temporary table, which holds temporarily the admin data, is

automatically dropped at the end of the procedure's execution. The definition of this

stored procedure can be found in Appendix B.

c. Access Control

As mentioned earlier, stored procedures may allow access to objects

which would otherwise be restricted to a particular user. This capability was utilized in

the MILDB project. Here is a situation: a system of views, in conjunction with the

authorization table, allow users to see personnel from only certain Unit, or even a

platoon within that Unit. When the user needs to add a new service member into the

database, new SSN must not violate the primary key on SSN in the ADMINBASE table.

It is easy to check, whether new SSN exists within data viewable to the user, but how

can the user verify the existence of SSN within records which he/she cannot see? Of

course, the data integrity mechanism of DBMS would prevent the user from violating the

primary key constraint in the ADMINBASE table and automatically trigger an error,

whenever an insertion of a duplicate SSN were attempted. But we want to avoid

undescriptive system-triggered messages, and we also want to be able to propose the

58

user some gracious alternatives. For example, activate a previously deactivated record.

The stored procedure islnAdminbase(), described earlier, was designed specifically for

this purpose. This stored procedure has access to the entire ADMINBASE table, and

can verify the existence of any given SSN in it, while the user does not. The user is

given only the EXECUTE permission on the stored procedure.

d. Executing Stored Procedures

Executing a stored procedure can be a one, or two step process.

Database interfaces, non-native to a given DBMS, need to declare a stored procedure,

before they can execute it. Here is an example of such stored procedure declaration:

DECLARE <alias_procedure_name> PROCEDURE FOR

<procedure_name>

[parml = valuel, parm2 = value2,

parm3 = value3 OUTPUT];

Then, the procedure can be executed by a statement:

EXECUTE <alias_procedure_name> ;

The same stored procedure can be executed from SQL Server native interface

by a single statement:

EXECUTE <procedure_name> [<parm1, parm2, @parm3 OUTPUT];

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

IV. CLIENT SERVER ARCHITECTURE

Client server architecture emerged as a solution to the limitations of file sharing

architectures. Using DBMS, client can query a database residing on server by means of

SQL or remote procedure calls. Two basic types of arrangement of client/server

architecture are possible: two-tier, and multi-tier model.

A. TWO-TIER MODEL

In two-tier model, the presentation and business logic of the application is

deployed on the client computer, and the database management services, along with the

database, are located on the server. This is a good solution when the number of users

does not exceed 100 concurrent users. After that, the server may become burdened by

keeping too many active connection open, and performance may start to suffer.

Disadvantage of this model includes, besides the number of users limitation, necessity

of complex data access control, heavy network traffic, and the necessity to deploy the

entire application, along with supporting run-time DLLs, on every user's workstation.

B. MULTI-TIER MODEL

In this model, a middle tier is added between the user system and the database

management server environment. The middle tier can serve as application server,

message server, or processing monitor. In a typical three-tier model, for example, only

the application's presentation logic is installed on client workstation, while the business

61

logic runs on the application server (the middle tier), and the DBMS with the database

resides on another server. The three-tier architecture has demonstrated improved

performances over the two-tier model, especially with a large number of users (in the

thousands). Also, by centralizing the business logic on the application server, greater

access control to sensitive information can be exercised.

C. SELECTION OF CLIENT SERVER MODEL

The MILDB database is going to be accessed by users from a single network

domain. There will be far less than 100 users at any given time. Some MILDB users will

be connected to the network only occasionally, but they will continue to access their data

on their local MILDB databases, and will require the business logic of the MILDB

application to be installed on their workstations.

Two-tier client/server model will be implemented.

62

V. DEVELOPING DATABASE APPLICATION IN POWERBUILDER 7

A. OVERVIEW

PowerBuilder is an object-oriented application development tool for building

multitier applications that interact with databases. PowerBuilder applications consist of a

user interface, and application processing logic. PowerBuilder applications are event

driven. Users control application's behavior by the action they take. PowerBuilder

provides a rich set of tools for accessing databases managed by variety of DBMSs. The

application processing logic is formulated in a proprietary fourth-generation language,

called PowerScript, which also permits queries written in SQL to be embedded in it.

PowerBuilder for Windows is going to be applied in this project.

B. POWERBUILDER OBJECTS AND CONTROLS

Objects are the basic building blocks of any PowerBuilder application. They are:

• Application

Application object is the entry point into an application. It defines application-level

behavior, such as what processes should occur when the application starts and

closes. For example, if scripted accordingly, the open event of the application object

will open the introductory window.

63

• Window

Window is the primary interface between the user and the application. A window

consists of properties, that define the window's appearance and behavior, events

triggered by user actions, and controls which are objects placed on a window (i.e.,

buttons, edit fields, text labels, dataWindow control, and others). Controls have a set

of properties and events of their own.

• DataWindow Object

This object, fundamental to a typical PowerBuilder application, is used to retrieve and

manipulate data from a database, or some other data store. This object also handles

the way data is presented to the user. DataWindow object can not only contain data

retrieved from database, it can also include computed fields that derive their values

from the retrieved data. Pictures and graphs can also be tied directly to the retrieved

data. DataWindow object does not display directly in a window. In order to be able to

display it on the window, one has to create a DataWindow control, and then

associate this control with desired DataWindow object.

• Menu

Menus are lists of items that a user can select from a menu bar assigned to the

active window. Functionality of PowerBuilder's menus is equivalent to those found in

other window applications.

64

• Global Functions

Global functions are self-contained pieces of programming code that can be called

from any object within the PowerBuilder application. Other type of functions, object-

level functions, can be called only within the scope of a particular object. Global and

object-level functions can be user-defined, or build-in by PowerBuilder.

• Queries

This objet is a SQL statement, saved with a name identifier so that it can be used

repeatedly anywhere in the application.

• Structure

Like in any other programming language, a PowerBuilder structure as a collection of

variables of the same, or different, data types. Similar to functions, they can have

global, or object-level scope.

• User Object

PowerBuilder has two types of user objects

Visual User Object (Reusable set of controls that has a consistent behavior. The

Student Locator, found on most of the windows in MILDB application, is an example

of such visual user object.)

Class User Object (Reusable non-visual user object serving as a processing module.

A standard class user object of type transaction is used in MILDB application to

declare and execute stored procedures.)

65

Custom Class User Objects (Non-visual objects that serve as building blocks in

distributed PowerBuilder application. They provide various services, based on

functions and variables defined in them.)

• Library

Library is a file (PBL file) in which PowerBuilder objects are saved. A PowerBuilder

application can during its compilation draw objects from one or more PowerBuilder

libraries.

• Project

Serves for creation of application executables and DLLs. Project object is used only

in the developer's environment. It contains information about resource libraries, the

type of executable, and other compilation options.

C. POWERSCRIPT LANGUAGE

1. Overview

PowerScript is a 4GL PowerBuilder language. PowerBuilder programming code,

called script, consists of PowerScript commands, functions, and statements that are

executed in response to events. Object-oriented capabilities of the PowerScript allow

partitioning the business logic of an application into well-organized, reusable classes.

PowerScript fully supports inheritance, encapsulation, and polymorphism.

66

2. Classes, Properties, and Methods

• Classes

Standard PowerScript classes include windows, menus, controls, and user

classes. These are the foundation of visual objects. Non-visual objects are

instantiations of standard class user objects (inherited from PowerBuilder system

objects, such as Transaction, Message, or Error), or custom class user objects

(inherited from PowerBuilder nonVisualObject class). PowerBuilder's

nonVisualObject class allows to define an object class from scratch.

• Properties

Properties are defined by object variables and instance variables. Instance

variables can be declared as public, protected, or private. This provides control how

other objects' script can access them

• Methods

Methods include events and functions. A list of events, typical for any given

object, is readily available for coding in the PowerBuilder programming interface.

Additional events can be also included from PowerBuilder's own library of events, or

from Windows events. PowerScript provides an extensive list of functions that can be

used to act on various components of PowerBuilder application. Programmer can

also declare and define his/her own functions in order to fulfil some specific task.

Arguments can be passed to events and functions be value, by reference, or as

read-only. In PowerBuilder 7, object events can be overriden in the chain of

inheritance, and functions can be overloaded.

67

3. Global Variables and Functions

PowerBuilder implements several build-in global variables and functions. A

programmer can also declare his/her own variables and functions which have global

scope, and can be accessed from any script within the application.

4. Garbage Collection

The PowerBuilder garbage collection mechanism automatically checks memory,

and destroys any unreferenced or orphaned objects.

D. COMMUNICATING WITH DBMS

Most of the communication with DBMS takes place via methods which are built-in

PowerBuilder objects. For example, when user invokes an update() method of

DataWindow, PowerBuilder generates and submits to DBMS all necessary SQL

statements. But programmer can also formulate his/her own SQL statements, and

embed them in PowerScript code. Embedded SQL statements have to be concluded

with a semicolon (;). All SQL statements, embedded in scripts or dynamically generated

by PowerBuilder, are executed by means of a transaction object.

1. Transaction Object

Transaction object is a special non-visual object that serves as an intermediary

between PowerScript and the DBMS. The transaction object contains parameters that

68

PowerBuilder application uses to connect to a database. Every PowerBuilder application

automatically creates a global default transaction object, named SQLCA (SQL

Communication Area). This, or another transaction object, explicitly declared and

created by script, can be used to connect, communicate with, or disconnect from

database.

Before a connection can take place, at least some transaction object properties

have to be set:

• DBMS (Indicates the DBMS that manages the database to be connected.

Can be set to "ODBC".)

• Database (Name of the database to which the application will connect. Can

be the name of ODBC data source (DSN), established in the ODBC

interface.)

• DBParm (Contains DBMS-specific connection parameters, such as

AutoCommit, Lock, DSN, ServerName, etc.)

Other parameters may be needed in order to establish a connection with

database, such as Log ID, PSW, server name, and others, but they may be provided by

DSN, or may be requested by the DBMS dialog box at the time of connection.

Connection to database is requested by statement:

CONNECT [using <transaction_object>];

69

If no transaction object is specified in the statement, the SQLCA is used by default.

Other transaction management statements are:

• COMMIT; (makes permanent all changes made to the database)

• ROLLBACK; (all modifications to the database, performed by current

transaction, are undone)

• DISCONNECT; (disconnects from database)

Application can connect to more than one database at a time. Each connection

needs to be managed by a separate transaction object. Such arrangement is applied in

MILDB, when data are synchronized between local MILDB and the central database.

Example of establishing a multiple database connection:

CONNECT using <sourceTransObj> ;

CONNECT using <destinationTransObject> ;

2. Transaction Object and Stored Procedures

Stored procedures can be executed by SQL statement, embedded in the script.

This, however, will not work if the stored procedure returns an OUTPUT parameter, or

when a stored procedure which contains a DLL statement is called. For this purpose, a

customized version of the standard class user object of type transaction has to be used.

Once such user object is created by means of PowerBuilder Object Wizard, stored

procedures can be declared as external functions, or external subroutines, for that user

70

object. If the stored procedure has a return value, it must be declared as a function. If

the stored procedure returns nothing or void, it must be declared as a subroutine. In both

cases, a RPCFUNC keyword has to be used in the declaration.

Examples of stored procedures declared in a user object, applied in MILDB:

Subroutine getSUID(string table_name, string table_user, ref string table_perms)

RPCFUNC alias for "mil.getsuid"

Function int sp_setapprole(string roleanme, string password, script encrypt)

RPCFUNC alias for "dbo.sp_setapprole"

The second declaration is for a built-in SQL Server stored procedure which

activates permissions associated with an application role. This stored procedure

contains a DLL statement, and must be executed outside the scope of a transaction. To

achieve that, this procedure must not only be declared as a function in a customized

transaction object, but the autoCommit property of the transaction object must be set to

TRUE before the procedure is called.

Once the stored procedures are declared in a customized transaction object,

they can be executed from the application script by statement:

<trans_object_name>.<procedure_alias_name([parrhl, parm2,] ;

3. DBMS Interfaces

PowerBuilder application can connect to a database through a standard

database interface (i.e., ODBC, JDBC, or OLE DB), or through a native database

71

interface. A standard database interface communicates with the database via standard-

compliant driver (ODBC, or JDBC connection), or data provider (OLE DB connection).

The standard-compliant driver or data provider translate abstract function calls, defined

in standard API, into calls understood by a specific DBMS. A native database interface

communicates with DBMS via a direct connection to database, using a native API

library.

a. ODBC Interface

Open Database Connectivity (ODBC) is a standard application

programming interface (developed by Microsoft, is API which allows an application to

access a variety of DBMSs. An ODBC-compliant driver, appropriate for a given DBMS,

has to be installed on user's workstation. SQL is used for communication with the

database. The ODBC specifies:

• A library of ODBC function calls for connecting to the database, executing

SQL statements, and retrieving results.

• A standard way to connect and log on to a DBMS.

• SQL syntax.

• Standard representation for data types.

• Standard set of error codes.

PowerBuilder provides a set of ODBC drivers for the most common DBMSs,

such as Sybase, Oracle, SQL Server, and others. ODBC drivers can be also obtained

directly from DBMS vendor. Since the ODBC driver for Microsoft Access is readily

72

available on user's workstation, and only the SQL Server driver will have to be installed,

the ODBC interface will be used in this project for communicating with databases.

When accessing an ODBC data source from a PowerBuilder application, the

connection goes through several layers, before reaching the data source:

• Application (calls ODBC functions).

• ODBC Driver Manager (installs, loads, and unloads drivers for the

application).

• Driver (processes ODBC function calls).

• Data Source (stores and manages data in a database).

b. OLE DB Interface

OLE DB, a component of Microsoft's Data Access Component software,

is a standard API developed by Microsoft. It allows an application to access a variety of

data for which OLE DB data provider exists. Data can be stored in a variety of forms:

indexed-sequential files, spreadsheets, e-mail, personal databases, or full-fledged

DBMS. An OLE DB data provider is a dynamic link library (DLL) that implements function

calls. An application invokes the OLE DB data provider to access a particular data

source. Some OLE DB providers are shipped with PowerBuilder, other can be obtained

directly from a data source vendor.

73

c. Native Database Interface

A native database provides a direct native connection to a particular

DBMS. It implements its own interface DLL, which communicates with the specific

database through a vendor-specific API.

E. BUILDING THE MILDB APPLICATION

1. Application Architecture

The MILDB application consists of one application object, and multitude of

dataWindow objects, global functions, menu objects, user objects, pipeline objects, and

windows. All these objects are stored in a single PowerBuilder library file, named

mil_0799.pbl. The architecture of the MILDB application is shown on Figure 2. The list of

objects in the application is extensive. Some objects serve only one task, such as

dataWindow objects that retrieve and display canned reports. Other objects, such as

user objects or menus, are used repeatedly throughout the application. Even though

every object shown in Figure 2 was developed and is fully functional, documenting each

of them would exceed the scope of this thesis. Only several major components of MILDB

application are documented in order to demonstrate how the application was developed,

and how it functions.

2. Application Object

The application object, named Millshell, serves as the entry point into MILDB

application. Through this object, global variables are declared and initialized, database

74

■ä mi!_0799.pbl

5. ^Application Obj.
Smilshell

d_abnk

• 13 d_address
■■■■■]^| d_admin

■ |D d_adminbase

ID d_adminnew
'—1^1 d_adminpt

■13 d_admintmg

13 d_apltjmg

|D d.apfthist

•|D d_att15his

■ID d_arlicle

■O d_alt(_cat

IP d_awol

;-(D d_awo!his

■ (D d_bar
13 d_barhis

■ (D d_brk_all

:-ID d_brk_loc

■■ -(D d_bunk
■13 d_bunk_acc

{D d_bunker
■-IP d_casual

 ID d_cctmg

D d_chap

13 d_class
"-IP d_class_strength

•13 d_comp

-^1 d_component

13 d_cst-ctt

"13 d_cstcttgtoup

- 13 d_estettlisl

-W?\ d_cstcttpass
■IP d_cslform

■IP d_csthis

■ -(D d_depn
■13 d_dlpt

ID d_dlpt_hisl

-|D d_dlpt_ipt
■13 d_educ

13 d_expt

■ 13 d_family
■|D d_findplt

;- -ID djlag
■ 13 djlaghis

13 djlagtype
1 13 d_lotm90

, (D d_hist_nested
: S d_hl(act

:■■ 13 d_iccr_cal

 (D djssrl

■ 13 djssthis

 13 djang

13 <U°c
■13 djocal

13 d_ipth

13 djpthhis

dataWindow Objects Functions

■IP d_mand .13 d_vawol ra civdate

13 d_mandgroup : 13 d_vawol_cum ftf de2

13 d_mandhis >ü d_vbar öS getage

13 d_mandpass D d_vbar_cum ra getdwlisl

■IP d_mastting • (D d_vcomp ja getdwlistofuo"

13 d_maxbf
IP d_maxbf_short

>D d_vflag
13 d_vflag_cum

ra mildate

ra roundtoquattet

IP d_maxwt 13 d_vissr ja tociv

■ 13 d_meal ■ID d_vissr_cum ra tocivwbox

13 d_motive - D d_vlp(h Menu Objects

'13 d_mstal 13 d_vlpth_cum ... IH m_adminobiecl

13 d_nested r IP d_vtoste: £1 m_adminobjecl_tc

■IP d_noleave D d_wadminm • 21 m_dwchanges

13 d_office -IP d_wc_rprt \ g] m_hotel

|D d_oul ID d_wpn 3 m_mdiframe

ID d_out_sql (D d_wpnhis ■■Hn m_mdifiame_tc

•|D d_out1 ■■■■IP d_wpnnew MI m_ieports

13 d_outcst D d_wlhist Structure
13 d_outreport ■ 13 d_wthist_ronarr ■■■■£1 bodydata

■IP d_permparty ID r_6month_apfi User Object
••■IP d_preg D r_6rnonth_weigl <J5 o_adminobjec(
■-13 d_privil -ID r_brrksutil ■ <ft o_locate
13 d_prof D r_brrksutil_2 ■■&. o_synchro_pipe
13 d_profile ■IP r_brrksutil_cum ■ •■ "<f? o_wc_base
|D d_prohis ■ ID r_fat_ratio ■^fl o_wc_fema!e
ID d_prr_source D Lgenetic ■■■'«j o_wc_male
13 d_pu_sci98 13 rjiousing <0 u_storedproc

■ID d_qbuüd ■153 r_housing_cum
E3 d_qtrs ■ 153 r_trng_apft
13 d_query 13 r_trngplan
13 d_quola D t_trngplan_condensed
13 d_tegadmin

