
Rapid Development of Custom Software
Architecture Design Environments

Robert T. Monroe

August, 1999

CMU-CS-99-161

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee

David Garlan, Chair
Mary Shaw
Steve Cross

David Notkin, University of Washington

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright ® 1999 Robert T. Monroe

®* This research was sponsored by 1) the Defense Advanced Research Projects Agency (DARPA) the Wright
g Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF under contract no. F33615-93-

1-1330, 2) DARPA and Rome Laboratory, Air Force Materiel Command, USAF, under agreement number
_ F30602-96-2-0224, 3) fellowships from the National Science Foundation (NSF) and Eastman Kodak

Q Corporation, and 4) Hewlett Packard. The views and conclusions contained in this document are those of the
fc author and should not be interpreted as representing the official policies, either expressed or implied, of these

►J organizations, the US government, or any other party.

8 "
J DISTRIBUTION STATEMENT Ai
g Approved for Public Release

Distribution Unlimited 20000509 Nfi

Keywords: software architecture, software design, software design tools, software
architecture design environments, architecture description languages,
configurable software, rapid software development

Preceding PageJ Blank

egie
gllOn School of Computer Science

DOCTORAL THESIS
in the field of

COMPUTER SCIENCE

Rapid Development of Custom Software
Architecture Design Environments

ROBERT MONROE

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

' V3^ THESIS COMMITTEE CHAIR T^ ^ DATE

APPROVED:

DEAN U DATE

Abstract
Software architecture provides a powerful way to manage the complexity of large software
systems. It has emerged as a distinct form of abstraction for software systems with its own
set of design issues, vocabulary, and goals. Like designers in other disciplines, software
architects can gain significant leverage by using powerful and appropriate design
environments and tools. The cost and difficulty of creating these powerful design tools,
however, prohibit their use for many software development projects. One of the primary
reasons for the difficulty and cost of building these tools is that tool developers generally
need to build a significant amount of supporting infrastructure before they can make use of
the important architectural design expertise that the tools encapsulate. This infrastructure
includes both the concepts underlying the tools' functionality and the implementation of the
tools themselves.

This dissertation describes a new approach to capturing and using architectural design
expertise in software architecture design environments. A language and tools are presented
for capturing and encapsulating software architecture design expertise within a conceptual
framework of architectural styles and design rules. The design expertise thus captured is
supported with an incrementally configurable software architecture design environment that
specialized design environment builders and end-users can easily and quickly customize by
specifying the architectural styles and design rules that the environment needs to support.

Dedicated to my twenties, frittered away in a Quixotic pursuit.

If I have semfurther, it is by standing on the shoulders of giants.

- Sir Isaac Newton

Acknowledgements
Although my name graces the cover of this dissertation I would have been unable to
complete it without the support and guidance of my family, friends, and colleagues. Please
accept my thanks for your assistance and patience.

I would particularly like to recognize the following people:

David Garlan has been an excellent teacher and a helpful guide in navigating the vagaries of
the research world. He is a whetstone for the intellect who pushed me to think like a
scientist, to exceed the acceptable, and to aim for the superb. I can only hope that his lessons
stuck.

In our many conversations over the past six years Mary Shaw has been immensely helpful in
refining my thinking about software, engineering, and software engineering. She has been an
excellent teacher of thinking, technology, BS detection, and the ability to enjoy your life
outside of work.

As members of my thesis committee, Steve Cross and David Notkin generously gave their
time and insight on how to improve the dissertation.

Rob Allen taught me how to survive graduate school, pointing out land mines before I
stepped on them. He was also the key developer of the original Aesop system, out of which
many of the Armani ideas grew.

Pete Su, Drew Kompanek, Greg Zelesnik, Rob DeLine, Eugene Fink, and too many other
members of the SCS community to list, provided great assistance in focusing my thinking
about this research and making it actually work. They played their roles as friends, sounding
boards, and technical colleagues beautifully.

Dick Creps, Paul Kogut, Peyman Oreizy, Franklin Webber, Jun Li, and Peter Feiler all
generously participated in the case studies described in this dissertation. Their willingness to
try unproven software was courageous. The insight gained from these projects was valuable.

Finally, my wonderful wife Betsy has stood by me through six years of neurotic ramblings
about software engineering, manic fits of depression and ebullience, and countless evenings
home alone while I was working late at CMU. She has been my anchor to sanity and my
provider of perspective throughout this journey.

Thank you.

Table of Contents

Chapter 1 15

1.1 The role of software architecture 15

1.1.1 A case for automated software architecture design tools 17
1.1.2 Limitations of current approaches 18
1.1.3 The role of lightweight, incremental adaptation 19

1.1.4 Contributions 21

1.2 Armani overview 22

1.2.1 Critical requirements 22

1.2.2 The Armani design language 23
1.2.3 The Armani design environment 24
1.2.4 Structure of the dissertation 25

Chapter 2 27

2.1 The generic Armani infrastructure 27

2.2 Building an environment for a naive client-server style 28

1.3 Incrementally adapting the naive client-server environment 31

1.4 Summary 35

Chapter 3 37

3.1 Software architecture description languages, toolkits, and environments 37
3.1.1 Aesop 37

3.1.2 Acme 40

3.1.3 Domain-Specific Software Architecture (DSSA) 41

3.1.4 Automated design critiquing 41
3.1.5 Other ADLs 42

3.2 General purpose software specification languages 44
3.2.1 UML 44

3.2.2 PVS 45

11

3.2.3 Larch .,
46

3.2.4 Traditional formal software specification languages 47
3.2.5 Law-Governed Systems 47

3.2.6 Configurable programming environments 4g

3.3 Computer aided design and analysis tools 49
3.3.1 CAD tools for various disciplines 40
3.3.2 Tools that manage constraints and rules
3.3.3 Expert and rule-based systems

3.4 The design process

3.4.1 Design patterns and pattern languages 52

3.4.2 Rechtin's system architecting heuristics 53

Chapter 4

50
51

52

55

55 4.1 Armani design language requirements

4.2 The Armani design language

4.2.1 Architectural structure
4.2.2 Representations

4.2.3 Extending structural specifications with properties 64

4.2.4 Armani structural language syntax

4.3 Design constraints

4.3.1 Constraint language formalism

4.3.2 Extending the structural language with constraints
4.3.3 Invariants vs. heuristics

4.3.4 Summary of architectural structure discussion

4.4 Capturing design expertise with predicate-based types
Capturing design expertise with architectural types
4.4.2 Declaring a design element type

4.4.3 Creating a simple instance of a typed architectural element 84
4.4.4 Design element subtypes
4.4.5 Property Types

4.4.6 Architectural Styles
4.4.7 Multiple types

4.4.8 Formal type system semantics

4.5 Expressiveness, analyzability, and incrementality
4.5.1 Expressiveness
4.5.2 Analyzability

4.5.3 Incrementality

4.6 Architectural specifications and implementation code

4.7 Summary

59

60

62

67

67
69
71
76

78

78
79

80

87
88

90

93
94

95
95

96
97

98

99

12

Chapter 5 101

5.1 Design environment requirements 101

5.2 The Armani design environment architecture 103

5.2.1 Core shared environment infrastructure 104

5.2.2 Extending the environment with external tools 106

5.2.3 Customized user interfaces 109

5.3 Design environment discussion and evaluation 113

5.3.1 Incremental reconfiguration 113
5.3.2 Leverage 114
5.3.3 Efficiency 115

5.3.4 Integrating external tools 117

5.3.5 Configurable user interfaces 119

5.4 Summary 121

Chapter 6 123

6.1 Task analysis 124
6.1.1 The traditional approach 125

6.1.2 The Armani approach 128

6.2 Summary of task analysis and comparison of results 133

Chapter 7 135

7.1 Experimental structure 135

7.2 Discussion of case studies 138

7.2.1 Case study 1: a dataflow style 138
7.2.2 Case study 2: a hierarchical style 141

7.2.3 Case study 3: an interacting processes style 145

7.2.4 Case study 4: two data-centric repository styles 148
7.2.5 Case study 5: two call-and-return styles 153
7.2.6 Case study 6: a data sharing style 157

7.3 Experimental results. 160

Chapter 8 163

8.1 Experimental structure 163

8.2 Case study details 165

8.2.1 Case study 1: Modeling the Global Transportation Network 166
8.2.2 Case study 2: Building an analytic tool-suite 170

8.2.3 Case study 3: Security and fault-tolerance evaluation with DesignExpert 176

8.2.4 Case study 4: Dynamic, run-time, architectural reconfiguration 178

8.3 Summary and discussion 181

D

Chapter 9 jo-

9.1 Design decisions that proved to be highly effective 185
9.1.1 Supporting a rapid and iterative environment development process 185

9.1.2 Selecting first-order predicate logic as the formalism for design rules 186

9.1.3 Appropriately scoped design rule checking capabilities 187

9.1.4 Straightforward type and constraint checking algorithms 189

9.2 Design decisions that yielded mixed results 191

9.2.1 Using a completely declarative design language 191

9.2.2 Building extreme flexibility and reconfigurability into the environment 192

Chapter 10 19g

10.1 Summary 295

10.1.1 Contributions J96

10.2 Future work: JOT

10.2.1 Generalizing flexible configuration strategies 197
10.2.2 Integrating the Armani toolset with full software lifecycle processes 198

10.2.3 Building effective design tools 200
10.2.4 Composable connectors 201

10.2.5 Distribution and installation of component-based systems 201
10.2.6 Selecting appropriate styles and design expertise 203

10.3 Conclusion 203

Chapter 11 ,„_

Appendix A -11

BNF Meta-Syntax 2\\

Armani Grammar 211

14

Chapter 1

Introduction

This dissertation demonstrates that it is possible to capture a significant and useful collection
of software anhitecture design expertise with a language and mechanisms for expressing desigt
vocabulary, design rules, and anhitecturd styles. This captured design expertise can be used to
incrementally customize software architecture design environments.

1.1 The role of software architecture

Software designers and developers have long realized the importance of powerful and
appropriate abstractions for software systems. The architectural level of abstraction
describes, at a relatively coarse granularity, the decomposition of a software system into its
major components, the mechanisms and rules by which those components interact, and the
global properties of the system that emerge from the composition of its pieces. There is
growing recognition in the software design community that one of the critical steps for the
successful completion and fielding of a major software system is the creation of a well
defined and documented architecture [Gar95, RM97].

There are (at least) four major benefits to producing and documenting an architectural
design:

1) Analysis capabilities. Given an appropriate set of analysis tools, system designers can
flag likely problems and estimate global properties and capabilities of the system early in
the development lifecycle. This capability allows the designers to perform an early
analysis of whether the fielded system will be able to meet its requirements in a cost-
effective way [All+98, SG98].

2) System structure visibility. An explicitly defined and documented architecture
communicates "the big picture" of how the entire system will fit together to guide
system developers in making lower-level design decisions. Developers that have a clear
understanding of how their piece of the system fits with the system as a whole can
insure that their components will integrate smoothly with the rest of the system and use
the architecture to guide them in making good implementation decisions.

3) Imposed discipline. The process of producing an explicit architectural design requires
architects to think about the system as a whole and how its pieces interact. This process
will often uncover fuzzy thinking, poorly defined requirements, and important design
issues that might otherwise be overlooked [ATT93].

4) Maintaining conceptual integrity. A system's architecture serves as its "conscience,"
guiding maintainers in making appropriate extensions and modifications to the system.

15

In this way, the architectural document exposes the "load-bearing walls" of the system
[SG96, PW92].

Although architectural design is a critical factor in the successful design, development,
deployment and maintenance of a software system, it requires significant time, effort, skill,
and thus expense, to do well. Much of the challenge of producing an appropriate software
architecture arises from the fundamental difficulty of determining the core abstractions to
use in describing the system, accurately capturing those abstractions in a concrete
representation that system developers and programmers can use as a blueprint for system
implementation, and analyzing the architectural description to determine whether the system
to be produced is likely to exhibit its desired properties. Because of the difficulty and cost of
producing such an architectural specification, as well as the difficulty in quantifying the
benefit of doing so, it is frequently difficult for software development organizations to
justify producing, documenting, and thoroughly testing detailed software architecture
specifications for the systems they develop.

To address the cost and difficulty of producing effective software architecture descriptions,
numerous Architecture Description Languages (ADLs) have been developed!. Unfortunately,
current ADLs have two critical limitations. First, they generally do not provide any
mechanisms for describing planned or available evolutionary paths for the software system
described. They can not describe the constraints under which the design was created and
may be evolved, the invariants of the design that need to be maintained as the system
evolves, nor the heuristics used in the system's design. Current ADLs tend to capture a
snapshot of the design of individual systems at implementation or deployment time, without
a roadmap to guide subsequent system maintenance and evolution. Because system
maintenance and evolution costs are frequently greater than the cost of initial system design
and development [Pfl87], the inability to support them directly is a significant limitation of
existing ADLs.

The second limitation is that current ADLs tend to emphasize the ability to specify the
design of a smtfe software system and, in some cases, to analyze various properties of that
single design. Many software development organizations, however, build families of related
systems. As a result, the design and development of a software system is rarely a ground-up
endeavor requiring the production of a fresh design and set of design concepts. Rather, the
designers designing a new system or updating an existing system tend to reuse proven
designs, design rules, and design vocabulary that their organization has developed or
acquired in building previous systems. Unfortunately, few if any existing ADLs are equipped
to capture this design expertise so that it can be reused to guide the building of new systems
or the modification of existing system designs. As a result, this critical organizational
software design expertise tends to be either kept in the heads of a few experts or, if it is
written down at all, expressed informally in natural language documents. The value of
existing ADLs is limited for many software development organizations, projects, and
processes because they don't provide an effective way to capture this design expertise.

1 See the related work section 3.1 for a detailed discussion of ADLs, their capabilities, and their limitations.

16

Both of these problems can be addressed with an Architecture Description Language that
has mechanisms and constructs for capturing, archiving, retrieving, and reusing architectural
desigi expertise. For the purposes of this thesis, architectural design expertise encompasses the
concepts, models, and rules that skilled software architects use when specifying,
constructing, or analyzing a software architecture. This includes generic design rules and
vocabulary that are applicable to a family of systems, as well as the constraints, rules, and
heuristics used in producing a single system and guiding how that system can evolve.

1.1.1 A case for automated software architecture design tools

The ability to explicitly capture and reuse software architecture design expertise is an
important first step towards improving the state of the practice of building and evolving
software. It is, however, only a first step. To take full advantage of this captured expertise
software architects also need powerful design and analysis tools and environments. These
tools can guide an architect in analyzing and reasoning about software architectures, testing
an architectural specification for compliance with a set of design rules, or selecting an
appropriate collection of vocabulary elements for a specific system design. Such a set of
tools should allow software architects and developers to do their job more easily, quickly, and
effectively.

The success of Computer Aided Design (CAD) tools in other disciplines such as mechanical
engineering, building architecture, and VLSI design argues that when design tools capture
the essential aspects of design in a given domain (that domain's design expertise) they can
offer useful analyses, significant reuse of common design elements, and even design
guidance and evaluation. Experience with these tools also demonstrates that, in general, as
they are made more domain specific the tools provide greater leverage for the designers
using them. The standard way to make design tools more domain specific is to encode
design expertise from the target domain directly into the tools. For example, a VLSI CAD
tool might include routing and layout algorithms, a large library of predefined VLSI
components such as registers, busses, and memory blocks, rules for detecting and dealing
with tuning and impedance mismatches, and tools to simulate the expected behavior of a
chip before it is fabricated. Each of these capabilities captures a collection of design
expertise that tool users can take advantage of in producing their chip designs.

Appropriate software architecture design tools can provide software architects with similar
leverage. Specifically, specialized software architecture design tools and environments
promise to provide software architects with three benefits:

• Reusable conceptual frameworks. Specialized software architecture design environ-
ments capture and encode a conceptual framework for designing specific types of
systems. Such a framework usually includes a vocabulary of building blocks, rules and
semantics for composing those building blocks, and analyses that can be performed on
systems developed with the environment. Much of the difficulty in producing a complex
software system arises from the need to develop an appropriate abstract conceptual
model as a basis for the system. These specialized environments allow a designer to reuse
the building blocks and expertise that the tool has captured instead of having to create
his own models from scratch for each new system.

17

• Design guidance. Selecting a well understood conceptual framework as a basis for
system design guides architects by providing a vocabulary of proven design elements and
suggesting appropriate ways to compose those elements. This foundation can be
extended to capture the heuristics, guidelines, and contextual cues that experts take
advantage of when designing the class of systems that the specialized environment
supports. Further, by encoding information about the evolutionary paths and constraints
built into a specific system's design, that system's original architects) can guide future
system maintainers towards safe and appropriate system evolution.2

• Design evaluation. Constraining the architectural design space to a well understood
conceptual framework provides a foundation for creating tractable and automatable
design analyses and evaluations. The ability to evaluate the costs and benefits of various
design approaches and alternatives early in the system design and development process
allows designers to catch and/or prevent costly design mistakes when they are relatively
inexpensive to fix.

Many organizations have recognized the potential benefits of producing and using
automated software architecture design tools and environments. Consequently, a great deal
of investment has been made in creating them. These tools range from generic
environments that provide limited leverage over a wide variety of design domains, such as
Rational Rose and the Unified Modeling Language [Qua98], to domain-specific design
environments that provide a lot of analytical leverage and design guidance but are
constrained to a much more limited scope of design. The latter group includes DARPA's
Domain-Specific Software Architecture (DSSA) environments [MG92], MetaH [Ves94],
ObjecTime's Real-time Object-Oriented Modeling (ROOM) tools [SGW94], and the
Chimera framework for robotics software [SVK93].

1.1.2 Limitations of current approaches

Although specialized software architecture design environments offer significant promise,
current approaches to designing and building them are inadequate for the following three
reasons. First, it is rarely cost effective for software development organizations or projects to
build tools and environments that are tightly customized to their specific design domain and
problems. Historically, such software architecture design environments have had to be built
from the ground up. As a result, they are expensive, difficult, and time-consuming to build.
Because of the large up-front investment they require, such specialized design environments
make economic sense only for projects and organizations that are able to use the environ-
ment for the production of many systems, thus amortizing the environment's development
cost. Although they might benefit greatly from using a highly customized software
architecture design environment, it is currently far too expensive for software architects in
many domains and organizations to develop such customized tools.

A second problem with current approaches is that the environments produced by building
from scratch tend to be brittle and difficult to evolve. As a designer's understanding of his
domain and design techniques evolves, the tools that he uses need to be readily evolvable

Although guidance in selecting an appropriate conceptual framework given a set of requirements is also an
important issue in design guidance, that type of guidance is not directly addressed in this thesis.

18

also. The lack of a standard, generic way to encode design expertise requires each environ-
ment development project to (re)invent a representation for the design expertise that they
capture and encode. Because they are developed for a single environment project, the
Schemas and mechanisms used to represent the environment's design expertise tends to be
idiosyncratic, highly tool-specific, and difficult to modify or reuse. As a result, these tools
tend to work well for a specific domain or style of architectural design (or perhaps a small
set of domains), but they can not be readily adapted as the tool users' understanding of the
domain evolves.

The third problem with the current approach to building specialized software architecture
design environments is that it requires a great deal of tool-building expertise to construct
such an environment. Building an effective design environment requires a specific set of
skills and experience, which experts in designing other types of software may not possess.
Conversely, a skilled developer of software architecture design environments is unlikely to
possess the deep understanding of the target domain required to produce an environment
that is tightly matched to that domain. As a result, an organization that wants a custom
software architecture design environment is likely to end up with either a well-built
environment that is a poor match for their domain, or a poorly crafted design environment
that captures their design expertise but is not effective as a design tool.

As a result of these limitations, today's dominant model for building design environments is
to have software designers adapt their problems to fit the concepts and models of the tools
provided by the tool developers. This could take the form of using generic design tools that
provide minimal leverage (e.g. "find the objects" using UML [BRJ98]), or attempting to use
specialized tools that were designed to address a different problem or style of design. In
both cases, a mismatch between the tool capabilities and the needs of the designer ensues. A
more appropriate model, which is developed in this thesis, is to allow and encourage
architects to easily, incrementally, and quickly adapt their tools to solve the design problems
that they face.

1.1.3 The role of lightweight, incremental adaptation

Making the development and use of specialized architecture design environments practical
and economically feasible for a wide variety of software development projects requires a new
approach to their design and construction. Rather than building new design environments
from scratch for every domain, it should be possible to easily and quickly adapt an existing
design environment by incrementally adding new design expertise to it. The ability to incre-
mentally adapt a design environment with domain-specific architectural design expertise
provides three major benefits:

• Simplified design environment construction. Incrementally customizing a reusable
environment that is designed for adaptation requires dramatically less effort than
building a comparable environment from scratch. Because the bulk of the environment
infrastructure is being reused, the cost, time, difficulty, and expertise required to produce
a custom design environment can therefore be significantly reduced. As a result, the use
of customized software architecture design environments becomes economically feasible

19

for a broad array of software development projects that could not afford to produce
such an environment with current technologies.

• Design environment evorvability. A design environment that is built to support
incremental reconfiguration can evolve as its users' understanding of the domain and
design techniques grows. By building evolvability into the environment from the
beginning, the britdeness that plagues many custom tools and environments built from
the ground up can be avoided.

• End-user experimentation. Using the incremental addition of design expertise as the
primary mechanism for adapting a design environment provides an architect or domain
expert with a great deal of environment customization capability and flexibility. The end-
user does not need to know any significant details about the implementation of a design
environment in order to adapt and customize it. He simply needs to understand the
mechanisms for expressing design expertise and loading them into the configurable
environment. As a result, customization decisions can be made by those who understand
the domain and its design techniques best - the architects and domain experts using the
environment. Further, because environment customization is a lightweight process, it is
easy for an environment user to experiment with many different forms of design
expertise and environment configurations.

In order to achieve these benefits, this dissertation presents a new approach to capturing
software architecture design expertise and using it to incrementally customize software
architecture design environments. The key to this approach is a language and conceptual
framework for capturing design expertise, along with a flexible design environment infra-
structure that can be easily, quickly, and incrementally configured with the language.

There are two fundamental challenges to supporting the incremental customization of
software architecture design environments with encapsulated design expertise. The first
challenge is simply developing a way to capture software architecture design expertise at all.
This includes developing both a notation for expressing architectural design expertise and a
conceptual framework that defines the relationships between the various constructs of the
notation. The notation and framework must be sufficiently rich, flexible, and powerful to
capture the important architectural design expertise for a broad range of architectural styles
and design domains. Further, they must capture the expertise in a way that is straightforward
for software architects to understand and use.

The second challenge lies in designing and building an extensible software architecture
design environment infrastructure that can be incrementally adapted with this captured
design expertise. Such an environment needs to be able to incrementally incorporate the
design expertise captured in the notation and framework. To complicate matters, the
environment needs to be able to deal with collections of design expertise that may be
internally inconsistent, or even contradictory.

There appears, unfortunately, to be a fundamental tension that arises in attempting to
simultaneously address these challenges. As the notation and conceptual framework is made
more rich, flexible, and closer to a natural language it tends to become more difficult to
provide automated tools that can process the design expertise. Throughout the remainder of

20

this dissertation I describe how I address these tradeoffs and challenges to demonstrate my
thesis that:

It is possible to capture a significant and useful collection of sojhmre architecture design
expertise with a language and mechanisms firr expressing dedgn vocabulary, design rules, and
arxhoectural styles. This captured design expertise can be used to incrementally customize
sofiwzreartJjitecturededgnemzranments.

To demonstrate this thesis, I present a design language and a configurable design
environment called Armani. I then show how they can be used together to incrementally
capture software architecture design expertise and develop customized software architecture
design environments. To demonstrate the utility of the approach, I describe a set of case
studies in which Armani is used to rapidly construct custom design environments.

1.1.4 Contributions

The research presented in this dissertation makes the following contributions to the field of
Computer Science:

• A technique for dramatically reducing the time, cost, and difficulty of building a
significant class of customized software architecture design environments. This tech-
nique benefits software architecture design environment builders by demonstrating how
a variety of design tools can be built through principled, incremental adaptations to a
common shared infrastructure. It benefits software development organizations by-
providing access to highly customized tools at a much lower cost than current
development techniques allow. It benefits practicing software architects by providing
them with tools that closely match their design domain. Finally, it benefits researchers
studying software development tools by providing a general customization technique that
can likely be extended to other design and problem domains.

• A design language. The dissertation describes a software architecture design language
that is capable of incrementally capturing software architecture design expertise with
modular and reusable language constructs. The design language is also a full-fledged
architecture description language (ADL) capable of describing the structure of software
architectures and the constraints and guidelines under which those systems were
designed and may be evolved.

The design language contributes to the software architecture research community by-
demonstrating that a first-order predicate logic-based constraint language can be used to
define useful design rules to guide software design and evolution. Further, the language
encodes an extensible framework for capturing software architecture design expertise. In
addition to its benefit to researchers, the design language also benefits software
development organizations by providing a way to capture and reuse the organizational
design expertise they develop in building software systems. Finally, it benefits software
architects by providing an explicit technique for capturing and expressing architectural
design constraints in software architecture specifications.

21

• A reference architecture. The dissertation describes a reference architecture, or
architectural style, for software architecture design environments that support
incremental customization. It describes the ardutecture of the Armani design
environment, discusses why a number of alternative architectures were not selected, and
presents some fundamental tradeoffs of this style of architecture. This contribution is
particularly useful for software tool builders who need adaptable, modular architectures
for design tools and environments.

• A set of case studies. A set of detailed examples and case studies are presented to
illustrate how the technique, language, and integration framework just described can be
used to effectively capture software architecture design expertise and rapidly develop
custom software architecture design environments. The case studies benefit people using
Armani to design software architectures and build custom software architecture design
environments. They are also useful for researchers interested in further exploration of
the ideas presented in the dissertation.

1.2 Armani overview

The approach presented in this thesis for rapidly developing custom software architecture
design environments has two primary technical components. The first component, a
language and framework for capturing architectural design expertise and individual
architectural designs, constitutes the core technical foundation for the approach. The
language binds the foundational concepts and constructs available to software architects and
environment designers for specifying architectures and capturing design expertise. The
second component, a configurable and extensible design environment, can be customized
with this design language to support specific styles of architectural design. Throughout this
dissertation I will refer to the language and environment together as the Armani System, or
simply Armani. When it is necessary to distinguish between Armani's language and design
environment I will use the terms Armani design language and Armani design emmnment,
respectively.

1.2.1 Critical requirements

hi order for the Armani language and environment to achieve their goals of reducing the
time, difficulty, and cost associated with building custom software architecture design
environments, they must meet the following requirements.

1) Incrementality. A software architect using Armani should be able to incrementally
adapt his or her Armani-based tools to make use of available design expertise, or to
specify and add additional design expertise. Further, the incremental adaptation of an
existing environment should be significantly quicker and easier than building a new
environment from scratch.

2) Power. The Armani language and environment should be able to capture useful, non-
trivial software architecture design expertise.

22

3) Breadth. The mechanisms provided by Armani should be capable of capturing a range
of software architecture design expertise that is sufficiently broad to produce design
environments for a diverse collection of software architecture design domains.

Strictly speaking, only the first of these requirements - incrementality - needs to be
demonstrated for the thesis to hold. The requirements for power, breadth, modularity, and
reusability simply assure that the environments incrementally developed with Armani will be
useful for a sufficiently wide audience of software architects and environment developers.
This dissertation will, however, demonstrate that the Armani approach to rapidly developing
custom software architecture design environments satisfies all four of these requirements.

1.2.2 The Armani design language

The Armani design language can be used for capturing both software architecture design
expertise and the architectural specification of individual software system designs. The
language provides constructs for capturing three fundamental classes of architectural design
expertise - design vocabulary, design rules, and architectural styles. A brief overview of each of
these follows. A more complete description and specification of the Armani design language
is provided in chapter 3.

• Design vocabulary is the most basic form of design expertise that can be captured with
Armani, and possibly the most valuable. The design vocabulary available to a software
architect specifies the basic building blocks for system design. Design vocabulary
describes the selection of components, connectors, and interfaces that can be used in
system design. As an example, the design vocabulary available for a naive client-server
style of design might include client and server components and an HTTP connector.
Armani provides a rich predicate-based type system that environment designers can use
to specify the design vocabulary, the properties of vocabulary elements, and the design
invariants and heuristics that describe how the vocabulary elements can be used.

• Design rules specify heuristics, invariants, composition constraints, and contextual cues to
assist architects with the design and analysis of software architectures. Armani makes the
following aspects of a design rule independently modifiable: the specification of the rule
itself, the policy for dealing with violations of the rule, and the scope over which the rule
is enforced. Armani allows the association of design rules with a complete style, a
collection of related design elements (such as all of the components in a system), a type
of design element, or an individual instance of a component or connector. By making
the scoping of design rules flexible and specifying their policy independent of the rule
itself, Armani allows an architect to add, remove, modify, or temporarily ignore design
rules as appropriate for various stages and types of design.

• Architectural styles provide a mechanism for packaging and aggregating related design
vocabulary, rules, and analyses. An Armani style specification consists of the declaration
of a set of design vocabulary that can be used for designing in the style, and a set of
design rules that guide and constrain the composition and instantiation of the design
vocabulary.

23

In addition to the constructs provided for capturing abstract design expertise, the Armani
design language is also a full architecture description language in its own right. Architects can
use Armani to describe the architectures of individual software systems, how those systems
fit into a family of related systems, and how those systems are allowed to evolve over time.
The language constructs for describing instances of software architectures are fully
integrated with (and overlap) the language constructs used for capturing the design expertise
used to customize the Armani design environment.

Using a single language for both tasks has a number of benefits. First, an architect needs to
know only a single design language to both design software architectures and modify or
update a design environment "on the fly". Second, it is relatively straightforward for
automated tools to determine whether an individual architectural specification satisfies the
design rules that were used in its design. This becomes a particularly important capability
when modifications are proposed to the design that could violate some of the original design
rules, as frequently occurs during the maintenance and upgrade stages of a system's lifecycle.

1.2.3 The Armani design environment

The Armani design language provides the key conceptual infrastructure for the rapid
development of custom software architecture design environments by supporting the
capture of abstract architectural design expertise. Converting this captured expertise into a
working customized design environment, however, requires the additional infrastructure that
the Armani design environment provides. Specifically, the Armani design environment
provides the generic core infrastructure common to a large class of software architecture
design environments, including a design representation database, a graphical user interface
(gui), a tool integration mechanism, a generic design rule verification system, and tools to
support end-user environment customization.

An Armani environment designer builds on this generic environment infrastructure to
quickly develop a custom, specialized software architecture design environment. By (re)using
this configurable generic infrastructure as a basis for a custom design environment, an
Armani design environment builder begins his custom environment development project
with a big head-start.

The basic development model for producing such a custom Armani environment takes
advantage of this configurable infrastructure. An Armani environment designer uses the
Armani design language to specify the design vocabulary and design rules for the target
domain or style of architectural design. He then loads this design expertise directly into the
Armani environment. In doing so, the environment configures itself to support the
vocabulary and semantics of design in the target domain. The specified design vocabulary
types and design rules for the domain are loaded and available for architects to use in
designing software architectures with the environment. Further, because the structure and
semantics for the target style (or styles) of design have been specified, the environment can
provide basic design checks for semantic consistency such as type checking and confirmation
that the design rules are satisified.

24

This environment customization process is both incremental and experimental. Design
vocabulary and design rules can be added to an environment, removed from an
environment, or modified at almost any point during the environment's creation or use as a
design tool. As a result, both environment developers and end-users can quickly adapt their
design environment to reflect newly discovered design expertise that needs to be
incorporated into the environment.

The ability to dynamically load architectural styles, design vocabulary and design rules into an
Armani environment provides one form of environment customization. In addition to this
basic semantic customization, Armani can be configured and extended with rich
visualizations for rendering specific types of design elements (e.g., to make a database
component look different from a web-browser component). Likewise, additional design
analysis or construction tools can be specified and/or linked into the environment to
provide richer tooling capabilities. Like the basic semantic customization capabilities,
visualization and tooling extensions can be added to the environment both statically when
the design environment is initially created, or dynamically while the environment is in use.

1.2.4 Structure of the dissertation

The remainder of this dissertation expands and elaborates the discussion of the Armani
approach to capturing and exploiting software architecture design expertise to incrementally
customize architecture design environments. Chapter 2 provides an overview of how the
Armani system can be used to capture architectural design expertise and rapidly create a
custom design environment. Chapter 3 discusses related work. Chapter 4 describes the
Armani design language used for capturing architectural designs and architectural design
expertise. Chapter 5 details the design and architecture of the Armani configurable design
environment. Chapters 6 through 8 outline and detail the steps taken to validate the thesis.
This includes a detailed task analysis and a series of case studies that demonstrate Armani's
capabilities. Chapter 9 evaluates the results of the thesis research and discusses open issues.
Finally, Chapter 10 wraps the argument up with an evaluation of the thesis results and a
discussion of promising directions for future work.

25

Chapter 2

A Quick Tour of Armani

This chapter provides a brief tour of the Armani system. It illustrates, from the environment
user's perspective, how Armani can be used to rapidly and incrementally create highly-
customized software architecture design environments. Subsequent chapters will provide
significantly more detail on the Armani language and environment, as well as detailed
presentations of some specialized environments produced with Armani.

2.1 The generic Armani infrastructure

The Armani design environment provides the generic core infrastructure common to a large
class of software architecture design environments. This core infrastructure includes a
design representation database, a graphical user interface (gui), a tool integration mechanism,
a generic design rule verification system, and tools to support end-user environment
customization. In addition to being the base on which custom design environments are built,
this core infrastructure also functions as a complete, albeit generic, design environment in its
own right. Architects can use the generic environment to specify software system
architectures without any further environment customization.

Figure 2.1 shows an example of how an architect can use this generic design environment to
specify the architecture of a software system. In this example, an architect uses the reusable
vocabulary elements stored in the palette to the left of the environment's main window to
describe a simple instance of a software system with a few interacting components and
connectors. Manipulating these instances of generic components and connectors with the
environment's user interface tools allows the architect to specify the names of the
components and connectors, the topology of their interactions, emergent properties of the
system as a whole, and the properties of individual design elements (components,
connectors, and their interfaces).

The primary drawback to using only the generic design environment is that it provides the
designer only generic components and connectors to use as building blocks and minimal
analytical capabilities or design guidance. There is little semantics associated with the design
elements, just suggestive names and descriptions. To address these limitations, Armani builds
on this common, generic base by providing the ability to incrementally customize the generic
environment with new design vocabulary, design rules, and architectural styles. An environ-
ment designer can use these customization capabilities to create semantically rich building
blocks and analyses.

27

Component Workshop

Component Workshop

Component Name: [ciientl

Declared Types: räjJHM^MJJM.Ü*'"« mmmamamm
nstantiated Types: p 113 E»e Edit ¥iew Insert Format Tools Shape Window Help

Properties j mvanants

Request-Rate float
Visio-ShapeGUID guid!

Name Ä
T©eh6n*t "Gerieric

JomponeConnector

-iPlx!

B GenericCompSte

□

11
Port Role

Binding Binding

zJLd

System Simp!s_Genshc_ExannpiB

Clientt Client2

ServerA ServerB

Figure 2.1: A simple design specified with the generic Armani design environment

2.2 Building an environment for a naive client-server style

To illustrate how the generic Armani design environment can be customized to support
design done in a specific architectural style, this section describes the steps that an
environment developer (or an architect interested in creating a custom environment) would
take to extend the generic environment to support the move client-sener style. Though simple,
this style is applicable to a wide range of traditional, two-tier client-server type systems.'
Figure 2.2 shows a Screenshot of the Armani design environment after it has been
customized to support this style.

I describe this style of architecture as a naive client-server style because many of the details and design expertise
that make the client-server style of design useful and powerful have been omitted to provide a clear example of how
Armani is used. Chapter 7 provides a full description of a set of related styles that build on the naive client-server
style to create significantly more powerful and useful styles and design environments.

-g

28

: Component Workshop

Component Workshop

HEJE3

Component Name: |Video_Seiver

Declared Types: (narvaSeiverT

nstantiated Types: jnaK/eSeiverT

Properties J invariants I Heuristics | Substructure 1

:_j

Name:; Type Lvalue:
int
string
guidS'l

30
"NTSC"

FrameRate
VideoFormat

ESSS™ 9UldS iUMHHiJJJMAIMllM.MJIJlJJMIMKAIWJJ.MI.m.1 ,.l.If JIUBUJAIIUIJ.» - It ü xl
max-concurrent-reqi int ,-.33 File -Edit View Insert Format Tools Shape Window Help ... 151 x|

B GenericDorripSte

B Naive Client Serv

I hi*..
Non-BloclBlocking
Request Request

Q^Q isei
Client Single

Thread

tsa Server

Multi
Thread
Server

Figure 2.2: The Armani design environment customized for the ncäveclient-server style.

The following three steps are all that are required to customize the generic Armani system to
support the naive client-server style.

1) Capture the design expertise appropriate for naive client-server systems with an
architectural style specification. The environment designer uses the Armani design
language to capture this expertise. This style specification defines extensions to Armani's
design vocabulary by defining three new component types called clients, singje-thread-seruers,
and mulü-lbread-seruerSy two new connector types called blocking-request and ncnbtocking-
request, and four new interface types that the clients, servers, and client-request
connectors use. These vocabulary specifications include a definition of the structural
semantics of the components, connectors, and interfaces, a set of properties that the
individual clients, servers, and client-request's possess, and constraints on the values of
properties and modifications allowed to the basic vocabulary elements.

29

Architects using the customized environment are therefore able to explicitly use dint and
serar components that have well-defined structural semantics and properties as
primitives in their designs. To illustrate this idea, the type definition for the client
component type specifies, amongst other things, that all client instances have interfaces
that can interact properly with client-request connectors and that all client instances have
a property that describes the average rate at which they will send requests to their
associated server(s). Likewise, the servers define how many concurrent clients they can
handle, and how quickly they are able to process client requests.

The style specification also includes a collection of design rules that define valid
architectural topologies, acceptable ranges for various design properties, and analyses
that can be performed on client-server designs. Examples of the specific design rules
provided in the naive client-server style include disallowing client-client connections to
ensure that all display information is received through a client-server connection, and a
rule that maintains a workable ratio of clients to servers to insure that the servers are not
swamped by client requests.

The case study presented in section 7.2.4 gives further details about this style spec-
ification. As the case study indicates, this simple, declarative, architectural style
description requires only 35 lines of Armani code to specify and the entire environment
(including its specification) took only 2.75 hours to create. This compares strikingly to a
ground-up environment development project that could conceivably require hundreds of
thousands, or even millions, of lines of code.

2) Create custom visualizations for the style's components and connectors. This step
is optional, as standard visualizations can be applied to new types of components and
connectors. Creating custom visualizations for specific component and connector types
can, however, provide architects using the environment with rapid feedback about their
designs. Armani's visualization engine is built on top of the Visio drawing environment
[Visio99]. As a result, this step is performed using the visualization customization
capabilities provided by Visio and specifying a mapping between the Visio-based
visualization objects and the underlying Armani specifications of the components and
connectors. A designer creating a custom visualization for a component or connector
type can choose to make a trivial visual modification such as assigning unique colors to
each type used (a matter of selecting the appropriate color from a dialog box).
Alternatively, he can create arbitrarily rich visualizations for component and connector
types using Visio's SmartShape™ technology [Visio99] and Armani's programmatic
visualization interfaces.

3) Load the defined style and visualizations into the environment. This step is as
simple as selecting a pair of files from a dialog box of the running Armani environment.
The loaded files immediately configure the environment to support design in the naive
client-server style.

As these three steps indicate, it is straightforward to specialize the generic Armani
environment to support specific styles of architectural design. Once this customization is
complete, the environment provides a vocabulary of design elements that is tailored to this
naive client-server style (clients, servers, remote-procedure-calls), and a set of design rules

30

that both guides architects working in this style towards appropriate design decisions and
explicitly prevents them from making a number of poor design decisions.

2.3 Incrementally adapting the naive client-server environment

Although the naive client-server environment just described provides a more effective
platform for designing client-server systems than the generic environment originally
described, it can be customized even further as the environment user's understanding of
client-server design evolves. Suppose that after using the naive client-server environment for
a while, it becomes apparent that the naive style's two-tier client-server model has some
significant limitations. Specifically, in the traditional two-tier client-server style of
architecture, the display and user-interface functionality of an application resides in the client
components and the generic data storage capability resides in the server components. The
difficulty arises in deciding where to add the application-specific data processing capability.

Table 2.3 illustrates three architectural options for how this capability can be divided
between clients and servers. The naive-client-server style can support either of the first two
options, "Thick Client/Thin Server" and "Thin Client/Thick Server". Each of these options,
unfortunately, has significant drawbacks. In the Thick Client/Thin Server model the clients
encapsulate the data processing capability of the system and the servers simply provide the
raw data on which the clients operate. As a result, the clients tend to be large, complex
programs in their own right. Furthermore, modifying the system's application-specific
processing requires changing all of the clients in the system. Because the client components
may be broadly deployed and distributed this can be a large, time-consuming, and logistically
tricky task.

The Thin Client/Thick Server model addresses many of the limitations of the Thick
Qient/Thin Server model. The Thin Client model moves the application processing
capability to the server components. The client simply displays information and all of the
application processing takes place in the server components. As a result, modifications to the
application processing logic can be made centrally by changing the server component.
Unfortunately, the Thin Client model has two significant drawbacks of its own. The first is
that it puts a much greater processing load on the server. Depending on the processing
demands of the application and the expected ratio of clients to servers this might be a
problem. A second, and more subtle issue, is that the data processing capabilities of the
server are now more tightly intertwined with the data representation and storage capabilities
of the server. If designed properly, a thick server is certainly capable of keeping these two
functions separate and reasonably independent. Putting them in the same component,
however, requires significant discipline on the part of system designers and programmers to
keep the two functions independent.

A third alternative, the Three-Tier Client-Server style addresses the limitations of both the Thin
Client and Thick Client models just described. In the three-tier style both the clients and the
datastore servers are kept very specialized. The clients, called data views, simply display
information for the user, and datastore servers simply store and retrieve data. All of the data
processing capabilities required by the system are stored in a new type of component, the

31

application läge server, that mediates the interactions between the clients and the datastore
servers and provides the application's processing logic With this approach, both the clients
and the datastore server components retain the advantages of remaining "thin" - lower
processing demands, highly specialized functionality, and easy component interchangeability
and modification - without requiring that their counterparts become "thick" and suffer the
subsequent limitations. As a further benefit, a system's application-specific data processing
capability can be cleanly encapsulated in the system's application logic servers, improving
system maintainability and modularity.

As users of the naive-client-server style design environment (shown in figure 2.2) develop an
understanding of the three-tier style of design they can incrementally evolve their
environment to support design done in the new style. To do so, they simply need to update
the design expertise loaded into the design environment. The process of evolving an existing
design environment to support a new style of design is the same as the process described in
the previous section for creating a new design environment. The first step is to add the new
vocabulary types and rules for how those vocabulary types can be used. The second step,
which is optional, is to add new visualizations for the design vocabulary elements. Finally, the
new style specification and visualizations are loaded into the Armani environment and the
modification is complete.

Depending on the degree of similarity between the original environment and the new
environment this change can range from trivial, requiring the addition of a only a few lines
of design rule specifications, to a significant rewriting of the basic design vocabulary and
design rules. Because the original naive-client-server provides a solid conceptual basis on
which to build the three-tier style, updating the naive-client-server environment to support
the three-tier client-server style falls somewhere between these extremes.

The first step is to specify the new design vocabulary elements and design rules that will be
the building blocks of the three-tier client-server style. The vocabulary of the three-tier style
extends the naive style with two additional types of components, an application lege server and
a datastore server, along with a new db-query connector type. Application logic server
components contain the application's data processing functionality. Datastore servers are
databases that simply store and retrieve the raw data used by the system. Both of these new
component types are subtypes of the naive-client-server style's server component type. As a
result, they are specified by describing how they extend the basic server component, rather
than with a ground-up description. As a result, their descriptions require less than ten
statements each. Db-query, the new connector type, is added as a connector type through
which database queries are passed and the results of those queries are returned. The generic
dient-request connector supplied by the naive-client-server style remains available in the three-
tier style.

32

Diagram

Description

Benefits

Datastore
Server

Embed application logic
in dient components.
Clients decide what data
to retrieve from servers.
Servers simply retrieve
requested data.

• Simpler datastore

• Reduced server
processing load

Drawbacks

Large, complex clients

Updates to application
logic in installed base of
clients is difficult

Dependencies between
client and server

Embed application logic in
server components.
Clients only send simple
requests and display
results. Server aggregates
and processes data,
returning processed
results.

Simpler clients

Updates to application
logic made at server side
propagate to all clients
easily and quickly

Data storage and
representation is tightly
tied to application data
processing

Potentially high server
processing requirements

Client Client

^^i

Add a third layer of abs-
traction and a new type of
component, App Logic,
that embodies the applic-
ation logic and retrieves
and aggregates data from
the datastore(s).

• Clean separation of
component
responsibilities

• Lightweight clients

• Impact of modifications
localized.

• Easy propagation of
component modifications

• Potential performance hit
due to extra layer of
indirection

• Additional potential
points of failure.

Table 2.3: Overview of approaches for adding application logic to client-server systems

After specifying the additional vocabulary elements, it is necessary to add a set of design
rules that describe legal configurations for systems in this style. Because one of the primary
goals of the three-tier style is to separate the application logic from the client's display
capabilities and the system's data storage capabilities, the first two rules that we add state that
client components may only be connected to application logic components, and that
datastore components may only be attached to application logic components. As a result, it
is not possible to attach a client component directly to a data source. Next, we add
topological constraints stating that all connections between clients and application logic

33

servers must be made with client-request connectors and that all connections between
application logic servers and datastores must be made with db-query connectors. Finally, we
add rules that describe valid connector/component interface pairs.

In addition to the basic topological constraints, additional design rules are added that
describe required performance characteristics and appropriate ratios of the various client
and server components to maintain acceptable performance and reliability. This set of
design rules configure the three-tier enabled design environment to constrain designs of
systems created with the environment to those that would be expected from the informal
style description presented earlier. As the new style is further refined, the environment can
be easily and incrementally updated as well.

Component Workshop

Component Workshop

Component Name: |Parholoqv_App_Srv

Declared Types: jappLoqicT

; Connector Workshop

Connector Workshop

Connector Name: |Blockmg_Accounting_Request

MM

nstantiated Types: JappLoqicT

Properties invariants j Heuristics f Substructure I

Declared Types: IthinClientRequestConnT

nstantiated Types: JthinClientRequestConnT ■1J

Name mßßi mähet,
Properties j invariants ; Heuristics j Substructure |

"Pathology and Disease Trail
Name Type mates'-

blocking boolean false
processingFunction string
Visio-ShapeGUID HUMB ■,.,■...■-,,■ ,.-,. .--~r.-r~-*~ .„,;..,:.„ -^.«^ -

maxconcurrent-reqnnt ^ Rle Edit View Insert Format Tools Shape Window Help

IJGenericCompSte

I! Hiree Tier CSSte

m
View Äpp

^Client Logic

Generic Oracle
DatastoriDatastore

Sybase DB2
Dä'tastötifjatastore

! '
j

'}■ ■■•■

ODBC JDBC
DafastcDatastore.2f_;

©löeMng"Nö-Blriik
Client Client J •

HEE3
^ISjxJ

Data Vfewc lie tt

System HospilaCMi
Daoviraciieit Daevexcii»it

J
Figure 2.4: The Armani design environment customized after extending the

style to support the three-tier client-server style
name dient-: ■server

34

After specifying the conceptual additions required to evolve the client-server environment,
we will need to add new visualizations for the datastore and application logic servers, as well
as the new db-query type connector. These visualizations are created by drawing the new
shapes with the Visio drawing tool and adding the shapes to the new style's palette of design
elements. This step requires only that the environment developer drag the shapes from the
drawing area and drop them on the palette. After the shapes are dropped on the palette the
user is prompted to specify the mapping between the visual shapes and their underlying
design types. At this point, the environment customization specification is complete and
Armani will support design done in the three-tier client-server style. Figure 2.4 shows a
Screenshot of the completed three-tier client-server design environment, complete with a
design built using the style.

2.4 Summary

This chapter has broadly illustrated the Armani approach by providing a walk-through for
how the Armani system can be used to create custom software architecture design
environments. Subsequent chapters will present the design language and environment in
greater detail, followed by a set of detailed case studies that demonstrate Armani's breadth
and utility.

35

Chapter 3

Related Work

There are four primary areas of related work that have inspired the direction of this
dissertation, form a base on which it builds, and/or address similar problems. The first and
most influential of these areas is software architecture description languages, tools, and
environments. The second area is general purpose software specification languages. That is,
languages for specifying software designs that are not specifically concerned with the
architectural level of detail and abstraction. The third area of interest is computer-aided
design and analysis tools used for designing both physical objects and software. Finally, the
fourth area is studies of the abstract process of design. These design theories provide useful
guidance for the creation of software architecture design tools. They also guide the selection
of design tasks that are readily amenable to computational assistance.

3.1 Software architecture description languages, toolkits, and
environments

Over the past decade numerous Architecture Description Languages (ADLs) have been
created for describing the structure and behavior of software systems at the architectural
level of abstraction. Most of these ADLs offer a set of tools that support the design and
analysis of software system architectures specified with the ADL. As we shall see in the
ensuing discussions, however, none of these ADLs offer sufficiently rich support for the
lightweight and incremental capture of a broad range of software architecture design
expertise, nor for incremental customization and adaptation.

3.1.1 Aesop

The Aesop system [GA094] is a generic, configurable software architecture design
environment that can be customized for use with specific architectural styles. Aesop's
infrastructure consists of a graphical user interface (GUI) for manipulating visual
representations of architectural designs, a database to store and manage designs, and an
event system for integrating design tools. In their "raw" state, these building blocks
constitute a generic architectural design environment that serves primarily as a box-and-line
editor with no semantics underlying the boxes and the lines.

This generic Aesop environment can be extended to support specific styles of architectural
design. To create a style-specific design environment, an environment developer creates a set
of classes that encode the style's design vocabulary, configuration constraints, and
visualizations. This collection of classes defines an ardntectural style in Aesop, which is the
primary unit of abstraction for customizing the Aesop environment. These classes
prc&ammatkdly define their legal interactions with the environment through the

37

environments application programming interface (API). Once these classes have been
written the environment developer generates a customized Aesop environment by compiling
and linking his style-specific classes with the generic Aesop infrastructure.

An important implication of supporting only programmatic customization of the
environment is that the process of customizing the environment requires a relatively deep
understanding of the internal implementation of the environment infrastructure. Armani,
on the other hand, allows architects to customize their environment by loading declarative
descriptions of vocabulary and design rules into their environment.

The experience I gained developing and using the Aesop system provided the primary
motivation and insight guiding this thesis research. Specifically, Aesop demonstrates that
providing a generic, configurable design environment infrastructure can significantly reduce
the amount of development effort associated with creating customized software architecture
design environments. Further, Aesop demonstrated that the architectural style abstraction
can be an effective way to capture broad design expertise.

