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When a store is dropped from a military aircraft at high subsonic, transonic, 

or supersonic speeds, the aerodynamic forces and moments acting on the store can 

be sufficient to send the store back into contact with the aircraft. This can cause 

damage to the aircraft and endanger the life of the crew. Therefore, store separation 

analysis is used to certify the safety of any proposed drop. This analysis is often 

based on wind tunnel aerodynamic data or analogy with flight test data from similar 

configurations. Time accurate computational fluid dynamics (CFD) offers the option 

of calculating store separation trajectories from first principles. 

In the Chimera grid scheme, a set of independent, overlapping, structured grids 

are used to decompose the domain of interest. This allows the use of efficient struc- 

tured grid flow solvers and associated boundary conditions, and allows for grid motion 

without stretching or regridding. However, these advantages are gained in exchange 

for the requirement to establish communication links between the overlapping grids 

via a process referred to as "grid assembly." 
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The calculation of a moving body problem, such as a store separation trajec- 

tory calculation, using the Chimera grid scheme, requires that the grid assembly be 

performed each time that a grid is moved. Considering the facts that time accurate 

CFD calculations are computationally expensive and that the grids may be moved 

hundreds of times throughout a complete trajectory calculation, a single store trajec- 

tory calculation requires significant computational resources. 

Parallel computing is used regularly to reduce the time required to get a CFD 

solution to steady state problems. However, relatively little work has been done to use 

parallel computing for time accurate, moving body problems. Thus, new techniques 

are presented for the parallel implementation of the assembly of overset, Chimera 

grids. 

This work is based on the grid assembly function defined in the Beggar code, 

currently under development at Eglin Air Force Base, FL. This code is targeted at 

the store separation problem and automates the grid assembly problem to a large 

extent, using a polygonal mapping (PM) tree data structure to identify point/volume 

relationships. 

A logical succession of incremental steps are presented in the parallel implemen- 

tation of the grid assembly function. The parallel performance of each implementation 

is analyzed and equations are presented for estimating the parallel speedup. Each 

successive implementation attacks the weaknesses of the previous implementation in 

a effort to improve the parallel performance. 

The first implementation achieves the solution of moving body problems on mul- 

tiple processors with minimum code changes. The second implementation improves 

the parallel performance by hiding the execution time of the grid assembly function 

behind the execution time of the flow solver. The third implementation uses coarse 

grain data decomposition to reduce the execution time of the grid assembly func- 

tion. The final implementation demonstrates the fine grain decomposition of the grid 

assembly through the fine grain decomposition of the hole cutting process.  Shared 
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memory techniques are used in the final implementation and appropriate dynamic 

load balancing algorithms are presented. 
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CHAPTER 1 
INTRODUCTION 

The knowledge of forces and moments induced by the addition of stores to an 

aircraft is vital for safe carriage. Once a store is released, knowledge of the interference 

aerodynamics and the effects on the trajectory of the store is vital for the safety of the 

pilot and aircraft. Such aerodynamic data has traditionally been provided by wind 

tunnel testing or flight testing; however, these techniques can be very expensive and 

have limitations when simulating time accurate, moving body problems such as the 

ripple release depicted in figure 1.1. Computational Fluid Dynamics (CFD) provides 

a way to supplement wind tunnel and flight test data. 

Figure 1.1: History of three store ripple release 

Overview 

The primary problem to be considered is store separation from fighter aircraft 

configurations. The goal is to compute store separation trajectories in a timely fashion 



using CFD and parallel computing. Due to the geometric complexity of aircraft/store 

configurations and the requirement to handle moving body problems, the Chimera 

grid scheme [1] is being used. This approach uses a set of overlapping structured 

grids to decompose the domain of interest. The Chimera grid scheme offers several 

advantages: 1) the use of structured grids allows the use of efficient block structured 

grid flow solvers and the associated boundary conditions; 2) the generation of over- 

lapping grids which best fit a particular component geometry eases the burden of 

structured grid generation; and 3) the use of interpolation for communication be- 

tween overlapping grids allows grids to be moved relative to each other. However, 

the communication between overlapping grids must be reestablished whenever a grid 

is moved. This process of establishing communication between overlapping grids will 

be referred to as grid assembly. 

Whenever the grid around a physical object overlaps another grid, there is the 

probability that some grid points will lie inside the physical object and thus will be 

outside of the flow field. Even if no actual grid points lie inside the physical object, 

if a grid line crosses the physical object, there will be neighboring grid points that 

lie on opposite sides of the physical object. Any numerical stencil that uses two 

such neighboring grid points will introduce errors into the solution. This situation 

is avoided by cutting holes into any grids overlapping the physical surfaces of the 

geometry. 

During hole cutting, regions of the overlapping grids are marked as invalid. This 

creates additional boundaries within the grid system. The flow solver requires that 

some boundary condition be supplied at these boundaries. Likewise, some boundary 

condition is also needed at the outer boundaries of embedded grids. Collectively, the 

grid points on the fringe of the holes and the grid points on the outer boundaries of 

the embedded grids are referred to as Inter-Grid Boundary Points (IGBP's) [2]. The 

boundary conditions required at the IGBP's are supplied by interpolating the flow 

solution from any overlapping grids. 



The Beggar code [3], developed at Eglin Air Force Base, is capable of sov- 

ing three-dimensional inviscid and viscous flow ploblems involving multiple moving 

objects, and is suitable for simulating store separation. This code allows blocked, 

patched, and overlapping structured grids in a framework that includes grid assem- 

bly, flow solution, force and moment calculation, and the integration of the rigid body, 

six degrees of freedom (6D0F) equations of motion. All block-to-block connections, 

patched connections, freestream boundary conditions, singularity boundary condi- 

tions, and overlapped boundaries are detected automatically. All holes are defined 

using the solid boundaries as cutting surfaces and all required interpolation stencils 

are calculated automatically. The integration of all necessary functions simplifies the 

simulation of moving body problems [4]; while the automation and efficient imple- 

mentation of the grid assembly process [5] significantly reduces the amount of user 

input and is of great benefit in a production work environment. 

The basic solution process consists of an iterative loop through the four func- 

tions shown in figure 1.2. The blocked and overset grid system is first assembled. 

Once this is done, the flow solution is calculated in a time-accurate manner. Aerody- 

namic forces and moments are then integrated over the grid surfaces representing the 

physical surfaces of the moving bodies. The rigid body equations of motion are then 

integrated with respect to time to determine the new position of the grids considering 

all aerodynamic forces and moments, forces due to gravity, and all externally applied 

forces and moments (such as ejectors). 

Multiple iterations of this loop are required to perform a complete store sep- 

aration trajectory calculation. The accuracy of the trajectory predicted from the 

itegration of the equations of motion is affected by the time step chosen; however, 

stability contraints on the flow solver are normally more restrictive. In typical store 

separation calculations, the time step has been limited to 0.1-1.0 milli-second; thus, 

hundreds or even thousands of iterations are often required. 

As the complexity of flow simulations continues to increase it becomes more 
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Figure 1.2: Solution process 

critical to utilize parallel computing to reduce solution turnaround times. The parallel 

implementation of the Beggar flow solver was first presented in reference [6]. This 

flow solver uses a finite volume discretization and flux difference splitting based on 

Roe's approximate Riemann solver [7]. The solution method is a Newton-Relaxation 

scheme [8]; i.e. the discretized, linearized, governing equations are written in the form 

of Newton's method and each step of the Newton's method is solved using symmetric 

Gauss-Seidel (SGS) iteration. The SGS iterations, or inner iterations, are performed 

on a grid by grid basis; while the Newton iterations, or dt iterations, are used to 

achieve time accuracy and are performed on all grids in sequence. In this reference, 

the separate grids are used as the basis for data decomposition. The grids, which 

represent separate flow solution tasks, are distributed across multiple processors and 

the flow solver is executed concurrently. The only communication between processes 

is the exchange of flow field information at block-to-block, patched, and overlapped 

boundaries between dt iterations. The grid assembly is performed only once and thus, 



only static grid problems axe addressed. 

It is also desireable to utilize parallel computing to reduce the turnaround time 

of moving body problems such as the ripple release configuration. In order to do so, 

the grid assembly function must be executed each time grids are moved. An efficient, 

scalable parallel implementation of any process requires that both the computation 

and the required data be evenly distributed across the available processors while 

minimizing the communication between processors. The movement of the grids and 

the time variation in the holes being cut, as illustrated in figure 1.3 indicates the 

dynamic and unstructured nature of the grid assembly work load and data structures. 

This makes an efficient implementation a challenging task. 

Figure 1.3: Example of overlapping grids with holes cut 

Thus, the primary focus of this work is the parallel implementation of the grid 

assembly function so that store separation trajectories can be calculated using time- 

accurate CFD and parallel computers. A logical succession of incremental steps is 

used to facilitate the parallel implementation of the grid assembly function. The initial 

implementation (phase I) uses a single process to perform the entire grid assembly in 

a serial fashion with respect to the parallel execution of the flow solver. This requires 

that proper communication be established between the flow solution function and 

the grid assembly friction; however, it does not require any consideration of load 

balancing or partitioning of the grid assembly function. The grid assembly function 



is not accelerated, but the flow solution is. 

. In the second implementation (phase II), parallel efficiency is gained by over- 

lapping the grid assembly function and the flow solution function. This overlapping 

of work is possible because of the use of the Newton-Relaxation method within the 

flow solver. Each step of the approximate Newton's method produces an approxi- 

mation to the flow solution at the next time step. Approximate aerodynamic forces 

and moments are calculated from the flow solution after the first Newton step and 

are used to drive the grid assembly function, while additional Newton steps are being 

calculated to achieve time accuracy. 

As long as there is sufficient time to hide the work of the grid assembly function, 

the speedup is affected only by the performance of the flow solver. However, as the 

processor count increases, the time of the flow solution available to hide the grid 

assembly decreases and the rate of change of speedup with respect to processor count 

decreases. Therefore, it is important to distribute the work of the grid assembly 

function to make the entire process scalable to higher processor counts. 

The third implementation (phase III) uses data decomposition of the grid assem- 

bly function to reduce its execution time and thus allows the grid assembly time to be 

more easily hidden by the flow solution time. The basis for the data decomposition 

is the superblock, which is a group of grids that contain block-to-block connections 

and are overlapped with other superblocks. In this implementation, the work and 

data structures associated with a superblock are distributed over multiple processors. 

Dynamic load balancing is used to improve the performance by moving superblocks 

between processes. 

The relatively small number of superblocks used in most problems places a limit 

on the number of processors that can be effectively utilized. Thus, in order to improve 

scalability, the fourth implementation (phase IV) uses a fine grain decomposition of 

the work associated with grid assembly. The work of the grid assembly function can 

be associated with the facets that cut holes into overlapping grids and the cell centers 
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that require interpolation. Therefore, the hole cutting facets and the IGBP's form 

the basis for the fine grain distribution of the work associated with grid assembly. 

This dissertation gives complete details of the implementation options for in- 

cluding the grid assembly function into the parallel execution of moving body CFD 

computations. Each implementation builds upon the previous implementation, at- 

tacking the limitations in order to improve performance. Details of the performance 

analysis are included. Equations for estimating the performance are also presented. 

With practical experience and some further development, these implementations and 

performance estimators could offer optimum execution guidelines for particular prob- 

lems. 

Related Work 

Grid Assembly 

Table 1.1 lists some of the codes that are currently available for assembling over- 

set grid systems. Some of the advantages and disadvantages of each code are listed. 

Since the author is not completely familiar with the operation of all of these codes, 

some of the disadvantages (or advantages) may only be perceived. In general, finding 

the root cause of a failure in the grid assembly process is a difficult task. Therefore, 

it is a disadvantage of overset grids in general and is not listed as a disadvantage 

for any of the codes although some of the codes provide better aids for debugging 

than do others. Likewise, the use of orphan points (points that fail to be properly 

interpolated and are given averaged values from neighbors) can help to ensure that 

grid assembly does not fail. However, orphan points are not listed as an advantage 

for any code since they can adversely affect the flow solution. 

PEGSUS [9] is the first and one of the more widely used codes for handling 

the grid assembly problem. It relies on a set of overlapping grids (block-to-block 

connections are not allowed). PEGSUS is completely separate from any flow solver 



Table 1.1: Grid assembly codes 

Code Advantage Disadvantage 

PEGSUS First code; large user base Slow; requires alot of user 
input 

DCF3D Fast;  large user base;  well 
supported 

Requires significant user 
input 

CMPGRD Modern           programming 
techniques;     well    defined 
algorithms 

Not widely distributed 

BEGGAR Automated  grid  assembly; 
allows   block-to-block   con- 
nections;   small user input 
geared   toward   production 
work environment; complete 
flow solution environment 

Slower than DCF3D; mono- 
lithic code; limited user 
base; has difficulties with 
overset viscous grids 

but will produce interpolation information for either finite difference or finite volume 

flow solvers. The amount of user input required is often rather large: each hole cutting 

surface has to be identified, all overlapping boundaries must be identified, and a set 

of links must be specified to tell the code which grids to cut holes into and where to 

check for interpolation coefficients. 

DCF3D (Domain Connectivity Function) [2] is another code used to accomplish 

the grid assembly task. DCF3D is not coupled directly with any flow solver but 

it has been used extensively with the OVERFLOW flow solver [10]. DCF3D uses 

several alternative approaches in order to improve the efficiency of the grid assembly 

process. DCF3D uses analytic shapes for hole cutting which allows grid points to 

be compared directly to the hole cutting surface. It also uses Cartesian grids, called 

inverse maps, to improve the efficiency of selecting starting points for the search for 

interpolation stencils. These techniques improve the efficiency of the grid assembly 

process; however, an additional burden is placed on the user to define the analytical 

shapes and the extent and density of the inverse maps. 

More recently, improvements to DCF3D have been proposed in order to reduce 

the burden placed on the user. These improvements include the use of hole-map tech- 
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nology and the iterative adjustment of the connectivity information [11]. Hole-map 

technology uses Cartesian grids to map the hole cutting surfaces in an approximate, 

stair stepped fashion. This would allow the automatic creation of the hole cutting 

surfaces and an efficient means of identifying hole points. The iterative process of ad- 

justing the connectivity information by expanding and contracting the holes in order 

to minimize the overlap between grids also offers benefits. 

Yet another code that addresses the grid assembly problem is CMPGRD [12]. 

This code is an early version of the grid assembly process that has been included in 

OVERTURE [13]. This tool does not appear to be highly optimized; moreover, its 

strengths seem to be in its well defined algorithms for the grid assembly process. The 

algorithms can produce minimum overlap between grids and other quality measures 

are considered in the donor selection process. 

In comparison to the above mentioned codes, Beggar is unique in that its devel- 

opment has been geared towards the store separation problem and a production work 

environment. As such, Beggar attempts to automate the entire solution process while 

reducing the burden of input that is placed on the user. Beggar also uses unique data 

structures and algorithms in order to maintain the efficiency of the grid assembly 

process. 

Store Separation 

Table 1.2 lists some of the techniques that have been used to calculate store sep- 

aration trajectories. Some of the advantages and disadvantages from each technique 

are listed. The techniques range from simple curve fits of data from similar configu- 

rations, to wind tunnel experimental methods, to the calculation of the complete flow 

field from first principles. 

Engineering level methods (see [14] for example) derive aerodynamic data from 

data bases of experimental data, simple aerodynamic correlations, and panel meth- 

ods with corrections for nonlinear effects such as vortical flow.   Such methods are 
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Table 1.2: Store separation modeling methods 

•    Method Advantage Disadvantage 

Engineering 
Level Methods 

Computationally    inexpen- 
sive; provide quick data for 
preliminary design 

Limited applicability 

Captive    Trajec- 
tory Support 

Wind   tunnel   accuracy   of 
flow phenomenon 

Limited range of motion; 
quasi-steady; high cost; tun- 
nel interference 

Influence     Func- 
tion Method 

Fast   solution   allows   sta- 
tistical     investigation     of 
trajectories 

Mutual interference effects 
can be lost 

Computational 
Fluid Dynamics 

Completely time accurate; 
flexible; unlimited in config- 
uration; provides data for vi- 
sualization of the complete 
flow field 

Grid generation can be labor 
intensive; requires signifi- 
cant computing resources; 
weaknesses in modeling 
some flow phenomena such 
as turbulence 

computationally inexpensive but have very limited applicability. These methods are 

most useful in preliminary design, but have been applied to the calculation of store 

separation trajectories. 

Store separation events have been simulated in wind tunnels using the Captive 

Trajectory Support (CTS) system [15]. This technique places a sting mounted store 

in the flow field of an aircraft wing and pylon. The store is repositioned according to 

the integration of measured aerodynamic loads and modeled ejector loads. Since the 

store can not be moved in real-time, an angle-of-attack correction is made based on 

the velocity of the moving store. This technique is quasi-steady and often limited in 

the range of motion due to the sting mechanism. 

Store separation trajectories have also been calculated using wind tunnel data 

and an Influence Function Method (IFM) [16]. This method uses wind tunnel data to 

define flow angularity near an aircraft wing and pylon. This data is used to apply a 

delta to the freestream forces and moments of the store assuming that the store does 

not affect the aircraft flow field. Another correction is made for mutual interference 

using wind tunnel data of the store in carriage position. Jordan [17] gave a detailed 
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comparison of loads calculated from IFM and CFD versus loads measured in the 

wind tunnel. IFM was shown to be inaccurate due to mutual interference that is not 

directly related to flow angle. The distance at which mutual interference becomes 

insignificant must also be well known. 

Such semi-emperical techniques can also be used with CFD data replacing part 

or all of the wind tunnel data. In a recent special session at the AIAA Aerospace 

Sciences Meeting, most of the papers [18, 19, 20] presented used this technique. One 

paper [21] used quasi-steady CFD. Of the two time-accurate CFD simulations slated 

to be presented, one was withdrawn and the other was prevented from being presented 

due to the failure to get clearance for public release. 

When considering time-accurate CFD calculations for moving body problems, 

the decomposition of the domain (grid type) has a significant impact on the solution 

process. Table 1.3 lists several of the different grid methods in use. Some of the 

advantages and disadvantages of each grid method are listed. 

Cartesian grids (see [22] for example) have been used for moving body problems, 

but the treatment of boundary counditions can be complicated. Boundary conforming 

block structured grids have been used to calculate store separation trajectories [23]; 

however, the motion of a store within a block structured grid requires grid stretching 

and deformation. This places a limit on the motion before regridding is required due to 

errors introduced by grid skewness. Unstructured grids have also been applied to the 

store separation problem (see [24] for example). The flexibility of unstructured grid 

generation eases the grid generation burden but complicates the flow solver. Octree 

grids have also been used to ease the grid generation burden and allow adaptive grid 

refinement. SPLITFLOW [25] represents a compromise between these unstructured 

grid techniques. A prismatic grid is used near solid surfaces to simplify boundary 

conditions and an octree grid is used away from the solid surfaces and offers adaption 

and some organizational structure. Chimera grid methods are also a compromise and 

have been applied extensively to the store separation problem (see for example [4, 26, 
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Table 1.3: Grid generation methods 

• Grid Type Advantage Disadvantage 

Cartesian Small     memory     require- 
ments; fast flow solver 

Difficult treatment of 
boundary conditions; poor 
viscous solution capabilities 

Structured General       treatment       of 
flow   solver   and  boundary 
conditions 

Restricted to simple 
geometries 

Block Structured Extension      to      complex 
geometries 

Grid generation is time con- 
suming; grid motion or 
adaption is difficult 

Quad Tree Easily adapted Difficult treatment of 
boundary conditions; 
connectivity information 
required 

Unstructured Automatic grid generation; 
easily adapted 

Larger memory require- 
ments; slower flow solvers; 
connectivity information 
required; weak viscous 
solution capabilities 

Chimera Structured grid flow solvers 
and   boundary   conditions; 
eases  grid  generation  bur- 
den; allows grid movement 

connectivity (only at 
IGBP's) must be con- 
structed separate from the 
grid generation process 

27, 28, 29, 30]). They can be viewed as locally structured, but globally unstructured. 

Time accurate CFD has been validated for use in calculating store separation 

trajectories. Lijewski [28] presented the first complete system for calculating store 

separation trajectories. In reference [28], Lijewski also presented the first use of a 

particular set of wind tunnel CTS data for store separation code validation. The 

configuration is a single, sting mounted, ogive-cylinder-ogive store under a generic 

pylon and wing. Grids for the generic store are shown in figure 1.4. 

Data, first presented in reference [4], for the subsonic and supersonic trajectories 

of the single generic store are shown in figures 1.5 and 1.6. The CTS data is shown 

by the symbols and the time accurate CFD calculations are shown by the curves. 

These comparisons show excellent agreement between the wind tunnel data and time 
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Figure 1.4: Grids for single generic store trajectory calculation 
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Figure 1.5: Mach 0.95 single store trajectory calculated (left) CG position and (right) 
angular position versus wind tunnel CTS data 

accurate CFD calculations for this test problem. 

More complex configurations have also been used for validation cases. Cline [31] 

presented store separation trajectories from an F-16 aircraft configuration including a 

fuel tank, pylon, and an aerodynamic fairing at the junction of the pylon and the wing. 

Coleman [32] presented separation trajectories for the MK-84 from the F-15E aircraft. 

This configuration included a centerline fuel tank, a LANTIRN targeting pod, an 

inboard conformal fuel tank (CFT) weapons pylon with attached MK-84, forward and 

middle stub pylons on the outside of the CFT, LAU-128 rail launchers with AIM-9 

missiles on both sides of the wing weapons pylon, and the MK-84 to be released from 
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Figure 1.6: Mach 1.20 single store trajectory calculated (left) CG position and (right) 
angular position versus wind tunnel CTS data 

the wing weapons pylon. Both references compared trajectory calculations to wind 

tunnel data and were instrumental in the approval of the use of CFD by engineers in 

evaluating the store separation characteristics of weapons. 

Parallel Computing 

Although much work has been done on the parallel execution of CFD flow solvers, 

including Chimera method flow solvers, little work has been done on the efficient par- 

allel implementation of Chimera methods for moving body problems. In particular, 

there are very few references on the parallel treatment of the grid assembly problem. 

Table 1.4 gives a list of references of some of the more important developments in 

parallel computing as related to Chimera grid methods and grid assembly. 

Smith [33] presents the parallel implementation of an overset grid flow solver for 

a network based heterogeneous computing environment. This flow solver was derived 

from OVERFLOW and uses coarse grain parallelism with the component grids being 

distributed among the available processors. A master/slave model is used. The master 

process performs all i/o functions, maintains all of the interpolated flow solution data, 

and communicates with each of the slave processes. The slave processes calculate the 

flow solution and perform the interpolation of flow solution data. A load balancing 
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technique is used and the interpolation of flow solution data is overlapped with the 

calculation of the flow solution to reduce load imbalances. The grid communication 

information was supplied as an input and only static problems were addressed. 

Wissink and Meakin [34] presented the application of a Chimera grid flow solver 

based on OVERFLOW and DCF3D. This code uses overlapping structured grids 

near the solid boundaries in order to resolve viscous effects and uses spatially refined 

Cartesian blocks in the rest of the domain. Parallel performance was presented but 

only static problems were addressed. The same code was again presented in reference 

[35]. Two dynamic problems were presented in this reference; however, the focus was 

on the ability to adapt the Cartesian blocks due to flow solution and body motion. 

Some parallel performance data is presented based on an iteration of the flow solver. 

No performance data was presented for an entire simulation which would include the 

performance of the grid assembly. 

The first presentation of the parallel implementation of grid assembly for dy- 

namic, overset grids was by Barszcz [36]. DCF3D was parallelized and used in con- 

nection with a parallel version of OVERFLOW on a distributed memory parallel 

machine. A coarse grain parallelism was implemented with the data decomposition 

based on component grids. A static load balance was used based on balancing the 

load of the flow solver. Since the flow solver represented a large portion of the total 

work, load balancing the flow solver is important to achieving a good overall load bal- 

ance; however, significant imbalances were seen in the grid assembly processes. Donor 

cell identification was found to be the most time consuming part of grid assembly and 

algorithm changes were implemented to reduce this part of the work load. 

In reference [37], Weeratunga et al. again used DCF3D and OVERFLOW on a 

distributed memory parallel machine. Again, the component grids are used for data 

decomposition and load balancing is based on the work load of the flow solver. No 

consideration is given to the distribution of donor elements or IGBP's. The primary 

focus in this reference is on demonstrating the scalability of the processes used. In 
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this study, the donor search method scaled well; however, the hole cutting and the 

identification of points requiring interpolation did not scale well. 

In reference [38], Wissink and Meakin present the first attempt to load balance 

the grid assembly process. However, the data decomposition is still based on the 

component grids and affects the load balance of both the flow solver and the grid 

assembly function. A static load balance is initially performed to equally distribute 

the numbers of grid points which helps to load balance the flow solver. A dynamic 

load balancing routine is then used during a calculation to redistribute the grids 

to improve the load balance of grid assembly. This, in turn, creates an imbalance 

in the flow solver. This algorithm offers a method of improving performance if an 

imbalance in the grid assembly work load is a major deterent. However, in the 

problems presented, the flow solver represented the major part of the work load and 

any redistribution of grids in order to improve the grid assembly load balance actually 

decreased the overall code performance. 

Dissertation Outline 

Chapter 2 presents details of the algorithms and data structures of the grid 

assembly process. For completeness, chapter 3 presents the flow solution algorithm 

and chapter 4 presents the integration of the 6DOF rigid body equations of motion. 

Chapter 5 presents an overview of programming parallel computers and outlines the 

approaches used in the current work. Chapter 6 gives some details of the proposed 

implementations including equations for estimating speedup. Chapter 7 presents the 

ripple release test problem used for all timings of the implementations. The results of 

the timings are presented in chapter 8. The final conclusions and some possibilities 

for future work are presented in chapter 9. 
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Table 1.4: Significant accomplishments in parallel computing in relation to overset 
grid methods 

Reference Accomplishment Limitation 

Smith and Pallis, 
1993 [33] 

Parallel        implementation 
of   OVERFLOW   for   het- 
erogeneous           computing 
environments 

Restricted to static 
problems 

Baxszcz,     Weer- 
atunga,          and 
Meakin, 1993 [36] 

First   parallel  implementa- 
tion of grid assembly 

Data decomposition and 
static load balance tied to 
flow solver 

Weeratunga   and 
Chawla, 1995 [37] 

Detailed study of scalabil- 
ity of parallel implementa- 
tion of DCF3D 

Data decomposition and 
static load balance tied to 
flow solver 

Belk   and   Stras- 
burg, 1996 [6] 

First   parallel  implementa- 
tion of Beggar 

Restricted to static 
problems 

Wissink          and 
Meakin, 1997 [38] 

First attempt to load bal- 
ance grid assembly 

Decomposition of grid as- 
sembly tied to flow solver 
means any improvement in 
the load balance of grid as- 
sembly adversely affects the 
load balance of the flow 
solver 

Wissink          and 
Meakin, 1998 [34] 

Small, near body, curvilin- 
ear grids used in combina- 
tion with adaptive Cartesian 
grids 

Only static problems were 
presented 

Prewitt,       Belk, 
and   Shyy,   1998 
[39] 

First   parallel   implementa- 
tion of Beggar for dynamic 
problems;    overlapping   of 
grid assembly and flow solu- 
tion time 

Limited scalability 

Meakin          and 
Wissink,       1999 
[35] 

Included dynamic problems 
with combined overset grids 
and adaptive Cartesian grids 

No performance of dynamic 
grid assembly was presented 

Prewitt,       Belk, 
and   Shyy,   1999 
[40] 

Coarse grain decomposition 
and dynamic load balancing 
of grid assembly based on 
superblocks independent of 
flow solver 

Major functions within the 
grid assembly are not indi- 
vidually well balanced 



CHAPTER 2 
GRID ASSEMBLY 

Although Beggar is useful for general external compressible fluid flow problems, 

its primary focus during development has been on the simulation of store carriage 

and separation events. A typical grid system includes grids for an aircraft, pylons, 

launchers, and stores. The grids are often placed inside a large rectangular grid 

which serves as a background grid that reaches to freestream. Due to disparity in 

grid spacing between overlapping grids, it is often necessary to introduce other grids 

that serve as an interface to aid communication. The stores are often bodies of 

revolution with attached wings, canards, and/or fins. Blocked grid systems are used 

for these relatively simple geometries; however, in order to allow grid movement, such 

blocked grids are treated as overlapping grids with respect to other grids. 

