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Abstract 
Software architecture provides a powerful way to manage the complexity of large software 
systems. It has emerged as a distinct form of abstraction for software systems with its own 
set of design issues, vocabulary, and goals. Like designers in other disciplines, software 
architects can gain significant leverage by using powerful and appropriate design 
environments and tools. The cost and difficulty of creating these powerful design tools, 
however, prohibit their use for many software development projects. One of the primary 
reasons for the difficulty and cost of building these tools is that tool developers generally 
need to build a significant amount of supporting infrastructure before they can make use of 
the important architectural design expertise that the tools encapsulate. This infrastructure 
includes both the concepts underlying the tools' functionality and the implementation of the 
tools themselves. 

This dissertation describes a new approach to capturing and using architectural design 
expertise in software architecture design environments. A language and tools are presented 
for capturing and encapsulating software architecture design expertise within a conceptual 
framework of architectural styles and design rules. The design expertise thus captured is 
supported with an incrementally configurable software architecture design environment that 
specialized design environment builders and end-users can easily and quickly customize by 
specifying the architectural styles and design rules that the environment needs to support. 
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Chapter 1 

Introduction 

This dissertation demonstrates that it is possible to capture a significant and useful collection 
of software anhitecture design expertise with a language and mechanisms for expressing desigt 
vocabulary, design rules, and anhitecturd styles. This captured design expertise can be used to 
incrementally customize software architecture design environments. 

1.1 The role of software architecture 

Software designers and developers have long realized the importance of powerful and 
appropriate abstractions for software systems. The architectural level of abstraction 
describes, at a relatively coarse granularity, the decomposition of a software system into its 
major components, the mechanisms and rules by which those components interact, and the 
global properties of the system that emerge from the composition of its pieces. There is 
growing recognition in the software design community that one of the critical steps for the 
successful completion and fielding of a major software system is the creation of a well 
defined and documented architecture [Gar95, RM97]. 

There are (at least) four major benefits to producing and documenting an architectural 
design: 

1) Analysis capabilities. Given an appropriate set of analysis tools, system designers can 
flag likely problems and estimate global properties and capabilities of the system early in 
the development lifecycle. This capability allows the designers to perform an early 
analysis of whether the fielded system will be able to meet its requirements in a cost- 
effective way [All+98, SG98]. 

2) System structure visibility. An explicitly defined and documented architecture 
communicates "the big picture" of how the entire system will fit together to guide 
system developers in making lower-level design decisions. Developers that have a clear 
understanding of how their piece of the system fits with the system as a whole can 
insure that their components will integrate smoothly with the rest of the system and use 
the architecture to guide them in making good implementation decisions. 

3) Imposed discipline. The process of producing an explicit architectural design requires 
architects to think about the system as a whole and how its pieces interact. This process 
will often uncover fuzzy thinking, poorly defined requirements, and important design 
issues that might otherwise be overlooked [ATT93]. 

4) Maintaining conceptual integrity. A system's architecture serves as its "conscience," 
guiding maintainers in making appropriate extensions and modifications to the system. 
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In this way, the architectural document exposes the "load-bearing walls" of the system 
[SG96, PW92]. 

Although architectural design is a critical factor in the successful design, development, 
deployment and maintenance of a software system, it requires significant time, effort, skill, 
and thus expense, to do well. Much of the challenge of producing an appropriate software 
architecture arises from the fundamental difficulty of determining the core abstractions to 
use in describing the system, accurately capturing those abstractions in a concrete 
representation that system developers and programmers can use as a blueprint for system 
implementation, and analyzing the architectural description to determine whether the system 
to be produced is likely to exhibit its desired properties. Because of the difficulty and cost of 
producing such an architectural specification, as well as the difficulty in quantifying the 
benefit of doing so, it is frequently difficult for software development organizations to 
justify producing, documenting, and thoroughly testing detailed software architecture 
specifications for the systems they develop. 

To address the cost and difficulty of producing effective software architecture descriptions, 
numerous Architecture Description Languages (ADLs) have been developed!. Unfortunately, 
current ADLs have two critical limitations. First, they generally do not provide any 
mechanisms for describing planned or available evolutionary paths for the software system 
described. They can not describe the constraints under which the design was created and 
may be evolved, the invariants of the design that need to be maintained as the system 
evolves, nor the heuristics used in the system's design. Current ADLs tend to capture a 
snapshot of the design of individual systems at implementation or deployment time, without 
a roadmap to guide subsequent system maintenance and evolution. Because system 
maintenance and evolution costs are frequently greater than the cost of initial system design 
and development [Pfl87], the inability to support them directly is a significant limitation of 
existing ADLs. 

The second limitation is that current ADLs tend to emphasize the ability to specify the 
design of a smtfe software system and, in some cases, to analyze various properties of that 
single design. Many software development organizations, however, build families of related 
systems. As a result, the design and development of a software system is rarely a ground-up 
endeavor requiring the production of a fresh design and set of design concepts. Rather, the 
designers designing a new system or updating an existing system tend to reuse proven 
designs, design rules, and design vocabulary that their organization has developed or 
acquired in building previous systems. Unfortunately, few if any existing ADLs are equipped 
to capture this design expertise so that it can be reused to guide the building of new systems 
or the modification of existing system designs. As a result, this critical organizational 
software design expertise tends to be either kept in the heads of a few experts or, if it is 
written down at all, expressed informally in natural language documents. The value of 
existing ADLs is limited for many software development organizations, projects, and 
processes because they don't provide an effective way to capture this design expertise. 

1 See the related work section 3.1 for a detailed discussion of ADLs, their capabilities, and their limitations. 
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Both of these problems can be addressed with an Architecture Description Language that 
has mechanisms and constructs for capturing, archiving, retrieving, and reusing architectural 
desigi expertise. For the purposes of this thesis, architectural design expertise encompasses the 
concepts, models, and rules that skilled software architects use when specifying, 
constructing, or analyzing a software architecture. This includes generic design rules and 
vocabulary that are applicable to a family of systems, as well as the constraints, rules, and 
heuristics used in producing a single system and guiding how that system can evolve. 

1.1.1   A case for automated software architecture design tools 

The ability to explicitly capture and reuse software architecture design expertise is an 
important first step towards improving the state of the practice of building and evolving 
software. It is, however, only a first step. To take full advantage of this captured expertise 
software architects also need powerful design and analysis tools and environments. These 
tools can guide an architect in analyzing and reasoning about software architectures, testing 
an architectural specification for compliance with a set of design rules, or selecting an 
appropriate collection of vocabulary elements for a specific system design. Such a set of 
tools should allow software architects and developers to do their job more easily, quickly, and 
effectively. 

The success of Computer Aided Design (CAD) tools in other disciplines such as mechanical 
engineering, building architecture, and VLSI design argues that when design tools capture 
the essential aspects of design in a given domain (that domain's design expertise) they can 
offer useful analyses, significant reuse of common design elements, and even design 
guidance and evaluation. Experience with these tools also demonstrates that, in general, as 
they are made more domain specific the tools provide greater leverage for the designers 
using them. The standard way to make design tools more domain specific is to encode 
design expertise from the target domain directly into the tools. For example, a VLSI CAD 
tool might include routing and layout algorithms, a large library of predefined VLSI 
components such as registers, busses, and memory blocks, rules for detecting and dealing 
with tuning and impedance mismatches, and tools to simulate the expected behavior of a 
chip before it is fabricated. Each of these capabilities captures a collection of design 
expertise that tool users can take advantage of in producing their chip designs. 

Appropriate software architecture design tools can provide software architects with similar 
leverage. Specifically, specialized software architecture design tools and environments 
promise to provide software architects with three benefits: 

• Reusable conceptual frameworks. Specialized software architecture design environ- 
ments capture and encode a conceptual framework for designing specific types of 
systems. Such a framework usually includes a vocabulary of building blocks, rules and 
semantics for composing those building blocks, and analyses that can be performed on 
systems developed with the environment. Much of the difficulty in producing a complex 
software system arises from the need to develop an appropriate abstract conceptual 
model as a basis for the system. These specialized environments allow a designer to reuse 
the building blocks and expertise that the tool has captured instead of having to create 
his own models from scratch for each new system. 
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• Design guidance. Selecting a well understood conceptual framework as a basis for 
system design guides architects by providing a vocabulary of proven design elements and 
suggesting appropriate ways to compose those elements. This foundation can be 
extended to capture the heuristics, guidelines, and contextual cues that experts take 
advantage of when designing the class of systems that the specialized environment 
supports. Further, by encoding information about the evolutionary paths and constraints 
built into a specific system's design, that system's original architects) can guide future 
system maintainers towards safe and appropriate system evolution.2 

• Design evaluation. Constraining the architectural design space to a well understood 
conceptual framework provides a foundation for creating tractable and automatable 
design analyses and evaluations. The ability to evaluate the costs and benefits of various 
design approaches and alternatives early in the system design and development process 
allows designers to catch and/or prevent costly design mistakes when they are relatively 
inexpensive to fix. 

Many organizations have recognized the potential benefits of producing and using 
automated software architecture design tools and environments. Consequently, a great deal 
of investment has been made in creating them. These tools range from generic 
environments that provide limited leverage over a wide variety of design domains, such as 
Rational Rose and the Unified Modeling Language [Qua98], to domain-specific design 
environments that provide a lot of analytical leverage and design guidance but are 
constrained to a much more limited scope of design. The latter group includes DARPA's 
Domain-Specific Software Architecture (DSSA) environments [MG92], MetaH [Ves94], 
ObjecTime's Real-time Object-Oriented Modeling (ROOM) tools [SGW94], and the 
Chimera framework for robotics software [SVK93]. 

1.1.2   Limitations of current approaches 

Although specialized software architecture design environments offer significant promise, 
current approaches to designing and building them are inadequate for the following three 
reasons. First, it is rarely cost effective for software development organizations or projects to 
build tools and environments that are tightly customized to their specific design domain and 
problems. Historically, such software architecture design environments have had to be built 
from the ground up. As a result, they are expensive, difficult, and time-consuming to build. 
Because of the large up-front investment they require, such specialized design environments 
make economic sense only for projects and organizations that are able to use the environ- 
ment for the production of many systems, thus amortizing the environment's development 
cost. Although they might benefit greatly from using a highly customized software 
architecture design environment, it is currently far too expensive for software architects in 
many domains and organizations to develop such customized tools. 

A second problem with current approaches is that the environments produced by building 
from scratch tend to be brittle and difficult to evolve. As a designer's understanding of his 
domain and design techniques evolves, the tools that he uses need to be readily evolvable 

Although guidance in selecting an appropriate conceptual framework given a set of requirements is also an 
important issue in design guidance, that type of guidance is not directly addressed in this thesis. 
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also. The lack of a standard, generic way to encode design expertise requires each environ- 
ment development project to (re)invent a representation for the design expertise that they 
capture and encode. Because they are developed for a single environment project, the 
Schemas and mechanisms used to represent the environment's design expertise tends to be 
idiosyncratic, highly tool-specific, and difficult to modify or reuse. As a result, these tools 
tend to work well for a specific domain or style of architectural design (or perhaps a small 
set of domains), but they can not be readily adapted as the tool users' understanding of the 
domain evolves. 

The third problem with the current approach to building specialized software architecture 
design environments is that it requires a great deal of tool-building expertise to construct 
such an environment. Building an effective design environment requires a specific set of 
skills and experience, which experts in designing other types of software may not possess. 
Conversely, a skilled developer of software architecture design environments is unlikely to 
possess the deep understanding of the target domain required to produce an environment 
that is tightly matched to that domain. As a result, an organization that wants a custom 
software architecture design environment is likely to end up with either a well-built 
environment that is a poor match for their domain, or a poorly crafted design environment 
that captures their design expertise but is not effective as a design tool. 

As a result of these limitations, today's dominant model for building design environments is 
to have software designers adapt their problems to fit the concepts and models of the tools 
provided by the tool developers. This could take the form of using generic design tools that 
provide minimal leverage (e.g. "find the objects" using UML [BRJ98]), or attempting to use 
specialized tools that were designed to address a different problem or style of design. In 
both cases, a mismatch between the tool capabilities and the needs of the designer ensues. A 
more appropriate model, which is developed in this thesis, is to allow and encourage 
architects to easily, incrementally, and quickly adapt their tools to solve the design problems 
that they face. 

1.1.3   The role of lightweight, incremental adaptation 

Making the development and use of specialized architecture design environments practical 
and economically feasible for a wide variety of software development projects requires a new 
approach to their design and construction. Rather than building new design environments 
from scratch for every domain, it should be possible to easily and quickly adapt an existing 
design environment by incrementally adding new design expertise to it. The ability to incre- 
mentally adapt a design environment with domain-specific architectural design expertise 
provides three major benefits: 

• Simplified design environment construction. Incrementally customizing a reusable 
environment that is designed for adaptation requires dramatically less effort than 
building a comparable environment from scratch. Because the bulk of the environment 
infrastructure is being reused, the cost, time, difficulty, and expertise required to produce 
a custom design environment can therefore be significantly reduced. As a result, the use 
of customized software architecture design environments becomes economically feasible 
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for a broad array of software development projects that could not afford to produce 
such an environment with current technologies. 

• Design environment evorvability. A design environment that is built to support 
incremental reconfiguration can evolve as its users' understanding of the domain and 
design techniques grows. By building evolvability into the environment from the 
beginning, the britdeness that plagues many custom tools and environments built from 
the ground up can be avoided. 

• End-user experimentation. Using the incremental addition of design expertise as the 
primary mechanism for adapting a design environment provides an architect or domain 
expert with a great deal of environment customization capability and flexibility. The end- 
user does not need to know any significant details about the implementation of a design 
environment in order to adapt and customize it. He simply needs to understand the 
mechanisms for expressing design expertise and loading them into the configurable 
environment. As a result, customization decisions can be made by those who understand 
the domain and its design techniques best - the architects and domain experts using the 
environment. Further, because environment customization is a lightweight process, it is 
easy for an environment user to experiment with many different forms of design 
expertise and environment configurations. 

In order to achieve these benefits, this dissertation presents a new approach to capturing 
software architecture design expertise and using it to incrementally customize software 
architecture design environments. The key to this approach is a language and conceptual 
framework for capturing design expertise, along with a flexible design environment infra- 
structure that can be easily, quickly, and incrementally configured with the language. 

There are two fundamental challenges to supporting the incremental customization of 
software architecture design environments with encapsulated design expertise. The first 
challenge is simply developing a way to capture software architecture design expertise at all. 
This includes developing both a notation for expressing architectural design expertise and a 
conceptual framework that defines the relationships between the various constructs of the 
notation. The notation and framework must be sufficiently rich, flexible, and powerful to 
capture the important architectural design expertise for a broad range of architectural styles 
and design domains. Further, they must capture the expertise in a way that is straightforward 
for software architects to understand and use. 

The second challenge lies in designing and building an extensible software architecture 
design environment infrastructure that can be incrementally adapted with this captured 
design expertise. Such an environment needs to be able to incrementally incorporate the 
design expertise captured in the notation and framework. To complicate matters, the 
environment needs to be able to deal with collections of design expertise that may be 
internally inconsistent, or even contradictory. 

There appears, unfortunately, to be a fundamental tension that arises in attempting to 
simultaneously address these challenges. As the notation and conceptual framework is made 
more rich, flexible, and closer to a natural language it tends to become more difficult to 
provide automated tools that can process the design expertise. Throughout the remainder of 
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this dissertation I describe how I address these tradeoffs and challenges to demonstrate my 
thesis that: 

It is possible to capture a significant and useful collection of sojhmre architecture design 
expertise with a language and mechanisms firr expressing dedgn vocabulary, design rules, and 
arxhoectural styles. This captured design expertise can be used to incrementally customize 
sofiwzreartJjitecturededgnemzranments. 

To demonstrate this thesis, I present a design language and a configurable design 
environment called Armani. I then show how they can be used together to incrementally 
capture software architecture design expertise and develop customized software architecture 
design environments. To demonstrate the utility of the approach, I describe a set of case 
studies in which Armani is used to rapidly construct custom design environments. 

1.1.4   Contributions 

The research presented in this dissertation makes the following contributions to the field of 
Computer Science: 

• A technique for dramatically reducing the time, cost, and difficulty of building a 
significant class of customized software architecture design environments. This tech- 
nique benefits software architecture design environment builders by demonstrating how 
a variety of design tools can be built through principled, incremental adaptations to a 
common shared infrastructure. It benefits software development organizations by- 
providing access to highly customized tools at a much lower cost than current 
development techniques allow. It benefits practicing software architects by providing 
them with tools that closely match their design domain. Finally, it benefits researchers 
studying software development tools by providing a general customization technique that 
can likely be extended to other design and problem domains. 

• A design language. The dissertation describes a software architecture design language 
that is capable of incrementally capturing software architecture design expertise with 
modular and reusable language constructs. The design language is also a full-fledged 
architecture description language (ADL) capable of describing the structure of software 
architectures and the constraints and guidelines under which those systems were 
designed and may be evolved. 

The design language contributes to the software architecture research community by- 
demonstrating that a first-order predicate logic-based constraint language can be used to 
define useful design rules to guide software design and evolution. Further, the language 
encodes an extensible framework for capturing software architecture design expertise. In 
addition to its benefit to researchers, the design language also benefits software 
development organizations by providing a way to capture and reuse the organizational 
design expertise they develop in building software systems. Finally, it benefits software 
architects by providing an explicit technique for capturing and expressing architectural 
design constraints in software architecture specifications. 
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• A reference architecture. The dissertation describes a reference architecture, or 
architectural style, for software architecture design environments that support 
incremental customization. It describes the ardutecture of the Armani design 
environment, discusses why a number of alternative architectures were not selected, and 
presents some fundamental tradeoffs of this style of architecture. This contribution is 
particularly useful for software tool builders who need adaptable, modular architectures 
for design tools and environments. 

• A set of case studies. A set of detailed examples and case studies are presented to 
illustrate how the technique, language, and integration framework just described can be 
used to effectively capture software architecture design expertise and rapidly develop 
custom software architecture design environments. The case studies benefit people using 
Armani to design software architectures and build custom software architecture design 
environments. They are also useful for researchers interested in further exploration of 
the ideas presented in the dissertation. 

1.2 Armani overview 

The approach presented in this thesis for rapidly developing custom software architecture 
design environments has two primary technical components. The first component, a 
language and framework for capturing architectural design expertise and individual 
architectural designs, constitutes the core technical foundation for the approach. The 
language binds the foundational concepts and constructs available to software architects and 
environment designers for specifying architectures and capturing design expertise. The 
second component, a configurable and extensible design environment, can be customized 
with this design language to support specific styles of architectural design. Throughout this 
dissertation I will refer to the language and environment together as the Armani System, or 
simply Armani. When it is necessary to distinguish between Armani's language and design 
environment I will use the terms Armani design language and Armani design emmnment, 
respectively. 

1.2.1   Critical requirements 

hi order for the Armani language and environment to achieve their goals of reducing the 
time, difficulty, and cost associated with building custom software architecture design 
environments, they must meet the following requirements. 

1) Incrementality. A software architect using Armani should be able to incrementally 
adapt his or her Armani-based tools to make use of available design expertise, or to 
specify and add additional design expertise. Further, the incremental adaptation of an 
existing environment should be significantly quicker and easier than building a new 
environment from scratch. 

2) Power. The Armani language and environment should be able to capture useful, non- 
trivial software architecture design expertise. 
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3) Breadth. The mechanisms provided by Armani should be capable of capturing a range 
of software architecture design expertise that is sufficiently broad to produce design 
environments for a diverse collection of software architecture design domains. 

Strictly speaking, only the first of these requirements - incrementality - needs to be 
demonstrated for the thesis to hold. The requirements for power, breadth, modularity, and 
reusability simply assure that the environments incrementally developed with Armani will be 
useful for a sufficiently wide audience of software architects and environment developers. 
This dissertation will, however, demonstrate that the Armani approach to rapidly developing 
custom software architecture design environments satisfies all four of these requirements. 

1.2.2  The Armani design language 

The Armani design language can be used for capturing both software architecture design 
expertise and the architectural specification of individual software system designs. The 
language provides constructs for capturing three fundamental classes of architectural design 
expertise - design vocabulary, design rules, and architectural styles. A brief overview of each of 
these follows. A more complete description and specification of the Armani design language 
is provided in chapter 3. 

• Design vocabulary is the most basic form of design expertise that can be captured with 
Armani, and possibly the most valuable. The design vocabulary available to a software 
architect specifies the basic building blocks for system design. Design vocabulary 
describes the selection of components, connectors, and interfaces that can be used in 
system design. As an example, the design vocabulary available for a naive client-server 
style of design might include client and server components and an HTTP connector. 
Armani provides a rich predicate-based type system that environment designers can use 
to specify the design vocabulary, the properties of vocabulary elements, and the design 
invariants and heuristics that describe how the vocabulary elements can be used. 

• Design rules specify heuristics, invariants, composition constraints, and contextual cues to 
assist architects with the design and analysis of software architectures. Armani makes the 
following aspects of a design rule independently modifiable: the specification of the rule 
itself, the policy for dealing with violations of the rule, and the scope over which the rule 
is enforced. Armani allows the association of design rules with a complete style, a 
collection of related design elements (such as all of the components in a system), a type 
of design element, or an individual instance of a component or connector. By making 
the scoping of design rules flexible and specifying their policy independent of the rule 
itself, Armani allows an architect to add, remove, modify, or temporarily ignore design 
rules as appropriate for various stages and types of design. 

• Architectural styles provide a mechanism for packaging and aggregating related design 
vocabulary, rules, and analyses. An Armani style specification consists of the declaration 
of a set of design vocabulary that can be used for designing in the style, and a set of 
design rules that guide and constrain the composition and instantiation of the design 
vocabulary. 
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In addition to the constructs provided for capturing abstract design expertise, the Armani 
design language is also a full architecture description language in its own right. Architects can 
use Armani to describe the architectures of individual software systems, how those systems 
fit into a family of related systems, and how those systems are allowed to evolve over time. 
The language constructs for describing instances of software architectures are fully 
integrated with (and overlap) the language constructs used for capturing the design expertise 
used to customize the Armani design environment. 

Using a single language for both tasks has a number of benefits. First, an architect needs to 
know only a single design language to both design software architectures and modify or 
update a design environment "on the fly". Second, it is relatively straightforward for 
automated tools to determine whether an individual architectural specification satisfies the 
design rules that were used in its design. This becomes a particularly important capability 
when modifications are proposed to the design that could violate some of the original design 
rules, as frequently occurs during the maintenance and upgrade stages of a system's lifecycle. 

1.2.3  The Armani design environment 

The Armani design language provides the key conceptual infrastructure for the rapid 
development of custom software architecture design environments by supporting the 
capture of abstract architectural design expertise. Converting this captured expertise into a 
working customized design environment, however, requires the additional infrastructure that 
the Armani design environment provides. Specifically, the Armani design environment 
provides the generic core infrastructure common to a large class of software architecture 
design environments, including a design representation database, a graphical user interface 
(gui), a tool integration mechanism, a generic design rule verification system, and tools to 
support end-user environment customization. 

An Armani environment designer builds on this generic environment infrastructure to 
quickly develop a custom, specialized software architecture design environment. By (re)using 
this configurable generic infrastructure as a basis for a custom design environment, an 
Armani design environment builder begins his custom environment development project 
with a big head-start. 

The basic development model for producing such a custom Armani environment takes 
advantage of this configurable infrastructure. An Armani environment designer uses the 
Armani design language to specify the design vocabulary and design rules for the target 
domain or style of architectural design. He then loads this design expertise directly into the 
Armani environment. In doing so, the environment configures itself to support the 
vocabulary and semantics of design in the target domain. The specified design vocabulary 
types and design rules for the domain are loaded and available for architects to use in 
designing software architectures with the environment. Further, because the structure and 
semantics for the target style (or styles) of design have been specified, the environment can 
provide basic design checks for semantic consistency such as type checking and confirmation 
that the design rules are satisified. 
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This environment customization process is both incremental and experimental. Design 
vocabulary and design rules can be added to an environment, removed from an 
environment, or modified at almost any point during the environment's creation or use as a 
design tool. As a result, both environment developers and end-users can quickly adapt their 
design environment to reflect newly discovered design expertise that needs to be 
incorporated into the environment. 

The ability to dynamically load architectural styles, design vocabulary and design rules into an 
Armani environment provides one form of environment customization. In addition to this 
basic semantic customization, Armani can be configured and extended with rich 
visualizations for rendering specific types of design elements (e.g., to make a database 
component look different from a web-browser component). Likewise, additional design 
analysis or construction tools can be specified and/or linked into the environment to 
provide richer tooling capabilities. Like the basic semantic customization capabilities, 
visualization and tooling extensions can be added to the environment both statically when 
the design environment is initially created, or dynamically while the environment is in use. 

1.2.4   Structure of the dissertation 

The remainder of this dissertation expands and elaborates the discussion of the Armani 
approach to capturing and exploiting software architecture design expertise to incrementally 
customize architecture design environments. Chapter 2 provides an overview of how the 
Armani system can be used to capture architectural design expertise and rapidly create a 
custom design environment. Chapter 3 discusses related work. Chapter 4 describes the 
Armani design language used for capturing architectural designs and architectural design 
expertise. Chapter 5 details the design and architecture of the Armani configurable design 
environment. Chapters 6 through 8 outline and detail the steps taken to validate the thesis. 
This includes a detailed task analysis and a series of case studies that demonstrate Armani's 
capabilities. Chapter 9 evaluates the results of the thesis research and discusses open issues. 
Finally, Chapter 10 wraps the argument up with an evaluation of the thesis results and a 
discussion of promising directions for future work. 
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Chapter 2 

A Quick Tour of Armani 

This chapter provides a brief tour of the Armani system. It illustrates, from the environment 
user's perspective, how Armani can be used to rapidly and incrementally create highly- 
customized software architecture design environments. Subsequent chapters will provide 
significantly more detail on the Armani language and environment, as well as detailed 
presentations of some specialized environments produced with Armani. 

2.1 The generic Armani infrastructure 

The Armani design environment provides the generic core infrastructure common to a large 
class of software architecture design environments. This core infrastructure includes a 
design representation database, a graphical user interface (gui), a tool integration mechanism, 
a generic design rule verification system, and tools to support end-user environment 
customization. In addition to being the base on which custom design environments are built, 
this core infrastructure also functions as a complete, albeit generic, design environment in its 
own right. Architects can use the generic environment to specify software system 
architectures without any further environment customization. 

Figure 2.1 shows an example of how an architect can use this generic design environment to 
specify the architecture of a software system. In this example, an architect uses the reusable 
vocabulary elements stored in the palette to the left of the environment's main window to 
describe a simple instance of a software system with a few interacting components and 
connectors. Manipulating these instances of generic components and connectors with the 
environment's user interface tools allows the architect to specify the names of the 
components and connectors, the topology of their interactions, emergent properties of the 
system as a whole, and the properties of individual design elements (components, 
connectors, and their interfaces). 

The primary drawback to using only the generic design environment is that it provides the 
designer only generic components and connectors to use as building blocks and minimal 
analytical capabilities or design guidance. There is little semantics associated with the design 
elements, just suggestive names and descriptions. To address these limitations, Armani builds 
on this common, generic base by providing the ability to incrementally customize the generic 
environment with new design vocabulary, design rules, and architectural styles. An environ- 
ment designer can use these customization capabilities to create semantically rich building 
blocks and analyses. 
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Figure 2.1: A simple design specified with the generic Armani design environment 

2.2 Building an environment for a naive client-server style 

To illustrate how the generic Armani design environment can be customized to support 
design done in a specific architectural style, this section describes the steps that an 
environment developer (or an architect interested in creating a custom environment) would 
take to extend the generic environment to support the move client-sener style. Though simple, 
this style is applicable to a wide range of traditional, two-tier client-server type systems.' 
Figure 2.2 shows a Screenshot of the Armani design environment after it has been 
customized to support this style. 

I describe this style of architecture as a naive client-server style because many of the details and design expertise 
that make the client-server style of design useful and powerful have been omitted to provide a clear example of how 
Armani is used. Chapter 7 provides a full description of a set of related styles that build on the naive client-server 
style to create significantly more powerful and useful styles and design environments. 

-g 
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Figure 2.2: The Armani design environment customized for the ncäveclient-server style. 

The following three steps are all that are required to customize the generic Armani system to 
support the naive client-server style. 

1) Capture the design expertise appropriate for naive client-server systems with an 
architectural style specification. The environment designer uses the Armani design 
language to capture this expertise. This style specification defines extensions to Armani's 
design vocabulary by defining three new component types called clients, singje-thread-seruers, 
and mulü-lbread-seruerSy two new connector types called blocking-request and ncnbtocking- 
request, and four new interface types that the clients, servers, and client-request 
connectors use. These vocabulary specifications include a definition of the structural 
semantics of the components, connectors, and interfaces, a set of properties that the 
individual clients, servers, and client-request's possess, and constraints on the values of 
properties and modifications allowed to the basic vocabulary elements. 
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Architects using the customized environment are therefore able to explicitly use dint and 
serar components that have well-defined structural semantics and properties as 
primitives in their designs. To illustrate this idea, the type definition for the client 
component type specifies, amongst other things, that all client instances have interfaces 
that can interact properly with client-request connectors and that all client instances have 
a property that describes the average rate at which they will send requests to their 
associated server(s). Likewise, the servers define how many concurrent clients they can 
handle, and how quickly they are able to process client requests. 

The style specification also includes a collection of design rules that define valid 
architectural topologies, acceptable ranges for various design properties, and analyses 
that can be performed on client-server designs. Examples of the specific design rules 
provided in the naive client-server style include disallowing client-client connections to 
ensure that all display information is received through a client-server connection, and a 
rule that maintains a workable ratio of clients to servers to insure that the servers are not 
swamped by client requests. 

The case study presented in section 7.2.4 gives further details about this style spec- 
ification. As the case study indicates, this simple, declarative, architectural style 
description requires only 35 lines of Armani code to specify and the entire environment 
(including its specification) took only 2.75 hours to create. This compares strikingly to a 
ground-up environment development project that could conceivably require hundreds of 
thousands, or even millions, of lines of code. 

2) Create custom visualizations for the style's components and connectors. This step 
is optional, as standard visualizations can be applied to new types of components and 
connectors. Creating custom visualizations for specific component and connector types 
can, however, provide architects using the environment with rapid feedback about their 
designs. Armani's visualization engine is built on top of the Visio drawing environment 
[Visio99]. As a result, this step is performed using the visualization customization 
capabilities provided by Visio and specifying a mapping between the Visio-based 
visualization objects and the underlying Armani specifications of the components and 
connectors. A designer creating a custom visualization for a component or connector 
type can choose to make a trivial visual modification such as assigning unique colors to 
each type used (a matter of selecting the appropriate color from a dialog box). 
Alternatively, he can create arbitrarily rich visualizations for component and connector 
types using Visio's SmartShape™ technology [Visio99] and Armani's programmatic 
visualization interfaces. 

3) Load the defined style and visualizations into the environment. This step is as 
simple as selecting a pair of files from a dialog box of the running Armani environment. 
The loaded files immediately configure the environment to support design in the naive 
client-server style. 

As these three steps indicate, it is straightforward to specialize the generic Armani 
environment to support specific styles of architectural design. Once this customization is 
complete, the environment provides a vocabulary of design elements that is tailored to this 
naive client-server style (clients, servers, remote-procedure-calls), and a set of design rules 
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that both guides architects working in this style towards appropriate design decisions and 
explicitly prevents them from making a number of poor design decisions. 

2.3 Incrementally adapting the naive client-server environment 

Although the naive client-server environment just described provides a more effective 
platform for designing client-server systems than the generic environment originally 
described, it can be customized even further as the environment user's understanding of 
client-server design evolves. Suppose that after using the naive client-server environment for 
a while, it becomes apparent that the naive style's two-tier client-server model has some 
significant limitations. Specifically, in the traditional two-tier client-server style of 
architecture, the display and user-interface functionality of an application resides in the client 
components and the generic data storage capability resides in the server components. The 
difficulty arises in deciding where to add the application-specific data processing capability. 

Table 2.3 illustrates three architectural options for how this capability can be divided 
between clients and servers. The naive-client-server style can support either of the first two 
options, "Thick Client/Thin Server" and "Thin Client/Thick Server". Each of these options, 
unfortunately, has significant drawbacks. In the Thick Client/Thin Server model the clients 
encapsulate the data processing capability of the system and the servers simply provide the 
raw data on which the clients operate. As a result, the clients tend to be large, complex 
programs in their own right. Furthermore, modifying the system's application-specific 
processing requires changing all of the clients in the system. Because the client components 
may be broadly deployed and distributed this can be a large, time-consuming, and logistically 
tricky task. 

The Thin Client/Thick Server model addresses many of the limitations of the Thick 
Qient/Thin Server model. The Thin Client model moves the application processing 
capability to the server components. The client simply displays information and all of the 
application processing takes place in the server components. As a result, modifications to the 
application processing logic can be made centrally by changing the server component. 
Unfortunately, the Thin Client model has two significant drawbacks of its own. The first is 
that it puts a much greater processing load on the server. Depending on the processing 
demands of the application and the expected ratio of clients to servers this might be a 
problem. A second, and more subtle issue, is that the data processing capabilities of the 
server are now more tightly intertwined with the data representation and storage capabilities 
of the server. If designed properly, a thick server is certainly capable of keeping these two 
functions separate and reasonably independent. Putting them in the same component, 
however, requires significant discipline on the part of system designers and programmers to 
keep the two functions independent. 

A third alternative, the Three-Tier Client-Server style addresses the limitations of both the Thin 
Client and Thick Client models just described. In the three-tier style both the clients and the 
datastore servers are kept very specialized. The clients, called data views, simply display 
information for the user, and datastore servers simply store and retrieve data. All of the data 
processing capabilities required by the system are stored in a new type of component, the 
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application läge server, that mediates the interactions between the clients and the datastore 
servers and provides the application's processing logic With this approach, both the clients 
and the datastore server components retain the advantages of remaining "thin" - lower 
processing demands, highly specialized functionality, and easy component interchangeability 
and modification - without requiring that their counterparts become "thick" and suffer the 
subsequent limitations. As a further benefit, a system's application-specific data processing 
capability can be cleanly encapsulated in the system's application logic servers, improving 
system maintainability and modularity. 