Unfortunately, Aesop's model for capturing design expertise and customizing design
environments also has the following five fundamental limitations.

1) Aesop's styles are heavyweight, monolithic and inflexible. Aesop's style specifications capture
interrelated design expertise in the form of imperative programming code. This
expertise is carefully programmed as a coherent collection of classes that are intended to
work together. The style specification is, however, scattered throughout a large body of
environment implementation code. It is difficult for an environment designer trying to
modify a style specification to cleanly separate the style's vocabulary, composition
constraints, and analyses. As a result, modifying a style can have significant unintended
consequences. Likewise, this tight intermingling of vocabulary, composition constraints,
and analyses also makes it difficult to reuse pieces of a style definition in the creation of
a new style.

2) The semantics of an Aesop style specification are implicit in that style's environment implementation
code. As a result, it can be difficult to determine the semantics of the style itself, as they
are tightly intermingled with implementation details. An architecture description
language such as Armani that is explicitly geared towards capturing architectural style
specifications can sigmficandy ease the processes of creating an architectural style
understanding the semantics of a style, and extending the style to capture new design
expertise.

3) The range of design expertise that an Aesop style specification can express is limited. In the Aesop
system, and in the formal work on styles of Allen, Abowd and Garlan [AAG95], a style
specification defines invariant aspects of all systems built in the given style. As a result, it
is difficult to make use of design expertise that is not readily expressed as an invariant
over aU instances of systems built in the style. Specifying design heuristics, for example,
can be difficult or impossible in Aesop.

4) Irflexibk scoping. AU vocabulary and composition rules in the Aesop system have a scope
of a single style. Styles provide little assistance for capturing or using design expertise

38

that applies either across multiple styles, to only a context-dependent subset of the
elements in a design, or that varies in applicability depending on context. As a result, it is
not possible for architects to add localized constraints to a design or to use their
judgement in relaxing or overriding rules without adapting the entire style itself. As the
first limitation pointed out, adapting an Aesop style is a heavyweight operation that is
likely to have repercussions beyond the intended modification.

5) Limited support for experimmMion. Although a software architect using an Aesop-based
style-specific software architecture design environment can experiment with designs
done in a given style, Aesop's use of monolithic styles makes it difficult for a designer to
adapt an existing style, create a new style, or experiment with style-independent design
expertise. In Aesop's basic environment development process a "style developer"
customizes a design environment for use with a particular style that he hands off to the
architects who use it to design specific systems. The architects using the customized
environment are given little in the way of tools for customizing the environment or
quickly adding design expertise that they discover to the environment. When they want
to evolve or improve the environment they generally need to send the request to the style
developer who will make the changes and return to them an updated environment. As a
result, lightweight, experimental environment evolution is not supported by Aesop.

To illustrate these limitations, consider a designer using Aesop who wants to specify that a
particular configuration of components and connectors may have no cycles. She does not
want to change the entire style, because this particular constraint is only applicable to one
part of the system being designed. With Aesop, the style itself must be modified if this
constraint is to be automatically maintained because all constraints must be defined as style-
wide invariants. Further, even if our designer was willing to make the changes needed to the
entire style, the monolithic and heavyweight nature of style specification in Aesop makes the
process of adapting the style to support the changes prohibitively expensive.

Another case worth considering occurs when the system architect is not sure whether she
should allow cycles in the systems she is designing. She would like to be able to experiment
with a number of options before binding the decision. Aesop provides little support for
experimentation of this sort. The process of adding constraints to a style requires significant
programming and a relatively deep understanding of the internal structure of the Aesop
system. The high cost of experimentation in style development discourages the designer
from exploring a wide variety of options.

As the rest of this dissertation argues, Armani's model for explicitly and incrementally
capturing design expertise and customizing the software architecture design environment
addresses these five limitations. Armani addresses these issues by providing an architecture-
specific declarative textual language that cleanly separates different aspects of architectural
specification, by providing modular, orthogonal constructs for expressing architectural
designs and design expertise, and by providing a much more flexible and incrementally
adaptable design environment infrastructure than Aesop.

39

3.1.2 Acme

Acme [GMW97] is a generic, extensible software architecture description and interchange
language. The Acme language grew out of a project to support the interchange of
architectural descriptions between a wide variety of different architecture design and analysis
tools. Because most of the target tools used their own idiosyncratic languages and
representations for describing software architectures they did not naturally work well
together. Acme was created to address this issue. Acme provides a flexible, structure-based
architectural representation language that maps readily to many popular architecture
description languages. Recognizing that many of the ADLs and tools that are designed to
integrate with Acme would lose information if they only translated their structural
information, Acme also supports the annotation of system architectures with non-structural
information through its property construct.

As Acme evolved it became a useful architectural description language in its own right.
Because it is generic, extensible, and designed to interact well with a broad variety of
architectural design tools, the current version of Acme (version 1.0) provides a standard
architectural representation that works well as a platform for building new architecture
design tools and languages. Given this capability, the Armani design language was created as
an extension to the Acme language. Armani builds on Acme by adding a more rigorous type
system, a predicate language, and constructs for representing design rules in the form of
design analyses, invariants, and heuristics.

Building Armani on top of Acme has two significant advantages. First, it leverages a
significant amount of design and development effort that went into creating the Acme. As a
result, Armani is able to avoid repeating many of the mistakes that were made (and
subsequently rectified) in designing Acme. Second, because Armani is built as an extension
to Acme, it is trivial to strip and/or translate Armani's additional constructs to create an
Acme representation of an Armani system description. In this way, architectural speci-
fications provided in Armani can be analyzed by other design tools that recognize the Acme
standard.

The Acme language and its associated toolkit are effective in their role as the foundation for
the Armani system. They are not, however, sufficient on their own to solve the problems
that Armani addresses. Specifically, although Acme is useful as a platform for building and
integrating sophisticated software architecture design tools and languages, the language does
not provide the richness of expression that Armani does for capturing design expertise.
Armani's extensions to Acme allow it to satisfy the goal of capturing software architecture
design expertise in a way that Acme is unable to do on its own. A second fundamental
limitation of Acme is that it neither provides nor specifies an architecture design
environment. Acme defines a notational standard to which design tools and environments
can be written but it does not provide those tools itself. As a result, Acme provides a solid
generic infrastructure on which to build the Armani system, but it does not obviate the need
for Armani.

40

3.1.3 Domain-Specific Software Architecture (DSSA)

DARPA's Domain-Specific Software Architecture program (DSSA) [MG92] provided early
research recognition that reusable reference architectures hold significant promise for
improving the design, analysis, production, and maintenance of complex software systems.
The project was also an early attempt at capturing software architecture design expertise for
specific application domains. The DSSA project developed reference architectures as well as
design and analysis tools for a number of software development domains. As the project's
DARPA origins suggest, the domains studied - avionics, command and control, GNC
(guidance, navigation, and control), and adaptive intelligent systems - were selected for then-
strategic importance to the United States Department of Defense (DoD).

The DSSA approach to creating reference architectures and tools differs significantly from
Armani's approach. The DSSA approach captures, stores, and organizes design expertise
according to the application domain from which it was captured. An example of such a
domain is the avionics domain, or military command-and-control systems. Armani, on the
other hand, organizes design expertise according to the style of architecture for which the
expertise is applicable. Styles capture common structures and approaches to design that can
span multiple application domains. The client-server style and the master-subprogram style
(see sections 7.2.3 and 7.2.5, respectively) are two examples of architectural styles that are
applicable to multiple application domains. The distinction here is subtle but important.

A DSSA domain-specific reference architecture generally selects a single architectural style
that is appropriate for the domain being studied. Doing so allows specialized architectural
design and analysis tools to be developed for use in the chosen domain. The downside is that
the expertise captured using the DSSA approach is applicable to only a narrow range of
system design efforts. Further, because there is minimal shared conceptual basis or
infrastructure between the various DSSA reference architectures, tools developed for one
DSSA domain are not necessarily reusable or adaptable for use with another DSSA domain.

In Armani, on the other hand, the definition of an architectural style is orthogonal to the
application domain in which the style will be applied. As a result, design expertise captured
with Armani can be applied to a broader range of system design efforts than the expertise
captured in a DSSA toolkit. Further, Armani's generic, adaptable infrastructure for creating
custom software architecture design environments obviates the need for the ground-up
tooling development effort associated with the DSSA projects. The cost of creating a style-
specific architectural design environment with Armani is dramatically lower than the cost of
producing a DSSA reference architecture and toolkit.

Overall, DSSA technology complements the Armani technology. Both domain-based design
expertise and style-centric architectural design expertise play important roles in most large
software development projects.

3.1.4 Automated design critiquing

Emerging work by Robbins and Redmiles [RHR98] refines Fischer's work on automated
critiquing [Fis+ 87] and applies it to the software architecture design process. To demonstrate

41

the approach, they have produced a software architecture design environment called Arg)
that integrates a critiquing capability with traditional design environment functionality. In
Argo, critics are background tasks that continually monitor the state of a design and the
actions that a designer takes to flag problems and to offer the designer suggestions and
guidance.

As in Armani, the ability to capture and leverage software architecture design expertise is a
central benefit of Argo. Argo, however, takes a significantly different approach than Armani.
The design expertise that Argo captures is embedded in the implementation of its critics.
These critics are implemented as Java classes that are tightly integrated with the rest of the
Argo environment. As a result, Argo's expertise is readily modularized and composed, much
as it is in Armani.

Critics provide a mechanism for capturing software architecture design expertise that is
largely complimentary to the Armani approach. Critics, however, fall short of fully solving
the problems addressed by Armani. First, critics are a relatively heavyweight mechanism for
capturing design expertise. Creating them requires significant programming effort and a
relatively deep understanding of the implementation of the environment into which they
will be embedded. Although critics support an incremental way to add design expertise to a
software architecture design environment, such incremental evolution remains out of reach
of the environment's end-users. Second, the critics mechanism doesn't support the capture
of constraints over specific design instances. Critics are fundamentally associated with a
design environment rather than an individual design. As a result, critics are not appropriate
ways to annotate architectural specifications with design rules to guide a single system's
evolution. Finally, Argo lacks a unifying framework for aggregating and reasoning about the
interactions of its critics. As a result, developing a formal foundation for understanding the
design expertise captured by Argo presents a significant challenge.

3.1.5 Other ADLs

Numerous other architecture description languages (ADLs) have been developed to capture
various aspects of architectural design expertise and provide architects with mechanisms for
describing and reasoning about their designs. A brief synopsis of some prominent and
relevant ADLs follows, followed by a comparison with Armani.

UniCon (UNIversal CONnector) [Shaw+95] is an architecture description language and
toolset that supports the generation and analysis of software systems from architectural
descriptions. To produce a software system, a UniCon user typically specifies the set of
components that make up his or her system along with a description of how the
components communicate and interact. These interaction paths are called connectors. UniCon
supports a variety of architectural connectors that are commonly used in production
software systems. Examples of these connectors include Unix Pipes, R¬e Procedure Calls
(RPCs), and SQL Queries. Because the interaction techniques used by these connectors are
well understood and standardized, UniCon is able to generate code to create the system's
connectors, the component packaging needed to hook its components together
appropriately, and the system's build files. As a result, UniCon can dramatically increase the
level of abstraction at which systems are actually constructed.

42

Rapide [Luc+95] provides an environment and language for modeling and reasoning about
software architectures. A Rapide system model describes system structure and behavior.
Rapide provides is the ability to simulate the behavior of the modeled system, given a stream
of inputs. The resulting system behavior is represented as a Partially-Ordered Set (POSet)
that defines sequences of events that could occur as a result of the system inputs. An
architect can analyze these POSets to detect potentially anomalous emergent system
behavior directly from the architectural specification.

Wright [AG96] is an architecture description language designed primarily to describe the
protocols of interaction used within a system or throughout an architectural style. Like
Rapide, Wright's primary analytical leverage comes from its ability to describe and analyze
system behavior; particularly emergent system-wide behavior. Unlike Rapide, however, it
supports static analysis of architectural specifications rather than simulation. As a result,
Wright's analytical results are more comprehensive than the results generated by a Rapide
simulation. That is, a Rapide simulation evaluates system behavior only for a specific
sequence of inputs. A static analysis of a Wright specification, on the other hand, is shown
to hold over all possible input sequences. Wright's support for the specification of
architectural styles, rather than just specific system instances, dovetails nicely with its static
analysis capabilities. The results of a Wright analysis of an architectural style's protocols of
interaction demonstrates emergent properties that will hold for all systems built according to
that style's specification.

Each of these ADLs support the description and analysis of one or more important aspects
of software architecture design. They provide architects with the capability to express the
design of a specific software architecture, analyze a set of properties of that architecture,
and, in the case of UniCon, to generate working systems from the architectural specification.

Although each of these ADLs provide compelling capabilities, they have some significant
limitations as well. First, all of these ADLs (willingly) trade off some flexibility and
generality for greater analytic and generative capability. That is, although each ADL is good
at providing its specific benefits, none of them are particularly general or extensible. Second,
all of these tools required years of research and engineering to develop, yet none of them
can be readily modified or adapted by their users as their needs evolve. As a result, the tools
will require significant maintenance effort and expenditures if they are to be kept current as
design needs change.4

The explicit decision to design Armani as a radically user-configurable design environment
addresses the high cost of initially producing such an environment. By providing a
configurable infrastructure and language that supports many of the functions and
capabilities that had to be built from scratch for these ADLs, the effort to build new design
and analysis tools and capabilities can focus on the providing the incremental benefits that
these tools promise rather than rebuilding standard infrastructure and architectural concepts.

4 An updated version of UniCon was released after the publication of [Shaw+95] that provides a much more flexible
mechanism for adding new connectors to the environment. This is a big step towards greater flexibility, though it
still requires a significant understanding of the implementation of the UniCon tools to successfully modify them.

43

The research presented in this dissertation explores a different part of the design space for
software architectural design tools and environments than these three ADLs. Rather than
trade off generality and broad applicability for additional power, Armani trades off some
analytical power for broader generality, applicability, and evolvability. By building on top of
the Acme interchange standard, however, Armani is able to address the need for powerful
design analysis and generation capabilities that are not readily available with Armani.
Specifically, an Armani description can encode design information for use by Rapide,
UniCon, or Wright-based analyses. Rapide, UniCon, and Wright all provided significant
lessons in the design and implementation of the Armani language and environment. As a
result, Armani is able to leverage some of their analytical power while providing a more
general and extensible set of architectural concepts and infrastructure.

3.2 General purpose software specification languages

There are many general software design and specification languages that are complementary
to the architecture-specific languages described in the previous section. In most cases, these
languages are intended for describing and specifying software at more detailed levels of
abstraction than the architectural level. As a result, none of them are particularly good for
describing software architectures.

The primary limitation these languages face for describing software architectures is that they
don't support a sufficiently specialized set of constructs and concepts for dealing with
architectural specification and analysis. Their primitives are generally geared towards
specifying data structures and algorithms. An ADL, on the other hand, must describe the
components of a system, how those components interact, and their non-functional
properties. As a result, an architect trying to use such a language for architectural
specification must generally expend a significant amount of time and effort building a set of
architectural constructs from the language's primitives before using the language for
architectural description.

Although they are not the ideal choice for many architectural specification tasks, many of
these languages embody good ideas that were borrowed by and incorporated into the design
of the Armani system. This section will discuss some of the most influential general
purpose software specification and design languages, how they have influenced the design of
Armani, and why they do not sufficiently address the problems that the Armani system
tackles.

3.2.1 UML

The Unified Modeling Language (UML) [BRJ98] is a set of graphical notations for
specifying the design of object-oriented software systems. UML was formed by merging a
number of popular object-oriented design notations, including OMT [Rum+91], Booch
[Boo94], and OOSE Qac94], into a single collection of related object-oriented design
notations. As a result, UML includes notations for describing the object structure of a
system, behavioral diagrams to indicate how objects interact, and a notation for specifying
use-cases. Due to its comprehensive scope and broad commercial tool support, UML has

44

become a popular design notation amongst software engineers and architects building
object-oriented systems.

Although at first glance UML appears to be a potential substitute for Armani, the two design
languages are, in fact, quite different. UML provides a solid notation for specifying the
detailed design of software systems. It is not, however, particularly effective as a high-level
architecture description language for the following reasons:

Weak semantics. UML was intentionally created with informal semantics. Surprisingly, this
has proven to be one of the language's greatest selling points for practicing software
designers. Because the semantics of the notations are only weakly defined, designers using
UML need not be particularly precise in their use of the notation. This can be a benefit if
the notation is used primarily as a way for engineers to sketch designs on a whiteboard
during a meeting. Unfortunately, UML's vague semantics are a weakness when the notation is
used to specify a system architecture. Vagueness in the semantics of the notation is likely to
lead to confusion amongst the engineers and programmers who have to implement the
system. In the worst case this could lead to a complete inability to integrate the individual
elements of the system.

Poor support for hierarchy and scaling. UML provides only weak support for the
hierarchical decomposition of an architectural design. As a result, large UML designs tend to
become complicated, with hundreds or even thousands of connected shapes on a single
diagram. A design that is this complicated is difficult both for system implementers to
understand and analysis tools to analyze. Armani, on the other hand, provides hierarchical
decomposition as a fundamental language capability.

Tight ties to implementation structure. The UML notations are primarily intended to
capture the implementation structure of a system. Further, it has only very weak support for
the notions of interfaces that are separate from implementations. This is a benefit to tools
that generate code skeletons from UML structural definitions. From an architectural design
and analysis standpoint, though, it can be difficult to express abstract design concepts and
interactions using UML. Armani, on the other hand, explicitly focuses on describing abstract
architectural structure and interactions. In this way, UML and Armani can be used together
in a complementary way Armani is generally a better option than UML for specifying high-
level, abstract architectural aspects of a software design. UML can be embedded within an
Armani specification to describe the detailed, lower-level design of a system.

There is significant effort underway in the software architecture research community to
integrate UML's popular implementation-level design concepts with more abstract software
architecture design languages and tools [Rob+98]. For a detailed discussion on the
relationship between architecture description languages and object modelling techniques see
FMon+97].

3.2.2 PVS

SRI's Prototype Verification System (PVS) [OS97] consists of a language for specifying
system designs and a semi-automated theorem prover to verify properties of those designs.
PVS's use of automated theorem proving allows it to support the specification and

45

verification of complex system designs that would be difficult or impossible to verify with
more traditional type-checking methods.

PVS is relevant to Armani primarily because, like Armani, the PVS type system supports the
specification of complex predicates for capturing designs and design constraints [. Although
many of the details of Armani's syntax and semantics differ significantly from those of PVS,
the fundamentals of the two languages are actually similar enough that the PVS semantic
core serves as the foundation for Armani's formal semantic specification. As a result,
Armani is able to leverage and reuse a well established formal representation and logic as its
semantic underpinnings.

PVS does not, however, solve the basic problem that Armani addresses - rapidly and
incrementally developing custom software architecture design environments. PVS performs
a single design task - formal verification and theorem proving - well for a variety of
architectural domains. Although PVS provides helpful guidance and a formal foundation on
which to build, it is not readily customized to work with specific architectural styles.

A second, and perhaps more subtle, reason that PVS is not by itself a sufficient basis for an
extensible architectural design representation is that the result of a PVS verification is not
necessarily binary. That is, the result of a verification test on a PVS specification can be "yes,
the design is verified", "no, the design is not verified", or "maybe, if the following proof
obligations hold". This behavioral characteristic arises because the PVS specification
language is sufficiently rich to render typechecking a specification undecidable. As a result,
integrating other interactive design tools with PVS can prove challenging. By insuring a
binary and relatively fast response to a tool's query about whether a design satisfies its
constraints, Armani can provide interactive feedback not only to human users but also to
automated tools.

As a result, PVS and Armani are complementary technologies. The PVS system allows
verification and validation of more complex designs than Armani at the expense of its utility
as a general design representation and integration framework. Armani, on the other hand,
provides a flexible, customizable, environment and tool integration infrastructure. One way
in which the two technologies could be used together, for example, is to use PVS to
determine the internal consistency of Armani type and style specifications. Determining
whether an Armani style specification is internally consistent requires more theorem-proving
capability than Armani possesses. PVS provides such a capability and Armani's integration
framework should allow the two to work together. This issue is addressed in greater detail in
Chapter 9.

3.2.3 Larch

Larch [GHW85] is a software specification language that supports the definition and
composition of partial algebraic program and abstract data-types (ADTs). The aspect of
Larch that is most relevant to the Armani design language is Larch's support for the capture
of important aspects of ADTs in modular, independent units called traits. These traits can
be composed to capture the semantics of full, rich ADTs.

46

The Armani design language makes use of and builds on Larch's ideas about trait
composability and partial specification. Specifically, it uses a similar approach for
constructing architectural styles and compound vocabulary types out of individual design
rules, structural and property specifications. As a result, Armani can address the architectural
design issues that Larch, with its emphasis on abstract data type specification, is not intended
to capture.

3.2.4 Traditional formal software specification languages

In addition to the ADLs described above, there has been a significant effort by members of
the software architecture research community to use formal methods to provide a
mathematical foundation for describing software architectures and architectural styles.
Formalisms such as Z [Spi89, AAG95], CSP [Hoa85], and the Chemical Abstract Machine
[IW95] have been used to model software architectures. Although these formalisms can be
useful for rigorous reasoning about architectural designs, they fail to provide either an easy
way for designers and domain experts who are not deeply familiar with formal method to
capture expertise, or mechanisms for automating the formalisms that they do capture in a
working architectural design environment. Further, these formalisms often prove awkward
for describing software architecture specification because their basic constructs are not
geared for doing so. Although it is often possible to build software architecture constructs
out of the primitives that these formalisms provide, much of the clarity that the formalisms
exhibit for specification at lower levels of abstraction is lost in the process.

Although the Armani system does not emphasize the same degree of rigor for reasoning
about architectures that these formalisms provide, it provides a greater degree of flexibility
for capturing design expertise, realizing that expertise in a design environment, and
experimenting and exploring the range of possible designs. Armani is, in fact,
complementary with these more formal software architecture description models - formal
specifications can be embedded in an Armani description to provide a more rigorous
specification for various aspects or pieces of a system described with the Armani language
and tools.

3.2.5 Law-Governed Systems

Minsky's work on Law-Governed Systems (LGS) [Min91, Min96-1, Min96-2] describes an
approach for guiding the evolution of software systems with a collection of laws. These laws
are generally represented as prolog-based rules that can be evaluated during system
development, maintenance, or operation. By providing a framework for describing expected
(and legal) system evolution paths a system's original designers can guide the subsequent
evolution of the system and flag evolutionary paths that are likely to violate the system's
basic foundations.

The LGS approach to capturing and enforcing system-wide evolutionary laws bears a
striking resemblance to the Armani approach to capturing software architecture design
constraints. Both approaches provide a framework and mechanisms for capturing software
design expertise in the form of design rules and an automated checking mechanism to
ensure that those rules are followed in the construction and evolution of software systems.

47

The Law-Governed System approach does not, however, fully address all of the issues
addressed by the Armani system. First and foremost, Law-Governed Systems provide
minimal direct support for dealing with architectural issues. Although they are designed to
work at various levels of software system abstraction, they tend to emphasize issues that
occur at more detailed (lower) levels of abstraction than the architectural level. As a result,
Minsky's prolog-based laws trade off some of the power that comes from focusing on the
architectural level of design for the generality of being applicable for all stages of software
design and development.

Armani, on the other hand, focuses on specifying constraints on the evolutionary path of
the architectural specification. Although Armani is not as broadly powerful for describing
sub-architectural design constraints as LGS, its constructs, concepts, and design primitives
provide architects with greater leverage for designing at the software architecture level of
abstraction. An architect using LGS as the basis for architectural design needs to create a set
of architecture-level primitives and design rules before LGS can be used effectively as an
Architecture Description Language. This is a non-trivial, time consuming, and error-prone
task. An architect using Armani, on the other hand, can immediately leverage its built-in
architecture-level primitives and design rules.

Another limitation to the law-governed system approach is that, historically, the
implementations of the law-governed system idea have been tightly tied to object-oriented
system design and development techniques (c.f. [Min96-1] and [Min96-2]). It is not clear
whether this is fundamental or accidental to the LGS approach, but the heavy emphasis on
object-orientation, and method-call interactions in particular, limits the range of architectural
styles that one can currently use to design a law-governed system. One of the implications of
aligning the LGS approach tightly with object-oriented design is that although LGS provides
a way of expressing laws at a wide range of abstraction levels (e.g. detailed implementation
laws or high-level module relationships), it limits the overall system organization to a
relatively small range of abstractions. Armani, on the other hand, focuses on capturing
design constraints at the architectural level of abstraction, but allows a wide range of
architectural abstractions for system organization.

Finally, Law-Governed Systems provide little or no support for the rapid creation and
evolution of software architecture design environments. LGS provides an abstraction and
modeling technique that can be realized and embedded in software design environments but
this does not in any significant way to address the need for rapid and incremental
environment development and modification capabilities.

3.2.6 Configurable programming environments

The idea of providing generators that can quickly create custom tools for software
professionals certainly preceeds Armani. The Gandalf System [Hab+82] and the Synthesizer
Generator [RT88] are software tool generators that were influential in the conception and
creation of Armani.

The Synthesizer Generator allows tool builders to rapidly create structured editors that are
customized for specific languages. These editors dynamically enforce the syntax of the

48

language and provide constructive assistance to programmers using the tools. These editors
also provide a programmatic interface for manipulating the attribute-grammar representation
of a program.

Gandalf provides a package of infrastructure and generators that can be used to create
custom software development environments. Like the Synthesizer Generator, a key part of
the Gandalf software development environment generation process is the creation of a
customized structure editor. In addition to the structure editor Gandalf also provides
mechanisms for handling project management and source code version control.

Much like Armani, both of these tools guide software developers toward building correct
software. Specifically, the structured editors created by these tools make it impossible (or at
least very difficult) for a programmer to create a syntactically incorrect program, eliminating
an entire class of programming errors.

Although both of these tools provide compelling support for creating customized
programming environments, neither fully addresses the problems that Armani solves. First,
both of the systems focus on providing programming support and, in the case of Gandalf,
on supporting teams of programmers constructing systems. The tools are not intended to
support the software architecture and design process. Likewise, neither tool supports the
ability to explicitly express, capture, and make use of design expertise. Although the person
generating custom tools makes use of significant expertise, that expertise is implicitly
encoded in each of the generated tools.

Second, neither of these tools allow the end-user to perform any significant environment
customization. Like Aesop, they both support a generation model in which the person who
creates the custom environment is different from the person who uses the environment.
Although the same person can obviously play both roles, the skills and perspective required
varies greatly between the two tasks. Armani's support for dynamic end-user environment
configuration is a powerful additional capability.

3.3 Computer aided design and analysis tools

The previous two sections have focused on related research in languages and techniques for
specifying and reasoning about software designs. Although some of these languages are
accompanied by significant toolkits, the primary contributions of these research projects
tends to be the abstractions and frameworks that they provide for specifying and reasoning
about software designs. Armani builds on this related work but it must also take advantage of
research and development efforts others have conducted in building effective computational
tools. In this section I present selected research in computer aided design and analysis tools
from a wide variety of engineering and design domains.

3.3.1 CAD tools for various disciplines

Computer Aided Design (CAD) has proven to be an effective tool for designers in many
disciplines. Architects, mechanical engineers, electrical engineers, and many graphic designers
rely heavily on CAD environments to perform their jobs. Systems such as Cadence

49

[Cadence] for electrical engineering, AutoCAD for mechanical engineering [Autodesk], the
Integrated Building Design Environment for building architects [Fen+94], and Corel
Graphics [Corel] for graphic design capture the important aspects, models, and tools of
design in their particular domains.

Because these systems were built to support design in significantly different domains from
software architecture, they do not solve many of the specific issues faced by software
architects. Exploring how these tools provide leverage for the designers using them,
however, offered many insights into what makes a CAD tool effective, the degree to which
design tools in other domains provide end-user configurability (they generally don't provide
any), and the kinds of analytical capabilities that their users seem to expect.

The primary insight I gained from exploring CAD tools in other domains was that the tools
provide a lot of leverage when they (a) capture and expose the domain's core design
expertise, (b) provide analytical capabilities that a designer would have difficulty performing
without the assistance of a computer, and (c) allow designers to quickly explore a variety of
alternative scenarios before binding design decisions. The design tools that provided all of
these capabilities tended to be very effective and popular with their users. Although the tools
explored were not directly applicable to the software architecture domain, determining what
made them effective proved very helpful in designing Armani.

3.3.2 Tools that manage constraints and rules

Constraint-based programming and rule-based programming have been studied extensively
in the AI literature. Borning's Thinglab [Bor79] was one of the early constraint-based
environments for manipulating models of the physical world. Thinglab simulated physical
environments and allowed a user to specify constraints that needed to be maintained
between different objects in the simulated world.

Like Thinglab, Armani allows designers to specify constraints that its environment enforces
as a software architecture specification evolves. Unlike Armani, Thinglab was designed to be
a very general constraint management system primarily for modeling entities in the physical
world. As a result, Thinglab provided little or no support for the abstract concepts and
constraints required in software architecture design. Although Thinglab's generality allowed
it to be applicable to many domains, by focusing specifically on software architecture design,
Armani is capable of providing architects with significantly more design leverage than a
general purpose constraint management tool.

Fischer's work on critics (see also section 3.1.4) and configurable design environments for
various industrial-design domains [Fis87,Fis+87] explored ways to capture design knowledge
and design rules in custom, domain-specific design environments. The design environments
that Fischer's research group built, however, were generally hand-crafted creations. Unlike
Armani, they do not support significant end-user configuration, customization, or
expression of design rules. Armani's support for end-user reconfigurability is central to its
design and requirements. As a result, although Fisher's critics work provides many useful
ideas for this research, it does not solve the full problem that Armani addresses.

50

3.3.3 Expert and rule-based systems

Rule-based programming systems such as OPS-5 [For81] and CLIPS [Gia93] are generic
rule-based systems for capturing expertise. These tools are used by software developers to
create expert systems for arbitrary domains. Traditional expert systems are monolithic
entities that use inference techniques to derive conclusions from knowledge provided to
them as input. These custom-built systems tend to be limited to very specific domains, such
as diagnosing automobile problems and suggesting how to fix them.

Because traditional expert systems provide mechanisms for capturing expertise and using
that expertise to solve specific problems they seem to be natural candidates for building
software architecture design tools. Unfortunately, they fall short of meeting all of the goals
and requirements laid out for Armani in three important ways.

First, one of Armani's most important capabilities is the ability to capture small, modular,
and composable "snippets" of expertise that can be used (and reused) in an interactive
design environment. Rule-based systems generally provide the capability to add or remove
individual rules from the inference engine. Experience with these systems indicates, however,
that they have a tendency to become very brittle when many rules are added to the system.
Armani's modular and focused constructs for capturing design expertise go a long way
towards addressing this limitation.

Second, there are many kinds of design expertise that are not readily captured in a set of
implicidy fired rules. A prime example is the ability to analyze the throughput and latency of
a system using queuing networks.5 Expert systems traditionally only use collections of rules
and knowledge (in the form of assertions) to capture expertise. In order to capture a wide
range of design expertise, however, it is important that a custom software architecture design
environment building system provide multiple mechanisms for capturing and exploiting
design expertise. Armani provides this capability, but the closed-world model of most expert
systems precludes them from doing so.

The final limitation of using a traditional expert system as the basis for rapidly developing
custom software architecture design environments is the need to include humans in the
decision making process. The Armani environment is intended to provide assistance to
skilled human designers. Most expert systems, on the other hand, are intended to be the
expert that makes the important decisions. This model does not work very well in the weakly
constrained domain of software architecture. Architectural design decisions are rarely
sufficiently clear-cut, mechanical, or well quantified to be amenable to a pure expert-system
approach.

Although rule-based systems do not appear to completely obviate the need for tools and
techniques to rapidly develop custom software architecture design environments, they could
certainly be used as part of the environment infrastructure. As I discuss in Chapter 4, I
selected a predicate logic formalism as the basis for capturing design expertise in Armani. It
probably would have been possible to use a rule-based system as the underlying formalism

5 Such an application of queuing networks is described in detail in section 7.2.4's case study.

51

for the Armani design environment instead but the predicate-based model more cleanly
matched Armani's structural architecture specification model.

3.4 The design process

There is a significant body of work on the abstract process and cognitive aspects of design,
including studies of design in engineering, industrial, and perceptual domains. Although the
research that they describe is not always directly related to rapidly developing custom
software architecture design environments, I made use of many of the principles put forth
in these studies to guide the design and development of the Armani system. My research
leverages this work on design processes rather than directly extending it.

Specific sources that I found particularly useful and interesting for this purpose include
Winograd's book of essays on the software design process [Win96], Schön's work on
"reflection in action" [Sch83], Petroski's work on engineering design [Pet85], and Norman's
discussion of the design of everyday objects [Nor88]. Following the principles developed in
these studies helped me design the Armani system to fit naturally into an architect's design
process

In addition to these broad explorations of the design process, there are two areas of
research specifically related to designing software architectures that significantly influenced
my work on Armani - the Gamma, Helm, Johnson, and VHssides' work on design patterns
[Gam+95] and Rechtin's system architecting heuristics [Rec91, RM97]. In the next two
sections I discuss these projects and how they relate to Armani in detail.

3.4.1 Design patterns and pattern languages

Design patterns have emerged as a popular mechanism for capturing and communicating
proven design techniques that address specific problems. Based on the building architecture
work of Christopher Alexander [Ale+77], a design pattern identifies a problem, provides a
generic solution that can be tailored in many different ways, and discusses the implications
(both good and bad) of using the pattern. Although individual design patterns are helpful
patterns provide significandy more leverage when a coherent collection of related patterns is
available to guide the design process than they do in isolation. Such a collection of related
patterns is called a pattern langmg.

Gamma, Helm, Johnson, and VHssides' book "Design Patterns: Elements of Reusable
Object-Oriented Software" [Gam+95], popularized the design patterns movement by
presenting an initial pattern language for object-oriented software. Since that time, hundreds
of articles and books have appeared describing pattern languages for nearly every aspect of
software design and development, including software architecture [Bus+96]. There is clearly
a wide base of popular support for the use of design patterns.

As I describe in detail in [Mon+97], design patterns and architectural styles are
complementary constructs. Design patterns do not, however, solve all of the problems that
Armani solves. First, they tend to be informal. Although this informality works well for
communicating a general approach to solving a problem, it is very difficult to precisely

52

specify designs with an informal specification and even harder to provide automated
evaluation of a design to see if it conforms to such a specification. Second, design patterns
tend to be good at solving local problems but limited at providing guidance for putting
together a complete system. Finally, design patterns are intended to be primarily a
communication medium between people. Although this approach makes them effective for
exchanging designs and design knowledge between designers, it also limits their effectiveness
as a conceptual foundation for configurable design tools.

Recognizing the complementary nature of design patterns and Armani's approach to
capturing design expertise, I have tried to design Armani to be able to take advantage of
design patterns. The full Armani design language presented in Chapter 4 does not explicitly
provide a design pattern construct. It is, however, possible to capture much of the same effect
of a design pattern by combining and by packaging related design vocabulary and design rule
specifications. These implicit pattern specifications are generally more rigorous than the
patterns found in [Gam+95] and related collections, though they lack the first-class status
and much of the informal description provided by the explicit design pattern languages.
Completing a full integration of design pattern concepts with Armani is a promising area for
future research.

3.4.2 Rechtin's system architecting heuristics

In his books "Systems Architecting" [Rec91] and "The Art of Systems Architecting"
[RM97], Rechtin outlines techniques and criteria for effective system architecting. One of his
primary theses is that system architecting is a heuristic-driven process, regardless of the
specific domain in which it is practiced (e.g. Aerospace, software, physical structures...).
Throughout the books he presents the key issues facing system architects and offers 110
heuristics to guide architects in properly addressing these issues.

Though informal and far from comprehensive, these heuristics capture and provide a
tremendous amount of useful advice for successful system architecting. Because of their
informality they are difficult to encode in automated tools for use in evaluating architectural
specifications, as Armani needs to do. Rechtin does, however, make a compelling case for the
importance of heuristics as a mechanism for capturing architectural design expertise. As we
will see in Chapter 4, the Armani design language builds on his ideas by providing a heuristic
construct that architects can use to specify "soft" guidelines for designing software
architectures.

53

Chapter 4

The Armani Design Language

Armani's design language defines the system's core concepts for specifying the design of
individual software architectures and for capturing architectural design expertise. In this
chapter I describe the Armani design language. I first argue the need for such a design
language and lay out the requirements that the language must satisfy. Then I describe the key
design decisions made in creating the language, arguing that the language both meets the
requirements presented and provides the desired benefits. Rather than providing a detailed
specification for the language (which can be found in [Mon98]), the discussion in this
chapter emphasizes the interesting technical aspects of the language and the fundamental
design decisions I made in creating it.

4.1 Armani design language requirements

The Armani design language defines the primitive building blocks for describing software
architectures and architectural design expertise, along with rules for composing those
primitives. Although selecting such a set of primitive constructs and composition rules is a
critical first step in the development of an architecture design or analysis tool (or
environment), it is a time consuming task that is difficult to do well. Armani relieves
software tool and environment developers from this burden by providing a powerful and
generic architecture design language that encapsulates such a set of design primitives and
composition rules.

The Armani design language must meet five fundamental requirements. I established these
requirements based on a series of conversations with practicing software architects,
observations of numerous formal and informal architectural software systems specifications,
and experience using a wide variety of architecture description languages. The first two
requirements identify what the language must be able to describe - architectural instances
and architectural design expertise. The subsequent three requirements define necessary
characteristics of the design language for describing expertise and instances - expressiveness,
anaryzability, and incrementality.

Strictly speaking, only the second of these requirements - capturing design expertise - needs
to be satisfied to demonstrate that the thesis holds. Experience with architecture description
languages and design environments (both my own and that gathered from other sources),
however, indicates that the other four requirements are necessary for the language to capture
a sufficiently broad array of powerful design expertise and be useful to an appropriately wide
audience, discharging the broad Armani requirements of incrementality, breadth, and power.
Using the same language to capture instances of system designs and abstract design

55

expertise also simplifies tooling and reduces the learning curve for architects who need to
learn only one language for both purposes.

A detailed discussion of these requirements, the rationale behind them, and their potential
benefits follows.

Requirement 1: Instances. The design language must be capable of describing the architectural

structure, properties, and topology of individual software system-designs (architectural instances).

An explicit and precise architectural specification of a software system provides multiple
benefits throughout the system's lifecycle. Such a specification documents the design of the
system, facilitating communication between the system's designers, developers, testers,
installers, and maintained. A precise architectural specification is also a prerequisite for
effective automated architectural design evaluation and analysis. In addition to supporting
automated analyses, a precise architectural specification is also helpful for designers who
need to perform informal, back-of-the-napkin analyses. Finally, the process of explicitly
defining a software system's architecture frequently exposes potential mismatches and
discrepancies in the design.

In order to achieve these benefits, software architects must be able to explicitly, precisely, and
unambiguously specify their design. There are three key parts to a system's architecture
specification that the Armani design language needs to be able to specify. First, the structure
and topology of a software system forms its core architecture. This includes defining the
components that make up the system and the connectors through which the components
interact. The language must, therefore, provide constructs for describing system structure
and topology.

Second, the design language needs to be able to describe architectural properties. Properties
fall into two classes - asserted properties and emergent properties. Asserted properties
represent claims that the designer makes about individual design elements or the system as a
whole. The value of an asserted property may represent measurements made in testing an
implemented design element, estimates made by the architect, or a priori requirements that
the system architect states the implementation must satisfy. Emergent properties, as their
name suggests, are properties of a system that are derived from the interactions of the
system's individual pieces.

Third, the design language needs to be able to describe constraints that must be maintained as
a system's design evolves. Although maintaining a software system's conceptual integrity is
critical to its overall success [Bro95], it is difficult to do so in the initial design of the system
and even more difficult as the system design is updated and evolved. By allowing a system's
original designers to explicitly state the fundamental constraints under which the system was
developed, and which need to be maintained as the system evolves, system updates can be
made in a principled and informed way. The Armani design language must, therefore,
include the ability to associate explicit design constraints with software systems.

In addition to the three fundamental constructs just described, Armani's design language
also needs to support encapsulation of design details and hierarchical decomposition.
Architecture descriptions for large systems that don't make use of encapsulation and

56

hierarchical decomposition tend to either become unwieldy because they contain too much
detail at a single level of abstraction or analytically useless because they are too vague.
Therefore, to keep the relationship between the elements of these systems both intellectually
tractable and analytically useful, the architecture description language must support the
encapsulation of subsystems. Appropriate encapsulation allows subsystems to be described
in full detail at one level of abstraction and encapsulated for use as a single design element at
more abstract levels of description.

Requirement 2: Design Expertise. The Armani design language needs to be capable of describing
software architecture design expertise that can be reused across multiple system designs and multiple design
environments.

As organizations build software systems they learn how to do so effectively. This learning
process includes developing a deep understanding of the types of systems that the
organization builds and discovering the pitfalls they face in building them. As part of this
learning process, organizations generally develop a set of good practices and techniques for
software design, as well as ways to avoid design problems. Such an organization has acquired
architectural design expertise.6

These practices and techniques are generally developed informally and frequently reside only
in the minds of a few software experts working on the project. Storing this expertise only in
the heads of a few critical people has a number of negative implications for the software
development organization. First, when these experts leave the organization the expertise that
the organization has developed frequently leaves with them. Even if the experts stay in the
organization, design details are easily forgotten over the duration of a system's operational
lifetime. Finally, a lack of documentation describing expected design practice makes training
people new to a development project more costly and difficult than it needs to be. Simply
documenting the design expertise acquired by the organization should reduce the costs and
disruption of staff turnover as well as speeding up the training of the organization's new
designers and developers.

Although simply expressing an organization's architectural design expertise with natural
language documents is a useful first step, there are three significant benefits to using a more
formal language and framework for codifying the expertise. First, a domain expert using a
formal architecture description language can build on the basic concepts and framework
provided by the formalism. Using such a language supports creativity and productivity by
freeing the designer to focus on the expertise he wants to express rather than searching for a
way in which to express it. Second, the designer can be much more precise in the
specification of the expertise with a formal language than with a natural language. Third,
explicitly capturing architectural design expertise and architectural designs with a well-
defined language is a necessary first step towards providing automated design guidance,
evaluation, and analysis.

To achieve these benefits, Armani must provide a formal language for capturing architectural
design expertise. Two fundamental kinds of design expertise are design vocabulary and deign
rules. To capture design vocabulary the language must provide constructs for defining the

6 [ATT93] describes one way in which AT&T has informally captured and described some of this expertise.

57

structure, properties, and constraints associated with user-defined types of structural design
elements. The types of vocabulary elements thus defined become the semantically
meaningful building blocks used to specify instances of architectural designs. The language
constructs for capturing design rules must at least be capable of defining constraints on how
related types of design vocabulary elements may be composed and valid ranges for, and
relationships between, the properties of those elements.

In addition to providing constructs for capturing individual "nuggets" of design expertise
(with the vocabulary and design rule constructs), the Armani design language also needs to
provide a way to aggregate related design expertise into coherent packages (or styles). This
process primarily entails packaging vocabulary elements that are designed to work together
with design rules that guide and constrain how the elements may be composed and interact.
To make such a packaging scheme coherent the language must define the semantics of
composing and aggregating the individual design expertise constructs.

Requirement 3: Expressiveness. The notation and constructs supplied by the Armani design
language must match the expressive needs of software architects.

The Armani design language should facilitate the specification of software architectures and
the capture of architectural design expertise. To do so, the Armani design language's
constructs must map naturally to the concepts that architects use for designing software.
This includes both the selection of primitive building blocks and the rules that define how
those building blocks can be assembled and composed. If the gap between the language's
constructs and designers' intuition is too great then the language will hinder good design
rather than encouraging it. Conversely, if the language maps well to intuitive design concepts
then it can provide designers with significant analytical and modeling leverage.

Another aspect of expressiveness is the richness and breadth of the designs and design
expertise that the language can capture. The language must allow architects to capture non-
tnvial design expertise and specify precise and detailed descriptions of their architectural
designs. Likewise, the language must be able to encode design expertise and system
specifications for a broad range of architectural styles.

Requirement 4: Analyzability. Armanis design langiog must support the evaluation and analysis of
architecturaldescriptions.

Much of the leverage that a custom software architecture design environment provides
architects is derived from the environment's ability to evaluate and analyze architectural
designs. Effective design analyses allow system architects to explore the expected properties
of a proposed system, warn them of potential design problems, and help them determine
whether then design is likely to produce a system that will meet its requirements. This
capability allows architects to evaluate design options early in the system development
lifecycle when multiple design alternatives can be explored relatively inexpensively.

The first two requirements stated only that the language be able to capture declarations of
instances and design expertise. The Armani language itself does not need to be able to
support the expression of operations or computations. The language need only be able to
specify declarations about the structure, properties, and constraints of system instances, and

58

abstract, modular, reusable design expertise. Although the language itself does not need to
support the expression of operations, the systems and expertise specified with the language
must be readily amenable to analysis by external tools.

Providing a sufficiently formal design language and a conceptual framework for capturing
both the architectural specifications of individual software systems and abstract architectural
design expertise is an important first step towards satisfying this requirement. Such a
language and framework allows the precise specification of architectural designs that both
automated tools and humans can evaluate. Further, design expertise captured with this
language can be used by automated tools to analyze and evaluate specific system designs.

Although strong support for automated analysis appears to be a desirable language property,
there is a fundamental tension between a language's analyzability and its naturalness of
expression. In general, informal languages tend to be more intuitive and expressive than
formal languages. Formal languages, however, are generally much more amenable to rigorous
analysis. The design of the Armani language must find an appropriate balance between the
need for analyzability and the need for language expressiveness.

Requirement 5: Incrementality. The language must support incremental capture of architectural
design expertise and incremental modifications to architectural specifications.

In order to support the rapid customization of the Armani design environment, the Armani
design language must be capable of encapsulating software architecture design expertise in
modular units that can be incrementally composed and added to the design environment. As
Chapter 5 discusses, building support for incremental specification into the design language
that underlies the environment makes the job of customizing the environment quite
straightforward.

The importance of having a modular and incremental language for capturing architectural
design expertise extends, however, beyond its role in customizing the Armani design
environment. The ability to collect design expertise in small, modular, and composable
packets simplifies the conceptual effort required to capture and express the design expertise
itself. Furthermore, it allows designers to select the expertise that they need for a specific
project and to quickly adapt the basic concepts that they have to work with.

In addition to the need for incrementality in capturing software architecture design expertise,
the language also needs to support incremental modification to individual architectural
specifications. As the architecture of a software system evolves over time it is important that
its design specification be modified to appropriately represent the changes to the system
implementation. Building this capability into the architecture design language makes such
specification changes easier, more straightforward, and therefore more likely to actually be
performed under time and deadline pressure.

4.2 The Armani design language

The Armani design language meets these requirements. In the remainder of this chapter I
present the key design decisions made in creating the Armani language, describe the core

59

constructs of the language in the context of discussing these design decisions, and argue
that the design decisions lead to a language that satisfies the stated requirements.
Throughout the discussion I will illustrate the use of the language for two of its three roles -
specifying the architectural design of individual software systems and capturing architecture
design expertise. I defer a detailed discussion of the language's third role - creating custom
software architecture design environments - to the following chapter.

4.2.1 Architectural structure

Selecting an appropriate set of core constructs for the Armani design language exposes
some fundamental tensions. For example, Armani needs to offer sufficient analytical and
expressive power for specific styles of design, yet still be flexible and extensible enough to
support design work done in a broad range of architectural styles. Armani addresses this
tension by providing a simple, generic language for describing anbitectwal structure as its
foundation for architectural specification. In the context of Armani, architectural structure
defines the decomposition of a software system into its constituent components and the
ways in which those components interact. This structure forms the context for doing all
subsequent system specification and design.

The selection of generic structure as the foundation for architectural description satisfies the
language's need to work over a broad range of architectural styles. To address the language's
need to handle specific design issues in these various styles, Armani allows this generic
structure to be augmented with style-specific design details using Armani's property and
design rule constructs. As subsequent sections of this chapter will describe, the language also
provides ways for architects to package and reuse the style-specific augmentations. This
approach allows the Armani design language to finesse the fundamental tension between
generality and style-specificity, getting the benefits of both while minimizing their
drawbacks.

As outlined in Table 4.1, the basic structural constructs of the Armani design language are
components, connectors, ports, roles, and systems. These constructs are genetically referred to as
design elements. Attachments define a point of interaction between a port and a role. As a result
the set of attachments associated with a system define that system's topology. All design
elements can be hierarchically decomposed with the representation construct. An abstraction
map defines the mapping from an «outer" element to the elements defined within its
representation A binding is a special kind of abstraction map in Armani that defines
equivalence between two entities. All design elements can also be annotated with properties
that capture selected non-structural aspects of the design elements. These seven constructs
form the basic ontology for capturing the architectural structure of software systems They
also provide the context within which architectural design expertise is captured.

Selecting this collection of core structural constructs proved to be a critical and challenging
step in defining the Armani design language. These constructs were selected based on a
combination of: observations of practicing software architects who make heavy use of box
and line diagrams (represented by components and connectors, respectively), studying the
informal and intuitive techniques architects commonly use to represent their ideas (generally

60

box and line diagrams coupled with informal natural language text), and experience using
previous architecture description languages and module interconnection languages.

One of the first steps in designing a software architecture is dividing the functionality,
responsibilities, and capabilities of the target system into a set of components. The
components represent the primary computational elements and data stores of a system.
Intuitively, they correspond to the boxes in box-and-line descriptions of software
architectures. Typical examples of commonly used components include clients, servers,
filters, objects, blackboards, and databases.

A component's interfaces are defined by a set of ports. Each port identifies a point of
interaction between the component and its environment. A port can represent an interface
as simple as a single procedure signature or something more complex such as an event multi-
cast interface point or a collection of procedure calls that must be invoked in a specified
order. One of the interesting capabilities of Armani's component and port constructs is that
a component can provide multiple interfaces to its environment. This approach separates the
specification of what the component does from how it is packaged.

The decomposition of a system architecture into its constituent components is only the first
step in the design and specification of a system architecture. A fundamental second step is
defining the ways in which those components interact. Armani's Ccmector construct
addresses the need to represent interactions among components. Computationally speaking,
connectors mediate the communication and coordination activities among components.
Informally, they provide the "glue" for architectural designs and correspond to the lines in
box-and-line descriptions. Examples of simple connectors include pipes, procedure calls,
and message-passing channels. Connectors are not, however, limited to these simple binary
interactions. They can also represent more complex interactions, such as a client-server
protocol, an event system, or a SQL [DD97] link between a database and an application.