The superblock construct is introduced to aid in grid assembly. The superblock 

is a collection of non-overlapping grids which are treated as a single entity. Block-to- 

block connections are allowed only within a superblock; thus a superblock is often used 

to implement a blocked system of grids for part of the solution domain. Overlapping 

connections are allowed only between different superblocks. 

A dynamic group is a collection of one or more superblocks that is treated as 

a single entity by the 6D0F. The dynamic group is used primarily to group grids 

which are part of the same moving body. There is always at least one dynamic group: 

the static dynamic group. This holds the static grids like the background grid, the 

aircraft grid, pylon grids, or store grids that do not move relative to the aircraft. 

Other dynamic groups are created for each store that will move relative to the static 

dynamic group. Since a dynamic group may contain one or more superblocks, each 

18 
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moving body can be constructed from a system of blocked grids in a single superblock, 

a system of overlapping grids in multiple superblocks, or a combination of the two. 

Polygonal Mapping Tree 

In order to establish overlapped grid communications the following questions 

must be answered: does this point lie inside a grid, and if so, what is an appropriate 

interpolation stencil? These questions represent point-volume geometric relation- 

ships. In order to determine such relationships, Beggar uses a polygonal mapping 

(PM) tree, which is a combination of the octree and binary space portioning (BSP) 

tree data structures [41, 42]. 

An octree is a data structure in which a region of space is recursively subdivided 

into octants. Each parent octant is divided into eight children which can be further 

subdivided. This forms a hierarchy of ancestor and descendant octants. Each octant 

in the tree is termed a node with the beginning node (lowest level) being the root 

node and the most descendent nodes (highest levels) being the leaf nodes. Such a 

data structure allows a domain to be divided into 8n subdomains using just n levels. 

Associated with each node are the Cartesian coordinates of the center of the octant. 

Which child octant a point lies in can be identified by comparing the coordinates of 

the point against the coordinates of the center of the parent octant. With such a 

data structure, a point can be identified as lying within a particular octant out of 8" 

octants by using at most n comparisons (if the tree is perfectly balanced). 

The BSP tree is a binary tree data structure in which each node of the tree 

is represented by a plane definition. Each node has two children representing the 

in and out sides of the plane. For a faceted representation of a surface, each facet 

defines a plane that is inserted into the BSP tree. While being inserted the facet may 

be clipped against existing planes in the BSP tree placing pieces of the same plane 

definition into different branches of the tree. Using a given point, the BSP tree is 

traversed by comparing the point against a plane definition at each level to determine 
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which branch to descend into. Once a leaf node is reached, the point is identified as 

being inside or outside of the faceted surface. 

In theory, a BSP tree of the cell faces on the boundaries of a grid block could be 

used to determine whether a point is in or out of that particular grid. However, due 

to the clipping process, the BSP tree can be prone to roundoff error. Likewise, the 

structure of the tree is dependent on the order in which facets are inserted and it is 

not guaranteed to be well balanced. If the tree were to become one-sided, a point may 

have to be compared against all or most of the facets on a surface to determine its 

relationship to that surface. Therefore, Beggar uses a combination of the octree and 

BSP tree data structures. The octree, which stays well balanced, is used to quickly 

narrow down the region of space in which a point lies. If a point lies in a leaf node 

that contains an overlapping boundary grid surface, it must be compared to a BSP 

tree that is stored in that leaf node to determine its relationship to that boundary 

surface and therefore its relationship to the grid itself. 

The PM tree data structure is built by refining the octree in a local manner until 

no octant contains more than one grid boundary point from the same superblock. This 

produces a regular division of space that adapts to grid boundaries and grid point 

density. The boundary cell faces of the grids are then used to define facets which 

are inserted into BSP trees stored at the leaf nodes of the octree. Since each grid 

boundary point is normally shared by four cell faces and each octant contains only 

one grid boundary point, the BSP trees stored at the octree leaf nodes should be very 

shallow. 

Once the basic data structure is complete, all of the octants of the leaf nodes are 

classified relative to the grid boundaries. Each octant is classified as inside or outside 

of each superblock or as a boundary octant. Then points can be classified efficiently 

relative to the superblocks. To do so, the octant in which the point lies is found. If 

the octant has been classified as IN or OUT, the point can be immediately classified 

as IN or OUT. However, if the point lies in a boundary octant, the point must be 
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compared against the BSP tree that is stored in that octant. 

Figure 2.1 represents a quadtree (2d equivalent of an octree) for a 4 block O-grid 

around an airfoil. Only the grid points on the boundaries are used to define the level 

of refinement, so only the boundaries of the grid are shown. The grid boundaries are 

inserted into the leaf octants as BSP trees to form the PM tree. A portion of the 

PM tree that might result is shown in figure 2.2. The leaf octants are represented by 

squares; while the other nodes are represented by circles. The four branches at each 

node represent the four quadrants of an octant. The line segments shown in some 

of the leaf octants represent portions of the grid boundaries that would be placed in 

BSP trees. If a point being classified against the PM tree falls into one of these leaf 

octants, it must be compared against the facets to determine its relationship to the 

grid. The empty leaf octants that are drawn with solid lines are completely inside the 

grid; while the leaf octants that are drawn with dashed lines are completely outside 

the grid. Points that fall into either of these types of octants can immediately be 

classified relative to the grid. 

/ 

/ f 

\. 

Figure 2.1: Example quad tree mesh 

The PM tree is expensive to construct and would be very inefficient to use if 
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Figure 2.2: Example PM tree structure 

it had to be reconstructed each time a grid moved. Therefore, for each dynamic 

group, a set of transformations are maintained between the current position and 

the original position in which the PM tree was built. Whenever the PM tree is 

used to find an interpolation stencil in one grid for a grid point in another grid, 

the transformations are used to transform the grid point to the original coordinate 

system. The transformed grid point can then be used with the PM tree constructed 

in the original coordinate system of the grids. Thus the PM tree must be constructed 

only once. 

Interpolation Stencils 

The primary function of the PM tree is to help find interpolation stencils for 

grid points which require interpolated flow field information. When an interpolation 

stencil is required, the PM tree is used to classify the corresponding grid point relative 

to each superblock. This quickly identifies which superblocks the grid point lies in 

and therefore which superblocks might offer a source of interpolation information. 

This answers the in/out question directly. However, once a point is identified as 

being inside a given superblock, the exact curvilinear coordinates corresponding to 

the Cartesian coordinates of the grid point must be found. 

For a curvilinear grid defined by the coordinates of the intersections of three 

families of boundary conforming grid lines denoted by (£,77, Q, the coordinates at 
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any point within a cell can be calculated from tri-linear interpolation 

Ä& i?, 0 = (1 - «)(1 " »)(1 - «0 r(7> JiK) + 

(1-u)(l-t;)u; »■(/,./,#+ 1)+ 

(l-u)v(l-w)r(I,J+l,K) + 

(l-u)vwr(I,J + l,K+l) + 

u(l-v)(l-w)r(I+l,J,K) + 

u{l-v)wr(I+l,J,K + l) + 

uv{l-w)r(I + l,J + l,K) + 

uvwr(I + l,J+l,K + l) (2.1) 

where r(7, J, K), r(I + 1, J, K),... are the known coordinates of the eight corners of 

a cell. The index (/, J, K) denotes the three dimensional equivalent of the lower left 

corner of a two dimensional cell; while, (u, v, w) vary between 0 and 1 throughout the 

cell so that 

£ = / + Uj 7=1,2,... ,iV/-l, 0<u<l 

rj = J + v, J=l,2,...,NJ-l, 0<t;<l 

C = K + w, K=l,2,...,NK-l, 0<u;<l        (2.2) 

and R(£, r/, () is a piecewise continuous function over the entire grid. 

For every known point r that lies within a grid, there exists some (£, t], () such 

that r = Ä(f, 77, C). However, in order to find (£, 77, C) that corresponds to a known 

r, the nonlinear function F = fi(<f,T7,C) - r must be minimized. Newton's method 

can be used to minimize this function iteratively using 

£T7l+l   _   £fl or1"1 
F"1 (2.3) 

where £ is the curvilinear coordinate vector (f,77,C), m is tne Newton iteration 
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counter, and the jacobian matrix is calculated from the equations 

^ = d + vC3 + w[C5 + vC7] 

r)F 
^- = C2 + uC3 + w[C6 + uC7] 
OX] 

^- = C4 + uC5 + v [C6 + uCr] (2.4) 

where 

C2=r(I,J+l,K)-r(I,J,K) 

Cz =r(/ + 1,J + 1,K)- r(I, J + l,K)-d 

C4=r(I,J,K + l)-r(I,J,K) 

C5=r(/+l,J,/ir + l)-r(/,J,A'+l)-Ci 

C6=r(I,J+l,K + l)-r(I,J,K+l)-C2 

C7=r(I+l,J + l,K + l)-r(I,J+l,K + l)- 

r(I + l,J,K + l) + r(I,J,K+l)-C3 (2.5) 

Newton's method needs a good starting point; therefore, stored in the leaf nodes 

of the octree and the BSP trees are curvilinear coordinates at which to start the 

search. Although the PM tree classifies a point relative to a superblock, a starting 

point identifies a particular cell within a particular grid of the superblock. If the octree 

is sufficiently refined, the starting point should be close enough to ensure that stencil 

jumping will converge. As the curvilinear coordinates £ are updated with equation 

2.3, if A£ exceeds the range of 0 -> 1 then the search proceeds to a neighboring 

cell and the jacobian matrix, as well as the corners of the containing cell, must be 

updated. This algorithm is commonly called stencil jumping. 
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Hole Cutting 

Beggar uses an outline and fill algorithm for cutting holes. In this algorithm, the 

facets of the hole cutting surface are used to create an outline of the hole. The cells 

of a grid through which a hole cutting facet passes are located by using the PM tree 

to locate the cells containing the vertices of the facet. These cells are compared to 

the facet and are marked as being either on the hole side or the world side of the hole 

cutting surface. If the cells containing the facet vertices are not neighbors, the facet is 

subdivided recursively and new points on the hole cutting facet are introduced. These 

new points are processed just like the original facet vertices to ensure a continuous 

outline of the hole cutting surface. Once the complete hole cutting surface is outlined, 

the hole is flood filled by sweeping through the grid and marking as hole points any 

points that lie between hole points or between a grid boundary and a hole point. The 

marking of holes is capped off by the world side points created from the outline. This 

process is able to mark holes without comparing every grid point against each hole 

cutting surface and it places no special restrictions on how the hole cutting surfaces 

are defined as long as they are completely closed. It also allows holes to be cut using 

infinitely thin surfaces. 

During the search for interpolation stencils, it is possible that a stencil may 

be found that is in someway undesirable. If no other interpolation stencil can be 

found for this point, then the point is marked out and an attempt is made to find an 

interpolation stencil for a neighboring point. This process essentially grows the hole 

in an attempt to find a valid grid assembly. 

There are several weaknesses in this hole cutting algorithm. During the flood 

fill, if the hole outline is not completely surrounded by world side points, a leaky hole 

can result and the complete grid can be marked out. Conversely, the use of recursive 

subdivision of facets to ensure that a complete hole is outlined can dramatically 

increase execution time when hole cutting surfaces cut across a singularity or a region 

of viscous spacing.  In such cases, it is possible to coarsely outline the hole and to 
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use the natural process of marking out points which fail interpolation rather than 

doing the flood fill. This option is often referred to as the "nofill" option based on 

the command line argument that is used to invoke this option and the fact that the 

holes are outlined but are not filled. 

Donors and Receptors 

One of the more important concepts is how to handle block-to-block and over- 

lapped communications. Beggar introduces the concept of donors and receptors to 

deal with the communication introduced by these two boundary conditions. Since 

the flow solver uses a finite volume discretization, flow field information is associ- 

ated with the grid cells or cell centers. A receptor will grab flow field information 

from one cell and store it in another cell. The receptor only needs to know which 

grid and cell from which to get the information. A donor will interpolate flow field 

information from a cell and then put the interpolated data into another storage lo- 

cation. The donor needs to know the grid from which to interpolate data, as well 

as an interpolation stencil for use in interpolating data from eight surrounding cell 

centers. Thus, block-to-block connections can be implemented using only receptors. 

Overlapped connections are implemented with donors. 

If all of the grids' data is stored in core, a donor can be used to interpolate 

the flow data from one grid and to store the interpolated values into another grid. 

However, if all of the grids' data is not available, a small, donor value array (DVA) 

is needed to store the intermediate values. A donor, associated with the source grid, 

is used to perform the interpolation and to store the result into the DVA. Then a 

receptor, associated with the destination grid, is used to fetch the values from the 

DVA and store it into the final location. 
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Boundary Condition Identification 

" The automatic identification of most of the boundary conditions centers around 

several interdependent linked lists. The first of these is a list of the points on the 

boundaries of the grids in each superblock. A tolerance is used to decide if two points 

are coincident, so that the list contains only one entry for each unique boundary point. 

Another tolerance is used to decide if a point lies on a user specified reflection plane. 

Another list is constructed using the unique cell faces on each grid's boundaries. 

While building this list, degenerate cell faces and cell faces that lie on a reflection 

plane are identified. The order of the forming points for a cell face is not important for 

identification, therefore the forming points are sorted using pointers into the points 

list. The cell faces can then be associated with the first point in its sorted list of 

forming points. For a finite volume code, each cell face on a block-to-block boundary 

connects exactly two cells from either the same grid or from two different grids. Thus, 

for a given boundary point, if its list of associated cell faces contains two faces that 

are built from the same forming points, a block-to-block connection is defined. 



CHAPTER 3 
FLOW SOLUTION 

Although the flow solver is not the focus of this work, this section is included 

for completeness. The flow solution algorithm supplies some opportunities for paral- 

lelization that affect the total performance of the code. The governing equations are 

presented, the unique solution algorithms are presented, and the general numerical 

solution techniques are presented. 

Governing Equations 

The equations governing the motion of a fluid are the statements of the con- 

servation of mass, momentum, and energy. As an example, Newton's second law of 

motion describes the conservation of momentum. However, Newton's second law, as 

presented in most dynamics textbooks, is written to describe the motion of a particle, 

a rigid body, or a system of particles i.e. a well defined quantity of mass whose motion 

is described in a Lagrangian reference frame. For the motion of a fluid, it is often 

more useful to consider flow through a region of space or a control volume, i.e. an 

Eulerian reference frame. Considering a control volume V(t) that is bounded by a 

surface S(t), Reynolds' Transport Theorem (see [43, pages 72-87] for an example of 

the derivation) is used to convert the time rate of change of an extensive property of 

a system into integrals over the control volume, i.e. 

jt   f cf>(x, t)dV =   f ^dV + J4m-hdS (3.1) 
V(t) V(t) S(t) 

28 
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These two terms represent a variation in the conserved property within a volume 

V(t) due to some internal sources (the volume integral) and a variation due to flux 

across the boundary surface S(t) (the surface integral). The variable <f> represents any 

conserved quantity (such as /?, pu, pE for mass, linear momentum, and total energy, 

all per unit volume), u is a local velocity vector, and h is the unit vector normal to 

dS. The surface integral is converted to a volume integral using the vector form of 

Gauss's Theorem 

<f<fm-ndS = jv-(fmdV (3.2) 
5 V 

which assumes that V • u exists everywhere in V. Thus, the time rate of change of 

the conserved property can be written as 

| J </>(x, t)dV = J ^ + V • (<fm)dV (3.3) 
V(t) V(t) 

The time rate of change of the conserved quantity is dependent upon source 

terms that can act on the volume or on the surface of the volume. If we can represent 

the source terms by a volume integral of a scalar quantity $ and a surface integral of 

a vector quantity ip, the general conservation law can be written as 

/ |£ + V • (^u)dV =   f^ + V-tpdV (3.4) 

V(t) V(t) 

Since an arbitrary volume is assumed, the integrand must apply for an infinites- 

imal volume. The integral can be removed to yield the differential form 

^ + V.(0ti) = V + V.V (3-5) 
at 

For the conservation of mass, mass is conserved and there are no source terms. 

Replacing <f> by the density p in equation 3.5, the differential, continuity equation is 

d± + V • (pu) = 0 (3.6) 
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or, written in Cartesian coordinates 

at       dx dy dz 

where u, v, and w are the three Cartesian components of the velocity. 

For the conservation of momentum, the source terms are the forces acting on the 

control volume. Ignoring the gravitational and inertia! forces, the sum of the forces 

acting on the system can be written as 

X)F = -  f pndS+  I rdS (3.8) 

S(t) S(t) 

where r is the viscous stress vector and p is the pressure. Note that the pressure 

has been separated from the viscous stress, whereas it is often included as a spherical 

stress term. The differential form is 

dp     drxx     dryx     drzx 
x ~    dx      dx       dy       dz 

F = -^l + ?!k + Üüm + dTzy 
y        dy      dx       dy       dz 

tz ~    dz+  dx  +  dy  +  dz (d-9j 

where TXX, r^, etc are elements of the viscous stress tensor (see reference [43, pages 

171-174] for the derivation). This tensor is symmetricso that ryx = rxy, rzx = TXZ, and 

Tzy = Tyz. Using these equations as the source terms and substituting pu into equation 

3.5 as the conserved quantity, the three Cartesian components of the conservation of 

momentum are 

d(pu) d(pu2 + p)     d(puv)     d(puw) _ drxx drxy drxz 

dt dx              dy           dz          dx dy dz 
d(pv) d(puv)     d(pv7 + p)     d(pvw) _ drxy dryy dryz 

dt dx             dy              dz          dx dy dz 
d{pw) d(puw)     d(pvw)     d(pw2 + p) _ drxz dryz drzz 

~dT + ~dx~ + ^y~+     dz     -~dx~ + 'W + ~dT       (3J0) 

where the pressure terms have been moved to the left hand side. Formally, these 

equations are the Navier-Stokes equations. However, in general, the term Navier- 

Stokes equations is used to refer to the complete set of conservation laws when the 

viscous terms are included as shown here. 
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For the conservation of energy, the source terms are the rate of heat transfer to 

the system minus the rate of work done by the system. Substituting pE into equation 

3.4, the conservation of energy is written as 

d(pE) 

V(t) 

or, in differential form 

/ dt 
+ V • (PEu)dV = Q - W (3.11) 

d(pE) 
dt 

+ V • (pEu) = Q - W (3.12) 

(3.13) 

Ignoring any internal heat sources, the heat transfer rate can be written as 

Q = —  / q • ndS 

5(t) 

where q is the heat flux vector. This integral can be converted to a volume integral 

and then written in the differential form 

A _ _dq      dq      dq 
y~   8x 

(3.14) 
dy     dz 

The work rate is due to the forces acting on the surface of the control volume. 

Ignoring any work by gravitational or inertia forces, the work rate is written in the 

form 

W =      pu- hdS —      T • udS 

5(0 5(0 

(3.15) 

The differential form is 

dpu     dpv     dpw 
W =^— + ^r- + -= TV-- r< 

dx       dy 

'xy 
du     dv 
dy     dx 

dz 

— TT 

du 
dx 

dv 

'dy 

dw 
wa»    Tzzdz 

du     dw 
dz     dx 

— T, yz 
dv     dw 
dz     dy 

(3.16) 

Plugging equations 3.14 and 3.16 into equation 3.12 yields the final differential form 

of the conservation of energy equation 

dq     dq     dq d{pE)     du(pE + p)     dv(pE + p) , dw(pE + p) _l _ 1  |- 
dt     ' dx ' dy ' dw        ~    dx     dy     dz 

d (rxxU + TxyV + TXZW)       d(TxyU + TyyV + Tyzw)   |   d{rxzu + Tyzv + Tzzw) 

dx dy 

+ 

+ dz 
(3.17) 
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Counting the primitive variables p, u, v, w, E, p, and T and the 6 unique 

elements of the viscous stress tensor, there are 13 unknowns and only 5 equations 

(the conservation laws). In order to make a solution tractable, 8 more equations are 

needed. 

Fortunately, a relationship between the components of the stress tensor and 

the velocity gradients is possible. The velocity gradients are directly related to the 

rate-of-strain tensor and the vorticity tensor. Constitutive equations then define 

the relationship between the stress components and the rate-of-strain components. 

For a Newtonian fluid, a linear relationship between the stress and the strain rate is 

assumed. Since the strain rate tensor is symmetric, there are only 6 unique strain rate 

components. Assuming a linear relationship between the 6 unique stress components 

and the 6 unique strain rate components, there are 36 material constants that must 

be defined. The assumption of an isotropic material reduces this to 2 constants. For 

fluids, these two constants are the dynamic viscosity u and the second coefficient of 

viscosity A. From Stoke's hypothesis, the relationship 

A = -|/* (3.18) 

can be used for the compressible flow of air. For a Newtonian, isotropic fluid, the final 

relationships between the components on the stess tensor and the velocity gradients 

are 

du     dv     dw^ 
dx     dy     dz j 

Tw -Zfi\~dx~ + 2dy'~~dz~) 
2   (   du 

= 3" \-Tx - 
(du 

(du 

P + 2: 
dy 

dv\ 
dx) 
dw\ 

TVZ 
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With the original 5 conservation equations and the 6 relationships between the 

viscous stesses and the velocity gradients, only 2 more equations are needed. If a 

perfect gas is assumed, the thermodynamic state can be specified by only two ther- 

modynamic variables. If p and p are choosen as the two independent thermodynamic 

variables, the perfect gas law 

p = pRT (3.20) 

(where R is the gas constant) can be used to calculate the temperature T.   The 

relationship for the internal energy e per unit mass is 

e = 
P (3.21) 

P(7 " 1) 

where 7 is the ratio of specific heats (7 = 1.4 for air) and the total energy per unit 

mass is related to the internal energy by 

E = e+l-U2 (3.22) 

where U is the magnitude of the velocity vector u. 

Vector Form 

The three conservation laws, written in differential form, can be combined in the 

vector differential equation 

^,^i + ^i + ^i = ^ + ^i + ^ (3.23) 
dt + &r      öy       dz       dx ^ dy T dz K      J 
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Q = 

'         > ' > f •> 

p pu 0 

pu pu2+p Txx 

pv > ,    fi=< puv S      fv = < Txy 

pw puw T~xz 

pE 

pv 

u{p> 
1 

E + P), 
r 

UTXX + VTxy + WT 

> 

0 

xz -qx 

pvu 'ry 

9i=< pv2 + p 

pvw 

v(pE + p) 

pw 

pwu 

> ,    9v = < 

ryZ 

UTXy   +  VTyy   +  lüTyZ    ~  % 

(                                                                                                                                                                                                                                      > 

0 

Txz 

> 

hi = < pwv 

pw2 + p 

> ,    hv= < 

Tzz 

> 

w(pE + p) UTXZ + 
< 

VTyz + WTZZ - qz 

(3.24) 

The first component of the vector equation represents the conservation of mass. The 

next three components represent the conservation of momentum. The fifth component 

represents the conservation of energy. 

The terms /;, #, and /i, represent the inviscid flux vectors and /„, gv, and hv 

represent the viscous flux vectors. Setting fv = gv = hv = 0 recovers the equations 

governing inviscid fluid flow, i.e. the Euler equations. The elements of the vector q 

are the conserved variables, as opposed to the primitive variables p, u, v, w, and p. 

The use of subscripts on the terms qx, qy, and qz represents the components 

of the heat transfer vector as opposed to partial derivative notation. Considering 

only heat conduction, Fourier's law can be used to relate the heat flux vector to the 
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temperature gradient 

q = -kVT (3.25) 

where k is the heat conductivity and T is the temperature.  The Prandtl number, 

defined as 

Pr = ^ (3.26) 
k 

is used to compute the heat conductivity k from the viscosity fj, (for air at standard 

conditions, Pr = 0.72). Using the relationship 

7R 
CP=        1 7-1 

for a perfect gas, the components of the heat flux vector can be written as 

- *fR   H dT 
qx~~1-\Prdx 
- 7R   ft dT 
*iy~    -r-lPrdy 
- 7R    n dT 
qz~~1-\Prdz 

Non-Dimensionalization 

(3.27) 

(3.28) 

The governing equations are non-dimensionalized by freestream conditions so 

that 

P        -       u       -       v w       z p P-  E 

poo Ooo Ooo Gtoo PooOSo «, 

y      ._ z_     - _ Jf_     r_ to. 
00 

00 
* = -     y=T,    z = y,    ß = -^,    t = ^ (3.29) 

where the " denotes non-dimensional quantities, the subscript 00 denotes freestream 

conditions, L is some dimensional reference length and a is the speed of sound, which 

is defined by the relations 

a=./^=x/7Rr (3.30) 
V   P 
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The Mach number is the non-dimensional velocity. The freestream Mach number 

is 

Moo = — (3.31) 

where Uoo is the magnitude of the freestream velocity. Therefore, the non-dimensional 

velocity components become 

Ü = -^-Moo,    v = —Moo,    w = —Moo (3.32) 
Uoo ^oo I'oo 

The terms u/Uoo, etc represent scaled direction cosines; therefore, the non-dimensional 

velocities are scaled values of the Mach number. 

The Reynolds number is the non-dimensional parameter 

Re = PooU°°L (3.33) 

which arises from the non-dimensionalization of the conservation of momentum equa- 

tion. This parameter represents the ratio of inertia forces to viscous forces. 

The non-dimensional governing equations can be written in the same form as 

equations 3.23 and 3.24 by replacing the dimensional quantities by the correspond- 

ing non-dimensional quantities. However, in the process of non-dimensionalizing the 

equations, the non-dimensional term Moo/Re arises from the viscous flux vectors. 