13 d_regadmin1

13 d_remedial

13 d_remhis
■IP d_remprob

IP d_resetve

■ ID d_room_tag

13 d_rostei

(D d_ioster1

D d_roster2

D d_iun_sci98

13 d_sec
13 d_service

13 d_su_scr98

D d_tables_rpt

D djestfilter

IP d_trgdata

ID d_tmg_rpt

ID d_trngdata

ID d_ttngplan

(D d_urinesel

IP d_urinlabels

ID d_vattl5
13 d_vart15_cum

D d_vawol

Pipeline Objects Window Objects

j milstu_to_admin

j milstu_to_apft

Sj milstu_to_art15

I milstu_to_awol

I milstu_to_bar
S| milstu_to_cc_trng

I milslu_to_chap

I milstu_to_depn

) milstu_to_dlpt

I milstu_to_tcaie

Sj milstu_to_flag

I milstu_to_form90

I milstu_to_issr

& milstu_to_loc

j milstu_to_lpth

j milstu_to_lit_plan

2g milstu_lo_m_trng

I milstu_to_office

ij milslu_to_preg

I milstu_to_prm_ptliJ

I milstu_to_prof

Äj milstu_to_repr

I milstu_to_tmg

l milstu_to_wc

^ milstu_to_wpn

I milx_to_admin

$3 milx_to_apft

I milx_to_atH 5

I milx_to_awol

fij milx_to_bar

I milx_to_cc_trng

I milx_lo_chap

^ milx_to_depn

I milx_to_fcare

äj milx_to_flag

I milx_to_foim90
[milx_to_issr

fe milx_to_loc

I milx_lo_lpth

I milx_to_lrt_plan

^ milx_to_m_trng

fij milx_to_office

Sj milx_to_preg

I milx_to_prm_prty

I milx_to_prof
S3 milx_to_iepr

Sj milx_to_img

& milx_to_wc

^ milx_to_wpn

w_about

w_admin

w_apft

w_apft_wc

w_apfthist
w_base

w_base_admin

w_class

w_csl

w_cst_mand
w_datainput

w_datainput2

w_frame

w_help

wjiistory

w_hotel_acc

w_mildata

w_ou(

w_pipe

w_profile

w_qbuilder

w_qviewer

w_tequest

w_splash

w_trngplan

w_urinsel

w_viewet

w_weightconlrol

w wthist

Figure 2. MILDB Application Architecture

75

connection is established, and the introductory window is opened. Application object is

non-visual. The following code shows the script of the Millshell application object:

//•••APPLICATION OBJECT

//Declare global external function
function int getwindowsdirectory(ref string buff, int sz)

LIBRARY "kernel"

//Global variables
string globAppname //application name
string globVersion //application version
string fetch_ssn //student SSN
string company //Unit indicator
string expPath //physical path of. export file

//APPLICATION OPEN EVENT
//***Set GLOBAL VARIABLES

//**Company
//set in script of w_frame
//put "" (empty) to install troop command menu/toolbar
company = ""

//**Export path
expPath = "C:\MILX\export.txt"

//**Application Name & Version
globAppname = "MILdB - Military Database"
globVersion = "7.0" + company

//open splash windows
open (w_splash)

//setup ODBC
sglca.dbms = "ODBC"
sqlca.DbParm = "ConnectString='DSN=milstu'"
SQLCA.AutoCommit = True

//***CONNECTION
//Try the central MILSTU as default first
connect;

//when connection fails, try connection to local MILDB
if sqlca.sqlcode < 0 then

//Try connection to local datbase MILX

76

SQLCA.Database = "mildb"
sqlca.DbParm = "ConnectString='DSN=MILX'; "&

+ "Time=' ''''hh:mm:ss: " '' ';"&
+ "delimitidentifier='NO';"

connect;
else

//get logID of current user
select distinct n_user into :sqlca.userlD

from mil.unit_auth
where n_user = user;

end if

if sqlca.sqlcode < 0 then
messageBox("DATABASE CONNECT","Could not connect to database")
HALT

end if

//open MDI frame
open(w_frame)

//close splash window
close(w splash)

3. DataWindow Objects

DataWindow objects are used to retrieve and manipulate data from database.

Individual data fields (columns) of dataWindows can be setup as updatable, or read-

only. Values, retrieved from database, can processed be further in dataWindow's

calculated fields. Data can be displayed in various formats, and be arranged within a

dataWindow as needed. Figure 3 through Figure 6 show examples of dataWindow

objects used for retrieving, displaying, and manipulating student data. SQL statements

for populating each dataWindow is also included.

77

liÜDataWindow - d_adminnew
1 Desiqn - d adminnew

Header?

::::i:!Bi«!<i;:Mnk :
::;:::::DÖK;j|ctobii;;

•Hariti^St^lcraii::::

:::::::::Sex:::)se»::::

:::::::Pa'ee:!|raci::::

Harnet :p_studerrt

:::::Serütce::^eti:::::::i:

::SSK:]:Jssntarget

;;;;;;;;;;;;;^«ie:;p:peai;;;;;;

:::::::::;:::|BJ4SBS:pasa::::::::

:::::: ::::::::-0Öfcj:)dii:anlc:::::

.." . CLÄSS: |class

:5äLÄBtotei jd_<flafa.

::: pÖtä iSjrae j 1 |q^^
: Ray<Srade;:pay::::::::::

::::;:BrartcH::prär:::::::::

:•:::: :3E**Ms:prnös::::::

.■EaMOS£:pKimö&::

;;i;;sMBia^;pv::i:i::;:
JiiiiiiiJiis^ifisiüliiH;:;

::::: Arrived Dlifcl :jdjjarriüäl:: •

::::j&nweVfUhlfe!:pliÜnif::::::

Birthplace:: pläeecrf KrÖ:::;

jMeaKardr; Jrrtestewtf;;;;

Detail T -■

Summary! —
Footert ..;.___'..:.. :—_

Figure 3. DataWindow d_adminnew

SQL statement for d adminnew:

SELECT mil.admin.dob ,
mil.admin.d_arrival
mil.admin.d_rank ,
mil.admin.pay_grd ,
mil.admin.race ,
mil.admin.ssn ,
mil.admin.d_tran ,
mil.admin.n_user ,
mil.admin.bped ,
mil.admin.basd ,
mil.admin.ets ,
mil.admin.d_unit ,
mil.admin.mar_stat ,
mil.admin.mealcard ,
mil.admin.service ,
mil.admin.branch ,
mil.admin.pay_code ,

' mil.admin.d_dlab ,
mil.admin.q_dlab ,
mil.admin.pmos ,
mil.admin.ult_mos ,
mil.admin.sm_status
mil.admin.lic_l ,
mil.admin.lic_2 ,
mil.admin.qsl ,
mil.admin.sex ,

78

mil.admin.unit ,
mil.admin.n_student ,
mil.admin.rank ,
mil.admin.q_age ,
mil.admin.pit ,
mil.admin.class ,
mil.admin.d_depart,
mil.admin.piaceofbirth

FROM mil.admin
WHERE (mil.admin.ssn = :ssn)

5 DataWindow - d_admin
Design - d_admin

Headert

;:;;;:;;;pöa:5d6b:;::;;;;;i;;

:::::::::Äger:iritt::::::::::::

■ Settee: hrv-

:3PiayG'räää; Jpajrj::::::::

::::::firähcfej|bräh::::::::

:::::::PHö&||fwhbs:::::

üiiisfÄStaüifniiiiiiiiii
65j:ißu5fiiiiiiii

;:;;;;:;:;;;i)sRED:!:jbpea;;;i;;;

:i:::::i::::KASD:|:^Jäsa::::::::

:::fflLftB:Socore:Jildli ::::::::!:::::::::::::::::

:MantäfSti:jT>ai::::::::::::

:::::::i:iSeii£:|sebi:::::::::::!

::::::::Raiceijraci::::::::::::

::::::::::::::pbRil:fJiJranl«:::::

:: 1 iÄrrii«'d:K.I:::JdLärriiial:::

::: iArriüed:Untt:i:{diuhK::::::

:fiWM?lacet ijptaceofbntf: ::::i::::::::::|ßipä;::i::::::

Detail t

SummarvT
Footer t

Figure 4. DataWindow w_admin

SQL statement for dataWindow d_admin:

SELECT mil.admin.dob,
mil.admin.d_arrival,
mil.admin.d_rank,
mil.admin.pay_grd,
mil.admin.race,
mil.admin.ssn,
mil.admin.d_tran,
mil.admin.n_user,
mil.admin.bped,
mil.admin.basd,
mil.admin.ets,
mil.admin.d_unit,
mil.admin.mar_stat,
mil.admin.mealcard,
mil.admin.service,
mil.admin.branch,
mil.admin.pay_code,
mil.admin.d dlab,

79

mil.admin.q_dlab,
mil.admin.pmos,
mil.admin.ult_mos,
mil.admin.sm_status,
mil.admin.lic_l,
mil.admin.lic_2,
mil.admin.qsl,
mil.admin.sex,
mil.admin.unit,
mil.admin.q_age,
mil.admin.placeofbirth

FROM mil.admin
WHERE (mil.admin.ssn = :ssn)

[IDataWindow - d_reqadmin1
Desiqn - d_regadmin1

Headert

pTstuderit

:::::::::::::iPlH::: Class :FeS
jssnadmin p^iiijclass

;ui::;;;;:;}j3a>j:
@l (artifice J |office_ofc^

Detail T

Summary T

Footer T

DataWindow-d reqadmin
Design - d_regadmin

HeaderT

::Rank:.;

tank;;
• ■■•■■'>.■... i • • • ■ ■' ••

n student F ifssnadrhin

Detail t

Summary T

Footer T

Figure 5. DataWindow d_regadmin1 and d_regadmin

SQL statement for d_regadmin1 and d_regadmin:

SELECT mil.admin.class,
mil.admin.dob,
mil.admin.d_arrival,

■ mil.admin.d_rank,
mil.admin.n_student,
mil.admin.pay_grd,
mil.admin.pit,
mil.admin.race,
mil.admin.rank,
mil.admin.sex,
mil.admin.ssn,
mil.admin.d tran,

80

mil.admin.n_user,
mil.office.ofc,
mil.office.dty_phon

FROM {oj mil.admin LEFT OUTER JOIN mil.office
ON mil.admin.ssn = mil.office.ssn}

WHERE mil.admin.ssn = :ssn

DataWindow-d form90
Design-d form90

HeaderT

Education Level: :)forn: :: IHaiiire: ErigltsH Spki-H |^;:: j Hatnie Spkrudf-ShcBieriLahgiPJ:::: Motiga<i6n:|:jfiöir:

£ Prior:Uiriau9oel;)förr; jßipiajientjej;jföri; Pf ^ctehcyiifon i; BliRTj ijTj jVSeairsi Trairted-E^rii Spwcfefjjüär j

2.PriorLanguage:|[irorr::Btperferice::)fori räf^^iääififeirii^ijipnorit:: ^äkif*"t^:f^^*^

3.PriorLanguage::jforri;ixperrerioe::|fori: jP^n^cfejri«gr|j:|fortjjBliRT!:^"!:I:::::^::::::H::::I::::::::::::::I;:::::::::

Detail T

Summary!

Footer t

Figure 6. DataWindow d_form90

SQL Statement for d_form90:

SELECT mil.form90.educ_lvl,
mil.form90.yrs_svc,
mil.form90.motivate,
mil.form90.natv_eng,
mil.form90.natv_oth,
mil.form90.prr_lang,
mil.form90.yr_trained,
mil.form90.prr_prof,
mil.form90.source,
mil.form90.prr_dlpt,
mil.form90.prr_expr,
mil.form90.ssn,
mil.form90.d_tran,
mil.form90.n_user,
mil.form90.prr_lang2,
mil.form90.prr_lang3,
mil.form90.prr_prof2,
mil. form90.prr_pro'f3,
mil.form90.prr_expr2,
mil.form90.prr_expr3,
mil.form90.prr_dlpt2,
mil.form90.prr_dlpt3

FROM mil.form90
WHERE ((mil.form90.ssn = :ssn))

81

4. Global Functions

There are several global functions designed to perform certain operations

repeatedly throughout the application. The following code shows the declaration,

purpose, and script of MILDB global functions:

//***GLOBAL FUNCTIONS

//PARAMETERS: string dateText - military date
//RETURNS: 1 if success, or -1 if invalid date
//PURPOSE: converts & modifies referenced date
// from military format to civilian
integer civdate (ref string datetext)

//accepts reference to string containing military date
//converts & modifies referenced date from military format to civilian
//Civilian date format: MM/DD/YY
//Military date format: YYMMDD
//returns 1 if success, or -1 if invalid date

//parameter: date dateText

//Local variables
date milDate //date in military format

mildate = date(dateText)

if year(milDate) = 1900 then

string newDate, yr , mo, dy

newDate = dateText
yr = left(newDate, 2)
mo = mid(newDate, 3, 2)
dy = mid(newDate, 5)

if isNumber(yr) then
if integer(yr) >= 50 then

yr = "20" + yr
else

yr = "19" + yr
end if

newDate = mo + "/" + dy + "/" + yr
milDate = date(newDate)

if year(milDate) = 1900 then
messageBoxC'DATE", &

82

"Enter date in one of the following formats: " &
+ "YYMMDD , or MM/DD/YY, or other format used by Windows.", &
Exclamation!)

return -1
else

dateText = newDate
end if

else
messageBox("DATE", "Enter date in one of the following formats: ."

&
+ "YYMMDD , or MM/DD/YY, or other format used by Windows.", &
Exclamation!)

return -1
end if

end if

return 1

//PARAMETERS: string decln decimal number in string format
//RETURNS: string str - decimal number in string format
//PURPOSE: formats a decimal number to contain at least
// one leading, and two trailing zeros
string de2 (string decin)

//Local variables
string str //formated decimal string

str = right("
return str

" + string(dec(decin), "##0.00"),6)

//PARAMETERS:
//
//RETURNS:
//PURPOSE:

date dob - date of birth
date ageDate - date when age is calculated
integer - age in years
formats a decimal number to contain at least

integer getage (date dob, date agedate)

return (daysAfter(toCiv(dob), toCiv(ageDate))/365)

//PARAMETERS:
//
//RETURNS:
//PURPOSE:
//

window sourceWindow - owner of dataWindows
array of dataWindows
number of dataWindows

datawindow dwArryf]
integer
Counts and returns the number of
all dataWindows on the referenced window

integer getdwlist(readonly window sourcewindow, ref datawindow
dwarry[])

//Finds all datawindow controls in Window
//and puts references to them into array passed as argument
//returns number of dataWindow controls

83

//Local variables
dataWindow dwList[] //temp array of dataWindows

int dwCnt
int il

//dataWindow counter
//step counter

//initialize local variable
dwCnt = 0

//browse through all objects in the window
//when the object is dataWindow, put it in dwList[]
for ii = 1 to upperBound(sourceWindow.control[])

if sourceWindow.control [ii].typeOf() = dataWindow! then
dwCnt++
dwList[dwCnt] = sourceWindow.control[ii]

end if
next

//assign temp arry to referenced dataWindow array
dwArry = dwList

return dwCnt

userobject sourceobj - owner of dataWindows
datawindow dwArryf] - array of dataWindows
integer - number of dataWindows
Counts and returns the number of
all dataWindows on the referenced user object

int getdwlistofuo(readonly userobject sourceobj, ref datawindow
dwarry[])

//PARAMETERS:
//
//RETURNS:
//PURPOSE:
//

//Finds all dataWindow controls in source userObject
//and puts references to them into array passed-as argument
//returns number of dataWindow controls

//Local variables
dataWindow dwList|

int dwCnt
int ii

] //temp array of dataWindows

//dataWindow counter
//step counter

dwCnt 0

//browse through all objects in the user object
//when the object is dataWindow, put it in dwList[]
for ii = 1 to upperBound(sourceObj.control[])

if sourceObj.control [ii] .typeOf() = dataWindow! then
dwCnt++
dwList[dwCnt] = sourceObj.control[ii]

end if
next

84

//assign temp arry to referenced dataWindow array
dwArry = dwList

return dwCnt

//PARAMETERS: date civDate - date in civilian format
//RETURN: string milDate - date in military format
//PURPOSE: converts civDate to string containing
// military date format of civDate
string mildate(date civDate)

//takes argument: date civDate, passed by value
//converts civDate to string containing military date format of civDate
//returns string milDate

string milDate //date in miltary format

if year(civDate) = 2000 then
milDate = string(civDate, "YYYYMMDD")

else
milDate = string(]civDate, "YYMMDD")

end if

return milDate

//PARAMETERS: decimal xVal - decimal number
//RETURN:
//PURPOSE:
dec roundToQuarter(decimal xVal)

//Receives parameter DECIMAL xVal
//rounds passed value to the nearest quarter

//Local variable
dec{2} roundVal

roundVal = (intfxVal / 0.25))*0.25

if (xVal - roundVal) >= 0.125 then
roundVal += 0.25

end if

return roundVal

//PARAMETERS: any milDate - date in variable of any data type
//RETURN: any (or NULL value if empty parm submited)
//PURPOSE: Converts date or string into
// civilian date format mm/dd/yyyy
any toCiv(any mildate)

85

//If parameter is date, function returns date (in variable of type
any)
//If parameter is string, function returns string

//Local variables
string civDateStrng //civilian date string
string parmType //parameter type
string yr, mo, dy //year, month, day

date civDate //civilian date

//get parameter type
parmType = ClassName(milDate)

//cast the date
civDateStrng = trim(string(milDate))

if civDateStrng = "" then
setNull(civDateStrng)
setNull(civDate)

else
if isDate(civDateStrng) then

civDate = date (string(mildate, "mm/dd/yyyy"))

else
//two right-most digits => day
dy = right(civDateStrng, 2)

//first two of the four right-most digits => month
mo = right(civDateStrng, 4)
mo = left{ mo, 2)

//remaining digits,
//after disregading four right-most digits, => year
yr = left(civDateStrng, (len(civDateStrng) - 4))

civDateStrng = mo + "/" + dy + "/" + yr

if isDate(civDateStrng) then
civdate = date(civDateStrng)
end if

end if
end if

if parmType = "string" then
return civDateStrng

end if

return civDate

86

//PARAMETERS:
//
//
//RETURN:
//PURPOSE:
//

any milDate
any actionparm

date in variable of any data type
indicates option chosen
by user in messageBox

any (or NULL value if empty parm submited)
Converts date or string into
civilian date format mm/dd/yyyy

any toCivwBox (any mildate, ref any actionparm)

//If parameter is date, function returns date (in varuable of type
any)
//If parameter is string, function returns string

//Local variables
string civDateStrng //civilian date string
string parmType //parameter type
string yr, mo, dy //year, month, day

int boxRtrn

date civDate

//indicates option chosen by user in messageBox

//civilian date

//get the type of parameter
parmType = ClassName(milDate)

civDateStrng = string(milDate)

//initialize the message to be displayed
msg = "Enter date in one of the following formats:~n~n"&

+ "YYYYMMDD, or YYMMDD, or MM/DD/YYYY, or MM/DD/YY.~n"&
+ "Use leading 0 (zero) for days and months below 10 when"&
+ " using the military date format.~n~n"&
+ "EXAMPLES: 20010430, 010430, 4/30/2001, 4/30/l~n~n"&
+ "If the year is displayed as two digits, the century is "&
+ "determined as follows:~n"&
+ "Year is between -tDefault Century Digits ~tEXAMPLE~n"&
+ "00 and 49 ~t20~t~t~t2049~n"&
+ "50 and 99 ~tl9~t~t~tl976~n~n"&
+ "Include the century (e.g. 3/27/1944, 19440327) when you "(
+ "want to override "&
+ "the default interpretation of a two-digit year, "&
+ "or not certain how the date will be interpreted by the

program."

if isDate(civDateStrng) then

civDate = date(string{ mildate, "mm/dd/yyyy"))
setNull(msg)

else
//two right-most digits => day
dy = right (civDateStrng, 2)

//first two of the four right-most digits => month

87

mo = right(civDateStrng, 4)
mo = left(mo, 2)

//remaining digits, after disregading four right-most digits, =>
year

yr = left(civDateStrng, (len(civDateStrng) - 4))

civDateStrng = mo + "/" + dy + "/" + yr

if isDatet civDateStrng) then
civdate = date(civDateStrng)
setNull(msg)

end if
end if

if isNull(msg) then

//indicate conversion success
boxRtrn = 0

else
choose case lower(string(actionParm))

case "retrycancel"
//indicate user selection in dialog box
boxRtrn = messageBox("DATE", msg, exclamation!, retryCancel!

case else
//indicate user selection in dialog box
boxRtrn = messageBox("DATE", msg, exclamation!)

end choose
end if

actionParm = string(boxRtrn)

if parmType = "string" then
return civDateStrng

end if

return civDate

5. Menus

There are two menu types in the MILDB application. The first, such as menu

m_MDIframe, is intended for a permanent display on user's interface.They continuously

provide the menu's functionality to the user. The second type, such as menu

88

m_adminObject, is instantiated and provides its list of commands in the form of a popup

menu only when needed.