Like components, connectors have explicitly specifiable interfaces that are defined by a set of
roles. Each role of a connector defines a participant of the interaction represented by the
connector. Binary connectors have two roles such as the caller and calke roles of an RPC
connector, the reader and miter roles of a pipe, or the sender and receker roles of a message
passing connector. Other kinds of connectors may have more than two roles. For example,
an event broadcast connector might have a single event-announcer role and an arbitrary number
of event-recewer roles. Likewise, the message passing connector described above could be
augmented with a third probe role that allowed other components to listen to all message
traffic passing on the connector without being able to write messages.

Individual component and connector specifications are not particularly useful in isolation.
They become useful and interesting, however, when they are composed to form systems.
Armani therefore provides a system construct to represent configurations of components and
connectors. A system includes (among other things) a set of components, a set of
connectors, and a set of attachments that describe the topology of the system. An attachment
associates a port interface on a component with a role interface on a connector.

61

fr* *i -Ti : mm
ij&Ai

System

Gomponent

Connector

Port

Role

Property

Representation

Attachment

Abstraction Map

Describes a set of components and connectors and their interaction
topology.

Represents a system's primary computational elements and data stores.

Mediates the interaction between components.

Defines an interface to a component.

Defines an interface to a connector.

Captures non-structural properties of design entities.

Supports encapsulation and hierarchical decomposition of designs.

Defines a relationship between a port and a role. The set of attachments
in a system defines that system's topology.

Defines the relationship between a design element and the elements
contained in a representation of that element.

Table 4.1: Summary of Armani architectural instance primitives

To illustrate Armani's structure language, Example 4.2 describes a trivial architectural
specification of a system with two components - a client and a server - connected by an rpc
connector. The client component is declared to have a single send-request port, and the server
has a single receiue-request port. The connector has two roles designated caller and cake. The
topology of this system is defined by the set of Attachments.

4.2.2 Representations

Complex architectural designs require hierarchical descriptions to make their specifications
tractable for individual designers to understand, yet sufficiently detailed to guide system
analysis, implementation, and testing. Armani supports the hierarchical decomposition of
architectures. Specifically, any design element can be represented by one or more lower-level
descriptions that provide additional detail. Each such description is termed a representation. A
representation establishes and enforces an abstraction boundary between the structure,
interfaces, and properties that a design element exposes to its environment and the details of
the element's design and/or implementation. A representation consists of two parts: a system
that describes the representation's structure, and a set of binding that define a mapping
between structure in the higher-level element encapsulating the representation and the lower-
level elements defined in the representation's system.

62

System simpleCS = {
Component dient = {Port sendRequest}
Component server={ Port receiveRequest}
Connector rpc = {Roles {caller, callee}}
Attachments {

clientsendRequest to rpc.caller;
server.receiveRequest to rpc.callee }

}

dient
ei

rpc

server

Example 4.2: Simple client-server system specification in Armani text (left) and as a
box-and-line diagram (right)

To illustrate, let us extend the simple client-server system described in Example 4.2. Suppose
that the server component in this example encapsulates a complex sub-design. Specifically the
server component consists of three interacting components - a connection manager, a
security manager, and a database. Figure 4.3 depicts this design extension graphically, and
Example 4.4 provides the corresponding Armani textual specification.

Adding a representation to the server component allows the architect to provide details
about the lower-level design of the server without compromising its higher-level abstraction
as a single design element. When reasoning at an abstract level about the design it is
appropriate to hide the server's complexity and simply think of it as a component that
provides a specific service. If, however, the server represents a large subsystem it may be
necessary to selectively reveal the detailed design of the server. The agent interested in
seeing such design details could be a human architect or it could be an automated design
analysis tool.

In addition to their role in encapsulating design complexity, representations can also be used
to encode multiple views of architectural entities. By allowing individual design elements to
have multiple representations Armani allows architects to specify different but
complementary views of a single design element's sub-architecture, detailed design, or
implementation.

The ability to encode multiple views raises some tricky challenges. One of the primary
challenges is defining the relationships and rules for maintaining consistency between the
different views. To keep the design language simple and flexible for a broad array of
applications, Armani does not bind the details of the semantics of using representations to
depict multiple views. Likewise, it does not provide specialized constructs for managing
inter-view correspondences. Rather, it provides a basic infrastructure of structure and
properties with which architects and environment designers can define their own view
semantics. Developing a more powerful view mechanism lies outside of the scope of this
dissertation but it is fertile ground for future work.

63

dient

rpc

server

Connection
Manager

Figure 4.3: Graphical depiction of simple client-server system with server
representation

4.2.3 Extending structural specifications with properties

Although structure and topology are critical aspects of a system's architecture, they are not,
by themselves, sufficient for a complete architectural description. There are many other
aspects of system design that can and should be captured in an architectural specification.
The aspects that must be captured vary depending on the style of the system being
described and the types of analyses that the system description needs to support. A system
with hard real-time requirements, for example, needs a way to specify deadlines, scheduling
doctrine, latency, and the performance profile of individual components and connectors. A
client-server management information system, on the other hand, is probably more
concerned with communication protocols, how the different stages of information
processing are allocated between components, and supported database query languages than
it is with the design concerns of hard real-time systems.

As these two examples illustrate, architects using a general-purpose architecture design
language will likely want to specify a wide variety of non-structural design information.
Attempting to include native language constructs to support all of the different types of
design information that might be useful for all types of design is unlikely to be successful, as
such a language would be overly complex and inflexible.

The Armani design language takes a different approach. It provides a flexible and generic
property construct that can handle the expression of a wide variety of non-structural
information. An Armani property is a typed attribute-value pair that can be associated with
essentially all of the Armani design language constructs. Properties can even be associated
with other properties, in which case they are called m&a-propertks. Meta-properties define
properties of a property, rather than properties of a design element. Although the basic
property structure is simple, complex property expressions can be created by composing
individual properties and defining standard properties that all related design elements must
posses.

64

System simpleCS = {
Component dient = {...}
Component server = {

Port receiveRequest;
Representation serverDetails = {

System serverDetailsSys = {

Component connectionManager = {
Ports { extemalSocket; securityChecklntf; dbQuerylntf}}

Component securityManager={
Ports {securityAuthorization; credentialQuery;} }

Component database = {
Ports { securityManagementlntf; querylntf;}}

Connector SQLQuery = { Roles { caller; callee } }
Connector clearanceRequest = {Roles {requestor; grantor}}
Connector securityQuery = {

Roles {securityManager; requestor}}

Attachments {
connectionManager.securityChecklntf

to clearanceRequestrequestor;
securityManager.secuhtyAuthorization

to clearanceRequestgrantor;
connectionManager.dbQuerylntf to SQLQuery.caller;
database.querylntf to SQLQuery.callee;
securityManager.credentialQuery

to securityQuery.securityManager;
database. securityManagementlntf

to securityQuery.requestor; }

}
Bindings {connectionManager.extemalSocket to server.receh/eRequest}

}
}
Connector rpc ={...}
Attachments { clientsend-request to rpc.caller;

server.receive-request to rpc.callee}

};

Example 4.4: Extending the client-server example with a detailed representation
for the server component.

65

System simpleCS = {
Component dient = {

Port sendRequest;
Properties { requestRate: float =17.0;

sourceCode: extemalFile = "CODE-LIB/clientc"}}

Component server = {
Port receiveRequest;
Properties {idempotent: boolean = true;

maxConcurrentClients: integer = 1;
multithreaded: boolean = fe/se;
sourceCode: extemalFile = "CODE-LIB/server.c"}}

Connector rpc ={
Role caller;
Role callee;
Properties { synchronous: boolean = true;

maxRoles: integer = 2;
protocol: WrightSpec ="..."}}

Attachments { clientsendRequest to rpccaller;
server.receiveRequest to rpc.callee }

Example 4.5: Simple-client-server system with properties

The decision to provide Armani with a simple set of property primitives from which
complex properties can be built rather than a fixed set of predefined properties is
fundamental to Armani's goal of achieving flexibility and supporting incremental adaptation.
This approach allows architects to precisely define the important properties of their designs
in terms that are appropriate for each individual system, style, or design environment.

The price of this flexibility and freedom is that architects need to put a non-trivial amount
of effort into selecting and defining the set of properties to be used in their architectural
specifications; more effort, in general, than they would be required to expend if all of the
appropriate properties were simply built into the language. To address this drawback Armani
includes a number of mechanisms that encourage the reuse and adaptation of previously
defined properties both within an individual system specification and between different
system specifications. Section 4.4's discussion of architectural styles and the Armani type
system describes in detail how such a collection of properties can be defined, used, and
reused.

To illustrate the use of properties in describing software architectures, Example 4.5 shows an
extension to the simple client-server system given in Example 4.2. This example has been
annotated with properties that describe characteristics of the clients, servers, and rpc's that
form the example system's structure. These properties are annotated with type declarations.
For the purpose of this discussion, a property type simply defines the set of valid values that

66

can be assigned to a property. I provide a more detailed discussion of property types in
Section 4.4.5.

Table 4.6 provides a set of sample properties that are applicable to different types of design
elements and styles of design. This list illustrates how a variety of non-structural
architectural data can be encoded with the property construct. The specific properties listed
as examples are not defined by or built into the Armani design language. It is the
responsibility of the system, style, or environment designer to define the meaning and
semantics of the set of properties that are used and analyzed by tools in individual
architectural specifications, styles, or environments.

4.2.4 Armani structural language syntax

The discussion to this point has presented a brief description of the Armani design
language's constructs for specifying architectural structure and the properties of that
structure. For reference, a short BNF describing these constructs is provided in Figure 4.7.
The simplicity of the core structural language is reflected in the language's simple BNF. This
minimal language specification is missing three key parts of the full language - type
expressions, styles, and design rules. This syntax description will be extended later when
these language features are described in detail. For reference, the full Armani BNF is
included in Appendix A.

4.3 Design constraints

The Armani design language described to this point is effective for specifying the
architectural structure and properties of a software system at a single point in time. To fully
satisfy the first language requirement (capturing system instances), though, the design
language must also be capable of describing constraints on how a system's architecture may
evolve over time. The Armani language therefore includes constructs for annotating
architectural specifications with design constraints. Constraints specified for individual
systems bound the ways in which that system's architecture, or the properties of that
architecture, can change over time. In doing so, they help subsequent developers maintain
the system's conceptual integrity7 as they update and evolve its design.

There are many different kinds of constraints that an architect might like to impose on a
system's architecture. Useful architectural constraints include: limitations on modifications to
a communications topology, restrictions on legal topological patterns of the system's
structure graph, maintaining performance, reliability, security, fault-tolerance, and other
parameters within acceptable ranges, and ensuring interface compatibility. The Armani
language supports the specification of these categories of constraints and many others. As
this chapter will lay out, and the discussion of case studies in Chapter 7 will elaborate, the
Armani constraint language can capture a broad array of design constraints.

See [Bro95] for a detailed discussion on the importance of maintaining conceptual integrity in the design of a
software system.

67

Property!» capture

Whether a connector works synchronously or
asynchronously.

The number of bytes that can be stored in a connector's
buffer.

Example usage

Connector conn = { ...
Property Synchronous: boolean = true;

- };

Connector conn = { ...
Property BufferSize: int = 1024;

- };

The query languors and protocols that a database
understands. This property specification could be
associated with a port that specifies the interface
to a database component, or with the database
component itself.

The rate at which data is processed by a design dement.
This type of information could be associated
with a component, a connector, an interface (a
port or role), or a complete system. This
property is specified as a record type that
includes both the throughput value and the unit
in which it is specified. Alternatively, if a
standard unit for measuring throughput is
established and used consistently throughout a
specification then this property could be
represented with a simple floating point value.

Component database = { ...
Property QueryProtocds: setfProtocol}

= {SQUODBQJDBC};
- };

Component dspFilter = {...
Property Throu^jput:

Record [valuefloat; unitflowUnitType]
= [value=1500; unit=kb/secondJ;

... };

The protocol that a connector uses to mediate the
interaction between a set of components. Because
Armani doesn't include a native protocol
specification language, this protocol can be
specified as a string expression in the WRIGHT

Architecture Description Language [Allen97]
and stored as a property of an Armani
connector. The protocol specification can then
be passed for analysis to automated tools that
understand WRIGHT. A similar approach can be
used to embed specifications given in arbitrary
other languages.

Connector unixPipe = { ...
Roles { source; sink }
Property'protocol: WrightSpec ■■

};

... source.write—>buffer.write...
D buffer.write—>sink.write... ";

Table 4.6 Sample property specifications

To support the specification and enforcement of design constraints, Armani needs to
address four critical language design issues. First, it must establish the basic formalism used
for expressing constraints. The selected formalism must be reasonably familiar to its target

68

audience, mathematically well-founded, and sufficiently expressive for capturing common
architectural design constraints. Second, the process of evaluating whether a design satisfies
its constraints must be readily automatable and computationally decidable. Third, it must be
straightforward to integrate the constraint formalism with the structure and property
constructs described in the previous section. This includes defining scoping rules, primitive
building blocks, operators, and axioms for the constraint language. Fourth, the language
must provide a way for designers to separate the truly critical design constraints from the
constraints that are simply guidelines. For greatest effect, this distinction should be built
directly into the design language's semantics.

To address these design issues, Armani provides a limited first order predicate logic-based
constraint language in which design constraints are realized as predicates over architectural
specifications. This predicate language is augmented with constructs for classifying
constraints as either invariants or heuristics to indicate how rigorously they must be
enforced. The following sections elaborate on the approach taken in creating the constraint
language and the design decisions underlying it.

4.3.1 Constraint language formalism

The formalism selected for specifying design constraints in Armani must meet a number of
somewhat conflicting requirements. Specifically, the formalism must be reasonably familiar
to its target audience, mathematically well-founded, and sufficiently expressive for capturing
common architectural design constraints. Additionally, the process of evaluating whether a
design satisfies its constraints must be readily automatable and computationally decidable to
support the Armani design environment's automated constraint management capabilities.

To meet these requirements, Armani uses a first order predicate logic (FOPL) formalism as
the basis for its constraint specification sublanguage. FOPL is widely known and understood
by the software architects and computer scientists who are likely to use the Armani language.
As a result, the amount of effort required to learn the Armani design constraint language
should be commensurate with the language's expected benefits. Likewise, FOPL is a well-
understood mathematical formalism that can be readily reused in the context of specifying
architectural design constraints. Reusing a well-understood formalism leverages a significant
body of theoretical work and provides a rigorous mathematical basis for Armani constraint
specifications.

FOPL also nicely matches Armani's expressive needs. Architectural descriptions in Armani
are primarily descriptions of static structure and the properties of that structure. For
example, constraints that specify required structure, recommended design patterns and
topologies, and legal ranges for property values are easily expressed as first-order predicates.

69

Architectural Elements

System ::= System Name = { EntityDecl*};

EntityDecl ::= ComponentDecl
| Connector-Decl

■ | Port-Decl
j Role-Decl
\ Property-Decl
j Rep-Decl
| Attachments-Decl

GenericDecl ::= PropertyDecl \ RepDecl;

ComponentDecl ::= Component Name = {
(PortDecl | GenericDecl)*};

ConnectorDecl ::= Connector Name = {
{RoleDecl \ GenericDecl)*};

PortDecl ::= Port Name = { GenericDecl *};

RoleDecl ::= Role Name = { GenericDecl *};

AttachmentDecl ::= Attachments {(PortName To RoleName)*};

Name ::= [a-zA-Z\[a-zA-Z0-9_\-+T

Properties

PropertyDecl ::= Property.Name [: TypeExoression 1 = Value

Representations

RepDecl

[« PropertyDecl+ »]";"
Properties {(Name [: TypeExpression] = Value

[« PropertyDecl+ »] ";")*};

Representation [Name]="{"
System
I Bindings = {(Name To Name)*}]

Figure 4.7: Partial BNF for simple structural instance language

In many respects, therefore, FOPL is a natural choice for the formal foundation of Armani's
constraint specification language. The formalism runs into trouble, however, with the
requirement that it be readily automatable and computationally decidable. Although
evaluating FOPL expressions is a fairly well understood process that has been widely
researched and used in many previous applications (such as [Per89], [Min91], and [OS97]),
determining whether an arbitrary set of predicates is true or false is not computationally

70

decidable [End72]. The key aspect of FOPL that causes undecidability is its ability to
quantify variables over infinite sets.

The Armani predicate language addresses this issue by insuring that predicate quantification
is done only over finite sets. As a result, the algorithm for checking whether a design satisfies
its constraints is straightforward and decidable. At a logical level, the constraint checker
handles quantification by enumerating all of the values of the set quantified over and checks
that the appropriate predicate holds for all of those values (in the case of a universal
quantification), or for at least one of those values (in the case of an existential
quantification). A detailed description of the design constraint checking algorithm is
provided in [Mon98].

Although at first glance limiting quantification to finite sets might seem like a severe
restriction in expressiveness, it has not proven to be a significant limitation in practice.
Specifically, it did not present any problems in the case studies described in Chapters 7 and
8, nor has it been an issue in other explorations of the language's capabilities. In general,
most of the interesting constraints that could be cast as quantifications over infinite sets can
be readily recast as quantifications over finite sets or predicate expressions involving no
quantification at all.

In addition to decidability, the speed with which arbitrary constraint expressions can be
evaluated is also a concern. As I discuss in detail in section 9.1.4, the nature of the predicate
evaluation that Armani supports allowed the use of straightforward constraint checking
algorithms that generally ran very fast on typical architectural specifications. These
algorithms ran fast enough to easily support interactive design checking.

The complexity of the analyses that need to be supported by the formalism are rather
minimal in practice. The constraint checking mechanism only needs to be able to verify that
a specific system instance satisfies its constraints. As I discuss later in this chapter and in
[Mon98], this reasoning is quite straightforward. The Armani constraint checking formalism
does not provide the ability to automatically detect whether a given system's constraints can
ever be satisfied (that is, could something be changed in the design to make it correct).
Likewise, it does not attempt to determine if a set of constraints can neuer be satisfied by any
system (that is, do the system's constraints imply a contradiction). These types of analytical
capability generally require full theorem proving capabilities, which is beyond the scope of
Armani's capabilities.

Carefully scoping the types of constraints and analyses that the language's constraint
checking system can evaluate insured that the evaluation performance of Armani's constraint
checker did not become a significant issue in practice.

4.3.2 Extending the structural language with constraints

Having made the decision to use first order predicate logic as the foundation for constraint
specification, it is necessary to integrate this constraint formalism with Armani's structure
and property constructs. To achieve this integration, design constraints are realized in
Armani as predicates over architectural specifications. Predicates can refer to the structure,
topology, and properties of software systems or the individual design elements that make up

71

a system. Constraint checking tools can evaluate whether a design's structure and properties
satisfy its declared constraints.

First order predicate logic provides a natural match to the types of constraint predicates that
Armani needs to support. As a result, the challenge in building an effective language for
describing architectural design constraints on top of first order predicate logic lies in
(1) insuring its decidability, (2) adding an appropriate set of primitive architectural predicates,
operators, and axioms, and (3) defining a set of scoping rules that provide sufficient
modularity and expressive capability without becoming overfy verbose.

As discussed in the previous section, the task of evaluating FOPL expressions is made
decidable in Armani by limiting quantification to finite sets. Armani insures that this
limitation holds by making it syntactically impossible to define or construct infinite sets for
the purpose of quantification. In a quantified predicate expression, the set to be quantified
over can be defined by (1) explicit enumeration of the set's elements, (2) referencing an
element's substructure, such as all of the ports of a component, (3) referencing a set-typed
property, which will by definition always be finite, or (4) performing a sequence of
operations that take one or more finite sets as arguments and return a single finite set.
Because none of these mechanisms can be used to create infinite sets, Armani does not
allow quantification over infinite sets.

The following two sections describe the primitive architectural predicates, operators, axioms
and scoping rules added to FOPL by Armani.

4.3.2.1 Extending the first order predicate logic with architectural primitives

Armani defines a syntax and semantics for expressing design constraints as FOPL predicates.
This includes a standard set of FOPL operators for logical, comparison, arithmetic, and
quantification expressions. The semantics of these operators, detailed in [Mon98], are
straightforward. Adapting FOPL for use in describing architectural design constraints,
however, requires more care than simply adding a set of FOPL constructs to the design
language's BNF. Tailoring the predicate language to describe architectural constraints
requires the addition of primitive functions with architecture-level semantics. Fortunately,
such an extension can be carried out in a straightforward way by simply adding a set of built-
in functions to the predicate language.

Specifically, Armani adds twenty-four primitive functions that handle four key categories of
architectural constraints. These constraint categories cover: system topology, properties,
aggregation of sets of related architectural entities, and types (which will be discussed in
detail in Section 4.4).8 A set of functions for (finite) set manipulation are also included. Table
4.8 provides examples from each of these basic categories.

The first category of primitive architectural functions deal with system topology. These
functions allow an architect to specify constraints such as how and with what a system's
components can communicate, which components must be connected, which must not be

A full description of all of Armani's primitive predicates is provided in [Mon98].

72

connected, etc. Topological functions can also be used to define and enforce parent-child
relationships between entities in a design.

The second category of primitive functions are referencing and comparison operations for
properties and substructure of design elements. The operator "." is used to identify specific
element properties or children of a design element. For example, the property that
determines whether a connector Pis synchronous can be referring to as P.syndjmnous.

The third set of functions support the aggregation of related substructure. These functions
allow sets of substructure to be referenced by name. For example, P.roles names the set of
roles associated with the connector P. These functions provide a convenient shorthand for
describing sets for quantification.

The fourth and final category of primitive architectural functions deal with architectural
types. Specifically, they can be used to determine or select design elements based on the
elements' type declarations.

Experience using Armani indicates that this is an appropriate collection of primitive
architectural functions and referential capabilities. These functions and predicates can be

Function category and signature Function description

Topology:
Gonnected(compl,comp2)

Returns True if component compl is connected to
component comp2 by at least one connector, else it
returns False.

Topology:
Reachable(compl, comp2)

Returns True if component compl is in the transitive
closure of Cortnected(ccmpl, '% else it returns False.

Properties:
HasPropertyfx, propertyName)

Returns True if element x has a property called
propertyName, else it returns False.

Properties:
<ElementName>.<PropertyName>

Returns the value of the property identified by
<PropertyName> in the element <ElementName>.

Aggregation:
<SystemName>.Gomectors

Returns a set containing all of the connector
elements in the system identified by <SystemName>.

Aggregation:
<QjnnectorName>Jioles

Returns a set containing all of the roles of the
connector identified by <CbnnectorName>.

Types:
DeclaresTypefelt, typeName)

Returns True if the element identified by elt declares
the type identified by typeName, else it returns
False. A discussion of element types is provided in
section Error! Reference source not found..

Table 4.8 Examples of primitive architectural functions in Armani

73

composed within the FOPL framework to define complex and interesting design constraints.
As architects gain further experience working with Armani they frequently discover
additional constraints that they would like to be able to express but that are not readily
represented with this set of primitive functions. To address this issue, Armani provides a
mechanism by which architects can capture useful non-primitive functions that can be
reused in multiple constraint specifications. These user-defined functions, called des&i
analyses, will be discussed in detail later in this chapter.

The following examples illustrate how the built-in functions can be used to capture
architectural design constraints.

The first predicate,

Connectsdfdient, server);

checks that the components dient and server are connected. The next predicate is defined in
the scope of a system instance.

Forall conn: connector in systemhstance. Connectors \ size(conruroles) = 2;.

It guarantees that all of the connectors in the system must be binary connectors (i.e., they
must have exactly two roles). The following predicate specifies that all roles on all connectors
in a system must be attached to a port, and further that the attached (port, role) pair must
share the same protocol.

ForaUcom:conmiormsystemBTstance.Connectars | Forall r: role in comiRoles \
Exists amp: component in systemInstarice.Ccmponents \ Existsp:port in comp.Ports |

attached(p,r) and (p.protocol = = r.protocd);

The port and role protocol values are represented as properties of the port and role design
elements.

In addition to describing the topological features of a system, predicates can describe and
bound legal property values and types. The following examples demonstrate predicates that
bound the legal value range for a property9

self.thrmgjputRate > = 3095;

and that specify a relationship between multiple properties

ccmp.totalLatency == (comp.readLatency + comp.prooessingLatency + c<mp.writeLatency);

These examples are not intended to be an exhaustive exhibition of the types of predicates
that can be expressed in Armani. Rather, they are intended as examples that give a flavor for
the types of predicates that can be expressed over design instances with the Armani
predicate language.

The reserved keyword self refers to the design element instance (component, connector, port, role, or system) in
which the constraint is scoped.

74

4.3.2.2 Scoping rules

Extending first order predicate logic with a set of architectural primitives is only a first step
towards integrating the constraint language with the rest of the Armani design language.
Another key issue is establishing the scoping and visibility rules for the constraints.
Developing an appropriate set of scoping rules is challenging because they must satisfy the
language's conflicting needs for modularity, expressive capability, and succinctness.

The importance of succinctness and expressiveness in language design are obvious. Succinct
expressions are generally easier to write, read, and check for errors than verbose expressions.
Likewise, if the language makes it difficult to express the desired constraints then it is likely
to be an impediment to good design rather than an aid. A clean integration of the constraint
language with the rest of the Armani language should, therefore, make it straightforward for
an architect to express his or her desired design constraints and to do so in an elegant,
concise way.

The rationale for supporting modularity in constraint expressions is a bit more subtle. The
modularity of constraint expressions, however, plays a critical role in Armani's incremental
modification capabilities. Keeping constraint specifications self-contained makes it much
easier to move constraints around in a design, to shrink or expand the scope of applicability
of the constraint, and to compose arbitrary constraints within a design. From an
environment-modification perspective the addition to or removal of constraints from a
design is greatly eased if those constraints are packaged as modular, independent entities. As
section 4.4 will illustrate, this issue becomes increasingly important when constraint
predicates are used in type and design rule specifications rather than simple instance
specifications.

Armani achieves these goals by providing a few simple scoping rules that are broadly and
uniformly applicable. An Armani design can be represented as a tree. Each node of the tree
has precisely one parent and zero or more children. For example, a component C has a
parent that is a system (call it 5) and a set of children that include all of Cs ports, properties,
and representations. Each of Cs children also has zero or more children.10 It is important to
note that the arcs of this tree represent parent-child relationships between elements rather
than system connectivity. This tree structure is orthogonal to the connectivity graph Armani
uses to represent system topology. This underlying tree representation can be used to
describe arbitrary system connectivity graphs.

The first of these rules states that constraints can be specified in the scope of any design
element or design element type declaration (remember that a design element is a system,
component, connector, port, or role), or in the scope of the global design (which is defined
as all things outside of the scope of any other declaration). As a result, all constraints are
defined in an unambiguous scope.

The second rule defines name visibility and resolution. A constraint predicate can only refer
to entities that are descendants of the constraint predicate's scope. In the example of
Component C just given, a constraint defined in the scope of C could refer to any of the

10 A more formal semantic specification of Armani's structure is provided in [Mon98]

75

ports, properties, or representations of C or any of C's descendents in the structure graph.
This constraint could not, however, refer to any other entities defined within System S or
any of Cs siblings.

The scoping rules support succinctness and expressivity by allowing designers a great deal of
flexibility in selecting an appropriate scope in which to declare each constraint. In general, as
constraints are declared at higher nodes in the tree they can be defined for a more broad
and/or specific selection of design elements. Conversely, as a constraint is moved down the
tree its scope is refined and it is able to refer to and compare fewer entities, but the
expression of that constraint can be made more concise, focused, and context-specific. In
general, the rule of thumb that has arisen from using Armani to define constraints on design
instances is that constraints should be pushed as far up the structure tree as needed to bring
all of the necessary entities referred to by the constraint into scope, and no higher. Following
this rule of thumb leads to modular, context-free, and reusable design constraint
specifications that are relatively robust to system reconfiguration.

4.3.2.3 Wrap up

Armani's predicate language allows designers to annotate architectural specifications with
design constraints. This predicate language also forms the foundation for Armani's type
system and design rule specification capability. Section 4.4 will discuss this role of the
predicate language in greater detail along with interesting design issues that it raises in the
context of capturing architectural design expertise.

4.3.3 Invariants vs. heuristics

The constraint language just described provides a way for architects to precisely specify
design constraints as predicates over a design or part of a design. All of the constraints that
an architect might want to express about a design are not, however, equally important. Some
constraints should never be violated. They specify a system's key design principles and
assumptions; violating them may render the system unusable. Other constraints, however,
can be viewed more as suggestions about how or whether aspects of the system can be
changed. Violating these constraints will not necessarily prevent the basic operation of the
system, though it may have other negative consequences.

It is, therefore, important that the Armani language allow architects to specify not only what
it is that a design constraint is constraining, but also the rigor with which that constraint
must be enforced. To address this need, Armani provides orthogonal constructs for
specifying (1) the constraint itself, and (2) the constraint's enforcement semantics. The
constraint itself is expressed as a predicate expression. The constraint's enforcement
semantics are then defined by declaring whether the constraint is a desigi inumant or a des&i
heuristic. A desigi rule, as defined by Armani, consists of a constraint expression and a
declaration that the constraint is an invariant or a heuristic.

Design invariants, as their name suggests, specify constructs that must be maintained at all
times. These often represent the basic assumptions that a system's constituent elements
make about their environment and how they are able to interact with other design elements

76

in the system. Design heuristics, on the other hand, specify rules of thumb used in designing
the system. They can also be used to guide the modification of a system after it's initial
development by clarifying and flagging design decisions.

The enforcement semantics of a constraint are not simply tooling issues. Rather, there is a
fundamental semantic distinction between a design invariant and a design heuristic. The
details of this distinction are captured by the design language's type system, which will be
described more fully in section 4.4. Informally, though, invariant violations are type errors.
An architectural specification that has one or more design invariant expressions that evaluate
to false is not type-correct. The design contains a fundamental error. A specification with
one or more heuristics that evaluate to false, on the other hand, may still be type-correct but
it will generate a warning from Armani's type and constraint checker.

Example 4.9 illustrates the use of invariants and heuristics for representing design
constraints. In this example, MessagePath is a connector that queues the messages it reads
from its source role and writes them to its sink role in the order they were received at the
source role. This simplified version of the connector has two properties - the size of the
connector's queue buffer (in bytes) and its expected throughput (in messages per second).
The connector specification also defines two constraints - one invariant and one heuristic -
that define the range of acceptable values for these properties.

By specifying both an explicit present value and a legal range of potential values for the
buffer size and expected throughput properties, the architect has described not only a
snapshot of the initial system design (via the properties), but also the ways in which the
connector can be modified and still fit within the overall system design (via the constraints).
The invariant constraint provides strict limits on the acceptable sizes of the connector's
queueBuffer. The heuristic that defines a relationship between the expeadThrou^ypia and
queueBufferSize properties, on the other hand, is provided as a guideline rather than a strict
law.

System constraintExample = {

Connector MessagePath = {
Roles {source; sink;}
Property queueBufferSize: int = 1024;
Property expectedThroughput: float = 512;
Invariant (queueBufferSize >= 512) and (queueBufferSize <= 4096);
Heuristic expectedThroughput <= (queueBufferSize / 2);

};

};

Example 4.9: MessagePath connector with invariants and heuristics

Figure 4.10 extends a portion of the simple BNF given in Figure 4.4 with productions that
describe how design rules are added to the design language.

77

4.3.4 Summary of architectural structure discussion

The Armani design language described thus far satisfies the first of the requirements
outlined in Section 4.1. Specifically, the language can describe the architectural structure of a
software system, the topology and properties of that structure, and the constraints that
bound the ways in which the structure can evolve. Additionally, it provides constructs for
hierarchically decomposing architectural designs.

4.4 Capturing design expertise with predicate-based types

The second language requirement presented in Section 4.1 argues that, in addition to
capturing individual system designs, Armani also needs to be able to capture, package, and
reuse architectural design expertise independent of specific instances of system designs.

Conceptually, Armani divides abstract design expertise into two categories - declarative design
expertise and operational design expertise. Informally, declarative design expertise describes
the way that a design should (or must) be. That is, declarative design expertise is best
categorized as those bits of design wisdom that can be articulated with a natural language
statement such as "This design must..." or "Afio type component is a component that
Operational design expertise, on the other hand, consists of design evaluations and
operations that are best expressed algorithmically That is, they encapsulate algorithms for
evaluating or modifying a design, rather than declarations about the design itself. A more
succinct distinction between these two types of design expertise is that operational design
expertise can describe actions for modifying a design but declarative design expertise does
not, by definition, describe steps for modifying a design.11

The Armani design language directly supports the expression and checking of declarative
expertise with predicate-based types. Specifically, Armani's type system captures declarative
design expertise in the form of design vocabulary, design rules, and architectural styles. Because the
Armani design language is declarative rather than algorithmic in nature, however, it is not
well suited to capturing operational design expertise. To address this limitation, Armani
provides an integration framework for linking external design tools into the Armani
environment. This integration framework provides a complementary mechanism for
capturing operational design expertise with independent tools. As I describe in Chapter 5,
this approach has proven effective for capturing and encapsulating operational design
expertise in the Armani environment.

In this section I present Armani's type system and describe how it can be used to capture
declarative design expertise. I also discuss some of the key design decisions that make the
approach work effectively and the implications of these decisions for capturing software
architecture design expertise. I defer a detailed discussion of how operational design
expertise is captured and used in the Armani environment until Chapter 5.

For a detailed discussion on the issues related to separating and making use of both operational and declarative
expertise in the related area of programming environments, see Kaiser's thesis [Kai85].

78

Architectural Elements

EntityDecl ::= ComponentDecl
| Connector-Decl
| Port-Decl
| Role-Decl
| Property-Decl
| Rep-Decl
j Attachments-Decl

ComponentDecl ::= Component Name = {(PortDecl \ GenericDecl)*};

GenericDecl ::= PropertyDecl \ RepDecl \ DesignRuleDecl;

Design Rule Productions

DesignRuleDecl ::= (Design)? (Invariant | Heuristic)
DesignRuleExpression";"

DesignRuleExpression ::= <predicate expression, defined in Appendix A>

Figure 4.10: Partial BNF for simple structural instance language
extended with design rule productions.

4.4.1 Capturing design expertise with architectural types

Armani uses a predicate-based type system to capture declarative architecture design
expertise. As we will see throughout the rest of section 4.4, this approach provides a number
of significant benefits for both the architects using Armani to capture abstract design
expertise and environment developers who need take advantage of this expertise. These
benefits include flexibility, analytic power, and composability.

Representing design vocabulary with predicate types allows architects the flexibility of
associating complex structure and constraints with abstract vocabulary elements. Rather than
providing only a mechanism for describing structure or properties as many other ADLs do,
Armani's predicate-based type system allows architects to capture arbitrarily complex
abstract design specifications in modular, reusable, units. As we will see, the nature of the
type system allows architects to use many different approaches to dividing and capturing
various aspects of design expertise. By providing many different ways to structure and
capture their expertise, Armani allows designers to find or create a way to capture and
structure their expertise so that it meets their specific needs.

A second benefit is that moving these sophisticated specifications into the type system
allows them to be checked directly by the typechecker, which eliminates the need to write

79

independent analysis tools for many kinds of analyses. The value of this capability should
not be underestimated. Providing a sophisticated declarative language allows designers to
specify their analyses based on declared properties and asserted goals. Rather than writing
individual tools to verify that these desired aspects of a design instance hold, they can simply
declare that they must hold and the Armani typechecker provides the verification capability.

Finally, predicate-based types provide a simple and intuitive formalism for composition. At a
semantic level, each type specification defines a predicate. The semantic operation for
combining types is simply a matter of creating a conjuntion of the logical expression that
each of those types represents. This form of composition works well for declaring subtypes,
for declaring that an instance satisfies multiple types, and for extending a typed instance with
additional constraints (which has the effect of creating a new anonymous type). The
modularity that the element type construct provides works particularly well with the
compositionality of the formalism for capturing abstract, reusable design expertise.

The Armani design language described to this point can be readily extended to provide these
benefits with a few straightforward additions. In the following sections I describe the
extensions made to the instance language to support the capture of design element types
(component, connector, port and role types) and property types (primitive, compound, and
aliased property types).

As an aside, an important point to note about Armani's type system is that its primary
purpose is to provide a form of checkable redundancy that assures the design constraints for
a given type of design vocabulary are satisfied where that vocabulary is used. The type
system provides a mechanism for ensuring that the system's fundamental design constraints
are not violated as a design evolves over time (e.g. through system maintenance, upgrades,
etc.). This role is significandy different than the role type systems typically play in
programming languages. Programming language type systems are generally designed to
provide statically-checkable guarantees of run-time program behavior (e.g, to insure that a
function will not attempt to add a floating point value to an array of strings). The fact that
there is no run-time realization of an Armani architectural specification significantly changes
the purpose of the type system.

4.4.2 Declaring a design element type

In order to capture abstract design vocabulary, there are two classes of constraints that an
element type specification must be capable of specifying. First, it needs to be able to specify
the structure and properties that all instances of that type must possess. Requiring that all
instances of a certain type contain specific structure and properties allows designers to
define the aspects of that vocabulary element that remain constant across all instances of
the type.

In addition to specifying these constants, a designer should also be able to precisely describe
ranges of variability for instances of the type. To illustrate the distinction between these two
types of constraints, consider the specification of the client type in Example 4.11. This
specification states that although all instances that conform to the type client must have a
property called request-rate, the value of that property can range from 0 to 100. These are

very different types of constraint specifications. This variability represents the second class
of constraint that Armani vocabulary specifications need to capture. To capture these
bounds on instance variability, architects can associate invariants and heuristics -with type
specifications, just as they can with instance specifications. Invariants specified in an element
type specification must hold for all instances declaring that type.

To address the need to express these constraints, an Armani element type specification thus
defines the minimal set of structure and property fields that elements of a given type have,
along with a set of invariants that must hold for all instances that satisfy the type.

In this section I illustrate how the Armani language uses its type system to capture these
abstract design vocabulary descriptions and constraints. I do so by describing the syntax and
semantics of component, connector, port and role types (collectively referred to as design element
types or just element types). Armani system types, referred to as architectural styles (or simply styles),
are discussed in section 4.4.6. Styles extend the capabilities of the design element types
described in this section.

The informal syntax for declaring a design element type is:12

<Category> Type <TypeName> = {
<Sequence of: required structure and values

| properties
| explicit invariants
| explicit heuristics >

}

In the informal syntax given above, <Gttqpry> can be any of the literals Covponent, Connector,
Port, or Role, and < TypeName> specifies a valid identifier. The body of the type declaration
consists of a sequence of constraints by which instances of this type must abide. Informally,
the meaning of the four kinds of constraint declarations that can be made within a type
declaration are described below:

• Required Structure. The structural declarations in a type description T define the
substructure that an element e of type T (written e : 7) must have. Informally, for
every port, role, or representation defined in T, an instance e : T must have a
corresponding port, role, or representation. The port, role, or representation defined
in the instance must be defined with at least as much detail as its corresponding port,
role, or representation in the type declaration. A more detailed specification of the
semantics of required structure statements is given in table 4.12.

• Required Properties. A property p{ declared in a type declaration T specifies that an
element e : T must define the property p,. Further, if p, is declared to have a type
and/or a value in T, pj declared in e: Tmust also have the same type and/or value.
As with required structure, a more detailed specification of the semantics of
property declarations is given in table 4.12.

12 Complete syntactic specifications for Armani's type language are available in Appendix A's language BNF. The
syntactic examples given throughout this section are informal abstract syntax specifications designed to show how
the constructs can be specified and used.

81

• Explicit Invariants. In addition to the required structure and properties of a type
additional invariant constraints can be specified using Armani's constraint language'
An element e: Tmust satisfy all of the invariant constraints defined in T in order to
satisfy Ts predicate (and thus satisfy type 7).

• Explicit Heuristics use the same predicate specification language as explicit
invariants. Unlike invariants, though, heuristics are not considered in determining
whether an element e satisfies a type T Violations of type heuristics can be flagged
during constraint analysis or analyzed by external tools, if desired, but the heuristics
themselves are not part of a type's predicate. The heuristics construct provides
architects and designers with a way to capture design "rules of thumb" that are less
strict than invariants.

An element e :T satisfies type Ts predicate if e contains all of the required structure and
properties specified in T, and e satisfies all of the invariant predicates defined in T.u

Type names are lexically scoped. Types may be declared within the global design namespace
or withm a style specification. Types with global scope are visible within all systems or styles
declared in that global scope and types defined within a style specification are visible to all
other declarations in the style, all of that style's substyles, and all system that claim to be built
in that style.

The following example shows a type specification that declares constraints that must be
satisfied by all instances of the type in the form of required minimal structure and predicates
that must be maintained. Keywords are indicated with boldface type, comments with ligher

The Client type specification in example 4.11 imposes the Mowing structural and invariant
constraints on component instance C: Client:

Structural constraints:

• A Client^ instance must have a port called rauest, with a property called protocol The
protocol property must be of type CSProtocolT and have a value of rpc-clknt.

• A Client instance must have a property called request-rate of type float. The default
value of 0.0 can be overriden with an extended with {... } clause, but the initial value
tor this property on all Client instances created with the «^operator will be 0.0.

Invariant constraints:

• All ports of a client must have a property named protocol, which has a value of rpc-
chent. This is not redundant with the specification of the request port because a
designer instantiating an instance of this type can add additional ports. This invariant
insures that all of these additional ports have a protocol property with a value of
rpc-chent.

• There may be no more than 5 ports on a Client instance.

Item aVe 2£^£!!SSSfKd ** W™*^^» ofihe syntax and semantics of Armani's type sysiem are encouraged to see the full language specification provided in [Mon98].

82

• The request-rate property of a Client component must have a value greater than 0.

The heuristic constraint that the request-rate property of an instance of a Client component
have a value less than 100 is not considered in determining whether that instance satisfies the
Client type, though typechecking tools that evaluate instances of the client type should raise a
warning that the heuristic has been violated if the instance's request-rate property has a value
of 100 or greater.

Component Type Client = {

//Declare the minimal structure that must exist. In this case, it says that an instance
//of this type must have a port called request, and that port must have the protocol
//rpc-client.
Port Request = { Property protocol: CSProtocolT=rpc-client};

//The next declaration says that a client must have a property of type "float" called
// "request-rate." It also provides a default value for that property, which can be
//changed when an instance of this type is created.
Property request-rate: float« default = 0.0 »;

//Now specify the invariants that all elements that claim to satisfy this type must possess.

//allports must support the rpc<lient protocol. This rule applies to all additional reports
// that an instance of the type might add to the client.

Invariant forallp in self.Ports •p.protocol = rpc-client;

// there may be no more than 5 ports on a client
Invariant size(self.Ports) <= 5;

// The request rate must be a non-negative value
Invariant request-rate >= 0;

// Specify a heuristic indicating the request rate should not exceed 100
Heuristic request-rate < 100;

}

Example 4.11: Declaring component type Client

Informal Element type Semantics

A type specification defines the minimal set of structure and property fields that elements of
a given type have, along with a set of invariants that must hold for all instances that satisfy
the type. Every type Tcan be converted to a boolean function Ft that takes a single element
E as an argument. If the function F/E) evaluates to true for element E, then element E
satisfies type T (written T(E) in table 4.12). Each type's predicate function determines
whether instance E satisfies the structural requirements and invariants of type T. Table 4.12
describes the informal semantics of structural declarations in an element type specification.
[Mon98] provides a more detailed discussion of the semantics of Armani's type system.

83

4.4.3 Creating a simple instance of a typed architectural element

Design element type specifications capture reusable design vocabulary. Moving the design
expertise that these type specifications capture from the abstract realm of reusable predicate
specifications to concrete instances in a design requires only that a designer instantiates an
instance of the type. The following syntax specification and examples illustrate this
instantiation process.

Instances of the four basic architectural elements - components, connectors, ports, and
roles, can be created with the following [informal) syntax:

<Category> <lnstanceName> [: <TypeName>] = <Value>;

where

<value> ;;= ({ <sequence of property and structure specs. > } | new <TypeName>)
(extended with <value>)*

Specifying an explicit type for an instance is optional. If no type is explicitly declared for an
individual instance, then the type of that instance defaults to <Category>. Consider the
following example of a component declared without an explicit type declaration:

Component C = {Port input;};

In this instance, the value of component Cis (Port input) which satisfies the constraints
of the Component type, so this instance declaration is valid.

When an instance is explicitly typed, as in the following example, the value on the right hand
side of the "=" token must satisfy the predicate defined by the declared type. Consider the
following example:

Component C: Client = new Client;

In this example, a component Cis declared to satisfy type Client. The value of C is defined
using the Armani new operator. The expression new <TypeNome> creates a value expres-
sion consisting of the minimal structure declared in the declaration of <TypeName> vJth
default values applied to properties as specified in the type specification. Properties with no
default value provided in the type declaration have undefined values in the instance
generated.

84

Declaration Type Example Meaning

Structural element C with no type
or value declaration

Port C; Forall elements E s.t. E declares
type T (written E:T), T(E) implies
E has the element named C as a
child.

Structural element C with a type
but no value declaration

Port C : t'; Forall elements E s.t. E:T, T(E)
implies E has the element named C
as a child, and that C satisfies t'
(t'(Q)

Structural element C with a type
and a value declaration

Port C : t' = {
Property j:t'' =

bar};

Forall elements E s.t. E:T, T(E)
implies E has the element named C
as a child, and t'(C) and C has the
property j:t" with a value of bar.

Property named P with no type or
value given

Property P; Forall elements E st E:T, T(E)
implies E has the property P of type
"Property."

Property named P with a type t'
specified, but no value given

Property P : t' ; Forall elements E st E:T, T(E)
implies E has the property P of type
t\ P's value is unconstrained
beyond the requirement that the
value of P satisfy type t'.

Property named P with a type t'
specified and a default value v
given.

Property P : t'
«default=v»;

Forall elements E st E:T, T(E)
implies E has the property P of type
t'. P's value defaults to v when a
new instance of type T is created
but the «default = v» clause is
simply a convenience that the type
has no obligation to maintain. The
«...» notation specifies that
"default = v" is a meta-property.

Property named P with a type t'
specified and a value v assigned
directly to the property

Property P:t' = v; Forall elements E st E:T, T(E)
implies E has the property P of type
t' and P's value must be v. This
statement declares a constant
valued property for the type.

Table 4.12 Structural Specification Semantics

85

Using the Client type defined in example 4.11, the previous example creates a component
with the following canonical structure:

Component C: Client = {
Port Request = { Property protocol: CSProtocolT= rpc-client}
Property request-rate: float = 0.0;

}

This default Client component satisfies the invariants and heuristics declared in the Client
type definition.

It is possible to associate non-default values with an element created from a given type using
the extended with <vdue> construct. The following example illustrates a client with an
additional port and an additional property.

Component C: Client = new Client extended with {
Port ExtraPort = { Property protocol: CSProtocolT=rpc-client;

Property primary-port = true};
Property request-rate: float = 5.0;

}

This declaration would result in the creation of a new component C with the following
structure:

Component C: Client = {
Port Request = { Property protocol: CSProtocolT = rpc-client};
Port ExtraPort = { Property protocol: CSProtocolT = rpc-client};

Property primary-port = true;};
Property request-rate: float = 5.0;

}

In this example, the default constructor is extended with new property values that either add
new structure and values or override the default structure and value of the type. The value
that is assigned to C in this case is the unification of the structure declared with the extended
wth {... } clause and the structure that is created with the new<TypeNome> constructor.

The basic unification algorithm is quite simple. An instance of the target design element is
created. The structure and properties defined in the declared type and all of that type's
supertypes are copied into the instance. Each entity (property, structure, or design rule)
from the extendedwith {... } clause is then copied into the instance. For each term copied, if
there is no structure or property already in the instance with the same name then the new
term is copied directly without any problem. If there is, however, an entity with that name
already in the instance then the algorithm checks if the new type, value, and substructure of
the entity being copied is consistent with the structure or property that already exists in the
instance. If they are consistent, or if the new entity adds additional information then the
new new information is added and the next entity to add to the instance is selected and
tested. If the entity to add is not consistent with the entity already in the instance, however,
(such as if the extended with clause attempted to redefine the type of a property) then an
instantiation error occurs and the unification algorithm aborts unsuccessfully. The complete
algorithm for unifying substructure of an element using the extended with {... } construct is

86

given in [Mon98] along with a detailed specification of the semantics of the extended with
construct.

Types and instances

As this discussion indicates, one of the more unusual aspects of Armani's type system is that
it blurs the distinction between types and instances. The syntactic declaration of an element
type is very similar to the syntactic declaration of an element instance. Their semantic
representations are very similar as well.

An implication of this approach is that architects using the language have a great deal of
flexibility in deciding how to divide the specification of expertise between types and
instances. They can specify all of the design details in the element instances themselves,
using only minimal type specifications or they can create an abstract type for each individual
element in the design and declare a single instance of each type. Alternatively, they can
abstract common aspects of design elements into a variety of types and then mix-and-match
those types amongst his design element instances to make it explicit that elements with
common aspects share a common representation for those aspects.

In a given design situation, any of these alternatives might be appropriate. Armani's
flexibility allows an architect to take advantage of all three of these approaches, or to create
a hybrid approach that uses some combination the three. Because type and instance
declarations are so similar, it is very easy to move a design concept from an instance into a
type, or vice-versa. As a result, an architect can quickly experiment with a variety of design
options before settling on a specific approach. Because the cost of modification is so low,
however, once an approach has been selected, the cost of revisiting or changing the decision
to use that approach is also relatively low.

4.4.4 Design element subtypes

The Armani design language's fifth requirement calls for the language to support
incremental capture of architectural design expertise. One of the key ways that the language
supports this requirement is with its flexible subtyping discipline. Design element types can
be readily extended with additional structure, properties, and constraints to form new types.
These new types encapsulate existing design expertise and extend it with additional expertise.

In order to maintain the composability and modularity it requires, Armani supports a strict
form of subtyping that ensures substitutability between subtypes and supertypes. That is, if
type T is a subtype of type T (written T < 7), then any element that satisfies T may be used
wherever an element of type T is required. The following informal syntax describes
Armani's subtyping construct.

<Category> Type <SubTypeName> extends <SuperTypeName>+ with {
<Sequence of: required structure and values

| properties
j explicit invariants
j explicit heuristics >

}

87

The semantics of this construct are straightforward. The new (sub)type <SubTypeName>
consists of the unification of the structural requirements of all supertypes with the new
structural declarations, and the conjunction of the invariant and heuristic predicates of all
supertypes with the new invariant and heuristic declarations. As the syntax specification
indicates, a type can have an arbitrary number of supertypes. All instances of the subtype are
also instances of all of the supertypes and satisfy the constraints of both the supertypes and
the constraints listed in the extends... with (...) clause.

Consider the following example:

Component Type BlockingClient extends Client with {
Port BlockingRequest = {Property protocol = rpc-client};
Property blocking: boolean = true;
Property timeout-sec: float« default = 30.0 »;

;
Invariant timeout-sec < 60.0;

An instance of a BlockingClient type component has all of the structure and rules to
maintain that a Client type component would have. It also has the additional properties and
rules given in this specification. Using the Client type definition from example 4.11, the
previous type declaration is equivalent to declaring the BlockingClient type without
subclassing as shown below:

Component Type BlockingClient = {
Port Request = {Property protocol = rpc-client};
Port BlockingRequest = {Property protocol = rpc-client};
Property request-rate: float« default = 0 »;
Property blocking: boolean = true;

Invariants {
Forallp in self. Ports | p.protocol = rpc-client;
Size(Ports) <= 5;
request-rate >= 0;
timeout-sec < 60.0;

};

Heuristic request-rate < 100;

4.4.5 Property Types

The discussion of the type system to this point has primarily described its use for design
vocabulary elements. Properties of design elements can also be typed. The type system used
for element properties uses a syntax and semantics similar to the design element type
system's, though the constraints that can be imposed on properties are more limited than
those that can be imposed on design elements.