Therefore, the definition of the viscous stresses and the heat flux components must 

be modified as 

_ 2.Moo (Jdü     dv     dw\ 
Txx=3^1te\dZ~dj)~~dIJ 

_ 2.Moo f   du      dv     dw\ 
Tyv ~ 3P Tfe \di +   d§ ~ ~di) 

_ 2.Moo (   du     dv      dw 
Tzz~3^~te\~dl~~dlj+~dl 

_ -Moo (du     dv\ 
Txy " * Re \dy + dx) 

Trz_/i Re  \dz     dx) 

.Moo (dv     dw\ T" = ^I^{TZ 
+
 W (3-34) 
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and 

1 fiM^df 
<**-    1-\pr Re dx 

1     fi M^df 
%~    7 - 1 Pr Re dy 

3 = _J_AM^ (3.35) 
qz        7 -1 Pr Re dz V       ' 

The non-dimensional equation of state becomes 

p = ^ (3.36) 
7 

and the non-dimensional energy is related to the non-dimensional density and pressure 

by the equation 

E=~P-— + hü2 + v' + w2) (3.37) 
pin -1)   2 

The non-dimensional viscosity coefficient is related to the non-dimensional tempera- 

ture by the power law 

fi = f2/3 (3.38) 

Coordinate Transformation 

The use of a general, boundary conforming, structured grid introduces an ordered 

set of grid points represented by Cartesian coordinates given at the integer curvilinear 

coordinates f, 77, £. In order to solve the governing equations in this curvilinear 

coordinate system, the partial derivatives with respect to the Cartesian coordinates 

must be converted into partial derivatives with respect to the curvilinear coordinates. 

This requires a transformation of the form 

£ = £0,y,M)>    r1 = r1(x,y,z,t),    C = C(*,y,M),    r = r{t) (3.39) 
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Applying the chain rule, the partial derivatives with respect to the Cartesian coordi- 

nates can be written as 

9 -c 9 ± i^i 

9 -c±.   i^i 
dy~*ydt+rhdr,+t"dC 
9 -*±M    iL + r9- 
dz~*'d£+r,'dri + (tZd( 

9 d^tdA.     9±r9 rt/uH 
m = Ttd-T

+^ + T1% + Ctdc (3-40) 

where the term £x represents the partial derivative of £ with respect to x, etc. Thus, 

the metric term £x represents the variation in £ with a unit variation in x while y, z, 

and t are held constant. These terms are not easily evaluated. However, the partial 

derivatives of the Cartesian coordinates with respect to the curvilinear coordinates 

that arise from the inverse transformation represented by 

X = X(Z,T1,(,T),    y = y(£,77,C,r),    z = 2(^,17, C,r),    t = t(r) (3.41) 

are easily evaluated. Applying the chain rule again, the partial derivatives with 

respect to the curvilinear coordinates can be written as 

d d d d 
dl = Hdx-Vy^zWz 
d _     d d_        d_ 
d^~Xr'dx+y,1dy + Zr'dz 
d d d d 

Tc = Xcdx- + y% + z<:dz' 

d^ = tTäi + X^ + y^ + ^d-z (3'42) 

Comparing equations 3.40 and 3.42 the Jacobian matrix of the transformation 3.39 

is seen to be the inverse of the Jacobian of the inverse transformation 3.41 (see [44, 
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appendix A] for a complete derivation). This yields the relationships 

& = (VvzC ~ ZvVdlJ 

ty = (Zr,XC - Xr,ZC)/J 

& = {xnVC ~ VnH)lJ 

£t = -TtXT£x - TtVriy ~ TtZT(z 

T]x = {ztva - y^yj 

T)y = (XiZC - Zpü/J 

f]z = (y&c - xm)/J 

r]t = -Ttxrr)x - Ttyrr)y - TtzTrjz 

Cx = faz* - HVv)/J 

Cy = {zixn - Xtzv)/J 

(z = (X&r, - ytXri)JJ 

Ct = -TtXrCx - nyrCy ~ TtZrCz (3-43) 

W here J is the determinant of the Jacobian matrix of the inverse transformation 

J = xt(yvzc - ZM) - ydxr,zC - znxc) + H{
X

IV<. ~ y*x<) C3-44) 

The governing equations are then written in the form 

ÖQ , dFj-Fv     dGj-Gv     8Hj-Hv ,      . 
dr+    at    +    drj    +     dc v * ; 
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where 

Q = Jq 

Fi = J{q£t + f& + Qity + hi£z) 

d = J{qr\t + /,-Tfe + gfly + hjqz) 

Hi = J(qCt + /,Cx + £7,4 + hid) 

Fv = J(fvZx+gM + hvZz) 

Gv = J(fvVx + 9vVy + hvVz) 

Hw = J(/„Cr + g„Cf + ^Ci) (3-46) 

Flux Vector Splitting 

The model hyperbolic equation is the one-dimensional linear convection equation 

du       du     . ,n ._v 

m+aTx = o (3-47) 

If a > 0, this equation describes the propogation of a wave in the +x direction at the 

velocity a. The use of a backward time difference and a forward space difference or a 

central space difference to produce the explicit discretized finite difference equations 

,,"+1   ,,n ,.n       ,.n 
"'•   A   "* + a"'+1

A     ' = 0 (3.48) 
At Ax v 

and 

u?+1 - u?  .    v?+l - tx?_! i. + a" «+i       '-* = o (3.49) 

yields unconditionally unstable solution schemes. Instead, with a > 0, a backward 

space difference of the form 

"'   A   "'• + a^-^ = 0 (3.50) 
At Ax K      J 

is required to produce a stable scheme.   Since the wave is propogating in the +x 

direction, the backward space differencing represents "upwind" differencing.  If the 
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wave speed a were negative, a forward space difference, again representing upwind 

differencing, would be required to produce a stable scheme. 

The goal of "flux vector splitting" [45] is to split the flux vector into components 

which are associated with the positive and negative direction propogation of informa- 

tion so that upwind differencing can be used. This produces a stable scheme without 

the addition of any artificial dissipation that is often done with central difference 

schemes. 

Consider the one-dimensional Euler equations in Cartesian coordinates 

Since the flux vector is a homogeneous function of degree one of Q, the governing 

equations can be written in quasi-linear form 

£+*£=« (3-52) 
at       ox 

(this looks alot like the model equation). The matrix A = dF/dQ, is the flux Jacobian 

matrix. This matrix can be decomposed in the form 

A = RAR-1 (3.53) 

here the columns of R are the right eigenvectors of A, the rows of /?_1 are the left w 

eigenvectors of A, and the matrix A is a diagonal matrix with the eigenvalues of A 

along the diagonal. The eigenvalues are of the form 

Ai = A2 = A3 = u 

A4 = u + a 

X5 = u-a (3.54) 

where a is the speed of sound. For locally subsonic flow, some of the eigenvalues will 

be positive and some will be negative. Thus the matrix A can be written as 

A = A++A- (3.55) 
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where A+ contains only the positive eigenvalues and A" contains only the negative 

eigenvalues. Substituting this into equation 3.53, the Jacobian matrix is split into 

A = RA+R'1 + RA~ R'1 

= A+ + A- (3.56) 

and the split flux vectors are denned from the homogeneity property as 

F+ = A+Q 

F- = A-Q (3.57) 

so that 

F = F+ + F~ (3.58) 

Upwind differencing is then used appropriately with the split flux vectors in the 

discretized governing equations. The complete form of the split flux vectors can be 

found in reference [46]. 

An implicit discretization of the governing equations can be written as 

AQn+1 + Ar (^F"+1 + S^GT*1 + ScH
n+1) = 0 (3.59) 

where the superscript n denotes the time step, 

AQn+1 = Qill ~ QM (3-6°) 

and 

S"G= Ä5  
ScH = HitjMl,2-H^k_ll2 (3 61) 

For a finite volume discretization, the indices i,j, k represent a cell in which the 

dependent variables Q are assumed to be constant, and indices i + 1/2,j, k and 
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i - l/2J,k, for example, axe opposing cell faces at which the flux is evaluated. The 

changes in the curvilinear coordinates A£, Ä77, and AC are unity. 

A first order time linearization of the flux terms [47, 48], leads to the equation 

AQn+1 

Ar ■^♦©"^♦«■MS)"*0*" 
+SC 

'-<%)' 
AQ ,n+l = 0 (3.62) 

Introducing the split flux vectors, produces the form 

AQn+1 

Ar 

+Sr, 
fdG 
mr^ + s. 

\dQj 
AQ ,n+l + 8n (m\Q~' 

dQ 
AQ lTl+1 ^VAO- +Ml^JAQr + Sc 

\dQj 

(iff"?" 
= -5e (F

+ + F-y + 5, (G+ + G-)n + Sc (H
+ + H~)n (3.63) 

or 

where 

AQ 

_\n+l 

+ Si [(A+y (AQ+)n+1 + (A-y (AQ-) 

+5, [(B+y (AQ+)n+1 + (B-y (AQ-) 

+SV [(C+)n (AQ+)n+1 + (C-y (AQ-) 

_\n+l 

-\n+l = -Rn 

_in 
R» = 6^ [F+ + F~]n + 8, [G+ + G-]n + 8C [H+ + H~) 

(3.64) 

(3.65) 

It should be noted that the Jacobian matrices A+,A~, etc axe not the same as the split 

flux Jacobian matrices A+,A~, etc that were presented in equation 3.56. Instead, the 

notation A+ is used to represent dF+/dQ, for example. This is required to preserve 

the conservation form of the equations. The final form of these Jacobian matrices, 

and the derivation thereof, can be found in reference [44, appendix B]. 

In evaluating the split flux vectors at the cell faces according to the difference 

operators defined in equation 3.61, dependent variables from cells upwind of the cell 

face are used. For a first order spatial discretization, only the neighboring cell is used. 
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For second order accuracy, the dependent variables from the two neighboring cells are 

extrapolated to the cell face. As an example, the (+) flux is evaluated using cells to 

the left of the cell face 

Ff+l/2,j>k = F+ (Qf+1/2,,fc) (3.66) 

where 

Qf+i/Tj* = QiJ,k (3-67) 

for a first order accurate scheme, and 

Qf+i/2,i,* = \QM ~ \Qi-u,k (3-68) 

for a second order accurate scheme. Likewise, the (—) flux is evaluated using cells to 

the right of the cell face 

F«i/2j,k = F- (Qf+1/2^) (3-69) 

where 

Qf+i/2j,* = Qi+ijjk (3-70) 

for a first order accurate scheme, and 

3 1 
Qi+i/2,j,k = 2*2«'+IJ.* ~~ 2®i+2>i'k (3-71) 

for a second order accurate scheme. The extrapolation of the conserved variables to 

the cell face and their use to calculate the flux is often referred to as MUSCL extrap- 

olation [49]. Alternatively, the primative variables can be extrapolated and used to 

calculate the flux or the flux can be evaluated at the cell centers and extrapolated to 

the cell center. 

In the higher order schemes, flux limiters, applied to the flux, conserved variables, 

or the primitive variables, are used to selectively reduce the scheme to first order to 

avoid oscillations in the solution near discontinuities. The flux limiters available 

include the minmod, van Leer, and van Albada limiters. 
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Flux Difference Splitting 

" Hirsch [46] describes upwind methods as methods in which physical properties of 

the flow equations are introduced into the discretized equations. Flux vector splitting 

introduces the direction of propogation of information through consideration of the 

sign of the eigenvalues in the discretization. Another method that handles discontinu- 

ities well is due to Godunov [50]. In Godunov's method, the conserved variables are 

considered constant throughout each cell and a one-dimensional exact solution of the 

Euler equations is computed at each cell boundary. The two constant states on either 

side of a cell boundary define a Riemann (or shock tube) problem that can be solved 

exactly. An integral average of the exact solutions to the Riemann problems at each 

cell is taken to determine the solution at the next time step. Other methods have 

replaced the computationally expensive exact solution of the Riemann problem with 

an approximate Riemann solution. These methods, including the popular method 

due to Roe [7], are often referred to as "flux difference splitting" methods. 

Considering the quasi-linear form of the one-dimensional Euler equations shown 

in equation 3.52, the elements of the Jacobian matrix A are not constant. Roe pro- 

posed replacing this non-linear equation with the linear equation 

£ + *£ = <> (3-72) 
at        ox 

where A is a constant matrix. This equation is solved at the interface between two cells 

to determine the flux at the interface. The matrix A is chosen so that the solution 

of this linear equation gives the correct flux difference for the non-linear Riemann 

problem. The properties required of A are 

i It constitutes a linear mapping from Q to F 

n limQ^QH-K? KQL,QR) = A(Q) = §g 

iii F(QR) - F{QL) = A(QL, QR) • (QR - QL) 

iv The eigenvectors of A are linearly independent 
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The superscript ()L and ()R represent quantities on the left and right sides of the 

interface. 

The matrix A for the approximate Riemann problem is constructed from the 

flux Jacobian matrices where the primitive variables are replaced by the Roe averaged 

variables 

sffuL + yffuR 

\fpTvL + \ftPvR 

U = 

V = 

W = 

where H is the total enthalpy per unit mass, which is related to the total energy per 

unit mass by the relationship 

# = £ + - (3.74) 
P 

The solution of the approximate Riemann problem yields the following equation 

for the flux at a cell interface 

Fi+\/2J,k = 2 \Fi+l/2jJt + Ft+l/2j,k) ~ 2 |Ä+1/2,J,*| (Qt+l/3j,fc _ Qi,j,k)        (3-75) 

where 

|Ä| =/? |Ä|/T1 (3.76) 

where the (~) notation is used to denote that the Roe averaged variables are used in 

the evaluation. The assumption is made that the wave from the solution of the 

one-dimensional Riemann problem move normal to the interface. For the three- 

dimensional problem, the one-dimensional solution is repeated for the three directions. 
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For first order spatial accuracy, the primitive variables used in the Roe averaged vari- 

ables come from the cells neighboring the interface. For second order accuracy, the 

values are extrapolated as shown in equation 3.71. 

Newton Relaxation 

Newton's method for a non-linear system of vector functions 

F{x) = 0 (3.77) 

can be written as 

F(x) (xm+1 - xm) = -F(xm) (3.78) 

This defines an iterative procedure for which m is the iteration counter and Fix) is 

the Jacobian matrix defined by 

Following the presentation of Whitfield [51], the discretized governing equation 

3.59 leads to the function 

AT 

AQ ,n+l 
_     A      +fi(Qn+1) (3-80) 

AT 

for which a solution is sought by Newton's method. Here, the vector Q contains the 

dependent variables for every cell throughout the entire grid system. The Jacobian 

. matrix is defined by 

:FwQn+1) = _l + dJW|1) (3.81) 
'^v     >     AT       dQn+1 

which yields the iterative scheme 

^7 + \dQj 
AQ in+l.m+l _ _ 

yi+l,m       /-»n ■/-)n+l,m _ rx 
^— 5£_ + Ä(Qn+l.»») 

i^Tmin 
(3.82) 
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where 

pn+l.m+l _ Qn+l,m   ,   ^Qn+l,m+l 

gn+1,0 = gn 

n denotes the time level, m is the Newton iteration counter, Ar/ is the local time 

step, and Armtn is the minimum time step. Flux vector splitting is used on the 

left-hand-side and flux difference splitting with Roe averaged variables is used on 

the right-hand-side. Steger-Warming jacobians, Roe analytical jacobians, or Roe 

numerical jacobians can be used. 

Each iteration of the Newton's method is solved using Symmetric Guass-Seidel 

(SGS) iteration. The SGS iterations, or inner iterations, are performed on a grid by 

grid basis; while the Newton iterations, or dt iterations, are used to achieve time accu- 

racy and are performed on all grids in sequence. This procedure eliminates synchro- 

nization errors at blocked and overset boundaries by iteratively bringing all dependent 

variables up to the rn+1 time level. The fixed time step, Armtn, is used to maintain 

time accuracy and a local time step, Ar/, is used for stability and convergence of the 

Newton iterations. Steady state calculations do not use Newton iterations. The first 

term on the right-hand-side of equation 3.82 becomes zero and local time stepping is 

used during the inner iterations. 

Explicit boundary conditions (BC) can be used or implicit BC's can be achieved 

by updating the BC's during the SGS relaxation solution of Equation 3.82 [52]. An 

under-relaxation factor is applied to the implicit BC update to improve stability. 

Fixed-Point Iteration 

A linear system of equations of the form 

Ax = b (3.83) 
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can be solved using the general fixed-point iteration scheme 

xm+i = xm + c(fc _ Axmj        m = 1,2,3,... (3.84) 

(see, for example, reference [53, pages 223-233]). This iteration function is in quasi- 

Newton form. The function for which a zero is being sought is f(x) = Ax - b. 

However, the matrix C is an approximate inverse of A rather than the inverse of the 

derivative of /. This approximate inverse is defined by the requirement that 

||/-CA||<1 (3-85) 

for some matrix norm. 

The coefficient matrix A can be written as 

A = L+D+U (3.86) 

where L is the lower triangluar elements of A, D is the diagonal elements of A, and 

U is the upper triangluar elements of A. If A is diagonally dominant, D_1 is an 

approximate inverse of A and the iteration function 

xm+l =xm + 0-1 (6 _ Axm) (3.87) 

will converge. This is Jacobi iteration. It can be rewritten as 

Dxm+1=b-(L+U)xm (3.88) 

or as 

*?+1 = U - £ «,;*? - E <**?) ^      *'= *' • •''n (3-89) 

to explicitly show how each element of x is updated. The distinquishing characteristic 

of Jacobi iteration is that the iteration function only uses values of x from the previous 

iteration. 

Gauss-Seidel iteration comes from the choice of C = (L + D)"*1. This gives the 

iteration function 

xm+l = xm + ^ + Dyl (6 _ ^m) (3.90) 
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(L + D)xm+1=b-UxT (3.91) 

or 

Dx m+l _ = b - Lxm+1 - Ux (3.92) 

To explicitly show how each element is computed, this is written as 

x«+i = L - £ aijX^
1 - J2 aHx?) ~       » = 1, • ■ ■ ,» (3-93) 

As each element of x is updated, the previous elements of x, which multiply the lower 

triangular elements of A, have already been updated. Thus, for the summation that 

represents — Lx, the elements of x are evaluated at iteration m + l. In other words, 

when updating an element of x, the most up to date values of x are used. 

If Gauss-Seidel iteration is guaranteed to converge, it will converge faster than 

Jacobi iteration. It also has the side benefit that only one array is needed to store x 

during the iterations. 

Parallel Considerations 

Following the analysis presented in reference [37], the solution algorithm could 

be written as a global system of linear equations 

Ai,i    Ah2 

^2,1      -^2,2 

AN,I   AN,2 

AIJJ 

f 

A2,N 
< 

AQ2 
» = < 

ANJ! AQN 
h 

-F2(QI,Q2,'~,QN) 
(3.94) 

The diagonal, block matrix elements, An, represent the coupling within a grid due to 

the implicit time discretization. These elements are banded, sparse matrices defined 

by the spatial discretization.  The off-diagonal, block matrix elements, Aij(i / j), 
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represent the coupling between grids i and j due to block-to-block and/or overlap- 

ping boundary conditions. The coupling between grids is dependent on the relative 

positions of the grids. Thus, some of the off diagonal elements will be zero. 

Together, these elements form a large, sparse matrix. This large system of linear 

equations could be solve directly; however, this would not be efficient and does not 

lend itself well to parallel computing. Instead, the off-diagonal terms are moved to 

the right-hand-side. Thus, block-to-block and overlapped boundary conditions are 

treated explicitly. This gives a decoupled set of equations of the form 

Ahi     0 

0     A2)2 

0       0 

0 AQ/ -Rx 

0 
< 

AQ2 
> = < 

-R2 

AN,N AQN —RN 

(3.95) 

where -Ri = -F,(Q1,Q2,...) - £j* AJAQJ.   Each decoupled equation can be 

solved using Gauss-Seidel iteration. 



CHAPTER 4 
6DOF INTEGRATION 

In order to solve store separation problems, we must be able to simulate the 

general motion of bodies under the influence of aerodynamic, gravitational, and ex- 

ternally applied loads. We will ignore structural bending; therefore, we can limit 

ourselves to rigid body motion. This chapter presents the basis for the 6D0F rou- 

tines in Beggar that were written by Belk [4]. This is similar to the method presented 

by Meakin in reference [54]. The equations of motion, the coprdinate systems used, 

and the techniques used to integrate the equations of motion are presented. 

Equations of Motion 

The unconstrained motion of a rigid body is modeled by Newton's second law 

of motion 

F = ma (4.1) 

where F is the total force acting on the body, m is the mass of the body, and a is the 

resulting acceleration of the body. This can be written as the conservation of linear 

and angular momentum 

F = L (4.2) 

M = H (4.3) 

where L = mV is the linear momentum, H = Iw is the angular momentum, and 

M is the total applied moments about the body CG. The dot notation represents 

52 
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the derivative with respect to time, V is the translational velocity vector, a; is the 

rotational velocity vector, and / is the rotational inertia tensor 

/ = 

lxx 'xy '■xz 

~*xy        lyy     ~'yz 

-/TZ      ^lv 

(4.4) 

constructed from the moments (/«, Im, IZz) and products (Ixy, IXz, Iyz) of inertia of 

the body. The six degrees-of-freedom (6D0F) of the motion are represented by the 

translational position of the CG and the rotation of the body about its CG. 

Equations 4.2 and 4.3 can only be applied in an inertial reference frame (IRF); 

therefore, the derivatives of the linear and angular momentum must be taken with 

respect to an IRF. However, the body moments of inertia and products of inertia will 

vary with time (due to body motion) if they are defined relative to a fixed, global 

coordinate system. Thus, it is easier to use a non-inertial, local coordinate system 

that is fixed relative to the body, so that the moments and products of inertia will 

remain constant. 

In order to apply equations 4.2 and 4.3 in a moving, local coordinate system, 

we need to relate the derivatives with respect to this non-inertial reference frame to 

derivatives with respect to an IRF. This relationship is defined by the equation 

ä/xYZ=ä/Tyz + "xa (45) 

for any vector a denned in a coordinate system xyz that is rotating by u> relative 

to an IRF XYZ. Applying this relationship to L and assuming that the mass m is 

constant, equation 4.2 becomes 

-=V/     +u>xV (4.6) 
m /  xyz 

or 

yj      =£_o,xy (4.7) 
/  xyz        TfX 
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Applying 4.5 to H, equation 4.3 becomes 

M = lu/xyz + w x H (4.8) 

or 

w/^rz/^M-r^x/w (4.9) 

Equations 4.7 and 4.9 are the equations of motion written with respect to the 

local coordinate system (see Etkin [55] for a more complete derivation of the equations 

of motion). These equations can be integrated twice with respect to time to get a 

time history of the translational and rotational position of the rigid body. However, 

since the equations of motion are written with respect to the local coordinate system, 

the change in position coming from the integration of the equations of motion is of 

little use for tracking the body motion since the local coordinate system is always 

changing. Instead, the changes in body position must be transformed back to the 

global coordinate system so that the position and orientation of the body relative to 

the global coordinate system can be maintained. 

Coordinate Transformations 

The local coordinate system is represented by the lower case letters xyz, while 

the global coordinate system is represented by the upper case letters XYZ as shown in 

figure 4.1. The origin of the local coordinate system is placed at the CG of the body, 

the +x axis extends forward along the longitudinal body axis, the +y axis extends 

laterally along what would be an aircraft's right wing (from the pilot's perspective), 

and the +z axis extends downward in the direction defined by the right-hand rule. 

The rotation of the local coordinate system relative to the global coordinate 

system can be represented by the three Euler angles of yaw (ip), pitch (#), and roll 

((f)). As shown in figure 4.1, the local coordinate axes, which are initially aligned with 

the global coordinate axes, are first rotated by xj> about the Z axis to produce the x'y'Z 
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Figure 4.1: Transformation from global to local coordinates 

axes. These axes are then rotated by 9 about the y' axis to produce the xy'z" axes. 

These axes are then rotated by <f> about the x axis to produce the local coordinate 

axes xyz (see Blakelock [56] for another description of the coordinate systems). These 

transformations are written in matrix form as 

(4.10) 

(4.11) 

(4.12) 

With the notation [/?*(<£)] representing a rotational transformation matrix constructed 

for rotation about the x axis by an angle <j), the complete transformation from local 
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coordinates to global coordinates can be written as 

X 
(         \ 
X 

/W). Ry(0) RM_ < y 

z 

,   =   i 

Ü 

i     \ 
X 

(4.13) 

or 

(cos i\) sin 6 sin <f>— (cos ijj sin 9 cos (f>+ 

sin ip cos 4>) sin ip sin 4>) 

(sin ^ sin 6 sin <£+ (sin ^ sin 9 cos <£— 

cos ip cos 0) cos ^> sin (f>) 

sin 0 cos 6 sin 0 cos 0 cos <f> 

Since the rotational transformations are orthonormal, the inverse transform is equal 

to the transpose. Thus, the complete transformation from global coordinates to local 

coordinates can be written as 

cos ip cos 9 

sin V> cos 9 
y 

z 

> = < (4.14) 

/W)]Tfa(»)]T['W)]T< ['1 Y ... 

X 

z ['} 

(4.15) 

which is equivalent to the transpose of the matrix shown in equation 4.14. 

If the Euler angles i>,9,(f> are used to track the angular position of the body 

relative to the global coordinate system, a relationship is required to convert the 

rotational velocity vector u> in local coordinates (calculated from the integration of 

equation 4.9) to the rate of change of the Euler angles. However, the Euler angles 

are not applied about the global coordinate system axes and thus the transformation 

from local to global coordinates can not be applied. Referring back to figure 4.1, ^ is 

applied about the Z axis, 9 is applied about the y' axis, and <j> is applied about the 

x axis. Therefore, the rotational velocity vector can be decomposed as 

u> = pex + qey + rez (4.16) 
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or 

u = ij>ez + 9ey> + j>ex (4.17) 

Decomposing the unit vectors ey> and ez into the xyz coordinate system yields 

eyi = cos (f>ey — sin <f)ez (4-18) 

and 

ez = - sin 6ex + cos 9 sin (f>ey + cos 0 cos <f>ez (4.19) 

as can be seen from the transformation matrices in equations 4.12 and 4.14. Com- 

bining equations 4.16-4.19 yields the relationships 

p = (j> — ip sin 6 

q = xj) cos 0 sin (j> + 0 cos ^ 

r = ^ cos 0 cos <f> — 9 sin (f> (4.20) 

which can be inverted to give 

$ = p + q tan 0 sin 0 + r tan 0 cos ^ 

9 = q cos (j> — r sin <^ 

ip = (q sin cf> + r cos <ß)/ cos 9 (4-21) 

As 0 -»■ 7T/2, cos -»• 0 and tan ->■ oo; therefore, 0 -*■ oo and j> -)• oo. This singularity 

is called "gimble lock" [57]. 

Quaternions 

Quaternions were developed by Hamilton [58] as an extension to complex num- 

bers and have been used in 6DOF simulations [59] because their use avoids the gimble 

lock problem. They have properties similar to both complex numbers and vectors. 
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Like a complex number, which has a real part and an imaginary part, a quaternion 

has a scalar part and a vector part and is often written as 

Q = e0 + eii + e2j + e3k (4.22) 

where i, j, and k are unit vectors in the three Cartesian coordinate directions. 

The multiplication of two quaternions requires the additional rules of quaternion 

algebra 

ij = -ji = k 

jk = —kj = i 

ki = -ik = j (4.23) 

which are similar to the rules of complex math and vector cross products.   The 

multiplication of two quaternions is simplified if we rewrite equation 4.22 as 

Q = Qo + Q (4.24) 

which emphasizes the scalar and vector components. Following the distributive prop- 

erty, the multiplication of two quaternions is 

PQ = (Po + P)(Qo + Q) 

= P0Qo + PoQ + QoP + P 0 Q (4.25) 

The ® operator can be shown to be equivalent to 

P®Q = PxQ-PQ (4.26) 

Similar to complex arithmetic, the conjugate of a quaternion is defined as 

Q* = Qo-Q (4.27) 

The product of a quaternion and its conjugate is thus 

QQ* = Q*Q = el + el + t\ + t\ = |Q|2 (4.28) 
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or the square of the magnitude of the quaternion. A unit quaternion is a quaternion 

of unit magnitude. 