Each of these menu types have an ancestor version, which serves MILDB users

who have access to data from only a single Unit, and a descendant version, which

provides additional functionality to global users who can access records from several

Units. The descendant menu names carry an extension "_tc", for "troop command".

a. Menu m_MDI

This menu is displayed permanently along with the MDI (Multiple Display

Interface) frame, and provides lists of commands in three major groups:

• File (includes commands, such as Save, Print, Close Sheet, Exit, etc.).

• Folder (opens the initial window for distinct MILDB operations, such as

editing student administrative data, physical training-related data, and

dormitory room assignment).

• Help (opens user help, and the 'About' window).

Figure 7 on the following page shows the structure of menu m_MDI, and its descendant

menu m_MDI_tc.

The following code shows an example of scripts that drive both menus:

89

//***MENU m_MDIframe

MENU m_file.m_save

window activeSheet
commandButton currButton
int I

//active window
//command button
//step counter

activeSheet = w_frame.GetActiveSheet()

if isValid(activeSheet) then
for i = 1 to upperBound(activeSheet.control[])

if activeSheet.control[i].typeOf() = commandButton! then
currButton = activeSheet.control[i]
if string(currButton.classname()) = "cb_save" then

triggerEvent(currButton, clicked!)
return

end if
end if

next
end if

MENU m_file.m_close

window activeSheet //active window

activeSheet = w_frame.GetActiveSheet ()

if isValid(activeSheet) then
close(activeSheet)
if isValid(w_frame.GetActiveSheet()) = false then

w_frame.MDI_1.resize(0,0)
end if

else
//openSheet()
w_frame.MDI_l.resize(0, 0)

end if

90

I'SjMenu - m mdiframe inherited from menu |_Jn]

I ff^lfif Folder Window Help E~Hn mjndiframe

8,Save [Drl+S]

. : X iCIose [CtrkF4]

i m & u x ! * y$ & \

:-# «.Print [CtrkP]

Print Setup...

Export as Text [Ctrl+E]

E&xit [Ctfl+X]

5 F&older

; Mi Administration [F5]

',-13$ Physical Training [FG]

ffi Barrack Utilization [F7]

3- «.Window

■ ■ SJile

{.Layer

iCascade

S 8.Help

^Contents [F1J

SAbout

|"SMenu-m mdiframe tc inherited from menu -I PI

ff^lff Folder Company Window Help 3-lsl m_mdiframe_tc

55 ■■ B

i=- F&older

•JUS Administration [F5]

2gt Physical Training [F6)

■flt Barrack Utilization [F7]

Utilities

liOX 1 If II A B c D e r c # j

E) Company
Co A

CoB
CoC
CoD
CoE
CoF
Co B

 Co HQ

ALL

- SWindow

SJile
Slayer

S£ascade

3 «.Help
8.Contents [F1]

SAbout

Figure 7. Menu m_MDI and m_MDI_tc

91

MENU m_file.m_print

w_base currWind //active window

currWind = w_frame.GetActiveSheet()

if isValid(currWind) then
currWind.printReport()
return

end if

messageBox("Print", "No report to print.")

MENU m_file.m._exportastext

window activeSheet //active window
commandButton currButton //button
int i //local counter

activeSheet = w_frame.GetActiveSheet()

if isValid(activeSheet) then
for i = 1 to upperBound(activeSheet.control[])

if activeSheet.control[i].typeOf() = commandButton! then
currButton = activeSheet.control[i]
if string(currButton.classname()) = "cb_export" then

triggerEvent(currButton, clicked!)
return

end if
end if

next
end if

MENU m_£ile.m_exit

close(parentWindow)

MENU m_folder.m_admin

setPointer(hourGlass!)
OpenSheet(w_admin, w_frame, 1, layered!)

MENU m folder.m physicaltraining

92

setPointer(hourGlass!)
openSheet(w_apft_wc, w_frame, 1, layered!)

MENU m_folder.m_barrackbunkassignment

setPointer(hourGlass!)
openSheet(w hotel ace, w_frame, 1, layered!)

Jb. Menu m_adminObject

Menu m_adminObject is not permanently displayed. It contains

commands for opening windows that serve to accomplish a specific task, such as to

create a new student record, to record a pregnancy counseling session, or to display a

name roster. They appear as popup menus when needed. Names of menus and

submenus were chosen to also indicate their function. Figures 8 and 9 show the

structure of menu m_adminObject, and its descendant menu m_adminObject_tc.

The following code shows an example of script that drives the menus:

//•••MENU ADMINOBJECT

MENU m_inprocessing.m_ptl

int success //open window success/fail

success = openSheet(w_admin, w_frame, 1, layered!)

if success = 1 then
w_admin.setW_admin(this.text)
if fetch_ssn <> "" then

w_admin.fetchData()
end if

end if

93

S Menu - m adminobject inherited from menu

Inprocessing Outprocessing Indivlnfo IndivHistory Viewer dwchanges
Inprocessing

Pt1 Admin. BPED. Spouse. Quarters, etc.

Pt2 Form 90, SQT. Office

Pt 3 Reserve. Component. Place of Birth

Outprocessing

Indivlnfo
Chapter Discharge

Family Care
Pregnancy Counseling

IndivHistory

Article 15's
.... AWOL

Bar to Reenlistment

CST/CTT Training

... DLPT

Flags

ISSR

LPTH

Mandatory Training

Promotions

Remedial / Probation

Weapon Qualification

Viewer

Address Roster

Article 15's

AWOL
Bar to Reenlistment

Causuals

Flags
ALL (Report)

Weight Control

Query

General Query

Housing
ALL Housing

Barracks Utilization

ISSR

LPTH
Query Leave Roster
Remedial/Probation

Rosters

Training Plan
63 week
47 week and less

All

Training Results
Urine Analysis

dwchanges

Export Data

Filter

Sort
Reduce SSN to Last Four

Figure 8. Menu m_adminObject

94

gj Menu - m_admmobiect_tc inherited from m_adminobject

Inprocessing Outprocessing Indivlnfo IndivHistoiy Viewer dwchanges
Inprocessing
Outprocessing

Indivlnfo

IndivHistory

Viewer

Address Roster

Article 15's

AWOL

Bar to Reenlistment

Causuals

Flags

ALL (Report)

Weight Control

Query

General Query

Housing

ALL Housing
Barracks Utilization

ISSR

LPTH

Query Leave Roster

Remedial/Probation

Rosters

Training Plan

Training Results

Urine Analysis

dwchanges

Figure 9. Menu m_adminObject_tc

95

MENU multiprocessing.m_pt2

int success //open window success/fail

success = openSheet(w_admin, w_frame, 1, layered!)

if success = 1 then
w admin.setW_admin(this.text)
if fetch_ssn <> "" then

w_admin.fetchData()
end if

end if

MENU m_inprocessing.m_pt3

int success //open window success/fail

success = openSheet(w_admin, w_frame, 1, layered!)

if success = 1 then
w admin.setW_admin(this.text)
if fetch_ssn <> "" then

w_admin.fetchData()
end if

end if

6. User Objects

Two major user objects are used throughout the MILDB application: Locator

(named ojocate) which displays list of personnel and triggers retrieval of data pertinent

to a given person, and Admin user object (named o_adminObject) which serves as

visual interface for displaying popup menus that are related to a specific administrative

task.

96

a. Locator ojocate

This object retrieves and displays a list of platoons and names of all

personnel assigned to a single Unit. Platoon names are displayed on the left side of the

Locator in dataWindow dw_plt, one platoon name per row. Names of the personnel are

displayed on the right side of the Locator, in dataWindow dwjoco, one name per row.

When user clicks on name of a platoon, list of personnel assigned to that platoon

appears in dwjoco. When checkBox 'Show All', which appears at the bottom of the

Locator, is selected, all names of personnel in the Unit appear in alphabetical order in

dwjoco. When user clicks a person's name in dwjoco, that person's SSN is submitted

to the currently active window for further processing. Figure 10 shows the Locator.

i^User Object- ojocate inherited from userobiect

Figure 10. Locator ojocate

97

The following code shows script of events of the object ojocate, and of the

controls contained in it:

//***USER OBJECT 0_L0CATE
//IS USED ENYWHERE WHERE LIST OF STUDENTS IN UNIT IS NEEDED

//INSTANCE VARIABLES
m_adminObject newMenu //instance of menu with supporting functions
long oldRow = 0 //saves previous row indicator

//OBJECT EVENTS

//EVENT CONSTRUCTOR
string comp

//instantiate menu
newMenu = create m_adminObject

comp = upper(left(company, 1))
if comp = "%" or comp = "" then

comp = "ALL"
end if
st_2.text = "Company " + comp

cbx_l.checked = false

//set transaction object for dataWindows
dw_plt.SetTransObject(sqlca)
dw_loco.setTransObject(sqlca)

//retrieve students
dw_plt.retrieve(company)

//EVENT DESTRUCTOR
dw_plt.reset()
dw_loco.reset()

destroy newMenu

//OBJECT FUNCTIONS

//PARAMETERS: string ssn
// string filterStrng - dataWindow filter definition

//RETURN: none'
//PURPOSE: Finds record for given SSN in dw_loco,
// highlights proper platoon in dw_plt, and name in dw_loco

98

showLine (string SSN, readonly string filterStrng)

//Local variables
string pit //platoon
string Bucket //temp

long pltRow //row number in dw_plt
long locoRow //row number in dw_plt

//lock display
dw_plt.setRedraw(false)
dw_loco.setRedraw(false)

//unselect any platoon row
dw_plt.selectRow(0, false)
dw_loco.selectRow(0, false)

//reset filter for names display
dw_loco.setFilter ("")
dw_loco.Filter()

//find platoon for ssn
Bucket = "ssn = -"" + ssn + "-""
locoRow = dw_loco.find(Bucket, 1, 10000)

if locoRow > 0 then

pit = dw^loco.getltemString(locoRow, "pit")
Bucket = "pit = -"" + pit + '*-""
pltRow = dw_plt.find(Bucket, 1, 1000)

//display records for platoon
Bucket = "pit = -"" + pit + "-""
if (not isNull(filterStrng)) and (filterStrng <> "") then

Bucket += " and " + filterStrng
end if
dw_loco.setFilter(Bucket)
dw_ioco.filter()

//find ssn in filtered dw_loco
Bucket = "ssn = -"" + ssn + "-""
locoRow = dw_loco.find(Bucket, 1, 10000)

//highlight rows for appropriate platoon and ssn
dw_plt.selectRow(pltRow, true)
dw_loco.selectRow(locoRow, true)

else
//ssn not found => move all rows to filter buffer
dw_loco.RowsMove(1, dw_loco.rowCount(), PRIMARY!, dw_loco, 10000,

FILTER!)
end if

99

//unlock display
dw_plt.setRedraw(true)
dw_loco.setRedraw(true)

return

//PARAMETERS: long currRow - current row indicator
//RETURN: none
//PURPOSE: Submits SSN to a window for further processing
submitToForm(readonly long currRow)

//Local variables
string currWindowNm //name of current window

if currRow > 0 then
fetch_ssn = dw_loco.getltemString(currRow, 2)
sle_ssn.text = fetch_ssn

else
return

end if

currWindowNm = w_frame.getActiveSheet().classname()

choose case currWindowNm

case "w_mildata"
w_mildata.fetchData()

case "w_history"
w_history.fetchData()

case "w_admin"
w_admin.fetchData()

case "w_weightcontrol"
w_weightcontrol. fetchData()

case "w_apft"
w_apft.fetchData()

case "w_profile"
w_profile.fetchData()

case "w_wthist"
w_wthist.fetchData()

case "w_apfthist"
w_apfthist.fetchData()

case else
//do nothing

end choose

100

this.borderStyle = styleBox!

//EVENTS OF CONTROLS

//CHECK BOX cbx_l
//EVENT CLICKED
//When the checkBox state 'Checked' => show ALL personnel in dw_loco
//otherwise => show personnel by platoon
dw_loco.setRedraw{false)

if this.checked = false then'
dw_loco.setFilter("pit = -"-?-" ")
dw_loco.Filter()

else
dw_plt.selectrow(0, false)

if dw_loco.filteredCount() = 0 then
dw_loco.retrieve(company)

end if

dw_loco.setFilter("isNumber(ssn)")
dw_loco.Filter()
dw_loco.selectrow(0, false)
dw_loco.selectrow(l, true)
dw_loco.setFocus()

end if

dw loco.setRedraw(true)

//DATAWINDOW dw_loco
//CONTAINS NAME AND SSN OF STUDENTS
//EVENT CLICKED
//When the checkBox state 'Checked' => show ALL personnel in dw_loco
//otherwise => show personnel by platoon
dw_loco.setRedraw(false)

if this, checked = false then
dw_loco.setFilter("pit = -"-?-" ")
dw_loco.Filter()

else
dw_plt.selectrow(0, false)

if dw_loco.filteredCount() = 0 then
dw_loco.retrieve(company)

end if

dw_loco.setFilter("isNumber(ssn)")
dw loco.Filter()

101

dw_loco.selectrow(0, false)
dw_loco.selectrow(1, true)
dw_loco.setFocus()

end if

dw loco.setRedraw(true)

//EVENT RIGHTBUTTOTDOWN
//When the checkBox state 'Checked' => show ALL personnel in dw_loco
//otherwise => show personnel by platoon
dw_loco.setRedraw(false)

if this.checked = false then
dw_loco.setFilter("plt = -"-?-" ")
dw_loco.Filter()

else
dw_plt.selectrow(0, false)

if dw_loco.filteredCount() = 0 then
dw_loco.retrieve(company)

end if

dw_loco.setFilter("isNumber(ssn)")
dw_loco.Filter()
dw_loco.selectrow(0, false)
dw_loco.selectrow(1, true)
dw_loco.setFocus()

end if

dw loco.setRedraw(true)

//EVENT KEYDOWN
//Action to take when user presses certain keys

long currRow

//keyEnter
if keyDown(keyEnter!) then

//start processing
submitToFormf currRow)

//keyControl
elseif keyDown(keyControl!) then

currRow = getSelectedRow(0)
//keyDownArrow
if keyDown(keyDownArrow!) then

//select the row above
this.selectRow(0, false)

■ this.selectRow(currRow + 1, true)

102

submitToForm(currRow +1)
end if
//keyUpArrow
if keyDown(keyUpArrow!) then

//select the row below
this.selectRow(0, false)
this.selectRow(currRow - 1, true)
submitToForm(currRow - '1)

end if

end if

//EVENT MOUSEMOVE
//highlight rows as the user moves the mouse over rows

string rowStrng //row identifier
long pos //position of character

rowStrng = this.getObjectAtPointer()
pos = Pos(rowStrng, "~t", 1)
pos += 1
rowStrng = mid(rowStrng, pos)
pos = long(rowStrng)

if pos > 0 then
if pos <> oldRow then

This.SelectRow(0, FALSE)
this.selectRow(pos, true)
oldRow = pos

end if
end if

//DATAWINDOW dw_plt
//CONTAINS PLATOON NAMES
//EVENT CLICKED
string platoon //name of platoon
string currWindowNm //name of current window
string sex //gender
string dwFilter //filter definition for dataWindow

//hightlight current row
if row > 0 then

this.selectrow(0, false)
this.selectrow(row, true)

end if

if row > 0 then

cbx 1.checked = false

103

platoon = trim(this.getitemstring(row, 1))

if isNull(platoon) then
platoon = "%"

end if

cu'rrWindowNm = lower (w_frame.getActiveSheet().classname())

//show only Males, or Females, or ALL
choose case currWindowNm

case "w_weightcontrol"
//get only Male or Female
if w_weightControl.tab_wc.selectedTab = 1 then

//sex = "M"
dwFilter = "pit = '" + platoon + "' and sex = ~"M~" "

else
//sex = "F"
dwFilter = "pit = '" + platoon + "' and sex = ~"F~" "

end if

case else
dwFilter = "pit = '" + platoon + '""

end choose

dw_loco.setRedraw(false)

if (dw_loco.rowCount() > 0) OR (dw_loco.filteredCount() > 0) then
//reset the filter, before new filter will be applied
//this will ALL personnel back into dw_loco
dw_loco.setFilter("")
dw_loco.Filter()

else
//if personnel not retrieved yet, do it
dw_loco.retrieve(company)

end if

//set and apply new filter
dw_loco.setFilter(dwFilter)
dw_loco.Filter()

dw_loco.selectRow(1, true)
dw_loco.setRedraw(true)
dw loco.setFocus()

end if

104

b. User Object o_adminObject

User object o_admin appears permanently on windows that provide the

interface for fulfilling some administrative tasks, such as entering new service member

into the database, updating person's administrative data, outprocessing a student,

deactivating his/her record, etc. The purpose of this object is to display the choice of

several the major administrative task options available to the user, and to display a

popup menu offering further options once a specific task is selected (clicked). Afterbeing

selected, the background color of a label that displays an administrative task changes,

and remains highlighted even when a popup menu is dismissed and the user proceeds

to work with displayed data. This provides the user with persisting visual clue about the

nature of the operation that he/she is performing. Replacing this user object with a

simple menu would not provide such visual clue. Figure 11 shows the design of object

o_adminObject and menus that popup when its label, indicating an administrative task,

is clicked.