As users of the naive-client-server style design environment (shown in figure 2.2) develop an 
understanding of the three-tier style of design they can incrementally evolve their 
environment to support design done in the new style. To do so, they simply need to update 
the design expertise loaded into the design environment. The process of evolving an existing 
design environment to support a new style of design is the same as the process described in 
the previous section for creating a new design environment. The first step is to add the new 
vocabulary types and rules for how those vocabulary types can be used. The second step, 
which is optional, is to add new visualizations for the design vocabulary elements. Finally, the 
new style specification and visualizations are loaded into the Armani environment and the 
modification is complete. 

Depending on the degree of similarity between the original environment and the new 
environment this change can range from trivial, requiring the addition of a only a few lines 
of design rule specifications, to a significant rewriting of the basic design vocabulary and 
design rules. Because the original naive-client-server provides a solid conceptual basis on 
which to build the three-tier style, updating the naive-client-server environment to support 
the three-tier client-server style falls somewhere between these extremes. 

The first step is to specify the new design vocabulary elements and design rules that will be 
the building blocks of the three-tier client-server style. The vocabulary of the three-tier style 
extends the naive style with two additional types of components, an application lege server and 
a datastore server, along with a new db-query connector type. Application logic server 
components contain the application's data processing functionality. Datastore servers are 
databases that simply store and retrieve the raw data used by the system. Both of these new 
component types are subtypes of the naive-client-server style's server component type. As a 
result, they are specified by describing how they extend the basic server component, rather 
than with a ground-up description. As a result, their descriptions require less than ten 
statements each. Db-query, the new connector type, is added as a connector type through 
which database queries are passed and the results of those queries are returned. The generic 
dient-request connector supplied by the naive-client-server style remains available in the three- 
tier style. 
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Diagram 

Description 

Benefits 

Datastore 
Server 

Embed application logic 
in dient components. 
Clients decide what data 
to retrieve from servers. 
Servers simply retrieve 
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• Simpler datastore 

• Reduced server 
processing load 

Drawbacks 

Large, complex clients 

Updates to application 
logic in installed base of 
clients is difficult 
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Embed application logic in 
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Client Client 
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and aggregates data from 
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• Clean separation of 
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responsibilities 

• Lightweight clients 

• Impact of modifications 
localized. 

• Easy propagation of 
component modifications 

• Potential performance hit 
due to extra layer of 
indirection 

• Additional potential 
points of failure. 

Table 2.3: Overview of approaches for adding application logic to client-server systems 

After specifying the additional vocabulary elements, it is necessary to add a set of design 
rules that describe legal configurations for systems in this style. Because one of the primary 
goals of the three-tier style is to separate the application logic from the client's display 
capabilities and the system's data storage capabilities, the first two rules that we add state that 
client components may only be connected to application logic components, and that 
datastore components may only be attached to application logic components. As a result, it 
is not possible to attach a client component directly to a data source. Next, we add 
topological constraints stating that all connections between clients and application logic 
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servers must be made with client-request connectors and that all connections between 
application logic servers and datastores must be made with db-query connectors. Finally, we 
add rules that describe valid connector/component interface pairs. 

In addition to the basic topological constraints, additional design rules are added that 
describe required performance characteristics and appropriate ratios of the various client 
and server components to maintain acceptable performance and reliability. This set of 
design rules configure the three-tier enabled design environment to constrain designs of 
systems created with the environment to those that would be expected from the informal 
style description presented earlier. As the new style is further refined, the environment can 
be easily and incrementally updated as well. 
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After specifying the conceptual additions required to evolve the client-server environment, 
we will need to add new visualizations for the datastore and application logic servers, as well 
as the new db-query type connector. These visualizations are created by drawing the new 
shapes with the Visio drawing tool and adding the shapes to the new style's palette of design 
elements. This step requires only that the environment developer drag the shapes from the 
drawing area and drop them on the palette. After the shapes are dropped on the palette the 
user is prompted to specify the mapping between the visual shapes and their underlying 
design types. At this point, the environment customization specification is complete and 
Armani will support design done in the three-tier client-server style. Figure 2.4 shows a 
Screenshot of the completed three-tier client-server design environment, complete with a 
design built using the style. 

2.4 Summary 

This chapter has broadly illustrated the Armani approach by providing a walk-through for 
how the Armani system can be used to create custom software architecture design 
environments. Subsequent chapters will present the design language and environment in 
greater detail, followed by a set of detailed case studies that demonstrate Armani's breadth 
and utility. 
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Chapter 3 

Related Work 

There are four primary areas of related work that have inspired the direction of this 
dissertation, form a base on which it builds, and/or address similar problems. The first and 
most influential of these areas is software architecture description languages, tools, and 
environments. The second area is general purpose software specification languages. That is, 
languages for specifying software designs that are not specifically concerned with the 
architectural level of detail and abstraction. The third area of interest is computer-aided 
design and analysis tools used for designing both physical objects and software. Finally, the 
fourth area is studies of the abstract process of design. These design theories provide useful 
guidance for the creation of software architecture design tools. They also guide the selection 
of design tasks that are readily amenable to computational assistance. 

3.1 Software architecture description languages, toolkits, and 
environments 

Over the past decade numerous Architecture Description Languages (ADLs) have been 
created for describing the structure and behavior of software systems at the architectural 
level of abstraction. Most of these ADLs offer a set of tools that support the design and 
analysis of software system architectures specified with the ADL. As we shall see in the 
ensuing discussions, however, none of these ADLs offer sufficiently rich support for the 
lightweight and incremental capture of a broad range of software architecture design 
expertise, nor for incremental customization and adaptation. 

3.1.1   Aesop 

The Aesop system [GA094] is a generic, configurable software architecture design 
environment that can be customized for use with specific architectural styles. Aesop's 
infrastructure consists of a graphical user interface (GUI) for manipulating visual 
representations of architectural designs, a database to store and manage designs, and an 
event system for integrating design tools. In their "raw" state, these building blocks 
constitute a generic architectural design environment that serves primarily as a box-and-line 
editor with no semantics underlying the boxes and the lines. 

This generic Aesop environment can be extended to support specific styles of architectural 
design. To create a style-specific design environment, an environment developer creates a set 
of classes that encode the style's design vocabulary, configuration constraints, and 
visualizations. This collection of classes defines an ardntectural style in Aesop, which is the 
primary unit of abstraction for customizing the Aesop environment. These classes 
prc&ammatkdly   define   their   legal   interactions   with   the   environment   through   the 
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environments application programming interface (API). Once these classes have been 
written the environment developer generates a customized Aesop environment by compiling 
and linking his style-specific classes with the generic Aesop infrastructure. 

An important implication of supporting only programmatic customization of the 
environment is that the process of customizing the environment requires a relatively deep 
understanding of the internal implementation of the environment infrastructure. Armani, 
on the other hand, allows architects to customize their environment by loading declarative 
descriptions of vocabulary and design rules into their environment. 

The experience I gained developing and using the Aesop system provided the primary 
motivation and insight guiding this thesis research. Specifically, Aesop demonstrates that 
providing a generic, configurable design environment infrastructure can significantly reduce 
the amount of development effort associated with creating customized software architecture 
design environments. Further, Aesop demonstrated that the architectural style abstraction 
can be an effective way to capture broad design expertise. 

Unfortunately, Aesop's model for capturing design expertise and customizing design 
environments also has the following five fundamental limitations. 

1) Aesop's styles are heavyweight, monolithic and inflexible. Aesop's style specifications capture 
interrelated design expertise in the form of imperative programming code. This 
expertise is carefully programmed as a coherent collection of classes that are intended to 
work together. The style specification is, however, scattered throughout a large body of 
environment implementation code. It is difficult for an environment designer trying to 
modify a style specification to cleanly separate the style's vocabulary, composition 
constraints, and analyses. As a result, modifying a style can have significant unintended 
consequences. Likewise, this tight intermingling of vocabulary, composition constraints, 
and analyses also makes it difficult to reuse pieces of a style definition in the creation of 
a new style. 

2) The semantics of an Aesop style specification are implicit in that style's environment implementation 
code. As a result, it can be difficult to determine the semantics of the style itself, as they 
are tightly intermingled with implementation details. An architecture description 
language such as Armani that is explicitly geared towards capturing architectural style 
specifications can sigmficandy ease the processes of creating an architectural style 
understanding the semantics of a style, and extending the style to capture new design 
expertise. 

3) The range of design expertise that an Aesop style specification can express is limited. In the Aesop 
system, and in the formal work on styles of Allen, Abowd and Garlan [AAG95], a style 
specification defines invariant aspects of all systems built in the given style. As a result, it 
is difficult to make use of design expertise that is not readily expressed as an invariant 
over aU instances of systems built in the style. Specifying design heuristics, for example, 
can be difficult or impossible in Aesop. 

4) Irflexibk scoping. AU vocabulary and composition rules in the Aesop system have a scope 
of a single style. Styles provide little assistance for capturing or using design expertise 
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that applies either across multiple styles, to only a context-dependent subset of the 
elements in a design, or that varies in applicability depending on context. As a result, it is 
not possible for architects to add localized constraints to a design or to use their 
judgement in relaxing or overriding rules without adapting the entire style itself. As the 
first limitation pointed out, adapting an Aesop style is a heavyweight operation that is 
likely to have repercussions beyond the intended modification. 

5) Limited support for experimmMion. Although a software architect using an Aesop-based 
style-specific software architecture design environment can experiment with designs 
done in a given style, Aesop's use of monolithic styles makes it difficult for a designer to 
adapt an existing style, create a new style, or experiment with style-independent design 
expertise. In Aesop's basic environment development process a "style developer" 
customizes a design environment for use with a particular style that he hands off to the 
architects who use it to design specific systems. The architects using the customized 
environment are given little in the way of tools for customizing the environment or 
quickly adding design expertise that they discover to the environment. When they want 
to evolve or improve the environment they generally need to send the request to the style 
developer who will make the changes and return to them an updated environment. As a 
result, lightweight, experimental environment evolution is not supported by Aesop. 

To illustrate these limitations, consider a designer using Aesop who wants to specify that a 
particular configuration of components and connectors may have no cycles. She does not 
want to change the entire style, because this particular constraint is only applicable to one 
part of the system being designed. With Aesop, the style itself must be modified if this 
constraint is to be automatically maintained because all constraints must be defined as style- 
wide invariants. Further, even if our designer was willing to make the changes needed to the 
entire style, the monolithic and heavyweight nature of style specification in Aesop makes the 
process of adapting the style to support the changes prohibitively expensive. 

Another case worth considering occurs when the system architect is not sure whether she 
should allow cycles in the systems she is designing. She would like to be able to experiment 
with a number of options before binding the decision. Aesop provides little support for 
experimentation of this sort. The process of adding constraints to a style requires significant 
programming and a relatively deep understanding of the internal structure of the Aesop 
system. The high cost of experimentation in style development discourages the designer 
from exploring a wide variety of options. 

As the rest of this dissertation argues, Armani's model for explicitly and incrementally 
capturing design expertise and customizing the software architecture design environment 
addresses these five limitations. Armani addresses these issues by providing an architecture- 
specific declarative textual language that cleanly separates different aspects of architectural 
specification, by providing modular, orthogonal constructs for expressing architectural 
designs and design expertise, and by providing a much more flexible and incrementally 
adaptable design environment infrastructure than Aesop. 
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3.1.2  Acme 

Acme [GMW97] is a generic, extensible software architecture description and interchange 
language. The Acme language grew out of a project to support the interchange of 
architectural descriptions between a wide variety of different architecture design and analysis 
tools. Because most of the target tools used their own idiosyncratic languages and 
representations for describing software architectures they did not naturally work well 
together. Acme was created to address this issue. Acme provides a flexible, structure-based 
architectural representation language that maps readily to many popular architecture 
description languages. Recognizing that many of the ADLs and tools that are designed to 
integrate with Acme would lose information if they only translated their structural 
information, Acme also supports the annotation of system architectures with non-structural 
information through its property construct. 

As Acme evolved it became a useful architectural description language in its own right. 
Because it is generic, extensible, and designed to interact well with a broad variety of 
architectural design tools, the current version of Acme (version 1.0) provides a standard 
architectural representation that works well as a platform for building new architecture 
design tools and languages. Given this capability, the Armani design language was created as 
an extension to the Acme language. Armani builds on Acme by adding a more rigorous type 
system, a predicate language, and constructs for representing design rules in the form of 
design analyses, invariants, and heuristics. 

Building Armani on top of Acme has two significant advantages. First, it leverages a 
significant amount of design and development effort that went into creating the Acme. As a 
result, Armani is able to avoid repeating many of the mistakes that were made (and 
subsequently rectified) in designing Acme. Second, because Armani is built as an extension 
to Acme, it is trivial to strip and/or translate Armani's additional constructs to create an 
Acme representation of an Armani system description. In this way, architectural speci- 
fications provided in Armani can be analyzed by other design tools that recognize the Acme 
standard. 

The Acme language and its associated toolkit are effective in their role as the foundation for 
the Armani system. They are not, however, sufficient on their own to solve the problems 
that Armani addresses. Specifically, although Acme is useful as a platform for building and 
integrating sophisticated software architecture design tools and languages, the language does 
not provide the richness of expression that Armani does for capturing design expertise. 
Armani's extensions to Acme allow it to satisfy the goal of capturing software architecture 
design expertise in a way that Acme is unable to do on its own. A second fundamental 
limitation of Acme is that it neither provides nor specifies an architecture design 
environment. Acme defines a notational standard to which design tools and environments 
can be written but it does not provide those tools itself. As a result, Acme provides a solid 
generic infrastructure on which to build the Armani system, but it does not obviate the need 
for Armani. 
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3.1.3 Domain-Specific Software Architecture (DSSA) 

DARPA's Domain-Specific Software Architecture program (DSSA) [MG92] provided early 
research recognition that reusable reference architectures hold significant promise for 
improving the design, analysis, production, and maintenance of complex software systems. 
The project was also an early attempt at capturing software architecture design expertise for 
specific application domains. The DSSA project developed reference architectures as well as 
design and analysis tools for a number of software development domains. As the project's 
DARPA origins suggest, the domains studied - avionics, command and control, GNC 
(guidance, navigation, and control), and adaptive intelligent systems - were selected for then- 
strategic importance to the United States Department of Defense (DoD). 

The DSSA approach to creating reference architectures and tools differs significantly from 
Armani's approach. The DSSA approach captures, stores, and organizes design expertise 
according to the application domain from which it was captured. An example of such a 
domain is the avionics domain, or military command-and-control systems. Armani, on the 
other hand, organizes design expertise according to the style of architecture for which the 
expertise is applicable. Styles capture common structures and approaches to design that can 
span multiple application domains. The client-server style and the master-subprogram style 
(see sections 7.2.3 and 7.2.5, respectively) are two examples of architectural styles that are 
applicable to multiple application domains. The distinction here is subtle but important. 

A DSSA domain-specific reference architecture generally selects a single architectural style 
that is appropriate for the domain being studied. Doing so allows specialized architectural 
design and analysis tools to be developed for use in the chosen domain. The downside is that 
the expertise captured using the DSSA approach is applicable to only a narrow range of 
system design efforts. Further, because there is minimal shared conceptual basis or 
infrastructure between the various DSSA reference architectures, tools developed for one 
DSSA domain are not necessarily reusable or adaptable for use with another DSSA domain. 

In Armani, on the other hand, the definition of an architectural style is orthogonal to the 
application domain in which the style will be applied. As a result, design expertise captured 
with Armani can be applied to a broader range of system design efforts than the expertise 
captured in a DSSA toolkit. Further, Armani's generic, adaptable infrastructure for creating 
custom software architecture design environments obviates the need for the ground-up 
tooling development effort associated with the DSSA projects. The cost of creating a style- 
specific architectural design environment with Armani is dramatically lower than the cost of 
producing a DSSA reference architecture and toolkit. 

Overall, DSSA technology complements the Armani technology. Both domain-based design 
expertise and style-centric architectural design expertise play important roles in most large 
software development projects. 

3.1.4 Automated design critiquing 

Emerging work by Robbins and Redmiles [RHR98] refines Fischer's work on automated 
critiquing [Fis+ 87] and applies it to the software architecture design process. To demonstrate 
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the approach, they have produced a software architecture design environment called Arg) 
that integrates a critiquing capability with traditional design environment functionality. In 
Argo, critics are background tasks that continually monitor the state of a design and the 
actions that a designer takes to flag problems and to offer the designer suggestions and 
guidance. 

As in Armani, the ability to capture and leverage software architecture design expertise is a 
central benefit of Argo. Argo, however, takes a significantly different approach than Armani. 
The design expertise that Argo captures is embedded in the implementation of its critics. 
These critics are implemented as Java classes that are tightly integrated with the rest of the 
Argo environment. As a result, Argo's expertise is readily modularized and composed, much 
as it is in Armani. 

Critics provide a mechanism for capturing software architecture design expertise that is 
largely complimentary to the Armani approach. Critics, however, fall short of fully solving 
the problems addressed by Armani. First, critics are a relatively heavyweight mechanism for 
capturing design expertise. Creating them requires significant programming effort and a 
relatively deep understanding of the implementation of the environment into which they 
will be embedded. Although critics support an incremental way to add design expertise to a 
software architecture design environment, such incremental evolution remains out of reach 
of the environment's end-users. Second, the critics mechanism doesn't support the capture 
of constraints over specific design instances. Critics are fundamentally associated with a 
design environment rather than an individual design. As a result, critics are not appropriate 
ways to annotate architectural specifications with design rules to guide a single system's 
evolution. Finally, Argo lacks a unifying framework for aggregating and reasoning about the 
interactions of its critics. As a result, developing a formal foundation for understanding the 
design expertise captured by Argo presents a significant challenge. 

3.1.5   Other ADLs 

Numerous other architecture description languages (ADLs) have been developed to capture 
various aspects of architectural design expertise and provide architects with mechanisms for 
describing and reasoning about their designs. A brief synopsis of some prominent and 
relevant ADLs follows, followed by a comparison with Armani. 

UniCon (UNIversal CONnector) [Shaw+95] is an architecture description language and 
toolset that supports the generation and analysis of software systems from architectural 
descriptions. To produce a software system, a UniCon user typically specifies the set of 
components that make up his or her system along with a description of how the 
components communicate and interact. These interaction paths are called connectors. UniCon 
supports a variety of architectural connectors that are commonly used in production 
software systems. Examples of these connectors include Unix Pipes, R&note Procedure Calls 
(RPCs), and SQL Queries. Because the interaction techniques used by these connectors are 
well understood and standardized, UniCon is able to generate code to create the system's 
connectors, the component packaging needed to hook its components together 
appropriately, and the system's build files. As a result, UniCon can dramatically increase the 
level of abstraction at which systems are actually constructed. 
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Rapide [Luc+95] provides an environment and language for modeling and reasoning about 
software architectures. A Rapide system model describes system structure and behavior. 
Rapide provides is the ability to simulate the behavior of the modeled system, given a stream 
of inputs. The resulting system behavior is represented as a Partially-Ordered Set (POSet) 
that defines sequences of events that could occur as a result of the system inputs. An 
architect can analyze these POSets to detect potentially anomalous emergent system 
behavior directly from the architectural specification. 

Wright [AG96] is an architecture description language designed primarily to describe the 
protocols of interaction used within a system or throughout an architectural style. Like 
Rapide, Wright's primary analytical leverage comes from its ability to describe and analyze 
system behavior; particularly emergent system-wide behavior. Unlike Rapide, however, it 
supports static analysis of architectural specifications rather than simulation. As a result, 
Wright's analytical results are more comprehensive than the results generated by a Rapide 
simulation. That is, a Rapide simulation evaluates system behavior only for a specific 
sequence of inputs. A static analysis of a Wright specification, on the other hand, is shown 
to hold over all possible input sequences. Wright's support for the specification of 
architectural styles, rather than just specific system instances, dovetails nicely with its static 
analysis capabilities. The results of a Wright analysis of an architectural style's protocols of 
interaction demonstrates emergent properties that will hold for all systems built according to 
that style's specification. 

Each of these ADLs support the description and analysis of one or more important aspects 
of software architecture design. They provide architects with the capability to express the 
design of a specific software architecture, analyze a set of properties of that architecture, 
and, in the case of UniCon, to generate working systems from the architectural specification. 

Although each of these ADLs provide compelling capabilities, they have some significant 
limitations as well. First, all of these ADLs (willingly) trade off some flexibility and 
generality for greater analytic and generative capability. That is, although each ADL is good 
at providing its specific benefits, none of them are particularly general or extensible. Second, 
all of these tools required years of research and engineering to develop, yet none of them 
can be readily modified or adapted by their users as their needs evolve. As a result, the tools 
will require significant maintenance effort and expenditures if they are to be kept current as 
design needs change.4 

The explicit decision to design Armani as a radically user-configurable design environment 
addresses the high cost of initially producing such an environment. By providing a 
configurable infrastructure and language that supports many of the functions and 
capabilities that had to be built from scratch for these ADLs, the effort to build new design 
and analysis tools and capabilities can focus on the providing the incremental benefits that 
these tools promise rather than rebuilding standard infrastructure and architectural concepts. 

4 An updated version of UniCon was released after the publication of [Shaw+95] that provides a much more flexible 
mechanism for adding new connectors to the environment. This is a big step towards greater flexibility, though it 
still requires a significant understanding of the implementation of the UniCon tools to successfully modify them. 
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The research presented in this dissertation explores a different part of the design space for 
software architectural design tools and environments than these three ADLs. Rather than 
trade off generality and broad applicability for additional power, Armani trades off some 
analytical power for broader generality, applicability, and evolvability. By building on top of 
the Acme interchange standard, however, Armani is able to address the need for powerful 
design analysis and generation capabilities that are not readily available with Armani. 
Specifically, an Armani description can encode design information for use by Rapide, 
UniCon, or Wright-based analyses. Rapide, UniCon, and Wright all provided significant 
lessons in the design and implementation of the Armani language and environment. As a 
result, Armani is able to leverage some of their analytical power while providing a more 
general and extensible set of architectural concepts and infrastructure. 

3.2 General purpose software specification languages 

There are many general software design and specification languages that are complementary 
to the architecture-specific languages described in the previous section. In most cases, these 
languages are intended for describing and specifying software at more detailed levels of 
abstraction than the architectural level. As a result, none of them are particularly good for 
describing software architectures. 

The primary limitation these languages face for describing software architectures is that they 
don't support a sufficiently specialized set of constructs and concepts for dealing with 
architectural specification and analysis. Their primitives are generally geared towards 
specifying data structures and algorithms. An ADL, on the other hand, must describe the 
components of a system, how those components interact, and their non-functional 
properties. As a result, an architect trying to use such a language for architectural 
specification must generally expend a significant amount of time and effort building a set of 
architectural constructs from the language's primitives before using the language for 
architectural description. 

Although they are not the ideal choice for many architectural specification tasks, many of 
these languages embody good ideas that were borrowed by and incorporated into the design 
of the Armani system. This section will discuss some of the most influential general 
purpose software specification and design languages, how they have influenced the design of 
Armani, and why they do not sufficiently address the problems that the Armani system 
tackles. 

3.2.1   UML 

The Unified Modeling Language (UML) [BRJ98] is a set of graphical notations for 
specifying the design of object-oriented software systems. UML was formed by merging a 
number of popular object-oriented design notations, including OMT [Rum+91], Booch 
[Boo94], and OOSE Qac94], into a single collection of related object-oriented design 
notations. As a result, UML includes notations for describing the object structure of a 
system, behavioral diagrams to indicate how objects interact, and a notation for specifying 
use-cases. Due to its comprehensive scope and broad commercial tool support, UML has 
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become a popular design notation amongst software engineers and architects building 
object-oriented systems. 

Although at first glance UML appears to be a potential substitute for Armani, the two design 
languages are, in fact, quite different. UML provides a solid notation for specifying the 
detailed design of software systems. It is not, however, particularly effective as a high-level 
architecture description language for the following reasons: 

Weak semantics. UML was intentionally created with informal semantics. Surprisingly, this 
has proven to be one of the language's greatest selling points for practicing software 
designers. Because the semantics of the notations are only weakly defined, designers using 
UML need not be particularly precise in their use of the notation. This can be a benefit if 
the notation is used primarily as a way for engineers to sketch designs on a whiteboard 
during a meeting. Unfortunately, UML's vague semantics are a weakness when the notation is 
used to specify a system architecture. Vagueness in the semantics of the notation is likely to 
lead to confusion amongst the engineers and programmers who have to implement the 
system. In the worst case this could lead to a complete inability to integrate the individual 
elements of the system. 

Poor support for hierarchy and scaling. UML provides only weak support for the 
hierarchical decomposition of an architectural design. As a result, large UML designs tend to 
become complicated, with hundreds or even thousands of connected shapes on a single 
diagram. A design that is this complicated is difficult both for system implementers to 
understand and analysis tools to analyze. Armani, on the other hand, provides hierarchical 
decomposition as a fundamental language capability. 

Tight ties to implementation structure. The UML notations are primarily intended to 
capture the implementation structure of a system. Further, it has only very weak support for 
the notions of interfaces that are separate from implementations. This is a benefit to tools 
that generate code skeletons from UML structural definitions. From an architectural design 
and analysis standpoint, though, it can be difficult to express abstract design concepts and 
interactions using UML. Armani, on the other hand, explicitly focuses on describing abstract 
architectural structure and interactions. In this way, UML and Armani can be used together 
in a complementary way Armani is generally a better option than UML for specifying high- 
level, abstract architectural aspects of a software design. UML can be embedded within an 
Armani specification to describe the detailed, lower-level design of a system. 

There is significant effort underway in the software architecture research community to 
integrate UML's popular implementation-level design concepts with more abstract software 
architecture design languages and tools [Rob+98]. For a detailed discussion on the 
relationship between architecture description languages and object modelling techniques see 
FMon+97]. 

3.2.2   PVS 

SRI's Prototype Verification System (PVS) [OS97] consists of a language for specifying 
system designs and a semi-automated theorem prover to verify properties of those designs. 
PVS's use of  automated theorem proving allows it to support the specification and 
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verification of complex system designs that would be difficult or impossible to verify with 
more traditional type-checking methods. 

PVS is relevant to Armani primarily because, like Armani, the PVS type system supports the 
specification of complex predicates for capturing designs and design constraints [. Although 
many of the details of Armani's syntax and semantics differ significantly from those of PVS, 
the fundamentals of the two languages are actually similar enough that the PVS semantic 
core serves as the foundation for Armani's formal semantic specification. As a result, 
Armani is able to leverage and reuse a well established formal representation and logic as its 
semantic underpinnings. 

PVS does not, however, solve the basic problem that Armani addresses - rapidly and 
incrementally developing custom software architecture design environments. PVS performs 
a single design task - formal verification and theorem proving - well for a variety of 
architectural domains. Although PVS provides helpful guidance and a formal foundation on 
which to build, it is not readily customized to work with specific architectural styles. 

A second, and perhaps more subtle, reason that PVS is not by itself a sufficient basis for an 
extensible architectural design representation is that the result of a PVS verification is not 
necessarily binary. That is, the result of a verification test on a PVS specification can be "yes, 
the design is verified", "no, the design is not verified", or "maybe, if the following proof 
obligations hold". This behavioral characteristic arises because the PVS specification 
language is sufficiently rich to render typechecking a specification undecidable. As a result, 
integrating other interactive design tools with PVS can prove challenging. By insuring a 
binary and relatively fast response to a tool's query about whether a design satisfies its 
constraints, Armani can provide interactive feedback not only to human users but also to 
automated tools. 

As a result, PVS and Armani are complementary technologies. The PVS system allows 
verification and validation of more complex designs than Armani at the expense of its utility 
as a general design representation and integration framework. Armani, on the other hand, 
provides a flexible, customizable, environment and tool integration infrastructure. One way 
in which the two technologies could be used together, for example, is to use PVS to 
determine the internal consistency of Armani type and style specifications. Determining 
whether an Armani style specification is internally consistent requires more theorem-proving 
capability than Armani possesses. PVS provides such a capability and Armani's integration 
framework should allow the two to work together. This issue is addressed in greater detail in 
Chapter 9. 

3.2.3   Larch 

Larch [GHW85] is a software specification language that supports the definition and 
composition of partial algebraic program and abstract data-types (ADTs). The aspect of 
Larch that is most relevant to the Armani design language is Larch's support for the capture 
of important aspects of ADTs in modular, independent units called traits. These traits can 
be composed to capture the semantics of full, rich ADTs. 
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The Armani design language makes use of and builds on Larch's ideas about trait 
composability and partial specification. Specifically, it uses a similar approach for 
constructing architectural styles and compound vocabulary types out of individual design 
rules, structural and property specifications. As a result, Armani can address the architectural 
design issues that Larch, with its emphasis on abstract data type specification, is not intended 
to capture. 

3.2.4 Traditional formal software specification languages 

In addition to the ADLs described above, there has been a significant effort by members of 
the software architecture research community to use formal methods to provide a 
mathematical foundation for describing software architectures and architectural styles. 
Formalisms such as Z [Spi89, AAG95], CSP [Hoa85], and the Chemical Abstract Machine 
[IW95] have been used to model software architectures. Although these formalisms can be 
useful for rigorous reasoning about architectural designs, they fail to provide either an easy 
way for designers and domain experts who are not deeply familiar with formal method to 
capture expertise, or mechanisms for automating the formalisms that they do capture in a 
working architectural design environment. Further, these formalisms often prove awkward 
for describing software architecture specification because their basic constructs are not 
geared for doing so. Although it is often possible to build software architecture constructs 
out of the primitives that these formalisms provide, much of the clarity that the formalisms 
exhibit for specification at lower levels of abstraction is lost in the process. 

Although the Armani system does not emphasize the same degree of rigor for reasoning 
about architectures that these formalisms provide, it provides a greater degree of flexibility 
for capturing design expertise, realizing that expertise in a design environment, and 
experimenting and exploring the range of possible designs. Armani is, in fact, 
complementary with these more formal software architecture description models - formal 
specifications can be embedded in an Armani description to provide a more rigorous 
specification for various aspects or pieces of a system described with the Armani language 
and tools. 

3.2.5 Law-Governed Systems 

Minsky's work on Law-Governed Systems (LGS) [Min91, Min96-1, Min96-2] describes an 
approach for guiding the evolution of software systems with a collection of laws. These laws 
are generally represented as prolog-based rules that can be evaluated during system 
development, maintenance, or operation. By providing a framework for describing expected 
(and legal) system evolution paths a system's original designers can guide the subsequent 
evolution of the system and flag evolutionary paths that are likely to violate the system's 
basic foundations. 

The LGS approach to capturing and enforcing system-wide evolutionary laws bears a 
striking resemblance to the Armani approach to capturing software architecture design 
constraints. Both approaches provide a framework and mechanisms for capturing software 
design expertise in the form of design rules and an automated checking mechanism to 
ensure that those rules are followed in the construction and evolution of software systems. 
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The Law-Governed System approach does not, however, fully address all of the issues 
addressed by the Armani system. First and foremost, Law-Governed Systems provide 
minimal direct support for dealing with architectural issues. Although they are designed to 
work at various levels of software system abstraction, they tend to emphasize issues that 
occur at more detailed (lower) levels of abstraction than the architectural level. As a result, 
Minsky's prolog-based laws trade off some of the power that comes from focusing on the 
architectural level of design for the generality of being applicable for all stages of software 
design and development. 

Armani, on the other hand, focuses on specifying constraints on the evolutionary path of 
the architectural specification. Although Armani is not as broadly powerful for describing 
sub-architectural design constraints as LGS, its constructs, concepts, and design primitives 
provide architects with greater leverage for designing at the software architecture level of 
abstraction. An architect using LGS as the basis for architectural design needs to create a set 
of architecture-level primitives and design rules before LGS can be used effectively as an 
Architecture Description Language. This is a non-trivial, time consuming, and error-prone 
task. An architect using Armani, on the other hand, can immediately leverage its built-in 
architecture-level primitives and design rules. 

Another limitation to the law-governed system approach is that, historically, the 
implementations of the law-governed system idea have been tightly tied to object-oriented 
system design and development techniques (c.f. [Min96-1] and [Min96-2]). It is not clear 
whether this is fundamental or accidental to the LGS approach, but the heavy emphasis on 
object-orientation, and method-call interactions in particular, limits the range of architectural 
styles that one can currently use to design a law-governed system. One of the implications of 
aligning the LGS approach tightly with object-oriented design is that although LGS provides 
a way of expressing laws at a wide range of abstraction levels (e.g. detailed implementation 
laws or high-level module relationships), it limits the overall system organization to a 
relatively small range of abstractions. Armani, on the other hand, focuses on capturing 
design constraints at the architectural level of abstraction, but allows a wide range of 
architectural abstractions for system organization. 

Finally, Law-Governed Systems provide little or no support for the rapid creation and 
evolution of software architecture design environments. LGS provides an abstraction and 
modeling technique that can be realized and embedded in software design environments but 
this does not in any significant way to address the need for rapid and incremental 
environment development and modification capabilities. 

3.2.6   Configurable programming environments 

The idea of providing generators that can quickly create custom tools for software 
professionals certainly preceeds Armani. The Gandalf System [Hab+82] and the Synthesizer 
Generator [RT88] are software tool generators that were influential in the conception and 
creation of Armani. 

The Synthesizer Generator allows tool builders to rapidly create structured editors that are 
customized for specific languages. These editors dynamically enforce the syntax of the 
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language and provide constructive assistance to programmers using the tools. These editors 
also provide a programmatic interface for manipulating the attribute-grammar representation 
of a program. 

Gandalf provides a package of infrastructure and generators that can be used to create 
custom software development environments. Like the Synthesizer Generator, a key part of 
the Gandalf software development environment generation process is the creation of a 
customized structure editor. In addition to the structure editor Gandalf also provides 
mechanisms for handling project management and source code version control. 

Much like Armani, both of these tools guide software developers toward building correct 
software. Specifically, the structured editors created by these tools make it impossible (or at 
least very difficult) for a programmer to create a syntactically incorrect program, eliminating 
an entire class of programming errors. 

Although both of these tools provide compelling support for creating customized 
programming environments, neither fully addresses the problems that Armani solves. First, 
both of the systems focus on providing programming support and, in the case of Gandalf, 
on supporting teams of programmers constructing systems. The tools are not intended to 
support the software architecture and design process. Likewise, neither tool supports the 
ability to explicitly express, capture, and make use of design expertise. Although the person 
generating custom tools makes use of significant expertise, that expertise is implicitly 
encoded in each of the generated tools. 

Second, neither of these tools allow the end-user to perform any significant environment 
customization. Like Aesop, they both support a generation model in which the person who 
creates the custom environment is different from the person who uses the environment. 
Although the same person can obviously play both roles, the skills and perspective required 
varies greatly between the two tasks. Armani's support for dynamic end-user environment 
configuration is a powerful additional capability. 