For the unit quaternion of the form 

Q = cos(a/2) + A sin(a/2) (4.29) 

the transformation 

QVQ* = V (4.30) 

rotates the vector V about the axis denned by the unit vector A by an angle a to 

produce the vector V. Since this is a unit quaternion, Q* is the inverse of Q. Thus 

the inverse transformation 

CTV'Q = V (4.31) 

rotates the vector V about the axis denned by A by an angle of -a to recover V. 

If the unit vector A is defined to be equivalent to ex of our local coordinate 

system, a is equivalent to the roll angle 4> and the rotational position of the body can 

be represented by the quaternion 

Q = cos(<£/2) + exsin((£/2) 

= cos(0/2) + [cos tp cos 6i + sin xp cos Oj - sin 9k] sin(</>/2) (4.32) 

where », j, k represent the three cartesian coordinate directions ex, ey, ez of the IRF. 

Then equation 4.30 represents the transformation from local coordinates to global 

-coordinates and equation 4.31 represents the transformation from global coordinates 

to local coordinates. Equation 4.32 gives the relationship between the Euler angles 

and the components of the quaternion. Alternatively, the transformation in equation 

4.31 can be compared to a general transformation matrix to find the relationship 

between the components of the quaternion and the elements of the transformation 

matrix. 
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The only other relationship needed in order to use quaternions to track rigid 

body motion is the knowledge of how to update the quaternion. Without going 

through a derivation, the following derivatives of the scalar and vector components 

of a quaternion were presented in reference [60] 

Qo = -|w • Q (4.33) 

Q = l"Qo + l"xQ (4-34) 

These equations are integrated with respect to time along with the equations of 

motion. 

The quaternion must remain a unit vector to ensure that the transformation 

represents pure rotation with no scaling or shearing. Therefore, the quaternion needs 

to be normalized during the integration. 

Numerical Integration 

A fourth order Runge-Kutta scheme is used to integrate the equations of mo- 

tion. Runge-Kutta schemes are an attractive option for solving initial value problems 

governed by first order differential equations of the form 

y' = f(x,y),   y(x0) = yo (4.35) 

because they can achieve higher order accuracy without the evaluation of higher 

order derivatives. Reference [53, pages 362-365] defines the fourth order Runge-Kutta 

scheme as 

t/n+i = yn + g (fci + 2k2 + 2k3 + k4) (4.36) 
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where 

ki = hf(xn,yn) 

k2 = hf(xn + -,yn + -h) 

k3 = hf(xn + -,yn + -k2) 

.    k4 = hf(xn + h,yn + k3) 

The integration time step is represented by h, x represents the time, y represents the 

position, velocity, and quaternion, f(x, y) represents the derivative of y (right hand 

side of the equations of motion), and the subscripts n and n + 1 are used to denote 

quantities are the current and next iteration (or time step), respectively. 

The aerodynamics solution comes into the equations of motion through the in- 

tegrated forces and moments. Since the aerodynamics are a function of position, the 

use of four different positions in the evaluation of f(x,y) in equation 4.36 requires 

the calculation of the flow solution four times for each integration of the 6D0F. How- 

ever, this would be very expensive. Therefore, the aerodynamics are assumed to be 

constant over the complete time step and are evaluated only once. 

Since the translational equation of motion is written relative to the local coordi- 

nate system, the integrated aerodynamic forces (and moments) will be independent 

of position. However, the gravitational force, which is constant in global coordinates, 

is not constant in local coordinates. Thus, care should be taken when decompos- 

ing the gravitational force into local coordinates with each step of the Runge-Kutta 

integration. 



CHAPTER 5 
PARALLEL PROGRAMMING 

Computing power has increased many orders of magnitude over the last decade. 

This trend is expected to continue in the near future. However, the shift appears 

to be away from sequential processing and towards parallel processing. This chapter 

presents an overview of parallel computing hardware, the options and some consider- 

ations for programming parallel computers, some methods for judging and improving 

parallel performance, and the proposed approach taken in this work. 

Hardware Overview 

The performance gains that are being achieved with single processors is di- 

menishing as they approach physical limitations such as the speed of light. With 

this in mind, VLSI design principles have been used to conclude that it is possible to 

increase potential computing power more cost effectively by utilizing multiple, slower, 

less expensive components rather than a single, faster, more costly component [61]. 

Therefore the trend in computing hardware is towards multiple processors. Machines 

that utilize high performance vector processors are shipping with modest numbers of 

-vector processors, and massively parallel processors (MPP) are utilizing existing, low 

cost RISC processors (for example, the Cray T3D which uses DEC Alpha processors 

or the IBM SP2 which uses the IBM RS6000 processors) in ever increasing numbers 

to achieve greater potential processing power. 

Another trend that is affecting the way computing is being done is the increase 

in network transfer rates. This allows physically separated resources to be utilized 
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for solving a single problem. Since many MPP's utilize the same processors found in 

high end workstations, a group of workstations connected by a high speed network can 

be viewed as a distributed parallel computer with the main differences being in the 

speed of the inter-processor connections and the possible differences in processors and 

operating systems. This type of computing is often referred to as "cycle harvesting." 

This is due to the fact that networked computers that are used for routine computing 

during business hours often sit idle at night. These unused computing cycles can be 

harvested for scientific computing. 

A relatively new form of parallel computing takes the use of commercially avail- 

able off-the-shelf components to the extreme. Personal computers, based on Intel or 

compatible microprocessors, running a freely available UNIX clone operating system 

such a LINUX, are linked together using low cost ethernet networking. Such parallel 

computers are often referred to as Beowulf clusters [62]. Such a distributed computing 

environment can represent a sizeable computational resource with very low associated 

cost. 

Parallel computer architectures are often classified according to the number of 

instructions that can be executed in parallel, as well as, the amount of data that can be 

operated on in parallel. The most common of these classifications range from multiple 

instruction, multiple data or MIMD computers to single instruction, multiple data or 

SIMD computers. SIMD systems offer reduced program complexity, but can greatly 

reduce the available algorithms than can be implemented on such an architecture. 

Parallel computers are often further classified according to their memory layout as 

distributed memory, in which case each processor has its own local memory, or as 

shared memory, for which each processor has direct access to a single, global memory 

address space. Most of the machines being produced today are of the MIMD type. 

The Cray T3D and IBM SP2 are distributed memory MIMD machines; while the SGI 

Onyx is a shared memory MIMD machine. 

The SGI Origin 2000 represents a unique memory architecture referred to as 
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CC-NUMA, i.e. cache-coherent, nonuniform memory access. It is made of multiple 

node cards that contain two processors and local shared memory. However, any 

processor on any node card can access any of the memory in the machine. This 

hybrid organization of memory is called distributed shared memory (DSM). There is a 

latency associated with accessing memory located off of a node card; therefore, access 

times to memory are nonuniform. However, hardware is used to maintain coherency 

of data held in cache between different processors. This architecture has been shown 

to perform well for many irregular applications and scales well to moderate numbers 

of processors [63]. 

Software Overview 

Logically, parallel computers can be viewed as a set of sequential processors, 

each with its own memory, inter-connected by some communication links [61]. Each 

processor executes a sequential set of instructions and communicates with other pro- 

cessors and accesses remote memory through the communication links. Distributed 

memory and shared memory systems, as well as distributed computing environments 

fit this model. The processors of a shared memory system simply have a more effi- 

cient way of accessing remote memory than do the processors of a distributed memory 

system or a distributed computing environment. This model of a parallel computer 

and the use of messages for all communication between processors forms the basis of 

the message passing paradigm of parallel programming. 

Due to the model used for the parallel computer, it is conceivable that the user 

could write, compile, and execute a different program on each processor, with each 

program communicating with the others via messages. It is more often the case 

that the same source is compiled and executed on each processor with control flow 

statements in the code used to determine the path executed or the data manipulated 

at run time. This programming model is referred to as single process multiple data 

or SPMD. The SPMD model of programming aids in code maintenance and provides 
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a simplified path for converting an existing sequential code for parallel execution. 

• Many libraries exist for implementing message passing. Two of the more predom- 

inant libraries are PVM [64] and MPI [65]. PVM, which stands for Parallel Virtual 

Machine, is a defacto standard message passing interface due to its popularity and 

widespread use. It is the product of Oak Ridge National Lab and several university 

contributions. PVM consists of two parts: a library consisting of the functions that 

implement the application programming interface (API) and a daemon which runs 

in the background and actually handles the communication between processes. MPI, 

which stands for Message Passing Interface, is a proposed standard message passing 

interface. It was developed out of a series of meetings of a committee of experts from 

the parallel computing community. MPI draws features from other message passing 

libraries and provides a common API that the vendors can optimize for their ma- 

chines. PVM evolved out of a research project on distributed computing and places a 

higher priority on portability than on performance. MPI is expected to provide bet- 

ter performance on large MPP's but does not provide for heterogeneous distributed 

computing and lacks many task management functions [66]. 

Other models are available for parallel programming. One of the more popular 

is the shared memory programming model. Pthreads [67] is a POSIX standard imple- 

mentation for shared memory programming using threads. A thread is a light weight 

process that shares memory with other threads, but has its own program counter, 

registers, and stack so that each thread can execute a different part of a code. The 

sharing of memory between threads is automatic and communication between threads 

is accomplished through cooperative use of shared variables. Mutual exclusion or mu- 

tex variables are used to ensure that only one thread changes the value of a variable 

at a time. Signals are sent between threads using condition variables. OpenMP [68] 

is an alternative library that attempts to avoid the low level programming constructs 

required by Pthreads. OpenMP is used to identify loops that can be executed in par- 

allel similar to vectorization of loops on vector processors.  OpenMP automatically 
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handles all communication. 

. These techniques all require shared memory and thus can not be used on dis- 

tributed memory parallel computers. However, Pthreads or OpenMP can be mixed 

with PVM or MPI to take advantage of both programming models when clusters of 

shared memory multi-processor (SMP) machines are linked together. Likewise, other 

techniques for using shared memory can be mixed with the message passing model. 

POSIX also defines a standard for specifying the use of shared memory explicitly [69] 

as opposed to the automatic use of shared memory as with Pthreads. 

When approaching a parallel programming task, the key issues to be addressed 

are concurrency, scalability, locality, and modularity [61]. Concurrency relates to the 

need for algorithms which subdivide larger problems into a set of smaller tasks that 

can be executed concurrently. An intimate knowledge of the data structures and data 

dependencies in an algorithm is required to identify such concurrencies. Scalability 

relates to the behavior of an algorithm in terms of parallel efficiency or speedup as a 

function of processor count. Since the number of processors being utilized in MPP's 

appears to be continually increasing, the efficiency of a good parallel program design 

should scale with increased processor counts to remain effective throughout its life 

cycle. Locality relates to the desire to enhance local memory utilization since access 

to local memory is less expensive than access to remote memory. Raw communication 

speeds are typically orders of magnitude slower than floating-point operations; thus, 

communication performance strongly influences the parallel run time. Modularity is 

important in all software development. It allows objects to be manipulated without 

regard for their internal structure. It reduces code complexity and promotes code 

reuse, extensibility, and protability. 

The algorithm design process can be broken down into four phases: partition- 

ing, communication, agglomeration, and mapping [61]. Machine independent issues, 

such as concurrency, are considered early in the design process; while machine specific 

issues are delayed until late in the design. Partitioning and communication address 
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the issues of concurrency and scalability; while agglomeration and mapping address 

locality and performance. Partitioning falls into two major categories: functional de- 

composition and data decomposition. Functional decomposition focuses on the com- 

putation; while data decomposition focuses on the data. A good partition will divide 

both the data and the computation. The communication phase of a design deals with 

identifying the inter-process communication requirements. This is complicated when 

the communication patterns are global, unstructured, dynamic, and/or asynchronous. 

Agglomeration seeks to reduce communication costs by increasing computation and 

communication granularity. Tasks can be combined and data and/or computation 

can be duplicated across processors in order to reduce communication. The mapping 

phase is a machine specific problem of specifying where each task will execute. A 

mapping solution is highly dependent on the communication structure and the work 

load distribution. A load balancing algorithm is often needed. If the communication 

structure is dynamic, tradeoffs must be made between a load imbalance and repeated 

application of a possibly expensive load balancing algorithm. 

A good algorithm design must optimize a problem-specific function of execution 

time, memory requirements, implementation costs, and maintenance costs, etc. [61]. 

Furthermore, when solving coupled systems of partial differential equations, issues 

unique to the problem must be considered. For example, on a distributed memory 

machine, a minimum number of processors may be required in order to hold a specific 

problem; however, the use of additional processors must be balanced against its effect 

on the solution convergence [70]. Likewise, since communication cost is proportional 

to surface area and computational cost is proportional to volume, the desire for a 

high ratio of volume to surface area places a lower limit on the subdivision of the 

computational domain. Communication through messages has an associated cost of 

the latency time for message startup and a cost per word of data transferred in the 

message; therefore, it is generally desireable to use a small number of larger messages 

rather than a large number of small messages.  However, the use of small messages 
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may allow an algorithm change that would allow communications to be overlapped 

by computation. An efficient parallel implementation will require the consideration 

of all such factors. 

Performance 

Performance of a parallel algorithm is normally measured via speedup. This 

is the ratio of the execution time on a single processor and the execution time on 

multiple processors. Thus, the speedup s can be computed by 

* = £ (5-1) 

where T\ denotes the execution time on a single processor and Tn denotes the exe- 

cution time on n processors. Ideally, 7\ should represent the execution time of the 

best sequential algorithm available to do the job. When parallelizing a sequential 

algorithm, the best sequential algorithm may not parallelize well; and, vice versa, the 

best parallel algorithm may not perform well sequentially. Likewise, when paralleliz- 

ing a given sequential algorithm, some overhead will be introduced. If the parallel 

algorithm is executed on a single processor to measure T\, this value may be artifi- 

cially high due to the use of a poor sequential algorithm or due to the existence of 

parallelization overhead. However, the definition of the best sequential algorithm may 

be unattainable. Thus, there exists some ambiguity in how T\ should be measured in 

order to judge the performance of a parallel algorithm. At the least, when converting 

an existing sequential algorithm for execution in parallel, T\ should be measured using 

-the original sequential algorithm. Likewise, if any algorithm changes are made during 

parallelization that would also decrease the sequential execution time, T\ should be 

updated so as to isolate improvements due to the algorithm change from improve- 

ments due simply to the use of multiple processors. 

One source of overhead that exists in all parallel programs is time spent in com- 

munication between multiple processors. Following the analysis presented in reference 



69 

[71], the total execution time of a parallel algorithm executed on n processors can be 

approximated as 

where Tcaic denotes the actual computation time and Tcomm denotes the time spent 

in communication due to parallelization. If the work is perfectly balanced and there 

is no time spent in communication during a sequential run, then the execution time 

of the sequential run will be 

T1 = nTcalc (5.3) 

Hence, the speedup would be 

Tl J-caic 
S = 

J-calc T -*comm 

(5.4) 
1 + 

Thus, the ratio of the communication time and the computation time can have a large 

effect on the speedup. 

In general, for CFD flow solvers, the communication time is proportional to the 

area of (number of grid points on) the boundaries of the domain, and the computation 

time is proportional to the volume of (total number of grid points in) the domain. 

Thus, as the problem size increases, the ratio of communication to computation de- 

creases. The characteristics of a particular computer, the form of the communication, 

the algorithm used, and the partitioning of the domain can also affect this ratio. 

In general, a parallel computer with n processors can execute n instructions at 

the same time. Thus, if the instructions in a sequential algorithm could be evenly 

divided among the n processors, so that each processor executed l/nth of the total 

instructions, the execution time would be decreased by a factor of n. Therefore, linear 

speedup is the ideal case, and speedup is limited to s < n. However, there are other 

factors that place additional limits on the speedup that can be achieved. 
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If we consider the entire work load of a complete simulation to be broken down 

into part that can be executed in parallel and part that must be executed serially, 

the speedup that can be achieved is limited by Amdahl's law [72]: 

3 < TT^  (5.5) 

where /, is the serial fraction of the work, fp is the parallel fraction of the work, and 

n is the number of processors on which the parallel portion of the code is running. 

The factors f3 and fp are fractions so that 

0 < /, < 1 

0 < fP < 1 

and 

/. + fP = 1 (5-6) 

Since the parallel work will be distributed across multiple processors, the execution 

time of the parallel work will be decreased, but the execution time of the serial work 

will not. 

Amdahl's law shows the significant penalty that the serial fraction of the work 

load can place on the parallel performance. For example, consider a case where 5% 

of an executable code must be performed serially. Therefore, fa = .05 and fp = .95. 

If only 4 processors are used, the speedup will be limited to 3.48, nearly 90% of the 

ideal speedup. However, if 32 processors are used, then the speedup will be limited 

to 12.55, less than 40% of the ideal speedup. Although the processor count was 

-increased by a factor of 8, the speedup increased by less than a factor of 4. In fact, as 

the number of processors n —> oo, the term fp/n —> 0. Thus, the speedup is limited 

to l/f3, or 20 in this case, no matter how many processors are used. 

This could be used to argue that parallel processing does not hold the answer to 

the need for increased computing power. However, the potential from multiple proces- 

sors and the increased memory often available with MPP machines allows larger and 
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larger problems to be addressed. With CFD solutions, as the problem size increases, 

the computation to communication ratio usually increases and the serial fraction of 

the work load decreases. 

Even the limit specified by Amdahl's law is not always reached. The major 

contributor to this behavior is an imbalance in the distribution of the work to be 

executed in parallel. Consider figure 5.1. The left side of the figure shows the serial 

execution of a function that operates on four grids; while the right side shows the 

parallel execution of the function on four processors with one grid per processor. The 

serial execution time and thus the total work is represented by the time T5-T1. On 

four processors, the average work per processor is represented by the time (T5-Tl)/4. 

However, the total execution time in parallel is dictated by the maximum execution 

time of any process. This time, T2-T1, is larger that the average execution time by 

a factor related to the imbalance in the work load or execution times. 

Time Serial Parallel 
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Figure 5.1: Unbalanced work load 

Since the term fp/n in equation 5.5 represents the average parallel work per 

processor, this work must be increased by a factor proportional to the load imbalance. 

Generalizing equation 5.5 to include the effect of a load imbalance, the speedup 

becomes 

1 
s ~ (5.7) 

where /< is the load imbalance factor. The load imbalance is often judged by the ratio 
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of the maximum execution time of any process and the minimum execution time of 

any process. However, as used here, the load imbalance factor is used to increase the 

average execution time per process to the maximum execution time of any processor. 

Thus, the imbalance is equal to the ratio of the maximum execution execution time 

of any process to the average execution time per process. 

The load balance is further complicated by the basis for the decomposition of the 

work. If each division in the decomposition does not represent a nearly equal piece of 

the work, the load balance can vary significantly with the process count. Obviously, 

if there are not enough pieces of work, some of the processes would sit idle. Likewise, 

if there is one piece of work that is significantly larger than the other pieces, it can 

dominate the execution time. Consider figure 5.2. The left side of the figure shows 

the serial execution of a function that operates on four grids. When the function is 

duplicated and the grids are distributed across two processes (shown in the middle of 

the figure), the work is well balanced and the execution time is cut in half. However, 

when four processes are used (shown on the right side of the figure), no improvement 

in the execution time is seen. The work associated with grid gl is one half of the 

total work; thus, the execution time is dominated by the execution time of gl. 
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Figure 5.2: Limitations in load balance caused by a poor decomposition 

Another common cause for the degredation in the speedup achieved is synchro- 

nization between processes. Synchronization is enforced by the placement of barriers 

in the execution path. No process may pass the barrier until all of the processes have 

reached the barrier. This can ensure that every process has completed a particular 
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portion of the work load before any process starts on the next portion of work. This 

may be required if one function is dependent on the results from a previous function. 

How this can cause an increase in execution time is illustrated in figure 5.3. This 

diagram shows two functions (A and B) operating on separate grids on separate pro- 

cessors. Without synchronization, the total work per process may be well balanced; 

but if synchronization is required between the functions, wait time can be introduced 

if each function is not well balanced. 

Time 
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T2 
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T4 

T5 

Independent 
processors 

Synchronized 
processors 

A(gl) 
A(g2) 

B(g2) 
B(srl) 

A(gl) 
A(g2) 

wait 

B(gl) 
B(g2) 

wait 

Figure 5.3: Imbalance caused by synchronization 

This illustrates the fact that each piece of work between any two synchronization 

points must be well balanced in order to achieve a good overall load balance for the 

entire code. To take this into account, equation 5.7 should be written as 

(5.8) 

where the terms within the summation represent each section of code between syn- 

chronization points that is executed in parallel. 

Load Balancing 

The most important part to achieving good parallel performance is load bal- 

ancing. The problem of load balancing is similar to the computer science problems 

referred to as the "knapsack problem" [73] and the "partition problem" [74]. These 



74 

problems are NP-complete, which is the set of all problems for which no algorithm ex- 

ists that is guaranteed to produce the exact solution through nondeterministic means 

in polynomial time. The input to the knapsack problem is defined by a set of items 

with specified sizes and values and a knapsack of a specified capacity. The problem 

is to maximize the value of the subset of items that will fit into the knapsack at one 

time. The input to the partition problem is a set of blocks of varying heights. The 

problem is to stack the blocks into two towers of equal heights. 

The input to the load balancing problem consists of a set of pieces of work, 

a measure of the cost of each piece of work, and the number of processors across 

which the pieces of work are to be distributed. The problem is to associate each 

piece of work with a processor while minimizing the ratio of the maximum total work 

associated with any processor and the average work per processor. The amount of 

work associated with each piece of work is similar to the value of the items to be 

placed in the knapsack or the height of the blocks. The processors are similar to the 

knapsack or the towers. The average work per processor corresponds to the capacity 

of the knapsack or the average height of the towers. However, each piece of work 

must be associated with a processor, each processor must have at least one piece of 

work, and there is no limit on the amount of work that can be associated with each 

processor. 

The algorithm used to balance the work of the flow solver is a max-min algorithm. 

This algorithm, shown below, takes the piece of work with the maximum cost from 

the pieces of work that have not yet been assigned to a processor and assigns it to the 

processor that has the minimum total work assigned to it. This algorithm distributes 

the work across the available processors with only a single pass through the list of the 

pieces of work, thus the execution time is bounded. With sufficient partitioning of 

the work, this algorithm produces a good load balance, although it may not produce 

the best possible distribution of the work. 

The array W^orfcQ is an estimate of the cost associated with each piece of work 
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(each grid, in this case). Since the work of the flow solver is closely associated with the 

number of grid points, the cost associated with a grid can be defined as the number 

of points in the grid. However, there are other factors that can affect the execution 

time that are not directly related to the number of grid points. Thus, a user defined 

weight can be associated with each grid and it is the weighted number of grid points 

that is fed into the load balancing routine as the cost of each piece of work. The 

output from the load balancing routine is an array GridToPeft that specifies which 

processor will execute the flow solver for each grid. 

MAP_GRlDS_To_PES(WorfcO) 
1 for i <r- 1 to npes 
2 do PeWork[i\ <- 0 
3 
4 for i <- 1 to ngrids 
5 do PeNum f- FIND_MIN_VALÄNDEX(PeWork\\) 
6 GridNum «- FIND_MAX_VALJNDEX(WOTA;Q) 

7 PeWark[PeNum] <- PeWark[PeNum) + Wark[GridNum] 
8 GridToPe[GridNum] <- PeNum 
9 Work[GridNum] <- 0 

10 
11    return GridToPe\\ 

This load balancing algorithm is applied to the flow solver, for which there is an 

initial estimate of the value of each piece of work. In grid assembly, there is no apriori 

knowledge of the amount of work associated with a grid or superblock. In fact, the 

amount of work associated with a grid or superblock depends on the location of the 

grids and thus changes as the grids move. In such a case, a dynamic load balancing 

algorithm is needed that can redistribute the work based on some perception of the 

current work distribution. 

The algorithm implemented for dynamic load balancing, shown below, consists 

of two iterative steps. The algorithm requires as input, some numerical measure of 

the cost associated with each piece of work in the partition and the current mapping 

of those pieces of work to the available processes. The first step in the algorithm is 

to move work from the process with the maximum work load to the process with the 
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minimum work load in order to improve the load balance. The second step is to swap 

single pieces of work between two processes in order to improve the load balance. 

The output from this algorithm is a new mapping of the pieces of work to the set of 

processes. This mapping must be compared to the previous mapping to determine 

which data has to be transferred from one process to another. 

OPTIMIZE_MAPPING( Workf], WorkToPe\\) 
1 TotalWark <- CALCJSVM(Work\}) 
2 AvgWork <— TotalWork/npes 
3 PeWork\\, PeWarkList\} <- BuiLD_PE_WORKXlSTS(WorfcroPeO) 
4 
5 MoVE.WORK(Work\\,WorkToPe\}) 
6 SWAP JNORK(Wark\\,WorkToPe\\) 

MoVE.WORK^orfcQ, WarkToPeW) 
1 repeat 
2 pemin <- FlND_MlN_VALJNDEX(Peiyork\\) 
3 pemax <- FlND_MAX_VALJNDEX(PeWorfc[]) 
4 
5 WorkLimit <- (PeWork\pemax] — PeWork\pemin}) * 0.99 
6 WarkToPut f- CHOOSE_MAX_LIMITED_VAL( 

7 PeWorkList\pemax], WorkLimit) 
8 
9 if WarkToPut 

10 then WorkToPe[WorkToPut] «- pemin 
11 PeWork\\, PeWorkListW <- BUILD_PE_WORKXISTS( 

12 WarkToPeW) 
13 until WarkToPut = NIL 

In line 3 of OPTIMIZEJVIAPPING, BUILD_PE_WORK_LISTS calculates the total 

work per process (PeWork\\) and also builds an array of the lists of pieces of work 

that are mapped to each process (PeWark List]]) from the mapping of work to pro- 

cesses (WarkToPeW). In MOVE-WORK, if any piece of work can be moved from one 

process to another and decrease the maximum amount of work on any process, then 

it will improve the load balance. Therefore, in line 5, WorkLimit is set based on a 

percentage of the difference in the work assigned to the processes with the least and 

most work. CHOOSE_MAX_LIMITED_VAL chooses the piece of work from the list of 
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work associated with pemax (PeWorkList\pemax]) that has the largest cost and also 

is less than WorkLimit. This piece of work is assigned to pemin in line 10 and the 

work lists are updated in line 11. 