As described in section 4.2.3, a property of a design element is a name with which a value
and a type can be associated. The purpose of a property type is to define the range and

structure of values that can be applied to the named property. A property type declaration
can define an atomic type, an enumerated type, a compound type (set, sequence or record),
or alias an existing type definition.

The declaration of a type can, but need not, be separated from the use of that type in
specific properties. Explicitly named types are declared with the following (informal) syntax:

Property Type <TypeName> = <TypeStructure>;

<TypeName> is an identifier that is associated with <TypeStructure>. Semantically,
<TypeStructure> specifies a predicate that defines the set of valid values for the type and in
doing so defines the structure that values of the type must posses.

Typed property instances that use previously defined property types are declared with the
following syntax:

Property <PropertyName> : <TypeName> = <PropertyValue>;

The property named <PropertyName> is associated with the element in whose scope it is
declared. The type of <PropertyName> is explicitly specified with the ": <Typename>"
notation.

All property instances in Armani must be typed. Although it is convenient to reuse
previously defined property types or built-in atomic types, it is not necessary to do so. A
property instance can declare an anonymous compound type, as the following example
illustrates:

Component foo = {
Property rate: Record [speed: int; unäs: string] =

[speed: int = 100; units: string = "kb/s"];
};

In this example property fixxrote has declared a new anonymous type - a record with the
fields speed (of type int) and units (of type string). This new type is not visible to any other
property or element (hence the term anonymous) but it specifies the structure that the value
of the property must possess. Semantically, an anonymous type declaration in the context of
a property instance specifies a predicate that the value of that property instance must satisfy.

Property Type Semantics

A property type, like a design element type, specifies a predicate that defines a set of valid
values for instances of that type. An instance of a property is type correct if its value is an
element of the set described by its type. The range of type predicates that can be defined for
property types is more limited than those that can be defined for element types. Specifically,
in the version of the Armani language completed to demonstrate this thesis a property type
defines only structural predicates. It is not possible to associate arbitrary invariants with a
property type and the language provides no support for property subtypes. This limitation is
made in the interest of keeping the property type system relatively simple. Extending the
property type language to include support for arbitrary invariants should, however, be

89

reasonably straightforward. A more detailed semantic specification of Armani's property
type constructs is provided in |Mon98].

4.4.6 Architectural Styles

Types and design rules provide mechanisms for capturing and encapsulating design expertise
in the form of design vocabulary and constraints. Although individual types and design rules
can be useful by themselves, expertise of this sort tends to be more useful when packaged as
part of a coherent collection of related vocabulary and constraints. For example, defining a
vocabulary element called a server is not nearly as useful as defining a full set of vocabulary
and design rules for creating dient-server systems. Armani's style construct provides the ability
to aggregate and package related vocabulary and constraints.

An architectural style is fundamentally a system type - it defines a predicate against which
system instances can be evaluated. In addition to their role as system types, however, styles
also define namespaces for specifying vocabulary type declarations and design analyses. A
style specification thus defines a set of vocabulary type definitions, a set of design rules, a
set of design analyses,14 and a set of minimal required structure that all systems built in that
style must provide. Any or all of these sets may be empty. Styles obey all of the rules and
semantics of types presented thus far, with some additional syntax and semantics to support
the style's use as a namespace.

The informal syntax for defining a style is:

Style <style-name> = { <style-element>*};

Or

Style <style-name> extends <super-style-name>+ with { <style-element>*};

where:

<style-element> ::= <Sequence of: required structure and values
| required properties
| explicit invariants
j explicit heuristics
| design analyses
| type definitions >

The syntax and semantics for declaring individual type specifications, design rules, and
design analyses were described earlier in the chapter. A style is a named collection (or a
package) of such constructs. In its role as a system type, a style constrains the design of
systems defined in that style by making design vocabulary available for use in the system
instance, defining the required structure and design rules (Invariants and heuristics) that all
systems built in that style must provide and obey. Example 4.13 illustrates these constructs
with a simple style specification.

14 A design analysis is a named, parameterized predicate that design rules can invoke to perform common
evaluations.

90

Style naiveClientServerStyle = {

//define the style's vocabulary, port and role interfaces first
Port Type naiveClientPortT={...};
Port Type naiveServerPortT={...};
Role Type clientSideRoleT = {...};
Role Type serverSideRoleT={...};

//define the generic client vocabulary element
Component Type naiveClientT={

Port sendRequest: naiveClientPortT;

};

//define the generic server vocabulary element
Component Type naiveServerT = {

Port receiveRequest: naiveServerPortT;
Property multiThreaded: boolean « default: boolean = false; »;
Property max-concurrerrt-requests: int;

};

//define the generic binary client-server connector
Connector Type csConnT={

Role clientSide: clientSideRoleT;
Role serverSide: serverSideRoleT;
Property blocking: boolean « default: boolean = true»;
Invariant size(self.roles) == 2; //all csConnTs are binary connectors

};

//limit the vocabulary types used in this style to naiveClientTs, naiveServerTs and csConnTconnectors.
invariant forall comp: component in self.components \

(declaresType(comp, naiveClientT) AND satisfiesType(comp, naiveClientT))
OR (declaresType(comp, naiveServerT) AND satisfiesType(comp, naiveServerT));

invariant forall conn: connector in self.connectors \
declaresType(conn, csConnT) AND satistiesType(conn, csConnT);

};

//specify topological attachment constraints:
invariant forall d : component in self.components |

forall c2; component in self.components \ connected(c1 ,c2) ->
(declaresType(d, naiveClientT) AND declaresType(c2,naiveServerT))

OR (declaresType (d .naiveServerT) AND declaresType(c2,naiveClientT));

//make sure that all of the attachments are valid...
invariant forall a; attachment in self.attachments |

(declaresType(a.port, naiveClientPortT) -> declaresType(a.role, clientSideRoleT))
AND (declaresType(a.port, naiveServerPortT) -> declaresType(a.role, serverSideRoleT));

Figure 4.13: Naive client-server style specification example illustrates style structure

91

System instances may make use of the design vocabulary and analyses packaged in a style by
declaring that the system satisfies a style. The syntax for declaring that a system instance
satisfies a style is analogous to declaring that a design element satisfies an element type:

System <SystemName>: <StyleName> = { <system-decl-body> };

When a system instance declares that it is designed in a specific style the names of all of the
types and design analyses declared in that style are visible within the system instance.
Further, all of the design rules contained in the style definition must hold over the system
instance. That is, the design rules in the style definition take effect in the scope of the system
instance, binding the concrete elements in the system instance to the appropriate abstract
design rules of the style. Declaring that a system is designed in a specific style indicates that
the design rules declared in that style must be maintained in the system instance. Failure to
satisfy these constraints constitutes a type error.

The set of type specifications given in a style declaration provide vocabulary elements that
can be used within system specifications in that style. The system definition is not, however,
limited to using only the types provided by the style unless there is a design rule that
explicitly limits the types of vocabulary that can be used. Design elements within the system
instance that claim to satisfy a type defined in the style must, however, satisfy the type
predicate given in the style definition.

Instantiating style instances

The new operator defined earlier in this chapter for creating minimal instances of simple
element types can also be used with styles to create systems with the minimal required
structure to satisfy the style specification. As with simple element types, the extended with
construct can be used to extend the minimal structure provided by new and customize the
created system. The basic syntax for creating a new minimal instance of a style follows:

System <sys-name>: <style-name> = new<style-name>[extended with {...}];

The semantics for using the new operator with systems are analagous to the semantics for
using new with simple element types.

Substyles

Because the style construct is based on Armani's element type constructs, the type system's
notion of subtyping extends to styles as well. Using this subtyping notion, a style can extend
an existing style to make use of the types and design rules defined in the existing style. The
existing style becomes the superstyle, and the newly defined style is the substyk. The following
example illustrates such an extension:

Style super ={...};

Style sub extends super with {
Component type new-component = {...};
Invariant forall x in self.components • foo(x));

92

In this example a new style called sub extends an existing style called super. Sub consists of the
union of the types, design rules, design analyses, and structure defined in both super and sub.
A substyle may not redefine types or design rules named in the superstyle. It may, however,
create new types that extend the types defined in a superstyle. Because the substyling
operation only allows additional types, design rules, and structure to be added to a style, any
system that satisfies the constraints of- sub will also satisfy the constraints of super.

4.4.7 Multiple types

Implicit in the discussion of the previous three sections is the fact that Armani supports a
typing discipline in which instances can declare and satisfy multiple types and subtypes can
declare multiple supertypes. This capabilty allows designers to explicitly declare that a single
design element plays multiple roles, or that a single element has the aspects and properties of
multiple types of design elements. As a result, it is possible to abstract specific, common
aspects of design elements into an appropriate collection of types and compose those
aspects into instances with the desired properties by simply selecting an appropriate set of
types for the given instance. The instance inherits all of the aspects captured in each of the
types it declares that it satisfies.

For example, three orthogonal architectural aspects of components might be captured in
three independent component types called supports-transactions, miM-threaded, and persists-data.
Each of these component types defines just the properties and structure of a component
that are required for the aspects that the type captures. To make a new instance of a database
component that has all of these properties an architect could simply use the following
declaration:

ComponentsuperDB:supports-transactions, multi-threaded, persists-data = ...;

The architect would, of course, probably also want to extend the instance with additional
information specific to that instance. This capability is supported with the extended with
construct.

This technique can also be used to create new subtypes that reuse all of the specification
details of their supertypes. The previous example can be readily modified to define a new
type of database component rather than an instance, as the following declaration illustrates:

Component Type superDBT extends supports-transactions,
multi-threaded,
persists-data with {...};

The ability to declare multiple types for instances and multiple supertypes for type
declarations with such ease comes directly from the predicate foundation of Armani's type
system. Predicates are highly modular and readily composed through conjunction. Likewise,
this capability extends to all types of architectural element types, even styles.

This capability has proven to be particularly useful. The case studies in Chapter 7 and 8
illustrate that most of architects who have taken advantage of this capability have found it to
be powerful, flexible, and intuitive.

93

Supporting this trivial composition of types introduces the opportunity for two kinds of
conflicts - naming conflicts and conceptual mismatch conflicts. Naming conflicts are
relatively easy to deal with. The use of an ambiguous name within a type or instance
specification is simply an error. A language user can avoided naming conflicts by qualifying
references to names that are shared by multiple supertypes (or declared in multiple types that
the element instantiates). For example, the following pair of style declarations both define
the client type. When the sample system instantiates a client-typed component it needs to
unambiguously specify which of the dient type declarations it is instantiting.

Style generic-cs = {... Component Type client = {...}...};
Style special-cs = {... Component Type client = {...}...};

System sample: generic-cs, special-cs = {
Component generic-client: generic-cs.client = {...};
Component special-client: special-cs.client = {...};

}

Qualification with a type name is required only where the lack of a qualifying identifier leads
to ambiguity.

The second type of conflict that can occur when using multiple styles within a single system
are conceptual mismatches. These conflicts occur because the styles being used are
fundamentally incompatible with each other. An example of such a conflict is a system that
merges a pipe-filter style, which requires that all components are filters and all connectors
are pipes, with a client-server style that requires all components to be clients or servers and
all connectors to be HTTP streams. Unless the required types are (accidentally) compatible
with each other (e.g. instances of Filters satisfy the constraints of Client) non-empty system
instances can not be created that satisfy the constraints of both styles.

It is up to Armani users to detect and avoid such conceptual conflicts. Fundamental
conceptual conflicts will generally be readily apparent to the user because he or she is unable
to instantiate the structure or properties that desired without creating type errors. In general,
the ability to detect deep conceptual mismatches also requires a degree of taste, judgement,
and experience on the part of the architect using the tool. Using multiple styles in a single
system instance expands the vocabulary available for use in that system but generally
constrains the design of the system further by introducing additional design constraints. As
the previous example indicates, it is possible to overly constrain a design by using multiple
styles. Tools can be developed to detect obvious style incompatibilities but they will not
eliminate the need to be careful when using multiple styles for a single system instance.

4.4.8 Formal type system semantics

Throughout this chapter's presentation of Armani's type system I have repeatedly deferred a
detailed discussion of the type system's formal semantics. Rather than repeat the lengthy
presentation of the language's semantics that can be found in [Mon98], in this section I
provide a high-level overview of the approach taken to formalize the type system's
semantics.

94

Armani's predicate-based type systems can be represented denotationally with a set-based
formalism. Using this formalism, all entities in the syntactic domain are mapped to elements
and sets in the semantic domain. Typechecking is reduced to a test for set membership. The
typechecking rules used are sound if they guarantee that all entities e that claim to satisfy a
type T in the syntactic world correspond to an element in the semantic domain that is a
member of the set defined by T in the semantic domain. More formally, the following
equation must hold, where M defines the meaning function that maps entities from the
syntactic domain to the semantic domain:

e:T => M(e) e M(7)

Fortunately, Armani is not the first language to make use of a flexible predicate-based type
system. As a result, defining the formal semantics for such a type system is basically a solved
problem. Specifically, PVS [OS97] provides a detailed formal semantics for their predicate-
based type language. Although PVS is significantly more complex and powerful than Armani
(as discussed in section 3.2.2), we were able to slightly extend the semantics for a subset of
the full PVS language to capture Armani's type semantics. The important aspects of this
extension included adding support for record types to the PVS formal specification and
modifying some of the semantic equations to reflect a subtle distinction between PVS and
Armani type semantics. Specifically, instances that claim to satisfy a type in Armani may have
additional structure and properties beyond those required by the type specification, whereas
PVS requires that instances of a type have exactly the structure and properties required by the
type.

4.5 Expressiveness, analyzability, and incrementality

The previous four sections presented the Armani design language and illustrated how it
could be used to capture instances of software architecture specifications and software
architecture design expertise. These capabilities address the language's first two requirements.
In this section I argue that the language also satisfies its other requirements - expressiveness,
analyzability, and incrementality.

4.5.1 Expressiveness

The notation and constructs supplied by the Armani design language must match the expressive needs of
software architects.

The Armani design language presented in this chapter provides constructs for specifying
abstract architectural styles and concrete instances of system designs, abstract types and
concrete instances of components and connectors, abstract and concrete interfaces to
components and connectors, properties that can be associated with any other construct,
design constraints in the form of predicate expressions that can be enforced as heuristics or
invariants, parameterized abstract design rules (called design analyses), and topological
structure. All of these are captured through structural specifications and predicate
expressions. All of these constructs support hierarchical decomposition and encapsulation.

95

As this list illustrates, the Armani design language provides enough constructs to specify
architectural structure, properties, connectivity, and design rules in a variety of different ways
without providing an overwhelming and semantically intractable array of constructs. AU of
this expressive capability emphasizes static structure and the ability to verify that properties
of that structure hold.

The language's expressiveness requirement is given in terms of how the language's
constructs match the expressive needs of software architects. Determining whether this is an
appropriate or overly limited set of expressive capabilities is difficult without drawing on
experience using the language to design software systems and capture architectural design
expertise. Please see the case studies in chapters 7 and 8 for a detailed discussion of how
these experiments indicate that Armani's design language is capable expressing designs and
design expertise for a broad range of architectural styles. These case studies also indicate that
the language provides sufficient depth of expression to capture interesting concepts within
the styles.

Armani's broad array of constructs for capturing designs and design expertise, combined
with the case study experiences using the language argue that the language satisfies its
expressiveness requirement.

4.5.2 Analyzability

Armani's desigi langtag; must support the evduaüan and analysis of architectural descnpWns.

Support for the analysis of architectural specifications lies at the core of the Armani design
language. As a result, Armani's design language readily satisfies this requirement. The
language supports two basic kinds of analysis. First, it has a "built-in" analytical capability
provided by the language's typechecking system. Second, it has the ability to annotate
architectural specifications with properties that can be analyzed by external tools.

Armani's typechecking process provides the language's primary "built-in" analytical
capability. The typechecking process determines whether an instance of an architectural
specification (a) satisfies all of its type declarations, and (b) satisfies all of its instance-
specific design rules. Because Armani's type system and design constraint language allows
architects to specify complex predicate constraints and types, the typechecking process
provides sophisticated analytical capabilities when used properly.

Because all design rules that can be expressed in the Armani design language can be verified
with Armani's typechecker, it is possible to evaluate arbitrarily complex design rules without
having to make use of any analysis tools other than the Armani typechecker. As I discussed
in detail in section 4.3, one of the primary issues in selecting an underlying formalism for
capturing design constraints and creating a language for expressing those constraints was
decidability. I had to limit the type-based analyzability of the language in two important ways
to insure that the process of typechecking design specifications remained decidable. The first
constraint is that quantifications over infinite sets are not supported. The second constraint
is that the typechecker does not provide any meta-evaluation capability for inferring or
proving properties about type and style specifications themselves. Armani's type analysis
infrastructure cannot, for example, determine whether it is possible to create a vaKd instance

%

of a given type T. Neither of these constraints proved to be particularly problematic in
practice.

Although very powerful, Armani's typechecking capability neither enables nor provides all
desirable forms of architectural analysis. Recognizing that only a core analytical capability
should be built directly into the language infrastructure, architectural designs specified in the
Armani design language can be arbitrarily annotated with properties to be analyzed and
evaluated by external design tools. The determination, for example, of many emergent
system properties are calculated with external tools. This approach allows the language to
support arbitrary forms of analysis while limiting the number of domain-specific constructs
that it needs to support natively. I discuss how Armani's environment infrastructure
supports the integration of external analysis tools in detail in Chapter 5 and the case studies
presented in chapters 7-8 illustrate the feasability and utility of this approach.

4.5.3 Incrementality

The language must support incremental capture of architectural design expertise and inaenental
modifications to architectural specifications.

The Armani design language provides a number of constructs and capabilities that allow it
to meet this requirement. First, all of Armani's core constructs are explicitly designed to be
incrementally composable. As a result, incrementally adding new properties, structure, design
rules, type declarations, etc. to design elements and design element types is a straightforward
operation. Likewise, incrementally adding the expertise and structure contained in a type
specification to a subtype or an instance of a design element is trivial. As described earlier in
this chapter, all that is required is simply declaring that the subtype or instance inherits from
the supertype.

Second, Armani's modular language constructs underlie and enable this composability.
Requiring that all design element and design expertise specifications be packaged in standard,
discrete units makes it possible to provide a standard set of incremental integration rules.
These rules define a framework for incrementally adding or removing structure, properties,
and design rules from design element types and instances. These rules also support the
incremental modification of the properties, substructure, and design rules themselves. By
providing standard containers (design rules, components, etc.,) for the specification of
designs and design expertise, it is easy for both machines and people to understand the
meaning of composing these entities.

Third, Armani's subtyping discipline encourages designers to incrementally extend then-
design vocabulary and styles as needed. Types can be trivially extended with additional
information by creating a subtype that defines only the incremental additions that the
subtype makes to the supertype. Subtyping is a standard, well-understood mechanism for
incremental extension. It works particularly well, however, with Armani's rich predicate
language to support the incremental creation of design element types that capture exactly
the expertise needed to meet a particular design goal.

As I discuss in Chapter 5, having a modular and incremental language for capturing
architectural design expertise provides a superb foundation for building an incrementally

97

configurable software architecture design environment. Its utility extends, however, beyond
its role in customizing the Armani design environment. The ability to collect design expertise
in small, modular, and composable packets simplifies the conceptual effort required to
capture and express the design expertise itself. Furthermore, it allows designers to select the
expertise that they need for a specific project and to quickly adapt the basic concepts that
they have to work with.

4.6 Architectural specifications and implementation code

The Armani design language is fundamentally a declarative language for describing the
abstract architectural structure and properties of software system designs, as well as
constraints on the evolution of those designs. Because it is not intended to be used as a
programming language, it does not provide constructs for describing program-level behavior
or the algorithms used to implement component and connector functionality. By design, it is
not possible to compile an arbitrary Armani specification into an executable system.

Although at first glance this disconnect between architectural design and program
implementation might appear problematic, it provides at least two significant benefits. First,
it allows architects to focus on large-scale questions about how a system's components are
going to work together and reason about the system-wide properties that will emerge from
the composition of the system's components and connectors. Working independent of the
implementation code encourages architects to get the high-level, abstract design correct
before worrying about the implementation details. Second, a great deal of design done at the
architectural level of abstraction is concerned with composing entities for which the
architect has no access to source code. The components and connectors with which he or
she must work have been purchased from third-party suppliers who provide an interface and
some form of description of the component or connector's behavioral and a-functional
properties, but no source code. In these cases, mapping to the source code that implements
the components is basically a non-issue, as the architect has no access to the code. The
important architectural issues are determining the interfaces that the component or
connector provides, it's properties, the rules that must be followed to successfully integrate
the entity into a system specification, and evaluating how it will work in a proposed system
design.

An important implication of this approach is that the language has a very different flavor
than a programming language. Specifically, the Armani design language has no concept of an
executing program, nor does it provide constructs for iteration or branching. An Armani
description is simply a specification of a software system design or abstract design expertise.

Although Armani is not itself a programming language, it is possible to associate program
code with an architectural specification. Specifically, source code and abstract behavioral
specifications that could be used to generate souce code can be associated with design
elements (or design element types) through Armani's property construct. Specifically, code
and specifications can either be stored directly as the value of a property or the properties
can store references to the code via a URL or file name. This has proven useful in cases

98

where the architect working with Armani either has the source code for a component
connector available, or will eventually need to implement that code.

Although Armani does not provide built-in mechanisms for rigorously and provably
mapping architectural specifications to implementation code, developing ways to do so is an
important direction for future work. Recent work on this topic by Moriconi et al [MQR94]
provides a good start but it solves only part of the problem. UniCon's work on generating
implementation code for common connection mechanisms [Shaw+95] provides another
promising and less formal approach to automating the process of generating
implementation code from architectural specifications.

4.7 Summary

The Armani design language described in this chapter meets its requirements. It provides a
language and framework for capturing software architecture designs and design expertise.
The language also supports the declarative and incrementally modifiable specification of
instances of architectural designs. As a result, the Armani design language provides an
infrastructure that demonstrates the first half of the thesis claim that it is possible to capture a
significant and useful collection of software architecture design expertise with a language and mechanisms for
expressing design vocabulary, design rules, and architectural styles. The case studies described in
chapters 7 and 8 build on this introduction to the language and illustrate ways in which the
language has been used to capture architectural styles, system descriptions, and other forms
of architectural design expertise.

99

Chapter 5

The Armani Design Environment

The previous chapter demonstrated the first half of this dissertation's thesis: it is possible to
capture a significant and useful collection of software architecture design expertise with a language and
mechanismsfor expressing designwcabulary, design rides, andarchitecturalstyles. This chapter illustrates
how Armani addresses the second half of the thesis: this captured design expertise can he used to
incrementally customize software architecture design environments.

I demonstrate this claim by developing a rapidly configurable software architecture design
environment that can be incrementally customized with design expertise specifications
captured in the Armani design language. In this chapter I lay out the requirements for such
an environment. I then describe the architecture of the configurable Armani environment,
show how it supports incremental customization, and discuss some key issues surrounding
this approach. Finally, I argue that the Armani environment's architecture satisfies these
requirements.

5.1 Design environment requirements

The Armani design environment's primary requirement is that an environment developer be
able to rapidly reconfigure it with design expertise captured in the Armani language. This is
the only requirement that needs to be met in order to demonstrate that the second claim of
the thesis holds. In addition to support for incremental reconfiguration, four subsidiary
requirements must also be met if the environment is to be broadly useful and sufficiently
powerful - leverage, efficiency, support for external tool integration, and user-interface
configurability. Taken as a whole, these five requirements appear to be applicable not only to
the particular case of the Armani design environment, but also to a wide class of similar,
highly-configurable systems.

Requirement 1: Incremental reconfiguration. It must be possible to incrementally customize the
Armani design environment to take advantage of architectural design expertise captured in the Armani

This is the Armani design environment's fundamental requirement. Architectural design
expertise expressed in the Armani design language is valuable by itself as a set of human-
readable design guidelines. This expertise becomes much more valuable, however, when
Armani's tools process it and guide designers in creating and analyzing software
architectures. The core capability Armani needs to provide is the ability to dynamically add,
remove, and modify an environment's design expertise, updating the environment
appropriately to reflect the changes.

101

One of the challenges introduced by this requirement is selecting the axes along which the
environment can be reconfigured. As the previous chapter discussed, the Armani design
language provides a basic set of design elements that the generic Armani environment uses
as a baseline design vocabulary. The language also provides a variety of constructs for
introducing new vocabulary design rules, and design analyses. Linguistically, this
customization can be done incrementally and at various granularities. An architect can adapt
or extend design expertise at the level of styles, design element and property types, systems,
or individual element instances. The Armani design environment needs to support all of the
axes and granularities of configuration that the Armani design language supports. In
addition, as requirements four and five describe, it also needs to support the inclusion or
removal of external tools and the incremental reconfiguration of its user interface.

Requirement 2: Leverage. The Armani design environment must premie architects with significant
leverage for creating, evaluating, andmampukting designs and design expertise.

One of the primary benefits of a good tool is that it extends and magnifies the tool user's
capabilities. That is, the tool provides its user with leverage. To give architects this leverage
for their design and analysis capabilities, Armani must provide a collection of tools for
processing, manipulating, and analyzing designs expressed in the language. Specifically, it
must provide at least the following tools:

• A parser to read textual design expertise, style, and system descriptions expressed in
the Armani design language.

• Type and constraint checking tools to ensure that designs satisfy their type
constraints and design rules.

• An error reporting system to alert the architect of problems or issues with designs.

In addition to these core tools, the Armani environment also needs to provide a graphical
user interface for creating, displaying, documenting, and otherwise manipulating architectural
specifications.

Requirement 3: Efficiency. The Armani design environment must work efficiently enough to support
the interactive creation, updating, and evaluation of architectural designs and design expertise

In addition to being configurable, the Armani design environment needs to provide
sufficiently fast response times for interactive use on designs containing up to one thousand
design elements (components, connectors, etc.). Note that this efficiency requirement is
expressed completely in terms of the experience of an architect working on architectural
specifications. Ensuring efficiency for faster response times or larger designs is beyond the
scope or needs of this tool. Once a design reaches more than one thousand design elements
it generally includes much more detail than is required at the architectural level of design.

Requirement 4: External tool integration. The Armani design environment must allow
"external" tools to access, manipulate, and evaluate Armani design representations.

The design environment relies on its design language to capture declarative design expertise.
The environment also, however, needs to be able to capture design analyses and operations

102

that are best expressed algorithmically. As described in the previous chapter, this category of
design expertise is called operational design expertise.

Operational design expertise is frequently encapsulated in legacy design and analysis tools.
When no mechanism exists that encapsulates the desired operational design expertise,
however, it is frequently useful to create new tools to capture it. For the purposes of this
dissertation, I define external tools as tools that operate on Armani design representations
without being part of the core Armani infrastructure. Both legacy tools and freshly-built
point solutions are considered external tools.

To support the capture and use of operational design expertise, the Armani environment
must allow external tools to access, manipulate, and evaluate Armani design representations.

Requirement 5: User interface configurability. The Arman design environments user interface
must support user-definedgrapbkd depictiom of ded^ arid ded^ elements.

Although the Armani design language provides a precise and flexible notation for describing
software architectures and architectural design expertise, many architects prefer to work with
graphical notations. To address this need, Armani must provide a user interface that
architects can use to create and manipulate architectural specifications graphically.

The graphical notations that architects use to represent their designs can vary significantly
between different styles and even between different individuals. It is therefore important that
the environment's user interface be customizable and reconfigurable so that architects can
match the visual depictions they would like to use for their design vocabulary and system
specifications with the underlying semantic representations. It is also important that the
architect be able to view either the graphical representation of a design or its underlying
textual Armani representation. Taking this requirement one step further, architects should be
able to select whether they would like to use a text-based interface or a graphical interface
with Armani.

Part of the challenge in satisfying this requirement is determining which parts of the user
interface should be fixed and which should be variable. The other aspect is the need to
provide ways to gracefully integrate external tools' user interfaces with the core Armani
environment's user interface.

5.2 The Armani design environment architecture

In this section I introduce the Armani design environment's architecture. First, I describe the
core shared infrastructure that is common to all design environments. I then present
extensions to this architecture that support the integration of external tools into the
environment. Finally, I discuss how the architecture of this environment supports user
interface customization.

103

5.2.1 Core shared environment infrastructure

All Armani design environments share a set of common infrastructure. This core
infrastructure defines the basic, generic Armani design environment from which all custom
Armani environments are derived. The heart of this common infrastructure is a component
called the architecture desigi representation, or ADR. The ADR stores object-based, program-
matically-manipulable, representations of Armani designs and design expertise.

In addition to the ADR, Armani provides a set of basic tools for manipulating, persisting,
and evaluating Armani designs and design expertise. The following five tools round out the
baseline shared infrastructure:

• A parser that reads textual design expertise, style, and system descriptions expressed
in the Armani design language and converts them into an object-based
representation in the ADR

• An unparser that exports Armani design specifications from their object-based
representations in the ADR to text.

• A type manager that verifies designs are type-correct and that they satisfy their
design rules.

• An analysis engine that evaluates design analysis expressions in the context of
specific designs or design elements.

• An error reporting system that alerts environment users of design problems.

104

^^

Design Parser
Armani Parser

Design Unparser
Armani Unparser

Build ••..
Design '^

iß Export
Desigr

t
i

Core Design Rep

A rdiitecture Design Representation

Type Mgr.
Request /

/ / Design
/ Query

AnalysisX \
Request \ ^

Design
\Query

Type Manager
Armani Tool

Re{
Er

ort
or

Analysis Engine
Armani Tool

r

Error Reporter
Armani Tool

Figure 5.1: Architecture of the Armani design environment's core shared infrastructure

The diagram in figure 5.1 depicts Armani's basic architecture. As the figure indicates, all
tools in a baseline Armani environment share a common architecture design representation
component. This set of core tools supports the ability to capture and analyze both
architectural specifications and architectural design expertise expressed in the Armani design
language. It also provides the ability to evaluate individual designs to verify that they
conform to their styles and design rules and to report any anomalies discovered in evaluating
the design.

This baseline infrastructure is clearly missing some important components and functionality.
The most obvious missing component is a user-interface. Even without a user interface,
however, this collection of components can be compiled and executed. In its minimal
configuration, the environment simply reads and parses Armani design specifications,
evaluates the designs for type-correctness, and issues a report on any errors that it finds in
the course of typechecking. All of this is done by invoking the tools through the operating
system's command shell. Output is simply streamed to the standard output device.

This baseline environment encapsulates Armani's core incremental configurability
capabilities. Architects and style developers can customize the expertise captured by the basic
design environment by loading design vocabulary, rules, analyses, and style specifications
captured with the Armani design language into the environment. In loading this expertise, an
environment designer (or architect) modifies the vocabulary and semantics of design that the
environment supports, as well as the set of design expertise available in the ADR. The Typ

105

Manager and Analysis Engine components use this expertise in evaluating architecture
specifications.

In the next section I will discuss how this basic infrastructure can be extended with
additional components and tools.

5.2.2 Extending the environment with external tools

The ability to load the core design representation with design expertise is a first step towards
rapid and incremental environment customization. This capability allows a designer to make
both coarse-grained and fine-grained modifications to the design expertise encapsulated in
his or her environment. The declarative design expertise captured in the styles, designs, design
rules, and design analyses that can be loaded into the base environment encompasses an
important and significant class of design expertise. Architects also, however, need to be able
to take advantage of operational design expertise, or expertise that is best captured
algonthmicahy (c.f. Section 4.4).

Operational design expertise is captured in an Armani environment by adding tools to the
environment that perform the desired operations. These tools, referred to as external tools,
fall into two broad categories - legacy tools that were built independent of the Armani
environment but need to interoperate with the environment, and Armani-specific tools that
were built explicitly as additions to the Armani environment.

Armani provides three types of connectors for integrating external tools with its design
environment, each of which encapsulate a significantiy different approach. All of these
connectors can be used to integrate either legacy or Armani-specific tools, though their
applicability for each varies widely. Figure 5.2 builds on Figure 5.1, illustrating how these
connectors can be used to integrate three different external tools with the baseline Armani
design environment.

106

Core Design Rep

Design Parser
Armani Parser

Buü<r
Design

Design
Unparser

Armani Unparser
Export ^
Design /'

Core Design Rep

Out of process tools

COM-Aware
Legacy Tool
Armani Tool

(2) COM Method
Invocation

(l^jjarsmg^
AcmeStreain

jTypeMgr
Request

Design
Query

Analysis \ Design
Requests \Query

Acme-Aware
Legacy Tool

Acme Tool

Rej ort
Er: ör

Analysis Engine
ArmaniTool

(3) Java Method
Invocation

Error Reporter
ArmaniTool

In-Process
'External" Tool

Armani Tool

Figure 5.2: Three connection mechanisms for extending the Armani core shared
infrastructure with external tools. Connector (1) streams Acme between
the Armani, Core Design Rep and an Acme-Aware tool, connector (2)
uses a COM-based interface to connect a legacy tool to the core
infrastructure, and connector (3) uses direct Java method invocation to
link interact an "external" tool that is loaded directly into the Core Design
Rep's process with the Core Design Rep.

The three specific external tool integration connectors provided for integrating external
tools with Armani are:

• Acme. The Acme tool integration connector streams textual Acme design represen-
tations between the Armani environment and an external tool. Acme, described in
detail in section 3.1.2, is an interchange standard for architecture design speci-
fications. As an emerging interchange standard, the Acme-based connector provides
a low-cost integration mechanism for a wide selection of architectural design and
analysis tools.

When transferring a design from the Armani environment to the external tool, the
connector converts an Armani design object into a textual Acme description of the
design, and streams that textual description to the attached external tool. It is the

107

attached tool's responsibility to interpret the Acme specification and perform its
analysis or operation on that Acme description.

When a design is passed in the other direction, from the external tool to Armani's
architecture design representation component, this process is reversed. The external
tool writes a stream of Acme text to the connector. The connector then parses this
stream, translates it to Armani, and builds an appropriate Armani design object in
the environment's ADR.

This approach provides a loose integration between the environment and the
external tool. This connector is most effective when the integrated tool requires only
minimal interaction with the full environment. It is, however, an effective way to
integrate legacy tools that support the Acme integration standard with the Armani
design environment.

Tool-specific design rep API connector. The second alternative for integrating
external tools with the Armani design environment is to create a connector that
provides a tool-specific interface to the architectural design representation
component's API. The tool-specific interface provided by this connector generally
exposes less functionality than the ADR's full API but provides more semantically-
specific methods. It is the connector's responsibility to convert the external tool's
requests made through the thin interface into an appropriate series of requests to the
ADR. The connector then has to package the ADR's response and return it to the
external tool in an appropriate format.

As an example, consider a tool that walks over an architectural design to calculate
system throughput. This tool is concerned only with retrieving the components and
connectors in the design, discovering the performance properties of the individual
components and connectors, and discovering the system's topology. Rather than
expose the ADR^s entire API to the tool, the connector only exposes methods to
provide specific information about a system's components, connectors, topology,
and performance properties.

This integration approach has three benefits. First, it isolates the complexity of the
interaction between the tool and the environment in a single connector. Isolating this
complexity simplifies the implementation of both the ADR and the external tool and
makes evolutionary changes to either the ADR or the tool easier. Second, it provides
an additional degree of safety for the overall environment by restricting the
operations that individual tools are allowed to perform on the shared design
representation. Third, from the perspective of the environment end-user this
approach provides a significantly tighter integration between external tools and the
environment than the Acme-based integration described previously. Although this
integration approach has many benefits, it also requires the most effort on the part
of the environment developer.

This integration technique is appropriate for integrating both legacy tools and
Armani-specific tools. The tool-specific connector interfaces can be either written in
Java or as COM interfaces. Tools that do not understand either of these standards

108

can frequently be wrapped by a thin shell that exposes a COM interface to the
outside world and interacts with the tool using the standard understood by that tool.
Likewise, because COM can be used within or across process boundaries, this
integration works for tools that run both within the ADR's process boundary and for
tools that execute outside of the ADR's process boundary.

• Direct API access to the ADR. The third type of connection available for
integrating external tools with the Armani design environment allows the external
tool to direcdy invoke Java methods through the environment's core Architecture
Design Representation API. With this approach, the external tool is loaded directly
into the ADR's Java process, creating an "in-process external tool" that is given full
access to the Architecture Design Representation's API. An in-process tool has the
same status as the Type Manager, Analysis Engine, or Error Reporter tools in the
baseline Armani environment.

The Direct-API access to the ADR approach has two important limitations. First,
the tool must be written in Java to integrate properly with the ADR. Second, the tool
must be highly trusted because it will have full access to the internals of the Armani
environment. As a result of these constraints, this approach is most appropriate for
tools that are developed directly by the environment developer explicitly for the
purpose of operating over Armani designs stored in the ADR.

5.2.3 Customized user interfaces

The previous two sections described how the architecture of the Armani environment
allows custom environment designers to configure an environment and integrate external
tools. Although these customizations form the foundation for Armani's configurability, it is
also critical that Armani's user-interface (UI) be highly configurable to convey the underlying
semantic modifications to architects using the tool.

To achieve this configurability, the Armani environment provides the ability to make both
coarse-grained and fine-grained modifications to Armani's user interface. The coarse-grained
adaptability derives from the design decision to implement Armani's user interface as a
standard external tool that has no special privileges or status in the environment. As a result,
environment developers can completely replace the environment's user interface. Although
this appears to be a Draconian approach to customizing the UI, it allows environment
designers to integrate the core Armani infrastructure with other tools that supply (and
require) their own user interfaces. Likewise, it allows environment developers to experiment
with radically different user-interaction techniques on top of the same basic environment
infrastructure.

One of the implications of this approach to user-interface customization is that the core
Armani infrastructure binds very few design decisions regarding how fine-grained configur-
ation should be supported in a user interface. Fine-grained configuration includes such issues
as associating icons with specific types of vocabulary elements, techniques for editing
property values, etc. Each instance of an Armani user-interface is free to provide its own
support for such customization. In the remainder of this section I will discuss how I used

109

variations of the external tool connector types described in the previous section to integrate
three different user interfaces with the core Armani infrastructure. I will also discuss the
fine-grained user-interface customization capabilities that each of these interfaces provide.
Figure 5.3 illustrates the architectural approaches taken to integrate each of these user
interfaces with the core Armani environment infrastructure.

Command Line Interpreter

The initial Armani user interface was a textual, tty-based, command-line interpreter that
allowed an architect to load, view, modify, export, and typecheck textual specifications of
Armani designs and design expertise. Because the interpreter was written in Java, the most
straightforward integration method available was to simply load the interpreter into Armani's
ADR process and connect it to the ADR's API with a direct Java method invocation
connector. This integration approach proved both simple and effective. Figure 5.3a illustrates
the architectural approach taken to add the command-line interpreter user interface.

The Armani command-line interpreter provided only minimal fine-grained customization
capabilities. Generating the interpreter with a parser generator QCC99] provided the ability
to easily add new commands to the interpreter. To extend the interpreter's command set, an
environment developer simply had to add a new production to the interpreter's specification
along with some Java code to execute when the command was invoked. Although this
process required the environment developer to modify the interpreter's source code, the
code was structured in such a way that these additions were straightforward and modular.

Overall, although it was rather feature-poor and somewhat lacking in visual appeal, the
Armani environment and command interpreter front-end, coupled with a good text editor,
proved to be a remarkably effective design tool.

AcmeStudio

The second user interface that I integrated with the Armani core infrastructure was the
AcmeStudio design environment. AcmeStudio [Kom99] provides visualization, graph layout,
and simple design analysis capabilities for designs defined in the Acme design language
[GWM97]. Integrating AcmeStudio with Armani proved to be an effective way to quickly
put a graphical user interface on top of the Armani core infrastructure. It also added useful
functionality to the AcmeStudio by providing it with a powerful design rule checking
mechanism.

Figure 5.3b depicts the architecture of the core Armani infrastructure integrated with the
AcmeStudio. As this figure indicates, I used an Acme tool integration connector to link
AcmeStudio to the Armani infrastructure. Using this integration approach, AcmeStudio
wntes textual Acme descriptions of its designs, types, and styles to this connector. The
Armani infrastructure reads these specifications, translates them to Armani, evaluates them
for type consistency, and returns the results of its analyses back to the AcmeStudio as a
stream of Acme text.

no

Core Design Rep Process

Core Design Rep

Arc/M

FuUU
Java ■«

turn API I

Java

77 1—\K
Method

Invocation

Command ± TTv:

Interpreter ■ J/Q :
ArmaniTool }

Figure 5.3a: Integrating a command interpreter user interface with a direct Java
method invocation connector

...

Core Design Rep Process j

 'A

Core Design Rep

A rchitecüne Desigz Representation API

77 I \K

Full L
. Java»*

■Jüan APlT

Acme
Text

Stream

AcmeStudio
GUI

Armani Tool

Figure 5.3b: Using a streamed Acme Text connector to integrate the AcmeStudio
GUI with the Armani core design environment infrastructure.

Core Design Rep Proees s

X *
Visio System

Workshop
Armani Tool

Core Design Rep Visio-
Arniani

ArchitectiPvDesigtRep. Intfj

77T

K
Visio-

Armani
COM Intf

reads

Interaction
Templates

Edit
EJement()

SwF
Iement

Workshops
ArmaniTool

Figure 5.3c: Integrating the Visio-based, fine-grained configurable Armani interface
with the GUI Factory connector and configurable editing workshops.

Figure 5.3: Three architectural options for integrating a user interface with the Armani
core design environment infrastructure

ill

AcmeStudio provides fine-grained user interface and design visualization customization.
AcmeStudio's visualization capabilities are, however, geared towards Acme-based designs
rather than Armani-based designs. As a result, Armani design rule and analysis constructs are
encoded in AcmeStudio designs as properties that the Acme-to-Armani translation step
converts into their appropriate Armani constructs. Acme does not give these constructs the
first class status that Armani does, and the AcmeStudio user interface reflects this
discrepancy.

Overall, this approach offered a quick way to provide a graphical editor for Armani designs.

Visio-based GUI

The third user interface that I integrated with the Armani core infrastructure was designed
to be the "standard" Armani graphical user interface (GUI). This interface uses the Visio
drawing package [Visio99] as the primary user interface for editing and visualization. In
addition to the Visio-based design editor, this interface includes a number of Java-based
GUI elements for editing individual design entities such as components, connectors,
properties, and design rules.

Figure 5.3c illustrates the architectural adaptations I made to the core Armani infrastructure
to integrate this GUI with Armani. As the figure indicates, components that provide a user
interface for editing Armani semantic elements are called workshops. Visio provides the system
workshop for editing system diagrams and the Java-based GUI components provide the
workshops for editing individual design entities.

Because the various elements of this user interface are implemented with different languages
and technologies, integrating them with each other and with the rest of the Armani
environment infrastructure proved to be a challenge. The overall design of the Armani
infrastructure, however, allowed me to address this challenge by creating a connector that
managed all of the interactions between Visio, the Java-based workshops, and Armani's
ADR. This connector, called the GUI factory connector refines the tool integration approach
described for the Tool-specific design rep API connector in section 5.2.2. It uses the abstract
factory pattern described in [Gam+95] to lazily create and invoke workshops for viewing
and editing design entities.

The GUI factory connector keeps track of which visual entity corresponds to which
semantic entity, and vice-versa. It is the responsibility of the factory connector to establish a
direct connection between the editor and the entity being edited. When the GUI factory
connector receives a request to edit a semantic entity, the connector finds or instantiates an
appropriate workshop, asks that workshop to display itself and edit the requested entity.
Depending on the implementation of the workshop, this step is done by handing the
appropriate workshop a Java or a COM interface to the underlying semantic entity. Once this
interface has been properly handed off, the GUI factory connector steps out of the way and
lets the workshop directly access the underlying semantic object through this interface. As a
result after setting up the initial connection between a semantic entity and its editing
workshop, the number of indirections that the workshop requires to access or update
semantic information is minimal. This approach adds an additional start-up cost the first
time an entity is edited or a workshop is opened, but the connection established between the

112

workshop and edited entity is persistent through a session so the response time for future
editing of that entity is nearly instantaneous.

This integration technique has four desirable characteristics. The first is that the semantic
entities stored in Armani's ADR are not bound to any form of user-interface editing element
until run-time. This late binding of editor selection cleanly separates semantic from
visualization concerns and removes user interface issues from the implementation of the
underlying semantic representation of architectural entities.

The second desirable characteristic of this integration approach is that, to the environment
end-user, there appears to be a very tight integration between Armani's GUI, underlying
semantic representation (ADR), and design checking tools. The environment provides very
good interactive response and near-instantaneous feedback to user manipulations. The
integration appears to the user to be much tighter than the integration of AcmeStudio and
the Armani design checking tools. Although the appearance to the end-user is one of tight
integration, the dependencies between the individual components of the Armani core
infrastructure and GUI are minimal, allowing them to be maintained and evolved
independent of each other.

The third desirable characteristic is that it supports a "medium-grained" form of user-
interface customization. Rather than completely replacing the user interface, an environment
developer can extend the existing GUI by creating new workshops for editing specific types
of design elements. He can insure that the new workshop will be selected to edit the desired
types of design entities by simply reconfiguring the dispatch table in the GUI factory
connector. This type of configuration requires more work than the fine-grained
customization capabilities provided by Visio, but significantly less work than building a new
user interface from scratch.

Finally, using a configurable commercial drawing package such as Visio for a user-interface
to the Armani core infrastructure provides the environment's end users with a vast array of
fine-grained customization capabilities. In section 5.3.5 I discuss in detail how I was able to
take advantage of Visio to provide this fine-grained user-interface customization capability.

5.3 Design environment discussion and evaluation

I now revisit each of the requirements laid out in the beginning of the chapter.

5.3.1 Incremental reconfiguration

Requirement: It must be possible to incrementally customize the Armani design environment to take
advantage of architectural design expertise captured in the A rmari design language.

Armani's core environment infrastructure is explicitly designed to support incremental
adaptation. The environment provides a standard baseline infrastructure that leverages all of
the Armani design language's built-in constructs and concepts (e.g. descriptions of design
element types and instances, invariant and analysis specifications, etc.). An architect or

113

environment designer can extend these basic constructs by loading additional design
expertise into the environment.

The ability to load arbitrary Armani design language specifications into the core architecture
design representation provides the environment developers and architects working with the
Armani environment a very fine-grained customization capability. Individual design rules,
vocabulary items, and analyses can be loaded, removed, or modified "on-the-fly". The design
language's style construct also allows environment developers to use the same technique to
make coarse-grained modifications to the environment's body of design expertise by loading
(or removing) large collections of related expertise in a single operation. At a semantic level,
for example, an environment can be trivially switched from supporting design done in a
dataflow style to supporting design done in an interacting processes style by removing the first
style from the environment and loading the second style into the environment.

The ability to incrementally reconfigure the design expertise used by the environment is a
fundamental Armani feature that is, by itself, sufficient to minimaUy address the incremental
reconfiguration requirement. Armani also provides two additional incremental reconfigu-
rability capabilities that have proven very useful for custom environment developers. The
first of these is the ability to easily link external tools into the environment so that it can take
advantage of design expertise not readily captured in the Armani design language. The
second is the ability to customize the user interface to reflect the changes in the
environment's underlying design expertise, or even the tastes of individual designers.
Sections 5.3.4 and 5.3.5 discuss, respectively, how each of these capabilities address Armani
requirements.

5.3.2 Leverage

Requirement: The Armani design environment must provide architects with significant leverage for
creating, evaluating, and manipulating designs and design expertise.

Although my fundamental thesis claim is simply that I can capture architectural design
expertise with the Armani design language and that I can use that expertise to configure
custom software architecture design environments, to be useful, these custom environments
must provide the architects using them with design leverage. The Armani design
environment, in both its baseline and custom forms, provides architects with at least four
kinds of leverage:

Evaluating Armani design language specifications. The Armani environment
provides a set of tools that allow an architect to take advantage of reusable design
vocabulary, design rules, and styles when specifying architectural designs. The language
processing and other environment infrastructure tools can check that architectural
specifications are type-correct and that they satisfy all of the design rules used to create
the system. This basic infrastructure also provides architects the ability to analyze
Armani designs with analyses written directly in the Armani design language. These
analyses, which can generally be written very succinctly, help architects discover
whether their designs possess specific emergent, system-wide properties.

1)

114

2) Graphically creating, displaying, and manipulating designs. The graphical user
interfaces provided with the Armani environment allow designers to depict their
architectural designs graphically. Although the benefits of using graphical depictions
rather than textual descriptions have not been definitively proven, the use of graphical
notations for specifying architectural designs and design patterns seems to match the
informal ways that architects interact and discuss designs to solve design challenges.
That is, the Armani GUIs support the ability to draw the ubiquitous box-and-line
diagrams frequently found on whiteboards and in architecture design documents.
Associating full Armani specifications with the boxes and the lines adds a significant
semantic richness to the diagrams. Depicting architectural diagrams graphically also
provides succinct design documentation that complements the detailed specifications
available in a textual representation.

3) Capturing and exploiting style-specific, system-specific, and domain-specific
expertise. The complete Armani system combines the Armani design language's
ability to capture design expertise with the Armani environment's ability to use that
expertise both analytically and constructively. This expertise can be used to evaluate
individual designs for internal consistency, type-correctness, conformance to stylistic
guidelines, and satisfaction of claims about the properties of the system. Captured
design expertise can also be used constructively by designers who work with a palette
of previously defined design elements and design rules that are customized for their
specific design domain. These collections of design expertise help architects by
providing consistent collections of components and connectors that are designed to
work together, along with guidance on how they can be successfully composed.
Further, the incremental nature of the language and the environment allows a designer
to add the additional design expertise and notations that he discovers and develops in
the course of architecting his systems. These additional vocabulary elements and
design rules can then be reused on future projects.

4) Integrating a suite of design tools. The Armani environment can be extended by
integrating (or building) external tools. This capability allows users of the Armani
environment to take advantage of a universe of external design and analysis tools. The
Armani environment's flexible integration infrastructure and Acme-compliance make it
relatively easy to aggregate and take advantage of a wide variety of design tools within
a single, custom Armani design environment.

By providing architects with these four areas of leverage, the Armani environment satisfies
it's requirement to provide architects with design leverage.

5.3.3 Efficiency

Requirement: The Armani design environment must work efficiently enough to support the interactive
creation, updating, andevahiation of architectural designs and design expertise.