3.3 Computer aided design and analysis tools 

The previous two sections have focused on related research in languages and techniques for 
specifying and reasoning about software designs. Although some of these languages are 
accompanied by significant toolkits, the primary contributions of these research projects 
tends to be the abstractions and frameworks that they provide for specifying and reasoning 
about software designs. Armani builds on this related work but it must also take advantage of 
research and development efforts others have conducted in building effective computational 
tools. In this section I present selected research in computer aided design and analysis tools 
from a wide variety of engineering and design domains. 

3.3.1   CAD tools for various disciplines 

Computer Aided Design (CAD) has proven to be an effective tool for designers in many 
disciplines. Architects, mechanical engineers, electrical engineers, and many graphic designers 
rely heavily on CAD environments to perform their jobs. Systems such as Cadence 
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[Cadence] for electrical engineering, AutoCAD for mechanical engineering [Autodesk], the 
Integrated Building Design Environment for building architects [Fen+94], and Corel 
Graphics [Corel] for graphic design capture the important aspects, models, and tools of 
design in their particular domains. 

Because these systems were built to support design in significantly different domains from 
software architecture, they do not solve many of the specific issues faced by software 
architects. Exploring how these tools provide leverage for the designers using them, 
however, offered many insights into what makes a CAD tool effective, the degree to which 
design tools in other domains provide end-user configurability (they generally don't provide 
any), and the kinds of analytical capabilities that their users seem to expect. 

The primary insight I gained from exploring CAD tools in other domains was that the tools 
provide a lot of leverage when they (a) capture and expose the domain's core design 
expertise, (b) provide analytical capabilities that a designer would have difficulty performing 
without the assistance of a computer, and (c) allow designers to quickly explore a variety of 
alternative scenarios before binding design decisions. The design tools that provided all of 
these capabilities tended to be very effective and popular with their users. Although the tools 
explored were not directly applicable to the software architecture domain, determining what 
made them effective proved very helpful in designing Armani. 

3.3.2   Tools that manage constraints and rules 

Constraint-based programming and rule-based programming have been studied extensively 
in the AI literature. Borning's Thinglab [Bor79] was one of the early constraint-based 
environments for manipulating models of the physical world. Thinglab simulated physical 
environments and allowed a user to specify constraints that needed to be maintained 
between different objects in the simulated world. 

Like Thinglab, Armani allows designers to specify constraints that its environment enforces 
as a software architecture specification evolves. Unlike Armani, Thinglab was designed to be 
a very general constraint management system primarily for modeling entities in the physical 
world. As a result, Thinglab provided little or no support for the abstract concepts and 
constraints required in software architecture design. Although Thinglab's generality allowed 
it to be applicable to many domains, by focusing specifically on software architecture design, 
Armani is capable of providing architects with significantly more design leverage than a 
general purpose constraint management tool. 

Fischer's work on critics (see also section 3.1.4) and configurable design environments for 
various industrial-design domains [Fis87,Fis+87] explored ways to capture design knowledge 
and design rules in custom, domain-specific design environments. The design environments 
that Fischer's research group built, however, were generally hand-crafted creations. Unlike 
Armani, they do not support significant end-user configuration, customization, or 
expression of design rules. Armani's support for end-user reconfigurability is central to its 
design and requirements. As a result, although Fisher's critics work provides many useful 
ideas for this research, it does not solve the full problem that Armani addresses. 
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3.3.3   Expert and rule-based systems 

Rule-based programming systems such as OPS-5 [For81] and CLIPS [Gia93] are generic 
rule-based systems for capturing expertise. These tools are used by software developers to 
create expert systems for arbitrary domains. Traditional expert systems are monolithic 
entities that use inference techniques to derive conclusions from knowledge provided to 
them as input. These custom-built systems tend to be limited to very specific domains, such 
as diagnosing automobile problems and suggesting how to fix them. 

Because traditional expert systems provide mechanisms for capturing expertise and using 
that expertise to solve specific problems they seem to be natural candidates for building 
software architecture design tools. Unfortunately, they fall short of meeting all of the goals 
and requirements laid out for Armani in three important ways. 

First, one of Armani's most important capabilities is the ability to capture small, modular, 
and composable "snippets" of expertise that can be used (and reused) in an interactive 
design environment. Rule-based systems generally provide the capability to add or remove 
individual rules from the inference engine. Experience with these systems indicates, however, 
that they have a tendency to become very brittle when many rules are added to the system. 
Armani's modular and focused constructs for capturing design expertise go a long way 
towards addressing this limitation. 

Second, there are many kinds of design expertise that are not readily captured in a set of 
implicidy fired rules. A prime example is the ability to analyze the throughput and latency of 
a system using queuing networks.5 Expert systems traditionally only use collections of rules 
and knowledge (in the form of assertions) to capture expertise. In order to capture a wide 
range of design expertise, however, it is important that a custom software architecture design 
environment building system provide multiple mechanisms for capturing and exploiting 
design expertise. Armani provides this capability, but the closed-world model of most expert 
systems precludes them from doing so. 

The final limitation of using a traditional expert system as the basis for rapidly developing 
custom software architecture design environments is the need to include humans in the 
decision making process. The Armani environment is intended to provide assistance to 
skilled human designers. Most expert systems, on the other hand, are intended to be the 
expert that makes the important decisions. This model does not work very well in the weakly 
constrained domain of software architecture. Architectural design decisions are rarely 
sufficiently clear-cut, mechanical, or well quantified to be amenable to a pure expert-system 
approach. 

Although rule-based systems do not appear to completely obviate the need for tools and 
techniques to rapidly develop custom software architecture design environments, they could 
certainly be used as part of the environment infrastructure. As I discuss in Chapter 4, I 
selected a predicate logic formalism as the basis for capturing design expertise in Armani. It 
probably would have been possible to use a rule-based system as the underlying formalism 

5 Such an application of queuing networks is described in detail in section 7.2.4's case study. 
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for the Armani design environment instead but the predicate-based model more cleanly 
matched Armani's structural architecture specification model. 

3.4 The design process 

There is a significant body of work on the abstract process and cognitive aspects of design, 
including studies of design in engineering, industrial, and perceptual domains. Although the 
research that they describe is not always directly related to rapidly developing custom 
software architecture design environments, I made use of many of the principles put forth 
in these studies to guide the design and development of the Armani system. My research 
leverages this work on design processes rather than directly extending it. 

Specific sources that I found particularly useful and interesting for this purpose include 
Winograd's book of essays on the software design process [Win96], Schön's work on 
"reflection in action" [Sch83], Petroski's work on engineering design [Pet85], and Norman's 
discussion of the design of everyday objects [Nor88]. Following the principles developed in 
these studies helped me design the Armani system to fit naturally into an architect's design 
process 

In addition to these broad explorations of the design process, there are two areas of 
research specifically related to designing software architectures that significantly influenced 
my work on Armani - the Gamma, Helm, Johnson, and VHssides' work on design patterns 
[Gam+95] and Rechtin's system architecting heuristics [Rec91, RM97]. In the next two 
sections I discuss these projects and how they relate to Armani in detail. 

3.4.1   Design patterns and pattern languages 

Design patterns have emerged as a popular mechanism for capturing and communicating 
proven design techniques that address specific problems. Based on the building architecture 
work of Christopher Alexander [Ale+77], a design pattern identifies a problem, provides a 
generic solution that can be tailored in many different ways, and discusses the implications 
(both good and bad) of using the pattern. Although individual design patterns are helpful 
patterns provide significandy more leverage when a coherent collection of related patterns is 
available to guide the design process than they do in isolation. Such a collection of related 
patterns is called a pattern langmg. 

Gamma, Helm, Johnson, and VHssides' book "Design Patterns: Elements of Reusable 
Object-Oriented Software" [Gam+95], popularized the design patterns movement by 
presenting an initial pattern language for object-oriented software. Since that time, hundreds 
of articles and books have appeared describing pattern languages for nearly every aspect of 
software design and development, including software architecture [ Bus+96]. There is clearly 
a wide base of popular support for the use of design patterns. 

As I describe in detail in [Mon+97], design patterns and architectural styles are 
complementary constructs. Design patterns do not, however, solve all of the problems that 
Armani solves. First, they tend to be informal. Although this informality works well for 
communicating a general approach to solving a problem, it is very difficult to precisely 
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specify designs with an informal specification and even harder to provide automated 
evaluation of a design to see if it conforms to such a specification. Second, design patterns 
tend to be good at solving local problems but limited at providing guidance for putting 
together a complete system. Finally, design patterns are intended to be primarily a 
communication medium between people. Although this approach makes them effective for 
exchanging designs and design knowledge between designers, it also limits their effectiveness 
as a conceptual foundation for configurable design tools. 

Recognizing the complementary nature of design patterns and Armani's approach to 
capturing design expertise, I have tried to design Armani to be able to take advantage of 
design patterns. The full Armani design language presented in Chapter 4 does not explicitly 
provide a design pattern construct. It is, however, possible to capture much of the same effect 
of a design pattern by combining and by packaging related design vocabulary and design rule 
specifications. These implicit pattern specifications are generally more rigorous than the 
patterns found in [Gam+95] and related collections, though they lack the first-class status 
and much of the informal description provided by the explicit design pattern languages. 
Completing a full integration of design pattern concepts with Armani is a promising area for 
future research. 

3.4.2   Rechtin's system architecting heuristics 

In his books "Systems Architecting" [Rec91] and "The Art of Systems Architecting" 
[RM97], Rechtin outlines techniques and criteria for effective system architecting. One of his 
primary theses is that system architecting is a heuristic-driven process, regardless of the 
specific domain in which it is practiced (e.g. Aerospace, software, physical structures...). 
Throughout the books he presents the key issues facing system architects and offers 110 
heuristics to guide architects in properly addressing these issues. 

Though informal and far from comprehensive, these heuristics capture and provide a 
tremendous amount of useful advice for successful system architecting. Because of their 
informality they are difficult to encode in automated tools for use in evaluating architectural 
specifications, as Armani needs to do. Rechtin does, however, make a compelling case for the 
importance of heuristics as a mechanism for capturing architectural design expertise. As we 
will see in Chapter 4, the Armani design language builds on his ideas by providing a heuristic 
construct that architects can use to specify "soft" guidelines for designing software 
architectures. 
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Chapter 4 

The Armani Design Language 

Armani's design language defines the system's core concepts for specifying the design of 
individual software architectures and for capturing architectural design expertise. In this 
chapter I describe the Armani design language. I first argue the need for such a design 
language and lay out the requirements that the language must satisfy. Then I describe the key 
design decisions made in creating the language, arguing that the language both meets the 
requirements presented and provides the desired benefits. Rather than providing a detailed 
specification for the language (which can be found in [Mon98]), the discussion in this 
chapter emphasizes the interesting technical aspects of the language and the fundamental 
design decisions I made in creating it. 

4.1 Armani design language requirements 

The Armani design language defines the primitive building blocks for describing software 
architectures and architectural design expertise, along with rules for composing those 
primitives. Although selecting such a set of primitive constructs and composition rules is a 
critical first step in the development of an architecture design or analysis tool (or 
environment), it is a time consuming task that is difficult to do well. Armani relieves 
software tool and environment developers from this burden by providing a powerful and 
generic architecture design language that encapsulates such a set of design primitives and 
composition rules. 

The Armani design language must meet five fundamental requirements. I established these 
requirements based on a series of conversations with practicing software architects, 
observations of numerous formal and informal architectural software systems specifications, 
and experience using a wide variety of architecture description languages. The first two 
requirements identify what the language must be able to describe - architectural instances 
and architectural design expertise. The subsequent three requirements define necessary 
characteristics of the design language for describing expertise and instances - expressiveness, 
anaryzability, and incrementality. 

Strictly speaking, only the second of these requirements - capturing design expertise - needs 
to be satisfied to demonstrate that the thesis holds. Experience with architecture description 
languages and design environments (both my own and that gathered from other sources), 
however, indicates that the other four requirements are necessary for the language to capture 
a sufficiently broad array of powerful design expertise and be useful to an appropriately wide 
audience, discharging the broad Armani requirements of incrementality, breadth, and power. 
Using the same language to capture instances of  system designs and abstract design 

55 



expertise also simplifies tooling and reduces the learning curve for architects who need to 
learn only one language for both purposes. 

A detailed discussion of these requirements, the rationale behind them, and their potential 
benefits follows. 

Requirement 1: Instances. The design language must be capable of describing the architectural 

structure, properties, and topology of individual software system-designs (architectural instances). 

An explicit and precise architectural specification of a software system provides multiple 
benefits throughout the system's lifecycle. Such a specification documents the design of the 
system, facilitating communication between the system's designers, developers, testers, 
installers, and maintained. A precise architectural specification is also a prerequisite for 
effective automated architectural design evaluation and analysis. In addition to supporting 
automated analyses, a precise architectural specification is also helpful for designers who 
need to perform informal, back-of-the-napkin analyses. Finally, the process of explicitly 
defining a software system's architecture frequently exposes potential mismatches and 
discrepancies in the design. 

In order to achieve these benefits, software architects must be able to explicitly, precisely, and 
unambiguously specify their design. There are three key parts to a system's architecture 
specification that the Armani design language needs to be able to specify. First, the structure 
and topology of a software system forms its core architecture. This includes defining the 
components that make up the system and the connectors through which the components 
interact. The language must, therefore, provide constructs for describing system structure 
and topology. 

Second, the design language needs to be able to describe architectural properties. Properties 
fall into two classes - asserted properties and emergent properties. Asserted properties 
represent claims that the designer makes about individual design elements or the system as a 
whole. The value of an asserted property may represent measurements made in testing an 
implemented design element, estimates made by the architect, or a priori requirements that 
the system architect states the implementation must satisfy. Emergent properties, as their 
name suggests, are properties of a system that are derived from the interactions of the 
system's individual pieces. 

Third, the design language needs to be able to describe constraints that must be maintained as 
a system's design evolves. Although maintaining a software system's conceptual integrity is 
critical to its overall success [Bro95], it is difficult to do so in the initial design of the system 
and even more difficult as the system design is updated and evolved. By allowing a system's 
original designers to explicitly state the fundamental constraints under which the system was 
developed, and which need to be maintained as the system evolves, system updates can be 
made in a principled and informed way. The Armani design language must, therefore, 
include the ability to associate explicit design constraints with software systems. 

In addition to the three fundamental constructs just described, Armani's design language 
also needs to support encapsulation of design details and hierarchical decomposition. 
Architecture descriptions for large systems that don't make use of encapsulation and 
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hierarchical decomposition tend to either become unwieldy because they contain too much 
detail at a single level of abstraction or analytically useless because they are too vague. 
Therefore, to keep the relationship between the elements of these systems both intellectually 
tractable and analytically useful, the architecture description language must support the 
encapsulation of subsystems. Appropriate encapsulation allows subsystems to be described 
in full detail at one level of abstraction and encapsulated for use as a single design element at 
more abstract levels of description. 

Requirement 2: Design Expertise. The Armani design language needs to be capable of describing 
software architecture design expertise that can be reused across multiple system designs and multiple design 
environments. 

As organizations build software systems they learn how to do so effectively. This learning 
process includes developing a deep understanding of the types of systems that the 
organization builds and discovering the pitfalls they face in building them. As part of this 
learning process, organizations generally develop a set of good practices and techniques for 
software design, as well as ways to avoid design problems. Such an organization has acquired 
architectural design expertise.6 

These practices and techniques are generally developed informally and frequently reside only 
in the minds of a few software experts working on the project. Storing this expertise only in 
the heads of a few critical people has a number of negative implications for the software 
development organization. First, when these experts leave the organization the expertise that 
the organization has developed frequently leaves with them. Even if the experts stay in the 
organization, design details are easily forgotten over the duration of a system's operational 
lifetime. Finally, a lack of documentation describing expected design practice makes training 
people new to a development project more costly and difficult than it needs to be. Simply 
documenting the design expertise acquired by the organization should reduce the costs and 
disruption of staff turnover as well as speeding up the training of the organization's new 
designers and developers. 

Although simply expressing an organization's architectural design expertise with natural 
language documents is a useful first step, there are three significant benefits to using a more 
formal language and framework for codifying the expertise. First, a domain expert using a 
formal architecture description language can build on the basic concepts and framework 
provided by the formalism. Using such a language supports creativity and productivity by 
freeing the designer to focus on the expertise he wants to express rather than searching for a 
way in which to express it. Second, the designer can be much more precise in the 
specification of the expertise with a formal language than with a natural language. Third, 
explicitly capturing architectural design expertise and architectural designs with a well- 
defined language is a necessary first step towards providing automated design guidance, 
evaluation, and analysis. 

To achieve these benefits, Armani must provide a formal language for capturing architectural 
design expertise. Two fundamental kinds of design expertise are design vocabulary and deign 
rules. To capture design vocabulary the language must provide constructs for defining the 

6 [ATT93] describes one way in which AT&T has informally captured and described some of this expertise. 
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structure, properties, and constraints associated with user-defined types of structural design 
elements. The types of vocabulary elements thus defined become the semantically 
meaningful building blocks used to specify instances of architectural designs. The language 
constructs for capturing design rules must at least be capable of defining constraints on how 
related types of design vocabulary elements may be composed and valid ranges for, and 
relationships between, the properties of those elements. 

In addition to providing constructs for capturing individual "nuggets" of design expertise 
(with the vocabulary and design rule constructs), the Armani design language also needs to 
provide a way to aggregate related design expertise into coherent packages (or styles). This 
process primarily entails packaging vocabulary elements that are designed to work together 
with design rules that guide and constrain how the elements may be composed and interact. 
To make such a packaging scheme coherent the language must define the semantics of 
composing and aggregating the individual design expertise constructs. 

Requirement 3: Expressiveness. The notation and constructs supplied by the Armani design 
language must match the expressive needs of software architects. 

The Armani design language should facilitate the specification of software architectures and 
the capture of architectural design expertise. To do so, the Armani design language's 
constructs must map naturally to the concepts that architects use for designing software. 
This includes both the selection of primitive building blocks and the rules that define how 
those building blocks can be assembled and composed. If the gap between the language's 
constructs and designers' intuition is too great then the language will hinder good design 
rather than encouraging it. Conversely, if the language maps well to intuitive design concepts 
then it can provide designers with significant analytical and modeling leverage. 

Another aspect of expressiveness is the richness and breadth of the designs and design 
expertise that the language can capture. The language must allow architects to capture non- 
tnvial design expertise and specify precise and detailed descriptions of their architectural 
designs. Likewise, the language must be able to encode design expertise and system 
specifications for a broad range of architectural styles. 

Requirement 4: Analyzability. Armanis design langiog must support the evaluation and analysis of 
architecturaldescriptions. 

Much of the leverage that a custom software architecture design environment provides 
architects is derived from the environment's ability to evaluate and analyze architectural 
designs. Effective design analyses allow system architects to explore the expected properties 
of a proposed system, warn them of potential design problems, and help them determine 
whether then design is likely to produce a system that will meet its requirements. This 
capability allows architects to evaluate design options early in the system development 
lifecycle when multiple design alternatives can be explored relatively inexpensively. 

The first two requirements stated only that the language be able to capture declarations of 
instances and design expertise. The Armani language itself does not need to be able to 
support the expression of operations or computations. The language need only be able to 
specify declarations about the structure, properties, and constraints of system instances, and 
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abstract, modular, reusable design expertise. Although the language itself does not need to 
support the expression of operations, the systems and expertise specified with the language 
must be readily amenable to analysis by external tools. 

Providing a sufficiently formal design language and a conceptual framework for capturing 
both the architectural specifications of individual software systems and abstract architectural 
design expertise is an important first step towards satisfying this requirement. Such a 
language and framework allows the precise specification of architectural designs that both 
automated tools and humans can evaluate. Further, design expertise captured with this 
language can be used by automated tools to analyze and evaluate specific system designs. 

Although strong support for automated analysis appears to be a desirable language property, 
there is a fundamental tension between a language's analyzability and its naturalness of 
expression. In general, informal languages tend to be more intuitive and expressive than 
formal languages. Formal languages, however, are generally much more amenable to rigorous 
analysis. The design of the Armani language must find an appropriate balance between the 
need for analyzability and the need for language expressiveness. 

Requirement 5: Incrementality. The language must support incremental capture of architectural 
design expertise and incremental modifications to architectural specifications. 

In order to support the rapid customization of the Armani design environment, the Armani 
design language must be capable of encapsulating software architecture design expertise in 
modular units that can be incrementally composed and added to the design environment. As 
Chapter 5 discusses, building support for incremental specification into the design language 
that underlies the environment makes the job of customizing the environment quite 
straightforward. 

The importance of having a modular and incremental language for capturing architectural 
design expertise extends, however, beyond its role in customizing the Armani design 
environment. The ability to collect design expertise in small, modular, and composable 
packets simplifies the conceptual effort required to capture and express the design expertise 
itself. Furthermore, it allows designers to select the expertise that they need for a specific 
project and to quickly adapt the basic concepts that they have to work with. 

In addition to the need for incrementality in capturing software architecture design expertise, 
the language also needs to support incremental modification to individual architectural 
specifications. As the architecture of a software system evolves over time it is important that 
its design specification be modified to appropriately represent the changes to the system 
implementation. Building this capability into the architecture design language makes such 
specification changes easier, more straightforward, and therefore more likely to actually be 
performed under time and deadline pressure. 

4.2 The Armani design language 

The Armani design language meets these requirements. In the remainder of this chapter I 
present the key design decisions made in creating the Armani language, describe the core 
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constructs of the language in the context of discussing these design decisions, and argue 
that the design decisions lead to a language that satisfies the stated requirements. 
Throughout the discussion I will illustrate the use of the language for two of its three roles - 
specifying the architectural design of individual software systems and capturing architecture 
design expertise. I defer a detailed discussion of the language's third role - creating custom 
software architecture design environments - to the following chapter. 

4.2.1   Architectural structure 

Selecting an appropriate set of core constructs for the Armani design language exposes 
some fundamental tensions. For example, Armani needs to offer sufficient analytical and 
expressive power for specific styles of design, yet still be flexible and extensible enough to 
support design work done in a broad range of architectural styles. Armani addresses this 
tension by providing a simple, generic language for describing anbitectwal structure as its 
foundation for architectural specification. In the context of Armani, architectural structure 
defines the decomposition of a software system into its constituent components and the 
ways in which those components interact. This structure forms the context for doing all 
subsequent system specification and design. 

The selection of generic structure as the foundation for architectural description satisfies the 
language's need to work over a broad range of architectural styles. To address the language's 
need to handle specific design issues in these various styles, Armani allows this generic 
structure to be augmented with style-specific design details using Armani's property and 
design rule constructs. As subsequent sections of this chapter will describe, the language also 
provides ways for architects to package and reuse the style-specific augmentations. This 
approach allows the Armani design language to finesse the fundamental tension between 
generality and style-specificity, getting the benefits of both while minimizing their 
drawbacks. 

As outlined in Table 4.1, the basic structural constructs of the Armani design language are 
components, connectors, ports, roles, and systems. These constructs are genetically referred to as 
design elements. Attachments define a point of interaction between a port and a role. As a result 
the set of attachments associated with a system define that system's topology. All design 
elements can be hierarchically decomposed with the representation construct. An abstraction 
map defines the mapping from an «outer" element to the elements defined within its 
representation A binding is a special kind of abstraction map in Armani that defines 
equivalence between two entities. All design elements can also be annotated with properties 
that capture selected non-structural aspects of the design elements. These seven constructs 
form the basic ontology for capturing the architectural structure of software systems They 
also provide the context within which architectural design expertise is captured. 

Selecting this collection of core structural constructs proved to be a critical and challenging 
step in defining the Armani design language. These constructs were selected based on a 
combination of: observations of practicing software architects who make heavy use of box 
and line diagrams (represented by components and connectors, respectively), studying the 
informal and intuitive techniques architects commonly use to represent their ideas (generally 
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box and line diagrams coupled with informal natural language text), and experience using 
previous architecture description languages and module interconnection languages. 

One of the first steps in designing a software architecture is dividing the functionality, 
responsibilities, and capabilities of the target system into a set of components. The 
components represent the primary computational elements and data stores of a system. 
Intuitively, they correspond to the boxes in box-and-line descriptions of software 
architectures. Typical examples of commonly used components include clients, servers, 
filters, objects, blackboards, and databases. 

A component's interfaces are defined by a set of ports. Each port identifies a point of 
interaction between the component and its environment. A port can represent an interface 
as simple as a single procedure signature or something more complex such as an event multi- 
cast interface point or a collection of procedure calls that must be invoked in a specified 
order. One of the interesting capabilities of Armani's component and port constructs is that 
a component can provide multiple interfaces to its environment. This approach separates the 
specification of what the component does from how it is packaged. 

The decomposition of a system architecture into its constituent components is only the first 
step in the design and specification of a system architecture. A fundamental second step is 
defining the ways in which those components interact. Armani's Ccmector construct 
addresses the need to represent interactions among components. Computationally speaking, 
connectors mediate the communication and coordination activities among components. 
Informally, they provide the "glue" for architectural designs and correspond to the lines in 
box-and-line descriptions. Examples of simple connectors include pipes, procedure calls, 
and message-passing channels. Connectors are not, however, limited to these simple binary 
interactions. They can also represent more complex interactions, such as a client-server 
protocol, an event system, or a SQL [DD97] link between a database and an application. 

Like components, connectors have explicitly specifiable interfaces that are defined by a set of 
roles. Each role of a connector defines a participant of the interaction represented by the 
connector. Binary connectors have two roles such as the caller and calke roles of an RPC 
connector, the reader and miter roles of a pipe, or the sender and receker roles of a message 
passing connector. Other kinds of connectors may have more than two roles. For example, 
an event broadcast connector might have a single event-announcer role and an arbitrary number 
of event-recewer roles. Likewise, the message passing connector described above could be 
augmented with a third probe role that allowed other components to listen to all message 
traffic passing on the connector without being able to write messages. 

Individual component and connector specifications are not particularly useful in isolation. 
They become useful and interesting, however, when they are composed to form systems. 
Armani therefore provides a system construct to represent configurations of components and 
connectors. A system includes (among other things) a set of components, a set of 
connectors, and a set of attachments that describe the topology of the system. An attachment 
associates a port interface on a component with a role interface on a connector. 
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Describes a set of components and connectors and their interaction 
topology. 

Represents a system's primary computational elements and data stores. 

Mediates the interaction between components. 

Defines an interface to a component. 

Defines an interface to a connector. 

Captures non-structural properties of design entities. 

Supports encapsulation and hierarchical decomposition of designs. 

Defines a relationship between a port and a role. The set of attachments 
in a system defines that system's topology. 

Defines the relationship between a design element and the elements 
contained in a representation of that element. 

Table 4.1: Summary of Armani architectural instance primitives 

To illustrate Armani's structure language, Example 4.2 describes a trivial architectural 
specification of a system with two components - a client and a server - connected by an rpc 
connector. The client component is declared to have a single send-request port, and the server 
has a single receiue-request port. The connector has two roles designated caller and cake. The 
topology of this system is defined by the set of Attachments. 

4.2.2   Representations 

Complex architectural designs require hierarchical descriptions to make their specifications 
tractable for individual designers to understand, yet sufficiently detailed to guide system 
analysis, implementation, and testing. Armani supports the hierarchical decomposition of 
architectures. Specifically, any design element can be represented by one or more lower-level 
descriptions that provide additional detail. Each such description is termed a representation. A 
representation establishes and enforces an abstraction boundary between the structure, 
interfaces, and properties that a design element exposes to its environment and the details of 
the element's design and/or implementation. A representation consists of two parts: a system 
that describes the representation's structure, and a set of binding that define a mapping 
between structure in the higher-level element encapsulating the representation and the lower- 
level elements defined in the representation's system. 
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System simpleCS = { 
Component dient = {Port sendRequest} 
Component server={ Port receiveRequest} 
Connector rpc = {Roles {caller, callee}} 
Attachments { 

clientsendRequest to rpc.caller; 
server.receiveRequest to rpc.callee } 

} 

dient 
ei 

rpc 

server 

Example 4.2: Simple client-server system specification in Armani text (left) and as a 
box-and-line diagram (right) 

To illustrate, let us extend the simple client-server system described in Example 4.2. Suppose 
that the server component in this example encapsulates a complex sub-design. Specifically the 
server component consists of three interacting components - a connection manager, a 
security manager, and a database. Figure 4.3 depicts this design extension graphically, and 
Example 4.4 provides the corresponding Armani textual specification. 

Adding a representation to the server component allows the architect to provide details 
about the lower-level design of the server without compromising its higher-level abstraction 
as a single design element. When reasoning at an abstract level about the design it is 
appropriate to hide the server's complexity and simply think of it as a component that 
provides a specific service. If, however, the server represents a large subsystem it may be 
necessary to selectively reveal the detailed design of the server. The agent interested in 
seeing such design details could be a human architect or it could be an automated design 
analysis tool. 

In addition to their role in encapsulating design complexity, representations can also be used 
to encode multiple views of architectural entities. By allowing individual design elements to 
have multiple representations Armani allows architects to specify different but 
complementary views of a single design element's sub-architecture, detailed design, or 
implementation. 

The ability to encode multiple views raises some tricky challenges. One of the primary 
challenges is defining the relationships and rules for maintaining consistency between the 
different views. To keep the design language simple and flexible for a broad array of 
applications, Armani does not bind the details of the semantics of using representations to 
depict multiple views. Likewise, it does not provide specialized constructs for managing 
inter-view correspondences. Rather, it provides a basic infrastructure of structure and 
properties with which architects and environment designers can define their own view 
semantics. Developing a more powerful view mechanism lies outside of the scope of this 
dissertation but it is fertile ground for future work. 
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dient 

rpc 

server 

Connection 
Manager 

Figure 4.3: Graphical depiction of simple client-server system with server 
representation 

4.2.3  Extending structural specifications with properties 

Although structure and topology are critical aspects of a system's architecture, they are not, 
by themselves, sufficient for a complete architectural description. There are many other 
aspects of system design that can and should be captured in an architectural specification. 
The aspects that must be captured vary depending on the style of the system being 
described and the types of analyses that the system description needs to support. A system 
with hard real-time requirements, for example, needs a way to specify deadlines, scheduling 
doctrine, latency, and the performance profile of individual components and connectors. A 
client-server management information system, on the other hand, is probably more 
concerned with communication protocols, how the different stages of information 
processing are allocated between components, and supported database query languages than 
it is with the design concerns of hard real-time systems. 

As these two examples illustrate, architects using a general-purpose architecture design 
language will likely want to specify a wide variety of non-structural design information. 
Attempting to include native language constructs to support all of the different types of 
design information that might be useful for all types of design is unlikely to be successful, as 
such a language would be overly complex and inflexible. 

The Armani design language takes a different approach. It provides a flexible and generic 
property construct that can handle the expression of a wide variety of non-structural 
information. An Armani property is a typed attribute-value pair that can be associated with 
essentially all of the Armani design language constructs. Properties can even be associated 
with other properties, in which case they are called m&a-propertks. Meta-properties define 
properties of a property, rather than properties of a design element. Although the basic 
property structure is simple, complex property expressions can be created by composing 
individual properties and defining standard properties that all related design elements must 
posses. 
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System simpleCS = { 
Component dient = {...} 
Component server = { 

Port receiveRequest; 
Representation serverDetails = { 

System serverDetailsSys = { 

Component connectionManager = { 
Ports { extemalSocket; securityChecklntf; dbQuerylntf}} 

Component securityManager={ 
Ports {securityAuthorization; credentialQuery;} } 

Component database = { 
Ports { securityManagementlntf; querylntf;}} 

Connector SQLQuery = { Roles { caller; callee } } 
Connector clearanceRequest = {Roles {requestor; grantor}} 
Connector securityQuery = { 

Roles {securityManager; requestor}} 

Attachments { 
connectionManager.securityChecklntf 

to clearanceRequestrequestor; 
securityManager.secuhtyAuthorization 

to clearanceRequestgrantor; 
connectionManager.dbQuerylntf to SQLQuery.caller; 
database.querylntf to SQLQuery.callee; 
securityManager.credentialQuery 

to securityQuery.securityManager; 
database. securityManagementlntf 

to securityQuery.requestor; } 

} 
Bindings {connectionManager.extemalSocket to server.receh/eRequest} 

} 
} 
Connector rpc ={...} 
Attachments { clientsend-request to rpc.caller; 

server.receive-request to rpc.callee} 

}; 

Example 4.4: Extending the client-server example with a detailed representation 
for the server component. 
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System simpleCS = { 
Component dient = { 

Port sendRequest; 
Properties {    requestRate: float =17.0; 

sourceCode: extemalFile = "CODE-LIB/clientc"}} 

Component server = { 
Port receiveRequest; 
Properties {idempotent: boolean = true; 

maxConcurrentClients: integer = 1; 
multithreaded: boolean = fe/se; 
sourceCode: extemalFile = "CODE-LIB/server.c"}} 

Connector rpc ={ 
Role caller; 
Role callee; 
Properties { synchronous: boolean = true; 

maxRoles: integer = 2; 
protocol: WrightSpec ="..."}} 

Attachments {       clientsendRequest to rpccaller; 
server.receiveRequest to rpc.callee } 

Example 4.5: Simple-client-server system with properties 

The decision to provide Armani with a simple set of property primitives from which 
complex properties can be built rather than a fixed set of predefined properties is 
fundamental to Armani's goal of achieving flexibility and supporting incremental adaptation. 
This approach allows architects to precisely define the important properties of their designs 
in terms that are appropriate for each individual system, style, or design environment. 

The price of this flexibility and freedom is that architects need to put a non-trivial amount 
of effort into selecting and defining the set of properties to be used in their architectural 
specifications; more effort, in general, than they would be required to expend if all of the 
appropriate properties were simply built into the language. To address this drawback Armani 
includes a number of mechanisms that encourage the reuse and adaptation of previously 
defined properties both within an individual system specification and between different 
system specifications. Section 4.4's discussion of architectural styles and the Armani type 
system describes in detail how such a collection of properties can be defined, used, and 
reused. 

To illustrate the use of properties in describing software architectures, Example 4.5 shows an 
extension to the simple client-server system given in Example 4.2. This example has been 
annotated with properties that describe characteristics of the clients, servers, and rpc's that 
form the example system's structure. These properties are annotated with type declarations. 
For the purpose of this discussion, a property type simply defines the set of valid values that 
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can be assigned to a property. I provide a more detailed discussion of property types in 
Section 4.4.5. 