105

;i«User Object - o_adminobject inherited from userobject

Inprocessing | Indiv. Info [Indiv. History Coprocessing j Reports j

MENUS FROM mJadminobject(_tc]:
. I ■ I Inprocessing |

R1 Admin. BPED. Spouse, Quarters, etc.
Pt2 Form 90. SQT. Office
R 3 Reserve. Component Place of Birth

Indivlnfo

Chapter Discharge

Family Care
Regnancy Counseling

(idiv IndivHistory

Article 15's
AWOL
Barto Reenlistment
CST/CTT Training

DLPT
Flags
ISSR
LPTH
Mandatory Training
Promotions
Remedial /Robation
Weapon Qualification

Viewer

Address Roster
Article 15's
AWOL
Barto Reenlistment
Causuals
Flags ►
General Queiy

Flags

ALL (Report)
Weight Control
Queiy

Housing ►
ISSR '
LPTH
Query Leave Roster
Remedial /Probation
Rosters
Training Plan >
Training Results
Urine Analysis

Housing

ALL Housing
Barracks Utilization

Training Plan

63 week
47 week and less
All

Figure 11. User Object o_adminObject

106

c. User Object ujstoredProc

This is a non-visual user object that is used for database transactions,

and also as an interface for executing stored procedures. How such object can be

created was described in Section C. Figure 12 shows the external functions and

subroutines declared in u storedProc.

WUser Object- u storedproc inherited from transaction
Script - getselupdtinsd*! (string table_name. string table_user, ref string tabl<?_p*rms) returns (none;

I (Functions) z\ getselupdtinsdel (string table_name. string table_user, ref string table_perms) returns (none)

New Function!
getselupdtinsdel (string table_name. string table_user. ref string table_perms) returns (none)

getsuid (string table_name, string table_user. ref string table_perms) returns (none)

isinadminbase (string newssn. ref string recstat) returns (none)

sp_setapprole (string rolename. string password, string encrypt) returns integer

Figure 12. User Object u_storedProc

7. Windows

All windows in the MILDB application are hosted by a window of type MDI. Based

on user's action, other windows are opened as sheets within the MDI frame. To

demonstrate the process of designing and scripting MILDB windows, the MDI frame and

one major window, which implement inheritance, is documented in this thesis.

107

a. MDI Frame wjrame

This window hosts other windows, called sheets, of MILDB application.

Associated with this window is menu m_MDIframe(_tc) described earlier in this Section.

Figure 13 shows the design of window w_frame.

•' Military Database
File Folder Company Window ■Help:

E;:II m &&& ABC DE FC

■Ready

Figure 13. Window w_frame

108

The following code shows script of the opening event of w_frame:

//***WINDOW W_FRAME
//WINDOW OPEN EVENT

//Local variables
string errStrng //error string
string Bucket //temp

long rowCnt //row count

dataStore ds_tempStore //non-visual dataStore

//instantiate dataStore
ds_tempStore = CREATE dataStore

//sql syntax for dataStore
//select Unit(s) and Platoon(s) that USER can see
Bucket = "select unit from mil.v_cansee"

Bucket = sqlca.SyntaxFromSQM Bucket, "", errStrng)

//create dataStore and retrieve data
ds_tempStore.create(Bucket, errStrng)
ds_tempStore.setTransObject(sqlca)
rowCnt = ds_tempStore.retrieve()

choose case rowCnt
case 0

messageBox("MILDB OPEN", "Can't see any information.")
//quit application
HALT

case is > 3
//show troop command menu
//intialize global variable to "A"
company = "A"
this.changeMenu(m_mdiframe_tc)
Bucket = "ALL COMPANY DATABASE"

case else
//set global variable
company = ds_tempStore.getltemString(1, "unit")
//set Unit-level menu
this.changeMenu(m_mdiframe)
Bucket = "COMPANY " + company + " DATABASE".

end choose

//set the window title
this.title = Bucket
w_splash.bringToTop = true

109

b. Window w_base

This window is an ancestor of numerous other windows found in MILDB.

It contains a single object, user object ojocate, described earlier in this section. In this

window are declared several window-level functions whose scripts are defined, or

extended, in descendant windows. Figure 14 shows the design of window w_base.

I Locator

Locate: Show All r

Name I....

Figure 14. Window w_base

110

The following code shows scripts of w_base events and functions:

//***WINDOW W_BASE

//DECLARE INSTANCE VARIABLES
datawindow dwList[] //list of dataWindow controls
int closeCode //0=can, l=cannot close window
boolean saveEnabled //stores the state of menultem 'Save'

//WINDOW EVENTS

//WINDOW OPEN EVENT
int xx, yy //local counters

//call window- function (get number of data windows)
YY = getDwList(this, dwList)

if yy > 0 then

//hide all dataWindows
for xx = 1 to yy

dwList[xx].hide()
next

//create menu for dataWindow utilities
if isValid(dwUtilMenu) then

//do nothing
else

dwUtilMenu = CREATE m_dwchanges
end if

end if

//WINDOW ACTIVATE EVENT
//restore the last state of 'Save' menu in MDI frame
w frame.menuID.item[l].item[l].enabled = saveEnabled

//WINDOW DEACTIVATE EVENT
//save the last state of 'Save' menu in MDI frame
saveEnabled = w frame.menuID.item[l].item[l].enabled

//KEY DOW EVENT
//set focus to locator
if keyDown(keyControl!) then

uo_l.dw_loco.setFocus()
end if

111

//MOUSE MOVE EVENT
if uo_l.borderStyle <> styleBox! then

uo_l.borderStyle = styleBox!
uo_l.bringToTop = false

if isValid{ getFocusO) then
if getFocus().className() = "dw_loco" then

dwList[upperBound(dwList)].setFocus()
end if

end if
end if

//CLOSE QUERY EVENT

//Initialize instance variable
closeCode = 0 //allow closing

//Local variables
int msgCode //return code from messageBox
int dwCnt //row count
int i //step counter

long modifiedCnt //number of modified rows
modifiedCnt = 0

//check if 'Save' enabled in MDI menu
if w_frame.menuID.item[1].item[l].enabled = false then

return 0
end if

//check for data change
dwCnt = upperBound(dwList[])
for i = 1 to dwCnt

dwList[i].acceptText()
modifiedCnt += dwList[i].modifiedCount()

next

if modifiedCnt > 0 then

msgCode = messageBox (this.title, "Do you want to save changes" &
+ " to current record?", &
Question!, YesNoCancel!)

CHOOSE CASE msgCode
CASE 1

closeCode = 0 //close after saving
saveData()

CASE 2
closeCode = 0 //close without saving

CASE ELSE
closeCode = 1 //don't close

END CHOOSE
end if

112

//allows / aborts closure of window
return closeCode

//WINDOW FUNCTIONS

//PARAMETERS: none
//RETURN: (none)
//PURPOSE: Enable/disable SAVE menu based on permissions
setSaveMenu()

//Local variables
string updtTable //table name
string permList //permission string SUID

l/S - Save, U - Update, I - insert, D - delete
string Bucket //temp

int xx //step counter

if SQLCA.Database = "mildb" then
//update possible
//First menu item in 1st submenu is 'Save'
w_frame.menuID.item[l].itemfl].enable()
return

end if

//get permissions from all dataWindows except dw_l
permList = ""

for xx = 1 to upperBound(dwList[])
if dwList [xx].dataObject <> "" then

updtTable = dwList[xx].Object.dataWindow.Table.updateTable

if updtTable <> "" then
updtTable = mid(updtTable, post updtTable, ".") + 1)
Bucket = "????"
sqlca.getSUID(updtTable, sqlca.userlD, Bucket)
permList += Bucket

end if
end if

next

//now set the menu
if pos(permList, "U") > 0 then

//update possible
//First menu item in 1st submenu is 'Save'
w_frame.menuID.item[1].item[l].enable()

else
//update restricted
//First menu item in 1st submenu is 'Save'
w_frame.menuID.item[l].item[l].disable()

end if

113

return

//PARAMETERS: none
//RETURN: (none)
//PURPOSE: Retrieve records
fetchDataO
//do nothing
//declared here, but will be extended in descendent windows

//PARAMETERS: none
//RETURN: (none)
//PURPOSE: Print report
printReport()
//do nothing
//declared here, but will be extended in descendent windows

//PARAMETERS: none
//RETURN: (none)
//PURPOSE: Update dataWindows
savedata{)
//do nothing
//declared here, but will be extended in descendent windows

//button cb_print
//event clicked()
parent.printReport()

c. Window w_base_admin

This window is a descendant of w_base. It adds user object

o_adminObject to objects already contained in the ancestor window. The window's Open

event is extended to include some initial setup of its user objects. This window is an

immediate ancestor of windows handling administrative data processing of MILDB.

Figure 15 shows the design of w_base_admin.

114

|G|x|

f Inprocessing If Indiv. Info If Indiv. History | Outprocessing If Reports

j Locator

Locate:

Name

Show All r

1

Figure 3. Window w_base_admin

The following code shows scripts contained in w_admin_base:

//WINDOW W_BASE_ADMIN
//INHERITED FROM W BASE

//WINDOW EVENTS

//WINDOW OPEN EVENT
//EXTENDS ANCESTOR SCRIPT

//LOCAL VARIABLES
long lghtGray //RGB
string lghtGrayStrng //RGB string

115

//count instances of admin windows
adminCnt ++

//initialize adminMenu shared variable
if not isValid(adminMenu) then

adminMenu = create m_adminObject_tc
end if

lghtGray = RGB(192, 192, 192)
lghtGrayStrng = string(lghtGray)

//set bkgr color of tabs in action menu
uo_adminmenu.st_inProcessing.backColor = lghtGray //light gray
uo_adminmenu.st_outProcessing.backColor = lghtGray //light gray
uo_adminmenu.st_indivInfo.backCoior = lghtGray //light gray
uo_adminmenu.st_indivHistory.backColor = lghtGray //light gray
uo_adminmenu.st_viewer.backColor = lghtGray //light gray

uo_adminmenu.st_inProcessing.tag = lghtGrayStrng //light gray
uo_adminmenu.st_outProcessing.tag = lghtGrayStrng //light gray
uo_adminmenu.st_indivInfo.tag = lghtGrayStrng //light gray
uo_adminmenu.st_indivHistory.tag = lghtGrayStrng //light gray
uo adminmenu.st viewer.tag = lghtGrayStrng //light gray

//WINDOW RESIZE EVENT
//set position of Locator, based on window/screen size
uo l.X = this.width - uo 1.width - 50

d. Window wjadmin

This window is a descendant of window w_base_admin. In addition to

objects it has inherited from its ancestors, it also includes dataWindow controls for data

retrieval and manipulation, and a button for creating new records. Several window-level

functions, declared in its ancestor windows, are defined here, or are just extended. New

window-level functions, performing the initial setup of the window, are added. Figure 16

shows the design of the window, and an example of data display (all data are fictional).

116

: ALL COMPANY DATABASE
Ble Ffilder Company Window Help

EilK ! If I A B e D E F

: Pt 1 Admin. BPED. Spouse. Quarters, etc.

[Inprocessing T Indiv. Info | Indiv. History | Outprocessing Y Reports 1 N_ew

Rank Pit Class -fllx ■tl2x

) SPC JFAZMIIO MARK j 098765432[: | 5 121501KP00297 | company A

DLAB Score:)130
3

1

HP

4

C

2

ATHANASIOU

iäiäilääSM
DOB: [720818 Service: |A BPED: (960814

BASD: {860814

DOR: J960814

3ILL
3RAHAM, KEVIN 0
3REENE ERIN L
-EWE

Age: 27 Pay Grade: f:4

Marital St: |T~ Branch: ^11

OLAB Date: J960710

Sex |Üüi PMOS: |98G Arrived DU: J961018

Arrived Unit: J961018

ETS: |000813

AtHALEN, PETER M

Race: |C UMOS: |98G

BirthPlace: | SM Stat: |

MealCard: (D82701065 QS1: \NE

Niimher
of Depnds: | Spouse's Name:]

Housing: |
Locate:

Name

Show All T
Phone: |

I Zip: i City: J State: j Consent: f

Figure 16. Window w_admin

The following code shows scripts of window w-admin events, and window-level

functions.

//***WINDOW W_ADMIN
//DESCENDANT OF W_BASE_ADMIN

//DECLARE ADDITIONAL INSTANCE VARIABLES
//none

//WINDOW EVENTS

//WINDOW OPEN EVENT
//EXTENDS ANCESTOR SCRIPT

117

//Local variables
string Bucket //temp

//set window title
this.title = " Inprocessing "

//find if user can inser new soldier
Bucket = space(4)
sqlca.getSUID("admin", sqlca.userlD, Bucket)
if pos(Bucket, "I") > 0 then

cb_add.show()
else

cb_add.hide()
end if

//set labels in 'tab' user object
uo adminmenu.st_inProcessing.backColor = RGB(255, 255, 255) //white
uo adminmenu.st inProcessing.tag = string(RGB(255, 255, 255)) //white

//WINDOW FUNCTIONS

//EXTENDS ENCESTOR FUNCTION
fetchDataO

int xx //STEP COUNTER

//check for modification of previously retrieved data
//triggerEvent(closeQuery!)

if closeCode = 1 then
//user doesn't want to move to next record
return

end if

xx = setW_admin(this.title)
if xx <> 0 then

//no admin form selected yet
return

end if

setRedraw(false)

//reset dataWindow
for xx = 1 to upperBound(dwList)

dwList[xx].reset()
next

//retrieve data
if fetch_ssn <> "" then

dw_l.retrieve(fetch_ssn)
dw_2.retrieve(fetch_ssn)
dw_3.retrieve(fetch_ssn)
dw 4.retrieve(fetch ssn)

118

else
return

end if

if dw_l.rowCount() = 1 then
primeNewRows(fetch_ssn)

else
messageBox("ADMIN DATA", "No recors retrieved.")

end if

dw_l.show()
dw_2.show()
dw_3.show()
dw_4.show()
dw_5.hide()
dw_6.hide()

if dw_2.data0bject = "d_form90" then
dw_6.retrieve(fetch_ssn)
dw_6.show()

end if

setRedraw(true)

return

//EXTENDS ANCESTOR SCRIPT
printReport()

setpointer(hourglass!)

if dw_l.rowCount() < 1 then
messageBox("PRINT REPORT", "Nothing to print.")
return

end if

string Bucket //temp
string equals, dashes, blnk //text containers

int job //print job
int tl, t2, t2a, t3, t3b, t4, t5, t6 //print indents

tl = 300
t2a = 1200
t2 = 2400
t3 = 5000
t3b = 4500
t4 = 6500
t5 = 6700
//t6 = 6000

119

if (dw_2.dataObject = "d_admin") OR (dw_2.dataObject = "d_adminnew")
then

job = printopenO

printDefineFont(job, 1, "Arial", -10, 400, default!,&
anyfont!, false, false)

printDefineFont(job, 2, "Arial", -10, 700, default!,&
anyfont!, false, false)

dashes =

equals

blnk = "

//***header
printSetFont(job, 1)
print(job, 2500, "*** FOR OFFICIAL USE ONLY - PRIVACY ACT DATA

* * * " \

print(job, "")
print(job, "")
print(job, 3200, "PERSONAL DATA REPORT")
print(job, "")
print(job, "")
print(job, "")
print (job, "")

print ('job, 0, equals)
printSetFont(job, 2)

if (dw_2.dataObject = "d_admin") then
Bucket = dw_l.getitemstring(1, "rank")
if isNull(Bucket) then; Bucket = ""; end if
print(job, tl, "Rank: " + Bucket, t2a)
Bucket = dw_l.getitemstring(1, "n_student")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Name: " + Bucket, t3b)
Bucket = dw_l.getitemstring(1, "ssnadmin")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "SSN: " + Bucket, 2*t2 + 1000)
Bucket— dw_l. getitemstring (1, "pit")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "PLT: " + Bucket, t4)
Bucket = dw_l.getitemstring(1, "class")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Class: " + Bucket)
print(job, "")

else
Bucket = dw_2.getitemstring(1, "rank")
if isNull(Bucket) then; Bucket = ""; end if
print(job, tl, "Rank: " + Bucket, t2a)

120

Bucket = dw_2.getitemstring(1, "n_student")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Name: " + Bucket, t3b)
Bucket = dw_2.getitemstring(1, "ssntarget")'
if isNull(Bucket) then; Bucket = ""; end if
print(job, "SSN: " + Bucket, 2*t2 + 1000)
Bucket = dw_2.getitemstring(1, "pit")
if isNull(Bucket) then; Bucket = ""; end if
print (job, "PLT: '" + Bucket, t4)
Bucket = dw_2.getitemstring(1, "class")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Class: " + Bucket)
print(job, "")
print(job, "")

end if

printSetFont(job, 1)
print(job, 0, equals)
if (dw_2.dataObject = "d_adminnew") then

printSetFont{ job, 2)
end if
print(job, "")
print(job, "")

//LINE1
Bucket = string(date(dw_2.getitemDateTime(1, "dob")))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, tl, "DOB: " + Bucket, t2)
Bucket = dw_2.getitemstring(1, "service")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "Service: " + Bucket, t3b)
Bucket = string(date(dw_2.getitemDateTime(1, "bped")))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "BPED: " + Bucket, t4)
Bucket = string(date(dw_2.getitemDateTime(1, "d_dlab"))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "DLAB Date: " + Bucket)
print(job, "")