System architects frequently have to give up system performance and efficiency to get
generality and extensibility. The additional layers of abstraction that a highly generalized and
flexibly extensible system require are usually inefficient and result in poorer performance

115

than a custom-built, highly focused solution would provide. Understanding this tradeoff, I
expected that I would have significant difficulty making Armani efficient enough to provide
useful interactive feedback to designers working with Armani-based environments.

Specifically, there were two aspects of the Armani system that I anticipated were likely to
cause significant performance problems. The first was Armani's ability to verify the type-
correctness of designs and check that the designs satisfy their design rules. After
experimenting with both incremental and batch algorithms for typechecking and evaluating
design rules, however, I determined that this concern was unfounded. For the size of
designs that Armani needs to be able to handle (designs with up to one thousand design
elements), the simple batch algorithm that I used for typechecking runs quickly enough on
current machines15 to support interactive use.

It is possible to write pathologically complex design rules and analyses that cause Armani's
simple type-checking algorithm to work very slowly, just as it is possible to write inefficient
programs using any of a wide variety of programming languages. Experience from the case
studies in Chapter 7 and Chapter 8, however, indicates that using these pathological
approaches is rarely necessary and when they do arise they can generally be recast much
more efficiently by rethinking the problem and/or solution. In situations where using such a
pathological case appears to be unavoidable, designers have the option of rewriting their
analyses or design rules directly in Java for efficiency. These Java-based rules and analyses
can then be linked into the Armani environment and accessed from Armani specifications as
"external" design analyses. Taking this step proved to be necessary in only one of the twelve
case studies conducted - the study described in section 8.2.3.

The second aspect of the design that I anticipated was likely to cause performance problems
was the separation made between the underlying design representation component and the
user interface. Common wisdom holds that a graphical user interface (GUI) that is tightly
integrated with its underlying data and analysis capabilities will provide much better user-
interaction performance than a comparable system with a loosely integrated GUI. The
degree to which this emerged as an issue varied with the three different user interfaces we
put on Armani.

For the textual command-line interpreter this did not turn out to be an issue because the
Armani back-end was generally able to produce its output at least as quickly as the operating
system's i/o subsystem could display it to the user. When using an Acme connector to
integrate the AcmeStudio front-end with the Armani infrastructure, however, the connection
proved too slow to support interactive interoperation between the AcmeStudio GUI and the
Armani back-end. To address this issue, all Armani analysis operations that the AcmeStudio
user interface exposed to the user were presented as batch commands that could be run in
the background without degrading interactive environment performance. This technique
proved an effective way to use a loose and low-bandwidth connection between the two tools
while hiding much of the loose separation from the environment's users.

The "current machine" used as a testbed in this case is a 200Mhz Intel Pentium CPU with 64MB or RAM running
Windows NT 4.0. By the time this dissertation was completed in 1999, though soil usable, this machine
configuration was somewhat dated and past its prime, yet Armani still ran sufficiently fast to support interactive use

116

The most significant user-interface efficiency concern, however, was that the Visio-based
user interface would provide acceptable performance and interactive feedback to the
environment's users. This requirement was particularly important for the Visio-based GUI
because of its role as Armani's primary user interface. Fortunately, the GUI factory connector
that I created for this purpose provided sufficient performance. In this integration scheme,
the GUI components store, update, and render all of the visualization information locally.
Correspondingly, the core architecture design representation stores and handles all of the
semantic information exclusively. This approach adds an additional start-up cost the first
time an entity is edited or a workshop is opened, but the connection established between the
workshop and edited entity is persistent through a session so the response time for future
editing of that entity is nearly instantaneous.

Overall, this approach has proven to be an effective way to provide the loose integration
between a user interface and its back end that is desirable for maintainability and separation
of concerns. It has managed to do so without sacrificing the performance that is necessary
in a user-centered design environment.

5.3.4 Integrating external tools

Requirement: The Armani design environment must allow "external" tools to access, manipulate, and
evaluate A rmani design representations.

Implementing the external tool integration connector described in Section 5.2.2 required that
I address a number of important issues. The first of these issues is that Armani needs to
provide a platform for quickly building new Armani-specific tools that operate directly on
Armani design representations. At the same time, however, Armani also needs to support
the integration of a wide variety of legacy tools that were not originally designed to work
with Armani or its integration protocols. These two sub-requirements introduce a design
tension and generally argue for different approaches to external tool integration.

The need to provide a platform for quickly developing tools that operate on a core design
representation argues for providing a limited collection of standard, well-defined, ways for
the tools to interact with the design representation. Providing a standard that binds tool
interaction design decisions "correctly" for all tools reduces the work that tool builders need
to do to create and integrate their tools with the environment. Armani supports this
approach by providing a standard technique for writing external tools in Java that can be
loaded directly into the architecture design representation (ADR) component's process.
Armani also provides a standard by which these tools can register their presence and by
which they can be invoked to perform their analyses. Although Armani explicitly defines the
integration protocols that these tools use to interact with the design environment, the tools
can also access the complete architecture design representation API if they need to. Access
to this API is provided by the standard integration protocol.

To further ease the creation of new external tools, the Armani toolkit provides a significant
collection of skeletal tools that perform a broad variety of common operations. Examples of
the tasks performed by these skeletal tools include visiting each component or connector in
a design (and possibly performing a tool-specific operation at each element visited), querying

117

a design for all elements that have a specific property or property value, and retrieving a list
of all of the types that are visible from a given scope. Tool developers can extend these
skeletal tools to implement their specific operations. Providing pre-integrated implemen-
tations for these standard tool operations frees tool developers from rebuilding standard
infrastructure and allows them to focus on the specific functionality that they want to add to
their custom tools.

The tension surrounding the decision to provide standard tool integration protocols arises
from the need to also support the integration of legacy tools. Legacy tools, by definition, do
not follow the Armani environment integration standards. Recognizing this as an important
issue, I designed multiple integration mechanisms for integrating external tools with the
Armani environment. These integration mechanisms are encapsulated in the three types of
external tool connectors described in section 5.2.2. Each of these connector types provide
flexible intermediary connectors that can be adapted as needed to support the integration of
legacy tools. The Acme connector provides a quick integration standard for other tools that
support the Acme interchange standard [GWM97]. The tool-specific design rep API
connector provides a custom environment developer with a place to embed the interface-
bridging logic required to integrate the legacy tool with the Armani ADR.

By providing these three connector types and integration standards, the Armani
environment supports the rapid development of custom environment-specific analysis tools
without precluding the integration of legacy tools with the rest of the environment.

In addition to supporting the integration and development of multiple categories of external
tools, these three types of external tool connectors also address the environment's need to
progressively reveal the complexity of the Armani environment's implementation. It is
possible for environment designers to create sophisticated custom environments by doing
nothing more than loading design expertise captured with the Armani design language into
the generic Armani environment. This customization process requires effectively no
understanding of the implementation details of the Armani environment.

Once an environment developer decides to start integrating external tools, however, she
needs to commit to learning something about the environment's implementation. The three
external tool connector types reveal to the developer progressively more details about the
environments implementation on an as-needed basis. The Acme connector, for example,
requires almost no knowledge of the underlying environment implementation. It requires
only the mastery of an extremely small API (primarily the methods readDesign(...) and
translateToArmani(...)). Using the ADR's full Java API to write tools that will be loaded
directly into the ADR's process requires a significantly greater understanding of the
environment's implementation details. The full API can, however, generally be learned on an
as-needed basis and specific tools will generally require the mastery of only a relatively small
percentage of the full API. The depth of understanding of implementation details required
to reuse a previously defined tool-specific design rep API connector falls somewhere between
these two extremes. Implementing a new tod-specific design rep API connector, however,
requires a relatively deep understanding of the Armani environment's implementation
details.

118

A final issue that I faced in creating an appropriate set of mechanisms for integrating
external tools with Armani was the need to distinguish between tools that can produce side-
effects and those that can't. This distinction is important from the perspective of an
architect using the Armani design environment because she needs to know whether making
a request of the environment or one of its tools will simply provide a report on some aspect
of the design, or whether it could actually change the design itself. A secondary driver for
this issue is the ability to hook external tools into Armani's typechecking process to evaluate
complex design analyses. All tools integrated with the typechecking process this way are fired
implicitly during typechecking. Because the typechecker does not define the order in which
these tools are run or how many times they will be run, it is critical that only side effect-free
tools are invoked by the typechecker.

To address this issue, I provide Armani design language constructs that tool builders can use
to distinguish between operations on design specifications, which can modify the design as a
side effect, and design analyses that can not have any side effects. It is the responsibility of the
tool writer to properly classify her tools using this taxonomy. Tools that perform operations
on designs must be explicitly invoked by the user (or a proxy for the user). Side effect-free
analysis tools, on the other hand, may be invoked either implicitly or explicitly.

5.3.5 Configurable user interfaces

Requirement: The Armani design environment's user interface must support user-defined graphical
depictions of designs and design elements.

As section 5.2.3 described, the explicit decision to build Armani's user interfaces as loosely
integrated external tools provides the environment with a great deal of coarse-grained user-
interface customization. The fact that Armani supports three distinct user interfaces that all
use the same core infrastructure effectively demonstrates that Armani satisfies this
requirement with respect to coarse-grained configurability.

To support effective, lightweight, and incremental customization of architectural design
environments, however, environment developers also need a lightweight set of mechanisms
for customizing an existing user interface rather than completely replacing it. To address this
need, the Visio-based Armani user interface provides the ability to make fine-grained
modifications to the graphical depictions of designs and design elements.

Designing a user-interface infrastructure that provides this lightweight, fine-grained,
incremental customization capability required me to address a number of important design
issues. The fact that the Visio drawing package [Visio99] is implemented as a component
that can be used as a complete front-end to other tools, such as the core Armani
infrastructure, addressed many of the basic visual configuration issues. For example, Visio
provides flexible customization capabilities for modifying the palette of visual entities that
can be used in a drawing. These entities can be manipulated programmaticaUy and by the
end-user. As a result, the issues that I faced in making Visio an effective front-end for the
Armani design environment proved to be more subtle than those related to actually drawing
a design's graphical icons.

119

One of the primary issues I had to address in making the interface highly customizable was
determining where the semantics for the design elements lived. Although not necessary for
all external tools, the Visio interface stores negligible semantic information about the
architectural entities that its diagrams model. All of the semantic structure for designs and
design expertise is stored in Armani's core architecture design representation component.
Armani systems are depicted in Visio as drawing, and the system's components, connectors,
ports, and roles are represented by the shapes that make up the drawing. A style's design
vocabulary elements are stored on palettes from which an architect using the environment can
select components and connectors to add to the system.

To keep a clean separation between the visual depiction of the design elements and the
underlying semantics of those elements, the visual elements contain only a reference to the
appropriate underlying semantic object that is stored in the environment's ADR. Likewise,
the semantic objects stored in the ADR keep a reference to their appropriate visualization
shapes. It is the responsibility of the GUI factory connector that binds Visio to the ADR to
maintain these references appropriately.

The design vocabulary shapes stored on the editing palette use a different technique for
interacting with the underlying ADR. The shapes stored on the palettes do not represent
actual instances in a design; rather they are templates that store textual Armani expressions
that describe how to create a new instances of a that component or connector. The shapes
stored on the palette are associated with templates rather than types because it allows greater
flexibility in mixing and matching types to create new components. It is, for example, easy to
create a transactkmd database component template that will instantiate a component that
satisfies both the database type and the transactkmd type without having to define a new type
at the semantic level. When one of these shapes is copied from the palette to a drawing, the
Armani template is sent to the ADR, where it is processed, an appropriate component or
connector is added to the parent system, Visio adds an appropriate shape to the system's
drawing, and the GUI Factory connector maintains the appropriate references between the
visual shape and the underlying semantic object.

Overall, this approach has proven extremely flexible for performing fine-grained dynamic
adaptations of design environments. The primary downside to this approach is that it
requires the environment developer to do slightiy more work to add some forms of user-
interaction capability that require a tight integration between a design's underlying semantic
representation and its visual depiction. Experience with the case studies described in
Chapters 7 and 8, however, did not indicate that this limitation was particularly problematic.

Another important issue that this design raises is how to integrate other external tools that
provide their own user interface with the Visio-based Armani environment and GUI. The
basic problem is that if multiple tools expect to be the primary interaction mechanism with
the underlying representation they can interfere with each other [GA095]. Once again, the
ability to provide a wide-range of integration techniques addresses this issue. In general, if
other tools provide user interfaces that demand be the primary driver for interactions wkh
Armani's underlying ADR, these tools are best integrated as tools running in completely
different processes that communicate with the low-bandwidth Acme connector. In this way,
the UI's can live in separate processes and they can each generally be adjusted to

120

communicate only when appropriate. External tools, on the other hand, that provide user-
interfaces that do not need to be the only one running in their process can generally be
linked into the environment much more tighdy using either of the other two connection
techniques.

In addition to interoperability issues, integrating arbitrary tools in a single environment
introduces significant issues regarding concurrent access to the shared design representation.
To keep the scope of this research tractable for a single dissertation, I did not implement
significant concurrency controls in the environment. Although an industrial strength design
environment would need to support such capabilities (some of which are described in
[GA094]), the Armani prototype simply flags this as an issue that architects using the
environment need to be aware of. In practice, the custom environments we used made
relatively little use of implicit tool invocation. As a result, it was straightforward for
architects using Armani to prevent concurrency problems by invoking only a single tool at a
time.

5.4 Summary

The Armani design environment described in this chapter meets its fundamental
requirements and demonstrates, by its existence, the second half of this thesis' claim that
design expertise captured with the Armani design language can be used to incrementally
customize software architecture design environments.

121

Chapter 6

Task Analysis

In the thesis statement I claim that it is possible to capture a significant and useful collection
of software architecture design expertise with a conceptual framework of design rules and
architectural styles, and further, that this captured design expertise can be used to
incrementally customize software architecture design environments. The discussion of the
Armani language and environment in chapters 4 and 5 demonstrate the feasibility of this
claim - that it is possible to do so at all. In the next three chapters I describe a detailed task
analysis and a set of experiments for evaluating the utility of the language, tools, and overall
approach. To do so, I evaluate them for the following three properties:

• Incrementality. A software architect using Armani should be able to incrementally
adapt his or her Armani-based tools to make use of available design expertise. Further,
the incremental adaptation of an existing (possibly generic) environment should be
quicker and easier than building a new environment from scratch.

• Power. The Armani language and environment should be able to capture useful, non-
trivial software architecture design expertise.

• Breadth. The mechanisms provided by Armani should be capable of capturing a
sufficiently broad range of software architecture design expertise. Coupled with the
Armani infrastructure, this expertise should be capable of producing design
environments for a wide variety of design domains and architectural styles.

I begin the validation of this thesis and the utility of Armani with a detailed analysis of the
tasks required to capture design expertise, build, and incrementally adapt a customized
software architecture design environment. The analysis evaluates both the traditional
"ground-up" approach and the Armani approach and provides a comparison of the tasks
and effort required to produce such an environment using each of the two methods. Section
6.1 of this chapter describes the results of this analysis. The purpose of this task analysis is
to argue that, in theory, Armani fundamentally simplifies or eliminates many of the most
time consuming and difficult tasks an environment designer must undertake with the
traditional "ground-up" approach to creating a custom design environment.

To empirically validate the analysis results I conducted experiments in the form of two sets
of case studies. In the first set of case studies I used the Armani system to construct a
diverse collection of customized software architecture design environments. To demonstrate
the breadth of expertise that Armani can capture, the styles selected for these case studies
span the six "toplevel" categories of the taxonomy of architectural styles presented in
[SC97]. Although not an exhaustive taxonomy, it captures most of the commonly used
architectural styles. The structure and approach of the experiments also demonstrate the
incremental nature of the language and tools. In these case studies I quantify the effort

123

required to conceptualize and construct each of the case study environments. A detailed
description of this experiment and its results are provided in Chapter 7.

The second set of case studies, described in Chapter 8, demonstrates that people other than
the author can use Armani to produce useful and interesting software architecture design
environments. In these case studies practicing software designers used the Armani system to
model one or more architectural styles and used the Armani infrastructure to create custom
software architecture design environment and tools for those styles. Although not as
structured as the case studies described in Chapter 7, they serve to validate the utility of the
overall Armani approach.

The experiments in both sets of case studies were designed only to evaluate Armani's
effectiveness as a tool for rapidly creating custom software architecture design environments.
They were not designed to evaluate the quality or effectiveness of the environments
produced. Developing a set of experiments and metrics for objectively measuring
amorphous concepts such as quality and effectiveness for such a broad variety of different
environments simply proved too challenging to be reasonably completed in the scope of this
dissertation.

6.1 Task analysis

This section describes an analysis of the tasks required to design and construct a customized
software architecture design environment using both the "traditional approach" of building
the environment ground-up, possibly using existing commercial off-the-shelf (COTS)
components, and the Armani approach in which a configurable software architecture design
environment is incrementally customized using a declarative architecture description
language.

Each of the tasks described in this analysis is given a time estimate that includes best,
average, and worst case times for each stage, along with a set of characteristics that help
classify the types of projects that fall into each of these categories. The effort numbers
assigned in these task analyses are rough estimates based on personal experience with teams
building similar tools, informal estimates from other people who have built such tools, and
the fact that comparable commercial and research tool development projects generally
require multiple people working for one or more years.

These estimates can, of course, vary widely depending on the scope of the project and the
power and polish desired in the environment produced. The estimates should, however,
provide a rough idea of the likely time that each of the tasks will take under various
conditions. Overall, the specific time estimates for the individual tasks are significantly less
important than the specific tasks and subtasks required by each approach, and the units most
likely used to measure these tasks (i.e., hours, days, months, or years).

An additional concern addressed by the task analysis is that the requirements of a prototype
Armani environment are less demanding than the requirements of a commercial software
architecture design tool such as ObjecTime [SGW94]. Commercial software packages must,
for example, be built significantly more robust and feature-rich than the Armani

124

environments created in this dissertation's case studies. To address this discrepancy in the
task analysis I have attempted to include only those tasks required to build comparably
robust and feature-rich tools. I have specifically excluded, for example, the lengthy testing
processes required before releasing commercial tools.

6.1.1 The traditional approach

The current state-of-the-practice in constructing a software architecture design environment
is to design and build the environment from the ground up. Throughout the rest of the task
analysis, this approach will be referred to as the traditional approach. An environment designer
using this traditional approach needs to perform at least four critical tasks - domain analysis,
schema capture, implementation, and maintenance/evolution. This section describes these
four fundamental tasks and some of the subtasks required to complete them. Each task is
given a time estimate (in parentheses) for best, average, and worst case scenarios.
Characteristics are given for each of the scenarios to illustrate and classify which of the
scenarios a given project is likely to fall under.

The traditional approach involves (at least) the following tasks.

Task 1. Analyze the architectural design domain. In this stage the environment designer
analyzes the design domain for which the design environment is to be built. The
environment builder needs to ascertain the important aspects of the domain such as its
standard design vocabulary, the design rules used in creating systems in this domain, and
idioms and analyses that have been used successfully on similar systems built previously.
In order to capture and express this domain analysis, the designer needs to either select
an appropriate existing notation or create a new notation that direcdy reflects the
concepts being captured.

Best case scenario (~1 week):
Well understood domain, environment analyst very familiar with domain, relatively
homogenous design elements, existing design rules and analyses well documented,
environment target-users enthusiastic about new tools. Easy integration with existing
analysis and synthesis tools.

Averag case scenario (~2 months):
Complex heterogeneous domain, but reasonably well understood. Many existing
design rules and heuristics, but they are not well documented, analyst familiar with
domain but not necessarily domain expert, environment target-users ambivalent
towards new tools. Existing analysis and synthesis tools present moderate integration
challenges.

Worst case scenario (~1 year or time to project cancellation):
Complex, poorly understood, heterogeneous domain. Few existing (effective) design
rules and heuristics, almost none of which are documented. Environment
designer/builder not very familiar with analysis domain. Environment target-users
actively hostile towards new tools. Analysis and synthesis tools either non-existent, or

125

available but running only on obsolete hardware (requiring significant porting or
complex tool redesign).

Task 2. Find or create a language and schema for capturing and expressing the design
vocabulary, rules, and analyses (collectively called the design expertise) to be used in the
environment. This schema will be used both to document the architectural style that this
environment is being defined to support, as well as provide a blueprint for implementing
the environment and associated tools.

Best case scenario ("2 days):

Environment designer can use existing language and/or schema with which he is
already an expert and the selected notation provides a good match to design
expertise to be captured. The person performing the modeling is also the person
who performed the domain analysis, or has at least been an integral part of the
analysis

Averag case scenario ("3 weeks):

Existing notation can be used to express design expertise schema, but match
between notation and expertise to be expressed is tenuous and requires either
significant effort to adapt the design expertise to the available notation, or the
notation itself must be extended. Environment designer is familiar with the
language/schema but not an expert at using it.

Worst case scenario ("6 months or time to project cancellation):

Unable or unwilling to use any existing Schemas or design notations. Decide to
invent a new notation from scratch in which the design schema will be described.
Designers) inventing notation and schema are inexperienced at creating such
notations and schema.

Task 3. Design, implement, test, and deploy the custom design environment. The cost and
duration of this phase clearly has tremendous variability, depending on the power,
capabilities, and polish demanded of the completed environment, along with the
availability of appropriate reusable COTS components. This task basically includes all
development costs and effort from the point where the desired design expertise and
tools have been specified to the point where the environment is deployed and software
architects are using it to design systems.

The specific steps required to complete this task vary greatly depending on the
requirements of the environment, the quality of the work done in tasks one and two, the
availability of appropriate reusable components, and the experience of the developers. In
most cases, however, at least the following steps need to be taken to complete this task.

a) Define the requirements for the environment and tools based on the domain
analysis and expertise capture completed in tasks one and two.

b) Specify the architecture and tool integration framework for the environment.

126

c) Figure out how to represent the captured architectural design expertise in the
environment and its tools. Steps (b) and (c) will probably need to be iterated
multiple times.

d) Implement and integrate the environment and tools. This may be primarily an
exercise in finding and adapting a set of reusable components or, alternatively,
this may involve building most of the environment's pieces from the ground up.
As discussed in Chapter 5, this step will generally require the implementation of
at least a design representation database, a graphical user interface, and a tool
integration framework. Frequendy, many other pieces will also have to be
implemented to support the three primary elements.

e) Test and debug the environment. Iterate with step (d) as needed.
f) Document and deploy to users.

The precise duration and relative importance of each of these steps will vary from
project to project, but they all require significant time, effort, and expertise to complete
successfully.

Best case scenario ("1 month for 1 developer):
Small environment, COTS components available and used for most major parts of
the system, COTS pieces integrate smoothly. Most analysis and synthesis tools are
already built and need only be integrated with new environment, integration is
smooth. Degree of polish and customization expected is relatively low. Expert
developer who has built this kind of environment before and is reasonably familiar
with all applicable COTS pieces.

Average case scenario (6 months for 2-3 developers):
Polished, robust environment required, some COTS components available, but
significant portions of the environment have to be built by hand, some COTS
components present significant integration difficulties. Significant portion of tools
need to be built by hand or undergo difficult porting. Experienced developers, but
not experts at building design environments.

Worst case scenario (> 1 year for 5-10 (or more) developers, or time to project cancellation):
Polished, robust environment required. Aggressive requirements. Few COTS
components used (or even available). Many or most of the tools need to be built
from scratch. "Not-invented-here" pervades development work, resulting in
unnecessary "ground-up" development. Developers inexperienced and/or unfamiliar
with the development domain. Poor analysis preceding development.

Task 4. Maintain, update, and modify the deployed design environment to capture and add
additional design expertise, add additional tools and analysis capabilities, or evolve the
schema to adapt to a changing understanding of the design domain.

Best case scenario (~1 day to 1 week for 1 developer):
Simple change request that doesn't disrupt any fundamental design decisions, original
developer is maintaining code and providing updates, automated regression testing

127

allows reasonable assurance that changes haven't introduced serious new bugs with
minimal time required by developer.

Averag: case scenario (lto2 months for 1-2 developers):

Non-trivial change that requires rethinking of the original schema or design
concepts. Schema and design expertise are hard-coded into design environment and
distributed throughout the implementation so modifying them requires significant
system archeology. Original developers are no longer maintaining the code. Little or
no regression testing infrastructure to verify that changes won't disturb the rest of
the system.

Worst case scenario (> or> >2montbsfor 1 or more developers, or time to project cancellation):
Change requires complete rethinking of design expertise schema, design rules, and
vocabulary, all of which is poorly hard-coded into the system implementation and
distributed throughout the code. Original environment developers have left the
organization. Original design is poorly documented. Change may require capabilities
that a COTS component can't provide, necessitating expensive work-around or
replacement.

Task 4 will be repeated as needed whenever updates or modifications to the system are
required.

Task

(1) Domain Analysis
(2) Schema Capture
(3) Design,
implement, test and
deploy environment
Cumulative time to
initial deployment

(4) Time required for
environment updates
and modifications.

Approximate Time Required (in Engineer/Days, Weeks,
Months, or Years)

Best Case
1 week
2 days

1 month

" 0.1 years
(1.4 months)

1-5 days

Average Case
2 months
3 weeks

lyear

1.25 years

1-4 months

Worst Case
1+ years

6+ months

5+ years

^6+yearsv/:;\v

(if not cancelled)

> or » 2 months

Table 6.6.1: Breakdown of approximate engineer-years required to specify, design,
build, and deploy a customized software architecture design environment
using traditional ground-up approach.

6.1.2 The Armani approach

At a very abstract level, the four top-level tasks that an environment designer must undertake
to build a customized software architecture design environment with Armani are the same as
the top-level tasks required using the traditional approach. The specific sub-tasks required to

128

complete each of these top-level tasks, however, can vary dramatically between the Armani
approach and the traditional approach.

This section presents an analysis of the four top-level tasks required to create a custom
Armani design environment along with a discussion of the key subtasks required for each of
the top-level tasks. As in the previous section, each task is given a time estimate (in
parentheses) for best, average, and worst case scenarios. Characteristics are given for each of
the scenarios to help illustrate and classify which of the scenarios a given project is likely to
fall under.

Task 1. Analyze the architectural design domain to capture design expertise - design
vocabulary, constraints, heuristics, and analyses - for the target domain. As in the
traditional approach, the environment builder needs to discover and/or articulate the
important aspects of the domain such as its design vocabulary, the design rules used in
creating systems in this domain, and idioms and analyses that have previously proven
helpful. The times and tasks required to do this in Armani are comparable to those
required with the traditional approach. Armani does not eliminate the need to deeply
understand a design domain before constructing automated design tools for that domain.
Armani can, however, provide some assistance with this task by providing a framework
for doing the domain analysis and a collection of extensible, generic analyses.

Best case scenario (~1 week)
Well understood domain, environment analyst very familiar with domain, relatively
homogenous design elements. Existing design rules and analyses well documented,
environment target-users enthusiastic about new tools. Easy integration with existing
analysis and synthesis tools. Analyst experienced with using Armani.

Average case scenario (~1 month):
Complex heterogeneous domain, but reasonably well understood. Many existing
design rules and heuristics, but they are not well documented, analyst familiar with
domain but not necessarily domain expert, analyst familiar with Armani.
Environment target-users ambivalent towards new tools. Existing analysis and
synthesis tools present moderate integration challenges.

Worst case scenario (~1 year or time to project cancellation):
Complex, poorly understood, heterogeneous domain. Few existing (effective) design
rules and heuristics, almost none of which are documented. Environment
designer/builder not very familiar with analysis domain. Environment target-users
actively hostile towards new tools. Analysis and synthesis tools either non-existent, or
available but running only on obsolete hardware (requiring significant porting or
complex tool redesign). Novice analyst.

Task 2. Articulate the captured design expertise from the domain analysis in the Armani
design language. This task can generally be done much faster with Armani than with the
traditional approach because (1) much of the schema required for capturing architectural
design expertise is already encoded in the Armani language, eliminating the traditional
approach's subtask of creating such a schema, (2) the Armani language is explicitly

129

designed for capturing this type of architectural design expertise, and (3) the domain
analysis was performed with this language already selected as a target, reducing the
likelihood of mismatch (same as best case in traditional approach).

Best case scenario (~0.5 days):

Small domain, experienced Armani modeler, all vocabulary and design rules
expressed directly in Armani, no mismatches between expertise to express and the
Armani language used to express it.

Averag case scenario ("2-5 days):

More complex domain, relatively few design rules and analyses need to be written as
external tools and linked into the environment. Domain modeler is familiar with
Armani, rules. Minimal mismatch between expertise to express and Armani
language/schema.

Worst case scenario ("2-3+ weeks or time to project cancellation):

Large, heterogeneous domain, many design rules and analyses need to be written as
external tools and linked into the environment., novice modeler, significant
mismatch between Armani language and expertise that needs to be expressed.

Task 3. Design, implement, test, and deploy the custom design environment. The difficulty
and time required to complete this task can vary widely depending on the sophistication
and polish expected of the final environment. In general, however, performing this task
with the Armani system provides a dramatic savings in time, effort, and cost over the
traditional approach because the infrastructure needed for such an environment does not
need to be built from the ground up. Further, a significant amount of the customization
is performed by simply loading the design expertise captured in task 2 directly into the
generic environment infrastructure. The specific sub-tasks required to complete this task
with the Armani system are:

g) Load the design vocabulary, design rules, heuristics, and analyses captured in
tasks 1 and 2 into the generic Armani design environment. This step makes all of
these design elements available for use as design building blocks in the custom
environment,

h) Configure the user interface to map icons to their underlying semantic
representations. Optionally, customized editing dialog boxes can be created for
editing specific types of vocabulary elements.

i) Write and/or link-in any external design tools (analysis or synthesis) to be used
with the environment,

j) Test the environment. Many consistency checks are provided by the Armani
infrastructure to minimize the difficulty of testing the environment,

k) Deploy to users

As with the traditional approach's third step, the time, effort, and expertise required to
complete this step varies widely depending on the richness of the tools that need to be
written and the polish and customization desired in the user interface.

130

Best case scenario (~1 day fa 1 developer):

Small, homogeneous design domain, small number of analyses defined directly in
Armani or performed by existing tools that are easily linked in, experienced Armani
developers, little customization required in the user interface.

Average case scenario (1-2 weeks fa 1 developer):
Heterogeneous style, non-trivial customization and polish required in the user
interface. Some design tools need to be written from scratch, others need to be
linked in, developers have familiarity with Armani but are not experts.

Worst case scenario (2-4 months fa 1 developers, or time to project cancellation):
Large, heterogeneous style, heavily customized and sophisticated user interface,
many tools need to be written from scratch. Novice Armani developer(s), poor initial
domain analysis.

Task 4. Maintain, update, and modify the deployed design environment to capture and add
additional design expertise, add tooling and analysis capabilities, or evolve the schema to
adapt to a changing understanding of the design domain. Along with step 3, this is the
step that provides a huge savings over the traditional approach. In Armani, many
modifications and customizations can be performed by the end-user as his or her
understanding of the domain and design issues evolves. Specifically, additional design
expertise in the form of vocabulary, design rules, heuristics, and analyses can be added to
the environment by the end-user, on-the-fly, directly through the design environment
itself. Further, this additional design expertise can be packaged and provided to other
environment users if desired. Tools can also be dynamically and incrementally linked
into the environment. Thus the environment's original developer(s) can be completely
removed from the loop for many required modifications to the environment,
dramatically reducing the time to turn a proposed change into an environment capability.

Best case scenario (~15 minutes fa end-user):
User wants to add or modify a design rule, vocabulary element, or analysis. The
change can be made by simply editing the appropriate schema element, after which
Armani reconfigures itself with the new or updated design expertise.

Average case scenario (1 hour to 1 day fa end-user):

User wants to make a significant modification to the domain schema, requiring
changes to or additions of multiple design vocabulary elements, rules, analyses, or
linked in tools. Perhaps a relatively straightforward design tool needs to be linked in
or written.

Worst case scenario (1 or more weeks fa 1 ormore environmentdevelopers):
Change requires complete rethinking of design expertise schema, design rules, and
vocabulary, and/or significant modification to the user interface and linked-in design
tools. Original environment developers may have left the organization. Original
design is poorly documented. Change may require capabilities that a COTS
component can't provide, necessitating expensive work-around or replacement.

131

This final step will be generally be repeated many times throughout a design environment's
lifecycle as updates or modifications to the system are required.

Table 6.2 summarizes the results of the Armani task analysis. Table 6.3 compares the results
of the Armani task analysis to the results of the traditional approach's task analysis.

Task

(1) Domain Analysis
(2) Schema Capture
(3) Design,
implement, test and
deploy environment
Cumulative time to
initial deployment

(4) Time required for
environment updates
and modifications.

Approximate Time Required (in Engineer/Days, Weeks,
Months, or Years)

Best Case
1 week

0.5 days

1 day

" 8 days

15 minutes

Average Case
1 month
2-5 days

1-2 weeks

1.5 months

1-8 hours

Worst Case
1+ years

2-3+ weeks

2-4 months

- :~JU25years■%■
(if not cancelled)

1 or more weeks

Table 6.2: Breakdown of approximate engineer-years required to specify, design,
build, and deploy a customized software architecture design environment
using the Armani approach.

Task Approximate Time Required (in Engineer/Days, Weeks,
Months, or Years)

Best Case Average Case Worst Case
Traditional Armani Traditional Armani Traditional Armani

(1) Domain Analysis 1 week 1 week 2 months 1 month 1+ years 1+ years
(2) Schema Capture

2 days 0.5 days 3 weeks 2-5 days
6+

months
2-3+
weeks

(3) Design,
implement, test and
deploy environment

1 month 1 day lyear
1-2

weeks
5+ years

2-4
months

Cumulative time to
initial deployment

~1.4
months

~8 days " 1.25
years

" 1.5
months

~6+
years
(if not

cancelled)

"1.25
years
(if not

cancelled)
•

(4) Time required for
environment updates
and modifications.

1-5 days 15
minutes

1-4
months

1-8
hours

>or»
2 months

lor
more
weeks

Table 6.3: Comparison of approximate engineering time required to specify, design,
build, and deploy a customized software architecture design environment
using the traditional ground-up approach vs. the Armani approach.

132

6.2 Summary of task analysis and comparison of results

Assuming that the case studies presented in the following chapters uphold these task
estimates, this analysis strongly argues that Armani eliminates many of the difficult, time
consuming tasks required by the traditional ground-up approach to developing custom
software architecture design environments. Although the specific numbers used to estimate
the duration of each of these tasks are only rough estimates, the exact time estimated for
each task is not critical. The qualitative comparison between the two approaches is sufficient
to support the main points of the argument.

The primary insight to be gained from this analysis comes from the enumeration of the
specific subtasks required to complete the top-level tasks using each of the two approaches.
This detailed look at the specific tasks illustrates that Armani provides the greatest leverage
in the implementation stage of environment creation. Armani also qualitatively changes the
way in which expertise is captured (in the second stage), and the way in which an
environment can be updated. In each of these stages, Armani not only reduces the number
and difficulty of the tasks required to complete the stage, it changes who can complete the
tasks. Specifically, Armani empowers its end-users to build and customize their design
environments in a way that is very rarely found in design environments built with traditional
approaches.

There are at least two implications that follow from this analysis. First, by either eliminating
or drastically reducing many of the most time consuming tasks required by the traditional
approach (defining a schema for capturing design expertise, designing and implementing the
environment and tools), Armani allows environment designers to create and evolve their
design environments much more quickly than they can by building from the ground up.

Second, Armani moves the bottleneck for producing an environment from implementation
(the dominant timesink using the traditional approach), to domain analysis (the dominant
timesink using the Armani approach). This is, in itself, an extremely valuable benefit. Armani
allows environment developers to focus their effort and skills on figuring out whet domain
expertise and analytical capabilities they want the tools to support, rather than how they will
implement support for the expertise that they capture.. As a result, they can spend more of
their time figuring out what their tools should do and less of their time designing and
implementing the tools.

D3

Chapter 7

Structured Case Studies

The previous chapter argued that, at a conceptual level, creating a custom software
architecture design environment using Armani eliminates many of the difficult and time
consuming tasks such a project traditionally requires. This chapter describes a series of case
studies undertaken to determine whether the assumptions made in the conceptual analysis of
the previous chapter could be realized in practice.

As with the task analysis, these case studies seek first to demonstrate that the Armani
approach can be used to capture design expertise at all, and second, to demonstrate that
expertise so captured can be used to incrementally configure and customize the Armani
design environment. Demonstrating these two capabilities provides a basic validation of the
thesis that it is possible to capture a significant and useful collection of software architecture
design expertise with a conceptual framework of design rules and architectural styles and,
further, that this captured design expertise can be used to incrementally customize software
architecture design environments.

This thesis, however, claims only that it is possible to incrementally capture design expertise
and configure custom design environments with the Armani approach. Arguing for the vale
of the overall Armani approach also requires a demonstration that Armani is capable of
capturing a broad variety of design expertise and that this expertise is powerful, non-trivial,
and captured in such a way that it's useful in practice.

To make this argument I used the Armani system to construct custom design environments
for eight different architectural styles. The selected styles and the capabilities of the
environments produced support the claim that the technique provides sufficient breadth,
power, and incrementality. These case studies both argue for the validity of the thesis and
demonstrate the utility of the Armani approach.

7.1 Experimental structure

The basic structure used for this experiment was to perform a series of case studies in which
I constructed custom software architecture design environments for eight different archi-
tectural styles (referred to as test styles). In each case study, I measured the time required to
specify the style's design expertise and the time required to configure a design environment
with that expertise (tasks two and three from the previous chapter's task analysis). In
addition to the time required, I measured the number of vocabulary types defined, the
number of design rules defined, total lines of code written or modified, and the number of
visual shapes defined. The number of entities defined serves as a proxy for the size of the
overall style specification effort.

B5

Through careful selection of the test styles these experiments demonstrate the breadth,
power, and incrementality of the Armani approach. The following criteria were used to
select the test styles.

Availability of a published style description. Each of the test styles specified in these
case studies is based on one or more published descriptions of that style. These
published style descriptions provide informal specifications of the styles' design
expertise (vocabulary, design rules, and analyses). The rigor with which the publications
define the styles, as well as the match between the Armani conceptual framework and the
format used for expressing the style's expertise varied widely from style description to
style description. All styles selected had to have a rich enough informal description of
the style that the expertise it contained could be used as the basis for creating a
compelling design environment.

Using published sources as the basis for the styles provide three key benefits. First,
starting with published sources provides a degree of external validation of the utility of
the styles themselves. The design expertise embodied by these architectural styles has
proven useful enough to somebody that it was worth capturing and publishing.

Second, using published sources as a foundation leverages other people's expertise. By
attempting to capture expertise that had been previously published, I did not need to
become a expert in each of the domains for which I built a case study environment. I
needed only to fully understand the published specification. Likewise, I did not need to
find an expert in each of these domains who was willing to learn the Armani tool and
participate in this experiment. Finding multiple such experts was impractical given the
budget, time, and scope constraints of the dissertation research.

Third, by using published descriptions of the target styles as a domain analysis, the time
and effort required for the domain analysis task can be factored out of the case study
experiments. As the previous chapter's task analysis indicates, Armani provides minimal
leverage for completing the domain analysis step. Armani does not mitigate the
environment designer's need to deeply understand the domain in which he or she is
working. In these experiments the domain analysis phase consisted of finding
appropriate published references, reading and understanding them deeply, and, if
needed, discussing the published style specification with local experts. As a result, the
metrics captured in these experiments reflect the time and effort required to create a
custom design environment after the domain analysis has been completed.

Breadth. Selecting an appropriately broad variety of architectural styles for the case studies
is critical for arguing the generality of the Armani approach. The discipline of software
architecture is fairly young. As a result, the field as a whole has not yet established a
complete catalog of all of the interesting or commonly used architectural styles. The
Shaw/Clements architectural style taxonomy [SC97], however, outlines an initial proposal
for what such a catalog might look like. I used this taxonomy as a basis for selecting test
styles because it provides a clean and broad overview of many frequently used
architectural styles. The taxonomy defines six "toplevel" categories of architectural
styles -dataflow, call-and-retum, interacting processes, data-centered repositories, hierarchical, and

136

data sharing. The authors augment this toplevel classification with more detailed examples
of architectural styles that fit into each of these categories. Shaw and Clements claim
that, though not exhaustive, these toplevel categories cover a significant portion of the
commonly used architectural styles.

To demonstrate the breadth of architectural design expertise that Armani is capable of
capturing then, at least one test style was chosen from each of the six toplevel
architectural categories described in the taxonomy. In evaluating potential test styles
from each of these categories I also made an effort to insure that, when evaluated as a
whole, the set of architectural styles I selected from each of the toplevel categories
addressed a broad range of architectural issues and captured a broad range of
architectural attributes. As a result, the eight case studies described in this chapter
demonstrate that Armani is capable of capturing and leveraging a wide variety of
architectural design expertise.

Power. The power of the environments produced in these case studies varied significantly.
For inclusion in these experiments, however, a published style description had to
describe, or at least point the way towards, some compelling analytical or design guidance
capabilities. To show the depth of the analytical power that can be included in an
Armani environment, two of the styles (the Client-Server styles) were augmented with
significant external analysis tools. This experimental approach demonstrates that an
Armani environment can quickly and easily capture many forms of design expertise. It
also demonstrates that significant, complex, modeling and analysis tools can be
integrated with a customized Armani environment to capture and exploit design
expertise that is not readily captured directly in the Armani design language.

Incrementality. These experiments demonstrate the incrementality of the Armani approach
on two levels. At a coarse level, the basic process of creating a custom environment is
simply the incremental adaptation of a generic Armani environment by loading styles
and other captured design expertise into the environment. In this way, all of the test
styles selected demonstrate the incremental nature of the Armani approach. At a more
fine grained level, two of the eight test styles were selected because they are natural
extensions and specializations of other, more generic, test styles. These style speciali-
zations were created by making incremental adaptations to existing styles so that the
initial style's environment could capture additional design expertise.

Using these criteria, I selected eight architectural styles to use as test cases. For each of these
styles I built a custom Armani-based software architecture design environment and tracked
the time, effort, and tasks required to create it. Specifically, I measured the time spent
creating the style and environment (broken down into time to capture abstract design
expertise and time to customize the visualization and tooling of the environment), the
number of new vocabulary entities defined, the number of design rules defined, total lines
of code written, and the number of custom shapes defined for use in the customized
graphical user interface.

At first glance, the fact that the creator of the Armani tool is also the person performing the
case studies may cast doubt on the validity of the studies. This was, however, a reasonable

D7

approach for this phase of the validation. Having one person who was already expert with
the Armani system perform all of the initial case studies factors issues of learning curves
and differences in ability between individual environment developers out of the experi-
mental results.

The case studies described in this chapter are only part of the overall thesis validation.
Chapter 8 describes a set of "external" case studies in which people and organizations not
associated with the Armani project used Armani to create their own software design tools
and environments. The external case studies address the issue of whether people other than
myself can effectively use the Armani tools and techniques.

These experiments are primarily intended to demonstrate that the overall Armani approach
is feasible. A secondary goal is to demonstrate that the environments produced can capture
useful design expertise for a broad variety of architectural styles. Thus the variable being
tested in these experiments is the range and depth of design expertise that can be captured
and exploited with Armani, rather than the skill of the environment developer usine the
tools. b

7.2 Discussion of case studies

This section presents a detailed discussion of eight case studies that I conducted. I present
the case studies according to how they fit into the six toplevel style categories defined in
[SC97]. I defmed at least one Armani style and environment for each of these six categories.
For two of the categories I created a base style and then extended the base style to support
additional capabilities with a more specific style.

Each case study begins with an overview of the style it captures - its interesting aspects, the
issues facing designers working in that style, its key design vocabulary and design rules, and a
citation of the sources from which the style definition was extracted. This is followed by a
discussion of interesting issues raised in the process of customizing the Armani system to
work with the style in question. Each of the case studies includes a figure with a screen-
dump from the custom environment and an overview of some of the important statistics
for the case study and environment.

7.2.1 Case study 1: a dataflow style

For the first structured case study, I created a custom environment for the batch sequential
architectural style. This style, which is popular for mainframe-based data processing applica-
tions, captures a common approach to building software systems that repeatedly perform a
series of operations over large sequences of data records. I based this style specification on
the discussion of "Sequential Processing Program Design" in Larry Best's book Application
Arcbaectme: Modern Large-Scale Information Processing [Be90]. Although Best's presentation of
this style is somewhat informal, I found it straightforward to add the formality required by
Armani to his style specification while retaining the style's basic concepts, vocabulary, and
design rules.

B8

Systemwide issues

Conceptually, systems built in the batch sequential style consist of a set of data processing
operation components that perform one or more operations on a series of data records, a set
of input source and output sink components that handle system input and output, and a set of
data stream connectors that define and manage the flow of data through the system.

This structural breakdown provides a clean way for the architect to divide the functional
processing needs of a batch sequential system amongst the data processing operation
components. It also clearly identifies the dataflow paths through the system. These are two
of the important system-wide issues that an architect working in the batch-sequential style
must manage. Further style-wide design issues include: processing performance (both total
system throughput and processing latency), design modifiability (how difficult is it to add,
remove, or change the functional capabilities of the system, or replace an existing
component with a component with different non-functional properties), data format
compatibility (between components), connector interaction protocols, and error handling
and recovery.

The design information that architects and tools need to reason about these issues is stored
in the properties and design rules of the style's vocabulary elements - component,
connector, port, and role types. With this approach, design details are stored locally with the
design elements that make up a system. The emergent properties of the system are captured
by the design rules and analyses that evaluate the properties of the system's constituent
elements to address the system-wide issues just outlined.

Component issues

One of the early tasks an architect must perform in designing systems in this style is to
define a functional decomposition of the processing to be done. This decomposition divides
the overall system processing into a sequence of discrete functions. These functions are then
mapped to a set of data processing operation components that execute the requested functions.
Architects can specify and evaluate individual data processing operation components for:
functionality provided, persistence of state between records, processing latency and
throughput, error handling policies, and data validation policies. All of these aspects of
individual components are represented with property annotations on the data processing
operation component type specification.

Connector issues

After the basic functional decomposition has been performed and the functional
responsibilities have been assigned to components, it is necessary to connect those
components by feeding the output of each data processing operation into the input of one
or more subsequent processing operations. Alternatively, if the processing has been
completed then the output needs to be written to the appropriate storage or output device.

The basic connector used in this style is the data stream. All data stream connectors insure
that data is delivered from an upstream component to a downstream component unmodified
and in the order that it was received from the upstream component. Data availability is the

B9

Batch Sequential Style
Category: Data How

Semantics Statistics
Primary component types:
- Data Processing Op
- Data Input Source
- Data Output Sink ...

Primary connector types:
- Data Stream
- Fan Out Data Stream

- Rendevous Data Stream ...
Sample design rule:
- All connectors must be

Data Streams

Total types defined: 29
Design analyses defined: 3
Time to define: 3.5 hours
Lines of Armani code: 83

Environment Statistics
Total shapes defined: 14
Customization time: 5% hrs.

. V'sio Professional - batch sequential system.vsd:Batch Sequential Style BHsIE3|

ja File Edit View insert Format Jools Shape Window Help -\S\ *l

flBatch Sequential Style

Data Interactive
Processing I/O

Interactive Interactive
Output Input

Data Sink Data
Source

■ H
DB Sink DB Source

ill ill
Output File Input File

HD* HD>
FanOut Binary Data
Data Stream

Rendevous Round
Data Robin Data

Stream Stream

■±lhl

Figure 7.1: Overview of the Batch Sequential Style and environment

primary control signal used by data stream connectors to signal a transfer of control
between components.

Data stream connectors need to be able to handle large volumes of data flowing between
components that can have highly variable processing rates. As a result, they must be able to
buffer large amounts of data and adapt to differences in processing speed between the
different components. Three further issues that connectors need to address in this style are
(1) whether the components attached to the connector will be pushing or pulling their data,
(2) how the connectors avoid or react to buffer overflows, and (3) what policy is used for
aggregating or replicating data streams with multiple input sources or output sinks.
Numerous subtypes of the data stream connector type, which address these issues in various
ways, are provided as basic system building blocks.

All three of these issues are captured in the properties of the connector types defined by the
style. The style defines specific property types for describing push-pull behavior, buffer-
overflow behavior, and data-replication behavior. It also defines a set of design rules that
ensure that connectors and the components to which they are attached agree on these

140

protocols and behaviors. As a result, architects working in this style can explore their options
with respect to these issues by adjusting the values of these properties on their connector
and component instances and testing whether their proposals satisfy the style's design rules.

Discussion and evaluation

As Figure 7.1 indicates, the process of defining this architectural style and customizing the
generic Armani environment to support it was quick and straightforward, requiring only 9.25
hours of total development time. As mentioned earlier, this time measurement does not
include the domain analysis effort (primarily reading and understanding Best's book) that
preceded the style specification and environment development.

As the previous sections describe, I was able to capture and represent a wide variety of
design options for this style using only Armani's property, design rule, and type constructs.
The ability to define enumerated property types proved very useful because many of the
properties that I needed to capture were easily represented with a discrete and fixed set of
possible values. Furthermore, it was straightforward to identify which combinations of these
values across components and connectors were valid and which were invalid, and to wnte
corresponding design rules to insure valid combinations. For example, enumerated
properties capture whether data is pushed or pulled across port/role pairs and whether that
pushing or pulling is active or passive. Likewise, enumerated properties are used to define the
three basic ways that a connector can handle buffer overflow - by blocking, dropping
received records, or crashing.

Another finding from this case study was that the Armani design language proved
remarkably effective at capturing the non-functional properties of an interesting set of
connectors. The connectors in this style drive control flow with data flow, which is the
opposite of traditional procedural connections. Further, they provide the ability to put
multiple producers or multiple consumers on a single connection. Although I did not
provide a formal behavioral protocol specification for the connectors, I was able to capture a
wide variety of nonfunctional properties related to the connectors. I was also able to capture
and enforce a few key aspects of the connector's communication protocol using enumerated
properties and design rules/These aspects included ensuring appropriate push/pull and
active/passive combinations between ports and the roles to which they were attached, buffer
overflow policy, buffer sharing policy, transferred record format, and the model for handling
multiple source roles that feed into a single sink (round-robin, rendezvous, or opportunistic).

The most encouraging result from this case study is that it proved straightforward to
represent all of these things directly in the Armani design language. I did not need to use
external analysis tools, language extensions, nor other embedded languages within my
Armani style specification. Nor did I run into any significant limitations with the design
language itself. This finding is encouraging because designers working in this style can
address non-trivial, useful, and broad design issues.

7.2.2 Case study 2: a hierarchical style

In the second structured case study, I created a style that captures the popular architectural
abstraction of layers. This style, imaginatively called the layered style, is an example of a

141

Layered Style
Category: Hierarchical

Semantics Statistics
Primary component type:
- Layer Component

Primary connector type:
- Inter-layer Request

Sample design rules:
- synchronicity and protocols

of attached ports and roles
must match

- requests can only be sent to
"lower" level layers.