Table 4.6 provides a set of sample properties that are applicable to different types of design 
elements and styles of design. This list illustrates how a variety of non-structural 
architectural data can be encoded with the property construct. The specific properties listed 
as examples are not defined by or built into the Armani design language. It is the 
responsibility of the system, style, or environment designer to define the meaning and 
semantics of the set of properties that are used and analyzed by tools in individual 
architectural specifications, styles, or environments. 

4.2.4  Armani structural language syntax 

The discussion to this point has presented a brief description of the Armani design 
language's constructs for specifying architectural structure and the properties of that 
structure. For reference, a short BNF describing these constructs is provided in Figure 4.7. 
The simplicity of the core structural language is reflected in the language's simple BNF. This 
minimal language specification is missing three key parts of the full language - type 
expressions, styles, and design rules. This syntax description will be extended later when 
these language features are described in detail. For reference, the full Armani BNF is 
included in Appendix A. 

4.3 Design constraints 

The Armani design language described to this point is effective for specifying the 
architectural structure and properties of a software system at a single point in time. To fully 
satisfy the first language requirement (capturing system instances), though, the design 
language must also be capable of describing constraints on how a system's architecture may 
evolve over time. The Armani language therefore includes constructs for annotating 
architectural specifications with design constraints. Constraints specified for individual 
systems bound the ways in which that system's architecture, or the properties of that 
architecture, can change over time. In doing so, they help subsequent developers maintain 
the system's conceptual integrity7 as they update and evolve its design. 

There are many different kinds of constraints that an architect might like to impose on a 
system's architecture. Useful architectural constraints include: limitations on modifications to 
a communications topology, restrictions on legal topological patterns of the system's 
structure graph, maintaining performance, reliability, security, fault-tolerance, and other 
parameters within acceptable ranges, and ensuring interface compatibility. The Armani 
language supports the specification of these categories of constraints and many others. As 
this chapter will lay out, and the discussion of case studies in Chapter 7 will elaborate, the 
Armani constraint language can capture a broad array of design constraints. 

See [Bro95] for a detailed discussion on the importance of maintaining conceptual integrity in the design of a 
software system. 

67 



Property!» capture 

Whether a connector works synchronously or 
asynchronously. 

The number of bytes that can be stored in a connector's 
buffer. 

Example usage 

Connector conn = { ... 
Property Synchronous: boolean = true; 

- }; 

Connector conn = { ... 
Property BufferSize: int = 1024; 

- }; 

The query languors and protocols that a database 
understands. This property specification could be 
associated with a port that specifies the interface 
to a database component, or with the database 
component itself. 

The rate at which data is processed by a design dement. 
This type of information could be associated 
with a component, a connector, an interface (a 
port or role), or a complete system. This 
property is specified as a record type that 
includes both the throughput value and the unit 
in which it is specified. Alternatively, if a 
standard unit for measuring throughput is 
established and used consistently throughout a 
specification then this property could be 
represented with a simple floating point value. 

Component database = { ... 
Property QueryProtocds: setfProtocol} 

= {SQUODBQJDBC}; 
- }; 

Component dspFilter = {... 
Property Throu^jput: 

Record [valuefloat; unitflowUnitType] 
= [value=1500; unit=kb/secondJ; 

... }; 

The protocol that a connector uses to mediate the 
interaction between a set of components. Because 
Armani doesn't include a native protocol 
specification language, this protocol can be 
specified as a string expression in the WRIGHT 

Architecture Description Language [Allen97] 
and stored as a property of an Armani 
connector. The protocol specification can then 
be passed for analysis to automated tools that 
understand WRIGHT. A similar approach can be 
used to embed specifications given in arbitrary 
other languages. 

Connector unixPipe = { ... 
Roles { source; sink } 
Property'protocol: WrightSpec ■■ 

}; 

... source.write—>buffer.write... 
D buffer.write—>sink.write... "; 

Table 4.6 Sample property specifications 

To support the specification and enforcement of design constraints, Armani needs to 
address four critical language design issues. First, it must establish the basic formalism used 
for expressing constraints. The selected formalism must be reasonably familiar to its target 
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audience, mathematically well-founded, and sufficiently expressive for capturing common 
architectural design constraints. Second, the process of evaluating whether a design satisfies 
its constraints must be readily automatable and computationally decidable. Third, it must be 
straightforward to integrate the constraint formalism with the structure and property 
constructs described in the previous section. This includes defining scoping rules, primitive 
building blocks, operators, and axioms for the constraint language. Fourth, the language 
must provide a way for designers to separate the truly critical design constraints from the 
constraints that are simply guidelines. For greatest effect, this distinction should be built 
directly into the design language's semantics. 

To address these design issues, Armani provides a limited first order predicate logic-based 
constraint language in which design constraints are realized as predicates over architectural 
specifications. This predicate language is augmented with constructs for classifying 
constraints as either invariants or heuristics to indicate how rigorously they must be 
enforced. The following sections elaborate on the approach taken in creating the constraint 
language and the design decisions underlying it. 

4.3.1   Constraint language formalism 

The formalism selected for specifying design constraints in Armani must meet a number of 
somewhat conflicting requirements. Specifically, the formalism must be reasonably familiar 
to its target audience, mathematically well-founded, and sufficiently expressive for capturing 
common architectural design constraints. Additionally, the process of evaluating whether a 
design satisfies its constraints must be readily automatable and computationally decidable to 
support the Armani design environment's automated constraint management capabilities. 

To meet these requirements, Armani uses a first order predicate logic (FOPL) formalism as 
the basis for its constraint specification sublanguage. FOPL is widely known and understood 
by the software architects and computer scientists who are likely to use the Armani language. 
As a result, the amount of effort required to learn the Armani design constraint language 
should be commensurate with the language's expected benefits. Likewise, FOPL is a well- 
understood mathematical formalism that can be readily reused in the context of specifying 
architectural design constraints. Reusing a well-understood formalism leverages a significant 
body of theoretical work and provides a rigorous mathematical basis for Armani constraint 
specifications. 

FOPL also nicely matches Armani's expressive needs. Architectural descriptions in Armani 
are primarily descriptions of static structure and the properties of that structure. For 
example, constraints that specify required structure, recommended design patterns and 
topologies, and legal ranges for property values are easily expressed as first-order predicates. 
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Architectural Elements 

System ::=  System Name = { EntityDecl*}; 

EntityDecl ::=   ComponentDecl 
| Connector-Decl 

■   | Port-Decl 
j Role-Decl 
\ Property-Decl 
j Rep-Decl 
| Attachments-Decl 

GenericDecl ::=  PropertyDecl \ RepDecl; 

ComponentDecl ::=   Component Name = { 
(PortDecl | GenericDecl)*}; 

ConnectorDecl ::=  Connector Name = { 
{RoleDecl \ GenericDecl)*}; 

PortDecl ::=  Port Name = { GenericDecl *}; 

RoleDecl ::=  Role Name = { GenericDecl *}; 

AttachmentDecl ::=  Attachments {(PortName To RoleName)*}; 

Name ::=  [a-zA-Z\[a-zA-Z0-9_\-+T 

Properties 

PropertyDecl ::=  Property.Name [: TypeExoression 1 = Value 

Representations 

RepDecl 

[« PropertyDecl+ »]";" 
Properties {(Name [: TypeExpression ] = Value 

[ « PropertyDecl+ » ] ";")*}; 

Representation [ Name ]="{" 
System 
I Bindings = {(Name To Name)*}] 

Figure 4.7: Partial BNF for simple structural instance language 

In many respects, therefore, FOPL is a natural choice for the formal foundation of Armani's 
constraint specification language. The formalism runs into trouble, however, with the 
requirement that it be readily automatable and computationally decidable. Although 
evaluating FOPL expressions is a fairly well understood process that has been widely 
researched and used in many previous applications (such as [Per89], [Min91], and [OS97]), 
determining whether an arbitrary set of predicates is true or false is not computationally 
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decidable [End72]. The key aspect of FOPL that causes undecidability is its ability to 
quantify variables over infinite sets. 

The Armani predicate language addresses this issue by insuring that predicate quantification 
is done only over finite sets. As a result, the algorithm for checking whether a design satisfies 
its constraints is straightforward and decidable. At a logical level, the constraint checker 
handles quantification by enumerating all of the values of the set quantified over and checks 
that the appropriate predicate holds for all of those values (in the case of a universal 
quantification), or for at least one of those values (in the case of an existential 
quantification). A detailed description of the design constraint checking algorithm is 
provided in [Mon98]. 

Although at first glance limiting quantification to finite sets might seem like a severe 
restriction in expressiveness, it has not proven to be a significant limitation in practice. 
Specifically, it did not present any problems in the case studies described in Chapters 7 and 
8, nor has it been an issue in other explorations of the language's capabilities. In general, 
most of the interesting constraints that could be cast as quantifications over infinite sets can 
be readily recast as quantifications over finite sets or predicate expressions involving no 
quantification at all. 

In addition to decidability, the speed with which arbitrary constraint expressions can be 
evaluated is also a concern. As I discuss in detail in section 9.1.4, the nature of the predicate 
evaluation that Armani supports allowed the use of straightforward constraint checking 
algorithms that generally ran very fast on typical architectural specifications. These 
algorithms ran fast enough to easily support interactive design checking. 

The complexity of the analyses that need to be supported by the formalism are rather 
minimal in practice. The constraint checking mechanism only needs to be able to verify that 
a specific system instance satisfies its constraints. As I discuss later in this chapter and in 
[Mon98], this reasoning is quite straightforward. The Armani constraint checking formalism 
does not provide the ability to automatically detect whether a given system's constraints can 
ever be satisfied (that is, could something be changed in the design to make it correct). 
Likewise, it does not attempt to determine if a set of constraints can neuer be satisfied by any 
system (that is, do the system's constraints imply a contradiction). These types of analytical 
capability generally require full theorem proving capabilities, which is beyond the scope of 
Armani's capabilities. 

Carefully scoping the types of constraints and analyses that the language's constraint 
checking system can evaluate insured that the evaluation performance of Armani's constraint 
checker did not become a significant issue in practice. 

4.3.2   Extending the structural language with constraints 

Having made the decision to use first order predicate logic as the foundation for constraint 
specification, it is necessary to integrate this constraint formalism with Armani's structure 
and property constructs. To achieve this integration, design constraints are realized in 
Armani as predicates over architectural specifications. Predicates can refer to the structure, 
topology, and properties of software systems or the individual design elements that make up 
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a system. Constraint checking tools can evaluate whether a design's structure and properties 
satisfy its declared constraints. 

First order predicate logic provides a natural match to the types of constraint predicates that 
Armani needs to support. As a result, the challenge in building an effective language for 
describing architectural design constraints on top of first order predicate logic lies in 
(1) insuring its decidability, (2) adding an appropriate set of primitive architectural predicates, 
operators, and axioms, and (3) defining a set of scoping rules that provide sufficient 
modularity and expressive capability without becoming overfy verbose. 

As discussed in the previous section, the task of evaluating FOPL expressions is made 
decidable in Armani by limiting quantification to finite sets. Armani insures that this 
limitation holds by making it syntactically impossible to define or construct infinite sets for 
the purpose of quantification. In a quantified predicate expression, the set to be quantified 
over can be defined by (1) explicit enumeration of the set's elements, (2) referencing an 
element's substructure, such as all of the ports of a component, (3) referencing a set-typed 
property, which will by definition always be finite, or (4) performing a sequence of 
operations that take one or more finite sets as arguments and return a single finite set. 
Because none of these mechanisms can be used to create infinite sets, Armani does not 
allow quantification over infinite sets. 

The following two sections describe the primitive architectural predicates, operators, axioms 
and scoping rules added to FOPL by Armani. 

4.3.2.1 Extending the first order predicate logic with architectural primitives 

Armani defines a syntax and semantics for expressing design constraints as FOPL predicates. 
This includes a standard set of FOPL operators for logical, comparison, arithmetic, and 
quantification expressions. The semantics of these operators, detailed in [Mon98], are 
straightforward. Adapting FOPL for use in describing architectural design constraints, 
however, requires more care than simply adding a set of FOPL constructs to the design 
language's BNF. Tailoring the predicate language to describe architectural constraints 
requires the addition of primitive functions with architecture-level semantics. Fortunately, 
such an extension can be carried out in a straightforward way by simply adding a set of built- 
in functions to the predicate language. 

Specifically, Armani adds twenty-four primitive functions that handle four key categories of 
architectural constraints. These constraint categories cover: system topology, properties, 
aggregation of sets of related architectural entities, and types (which will be discussed in 
detail in Section 4.4).8 A set of functions for (finite) set manipulation are also included. Table 
4.8 provides examples from each of these basic categories. 

The first category of primitive architectural functions deal with system topology. These 
functions allow an architect to specify constraints such as how and with what a system's 
components can communicate, which components must be connected, which must not be 

A full description of all of Armani's primitive predicates is provided in [Mon98]. 
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connected, etc. Topological functions can also be used to define and enforce parent-child 
relationships between entities in a design. 

The second category of primitive functions are referencing and comparison operations for 
properties and substructure of design elements. The operator "." is used to identify specific 
element properties or children of a design element. For example, the property that 
determines whether a connector Pis synchronous can be referring to as P.syndjmnous. 

The third set of functions support the aggregation of related substructure. These functions 
allow sets of substructure to be referenced by name. For example, P.roles names the set of 
roles associated with the connector P. These functions provide a convenient shorthand for 
describing sets for quantification. 

The fourth and final category of primitive architectural functions deal with architectural 
types. Specifically, they can be used to determine or select design elements based on the 
elements' type declarations. 

Experience using Armani indicates that this is an appropriate collection of primitive 
architectural functions and referential capabilities. These functions and predicates can be 

Function category and signature Function description 

Topology: 
Gonnected(compl,comp2) 

Returns True if component compl is connected to 
component comp2 by at least one connector, else it 
returns False. 

Topology: 
Reachable(compl, comp2) 

Returns True if component compl is in the transitive 
closure of Cortnected(ccmpl, '% else it returns False. 

Properties: 
HasPropertyfx, propertyName) 

Returns True if element x has a property called 
propertyName, else it returns False. 

Properties: 
<ElementName>.<PropertyName> 

Returns the value of the property identified by 
<PropertyName> in the element <ElementName>. 

Aggregation: 
<SystemName>.Gomectors 

Returns a set containing all of the connector 
elements in the system identified by <SystemName>. 

Aggregation: 
<QjnnectorName>Jioles 

Returns a set containing all of the roles of the 
connector identified by <CbnnectorName>. 

Types: 
DeclaresTypefelt, typeName) 

Returns True if the element identified by elt declares 
the type identified by typeName, else it returns 
False. A discussion of element types is provided in 
section Error! Reference source not found.. 

Table 4.8 Examples of primitive architectural functions in Armani 
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composed within the FOPL framework to define complex and interesting design constraints. 
As architects gain further experience working with Armani they frequently discover 
additional constraints that they would like to be able to express but that are not readily 
represented with this set of primitive functions. To address this issue, Armani provides a 
mechanism by which architects can capture useful non-primitive functions that can be 
reused in multiple constraint specifications. These user-defined functions, called des&i 
analyses, will be discussed in detail later in this chapter. 

The following examples illustrate how the built-in functions can be used to capture 
architectural design constraints. 

The first predicate, 

Connectsdfdient, server); 

checks that the components dient and server are connected. The next predicate is defined in 
the scope of a system instance. 

Forall conn: connector in systemhstance. Connectors \ size(conruroles) = 2;. 

It guarantees that all of the connectors in the system must be binary connectors (i.e., they 
must have exactly two roles). The following predicate specifies that all roles on all connectors 
in a system must be attached to a port, and further that the attached (port, role) pair must 
share the same protocol. 

ForaUcom:conmiormsystemBTstance.Connectars | Forall r: role in comiRoles \ 
Exists amp: component in systemInstarice.Ccmponents \ Existsp:port in comp.Ports | 

attached(p,r) and (p.protocol = = r.protocd); 

The port and role protocol values are represented as properties of the port and role design 
elements. 

In addition to describing the topological features of a system, predicates can describe and 
bound legal property values and types. The following examples demonstrate predicates that 
bound the legal value range for a property9 

self.thrmgjputRate > = 3095; 

and that specify a relationship between multiple properties 

ccmp.totalLatency == (comp.readLatency + comp.prooessingLatency + c<mp.writeLatency); 

These examples are not intended to be an exhaustive exhibition of the types of predicates 
that can be expressed in Armani. Rather, they are intended as examples that give a flavor for 
the types of predicates that can be expressed over design instances with the Armani 
predicate language. 

The reserved keyword self refers to the design element instance (component, connector, port, role, or system) in 
which the constraint is scoped. 
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4.3.2.2 Scoping rules 

Extending first order predicate logic with a set of architectural primitives is only a first step 
towards integrating the constraint language with the rest of the Armani design language. 
Another key issue is establishing the scoping and visibility rules for the constraints. 
Developing an appropriate set of scoping rules is challenging because they must satisfy the 
language's conflicting needs for modularity, expressive capability, and succinctness. 

The importance of succinctness and expressiveness in language design are obvious. Succinct 
expressions are generally easier to write, read, and check for errors than verbose expressions. 
Likewise, if the language makes it difficult to express the desired constraints then it is likely 
to be an impediment to good design rather than an aid. A clean integration of the constraint 
language with the rest of the Armani language should, therefore, make it straightforward for 
an architect to express his or her desired design constraints and to do so in an elegant, 
concise way. 

The rationale for supporting modularity in constraint expressions is a bit more subtle. The 
modularity of constraint expressions, however, plays a critical role in Armani's incremental 
modification capabilities. Keeping constraint specifications self-contained makes it much 
easier to move constraints around in a design, to shrink or expand the scope of applicability 
of the constraint, and to compose arbitrary constraints within a design. From an 
environment-modification perspective the addition to or removal of constraints from a 
design is greatly eased if those constraints are packaged as modular, independent entities. As 
section 4.4 will illustrate, this issue becomes increasingly important when constraint 
predicates are used in type and design rule specifications rather than simple instance 
specifications. 

Armani achieves these goals by providing a few simple scoping rules that are broadly and 
uniformly applicable. An Armani design can be represented as a tree. Each node of the tree 
has precisely one parent and zero or more children. For example, a component C has a 
parent that is a system (call it 5) and a set of children that include all of Cs ports, properties, 
and representations. Each of Cs children also has zero or more children.10 It is important to 
note that the arcs of this tree represent parent-child relationships between elements rather 
than system connectivity. This tree structure is orthogonal to the connectivity graph Armani 
uses to represent system topology. This underlying tree representation can be used to 
describe arbitrary system connectivity graphs. 

The first of these rules states that constraints can be specified in the scope of any design 
element or design element type declaration (remember that a design element is a system, 
component, connector, port, or role), or in the scope of the global design (which is defined 
as all things outside of the scope of any other declaration). As a result, all constraints are 
defined in an unambiguous scope. 

The second rule defines name visibility and resolution. A constraint predicate can only refer 
to entities that are descendants of the constraint predicate's scope. In the example of 
Component C just given, a constraint defined in the scope of C could refer to any of the 

10 A more formal semantic specification of Armani's structure is provided in [Mon98] 
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ports, properties, or representations of C or any of C's descendents in the structure graph. 
This constraint could not, however, refer to any other entities defined within System S or 
any of Cs siblings. 

The scoping rules support succinctness and expressivity by allowing designers a great deal of 
flexibility in selecting an appropriate scope in which to declare each constraint. In general, as 
constraints are declared at higher nodes in the tree they can be defined for a more broad 
and/or specific selection of design elements. Conversely, as a constraint is moved down the 
tree its scope is refined and it is able to refer to and compare fewer entities, but the 
expression of that constraint can be made more concise, focused, and context-specific. In 
general, the rule of thumb that has arisen from using Armani to define constraints on design 
instances is that constraints should be pushed as far up the structure tree as needed to bring 
all of the necessary entities referred to by the constraint into scope, and no higher. Following 
this rule of thumb leads to modular, context-free, and reusable design constraint 
specifications that are relatively robust to system reconfiguration. 

4.3.2.3 Wrap up 

Armani's predicate language allows designers to annotate architectural specifications with 
design constraints. This predicate language also forms the foundation for Armani's type 
system and design rule specification capability. Section 4.4 will discuss this role of the 
predicate language in greater detail along with interesting design issues that it raises in the 
context of capturing architectural design expertise. 

4.3.3   Invariants vs. heuristics 

The constraint language just described provides a way for architects to precisely specify 
design constraints as predicates over a design or part of a design. All of the constraints that 
an architect might want to express about a design are not, however, equally important. Some 
constraints should never be violated. They specify a system's key design principles and 
assumptions; violating them may render the system unusable. Other constraints, however, 
can be viewed more as suggestions about how or whether aspects of the system can be 
changed. Violating these constraints will not necessarily prevent the basic operation of the 
system, though it may have other negative consequences. 

It is, therefore, important that the Armani language allow architects to specify not only what 
it is that a design constraint is constraining, but also the rigor with which that constraint 
must be enforced. To address this need, Armani provides orthogonal constructs for 
specifying (1) the constraint itself, and (2) the constraint's enforcement semantics. The 
constraint itself is expressed as a predicate expression. The constraint's enforcement 
semantics are then defined by declaring whether the constraint is a desigi inumant or a des&i 
heuristic. A desigi rule, as defined by Armani, consists of a constraint expression and a 
declaration that the constraint is an invariant or a heuristic. 

Design invariants, as their name suggests, specify constructs that must be maintained at all 
times. These often represent the basic assumptions that a system's constituent elements 
make about their environment and how they are able to interact with other design elements 
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in the system. Design heuristics, on the other hand, specify rules of thumb used in designing 
the system. They can also be used to guide the modification of a system after it's initial 
development by clarifying and flagging design decisions. 

The enforcement semantics of a constraint are not simply tooling issues. Rather, there is a 
fundamental semantic distinction between a design invariant and a design heuristic. The 
details of this distinction are captured by the design language's type system, which will be 
described more fully in section 4.4. Informally, though, invariant violations are type errors. 
An architectural specification that has one or more design invariant expressions that evaluate 
to false is not type-correct. The design contains a fundamental error. A specification with 
one or more heuristics that evaluate to false, on the other hand, may still be type-correct but 
it will generate a warning from Armani's type and constraint checker. 

Example 4.9 illustrates the use of invariants and heuristics for representing design 
constraints. In this example, MessagePath is a connector that queues the messages it reads 
from its source role and writes them to its sink role in the order they were received at the 
source role. This simplified version of the connector has two properties - the size of the 
connector's queue buffer (in bytes) and its expected throughput (in messages per second). 
The connector specification also defines two constraints - one invariant and one heuristic - 
that define the range of acceptable values for these properties. 

By specifying both an explicit present value and a legal range of potential values for the 
buffer size and expected throughput properties, the architect has described not only a 
snapshot of the initial system design (via the properties), but also the ways in which the 
connector can be modified and still fit within the overall system design (via the constraints). 
The invariant constraint provides strict limits on the acceptable sizes of the connector's 
queueBuffer. The heuristic that defines a relationship between the expeadThrou^ypia and 
queueBufferSize properties, on the other hand, is provided as a guideline rather than a strict 
law. 

System constraintExample = { 

Connector MessagePath = { 
Roles {source; sink;} 
Property queueBufferSize: int = 1024; 
Property expectedThroughput: float = 512; 
Invariant (queueBufferSize >= 512) and (queueBufferSize <= 4096); 
Heuristic expectedThroughput <= (queueBufferSize / 2); 

}; 

}; 

Example 4.9: MessagePath connector with invariants and heuristics 

Figure 4.10 extends a portion of the simple BNF given in Figure 4.4 with productions that 
describe how design rules are added to the design language. 
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4.3.4   Summary of architectural structure discussion 

The Armani design language described thus far satisfies the first of the requirements 
outlined in Section 4.1. Specifically, the language can describe the architectural structure of a 
software system, the topology and properties of that structure, and the constraints that 
bound the ways in which the structure can evolve. Additionally, it provides constructs for 
hierarchically decomposing architectural designs. 

4.4 Capturing design expertise with predicate-based types 

The second language requirement presented in Section 4.1 argues that, in addition to 
capturing individual system designs, Armani also needs to be able to capture, package, and 
reuse architectural design expertise independent of specific instances of system designs. 

Conceptually, Armani divides abstract design expertise into two categories - declarative design 
expertise and operational design expertise. Informally, declarative design expertise describes 
the way that a design should (or must) be. That is, declarative design expertise is best 
categorized as those bits of design wisdom that can be articulated with a natural language 
statement such as "This design must..." or "Afio type component is a component that 
Operational design expertise, on the other hand, consists of design evaluations and 
operations that are best expressed algorithmically That is, they encapsulate algorithms for 
evaluating or modifying a design, rather than declarations about the design itself. A more 
succinct distinction between these two types of design expertise is that operational design 
expertise can describe actions for modifying a design but declarative design expertise does 
not, by definition, describe steps for modifying a design.11 

The Armani design language directly supports the expression and checking of declarative 
expertise with predicate-based types. Specifically, Armani's type system captures declarative 
design expertise in the form of design vocabulary, design rules, and architectural styles. Because the 
Armani design language is declarative rather than algorithmic in nature, however, it is not 
well suited to capturing operational design expertise. To address this limitation, Armani 
provides an integration framework for linking external design tools into the Armani 
environment. This integration framework provides a complementary mechanism for 
capturing operational design expertise with independent tools. As I describe in Chapter 5, 
this approach has proven effective for capturing and encapsulating operational design 
expertise in the Armani environment. 

In this section I present Armani's type system and describe how it can be used to capture 
declarative design expertise. I also discuss some of the key design decisions that make the 
approach work effectively and the implications of these decisions for capturing software 
architecture design expertise. I defer a detailed discussion of how operational design 
expertise is captured and used in the Armani environment until Chapter 5. 

For a detailed discussion on the issues related to separating and making use of both operational and declarative 
expertise in the related area of programming environments, see Kaiser's thesis [Kai85]. 
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Architectural Elements 

EntityDecl ::=   ComponentDecl 
| Connector-Decl 
| Port-Decl 
| Role-Decl 
| Property-Decl 
| Rep-Decl 
j Attachments-Decl 

ComponentDecl ::=   Component Name = {(PortDecl \ GenericDecl)*}; 

GenericDecl ::=  PropertyDecl \ RepDecl \ DesignRuleDecl; 

Design Rule Productions 

DesignRuleDecl ::= ( Design )? (Invariant | Heuristic) 
DesignRuleExpression";" 

DesignRuleExpression ::=  <predicate expression, defined in Appendix A> 

Figure 4.10: Partial BNF for simple structural instance language 
extended with design rule productions. 

4.4.1   Capturing design expertise with architectural types 

Armani uses a predicate-based type system to capture declarative architecture design 
expertise. As we will see throughout the rest of section 4.4, this approach provides a number 
of significant benefits for both the architects using Armani to capture abstract design 
expertise and environment developers who need take advantage of this expertise. These 
benefits include flexibility, analytic power, and composability. 

Representing design vocabulary with predicate types allows architects the flexibility of 
associating complex structure and constraints with abstract vocabulary elements. Rather than 
providing only a mechanism for describing structure or properties as many other ADLs do, 
Armani's predicate-based type system allows architects to capture arbitrarily complex 
abstract design specifications in modular, reusable, units. As we will see, the nature of the 
type system allows architects to use many different approaches to dividing and capturing 
various aspects of design expertise. By providing many different ways to structure and 
capture their expertise, Armani allows designers to find or create a way to capture and 
structure their expertise so that it meets their specific needs. 

A second benefit is that moving these sophisticated specifications into the type system 
allows them to be checked directly by the typechecker, which eliminates the need to write 
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independent analysis tools for many kinds of analyses. The value of this capability should 
not be underestimated. Providing a sophisticated declarative language allows designers to 
specify their analyses based on declared properties and asserted goals. Rather than writing 
individual tools to verify that these desired aspects of a design instance hold, they can simply 
declare that they must hold and the Armani typechecker provides the verification capability. 

Finally, predicate-based types provide a simple and intuitive formalism for composition. At a 
semantic level, each type specification defines a predicate. The semantic operation for 
combining types is simply a matter of creating a conjuntion of the logical expression that 
each of those types represents. This form of composition works well for declaring subtypes, 
for declaring that an instance satisfies multiple types, and for extending a typed instance with 
additional constraints (which has the effect of creating a new anonymous type). The 
modularity that the element type construct provides works particularly well with the 
compositionality of the formalism for capturing abstract, reusable design expertise. 

The Armani design language described to this point can be readily extended to provide these 
benefits with a few straightforward additions. In the following sections I describe the 
extensions made to the instance language to support the capture of design element types 
(component, connector, port and role types) and property types (primitive, compound, and 
aliased property types). 

As an aside, an important point to note about Armani's type system is that its primary 
purpose is to provide a form of checkable redundancy that assures the design constraints for 
a given type of design vocabulary are satisfied where that vocabulary is used. The type 
system provides a mechanism for ensuring that the system's fundamental design constraints 
are not violated as a design evolves over time (e.g. through system maintenance, upgrades, 
etc.). This role is significandy different than the role type systems typically play in 
programming languages. Programming language type systems are generally designed to 
provide statically-checkable guarantees of run-time program behavior (e.g, to insure that a 
function will not attempt to add a floating point value to an array of strings). The fact that 
there is no run-time realization of an Armani architectural specification significantly changes 
the purpose of the type system. 

4.4.2   Declaring a design element type 

In order to capture abstract design vocabulary, there are two classes of constraints that an 
element type specification must be capable of specifying. First, it needs to be able to specify 
the structure and properties that all instances of that type must possess. Requiring that all 
instances of a certain type contain specific structure and properties allows designers to 
define the aspects of that vocabulary element that remain constant across all instances of 
the type. 

In addition to specifying these constants, a designer should also be able to precisely describe 
ranges of variability for instances of the type. To illustrate the distinction between these two 
types of constraints, consider the specification of the client type in Example 4.11. This 
specification states that although all instances that conform to the type client must have a 
property called request-rate, the value of that property can range from 0 to 100. These are 



very different types of constraint specifications. This variability represents the second class 
of constraint that Armani vocabulary specifications need to capture. To capture these 
bounds on instance variability, architects can associate invariants and heuristics -with type 
specifications, just as they can with instance specifications. Invariants specified in an element 
type specification must hold for all instances declaring that type. 

To address the need to express these constraints, an Armani element type specification thus 
defines the minimal set of structure and property fields that elements of a given type have, 
along with a set of invariants that must hold for all instances that satisfy the type. 

In this section I illustrate how the Armani language uses its type system to capture these 
abstract design vocabulary descriptions and constraints. I do so by describing the syntax and 
semantics of component, connector, port and role types (collectively referred to as design element 
types or just element types). Armani system types, referred to as architectural styles (or simply styles), 
are discussed in section 4.4.6. Styles extend the capabilities of the design element types 
described in this section. 

The informal syntax for declaring a design element type is:12 

<Category> Type <TypeName> = { 
<Sequence of:      required structure and values 

| properties 
| explicit invariants 
| explicit heuristics > 

} 

In the informal syntax given above, <Gttqpry> can be any of the literals Covponent, Connector, 
Port, or Role, and < TypeName> specifies a valid identifier. The body of the type declaration 
consists of a sequence of constraints by which instances of this type must abide. Informally, 
the meaning of the four kinds of constraint declarations that can be made within a type 
declaration are described below: 

• Required Structure. The structural declarations in a type description T define the 
substructure that an element e of type T (written e : 7) must have. Informally, for 
every port, role, or representation defined in T, an instance e : T must have a 
corresponding port, role, or representation. The port, role, or representation defined 
in the instance must be defined with at least as much detail as its corresponding port, 
role, or representation in the type declaration. A more detailed specification of the 
semantics of required structure statements is given in table 4.12. 

• Required Properties. A property p{ declared in a type declaration T specifies that an 
element e : T must define the property p,. Further, if p, is declared to have a type 
and/or a value in T, pj declared in e: Tmust also have the same type and/or value. 
As with required structure, a more detailed specification of the semantics of 
property declarations is given in table 4.12. 

12 Complete syntactic specifications for Armani's type language are available in Appendix A's language BNF. The 
syntactic examples given throughout this section are informal abstract syntax specifications designed to show how 
the constructs can be specified and used. 
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• Explicit Invariants. In addition to the required structure and properties of a type 
additional invariant constraints can be specified using Armani's constraint language' 
An element e: Tmust satisfy all of the invariant constraints defined in T in order to 
satisfy Ts predicate (and thus satisfy type 7). 

• Explicit Heuristics use the same predicate specification language as explicit 
invariants. Unlike invariants, though, heuristics are not considered in determining 
whether an element e satisfies a type T Violations of type heuristics can be flagged 
during constraint analysis or analyzed by external tools, if desired, but the heuristics 
themselves are not part of a type's predicate. The heuristics construct provides 
architects and designers with a way to capture design "rules of thumb" that are less 
strict than invariants. 

An element e :T satisfies type Ts predicate if e contains all of the required structure and 
properties specified in T, and e satisfies all of the invariant predicates defined in T.u 

Type names are lexically scoped. Types may be declared within the global design namespace 
or withm a style specification. Types with global scope are visible within all systems or styles 
declared in that global scope and types defined within a style specification are visible to all 
other declarations in the style, all of that style's substyles, and all system that claim to be built 
in that style. 

The following example shows a type specification that declares constraints that must be 
satisfied by all instances of the type in the form of required minimal structure and predicates 
that must be maintained. Keywords are indicated with boldface type, comments with ligher 

The Client type specification in example 4.11 imposes the Mowing structural and invariant 
constraints on component instance C: Client: 

Structural constraints: 

• A Client^ instance must have a port called rauest, with a property called protocol The 
protocol property must be of type CSProtocolT and have a value of rpc-clknt. 

• A Client instance must have a property called request-rate of type float. The default 
value of 0.0 can be overriden with an extended with {... } clause, but the initial value 
tor this property on all Client instances created with the «^operator will be 0.0. 

Invariant constraints: 

• All ports of a client must have a property named protocol, which has a value of rpc- 
chent. This is not redundant with the specification of the request port because a 
designer instantiating an instance of this type can add additional ports. This invariant 
insures that all of these additional ports have a protocol property with a value of 
rpc-chent. 

• There may be no more than 5 ports on a Client instance. 

Item aVe 2£^£!!SSSfKd ** W™*^^» ofihe syntax and semantics of Armani's type sysiem are encouraged to see the full language specification provided in [Mon98]. 
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•    The request-rate property of a Client component must have a value greater than 0. 

The heuristic constraint that the request-rate property of an instance of a Client component 
have a value less than 100 is not considered in determining whether that instance satisfies the 
Client type, though typechecking tools that evaluate instances of the client type should raise a 
warning that the heuristic has been violated if the instance's request-rate property has a value 
of 100 or greater. 