//LINE2
Bucket = string(dw_2.getitemNumber(1, "age"))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, tl, "Age: " + Bucket, t2)
Bucket = dw_2.getitemstring(1, "pay_grd")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "Pay Grade: " + Bucket, t3b)
Bucket = string(date(dw_2.getitemDateTime(1, "basd")))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "BASD: " + Bucket, t4)
Bucket = string(dw_2.getitemNumber(1, "q_dlab"))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "DLAB Score: " + Bucket)
print(job, "")

121

//LINE4
Bucket = dw_2.getitemstring(1, "mar_stat")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, tl, "Marital St.: " + Bucket, t2)
Bucket = dw_2.getitemstring(1, "branch")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "Branch: " + Bucket, t3b)
Bucket = string (date(dw_2.getitemDateTime(1, "d_rank")))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "DOR: " + Bucket)
print(job, "")

//LINE5
Bucket = dw_2.getitemstring(1, "sex")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, tl, "Sex: " + Bucket, t2)
Bucket = dw_2.getitemstring(1, "pmos")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "PMOS: " + Bucket, t3b)
Bucket = string(date(dw_2.getitemDateTime(1, "d_arrival")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "Arrived DLI: " + Bucket)
print(job, "")

//LINE6
Bucket = dw_2.getitemstring(1, "race")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, tl, "Race: " + Bucket, t2)
Bucket = dw_2.getitemstring(1, "ult_mos")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "UMOS: " + Bucket, t3b)
Bucket = string(date(dw_2.getitemDateTime(1, "d_unit")))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "Arrived Unit: " + Bucket)
print(job, "")

//LINE7
Bucket = dw_2.getitemstring(1, "mealcard")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, tl, "Mealcard: " + Bucket, t2)
Bucket = dw_2.getitemstring(1, "sm_status")
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "SM Status: " + Bucket, t3b)
Bucket = string(date(dw_2.getitemdateTime(1, "ets")))
if isNull(Bucket) then; Bucket = blnk; end if
print(job, "ETS: " + Bucket)
print(job, "")

//LINE8
Bucket = dw_2.getitemstring(1, "qsl")
if isNull (Bucket) then; Bucket = blnk; end if
print(job, t2, "QS1: " + Bucket)
print(job, "")
print(job, dashes)

122

print(job, "")
print(job, "")

//DEPN PART OF FORM

Bucket = dw_3.getitemstring(1, "depn_n_spouse")
if isNull(Bucket) then; Bucket = ""; end if
print(job, tl, "Spouse's Name: " + Bucket, t3b]
Bucket = dw_3.getitemString(1, "depn_numb_chil";
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Number of Dependents: " + Bucket)
print(job, "")
print(job, dashes)
print(job, "")
print(job, "")

//LOCATION PART OF THE FORM
Bucket = dw_4.getitemstring(1, "loc_addr")
if isNull(Bucket) then; Bucket = ""; end if
print(job, tl, "Address: " + Bucket, t3)
Bucket = dw_4.getitemString(1, "loc_qtrs")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Quarters: " + Bucket)
print(job, "")
Bucket = dw_4.getitemString(1, "loc_city")
if isNull(Bucket) then; Bucket = ""; end if
print(job, tl, "City: " + Bucket, t2)
Bucket = dw_4.getitemString(1, "loc_state")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "State: " + Bucket, t3)
Bucket = dw_4.getitemString(1, "loc_zip")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "ZIP: " + Bucket)
print(job, "")
Bucket = dw_4.getitemString(1, "loc_phone")
if isNull(Bucket) then; Bucket = ""; end if
print(job, tl, "Phone: " + Bucket, t2)
//print(job, "")
Bucket = dw_4.getitemString(1, "consent")
if isNull(Bucket) then; Bucket = ""; end if
print(job, "Consent: " + Bucket)
print(job, "")

printclose(job)

else
messageBox("PRINT REPORT", "No printout available for this form.")

end if

return

123

//EXTENDS ANCESTOR SCRIPT
saveData()

string newName, newSSN, testSSN //containers for personal data
string dwFilter //dataWindow filter string
string bldg, rm, bunk //dormitory assignment
string Bucket //temp

int msgCode //return value of messageBox
int dwCnt //dataWindow count
int checkCnt //counts successful dataWindow updates
int i, xx //counters
long currRow //current row indicator

dwCnt = upperBound(dwList[])

window otherSheet
userObject uoX
dataWindow dwX
dwItemStatus rowStat

setPointerC hourGlass!)

for i = 1 to dwCnt
dwList[i].acceptText()

next

if (dw_l.dataObject = "d_regadminl") AND (dw_l.modifiedCount()) > 0
then

newSSN = dw_l.getltemString(1, "ssnadmin")
testSSN = dw_l.getltemString(1, "ssnadmin", PRIMARY!, TRUE)

if newSSN <> testSSN then

Bucket = "mil.changeviewssn '" + testSSN + IT I I ft (
SOU T LCO LUUH i , C

+ newSSN +

EXECUTE IMMEDIATE :Bucket;

if sqlca.sqlcode < 0 then
xx = messageBox("Data Entry Error",&

"Change of SSN failed.~n"&
+ sqlca.SQLErrText + "~n~n"&
+ "Restore original SSM?", question!,

YesNoCancel! , 1)
choose case xx

case 1
dw_l.setFocus()
dw_l.setColumn("ssnadmin")
dw_l.setText(testSSN)
dw_l.acceptText ()

case 2

124

//do nothing

case else
return

end choose

end if

dw_l.setltemStatus(1, "ssnadmin", Primary!, NotModified!

//update SSN in other dws
rowStat = dw_2.getItemStatus(1, 0, PRIMARY!)
if (dw_2.modifiedCount()) > 0 then

w_admin.dw_2.setltem(l, "ssntarget", newSSN)
dw_2.setltemStatus(1, "ssntarget", Primary!,&

NotModified!)
else

w_admin.dw_2.setltem(l, "ssntarget", newSSN)
dw_2.setltemStatus(1, 0, Primary!, NotModified!)

end if
rowStat = dw_2.getItemStatus(1, 0, PRIMARY!)

rowStat = dw_3.getItemStatus(1, 0, PRIMARY!)
if (dw_3.modifiedCount()) > 0 then

w_admin.dw_3.setltem(l, "ssntarget", newSSN)
dw_3.setltemStatus(1, "ssntarget", Primary!,&

NotModified!)
else

w_admin.dw_3.setltem(l, "ssntarget", newSSN)
dw_3.setltemStatus(1, 0, Primary!, NotModified!)

end if
rowStat = dw_3.getItemStatus(1, 0, PRIMARY!)

rowStat = dw_4.getltemStatus(1, 0, PRIMARY!)
if (dw_4.modifiedCount()) > 0 then

w_admin.dw_4.setItem(1, "ssntarget", newSSN)
dw_4.setltemStatus(1, "ssntarget", Primary!,&

NotModified!)
else

w_admin.dw_4.setltem(l, "ssntarget", newSSN)
dw_4.setltemStatus(1, 0, Primary!, NotModified!)

end if
rowStat = dw_4.getltemStatus(1, 0, PRIMARY!)

//reset uo_l in this and other sheets
Bucket = "ssn="' + testSSN + "'"
currRow = uo_l.dw_loco.find(Bucket, 1, 10000)
uo_l.dw_loco.setltem(currRow, "ssn", newSSN)

otherSheet = w_frame.getFirstSheet()
otherSheet = w_frame.getNextSheet(otherSheet)

do while isValid(otherSheet)
for i = 1 to upperBound(otherSheet.control[])

125

if otherSheet.control[i].className() = "uo_l" then
//assign to userObject variable,
//so that control [] can be used
uoX = otherSheet.control[i]

for xx = 1 to upperBound(uoX.control[])

if uoX.control[xx].className() = "dw_loco" then
//assign to dataWindow object,
//so that reset() can be used
dwX = uoX.control[xx]
dwX.reset()
xx = 100 //sentinel used to exit loop
i = 100 //sentinel used to exit loop

end if
next

end if
next

otherSheet = w_frame.getNextSheet(otherSheet)
loop

end if
end if

if (dw_2.modifiedCount()) > 0 then

CHOOSE CASE dw_2.dataobject

CASE "d_admin"
w_admin.dw_2 .setitemd, "tdate", todayO)
w admin.dw 2.setitemfl, "uname", sqlca.userid)

CASE "d_adminnew"

dw_2.setColumn("n_student")
newName = trim(dw_2.getText())

if newName = "" then
messageBox("Data Entry Error", &

"New record cannot be created without a name.", &
stopSign!)

dw_2.setFocus()
return

end if

//check if attempt to create new record
//without unit at Company level
dw_2.setColumn("unit")

if (trim(dw_2.getText()) = "") AND (company <> "") then
messageBox("Data Entry Error", &

"New record cannot be created without a Unit.",&

126

stopSign!)
dw_2.setFocus()
return

end if

dw_2.acceptText()
dw_2.setColumn("ssntarget")
newSSN = trim(dw_2.getText())
if newSSN = "" then

messageBox("Data Entry Error", &
"New record cannot be created without SSN.
stopSign!)

dw_2.setFocus()
return

end if

if newSSN <> fetch_ssn then
fetch_ssn = ""

end if

if w_admin.dw_l.modifiedCount() > 0 then
w_admin.dw_l. setltemd, "ssntarget", newSSN)

end if
if w_admin.dw_3.modifiedCount() > 0 then

w_admin.dw_3.setitem(1, "ssntarget", newSSN)
end if
if w_admin.dw_4.modifiedCount() > 0 then

w_admin.dw_4.setltem(l, "ssntarget", newSSN)
end if

fetch_ssn = newSSN

w_admin.dw_2.setitem(1, "tdate", today())
w_admin.dw_2.setitem(1, "uname", sglca.userid)

CASE "d_form90"
if dw_6.rowCount() > 0 then

for currRow = 1 to dw_6.rowCount()
rowStat = dw_6.getItemStatus(currRow, 0, PRIMARY!)
if (rowStat = newmodified!)

or (rowStat = datamodified!) then
dw_6.setitem(currRow, "d_tran", today())
dw_6.setitem(currRow, "n_user", sqlca.userid)

end if
next
dw_6.update{)

end if

CASE ELSE
//do nothing

END CHOOSE
end if

127

if (dw_3.modifiedCount()) > 0 then
w_admin.dw_3.setitem(1, "tdate", today())
w_admin.dw_3.setitem(1, "uname", sqlca.userid)

end if

if (dw_2.data0bject = "d_admin") AND ((dw_4.modifiedCount() > 0) OR
(dw_5.modifiedCount() > 0)) then

Bucket = dw_4.getltemString(1, "locjqtrs")
if (Bucket = "B") OR (Bucket = "BRKS") then

if dw_5.modifiedCount() > 0 then
bldg = dw_5.getltemString(1, "bldg")
rm = dw_5.getltemString(1, "rm")
bunk = dw_5.getltemString(1, "bunk")

if fetch_ssn = "" then
fetch_ssn = dw_2.getltemString(1, "ssnTarget")

end if

if isNulK bldg) OR isNull (rm) then
messageBox("BARRACK DATA SAVE","You need to provide "&

+ "at least Bldg and Room when "&
+ "specifying location.")

return
end if

if trim(bunk) = "" then
setNull(bunk)

end if
msgCode = 0

dwFilter = ""
dw_6.setFilter(dwFilter)
dw_6.filter()

if dw_6.rowCount() = 0 then
dw_6.retrieve(company)

end if

//check out from existing accomodation, if any
Bucket = "brks_act_ssn=~"" + fetch_ssn + "~" "
currRow = dw_6.find(Bucket, 1, dw_6.rowCount())
if currRow > 0 then

setNull(Bucket)
dw_6.setitem(currRow, "brks_act_ssn", Bucket)

end if

//check if bldg and room exists
dwFilter = "brks_act_bldg=~"" + bldg + "~" "&

+ "and brks_act_rm=~"" + rm + "-""
dw_6.setFilter(dwFilter)
dw_6.filter()

Bucket = ""

128

if dw_6.rowCount() = 0 then
Bucket = "No such building and room is assigned "&

+ "to your Company.~n~n"&
+ "Do you want to drop your Building and "&
+ "Room assignment "&
+ "and save the rest of the data?"

else
Bucket = "brks_act_bunk="' + bunk + "'"
currRow = dw_6.find(Bucket, 1, 10)

if currRow = 0 then
Bucket = "No such bunk in Room ".+ rm + ".~n"&

+ "You can open Barracks Utilization window "&
+ "and add another bunk for this room. "&
+ "Then try the 'Save' operation again.~n~n"&
+ "Do you want to drop your Building and "&
+ "Room assignment "&
+ "and save the rest of the data?"

else
Bucket = ""

end if
end if

if Bucket <> "" then
msgCode = messageBox("BARRACK DATA SAVE",&

Bucket, question!, yesNo!, 1)

■if msgCode ■= 2 then
return

end if
end if

if msgCode = 0 then
//check if bunk is available
if isNull(bunk) then

//find 1st available bunk in the room
Bucket = "isNull(brks_act_ssn)"

else
//check if given bunk in given room is empty
Bucket = "isNull(brks_act_ssn) "&

+ "and brks_act_bunk='" + bunk + "'"
end if

currRow = dw_6.find(Bucket, 1, 10)

if currRow = 0 then
Bucket = "Room is already fully occupied. ~n~n" &

+ "Do you want to replace current occupant?"
msgCode = messageBox("BARRACK DATA SAVE",&

Bucket, question!, yesNo!, 2)

if msgCode = 1 then
if isNull(bunk) then

129

•currRow = 1 //assign arbitrarily bunk A
bunk = "A"

else
Bucket = "brks_act_bunk='" + bunk + "'"
currRow = dw_6.find(Bucket, 1, 10)

end if
else

return
end if

else
if isNull(bunk) then

//assign first available bunk in room
bunk = dw_6.getItemString(currRow,&

"brks_act_bunk")
end if

end if

Bucket = "not isNull(brks_act_ssn)"
i = max(1, dw_6.find(Bucket, 1, 10))
Bucket = dw_6.getItemString(i, "admin_sex")

if (not'isNull(Bucket)) &
AND (Bucket <> dw_2.getItemString(1, "sex")) then

messageBox("BARRACK DATA SAVE",&
"Sex mismatch.~n~n"&
+ "Open Barracks Utilization window "&
+ "and resolve the discrepancy. "&
+ "Then try the 'Save' "&
+ "operation again.")

return
end if

dw_6.setltem(currRow, "brks_act_ssn", fetch_ssn)
dw~5-setltem(1, "bunk", bunk)

setNull(Bucket)
dw_2.setltem(1, "mealcard", fetch_ssn)

end if
end if

else
//not living in barracks anymore => checkout
dwFilter = ""
dw_6.setFilter(dwFilter)
dw_6.filter()

if dw_6.rowCount() = 0 then.
dw_6.retrieve(company)

end if

Bucket = "brks_act_ssn=~"" + fetch_ssn + "~" "
currRow = dw_6.find(Bucket, 1, dw_6.rowCount())
if currRow > 0 then

setNull(Bucket)

130

dw_6.set Item(currRow, "brks_act_ssn", Bucket)
end if

end if
if (dw_4.modifiedCount()) > 0 then

dw_4.setltem(1, "uname", sqlca.userlD)
dw_4.setltem(1, "tdate", today())

end if
end if

dw_5.resetUpdate()

checkCnt = 0

for i = 1 to dwCnt
//if i <> 2 then //exclude dw_5
if dwList[i].className() <> "dw_5" then

checkCnt += dwList[i].update()
else

checkCnt += 1
end if

next

if (checkCnt = dwCnt) then

COMMIT using sqlca;

if dw_2.dataobject = "d_adminnew" then
uo_l.dw_plt.retrieve(company)
uo_l.dw_loco.retrieve(company)
uo_l.dw_loco.Filter()

end if

if newSSN <> fetch_ssn then
fetch_ssn = newSSN
//triggerevent(cb_fetch, clicked!)
fetchData()
primeNewRows(fetch_ssn)

end if

else
messageBox("Data Entry Error", "Database update operation failed.",

&
stopSign!)

ROLLBACK using sqlca;
end if

if dw_6.visible=true then
dw_6.bringToTop=true

end if

return

131

//PARAMETERS:
//RETURN:
//PURPOSE:
//
//

readonly string newSSN
int 0 - success
Inserts new row in selected dataWindows,
set the value of SSN to passed parameter,
set the row status to NEW!

int primeNweRows(readonly string newSSN)

if this.dw_2.rowcount() = 0 then
this.dw_2.insertrow(0)
this.dw 2.setitem(l, "ssntarget", newSsn)
this.dw_2.setItemStatus(l, "ssntarget", PRIMARY!, dataModified!)
this.dw_2.setItemStatus(l, "ssntarget", PRIMARY!, notModified!)

end if

if this.dw_3.rowcount() = 0 then
this.dw_3.insertrow(0)
this.dw 3.setitem(l, "ssntarget", newSsn)
this.dw_3.setItemStatus(l, "ssntarget", PRIMARY!, dataModified!)
this.dw_3.setIteruStatus(l, "ssntarget", PRIMARY!, notModified!)

end if

if this.dw_4.rowcount() = 0 then
this.dw_4.insertrow(0)
this.dw 4.setitem(l, "ssntarget", newSsn)
this dw~4.setItemStatus(l, "ssntarget", PRIMARY!, dataModified!)
this.dw~4.setItemStatus(l, "ssntarget", PRIMARY!, notModified!)

end if

return 0

//PARAMETERS: readonly string formType
//RETURN: int 0 - success
//PURPOSE: Assigns dataWindow objects to dataWindow controls
// depending on the formType
int setw_admin(string formType)

string selectedForm //form type
string permList //list of table permissions
string Bucket //temp
int xx, dwCnt //counters

triggerEvent(closeQuery!)

if (this.title <> formtype) OR (formtype = " Inprocessing ") then

this.title = formtype
selectedForm = upper(left(formtype, 4))

if (fetch ssn AND (selectedForm <> "PT 1") then

xx = messageBoxC'NEXT SOLDIER", &
"Form Pt 2 and Pt 3 are not for new soldiers. ~n" &

+ "Do you wish to create a new record?",&

132

Information!,& YesNo! , 1)

if xx = 2 then
return -1

end if
end if

this.setRedraw(false)

dwCnt = upperBound(this.dwList)

if dwCnt = 0 then
dwCnt = getDwList(this, dwList)

end if

this.dw_l.dataobject = "d_regadminl"

choose case selectedForm

case "PT 1"
this.dw_2.dataobject = "d_admin"
this.dw_3.dataobject = "d_depn"
this.dw_4.dataobject = "d_local"
this.dw_5.dataobject = "d_brk_loc"
this.dw_6.dataobject = "d_bunk"

case "PT 2"
this.dw_2.dataobject = "d_form90"
this.dw_3.dataobject = "d_trgdata"
this.dw_4.dataobject = "d_office"
this.dw_5.reset()
this.dw_6.dataObject = "d_dlpt_hist"

case "PT 3"
this.dw_2.dataobject = "d_reserve"
this.dw_3.dataobject = "d_comp"
this.dw_4.dataobject = "d_sec"
this.dw_5.reset()
this.dw_6.reset()

case else
//messageBox<"INPROCESSING", "Need to specify form.")
this.uo_adminmenu.st_inprocessing.triggerEvent("lbuttonup")
this.setRedraw(true)
return 1

end choose

for xx = 1 to dwCnt
dwList[xx].hide()
dwList[xx].setTransObject(sqlca)

next

//enable/disable SAVE menu based on permissions
setSaveMenu()

133

//find if user can create record for new soldier
permList = space(4)
sqlca.getSUID("admin", sqlca.userlD, permList)

if post permList, "I") > 0 then
this.cb_add.show()

if fetch_ssn = "" then
triggerEvent(this.cb_add, clicked!)
this.setRedraw(true)
return 0

end if
end if

this.setRedraw(true)

Bucket = "Enter/Edit Necessary Information and "&
+ "Select SAVE or Continue to "&
+ "Select Additional Information."

w_frame.setMicroHelp(Bucket)
end if

return 0

8. Using Pipelines for Data Synchronization

PowerBuilder provides a feature, called data pipeline, which makes it possible to

copy records from one or more source tables to a destination table. The destination table

may already exists, or can be automatically created in the destination database at the

time of data transfer. Data source and data destination can reside in the same database,

or be in two separate databases managed by different DBMSs. Data pipes are applied in

MILDB application for synchronization of data between remote local databases and the

central database. There are five basic steps in data pipeline setup and execution:

• Step 1: Building supporting objects.