SWAP_WORK(jyorÄ;Q, WorkToPe\\) 
1 repeat 
2 for i <- 1 to npes 
3 do PeWarkImb[i) <- PeWork[i] - AvgWork 
4 pemax <- FIND_MAX_VAL jNDEX(FeVForfc/m60) 
5 
6 for  each i in PeWorkList\pemax] 
7 do WorfcToPu*«- » 
8 for pemin <— 1 to npes 
9 do if pemin ^ pemax 

10 then WorkLimit <- (W^orfc[PForfcroPu^] 
11 —PeWorA:7m&[pema£] 
12 +PeWorJfc/m6[;"]) * 1.001 

13 
14 WorkToGet«- CH00SE_ANY_LIMITED_VAL( 

15 PeWorkList [pemin]) 

16 
17 if VyorifcroGei 
18 then VForfcroPe[jyorfcToGef] <- pemax 
19 WorfcToPeiWorfcToPu*] f- pemin 
20 PeWorA;0,PeJyorfcLis<0<- 
2i BUILD_PE_WORK_LISTS( 

22 WorfcToPeö) 
23 break 
24 
25       until WorkToGet = NIL 

In SWAP_WORK, one piece of work on one process is swapped for a piece of 

work on another process. Therefore, there is an upper and lower bound on the 

-cost of the WorkToGet. If WorkToGet is larger that WorkToPut, then the to- 

tal work on pemax will increase. However, if WorkToGet is less than WorkToPut 

by more than the difference between the imbalance on the two processes, then the 

imbalance on pemin will increase beyond the original imbalance of pemax. The 

routineCHOOSE_ANY_LlMITED_VAL chooses a piece of work from the list of work as- 

sociated with pemin (PeWorkList\pemin\) that costs less than the work represented 
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by WorkToPut and is greater than WorkLimit. It is not important that the opti- 

mum piece of work be chosen. Any piece of work that improves the load imbalance 

will do. The work represented by WorkToGet is assigned to pemax and the work 

represented by WorkToPut is assigned to pemin. The work lists are updated by 

BuiLD_PE_WORK_LlSTS. The break at line 23 causes control to jump out of the 

loop that started at line 6 so that the load imbalances and pemax can be recalculated. 

Each step of this algorithm attempts to decrease the load imbalance caused by 

the process with the maximum work load. However, the search for pieces of work to 

swap is exhaustive. This algorithm is used to redistribute the superblocks based on 

the work of grid assembly; therefore, this algorithm is not too expensive, since there 

are not many superblocks. This algorithm could be extended to swap multiple pieces 

of work on one process for one or more pieces of work on another process. However, 

this would probably require more efficient ways of sorting the pieces of work so that 

the pieces to be swapped could be selected more efficiently. 

Another situation that often arises is a large set of pieces of work that can be 

treated as an array. This array can be evenly divided among the processes with each 

getting an equal number of elements of the array. However, if each element of the 

array does not represent the same amount of work, there will be a load imbalance. 

It could be expensive to treat each element as a separate piece of work, measure its 

cost, and use the previous algorithms to distribute this large number of pieces of 

work. Instead, the total cost of the work can be associated with the processor and 

used as a weight. Load balancing can then be achieved by dividing the array so that 

the weighted number of elements is equally divided among the processes. 

This algorithm requires as input, the number of elements of the array mapped 

to each process (A^O) and the execution time of each process (T\\). A weight for 

each process (WQ) is calculated as the execution time per array element. The excess 

number of elements assigned to the process with the maximum load is calculated as 

the delta between the process execution time and the average process execution time 



79 

divided by the process weight: Since this number of elements will be assigned to 

another process, the weight of the receiving process must be updated. The execution 

times of the two processes are updated and the loop is repeated if there are other 

processes with excess array elements. 

OPTIMIZE_ARRAY_MAPPING(iV[], TQ) 
1 for i«- 1 to npes 
2 do W[i\ <r- T[i\/N\i] 
3 imin <- FlND_MlN_VALjNDEX(r[]) 
4 imax f- FIND_MAX_VAL JNDEX(TQ) 

5 Tavg«- CALCULATE_AVG_VAL(TO) 

6 
7 repeat 
8 Nexcess f- (T[imax] - Tavg)/W[imax] 
9 if Nexcess = 0 

10 then break 
11 TotWeight <r- N[imin] * W[imin) + Nexcess * W[imax] 
12 W[imin] f- TotWeightf(N[imin] + Nexcess) 
13 N[imin] 4- N[imin] + Nexcess 
14 N[imax] f- N[imax] — Nexcess 
15 T[imin] <- N[imin] * W[imin] 
16 T[imax] f- N[imax] * W[imax] 
17 imin 4- FIND_MIN_VALJNDEX(TQ) 

18 imax «- FIND_MAX_VAL JNDEX(rQ) 
19 until r[imax]/raup < 1.005 

Proposed Approach 

Since this work builds on the initial parallel implementation of the Beggar flow 

solver [6], the same methods used there will be continued here. The message passing 

paradigm is used within an SPMD programming model. PVM is used for the mes- 

sage passing environment. The code is geared toward MIMD machines with either 

distributed or shared memory. The ultimate goal is to allow heterogeneous computing 

although homogeneous computing environments are the primary focus. A functional 

decomposition of the entire simulation process is used with the flow solution, force 

and moment calculation, 6DOF integration, and grid assembly being the primary 

functions.  Coarse grain domain decomposition of the flow solver based on grids is 
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used. The degree to which domain decomposition of the grid assembly function can 

be used is determined. Load balancing is treated as the primary contributor to good 

parallel performance. The most efficient implementation requires consideration of 

both the flow solver and the grid assembly process during data partitioning and load 

balancing. 

For parallel algorithm design, Foster [61] recommends a process denoted by the 

acronym PCAM, referring to partitioning, communication, agglomeration, and map- 

ping, as mentioned previously. In this approach, Foster recommends that the finest 

grained partitioning of the work be defined along with all of the required communica- 

tions. Then the partitions are agglomerated to reduce the communications required 

and thus increase the computation to communication ratio. The final step is to map 

the work to processors based on the particular computer architecture. In this work, 

a nearly opposite approach is taken. The work is partitioned using coarse grain de- 

composition first. This allows a parallel implementation to be achieved with minimal 

code changes and with less expertise in the existing sequential code, as well as parallel 

programming itself. This also allows the users to receive and to start using the code 

earlier. As the code performance is analyzed, the granularity of the decomposition is 

refined as required. Mapping of work to processes is done dynamically to achieve a 

good load balance; however, no machine specific issues of mapping work to specific 

processors are addressed. 



CHAPTER 6 
PARALLEL IMPLEMENTATIONS 

Phase I: Hybrid Parallel-Sequential 

The simplest approach to achieving a parallel version of Beggar for moving body 

problems is to use a separate front-end (FE) process that performs the grid assembly 

function for the complete domain in a serial fashion with respect to the parallel 

execution of the flow solver across multiple back-end (BE) processes. This requires 

that proper communication be established between the flow solution function and 

the grid assembly function; however, this does not require any consideration of load 

balancing or partitioning of the grid assembly function. 

This implementation is referred to as phase I and is depicted in figure 6.1. This 

diagram and the others like it that follow are referred to as timing diagrams. The 

major functions are represented and the diagram serves as a template of one iteration 

of the solution process. The vertical direction represents time and this template can be 

stamped out in a vertical manner to construct a complete time history of the solution 

process. The boxes on the left represent the functions running in the FE process, 

while the boxes on the right represent the functions running in the BE processes. 

The arrows represent communication between specific functions on the FE and BE. 

Communication between functions on the same process is not shown explicitly. The 

vertical lines through a function indicates that it is spread across multiple processors. 

Although these diagrams are not drawn to scale, the work of a particular function 

is represented by the area of the box drawn for that function. Thus, as a function 

is spread across multiple processors, the width increases and the height decreases 
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representing the decrease in the time for executing the function. 

Referring to figure 6.1, the solution process is started at time Tl. Once the 

grid assembly function is completed at time T2, the interpolation stencils, iblank 

arrays, etc. are communicated from the FE to the BE so that the flow solution 

function can proceed. Once an iteration of the flow solver is completed, the forces 

and moments are integrated and are passed from the BE to the FE. The 6D0F 

function is then executed to reposition the grids and to calculate motion rates. Since 

the 6DOF function executes quickly, it is duplicated on the FE and the BE rather 

than communicating the resulting information. 

Ignoring the cost of the force and moment calculation and the 6DOF integration, 

the flow solver represents the parallel work and the grid assembly represents the serial 

work. Based on the fractions of the total execution time represented by the flow solver 

and the grid assembly, equation 5.7 can be used to estimate the performance that can 

be achieved with this implementation. However, instead of using the notation fp, /,• 

and /s, we will use the uppercase letters F and G to represent the flow solver and 

grid assembly functions and the subscripts p, s and i to represent the fractions of the 

work executed in parallel or serial and the load imbalance factors, respectively. Thus, 

for the phase I implementation, the speedup can be approximated as 

(6.1) 

where nbes is the number of BE processes. Since the work of the flow solver is closely 
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Figure 6.1: Phase I implementation 
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Amdahl's Law 
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(6.2) 
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Figure 6.2: Comparison of estimated speedup of phase I to Amdahl's law 

related to the number of grid points, the equation 

max(no. points on each processor) 
* —      avg no. points per processor 

can be used to obtain an approximation for the load imbalance factor for the flow 

solver. There are other factors, such as boundary conditions and the distribution of 

communication between processors, that affect the load balance. They will be ignored 

at this point. 

Figure 6.2 shows a comparison of the estimated speedup from the phase I im- 

plementation to Amdahl's law. The estimated speedup of phase I is plotted using 

equation 6.1 with Fp = 0.95, G3 = 0.05, and F, = 1.05 representing a nominal load 

imbalance of 5% in the distribution of the work of the flow solver. This plot shows the 

significant drop off in speedup with increased processor counts due to the serial frac- 

tion of the work. A small decrease in the performance of the phase I implementation 

(as compared to Amdahl's Law) due to the load imbalance can also be seen. 

Phase II: Function Overlapping 

Some parallel efficiency can be gained by overlapping the grid assembly function 

with the flow solution function. This overlapping could be achieved by updating the 
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6D0F and the interpolation stencils at the same time that the flow solver is updated 

by using the forces and moments calculated from a previous iteration of the flow 

solution as an approximation to the current forces and moments. Thus, the updating 

of the grid assembly would be based on a flow solution that is lagged behind the 

current flow solution. This is similar to the technique used for sequential processing 

in references [28] and [29]. In these references, store separation events were simulated 

with the grid assembly recomputed once after every 20 iterations of the flow solver 

and 6DOF integration. The grids were moved and the grid motion time metrics were 

fed into the flow solver every iteration although the interpolation stencils were not. 

Time accurate forces and moments were used, although the flow solution could be 

affected since the interpolation stencil locations were not time accurate. The variation 

in stencil locations due to this time lag (.004 seconds in their case) is justified by the 

assumption that the grids will not move by an appreciable amount during the delay. 

Good results were achieved for the problems addressed. 

Some parallel efficiency may be gained without lagging the grid assembly behind 

the flow solution. This is possible due to the Newton-Relaxation scheme used in the 

flow solution function. The discretized, linearized, governing equations are written 

in the form of Newton's method. Each step of the Newton's method is solved using 

Symmetric Gauss-Seidel (SGS) iteration. The SGS iterations, or inner iterations, 

are performed on a grid by grid basis; while the Newton iterations, or dt iterations, 

are used to achieve time accuracy and are performed on all grids in sequence. This 

procedure eliminates synchronization errors at blocked and overset boundaries by 

iteratively bringing all dependent variables up to the next time level. 

Figure 6.3 is a diagram of the flow solution process. The inner loop represents 

the inner iterations or iterations of the SGS solution of the linear equations from one 

step of the Newton's method. The outer loop represents the dt iterations or steps of 

the Newton's method. 

For time accurate flow calculations with Beggar, it is normal to run more than 
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Figure 6.3: Basic flow solution algorithm 

one dt iteration to eliminate synchronization errors between grids and to achieve time 

accuracy. Each dt iteration produces an updated approximation to the flow solution 

at the next time step. Forces and moments can be calculated after each dt iteration 

using this approximate solution. If the forces and moments calculated after the first 

dt iteration are a good approximation to the final forces and moments, these values 

can be forwarded to the grid assembly process. This allows the computation of the 

grid assembly to proceed during the computation of additional dt iterations. If the 

computation time for the flow solver is sufficiently large, the computational cost of 

the grid assembly process can be hidden. 

This implementation is referred to as phase II and is depicted in figure 6.4. 

Rather than calculating forces and moments only after a complete time step of the 

.flow solver, they are calculated after each dt iteration. The node labeled 1 in figure 

6.3 represents the point where the forces and moments are calculated. 

Referring to figure 6.4, the solution process is started at time Tl. After the first 

dt iteration, initial approximations to the forces and moments are calculated and are 

passed from the BE to the FE at time T2. The 6D0F and grid assembly functions 

proceed while the remaining dt iterations of the flow solver are completed. Once the 
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Figure 6.4: Phase II implementation 

final forces and moments are calculated, they are passed to the FE process and the 

6D0F is repeated. This allows the grids to be moved using the most accurate forces 

and moments, although the interpolation stencils are updated using grid positions 

calculated from approximate forces and moments. 

The fraction of time spent in computing the flow solution after the first dt 

iteration is 

\nbesj       '     \   ndt 
(6.3) 

where ndt is the number of dt iterations being run per time step. If Ft is greater 

than Gs, the time to do the grid assembly can be completely hidden by the time to 

compute the flow solution and the speedup is based only on the time to compute the 

flow solution in parallel. If the time to compute the grid assembly is only partially 

hidden by the time to compute the flow solution, the speedup is degraded by the 

portion of the grid assembly process that is not hidden. Thus, the speedup can be 

approximated by the equation 

1 
s ~ 

G£.)** + G« 
(6.4) 

where, 

Gt = 
G3-Ft   \iFt<G3 

(6.5) 
0 otherwise 

and thus Gt represents the fraction of the grid assembly time that is not hidden by 

the flow solution.   If the grid assembly time is completely hidden, this is the best 
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possible situation. No matter what technique is used to decompose the work of grid 

assembly, nothing will do better than reducing the effective execution time to zero. 

However, as more and more processors are used to reduce the execution time of the 

flow solver, the time available to hide the execution time of grid assembly decreases. 

In figure 6.4, the grid assembly function is finished before the flow solution; 

therefore, the flow solution proceeds without any delays. However, in figure 6.5, the 

grid assembly function does not finish before the flow solution. This creates delays 

in the flow solution function as it waits on information to be communicated from the 

grid assembly function. 
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Figure 6.5: Insufficient time to hide grid assembly 

By hiding the cost of the grid assembly process, the execution time should be 

almost equal to that of an equivalent static case in which no grids are moving. In 

fact, if Gt = 0 in equation 6.4, then the speedup is based only on the parallel fraction 

of the work and a superlinear speedup can be expected, although a decrease in effi- 

ciency would be seen since an additional processor is needed to run the grid assembly 

function. 

Figure 6.6 shows a comparison of the estimated speedup versus processor count 

for the phase I and phase II implementations as defined by equations 6.1 and 6.4. 

The curves correspond to work fractions of Fp = .95 and G3 = .05, a load imbalance 

factor of Fi = 1.05, and ndt = 2. The additional processor needed for the grid 

assembly function in the phase II implementation is better used to do part of the flow 

solution as long as less than 5 processors are available. Above this point, the phase 
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Figure 6.6: Comparison of estimated speedup of phases I and II 

II implementation outperforms the phase I implementation. The change in slope of 

the phase II curve at around 11 processors is the point where the grid assembly time 

fails to be hidden by the flow solution time. Above this point, there is a significant 

dropoff in performance. 

Phase III: Coarse Grain Decomposition 

As long as the grid assembly time is completely hidden, the optimum speedup 

is achieved. However, as the number of processors increases, the time to compute 

the flow solution decreases, the execution time of the grid assembly process is not 

completely hidden, and the overall performance suffers. 

In order to continue to see the optimum speedup, multiple processors must be 

used to decrease the total execution time of the grid assembly process. This requires 

consideration of how the grid assembly work and data structures can be distributed 

across multiple processors. 

The work associated with the flow solution is well associated with the grids; 

therefore, the grids form a good basis for data decomposition of the flow solution. 

However, the work of the grid assembly function is associated with the number of hole 

cutting surface facets, the number of cells that are cut, and the number of IGBP's. 
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This work is not evenly distributed among the grids and the distribution of work 

varies as the grids are moved. 

For parallel implementation, the primary data structure to be concerned with is 

the PM tree. This data structure is used during hole cutting and during the search 

for interpolation stencils. All of the boundaries of the grids are represented by BSP 

trees stored at the leaf nodes of a single octree. A point is classified against all of 

the superblocks in the PM tree with a single descent of the octree. This classification 

identifies if the point is IN or OUT of each superblock. If the point is IN a superblock, 

then a starting point for stencil jumping is identified (including the correct grid within 

the superblock). 

Since the PM tree is used to classify points relative to superblocks, superblocks 

were chosen as the basis for coarse grain data decomposition. The superblocks are 

distributed across multiple FE processes in an effort to equally balance the grid as- 

sembly work load. The work load is divided among the processes by cutting holes 

only into the superblocks mapped to a given process, and only the stencils either 

donating to or interpolating from these superblocks are identified. 

A single octree is used to reduce storage requirements when the complete PM 

tree is stored with a single process. However, the PM tree is still a major consumer 

of memory for the grid assembly process. The excess memory requirements must be 

weighed against the advantages offered by duplicating the entire PM tree on each 

of the FE processes. If the complete PM tree is available, all possible interpolation 

stencils for every IGBP within the superblocks mapped to a process can be identified 

without any communication between processes. Figure 6.7 represents this situation. 

In this figure, four superblocks axe mapped to four FE processes. The superblock rep- 

resented by the solid line is mapped to the corresponding process. The superblocks 

represented by the dotted lines are mapped to another process. However, since the 

complete PM tree is duplicated on each FE process, each process has knowledge of the 

space occupied by each superblock and can identify all of the interpolation sources 
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available for the IGBP's in any of the superblocks. Thus, all of the interpolation 

stencils (represented by the arrows) that donate to IGBP's in superblocks on each 

processor are identified and the best interpolation source is chosen without any com- 

munication. The only communication requirement is the global distribution of the 

cell state information so that hole points and IGBP's can be identified. 

Figure 6.7: Duplication of PM tree on each FE process 

Logically, each superblock is represented by a separate PM tree. Therefore, a 

separate PM tree could be constructed for each superblock and only the PM trees 

for the superblocks mapped to a process would be stored with that process. This 

would reduce the memory required per process, but would also increase the amount 

of communication required. Figure 6.8 represents this situation. With a limited piece 

of the complete PM tree, a process can only classify points against its superblocks. 

•Thus, only the interpolation stencils from its superblocks which donate to IGBP's 

in other superblocks can be identified. All of the possible interpolation stencils must 

then be communicated to the process which owns the superblocks that will receive the 

donations so that the best source can be identified. The increase in communications 

and the coding changes required to implement separate PM trees have driven the 

decision to duplicate the complete PM tree on each of the FE processes. 
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Figure 6.8: Distribution of PM tree across the FE processes 

The phase III implementation is shown in figure 6.9. This is essentially the 

same as figure 6.4 except that the grid assembly function is distributed across mul- 

tiple processors. A load balancing function has also been added. Since the work 

load is dynamic, the grid assembly function is monitored to judge the load balance 

and dynamic load balancing is performed by moving superblocks between processors. 

The monitoring required to judge the load balance is accomplished by measuring the 

execution time of the grid assembly using system calls. These execution times are 

measured on a superblock by superblock basis and are passed into the dynamic load 

balancing function described in chapter 5. The load balancing function is executed 

during the calculation of the initial dt iteration; therefore, if the load balancing func- 

tion is cheap, its execution time will be hidden and will not adversely impact code 

performance. 

Since the grid assembly is now executed in parallel, the grid assembly execution 

time is represented by 

G„ 
nfes 

*d (6.6) 

where Gp is the parallel fraction of the work represented by the grid assembly func- 
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Figure 6.9: Phase III implementation 

tion, Gi is the load imbalance in distributing the grid assembly work, and nfes is 

the number of FE processors that are executing the grid assembly function. Func- 

tional overlapping of the flow solution and grid assembly functions is still being used; 

therefore, the speedup is still estimated using equation 6.4 with 

Gt={ 
Gv fc*Gi-Ft   UFt<%i*Gi 

0 otherwise 
(6.7) 

Figure 6.10 compares the estimated speedup of the phase III implementation to 

that of phases I and II. The curve plotted for phase III is for Gv = 0.05, nfes = 4, 

and Gi — I. (ideal load balance). The curves plotted for phases I and II are the same 

as those plotted in figure 6.6. Since the grid assembly is executed on 4 processors, 

at least 5 processors are required to execute the phase III implementation. About 12 

processors are needed before phase HI outperforms phase I and about 16 processors 

are needed before phase III outperforms phase II. More than 40 processors are required 

before the grid assembly time fails to be hidden by the flow solution time; however, 

if the grid assembly function stays well balanced, more FE processes could be added 

to produce solutions that scale to higher processor counts. 

Phase IV: Fine Grain Decomposition 

The relatively small number of superblocks used for most configurations limits 

the ability to achieve a good load balance of the grid assembly work load. The splitting 

of grids, which is used to help balance the load of the flow solver, does not introduce 
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Figure 6.10: Comparison of the estimated speedup of phases I, II, and III 

new superblocks and therefore, is of no help in load balancing the grid assembly work 

load. Instead, a finer grain decomposition of the work of the grid assembly function 

must be used to ensure the possibility of load balancing the grid assembly work load 

on any large number of processors. 

The two most expensive components of the grid assembly function are hole cut- 

ting and the search for interpolation stencils. The work of the hole cutting function 

is associated with the number of hole cutting facets. The work of the search for inter- 

polation stencils is associated with the number of IGBP's that require interpolation. 

Therefore, a fine grain decomposition of the grid assembly function may be based on 

the view that the smallest piece of work is a single hole cutting facet or an IGBP. 

Load balancing is achieved by equally distributing the total number of hole cutting 

facets and IGBP's across the available FE processes. Each facet and each IGBP is 

independent of its neighbors, therefore there is no communication between neighbor- 

ing facets or IGBP's. The only area of concern is the access and updating of several 

data structures by multiple processes. 

The hole cutting facets are defined by the solid surface boundary conditions 

as specified by user input. These boundary conditions are specified as grid surface 

segments and the specifications are stored as a linked list. The facets are not stored 
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as a single array, but the total number of facets can be counted and as the linked 

list of specifications is traversed, each process will cut holes into all of the overlaping 

grids using its share of the facets. 

As described in chapter 2, each hole cutting facet marks a part of the hole outline 

independent of the other facets. The hole cutting algorithm identifies a set of cells 

near the facet and compares the cell centers to the plane definition of the facet. Some 

cells will be marked as holes, others will be marked as worldside. This information 

is called cell state information and is stored in an array associated with each grid. 

These two pieces of information are stored separately as bit flags so that a cell can 

be marked as a hole and as a worldside point (i.e. a worldside hole). This is because 

one facet may mark a cell as a hole and another facet may mark it as worldside. The 

worldside status is needed to cap off the holes during the hole filling process, while 

the hole status is needed to get the hole filling process started. 

When hole cutting is done with two neighboring facets on separate processors, 

the two cell state arrays must be merged to define the complete hole outline before 

the hole filling can be done. This merge is accomplished by a bitwise OR of the cell 

state status bits. This is a reduction operation and involves combining separate cell 

state arrays from each process for every grid in the system. This can be a rather 

expensive operation. For this reason, the cell state arrays will be stored in shared 

memory. 

When using shared memory, some facility is often required to make sure that 

only one process changes a variable at a time. However, in the case of hole cutting, 

it doesn't matter which facet marks a cell as a hole or as worldside. No matter how 

many facets mark a cell as a hole or worldside, the cell state information is only a 

set of bit flags. It doesn't matter how many processes set a bit as long as it gets set 

(no one ever clears these flags during grid assembly). Likewise, the order in which 

processes set a cell's status bit is immaterial. Thus, the cell state information is stored 

in shared memory and no coordination between processes is needed to ensure that 
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the cell state information is constructed correctly. 

The use of IGBP's for fine grain decomposition of the stencil jumping requires 

access to the complete PM tree. Without access to the complete PM tree, each 

process will be limited as to which IGBP's it can process. However, the duplication 

of the PM tree across multiple processes would require a large amount of memory, as 

stated before. Therefore, the storage of the PM tree in shared memory is used for the 

fine grain decomposition of the stencil search based on IGBP's. Once the PM tree 

is built, it does not require any modifications. Each process can access the PM tree 

without any need for communication, cooperation, or synchronization. 

The use of a fine grain decomposition of the work associated with grid assembly 

should allow better load balancing on larger processor counts. Therefore, overlapping 

of the grid assembly time and the flow solution time could be used with the increased 

number of processors used to decrease the grid assembly time so that it continues to 

be hidden. However, if the fine grain decomposition allows for a good load balance 

without excess overhead, the execution model could revert back to each function being 

spread across all of the available processors as shown in figure 6.11. This would allow 

complete time accurate updating of the grid assembly. 
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Figure 6.11: Phase IV implementation 

Figure 6.12 shows a comparison of the estimated speedup of phases I-IV. The 

curves for phases I-III are the same as those shown in figure 6.10 with Fp = 0.95, Ft- = 

1.05, G3 = 0.05 for phases I and II, and Gv = 0.05, G, = l.,n/es = 4, and ndt = 2 
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for phase III. The phase IV curve is defined using the equation 

s ~ 
(Jk.) * F. + (JSE.) * G. 

(6.8) 

where Fp = 0.95, # = 1.05, Gp = 0.05,(7,- = 1.20, and npes is the total number 

of processors used. Even with a 20% imbalance in the grid assembly and the lack 

of execution time overlapping, this implementation would appear to outperform the 

others. 
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Figure 6.12: Comparison of estimated speedup of phases I, II, III and IV 

However, note that as the processor count increases, the slope of the phase IV 

curve causes it to diverge from the ideal speedup curve. On the other hand, the phase 

III curve runs parallel to the ideal speedup curve up to the point at which the grid 

assembly time fails to be hidden by the flow solution time. This behavior is due to 

the overlapping of the grid assembly time by the flow solution time rather than any 

overhead introduced in the implementation of phase III. Thus, if overhead due to the 

fine grain decomposition of phase IV and the distribution of all of the functions across 

all of the processors becomes large, the overlapping of the grid assembly time with 

the flow solution time may offer some improvements in scalability. 
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Summary 

" Table 6.1 gives a summary of the four different implementations. The first im- 

plementation was used to begin solving dynamic problems on a parallel computer and 

to begin the analysis of the parallel processing performance. The second implementa- 

tion improved performance by hiding some of the execution time of the grid assembly 

function behind the execution time of the flow solver. The third implementation at- 

tempts to decrease the total execution time of the grid assembly function by using 

multiple FE processes and a coarse grain decomposition of the grid assembly work 

based on superblocks. The final implementation uses a fine grain decomposition of 

the work of grid assembly based on hole cutting facets and IGBP's. The goal is to 

use all of the available processors for both the grid assembly and the flow solution. 

Table 6.1: Summary of the implementations of parallel grid assembly 

Phase 

II 

III 

IV 

Description 
Single process performs complete grid assembly serially 
with respect to the parallel execution of the flow solver. 
Single process performs complete grid assembly based on 
approximate forces and moments. Overlapping of grid 
assembly time with flow solution time is used. 
Multiple processes perform grid assembly in parallel us- 
ing coarse grain decomposition based on superblocks. 
Overlapping of grid assembly time and flow solution time 
is continued. 
Multiple processes perform grid assembly in parallel us- 
ing fine grain decomposition. Load balancing of hole cut- 
ting is separate from that of the stencil search.  