Component Type Client = { 

//Declare the minimal structure that must exist. In this case, it says that an instance 
//of this type must have a port called request, and that port must have the protocol 
//rpc-client. 
Port Request = { Property protocol: CSProtocolT=rpc-client}; 

//The next declaration says that a client must have a property of type "float" called 
// "request-rate." It also provides a default value for that property, which can be 
//changed when an instance of this type is created. 
Property request-rate: float« default = 0.0 »; 

//Now specify the invariants that all elements that claim to satisfy this type must possess. 

//allports must support the rpc<lient protocol. This rule applies to all additional reports 
// that an instance of the type might add to the client. 

Invariant forallp in self.Ports •p.protocol = rpc-client; 

// there may be no more than 5 ports on a client 
Invariant size(self.Ports) <= 5; 

// The request rate must be a non-negative value 
Invariant request-rate >= 0; 

// Specify a heuristic indicating the request rate should not exceed 100 
Heuristic request-rate < 100; 

} 

Example 4.11: Declaring component type Client 

Informal Element type Semantics 

A type specification defines the minimal set of structure and property fields that elements of 
a given type have, along with a set of invariants that must hold for all instances that satisfy 
the type. Every type Tcan be converted to a boolean function Ft that takes a single element 
E as an argument. If the function F/E) evaluates to true for element E, then element E 
satisfies type T (written T(E) in table 4.12). Each type's predicate function determines 
whether instance E satisfies the structural requirements and invariants of type T. Table 4.12 
describes the informal semantics of structural declarations in an element type specification. 
[Mon98] provides a more detailed discussion of the semantics of Armani's type system. 
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4.4.3   Creating a simple instance of a typed architectural element 

Design element type specifications capture reusable design vocabulary. Moving the design 
expertise that these type specifications capture from the abstract realm of reusable predicate 
specifications to concrete instances in a design requires only that a designer instantiates an 
instance of the type. The following syntax specification and examples illustrate this 
instantiation process. 

Instances of the four basic architectural elements - components, connectors, ports, and 
roles, can be created with the following [informal) syntax: 

<Category> <lnstanceName> [: <TypeName> ] = <Value>; 

where 

<value> ;;= ( { <sequence of property and structure specs. > } | new <TypeName> ) 
( extended with <value>)* 

Specifying an explicit type for an instance is optional. If no type is explicitly declared for an 
individual instance, then the type of that instance defaults to <Category>. Consider the 
following example of a component declared without an explicit type declaration: 

Component C = {Port input;}; 

In this instance, the value of component Cis (Port input) which satisfies the constraints 
of the Component type, so this instance declaration is valid. 

When an instance is explicitly typed, as in the following example, the value on the right hand 
side of the "=" token must satisfy the predicate defined by the declared type. Consider the 
following example: 

Component C: Client = new Client; 

In this example, a component Cis declared to satisfy type Client. The value of C is defined 
using the Armani new operator. The expression new <TypeNome> creates a value expres- 
sion consisting of the minimal structure declared in the declaration of <TypeName> vJth 
default values applied to properties as specified in the type specification. Properties with no 
default value provided in the type declaration have undefined values in the instance 
generated. 

84 



Declaration Type Example Meaning 

Structural element C with no type 
or value declaration 

Port C; Forall elements E s.t. E declares 
type T (written E:T), T(E) implies 
E has the element named C as a 
child. 

Structural element C with a type 
but no value declaration 

Port C   :   t'; Forall elements E s.t. E:T, T(E) 
implies E has the element named C 
as a child, and that C satisfies t' 
(t'(Q) 

Structural element C with a type 
and a value declaration 

Port C  :   t'   =  { 
Property j:t''   = 

bar}; 

Forall elements E s.t. E:T, T(E) 
implies E has the element named C 
as a child, and t'(C) and C has the 
property j:t" with a value of bar. 

Property named P with no type or 
value given 

Property P; Forall elements E st E:T, T(E) 
implies E has the property P of type 
"Property." 

Property named P with a type t' 
specified, but no value given 

Property P  :   t' ; Forall elements E st E:T, T(E) 
implies E has the property P of type 
t\ P's value is unconstrained 
beyond the requirement that the 
value of P satisfy type t'. 

Property named P with a type t' 
specified and a default value v 
given. 

Property P  :  t' 
«default=v»; 

Forall elements E st E:T, T(E) 
implies E has the property P of type 
t'. P's value defaults to v when a 
new instance of type T is created 
but the «default = v» clause is 
simply a convenience that the type 
has no obligation to maintain. The 
«...» notation specifies that 
"default = v" is a meta-property. 

Property named P with a type t' 
specified and a value v assigned 
directly to the property 

Property P:t'   = v; Forall elements E st E:T, T(E) 
implies E has the property P of type 
t' and P's value must be v. This 
statement declares a constant 
valued property for the type. 

Table 4.12 Structural Specification Semantics 
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Using the Client type defined in example 4.11, the previous example creates a component 
with the following canonical structure: 

Component C: Client = { 
Port Request = { Property protocol: CSProtocolT= rpc-client} 
Property request-rate: float = 0.0; 

} 

This default Client component satisfies the invariants and heuristics declared in the Client 
type definition. 

It is possible to associate non-default values with an element created from a given type using 
the extended with <vdue> construct. The following example illustrates a client with an 
additional port and an additional property. 

Component C: Client = new Client extended with { 
Port ExtraPort = { Property protocol: CSProtocolT=rpc-client; 

Property primary-port = true}; 
Property request-rate: float = 5.0; 

} 

This declaration would result in the creation of a new component C with the following 
structure: 

Component C: Client = { 
Port Request = { Property protocol: CSProtocolT = rpc-client}; 
Port ExtraPort = { Property protocol: CSProtocolT = rpc-client}; 

Property primary-port = true;}; 
Property request-rate: float = 5.0; 

} 

In this example, the default constructor is extended with new property values that either add 
new structure and values or override the default structure and value of the type. The value 
that is assigned to C in this case is the unification of the structure declared with the extended 
wth {... } clause and the structure that is created with the new<TypeNome> constructor. 

The basic unification algorithm is quite simple. An instance of the target design element is 
created. The structure and properties defined in the declared type and all of that type's 
supertypes are copied into the instance. Each entity (property, structure, or design rule) 
from the extendedwith {... } clause is then copied into the instance. For each term copied, if 
there is no structure or property already in the instance with the same name then the new 
term is copied directly without any problem. If there is, however, an entity with that name 
already in the instance then the algorithm checks if the new type, value, and substructure of 
the entity being copied is consistent with the structure or property that already exists in the 
instance. If they are consistent, or if the new entity adds additional information then the 
new new information is added and the next entity to add to the instance is selected and 
tested. If the entity to add is not consistent with the entity already in the instance, however, 
(such as if the extended with clause attempted to redefine the type of a property) then an 
instantiation error occurs and the unification algorithm aborts unsuccessfully. The complete 
algorithm for unifying substructure of an element using the extended with {... } construct is 
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given in [Mon98] along with a detailed specification of the semantics of the extended with 
construct. 

Types and instances 

As this discussion indicates, one of the more unusual aspects of Armani's type system is that 
it blurs the distinction between types and instances. The syntactic declaration of an element 
type is very similar to the syntactic declaration of an element instance. Their semantic 
representations are very similar as well. 

An implication of this approach is that architects using the language have a great deal of 
flexibility in deciding how to divide the specification of expertise between types and 
instances. They can specify all of the design details in the element instances themselves, 
using only minimal type specifications or they can create an abstract type for each individual 
element in the design and declare a single instance of each type. Alternatively, they can 
abstract common aspects of design elements into a variety of types and then mix-and-match 
those types amongst his design element instances to make it explicit that elements with 
common aspects share a common representation for those aspects. 

In a given design situation, any of these alternatives might be appropriate. Armani's 
flexibility allows an architect to take advantage of all three of these approaches, or to create 
a hybrid approach that uses some combination the three. Because type and instance 
declarations are so similar, it is very easy to move a design concept from an instance into a 
type, or vice-versa. As a result, an architect can quickly experiment with a variety of design 
options before settling on a specific approach. Because the cost of modification is so low, 
however, once an approach has been selected, the cost of revisiting or changing the decision 
to use that approach is also relatively low. 

4.4.4  Design element subtypes 

The Armani design language's fifth requirement calls for the language to support 
incremental capture of architectural design expertise. One of the key ways that the language 
supports this requirement is with its flexible subtyping discipline. Design element types can 
be readily extended with additional structure, properties, and constraints to form new types. 
These new types encapsulate existing design expertise and extend it with additional expertise. 

In order to maintain the composability and modularity it requires, Armani supports a strict 
form of subtyping that ensures substitutability between subtypes and supertypes. That is, if 
type T is a subtype of type T (written T < 7), then any element that satisfies T may be used 
wherever an element of type T is required. The following informal syntax describes 
Armani's subtyping construct. 

<Category> Type <SubTypeName> extends <SuperTypeName>+ with { 
<Sequence of:      required structure and values 

| properties 
j explicit invariants 
j explicit heuristics > 

} 
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The semantics of this construct are straightforward. The new (sub)type <SubTypeName> 
consists of the unification of the structural requirements of all supertypes with the new 
structural declarations, and the conjunction of the invariant and heuristic predicates of all 
supertypes with the new invariant and heuristic declarations. As the syntax specification 
indicates, a type can have an arbitrary number of supertypes. All instances of the subtype are 
also instances of all of the supertypes and satisfy the constraints of both the supertypes and 
the constraints listed in the extends... with (...) clause. 

Consider the following example: 

Component Type BlockingClient extends Client with { 
Port BlockingRequest = {Property protocol = rpc-client}; 
Property blocking: boolean = true; 
Property timeout-sec: float« default = 30.0 »; 

; 
Invariant timeout-sec < 60.0; 

An instance of a BlockingClient type component has all of the structure and rules to 
maintain that a Client type component would have. It also has the additional properties and 
rules given in this specification. Using the Client type definition from example 4.11, the 
previous type declaration is equivalent to declaring the BlockingClient type without 
subclassing as shown below: 

Component Type BlockingClient = { 
Port Request = {Property protocol = rpc-client}; 
Port BlockingRequest = {Property protocol = rpc-client}; 
Property request-rate: float« default = 0 »; 
Property blocking: boolean = true; 

Invariants { 
Forallp in self. Ports | p.protocol = rpc-client; 
Size(Ports) <= 5; 
request-rate >= 0; 
timeout-sec < 60.0; 

}; 

Heuristic request-rate < 100; 

4.4.5  Property Types 

The discussion of the type system to this point has primarily described its use for design 
vocabulary elements. Properties of design elements can also be typed. The type system used 
for element properties uses a syntax and semantics similar to the design element type 
system's, though the constraints that can be imposed on properties are more limited than 
those that can be imposed on design elements. 

As described in section 4.2.3, a property of a design element is a name with which a value 
and a type can be associated. The purpose of a property type is to define the range and 



structure of values that can be applied to the named property. A property type declaration 
can define an atomic type, an enumerated type, a compound type (set, sequence or record), 
or alias an existing type definition. 

The declaration of a type can, but need not, be separated from the use of that type in 
specific properties. Explicitly named types are declared with the following (informal) syntax: 

Property Type <TypeName> = <TypeStructure>; 

<TypeName> is an identifier that is associated with <TypeStructure>. Semantically, 
<TypeStructure> specifies a predicate that defines the set of valid values for the type and in 
doing so defines the structure that values of the type must posses. 

Typed property instances that use previously defined property types are declared with the 
following syntax: 

Property <PropertyName> : <TypeName> = <PropertyValue>; 

The property named <PropertyName> is associated with the element in whose scope it is 
declared. The type of <PropertyName> is explicitly specified with the ": <Typename>" 
notation. 

All property instances in Armani must be typed. Although it is convenient to reuse 
previously defined property types or built-in atomic types, it is not necessary to do so. A 
property instance can declare an anonymous compound type, as the following example 
illustrates: 

Component foo = { 
Property rate: Record [speed: int; unäs: string] = 

[speed: int = 100; units: string = "kb/s"]; 
}; 

In this example property fixxrote has declared a new anonymous type - a record with the 
fields speed (of type int) and units (of type string). This new type is not visible to any other 
property or element (hence the term anonymous) but it specifies the structure that the value 
of the property must possess. Semantically, an anonymous type declaration in the context of 
a property instance specifies a predicate that the value of that property instance must satisfy. 

Property Type Semantics 

A property type, like a design element type, specifies a predicate that defines a set of valid 
values for instances of that type. An instance of a property is type correct if its value is an 
element of the set described by its type. The range of type predicates that can be defined for 
property types is more limited than those that can be defined for element types. Specifically, 
in the version of the Armani language completed to demonstrate this thesis a property type 
defines only structural predicates. It is not possible to associate arbitrary invariants with a 
property type and the language provides no support for property subtypes. This limitation is 
made in the interest of keeping the property type system relatively simple. Extending the 
property type language to include support for arbitrary invariants should, however, be 
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reasonably straightforward. A more detailed semantic specification of Armani's property 
type constructs is provided in |Mon98]. 

4.4.6  Architectural Styles 

Types and design rules provide mechanisms for capturing and encapsulating design expertise 
in the form of design vocabulary and constraints. Although individual types and design rules 
can be useful by themselves, expertise of this sort tends to be more useful when packaged as 
part of a coherent collection of related vocabulary and constraints. For example, defining a 
vocabulary element called a server is not nearly as useful as defining a full set of vocabulary 
and design rules for creating dient-server systems. Armani's style construct provides the ability 
to aggregate and package related vocabulary and constraints. 

An architectural style is fundamentally a system type - it defines a predicate against which 
system instances can be evaluated. In addition to their role as system types, however, styles 
also define namespaces for specifying vocabulary type declarations and design analyses. A 
style specification thus defines a set of vocabulary type definitions, a set of design rules, a 
set of design analyses,14 and a set of minimal required structure that all systems built in that 
style must provide. Any or all of these sets may be empty. Styles obey all of the rules and 
semantics of types presented thus far, with some additional syntax and semantics to support 
the style's use as a namespace. 

The informal syntax for defining a style is: 

Style <style-name> = { <style-element>*}; 

Or 

Style <style-name> extends <super-style-name>+ with { <style-element>*}; 

where: 

<style-element> ::= <Sequence of:      required structure and values 
| required properties 
| explicit invariants 
j explicit heuristics 
| design analyses 
| type definitions > 

The syntax and semantics for declaring individual type specifications, design rules, and 
design analyses were described earlier in the chapter. A style is a named collection (or a 
package) of such constructs. In its role as a system type, a style constrains the design of 
systems defined in that style by making design vocabulary available for use in the system 
instance, defining the required structure and design rules (Invariants and heuristics) that all 
systems built in that style must provide and obey. Example 4.13 illustrates these constructs 
with a simple style specification. 

14 A design analysis is a named, parameterized predicate that design rules can invoke to perform common 
evaluations. 
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Style naiveClientServerStyle = { 

//define the style's vocabulary, port and role interfaces first 
Port Type naiveClientPortT={...}; 
Port Type naiveServerPortT={...}; 
Role Type clientSideRoleT = {...}; 
Role Type serverSideRoleT={...}; 

//define the generic client vocabulary element 
Component Type naiveClientT={ 

Port sendRequest: naiveClientPortT; 

}; 

//define the generic server vocabulary element 
Component Type naiveServerT = { 

Port receiveRequest: naiveServerPortT; 
Property multiThreaded: boolean « default: boolean = false; »; 
Property max-concurrerrt-requests: int; 

}; 

//define the generic binary client-server connector 
Connector Type csConnT={ 

Role clientSide: clientSideRoleT; 
Role serverSide: serverSideRoleT; 
Property blocking: boolean « default: boolean = true»; 
Invariant size(self.roles) == 2; //all csConnTs are binary connectors 

}; 

//limit the vocabulary types used in this style to naiveClientTs, naiveServerTs and csConnTconnectors. 
invariant forall comp: component in self.components \ 

(declaresType(comp, naiveClientT) AND satisfiesType(comp, naiveClientT)) 
OR (declaresType(comp, naiveServerT) AND satisfiesType(comp, naiveServerT)); 

invariant forall conn: connector in self.connectors \ 
declaresType(conn, csConnT) AND satistiesType(conn, csConnT); 

}; 

//specify topological attachment constraints: 
invariant forall d : component in self.components | 

forall c2; component in self.components \ connected(c1 ,c2) -> 
(declaresType(d, naiveClientT) AND declaresType(c2,naiveServerT)) 

OR (declaresType (d .naiveServerT) AND declaresType(c2,naiveClientT)); 

//make sure that all of the attachments are valid... 
invariant forall a; attachment in self.attachments | 

(declaresType(a.port, naiveClientPortT) -> declaresType(a.role, clientSideRoleT)) 
AND (declaresType(a.port, naiveServerPortT) -> declaresType(a.role, serverSideRoleT)); 

Figure 4.13: Naive client-server style specification example illustrates style structure 
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System instances may make use of the design vocabulary and analyses packaged in a style by 
declaring that the system satisfies a style. The syntax for declaring that a system instance 
satisfies a style is analogous to declaring that a design element satisfies an element type: 

System <SystemName>: <StyleName> = { <system-decl-body> }; 

When a system instance declares that it is designed in a specific style the names of all of the 
types and design analyses declared in that style are visible within the system instance. 
Further, all of the design rules contained in the style definition must hold over the system 
instance. That is, the design rules in the style definition take effect in the scope of the system 
instance, binding the concrete elements in the system instance to the appropriate abstract 
design rules of the style. Declaring that a system is designed in a specific style indicates that 
the design rules declared in that style must be maintained in the system instance. Failure to 
satisfy these constraints constitutes a type error. 

The set of type specifications given in a style declaration provide vocabulary elements that 
can be used within system specifications in that style. The system definition is not, however, 
limited to using only the types provided by the style unless there is a design rule that 
explicitly limits the types of vocabulary that can be used. Design elements within the system 
instance that claim to satisfy a type defined in the style must, however, satisfy the type 
predicate given in the style definition. 

Instantiating style instances 

The new operator defined earlier in this chapter for creating minimal instances of simple 
element types can also be used with styles to create systems with the minimal required 
structure to satisfy the style specification. As with simple element types, the extended with 
construct can be used to extend the minimal structure provided by new and customize the 
created system. The basic syntax for creating a new minimal instance of a style follows: 

System <sys-name>: <style-name> = new<style-name>[extended with {...}]; 

The semantics for using the new operator with systems are analagous to the semantics for 
using new with simple element types. 

Substyles 

Because the style construct is based on Armani's element type constructs, the type system's 
notion of subtyping extends to styles as well. Using this subtyping notion, a style can extend 
an existing style to make use of the types and design rules defined in the existing style. The 
existing style becomes the superstyle, and the newly defined style is the substyk. The following 
example illustrates such an extension: 

Style super ={...}; 

Style sub extends super with { 
Component type new-component = {...}; 
Invariant forall x in self.components • foo(x)); 
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In this example a new style called sub extends an existing style called super. Sub consists of the 
union of the types, design rules, design analyses, and structure defined in both super and sub. 
A substyle may not redefine types or design rules named in the superstyle. It may, however, 
create new types that extend the types defined in a superstyle. Because the substyling 
operation only allows additional types, design rules, and structure to be added to a style, any 
system that satisfies the constraints of- sub will also satisfy the constraints of super. 

4.4.7  Multiple types 

Implicit in the discussion of the previous three sections is the fact that Armani supports a 
typing discipline in which instances can declare and satisfy multiple types and subtypes can 
declare multiple supertypes. This capabilty allows designers to explicitly declare that a single 
design element plays multiple roles, or that a single element has the aspects and properties of 
multiple types of design elements. As a result, it is possible to abstract specific, common 
aspects of design elements into an appropriate collection of types and compose those 
aspects into instances with the desired properties by simply selecting an appropriate set of 
types for the given instance. The instance inherits all of the aspects captured in each of the 
types it declares that it satisfies. 

For example, three orthogonal architectural aspects of components might be captured in 
three independent component types called supports-transactions, miM-threaded, and persists-data. 
Each of these component types defines just the properties and structure of a component 
that are required for the aspects that the type captures. To make a new instance of a database 
component that has all of these properties an architect could simply use the following 
declaration: 

ComponentsuperDB:supports-transactions, multi-threaded, persists-data = ...; 

The architect would, of course, probably also want to extend the instance with additional 
information specific to that instance. This capability is supported with the extended with 
construct. 

This technique can also be used to create new subtypes that reuse all of the specification 
details of their supertypes. The previous example can be readily modified to define a new 
type of database component rather than an instance, as the following declaration illustrates: 

Component Type superDBT extends  supports-transactions, 
multi-threaded, 
persists-data with {...}; 

The ability to declare multiple types for instances and multiple supertypes for type 
declarations with such ease comes directly from the predicate foundation of Armani's type 
system. Predicates are highly modular and readily composed through conjunction. Likewise, 
this capability extends to all types of architectural element types, even styles. 

This capability has proven to be particularly useful. The case studies in Chapter 7 and 8 
illustrate that most of architects who have taken advantage of this capability have found it to 
be powerful, flexible, and intuitive. 
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Supporting this trivial composition of types introduces the opportunity for two kinds of 
conflicts - naming conflicts and conceptual mismatch conflicts. Naming conflicts are 
relatively easy to deal with. The use of an ambiguous name within a type or instance 
specification is simply an error. A language user can avoided naming conflicts by qualifying 
references to names that are shared by multiple supertypes (or declared in multiple types that 
the element instantiates). For example, the following pair of style declarations both define 
the client type. When the sample system instantiates a client-typed component it needs to 
unambiguously specify which of the dient type declarations it is instantiting. 

Style generic-cs = {... Component Type client = {...}...}; 
Style special-cs = {... Component Type client = {...}...}; 

System sample: generic-cs, special-cs = { 
Component generic-client: generic-cs.client = {...}; 
Component special-client: special-cs.client = {...}; 

} 

Qualification with a type name is required only where the lack of a qualifying identifier leads 
to ambiguity. 

The second type of conflict that can occur when using multiple styles within a single system 
are conceptual mismatches. These conflicts occur because the styles being used are 
fundamentally incompatible with each other. An example of such a conflict is a system that 
merges a pipe-filter style, which requires that all components are filters and all connectors 
are pipes, with a client-server style that requires all components to be clients or servers and 
all connectors to be HTTP streams. Unless the required types are (accidentally) compatible 
with each other (e.g. instances of Filters satisfy the constraints of Client) non-empty system 
instances can not be created that satisfy the constraints of both styles. 

It is up to Armani users to detect and avoid such conceptual conflicts. Fundamental 
conceptual conflicts will generally be readily apparent to the user because he or she is unable 
to instantiate the structure or properties that desired without creating type errors. In general, 
the ability to detect deep conceptual mismatches also requires a degree of taste, judgement, 
and experience on the part of the architect using the tool. Using multiple styles in a single 
system instance expands the vocabulary available for use in that system but generally 
constrains the design of the system further by introducing additional design constraints. As 
the previous example indicates, it is possible to overly constrain a design by using multiple 
styles. Tools can be developed to detect obvious style incompatibilities but they will not 
eliminate the need to be careful when using multiple styles for a single system instance. 

4.4.8   Formal type system semantics 

Throughout this chapter's presentation of Armani's type system I have repeatedly deferred a 
detailed discussion of the type system's formal semantics. Rather than repeat the lengthy 
presentation of the language's semantics that can be found in [Mon98], in this section I 
provide a high-level overview of the approach taken to formalize the type system's 
semantics. 
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Armani's predicate-based type systems can be represented denotationally with a set-based 
formalism. Using this formalism, all entities in the syntactic domain are mapped to elements 
and sets in the semantic domain. Typechecking is reduced to a test for set membership. The 
typechecking rules used are sound if they guarantee that all entities e that claim to satisfy a 
type T in the syntactic world correspond to an element in the semantic domain that is a 
member of the set defined by T in the semantic domain. More formally, the following 
equation must hold, where M defines the meaning function that maps entities from the 
syntactic domain to the semantic domain: 

e:T => M(e) e M(7) 

Fortunately, Armani is not the first language to make use of a flexible predicate-based type 
system. As a result, defining the formal semantics for such a type system is basically a solved 
problem. Specifically, PVS [OS97] provides a detailed formal semantics for their predicate- 
based type language. Although PVS is significantly more complex and powerful than Armani 
(as discussed in section 3.2.2), we were able to slightly extend the semantics for a subset of 
the full PVS language to capture Armani's type semantics. The important aspects of this 
extension included adding support for record types to the PVS formal specification and 
modifying some of the semantic equations to reflect a subtle distinction between PVS and 
Armani type semantics. Specifically, instances that claim to satisfy a type in Armani may have 
additional structure and properties beyond those required by the type specification, whereas 
PVS requires that instances of a type have exactly the structure and properties required by the 
type. 

4.5 Expressiveness, analyzability, and incrementality 

The previous four sections presented the Armani design language and illustrated how it 
could be used to capture instances of software architecture specifications and software 
architecture design expertise. These capabilities address the language's first two requirements. 
In this section I argue that the language also satisfies its other requirements - expressiveness, 
analyzability, and incrementality. 

4.5.1   Expressiveness 

The notation and constructs supplied by the Armani design language must match the expressive needs of 
software architects. 

The Armani design language presented in this chapter provides constructs for specifying 
abstract architectural styles and concrete instances of system designs, abstract types and 
concrete instances of components and connectors, abstract and concrete interfaces to 
components and connectors, properties that can be associated with any other construct, 
design constraints in the form of predicate expressions that can be enforced as heuristics or 
invariants, parameterized abstract design rules (called design analyses), and topological 
structure. All of these are captured through structural specifications and predicate 
expressions. All of these constructs support hierarchical decomposition and encapsulation. 
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As this list illustrates, the Armani design language provides enough constructs to specify 
architectural structure, properties, connectivity, and design rules in a variety of different ways 
without providing an overwhelming and semantically intractable array of constructs. AU of 
this expressive capability emphasizes static structure and the ability to verify that properties 
of that structure hold. 

The language's expressiveness requirement is given in terms of how the language's 
constructs match the expressive needs of software architects. Determining whether this is an 
appropriate or overly limited set of expressive capabilities is difficult without drawing on 
experience using the language to design software systems and capture architectural design 
expertise. Please see the case studies in chapters 7 and 8 for a detailed discussion of how 
these experiments indicate that Armani's design language is capable expressing designs and 
design expertise for a broad range of architectural styles. These case studies also indicate that 
the language provides sufficient depth of expression to capture interesting concepts within 
the styles. 

Armani's broad array of constructs for capturing designs and design expertise, combined 
with the case study experiences using the language argue that the language satisfies its 
expressiveness requirement. 

4.5.2  Analyzability 

Armani's desigi langtag; must support the evduaüan and analysis of architectural descnpWns. 

Support for the analysis of architectural specifications lies at the core of the Armani design 
language. As a result, Armani's design language readily satisfies this requirement. The 
language supports two basic kinds of analysis. First, it has a "built-in" analytical capability 
provided by the language's typechecking system. Second, it has the ability to annotate 
architectural specifications with properties that can be analyzed by external tools. 

Armani's typechecking process provides the language's primary "built-in" analytical 
capability. The typechecking process determines whether an instance of an architectural 
specification (a) satisfies all of its type declarations, and (b) satisfies all of its instance- 
specific design rules. Because Armani's type system and design constraint language allows 
architects to specify complex predicate constraints and types, the typechecking process 
provides sophisticated analytical capabilities when used properly. 

Because all design rules that can be expressed in the Armani design language can be verified 
with Armani's typechecker, it is possible to evaluate arbitrarily complex design rules without 
having to make use of any analysis tools other than the Armani typechecker. As I discussed 
in detail in section 4.3, one of the primary issues in selecting an underlying formalism for 
capturing design constraints and creating a language for expressing those constraints was 
decidability. I had to limit the type-based analyzability of the language in two important ways 
to insure that the process of typechecking design specifications remained decidable. The first 
constraint is that quantifications over infinite sets are not supported. The second constraint 
is that the typechecker does not provide any meta-evaluation capability for inferring or 
proving properties about type and style specifications themselves. Armani's type analysis 
infrastructure cannot, for example, determine whether it is possible to create a vaKd instance 
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of a given type T. Neither of these constraints proved to be particularly problematic in 
practice. 

Although very powerful, Armani's typechecking capability neither enables nor provides all 
desirable forms of architectural analysis. Recognizing that only a core analytical capability 
should be built directly into the language infrastructure, architectural designs specified in the 
Armani design language can be arbitrarily annotated with properties to be analyzed and 
evaluated by external design tools. The determination, for example, of many emergent 
system properties are calculated with external tools. This approach allows the language to 
support arbitrary forms of analysis while limiting the number of domain-specific constructs 
that it needs to support natively. I discuss how Armani's environment infrastructure 
supports the integration of external analysis tools in detail in Chapter 5 and the case studies 
presented in chapters 7-8 illustrate the feasability and utility of this approach. 

4.5.3   Incrementality 

The language must support incremental capture of architectural design expertise and inaenental 
modifications to architectural specifications. 

The Armani design language provides a number of constructs and capabilities that allow it 
to meet this requirement. First, all of Armani's core constructs are explicitly designed to be 
incrementally composable. As a result, incrementally adding new properties, structure, design 
rules, type declarations, etc. to design elements and design element types is a straightforward 
operation. Likewise, incrementally adding the expertise and structure contained in a type 
specification to a subtype or an instance of a design element is trivial. As described earlier in 
this chapter, all that is required is simply declaring that the subtype or instance inherits from 
the supertype. 

Second, Armani's modular language constructs underlie and enable this composability. 
Requiring that all design element and design expertise specifications be packaged in standard, 
discrete units makes it possible to provide a standard set of incremental integration rules. 
These rules define a framework for incrementally adding or removing structure, properties, 
and design rules from design element types and instances. These rules also support the 
incremental modification of the properties, substructure, and design rules themselves. By 
providing standard containers (design rules, components, etc.,) for the specification of 
designs and design expertise, it is easy for both machines and people to understand the 
meaning of composing these entities. 

Third, Armani's subtyping discipline encourages designers to incrementally extend then- 
design vocabulary and styles as needed. Types can be trivially extended with additional 
information by creating a subtype that defines only the incremental additions that the 
subtype makes to the supertype. Subtyping is a standard, well-understood mechanism for 
incremental extension. It works particularly well, however, with Armani's rich predicate 
language to support the incremental creation of design element types that capture exactly 
the expertise needed to meet a particular design goal. 

As I discuss in Chapter 5, having a modular and incremental language for capturing 
architectural design expertise provides a superb foundation for building an incrementally 
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configurable software architecture design environment. Its utility extends, however, beyond 
its role in customizing the Armani design environment. The ability to collect design expertise 
in small, modular, and composable packets simplifies the conceptual effort required to 
capture and express the design expertise itself. Furthermore, it allows designers to select the 
expertise that they need for a specific project and to quickly adapt the basic concepts that 
they have to work with. 

4.6 Architectural specifications and implementation code 

The Armani design language is fundamentally a declarative language for describing the 
abstract architectural structure and properties of software system designs, as well as 
constraints on the evolution of those designs. Because it is not intended to be used as a 
programming language, it does not provide constructs for describing program-level behavior 
or the algorithms used to implement component and connector functionality. By design, it is 
not possible to compile an arbitrary Armani specification into an executable system. 

Although at first glance this disconnect between architectural design and program 
implementation might appear problematic, it provides at least two significant benefits. First, 
it allows architects to focus on large-scale questions about how a system's components are 
going to work together and reason about the system-wide properties that will emerge from 
the composition of the system's components and connectors. Working independent of the 
implementation code encourages architects to get the high-level, abstract design correct 
before worrying about the implementation details. Second, a great deal of design done at the 
architectural level of abstraction is concerned with composing entities for which the 
architect has no access to source code. The components and connectors with which he or 
she must work have been purchased from third-party suppliers who provide an interface and 
some form of description of the component or connector's behavioral and a-functional 
properties, but no source code. In these cases, mapping to the source code that implements 
the components is basically a non-issue, as the architect has no access to the code. The 
important architectural issues are determining the interfaces that the component or 
connector provides, it's properties, the rules that must be followed to successfully integrate 
the entity into a system specification, and evaluating how it will work in a proposed system 
design. 

An important implication of this approach is that the language has a very different flavor 
than a programming language. Specifically, the Armani design language has no concept of an 
executing program, nor does it provide constructs for iteration or branching. An Armani 
description is simply a specification of a software system design or abstract design expertise. 

Although Armani is not itself a programming language, it is possible to associate program 
code with an architectural specification. Specifically, source code and abstract behavioral 
specifications that could be used to generate souce code can be associated with design 
elements (or design element types) through Armani's property construct. Specifically, code 
and specifications can either be stored directly as the value of a property or the properties 
can store references to the code via a URL or file name. This has proven useful in cases 
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where the architect working with Armani either has the source code for a component 
connector available, or will eventually need to implement that code. 

Although Armani does not provide built-in mechanisms for rigorously and provably 
mapping architectural specifications to implementation code, developing ways to do so is an 
important direction for future work. Recent work on this topic by Moriconi et al [MQR94] 
provides a good start but it solves only part of the problem. UniCon's work on generating 
implementation code for common connection mechanisms [Shaw+95] provides another 
promising and less formal approach to automating the process of generating 
implementation code from architectural specifications. 

4.7 Summary 

The Armani design language described in this chapter meets its requirements. It provides a 
language and framework for capturing software architecture designs and design expertise. 
The language also supports the declarative and incrementally modifiable specification of 
instances of architectural designs. As a result, the Armani design language provides an 
infrastructure that demonstrates the first half of the thesis claim that it is possible to capture a 
significant and useful collection of software architecture design expertise with a language and mechanisms for 
expressing design vocabulary, design rules, and architectural styles. The case studies described in 
chapters 7 and 8 build on this introduction to the language and illustrate ways in which the 
language has been used to capture architectural styles, system descriptions, and other forms 
of architectural design expertise. 
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Chapter 5 

The Armani Design Environment 

The previous chapter demonstrated the first half of this dissertation's thesis: it is possible to 
capture a significant and useful collection of software architecture design expertise with a language and 
mechanismsfor expressing designwcabulary, design rides, andarchitecturalstyles. This chapter illustrates 
how Armani addresses the second half of the thesis: this captured design expertise can he used to 
incrementally customize software architecture design environments. 