Total types defined: 11
Style-wide design rules
defined: 3
Time to define: 2.25 hours
Lines of Armani code: 110

Environment Statistics
Total shapes defined: 6
Customization time: 5 hours

in im i ii in linn in inn ■ i nun 11 n— 111
aj] hie Edit View Insert Format Tools , Shape : WindmFtJelp , „"jgj x|

Aynch Generic
Request Layer

Single Multi
Thread Thread
Layer Layer

Ld

«ppfcrton

-1

iiijiij ■o»

fill >uc fci^^l

Figure 7.2: Overview of the Layered style and environment

hierarchical style in the Shaw/Clements taxonomy. I based this style on the high-level X-
Windows architectural specification published in [HFB94]. Although it is used quite
effectively in the design of the X-Windows system, the layer abstraction is also very general
and broadly applicable. To take advantage of the style's generality I teased the fundamental
"layerness" out of the X-Windows specification and used it to create a generic layered style.

Style overview

As Figure 7.2 details, the layered style is simple and straightforward. It has one primary
component type - the layer - and one primary connector type - the inter-lap-request. All layer
components have properties that indicate their level in the layer hierarchy, whether they can
handle asynchronous requests, and whether they are multi-threaded. Layers also have a set of
ports that receive requests from components higher in the layer hierarchy and a set of ports
that send requests to components lower in the layer hierarchy. Inter-layer requests are binary
connectors that send requests from a higher-level layer to a lower-level layer and return
responses m the other direction. They can be synchronous or asynchronous, and they can

f

142

support many different request protocols. The universe of specific protocols accepted by the
connectors can be extended as needed by the style's users.

The layered style defines a relatively small number of design rules that serve three primary
purposes. First, they insure that each layer component represents an abstraction boundary in
the overall design. A layer component can encapsulate multiple subsystems that perform the
actual functionality provided by the layer. The functionality provided by each of these
subsystems can only be accessed outside of the layer, however, through the layer's port
interfaces. Other layers are unable to interact directly with the subsystems encapsulated
within a layer. These design rules encourage architects to package their capabilities in
common groups whose implementations can be readily replaced or modified without
severely disrupting the overall system's architecture. Likewise, if a designer simply wants to
bundle a group of components that form a logical layer in the design, he can do so by
bundling the components in a representation of the layer component and making sure that
the appropriate bindings are made between the layer's ports and the representation's ports.

The second purpose of the design rules is to constrain the topology of layered systems to
insure that requests may only be sent from layers at a higher level of the hierarchy to layers
at a lower level of the hierarchy. This rule insures that all requests will eventually "bottom-
out" and be handled. It also eliminates circular dependencies between layers. The third
purpose of the design rules is to make sure that the interacting layers agree on their protocol
of interaction. This includes defining standards for message, request, and response structure
and insuring agreement on synchronicity and handshaking issues.

Discussion and evaluation

The specific style and custom environment that I created in this case study is useful for
broadly structuring and decomposing software systems. Specifically, it provides a way to
carefully delineate where system capabilities are provided, how those capabilities can be
accessed by the rest of the system, and how they can be composed. Due to its generic
nature, though, the layered style does not, on its own, provide architects with a tremendous
amount of design leverage.

One of the key observations from this case study is that the real power of the layered style
emerges when it is combined with other styles that need to support a layering abstraction.
Many systems can be viewed as being created in both a layered style and another style. It is
useful, for example, to think of an n-tier client-server system as being both a data-repository
centric system and a layered system with each tier represented by a logical layer. Armani's
support for subtyping of style specifications makes this type of composition both feasible
and straightforward. The layered client-server style just described, for example, could be
defined in Armani by simply declaring a new style called layered-client-server that is a subtype of
both the layered style and the client-server style. The new style declaration can be defined with
the single line:

Style layered-client-server extends layered, client-server;

which would result in the creation of a new style that includes the types, properties, design
rules, and default structure of both the layered and client-server super-styles. By making the

143

layered style in this case study very generic I was able to both provide structure to systems
that are primarily built as layers and also provide an orthogonal organizing principle for
systems built in other styles that make use of the layer concept but do not rely on it as their
fundamental building block.

Attempting to define the layered style so that it would be useful both as a powerful stand-
alone style as well as a "supplementary" style that could be combined with other styles
introduces what appears to be a fundamental tension. Creating a highly composable style
requires the style designer to introduce only a minimal set of types, properties, and design
rules each of which are geared specifically towards capturing the design aspects that form
the basis for the composable style. In general, the more minimal and focused the style
specification, the easier it is to compose it with other styles. At the same time, however, the
more rich, detailed, and fully specified the style, the more leverage that style (and its
associated environment) can provide to the architects who use it.

In order to explore the issues surrounding this design tension, I created a couple of
variations on the semantic specification of the layered style. For the first variation I defined a
relativeby rich and full-featured style specification for the layered style and built a custom
Armani environment to support the style. In this version, the only vocabulary constructs
available at the top level of system design are layer components and inter-layer request
connectors. To further constrain the design space, the interaction protocols supported by the
layers and inter-layer requests in this style are explicitly enumerated and fully specified.
Architects are free to add representations to the layer components that define subsystems
built in other styles, but they can not mix arbitrary types of components into the top-level
system abstraction.

This first version of the layered style provided a constrained design space and a sufficient
selection of vocabulary to work as the basis for a layered style Armani design environment.
This version was not, however, particularly effective as a generic representation of
"layerness" that could be combined and composed with other styles. To address this
limitation, I created a second variation on the layered style that was significantly more
abstract and less constrained than the original layered style. In this version of the style, I
defined very abstract and generic design vocabulary types for layer components and inter-
layer connectors, along with a much less rigorous set of design rules to govern valid layer
topologies. These vocabulary elements had significantly less semantic structure than their
corresponding types in the original style. In return for giving up their semantic richness,
however, they became much simpler and more readily composed with the component and
connector types of other styles through Armani's subtyping constructs.

Starting from the original layered style specification, I was able to experiment with a number
of design alternatives and create the revised and more generic layered style with only about
one hour of effort. The Armani language's modularity and incrementality proved
instrumental in performing this style modification so quickly. I did not create a new
environment for the second variation on the layered style because, on its own, the revised
style provided significantly less leverage than the original layered style. Rather than form the
basis for its own custom design environment, the second layered style variation is designed

144

to be used as a supertype and "rnixin" for other styles that need to capture some aspects of
"layerness" in their systems.

Overall, this case study provided three interesting results. First, it demonstrated that Armani
can be used effectively to create design environments for a basic architectural style with
broad applicability. Second, it illustrated the tradeoff that style designers need to consider
between creating powerful styles and environments for basic styles and creating very abstract
basic styles that can be readily composed with other styles. Finally, it provided useful insight
into how a generic set of design principles can be abstracted from a very specific and highly
constrained style definition.

7.2.3 Case study 3: an interacting processes style

In the third structured case study, I created an Armani style and custom environment for the
C2 architectural style. The C2 style, described in detail in [Tay+96], is an example of an
interacting processes style in the Shaw/Clements taxonomy. It provides a framework for
building systems in which loosely coupled processes communicate by sending requests and
notifications to other components through message bus connectors. [Tay+96] provides the
following overview of the C2 style:

"[The C2 style] is designed to support the particular needs of applications that have
a graphical user interface aspect, but the style clearly has the potential for supporting
other types of applications. ... [The C2 style] supports a paradigm in which UI
components, such as dialogs, structured graphics models of various levels of
abstraction, and constraint managers, can more readily be reused. A variety of other
goals are potentially supported as well. These goals include the ability to compose
systems in which: components may be written in different programming languages,
components may be running concurrently in a distributed, heterogeneous
environment without shared address spaces, architectures may be changed at
runtime, multiple users may be interacting with the system, multiple toolkits may be
employed, multiple dialogs may be active and described in different formalisms, and
multiple media types may be involved...

The new style can be informally summarized as a network of concurrent
components hooked together by message routing devices. Central to the architectural
style is a principle of limited visibility: a component within the hierarchy can only be
aware of components 'above' it and completely unaware of components which
reside 'beneath' it."

As figure 7.3 indicates, I captured the C2 style in Armani with two key component types
(C2 Component and C2 GUI Componeni), three connector types that define different kinds of
message buses, twenty-eight supporting property, element, port and role types, and seven
design analyses. After capturing the semantics of the style with the Armani design language,
I customized the Armani environment to support the design visualizations commonly used
for specifying systems in the C2 style. Capturing the key semantic properties of the C2 style
in an Armani style specification and customizing the Armani environment to support the
style proved to be a quick and straightforward task, requiring a total of only eight hours of
effort.

145

Discussion and evaluation

The C2 style is particularly interesting as an Armani case study because the C2 style
developers have also constructed a comprehensive environment for designing and
implementing C2 systems. This environment, called Arg) (pictured in figure 7.4) [RHR98],
provides greater functionality than the comparable Armani environment. Specifically, it
provides code generation capabilities, a software development process management tool, and
a runtime environment. Armani is not designed to support these capabilities, so I did not
include them in the Armani-based C2 environment. Because both Armani and Argo are
capable of using the Acme interchange language [GWM97], however, it would be relatively
straightforward to integrate Argo's other tools with Armani. I did not actually do such an
integration for this case study but section 8.2.4 describes an external case study in which a
member of the Argo development team integrated Armani with an Argo-based tool he
developed.

<C2 Style
Category:
Interacting Processes

Semantics Statistics
Primary component types:
- C2 Component
- C2 GUI Component...

Primary connector types:
- Message Bus

- Notification Filtering Bus
- Prioritized Filtering Bus ...

Sample design rule:
- All connectors must be

message or filtering buses
Total types defined: 33
Design analyses defined: 7
Time to define: 4 hours
Lines of Armani code: 110

Environment Statistics
Total shapes defined: 5
Customization time: 4 hours

visio Professional - Klax Arch Exampte.VSditoplevelSvs
y Hie Edit View Insert Fgrmat Tools Sheipe Window Help

El C2 Stencil

C2 Pass
omponeiThrough

!+*■
Nofif
Filter

Msg Bus

ZTJ
Priority
Filter

MsgBus

BGenericCompSte

~3

System topievesSys

HIES9 ^^^9 I^^^^^H ^1599 H5SM

J

Figure 7.3: Overview of the C2 style and environment

146

m^mwmwm^^^^irs^m

Wim

§D ^Ajöip JDCJ

KMO

C.ZZ9

Ks3*»fc~c?ös

Ä3H 2*3 3
T
Irfc

Status i-ssfc

T3f ATisr

Figure 7.4: Screenshot from the Argo design environment for the C2 style

Although the Argo environment provides significantly more functionality than the Armani-
based C2 environment, creating the Armani version required dramatically less time and
effort than creating Argo. As Figure 7.3 outlines, the process of defining the C2 style in
Armani and customizing the Armani environment to support the style took me only eight
hours (again, this does not count time spent on domain analysis). For comparison, building
the Argo environment has been an ongoing effort undertaken by multiple people over the
past five or six years. Building all of the additional capabilities Argo provides (such as code
generation and process management) into the Armani environment would clearly require
significant additional effort. Even so, I was able to duplicate a significant portion of Argo's
functionality (perhaps 30-50%) in the Armani-based C2 environment with a negligible
percentage (<1%) of the development effort that went into Argo. Further, the basic
Armani-based C2 environment can be significantly leveraged in creating or integrating such a
set of complementary tools.

The Argo environment also provides an interesting comparison with the Armani-based C2
environment because, like Armani, Argo attempts to capture design expertise in a modular,
composable way. Argo uses design critics, which are implemented as Java objects that observe a
system design and the operations that are being performed on the design. These critics

147

notify the user with suggestions when his or her design strays from the goals embodied in
the cntic. Because these critics are coded in Java and linked directly into the environment
they are not readily modifiable by the architect using the environment. As a result it is
significantly more difficult for end-users to evolve and modify their design critics in Argo
than it is to make comparable modifications to design rules with Armani.

One of the goals of this case study was to determine how well I could duplicate the
capabilities provided by Argo's critics using Armani's type system, property construct, and
design rules. To explore the answer to this question I found high-level specifications for
eight Argo/C2 design critics in [RHR98] and attempted to express the expertise that these
critics encapsulated in the Armani C2 style specification using only Armani's design
language Six of these eight design critics proved to be readily captured in Armani. These
critics checked for: interface mismatches, connections that bypassed the message buses,
overuse of memory resources, poor utilization of reusable components, too many
components at a single level of abstraction, and the use of components that would not work
with the code generation tool.

The critics that readily translated to Armani could all be cast as boolean questions
answerable by a simple static analysis of a system's properties. Two of the critics, however
did not meet this criterion. The first of these provided component selection guidance and
the second flagged system configurations that were likely to prove difficult to test. In both
cases, the critics made use of significant external knowledge (knowledge not captured in the
system specification being analyzed) and encapsulated their expertise as an algorithm to be
run over an architectural specification that did not readily translate to a simple declarative
statement. These critics would be better captured as external tools to be linked into an
Armani environment than as collections of types and declarative design rules.

As a result, the critics experiments demonstrated that I can use Armani to recreate all of the
critiquing capabilities found in the Argo-based C2 environment. Further, six of the eight
critics were succinctly captured directly in the Armani design language and thus readily
added by an end-user working with the customized Armani-based C2-environment.

7.2.4 Case study 4: two data-centric repository styles

For the fourth case study, I captured a pair of variations on the client-server architectural
style. These styles were based loosely on the descriptions of client-server systems in [Ber92]
and [OHE97]. The client-server style is widely used in modern database and management
^formation systems. Variations on the three-tier client-server style are also currently popular
tor building world wide web and intranet-based systems. Although it could be argued that
these styles fit into any of a number of different categories in the Shaw/Clements taxonomy,
they seem to fit most cleanly in the data-centric repository category. Systems built in this style
generally focus on one or more datastores (called servers) that cJknt components can access
and update.

As the ensuing discussion will illustrate, this case study has (at least) two interesting aspects
First it demonstrates both how a generic Armani style can capture a basic design concept
(such as client-serverness") and also how that style can be enriched and extended to capture

148

a much more complex, specific, and powerful style. Second, as a follow-on to the case study,
a colleague integrated a powerful performance analysis tool with the Armani style, providing
an initial proof of concept for Armani's tool integration capabilities.

The Naive Client-Server style

The first style that I created for this case study was the ncmx client-server style. As figure 7.5
indicates, this style provides two component types - clients and servers. Server components
generally supply a system's persistent data storage and heavy processing capabilities. Design
issues captured as properties in all server components include the services provided by the
server, whether the server is multi-threaded, and the maximum number of concurrent
requests that the server can handle.

Client components access the data stored in, and the services provided by, server
components. Clients that provide a user-interface are represented by the special client
subtype gii<lient. Generic client components can also provide a user interface but they are
not required to do so. Computational tools whose primary purpose is to make use of the
data or services provided by the server are generally modeled with the generic client

Naive Client-Server Style
Category:
Data-Centric Repository

Semantics Statistics
Primary component types:
- Naive Client
- Naive Server

Primary connector type:
- Client Request

Sample design rule:
- No peer-peer connections:

clients may only be connec-
ted to servers and servers
may only be connected to
clients

Total types defined: 8
Style-wide design rules: 3
Time to define: 1.5 hours
Lines of Armani code: 39

Environment Statistics
Total shapes defined: 5
Customization time: 1.25 hrs

ü file Edit ^View «insert fjormat Tools Shape Window Help : ■ : ^\B\

Non-BloclBlocking
RequestRequest

B GenericCompSte

1 Naive Client Serv

Client

Multi
Thread
Sewer

Single
Thread
Sewer

vecttmemer Style

SVSiS-S $g&3?2 Jfeh'e OS S'!/5BW

s

Figure 7.5: Overview of the Naive Client-Server style and environment

149

component type. The design issues that all client and gui-client components capture include
specifying the requests that the client needs fulfilled, whether the client blocks waiting for a
response to a request, and whether the client provides a user-interface.

Due to the simple communications model underlying the naive client-server style, I needed
to define only a single type of connector for the style. This connector type, called dint-
request, models a conduit through which messages from a single client are sent to a single
server, and responses from that server are returned to the requesting client component.
These connectors have only two roles, one for the client-side and one for the server side.
The client-request type can be used to model both synchronous and asynchronous
communication between the client and server, depending on the values assigned to various
properties in the client-request type declaration. These connectors do not define the specific
types of valid requests that can be sent from client to server. Instead, they are a neutral
conduit through which all requests may pass. As we shall see with the three-tier extension to
this style, this approach leaves style developers the option of creating new subtypes of the
client-request connector type that handle only specific classes of client requests.

These type declarations are supplemented by three simple design rules that guide architects
in creating well-formed designs. In the naive client-server style, clients are allowed to
communicate only with servers and servers are allowed to communicate only with clients. A
simple design rule enforces this topological constraint. Likewise, a pair of design rules
specify that all components in a naive client-server design must be either clients or server-
typed components and all connectors must be client-request connectors. Although the naive
client-server style is quite generic and simple, it provides a useful set of primitives for
designing basic client-server systems.

The Three-Tier-Client-Server style

Chapter 2's introductory overview of the Armani approach describes some of the
limitations of the naive client-server style and introduced the three-tier client-server style as an
evolution of the naive client-server style. As table 2.3 described in chapter 2, the primary
stylistic limitation addressed by the three-tier style is the need to separate the application-
specific processing required by a system from its data storage and user-interaction
components. To address this issue, I created a substyle of the naive client-server style called
the three-tier client-server style. This substyle defines three new component types, one new
connector type, and one additional style-wide design rule to guide architects in proper usage
of the new types.

The new component types defined in the three-tier style all extend component types defined
in the naive client-server style. Two of these component types - data views and datastores - are
highly specialized versions, respectively, of the gui client and server component types
defined in the naive client-server style. The sole purpose of the data view component type is
to provide a user interface to the system. Data view clients are explicitly not permitted to do
any application processing. They are also the only components that are supposed to provide
an interface to the user. Because of their limited functionality, data view clients are
sometimes referred to as very thin clients. The sole purpose of the datastore component type
is to provide persistent data storage. Like data views, datastore components are not allowed
to perform any application processing. All application-specific processing functionality must

150

3-Tier Client-Server Style
Category:
Data-Centric Repository-

Semantics Statistics
Primary component types:
- Data View Client
- Application Logic Server
- Datastore Server

Primary connector types:
- Application Request
- Datastore Query

Sample design rule:
- No direct Data View to

Datastore connections
New types defined: 9
Additional design rides: 1
Time to define: 1.5 hours
Lines of Armani code: 23

Environment Statistics
New shapes defined: 12
Customization time: 2 hours

* Visio Professional - Wier web auction system.vsd:3-tier_web_auction_system H0 E3
Bfj File Edit View Insert Föfrnat lools, Shape giiidow ■ jHelp.,

BlGenericCompSte

i Three Tier CSSte
. s

View App
Client Logic

0 0
Generic Oracle

DatastonDatastore

Sybase DB2
DatastonDatastore

ODBC JDBC
DatastcDatastore.2f

I
Blocking No-Block
Client Client

R"T"3tRrT"5t

Blocking No-Block
DatastonDatastore
Request Request

-iflixj

myeTmeWerCS $qte

System 3J&r_tä&^3ütito?i$p£5>iii

f

Figure 7.6: Overview of the Three-Tier extension to the Naive Client-Server style and environment

be done by application servers, which are the third new type of component. Application servers
are subtypes of both the client and server types defined in the naive client-server style
because they simultaneously act as servers for the data view components and as clients of
the datastore components.

In addition to the three new component types, the three-tier style required the introduction
of the new datastore request connector type. Datastore request connectors link application
servers to datastores with a database query-and-update protocol and/or language. The
generic client request connectors defined in the naive client-server supertype proved
appropriate for continued use as communication channels between data view and application
server components.

Specializing the naive client-server style to work as a three-tier style required the addition of
only one significant style-wide design rule. This rule refined the superstyle's connection
restrictions that allowed only clients to be connected to servers and vice-versa. Specifically,
the new rule requires that all connections between application servers and datastores be
made with datastore request connectors. Adding this design rule and simply enforcing the

151

superstyle's design rules proved to be sufficient to capture the fundamental topological
constraints of the three-tier style.

The introduction of these new types and design rule provides the three-tier style with a
standard way to modularize and partition functionality and responsibilities throughout a
distributed client-server system. Modifications made to the application-specific processing
capabilities of a three-tier client-server system can be isolated and updated without
disturbing the system's user interface or it's core data storage components. likewise, the data
storage or user interface technology can be updated or replaced without disturbing the core
application logic.

In addition to the controlled portion of this case study that I conducted, a colleague of mine
integrated her performance analysis tool [SG98] with the three-tier style environment.
Because I did not do this portion of the experiment and the person who did the work did
not track her effort precisely, I did not include the time and effort required to integrate this
tool in the measurements I took for these case studies. The process of integrating the
performance analysis tool required, however, only a couple of days of effort. The integra-
tion of this tool into the Armani environment significantly enhanced the utility of the
completed environment by providing a queuing network-based static performance analysis
of system throughput and latencies.

The process of integrating this legacy tool into the Armani environment was relatively
straightforward. At the Armani semantic level, the developer had to require that all request
connections were asynchronous and add some additional properties to the component and
connector types defined for the style. These properties held information about the rate at
which the individual components would generate requests, how long a server took to
respond to a request, the buffer size and delivery delay of each connector, and the rate at
which requests were introduced into the system as a whole. An architect using this tool is
required to provide these values for the individual connectors. The analysis tool then uses
the values for each of the individual design elements and computes processing rate,
throughput, and latency values for each element in the system when it is running in a steady
state. This analysis can identify potential performance problems, bottlenecks, and overall
system overload.

Once the Armani style had been updated to provide the information that this analysis tool
needed it took about a day to integrate the tool with the rest of the environment and have it
providing useful analyses. This was a tight integration between the tool and the environment,
with the analysis tool working directly on the Armani design representation. To further
tighten the integration between the Armani environment and this tool, the integrator
designed and coded a set of dialog boxes for dealing specifically with the performance-
analysis related properties. Although this information was previously available in Armani's
generic element workshops, the custom dialog boxes provided a more specific view of the
performance attributes of both the individual design elements and the system as a whole.
Creating these dialog boxes took less than one week of effort.

152

Discussion and evaluation

Perhaps the most encouraging finding from this pair of case studies was how easily and
effectively I was able to extend a very generic style (the naive client-server style) to create a
much more focused and constrained substyle (the three-tier style). The three-tier style
specification required minimal new Armani code to capture the additional vocabulary,
constraints, and semantics of the substyle. The resulting substyle, however, provided a well-
defined and quite specific framework for building three-tier client-server systems. This
framework, the structural vocabulary, and the standard composition patterns of the three-
tier style provide architects with significant design guidance and a leverage in creating three-
tier systems.

The informal experiment in integrating an external design tool demonstrated that although
not as easy as writing a design analysis directly in the Armani design language, integrating
external analysis tools is feasible and relatively time-effective. Integrating the performance
analysis tool with the three-tier style environment provided a powerful analytical capability to
the custom Armani environment with relatively low effort.

7.2.5 Case study 5: two call-and-return styles

In the fifth case study, I created a pair of architectural styles and environments to support
the driver-subprogram style described in [Be90]. These styles are variants of the generic Call-
and-Return styles described in the [SC96] boxology paper. As with the batch sequential style
described in the first case study, Best's description of the driver-subprogram and it's db-
driver-subprogram substyle is too informal to translate directly into Armani. To capture the
styles' essential concepts and constructs, I therefore had to add some additional formality to
the style specification. As in previous case studies, adding the required formality proved to
be straightforward. Adding this additional rigor required that I explicitly specify numerous
design decisions that were implicit in the style's informal specification. Rather than
diminishing the value of these style definitions, exposing these implicit design decisions
significantly clarified the architectural specification of the styles.

The Driver-Subprogram style

The first style that I created in this case study was the drker-subprogram style, outlined in
Figure 7.7. The key observation underlying the driver-subprogram style is that the infrastruc-
ture used in many large data processing applications is basically the same, though the specific
tasks undertaken at each processing step vary from application to application. This is
basically the same observation that underlies the batch sequential style described in section
7.2.1. The primary difference between the batch sequential and driver-subprogram styles lies
in whether they are data driven (batch sequential) or control driven (driver-subprogram), and
whether the processing emphasizes modifications to a stream of data (batch sequential), or
transactions that might need to access one or more databases (driver-subprogram).

The first step for building systems in this style is to perform a functional decomposition of
the system's processing tasks. This decomposition divides the processing into a set of
discrete functions. These functions are then mapped to a set of subprogram components that
execute the requested functions. Every system also has a exactly one primary driver compo-

153

Driver-Subprogram Style
Category: Call and Return

Semantics Statistics
Primary component types:
- Driver

- Subprogram
- Subdriver

Primary connector type:
- Processing Request

Sample design rule:
- A system has exactly one

toplevel Driver component,
but may have multiple
Subdriver components.

New types defined: 18
Style-wide design rules: 3
Time to define: 3.5 hours
Lines of Armani code: 73

Environment Statistics
New shapes defined: 7
Customization time: 3 hours

,0 5le Edit jgeW; insert Format -Tools' Shape : Window Help .
EHKS mi

1 Driver Subprogra

rvi IV!
Generic
Driver

Online
Driver

li! s
Batch
Driver

Sub-
Program

W ill
Sub-
Driver

Local
Request

urn;
Remote
Request

BGenericCompSte

^Jöjx|

Systesi Sisiple_ rfsrä«tf<w;_$<tar

d

J

Figure 7.7: Overview of the Driver-Subprogram style and environment

nent that triggers the execution of each of the subprograms. Unlike the batch sequential
style, in which one specific sequence of operations are performed on all records, in the
driver-subprogram style the driver can dynamically select which operation/subprogram will
be performed at each step of the processing.

The driver component sends its requests to each of its subprograms over processing request
connectors. These connectors transport requests from a single driver to a single subprogram.
All connectors in this style are processing requests (or subtypes of processing requests). The
key connector-related design issues that arise when working in this style include specifying
the request or requests that will be sent through the connector, and specifying whether the
requests will be sent synchronously, asynchronously, locally, or remotely. The Armani
processing request connector type makes designers address these issues by requiring that they
specify the requests that each instance of this connector type will convey. The style also
defines multiple subtypes of the processing request connector type that capture
synchronous, asynchronous, local, and remote variations on the base type.

154

Although there can be only one primary driver component in a driver-subprogram system,
the style allows a system to have multiple subdriver components. A subdriver component is a
non-leaf, non-root node in the system's structure graph. From the perspective of the
(sub)driver sending it a request, a subdriver component appears to be a subprogram. From
the perspective of the subprograms that it invokes, it appears to be a driver. The subdriver
component type subtypes both the driver and subprogram component types to provide
these facades. It can be thought of as an abstract functional unit that drives other
subprograms to compute its function.

Given this palette of design rules, component and connector types, architects working with
this style are able to address the key systemwide issues they face when building driver-
subprogram systems. These issues include: establishing how functionality and responsibility
are divided between different components, establishing appropriate modularity and
abstraction boundaries to minimize the effects of anticipated system evolution paths, reuse
of system infrastructure across similar systems, and the ability to cleanly separate business
policies from system implementation. The Armani specification for this style provides both a
framework for addressing these issues and a basic reusable design for building this type of
system.

The DB-Driver-Subprogram style

The driver-subprogram style provides a standard infrastructure for a significant class of
information processing applications. The style does not, however, provide any built-in
structure for interacting with databases or handling transactions that persist across multiple
requests to a driver's subprograms. To address this limitation, I used Armani's substyle
construct to create a new architectural style called the db-drker-subprogram style that explicitly
supports the specification of database and transaction management components and
connectors.

As Figure 7.8 indicates, the db-driver-subprogram style defines three new component types
and two new connector types to support database access and complex transactions. All of
these types are provided in addition to the vocabulary elements (types) defined in the driver-
subprogram superstyle (which are also available when working in the substyle). The three
new component types defined in the style are the database, dbaajsss-subprogram, and transaction
manager types. As their name suggests, database components persistently store data that is
shared by multiple subprograms (and even multiple systems). Db access subprogram
components are subtypes of subprogram that support database queries and updates.

The transaction manager component type is the most architecturally interesting of the
additional component types. Every db-driver-subprogram based system has a single
transaction manager component that manages access to the databases. The transaction
manager receives requests to begin, commit, and abort transactions from the system's
primary driver. It then limits and allows the db-access-subprograms to access the system's
databases appropriately. Having a single transaction manager that controls access to all of
the databases allows the driver to invoke multiple subprograms within the context of a single
transaction. In many situations this approach significantly simplifies the programming model
for creating drivers to solve specific business problems.

155

The style also introduces two new connector types, both of which are subtypes of the
processing request connector type. Db-query-update connectors allow db-access-subprograms to
access database components. As their name suggests, they support requests to both query
and update the database. Although these connectors provide the ability to request access to a
database, the requests will only be honored if the transaction manager has given the
requesting component permission to access the database. The second new connector type is
the transaction request. A system's driver component interacts with the transaction manager
through a transaction request connector. The transaction manager also uses transaction
request connectors to interact with a system's databases.

The additional vocabulary and design rules introduced in this style proved effective at
helping architects call out and explicitly make the key system-level design decisions they face
when working in this style. The infrastructure carried over from the basic driver-subprogram
style helps the architect address the issues that the substyle shares with the super style
(determining the functional breakdown and processing requirements for a system's individual
subprograms, separating business logic from infrastructure, etc.). The db-specific substyle
also helps an architect address issues relating to the database structure of a system the

DB-Driver-Subprogram Style
Category: Call and Return

Semantics Statistics
Extended component types:
- Transaction Manager
- Database

- DB Access SubProgram
Extended connector types:
- DB Query Update
- Transaction Request

Sample design rule:
- A system has exactly one

Transaction Manager that
must be connected to all
databases.

New types defined: 12
Additional design rules: 6
Time to define: 2.0 hours
Lines of Armani code: 63

Environment Statistics
New shapes defined: 12
Customization time: 2 hours

ffltMiaii TiETOI
M file i"3?* fSffo* Tools lhape Window: ;fieip r Jgfcf
BDB Driver Subprc

El
Generic Online
Driver Driver

Batch Sub-
Driver Program

j* m
Sub- Trans.
Driver Manager

>B- AccesDatabase
ubprogram

Local DB-Trans
Request Request

v
DBQ/U Remote

Request Request

JIGenericCompStel

i .■ i

J

Figure 7.8: Overview of the Database extension to the Driver-Subprogram style and environment

156

transaction models that the databases (and entire system) will support, the database query
protocols supported by the individual databases and required by the subprograms that access
them, transaction abortion and error recovery schemes, and modeling of system
performance. As this length list illustrates, the extensions that the substyle adds to the base
style provide significant analytical and modeling power.

Discussion and evaluation

Overall, this proved to be an informative and compelling case study with (at least) four
interesting findings. First, I was able to use Armani to capture a pair of proven styles that are
commonly used for developing large information processing systems. Second, I was able to
take a fairly generic Armani base style specification and naturally extend it to capture
significant additional design expertise in a substyle. Third, I was once again able to capture
significant design expertise with relatively small Armani specifications.

Finally, these styles (especially the db-driver-subprogram style) provide very detailed
guidelines on how to structure systems. The styles provide not only vocabulary and design
rules, but also a partially instantiated skeletal system structure to use as a starting point for
building systems. An architect designing a system with these styles starts with a skeletal but
extensible system structure already in place. The architect extends the skeletal specification
by providing additional details about each of the core components and connectors. He can
also add any additional design elements required by the system. As a result, the fact that the
style binds many of the design decisions an architect faces in designing a system instance
provides a great deal of design leverage at a relatively low cost.

7.2.6 Case study 6: a data sharing style

A traditional test of the expressive power of a programming language is to build a compiler
both for and in that language. After creating a small, bootstrapping compiler in a different
language, this allows all development of the new language processing tools to be done in the
new language itself. For the final structured case study, I conducted a similarly recursive test
with Armani. The Armani language is a design language rather than a programming
language, so it is not appropriate for actually implementing a configurable design
environment. I did, however, use it to create an architectural style that captures the
vocabulary, design rules, and reference architecture for designing custom Armani environ-
ments. This style, called the Armani enucronment style, is an instance of a data ^baring style,
which is the sixth and final top-level category of the Shaw/Clements style taxonomy. This
dissertation serves as the published specification for the Armani environment style.

Style overview

The Armani environment style captures and defines the core architectural concepts and
structure used in creating the generic Armani environment, the constructs used to capture
variability amongst different styles, and the mechanisms used to integrate external design
tools with an Armani-based environment. Figure 7.9 outlines some of the key elements of
the style and the standard, default structure it provides. Because Chapter 5 describes the
design of the Armani environment in great detail, I will review only its fundamental design
points here.

157

Armani Environment Style
Category: Shared Data

Semantics Statistics
Primary component types:
- Arch. Design Representation
- Armani Parser

- Armani Unparser
- Armani Tool

Primary connector type:
- Armani Text Stream
- Direct Design Rep Access

- Design Rep Tool Interface
Sample design rule:
- Exactly one Arch. Design

Representation component
per system

New types defined: 39
Additional design rules: 3
Time to define: 4.5 hours
Lines of Armani code: 147

Default Style Structure

Design Parser

Armani Parser

Design Unparser

Armani Unparser

Import«.
Design \

/Export
Design

_3
Core Design Rep

A rcbitecture Design Representation

Type Mgr. i k Design
Request Query

Type Manager

Armani Tool

Figure 7.9: Overview of the Armani Environment Style

All system instances defined in the Armani environment style must have exactly one
ardntectwe design representation (ADR) component. This core component stores the architec-
tural design representations that the environment's tools share, manipulate, and evaluate. The
ADR stores the shared data that lies at the heart of the data sharing style. In addition to the
Architecture Design Representation component, all design environment systems need to
have exactly one Armaniparser component and one Armani unparser component. The Armani
parser converts textual Armani representations into object-oriented design representations
stored in the ADR. The Armani unparser reverses this process, converting a design stored in
the ADR into a textual Armani description. These textual Armani specifications are used
both for persistent storage of Armani designs and also as a mechanism for loosely
integrating design tools through the interchange of Armani design descriptions.

The fourth component that all Armani design environment systems need to include is a type
manager^ that performs both type-checking and constraint management for the ADR. The
Armani Type Manager is an instance of the Armani tod component type. All entities in an
environment instance that can evaluate, manipulate, display, or generally operate on an
Architecture Design Representation are modeled as Armani Tools. Three of the four

158

primary component types used in the Armani environment style (ADR, Armani Parser, and
Armani Unparser) must be instantiated exactly one time in each design. Environments
generally have multiple instances, however, of the Armani Tool type. The standard way to
customize and extend the generic Armani design environment with additional capabilities is
to add Armani Tool components to the system. In addition to the Acme Type Manager, two
additional examples of Armani Tool instances include the standard graphical user interface
that ships with the Armani system and the performance analysis tool we added to the
Armani system in the three-tier client-server style case study described in section 7.2.4.

The key component types used in this style are fairly straightforward. Much of the
complexity of integrating a wide variety of tools to concurrently access and update a shared
data repository (the ADR), however, is encapsulated in this style's connectors. The three
primary connector types defined in this style are the Armani text stream, the direct design rep
access, and the design rep tool interface. The Armani text stream connector simply streams textual
Armani design descriptions from one component to another. These connectors are typically
used by the system's parser and unparser to save and read Armani descriptions to the file
system, or to transfer design descriptions between Armani Tools and the ADR. The direct
design rep access connector provides an API that Armani Tools use to directly access the
ADR.

The third connector type, the design rep tool interface, is the most interesting and complex of
the primary connector types. These connectors have two primary uses. The first use is to
provide Armani Tools with a limited, but potentially more semanticalry rich, interface to the
ADR The second use is to handle the interaction mismatch that arises when tool
components were designed to use a different interaction mechanism than the API to the
ADR. The connector that links Armani's standard Visio-based graphical user interface to the
ADR is the canonical usage example for this type of connector. Design rep tool interfaces
implement a very thin interface to the shared design representation that provides the Visio-
based GUI with a relatively small collection of methods it can invoke on the design
representation. All of these methods are directly related to the visualization and
manipulation of design elements. The Visio-based GUI uses a COM-based integration
mechanism [Box98] rather than the Java-based API provided by the ADR. To bridge this
mechanism-mismatch, the connector provides one role with a COM interface and one role
with a Java interface. The internals of the connector then provide the appropriate
translations from COM requests to Java requests and vice-versa.

Discussion and evaluation

This case study proved to have three key interesting aspects. The first of these is that the
style defines multiple rich and interesting connectors. These connectors, especially the design-
rep tool interface connector, address some significant component mismatch problems and
provide useful transformations between request formats and semantics. The ability to
capture specific API's in a set of role types and then add those roles to connectors in
multiple combinations allowed me to separate the API-level interaction from the semantics
that the connector itself captured. This connector type proved very effective at capturing
standard, abstract interactions between the components that could be instantiated as needed
to connect components that used disparate protocols (such as Java vs. COM).

159

The second interesting aspect of this case study was that, out of the eight styles created for
these structured experiments, this style is the most specialized and focused. It also has the
most detailed semantic specification. The style is not intended to be broadly or generally
applicable. It provides a framework for designing and developing a very specific set of
systems that share a lot of common infrastructure, a standard set of component interaction
mechanisms, and a common core data representation. In exchange for choosing to work in
this constrained style, architects and environment designers free themselves from having to
research and make a wide variety of basic design decisions. These decisions have already
been made in a standard and proven way. As a result, the designers can focus their efforts
and energy on adding the specific customizations they need to the partially instantiated
framework.

The third interesting aspect of this case study is that many of the types defined in the style
correspond to concrete, implemented components. The configurable Armani environment
described in this dissertation, for example, provides implementations for the architecture
design representation, Armani parser, and Armani unparser components. It also provides
implementations for the Armani text stream and direct design rep access connectors, as well
as a number of instances of the design rep tool interface connector. Likewise, the COMand
Java API port and role definitions model concrete, existing, implementation APIs. The
application of Armani types to describe concrete, implemented, components demonstrates
that the overall Armani approach is useful not only for blue-sky abstract modeling, but also
as a technique for composing systems out of existing, proven systems. Although I did not
create any significant generation tools to use with this system beyond the Armani
environment itself, the highly focused, semantically rich nature of the style, combined with
the existence of concrete component and connector implementations argues that it should
be straightforward to do so.

7.3 Experimental results.

These case studies demonstrate that Armani is capable of capturing a broad range of
interesting and powerful design expertise. In addition, the quantitative results of the case
studies provide compelling evidence that Armani dramatically reduces the time, effort, and
thus cost, of producing custom software architecture design environments.

Table 7.10 provides a detailed accounting of the time and effort expended producing custom
design environments for these case studies. The rows of the table capture the four
fundamental tasks required to create a custom software architecture design environment
(from the task analysis in Chapter 6). The columns represent the six toplevel categories of
architectural style that the case studies captured. Entries in the table specify the observed
time to complete each task for each of the case studies. As indicated earlier, the domain
analysis task was factored out of the case studies. Likewise, only two of the case studies
(data-centric repository and caU-and-retum) included significant evolutionary modifications to an
existing customized design environment. As a result, the time required for evolutionary
maintenance was only recorded for these two case studies.

160

The broad result that table 7.10 illustrates is that in each of the case studies I was able to
specify and implement a style-specific software architecture design environment with no
more than one full day's development effort. Compared to the time required using the
traditional ground-up approach, which generally requires months or years to produce
comparable custom tools, the Armani approach provides significant savings.

The quantitative observations from these case studies corroborate the estimates of the time
required to create such a set of environments using Armani. Table 7.11 compares the effort
observed using Armani to construct the case study environments to the effort predicted by
the previous chapter's task analysis for both an Armani-based approach and the traditional
approach. In an attempt to make as fair a comparison as possible between the task analysis'
estimates and the measured effort to develop the case study environments I assumed that
each of the case studies fall into the "best-case" scenarios described in Chapter 6's task
analysis framework. This assumption is supported by the facts that I am expert at using
Armani, that the styles for which I was creating environments were all reasonably well
defined, and that none of the environments created required significant integration with
legacy analysis tools.

Environment
development
task

Toplevel style category

•B

Q en

3

.1 1

-I5

1
1 is 5

(1) Domain
analysis Not tested Not tested Not tested Not tested Not tested Not tested

(2) Schema
capture 3.5 hours 1.5 hours 2.25 hours 3.5 hours 4.5 hours 4.0 hours

(3) Environment
implementation 3.0 hours 1.25 hours 5.0 hours 5.75 hours Not tested 4.0 hours

(4) Evolutionary
maintenance 4.0 hours 3.5 hours Not tested Not tested Not tested Not tested

Table 7.10: Case study environment development effort log. Each cell indicates the time
required to complete that stage of the case study.

161

Environment
Development Task

(1) Domain Analysis
(2) Schema Capture

(3) Environment
implementation
(4) Evolutionary
maintenance

Tmie ^qun-ed (m Engiheer/Da^s, Weeks, Months, or ^ftsars)
Armani

case studies
(observed times)

Not tested
Mean: 3.2 hours
Range: 1.5 to 4.5 hrs
Mean: 3.2 hours
Range: 1.25 to 5.75 hrs
Mean: 3.75 hours
Range: 3.5 to 4.0 hrs

Armani task
analysis

(projections)
1 week

0.5 days

1 day

15 minutes

Traditional approach
task analysis
(projections)

1 week

2 days

1 month

1-5 days

Table 7.11: Comparison of observed environment creation time using Armani with the
times projected by the task analysis in Chapter 6. All projections are for "best-
case" scenarios described in Chapter 6's task analyses.

The case study observations reported in table 7.11 argue strongly for the value of the
Armani approach and the validity of the task analysis conclusions. The times projected in
the task analyses are very rough estimates that are likely to have high variance in practice.
The observed times for capturing a style's schema, however, were all at or below the
estimated "best-case" time from the task analysis. The experimental numbers for the
environment implementation task in the case study argue even more strongly for the
effectiveness of the Armani approach and the validity of the task analysis (at least for the
"best-case" version of the Armani task analysis). The observed environment implementation
times were all significantly lower than the estimated best case, requiring only 3.2 hours on
average per stylized environment.

The times observed for the evolutionary maintenance task in the case studies were higher
than the projected effort required in the "best-case" scenario with Armani, but still a major
improvement over the projected time required using the traditional approach. A quick
investigation into the case studies reveals, however, that the evolutionary maintenance task
was only measured for two case studies, providing a limited sample. Further, the evolutionary
tasks undertaken in these case studies extended significantly beyond the description and
estimating basis used in the task analysis. Specifically, the task analysis assumed the need to
make a small incremental change and projected that an experienced Armani user could make
such a change in as little as 15 minutes. The evolutionary modifications actually undertaken
in these case studies, however, involved much more significant style and environment
modifications. Each of these modifications effectively defined a new architectural style that
was significantly more rich than the original style, in one case more than doubling the
vocabulary elements defined in the initial environment. An alternative way to account for
these case study tasks is to look at them as a series of smaller incremental evolutionary
changes to an environment rather than a single atomic modification. Using this approach,
the time and effort required for the evolutionary modification task is in line with the
projections of the task analysis as well as a significant improvement over the time required to
perform this task using the traditional approach.

162

Chapter 8

External Case Studies

The experiments presented in the previous chapter demonstrate that it is possible to
incrementally bvrild design environments for a broad variety of architectural styles using
Armani. Further, they demonstrate that these rapidly-produced environments can encap-
sulate significant design expertise and analytical capabilities.

This chapter builds on these findings with a set of case studies in which software design
environment developers who were not affiliated with me or my research group used Armani,
or a portion of Armani, to build their own software architecture design tools and
environments. These case studies, referred to as external case studies, illustrate how
independent domain experts have used Armani to solve their design and tooling problems.
In doing so they demonstrate that Armani can be used effectively by a variety of people and
provide insight into Armani's strengths and weaknesses.

8.1 Experimental structure

In an unconstrained world, it would be desirable to extend the validation presented in the
previous chapter with a set of controlled experiments in which real software architects used
Armani to construct production-quality industrial design environments for their specific
design domains. These experiments would be instrumented and controlled so that they
yielded quantitative results that could be compared to the hypothesized values of the task
analysis.

Given the scope, budget, and duration of this thesis research, however, such a study was not
feasible. As a result, I took a more qualitative approach with these case studies. Specifically, I
provided practicing software architects and software architecture researchers with the
Armani toolset and environment infrastructure and observed how they used the tools to
model their software systems, build custom design environments, and solve the software
design problems that they faced. At the conclusion of each of these case studies I did a
post-mortem analysis of the case study and the artifacts the participants had developed. I
also held a wrap-up discussion with the participants to discuss their overall experience with
the Armani approach and to solicit comments and suggestions for improvements. As we will
see, the open-ended nature of these case studies proved to be effective at highlighting
Armani's capabilities, strengths, and weaknesses.

The purpose of these case studies was to evaluate the effectiveness, power, and generality of
the Armani system and the approach it embodies to rapidly developing custom software
architecture design environments. Objectively determining the utility, polish, and power of
the tools produced with the Armani system in each of the case studies was, however, explicitly

163

beyond the scope of this thesis research. To this end, the case studies attempted to answer
the following three questions:

1) Were the positive results of the case studies described in Chapter 7 due solely to the fact
that the person conducting the case studies was also the primary developer of the
Armani design language and design environment? Is it possible for other software
architects and tool developers to effectively use Armani?

2) Did Armani's representation of architectural designs and design expertise allow the case
study participants to capture the important design vocabulary, rules, and analyses for
their specific domain of expertise? What did they find straightforward to represent and
what did they find difficult to represent?

3) What aspects or features of the Armani environment did the case study participants find
useful? What did they find unnecessary or counterproductive?

To ensure that the case studies could provide useful answers to these questions I required all
of the case studies to satisfy four criteria. First, each study had to have one or more
practicing software architects or tool builders (other than myself) who wanted to use Armani
to solve a real and specific architectural design or tooling problem. Target problems included
specifying the architecture for a significant software system or family of systems, creating
new architectural design tools, and extending existing design tools. Second, to provide an
accurate approximation of the motivations underlying "real" software design and
development projects, case study participants had to have a selfish interest in the success of
their project. Third, the pool of case studies selected had to span a variety of design
domains and problem. Finally, the organization or person participating in the case study had
to be willing to work with research prototype tools and to make the results of their
expenence usmg Armani available for publication in this dissertation.

These criteria insured that the external case studies addressed this chapter's three key
questions. Having architects and tool developers other than myself use Armani to solve their
own design and tooling problems insured that the case studies addressed the first question.
Having the case study participants use Armani to solve problems in their areas of expertise
addressed the second question. Finally, requiring the case study participants to have a selfish
interest in the success of their project motivated them to deeply explore and test Armani's
capabilities and expose its weaknesses, addressing the third question.

The Armani project was sufficiently well publicized to interest numerous people and
organizations m using the tool and participating in the case studies. Four of these groups
satisfied the case study selection criteria and formed the basis for the case studies described
in this chapter. The four case studies selected included (1) modeling the Department of
Defense's Global Transportation Network and building tools to assist the system's designers,
(2) building a set of styles and an analytical tool suite for architectures that can be reliably
and safely modified at runtime, (3) creating a software architecture design environment for
analyzing a system's security and fault tolerance properties, and (4) integrating Armani with
an architecture reconfiguration tool to handle architectural constraint specification and
management.

164

Although the details of the experimental process undertaken for the case studies varied
significantly from study to study, all of the studies followed the same basic steps:

Step 1: I worked with the target organization to identify a design or tooling problem that
their organization faced and hypothesized how Armani could address it. If Armani did
not appear to be a good match for their problem, or other issues such as an inability to
disclose experimental results made the case study appear unattractive then we stopped
here.

Step 2: After deciding that the case study was likely to be promising for both parties, I
helped the case study participants install Armani at their site and together we charted a
course for how they were going to use Armani to address their specific software design
problems. Once they acquired a general understanding of how Armani worked, I tried to
remove myself from the development process in order to let the users explore the tool
and its capabilities on their own.

Step 3: In each of the case studies, the Armani users eventually ran into certain roadblocks
and sought my advice on how to proceed. I took a consulting role at this point and
helped them determine how they could best take advantage of Armani's capabilities to
overcome their immediate problem. Generally, this simply required a fresh perspective,
but sometimes this process uncovered bugs in the design and implementation of the
Armani design language and environment. I recorded the problems and issues raised
and, when we discovered a significant bug in Armani, I tried to fix it and return a fresh
release of Armani as soon as possible. This proved to be a valuable mechanism for
rapidly improving the Armani language and environment. In most of the case studies,
we repeated this step numerous times until an effective and working tool, environment,
or design emerged.

Step 4: Once the finished tool, environment, or design emerged from the case study, I
conducted an informal post-mortem evaluation of the project. This evaluation examined
Armani's role in the success or failure of the project, the capabilities that the participants
were able to produce in the case study, the strengths and weaknesses of the Armani
approach, and possible improvements to the Armani system.

For each of these steps, I worked as a passive observer attempting to answer the questions
laid out at the beginning of this chapter. In some of the studies, such as the effort to model
the Global Transportation Network, I also took an active role in helping the study
participants use Armani effectively. In other studies, such as the effort to integrate Armani
with an architecture reconfiguration tool, I provided almost no guidance beyond some initial
assistance in installing the Armani distribution.

8.2 Case study details

Having laid out their structure and goals in the previous section, this section discusses each
case study in detail.

165

8.2.1 Case study 1: Modeling the Global Transportation Network

In the first case study, two computer scientists from Lockheed Martin used Armani to model
the architecture of the U.S. Department of Defense's Global Transportation Network
(GTN). The Global Transportation Network, currently under development by Lockheed
Martin and others, provides military logistics planners the capability to manage the
movement of troops, cargo, patients, materiel, and vehicles throughout the entire Defense
Transportation System (DTS). GTN tracks and schedules items moving through the system,
as well as providing analysis capabilities to help logistics planners optimize system flow and
resource utilization [LM98].

From a very high-level perspective, the baseline architecture for the GTN system consisted
of a set of relational databases that keep track of all assets in the DTS, various analysis and
scheduling tools that operate over these databases, a set of client application components
that provide a user-interface to the system, a collection of data feeds bringing data into the
system, and a proprietary middleware communications infrastructure that links these
components together. Needless to say, GTN is a large, complex, system.

Lockheed Martin, as the prime contractor for the design and development of GTN, was
interested in exploring how architecture design tools such as Armani could assist them in
their efforts to design, build, and deploy large, complex, and heterogeneous software
systems. When we began this case study, a prototype of the GTN system had already been
developed and fielded. This experience exposed some design problems and limitations with
the original design that needed to be addressed before the final system was deployed
worldwide. We decided to use Armani to analyze proposed architectural modifications that
would address the design issues raised by experience with the initial prototype. In the interest
of keeping research projects off of the critical path for GTN's development, however, we
agreed that the Armani modeling was best done as a supplementary design exercise rather
than the project's primary system design effort.