CHAPTER 7 
TEST PROBLEM 

The three store ripple release case first presented in reference [30] and later 

modelled using Beggar in reference [4] is being used as a test case for timing each 

of the parallel implementations. The geometric configuration is that of three generic 

stores in a triple ejector rack (TER) configuration under a generic pylon attached to a 

clipped delta wing. This configuration is depicted in figures 1.1 and 1.3 with the stores 

under the right wing. The three generic stores are identical bodies of revolution with 

an ogive-cylinder-ogive planform shape and four clipped delta fins with NACA 0008 

airfoil cross section. The pylon is an extruded surface of similar ogive-cylinder-ogive 

cross section. The wing has a 45 degree leading edge sweep and a NACA 64A010 

airfoil cross section. 

The mass properties of the three stores are listed in table 7.1. The products 

of inertia that are not shown are zero due to symmetry. The CG is located on the 

axis of revolution, 4.65 ft aft of the nose. The reference length is equal to the store 

diameter of 20 inches and the reference area is equal to the cross sectional area at the 

axial location of the CG. 

Ejectors are used to help ensure a safe separation trajectory. The properties of 

the ejectors are listed in table 7.2. Each store is acted on by a pair of ejectors that 

create a nose up pitching moment to counteract a strong aerodynamic nose down 

pitching moment seen in carriage. The ejectors are directed downward on the bottom 

store of the TER and are directed outward at 45 degrees (with respect to vertical) on 

the two shoulder stores. The stores are released in bottom-outboard-inboard order 

with a 0.04 sec delay between each release. The ejectors are applied at release for a 

98 
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Table 7.1: Store physical properties 

Property Value 

weight 1000 lb 

Ixx 10 slug • fta 

-"yy 180 slug • ft* 

/« 180 slug • ft* 
CG location 4.65 ft aft of the nose 
ref. length 1.6667 ft 
ref. area 2.1817 ft* 

duration of 0.045 sec. In the simulations, the ejectors are defined fixed relative to the 

stores so that the ejectors will not create a rolling moment due to store motion. 

Table 7.2: Ejector properties 

Bottom Outboard Inboard 

Release time 0 sec 0.04 sec 0.08 sec 

Forward ejector 

force 1800 lb 1800 lb 1800 lb 
location 4.06 ft aft of the nose 
direction +ez +^v + ^z ~j2ev + ^2e* 
duration 0.045 sec 0.045 sec 0.045 sec 

Aft ejector 

force 7200 lb 7200 lb 7200 lb 
location 5.73 ft aft of the nose 
direction +ez 

■  l *   i   i A 

-7T& + 72a* 
duration 0.045 sec 0.045 sec 0.045 sec 

The original grids for this configuration used separate blocked grid systems 

around the stores, pylon, and wing. Each of these blocked grid systems forms a 

separate superblock. Additional interface grids were used to improve the flow solu- 

tion and to increase the grid overlap required to ensure successful assembly of the 

grid system. Each store grid consisted of four blocks, one between each pair of fins, 

defining one quarter of the geometry. The wing and wing/pylon interface grids were 

generated as single grids. Due to Beggar's use of component grids for coarse grain 

decomposition of the flow solver, the large wing and wing/pylon interface grids were 

split into three blocks each. Since Beggar allows block-to-block boundary connec- 

tions, splitting a grid into smaller blocks introduces new boundary conditions, but 
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does not adversely affect the ability for a grid system to assembly. Table 7.3 lists the 

block sizes of these original grids. The largest grid in this grid system has 179,550 

grid points. With the load balance determined based solely on the number of grid 

points per process, this grid system will load balance well for 12-14 processes. Some 

of the initial timing runs were done using this set of grids. 

Table 7.3: Original grid dimensions 

Superblock Block dimensions Total Points 

bottom store 4 @ 116x38x21 4x92,568 
outboard store 4 @ 116x38x21 4x92,568 
inboard store 4 @ 116x38x21 4x92,568 

pylon 
149x33x15 73,755 
61x10x15 9,150 

wing 
135x14x95 179,550 
135x10x95 128,250 

135x9x95 115,425 

wing/pylon interface 
2 @ 111x28x51 2x158,508 

111x27x51 152,847 
fin tip interface 49x24x22 25,872 

outer bndry interface 58x29x10 16,820 
fin tip interface 49x24x22 25,872 

outer bndry interface 58x29x10 16,820 

10 superblocks 24 blocks 2,172,193 

In order to effectively utilize larger numbers of processors, smaller grids are 

needed to load balance the flow solver. Table 7.4 lists a new set of grids generated 

by splitting the existing grids. This introduces new block-to-block boundaries; thus, 

the number of superblocks stayed the same, but the number of blocks increased from 

24 to 67. This also increases the total number of grid points, although the number 

of grid cells has not increased. The largest grid in this grid system has 62,370 grid 

points. Therefore, this set of grids should extend the processor count beyond 32. 

No particularly intelligent scheme was used to split up the grids. If a grid is split 

along its largest dimension, the block-to-block boundary introduced will represent the 

smallest possible surface area, thus the cost of implementing this boundary condition 

will be minimized.   Conversely, some splittings may have less effects on the flow 
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solution convergence than others. However, in this case, the splitting of the grids 

was done by hand and the grids were often split so as to minimize the amount of 

work required to change the input files. Since block-to-block boundary conditions are 

detected automatically, but solid surface boundary conditions have to be specified, 

the splitting was often done to reduce the splitting of solid surface boundaries. This 

may also have some beneficial effects on the flow solver since the implicit treatment 

of the solid surface boundary conditions can be done in larger pieces. 

Table 7.4: Dimensions of split grids 

Superblock Block dimensions Total Points 

bottom store 
4 @ 71x38x21 4x56,658 
4 @ 26x38x21 4x20,748 
4 @ 21x38x21 4x16,758 

outboard store 
4 @ 71x38x21 4x56,658 
4 @ 26x38x21 4x20,748 
4 @ 21x38x21 4x16,758 

inboard store 
4 @ 71x38x21 4x56,658 
4 @ 26x38x21 4x20,748 
4 @ 21x38x21 4x16,758 

pylon 
2 @ 75x33x15 2x37,125 

61x10x15 9,150 

wing 

4 @ 135x14x32 4x60,480 
2 @ 135x14x33 2x62,370 

5 @ 135x9x17 5x20,655 
135x9x15 18,225 

wing/pylon interface 

4 @ 111x28x18 4x55,944 
2 @ 111x28x17 2x52,836 

5 @ 19x27x51 5x26,163 
21x27x51 28,917 

fin tip interface 49x24x22 25,872 

outer bndry interface 58x29x10 16,820 
fin tip interface 49x24x22 25,872 

outer bndry interface 58x29x10 16,820 

10 superblocks 67 blocks 2,276,092 

Since the work of the flow solver is closely associated with the number of grid 

points, the load balance of the flow solver work can be judged by the distribution of 

the grid points. Table 7.5 lists the load imbalance factors achieved based solely on 
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numbers of grid points per processor and using the 67 block grid system. The third 

column lists the effective number of processors, which is equal to the actual number 

of processors divided by the load imbalance factor. As can be seen, the flow solver 

should load balance relatively well up to 40 processors. Beyond this point, an increase 

in the processor count is offset by the load imbalance. 

Table 7.5: Load Imbalance Factors 

no. of 
processors Fi 

effec. no. of 
processors 

4 1.005 3.98 
8 1.04 7.69 
12 1.05 11.43 
16 1.05 15.24 
20 1.07 18.69 
24 1.06 22.64 
28 1.14 24.56 
32 1.07 29.91 
36 1.18 30.51 
40 1.12 35.71 
44 1.23 35.77 
48 1.35 35.56 

The flight conditions simulated in all of the test runs are for a freestream Mach 

number of 0.95 at 26,000 feet altitude. All solutions are calculated assuming inviscid 

flow. The flow solver is run time accurately with a time step of 0.0005 sec and a local 

time step based on a CFL number of 2 is used to accelerate convergence of the dt 

iterations. Two dt iterations are used per time step with six inner iterations per dt 

iteration. A total of 600 iterations are run giving a total of 0.3 seconds of the trajec- 

tory. The flow solver is run with second order spatial accuracy using Steger-Warming 

flux jacobians, primitive variable MUSCL extrapolation, flux difference splitting with 

Roe averaged variables, and the van Albada flux limiter. Implicit solid wall boundary 

conditions are used with a relaxation factor of 0.6. All solutions are run in double 

precision (64 bit) on an SGI Origin 2000 machine. This particular machine is config- 

ured with 64 - 195 MHz R10000 processors and 16 Gb of shared memory distributed 
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as 2 processors and 512 Mb per node card. 

A single processor simulation was computed to establish the base solution time 

of 9384 minutes (about 6.5 days) using the 24 block grid system. The execution 

time of the grid assembly function was compared to the total execution time from 

the sequential run to establish work fractions of Gs = .05 and Fa = .95 for the grid 

assembly and the flow solver, respectively. 

The single processor solution was repeated with the 67 block grid system and the 

execution time increased to 9434 minutes. This increase is due to a change in the grid 

system that is only needed to improve performance for parallel execution. Therefore, 

all timings will be compared to the faster sequential time of 9384 minutes. Table 7.6 

gives a summary of the final position of the stores after 0.3 seconds of the trajectory 

as computed with the 24 block grid and the 67 block grid. This illustrates the order 

of magnitude of the changes that can be expected in the final solution by introducing 

block-to-block boundaries when splitting up the grids. The largest changes are on 

the order of tenths of a degree, while most changes are much smaller. 

Table 7.6: Summary of the final position of the stores calculated from the two different 
grid sets 

24 blocks 67 blocks 
bottom outboard inboard bottom outboard inboard 

position 
X -1.5867 -1.2077 -0.9800 -1.5868 -1.2078 -0.9935 

y -0.0007 2.9046 -2.9831 -0.0010 2.9053 -2.9851 
z 6.5293 2.9240 2.0040 6.5311 2.9227 2.0075 

angles 
yaw 8.0665 2.4242 16.6171 8.0537 2.4752 16.4353 
pitch 3.4369 0.3671 -18.5046 3.4349 0.1890 -18.6291 
roU 1.3669 -0.4678 -4.6363 1.3667 -0.5366 -4.6459 

Figures 7.1-7.3 present the trajectories calculated on a single processor and pre- 

sented in reference [4]. CG locations and the angular position of the stores during the 

ripple release trajectory calculation are presented. All three stores move downward 

and downstream. The bottom store shows only a slight sideways motion, while the 

outboard store moves further outboard and the inboard store moves further inboard, 
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both due to the ejector forces: The inboard motion of the inboard store is quickly 

reversed due to aerodynamic forces. All three stores are pitched nose up by the ejec- 

tors before pitching nose down, although the inboard store only pitches slightly nose 

up before quickly approaching 25 degrees nose down. The bottom and inboard stores 

yaw nose outboard and roll lugs outboard. The outboard store rolls lugs inboard and 

yaws nose inboard before turning nose outboard. 

The accuracy of the solutions from the parallel runs will be summarized, but 

corresponding plots of the trajectory data will not be shown. This is because the 

solutions from the parallel runs are nearly identical to the solutions from the sequential 

run and the curves are not distinquishable on plots of this scale. The solutions can 

be expected to change slightly because the grids are distributed differently based on 

the number of processors being used. This affects the explicit passing of information 

between grids on different processors and thus can affect the flow solution. However, 

the effects seen on the final trajectory are minimal. 
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CHAPTER 8 
RESULTS 

Phase I: Hybrid Parallel-Sequential 

The ripple release test problem was run on the SGI Origin 2000 using the phase 

I implementation and the 24 block grid system. The grid assembly was run in a 

single FE process and the flow solver was decomposed and executed using 4, 8, 12, 

and 16 BE processes. The timing results are displayed in figure 8.1. The actual 

speedup is plotted against the estimated speedup as defined by equation 6.1. In this 

implementation, the grid assembly for the entire domain is performed by a single 

process that executes sequentially with respect to the parallel execution of the flow 

solver. Once an iteration of the flow solver is complete, the grid assembly process is 

swapped in to perform the grid assembly. The grid assembly function and flow solver 

do not execute at the same time, thus the speedup data is plotted against the number 

of BE processes, which is equivalent to the maximum number of processes that are 

running at any one time. 

For the estimated speedup curve, the load imbalance factor for the flow solver 

(F, = 1.05) represents a nominal imbalance of 5%. The speedup for these cases 

■is actually better than the predicted value. This is most likely due to a latency 

experienced on the SGI Origin 2000 architecture. When a processor accesses memory 

off of its node card there is a delay when compared to accessing the memory on its 

node card. As more processors are used, the amount of memory that a processor 

needs decreases since the grids axe distributed across the available processors. Thus, 

the potential that the data can be stored in the memory on the node card increases. 
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Figure 8.1: Actual speedup of phase I 

The large memory job running on a single processor runs slower due to this latency 

and thus an artificial speedup is seen with increased processor counts. The estimated 

speedup curve still follows the trends in the data very well. 

The accuracy of the solution is demonstrated by the position data shown in 

table 8.1. This data represents the position of the CG and angular orientation of 

the bottom store after 0.3 seconds of the trajectory. The maximum difference, as 

compared to the sequential run, is on the order of 0.002 feet and 0.03 degrees. The 

actual execution times in minutes are also listed in table 8.1. 

Table 8.1: Summary of results from the phase I runs including the final position of 
the bottom store 

Seq Phase I 

no. of processors 1 4 8 12 16 

position 
X -1.5867 -1.5867 -1.5867 -1.5868 -1.5871 

y -0.0007 -0.0005 -0.0005 -0.0004 -0.0012 

z 6.5293 6.5292 6.5292 6.5292 6.5311 

orientation 
yaw 8.0665 8.0659 8.0659 8.0677 8.0456 
pitch 3.4369 3.4347 3.4349 3.4355 3.4295 
roll 1.3669 1.3336 1.3343 1.3587 1.3690 

exec, time min) 9384 2786 1513 1150 1013 
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Phase II: Function Overlapping 

This implementation continues to use a single process to compute the grid as- 

sembly for the entire domain. However, some parallel performance is gained by over- 

lapping the execution of the grid assembly and the flow solver. The approach of 

overlapping the grid assembly and flow solution functions is worthless if the forces 

and moments calculated after the first dt iteration are not a good approximation of 

the final forces and moments to be calculated. Thus, several test cases were run to 

monitor the forces and moments after each dt iteration. Figures 8.2-8.4 show a time 

history of the force and moment coefficients for the three stores after each dt iteration 

of 200 iterations of the separation trajectory. All of the force and moment coefficients 

show good agreement between dt iterations. As an example, the maximum varia- 

tion (between dt iterations) in the pitching moment coefficient for the bottom store 

throughout the entire trajectory calculation (600 iterations) was only 0.2%. 

It might be deduced that the use of implicit solid wall boundary conditions helps 

to accelerate the convergence of the flow solution near the walls although additional 

dt iterations are required to ensure convergence throughout the domain. Therefore, 

the most likely parameters to affect the forces and moments are the number of inner 

iterations and the BC relaxation factor; thus, tests were repeated with variations 
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in the number of inner iterations from 3 to 6 and in the BC relaxation factor from 

.6 to 1. For all test cases, the forces and moments behaved similarly. In fact, the 

forces and moments are so well behaved for this test problem, it is conceivable that 

an extrapolation procedure could be used to give a better approximation to the final 

forces and moments using the initial forces and moments and some history of previous 

iterations. 

The timing results from the phase II runs are presented in figure 8.5. This shows 

the actual speedup versus processor count as compared to the estimated speedup 

defined by equations 6.4 and 6.5. The ripple release test case was run using 4, 8, 12, 

and 16 BE processes for the flow solver and a single FE process for grid assembly. 

Since the grid assembly function is executing at the same time that the flow solver 

is executing, the total number of processors running at any time must now include 

the grid assembly process. Therefore, the actual speedup data points are plotted at 

5, 9, 13, and 17 processors. Again an artificial speedup is seen in the results; but 

the estimated speedup curve follows the trends of the data. For the phase II runs on 

4+1 (4 BE processes and 1 FE process) and 8+1 processors, the grid assembly time 

was completely hidden by the execution time of the flow solver. On 12+1 and 16+1 

processors, the grid assembly time was not completely hidden and the performance 

suffers. 

One troublesome result is the speedup of the 12+1 processor run. Why did this 

result fall below the estimated speedup curve? This calculation was repeated several 

times and the results were consistent. It turns out that this is an artifact of using 

-average execution times over the complete simulation to determine the work fractions 

of grid assembly and the flow solver. As will be seen later, the execution time of 

the grid assembly actually decreases throughout the simulation. When the stores are 

in carriage position, the grid assembly work is at a maximum. As the stores move 

downward, some of the grids no longer overlap, less holes are cut, less stencil sources 

are searched, and the execution time decreases.  To see how the use of an average 
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Figure 8.5: Actual speedup of phase II 

execution time can affect the estimated speedup, consider figure 8.6. 

This figure represents the variation in the grid assembly time by the sloping 

lines labeled "GA". The average grid assembly time is represented by the dashed lines 

labeled "Avg GA". The constant flow solution time available to hide the execution 

of the grid assembly is represented by the horizontal lines labeled "Flow". For the 

two plots in the upper half of the figure, the flow solution time is always greater than 

the grid assembly time or it is always less than the grid assembly time. In these 

cases, the relationship between the flow solution time and the grid assembly time is 

accurately modelled by the use of average execution times. However, in the lower 

two plots, the execution time of the flow solver is sufficient to hide the execution 

time of the grid assembly for part of the iterations but is insufficient for the rest. In 

the case represented by the plot in the lower left corner of the figure, if the average 

■execution time of the grid assembly is compared to the flow solution time, it appears 

that the grid assembly is always hidden by the flow solver. However, for the iterations 

below what is labeled "il", the grid assembly execution time is not hidden. Thus the 

actual speedup would be less than that predicted by equations 6.4 and 6.5. In the 

case represented by the plot in the lower right corner of the figure, it appears that 

the correct conclusion would be drawn by considering the average execution time. 
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However, the speedup estimated would be high because of the use of the iterations 

above what is labeled i2 when computing the average grid assembly time. 

This exercise points out that the equations developed to estimate the speedup 

are only applicable for constant execution times (i.e. work fractions). If the execution 

times are not constant, the equations should be applied on an iteration-by-iteration 

basis, where the work fractions are a function of the iteration. However, since the 

equations are only used to judge if the actual implementation performs as expected, 

they can still be applied. They may also be of use in a production work environment 

to estimate code performance on particular problems based on past experience of the 

work fractions and load imbalance factors. 
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The accuracy of the solutions from the phase II runs can be judged by the data 

shown in table 8.2. This data represents the position of the CG and angular orienta- 

tion of the outboard store after the complete trajectory. The maximum difference, as 

compared to the sequential run, is on the order of 0.001 feet and 0.15 degrees. The 

use of functional overlapping to hide the execution time of the grid assembly function 

has not deteriorated the accuracy of the results for this test problem. 

Table 8.2: Summary of results from the phase II runs including the final position of 
the outboard store 

Seq Phase II 

no. of processors 1 4+1 8+1 12+1 16+1 

position 
X -1.2077 -1.2077 -1.2078 -1.2078 -1.2091 

y 2.9046 2.9049 2.9050 2.9051 2.9050 
z 2.9240 2.9233 2.9235 2.9235 2.9235 

orientation 
yaw 2.4242 2.4243 2.4252 2.4199 2.4983 
pitch 0.3671 0.3840 0.3875 0.3910 0.2103 
roU -0.4678 -0.4793 -0.4759 -0.4697 -0.5251 

exec, time |min) 9384 1920 1041 920 729 

Phase III: Coarse Grain Decomposition 

This implementation uses multiple FE processes to reduce the grid assembly 

time. Functional overlapping is still being used in an attempt to hide the grid assembly 

time behind the execution time of the flow solver. The decomposition of the grid 

assembly work is based on superblocks. The relatively small number of superblocks 

would classify this as a coarse grain decomposition technique. Dynamic load balancing 

as described in chapter 5 is used to shuffle the superblocks between processes in 

order to balance the distribution of work based on some measure of the work per 

superblock. Since no apriori metric exists for judging the work of grid assembly, the 

actual execution time as measured using system calls is used as the measure of the 

work associated with a superblock. 

The ripple release test problem was run using the phase III implementation and 
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the 67 block grid system. The timing results are presented in figure 8.7. All of 

the runs used 4 FE processes and the number of BE processes varied between 16 

and 40. Dynamic load balancing of the grid assembly function was performed after 

each iteration. The load balance of the grid assembly was judged by measuring the 

execution times of the hole cutting, stencil searching, and interpolation health check 

routines. Figure 8.8 shows a time history of the grid assembly load imbalance factor 

for the 40+4 processor run. The average load imbalance in the grid assembly appears 

to be less than 10%. Thus, one of the estimated speedup curves plotted in figure 8.7 

is for load imbalance factors of F, = 1.05 and G,- = 1.08. The speedup experienced 

followed the estimated speedup up to 24+4 processes; however, for larger processor 

counts, the grid assembly time failed to be hidden and the speedup fell well below 

the estimated value. 
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Figure 8.7: Actual speedup of phase III 

The imbalance in the grid assembly work load is obviously worse than the mea- 

sured execution times would imply. It appears that the 24+4 processor run is the 

last point where the grid assembly time is hidden by the execution time of the flow 

solver. If we assume that the grid assembly time from the 24+4 processor run exactly 

equals the execution time of the flow solver that is available to hide the grid assembly, 

then the imbalance factor can be calculated. Thus, the grid assembly imbalance was 
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Figure 8.8: History of grid assembly load imbalance based on execution times of hole 
cutting, stencil search, and health check 

calculated using equations 6.4 and 6.7 and the timings of the 24+4 processor run. 

This showed the actual imbalance in the grid assembly is about 65%. 

The second estimated speedup curve in figure 8.7 represents imbalance factors 

of Fi = 1.16 and G,- = 1.65. This is based on the imbalance in the grid assembly 

calculated from the timing results of the 24+4 run and a more realistic value for the 

imbalance factor for the flow solver on larger processor counts (see table 7.5). This 

curve matches the four jobs with the larger processor counts more closely. 

The cause for the difference in the perceived imbalance as judge by the measured 

execution times of the grid assembly functions and the actual imbalance in the grid 

assembly function as calculated from the estimated speedup equations is the need 

for synchronization. Without synchronization, the total measured execution time 

per process may be well balanced; but if synchronization is required between the 

functions, wait time can be introduced if each function is not well balanced. This 

point was discussed in chapter 5 and illustrated in figure 5.3. 

Figure 8.9 represents the grid assembly process. After the holes are cut, control 

enters into an iterative loop in which interpolation stencils for IGBP's are identi- 

fied. If any IGBP fails to have an interpolation source, it is marked as OUT and 

neighboring points become IGBP's requiring interpolation. Once a valid set of inter- 
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polation stencils are identified,' the health of the interpolation stencils is checked to 

chose the best interpolation source. The most expensive two functions in the process 

are cutting holes and the search for interpolation stencils. The most expensive of the 

remaining functions is the check of the interpolation stencil health. Together these 

three functions account for 90%-95% of the execution time. Therefore, that is why 

the sum of these execution times was chosen to judge the load balance. 

This iterative algorithm requires several synchronization points to ensure that 

each process has access to the proper cell state information and to ensure that each 

process executes the same number of iterations of the loop. The processes are syn- 

chronized after the holes are cut so that each process will know which grid points are 

IGBP's and which cells can not be interpolated from. Likewise, each iteration of the 

loop has to be synchronized whenever an IGBP is marked as OUT because it either 

failed to have any interpolation sources or the interpolation stencils did not meet 

the health requirements. These synchronization points mean that the total execution 

time should not be used to judge the load balance. 

Since the stencil search function was the most expensive function for the ripple 

release test problem, the execution time of just the stencil search function was used 

in subsequent runs to judge the grid assembly load balance. Figure 8.10 shows a plot 

of the perceived load imbalance. Again, grid assembly appears to be relatively well 

balanced and the overall execution times were nearly equivalent to those plotted in 

figure 8.7. 

Figure 8.11 shows a time history of the grid assembly times measured on the 4 

FE processes of the 40+4 processor run. The data is from a run in which the load 

balance was judged by the execution time of the stencil search routine. Each plot 

in the figure represents a different process. The curves labeled "total" represent the 

total execution time of the grid assembly function, which decreases as the calculation 

progresses, since the stores begin to move downward and some of the grids no longer 

overlap.  The curves that are labeled "flow" represent the time to calculate one dt 
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iteration of the flow solution. This is the time available to hide the grid assembly 

time; thus, the grid assembly time is not completely hidden. There is a lot of noise in 

the flow solver execution time; however, the mean value is relatively constant. The 

"idle" time was measured around the synchronization points and thus includes both 

the time to perform the communications and the time waiting for all of the processes 

to reach the barrier. Some runs where made with additional synchronization points 

used to separate the communication times from the wait time. Most of the idle time 

shown is wait time due to the load imbalance. 
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Figure 8.11: Grid assembly execution timings for four FE processes 

To better judge the load balance of the hole cutting and stencil search routines, 

the execution times of these two routines are plotted separately in figure 8.12. The left 
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plot shows the execution time of hole cutting and the right plot shows the execution 

time of the stencil search. Each curve in the two plots represents a different FE 

process. The grouping or separation between the curves represents the variation in 

the execution times on the different processes and thus indicates the quality of the 

load balance. From these plots, it can be seen that the stencil search routine is much 

better balanced than the hole cutting routine. This should be the case since the 

execution time of the stencil search routine was used to judge the load balance. The 

stencil search imbalance is always less than 10%, while the hole cutting imbalance is 

in the range of 50%-70%. 
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Figure 8.12: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with load balance based on measured execution time of stencil searching. 
Each curve represents a separate process. 

Since system calls are being used to measure the execution times needed to judge 

the load balance, the time required to obtain the timing information contributes to the 

processor idle time. Thus, it would be beneficial to define a metric by which the load 

balance could be judged without introducing additional function calls. The number 

of IGBP's per process has been used in other references (see [35] for example) to judge 

the load balance. Therefore, some runs where made using the number of IGBP's per 

superblock as a measure of the grid assembly work associated with the superblock. 

Figure 8.13 shows the perceived imbalance. From this plot, the grid assembly is not 
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Figure 8.13: History of grid assembly load imbalance based on number of IGBP's 

well balanced, and the overall performance of the code was significantly worse. 

Figure 8.14 shows the execution times for the hole cutting and stencil search 

routines when the load balance was judged based on the number of IGBP's per 

superblock. Again, each curve represents execution time on a different FE process. 

The stencil search routine is still relatively well balanced but the imbalance in hole 

cutting has increased significantly. The imbalance in the stencil search is less than 

20%, while the imbalance in hole cutting is as much as 160%. This indicates that the 

actual execution times of the stencil seach routines does a much better job at load 

balancing the work load than does the number of IGBP's. 