I demonstrate this claim by developing a rapidly configurable software architecture design 
environment that can be incrementally customized with design expertise specifications 
captured in the Armani design language. In this chapter I lay out the requirements for such 
an environment. I then describe the architecture of the configurable Armani environment, 
show how it supports incremental customization, and discuss some key issues surrounding 
this approach. Finally, I argue that the Armani environment's architecture satisfies these 
requirements. 

5.1 Design environment requirements 

The Armani design environment's primary requirement is that an environment developer be 
able to rapidly reconfigure it with design expertise captured in the Armani language. This is 
the only requirement that needs to be met in order to demonstrate that the second claim of 
the thesis holds. In addition to support for incremental reconfiguration, four subsidiary 
requirements must also be met if the environment is to be broadly useful and sufficiently 
powerful - leverage, efficiency, support for external tool integration, and user-interface 
configurability. Taken as a whole, these five requirements appear to be applicable not only to 
the particular case of the Armani design environment, but also to a wide class of similar, 
highly-configurable systems. 

Requirement 1: Incremental reconfiguration. It must be possible to incrementally customize the 
Armani design environment to take advantage of architectural design expertise captured in the Armani 

This is the Armani design environment's fundamental requirement. Architectural design 
expertise expressed in the Armani design language is valuable by itself as a set of human- 
readable design guidelines. This expertise becomes much more valuable, however, when 
Armani's tools process it and guide designers in creating and analyzing software 
architectures. The core capability Armani needs to provide is the ability to dynamically add, 
remove, and modify an environment's design expertise, updating the environment 
appropriately to reflect the changes. 
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One of the challenges introduced by this requirement is selecting the axes along which the 
environment can be reconfigured. As the previous chapter discussed, the Armani design 
language provides a basic set of design elements that the generic Armani environment uses 
as a baseline design vocabulary. The language also provides a variety of constructs for 
introducing new vocabulary design rules, and design analyses. Linguistically, this 
customization can be done incrementally and at various granularities. An architect can adapt 
or extend design expertise at the level of styles, design element and property types, systems, 
or individual element instances. The Armani design environment needs to support all of the 
axes and granularities of configuration that the Armani design language supports. In 
addition, as requirements four and five describe, it also needs to support the inclusion or 
removal of external tools and the incremental reconfiguration of its user interface. 

Requirement 2: Leverage. The Armani design environment must premie architects with significant 
leverage for creating, evaluating, andmampukting designs and design expertise. 

One of the primary benefits of a good tool is that it extends and magnifies the tool user's 
capabilities. That is, the tool provides its user with leverage. To give architects this leverage 
for their design and analysis capabilities, Armani must provide a collection of tools for 
processing, manipulating, and analyzing designs expressed in the language. Specifically, it 
must provide at least the following tools: 

• A parser to read textual design expertise, style, and system descriptions expressed in 
the Armani design language. 

• Type  and constraint checking tools to  ensure that designs  satisfy their type 
constraints and design rules. 

• An error reporting system to alert the architect of problems or issues with designs. 

In addition to these core tools, the Armani environment also needs to provide a graphical 
user interface for creating, displaying, documenting, and otherwise manipulating architectural 
specifications. 

Requirement 3: Efficiency. The Armani design environment must work efficiently enough to support 
the interactive creation, updating, and evaluation of architectural designs and design expertise 

In addition to being configurable, the Armani design environment needs to provide 
sufficiently fast response times for interactive use on designs containing up to one thousand 
design elements (components, connectors, etc.). Note that this efficiency requirement is 
expressed completely in terms of the experience of an architect working on architectural 
specifications. Ensuring efficiency for faster response times or larger designs is beyond the 
scope or needs of this tool. Once a design reaches more than one thousand design elements 
it generally includes much more detail than is required at the architectural level of design. 

Requirement 4: External tool integration. The Armani design environment must allow 
"external" tools to access, manipulate, and evaluate Armani design representations. 

The design environment relies on its design language to capture declarative design expertise. 
The environment also, however, needs to be able to capture design analyses and operations 
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that are best expressed algorithmically. As described in the previous chapter, this category of 
design expertise is called operational design expertise. 

Operational design expertise is frequently encapsulated in legacy design and analysis tools. 
When no mechanism exists that encapsulates the desired operational design expertise, 
however, it is frequently useful to create new tools to capture it. For the purposes of this 
dissertation, I define external tools as tools that operate on Armani design representations 
without being part of the core Armani infrastructure. Both legacy tools and freshly-built 
point solutions are considered external tools. 

To support the capture and use of operational design expertise, the Armani environment 
must allow external tools to access, manipulate, and evaluate Armani design representations. 

Requirement 5: User interface configurability. The Arman design environments user interface 
must support user-definedgrapbkd depictiom of ded^ arid ded^ elements. 

Although the Armani design language provides a precise and flexible notation for describing 
software architectures and architectural design expertise, many architects prefer to work with 
graphical notations. To address this need, Armani must provide a user interface that 
architects can use to create and manipulate architectural specifications graphically. 

The graphical notations that architects use to represent their designs can vary significantly 
between different styles and even between different individuals. It is therefore important that 
the environment's user interface be customizable and reconfigurable so that architects can 
match the visual depictions they would like to use for their design vocabulary and system 
specifications with the underlying semantic representations. It is also important that the 
architect be able to view either the graphical representation of a design or its underlying 
textual Armani representation. Taking this requirement one step further, architects should be 
able to select whether they would like to use a text-based interface or a graphical interface 
with Armani. 

Part of the challenge in satisfying this requirement is determining which parts of the user 
interface should be fixed and which should be variable. The other aspect is the need to 
provide ways to gracefully integrate external tools' user interfaces with the core Armani 
environment's user interface. 

5.2 The Armani design environment architecture 

In this section I introduce the Armani design environment's architecture. First, I describe the 
core shared infrastructure that is common to all design environments. I then present 
extensions to this architecture that support the integration of external tools into the 
environment. Finally, I discuss how the architecture of this environment supports user 
interface customization. 
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5.2.1   Core shared environment infrastructure 

All Armani design environments share a set of common infrastructure. This core 
infrastructure defines the basic, generic Armani design environment from which all custom 
Armani environments are derived. The heart of this common infrastructure is a component 
called the architecture desigi representation, or ADR. The ADR stores object-based, program- 
matically-manipulable, representations of Armani designs and design expertise. 

In addition to the ADR, Armani provides a set of basic tools for manipulating, persisting, 
and evaluating Armani designs and design expertise. The following five tools round out the 
baseline shared infrastructure: 

• A parser that reads textual design expertise, style, and system descriptions expressed 
in the Armani design language and converts them into an object-based 
representation in the ADR 

• An unparser that exports Armani design specifications from their object-based 
representations in the ADR to text. 

• A type manager that verifies designs are type-correct and that they satisfy their 
design rules. 

• An analysis engine that evaluates design analysis expressions in the context of 
specific designs or design elements. 

• An error reporting system that alerts environment users of design problems. 
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Figure 5.1: Architecture of the Armani design environment's core shared infrastructure 

The diagram in figure 5.1 depicts Armani's basic architecture. As the figure indicates, all 
tools in a baseline Armani environment share a common architecture design representation 
component. This set of core tools supports the ability to capture and analyze both 
architectural specifications and architectural design expertise expressed in the Armani design 
language. It also provides the ability to evaluate individual designs to verify that they 
conform to their styles and design rules and to report any anomalies discovered in evaluating 
the design. 

This baseline infrastructure is clearly missing some important components and functionality. 
The most obvious missing component is a user-interface. Even without a user interface, 
however, this collection of components can be compiled and executed. In its minimal 
configuration, the environment simply reads and parses Armani design specifications, 
evaluates the designs for type-correctness, and issues a report on any errors that it finds in 
the course of typechecking. All of this is done by invoking the tools through the operating 
system's command shell. Output is simply streamed to the standard output device. 

This baseline environment encapsulates Armani's core incremental configurability 
capabilities. Architects and style developers can customize the expertise captured by the basic 
design environment by loading design vocabulary, rules, analyses, and style specifications 
captured with the Armani design language into the environment. In loading this expertise, an 
environment designer (or architect) modifies the vocabulary and semantics of design that the 
environment supports, as well as the set of design expertise available in the ADR. The Typ 
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Manager and Analysis Engine components use this expertise in evaluating architecture 
specifications. 

In the next section I will discuss how this basic infrastructure can be extended with 
additional components and tools. 

5.2.2  Extending the environment with external tools 

The ability to load the core design representation with design expertise is a first step towards 
rapid and incremental environment customization. This capability allows a designer to make 
both coarse-grained and fine-grained modifications to the design expertise encapsulated in 
his or her environment. The declarative design expertise captured in the styles, designs, design 
rules, and design analyses that can be loaded into the base environment encompasses an 
important and significant class of design expertise. Architects also, however, need to be able 
to take advantage of operational design expertise, or expertise that is best captured 
algonthmicahy (c.f. Section 4.4). 

Operational design expertise is captured in an Armani environment by adding tools to the 
environment that perform the desired operations. These tools, referred to as external tools, 
fall into two broad categories - legacy tools that were built independent of the Armani 
environment but need to interoperate with the environment, and Armani-specific tools that 
were built explicitly as additions to the Armani environment. 

Armani provides three types of connectors for integrating external tools with its design 
environment, each of which encapsulate a significantiy different approach. All of these 
connectors can be used to integrate either legacy or Armani-specific tools, though their 
applicability for each varies widely. Figure 5.2 builds on Figure 5.1, illustrating how these 
connectors can be used to integrate three different external tools with the baseline Armani 
design environment. 
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Figure 5.2:   Three connection mechanisms for extending the Armani core shared 
infrastructure with external tools. Connector (1) streams Acme between 
the Armani, Core Design Rep and an Acme-Aware tool, connector (2) 
uses a COM-based interface to connect a legacy tool to the core 
infrastructure, and connector (3) uses direct Java method invocation to 
link interact an "external" tool that is loaded directly into the Core Design 
Rep's process with the Core Design Rep. 

The three specific external tool integration connectors provided for integrating external 
tools with Armani are: 

• Acme. The Acme tool integration connector streams textual Acme design represen- 
tations between the Armani environment and an external tool. Acme, described in 
detail in section 3.1.2, is an interchange standard for architecture design speci- 
fications. As an emerging interchange standard, the Acme-based connector provides 
a low-cost integration mechanism for a wide selection of architectural design and 
analysis tools. 

When transferring a design from the Armani environment to the external tool, the 
connector converts an Armani design object into a textual Acme description of the 
design, and streams that textual description to the attached external tool. It is the 
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attached tool's responsibility to interpret the Acme specification and perform its 
analysis or operation on that Acme description. 

When a design is passed in the other direction, from the external tool to Armani's 
architecture design representation component, this process is reversed. The external 
tool writes a stream of Acme text to the connector. The connector then parses this 
stream, translates it to Armani, and builds an appropriate Armani design object in 
the environment's ADR. 

This approach provides a loose integration between the environment and the 
external tool. This connector is most effective when the integrated tool requires only 
minimal interaction with the full environment. It is, however, an effective way to 
integrate legacy tools that support the Acme integration standard with the Armani 
design environment. 

Tool-specific design rep API connector. The second alternative for integrating 
external tools with the Armani design environment is to create a connector that 
provides a tool-specific interface to the architectural design representation 
component's API. The tool-specific interface provided by this connector generally 
exposes less functionality than the ADR's full API but provides more semantically- 
specific methods. It is the connector's responsibility to convert the external tool's 
requests made through the thin interface into an appropriate series of requests to the 
ADR. The connector then has to package the ADR's response and return it to the 
external tool in an appropriate format. 

As an example, consider a tool that walks over an architectural design to calculate 
system throughput. This tool is concerned only with retrieving the components and 
connectors in the design, discovering the performance properties of the individual 
components and connectors, and discovering the system's topology. Rather than 
expose the ADR^s entire API to the tool, the connector only exposes methods to 
provide specific information about a system's components, connectors, topology, 
and performance properties. 

This integration approach has three benefits. First, it isolates the complexity of the 
interaction between the tool and the environment in a single connector. Isolating this 
complexity simplifies the implementation of both the ADR and the external tool and 
makes evolutionary changes to either the ADR or the tool easier. Second, it provides 
an additional degree of safety for the overall environment by restricting the 
operations that individual tools are allowed to perform on the shared design 
representation. Third, from the perspective of the environment end-user this 
approach provides a significantly tighter integration between external tools and the 
environment than the Acme-based integration described previously. Although this 
integration approach has many benefits, it also requires the most effort on the part 
of the environment developer. 

This integration technique is appropriate for integrating both legacy tools and 
Armani-specific tools. The tool-specific connector interfaces can be either written in 
Java or as COM interfaces. Tools that do not understand either of these standards 

108 



can frequently be wrapped by a thin shell that exposes a COM interface to the 
outside world and interacts with the tool using the standard understood by that tool. 
Likewise, because COM can be used within or across process boundaries, this 
integration works for tools that run both within the ADR's process boundary and for 
tools that execute outside of the ADR's process boundary. 

• Direct API access to the ADR. The third type of connection available for 
integrating external tools with the Armani design environment allows the external 
tool to direcdy invoke Java methods through the environment's core Architecture 
Design Representation API. With this approach, the external tool is loaded directly 
into the ADR's Java process, creating an "in-process external tool" that is given full 
access to the Architecture Design Representation's API. An in-process tool has the 
same status as the Type Manager, Analysis Engine, or Error Reporter tools in the 
baseline Armani environment. 

The Direct-API access to the ADR approach has two important limitations. First, 
the tool must be written in Java to integrate properly with the ADR. Second, the tool 
must be highly trusted because it will have full access to the internals of the Armani 
environment. As a result of these constraints, this approach is most appropriate for 
tools that are developed directly by the environment developer explicitly for the 
purpose of operating over Armani designs stored in the ADR. 

5.2.3   Customized user interfaces 

The previous two sections described how the architecture of the Armani environment 
allows custom environment designers to configure an environment and integrate external 
tools. Although these customizations form the foundation for Armani's configurability, it is 
also critical that Armani's user-interface (UI) be highly configurable to convey the underlying 
semantic modifications to architects using the tool. 

To achieve this configurability, the Armani environment provides the ability to make both 
coarse-grained and fine-grained modifications to Armani's user interface. The coarse-grained 
adaptability derives from the design decision to implement Armani's user interface as a 
standard external tool that has no special privileges or status in the environment. As a result, 
environment developers can completely replace the environment's user interface. Although 
this appears to be a Draconian approach to customizing the UI, it allows environment 
designers to integrate the core Armani infrastructure with other tools that supply (and 
require) their own user interfaces. Likewise, it allows environment developers to experiment 
with radically different user-interaction techniques on top of the same basic environment 
infrastructure. 

One of the implications of this approach to user-interface customization is that the core 
Armani infrastructure binds very few design decisions regarding how fine-grained configur- 
ation should be supported in a user interface. Fine-grained configuration includes such issues 
as associating icons with specific types of vocabulary elements, techniques for editing 
property values, etc. Each instance of an Armani user-interface is free to provide its own 
support for such customization. In the remainder of this section I will discuss how I used 

109 



variations of the external tool connector types described in the previous section to integrate 
three different user interfaces with the core Armani infrastructure. I will also discuss the 
fine-grained user-interface customization capabilities that each of these interfaces provide. 
Figure 5.3 illustrates the architectural approaches taken to integrate each of these user 
interfaces with the core Armani environment infrastructure. 

Command Line Interpreter 

The initial Armani user interface was a textual, tty-based, command-line interpreter that 
allowed an architect to load, view, modify, export, and typecheck textual specifications of 
Armani designs and design expertise. Because the interpreter was written in Java, the most 
straightforward integration method available was to simply load the interpreter into Armani's 
ADR process and connect it to the ADR's API with a direct Java method invocation 
connector. This integration approach proved both simple and effective. Figure 5.3a illustrates 
the architectural approach taken to add the command-line interpreter user interface. 

The Armani command-line interpreter provided only minimal fine-grained customization 
capabilities. Generating the interpreter with a parser generator QCC99] provided the ability 
to easily add new commands to the interpreter. To extend the interpreter's command set, an 
environment developer simply had to add a new production to the interpreter's specification 
along with some Java code to execute when the command was invoked. Although this 
process required the environment developer to modify the interpreter's source code, the 
code was structured in such a way that these additions were straightforward and modular. 

Overall, although it was rather feature-poor and somewhat lacking in visual appeal, the 
Armani environment and command interpreter front-end, coupled with a good text editor, 
proved to be a remarkably effective design tool. 

AcmeStudio 

The second user interface that I integrated with the Armani core infrastructure was the 
AcmeStudio design environment. AcmeStudio [Kom99] provides visualization, graph layout, 
and simple design analysis capabilities for designs defined in the Acme design language 
[GWM97]. Integrating AcmeStudio with Armani proved to be an effective way to quickly 
put a graphical user interface on top of the Armani core infrastructure. It also added useful 
functionality to the AcmeStudio by providing it with a powerful design rule checking 
mechanism. 

Figure 5.3b depicts the architecture of the core Armani infrastructure integrated with the 
AcmeStudio. As this figure indicates, I used an Acme tool integration connector to link 
AcmeStudio to the Armani infrastructure. Using this integration approach, AcmeStudio 
wntes textual Acme descriptions of its designs, types, and styles to this connector. The 
Armani infrastructure reads these specifications, translates them to Armani, evaluates them 
for type consistency, and returns the results of its analyses back to the AcmeStudio as a 
stream of Acme text. 
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AcmeStudio provides fine-grained user interface and design visualization customization. 
AcmeStudio's visualization capabilities are, however, geared towards Acme-based designs 
rather than Armani-based designs. As a result, Armani design rule and analysis constructs are 
encoded in AcmeStudio designs as properties that the Acme-to-Armani translation step 
converts into their appropriate Armani constructs. Acme does not give these constructs the 
first class status that Armani does, and the AcmeStudio user interface reflects this 
discrepancy. 

Overall, this approach offered a quick way to provide a graphical editor for Armani designs. 

Visio-based GUI 

The third user interface that I integrated with the Armani core infrastructure was designed 
to be the "standard" Armani graphical user interface (GUI). This interface uses the Visio 
drawing package [Visio99] as the primary user interface for editing and visualization. In 
addition to the Visio-based design editor, this interface includes a number of Java-based 
GUI elements for editing individual design entities such as components, connectors, 
properties, and design rules. 

Figure 5.3c illustrates the architectural adaptations I made to the core Armani infrastructure 
to integrate this GUI with Armani. As the figure indicates, components that provide a user 
interface for editing Armani semantic elements are called workshops. Visio provides the system 
workshop for editing system diagrams and the Java-based GUI components provide the 
workshops for editing individual design entities. 

Because the various elements of this user interface are implemented with different languages 
and technologies, integrating them with each other and with the rest of the Armani 
environment infrastructure proved to be a challenge. The overall design of the Armani 
infrastructure, however, allowed me to address this challenge by creating a connector that 
managed all of the interactions between Visio, the Java-based workshops, and Armani's 
ADR. This connector, called the GUI factory connector refines the tool integration approach 
described for the Tool-specific design rep API connector in section 5.2.2. It uses the abstract 
factory pattern described in [Gam+95] to lazily create and invoke workshops for viewing 
and editing design entities. 

The GUI factory connector keeps track of which visual entity corresponds to which 
semantic entity, and vice-versa. It is the responsibility of the factory connector to establish a 
direct connection between the editor and the entity being edited. When the GUI factory 
connector receives a request to edit a semantic entity, the connector finds or instantiates an 
appropriate workshop, asks that workshop to display itself and edit the requested entity. 
Depending on the implementation of the workshop, this step is done by handing the 
appropriate workshop a Java or a COM interface to the underlying semantic entity. Once this 
interface has been properly handed off, the GUI factory connector steps out of the way and 
lets the workshop directly access the underlying semantic object through this interface. As a 
result after setting up the initial connection between a semantic entity and its editing 
workshop, the number of indirections that the workshop requires to access or update 
semantic information is minimal. This approach adds an additional start-up cost the first 
time an entity is edited or a workshop is opened, but the connection established between the 
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workshop and edited entity is persistent through a session so the response time for future 
editing of that entity is nearly instantaneous. 

This integration technique has four desirable characteristics. The first is that the semantic 
entities stored in Armani's ADR are not bound to any form of user-interface editing element 
until run-time. This late binding of editor selection cleanly separates semantic from 
visualization concerns and removes user interface issues from the implementation of the 
underlying semantic representation of architectural entities. 

The second desirable characteristic of this integration approach is that, to the environment 
end-user, there appears to be a very tight integration between Armani's GUI, underlying 
semantic representation (ADR), and design checking tools. The environment provides very 
good interactive response and near-instantaneous feedback to user manipulations. The 
integration appears to the user to be much tighter than the integration of AcmeStudio and 
the Armani design checking tools. Although the appearance to the end-user is one of tight 
integration, the dependencies between the individual components of the Armani core 
infrastructure and GUI are minimal, allowing them to be maintained and evolved 
independent of each other. 

The third desirable characteristic is that it supports a "medium-grained" form of user- 
interface customization. Rather than completely replacing the user interface, an environment 
developer can extend the existing GUI by creating new workshops for editing specific types 
of design elements. He can insure that the new workshop will be selected to edit the desired 
types of design entities by simply reconfiguring the dispatch table in the GUI factory 
connector. This type of configuration requires more work than the fine-grained 
customization capabilities provided by Visio, but significantly less work than building a new 
user interface from scratch. 

Finally, using a configurable commercial drawing package such as Visio for a user-interface 
to the Armani core infrastructure provides the environment's end users with a vast array of 
fine-grained customization capabilities. In section 5.3.5 I discuss in detail how I was able to 
take advantage of Visio to provide this fine-grained user-interface customization capability. 

5.3 Design environment discussion and evaluation 

I now revisit each of the requirements laid out in the beginning of the chapter. 

5.3.1   Incremental reconfiguration 

Requirement: It must be possible to incrementally customize the Armani design environment to take 
advantage of architectural design expertise captured in the A rmari design language. 

Armani's core environment infrastructure is explicitly designed to support incremental 
adaptation. The environment provides a standard baseline infrastructure that leverages all of 
the Armani design language's built-in constructs and concepts (e.g. descriptions of design 
element types and instances, invariant and analysis specifications, etc.). An architect or 
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environment designer can extend these basic constructs by loading additional design 
expertise into the environment. 

The ability to load arbitrary Armani design language specifications into the core architecture 
design representation provides the environment developers and architects working with the 
Armani environment a very fine-grained customization capability. Individual design rules, 
vocabulary items, and analyses can be loaded, removed, or modified "on-the-fly". The design 
language's style construct also allows environment developers to use the same technique to 
make coarse-grained modifications to the environment's body of design expertise by loading 
(or removing) large collections of related expertise in a single operation. At a semantic level, 
for example, an environment can be trivially switched from supporting design done in a 
dataflow style to supporting design done in an interacting processes style by removing the first 
style from the environment and loading the second style into the environment. 

The ability to incrementally reconfigure the design expertise used by the environment is a 
fundamental Armani feature that is, by itself, sufficient to minimaUy address the incremental 
reconfiguration requirement. Armani also provides two additional incremental reconfigu- 
rability capabilities that have proven very useful for custom environment developers. The 
first of these is the ability to easily link external tools into the environment so that it can take 
advantage of design expertise not readily captured in the Armani design language. The 
second is the ability to customize the user interface to reflect the changes in the 
environment's underlying design expertise, or even the tastes of individual designers. 
Sections 5.3.4 and 5.3.5 discuss, respectively, how each of these capabilities address Armani 
requirements. 

5.3.2   Leverage 

Requirement: The Armani design environment must provide architects with significant leverage for 
creating, evaluating, and manipulating designs and design expertise. 

Although my fundamental thesis claim is simply that I can capture architectural design 
expertise with the Armani design language and that I can use that expertise to configure 
custom software architecture design environments, to be useful, these custom environments 
must provide the architects using them with design leverage. The Armani design 
environment, in both its baseline and custom forms, provides architects with at least four 
kinds of leverage: 

Evaluating Armani design language specifications. The Armani environment 
provides a set of tools that allow an architect to take advantage of reusable design 
vocabulary, design rules, and styles when specifying architectural designs. The language 
processing and other environment infrastructure tools can check that architectural 
specifications are type-correct and that they satisfy all of the design rules used to create 
the system. This basic infrastructure also provides architects the ability to analyze 
Armani designs with analyses written directly in the Armani design language. These 
analyses, which can generally be written very succinctly, help architects discover 
whether their designs possess specific emergent, system-wide properties. 

1) 
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2) Graphically creating, displaying, and manipulating designs. The graphical user 
interfaces provided with the Armani environment allow designers to depict their 
architectural designs graphically. Although the benefits of using graphical depictions 
rather than textual descriptions have not been definitively proven, the use of graphical 
notations for specifying architectural designs and design patterns seems to match the 
informal ways that architects interact and discuss designs to solve design challenges. 
That is, the Armani GUIs support the ability to draw the ubiquitous box-and-line 
diagrams frequently found on whiteboards and in architecture design documents. 
Associating full Armani specifications with the boxes and the lines adds a significant 
semantic richness to the diagrams. Depicting architectural diagrams graphically also 
provides succinct design documentation that complements the detailed specifications 
available in a textual representation. 

3) Capturing and exploiting style-specific, system-specific, and domain-specific 
expertise. The complete Armani system combines the Armani design language's 
ability to capture design expertise with the Armani environment's ability to use that 
expertise both analytically and constructively. This expertise can be used to evaluate 
individual designs for internal consistency, type-correctness, conformance to stylistic 
guidelines, and satisfaction of claims about the properties of the system. Captured 
design expertise can also be used constructively by designers who work with a palette 
of previously defined design elements and design rules that are customized for their 
specific design domain. These collections of design expertise help architects by 
providing consistent collections of components and connectors that are designed to 
work together, along with guidance on how they can be successfully composed. 
Further, the incremental nature of the language and the environment allows a designer 
to add the additional design expertise and notations that he discovers and develops in 
the course of architecting his systems. These additional vocabulary elements and 
design rules can then be reused on future projects. 

4) Integrating a suite of design tools. The Armani environment can be extended by 
integrating (or building) external tools. This capability allows users of the Armani 
environment to take advantage of a universe of external design and analysis tools. The 
Armani environment's flexible integration infrastructure and Acme-compliance make it 
relatively easy to aggregate and take advantage of a wide variety of design tools within 
a single, custom Armani design environment. 

By providing architects with these four areas of leverage, the Armani environment satisfies 
it's requirement to provide architects with design leverage. 

5.3.3   Efficiency 

Requirement: The Armani design environment must work efficiently enough to support the interactive 
creation, updating, andevahiation of architectural designs and design expertise. 

System architects frequently have to give up system performance and efficiency to get 
generality and extensibility. The additional layers of abstraction that a highly generalized and 
flexibly extensible system require are usually inefficient and result in poorer performance 
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than a custom-built, highly focused solution would provide. Understanding this tradeoff, I 
expected that I would have significant difficulty making Armani efficient enough to provide 
useful interactive feedback to designers working with Armani-based environments. 

Specifically, there were two aspects of the Armani system that I anticipated were likely to 
cause significant performance problems. The first was Armani's ability to verify the type- 
correctness of designs and check that the designs satisfy their design rules. After 
experimenting with both incremental and batch algorithms for typechecking and evaluating 
design rules, however, I determined that this concern was unfounded. For the size of 
designs that Armani needs to be able to handle (designs with up to one thousand design 
elements), the simple batch algorithm that I used for typechecking runs quickly enough on 
current machines15 to support interactive use. 

It is possible to write pathologically complex design rules and analyses that cause Armani's 
simple type-checking algorithm to work very slowly, just as it is possible to write inefficient 
programs using any of a wide variety of programming languages. Experience from the case 
studies in Chapter 7 and Chapter 8, however, indicates that using these pathological 
approaches is rarely necessary and when they do arise they can generally be recast much 
more efficiently by rethinking the problem and/or solution. In situations where using such a 
pathological case appears to be unavoidable, designers have the option of rewriting their 
analyses or design rules directly in Java for efficiency. These Java-based rules and analyses 
can then be linked into the Armani environment and accessed from Armani specifications as 
"external" design analyses. Taking this step proved to be necessary in only one of the twelve 
case studies conducted - the study described in section 8.2.3. 

The second aspect of the design that I anticipated was likely to cause performance problems 
was the separation made between the underlying design representation component and the 
user interface. Common wisdom holds that a graphical user interface (GUI) that is tightly 
integrated with its underlying data and analysis capabilities will provide much better user- 
interaction performance than a comparable system with a loosely integrated GUI. The 
degree to which this emerged as an issue varied with the three different user interfaces we 
put on Armani. 

For the textual command-line interpreter this did not turn out to be an issue because the 
Armani back-end was generally able to produce its output at least as quickly as the operating 
system's i/o subsystem could display it to the user. When using an Acme connector to 
integrate the AcmeStudio front-end with the Armani infrastructure, however, the connection 
proved too slow to support interactive interoperation between the AcmeStudio GUI and the 
Armani back-end. To address this issue, all Armani analysis operations that the AcmeStudio 
user interface exposed to the user were presented as batch commands that could be run in 
the background without degrading interactive environment performance. This technique 
proved an effective way to use a loose and low-bandwidth connection between the two tools 
while hiding much of the loose separation from the environment's users. 

The "current machine" used as a testbed in this case is a 200Mhz Intel Pentium CPU with 64MB or RAM running 
Windows NT 4.0. By the time this dissertation was completed in 1999, though soil usable, this machine 
configuration was somewhat dated and past its prime, yet Armani still ran sufficiently fast to support interactive use 
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The most significant user-interface efficiency concern, however, was that the Visio-based 
user interface would provide acceptable performance and interactive feedback to the 
environment's users. This requirement was particularly important for the Visio-based GUI 
because of its role as Armani's primary user interface. Fortunately, the GUI factory connector 
that I created for this purpose provided sufficient performance. In this integration scheme, 
the GUI components store, update, and render all of the visualization information locally. 
Correspondingly, the core architecture design representation stores and handles all of the 
semantic information exclusively. This approach adds an additional start-up cost the first 
time an entity is edited or a workshop is opened, but the connection established between the 
workshop and edited entity is persistent through a session so the response time for future 
editing of that entity is nearly instantaneous. 

Overall, this approach has proven to be an effective way to provide the loose integration 
between a user interface and its back end that is desirable for maintainability and separation 
of concerns. It has managed to do so without sacrificing the performance that is necessary 
in a user-centered design environment. 

5.3.4   Integrating external tools 

Requirement: The Armani design environment must allow "external" tools to access, manipulate, and 
evaluate A rmani design representations. 

Implementing the external tool integration connector described in Section 5.2.2 required that 
I address a number of important issues. The first of these issues is that Armani needs to 
provide a platform for quickly building new Armani-specific tools that operate directly on 
Armani design representations. At the same time, however, Armani also needs to support 
the integration of a wide variety of legacy tools that were not originally designed to work 
with Armani or its integration protocols. These two sub-requirements introduce a design 
tension and generally argue for different approaches to external tool integration. 

The need to provide a platform for quickly developing tools that operate on a core design 
representation argues for providing a limited collection of standard, well-defined, ways for 
the tools to interact with the design representation. Providing a standard that binds tool 
interaction design decisions "correctly" for all tools reduces the work that tool builders need 
to do to create and integrate their tools with the environment. Armani supports this 
approach by providing a standard technique for writing external tools in Java that can be 
loaded directly into the architecture design representation (ADR) component's process. 
Armani also provides a standard by which these tools can register their presence and by 
which they can be invoked to perform their analyses. Although Armani explicitly defines the 
integration protocols that these tools use to interact with the design environment, the tools 
can also access the complete architecture design representation API if they need to. Access 
to this API is provided by the standard integration protocol. 

To further ease the creation of new external tools, the Armani toolkit provides a significant 
collection of skeletal tools that perform a broad variety of common operations. Examples of 
the tasks performed by these skeletal tools include visiting each component or connector in 
a design (and possibly performing a tool-specific operation at each element visited), querying 
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a design for all elements that have a specific property or property value, and retrieving a list 
of all of the types that are visible from a given scope. Tool developers can extend these 
skeletal tools to implement their specific operations. Providing pre-integrated implemen- 
tations for these standard tool operations frees tool developers from rebuilding standard 
infrastructure and allows them to focus on the specific functionality that they want to add to 
their custom tools. 

The tension surrounding the decision to provide standard tool integration protocols arises 
from the need to also support the integration of legacy tools. Legacy tools, by definition, do 
not follow the Armani environment integration standards. Recognizing this as an important 
issue, I designed multiple integration mechanisms for integrating external tools with the 
Armani environment. These integration mechanisms are encapsulated in the three types of 
external tool connectors described in section 5.2.2. Each of these connector types provide 
flexible intermediary connectors that can be adapted as needed to support the integration of 
legacy tools. The Acme connector provides a quick integration standard for other tools that 
support the Acme interchange standard [GWM97]. The tool-specific design rep API 
connector provides a custom environment developer with a place to embed the interface- 
bridging logic required to integrate the legacy tool with the Armani ADR. 

By providing these three connector types and integration standards, the Armani 
environment supports the rapid development of custom environment-specific analysis tools 
without precluding the integration of legacy tools with the rest of the environment. 

In addition to supporting the integration and development of multiple categories of external 
tools, these three types of external tool connectors also address the environment's need to 
progressively reveal the complexity of the Armani environment's implementation. It is 
possible for environment designers to create sophisticated custom environments by doing 
nothing more than loading design expertise captured with the Armani design language into 
the generic Armani environment. This customization process requires effectively no 
understanding of the implementation details of the Armani environment. 

Once an environment developer decides to start integrating external tools, however, she 
needs to commit to learning something about the environment's implementation. The three 
external tool connector types reveal to the developer progressively more details about the 
environments implementation on an as-needed basis. The Acme connector, for example, 
requires almost no knowledge of the underlying environment implementation. It requires 
only the mastery of an extremely small API (primarily the methods readDesign(...) and 
translateToArmani(...)). Using the ADR's full Java API to write tools that will be loaded 
directly into the ADR's process requires a significantly greater understanding of the 
environment's implementation details. The full API can, however, generally be learned on an 
as-needed basis and specific tools will generally require the mastery of only a relatively small 
percentage of the full API. The depth of understanding of implementation details required 
to reuse a previously defined tool-specific design rep API connector falls somewhere between 
these two extremes. Implementing a new tod-specific design rep API connector, however, 
requires a relatively deep understanding of the Armani environment's implementation 
details. 
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A final issue that I faced in creating an appropriate set of mechanisms for integrating 
external tools with Armani was the need to distinguish between tools that can produce side- 
effects and those that can't. This distinction is important from the perspective of an 
architect using the Armani design environment because she needs to know whether making 
a request of the environment or one of its tools will simply provide a report on some aspect 
of the design, or whether it could actually change the design itself. A secondary driver for 
this issue is the ability to hook external tools into Armani's typechecking process to evaluate 
complex design analyses. All tools integrated with the typechecking process this way are fired 
implicitly during typechecking. Because the typechecker does not define the order in which 
these tools are run or how many times they will be run, it is critical that only side effect-free 
tools are invoked by the typechecker. 