• Step 2: Connections setup.

• Step 3: Starting the pipeline and monitoring progress.

134

• Step 4: Handling row errors.

• Step 5: Closing pipeline.

a. Building Supporting Objects

To implement a data pipeline, three objects are needed: Pipeline object,

user object hosting the pipeline object, and a window for pipeline logistics.

(1) Pipeline Object

Pipeline object is created by means of PowerBuilder's object

wizard. Pipeline object specifies:

• Source of data (one or more tables or views).

• Data destination (destination table or view).

• Type of piping operation (i.e., create new destination table and populate it

with piped data; or: replace the contents of existing destination table with

piped data; or: update data in destination table using piped data; or: append

the destination table).

• Frequency of commits (indicates how often, after how many piped rows,

should a COMMIT SQL statement be issued).

• Allowable number of errors (indicates number of errors that will be

tolerated before the execution of data piping will be suspended. Error

messages, along with the data, are captured in a dataWindow for further

processing).

• Piping of extended attributes (indicates, whether extended attributes of

the source data items are to be also piped to destination database).

135

Figure 17 shows an example of a pipeline object for piping data from central to

local MILDB database.

|-'.-; Data Pipeline - milstu_to_admin HHB
Table: jadmin Key: jadmin

Key Width [Dec Nulls ! Initial Value 1 .d.

..r1

Options: [Update - Update/Insert R ows MaxErrois

Destination Name

1100

Type

Commit:)1

Source Name (Source Type

pay_code !varchar(2j pay_code VARCHAR r r g F !
pay_grd varchar(2) pay_grd VARCHAR r , r - F 1
pit varchar(2) pit VARCHAR r ? F i
pmos varcharß) pmos VARCHAR r 3 F i
q_dlab smallint q_dlab DOUBLE r : F
qs1 varchar(2) qs1 VARCHAR r 2 F 1 ,-
race varchar(1) race VARCHAR r ■1' F
rank varchar(6) rank VARCHAR r 6 F i.
rmksl varchar(20) rmksl VARCHAR r 2q F j ■■-...
service varchar(l) service VARCHAR r- ii W I
sex ivarcharfl) jsex VARCHAR r . ' "1! F i
sm_status varcharfl) Ism.status VARCHAR r 1 F !
sqd varchar(2J jsqd VARCHAR r Z F ■ 1
ssn varchar(S) issn VARCHAR F 9 F i
ult_mos varchar(S) ultjinos VARCHAR- r s F ;
unit varchar(1) unit VARCHAR r II F 1
q_age real q_age DOUBLE r F I
d_tran datetime d_tran DATETIME r F !
n_user varchar(8) n user VARCHAR r 8 F ;
placeofbirth varchai(30) placeofbirth VARCHAR r 3Q F !

±u
* i !' ' i Ji

Figure 17. Pipeline Object milstu_to_admin

(2) Supporting User Object

Pipeline object is similar to dataWindow object. It contains

selection of columns from both the source and destination tables, but the object has no

properties, events, or functions. To acquire these, the pipeline object needs a host

object. PowerBuilder provides for this purpose a special pipeline system object, which

contains properties, events, and functions needed for pipeline operations.

136

Pipeline properties include:

• Data Object (name of pipeline object).

• RowsRead (cumulative number of rows read since the pipeline started).

• RowsWritten (cumulative number of rows written to destination table).

• RowslnError (number of rows rejected by the destination database).

Pipeline events include:

• PipeStart (triggered when pipeline starts).

• PipeMeter (triggered after every COMMIT command).

• PipeEnd (triggered when pipeline finishes execution, or is stopped).

Pipeline functions include:

• Start (starts the pipeline).

• Repair (attempts to write corrected, previously rejected, rows to

the destination database).

• Cancel (cancels pipeline execution).

The following code shows scripts from non-visual object o_synchro_pipe:

137

//USER OBJECT 0_SYNCHRO_PIPE

//INSTANCE VARIABLES
staticText statusRead, statusWritten, statusError //for pipe status
data
staticText flowAnimation //for pipe flow animation

string arrowText //text of flowAnimation
boolean toLeft //indicator of direction of animation
char arrowChar // char '<' or '>' for anim

//EVENT PIPESTART
arrowtext = flowAnimation.text

//set the char to be added to arrowtext to achieve animation effect
if pos(arrowtext, "<") > 0 then

toLeft = true
arrowChar = "<"

else
toLeft = false
arrowChar = ">"

end if

//EVENT PIPEMETER
statusRead.text = string(rowsRead)
statusWritten.text = string(rowsWritten)
statusError.text = "Rows in error~r" + string(rowsInError)

long posOut //position of char to be removed from arrowText

char charln //adds char to pipe movement animation

if rowsInError = 100 then
messageBox("DATA PIPE", "100 rows have one or more data items "&

+ "that were rejected "&
+ "by destination database. ~n~n"&
+ "Click 'Apply Known Fixes' and 'Continue', "&
+ "or correct the errors "&
+ "manually and click 'Continue'.")

end if

//to create animation effect of moving errows:
//at given interval of rowsWritten add space or ">" at one end of
string
//and remove one char at the other end
if rowsRead = rowsWritten then

if mod(rowsWritten, 4) = 0 then
charln = arrowChar

else
charln = " "

end if

138

if toLeft = true then
arrowText = arrowText + charln
posOut = 1

else
arrowText = charln + arrowText
posOut = len(arrowText)

end if

arrowText = replace(arrowText, posOut, 1, "'
end if

flowAnimation.text = arrowText

(3) Window

Window that will provide logistics for a pipeline needs to contain

the following objects:

• DataWindow control (pipeline will insert into this dataWindow any row in

error. Later, these rows can be corrected and an attempt can be made to

write them to the destination database by calling a function repair()).

• Optional command buttons for pipeline start, repair, or cancel.

• Optional text field for displaying the number of rows read, written, and rows

in error.

• Other optional controls, informing the user about the pipeline progress, such

as direction of data flow, etc.

The pipeline window in MILDB application provides numerous features that allow

a successful execution data synchronization even by an occasional user, such as:

• Visual selection of data source and destination.

• Visual selection of source tables to be synchronized.

139

Animated indicator of data flow.

Pipeline start/stop button.

Display of the number of rows read, written, and in error.

Button for applying fixes of the most common data errors.

Button for resuming the pipeline operation after applying the fixes.

Button for suspension of pipeline operation.

Figure 18 shows the design of a window supporting pipeline operation.

: COMPANY A DATABASE
File Folder Window Help

FROM
Local r~f1 >>>>>>>>
MILDB ff Jjg^J

TO
Central
C MILDB

Rows Read Start
RowsWHtten

Apply Known Fixes j Continue

F ADMIN
FAPFT
r"ART15
TAWOL
l~ BAR
F CST/CST
T CHAPTER
[""..DEPEND
r DLPT
r FAM CARE

r FLAG r PROFILE
F FORM 90 TREPR
riSSR r TRAINING
F jLOCATIONl r WEIGHT
F LPTH rWPNTRN
F TRN PLAN
r MAN TRN ■
f" OFFICE
r PREGNANCY
r PERM PARTY

Figure 18. Window w_pipe

140

b. Connections Setup

In order to prepare the window for pipeline execution, the following tasks

need to be accomplished:

• Establish connection with the source and destination database:

//transaction object for source DATABASSE

transaction sourceConnection

sourceConnection = CREATE transaction

//transaction object for destination database

transaction destinationConnection

destinationConnection = CREATE transaction

//ODBC connection setup

sourceConnectString = "ConnectString='DSN=MILX';

destConnectString = "ConnectString='DSN=milstu'

//connect to databases

CONNECT using sourceConnection;

CONNECT using destinationConnection;

Instantiate the host user object:

//pipe user object
o_synchro_pipe pipeLogistics

pipeLogistics = CREATE o_synchro_pipe

141

Assign the pipeline object:

pipeLogistics.dataObject = <pipeObjectName>

c. Starting Pipeline and Monitoring Progress

The basic syntax for starting the pipeline execution is:

<[int] return code> = <pipeline userObject> . Start(<source Trans. Object>, &

«destination Trans. Object> , &

<name of dataWindow for storing errors>)

The return code indicates successful start of pipeline, or possible causes of

failure. The following code shows scripts for database connections, setup of the pipeline,

and starting the pipeline, contained in window w_pipe:

//***WINDOW W_PIPE

//INSTANCE VARIABLES
transaction sourceConnection

transaction destinationConnection

o_synchro_pipe pipeLogistics

checkBox taskBoxList[]

boolean hideHelp

//transaction object
//for source DATABASE

//transaction object
//for destination database

//pipe user object

//array of controlBoxes

//hide help true/false

142

//WINDOW EVENTS

//WINDOW OPEN EVENT

//Local variables
int xx, yy //step counters

disconnect;

sourceConnection = CREATE transaction
destinationConnection = CREATE transaction

//instantiate pipe object for pipe logistics
pipeLogistics = CREATE o_synchro_pipe

//link window status text objects with text object of pipeLogistics
pipeLogistics.statusRead = st_rowsread
pipeLogistics.statusWritten = st_rowswritten
pipeLogistics.statusError - st_rowsinerror
pipeLogistics.flowAnimation = st_pipeFlow

//initialize list of checkBoxes
yy = 1
for xx = 1 to upperBound(this.control[])

if this.control[xx].typeOf() = checkBox! then
taskBoxList[yy] = this.control[xx]
yy+ +

end if
next

//EVENT MOUSEMOVE
if hideHelp = true then

st_start.hide()
st_fix.hide()
st_continue.hide()
st_ignore.hide()
hideHelp = false

end if

//WINDOW FUNCTIONS

//PARAMETERS: string boxTxt - text label of checkBox control
//RETURN: boolean true/false
//PURPOSE: Indicates whether checkBox is checked
isChecked(string boxTxt)

int xx //counter

for xx = 1 to upperBound(taskBoxList[])
if lower(taskBoxList[xx].text) = lower(boxTxt) then

143

if taskBoxList[xx].checked = true then
return TRUE

else
xx = 1000

end if
end if

next

return FALSE

//EVENTS OF CONTROLS

//BUTTON cb_start
//CLICKED EVENT

string sourceDsn, destDsn
string sourceConnectString, destConnectString
string pipeObjectName
string pipeList[]
string Bucket

int xx
int startFlag

long currRow, maxRow
long posX

pipeList = { "admin", "apft","artl5", "awol", "bar", "cc_trng",&
"chap", "depn", "dipt", "fcare", "flag", "form90",&
"issr", "loc", "lpth", "lrt_plan", "m_trng","office",&
"preg", "prm_prty", "prof", "repr", "trng", "wc",&
"wpn"}

//data source names
//connection strings
//name of pipe object
//array of pipes
//temp

//step counter
//pipe start flag

if this.text = "Start" then

if rb_milx.checked = true then

//data transfer from MILX to MILSTU
sourceDsn = "MILX"
destDsn = "MILSTU"

sourceConnectString = "ConnectString='DSN=MILX'; "&
+ "Time=' ''''hh:mm:ss:'''' ';"&
+ "delimitidentifier='NO';"&
+ " MsgTerse='Yes'"

destConnectString = "ConnectString='DSN=milstu'; "&
+ " MsgTerse='Yes'"

else
//data transfer from MILSTU to MILX

144

sourceDsn = "MILSTU"
destDsn = "MILX"

sourceConnectString = "ConnectString='DSN=milstu';"&
+ " MsgTerse='Yes'"

destConnectString = "ConnectString='DSN=MILX'; "&
+ "Time=' ' ' "hhimmiss:'1*" ';"(
+ "delimitidentifier='NO';"&
+ " MsgTerse='Yes'"

end if

//set properties of transaction objects
sourceConnection.dbms = "ODBC"
destinationConnection.dbms = "ODBC"

sourceConnection.dbParm = sourceConnectString
destinationConnection.dbParm = destConnectString

//// Profile milstu_native
//SQLCA.DBMS = "MSS MS Microsoft SQL Server 6.x"
//SQLCA.Database = "mildb"
//SQLCA.LogPass = "mil"
//SQLCA.ServerName = "pomdb"
//SQLCA.Logld = "mil"
//SQLCA.AutoCommit = False
//SQLCA.DBParm = ""

//connect to source and destination databases
disconnect;
CONNECT USING sourceConnection;

if sourceConnection.sqlcode < 0 then
messageBoxf"DATABASE CONNECT","Could not connect to "&

+ sourceDsn + ".", exclamation!)
return

end if

CONNECT USING destinationConnection;

if destinationConnection.sqlcode < 0 then
messageBox("DATABASE CONNECT","Could not connect to "&

+ destDsn + ".", exclamation!)
DISCONNECT USING sourceConnection;
return

end if

this.text = "Stop"

//set pipe object
for xx = 1 to upperBound(pipeList[])

//check if table to pipe selected
if isChecked(pipeList[xx]) = true then

145

//get pipe object name
if rb_milx.checked = true then

if pipeList[xx] = "dipt" then
continue

else
pipeObjectName = "milx_to_" + pipeListfxx]

end if
else

pipeObjectName = "milstu_to_" + pipeList[xx]
end if

pipeLogistics.dataObject = pipeObjectName

//***start pipe
startFlag = pipeLogistics.Start(sourceConnection, &

destinationConnection, dw_pipe_errors, Company)

Bucket = ""

choose case startFlag
case -1

Bucket = "Pipe open failed."

case -5
Bucket = "Missing connection."

case -15
Bucket = "Pipe already in progres."

case -16
Bucket = "Error in source database."

case -17
Bucket = "Error in destination database."

end choose

if Bucket <> "" then
messageBox("PIPE ERROR", Buckets

+ "~n~nOperation halted.", exclamation!)
return

end if
end if

maxRow = dw_pipe_errors.rowCount()

if maxRow > 0 then
for currRow = 1 to maxRow

Bucket = dw_pipe_errors.getItemString(currRow, 1)
posX = pos(Bucket, ":")

if posX > 0 then
Bucket = mid(Bucket, posX + 1)
dw_pipe_errors.setltemf currRow, 1, Bucket)

end if

146

next
end if

next

DISCONNECT USING sourceConnection;
DISCONNECT USING destinationConnection;

this.text = "Start"

else
//call the Cancel function of pipe object
if pipeLogistics.Cancel() = 1 then

Beep(l)
this.text = "Start"

else
messageBox("PIPE ERROR", "Error while trying to stop data

transfer.", exclamation!)
end if

end if

//EVENT MOUSEMOVE
if this.text = "Start" then

st_start.text = "Start piping data from selected tables"
else

st_start.text = "Stop piping data"
end if
st_start.show()
hideHelp = true

//RADIO BUTTON rb_milx
//EVENT CLICKED
st_milx.text = "FROM-rLocal"
st_milstu.text = "TO~rCentral"
st_pipeFlow.rightToLeft = false
st_pipeFlow.text = " > > >
st_milxrows.text = "Rows Read"
st_milstuRows.text = "Rows Written"
st_rowsread.text = ""
st_rowswritten.text = ""
st_rowsinerror.text = ""
st_rowsread.X = st_milxrows.X
st_rowswritten.X = st_milstuRows.X

dw_pipe_errors.reset()

//RADIO BUTTON rb STU

147

//EVENT CLICKED
stjnilx.text = "TO~rLocal"
stjnilstu.text = "FROM-rCentral"
st_pipeFlow.rightToLeft = true
st_pipeFlow.text = "< < <
st_milxrows.text = "Rows Written"
st_milstuRows.text = "Rows Read"
st_rowsread.text = ""
st_rowswritten.text = ""
st_rowsinerror.text = ""
st_rowsread.X = st_milstuRows.X
st_rowswritten.X = st_milxrows.X

dw_pipe_errors.reset()

//BUTTON cb_continue
//CLICKED EVENT
if pipeLogistics.repair(destinationConnection) <> 1 then

messageBox("PIPE ERROR", "Error when trying to apply"&
+ " fixes.~n~n"&
+ "Check you data or choose to ignore rows "&
+ with errors.",&
exclamation!)

end if

//EVENT MOUSEMOVE
st_continue.show()
hideHelp = true

//BUTTON cb_ignore
//CLICKED EVENT
dw_pipe_errors.reset()

if pipeLogistics.repair(destinationConnection) <> 1 then
messageBox("PIPE ERROR", "Error when trying to apply fixes.",&

exclamation!)
end if

//EVENT MOUSEMOVE
st_ignore.show()
hideHelp = true

148

d. Handling Row Errors

When a pipeline is unable to write particular rows to the destination table

due to some errors (i.e., violation of the primary key, violation of referential integrity,

etc.), these rows are inserted into the pipeline error dataWindow. When the number of

rows in error reaches the maximum indicated in the pipeline object, execution of data

piping is suspended. The user has an option to discard rows in error and resume the

pipeline operation, or correct the data and attempt to write them to the destination

database by calling the function:

Repair(destination trans. object>)

Before the pipeline can resume its normal operation, repaired rows that were

written to the destination database have to be committed by statement

COMMIT using destination trans. object>;

e. Closing Pipeline

When the data transfer is concluded, there is no need to explicitly destroy

objects that were dynamically created in preparation for pipeline execution.