Table 8.3 summarizes the results from some of the phase III runs. The data 

represents the position of the CG and angular orientation of the inboard store after 

the complete trajectory. The maximum differences, as compared to the sequential 

run, are on the order of 0.001 feet and 0.03 degrees. The use of multiple FE processes 

to compute the grid assembly function has no effect on the accuracy of the trajectory 

computed. 
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Figure 8.14: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with load balance based on number of IGBP's. Each curve represents a 
separate process. 

Table 8.3: Summary of results from the phase III runs including the final position of 
the inboard store 

Seq Phase III 

no. of processors 1 16+4 24+4 28+4 32+4 40+4 

position 
X -0.9935 -0.9935 -0.9935 -0.9935 -0.9935 -0.9935 

y -2.9851 -2.9853 -2.9853 -2.9853 -2.9854 -2.9853 

z 2.0075 2.0064 2.0064 2.0064 2.0064 2.0064 

orientation 
yaw 16.435 16.448 16.450 16.450 16.450 16.450 

pitch -18.629 -18.641 -18.641 -18.641 -18.641 -18.641 

roll -4.6459 -4.6152 -4.6172 -4.6172 -4.6151 -4.6172 

exec, time (min) 9384 557 388 390 350 324 

Phase IV: Fine Grain Decomposition 

The use of superblocks as a basis for domain decomposition of the grid assembly 

function performed relatively well for the ripple release test problem. With only 10 

superblocks, it is fortunate that the grid assembly work load balanced relatively well 

on 4 FE processes. However, the grid assembly time failed to be completely hidden by 

the execution time of the flow solver when more than 24 BE processes were used. To 

be able to utilize more FE processes, a fine grain decomposition of the grid assembly 

work is required. 
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As was stated in the previous section, the two most expensive routines in the 

grid assembly function are the hole cutting and the stencil search routines. The work 

of the hole cutting routine is associated with the number of facets doing the hole 

cutting; while the work of the stencil search routines is associated with the number 

of IGBP's that require interpolation. As a first step, the hole cutting routine was 

decomposed separate from the stencil search routine. The number of hole cutting 

facets is used as the basis for fine grain decomposition of the hole cutting routine; 

while the stencil search routine and the remainder of the grid assembly function are 

still decomposed based on superblocks. Since the hole cutting is now decoupled from 

the distribution of the superblocks, the redistribution of superblocks for dynamic load 

balancing is based on the execution times of the stencil search routine. 

As an initial step, the total number of hole cutting facets is equally divided 

between the FE processes. Each FE process cuts holes into all of the superblocks with 

all of the facets that have been mapped to that process. The cell state information 

is stored in shared memory to avoid an expensive reduction operation that would be 

required to merge the cell state information after the holes are outlined. 

There are two options for cutting holes. As mentioned in chapter 2, the default 

option outlines the holes and then fills them with a fast sweep through the grids. The 

"nofill" option outlines the holes but does not fill them. With the "nofill" option, 

less work has to be done when outlining the holes, because the facets do not have to 

be refined to ensure a complete outline. However, more work has to be done when 

searching for interpolation stencils, because the points which are actually inside a 

-hole will fail interpolation. For the sequential run of the ripple release problem, the 

use of either option does not make a significant difference in the execution times. 

Therefore, all of the runs up to this point (including the sequential run) were done 

using the "nofill" option. However, the new implementation should make it easier to 

use more processes to reduce the execution time of hole cutting; therefore, the best 

performance should be seen if some of the work of the stencil search can be shifted to 
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the hole cutting function. Thus, the "nofill" option is not used. The default option 

of outlining and filling the holes is used. 

The ripple release test problem was run with the fine grain hole cutting on 4 

FE processes and 28-40 BE processes. The timing results are displayed in figure 

8.15 along with the previous results from the phase III runs. The grid assembly time 

is now completely hidden by the execution time of the flow solver for the run with 

28 BE processes. In fact, the 28+4 process run outperforms the phase III run on 

40+4 processors. The 32+4 and 36+4 runs are in the region of the "bend" in the 

performance curve and are probably affected by the use of average work fractions to 

perdict the performance. However, they actually performed slightly worse than the 

28+4 run. Therefore, they may have been affected by uncontrollable machine load 

or other conditions. The 40+4 process run performed quite well. Solving for the 

grid assembly imbalance using equations 6.4 and 6.7 and the speedup from the 40+4 

process run, the imbalance is 38% as compared to the 65% for the phase III run. 
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Figure 8.15: Speedup due to fine grain hole cutting and load balancing of hole cutting 
separate from the stencil search 

The execution of the stencil search routine should be equivalent to that in the 

phase III runs. The improvements in speedup seen in figure 8.15 are due to the im- 

provement in the load balancing of the hole cutting. Figure 8.16 shows the execution 
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Figure 8.16: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with fine grain hole cutting and the stencil search load balanced based on 
execution time. Each curve represents a separate process. 

times of the hole cutting routine and the stencil search routines throughout the 40+4 

process run. Each curve represents the execution time on a different FE process. 

These plots should be comparable to the plots in figure 8.12, although the total hole 

cutting time has increased and the total stencil search time has decreased because of 

the use of the "nofill" option in the previous runs. Overall, the load balance of the 

hole cutting has improved. However, as the computation progresses, the execution 

times of the hole cutting on the different processes tends to spread apart. Thus, the 

load imbalance is increasing as the stores move apart. 

In order to demonstrate the advantage of the fine grain decomposition in using 

more FE processes, runs were made with 40 BE processes and 5, 6, 7, and 8 FE 

processes. The execution times for the hole cutting and stencil search routines are 

shown in figures 8.17-8.20 for these runs. Each set of plots contains 5, 6, 7, and 8 

curves, respectively, representing the execution times on the different FE processes. In 

general, the execution times of the hole cutting routine decreases with the additional 

FE processes, although some significant load imbalances are seen. This is indicated 

by the progressive decrease in the average execution times of the hole cutting on the 

different FE processes. The good load balance is indicated by the tight grouping of 
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Figure 8.17: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with fine grain hole cutting and the stencil search distributed across 5 FE 
processes. Each curve represents a separate process. 

the curves in the figures; however, some of the execution times deviate significantly 

from the average indicating a load imbalance. 

Since there are 10 superblocks, we can continue to distribute the superblocks 

over the FE processes. However, there is one superblock that dominates the stencil 

search execution time. This superblock is composed of a set of grids in the region 

of the pylon and the stores. It is used as a interface between the store grids and 

the wing grids and is used to improve the resolution of the flow in the region of the 

trajectory of the stores. All of the stores cut holes into this superblock and it provides 

the source for many interpolations. The total work associated with this superblock is 

about 1/4 of the total grid assembly work; therefore, it does not adversely affect the 

load balance on the 4 FE process runs. However, as more FE processes are used, the 

work associated with this superblock can not be subdivided and the total execution 

time of the stencil search does not decrease (similar to the situation discussed relative 

to figure 5.2). This can be seen as the execution time of the stencil search for one 

of the processes always starts just above 6 seconds and finishes just below 5 seconds. 

Remember, the total execution time of a function distributed over multiple processes 

is dictated by the maximum execution time of all of the processes. 
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Figure 8.18: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with fine grain hole cutting and the stencil search distributed across 6 FE 
processes. Each curve represents a separate process. 
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Figure 8.19: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with fine grain hole cutting and the stencil search distributed across 7 FE 
processes. Each curve represents a separate process. 
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Figure 8.20: Grid assembly execution timings of (left) hole cutting and (right) stencil 
searching with fine grain hole cutting and the stencil search distributed across 8 FE 
processes. Each curve represents a separate process. 

Figure 8.21 shows the timing results from these runs. The data with the square 

symbols is for the runs with 4 FE processes and varying numbers of BE processes. The 

data with the circle symbols is the runs with 40 BE processes and 5-8 FE processes. 

The 5 FE process execution histories shown in figure 8.17 show some excessive noise 

which might indicate some uncontrollable machine load or other condition. This 

might account for the dropoff in performance on the 5 FE process run. The 8 FE 

process also showed a dropoff in performance. This is most likely due to the large 

load imbalance seen in the hole cutting for this case. 

The failure to maintain a good load balance in the hole cutting is due to the 

fact that no dynamic load balancing is being employed. The total number of hole 

cutting facets is equally divided among the available FE processes. However, each 

facet does not do an equal amount of work. Some facets will overlap only one grid, 

while other facets overlap many grids. Likewise, some facets may overlap a region of 

tightly spaced grid cells and will require refinement, while other facets do not require 

refinement. 

In order to use the same dynamic load balancing algorithm that is used to 

redistribute the superblocks, the execution time of each hole cutting facet would have 
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Figure 8.21: Use of additional processors continues to reduce time for hole cutting 

to be measured separately. Since there are about 60,000 hole cutting facets in the 

ripple release test problem, measuring the execution time of each facet could add 

a significant amount of system time. Likewise, the load balancing routine used to 

redistribute the superblocks is not optimized to handle the sorting and searching 

required by that many individual pieces of work. Therefore, the load balancing of 

the fine grain hole cutting is based on an algorithm that uses the execution time of 

the hole cutting routine per FE process as a weight. This algorithm was described in 

chapter 5. The algorithm varies the number of facets assigned to each FE process so 

that the weighted number of facets is evenly distributed. 

Figures 8.22-8.26 show the execution times of the hole cutting routine when 4-8 

FE processes are used in combination with dynamic load balancing of the hole cutting. 

These figures may appear to contain only a single curve; however, each plot actually 

contains from 4 to 8 curves representing the execution time for hole cutting on the 

different FE processes. The tight grouping of the curves indicates the remarkable load 

balance that was achieved. It takes several iterations at the beginning of a run for 

the execution times to converge, and small changes in the execution of the computer, 

which can cause variations in the execution time of a process, can cause perturbations 

in the load balance. The load balance quickly recovers from these; however, some sort 
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Figure 8.22:  Execution times for load balanced fine grain hole cutting distributed 
across 4 FE processes 

of limiting or damping of the changes between iterations may help to maintain the 

load balance. 

Unfortunately, with limited, shared computing resources, the runs using fine 

grain hole cutting with dynamic load balancing could not be repeated for overall 

speedup measurements. The timings presented in figures 8.22-8.26 were taken while 

running the code in a special mode to allow prescribed motion. The flow solution was 

not calculated. Instead, the motion was prescribed from a recording of the motion 

calculated on previous runs. The work of the grid assembly is the same as if the 

motion had been driven by the flow solution because all of the grids are placed in the 

appropriate positions throughout the trajectory. However, computing resources are 

minimized because only the FE processes are needed. 

Table 8.4 summarizes the results from some of the phase IV runs in which the 

motion was driven by the flow solution. The data represents the position of the 

CG and angular orientation of the bottom store after the complete trajectory. The 

maximum differences, as compared to the sequential run, are on the order of 0.005 

feet and 0.1 degrees. The use of additional FE processes and fine grain hole cutting 

has no affect on the accuracy of the trajectory computed. 
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Figure 8.23:  Execution times for load balanced fine grain hole cutting distributed 
across 5 FE processes 
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Figure 8.24:  Execution times for load balanced fine grain hole cutting distributed 
across 6 FE processes 
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Figure 8.25:  Execution times for load balanced fine grain hole cutting distributed 
across 7 FE processes 
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Figure 8.26:  Execution times for load balanced fine grain hole cutting distributed 
across 8 FE processes 
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Table 8.4: Summary of results from the runs that used fine grain hole cutting including 
the final position of the bottom store 

Seq Phase IV 

no. of processors 1 28+4 32+4 36+4 40+4 

position 
X -1.5868 -1.5883 -1.5883 -1.5883 -1.5883 

y -0.0010 0.0010 0.0010 0.0010 0.0010 
z 6.5311 6.5268 6.5268 6.5268 6.5268 

orientation 
yaw 8.0537 8.0579 8.0579 8.0579 8.0579 
pitch 3.4349 3.3067 3.3069 3.3065 3.3069 
roll 1.3667 1.3878 1.3878 1.3878 1.3877 

exec, time 'min) 9384 329 334 331 287 

Summary 

Table 8.5 gives a listing of some of the best execution times from runs of the 

ripple release test problem using the different implementations. The number of BE 

processes is listed in the first column and the number of FE processes is listed in 

parentheses beside the execution times. All of the phase I runs used a single FE 

process to perform the complete grid assembly in a serial fashion with respect to the 

parallel execution of the flow solver. The sequential run time is listed in the first row 

under phase I although there was only one process containing both the flow solver and 

the grid assembly functions. The phase II timings show the improvement gained by 

overlapping the grid assembly execution time and the flow solver execution time. The 

phase III timings show the continued improvement due to coarse grain decomposition 

of the grid assembly function based on the distribution of the superblocks. The 

phase IV timings show the improvement due to the distribution of the work of the 

stencil search and the hole cutting functions using on separate bases. The stencil 

search is still based on coarse grain decomposition based on superblocks; while, the 

hole cutting is based on fine grain decomposition based on the hole cutting facets 

(without dynamic load balancing for these timings). The best timing is for 40 BE 

processes and 7 FE processes using the fine grain hole cutting. The total execution 

time was decreased from about 6.5 days to 4.5 hours. 
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Table 8.5: Summary of best execution times (in minutes) from runs of the different 
implementations (number of FE processes shown in parentheses) 

Phases 

NBES I II Ill IV 

1 9384 (1) - - - 

4 2786 (1) 1920 (1) - - 

8 1543 (1) 1041 (1) - - 

12 . 1150 (1) 920 (1) - - 

16 1013 (1) 729 (1) 557 (4) - 

20 - - 498 (4) - 

24 - - 388 (4) - 

28 - - 390 (4) 329 (4) 

32 - - 350 (4) 334 (4) 

36 - - 343(4) 331 (4) 

40 - - 324 (4) 270 (7) 

Figure 8.27 is a combination of figures 8.1, 8.5, 8.7 and 8.15, showing speedup 

from most of the data listed in table 8.5. Some estimated speedup curves are also 

included to show trends in the data and the performance that can be expected from 

the use of different numbers of processors. The four curves and associated data are 

from the four phases of implementation. The data labeled "Fine grain GA" is from the 

phase IV runs with fine grain hole cutting without dynamic load balancing of the hole 

cutting. Overall, the performance has increased with each successive implementation. 
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Figure 8.27: Summary of the increasing speedup achieved through the different im- 
plementations 



CHAPTER 9 
CONCLUSIONS AND FUTURE WORK 

The numerical solution of store separation trajectories from first principles is a 

computationally expensive task. The use of overlapping, Chimera grids eases the grid 

generation burden, makes the flow solution process more efficient, and allows for grid 

movement. However, each time a grid is moved, the communication links between the 

overlapping grids must be reestablished. This makes the numerical solution of store 

separation trajectories even more costly. Therefore, it is important to address the 

use of parallel processing to reduce the computation time required to calculate store 

separation trajectories. Paramount in this effort is the requirement to parallelize the 

execution of the grid assembly function. 

The parallel implementation of the grid assembly function was addressed and 

four implementations were presented. The performance of each implementation was 

analyzed and the weaknesses were attacked, with each successive implementation, in 

an effort to improve performance. The first implementation took the easiest approach 

to solving dynamic, moving body problems in parallel. One process was used for grid 

assembly, while multiple processes were used for the flow solver. The execution time of 

the grid assembly function was not decreased; however, multiple processes were used 

to decrease the execution time of the flow solver. Thus, the wall clock time needed 

to compute store separation trajectories was decreased by using parallel computing. 

In the second implementation, the parallel performance was improved by re- 

ducing the serial fraction of the work. This was done by hiding some or all of the 

execution time of the grid assembly function behind the execution time of the flow 

solver. This technique is similar to approaches used in serial implementations; but 
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this is the first time that this technique has been used in the parallel implementation 

of Chimera grid schemes. The opportunity to hide the grid assembly time arises from 

the Newton relaxation scheme used in the flow solver. Therefore, this implemen- 

tation also emphasizes the need to consider the entire calculation to achieve better 

performance. 

The third implementation used multiple processes to decrease the execution time 

of the grid assembly function. This makes it easier to hide the execution time of the 

grid assembly function behind the execution time of the flow solver. A coarse grain 

data decomposition of the grid assembly function was used based on superblocks. 

The superblocks were distributed across the available processes. On each process, 

holes were cut into and interpolation sources were identified only for the superblocks 

mapped to that process. The work load associated with each superblock was mea- 

sured by the execution time and a dynamic load balancing algorithm was devised to 

redistribute the superblocks in order to achieve a good load balance. This represents 

the first time that a grid assembly function has been parallelized and dynamic load 

balancing was used based on a decomposition that is separate from that of the flow 

solver. 

The relatively small number of superblocks in the test problem placed a limit on 

the number of processes that could be used effectively to decrease the execution time 

of the grid assembly function. Therefore, the final implementation demonstrated the 

use of fine grain data decomposition of the work associated with grid assembly to 

improve scalability. In this implementation, the hole cutting facets were used as the 

basis for the data decomposition of the work associated with the hole cutting portion 

of the grid assembly function. The hole cutting facets were distributed across the 

available processes, and each process cut holes into all of the grids using the facets 

that were mapped to that process. Each facet cuts holes independent of the other 

facets; however, the resulting cell state information, used to track the holes, must be 

complete for each grid.  Therefore, shared memory was used to store the cell state 
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information, and an expensive reduction operation, needed to recombine the cell state 

information that would be distributed across multiple processes, was avoided. 

The work associated with each facet is not uniform; therefore, a dynamic load 

balancing algorithm was devised based on the use of the execution time of a process 

as a weight to the cost of the facets mapped to that process. This algorithm proved to 

be effective at maintaining a near optimum load balance throughout the test problem 

calculation shown. The best performance seen in the calculations presented reduced 

the execution time of the test problem from 6.5 days on a single process to 4.5 hours 

on 47 processes, representing a 34.8 times reduction in the wall clock execution time. 

The distribution of the IGBP's across multiple processes would allow for a fine 

grain decomposition of the remaining work of the grid assembly function. This would 

allow for the scalable execution of the grid assembly function on larger numbers of 

processes. With the significant reduction in the execution time of the grid assembly 

function, the grid assembly would be performed after the final forces and moments axe 

computed and there would be no question about errors introduced into the trajectory. 

All of the available processes could be used for both the flow solver and the grid 

assembly. In order to do this, the PM tree must be stored in shared memory so that 

all of the processes can access it during grid assembly. 

The use of shared memory limits the computing resources that can be effectively 

utilized. An alternative method that can effectively use distributed memory machines 

should be devised. One method is to use a system level library that mimics shared 

memory on distributed memory machines. Several groups have worked on this func- 

tionality but there are no production implementations currently available and the 

performance is not known. Alternatively, with PVM's abilities for heterogeneous 

computing environments, the use of shared memory programming in combination 

with message passing can allow clusters of shared memory machines to be used as 

one computing resource. 

Another item that should be addressed is the decomposition and load balancing 
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of the flow solver. The current method of splitting grids to create smaller pieces of 

work that will allow better load balancing is cumbersome. The grids must be split, 

flow solutions must be copied from previous grids, and the final solutions reflect the 

split grid system which complicates visualization. This process should be automated 

so that the user does not have to be involved in the splitting of grids and the visual- 

ization tasks can be performed with the original grids. However, as more and more 

processes are used, the splitting of grids reduces the implicit nature of the solution 

and can adversely affect the solution convergence. Shared memory techniques should 

be investigated to decompose the work of the flow solver without splitting the grids 

or affecting the solution. 
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ABSTRACT 

Continuing our effort towards developing a 
computational capability for handling interaction 
between viscous flows and flexible solid 
structure, the effect of inertia on the dynamics of 
a flexible membrane is studied. Both laminar and 
turbulent unsteady flow fields are investigated by 
directly coupling membrane structure dynamics 
with fluid dynamics where the fluid/structure 
interface is handled by a moving grid technique. 
The turbulent simulations are made using the k-a 
turbulence model proposed by Menter. 
Appropriate dimensionless parameters, 
characterizing the problem, are employed to 
account for the fluid flow and membrane 
characteristics. The results show significant 
differences in the membrane configuration, fluid 
behavior and aeroelastic response between the 
finite inertia membrane and the massless 
membrane. Implications in aerodynamic 
performance due to such fluid flow and flexible 
structure interactions are discussed in terms of 
change in the lift/drag ratio. 

1. INTRODUCTION 

The problem of fluid/structure interaction for 
flexible structures has previously been 
investigated for physiological flows [1][2], 
flexible structures such as marine sails [3]-[6], 
and for the low Reynolds number flight 
properties of Micro Air Vehicles (jiA V) [7]. The 
aerodynamic performance of an ptAV is very 
sensitive to alterations in the wind speed and 
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direction. Experiments show that normal rigid 
wings does a poor job under these conditions 
where, for example, wind gusts causes changes 
in the angle of attack resulting in massive flow 
separation and substantial degradation in the lift- 
to-drag ratio. 

These observations have led to the investigation 
of flexible wings, membrane wings or hybrid 
rigid-flexible wings. Research made in this area 
by Shyy and co-workers [7] [8] shows that the 
overall performance of a flexible wing in a non- 
stationary laminar flow field is improved 
compared to rigid profile wings. 

The topic of fluid/structure interaction has 
proven to be challenging since it involves not 
only fluid and structural dynamics but also the 
interaction between the two, along moving 
boundaries. The development of tools for the 
investigation of such problems have been 
substantial during the past decades but much of 
the current theoretical practice remains 
inadequate to address the most critical issues 
involved. 

For low Reynolds number aerodynamics around 
an airfoil, the flow surrounding the leading edge 
region is often not strong enough to overcome 
the adverse pressure gradient on the aft-side of 
the airfoil and laminar separation occurs. Once 
separated, the boundary layer disturbance 
amplification rates greatly increase, inducing 
transition toward turbulence. The turbulent flow 
induces more mixing within the boundary layer, 
bringing higher momentum fluid from near the 
freestream to the wall. The now higher 
momentum fluid near the wall overcomes the 
pressure gradient and quickly reattaches, forming 
a separation bubble. This separation bubble is 
mainly characterized by recirculating flow. The 
«attachment point is followed downstream by a 
turbulent    boundary    layer.    The    turbulent 
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boundary layer continues until turbulent 
separation occurs at or before the trailing edge. 

The extent of the separation bubble is dependent 
on the Reynolds number. As the Reynolds 
number decreases, the influence of viscous 
damping increases which tends to suppress the 
transition process and delay reattachment The 
flow will not reattach if, 1) the Reynolds number 
is sufficiently low to completely suppress the 
transition to turbulence or, 2) the pressure 
gradient is too strong for the turbulent flow to 
reattach. Thus without reattachment, a bubble 
does not form and the flow is then fully 
separated. 

Increasing angles-of-attack move the pressure 
peak towards the leading edge and are also 
characterized by increased streamline curvature 
on the top surface of the airfoil and hence higher 
adverse pressure gradients. Therefore, an 
increase in the angle-of-attack will move the 
separation point towards the leading edge. The 
angle-of-attack at which the top surface is 
completely engulfed by separation is termed the 
stall angle. 

The location and structure of separated regions 
are very sensitive to small changes in flow 
conditions, making it difficult to construct 
optimized or even working airfoils for the 
fluctuating environment of uAVs. An interesting 
alternative that would improve the aerodynamics 
of a wing would be to change the shape of the 
wing during flight. An adaptable wing could 
have noticeable effects on sustaining good 
performance in a fluctuating environment With 
intelligently designed sensing and control 
strategies, changes in freestream conditions can 
be detected, and actuators can be placed to 
dynamically adjust the camber and shape of the 
wing. At higher angles-of-attack, much of the 
wing may be masked by the separation bubble 
and a larger displacement of the wing surface 
and/or camber would be necessary. An integrated 
approach to simultaneously account for 
aerodynamics and sensing/control considerations 
will be highly desirable. A combination of 
passive and active control strategies offers an 
opportunity for improving uAV aerodynamics. 
In order to reduce the tendency of flow 
separation in this manner, a flexible adaptive 
wing seems attractive. 

In Refs. [5] [6] [9] dynamic interaction between a 
flexible membrane airfoil and laminar/turbulent 
flows is investigated. For transient free stream 
conditions, the simulations show the appearance 

and collapse of recirculation zones due to the 
acceleration and deceleration of the freestream 
velocity. This response from the flow along with 
the adjustment in the membrane configuration 
results in an aeroelastic response, which can, in 
turn, affect the flow structure. However, in these 
works, inertial effects, arising from the non-zero 
mass membrane, are not taken into account and 
the problem of adding these effects to the 
formulation serves as the foundation and 
motivation for the present work. 
In the present work a modified membrane 
equation is created, taking inertial effects into 
account, by adding membrane density and a 
second order time derivative to the equilibrium 
equation, presented previously in Refs. [5][6][9], 
hence, making it time-dependent This alteration 
creates new conditions for stability and 
convergence as well as the scaling of the 
problem and these properties will be discussed in 
following chapters. 

Similar simulations are made for the case of an 
initially flat extensible membrane using both the 
original massless membrane equation and the 
new, finite inertia, time dependent formulation 
for comparison. First the density ratio between 
the membrane and air is taken to be 500 to 
simulate a fairly light membrane material such as 
a rubber compound. Then, the effect of the 
membrane inertia is examined by increasing the 
membrane-to-air-density-ratio from 500 to 900 
to simulate a heavier material. 

2. NUMERICAL METHODS 

As for the previous computations in Ref. [5] a 
body-fitted curvilinear mesh is used with a 
moving boundary consisting of the surface of a 
flexible membrane. A body-fitted moving grid 
solver using generalized curvilinear coordinates 
is then used to follow the motion of the 
boundary. The redistribution of grid points is 
done at every time instant to accommodate for 
the reactions in the membrane shape. 

2.1 Basic equations 

The Navier-Stokes equations for unsteady, 
laminar flow written in two-dimensional 
Cartesian coordinates are given by 

dt 8x &, &, 
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£♦£(,*,>-. (lc) 

where v, is the Cartesian component of the fluid 
velocity field, p is the fluid density, // is the fluid 
viscosity, t is time and/7 the fluid pressure. In the 
present work, though, only incompressible flows 
will be considered. 

Introducing the new independent variables 
4,=^,(x,,x2,t) and A-fifox*/; the Eqs. la-lc 
can be rewritten as follows, where the subscript 
/, j indicates the partial derivative of the /-th 
Cartesian component of velocity or position with 
respect to the general curvilinear coordinate./. 

|(-/pv2)+A(^V2)=A^taV:u_g2Vw))+ 
at o$j a§ J 

•^(^vb-ftvi,))^^)-^^)    (2b) 

■%-(Jp) + -£r(pyj) = 0 (2c) 
dt d£j 

where the contravariant velocities components 
are given by 

V\ = (Vl ~ X\ )X2.2 - (V2 ~ X2)*U (3a) 

^^^-^Kr^i-^i)^ (3b) 

where Xjare the Cartesian components of the 
grid velocity and 

Ql =X1,1X1,2 + *2>1X2,2 

?3=(*u)2+(*2,l)2 

with the Jacobian defined as 

J ~ X\,\X2,1 ~X\,1X1.\ 

(4a) 

(4b) 

(4c) 

(5) 

For solving Eqs. 2a-2c, the pressure-based 
numerical algorithm, SIMPLE, originally 
proposed in [10] for Cartesian coordinates, is 
adopted. The details for the basic pressure 
correction algorithm are given in [11] with the 
extension of the procedure to general curvilinear 
coordinates given in [12]. 