To address this issue, I provide Armani design language constructs that tool builders can use 
to distinguish between operations on design specifications, which can modify the design as a 
side effect, and design analyses that can not have any side effects. It is the responsibility of the 
tool writer to properly classify her tools using this taxonomy. Tools that perform operations 
on designs must be explicitly invoked by the user (or a proxy for the user). Side effect-free 
analysis tools, on the other hand, may be invoked either implicitly or explicitly. 

5.3.5   Configurable user interfaces 

Requirement: The Armani design environment's user interface must support user-defined graphical 
depictions of designs and design elements. 

As section 5.2.3 described, the explicit decision to build Armani's user interfaces as loosely 
integrated external tools provides the environment with a great deal of coarse-grained user- 
interface customization. The fact that Armani supports three distinct user interfaces that all 
use the same core infrastructure effectively demonstrates that Armani satisfies this 
requirement with respect to coarse-grained configurability. 

To support effective, lightweight, and incremental customization of architectural design 
environments, however, environment developers also need a lightweight set of mechanisms 
for customizing an existing user interface rather than completely replacing it. To address this 
need, the Visio-based Armani user interface provides the ability to make fine-grained 
modifications to the graphical depictions of designs and design elements. 

Designing a user-interface infrastructure that provides this lightweight, fine-grained, 
incremental customization capability required me to address a number of important design 
issues. The fact that the Visio drawing package [Visio99] is implemented as a component 
that can be used as a complete front-end to other tools, such as the core Armani 
infrastructure, addressed many of the basic visual configuration issues. For example, Visio 
provides flexible customization capabilities for modifying the palette of visual entities that 
can be used in a drawing. These entities can be manipulated programmaticaUy and by the 
end-user. As a result, the issues that I faced in making Visio an effective front-end for the 
Armani design environment proved to be more subtle than those related to actually drawing 
a design's graphical icons. 
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One of the primary issues I had to address in making the interface highly customizable was 
determining where the semantics for the design elements lived. Although not necessary for 
all external tools, the Visio interface stores negligible semantic information about the 
architectural entities that its diagrams model. All of the semantic structure for designs and 
design expertise is stored in Armani's core architecture design representation component. 
Armani systems are depicted in Visio as drawing, and the system's components, connectors, 
ports, and roles are represented by the shapes that make up the drawing. A style's design 
vocabulary elements are stored on palettes from which an architect using the environment can 
select components and connectors to add to the system. 

To keep a clean separation between the visual depiction of the design elements and the 
underlying semantics of those elements, the visual elements contain only a reference to the 
appropriate underlying semantic object that is stored in the environment's ADR. Likewise, 
the semantic objects stored in the ADR keep a reference to their appropriate visualization 
shapes. It is the responsibility of the GUI factory connector that binds Visio to the ADR to 
maintain these references appropriately. 

The design vocabulary shapes stored on the editing palette use a different technique for 
interacting with the underlying ADR. The shapes stored on the palettes do not represent 
actual instances in a design; rather they are templates that store textual Armani expressions 
that describe how to create a new instances of a that component or connector. The shapes 
stored on the palette are associated with templates rather than types because it allows greater 
flexibility in mixing and matching types to create new components. It is, for example, easy to 
create a transactkmd database component template that will instantiate a component that 
satisfies both the database type and the transactkmd type without having to define a new type 
at the semantic level. When one of these shapes is copied from the palette to a drawing, the 
Armani template is sent to the ADR, where it is processed, an appropriate component or 
connector is added to the parent system, Visio adds an appropriate shape to the system's 
drawing, and the GUI Factory connector maintains the appropriate references between the 
visual shape and the underlying semantic object. 

Overall, this approach has proven extremely flexible for performing fine-grained dynamic 
adaptations of design environments. The primary downside to this approach is that it 
requires the environment developer to do slightiy more work to add some forms of user- 
interaction capability that require a tight integration between a design's underlying semantic 
representation and its visual depiction. Experience with the case studies described in 
Chapters 7 and 8, however, did not indicate that this limitation was particularly problematic. 

Another important issue that this design raises is how to integrate other external tools that 
provide their own user interface with the Visio-based Armani environment and GUI. The 
basic problem is that if multiple tools expect to be the primary interaction mechanism with 
the underlying representation they can interfere with each other [GA095]. Once again, the 
ability to provide a wide-range of integration techniques addresses this issue. In general, if 
other tools provide user interfaces that demand be the primary driver for interactions wkh 
Armani's underlying ADR, these tools are best integrated as tools running in completely 
different processes that communicate with the low-bandwidth Acme connector. In this way, 
the UI's can live in separate processes and they can each generally be adjusted to 
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communicate only when appropriate. External tools, on the other hand, that provide user- 
interfaces that do not need to be the only one running in their process can generally be 
linked into the environment much more tighdy using either of the other two connection 
techniques. 

In addition to interoperability issues, integrating arbitrary tools in a single environment 
introduces significant issues regarding concurrent access to the shared design representation. 
To keep the scope of this research tractable for a single dissertation, I did not implement 
significant concurrency controls in the environment. Although an industrial strength design 
environment would need to support such capabilities (some of which are described in 
[GA094]), the Armani prototype simply flags this as an issue that architects using the 
environment need to be aware of. In practice, the custom environments we used made 
relatively little use of implicit tool invocation. As a result, it was straightforward for 
architects using Armani to prevent concurrency problems by invoking only a single tool at a 
time. 

5.4 Summary 

The Armani design environment described in this chapter meets its fundamental 
requirements and demonstrates, by its existence, the second half of this thesis' claim that 
design expertise captured with the Armani design language can be used to incrementally 
customize software architecture design environments. 
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Chapter 6 

Task Analysis 

In the thesis statement I claim that it is possible to capture a significant and useful collection 
of software architecture design expertise with a conceptual framework of design rules and 
architectural styles, and further, that this captured design expertise can be used to 
incrementally customize software architecture design environments. The discussion of the 
Armani language and environment in chapters 4 and 5 demonstrate the feasibility of this 
claim - that it is possible to do so at all. In the next three chapters I describe a detailed task 
analysis and a set of experiments for evaluating the utility of the language, tools, and overall 
approach. To do so, I evaluate them for the following three properties: 

• Incrementality. A software architect using Armani should be able to incrementally 
adapt his or her Armani-based tools to make use of available design expertise. Further, 
the incremental adaptation of an existing (possibly generic) environment should be 
quicker and easier than building a new environment from scratch. 

• Power. The Armani language and environment should be able to capture useful, non- 
trivial software architecture design expertise. 

• Breadth. The mechanisms provided by Armani should be capable of capturing a 
sufficiently broad range of software architecture design expertise. Coupled with the 
Armani infrastructure, this expertise should be capable of producing design 
environments for a wide variety of design domains and architectural styles. 

I begin the validation of this thesis and the utility of Armani with a detailed analysis of the 
tasks required to capture design expertise, build, and incrementally adapt a customized 
software architecture design environment. The analysis evaluates both the traditional 
"ground-up" approach and the Armani approach and provides a comparison of the tasks 
and effort required to produce such an environment using each of the two methods. Section 
6.1 of this chapter describes the results of this analysis. The purpose of this task analysis is 
to argue that, in theory, Armani fundamentally simplifies or eliminates many of the most 
time consuming and difficult tasks an environment designer must undertake with the 
traditional "ground-up" approach to creating a custom design environment. 

To empirically validate the analysis results I conducted experiments in the form of two sets 
of case studies. In the first set of case studies I used the Armani system to construct a 
diverse collection of customized software architecture design environments. To demonstrate 
the breadth of expertise that Armani can capture, the styles selected for these case studies 
span the six "toplevel" categories of the taxonomy of architectural styles presented in 
[SC97]. Although not an exhaustive taxonomy, it captures most of the commonly used 
architectural styles. The structure and approach of the experiments also demonstrate the 
incremental nature of the language and tools. In these case studies I quantify the effort 
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required to conceptualize and construct each of the case study environments. A detailed 
description of this experiment and its results are provided in Chapter 7. 

The second set of case studies, described in Chapter 8, demonstrates that people other than 
the author can use Armani to produce useful and interesting software architecture design 
environments. In these case studies practicing software designers used the Armani system to 
model one or more architectural styles and used the Armani infrastructure to create custom 
software architecture design environment and tools for those styles. Although not as 
structured as the case studies described in Chapter 7, they serve to validate the utility of the 
overall Armani approach. 

The experiments in both sets of case studies were designed only to evaluate Armani's 
effectiveness as a tool for rapidly creating custom software architecture design environments. 
They were not designed to evaluate the quality or effectiveness of the environments 
produced. Developing a set of experiments and metrics for objectively measuring 
amorphous concepts such as quality and effectiveness for such a broad variety of different 
environments simply proved too challenging to be reasonably completed in the scope of this 
dissertation. 

6.1 Task analysis 

This section describes an analysis of the tasks required to design and construct a customized 
software architecture design environment using both the "traditional approach" of building 
the environment ground-up, possibly using existing commercial off-the-shelf (COTS) 
components, and the Armani approach in which a configurable software architecture design 
environment is incrementally customized using a declarative architecture description 
language. 

Each of the tasks described in this analysis is given a time estimate that includes best, 
average, and worst case times for each stage, along with a set of characteristics that help 
classify the types of projects that fall into each of these categories. The effort numbers 
assigned in these task analyses are rough estimates based on personal experience with teams 
building similar tools, informal estimates from other people who have built such tools, and 
the fact that comparable commercial and research tool development projects generally 
require multiple people working for one or more years. 

These estimates can, of course, vary widely depending on the scope of the project and the 
power and polish desired in the environment produced. The estimates should, however, 
provide a rough idea of the likely time that each of the tasks will take under various 
conditions. Overall, the specific time estimates for the individual tasks are significantly less 
important than the specific tasks and subtasks required by each approach, and the units most 
likely used to measure these tasks (i.e., hours, days, months, or years). 

An additional concern addressed by the task analysis is that the requirements of a prototype 
Armani environment are less demanding than the requirements of a commercial software 
architecture design tool such as ObjecTime [SGW94]. Commercial software packages must, 
for example,  be  built significantly more  robust  and  feature-rich than the Armani 
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environments created in this dissertation's case studies. To address this discrepancy in the 
task analysis I have attempted to include only those tasks required to build comparably 
robust and feature-rich tools. I have specifically excluded, for example, the lengthy testing 
processes required before releasing commercial tools. 

6.1.1   The traditional approach 

The current state-of-the-practice in constructing a software architecture design environment 
is to design and build the environment from the ground up. Throughout the rest of the task 
analysis, this approach will be referred to as the traditional approach. An environment designer 
using this traditional approach needs to perform at least four critical tasks - domain analysis, 
schema capture, implementation, and maintenance/evolution. This section describes these 
four fundamental tasks and some of the subtasks required to complete them. Each task is 
given a time estimate (in parentheses) for best, average, and worst case scenarios. 
Characteristics are given for each of the scenarios to illustrate and classify which of the 
scenarios a given project is likely to fall under. 

The traditional approach involves (at least) the following tasks. 

Task 1. Analyze the architectural design domain. In this stage the environment designer 
analyzes the design domain for which the design environment is to be built. The 
environment builder needs to ascertain the important aspects of the domain such as its 
standard design vocabulary, the design rules used in creating systems in this domain, and 
idioms and analyses that have been used successfully on similar systems built previously. 
In order to capture and express this domain analysis, the designer needs to either select 
an appropriate existing notation or create a new notation that direcdy reflects the 
concepts being captured. 

Best case scenario (~1 week): 
Well understood domain, environment analyst very familiar with domain, relatively 
homogenous design elements, existing design rules and analyses well documented, 
environment target-users enthusiastic about new tools. Easy integration with existing 
analysis and synthesis tools. 

Averag case scenario (~2 months): 
Complex heterogeneous domain, but reasonably well understood. Many existing 
design rules and heuristics, but they are not well documented, analyst familiar with 
domain but not necessarily domain expert, environment target-users ambivalent 
towards new tools. Existing analysis and synthesis tools present moderate integration 
challenges. 

Worst case scenario (~1 year or time to project cancellation): 
Complex, poorly understood, heterogeneous domain. Few existing (effective) design 
rules and heuristics, almost none of which are documented. Environment 
designer/builder not very familiar with analysis domain. Environment target-users 
actively hostile towards new tools. Analysis and synthesis tools either non-existent, or 
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available but running only on obsolete hardware (requiring significant porting or 
complex tool redesign). 

Task 2. Find or create a language and schema for capturing and expressing the design 
vocabulary, rules, and analyses (collectively called the design expertise) to be used in the 
environment. This schema will be used both to document the architectural style that this 
environment is being defined to support, as well as provide a blueprint for implementing 
the environment and associated tools. 

Best case scenario ("2 days): 

Environment designer can use existing language and/or schema with which he is 
already an expert and the selected notation provides a good match to design 
expertise to be captured. The person performing the modeling is also the person 
who performed the domain analysis, or has at least been an integral part of the 
analysis 

Averag case scenario ("3 weeks): 

Existing notation can be used to express design expertise schema, but match 
between notation and expertise to be expressed is tenuous and requires either 
significant effort to adapt the design expertise to the available notation, or the 
notation itself must be extended. Environment designer is familiar with the 
language/schema but not an expert at using it. 

Worst case scenario ("6 months or time to project cancellation): 

Unable or unwilling to use any existing Schemas or design notations. Decide to 
invent a new notation from scratch in which the design schema will be described. 
Designers) inventing notation and schema are inexperienced at creating such 
notations and schema. 

Task 3. Design, implement, test, and deploy the custom design environment. The cost and 
duration of this phase clearly has tremendous variability, depending on the power, 
capabilities, and polish demanded of the completed environment, along with the 
availability of appropriate reusable COTS components. This task basically includes all 
development costs and effort from the point where the desired design expertise and 
tools have been specified to the point where the environment is deployed and software 
architects are using it to design systems. 

The specific steps required to complete this task vary greatly depending on the 
requirements of the environment, the quality of the work done in tasks one and two, the 
availability of appropriate reusable components, and the experience of the developers. In 
most cases, however, at least the following steps need to be taken to complete this task. 

a) Define the requirements for the environment and tools based on the domain 
analysis and expertise capture completed in tasks one and two. 

b) Specify the architecture and tool integration framework for the environment. 
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c) Figure out how to represent the captured architectural design expertise in the 
environment and its tools. Steps (b) and (c) will probably need to be iterated 
multiple times. 

d) Implement and integrate the environment and tools. This may be primarily an 
exercise in finding and adapting a set of reusable components or, alternatively, 
this may involve building most of the environment's pieces from the ground up. 
As discussed in Chapter 5, this step will generally require the implementation of 
at least a design representation database, a graphical user interface, and a tool 
integration framework. Frequendy, many other pieces will also have to be 
implemented to support the three primary elements. 

e) Test and debug the environment. Iterate with step (d) as needed. 
f) Document and deploy to users. 

The precise duration and relative importance of each of these steps will vary from 
project to project, but they all require significant time, effort, and expertise to complete 
successfully. 

Best case scenario ("1 month for 1 developer): 
Small environment, COTS components available and used for most major parts of 
the system, COTS pieces integrate smoothly. Most analysis and synthesis tools are 
already built and need only be integrated with new environment, integration is 
smooth. Degree of polish and customization expected is relatively low. Expert 
developer who has built this kind of environment before and is reasonably familiar 
with all applicable COTS pieces. 

Average case scenario (6 months for 2-3 developers): 
Polished, robust environment required, some COTS components available, but 
significant portions of the environment have to be built by hand, some COTS 
components present significant integration difficulties. Significant portion of tools 
need to be built by hand or undergo difficult porting. Experienced developers, but 
not experts at building design environments. 

Worst case scenario (> 1 year for 5-10 (or more) developers, or time to project cancellation): 
Polished, robust environment required. Aggressive requirements. Few COTS 
components used (or even available). Many or most of the tools need to be built 
from scratch. "Not-invented-here" pervades development work, resulting in 
unnecessary "ground-up" development. Developers inexperienced and/or unfamiliar 
with the development domain. Poor analysis preceding development. 

Task 4. Maintain, update, and modify the deployed design environment to capture and add 
additional design expertise, add additional tools and analysis capabilities, or evolve the 
schema to adapt to a changing understanding of the design domain. 

Best case scenario (~1 day to 1 week for 1 developer): 
Simple change request that doesn't disrupt any fundamental design decisions, original 
developer is maintaining code and providing updates, automated regression testing 
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allows reasonable assurance that changes haven't introduced serious new bugs with 
minimal time required by developer. 

Averag: case scenario (lto2 months for 1-2 developers): 

Non-trivial change that requires rethinking of the original schema or design 
concepts. Schema and design expertise are hard-coded into design environment and 
distributed throughout the implementation so modifying them requires significant 
system archeology. Original developers are no longer maintaining the code. Little or 
no regression testing infrastructure to verify that changes won't disturb the rest of 
the system. 

Worst case scenario (> or> >2montbsfor 1 or more developers, or time to project cancellation): 
Change requires complete rethinking of design expertise schema, design rules, and 
vocabulary, all of which is poorly hard-coded into the system implementation and 
distributed throughout the code. Original environment developers have left the 
organization. Original design is poorly documented. Change may require capabilities 
that a COTS component can't provide, necessitating expensive work-around or 
replacement. 

Task 4 will be repeated as needed whenever updates or modifications to the system are 
required. 

Task 

(1) Domain Analysis 
(2) Schema Capture 
(3) Design, 
implement, test and 
deploy environment 
Cumulative time to 
initial deployment 

(4) Time required for 
environment updates 
and modifications. 

Approximate Time Required (in Engineer/Days, Weeks, 
Months, or Years) 

Best Case 
1 week 
2 days 

1 month 

" 0.1 years 
(1.4 months) 

1-5 days 

Average Case 
2 months 
3 weeks 

lyear 

1.25 years 

1-4 months 

Worst Case 
1+ years 

6+ months 

5+ years 

^6+yearsv/:;\v 

(if not cancelled) 

> or » 2 months 

Table 6.6.1: Breakdown of approximate engineer-years required to specify, design, 
build, and deploy a customized software architecture design environment 
using traditional ground-up approach. 

6.1.2   The Armani approach 

At a very abstract level, the four top-level tasks that an environment designer must undertake 
to build a customized software architecture design environment with Armani are the same as 
the top-level tasks required using the traditional approach. The specific sub-tasks required to 
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complete each of these top-level tasks, however, can vary dramatically between the Armani 
approach and the traditional approach. 

This section presents an analysis of the four top-level tasks required to create a custom 
Armani design environment along with a discussion of the key subtasks required for each of 
the top-level tasks. As in the previous section, each task is given a time estimate (in 
parentheses) for best, average, and worst case scenarios. Characteristics are given for each of 
the scenarios to help illustrate and classify which of the scenarios a given project is likely to 
fall under. 

Task 1. Analyze the architectural design domain to capture design expertise - design 
vocabulary, constraints, heuristics, and analyses - for the target domain. As in the 
traditional approach, the environment builder needs to discover and/or articulate the 
important aspects of the domain such as its design vocabulary, the design rules used in 
creating systems in this domain, and idioms and analyses that have previously proven 
helpful. The times and tasks required to do this in Armani are comparable to those 
required with the traditional approach. Armani does not eliminate the need to deeply 
understand a design domain before constructing automated design tools for that domain. 
Armani can, however, provide some assistance with this task by providing a framework 
for doing the domain analysis and a collection of extensible, generic analyses. 

Best case scenario (~1 week) 
Well understood domain, environment analyst very familiar with domain, relatively 
homogenous design elements. Existing design rules and analyses well documented, 
environment target-users enthusiastic about new tools. Easy integration with existing 
analysis and synthesis tools. Analyst experienced with using Armani. 

Average case scenario (~1 month): 
Complex heterogeneous domain, but reasonably well understood. Many existing 
design rules and heuristics, but they are not well documented, analyst familiar with 
domain but not necessarily domain expert, analyst familiar with Armani. 
Environment target-users ambivalent towards new tools. Existing analysis and 
synthesis tools present moderate integration challenges. 

Worst case scenario (~1 year or time to project cancellation): 
Complex, poorly understood, heterogeneous domain. Few existing (effective) design 
rules and heuristics, almost none of which are documented. Environment 
designer/builder not very familiar with analysis domain. Environment target-users 
actively hostile towards new tools. Analysis and synthesis tools either non-existent, or 
available but running only on obsolete hardware (requiring significant porting or 
complex tool redesign). Novice analyst. 

Task 2. Articulate the captured design expertise from the domain analysis in the Armani 
design language. This task can generally be done much faster with Armani than with the 
traditional approach because (1) much of the schema required for capturing architectural 
design expertise is already encoded in the Armani language, eliminating the traditional 
approach's subtask of creating such a schema, (2) the Armani language is explicitly 
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designed for capturing this type of architectural design expertise, and (3) the domain 
analysis was performed with this language already selected as a target, reducing the 
likelihood of mismatch (same as best case in traditional approach). 

Best case scenario (~0.5 days): 

Small domain, experienced Armani modeler, all vocabulary and design rules 
expressed directly in Armani, no mismatches between expertise to express and the 
Armani language used to express it. 

Averag case scenario ("2-5 days): 

More complex domain, relatively few design rules and analyses need to be written as 
external tools and linked into the environment. Domain modeler is familiar with 
Armani, rules. Minimal mismatch between expertise to express and Armani 
language/schema. 

Worst case scenario ("2-3+ weeks or time to project cancellation): 

Large, heterogeneous domain, many design rules and analyses need to be written as 
external tools and linked into the environment., novice modeler, significant 
mismatch between Armani language and expertise that needs to be expressed. 

Task 3. Design, implement, test, and deploy the custom design environment. The difficulty 
and time required to complete this task can vary widely depending on the sophistication 
and polish expected of the final environment. In general, however, performing this task 
with the Armani system provides a dramatic savings in time, effort, and cost over the 
traditional approach because the infrastructure needed for such an environment does not 
need to be built from the ground up. Further, a significant amount of the customization 
is performed by simply loading the design expertise captured in task 2 directly into the 
generic environment infrastructure. The specific sub-tasks required to complete this task 
with the Armani system are: 

g)   Load the design vocabulary, design rules, heuristics, and analyses captured in 
tasks 1 and 2 into the generic Armani design environment. This step makes all of 
these design elements available for use as design building blocks in the custom 
environment, 

h)   Configure the user interface to map icons to their underlying semantic 
representations. Optionally, customized editing dialog boxes can be created for 
editing specific types of vocabulary elements. 

i)    Write and/or link-in any external design tools (analysis or synthesis) to be used 
with the environment, 

j)   Test the environment. Many consistency checks are provided by the Armani 
infrastructure to minimize the difficulty of testing the environment, 

k)  Deploy to users 

As with the traditional approach's third step, the time, effort, and expertise required to 
complete this step varies widely depending on the richness of the tools that need to be 
written and the polish and customization desired in the user interface. 
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Best case scenario (~1 day fa 1 developer): 

Small, homogeneous design domain, small number of analyses defined directly in 
Armani or performed by existing tools that are easily linked in, experienced Armani 
developers, little customization required in the user interface. 

Average case scenario (1-2 weeks fa 1 developer): 
Heterogeneous style, non-trivial customization and polish required in the user 
interface. Some design tools need to be written from scratch, others need to be 
linked in, developers have familiarity with Armani but are not experts. 

Worst case scenario (2-4 months fa 1 developers, or time to project cancellation): 
Large, heterogeneous style, heavily customized and sophisticated user interface, 
many tools need to be written from scratch. Novice Armani developer(s), poor initial 
domain analysis. 

Task 4. Maintain, update, and modify the deployed design environment to capture and add 
additional design expertise, add tooling and analysis capabilities, or evolve the schema to 
adapt to a changing understanding of the design domain. Along with step 3, this is the 
step that provides a huge savings over the traditional approach. In Armani, many 
modifications and customizations can be performed by the end-user as his or her 
understanding of the domain and design issues evolves. Specifically, additional design 
expertise in the form of vocabulary, design rules, heuristics, and analyses can be added to 
the environment by the end-user, on-the-fly, directly through the design environment 
itself. Further, this additional design expertise can be packaged and provided to other 
environment users if desired. Tools can also be dynamically and incrementally linked 
into the environment. Thus the environment's original developer(s) can be completely 
removed from the loop for many required modifications to the environment, 
dramatically reducing the time to turn a proposed change into an environment capability. 

Best case scenario (~15 minutes fa end-user): 
User wants to add or modify a design rule, vocabulary element, or analysis. The 
change can be made by simply editing the appropriate schema element, after which 
Armani reconfigures itself with the new or updated design expertise. 

Average case scenario (1 hour to 1 day fa end-user): 

User wants to make a significant modification to the domain schema, requiring 
changes to or additions of multiple design vocabulary elements, rules, analyses, or 
linked in tools. Perhaps a relatively straightforward design tool needs to be linked in 
or written. 

Worst case scenario (1 or more weeks fa 1 ormore environmentdevelopers): 
Change requires complete rethinking of design expertise schema, design rules, and 
vocabulary, and/or significant modification to the user interface and linked-in design 
tools. Original environment developers may have left the organization. Original 
design is poorly documented. Change may require capabilities that a COTS 
component can't provide, necessitating expensive work-around or replacement. 
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This final step will be generally be repeated many times throughout a design environment's 
lifecycle as updates or modifications to the system are required. 

Table 6.2 summarizes the results of the Armani task analysis. Table 6.3 compares the results 
of the Armani task analysis to the results of the traditional approach's task analysis. 

Task 

(1) Domain Analysis 
(2) Schema Capture 
(3) Design, 
implement, test and 
deploy environment 
Cumulative time to 
initial deployment 

(4) Time required for 
environment updates 
and modifications. 

Approximate Time Required (in Engineer/Days, Weeks, 
Months, or Years) 

Best Case 
1 week 

0.5 days 

1 day 

" 8 days 

15 minutes 

Average Case 
1 month 
2-5 days 

1-2 weeks 

1.5 months 

1-8 hours 

Worst Case 
1+ years 

2-3+ weeks 

2-4 months 

-    :~JU25years■%■ 
(if not cancelled) 

1 or more weeks 

Table 6.2: Breakdown of approximate engineer-years required to specify, design, 
build, and deploy a customized software architecture design environment 
using the Armani approach. 

Task Approximate Time Required (in Engineer/Days, Weeks, 
Months, or Years) 

Best Case Average Case Worst Case 
Traditional Armani Traditional Armani Traditional Armani 

(1) Domain Analysis 1 week 1 week 2 months 1 month 1+ years 1+ years 
(2) Schema Capture 

2 days 0.5 days 3 weeks 2-5 days 
6+ 

months 
2-3+ 
weeks 

(3) Design, 
implement, test and 
deploy environment 

1 month 1 day lyear 
1-2 

weeks 
5+ years 

2-4 
months 

Cumulative time to 
initial deployment 

~1.4 
months 

~8 days " 1.25 
years 

" 1.5 
months 

~6+ 
years 
(if not 

cancelled) 

"1.25 
years 
(if not 

cancelled) 
• 

(4) Time required for 
environment updates 
and modifications. 

1-5 days 15 
minutes 

1-4 
months 

1-8 
hours 

>or» 
2 months 

lor 
more 
weeks 

Table 6.3: Comparison of approximate engineering time required to specify, design, 
build, and deploy a customized software architecture design environment 
using the traditional ground-up approach vs. the Armani approach. 
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6.2 Summary of task analysis and comparison of results 

Assuming that the case studies presented in the following chapters uphold these task 
estimates, this analysis strongly argues that Armani eliminates many of the difficult, time 
consuming tasks required by the traditional ground-up approach to developing custom 
software architecture design environments. Although the specific numbers used to estimate 
the duration of each of these tasks are only rough estimates, the exact time estimated for 
each task is not critical. The qualitative comparison between the two approaches is sufficient 
to support the main points of the argument. 

The primary insight to be gained from this analysis comes from the enumeration of the 
specific subtasks required to complete the top-level tasks using each of the two approaches. 
This detailed look at the specific tasks illustrates that Armani provides the greatest leverage 
in the implementation stage of environment creation. Armani also qualitatively changes the 
way in which expertise is captured (in the second stage), and the way in which an 
environment can be updated. In each of these stages, Armani not only reduces the number 
and difficulty of the tasks required to complete the stage, it changes who can complete the 
tasks. Specifically, Armani empowers its end-users to build and customize their design 
environments in a way that is very rarely found in design environments built with traditional 
approaches. 

There are at least two implications that follow from this analysis. First, by either eliminating 
or drastically reducing many of the most time consuming tasks required by the traditional 
approach (defining a schema for capturing design expertise, designing and implementing the 
environment and tools), Armani allows environment designers to create and evolve their 
design environments much more quickly than they can by building from the ground up. 

Second, Armani moves the bottleneck for producing an environment from implementation 
(the dominant timesink using the traditional approach), to domain analysis (the dominant 
timesink using the Armani approach). This is, in itself, an extremely valuable benefit. Armani 
allows environment developers to focus their effort and skills on figuring out whet domain 
expertise and analytical capabilities they want the tools to support, rather than how they will 
implement support for the expertise that they capture.. As a result, they can spend more of 
their time figuring out what their tools should do and less of their time designing and 
implementing the tools. 
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Chapter 7 

Structured Case Studies 

The previous chapter argued that, at a conceptual level, creating a custom software 
architecture design environment using Armani eliminates many of the difficult and time 
consuming tasks such a project traditionally requires. This chapter describes a series of case 
studies undertaken to determine whether the assumptions made in the conceptual analysis of 
the previous chapter could be realized in practice. 

As with the task analysis, these case studies seek first to demonstrate that the Armani 
approach can be used to capture design expertise at all, and second, to demonstrate that 
expertise so captured can be used to incrementally configure and customize the Armani 
design environment. Demonstrating these two capabilities provides a basic validation of the 
thesis that it is possible to capture a significant and useful collection of software architecture 
design expertise with a conceptual framework of design rules and architectural styles and, 
further, that this captured design expertise can be used to incrementally customize software 
architecture design environments. 

This thesis, however, claims only that it is possible to incrementally capture design expertise 
and configure custom design environments with the Armani approach. Arguing for the vale 
of the overall Armani approach also requires a demonstration that Armani is capable of 
capturing a broad variety of design expertise and that this expertise is powerful, non-trivial, 
and captured in such a way that it's useful in practice. 

To make this argument I used the Armani system to construct custom design environments 
for eight different architectural styles. The selected styles and the capabilities of the 
environments produced support the claim that the technique provides sufficient breadth, 
power, and incrementality. These case studies both argue for the validity of the thesis and 
demonstrate the utility of the Armani approach. 

7.1 Experimental structure 

The basic structure used for this experiment was to perform a series of case studies in which 
I constructed custom software architecture design environments for eight different archi- 
tectural styles (referred to as test styles). In each case study, I measured the time required to 
specify the style's design expertise and the time required to configure a design environment 
with that expertise (tasks two and three from the previous chapter's task analysis). In 
addition to the time required, I measured the number of vocabulary types defined, the 
number of design rules defined, total lines of code written or modified, and the number of 
visual shapes defined. The number of entities defined serves as a proxy for the size of the 
overall style specification effort. 
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Through careful selection of the test styles these experiments demonstrate the breadth, 
power, and incrementality of the Armani approach. The following criteria were used to 
select the test styles. 

Availability of a published style description. Each of the test styles specified in these 
case studies is based on one or more published descriptions of that style. These 
published style descriptions provide informal specifications of the styles' design 
expertise (vocabulary, design rules, and analyses). The rigor with which the publications 
define the styles, as well as the match between the Armani conceptual framework and the 
format used for expressing the style's expertise varied widely from style description to 
style description. All styles selected had to have a rich enough informal description of 
the style that the expertise it contained could be used as the basis for creating a 
compelling design environment. 

Using published sources as the basis for the styles provide three key benefits. First, 
starting with published sources provides a degree of external validation of the utility of 
the styles themselves. The design expertise embodied by these architectural styles has 
proven useful enough to somebody that it was worth capturing and publishing. 

Second, using published sources as a foundation leverages other people's expertise. By 
attempting to capture expertise that had been previously published, I did not need to 
become a expert in each of the domains for which I built a case study environment. I 
needed only to fully understand the published specification. Likewise, I did not need to 
find an expert in each of these domains who was willing to learn the Armani tool and 
participate in this experiment. Finding multiple such experts was impractical given the 
budget, time, and scope constraints of the dissertation research. 

Third, by using published descriptions of the target styles as a domain analysis, the time 
and effort required for the domain analysis task can be factored out of the case study 
experiments. As the previous chapter's task analysis indicates, Armani provides minimal 
leverage for completing the domain analysis step. Armani does not mitigate the 
environment designer's need to deeply understand the domain in which he or she is 
working. In these experiments the domain analysis phase consisted of finding 
appropriate published references, reading and understanding them deeply, and, if 
needed, discussing the published style specification with local experts. As a result, the 
metrics captured in these experiments reflect the time and effort required to create a 
custom design environment after the domain analysis has been completed. 

Breadth. Selecting an appropriately broad variety of architectural styles for the case studies 
is critical for arguing the generality of the Armani approach. The discipline of software 
architecture is fairly young. As a result, the field as a whole has not yet established a 
complete catalog of all of the interesting or commonly used architectural styles. The 
Shaw/Clements architectural style taxonomy [SC97], however, outlines an initial proposal 
for what such a catalog might look like. I used this taxonomy as a basis for selecting test 
styles because it provides a clean and broad overview of many frequently used 
architectural styles. The taxonomy defines six "toplevel" categories of architectural 
styles -dataflow, call-and-retum, interacting processes, data-centered repositories, hierarchical, and 
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data sharing. The authors augment this toplevel classification with more detailed examples 
of architectural styles that fit into each of these categories. Shaw and Clements claim 
that, though not exhaustive, these toplevel categories cover a significant portion of the 
commonly used architectural styles. 