To focus the scope and goals of the case study, we decided to attack two specific
architectural problem that the GTN team faced. First, the GTN designers wanted to explore
the implications of moving from a proprietary middleware communications infrastructure to
a CORBA-based distributed object infrastructure16. Second, they wanted to explore the
feasibility of migrating the client applications to Java-based applets that could be run in web
browsers. To further refine the scope of the experiments, we decided to limit the initial
investigation to determining how these changes would affect the performance and security
aspects of the overall GTN system.

The scope of the GTN project is quite large and the system is expected to evolve and
remain operational for many years. We therefore decided that it would be worthwhile to
create a custom style and set of modeling tools that can be reused as the system evolves. To
this end, the specific tasks of this case study involved defining an architectural style, building
custom analysis tools to evaluate design alternatives, and using the Armani infrastructure as

CORBA (Common Object Request Broker Architecture) is a standard framework for implementing distributed
objects. The full CORBA specification can be found at the Object Management Group's website, www.omg.org An
introduction to CORBA for the lay-dummy can be found in [S098].

166

an integration framework to leverage design tools created independent of Armani. Finally,
after the design environment and style had been created, the Lockheed Martin scientists used
the resulting environment to model and evaluate alternatives designs for the GTN system
architecture. A brief overview and evaluation of this case study written by the participants is
available in [KC98].

Creating the GTN style

After installing Armani, the Lockheed Martin team developed a style to capture the
vocabulary and design rules used in the GTN system. Because they had previously modeled
the existing GTN system design with the Aesop design environment17 they decided against
recreating the original GTN design in Armani. Rather, they decided to compare the
performance and security properties of the new design to those calculated with Aesop for
the original design.

GTN is a highly heterogeneous system designed to use a variety of component and
connector technologies. The architects captured the diverse types of design elements and
design rules for composing them with the Armani design language. These design elements
included GTN's core database, which would be carried over from the previous design, its
new CORBA-based distributed object middleware infrastructure, and the Java applets that
were to serve as the clients in the new GTN system architecture. To capture this design
expertise, the Lockheed Martin team created a single Armani style that captured the
description of all of these key vocabulary elements. Table 8.1 describes the six core
component types and three core connector types defined in the Armani-based GTN style.

Lockheed Martin GTN Architectural Style Overview

Component Types:
■ DatabaseServer- manages and provides system data

■ Browser - client that provides the system's user interface
■ WebSeruer - intermediary that routes applets and HTML pages from the

DatabaseServers to the Browsers.
■ GorbaGomponent - generic base type from which all Corba-compliant types are

subtyped.
■ CorbaJawApp - Java-based applet that interacts with CotbaGampormüs.
■ GorbaSeamty - GTNs basic security manager type specification.

Connector Types:
■ HOP - mediates the interaction between a pair of GorbaComponerüs.
■ JDBC - allows web servers and GjrbaSeatrity components to access DatabaseServers.

■ HTTP - transfers requests between Browser and Webserver components.

Table 8.1 Core component and connector types defined in the revised GTN style.

17 For further information on the Aesop system please see section 3.1.1 in the related work chapter of this
dissertation, or [GA095].

167

Design rule specification in Armani

Topology:
Invariant Forail d : component in self.components |

Forall c2: component in self.components |
Forall conn : connector in self.connectors |

(affac/?ed(c1,conn) and attached(c2, conn)) ■
(validCORBAconnectionfä, c2, conn)

OR validDBconnection(C\, c2, conn));

Security constraint:
Invariant Forall d : component in self.components |

DeclaresType(c1, Webserver) ->
Exists c2: CORBASecurity in self.components |

Connecfecf(c1,c2);

Discussion

Specifies valid combinations of connected
(component, connector, component)
triples. The analyses validCORBAconnection and
validDBconnection, defined elsewhere by the
style, establish which components can talk
to each other and via which connector
types. Along with two other related
invariants, this invariant ensures valid
system topologies.

System performance/load balancing:
Heuristic Forall comp in self.components |

comp.componentUtilization <= 0.5;

Overall system performance:
Heuristic self.responseTime <= 10.0;

Ensure that all Webserver components are
attached to one or more CORBASecurity
components to support authentication,
authorization, and auditing system-wide.

Heuristic to indicate that no components in
the system should be utilized more than
50%, in the average case. The value of the
componentUtilization property of each
component is calculated by the external
queuing network-based performance
analysis tool.

Heuristic that suggests the overall system
response time should be less than 10.0
seconds.

Table 8.2 Selected design rules from the GTN architectural style

Architectural analyses

Specifying the GTN style in Armani provided a basis for modeling and analyzing the GTN
system. To extend the utility of this model, the Lockheed Martin scientists linked a
performance analysis tool into the GTN-customized Armani environment to analyze certain
performance characteristics of the GTN system. This tool, described in [SG98], uses
queuing networks to evaluate the flow of messages and requests through a system.

To support the performance analysis tool, the component and connector types in the GTN
style were annotated with a few additional properties, such as the latency expected in
connector types and the request response time expected for components. Using this
approach, an architect specifies the performance characteristics of a system's individual
components and connectors working in isolation. These values can be obtained either by
instrumenting and measuring the element in question, if the concrete implementation of the
design element is built and available for testing, by providing estimates of expected
performance, or by setting performance requirements for a design element that is yet to be

168

built. The performance analysis tool then uses the individual component and connector's
performance information to compute the throughput, latencies, and potential bottlenecks
for the entire system as a whole.

The Lockheed team successfully used the performance analysis tool to compare the
performance properties of the old design to the performance properties of the proposed
CORBA-based revisions. They also compared the performance properties of various
architectural design alternatives for the revised GTN architecture. This analysis helped them
rule out some of their proposed architecture modifications and fine tune the more
promising design proposals (see [KC98]).

Estimating and evaluating the performance of a revised GTN system architecture was only
part of the goal of the case study. System security (authorization, authentication, audit trail,
etc.) in a defense system such as GTN is a critical concern for the system's designers and
users. Moving from the proprietary middleware infrastructure of the previous design to the
standard CORBA-based middleware infrastructure of the proposed design was only possible
if doing so did not violate the system's security integrity.

The Lockheed Martin system modelers did not have a tool available to quantitatively analyze
system security as they had done with the performance analysis. As a result, they were forced
to take a different approach to using Armani to reason about security issues in their GTN
designs. The approach they chose was to encode well known architectural patterns and best
practices for building secure systems in the GTN style's vocabulary and design rules. This
allowed the architects to demonstrate that they were using a well known and proven
approach to creating secure systems, as well as providing visibility into the specific ways that
GTN architectures addressed their security requirements.

The specific architectural pattern used to insure security in the revised GTN system design
proposals required one or more GORBA Security components to mediate the interactions
between the GTN system's key components. Not surprisingly, requiring the CORBASecurity
component to take such an active role in all transactions introduced a number of
performance issues. The quantitative performance analysis tool integrated with the GTN-
specific environment helped to address this problem by allowing the GTN architects to
quickly experiment with the performance and security tradeoffs of multiple designs. This
combination of quantitative design analysis tools, design patterns, and best practices allowed
the Lockheed Martin team to build an effective and useful custom architectural design
environment.

Evaluation

By using Armani to model a complex, heterogeneous style with real industrial applicability,
this case study provided a useful validation of the overall Armani approach. The study
provided three specific encouraging findings. First, after a few iterations the Lockheed
Martin scientists were able to concisely specify both the GTN style and the GTN system
architecture. Second, Armani and it's Acme subsystem proved an effective framework and
infrastructure for integrating architectural design tools. Third, the environment designers
were able to use the design expertise that they captured with the Armani design language and

169

through the linked-in tools to perform useful analyses of the GTN system's performance
and security

Although the case study was an overall success, it illuminated two challenges facing the
Armani approach. The first of these issues is that although Armani can provide significant
leverage when used properly it does not relieve its users of the need to be skilled modelers
and architects. This is especially true of those using Armani to specify architectural styles
and create custom design environments, rather than simply using a custom Armani
environment created by somebody else. The Lockheed Martin scientists had to iterate
through multiple design alternative before finding an effective way to represent GTN's core
vocabulary and design rules. Although the structure Armani provides appeared to assist
them in this process, it still required significant intellectual effort to deeply understand the
important issues in the GTN design.

The second issue was raised by one of the Lockheed Martin scientists participating in this
case study. He found the declarative nature of Armani's design language challenging to take
advantage of and use to its full potential. Specifically, he found it difficult to make the
conceptual leap from specifying how a component should perform its task (as a programmer
does) to simply declaring the desired structure, vocabulary, and design rules of an
architectural design or style. This struggle was most apparent in the difficulty he had in
specifying the design rules that defined topological and interface constraints. In the initial
iteration he created unnecessarily complex analyses to verify interface matches. With a little
guidance from me, however, he was able to rephrase these analyses by simply placing a few
short design rules (on the order of 1-2 lines of code each) into the appropriate type
definitions. Eventually, he acquired an appreciation for the simplicity of this approach, but
getting to this point required a nontrivial amount of training.

Epilogue

The Lockheed Martin architects seemed to be satisfied with the modeling tools that they
built on top of Armani and felt that the tools ended up providing them with some useful
analytical leverage. It is, however, unclear how much effect their architectural analysis had on
the eventual evolution of the GTN architecture. It does not appear that the tools they built
have made the transition from an interesting research project to daily use within Lockheed
Martin. Their experience with Armani and its associated performance analysis tool were,
however, apparendy successful enough that the tools were included in an internal Lockheed
Martin follow-on project to continue pursuing the use of architecture design and analysis
tools.

8.2.2 Case study 2: Building an analytic tool-suite

In the second case study, a computer scientist at the Software Engineering Institute (SEI)
and a graduate student in Electrical and Computer Engineering at Carnegie Mellon
University used Armani to define an architectural style called MetaS and to create a tool suite
for analyzing system designs done in the MetaS style. The new style used the Sinplex
architectural style [WS97, Sha96] and Honeywell's MetaH architecture description language

170

L ARCi L L ARC, L w. ► ARC2 k k ► ARC3 ► W

Input Port

ARC2 Representation

w

Output Port

Experimental Variant

Baseline Variant
M\ uecisiun

"V — —
~X Unit

w

\ /
Vi Safety Variant

Figure 8.3 Simple MetaS architecture illustrating generic ARC representation

[Ves94] for its conceptual foundation. As the project grew, the developers also extended
some of these analytic tools to work with other, more general, architectural styles.

The MetaS architectural style

The MetaS architectural style supports the safe, online upgrade of software components in
mission-critical, real-time systems. The key technical concept supporting MetaS's safe run-
time upgrade capability is the use of Analytkolty Redundant Components, or ARCs. An ARC
consists of four subcomponents. Three of these subcomponents, called variants, provide
redundant implementations of the component's functionality with different non-functional
properties. The fourth subcomponent, called the DecisionUnit, monitors the output of the
variants and selects the results of one of them for propagation to the parent ARCs output
interfaces. Figure 8.3 provides a graphical depiction of a generic ARCs substructure. This
diagram is based on the graphical depictions the case study participants used to describe the
MetaS style's ARCs.

ARCs can have up to three variant subcomponents - an experimental variant that represents
the least-proven version of the component, a baseline variant that represents a more proven
but not necessarily bulletproof version, and a safety variant that represents the most reliable
version of the component available. These three variants, along with the DecisionUnit, work
together to ensure that the safety of the overall system is not compromised by any
undiscovered bugs that a system upgrade might have introduced.

Although an ARC may contain multiple variants, precisely one of each ARCs variants is
preferred at any given moment. As long as the preferred variant's results are within the range
of acceptable output values its results are propagated to the ARCs output port or ports. If,

171

however, the preferred variant's results stray outside the range of acceptable values then the
ARCs DecisionUnit subcomponent can over-rule the preferred variant and switch to an
alternative variant. At this point, the alternative variant selected becomes the new preferred
variant. Because the MetaS style is intended for real-time, mission-critical systems this
switching has to be performed while the system is running and without violating any of the
system's real-time requirements. MetaS' ability to safely upgrade software components comes
directly from the interactions of these four ARC subcomponents and their ability to do this
real-time component switching.

As suggested by figure 8.3, the case study participants chose to model ARCs in Armani by
creating an ARC component type. The ARC component type contains a representation with
the three variants, a DecisionUnit component, a set of connectors to link the variants to the
DecisionUnit, and appropriate bindings between the ports of the outer ARC and it's inner
variants and DecisionUnits. Which variant is preferred is specified by a property placed on the
DecisionUnit subcomponent.

The MetaS toolkit

After capturing the MetaS architectural style in an Armani specification, the case study
participants built a set of tools for analyzing MetaS system designs. This toolkit provided
analyses for insuring data format consistency throughout a MetaS system, analyzing the
impact of design modifications, and maintaining configuration consistency constraints A
brief overview of each of these analytical capabilities follows:

Insuring data format consistency. The MetaS style provides a collection of properties,
design rules and analyses for maintaining consistent data formats across all of a system's
connected components. These properties, design rules and analyses provide a mechanism
by which architects can specify the preconditions, postconditions, and obligations that
ports and roles place on the data flowing through them. This capability was implemented
entirely with native Armani constructs. As a result, the style developers were able to
leverage Armani's type and constraint management system and provide this verification
capability with minimal effort.

Impact analysis. The effects of modifying one aspect of a software system frequently
ripple throughout the rest of the system in unexpected ways. To address this issue, the
MetaS tool builders developed a tool to track dependencies throughout a system and
analyze the impact of modifications to the system. Known dependencies are specified by
annotating a MetaS system description with dependency properties. The style and tools
support various types of dependencies, such as dataflow dependencies (e.g. preconditions,
postconditions, and obligations), implementation dependencies, timing dependencies, etc
The impact analysis tool is capable of extrapolating from explicitly specified
dependencies and inferring implicit dependencies to evaluate the effects of proposed
changes.

The case study participants implemented the impact analysis tool as a collection of
properties, design rules, and design analyses written in Armani, augmented with an
anafysis tool written in Java and linked into their tool suite through Armani's external design
analysts construct. The decision to supplement the native Armani with an external Java-

172

based tool was made based on efficiency concerns. When they implemented a simplified
version of this analysis using only native Armani analysis functions they found that their
implementation suffered from combinatorial explosion problems. The general
quantification algorithms used by the Armani system simply considered too many
alternatives as the systems grew large. To increase the efficiency of the analysis they re-
implemented it directly in Java using the Armanilib's API. Explicitly specifying the
analysis algorithm in Java increased the efficiency of the analysis by allowing the tool
builders to use domain-specific knowledge to carefully prune the impact analysis search
tree. As a result, they were able to significantly reduce the number of possibilities that the
analysis had to consider.

The Armani design language's declarative nature allows an architect to specify whet an
analysis should calculate but it does not support the ability to carefully tune how that
analysis performs the calculation. This experience with the MetaS impact analysis
illustrates some of the inherent limitations of a purely declarative language and why it is
important to be able to augment such a language with algorithmic specifications. I will
discuss the implications of this approach on system performance and analysis
development effort in greater detail in Chapter 9.

Maintaining configuration consistency constraints. The third key analytical capability
provided by the MetaS tool suite is the ability to discover and maintain configuration
consistency constraints. In a MetaS architecture, a corfgurauon is defined as a system and a
specification of which variants are preferred for each ARC. A single system architecture
can therefore have many different configurations, some of which will likely be valid and
some of which will likely be invalid. Furthermore, a system's configuration can change
while the system is executing if one of the ARCs changes its preferred variant.

Because some system configurations may be invalid, it is important to be able to detect
invalid configurations and prevent the system from attempting to transition into them.
The MetaS run-time environment is designed to detect errors in individual ARCs and
change the preferred variant for that component accordingly. Much of MetaS' power and
utility comes from this observe-and-repair approach. This approach does, however, have
its limitations. For example, it is possible that the variant selected to replace the failing
variant will itself cause the system to go to an invalid configuration.

To address this problem, the MetaS run-time infrastructure needs to be able to verify that
it is not trying to move the system to an invalid configuration. This check can be
performed at run-time, just before the ARC switches its preferred variant. Because MetaS
is designed for real-time-mission critical systems, though, this check must be very fast.
Performing an on-line change impact analysis and verifying that all architectural
constraints are satisfied is impractical for arbitrarily complex architectures. Although these
analyses are relatively quick to perform at design time, Armani can not guarantee that they
will be completed in a fixed number of milliseconds, as the MetaS runtime infrastructure
requires. The MetaS tool suite avoids this problem by performing a static design-time
analysis on system specifications to determine which configurations are valid and which
are invalid. The results of this analysis are be cached by the running system so that

173

verifying the validity of a proposed configuration change is a fast, simple, cache-lookup
operation.

The MetaS tool suite developers implemented such a configuration consistency analysis
tool. This tool tests all possible system configurations to determine which ones satisfy its
design rules and data-format consistency checks. Unlike the other two analytical
capabilities built for the MetaS tool suite, the consistency analysis was implemented as an
independent tool that operates on Armani design representations through the ArmaniLib
API. Once the analysis is complete, the tool annotates the Armani system with a property
describing the system's valid configurations. To operate efficiently, this tool, like the
impact analysis, had to be able to prune the configuration evaluation search tree. As a
result, it was best implemented as an external tool rather than a design analysis captured
with the Armani predicate language.

In implementing these three analytical capabilities, the tool developers realized that only the
configuration constraint management analysis was specific to the MetaS style. The data
format consistency and impact analysis capabilities were relatively generic and could be
applied to systems built in other styles, provided that they had some of the characteristics of
the MetaS style, such as dataflow-based connectors. Based on this realization, they chose to
use a two-tiered approach to implementing the analyses. Specifically, they divided the MetaS
style into two separate styles - a base style that contained the generic design analyses imple-
menting the data format consistency and impact analyses, and a substyle (the MetaS style)
that defined the MetaS-specific vocabulary and the interfaces to the configuration constraint
analysis. Their experience with this approach argues favorably for Armani's tight integration
of the style construct with its type system. By using subtyping with the style specification
they were able to create a reusable collection of generic design analyses without any
detrimental affect on the MetaS-specific style or the tool suite's capabilities.

Evaluation

Overall, this case study makes a strong argument for the claim that people other than myself
can use Armani to capture powerful design expertise. The MetaS tool developers pushed
heavily on the limits of what the Armani language, type system, and built-in analysis
capabilities could represent and check. The use of Armani's representation construct, for
example, to capture multiple variants of an ARC's lower-level design was an innovative use
of the language for capturing a fundamental architectural concept. The developers also
pushed on the use of external design analyses to extend the language's analytical capabilities. As
a result, they were able to create an architectural style (the MetaS style) and tool suite capable
of performing compelling, non-trivial analyses on designs done in that style. Furthermore,
the results of these static, design-time analyses could be carried over to the MetaS run7time
environment to guide MetaS' real-time dynamic reconfiguration and fault recovery.

Their experience implementing these analyses indicates that the Armani approach provides
the ability to succinctly express complex analyses with Armani's declarative language while
still allowing a tool developer to write more efficient forms of those analyses if and where
required. The developers were able to capture all of the expertise and analyses they needed
directly in the Armani design language. To address efficiency concerns, however, they re-

174

implemented two of these analyses directly in Java and provided interfaces to the analyses
through Armani's external design analysis construct.

As in the GTN case study, this experiment revealed that tool developers vary widely in their
skill with using declarative languages. Once again, one of the participants in this study had a
difficult time making the leap from specifying how a design rule should be enforced to simply
specifying inhat the design rule was so that the Armani constraint manager could enforce it.
Interestingly, the other primary participant in the study immediately picked up on the
benefits of the declarative approach and used it to great effect, writing a remarkable number
of small, useful design rules and analyses very quickly. The full implications of this case
study with respect to the value of the declarative approach to design specification are
unclear. Three lessons do, however, seem clear. The first is that the learning curve for using
Armani effectively varies significantly between individuals. The second is that the declarative
model is not an immediate and intuitive match to the way that all software designers model
their software. The third is that the declarative approach can be very effective once an
architect becomes familiar with it and adjusts his or her design technique to take advantage
of its strengths.

A final observation from this case study is that it took significantly longer than the other
studies. The development described here took a team of two people working part-time
about five months to complete. There were a number of reasons for the extended duration
of this study. First, the participants were not sure what they wanted to accomplish at the
beginning of the study. They used the toolkit as a platform for experimenting with
numerous possibilities. Second, they were not sure how they would go about accomplishing
it. Again, the Armani infrastructure provided them with a testbed for exploring different
approaches. Finally, the timeline for their project extended for a full year, so they were more
concerned with fully exploring alternative analytical options than they were with simply
building a tool suite quickly. The process of developing the MetaS style and its associated
tool suite was therefore highly iterative and experimental. Armani's lightweight incremental
design model proved to be very effective for rapid experimentation and prototyping of
design and tooling ideas, providing a good match for the needs of the MetaS tool
developers.

Epilogue

At the time of this writing, the participants of this case study are still actively extending their
tool suite and exploring ways in which they can use the tools. They had, however,
successfully used their tools to model and analyze two architectural systems. The first system
was a research control-system project designed to control two carts with inverted pendulums
that the controller had to prevent from falling. The second system was a portion of the
avionics system from an F/16 fighter jet. In each case, the tools that they created were able
to analyze the systems for reliability and fault tolerance properties, as well as evaluate run-
time configurations to insure that the system did not attempt to reconfigure itself into an
invalid configuration while it was running. Both of these projects were demonstrated at a
Defense Advanced Research Projects Agency (DARPA) conference in the summer of 1999.

The case study participants are still using Armani to experiment with various analyses. The
tools will be used as the basis for one of the participant's doctoral thesis. Once they have

175

completed their experiments they intend to package and distribute the tools for general use
by the software development community.

8.2.3 Case study 3: Security and fault-tolerance evaluation with DesignExpert

In the third external case study, a team of computer scientists from Key Software
Corporation [Key99] used the Armani infrastructure to build a software design environment.
This environment, called DesignExpert [WMK98], provides an integrated suite of tools for
graphically editing architectural system designs and analyzing their fault-tolerance and
security properties.

Unlike the previous case studies, the Key Software tool builders did not take advantage of
the complete Armani system to build their custom software architecture design environment.
Rather, they used Armani's design representation and analysis capabilities as an integration
framework to tie together three existing design tools they had in various stages of
development. The Key Software team chose this approach because they needed a way to
integrate their existing analysis tools to form a common design and analysis environment
without having to rebuild the tools from scratch. These design tools included a fault-
tolerance analysis tool (called FTA), a security analysis tool (called SA), and a graphical
architecture design editor (called GADE). The Armani design representation and analysis
infrastructure provided a common design representation on which these tools could operate
and through which they could share the results of their analyses.

Another difference between this case study and the two discussed previously is that I took a
very hands-off approach on this project. Although I provided some initial guidance in using
Armani to help get their project underway, most of my interactions with the Key Software
team after the initial startup phase simply involved fixing Armani bugs they uncovered. The
fact that this project was successful with very little guidance from me argues for my claim
that people other than the me can use Armani to solve real problems.

To provide a common design representation for the various analysis and display tools of the
DesignExpert environment, the Key Software team created an Armani style that captured
the core semantic structures used by the environment and its constituent tools. Figure 8.4
outlines the core elements and properties captured in the DesignExpert style. As the figure
indicates, the DesignExpert style stretches Armani's original intention of handling only
software architectures by defining types to represent hardware components and connectors.

The analysis tools integrated into the DesignExpert tool suite require a system designers to
specify a mapping from a system's Software Processes to its Hardware Processors. Because Armani
does not provide built-in support for specifying this kind of mapping, the tool developers
used Armani's property construct to capture the mapping. The DesignExpert environment's
external analysis tools were then able to read and evaluate these system-wide properties and
perform their analysis.

This core DesignExpert style served as an integration standard for three architectural design
and analysis tools. The first of these tools, FTA, evaluates the fault-tolerance properties of
system designs. FTA first does a Monte-Carlo simulation that exposes the effects of
individual component failures and the probabilities that these individual failures will

176

propagate and cause systemic failure. The results of these simulations are used to estimate
system availability, Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF),
and Mean Time To Repair (MTTR). After completing one or more of these simulations,
FTA provides a critique of the system's overall fault-tolerance and makes recommendations
on ways in which the reliability of the system can be improved. If necessary, the tool also
suggests additional simulations that should be run to improve the accuracy of the estimates.

The second analysis tool integrated with the DesignExpert environment is the Security
Assistant (SA) tool. SA uses an expert-system to critique system designs, expose security
flaws, and highlight places where the security requirements of a system are unlikely to be
met by a proposed design. Like the FTA tool, SA provides architects with useful analytical
capabilities and operates directly on Armani design representations.

The third tool that DesignExpert provides on top of the Armani infrastructure is an
architectural visualization and editing tool (called GADE) that allows designers to graphically
construct and edit system designs. GADE is tightly integrated with the Armani semantic
representation, as well as the FTA and SA tools. As a result it supports animated visual-
izations of the FTA's Monte-Carlo simulation as well as the results of the SA's security
analyses.

Evaluation

The DesignExpert team's need to capture the mapping between software and hardware
architectures illustrated the limitations of encoding important semantic concepts in
properties rather than as first-class Armani language constructs. Specifically, using properties
to encode the mapping from software entities to the hardware entities on which they execute

DesignExpert Architectural Style Overview

Component Types:
■ Hardware Processor - models physical processors in a joint hardware/software system
■ Software Process - models a process running on a Hardwire Processor

Connector Types:
■ Network Communication Channel - models physical networks of Hardware Processors
■ Message Passing Channel - models message passing channels between Software Processes

Properties:
■ Failure, repair, and replication rates are provided for all components, connectors, and

systems
■ Number of failures tolerated for each replicated ensemble of components and

connectors
■ Failure model assumed for each component (crash or byzantine)
■ Security policies and requirements for each component, connector, and system
■ Mapping of software components to hardware components (captured via properties)

Figure 8.4 Summary of DesignExpert architectural style [WMK98].

177

works smoothly when an environment's analytical capabilities are encoded primarily in
external analysis tools. If, on the other hand, the tool developers had written their analyses
directly in the Armani design language, then specifying the design rules to manage and
constraint these mappings could have become unwieldy as the number of components and
connectors in a system grew large.

In this case study, however, the important analytical capabilities provided by DesignExpert
came from its analysis tools rather than its built-in design rules. As a result, the property-
based mapping proved an appropriate choice for this case study. The case study did,
however, expose some significant limitations with this general approach to defining map-
pings. Experience with this case study and, to a lesser degree, with the case studies described
in Chapter 7, indicates that a first-class mapping construct would be a useful addition to the
Armani design language. To address this need, a group of researchers at Carnegie Mellon are
currently exploring ways to add a native mapping construct to the Armani language. For the
purposes of this dissertation, however, this effort should be considered "future work."

Overall, this case study successfully illustrated Armani's utility as a platform for creating and
integrating architectural design and analysis tools. The DesignExpert developers found it
straightforward to capture and represent the architectural features, characteristics, and
properties required by their analysis tools with an Armani style. Having captured this
expertise, the DesignExpert team was able to integrate their analysis tools with the Armani
infrastructure to create a powerful design environment that supports two important types of
design analyses - fault-tolerance and security - and a variety of interesting design
visualization capabilities. Further, although the bulk of the work done in this case study
involved building custom design tools on top of Armani, the Armani design language
proved sufficient for, and effective at, capturing the important semantic concepts needed to
support the external analysis tools.

Epilogue

The DesignExpert tool was handed off from its developers at Key Software to the Rome
Air Force Research Labs. A group within Lockheed Martin's research organization also
acquired the tool and integrated it into a prototype suite of Acme-based architectural
specification and analysis tools. It is unclear how extensively the tool is currently used inside
Rome Labs or Lockheed Martin. The tool builders at KeySoft, however, reported that they
were able to use Armani successfully for modeling the fault-tolerance and reliability expertise
that they needed to capture for the project. They also reported that Armani's simple and
straightforward design and implementation allowed them to quickly prototype and build
their tools.

8.2.4 Case study 4: Dynamic, run-time, architectural reconfiguration

In the previous case studies the participants followed the general approach outlined in this
dissertation to create a custom Armani software architecture design environment. In this
fourth and final case study, I describe how a software architecture researcher at The
University of California at Irvine (UCI), took a different approach to incrementally
customizing a set of design tools with Armani. Rather than using the entire Armani

178

infrastructure as a basis for creating a custom design tool, he linked just the Armani parsing,
design representation, and constraint management subsystems into his own design
environment and toolset. In doing so, he demonstrated that the Armani infrastructure is
sufficiently modular and decomposable that selected pieces of it can be reused to build
design tools that extend beyond the original scope of Armani.

The environment developed at UCI and used as a basis for this case study is called
ArchStudio [OMT98]. ArchStudio provides a design environment for representing and
displaying architectural designs (through its Argo subsystem [RHR98]) as well as a
component called the Architecture Evolution Memoir (AEM) that controls the dynamic
reconfiguration of system architectures. Software architects can use ArchStudio to design
software system architectures and to dynamically modify the architecture of running systems
created with the environment.

Prior to this case study, ArchStudio was designed exclusively for use with the C2 architectural
style [Tay+96], also developed at UCI. Recognizing the need for a more general architectural
modification tool, we decided to explore whether Armani would be an appropriate platform
for building a similar but more generic tool for dynamic architectural reconfiguration of
software systems. It quickly became apparent that a complete rebuild with Armani was
unnecessary. Although Armani's flexible GUI and user interface were appealing, the real
leverage that Armani could provide would come from the reuse of its design representation
and verification infrastructure. It was also apparent that Armani's ability to represent a broad
variety of architectural styles and perform generic architectural constraint management
would be a valuable addition to ArchStudio. Therefore, we decided to integrate Armani's
parsing, design representation, and constraint management subsystems with ArchStudio.

Because both ArchShell and Armani are fully compliant with the Acme architecture
interchange standard [GMW97], integrating them was quick, straightforward, and relatively
easy. Conceptually, as Figure 8.5 indicates, the integration required only the addition of the
Armani infrastructure (parsing, design representation, and constraint management
components) to the ArchStudio environment, the introduction of an Acme connector to
connect Armani to ArchStudio's AEM component, and the definition of a basic and
extensible Armani style for representing ArchStudio designs. The Acme connector used is
simply a stream that carries textual Acme descriptions of the proposed architectural
modifications from the AEM to Armani. Armani converts the Acme descriptions into
Armani architectural specifications and evaluates the proposed modifications to see if they
are consistent with the system's declared architectural style(s) and instance level design rules.
After this evaluation is complete Armani returns either a success message or an error
messages indicating where and why the proposed modifications violate the design rules of
the system or its styles.

This integration allowed the combined ArchStudio/Armani environment to verify that
proposed modifications to the running system did not violate the constraints of that
system's architectural style or styles. By performing this check after a user or a tool requested
an architectural change but before the change was actually implemented in the running
system, the updated environment was able to catch architectural mismatch problems before
they corrupted the running system. Armani's flexible and incremental language for

179

Argo Design
Environment

Running \
System) l-top*st

v / Modification 2. Validate
Modification
(liaAcme) 3.Modify\^^

Architecture
Evolution Armani

Running
System

Manager (AEM)
^ w

Figure 8.5 Simplified architectural view of ArchStudio's integration with Armani

expressing design rules also significant expanded the scope and variety of design constraints
an architect could express in his or her ArchStudio-based design specification.

Evaluation

This case study was a resounding success. Adding the Armani core design representation and
constraint management infrastructure to ArchStudio substantially improved the ArchStudio
environment, providing significant additional functionality and power in exchange for only
minimal effort on the part of the tool developer. Further, the integration of Armani's
constraint management system into ArchStudio was done extremely quickly, the entire
process requiring less than one week's effort.

The task of expressing ArchStudio's core concepts in an Armani style was straightforward
and quickly handled, requiring only about two days worth of work. The ease with which the
core concepts embodied in Armani meshed with ArchStudio was very encouraging,
demonstrating the flexibility and power of Armani's basic model for representing software
architectures, architectural styles, and design rules.

In addition to illustrating the flexibility of Armani's core constructs, this case study
demonstrated that Armani's modular architecture allows tool developers to selectively and
incrementally reuse specific pieces of the Armani system. As a result, Armani's support for
incremental development extends beyond the ability to customize a generic Armani design
environment. Armani also allows design tool and environment developers to extract, extend,
and reuse the pieces of Armani that they find useful for meeting their specific tooling needs.
Although Armani's constraint management system, for example, was not originally designed
to handle dynamic run-time constraint checking, this capability was easily created by
combining Armani with ArchStudio.

180

The Acme architectural interchange format was one of the key aspects that made this
integration so easy. By providing a common representation for architectural specifications,
along with a way to embed each tool's specification details in this common representation,
Acme makes it straightforward to loosely couple architectural design tools. For the purposes
of this case study, a loose coupling between the tools was sufficient to create the desired
functionality in the combined environment.

Epilogue

The tool created in this case study proved to be very effective for defining and managing
constraints on the run-time evolution of software architectures. The tool was successfully
demonstrated at a large DARPA-sponsored conference in Jury, 1999. Although it is unclear
how or if the tool built in this case study will be used outside of a research environment, it is
sufficientyl powerful and useful to be a key element of the system that the UCI researcher
built to demonstrate his doctoral thesis.

8.3 Summary and discussion

At the beginning of this chapter I laid out three questions that I hoped to answer with these
external case studies. In this section I evaluate the overall results of the case studies and
discuss the answers they provided to these questions. The first question was:

1) Were the positive results of the case studies described in Chapter 7 due solely to the fact that the
person conducting the case studies was also the primary developer of the Armani design language
and design environment? Is it possible for other software architects and tool developers to effectively
use Armani?

The fact that the participants in these case studies used Armani to create a wide variety of
interesting and useful design and analysis tools clearly indicate that it is possible for people
other than me to effectively use the Armani design language and environment. Although I
provided the case study participants with varying degrees of assistance to get them started
with Armani and teach them how to use the tool, in each study the participants did the
critical modeling, design, and toolbuilding work. The case studies were all a resounding
success with respect to this question.

Having established that it is possible for people other than me to use Armani, the second
question explores how well Armani meets the needs of custom design environment builders:

2) Did Armanis representation of architectural designs and design expertise allow the case study
participants to capture the important design vocabulary, rules, and analyses for their specific
domain of expertise? What did they find straightforward to represent and what did they find
difficult to represent?

The results of the case studies provided a very positive answer to this question. One of the
basic findings from the studies was that Armani's core concepts are surprisingly flexible and
powerful. Participants in the case studies captured a broad variety of design vocabulary,
design rules, analyses, and architectural styles with Armani. The nature of the expertise, for

181

example, captured in the GTN case study was significantly different from the expertise
captured to support ArchStudio's dynamic architectural reconfiguration style.

Likewise, the tools and environments created in the case studies encapsulated a wide variety
of analytical capabilities. The fact that each of the environments or tools created in these
case studies solved a real problem faced by software architects further strengthens the
argument that the study participants captured real, useful, and non-trivial expertise with
Armani.

One unfortunate finding was that there was a wide variance in the ease with which individual
tool and environment developers were able to use Armani's declarative design language. Of
the seven primary participants in these case studies (other than myself), two people picked
up the power of the declarative approach right away and were able to use it to great effect.
Two other people had a significant difficulty making the jump from specifying how to
maintain a design rule, as they would in an imperative programming language, to simply
specifying ishat the design rules were that they would like maintained. The experience of the
remaining three participants fell somewhere in between these two extremes. As a result, the
primary finding about what was difficult to represent with Armani was not an issue of what
it was that the participants were trying to represent so much as who it was using the tool to
represent it.

Therefore, the basic answer to the second question was that the case study participants
generally found it possible to use the Armani design language to represent a broad variety of
design expertise. The third question followed-up on this result by asking:

3) What aspects or features of the Armani environment did the case study participants find useß?
What did they find unnecessary or oomterpmductke?

The most interesting finding related to this question is that in these case studies Armani's
configurable graphic environment did not prove to be a critical feature. Rather, the case
study participants found that Armani's semantic design representation, conceptual
framework, and tool integration capabilities were more important than its GUI. This finding
was somewhat surprising because my initial investigation into Armani's requirements,
revealed that the need for a configurable GUI was high on the list of potential Armani users'
needs.

There are at least four explanations for this finding. The first explanation is that the external
case studies we undertook were not representative of the general target audience for
Armani. The fact that we only conducted four case studies, and that the participants in three
of these case studies already had existing graphical design editing tools that they wanted to
integrate with Armani argues for this explanation. The second explanation is that Armani's
core semantic and tool integration infrastructure was much more robust than its
configurable GUI, especially for the earlier case studies. Developers' tendency to quickly
discard software components that they perceive as buggy argues for this explanation. The
third explanation is that a configurable GUI provides a snazzy demonstration for Armani,
but that the real leverage Armani provides its users comes from its role as an integration
framework and its ability to capture, model, and enforce design expertise. Experience
working with the case study participants argues for this third explanation. The fourth

182

explanation is that the tools that the case study participants were integrating with Armani
provided their own user interfaces and they needed only Armani's representation and
analysis capabilities. This was the case with the C2 and DesignExpert case studies, but not
with the other two case studies. Overall, the evidence does not strongly support any of these
explanations exclusively. Rather, I suspect that this finding is best explained by a
combination of all four of them.

Another surprising finding from the case studies was the participants' willingness to drop
below the level of the Armani design language and extend Armani's built-in design analyses
with complex analytical functions written in Java. I had expected that most of the
participants would want to work directly in the high-level declarative Armani design language
if at all possible and only write new low-level analyses if absolutely necessary. "What I found
instead was that about half of the study participants preferred to capture only the basic
vocabulary specifications and design rules in the Armani design language and then write
their complex Java-based analytical tools to access the Armani design representation via the
ArmaniLib's API.

The sample size is too small to draw general conclusions about how tool and environment
developers will divide their development efforts between the Armani design language and
the ArmaniLib API from these findings. It does, however, argue, that Armani's clean and
coherent API for external tools is an important feature of the overall Armani system that
environment and tool developers are likely to use frequently.

Overall, the case studies successfully demonstrated the utility and power of Armani, as well
as its applicability to a wide variety of architectural styles and tasks.

183

Chapter 9

Discussion and Evaluation

The case studies presented in the previous three chapters demonstrate that the Armani
project was broadly successful in meeting its goals. Armani allows software architects and
architecture design environment builders to incrementally capture design expertise and to
leverage that expertise in their tools and environments. In this chapter, I revisit some of the
key design decisions I made in creating Armani. I first present and discuss a set of design
decisions that proved to be highly effective. I then discuss some decisions that initially
seemed promising but produced mixed results when implemented.

9.1 Design decisions that proved to be highly effective

Sections 9.1.1 to 9.1.4 describe four key design decisions I made in creating Armani that
proved to be highly effective. The applicability of these decisions for other software
development projects varies broadly. The discussion of each of these decisions, however,
offers insights into ways to successfully build configurable software systems.

9.1.1 Supporting a rapid and iterative environment development process

Forty five years of software development history has illustrated that it is very difficult to
correctly establish all of a system's requirements before the system is built. Likewise, it is
nearly impossible to anticipate all of the implications of individual design decisions before
the system has been built, integrated into its environment, and deployed. One of the
standard ways of addressing this issue is to build software iteratively, using each iteration as a
learning experience that helps clarify the requirements and the design of the next release of
the software. Software design and development environments face these problems just like
any other large software development project.

To address this issue, one of the premises underlying the Armani project was that the ability
to rapidly iterate and experiment with multiple design alternatives provides environment
developers and architects with significant leverage. Armani environment designers can
rapidly and iteratively experiment with numerous alternatives for the design environment
itself. Experimentation at this stage includes determining the appropriate design rules and
vocabulary to support in a custom environment, selecting visualizations for design elements,
and determining the analytical capabilities that the environment needs to provide. Because
these design decisions are loosely bound in the environment they can be quickly revised or
augmented as experience is gained using the environments. Armani pushes iterative
evolution further than most systems by allowing not only the original environment
developers to upgrade and evolve the system, but by also allowing architects using the
environment to adapt it themselves to meet their needs. This rapid update capability allows

185

good design ideas, analyses, and tools to be prototyped and quickly added to an
environment. It also allows environment designers to revisit and quickly repair design
decisions that proved less effective than hoped.

The advantages of this rapidly iterative approach spill over from the environment design
task into the process of using a customized environment to design other systems. Architects
using Armani can rapidly iterate through, and experiment with, a wide variety of design
alternatives before binding design decisions for the systems they are producing with the
environment. Supporting rapid iteration and experimentation of design alternatives reduces
the risk associated with early design decisions by allowing a designer to quickly experiment
with and test multiple alternatives before firmly binding a design decision.

The traditional alternative to using rapid, incremental evolution and configuration of
software systems is to think very carefully through all of the system's requirements and the
implications of various design decisions. Armani's support for rapid iteration and
experimentation does not mitigate the need to deeply understand a system's requirements
and the implications of design decisions. It does, however, help designers understand these
issues better by allowing them to experiment with alternatives. It also reduces the risk
associated with making these early decisions because they can be more easily rectified later if
they prove to be poor decisions.

AH of the experience and experiments with Armani argue strongly for the value of this
rapidly iterative approach. Breaking from the traditional approach in this way turned out to
be one of the best decisions of the entire project. Although it is unlikely that all software
tool development projects would benefit from the extreme flexibility and late binding of
design decisions that Armani provides, the approach is widely applicable and likely to be of
great benefit to many different tool development projects.

Supporting an incremental and experimental approach to developing custom environments
seems to significantly help environment developers build environments quickly, and
experiment with multiple alternatives before binding design and implementation decisions.
As I discuss in section 9.2.2, however, the decision to also put this incremental configuration
power into the hands of the environments' end-users introduced some significant
configuration and compatability issues.

9.1.2 Selecting first-order predicate logic as the formalism for design rules

Selecting first-order predicate logic (FOPL) as the formal foundation for expressing design
rules and design analyses in Armani's design language proved to be an excellent design
decision for (at least) three reasons. First, experience with Armani and other design tools
indicates that FOPL is well understood by the architects and environment designers who
make up Armani's target audience. It also appears to be a good match with their intuitions
for expressing design rules. Further, the case studies described in Chapters 7 and 8 illustrate
that design rules relating to system structure, topology, and properties are readily captured
with predicates. Although a small portion the tool builders in these case studies had some
difficulty adapting to the declarative nature of the Armani design language, none of them
had any significant problem using predicates to express individual design rules..

186

Second, evaluating whether a FOPL expression holds over a set of assertions (given in the
form of a system specification) is algorithmically straightforward. Likewise, the subset of
FOPL used in Armani insures that checking whether a system's design rules hold is a
decidable question. As discussed previously, the language insures decidability by disallowing
quantification over infinite sets. This limitation, discussed in section 4.3.1, has not proven to
be problematic in practice.

Third, FOPL predicates are readily specified independent of the environment in which they
are eventually evaluated. As a result, using FOPL as the underlying design rule formalism
made it possible to achieve the modularity, composability, and encapsulation of design rules
required by the Armani design language.

Alternatives considered

Although FOPL clearly had many desirable properties, I also considered a number of other
formalisms as a basis for the Armani constraint language. The alternatives included higher-
order logics, temporal logics, and model-checking formalisms. All of these alternative
candidate formalisms, however, had significant limitations. Solving the undecidability
problem for higher-order logics, for example, proved to be more complex than solving the
problem for first-order predicate logic. Because the higher-order logics did not present a
sufficiently compelling increase in expressiveness to warrant the additional complexity they
were removed from consideration.

The Armani constraint language's need to specify bounded ranges of valid design
modifications led to the consideration of various temporal logics. Surprisingly, Armani's
emphasis on static structure did not prove to be an effective match for the natural
expressiveness of temporal logics. The expressive power gained by using temporal logic
rather than FOPL was not sufficient to warrant the additional complexity it introduced into
the language semantics and the automated checking tools.

I also considered various model-checking formalisms such as SMV [McM93] but then-
emphasis on states and state transitions did not provide a particularly natural match to the
structural constraints that Armani had to be able to express. Likewise, their ability to explore
enormous state spaces looking for any possible constraint violation was not necessary for
the types of checking that Armani does. Armani constraints are simply a form of checkable
redundancy for verifying the consistency of a static design specification. It is not necessary
to demonstrate that an Armani description can never violate its constraints because it is a
static specification. The critical check is that a specific design instance does not currently
violate its constraints. This distinction is a subtle but important.

In light of the benefits of first-order predicate logic and the limitations of the alternative
formalisms explored, selecting FOPL as the formalism underlying Armani's design rules
proved to be a good design decision.

9.1.3 Appropriately scoped design rule checking capabilities

Using a predicate-based formalism for capturing design rules opens up the possibility of
supporting a wide spectrum of different kinds of design checking. Solutions at the

187

impoverished end of the spectrum do little more than check individual design specifications
for syntactic well-formedness. Analyses at the other end of the spectrum support proofs
about types, styles, and the composition of design elements. The verification techniques that
kve along this spectrum can provide computational validation tools, mechanisms to support
human reasoning, or both.

In general, as a tool builder moves along this spectrum from providing very simple
techniques to supporting sophisticated proofs, the power of the analyses increases as does
the value of the analytical results. Unfortunately, there are also a number of trade-offs that
she must make in order to get the more sophisticated analytical results. These trade-offs
include: greater difficulty creating the analytical tools, a more focused scope of problems
diat the techniques addresses, a decrease in the speed with which results can be returned, and
decidability problems.

Selecting an appropriate point on this spectrum for Armani's built-in analytical capabilities
proved to be a crucial design decision. My goal was to provide as powerful a set of design
rule checking capabilities as possible while still being able to meet the requirements laid out
for the design language and configurable environment. The key requirements that seemed to
be endangered by making the design rule checking too powerful were the ability to guarantee
fast, interactive, environment performance and ensuring decidability of design rule checking
(which was also a prerequisite for a good interactive environment).

Fortunately, I was able to create a set of design checking capabilities that provided designers
with significant analytical power yet still met Armani's key requirements. This approach
supports automated type checking techniques to verify that a specific design instance
satisfies its design rules and all of the design rules stored in its types and styles. In the
following Armani specification, for example, the Armani toolset can automatically determine
that component A satisfies type T and that component B does wet satisfy type T.

Component Type T={Property X: int;}
System S = {

Component A: T = {Property X: int = 7;};
Component B: T= {Property Y: int = 7;};

};

As we have seen throughout the dissertation, the ability to determine whether an instance
satisfies its design rules provides designers with significant analytical capability. A logical next
step, then, is to ask whether a type or a style is internally consistent. In Armani, the question
of whether a type is internally consistent can be reduced to the question of whether it is
possible for any instance to satisfy the constraints of the type. The following Armani code
snippet illustrates a type specification that is internally inconsistent. It is obviously not possible
for an instance of type Tto have a property x that is both less than 100 and greater than 100
at the same time.

188

Component Type T={
property x; int;
invariant x > 100;
invariant x < 100;

};

Unlike determining whether an instance satisfies a type, determining that an arbitrary type is
inconsistent proves to be very difficult. As the previous example illustrates, however, it is
frequently relatively straightforward for a human to make such a determination. Therefore,
Armani provides an intellectual framework that a designer or architect can use to verify that
the types and styles specified are internally consistent. This framework consists of the
defined semantics for the language and the rules of predicate logic. One of Armani's key
design principles is to have the computer perform the tasks at which machines are better
than people and to have the architect perform the tasks that humans do better than
machines. Following this principle, Armani does not support automated checking of internal
type and style specifications consistency.

As designs, styles, and types become complex and they are arbitrarily composed it can
become difficult to determine whether a type is internally consistent. There is clearly some
benefit to being able to automate the detection of such inconsistencies. Many of these
inconsistencies can be detected using theorem proving techniques. The PVS theorem-
proving system [OS97], for example, detects inconsistencies of this sort.

Unfortunately, although this technique can be used to find inconsistencies in type and design
specifications, because it can run arbitrarily long to prove its theorems and requires sporadic
input from the user, it is not particularly effective as a substrate for interactive design
environments or fully automated analysis tools. Armani trades off the ability to prove the
internal type consistency for the ability to definitively (and quickly) determine whether a
given instance of a design specifies its type constraints.

The standalone Armani system provides most of the checking capability of PVS, but it does
not support theorem proving. Integrating PVS with Armani would allow the Armani
environment to support both an interactive environment for rapidly evaluating design
instances and the ability to perform more sophisticated analyses of type and style
consistency. Such an integration is beyond the scope of this dissertation, but a promising
direction for future work.

9.1.4 Straightforward type and constraint checking algorithms

In implementing Armani's typechecking and constraint management systems, wherever
possible I opted for simplicity and extensibility of implementation rather than run-time
performance. This proved to be a good design decision.

One of the assumptions that I made for performance evaluation was that architectural
specifications will generally be relatively small - on the order of tens or hundreds of
components and connectors. I found that straightforward type-checking and design rule-
checking algorithms were sufficient for designs of this size. In fact, the algorithms I

189

implemented to do the checking proved sufficiently fast on designs with up to one thousand
components and connectors. Evaluating designs with less than one hundred components
and connectors for type and constraint satisfaction generally appear almost instantaneous to
the architect using the tool. Typically, the time required to pass a request from the Visio-
based GUI to the Armani constraint management engine was longer than the time required
for the checking engine to validate the design. The complete design checking process,
however, was still fast enough to support interactive evaluation.

Because the simple type and constraint checking algorithms executed so quickly, it was not
necessary to implement more complex algorithms. Although these simple algorithms might
not scale to designs with tens of thousands or millions of design elements, such a detailed
specification is unlikely to be an architectural specification. An architectural specification
describes a system abstraction that must be comprehensible to humans. A design with tens
of thousands of interacting elements is not likely to satisfy this criterion. Armani
specifications generally achieve scale in terms of total components and connectors through
hierarchical decomposition and abstraction. That is, a component at one level of abstraction
might be represented as a complete system (with Armani's representation construct) at a more
detailed level of abstraction. Armani's type and constraint checking algorithms take
advantage of this built-in notion of abstraction boundaries to scale performance as system
designs get large. The algorithmic heavy-lifting generally occurs at a single level of
abstraction in a design (ie within a single system description). By evaluating these
encapsulated abstractions as a series of individual and largely independent entities, the
algorithm scales linearly in the number of systems evaluated. The task of evaluating each
individual system can, however, be arbitrarily complex depending on the complexity of the
predicates declared to hold over that system.

Although the overall performance of these evaluation algorithms was acceptable, a
performance issue arose in one of the case studies regarding the use of a declarative
language. Specifically, one of the case study participants created an analysis that, when
expressed naively in the Armani design language, evaluates an unnecessarily large search tree
of potential system configurations. The tricky problem with Armani's declarative design
rules that this case revealed is that it is not always clear when they will require inefficient and
cumbersome evaluation processing. Experience using Armani, however, indicates that just as
it is possible to write either very efficient imperative code or very inefficient imperative code,
so too is it possible to write either relatively efficient or relatively inefficient declarative code.
Gaining experience using Armani appears to help architects mitigate this problem. As the
case study participants (and I) became more proficient at using the Armani design language
it became much easier to write clean, efficient design rules. In general, these design rules also
grew shorter, simpler, and more readable as we got better at writing them.