A staggered grid method is adopted for 
discretising Eqs. 2a-2c. The non-orthogonal 
body-fitted curvilinear mesh is generated 
numerically and the Cartesian and contravariant 
velocities (v, and Vi) as well as the Cartesian 
components of the grid velocity (X;) are located 
at the midpoints of the control volume faces. The 
discrete value of the pressure is located at the 
arithmetic center of the four adjacent mesh 
points. 

By integrating the conservation laws in (2a)-(2c), 
a fully implicit, time dependent, finite volume 
method is obtained over appropriately staggered 
control volumes with sides denoted by e, w, n, s. 
The second order upwind scheme used in [12] is 
adopted for the solution in the present work. 

The Cartesian components of the grid velocity in 
the transformation (3a),(3b) are discretized by a 
first order backward difference in time which 
reads, 

„n       „n-1 

*/=■ A/ (6) 

where At is the time step and the superscript n 
and n-1 refers to the present and previous time 
level respectively. 

To insure a consistent recovery of Cartesian 
components from the contravariant velocities 
care has to be taken while performing the inverse 
transformation since mass conservation is stated 
explicitly in terms of Vt as stated in Eq. 2c. A 
consistent one-to-one mapping is done as 
described in [12] [13] by assembling the 
transformation for all grid points in the domain 
as a set of simultaneous equations. This 
procedure avoids an otherwise inevitable 
interpolation procedure. The set of equations 
may be symbolically written as 

V=[M]v (7) 

The solution of this set of equations is obtained 
by the following procedure based on D'yakonov 
iteration which is given by 

,(<•+!) _ v(0 + [M]-l(y-[M]v(,))       (8) 
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The initial estimates for the solution of this 
system of equations is given by a straightforward 
inversion of the transformation 3a, 3b. 

Another problem arises during the treatment of 
continuity condition when the grid is time 
dependent To ensure mass conservation for a 
constant density and uniform velocity field under 
time dependent coordinate transformation, the 
following identity derived from Eq.2c proves 
useful 

?4(-i^+^)'4(-i^+^)=0 (9) 
at  0$ cxh 

Integrating Eq. 9 using the same time integration 
scheme over the same control volume used for 
mass conservation leads to Eq. 10, which is the 
discrete form of the identity given in Eq. 9. 

(J"~    ) H-i&i +**2X -i-^Vw. +%)«+ 

(-XjXy +xlxzl)„ -(-ijXy +%), =0(10) 

This formulation ensures that the Jacobian will 
be updated according to the time dependent grid 
movements to guarantee geometric conservation 
in the discrete form of the conservation laws. 

2.2 Turbulence modeling 

The governing equations used for the turbulent 
simulations within the present work are the 
Reynolds Averaged Navier-Stokes (RANS) 
equations and the continuity equation. This set of 
equations in two-dimensional Cartesian 
coordinate form can be written as 

3 3 ,       x    d , -i-T.   dp     (Ha) 

&, 

dx, 

dx 

(py,) = 0 

*, 

(lib) 

where v,'s are the Cartesian components of the 
time-averaged fluid velocity vector, p is the fluid 
density, p the fluid viscosity, t the time, p the 
time-averaged fluid pressure, and -pv',v'j are 
the components of the Reynolds stress tensor. By 
applying the Boussinesq approximation and 
writing the components of the Reynolds stress 
tensor in terms of the velocity gradients and eddy 
viscosity, A, 

me RANS equations can be re- 
written as 

[(p^ipv^o^ttäjy* (12) 

where S^llHytfVjjb is its deviatoric part 

In this formulation the trace of the Reynolds 
stress tensor has been implicitly absorbed by the 
eddy viscosity and mean strain rates. 
Furthermore, the hydrostatic pressure and the off 
diagonal cross derivatives have been neglected. 

The model applied here is the Baseline ßSL) 
and Shear Stress Transport (SST) k-a> model 
proposed by Menter in Ref.[15]. The BSL is a 
composite two-zone model using the k-a> model 
in the inner region of the turbulent boundary 
layer and reduces to the k-s model in the outer 
region and in regions of free shear flow thus 
overcoming the dependency of the original k-a> 
model on the freestream value of/ The tracking 
of the two zones in the model is facilitated by the 
introduction of a blending function F. The SST is 
a transport model for the principal turbulent 
shear stress, - pv\v\, and it uses the framework 
of the two equation eddy viscosity model. 

The first step in the development of this model is 
to create the new BSL two-equation model by 
transforming the high Reynolds number k-s 
model into a k-a> formulation. The transformed 
equations for k and a> are then multiplied with a 
blending function (1-Fi) and added to Fi times 
the original k and ©equations. The function F\ is 
assigned to be one in the sublayer and 
logarithmic region and zero in the wake region 
between the log-layer and the outer region. 

The resulting equations are 

C"+oi/4)— (13a) 

l(pto)+£ü>v/»)=&Tt-£--ßpa? + 
dt & 

&, adcj dcj 
(13b) 

where the Reynolds stress tensor, jjj, is defined 
by 

r« =M,\ _dXj       dx, j 
- -PkS» 

(14) 
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Consequently, in the inner region of the turbulent 
boundary layer the model uses the standard k-co 
model, which unlike any other two-equation 
model does not involve damping functions. 
However, the k-co model does not predict the 
asymptotic behavior of turbulence correctly as it 
approaches the wall. But since the eddy viscosity 
is much smaller than the molecular viscosity in 
the proximity of the surface, the asymptotic 
behavior of the mean velocity profile is 
independent of the asymptotic form of 
turbulence. Therefore, even if it is not 
asymptotically consistent, the model can predict 
the mean flow profile and the skin friction 
correctly, as seen in Ref. [15]. 

In the outer region of the turbulent boundary 
layer and in regions of free shear flow the k-e 
model is better suited than the k-<a model, due to 
the latter model's sensitivity to the freestream 
value, fu specified for / in the outer region. 
Hence,, in these regions the k-s model will be 
used instead of k- co model. 

Even though the ability to predict adverse 
pressure gradient flows rely on the behavior of 
the two-equation turbulence model in the 
logarithmic region of the boundary layer, 
especially in flows with weak pressure gradients, 
Johnson and King [16] have shown that it is the 
level of the eddy viscosity in the wake region 
that ultimately determines the prediction of 
strong adverse pressure gradient flows. The fact 
that the log region has limited influence is 
evident in the failure of the original k-co model to 
accurately predict pressure-induced separation 
despite its excellent log-layer characteristics. 

The method used to overcome this deficiency is 
based on the observation that the principal 
turbulent shear stress is proportional to the 
turbulent kinetic energy in the wake region of the 
boundary layer. This property introduces a lag 
effect into the equations that accounts for the 
transport of the principal turbulent shear stress. 
To account for the transport of the principal 
turbulent shear stress the eddy viscosity is 
redefined which leads to the model called SST. 

The relation between the principal turbulent 
shear stress, r, and the turbulent kinetic energy, 
k, in a boundary layer is given by 

T = pa{k 

with ax being a constant 

(15) 

In  the  original  two-equation  eddy  viscosity 
approach the shear stress is computed from 

r = //, 
dx2 

(16) 

which for conventional two-equation models can 
be rewritten to give 

-i production (k) 
dissipatio n(k) 

a,* (17) 

as stated in Ref.[17]. In flows with strong 
adverse pressure gradients the ratio of production 
to dissipation can be significantly larger than 
one, as found in the experimental data obtained 
by Driver in Ref.[18], which leads to an 
overprediction of r. To control this property 
within the currently used framework, the eddy- 
viscosity is redefined as 

/*, = P 
alk 

max( at(o;CiF2) 
(18) 

where £2 = (dvjdx-i) and F2 is a function defined 
to be one for boundary layer flows and zero for 
free shear layers. In an adverse pressure gradient 
boundary layer the production of k is larger than 
its dissipation and Eq. 18 therefore ensures that 
Eq. 15 is satisfied whereas the original 
definition, /* = pk/co, is used in the rest of the 
flow. 

The functions F\ and F2 in Eqs. 13b and 18 are 
chosen as hyperbolic tangent functions with 
arguments based on the computed values of co, k, 
ft, p, dk/dxj and dcddxy in the boundary layer and 
the distance from the wall to the point of interest. 
A closer description of these arguments and 
constants used in the BSL and SST k-co model is 
given in Ref. [15]and a numerical evaluation of 
the model in the present context is done in 
Ref.[9]. 

3. MEMBRANE EQUATIONS 

The original membrane equation used in Refs. 
[4][5][6][9] is based on an equilibrium state 
equation for a two-dimensional elastic membrane 
subjected to both normal and shear stresses. 
Originally the membrane was assumed to be 
massless and the equilibrium conditions were 
stated in terms of instantaneous spatial Cartesian 
coordinates xt and the body-fitted curvilinear 
coordinates £. However, for the non-zero mass 
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membrane calculations inertial effects play an 
important role and the formulation therefore 
needs to be time dependent 
Figure 1 illustrates the elastic membrane fixed in 
both ends and subjected to fluid dynamic 
pressure and shear stress, p and r respectively 

Figure 1: Schematic of an elastic membrane and 
the key variables 

Imposing force balance in normal and tangential 
directions gives the following equations for the 
membrane deformation 

PJ&.-T** 
dt' &* 

dT 
■ = -r 

+ *p     (19a) 

(19b) 

where the material density p^, and the height ft 
gives the membrane mass per segment and T is 
the membrane tension. 

The pressure and shear stress acting on a 
segment of the membrane are given by 

Ap = p--p+ (20a) 

(20b) 

where -/+ denotes the lower and the upper 
surface, respectively, as depicted in Fig. 1. 

By replacing the derivatives in Eq. 19a with an 
appropriate set of finite difference 
approximations, a discrete form of the elastic 
membrane equation is obtained. Applying central 
differences to Eq. 19a leads to a five-point kernel 
centered at point P with neighboring points E 
and W as shown in Fig. 1. Using second order 
accurate central differences for the second order 

partial derivatives in Eq. 19a and the first order 
partial derivative for the non-linear term yields 

A£ "1        A» 
fa,-af+aM,4B 

A* 

<T = 
T, 

P.h 
1 + 

2A 
XM       Xl- 

2Ax 

(21a) 

(21b) 

where x represents the Cartesian coordinate x2, 
the indices h, n+1 and n-1 represents the time 
levels and /, /+/ and i-1 the position in the xt 
direction. Since the mesh is equidistant along the 
membrane surface in the x\ direction, Ax is 
simply given as the membrane cord length, c, 
divided by the number of points along the 
membrane. 

The resulting set of finite difference equations 
becomes an iterative, explicit, scheme with a 
CFI-type stability condition limited by the 
largest admissible time step Af«,^. Performing a 
linearized von Neumann stability analysis with 
fixed coefficients shows that the stability 
condition is given by 

o-Atl 

Ax2 £1 (22) 

When Eqs. 21a and 21b are inserted into the 
fluid/structure solver, the time step is limited 
only with respect to the membrane equation, 
since the fluid solver is based on a fully implicit 
algorithm. In the computation, A/m is calculated 
by dividing the fluid solver time step by a 
sufficiently large number of time steps to ensure 
stability for the membrane calculation. For the 
unsteady computations performed here, this time 
step limit does not impose any large increase in 
CPU usage since the computational effort to 
solve the iterative scheme of the membrane is 
very small compared to that of the flow solver. 

The original membrane equation used in Refs. 
[4][5][6][9] is simply obtained by taking the 
membrane mass, /%,, to be zero in Eq. 19a. Thus, 
for a massless membrane the movement is 
governed by the previously obtained equation , 
which reads 

d2x. 
dxf 1+& 

3 
»VI -m (23) 
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A discretization of this equation may be doüe in 
a similar way as Eq. 19a and the solution may be 
calculated using a line iteration method with 
under-relaxation. The amount of relaxation is in 
this case the principal factor to control the 
stability and convergence properties of the 
membrane calculation algorithm. 

For both the Eqs. 19a and 23, A/> is defined as in 
Eq. 20a. .Also, to describe the mechanical 
properties of the membrane it is necessary to 
specify the tension T based on material 
specifications and geometry. If the membrane 
material is assumed to be linearly elastic and not 
subjected to any pretension, the nominal tension 
can be written as 

T = EhS (24) 

where E is the elastic modulus, h the membrane 
thickness and 5 the nominal strain given by 

5 = 
L-L° 

L° 
(25) 

where L° is the unstrained length of the 
membrane and L the length after deformation. 
The length L can be described in spatial 
coordinates by 

(26) 

Refs. [4] [5] [6] [9] to represent a flexible 
membrane. 

Equation 27 has also an interpretation as the time 
scale for the membrane movement in the 
problem. For the finite inertia computations the 
inertial effects slows down the membrane and a 
new time scale must be developed to enable 
quantitative evaluations of the different 
simulations. As for the massless membrane 
equation the new time scale can be derived from 
Eq.  19a by multiplying with the normalized 

membrane density, pm=p/p„, where p is the 
fluid density. This new parameter is given by 

n1 = (28) 

Both Til and II x indicate the ratio of 
characteristic time between the flow field, t{, and 
the     solid     membrane,     /m.     Specifically, 
n,~ö[(/f//m)2/3]. 

In addition to this parameter the angle of attack, 
a, and freestream velocity, vm must be specified 
along with the Reynolds number, Re, based on 
the membrane cord length c and fluid density 
and viscosity, p and p as 

Re = 
pv   c 

(29) 

where c is the membrane cord length. In the 
computational procedures the fluid forces, r and 
AP, and the membrane strain, S, are calculated 
with appropriate finite sum approximations along 
the membrane surface. 

It is often convenient to define dimensionless 
parameters to help characterize the flow/structure 
interaction. For an initially flat massless 
membrane dominated by elastic strain and 
subjected to fluid dynamic pressure and shear 
stress the deformation is dictated by 

(27) 

where q«, = pvJ/2 is the freestream stagnation 
pressure. The cube root in Eq. 27 is suggested by 
the exact solution of Eq. 23 given in [14]. This 
parameter is given the value 7.9 as suggested in 

Furthermore, in the two simulations the 
freestream velocity oscillates 20% around its 
mean value with a frequency equivalent to a 
Strouhal number, St, of 1.5, where St is defined 
by 

St-*- 

where/is the freestream frequency. 

(30) 

Also, a frequency ratio parameter, Q, may be 
defined by drawing an analogy between a one- 
degree of freedom spring/mass system and the 
transverse motion of the membrane. If the ratio 
of the system forcing frequency to the system 
natural frequency,^ is defined as 

J (31) n = 
/. 
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the following parameter may be defined and 
substituted for the Strouhal number in the basic 
parameter set used in the simulations 

O  =   St (32) 1   nr 
again, as with Efi, Clx is the appropriate 
dimensionless forcing frequency when the 
membrane has no pretension but develops 
tension elastically. 

Based on the above discussions, the non- 
dimensionalized form of the governing equations 
can be deduced by introducing the following 
dimensionless variables: 

u =— 

v =- 
U„ 

7 = t.f 

x = l 

c 

T = 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 
Eh 

The   non-dimensionalized   equations   are   as 
follows: 

dX        dY 

du    d(uu)    d(uv)_   dP 

d7    ax     dY     ax 
1 

(40) 

Re 3x{dX)+dY{dY). 
(41) 

Bv   ftgv)   d(yv)_   SP 

d7   ex    dY     BY 
J_ 
Re dX {ax)+dY[dYl 

(42) 

«Iil?-'S 
-3/2 

M^J 

vn.y 
AP (43) 

4. COMPUTATIONAL PROCEDURE 

The objective of the present work is to perform 
computations of an unsteady flow over an 
initially flat elastic membrane with finite inertia 
and to evaluate the motion and configuration of 
the membrane as well as its aerodynamic 
properties and impact on the flow field. The 
simulations are also performed with a massless 
membrane, in agreement with Refs. [4][5][6][9], 
for comparison. 

The grid used is a non-square, structured grid 
with 201 nodes in the xrdirection, 121 nodes in 
the ^-direction and 100 nodes on the membrane 
(see Fig. 2). For the analysis of the impact of 
boundary placement and number of nodes on the 
calculations see Refs. [4][5]. 

The computational procedure is divided into 
several nested loops as described in Fig. 3. First 
the flow calculations are performed with a non- 
dimensional time-step, Dt, of 0.75 using a 
limiting residual tolerance of 3xl0'3. The viscous 
stresses and aerodynamic pressures are then 
calculated along the membrane surface. Next the 
membrane movement is calculated according to 
the computed fluid forces. For the finite inertia 
calculations the membrane is moved using 100 
time-steps per time step used in the flow solver. 
The massless membrane calculation is performed 
using a residual tolerance of 10'5. 

Since the fluid and structure parts of the solver 
needs to exchange information to ensure 
convergence, this procedure is repeated 10 times 
before each global time step is typically taken 
and the new freestream velocity is computed. 
The number of repetitions is an empirically 
obtained estimate based on observed 
convergence rates of the 'total' solution of the 
combined fluid/structure system for the case of 
finite inertia. 
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Entire grid system 

Enlarged view of the midsection 
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Figure 2: Grid with 201x121 nodes and 100 points along the membrane. 

5. Results and discussion 

The laminar computations were done using a 
moderate Reynolds number, Re, of 4000 while 
the turbulent simulations were carried out using a 
Re of 10*. For both cases the same parameters 
were used for the angle of attack, the non- 
dimensional time scale, and the non-dimensional 
global time step, a=A°, n,=7.9, ft, =0.99 and 
Dt=0.75 respectively. Also, for all simulations 
the freestream velocity varies as 
v»=»/o+0-2sin(Q1t) with a non-dimensional 
frequency, Q,, of 0.067. With this value of fi,, 

the membrane response is significantly faster 
than the time scale of free stream fluctuation. 
For the turbulent flow simulation, using the BSL 
and SST k-co model, the initial value of the 
turbulent energy, k, was set to 0.5 and the 
dissipation, ox, to 50 in accordance with the 
prescribed values in Ref. [15] for the model. 
These choices yields a turbulent Reynolds 
number, Äe,=pvmd'#, equal to 100. A test run of 
the computational setup gave an approximate 
value ofy* between 2 and 3, using a mesh with a 
distance to the center of the first off-wall control 
volume of approximately 5x10"*. 
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(a) Computational procedure 
for massless calculation 

(b) Computational procedure for finite inertia structure 
(i) Overall Structure &) Fluid-structure interaction 

A     A 
Fluid 

Residual > 3x103- 

Residual < 3x10"3 

£ Membrane 

Residual > 10° 

ResiduaK 10° 

Repeat 10 times J 

Increase time 
and start new v„ 

Fluid 

Residual > 3x10 

ResiduaK 3x1 (I3 

Membrane iteration 
using dt=DV100 

_ Repeat 10 times 

Increase time 
and start new v. 

Calculate fluid forces 
T.AP  

Calculate Non- 
linear term, a 

Iterate membrane eq, 

Repeat 100 times 

Back to fluid 
solver 

Figure 3: Computational procedures for(a) massless membrane and (b) finite membrane inertia. 

To ascertain the numerical accuracy, a grid 
refinement was performed by increasing the 
fineness towards the membrane surface. A 
comparison of the steady state results is 
presented in Table 1. It is quite evident that by 
fixing V^Vo the present grid resolution has not 
fully resolved all the detailed flow and structure 
characteristics. However, the qualitative trends 
seem to be consistent between solution obtained 
on different grids. 

In Table 1 aerodynamic characteristics including 
Ct, CD and their ratio under the steady state 
freestream condition are summarized. On both 
grid systems, there are 101 grid points on the 
membrane surface. It is interesting to note that 
the value of CL increases significantly for the 
turbulent flow case. The reason for this could be 
explained with help of the membrane shape and 
pressure distribution along the upper and lower 
surface. As will be discussed later, in the 
turbulent flow, the membrane is of a more 
symmetric profile. 

Worth noticing in the numerical setup is that the 
difference in time scale for the two problems has 
a clear impact on the aeroelastic response. In the 
present cases, the membrane response time, with 
or without the inertia effect, is faster than the 
time scale of free stream fluctuation. It is noted 
that with Q,=0.067, fit, =0.99 (or n,=7.9), the 

characteristic times of the structure (t,„) and two 
fluid flow features (tf and 1/f) are 1 : 1 :0 (100). 

Plots have been made for different time steps 
corresponding to 0, 72, 144, 216, 288 and 360 
degrees of a full oscillation of the freestream 
velocity. The 0° solution of the freestream cycle 
was computed by setting the amplitude of the 
freestream variation to zero and by running a 
sufficiently large number of time steps. This 
solution is quasi-stationary though there might 
still be some motion left in the case of finite 
inertia, which becomes more apparent with 
increasing membrane density. 

Figures 4a and 4b show the massless membrane 
and finite inertia membrane shapes, respectively, 
at different times of the freestream oscillation. In 
Fig. 5a the lift/drag ratio is plotted at different 
times along with one period of the freestream 
variation for clarity. Figure 5a also shows the 
maximum deflection along the membrane and 
the maximum extension, respectively, over one 
freestream cycle. In Fig. 5b the massless 
membrane and finite inertia membrane shapes 
for the turbulent case are presented in the same 
manner as for the laminar cases. Figure 6b show 
the lift/drag ratio, maximum deflection and 
maximum extension over the freestream cycle as 
for the laminar case in Figs. 6a. The 
streamfunctions  plotted  in  Fig.   7  show  the 
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Grid 
Laminar Turbulent 

cL CD cL/cD CL CD CL/CD 

201x121 0.4673 0.05305 8.809 0.6777 0.04574 14.82 

201x201 0.5306 0.05083 10.44 0.8305 0.03468 23.95 

Table 1: Effect of grid refinement on computed steady state aerodynamic properties for massless 
calculations. In both cases there are 101 grid points on the membrane surface 

• Laminar i 201x201 grid) Turbulent (201x121 grid) 

Massless 
Finitelnertia, 

Pm =500 
Massless 

Finite Inertia 

Pm =500 

»■'Umax 5.40E-01 5.38E-01 7.32E-01 7.29E-01 

^L^iniii 4.97E-01 4.97E-01 6.23E-01 6.27E-01 

ACL 4.30E-02 4.10E-02 1.09E-01 1.02E-01 

t'D.max 5.61E-02 5.55E-02 4.72E-02 4.70E-02 

v^D.min 4.87E-02 4.76E-02 4.41E-02 4.41E-02 

ACD 7.40E-03 7.90E-03 3.10E-03 2.90E-03 

CL/CD max 11.09E+00 11.30E+00 1.66E+01 1.65E+01 

CJCQ min 8.86E+00 8.95E+00 1.32E+01 1.33E+01 

AQ/CD 2.23E+00 2.35E+00 3.40E+00 3.20E+O0 

Table 2: Lift and drag coefficients and lift/drag ratio for the different cases studied 

buildup and collapse of recirculation zones in the 
laminar flow regime. In Fig. 8 the recirculation 
zone streamline pattern is shown for massless 
(top) and finite inertia computations with two 
different values of/?,,, 500 (middle) and 900 
(bottom). A plot of the membrane shape at 0° 
and 216° is added in Fig.9 to show the effects of 
inertia on the membrane configuration. The 0° 
result in Fig. 9 suggests that a larger number of 
time steps should be made for the higher value of 
pm to obtain a quasi-stationary solution. The 
plots of streamline patterns are omitted for the 
turbulent cases since the flow is fully attached at 
all times due to the turbulent boundary layer and 
the small angle of attack used in the simulations. 
The time dependent computation is initiated 
based on the steady solution. As can be observed 
from the figures, the lift and drag characteristics 
are not periodic which is caused by the non- 
linear effect of the coupled fluid flow and 
membrane dynamics. Figure 10 shows the 
membrane profiles of the massless and finite 
inertia models at the time of maximum and 
minimum lift during the freestream velocity 
cycle. In Fig. 11 the pressure contours are shown 
for massless and finite inertia membrane in both 
laminar and turbulent flows. The contours are 

plotted at 0° and 288° corresponding to the 
computed solutions with maximum and 
minimum values of the membrane deflection. 

The computational results show a clear 
difference between the massless approximation 
and the finite inertia model. The membrane 
configuration changes substantially as well as the 
fluid response and overall performance. The 
membrane shows a greater diversity in 
configuration during the freestream velocity 
oscillation for the finite inertia calculation than 
for that of the massless. For example the 
appearance of inflection points near the trailing 
edge of the membrane surface and the different 
pattern for the appearance and disappearance of 
recirculation zones. 

6. Conclusion 

The results obtained through the simulations and 
evaluations performed within this work show 
significant changes in the aeroelastic response of 
the finite inertia membrane model as compared 
to the massless approximation. Adding inertial 
effects to the membrane equation greatly alters 
the membrane shape and configuration in 
laminar and turbulent unsteady flows. Based on 
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the cun-ent choice of the time scales between 
membrane, free stream, and fluid momentum, as 

represented by the dimensionless parameters 77,, 
St and Qi, the time scale of the freestream 
fluctuation is long. Consequently, the inertia 
does not impact the range of overall aerodynamic 
performance. However, even for these cases, 
different aerodynamic characteristics are 
observed in the transient process indicating that 
the interaction among these dimensionless 
parameters are important for determining the 
aeroelastic characteristics of the overall system. 
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Membrane profle, Finite inertia calculation 
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Figure 4: Laminar flow membrane profiles during one freestream oscillation, a=4° Re=4000, 77;=7.P, 

77, =0.99, (a) massless, (b) finite inertia, Pm =500, 
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0.045 

0.04 

0.035 """""••Xxs. 
0.03 \;\\ 

>. 0.025 

0.02 
/// vW 

0.015 

0.01 

0.005 

r — Odeg 
— 72 deg 
— 144 deg 
---- 216deg 
— 288 deg 
— 360 deg 

\^ 

n . ^ 

Membrane profile, tnrte inertia calculation 

0        0.1       0.2      0.3      0.4       0.5      0.6      0.7      0.8      0.9        1 
x/c 

(a) (b) 

Figure 5: Turbulent flow membrane profiles during one freestream oscillation, a=4 °,    Re=106,17i=7.9, 

77, =0.99, (a) massless, (b) finite inertia, Pm =500 
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Figure 6: Lift/Drag ratio, membrane maximum deflection and extension during one freestream oscillation, 

n,=7.9, /7, =0-99, <x=4° (a) Laminar case,Re=4000 (b) Turbulent case, Re=l(f. 
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Figure 7: Laminar flow recirculation zone streamline pattern for massless calculations, IJj-7.9, Ux-Q-99, a=4° 

Re=4000, Pm=500. 
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Membrane prade. inrte inertia calculation with different density 
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Massless, 216 deg 

Figure 8: Laminar flow recirculation zone streamline 

pattern for massless and finite inertia calculations using 
Pm=500 and 900,11^7.9, ni=0.99,a=4°,Re=4000. 
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(b) 
Figure 10: The membrane profiles at maximum and 
minimum values of CL for laminar and turbulent flows, 

a=4°    Re=l(f,    n,=7.9,     LJ}=0.99,    (a)    Massless 
computation, (b) Finite inertia computation, Pm =500. 
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Figure 11: Pressure plots for 72° and 288° corresponding to the maximum and minimum values of the 

membrane deflection . IJ,=7.9, 77, =0.99, a=4°. Laminar flow Re=4000, Turbulent flow Re=106. 
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