PowerBuilder's garbage collection mechanism will remove these objects automatically

after they seize to be referenced in scripts. Good programming practice still calls for

disconnecting the application from both the source and destination database, using

commands:

DISCONNECT using <source trans. object>;

DISCONNECT using «destination trans. object>;

149

9. Running the MILDB Application

When a user starts the MILDB application, he/she is challenged by the database

authentication procedure. After passing the authentication test, a window frame with the

main menu bar opens. The user can choose from three major areas of operation listed in

the Folder menu:

• Administrative (represented by a 'pencil' icon on the menu bar).

• Physical Training & Weight Control (represented by a 'running man' icon on

the menu bar).

• Dormitory Room Assignment (represented by a 'building' icon on the menu

bar).

Each selection opens a separate window which is a gateway to these distinct

areas of operation. The Administrative part of the application serves for creating new

student record, and for viewing and editing student biographical and administrative data.

The Physical Training & Weight Control part of the application allows to create, edit, and

query data related to physical training and weight control. The Dormitory Room

Assignment portion of the application provides an interface for assigning students to

dormitory rooms. Whenever a selection of a person from a list of personnel is needed

before any data can be retrieved, the Locator appears automatically on the screen. By

clicking a name of a person, retrieval and display of data is triggered. Anytime the type

of a report needs to be determined before data can be retrieved, a popup menu prompts

the user for selection from a list of reports and forms.

150

User can see only names and records that he/she is authorized to access.

Records can be edited by clicking on selected data item and typing new value.

Navigation between fields can be achieved by pressing the TAB or ENTER key. Saving

the data can be triggered by clicking the 'Save' icon in menu bar, or by selecting 'Save'

from the main menu. The 'Save' feature is automatically enabled/disabled, depending on

user's privileges. Displayed data can be sent to a printer, or exported to a text file. Both

features are available in the File menu on the main menu.

Global users, who have access to data from more than one Unit, see slightly

modified main menu with added capabilities. Their menu contains an icon for every Unit

in the database. Global user can freely switch from one Unit to another. After each

switch, names in the Locator are automatically replaced by names from selected Unit.

The MILDB application, in its final version, is a multifaceted application with a

wealth of features. It has been noted, however, that by organizing the application's

interface into logical groups, and by providing visual guidance and clues to users during

each action, it is easy to use. Generally, only about 20 minute briefing is need for a new

user to become proficient in using all major features of MILDB.

151

THIS PAGE INTENTIONALLY LEFT BLANK

152

VI. CONCLUSION

Implementation of a two-tier client/server model, proposed in this thesis, provides

only an interim solution. Growing demands for data exchange will soon command

implementation of a new, fault-tolerant system that will provide faster response and

easier, yet secure, access to information. Next research should, therefore, focus on the

development of a client/server model that will be built on an open systems foundation

and will meet these demands, allowing to integrate new client/server software systems

and various middleware and application standards as they emerge. The resulting

client/server model should ensure continuous systems' interoperability, scalability, and

portability in the heterogeneous computing environment at the Presidio of Monterey.

153

THIS PAGE INTENTIONALLY LEFT BLANK

154

BIBLIOGRAPHY

1. Harrington, Jan L, Relational Database Management for Microcomputers:
Design and Implementation, Holt, Rinehart and Winston, Inc., 1988.

2. Stonebreaker, Michael, Object-Relational DBMSs: The next Name,
Morgan Kaufmann Publishing, Inc., 1996.

3. Elmasri, R., Navathe, S., Fundamentals of database Systems,
The Benjamnin/Cummings Publishing Company, Inc., 1994.

4. Gruber, Martin, Understanding SQL, Sybex, 1990.

5. Celko's, Joe, SQL for Smarties: Enhanced SQL Programming,
Morgan Kaufmann Publishers, Inc., 1995.

6. Wille, Christoph, et. al., MCSE SQL Server 7 Administration,
New Riders Publishing, 1999.

7. Microsoft, SQL Server 7.0 System Administration Training, Microsoft Press, 1999.

8. Otey, Michael, Conte, Paul, SQL Server 7 Developer's Guide,
Osborne McGraw Hill, 1999.

9. Jennings, Roger, Using Access 97, Que, 1997.

10. Gourgani, Kouros, Enterprise Components and PowerBuilder 7,
The Romo Technology Group, 1999.

11. Rennhackkamp, Martin, An Analysis of the Strengths and Weaknesses
of the Big Six Database Servers, DBMS Online,
http://www.dbmsmag.com/9611 d52.html, 1996.

12. Gupta, Gopal, The relational Data Model,
http://www.cs.jcu.edu.au/ftp/web/teaching/Subjects/cp3020/1997/Lecture_Notes/rel
ational_Model, 1996.

13. Sybase, Installation Guide, Sybase, 1999.

14. Sybase, Building Internet and Enterprise Applications, Sybase, 1999.

155

THIS PAGE INTENTIONALLY LEFT BLANK

156

APPENDIX A

Documentation of MILDB Database schema includes:

• ADM IN BASE table with reference tables

• Tables depending on ADMINBASE

• Reference tables

• Views

157

Table ADMINBASE with Reference Tables:

158

Tables depending on ADMINBASE:

päotKjss^
d_disch
djag_appt
d_mental
d_physical
d_read_ch
tmks
ssn
type
djran
n user

. d.dlpt
läng
q_dipt_
q_dlpt_'
q_dlpt_s
q_list_M
q_read_lvl
q_spk_lv!

zl

a15_jag_ap
a15 type
d_a15
d_tead_a15
offense
punish
ssn
djran
n user
id

lliälilll
numb_cM
n_spouse

^J

rmks
d_(ran
n_user

iwj9t|MSgll *■
yrs_svc
educjvl
motivate
prrjang
prr_lang2
prr_lang3
natv_eng
natv_oth
prr_prof
prr_prof2
prf_pro(3
prf_expr
pri_expr2
prr_expr3

: ssn

M

159

Tables depending on ADMINBASE (continued):

160

MILDB Reference Tables:

;atli_cat"- ■
 attrcode

descr

i

. age_cat
max_b(

. sex
d_tian
n user

. age_cat

.. ht
max_wt

■ sex
d_tran ■
nuser

\M

dscr
taskjium
task_no
djran
n_uset
lineid.

MM
code
xx
descr
d_t(an
n user

abdojact
— abdo_meas

d_tran
n usei

hip_fact
— hip_meas

d_iTan
n_uset
lineid

d_a_insp1

13 ̂ 1
"WHajCI^ iilllllll
dscr

- task_no
trng_intrv
d_lran

 code
XX

descr
djran

n_user n_user

161

MILDB Reference Tables (continued):

age_cat
reps
score
sex
djran
n_uset
lineid

g 1
. age_cat

score
-sex
- tjime

djran
n user

qname
selecttext

. tyme
m17 21
f!7 21
m22 26
f22 26
m27 31
f27_31
m32 36
f32_36
rr>37 41
f37 41
m42 46
f42_46
m47 51
f47_51
m52_56 :.
152 56
m57_61
f57 61
m62
f62

age_cat
reps
score

■ ■ sex
d_tran
n_user

111
. reps

mf17 21
mf22 26
mf27 31
mf32 36::
mf37~41
mf42_46
mf47 51
mf52_56
mf57 61
mf62

n_user
unit

wpnjjjpe
lo_score
hi_score

 qualjvl
djran
n_user
lineid

I— tgUype

S^S_d
„reps' ■;:■'■-.

m17 21
f17 21 .
m22 26 ■—•
f22 26
m27 31
127 31
m32 36
f32 36 ^j

qname
displajiseq
coltext
qtable >:
qcolumn
retrieveseq

m
«"-c-jyy.-.—
pay_grd

- rank ■■:::
service
paji_code
d_tran
n_user
lineid

162

MILDB Views:

m
basd
bped
branch
class
comp
dob
d_artival
d depart
d.dlab
d_tank
d_unil
els
fcj
lic_2
mar_stat
mealcard
n_student
pay_code
pay grd
pit
pmos
q_dlab
qsl
race
rank
rmksl
service
sex
srrv_status
sqd
ssn
ultjnos
unit
q_age
d_tran
n user d

alt_event
alt_scr
apft type
d_apft
pu_reps
pu_scr
run_scr
iun_tm
ssn
su_reps
su_scr
d_Tran
nuser

Vcjrng-.;-*- ":;
d_tested
score
ssn
task_no
djran
n_user
lineid
task num

llag_type
d flag
«Lilted
reason
ssn
djran
n_user
lineid

a15Jag_ap
a15 type
d_a15
d_read_a15
offense
punish
ssn
djran
n_user d

chap-• 1"
d disch
djag_appt
d mental
d_physical
d read ch
rmks
ssn 1
type
djran d

fandQ...,^ ■«.
yrs_svc
educjvl
motivate
prrjang
prr_lang2
prr_lang3
natv_eng
natv_oth
prr_ptof d

awol_rmks
awol_spers
d_awol
not_awdlap
ssn
djran
n_user ;,!

archive
class
d_start
d_stop
in_stat
curr_stat
out_stat
Q_gpa
reason d

i)jf "
d bar
dlft
d_review
reason
ssn
djran
n_user

d

d.dlpt
lang
a_dlpt_l
q_dtpt_r
q_dlpt s
qjstjvl
qjeadjvl
q_spkjvl
ssn

t**.*G#i

d

a_sqft
Udg
bunk
rm
ssn
djran
n_user
company

i??i-;j.i.: $$SM
d_comp
d couns
d_due_updt
d_susp
fc_rmks
ssn
d tran
n_user

mm
d_train
ssn
task_no
d_tran
nuser

'.n^

mm
d_begin
d_end
ssn
tyme
type
gpa
djran
n_user

dty_phon
ofc
ssn
djran
n_user
lineid

apft_scr
apftjype
alt_event .
auth wt
d apft
ding
d_nbc
d nxt_sqt
d_sqt d

n_student
rank
ssn
u_code
L«fey
djran
n_user
lineid

n_user
unit
pit

ssn
title
tda_pos
unit
rmks
lineid

fp—C^ ■',■■'..■■ ^.
abdo
abdoneck
a bf
bf
d_wägh
fore
hip
ht
neck ^i

ssn
wpnjype
wpn_scr
wpnjvl
tgtjype
d_wpn
nght_scr
nght_go
d_nghl d

163

THIS PAGE INTENTIONALLY LEFT BLANK

164

APPENDIX B

Documentation of MILDB table and view definition includes:

• Definition of table ADMINBASE

• Definition of tables referenced by ADMINBASE

• Definition of views

• Definition of stored procedures

165

CREATE TABLE [mil] . [CLASS] (
[I_SITE] [varchar] (3) NULL ,
[C_LVL] [varchar] (2) NULL ,
[C_LANG] [varchar] (2) NULL ,
[I_WKS] [varchar] (2) NULL ,
[C_LOC] [varchar] (1) NULL ,
[I_ITER] [varchar] (3) NULL ,
[I_FY] [varchar] (2) NULL ,
[C_CLASS] [varchar] (12) NOT NULL
[DJDPEN] [datetime] NULL ,
[D_CLOSE] [datetime] NULL ,
[D_GRAD] [datetime] NULL ,
[D_RPT] [datetime] NULL ,
[Q_ORIG_SCH] [float] NULL ,
[Q_CURR_SCH] [float] NULL ,
[C_DIR] [varchar] (3) NULL ,
[C_FLAG] [varchar] (1) NULL ,
[D_LOG] [datetime] NULL ,
[N_USER] [varchar] (8) NULL ,
[F_CQMS] [varchar] (1) NULL ,
[staarchive] [varchar] (1) NULL

GO

CREATE TABLE [mil].[unit_auth] (
[n_user] [varchar] (8) NOT NULL
[unit] [varchar] (1) NOT NULL ,
[pit] [varchar] (1) NOT NULL

) ON [PRIMARY]
GO

CREATE TABLE [mil] . [ARMYCOMP] (
[COMP] [varchar] (3) NOT NULL ,
[XX] [varchar] (2) NULL ,
[E_COMP] [varchar] (45) NULL ,
[D_TRAN] [datetime] NULL ,
[N_USER] [varchar] (8) NULL ,
[lineid] [numeric](18, 0) NULL

GO

CREATE TABLE [mil] . [ARMYUNIT] (
[UNIT] [varchar] (1) NOT NULL ,
[XX] [varchar] (2) NULL ,
[N_UNIT] [varchar] (30) NULL ,
[D_TRAN] [datetime] NULL ,
[NJJSER] [varchar] (8) NULL ,
[lineid] [numeric](18, 0) NULL

)
GO

166

CREATE TABLE [mil]. [M_STAT] (
[MAR_STAT] [varchar] (1) NOT NULL
[XX] [varchar] (2) NULL ,
[MS_DESC] [varchar] (22) NULL ,
[D_TRAN] [datetime] NULL ,
[N USER] [varchar] (8) NULL

GO

CREATE TABLE [mil].[QUOTA] (
[QS1] [varchar] (2) NOT NULL
[QS2] [varchar] (2) NULL ,
[XX] [varchar] (2) NULL ,
[QUOTA] [varchar] (45) NULL ,
[DJTRAN] [datetime] NULL ,
[NJJSER] [varchar] (8) NULL

)
GO

CREATE TABLE [mil].[RACE] (
[RACE_CODE] [varchar] (1) NOT NULL
[XX] [varchar] (2) NULL ,
[RACE] [varchar] (10) NULL ,
[D_TRAN] [datetime] NULL ,
[N_USER] [varchar] (8) NULL

)
GO

CREATE TABLE [mil].[SERVICE] (
[SERVICE] [varchar] (1) NOT NULL
[N_SERV] [varchar] (20) NULL ,
[SERV_ABBR] [varchar] (4) NULL ,
[D_TRAN] [datetime] NULL ,
[NJJSER] [varchar] (8) NULL

)
GO

CREATE TABLE [mil].[SM_STAT] (
[SM_STATUS] [varchar] (1) NOT NULL
[XX] [varchar] (2) NULL ,
[SM_STAT_DE] [varchar] (21) NULL ,
[D_TRAN] [datetime] NULL ,
[N_USER] [varchar] (8) NULL

)
GO

CREATE TABLE [mil].[ADMINBASE] (
[BASD] [datetime] NULL ,

167

)
GO

BPED] [datetime] NULL ,
BRANCH] [varchar] (2) NULL ,
CLASS] [varchar] (12) NULL ,
COMP] [varchar] (3) NULL ,
DOB] [datetime] NULL ,
D_ARRIVAL] [datetime] NULL ,
D_DEPART] [datetime] NULL ,
D_DLAB] [datetime] NULL ,
D_RANK] [datetime] NULL ,
D_UNIT] [datetime] NULL ,
ETS] [datetime] NULL ,
LIC_1] [varchar] (2) NULL ,
LIC_2] [varchar] (2) NULL ,
MAR_STAT] [varchar] (1) NULL ,
MEALCARD] [varchar] (9) NULL ,
N_STUDENT] [varchar] (27) NULL ,
PAY_CODE] [varchar] (2) NULL ,
PAY_GRD] [varchar] (2) NULL ,
PLT] [varchar] (2) NOT NULL ,
PMOS] [varchar] (9) NULL ,
Q_DLAB] [smallint] NULL ,
QS1] [varchar] (2) NULL ,
RACE] [varchar] (1) NULL ,
RANK] [varchar] (6) NULL ,
RMKS1] [varchar] (20) NULL ,
SERVICE] [varchar] (1) NULL ,
SEX] [varchar] (1) NULL ,
SM_STATUS] [varchar] (1) NULL ,
SQD] [varchar] (2) NULL ,
SSN] [varchar] (9) NOT NULL ,
ULT_MOS] [varchar] (9) NULL ,
UNIT] [varchar] (1) NULL ,
Q_AGE] [real] NULL ,
D_TRAN] [datetime] NULL ,
NJJSER] [varchar] (8) NULL ,
PlaceOfBirth] [varchar] (30) NULL ,
d_ArrvOnPost] [datetime] NULL ,
t_ArrvOnPost] [datetime] NULL ,
d_EstArrv] [datetime] NULL ,
UnitDepart] [varchar] (40) NULL ,
InterimBillet] [varchar] (255) NULL
LangToStudy] [varchar] (40) NULL ,
Inprocessed] [varchar] (1) NULL ,
n user_arrv] [varchar] (16) NULL ,
d_tran_arrv] [datetime] NULL ,
rec stat] [varchar] (1) NULL

ALTER TABLE [mil].[CLASS] WITH NOCHECK ADD
CONSTRAINT [PK_CLASS] PRIMARY KEY CLUSTERED

(
[C CLASS]

168

) ON [PRIMARY]
GO

ALTER TABLE [mil] . [ARMYCOMP] WITH NOCHECK ADD
CONSTRAINT [PK_ARMYCOMP] PRIMARY KEY CLUSTERED
(

[COMP]
) ON [PRIMARY]

GO

ALTER TABLE [mil] . [ARMTUNIT] WITH NOCHECK ADD
CONSTRAINT [PK_ARMYUNIT] PRIMARY KEY CLUSTERED
(

[UNIT]
) ON [PRIMARY]

GO

ALTER TABLE [mil] . [M_STAT] WITH NOCHECK ADD
CONSTRAINT [PK_M_STAT] PRIMARY KEY CLUSTERED
(

[MAR_STAT]
) ON [PRIMARY]

GO

ALTER TABLE [mil] . [QUOTA] WITH NOCHECK ADD
CONSTRAINT [PK_QUOTA] PRIMARY KEY CLUSTERED
(

[QS1]
) ON [PRIMARY]

GO

ALTER TABLE [mil] . [RACE] WITH NOCHECK ADD
CONSTRAINT [PK_RACE] PRIMARY KEY CLUSTERED
{

[RACE_CODE]
) ON [PRIMARY]