This problem is not unique to Armani. Other tools, such as model checkers, also face this
issue. In many model checkers slight changes in a model's representation can result in huge
variations (i.e., orders of magnitude) in run-time performance. Supplying users with a set of
heuristics and a basic understanding of how their specification choices can affect run-time
performance is an important first step in addressing this problem. As these heuristics
become better understood, automated tools can be created to help designers make use of

190

them. Although this is fertile ground for future work, solving this problem is beyond the
scope of this thesis.

An important step that I took to address the need for tuning the evaluation efficiency of
selected design rules was to provide an interface that tool developers and style designers can
use to implement their design rules and analyses directly in Java. By providing this interface,
tool developers can adjust where and how their design rules are evaluated and implement the
evaluation mechanisms with an imperative algorithm instead of a declarative statement. The
tool builders in the case study just described (and described in detail in section 8.2.2) used
this approach to move his analysis into Java. By doing so he was able to dramatically prune
the search tree and improve evaluation performance.

In this case study, as well as in others, however, this step was rarely required purely for
performance reasons. As discussed in chapters 4 and 5, the Armani design language is not
well suited for expressing all types of design analyses. In this instance, the analyses were
moved from Armani to Java because the style designer found it easier to express the analyses
imperatively rather than declaratively. Performance was a secondary issue, though in this case
moving to a Java-based analysis that could prune its search tree improved performance
dramaticalry. Combining a clean, declarative language for expressing most design rules with
the ability to escape to an imperative language where necessary for performance or
expressiveness concerns allows Armani to provide appropriate performance characteristics
for a wide variety of designs and analyses.

9.2 Design decisions that yielded mixed results

Unfortunately, not all of the design decisions I made for Armani proved to be as effective in
practice as I had intended. The results of two specific decisions proved to be particularly
suprising. The first of these was the decision to use a completely declarative design language
and the second of these was the decision to build extreme run-time flexibility into the
environment. In the following two subsections I discuss each of these design decisions and
their implications in greater detail.

9.2.1 Using a completely declarative design language

The Armani design language is fundamentally declarative. An Armani specification provides
a blueprint from which a system can be built and a description of the properties of the
system to be constructed. It does not provide an operational description of the steps
required to build the system. Nor does an Armani specification describe the mechanism to
use to verify that the constraints imposed on the design are met. Both of these tasks are left
to the language processing tools that operate on Armani descriptions.

Using a declarative language frees an architect or environment developer from the need to
specify how to enforce his design rules. He simply needs to declare what the design rules are
and the environment will enforce them for him. In general, the size of declarative design
rule specifications is significantly smaller than the amount of code required to describe the
mechanism for checking those specifications in an imperative language. Likewise, the

191

declarative nature of the language encourages, if not insures, modularity and principled
composition of design elements. Integrating operational specifications of design vocabulary
and design rules that were not originally designed to work together tends to be much more
difficult and complicated than the relatively straightforward composition of declarative
specifications [Kai85].

"With all of these potential benefits, it seemed that a declarative design specification language
would provide designers with a great deal of leverage for minimal cost. In training other
people to use the Armani language, however, I discovered that this approach has a
significant drawback. Specifically, I found that some designers who are primarily
programmers by training and experience found it difficult to make the conceptual leap from
specifying how to construct a design and what that design should do to simpry specifying whet
the design should be. Although I suspect this difficulty is intertwined with the difficulty that
case study participants had in making the transition from thinking at the programming level
to thinking at the architecture level, I don't have any strong evidence other than my case
study observations to support this hypothesis.

Throughout the case studies, approximately half of the participants found the declarative
language powerful, easy, and natural to use. Approximately one quarter of the participants
struggled with the declarative nature of the language initially but eventually discovered how
to use it effectively. The most disappointing finding was that the final quarter of the
participants were never really able to use the declarative language effectively. Even after
acquiring significant experience with Armani they had enough difficulty expressing their
ideas with the declarative language that they wrote most of their design rules and analyses
directly in Java and imported them into the environment as external analyses. In almost all of
these cases, I was able to help them write appropriate declarative statements that provided
their desired capability after they had completed their experiments. This revision exercise
demonstrated that the problem was not Armani's inability to capture this kind of expertise
declaratively Rather, the problem was that the Armani language did not provide a good
match with these designer's mental concepts for how the expertise that they wanted to
express should be captured.

Although the number of case studies was too small (approximately eight environment
developers and architects participated) to be conclusive, this finding raises a concern with the
Armani approach. The declarative nature of Armani provides a lot of leverage for those to
whom thinking architecturally and declaratively comes naturally. Environment developers,
however, who have trouble making the jump to a declarative architectural model will likely
have trouble taking full advantage of Armani's potential benefits. Armani's support for
writing external analyses and design rules directly in Java addresses this issue partially. Given
an opportunity to redesign a second generation of the Armani system, I would strongly
consider adding algorithmic extensions to the Armani design language.

9.2.2 Building extreme flexibility and reconfigurability into the environment

One of the original hypotheses underlying Armani was the idea that providing software
architects with the ability to arbitrarily reconfigure their tools and environments would allow
them to closely match their tools' semantic and visual design representations to the represen-

ts

tations they used informally and independent of the tools. Driving this idea was the further
hypothesis that allowing the architects and designers who actively use these tools to do the
customizations themselves would unleash their creativity and allow them to build powerful,
task-specific tools without having to be expert toolbuilders. In the course of conducting this
research I created a configurable environment infrastructure with which these hypotheses
could be explored. The goal of this research was not, however, to rigorously test whether
these hypotheses held.

As the previous chapters have illustrated, Armani does indeed provide its end-users with
tremendous flexibility and configuration capability. Experience using the tool also seems to
confirm the hypothesis that it allows architects to incrementally customize their
environments in powerful and useful ways without having to be expert toolbuilders. Whether
this capability, when deployed on a large scale, will result in a groundswell of compelling
custom design tools remains an open question. The case studies, however, point to the
possibility of this outcome.

Although experience building and using Armani provides a compelling argument that these
hypotheses hold, this experience unfortunately also illuminates two drawbacks to Armani's
extreme reconfigurability. The first drawback is that although it is easy to modify an Armani
environment, it is still difficult to create great customizations. The process of customizing an
Armani environment is simple and straightforward; the changes can be made in very small
increments; and the structure of the language and environment provide designers with
significant guidance in making appropriate customizations. Defining or selecting appropriate
expertise to load into the environment, however, still requires significant taste and judgement
on the part of the person customizing the environment. Both visual and semantic
customizations face this difficulty.

Armani's style construct goes a long way towards mitigating the seriousness of this problem
by providing a mechanism for aggregating coherent collections of related design expertise
and visualizations. One easy guideline that an architect can use to address this problem is to
customize the environment only at the granularity of complete styles. By using only
complete style specifications created by experts in those domains the likelihood that the
expertise captured by the style will work together in a sensible way is greatly increased. As an
architect becomes more confident in her ability to articulate design expertise in the Armani
design language, she can begin to experiment with creating new styles that encapsulate her
expertise and are applicable to her design domains.

The second drawback introduced by Armani's extreme configurability is that there is
significant value in standardization amongst a group of software designers and developers
on the tools (and the configurations of those tools), the vocabulary, and the design rules that
they choose to design and build their system. Used properly, Armani encourages such a
group to develop their own shared set of standard design expertise with a single agreed
upon semantic definition and set of visual depictions. Used improperly, this capability results
in chaos with all members of the development team customizing their individual tools until
they have significantly different configurations, utilize little or no shared vocabulary or
design rules, and provide different graphical depictions of design elements. This result is not

193

necessarily undesirable in all design and development situations. In many organizations,
however, this chaotic approach is unlikely to lead to the timely delivery of great software.

In order for Armani to be effectively deployed in a wide range of software design and
development organizations, it is important that the organization set up guidelines and
procedures for managing changes and customizations to the Armani environments used by
its architects. Details of the strictness and specificity of these guidelines can vary
significantly depending on the development organization's processes. Defining these
guidelines is outside of the scope if this dissertation, but it certainly provides an avenue for
useful future research.

Armani's radical flexibility and reconfigurability provides architects with the opportunity to
build highly customized design tools that solve their specific design problems and closely
match their conceptual models. Taking full advantage of this capability, however, requires
those using the tool to also be vigilant of the approach's potential pitfalls.

194

Chapter 10

Conclusions and Future Work

10.1 Summary

In this dissertation, I have demonstrated my thesis claim that:

It is possible to capture a significant and useful collection of software architecture design

expertise with a language and mechanisms for expressing design vocabulary, design rules, and

architectural styles. Further, this captured design expertise can be used to incrementally

customize software architecture design emironments.

To demonstrate this claim I built such a language and incrementally configurable software
architecture design environment. In the first chapter I argued the need for rapidly
customizable software architecture design environments and presented my plan for
providing them. I illustrated how such an environment can be constructed and customized
in Chapter 2. I reviewed relevant related work and concluded that all previous attempts at
addressing this problem either failed to fully provide the required capabilities or solved a
somewhat different problem (described in Chapter 3). In Chapter 4 I described the Armani
design language and illustrated how it's constructs for expressing system descriptions, design
vocabulary, design rules, and architectural styles can be used to capture both architectural
specifications and design expertise. Having specified a language that addresses the first half
of the thesis, I created the Armani configurable design environment and described in
Chapter 5 how its architecture allows it to be rapidly reconfigured with design expertise
specifications captured in the Armani design language. Chapter 5 also illustrates Armani's
flexibility for integrating external tools (which can also contain significant design expertise)
and its usefulness as a platform for building new custom design tools. Together, chapters 4
and 5 demonstrate that it is feasible to use these techniques and mechanisms for capturing
design expertise and rapidly developing custom software architecture design environments.

To validate the overall approach and support the thesis claim I conducted a set of case
studies. Chapters 6, 7, and 8, described these experiments and their results. In Chapter 6 I
provided a detailed analysis and comparison of the tasks required to create a custom design
environment using Armani vs. the tasks required to build a comparable environment from
the ground-up using current methods and tools. The results of this analysis argue that if the
time and effort estimates used in Chapter 6 hold up to experimental verification then
Armani provides a significant advantage over the status quo. To validate the analytical results,
I conducted eight case studies, described in Chapter 7. One of the key results of these case
studies was that I had been overly conservative in my previous estimates. Armani's
performance proved to be even better than the analysis had predicted. In addition to
verifying the task analysis, the case studies in Chapter 7 demonstrated the breadth, power,

195

and incrementality of the Armani approach. The fact that I conducted all of the case studies
described in Chapter 7 by myself raises the issue of whether the results of those case studies
were overly skewed by the fact that I both built the tool and tested it by building sample
custom environments. To address this issue, I conducted four additional case studies in
which other software architects, researchers, and tool builders used Armani to create custom
design environments and tools that solved specific design problems they faced. These case
studies also extended the previous chapter's demonstration of Armani's power, breadth, and
incrementality. Chapter 8 summarizes the results of these case studies.

After presenting a detailed description of how Armani satisfies the thesis claim, along with
an analysis and case studies to validate the claim, I provided a critical evaluation of
interesting issues surrounding the Armani project in Chapter 9. Finally, in this chapter I
discuss the thesis' contributions and describe opportunities for future research that this work
has uncovered.

10.1.1 Contributions

Having explored a new approach to rapidly developing custom software architecture design
environments, let us revisit the contributions that this research makes to the field of
Computer Science. The research presented in this dissertation provides:

• A technique for dramatically reducing the time, cost, and difficulty of building a
significant class of customized software architecture design environments. This
dissertation's roadmap describing how to use this technique provides significant value,
independent of the Armani implementation, to a variety of audiences. This technique
benefits software architecture design environment builders by demonstrating how a
variety of design tools can be built through principled, incremental adaptations to a
common shared infrastructure. It benefits software development organizations by
providing access to highly customized tools at a much lower cost than current
development techniques allow. It benefits practicing software architects by providing
them with tools that closely match their design domain. Finally, it benefits researchers
studying software development tools by providing a general customization technique that
can likely be extended to other design and problem domains.

• A design language. The dissertation describes a software architecture design language
that is capable of incrementally capturing software architecture design expertise with
modular, reusable, first-class language constructs. The design language is also a full-
fledged architecture description language (ADL) capable of describing the structure of
software architectures and the constraints and guidelines under which those systems
were designed and may be evolved.

The design language contributes to the software architecture research community by
demonstrating that a first-order predicate logic-based constraint language can be used to
define interesting and useful design rules to guide software design and evolution.
Further, the language articulates and encodes an extensible framework for capturing
software architecture design expertise. In addition to its benefit to researchers, the design
language also benefits software development organizations by providing a way to capture

1%

and reuse the organizational design expertise they develop in building software systems.
Finally, it benefits software architects by providing an explicit technique for capturing
and expressing architectural design constraints in software architecture specifications.

• A reference architecture. The dissertation describes a reference architecture, or
architectural style, for software architecture design environments that support incre-
mental customization. It describes the architecture of the Armani design environment,
describes the mechanisms that the environment's architecture provides for incremental
adaptation, and discusses some fundamental tradeoffs facing architects working in this
style. This architecture is proven, applicable, and appropriate for creating software
architecture design environments beyond the Armani environment described in this
dissertation. This contribution is particularly useful for software tool builders who need
adaptable, modular architectures to use for design tools and environments.

• A set of case studies. A set of detailed examples and case studies are presented to
illustrate how the technique, language, and integration framework just described can be
used to effectively capture software architecture design expertise and rapidly develop
custom software architecture design environments. The case studies benefit people using
Armani to design software architectures and build custom software architecture design
environments. They provide a framework for conducting validations of similar research
in software design and development tools. Finally, they are useful for researchers
interested in further exploration of the ideas presented in the dissertation.

10.2 Future work:

The process of designing, building, and using Armani introduces opportunities for further
research. In this section I discuss the most promising of these.

10.2.1 Generalizing flexible configuration strategies

Armani provides a point solution to the general problem of separating the standard
infrastructure shared by all members of a family of systems from the variable aspects of
those systems. Specifically, it allows software architecture design environment developers to
incrementally configure their design environments. The principles embodied in the Armani
approach are, however, almost certainly applicable to other design domains. Although
developing a general solution for configuring arbitrary families of systems is beyond the
scope of this thesis, the research suggests three general principles for replicating this
approach in other domains.

The first of these principles is that establishing the core concepts and underlying formalism
as an initial step makes the creation of the configurable tools much easier. The hardest task
in developing Armani was defining the Armani design language, its core concepts, and its
extensibility semantics. Once I had developed the language and an infrastructure for
processing the language it proved straightforward to implement the configurable environ-
ment on top of the language infrastructure. The key configurable aspects of the Armani
environment were built directly into the language so I simply had to make the environment

197

expose these configuration capabilities to the end user. The applicability of this approach to
other domains is an open question and fertile ground for further research.

The second core principle is that the infrastructure that serves as the basis for the family of
custom software systems needs to provide a useful set of capabilities. If the domain does
not have a standard set of system capabilities common to all systems in the domain, then the
domain is probably not a good candidate for using this approach. The minimal,
unconfigured Armani design environment, for example, is a fully functioning design envi-
ronment. It supports the representation of system designs, graphical design depiction and
manipulation, design rule checking, and the integration of external tools. Further research is
needed to develop guidelines for determining a domain's key common infrastructure pieces.

The third core principle is that it is important to provide multiple, complementary,
mechanisms for configuring the core infrastructure. Armani provides a core set of tools and
constructs common to all Armani environments, a language for configuring the design
expertise stored in the environment, and mechanisms for integrating external tools and
building new tools that couldn't be represented with the configuration language. Each of
these mechanisms can be used to configure and create custom design environments. If an
environment developer can't attain the desired configuration using one of these techniques,
he can almost always achieve the configuration using one of the other techniques. These
three techniques proved appropriate and useful for the domain of custom software
architecture design environments. It is not clear, however, that they are optimal configuration
techniques for all possible domains. Developing additional configuration techniques and
providing guidance for mapping domain characteristics to configuration techniques both
provide compelling opportunities for future research.

It appears that variations on the Armani approach can be applied with significant benefit to
many different software development domains. Exactly which aspects of the approach need
to be modified for different domains and which can be reused directly is an open question.
Along the same lines, it is not clear whether Armani's use of a rich declarative language as
the basis for the bulk of the configuration information is widely applicable beyond the
domain of software architecture design environments. Significant future research is needed
to address these questions. Ideally, these experiments will attempt to apply the broad Armani
approach to creating configurable infrastructures in other domains and report on the
effectiveness of the technique.

10.2.2 Integrating the Armani toolset with full software lifecycle processes

To limit the scope of this research, I did not directly explore Armani's roles in full software
lifecycle processes. Likewise, my research does not provide any definitive answers on
whether or how the Armani approach changes, or should change, these processes. Mature
software development organizations, however, will only be able to take full advantage of
Armani if they can integrate the tool into their software development, deployment, and
maintenance processes. As a result, determining how the Armani design approach can be
integrated with popular development processes, as well as discovering new processes enabled
by Armani's flexibility and power, are both promising directions for future work

198

There are four specific research topics within this general area that are likely to be fruitful.
The first of these is developing techniques for relating system requirements to architectures.
Providing the ability to directly track how an architecture addresses a system's requirements
is a key capability, though figuring out how to do so effectively will require a non-trivial
research effort. Armani's constructs for specifying software architectures and design rules
potentially provide a useful platform for mapping such a relationship. Further, Armani's
ability to rapidly experiment with different environment capabilities and system design
options potentially introduces an opportunity to create a tight feedback loop between the
requirements gathering task and the system architecting task. The process of designing a
system to meet a set of requirements frequently sheds light on the requirements themselves.
An additional avenue for further research is the development of processes that can take
advantage of this potential tight feedback loop.

The second research topic is establishing more effective techniques for mapping architec-
tures to implementation code. Ideally, this mapping process will allow system designers and
developers to generate significant system implementation code in the process. Although
architectural specifications are valuable and important as blueprints for how a system should
be built, using a manual process to go from an architectural specification to the system
implementation presents (at least) two problems. The first problem is architectural drift.
Because the architectural specification is just a blueprint, it is possible and even probable that
the completed system will not implement the architectural specification perfectly. This
problem becomes more acute as a system evolves throughout its lifetime and the
architectural documents fail to keep pace. The bigger and more complex the project is, the
more likely this is to be true. The second problem is that implementation still requires a
tremendous amount of effort relative to the architectural specification.

One obvious technique that could address both of these issues is providing tools for
generating a significant body of implementation code from the architectural specification.
Generating even skeletal code constructs could both significantly speed implementation time
and improve the match between architectural specifications and the code that implements
those specifications. One promising approach to making such generation feasible is to link
tools that know how to produce code for common components and connectors given a set
of parameters by an architect. The UniCon project [Shaw+95] takes this approach with its
experts concept. UniCon experts describe how an architectural construct should be realized in
implementation code. Although beyond the scope of this dissertation, developing a
technique to couple UniCon's experts with Armani's design rules is a promising avenue for
adding code generation capabilities to Armani.

The third research topic explores whether Armani, and other tools that emulate its extreme
flexibility, introduces opportunities to use software processes that are radically different from
those popular today. Armani allows a designer to quickly change not only the design of the
system that he is building, but also the tools that he is using to build that system. The
research I presented in this dissertation does not solve the problem of how best to harness
this capability to build software better, faster, and cheaper. The ability to adapt your tools to
solve the problem at hand instead of adapting your problem to fit the tools available,
however, can fundamentally change the dynamics of software development processes.
Specifically, assumptions about what kinds of tasks and capabilities are expensive and which

199

are cheap may need to be re-evaluated. Such a re-evaluation can lead to useful insights into
alternative processes and techniques. The opportunities for innovative software processes
become even greater as additional software development tools take Armani's lead and are
made highly configurable for customization by their end-users. Providing the Armani toolset
to a larger audience of practicing architects and observing how they adapt their design
process as a result of using the tools is a promising next step for exploring this topic.

The fourth opportunity for future process-related research lies in devising techniques and
protocols for managing architects working with Armani. The freedom that Armani provides
designers in configuring their design tools and environments may or may not be desirable at
the organizational level. Requiring that all designers and developers use a standard set of
tools and techniques, for instance, is often a good way to insure that designers can
communicate and readily share designs and specifications.

At the same time, allowing all designers to customize their design tools with their own design
vocabulary, design expertise, and visualization mechanisms offers the potential for chaos.
Armani's ability to quickly distribute expertise and environment specifications between
designers, however, also allows designers to quickly experiment with different environment
configurations and share discoveries with their collaborators. The opportunity for chaos is
present, but the opportunity for rapid and organic evolution of design techniques and tools
is also present. The goal is to achieve this rapid organic evolution without suffering from
excessive chaos. Developing techniques, protocols, and mechanisms for tuning and main-
taining the desired level of flux in environment configurations is an important area for
follow-on research. One promising direction is to attempt to incorporate a standard access
control policy and/or model with Armani to define the specific permissions that each
member of an architecture team has.

10.2.3 Building effective design tools

In the first chapter of this dissertation I argued that design tools are effective when they
capture the fundamental desigi expertise of a specific design domain. Armani builds on this
assumption by providing a language for capturing design expertise and a configurable
software architecture design environment that can be incrementally customized with this
captured expertise. The case studies presented in chapters 6, 7, and 8 explore and
demonstrate Armani's ability to capture such design expertise and to use that expertise in
creating custom Armani environments. The case studies do not, however, evaluate the
effectiveness of these custom environments for designing software architectures in an
industrial setting.

Although conducting such a set of experiments was beyond the scope of this thesis, this
issue points to an important avenue for future work. Specifically, Armani relies on the
environment developers and architects who use it to configure the generic environment with
useful design expertise. Developing a better understanding of how and where different kinds
of expertise provide architects with leverage should improve the quality of customized
Armani environments. Along the same lines, providing a set of guidelines for effectively
using Armani can help new environment developers become proficient with the tool more
quickly.

200

Armani can be easily reconfigured, external tools can be readily integrated with the
environment, and its extensible infrastructure can be used to rapidly develop and deploy
experimental design tools. As a result, it provides an excellent platform for exploring what
makes design tools effective and experimenting with a wide variety of alternative tools and
design expertise.

10.2.4 Composable connectors

The availability of pre-built connector types and connection infrastructure is often a more
important design decision driver than the availability of pre-built components. Building
complex connectors can be very difficult, or impossible, without access to underlying system
services. It is, for example, difficult to use a shared-memory connection between processes if
the underlying operating system doesn't support inter-process shared memory blocks.

Dynamic composability of connector characteristics and generation of custom connectors
could significantly alleviate this problem. It is important that this composability be provided
at more than the formal level (though that's a good start). The model and technology must
also support the creation of an executable, run-time connection infrastructure from the
formal specifications. UniCon [Shaw+95] provides a good initial cut at connector gene-
ration, but it does not support the creation of new connection mechanisms through
composition.

Throughout the process of designing the Armani environment's architecture, finding an
appropriate set of reusable components proved less difficult than assembling a set of
connection mechanisms that worked properly with the selected components. Without
appropriate connection mechanisms, however, I was unable to take advantage of many of
these reusable components. It was frequently easier to duplicate the component's
functionality than it would have been to integrate them using existing connector tech-
nologies. In other cases, the performance of the integrated components was simply too
unreliable to be usable in the production system. In these cases, the connection mechanisms
were "black boxes" that frequently and mysteriously failed to work. Debugging these failures
was almost impossible because the connection mechanisms were proprietary and exposed
very few details to the developer. Providing tools and techniques for generating connectors
with reliable, composable, functionality and properties would go a long way towards
addressing these challenges.

10.2.5 Distribution and installation of component-based systems

One of the underlying experiments in designing the Armani environment infrastructure was
to exploit the current state-of-the-practice in building component-based systems. Along
these lines, I selected the Microsoft Java VM as the run-time environment for the Armani
infrastructure, Visio as the basis for building the Armani GUI, and ActiveX [Cha96] and
JavaBeans [Ham97] technologies to connect the components and wrap external tools. I
needed to distribute about a half dozen components with the full Armani solution. For even
with this small group of components, however, it proved effectively impossible to create an
automated installation script that could reliably install and integrate all of the components.

201

My difficulties in putting together the Armani distribution had both a legal component and a
technical component. At the heart of the legal difficulties was the fact that none of the
component vendors I selected allowed me to distribute their components with the Armani
release. They wanted to maintain full control over who received these components and how
they were licensed. From a business perspective, this is not an unreasonable position. An
important implication of this approach, however, is that anybody who wanted to install
Armani at their local site had to first visit multiple places to purchase, download, and install
half a dozen different components from multiple locations before they could even attempt
to install the Armani system. Providing an automated script to do the purchasing,
downloading, and installation required for these packages was effectively impossible.

I suspect that if I had been a large corporation selling hundreds of thousands of copies of
this software, I probably could have negotiated licensing and distribution agreements with
each of these vendors that would have allowed me to distribute their components, perhaps
for a fee. As a lone graduate student trying to make a research prototype freely available over
the internet, however, I had neither the time, resources, nor clout to make this solution
feasible. The need to conduct these lawyer-intensive negotiations severely limits the
scalability of current component-based system technologies.

Although the legal difficulties with distributing the full Armani system proved daunting, the
technical difficulties proved even more challenging. Each of the component vendors rapidly
put out new versions of their components, often introducing incompatibilities in the
process. Unfortunately, when vendors introduce a new version of a component they
frequently stop supporting older versions of it, or, even worse, they stop distributing the
older versions at all.18 As a result of this rapid upgrade cycle, it is effectively impossible to
keep up with all of the possible combinations of different versions of the same components that
a customer who downloads and attempts to install Armani is likely to encounter.

Allowing system developers to distribute these components directly with their system
installation package would help to address this compatibility issue, because it would allow the
installer to have a consistent set of components to install. This solution solves some of the
distribution problems, but it is still not perfect. If the system to be installed uses a widely
available component that is shared by multiple applications, installing a new version of that
component on the target machine may disrupt previously installed applications. Microsoft's
COM technology [Box98] has made significant progress in addressing the multiple versions
problem. Taking advantage of this solution, however, requires a developer to completely
buy-in to a large collection of proprietary Microsoft standards.

My experience distributing the Armani system indicates that the current state of the practice
for distributing component-based systems with components from multiple vendors does not
scale to systems with six distributable components. Failure to work for a system this small
indicates that current distribution and installation solutions are highly unlikely to effectively
scale to support the distribution of large, heterogeneous, component-based software

Fortunately, in the only case I encountered where the vendor completely stopped distributing the older version of
their component (on which Armani was dependent), I was allowed to distribute the old component with the Armani
distribution. If I had not been so fortunate, I would have had to make significant, costly upgrades to Armani iust to
keep it available.

202

systems. Interestingly, this problem is not limited to large, complex, software systems. The
state-of-the-practice techniques and infrastructure for distributing component-based systems
are also problematic for small, inexpensive software systems produced by development
organizations that lack the resources to negotiate with large component vendors.

Developing configuration management and distribution systems that address both technical
and legal issues is a critical area for future research. Without dramatic improvements in this
area, the optimistic projections of component-based software evangelists are unlikely to
come to fruition and software development organizations are unlikely to be able to take
significant advantage of component-based technologies.

10.2.6 Selecting appropriate styles and design expertise

Armani provides software architects and design environment builders with a great deal of
flexibility for expressing, capturing, and reusing design expertise and architectural styles. It is
not, however, particularly effective at guiding architects faced with a specific design problem
in selecting appropriate architectural styles or collections of design expertise. This process
still requires significant taste and judgement on the part of the architect.

Researchers working in other specialties have made progress on the general problem of
mapping common design problems to understood solutions (to cite three examples, see the
work in the design patterns community such as [Gam+95], Lane's thesis on user-interface
development [Lan90], and Kruegger's work on selecting object-oriented database designs
[Kru97]). There has, however, been little progress on this problem in the software
architecture research community. Although solving this problem is outside of the scope of
this thesis, experience with Armani underscores its importance as an area for future work.

10.3 Conclusion

In this dissertation I have demonstrated that it is possible to capture software architecture
design expertise in small, reusable, and incrementally composable units. I've also shown that
it is possible to build a configurable software architecture design environment that can be
incrementally customized to support a wide variety of architectural styles by simply loading
these design expertise units into the environment.

The case studies presented in this dissertation illustrate selected ways that this technique and
technology can be used to inexpensively and quickly provide software architects with highly
customized tools. The true power of Armani, however, remains to be discovered by the
architects and environment developers who will use it to harness and leverage their creative
skills and to create great software.

The mark of a great tool, it has been said, is its use in ways that its creator never imagined.
Hopefully those who use Armani will use it not only as I've described in this dissertation but
also as a springboard for creating powerful new design tools and techniques.

203

Chapter 11

Bibliography

[AAG95] Gregory Abowd, Robert Allen, and David Garlan, Formalizing Style to
Understand Descriptions of Software Architecture. ACM Transactions on
Software Engineering and Methodology, 4(4):319-64, October 1995.

[Ale+77] Christopher Alexander et al, A Pattern Language, Oxford University Press,
1977.

[All+98] Formal Modeling and Analysis of the HLA Component Integration
Standard, Robert J. Allen, David Garlan, and James Ivers, Proceeding of the
Sixth International Symposium on the Foundations of Software Engneering (FSE-6),
Nozxmber 1998).

[ATT93] Best Current Practices: Software Architecture Validation. AT&T Corp.,
1993.

[Autodesk] AutoDesk Corporation website, www.autodesk.com.

[Ber92] Alex Berson, Client/Server Architecture, McGraw-Hill, New York, 1992.

[Be90] Laurence J. Best, Modern Large-Scale Information Processing, John Wiley
& Sons, Inc., New York, 1990.

[Bus+96] Frank Buschmann, Regine Meunier (Contributor), Hans Rohnert
(Contributor), Peter Sommerlad, Pattern Oriented Software Architecture :
A System of Patterns, John Wiley and Sons, 1996.

[Boo94] Grady Booch, Object-Oriented Analysis and Design With Applications.
Addison-Wesley, ISBN: 0805353402,1994.

[Box98] Don Box, Essential COM, Addison-Wesley Pub Co; ISBN: 0201634465,
1998.

[BRJ98] Grady Booch, Jim Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, ISBN: 0201571684,1998.

[Bro95] Fred Brooks, The Mythical Man Month: Essays on Software Engineering,
25th Anniversary edition. Addison-Wesley, ISBN: 0201835959, July 1995.

[Cadence] Cadence Corporation website, www.cadence.com.

BOB MONROE 08/20/99

[Cha96] David Chappell, Understanding ActiveX and Ole, Microsoft Press; ISBN
1572312165,1996.

[Corel] Corel Corporation website, www.corel.com.

PD97] Hugh Darwen and Chris J. Date, A Guide to the SQL Standard : A User's
Guide to the Standard Database Language SQL. Addison-Wesley Pub Co-
ISBN: 0201964260, April 1997.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press, 1972.

[Fen+94] Steven Fenves et al, Concurrent Computer-Integrated Building Design,
Prentice Hall, Englewood Cliffs, N.J., 1994.

[Fis87] Gerhard Fischer, A Critic For Lisp, University of Colorado Technical
Report CS-CU-365-87, June 1987.

[Fis+87] Gerhard Fischer and Andreas C Lemke, Construction and Design Kits:
Human Problem-Domain Communication, University of Colorado
Technical Report CS-CU-366-87, June 1987.

[For81] Charles L. Forgy, "OPS5 User's Manual", Technical Report CMU-CS-81-
135, Carnegie Mellon University, School of Computer Science, Pittsburgh
PA 1981. 5 '

[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley
Pub Co; ISBN: 0201633612,1995.

[GA094] David Garlan, Robert Allen, and John Ockerbloom, Exploiting Style in
Architectural Design Environments. In Proceedings of SIGSOFT '94:
Foundations of Software Engineering, ACM Press, December 1994.

[GA095] David Garlan, Robert Allen, and John Ockerbloom, Architectural
Mismatch, or, Why it's hard to build systems out of existing parts, in
Proceeding of the 17th International Conference on Software Engineering, April

[Gar95] David Garlan, editor. Proceedings of the First International Workshop on
Architectures for Software Systems. April, 1995.

[Gia93] Joseph C Giarratano, CLIPS Users Guide, Available from the Software
Technology Branch of the NASA Johnson Space Center. 1993. Available
at: http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/expert/
systems/clips/0.html.

© BOB MONROE PAGE 206 08/20/99

[GMW97] David Garlan, Robert Monroe, and Dave Wile, Acme: An Architecture
Description Interchange Language, Proceedings of CASCON '97,
November 1997.

[Hab+82] Nico Habermann et al, The Second Compendium of Gandalf
Documentation, Department of Computer Science, Carnegie Mellon
University, May 1982.

[Ham97] Graham Hamilton (editor), Java Beans version 1.01 specification, available
from http://www.javasoft.com/beans, July 1997.

[HFB94] Dan Heller, Paula M. Ferguson, and David Brennan, Motif Programming
Manual (The Definitive Guide to the X Window System, Volume 6A).
O'Reilly & Associates; ISBN: 1565920163, 1994.

QCC99] JavaCC web site, http://www.sun.com/suntest/products/JavaCC/ .

Qac94] Ivar Jacobson, Object-Oriented Software Engineering : A Use Case Driven
Approach, Addison-Wesley, ISBN: 0201544350 , 1994

[KC98] Paul Kogut and Richard Creps, CORBA-Aware Environments, Internal
Lockheed Martin report, available by personal request to
paul.kogut@lmco.com.

[Kai85] Gail E. Kaiser, Semantics for Structure Editing Environments, Doctoral
Dissertation, Carnegie Mellon University, 1985.

[Key99] Key Software Corporation website: www.keysoft.com.

[Kom99] Andrew Kompanek, AcmeStudio web site:
http://www.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html

[Kru97] Charles Krueger, Modeling and Simulating a Software Architecture Design
Space, Ph.D. Thesis, Carnegie Mellon University Technical Report CMU-
CS-97-158, December 1997.

[Lan90] Thomas Lane, User Interface Software Structures, Ph.D. Thesis, Carnegie
Mellon University Technical Report CMU-CS-90-101, May 1990.

[Law87] Shari Lawrence Pfleeger, Software Engineering: The Production of Quality
Software, Macmillan Publishing Co, New York, 1987.

[LM98] Lockheed Martin Corporation, Evolution Plan for the Global Trans-
portation Network, Delivery 2/3. Publication USTCP 171-8.2, Lockheed
Martin Corporation, March 1998.

[McM93] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
1993.

© BOB MONROE PAGE 207 08/20/99

[MG92] Mettala, E. and Graham, M.. The Domain-Specific Software Architecture
Program. Special Report, Carnegie Mellon University Software Engineering
Institute CMU/SEI-92-SR-9.1992.

[Min91] Naftary Minsky, Law Governed Systems, The IEE Software Engineering
Journal, September, 1991.

[Min96-1] Naftary Minsky, Law-Governed Regularities in Object Systems; part 1:
Principles. Theory and Practice of Object Systems (TOPAS), John Wiley,
Vol. II, No. 4,1996.

[Min96-2] Naftary Minsky, Independent On-line Monitoring of Evolving Systems.
Proceedings of the 18th International Conference on Sofimzre Engineering, pages 134-
143, March 1996.

[Mon+97] Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan,
"Architectural Styles, Design Patterns, and Objects", IEEE Software,
January 1997.

[MQR94] Mark Moriconi, Xiaolei Qian, and RA. Riemenschneider. A formal
approach to correct refinement of software architectures, : Technical
report. SRI International. Computer Science Laboratory ; SRI-CSL-94-05,
April 1994.

[OMT98] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-
Based Runtime Software Evolution. Proceedings of the 1998 International
Conference on Software Engineering (ICSE '98). Kyoto, Japan, April 19-25,1998.

[OHE97] Robert Orfali, Dan Harkey (Contributor), and Jeri Edwards (Contributor),
The Essential Client/Server Survival Guide, John Wiley & Sons; ISBN
0471153257,1997.

[OS97] Sam Owre and Natarajan Shankar, The Formal Semantics of PVS.
Technical Report CSL-97-2, SRI International, Menlo Park, CA, August
1997.

[Per89] Dewayne E. Perry. The Inscape Environment. Proceedings of the Eleventh
International Conference on Software Engineering, Pittsburgh PA, May 1989.

[Pfl87] Shari Lawrence Pfleeger, Software Engineering: The Production of Quality
Software, Macmillan Publishing Co, New York, 1987.

[PW92] Dewayne E. Perry and Alexander Wolf, Foundations for the Study of
Software Architecture. ACM Software Engineering Notes, 17(4), October
1992, pp. 40-52.

[Qua98] Terry Quatrani, Visual Modeling With Rational Rose and Uml, Addison-
Wesley, ISBN: 0201310163, January 1998.

© BOB MONROE PAGE 208 08/20/99

[Rational] Rational Corporation website, www.rational.com.

[Rec91] Eberhardt Rechtin, Systems Architecting: Creating and Building Complex
Systems, Prentice Hall, 1991.

[RT88] Thomas W Reps and Tim Teitelbaum, The Synthesizer Generator: A
System for Constructing Language-Based Editors, Springer Verlag, 1988.

[RHR98] Jason E. Robbins, David M. Hilbert, and David F. Redmiles., Software
Architecture Critics in Argo. Proc of The 1998 International Conference on
Intelligent User Interfaces (IUI'98), January 1998.

[Riv+96] Jose German Rivera, Alejandro Andres Danyr/szyn, Charles B. Weinstock,
Lui R. Sha, Michael J. Gagliardi, An Architectural Description of the
Simplex Architecture, CMU Software Engineering Institute Technical
Report CMU/SEI-96-TR-006,1996.

[RM97] Eberhardt Rechtin and Mark Maier, The Art of Systems Architecting, CRC
Press, Boca Raton, FL, 1997.

[Rob+98] Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, David S.
Rosenblum. Integrating Architecture Description Languages with a
Standard Design Method. Proceedings of the 18th International
Conference on Software Engineering, 1998.

[Rum+91] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, Bill
Lorensen. Object-Oriented Modeling and Design, Prentice Hall; ISBN:
0136298419,1991.

[Shaw+95] Mary Shaw, Robert Deline, Daniel Klein, Theodore Ross, David Young,
and Gregory Zelesnik. Abstractions for Software Architecture and Tools to
Support Them. IEEE Transactions, on Software Engineering, April 1995.

[SC97] Mary Shaw and Paul Clements. A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems. Proceedings of
COMPSAC97, 1st Intternational Computer Software and Applications
Conference, August 1997.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[SG98] Bridget Spitznagel and David Garlan, Architecture-Based Performance
Analysis, Proceedings of the 1998 Conference on Software Engineering and Knoidedge
Engineering, June 1998.

[SGW94] Bran Selic, Garth Gullekson, Paul T Ward, Real-Time Object-Oriented
Modeling, John Wiley & Sons, New York, 1994.

© BOB MONROE PAGE 209 08/20/99

[S098]

[SVK93]

[Sha96] L. Sha, R. Rajkumar, and M. Gagliardi, Evolving Dependable Real Time
Systems, Proceeding of the 1996 IEEE Aerospace Applications Conference.
Aspen, CO, February 3-10, 1996. New York, NY: IEEE Computer Society
Press, 1996.

John Schettino and. Liz O'Hara, CORBA for Dummies, IDG Books
Worldwide; ISBN: 0764503081, October 1998.

David B. Stewart, Richard A. Volpe, and Pradeep K. Khosla. Design of
Dynamically Reconfigurable Real-time Software Using Port-Base Objects.
Technical Report CMU-RI-TR-93-11. Carnegie Mellon University Robotics
Institute, July 1993.

[Tay+96] Richard N. Taylor, Nenad Medvidovic, Kenneth M. Anderson, E. James
Whitehead, Jr., Jason E. Robbins, Kari A. Nies, Peyman Oreizy, and
Deborah L. Dubrow. A Component- and Message-Based Architectural
Style for GUI Software. IEEE Transactions on Software Engineering, pages 390-
406, June 1996.

[Ves94] Steve Vestal, MetaH Reference Manual, Honeywell Technology Center,
Minneapolis MN, 1994.

[Visio99] Visio Corporation home page, www.visio.com.

[WMK98] Franklin Webber, Joseph R McEnerney, and Kevin Kwiat, The
DesignExpert Approach to Developing Fault-Tolerant and Secure Systems.
Proceeding of the ISS A T International Conference on Reliability and Quality in
Design, 1998.

[WS97] Charles Weinstock and Lui Sha, Simplex overview website,
http://www.sei.cmu.edu/activities/str/descriptions/simplex_body.html

[YC79] Edward Yourdon and Larry L. Constantine, Structured design :
fundamentals of a discipline of computer program and systems design.
Prentice Hall, 1979.

© BOB MONROE PAGE 210 08/20/99

Appendix A

Armani Design Language BNF

BNF Meta-Syntax

Keywords are specified with bold text. Keywords are case-insensitive

Non-Terminals are specified with italics

(...) Parentheses group tokens and productions

[...] Indicates an optional production

(...)? Indicates a sequence of zero or one elements (synonymous with rj)

(...)+ Sequence of one or more elements

(...)* Sequence of zero or more elements

| Seperates alternative choices

Armani Grammar

ArmaniDesign ::= (TypeDeclaration
| FamilyDeclaration
j DesignAnalysisDeclaration)*

[SystemDeclaration]
<EOF>

Design Element Types:

FamilyDeclaration ::= Family Identifier ["("")") "=" FamilyBody [";"]

FamilyBody ::= "{' (TypeDeclaration)* "}"

TypeDeclaration ::= ElementTypeDeclaration \ PropertyTypeDeclaration

ElementTypeDeclaration ::= ComponentTypeDeclaration
| ConnectorTypeDeclaration
j PortTypeDeclaration
j RoleTypeDeclaration

ComponentTypeDeclaration ::= Component Type Identifier"^'
parse_ComponentDescription [";"]
I

BOB MONROE 08/20/99

Component Type Identifier Extends
Identifier ("."Identifier)*
With parse_ComponentDescription [";"]

ConnectorTypeDeclaration ::= Connector Type Identifier "="
parse_ConnectorDescription [";"]

.1
Connector Type Identifier Extends
Identifier ("."Identifier)*
With parse_ConnectorDescription [";"]

PortTypeDeclaration ::= Port Type Identifier "=" parse_PortDescription [";"]
| Port Type Identifier Extends Identifier ("," Identifier)

With parse_PortDescription [";"]

RoleTypeDeclaration ::= Role Type Identifier "=" parse_RoleDescription [";"]
| Role Type Identifier Extends Identifier ("," Identifier)*
with parse_RoleDescription [";"]

lookup_ComponentTypeByName ::= Identifier

lookup_ConnectorTypeByName ::= Identifier

lookup_PortTypeByName ::= Identifier

lookup_RoleTypeByName ::= Identifier

lookup_PropertyTypeByName ::= Identifier

Design Elements:

SystemDeclaration

SystemBody

ComponentDeclaration

ComponentsBlock

::= System Identifier (":" Identifier)? "=" systemBody [";"]

::= (New lookup_ComponentTypeByName |
urn

(ComponentDeclaration \ ComponentsBlock
| ConnectorDeclaration \ ConnectorsBlock
j PortDeclaration | PortsBlock | RoleDeclaration
I RolesBlock | PropertyDeclaration \ PropertiesBlock
j AttachmentsDeclaration | RepresentationDeclaration
j DesignRule

)*
inn

)
[Extended With SystemBody]

::= Component Identifier
[":" lookup_ComponentTypeByName]
("=" parse_ComponentDescription";" |";")

:= Components"{"
(Identifier

[":" lookup_ComponentTypeByName]

© BOB MONROE PAGE 212 08/20/99

("=" parse_ComponentDescription";" I ";")
T
Tt";"]

parse_ComponentDescription ::= (New lookup_ComponentTypeByName
I
"{" (PortDeclaration \ PortsBlock

| PropertyDeclaration
| PropertiesBlock

| RepresentationDeclaration
j DesignRule)*

Hill

)
[Extended With parse_ComponentDescription]

ConnectorDeclaration ::= Connector Identifier
[":" lookup_ConnectorTypeByName]
("=" parse_ConnectorDescription";" |";")

ConnectorsBlock ::= Connectors"{"
(Identifier

[":" lookup_ConnectorTypeByName]
("=" parse_ConnectorDescription";" |";"))*

in ii r ii.M -I

parse_ConnectorDescription ::= (New lookup_ConnectorTypeByName
I
"{" (RoleDeclaration

| RolesBlock
j PropertyDeclaration
j PropertiesBlock
j RepresentationDeclaration
j DesignRule)*

Mill

)
[Extended With parse_ConnectorDescription]

PortDeclaration ::= Port Identifier
[":" lookup_PortTypeByName]
("=" parse_PortDescription";" |";")

PortsBlock ::= Ports"{"
(Identifier

[":" lookupJPortTypeByName]
("=" parse_PortDescription";" \";"))*

T[";n]

parse_PortDescription ::= (New lookup_PortTypeByName
I
"{" (PropertyDeclaration \ PropertiesBlock

| RepresentationDeclaration \ DesignRule)*
in II

)
[Extended With parseJPortDescription]

©BOB MONROE PAGE 213 08/20/99

RoleDeclaration ::= Role Identifier
[":" lookup_RoleTypeByName]
("=" parse_RoleDescription";" \";")

RolesBlock ::= Roles"{"
(Identifier

[":" lookupJRoleTypeByName]
("=" parse_RoleDescription";" |";"))*

parse_RoleDescription ::= (New lookup_RoleTypeByName
|"{" (PropertyDeclaration | PropertiesBlock \

Representation Declaration \ DesignRule)*
T)

[Extended with parseJRoleDescription]

AttachmentsDeclaration ::= [Identifier "="]
Attachments"{"
(Identifier"." Identifier to Identifier"." Identifier
["{" (PropertyDeclaration \ PropertiesBlock)* "}"]
";")*
in it n.ii

Properties:

PropertyDeclaration ::= Property parse_PropertyDescription";"

PropertiesBlock ::= Properties"{"
[parse_PropertyDescription
(";" parse_PropertyDescription |";")*

]
T[V]

parseJPropertyDescription ::= [Property] Identifier
":" PropertyTypeDescription
["=" PropertyValueDeclaration]
["«" parseJPropertyDescription

(";" parseJPropertyDescription \";")*
"»"

I

]

PropertyTypeDeclaration ::= Property Type Identifier
/ if. ii

I '
"=" (lnt"\" | Long";" | Double";" | Float";"

\String";" \ Boolean";" | Any";"
\Enum ["{" Identifier ("," Identifier)*"}"] ";"
\Set ["{""}"]";"
\Set"{" PropertyTypeDescription"}"";"
(Sequence ["<•• ••>"] ••;••
[Sequence "<" PropertyTypeDescription ">"";"

©BOB MONROE PAGE214 08/20/99

\Record"[" parse_RecordFieldDescription
(";" parse_RecordFieldDescription |";")*"]"";"

\Record ["[""]"]";"
identifier";"

)
)

PropertyTypeDescription ::= Int \ Long \ Float | Double | String
| Boolean \ Any
I Set ["{" [PropertyTypeDescription]"}"]
j Sequence ["<" [PropertyTypeDescription] ">"]
j Record"[" parse_RecordFieldDescription

(";" parse_RecordFieldDescription \";")*"]"
| Record ["[""]"]
| Enum ["{" Identifier ("," Identifier)*"}"]
| Enum ["{" y]
| Identifier

parse_RecordFieldDescription ::= Identifier ("," Identifier)*
[":" PropertyTypeDescription]

PropertyValueDeclaration ::= lnteger_Literal | Floating_Point_Literal \
String_Literal | False | True \ AcmeSetValue \
AcmeSequenceValue \ AcmeRecordValue \ Identifier

AcmeSetValue ::= "{""}"
|"{" PropertyValueDeclaration

("," PropertyValueDeclaration)*"}"

AcmeSequenceValue ::= "<" ">"|
"<" PropertyValueDeclaration

("," PropertyValueDeclaration)* ">"

AcmeRecordValue ::= "[" RecordFieldValue (";" RecordFieldValue \";")*"]"

RecordFieldValue ::= Identifier ":" PropertyTypeDescription "="
PropertyValueDeclaration

Representations and Bindings:

RepresentationDeclaration ::= Representation "{"
SystemDeclaration
[BindingsMapDeclaration]

BindingsMapDeclaration ::= Bindings "=""{" (BindingDeclaration)* "}" [";"]

BindingDeclaration ::= [Identifier"."] Identifier to
[Identifier"."] Identifier
["{" (PropertyDeclaration \ PropertiesBlock)*"}"]";"

©BOB MONROE PAGE 215 08/20/99

Design Rules and Analyses:

Design Rule

DesignRuleExpression

QuantifiedExpression

BooleanExpression

OrExpression

ImpliesExpression

IffExpression

EqualityExpression

RelationalExpression

AdditiveExpression

MultiplicativeExpression ::=

UnaryExpression ::=

PrimitiveExpression

Id

DesignAnalysisCall

LiteralConstant

ActualParams

FormalParams

ActualParam

:= (Design)? (Invariant \ Heuristic)
DesignRuleExpression";"

:= QuantifiedExpression \ BooleanExpression

(forall | exists) Identifier":"
lookup_arbitraryTypeByName in
SetExpression "\" DesignRuleExpression

OrExpression (and OrExpression)*

ImpliesExpression (or ImpliesExpression)*

IffExpression ("->" IffExpression)*

EqualityExpression ("<->" EqualityExpression)*

RelationalExpression ("==" RelationalExpression
| "!=" RelationalExpression)*

AdditiveExpression
("<" AdditiveExpression | ">" AdditiveExpression

| "<=" AdditiveExpression \ "=>" AdditiveExpression)*

MultiplicativeExpression
("+" MultiplicativeExpression
|"-" MultiplicativeExpression)*

UnaryExpression
("*" UnaryExpression

|"/" UnaryExpression
I"%" UnaryExpression)*

"!" UnaryExpression
|"-" UnaryExpression
I PrimitiveExpression

"(" DesignRuleExpression")"
| LiteralConstant \ DesignAnalysisCall \ Id

Identifier ("." Identifier)*

Id "("ActualParams")"

IntegerLiteral \ FloatingPointLiteral \ StringLiteral
| true | false

(ActualParam ("," ActualParam)*)?

(FormalParam ("," FormalParam)*)?

LiteralConstant | DesignAnalysisCall \ Id

© BOB MONROE PAGE 216 08/20/99

FormalParam

SetExpression

SetReference

SetFunction

LiteralSet

SetConstructor

::= Identifier ("," Identifier)*":"
(Identifier | Component | Connector \ Port | Role

| Int | Float | String \ Boolean)

::= (SetReference \ SetFunction | LiteralSet
| SetConstructor)

::= Identifier (("." Identifier) | ("." Components)
| ("." Connectors) \ ("." Ports) \ ("." Roles)
I ("." Representations) | ("." Properties))+

::= (Union \ Intersection \ Setdiff)
"(" SetExpression "," SetExpression")"

::= (TT I
T (LiteralConstant \ld)("," (LiteralConstant \ld))*
"}")

::= "{" Select Identifier":" lookupjarbitraryTypeByName in
SetExpression "|" DesignRuleExpression"}"

© BOB MONROE PAGE 217 08/20/99