GO

ALTER TABLE [mil].[SERVICE] WITH NOCHECK ADD
CONSTRAINT [PK_SERVICE] PRIMARY KEY CLUSTERED
(

[SERVICE]
) ON [PRIMARY]

GO

ALTER TABLE [mil] . [SM_STAT] WITH NOCHECK ADD
' CONSTRAINT [PK SM STAT] PRIMARY KEY CLUSTERED

169

(
[SM_STATUS]

) ON [PRIMARY]
GO

ALTER TABLE [mil] . [ADMINBASE] WITH NOCHECK ADD
CONSTRAINT [PK_ADMINBASE] PRIMARY KEY CLUSTERED
(

[SSN]
) ON [PRIMARY]

GO

ALTER TABLE [mil].[ADMINBASE] WITH NOCHECK ADD
CONSTRAINT [DF_ADMINBASE_PLT] DEFAULT (' ') FOR [PLT],
CONSTRAINT [DF_ADMINBASE_D_TRAN_1 14] DEFAULT (getdateO) FOR

[D_TRAN],
CONSTRAINT [DF_ADMINBASE_N_USER_2 14] DEFAULT (user_name(null)) FOR

[N_USER],
CONSTRAINT [DF_ADMINBASE_rec_stat_3 14] DEFAULT ('A') FOR

[rec_stat]
GO

CREATE INDEX [i_unitplt] ON [mil].[unit_auth]([unit], [pit]) ON
[PRIMARY]
GO

CREATE INDEX [i_unitplt] ON [mil] . [ADMINBASE] ([UNIT] , [PLT]) ON
[PRIMARY]
GO

ALTER TABLE [mil] . [ADMINBASE] ADD
CONSTRAINT [FK_ADMINBAS_REF_1672_CLASS] FOREIGN KEY
(

[CLASS]
) REFERENCES [mil].[CLASS] (

[C_CLASS]
),
CONSTRAINT [FK_ADMINBAS_REF_1675_ARMYUNIT] FOREIGN KEY

(
[UNIT]

) REFERENCES [mil].[ARMYUNIT] (
[UNIT]

),
CONSTRAINT [FK_ADMINBAS_REF_1678_ARMYCOMP] FOREIGN KEY

(
[COMP]

) REFERENCES [mil].[ARMYCOMP] (
[COMP]

170

CONSTRAINT [FK ADMINBAS REF 1691 QUOTA] FOREIGN KEY

[QS1]
REFERENCES [mil].[QUOTA] (
[QS1]

CONSTRAINT [FK_ADMINBAS_REF_1694_SERVICE] FOREIGN KEY

[SERVICE]
REFERENCES [mil].[SERVICE] (
[SERVICE]

CONSTRAINT [FK_ADMINBAS_REF_1697_RACE] FOREIGN KEY

[RACE] '
REFERENCES [mil].[RACE] (
[RACE_CODE]

CONSTRAINT [FK_ADMINBAS_REF_1700_M_STAT] FOREIGN KEY

[MAR_STAT]
REFERENCES [mil].[M_STAT] (
[MAR_STAT]

CONSTRAINT [FK_ADMINBAS_REF_54 7 0_SM_STAT] FOREIGN KEY

[SM_STATUS]
REFERENCES [mil].[SM_STAT] (
[SM STATUS]

GO

CREATE VIEW mil.ADMIN AS

SELECT BASD, BPED, BRANCH, CLASS, COMP, DOB, D_ARRIVAL,
D_DEPART, D_DLAB, D_RANK, D_UNIT, ETS, LIC_1, LIC_2,
MAR_STAT,' MEALCARD, N_STUDENT,.PAY_CODE, PAY_GRD,
PLT, PMOS, Q_DLAB, QS1, RACE, RANK, RMKS1, SERVICE,
SEX, SM_STATUS, SQD, SSN, ULT_MOS, UNIT, Q_AGE,
D_TRAN, N_USER, rec_stat, PlaceOfBirth

FROM mil.ADMINBASE
WHERE EXISTS

(SELECT *
FROM mil.unit_auth u
WHERE mil.ADMINBASE.unit + mil.ADMINBASE.pit LIKE u.unit

+ u.plt AND u.n_USER = USER)

CREATE VIEW mil.admin_milx AS
SELECT mil.ADMINBASE.basd,

171

mil.ADMINBASE.bped,
mil.ADMINBASE.branch,
mil.ADMINBASE.class,
mil.ADMINBASE.comp,
mil.ADMINBASE.dob,
mil.ADMINBASE.d_arrival,
mil.ADMINBASE.d_depart,
mil.ADMINBASE.d_dlab,
mil.ADMINBASE.d_rank,
mil.ADMINBASE.d_unit,
mil.ADMINBASE . ets,
mil.ADMINBASE.lic_l,
mil.ADMINBASE.lic_2,
mil.ADMINBASE.mar_stat,
mil.ADMINBASE.mealcard,
mil.ADMINBASE.n_student,
mil.ADMINBASE.pay_code,
mil.ADMINBASE.pay_grd,
mil.ADMINBASE.pit,
mil.ADMINBASE.pmos,
mil.ADMINBASE.q_dlab,
mil.ADMINBASE.qsl,
mil.ADMINBASE.race,
mil.ADMINBASE.rank,
mil.ADMINBASE.rmks1,
mil.ADMINBASE.service,
mil.ADMINBASE.sex,
mil.ADMINBASE.sm_status,
mil.ADMINBASE.sqd,
mil.ADMINBASE.ssn,
mil.ADMINBASE.ult_mos,
mil.ADMINBASE.unit,
mil.ADMINBASE.q_age,
mil.ADMINBASE.d_tran,
mil.ADMINBASE.n_USER,
mil.adminbase.placeofbirth,
mil.ADMINBASE.rec_stat

FROM mil.ADMINBASE
WHERE EXISTS (SELECT * FROM mil.unit_auth u

WHERE mil.ADMINBASE.unit+mil.ADMINBASE.pit
LIKE u.unit+u.plt AND u.n_USER = USER)

CREATE VIEW mil. apf t AS
SELECT *

FROM MIL.apftbase
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE MIL.APFTBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.ART 15 AS

172

SELECT *
FROM MIL.ART15BASE ART15BASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE ART15BASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.AWOL AS
SELECT *

FROM MIL.AWOLBASE AWOLBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN W
HERE AWOLBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.BAR AS
SELECT *

FROM MIL.BARBASE BARBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE BARBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.BRKS_ACT AS
SELECT *

FROM mil..BRKS_ACTBASE
WHERE EXISTS (SELECT *

FROM mil.unit_auth u
WHERE mil.BRKS_ACTBASE.company = u.unit AND u.n_USER

= USER)

CREATE VIEW mil.CC_TRNG AS
SELECT *

FROM MIL.CC_TRNGBASE CC_TRNGBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE CC TRNGBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil. CHAP AS
SELECT *
FROM MIL.CHAPBASE CHAPBASE

WHERE EXISTS(SELECT *
FROM MIL.ADMIN
WHERE CHAPBASE.SSN=MIL . ADMIN.SSN)

CREATE VIEW mil.DEPN AS

173

SELECT *
FROM MIL.DEPNBASE DEPNBASE
WHERE EXISTS (SELECT *

FROM MIL.ADMIN
WHERE DEPNBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil. FCARE AS
SELECT *

FROM MIL.FCAREBASE FCAREBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE FCAREBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.FLAG AS
SELECT *

FROM MIL.FLAGBASE FLAGBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE FLAGBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.FORM90 AS
SELECT *

FROM MIL.FORM90BASE FORM90BASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE FORM90BASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil. ISSR AS
SELECT *

FROM MIL.ISSRBASE ISSRBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE ISSRBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.LOC AS
SELECT *

FROM MIL.LOCBASE LOCBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE LOCBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.LPTH AS

174

SELECT *
FROM MIL.LPTHBASE LPTHBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE LPTHBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.lrt_plan AS
SELECT *

FROM MIL.lrt_planBASE lrt_planBASE
WHERE lrt_planBASE.C_UNIT IN (SELECT MIL.UNIT_AUTH.UNIT

FROM MIL.UNIT_AUTH
WHERE MIL.UNIT AUTH.N USER=USER)

CREATE VIEW mil.MJTRNG AS
SELECT *

FROM MIL.M_TRNGBASE MJTRNGBASE
WHERE EXISTS (SELECT *

FROM MIL.ADMIN
WHERE M TRNGBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.OFFICE AS
SELECT *

FROM MIL.OFFICEBASE OFFICEBASE
WHERE EXISTS (SELECT *

FROM MIL.ADMIN
WHERE OFFICEBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.PREG AS
SELECT *

FROM MIL.PREGBASE PREGBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE PREGBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.PRM_PRTY AS
SELECT *

FROM MIL.PRM_PRTYBASE PRM_PRTYBASE
WHERE EXISTS (SELECT *

FROM MIL.ADMIN
WHERE PRM PRTYBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil. PROF AS

175

SELECT *
FROM MIL.PROFBASE PROFBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE PROFBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.TRNG AS
SELECT *

FROM MIL.TRNGBASE TRNGBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE TRNGBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.URINE AS
SELECT *

FROM MIL.URINEBASE URINEBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE URINEBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil.v_cansee AS
SELECT * FROM mil.unit_auth

WHERE n USER=USER

CREATE VIEW mil.WC AS
SELECT *

FROM MIL.WCBASE WCBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE WCBASE.SSN=MIL.ADMIN.SSN)

CREATE VIEW mil. wpn AS
SELECT *

FROM MIL.wpnBASE wpnBASE
WHERE EXISTS(SELECT *

FROM MIL.ADMIN
WHERE wpnBASE.SSN=MIL.ADMIN.SSN)

176

CREATE PROCEDURE mil.changessn (@oldssn varchar(9), @newssn
varchar(9))AS

SELECT * INTO #tempbaseadmin
FROM mil.adminbase
WHERE mil.adminbase.ssn = doldssn

UPDATE #tempbaseadmin
SET ssn = @newssn, n_USER = USER, d_tran = GETDATE()
WHERE ssn = doldssn

INSERT INTO mil.adminbase
SELECT * FROM #tempbaseadmin

UPDATE mil.CRAM
= doldssn
UPDATE mil.HHQ
= @oldssn
UPDATE mil.CC_TRNGBASE
= @oldssn
UPDATE mil.APFTBASE
= doldssn
UPDATE mil.ISSRMASTBASE
= doldssn
UPDATE mil.LOI
= @oldssn
UPDATE mil.ART15BASE
= @oldssn
UPDATE mil.AWOLBASE
= doldssn
UPDATE mil. BARBASE
= @oldssn
UPDATE mil.BRKS_ACT
= @oldssn
UPDATE mil.CHAPBASE
= @oldssn
UPDATE mil.OFFICEBASE
= @oldssn
UPDATE mil.DEPNBASE
= doldssn
UPDATE mil.PROFILES
= doldssn
UPDATE mil.FCAREBASE
= doldssn
UPDATE mil.FLAGBASE
= doldssn
UPDATE mil.FORM90BASE
= doldssn
UPDATE mil.ISSRBASE
= doldssn
UPDATE mil.LOCBASE
= doldssn
UPDATE mil.LPTHBASE
= doldssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

SET ssn = dnewssn WHERE ssn

177

UPDATE mil
= @oldssn
UPDATE mil
= goldssn
UPDATE mil
= @oldssn
UPDATE mil
= @oldssn
UPDATE mil
= goldssn
UPDATE mil.
= @oldssn
UPDATE mil.
= goldssn
UPDATE mil.
= goldssn
UPDATE mil.
= goldssn
UPDATE mil.
= @oldssn
UPDATE mil.
= goldssn
UPDATE mil.
= @oldssn
UPDATE mil.
= goldssn
UPDATE mil.
= goldssn
UPDATE mil.
= goldssn
UPDATE mil.
= goldssn
UPDATE mil.
= @oldssn

.M_TRNGBASE

.PREGBASE

.SEC

.PRM_PRTYBASE

.PROFBASE

.BARI

.REPRBASE

.RESRV

.TRNG

.CO_FEED

.wpnBASE

.TARGET

. CST

.TRNGMSTR

URINEBASE

VEH

WCBASE

SET ssn = @newssn WHERE ssn

SET ssn = @newssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn' = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

SET ssn = gnewssn WHERE ssn

DELETE FROM mil.adminbase
WHERE mil.adminbase.ssn

GO

goldssn

CREATE PROCEDURE mil.changeviewssn (goldssn varchar(9), gnewssn
varchar(9))AS

SELECT * INTO #tempviewadmin
FROM mil.admin
WHERE mil.admin.ssn = goldssn

UPDATE #tempviewadmin
SET ssn = gnewssn, nJJSER = USER, d_tran = GETDATE()
WHERE ssn = goldssn

INSERT INTO mil.adminbase
SELECT * FROM #tempviewadmin

178

UPDATE- mil .GRAM
= Soldssn
UPDATE mil .HHQ
= Soldssn
UPDATE mil .CCJTRNG
= Soldssn
UPDATE mil .APFT
= @oldssn
UPDATE mil . ISSR
= @oldssn
UPDATE mil .LOI
= @oldssn
UPDATE mil .ART15
= Soldssn
UPDATE mil .AWOL
= Soldssn
UPDATE mil .BAR
= Soldssn
UPDATE mil .BRKS_ACT
= Soldssn
UPDATE mil CHAP
= Soldssn
UPDATE mil OFFICE
= Soldssn
UPDATE mil DEPN
= Soldssn
UPDATE mil PROFILES
= Soldssn
UPDATE mil FCARE
= Soldssn
UPDATE mil FLAG
= Soldssn
UPDATE mil FORM90
= Soldssn
UPDATE mil ISSR
= Soldssn
UPDATE mil. LOC
= Soldssn
UPDATE mil. LPTH
= Soldssn
UPDATE mil. M_TRNG
= Soldssn
UPDATE mil. PREG
= Soldssn
UPDATE mil. SEC
= Soldssn
UPDATE mil. PRM_PRTY
= Soldssn
UPDATE mil. PROF
= Soldssn
UPDATE mil. BARI
= Soldssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

SET ssn = Snewssn WHERE ssn

179

UPDATE mil
= @oldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn
UPDATE mil
= @oldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn
UPDATE mil
= Soldssn

. REPR

.RESRV

.TRNG

.CO_FEED

. wpn

.TARGET

.CST

.-TRNGMSTR

.URINE

.VEH

.WC

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

SET ssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

Snewssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

WHERE ssn

DELETE FROM mil.admin
WHERE mil.admin.ssn

GO

Soldssn

CREATE PROCEDURE mil.getRecordStatus (Snewssn varchar(9))AS

declare Srecstat varchar(l)

SELECT Srecstat = rec_stat
FROM mil.adminbase
WHERE ssn = Snewssn

return convert(int, Srecstat)

GO

CREATE PROCEDURE mil.getSUID(@TABLE_NAME VARCHAR(384),
@ TABLE_USER VARCHAR(384), @ TABLE_PERMS VARCHAR(4) OUTPUT)
AS

if (STABLE_NAME is null) OR (STABLE_USER is null)
begin
raiserror 20001 'Must provide table name AND USER ID.'
return

end

180

DECLARE @sel char(l)
DECLARE @updt char(l)
DECLARE dinsrt char(l)
DECLARE @dlt char(l)

SELECT @sel = '?'
SELECT @updt = '?'
SELECT @insrt = '?'
SELECT @dlt = '?'

SELECT @sel = 'S' FROM sysprotects p, sysobjects o, sysUSERs u,
sysmembers m
WHERE p.id = o.id
and o.type IN ('U','V,'S') AND object_name(o.id) = @TABLE_NAME
and USER_name(u.uid) = @TABLE_USER
and (u.uid > 0 AND u.uid < 16384)
and ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))
AND p.action = 193 /^SELECT*/

SELECT Supdt = 'U' FROM sysprotects p, sysobjects o, sysUSERs u,
sysmembers m
WHERE p.id = o.id
and o.type IN ('U','V,'S') AND object_name(o.id) = @TABLE_NAME
and USER_nam'e (u.uid) = @TABLE_USER
and (u.uid > 0 AND u.uid < 16384)
and ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))
AND p.action = 197 /^UPDATE*/

SELECT Sinsrt = 'I' FROM sysprotects p, sysobjects o, sysUSERs u,
sysmembers m
WHERE p.id = o.id
and o.type IN ('U','V','S') AND object_name(o.id) = @TABLE_NAME
and USER_name(u.uid) = @TABLE_USER
and (u.uid > 0 AND u.uid < 16384)
and ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))
AND p.action = 195 /*insert*/

SELECT @dlt = 'D' FROM sysprotects p, sysobjects o, sysUSERs u,
sysmembers m
WHERE p.id = o.id
and o.type IN ('U','V','S') AND object_name(o.id) = @TABLE_NAME
and USER_name(u.uid) = @TABLE_USER

■and (u.uid > 0 AND u.uid < 16384)
and ((p.uid = u.uid) OR (p.uid = m.groupuid AND u.uid = m.memberuid))
AND p.action = 196 /*delete*/

SELECT @TABLE_PERMS = @sel + @updt + @insrt + @dlt

GO

181

CREATE PROCEDURE mil.isInAdminbase(@newssn varchar(9), grecstat
varchar(l) OUTPUT) AS

SELECT @recstat = '?'

SELECT @recstat = rec_stat
FROM mil.adminbase
WHERE ssn = @newssn

GO

182

INTITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 DyerRd.
Monterey, CA 93943-5101

3. Commanders 1
DLIFLC & POM
ATZP-GC
(Attn: COL Dausen)
Presidio of Monterey, CA 93944

4. Commanders 1
DLIFLC & POM
ATZP-IM
(Attn: Winnie Chambliss)
Presidio of Monterey, CA 93944

5. Commanders 1
DLIFLC & POM
ATZP-IM-AT
(Attn: Kristina Brown)
Presidio of Monterey, CA 93944

6. Commanders 1
DLIFLC & POM
ATZP-IM-KS
(Attn: Pat Golden)
Presidio of Monterey, CA 93944

7. Chairman, Code CS 1
Naval Postgraduate School
1 University Circle
Monterey, CA 93943-5101

8. Dr. Thomas C. Wu, Code CS/Wu 1
Naval Postgraduate School
1 University Circle
Monterey, CA 93943-5101

183

LCDR Chris Eagle, Code CS/Ce.
Naval Postgraduate School
1 University Circle
Monterey, CA 93943-5101

10. Pavel Bielecki
500 Glenwood Cr., STE 535
Monterey, CA 93940

184