To demonstrate the breadth of architectural design expertise that Armani is capable of 
capturing then, at least one test style was chosen from each of the six toplevel 
architectural categories described in the taxonomy. In evaluating potential test styles 
from each of these categories I also made an effort to insure that, when evaluated as a 
whole, the set of architectural styles I selected from each of the toplevel categories 
addressed a broad range of architectural issues and captured a broad range of 
architectural attributes. As a result, the eight case studies described in this chapter 
demonstrate that Armani is capable of capturing and leveraging a wide variety of 
architectural design expertise. 

Power. The power of the environments produced in these case studies varied significantly. 
For inclusion in these experiments, however, a published style description had to 
describe, or at least point the way towards, some compelling analytical or design guidance 
capabilities. To show the depth of the analytical power that can be included in an 
Armani environment, two of the styles (the Client-Server styles) were augmented with 
significant external analysis tools. This experimental approach demonstrates that an 
Armani environment can quickly and easily capture many forms of design expertise. It 
also demonstrates that significant, complex, modeling and analysis tools can be 
integrated with a customized Armani environment to capture and exploit design 
expertise that is not readily captured directly in the Armani design language. 

Incrementality. These experiments demonstrate the incrementality of the Armani approach 
on two levels. At a coarse level, the basic process of creating a custom environment is 
simply the incremental adaptation of a generic Armani environment by loading styles 
and other captured design expertise into the environment. In this way, all of the test 
styles selected demonstrate the incremental nature of the Armani approach. At a more 
fine grained level, two of the eight test styles were selected because they are natural 
extensions and specializations of other, more generic, test styles. These style speciali- 
zations were created by making incremental adaptations to existing styles so that the 
initial style's environment could capture additional design expertise. 

Using these criteria, I selected eight architectural styles to use as test cases. For each of these 
styles I built a custom Armani-based software architecture design environment and tracked 
the time, effort, and tasks required to create it. Specifically, I measured the time spent 
creating the style and environment (broken down into time to capture abstract design 
expertise and time to customize the visualization and tooling of the environment), the 
number of new vocabulary entities defined, the number of design rules defined, total lines 
of code written, and the number of custom shapes defined for use in the customized 
graphical user interface. 

At first glance, the fact that the creator of the Armani tool is also the person performing the 
case studies may cast doubt on the validity of the studies. This was, however, a reasonable 
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approach for this phase of the validation. Having one person who was already expert with 
the Armani system perform all of the initial case studies factors issues of learning curves 
and differences in ability between individual environment developers out of the experi- 
mental results. 

The case studies described in this chapter are only part of the overall thesis validation. 
Chapter 8 describes a set of "external" case studies in which people and organizations not 
associated with the Armani project used Armani to create their own software design tools 
and environments. The external case studies address the issue of whether people other than 
myself can effectively use the Armani tools and techniques. 

These experiments are primarily intended to demonstrate that the overall Armani approach 
is feasible. A secondary goal is to demonstrate that the environments produced can capture 
useful design expertise for a broad variety of architectural styles. Thus the variable being 
tested in these experiments is the range and depth of design expertise that can be captured 
and exploited with Armani, rather than the skill of the environment developer usine the 
tools. b 

7.2 Discussion of case studies 

This section presents a detailed discussion of eight case studies that I conducted. I present 
the case studies according to how they fit into the six toplevel style categories defined in 
[SC97]. I defmed at least one Armani style and environment for each of these six categories. 
For two of the categories I created a base style and then extended the base style to support 
additional capabilities with a more specific style. 

Each case study begins with an overview of the style it captures - its interesting aspects, the 
issues facing designers working in that style, its key design vocabulary and design rules, and a 
citation of the sources from which the style definition was extracted. This is followed by a 
discussion of interesting issues raised in the process of customizing the Armani system to 
work with the style in question. Each of the case studies includes a figure with a screen- 
dump from the custom environment and an overview of some of the important statistics 
for the case study and environment. 

7.2.1   Case study 1: a dataflow style 

For the first structured case study, I created a custom environment for the batch sequential 
architectural style. This style, which is popular for mainframe-based data processing applica- 
tions, captures a common approach to building software systems that repeatedly perform a 
series of operations over large sequences of data records. I based this style specification on 
the discussion of "Sequential Processing Program Design" in Larry Best's book Application 
Arcbaectme: Modern Large-Scale Information Processing [Be90]. Although Best's presentation of 
this style is somewhat informal, I found it straightforward to add the formality required by 
Armani to his style specification while retaining the style's basic concepts, vocabulary, and 
design rules. 
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Systemwide issues 

Conceptually, systems built in the batch sequential style consist of a set of data processing 
operation components that perform one or more operations on a series of data records, a set 
of input source and output sink components that handle system input and output, and a set of 
data stream connectors that define and manage the flow of data through the system. 

This structural breakdown provides a clean way for the architect to divide the functional 
processing needs of a batch sequential system amongst the data processing operation 
components. It also clearly identifies the dataflow paths through the system. These are two 
of the important system-wide issues that an architect working in the batch-sequential style 
must manage. Further style-wide design issues include: processing performance (both total 
system throughput and processing latency), design modifiability (how difficult is it to add, 
remove, or change the functional capabilities of the system, or replace an existing 
component with a component with different non-functional properties), data format 
compatibility (between components), connector interaction protocols, and error handling 
and recovery. 

The design information that architects and tools need to reason about these issues is stored 
in the properties and design rules of the style's vocabulary elements - component, 
connector, port, and role types. With this approach, design details are stored locally with the 
design elements that make up a system. The emergent properties of the system are captured 
by the design rules and analyses that evaluate the properties of the system's constituent 
elements to address the system-wide issues just outlined. 

Component issues 

One of the early tasks an architect must perform in designing systems in this style is to 
define a functional decomposition of the processing to be done. This decomposition divides 
the overall system processing into a sequence of discrete functions. These functions are then 
mapped to a set of data processing operation components that execute the requested functions. 
Architects can specify and evaluate individual data processing operation components for: 
functionality provided, persistence of state between records, processing latency and 
throughput, error handling policies, and data validation policies. All of these aspects of 
individual components are represented with property annotations on the data processing 
operation component type specification. 

Connector issues 

After the basic functional decomposition has been performed and the functional 
responsibilities have been assigned to components, it is necessary to connect those 
components by feeding the output of each data processing operation into the input of one 
or more subsequent processing operations. Alternatively, if the processing has been 
completed then the output needs to be written to the appropriate storage or output device. 

The basic connector used in this style is the data stream. All data stream connectors insure 
that data is delivered from an upstream component to a downstream component unmodified 
and in the order that it was received from the upstream component. Data availability is the 
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Batch Sequential Style 
Category: Data How 

Semantics Statistics 
Primary component types: 
- Data Processing Op 
- Data Input Source 
- Data Output Sink ... 

Primary connector types: 
- Data Stream 
- Fan Out Data Stream 

- Rendevous Data Stream ... 
Sample design rule: 
- All connectors must be 

Data Streams 

Total types defined: 29 
Design analyses defined: 3 
Time to define: 3.5 hours 
Lines of Armani code: 83 

Environment Statistics 
Total shapes defined: 14 
Customization time: 5% hrs. 
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Figure 7.1: Overview of the Batch Sequential Style and environment 

primary control signal used by data stream connectors to signal a transfer of control 
between components. 

Data stream connectors need to be able to handle large volumes of data flowing between 
components that can have highly variable processing rates. As a result, they must be able to 
buffer large amounts of data and adapt to differences in processing speed between the 
different components. Three further issues that connectors need to address in this style are 
(1) whether the components attached to the connector will be pushing or pulling their data, 
(2) how the connectors avoid or react to buffer overflows, and (3) what policy is used for 
aggregating or replicating data streams with multiple input sources or output sinks. 
Numerous subtypes of the data stream connector type, which address these issues in various 
ways, are provided as basic system building blocks. 

All three of these issues are captured in the properties of the connector types defined by the 
style. The style defines specific property types for describing push-pull behavior, buffer- 
overflow behavior, and data-replication behavior. It also defines a set of design rules that 
ensure that connectors and the components to which they are attached agree on these 
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protocols and behaviors. As a result, architects working in this style can explore their options 
with respect to these issues by adjusting the values of these properties on their connector 
and component instances and testing whether their proposals satisfy the style's design rules. 

Discussion and evaluation 

As Figure 7.1 indicates, the process of defining this architectural style and customizing the 
generic Armani environment to support it was quick and straightforward, requiring only 9.25 
hours of total development time. As mentioned earlier, this time measurement does not 
include the domain analysis effort (primarily reading and understanding Best's book) that 
preceded the style specification and environment development. 

As the previous sections describe, I was able to capture and represent a wide variety of 
design options for this style using only Armani's property, design rule, and type constructs. 
The ability to define enumerated property types proved very useful because many of the 
properties that I needed to capture were easily represented with a discrete and fixed set of 
possible values. Furthermore, it was straightforward to identify which combinations of these 
values across components and connectors were valid and which were invalid, and to wnte 
corresponding design rules to insure valid combinations. For example, enumerated 
properties capture whether data is pushed or pulled across port/role pairs and whether that 
pushing or pulling is active or passive. Likewise, enumerated properties are used to define the 
three basic ways that a connector can handle buffer overflow - by blocking, dropping 
received records, or crashing. 

Another finding from this case study was that the Armani design language proved 
remarkably effective at capturing the non-functional properties of an interesting set of 
connectors. The connectors in this style drive control flow with data flow, which is the 
opposite of traditional procedural connections. Further, they provide the ability to put 
multiple producers or multiple consumers on a single connection. Although I did not 
provide a formal behavioral protocol specification for the connectors, I was able to capture a 
wide variety of nonfunctional properties related to the connectors. I was also able to capture 
and enforce a few key aspects of the connector's communication protocol using enumerated 
properties and design rules/These aspects included ensuring appropriate push/pull and 
active/passive combinations between ports and the roles to which they were attached, buffer 
overflow policy, buffer sharing policy, transferred record format, and the model for handling 
multiple source roles that feed into a single sink (round-robin, rendezvous, or opportunistic). 

The most encouraging result from this case study is that it proved straightforward to 
represent all of these things directly in the Armani design language. I did not need to use 
external analysis tools, language extensions, nor other embedded languages within my 
Armani style specification. Nor did I run into any significant limitations with the design 
language itself. This finding is encouraging because designers working in this style can 
address non-trivial, useful, and broad design issues. 

7.2.2  Case study 2: a hierarchical style 

In the second structured case study, I created a style that captures the popular architectural 
abstraction of layers. This style, imaginatively called the layered style, is an example of a 
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Layered Style 
Category: Hierarchical 

Semantics Statistics 
Primary component type: 
- Layer Component 

Primary connector type: 
- Inter-layer Request 

Sample design rules: 
- synchronicity and protocols 

of attached ports and roles 
must match 

- requests can only be sent to 
"lower" level layers. 

Total types defined: 11 
Style-wide design rules 
defined: 3 
Time to define: 2.25 hours 
Lines of Armani code: 110 

Environment Statistics 
Total shapes defined: 6 
Customization time: 5 hours 
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Figure 7.2: Overview of the Layered style and environment 

hierarchical style in the Shaw/Clements taxonomy. I based this style on the high-level X- 
Windows architectural specification published in [HFB94]. Although it is used quite 
effectively in the design of the X-Windows system, the layer abstraction is also very general 
and broadly applicable. To take advantage of the style's generality I teased the fundamental 
"layerness" out of the X-Windows specification and used it to create a generic layered style. 

Style overview 

As Figure 7.2 details, the layered style is simple and straightforward. It has one primary 
component type - the layer - and one primary connector type - the inter-lap-request. All layer 
components have properties that indicate their level in the layer hierarchy, whether they can 
handle asynchronous requests, and whether they are multi-threaded. Layers also have a set of 
ports that receive requests from components higher in the layer hierarchy and a set of ports 
that send requests to components lower in the layer hierarchy. Inter-layer requests are binary 
connectors that send requests from a higher-level layer to a lower-level layer and return 
responses m the other direction. They can be synchronous or asynchronous, and they can 
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support many different request protocols. The universe of specific protocols accepted by the 
connectors can be extended as needed by the style's users. 

The layered style defines a relatively small number of design rules that serve three primary 
purposes. First, they insure that each layer component represents an abstraction boundary in 
the overall design. A layer component can encapsulate multiple subsystems that perform the 
actual functionality provided by the layer. The functionality provided by each of these 
subsystems can only be accessed outside of the layer, however, through the layer's port 
interfaces. Other layers are unable to interact directly with the subsystems encapsulated 
within a layer. These design rules encourage architects to package their capabilities in 
common groups whose implementations can be readily replaced or modified without 
severely disrupting the overall system's architecture. Likewise, if a designer simply wants to 
bundle a group of components that form a logical layer in the design, he can do so by 
bundling the components in a representation of the layer component and making sure that 
the appropriate bindings are made between the layer's ports and the representation's ports. 

The second purpose of the design rules is to constrain the topology of layered systems to 
insure that requests may only be sent from layers at a higher level of the hierarchy to layers 
at a lower level of the hierarchy. This rule insures that all requests will eventually "bottom- 
out" and be handled. It also eliminates circular dependencies between layers. The third 
purpose of the design rules is to make sure that the interacting layers agree on their protocol 
of interaction. This includes defining standards for message, request, and response structure 
and insuring agreement on synchronicity and handshaking issues. 

Discussion and evaluation 

The specific style and custom environment that I created in this case study is useful for 
broadly structuring and decomposing software systems. Specifically, it provides a way to 
carefully delineate where system capabilities are provided, how those capabilities can be 
accessed by the rest of the system, and how they can be composed. Due to its generic 
nature, though, the layered style does not, on its own, provide architects with a tremendous 
amount of design leverage. 

One of the key observations from this case study is that the real power of the layered style 
emerges when it is combined with other styles that need to support a layering abstraction. 
Many systems can be viewed as being created in both a layered style and another style. It is 
useful, for example, to think of an n-tier client-server system as being both a data-repository 
centric system and a layered system with each tier represented by a logical layer. Armani's 
support for subtyping of style specifications makes this type of composition both feasible 
and straightforward. The layered client-server style just described, for example, could be 
defined in Armani by simply declaring a new style called layered-client-server that is a subtype of 
both the layered style and the client-server style. The new style declaration can be defined with 
the single line: 

Style layered-client-server extends layered, client-server; 

which would result in the creation of a new style that includes the types, properties, design 
rules, and default structure of both the layered and client-server super-styles. By making the 
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layered style in this case study very generic I was able to both provide structure to systems 
that are primarily built as layers and also provide an orthogonal organizing principle for 
systems built in other styles that make use of the layer concept but do not rely on it as their 
fundamental building block. 

Attempting to define the layered style so that it would be useful both as a powerful stand- 
alone style as well as a "supplementary" style that could be combined with other styles 
introduces what appears to be a fundamental tension. Creating a highly composable style 
requires the style designer to introduce only a minimal set of types, properties, and design 
rules each of which are geared specifically towards capturing the design aspects that form 
the basis for the composable style. In general, the more minimal and focused the style 
specification, the easier it is to compose it with other styles. At the same time, however, the 
more rich, detailed, and fully specified the style, the more leverage that style (and its 
associated environment) can provide to the architects who use it. 

In order to explore the issues surrounding this design tension, I created a couple of 
variations on the semantic specification of the layered style. For the first variation I defined a 
relativeby rich and full-featured style specification for the layered style and built a custom 
Armani environment to support the style. In this version, the only vocabulary constructs 
available at the top level of system design are layer components and inter-layer request 
connectors. To further constrain the design space, the interaction protocols supported by the 
layers and inter-layer requests in this style are explicitly enumerated and fully specified. 
Architects are free to add representations to the layer components that define subsystems 
built in other styles, but they can not mix arbitrary types of components into the top-level 
system abstraction. 

This first version of the layered style provided a constrained design space and a sufficient 
selection of vocabulary to work as the basis for a layered style Armani design environment. 
This version was not, however, particularly effective as a generic representation of 
"layerness" that could be combined and composed with other styles. To address this 
limitation, I created a second variation on the layered style that was significantly more 
abstract and less constrained than the original layered style. In this version of the style, I 
defined very abstract and generic design vocabulary types for layer components and inter- 
layer connectors, along with a much less rigorous set of design rules to govern valid layer 
topologies. These vocabulary elements had significantly less semantic structure than their 
corresponding types in the original style. In return for giving up their semantic richness, 
however, they became much simpler and more readily composed with the component and 
connector types of other styles through Armani's subtyping constructs. 

Starting from the original layered style specification, I was able to experiment with a number 
of design alternatives and create the revised and more generic layered style with only about 
one hour of effort. The Armani language's modularity and incrementality proved 
instrumental in performing this style modification so quickly. I did not create a new 
environment for the second variation on the layered style because, on its own, the revised 
style provided significantly less leverage than the original layered style. Rather than form the 
basis for its own custom design environment, the second layered style variation is designed 
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to be used as a supertype and "rnixin" for other styles that need to capture some aspects of 
"layerness" in their systems. 

Overall, this case study provided three interesting results. First, it demonstrated that Armani 
can be used effectively to create design environments for a basic architectural style with 
broad applicability. Second, it illustrated the tradeoff that style designers need to consider 
between creating powerful styles and environments for basic styles and creating very abstract 
basic styles that can be readily composed with other styles. Finally, it provided useful insight 
into how a generic set of design principles can be abstracted from a very specific and highly 
constrained style definition. 

7.2.3  Case study 3: an interacting processes style 

In the third structured case study, I created an Armani style and custom environment for the 
C2 architectural style. The C2 style, described in detail in [Tay+96], is an example of an 
interacting processes style in the Shaw/Clements taxonomy. It provides a framework for 
building systems in which loosely coupled processes communicate by sending requests and 
notifications to other components through message bus connectors. [Tay+96] provides the 
following overview of the C2 style: 

"[The C2 style] is designed to support the particular needs of applications that have 
a graphical user interface aspect, but the style clearly has the potential for supporting 
other types of applications. ... [The C2 style] supports a paradigm in which UI 
components, such as dialogs, structured graphics models of various levels of 
abstraction, and constraint managers, can more readily be reused. A variety of other 
goals are potentially supported as well. These goals include the ability to compose 
systems in which: components may be written in different programming languages, 
components may be running concurrently in a distributed, heterogeneous 
environment without shared address spaces, architectures may be changed at 
runtime, multiple users may be interacting with the system, multiple toolkits may be 
employed, multiple dialogs may be active and described in different formalisms, and 
multiple media types may be involved... 

The new style can be informally summarized as a network of concurrent 
components hooked together by message routing devices. Central to the architectural 
style is a principle of limited visibility: a component within the hierarchy can only be 
aware of components 'above' it and completely unaware of components which 
reside 'beneath' it." 

As figure 7.3 indicates, I captured the C2 style in Armani with two key component types 
(C2 Component and C2 GUI Componeni), three connector types that define different kinds of 
message buses, twenty-eight supporting property, element, port and role types, and seven 
design analyses. After capturing the semantics of the style with the Armani design language, 
I customized the Armani environment to support the design visualizations commonly used 
for specifying systems in the C2 style. Capturing the key semantic properties of the C2 style 
in an Armani style specification and customizing the Armani environment to support the 
style proved to be a quick and straightforward task, requiring a total of only eight hours of 
effort. 
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Discussion and evaluation 

The C2 style is particularly interesting as an Armani case study because the C2 style 
developers have also constructed a comprehensive environment for designing and 
implementing C2 systems. This environment, called Arg) (pictured in figure 7.4) [RHR98], 
provides greater functionality than the comparable Armani environment. Specifically, it 
provides code generation capabilities, a software development process management tool, and 
a runtime environment. Armani is not designed to support these capabilities, so I did not 
include them in the Armani-based C2 environment. Because both Armani and Argo are 
capable of using the Acme interchange language [GWM97], however, it would be relatively 
straightforward to integrate Argo's other tools with Armani. I did not actually do such an 
integration for this case study but section 8.2.4 describes an external case study in which a 
member of the Argo development team integrated Armani with an Argo-based tool he 
developed. 

<C2 Style 
Category: 
Interacting Processes 

Semantics Statistics 
Primary component types: 
- C2 Component 
- C2 GUI Component... 

Primary connector types: 
- Message Bus 

- Notification Filtering Bus 
- Prioritized Filtering Bus ... 

Sample design rule: 
- All connectors must be 

message or filtering buses 
Total types defined: 33 
Design analyses defined: 7 
Time to define: 4 hours 
Lines of Armani code: 110 

Environment Statistics 
Total shapes defined: 5 
Customization time: 4 hours 
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Figure 7.4: Screenshot from the Argo design environment for the C2 style 

Although the Argo environment provides significantly more functionality than the Armani- 
based C2 environment, creating the Armani version required dramatically less time and 
effort than creating Argo. As Figure 7.3 outlines, the process of defining the C2 style in 
Armani and customizing the Armani environment to support the style took me only eight 
hours (again, this does not count time spent on domain analysis). For comparison, building 
the Argo environment has been an ongoing effort undertaken by multiple people over the 
past five or six years. Building all of the additional capabilities Argo provides (such as code 
generation and process management) into the Armani environment would clearly require 
significant additional effort. Even so, I was able to duplicate a significant portion of Argo's 
functionality (perhaps 30-50%) in the Armani-based C2 environment with a negligible 
percentage (<1%) of the development effort that went into Argo. Further, the basic 
Armani-based C2 environment can be significantly leveraged in creating or integrating such a 
set of complementary tools. 

The Argo environment also provides an interesting comparison with the Armani-based C2 
environment because, like Armani, Argo attempts to capture design expertise in a modular, 
composable way. Argo uses design critics, which are implemented as Java objects that observe a 
system design and the operations that are being performed on the design. These critics 
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notify the user with suggestions when his or her design strays from the goals embodied in 
the cntic. Because these critics are coded in Java and linked directly into the environment 
they are not readily modifiable by the architect using the environment. As a result it is 
significantly more difficult for end-users to evolve and modify their design critics in Argo 
than it is to make comparable modifications to design rules with Armani. 

One of the goals of this case study was to determine how well I could duplicate the 
capabilities provided by Argo's critics using Armani's type system, property construct, and 
design rules. To explore the answer to this question I found high-level specifications for 
eight Argo/C2 design critics in [RHR98] and attempted to express the expertise that these 
critics encapsulated in the Armani C2 style specification using only Armani's design 
language Six of these eight design critics proved to be readily captured in Armani. These 
critics checked for: interface mismatches, connections that bypassed the message buses, 
overuse of memory resources, poor utilization of reusable components, too many 
components at a single level of abstraction, and the use of components that would not work 
with the code generation tool. 

The critics that readily translated to Armani could all be cast as boolean questions 
answerable by a simple static analysis of a system's properties. Two of the critics, however 
did not meet this criterion. The first of these provided component selection guidance and 
the second flagged system configurations that were likely to prove difficult to test. In both 
cases, the critics made use of significant external knowledge (knowledge not captured in the 
system specification being analyzed) and encapsulated their expertise as an algorithm to be 
run over an architectural specification that did not readily translate to a simple declarative 
statement. These critics would be better captured as external tools to be linked into an 
Armani environment than as collections of types and declarative design rules. 

As a result, the critics experiments demonstrated that I can use Armani to recreate all of the 
critiquing capabilities found in the Argo-based C2 environment. Further, six of the eight 
critics were succinctly captured directly in the Armani design language and thus readily 
added by an end-user working with the customized Armani-based C2-environment. 

7.2.4   Case study 4: two data-centric repository styles 

For the fourth case study, I captured a pair of variations on the client-server architectural 
style. These styles were based loosely on the descriptions of client-server systems in [Ber92] 
and [OHE97]. The client-server style is widely used in modern database and management 
^formation systems. Variations on the three-tier client-server style are also currently popular 
tor building world wide web and intranet-based systems. Although it could be argued that 
these styles fit into any of a number of different categories in the Shaw/Clements taxonomy, 
they seem to fit most cleanly in the data-centric repository category. Systems built in this style 
generally focus on one or more datastores (called servers) that cJknt components can access 
and update. 

As the ensuing discussion will illustrate, this case study has (at least) two interesting aspects 
First it demonstrates both how a generic Armani style can capture a basic design concept 
(such as  client-serverness") and also how that style can be enriched and extended to capture 

148 



a much more complex, specific, and powerful style. Second, as a follow-on to the case study, 
a colleague integrated a powerful performance analysis tool with the Armani style, providing 
an initial proof of concept for Armani's tool integration capabilities. 

The Naive Client-Server style 

The first style that I created for this case study was the ncmx client-server style. As figure 7.5 
indicates, this style provides two component types - clients and servers. Server components 
generally supply a system's persistent data storage and heavy processing capabilities. Design 
issues captured as properties in all server components include the services provided by the 
server, whether the server is multi-threaded, and the maximum number of concurrent 
requests that the server can handle. 

Client components access the data stored in, and the services provided by, server 
components. Clients that provide a user-interface are represented by the special client 
subtype gii<lient. Generic client components can also provide a user interface but they are 
not required to do so. Computational tools whose primary purpose is to make use of the 
data or services provided by the server are generally modeled with the generic client 

Naive Client-Server Style 
Category: 
Data-Centric Repository 

Semantics Statistics 
Primary component types: 
- Naive Client 
- Naive Server 

Primary connector type: 
- Client Request 

Sample design rule: 
- No peer-peer connections: 

clients may only be connec- 
ted to servers and servers 
may only be connected to 
clients 

Total types defined: 8 
Style-wide design rules: 3 
Time to define: 1.5 hours 
Lines of Armani code: 39 

Environment Statistics 
Total shapes defined: 5 
Customization time: 1.25 hrs 
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component type. The design issues that all client and gui-client components capture include 
specifying the requests that the client needs fulfilled, whether the client blocks waiting for a 
response to a request, and whether the client provides a user-interface. 

Due to the simple communications model underlying the naive client-server style, I needed 
to define only a single type of connector for the style. This connector type, called dint- 
request, models a conduit through which messages from a single client are sent to a single 
server, and responses from that server are returned to the requesting client component. 
These connectors have only two roles, one for the client-side and one for the server side. 
The client-request type can be used to model both synchronous and asynchronous 
communication between the client and server, depending on the values assigned to various 
properties in the client-request type declaration. These connectors do not define the specific 
types of valid requests that can be sent from client to server. Instead, they are a neutral 
conduit through which all requests may pass. As we shall see with the three-tier extension to 
this style, this approach leaves style developers the option of creating new subtypes of the 
client-request connector type that handle only specific classes of client requests. 

These type declarations are supplemented by three simple design rules that guide architects 
in creating well-formed designs. In the naive client-server style, clients are allowed to 
communicate only with servers and servers are allowed to communicate only with clients. A 
simple design rule enforces this topological constraint. Likewise, a pair of design rules 
specify that all components in a naive client-server design must be either clients or server- 
typed components and all connectors must be client-request connectors. Although the naive 
client-server style is quite generic and simple, it provides a useful set of primitives for 
designing basic client-server systems. 

The Three-Tier-Client-Server style 

Chapter 2's introductory overview of the Armani approach describes some of the 
limitations of the naive client-server style and introduced the three-tier client-server style as an 
evolution of the naive client-server style. As table 2.3 described in chapter 2, the primary 
stylistic limitation addressed by the three-tier style is the need to separate the application- 
specific processing required by a system from its data storage and user-interaction 
components. To address this issue, I created a substyle of the naive client-server style called 
the three-tier client-server style. This substyle defines three new component types, one new 
connector type, and one additional style-wide design rule to guide architects in proper usage 
of the new types. 

The new component types defined in the three-tier style all extend component types defined 
in the naive client-server style. Two of these component types - data views and datastores - are 
highly specialized versions, respectively, of the gui client and server component types 
defined in the naive client-server style. The sole purpose of the data view component type is 
to provide a user interface to the system. Data view clients are explicitly not permitted to do 
any application processing. They are also the only components that are supposed to provide 
an interface to the user. Because of their limited functionality, data view clients are 
sometimes referred to as very thin clients. The sole purpose of the datastore component type 
is to provide persistent data storage. Like data views, datastore components are not allowed 
to perform any application processing. All application-specific processing functionality must 
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3-Tier Client-Server Style 
Category: 
Data-Centric Repository- 

Semantics Statistics 
Primary component types: 
- Data View Client 
- Application Logic Server 
- Datastore Server 

Primary connector types: 
- Application Request 
- Datastore Query 

Sample design rule: 
- No direct Data View to 

Datastore connections 
New types defined: 9 
Additional design rides: 1 
Time to define: 1.5 hours 
Lines of Armani code: 23 

Environment Statistics 
New shapes defined: 12 
Customization time: 2 hours 
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Figure 7.6: Overview of the Three-Tier extension to the Naive Client-Server style and environment 

be done by application servers, which are the third new type of component. Application servers 
are subtypes of both the client and server types defined in the naive client-server style 
because they simultaneously act as servers for the data view components and as clients of 
the datastore components. 

In addition to the three new component types, the three-tier style required the introduction 
of the new datastore request connector type. Datastore request connectors link application 
servers to datastores with a database query-and-update protocol and/or language. The 
generic client request connectors defined in the naive client-server supertype proved 
appropriate for continued use as communication channels between data view and application 
server components. 

Specializing the naive client-server style to work as a three-tier style required the addition of 
only one significant style-wide design rule. This rule refined the superstyle's connection 
restrictions that allowed only clients to be connected to servers and vice-versa. Specifically, 
the new rule requires that all connections between application servers and datastores be 
made with datastore request connectors. Adding this design rule and simply enforcing the 
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superstyle's design rules proved to be sufficient to capture the fundamental topological 
constraints of the three-tier style. 

The introduction of these new types and design rule provides the three-tier style with a 
standard way to modularize and partition functionality and responsibilities throughout a 
distributed client-server system. Modifications made to the application-specific processing 
capabilities of a three-tier client-server system can be isolated and updated without 
disturbing the system's user interface or it's core data storage components. likewise, the data 
storage or user interface technology can be updated or replaced without disturbing the core 
application logic. 

In addition to the controlled portion of this case study that I conducted, a colleague of mine 
integrated her performance analysis tool [SG98] with the three-tier style environment. 
Because I did not do this portion of the experiment and the person who did the work did 
not track her effort precisely, I did not include the time and effort required to integrate this 
tool in the measurements I took for these case studies. The process of integrating the 
performance analysis tool required, however, only a couple of days of effort. The integra- 
tion of this tool into the Armani environment significantly enhanced the utility of the 
completed environment by providing a queuing network-based static performance analysis 
of system throughput and latencies. 

The process of integrating this legacy tool into the Armani environment was relatively 
straightforward. At the Armani semantic level, the developer had to require that all request 
connections were asynchronous and add some additional properties to the component and 
connector types defined for the style. These properties held information about the rate at 
which the individual components would generate requests, how long a server took to 
respond to a request, the buffer size and delivery delay of each connector, and the rate at 
which requests were introduced into the system as a whole. An architect using this tool is 
required to provide these values for the individual connectors. The analysis tool then uses 
the values for each of the individual design elements and computes processing rate, 
throughput, and latency values for each element in the system when it is running in a steady 
state. This analysis can identify potential performance problems, bottlenecks, and overall 
system overload. 

Once the Armani style had been updated to provide the information that this analysis tool 
needed it took about a day to integrate the tool with the rest of the environment and have it 
providing useful analyses. This was a tight integration between the tool and the environment, 
with the analysis tool working directly on the Armani design representation. To further 
tighten the integration between the Armani environment and this tool, the integrator 
designed and coded a set of dialog boxes for dealing specifically with the performance- 
analysis related properties. Although this information was previously available in Armani's 
generic element workshops, the custom dialog boxes provided a more specific view of the 
performance attributes of both the individual design elements and the system as a whole. 
Creating these dialog boxes took less than one week of effort. 
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Discussion and evaluation 

Perhaps the most encouraging finding from this pair of case studies was how easily and 
effectively I was able to extend a very generic style (the naive client-server style) to create a 
much more focused and constrained substyle (the three-tier style). The three-tier style 
specification required minimal new Armani code to capture the additional vocabulary, 
constraints, and semantics of the substyle. The resulting substyle, however, provided a well- 
defined and quite specific framework for building three-tier client-server systems. This 
framework, the structural vocabulary, and the standard composition patterns of the three- 
tier style provide architects with significant design guidance and a leverage in creating three- 
tier systems. 

The informal experiment in integrating an external design tool demonstrated that although 
not as easy as writing a design analysis directly in the Armani design language, integrating 
external analysis tools is feasible and relatively time-effective. Integrating the performance 
analysis tool with the three-tier style environment provided a powerful analytical capability to 
the custom Armani environment with relatively low effort. 

7.2.5   Case study 5: two call-and-return styles 

In the fifth case study, I created a pair of architectural styles and environments to support 
the driver-subprogram style described in [Be90]. These styles are variants of the generic Call- 
and-Return styles described in the [SC96] boxology paper. As with the batch sequential style 
described in the first case study, Best's description of the driver-subprogram and it's db- 
driver-subprogram substyle is too informal to translate directly into Armani. To capture the 
styles' essential concepts and constructs, I therefore had to add some additional formality to 
the style specification. As in previous case studies, adding the required formality proved to 
be straightforward. Adding this additional rigor required that I explicitly specify numerous 
design decisions that were implicit in the style's informal specification. Rather than 
diminishing the value of these style definitions, exposing these implicit design decisions 
significantly clarified the architectural specification of the styles. 

The Driver-Subprogram style 

The first style that I created in this case study was the drker-subprogram style, outlined in 
Figure 7.7. The key observation underlying the driver-subprogram style is that the infrastruc- 
ture used in many large data processing applications is basically the same, though the specific 
tasks undertaken at each processing step vary from application to application. This is 
basically the same observation that underlies the batch sequential style described in section 
7.2.1. The primary difference between the batch sequential and driver-subprogram styles lies 
in whether they are data driven (batch sequential) or control driven (driver-subprogram), and 
whether the processing emphasizes modifications to a stream of data (batch sequential), or 
transactions that might need to access one or more databases (driver-subprogram). 

The first step for building systems in this style is to perform a functional decomposition of 
the system's processing tasks. This decomposition divides the processing into a set of 
discrete functions. These functions are then mapped to a set of subprogram components that 
execute the requested functions. Every system also has a exactly one primary driver compo- 
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Driver-Subprogram Style 
Category: Call and Return 

Semantics Statistics 
Primary component types: 
- Driver 

- Subprogram 
- Subdriver 

Primary connector type: 
- Processing Request 

Sample design rule: 
- A system has exactly one 

toplevel Driver component, 
but may have multiple 
Subdriver components. 

New types defined: 18 
Style-wide design rules: 3 
Time to define: 3.5 hours 
Lines of Armani code: 73 

Environment Statistics 
New shapes defined: 7 
Customization time: 3 hours 
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Figure 7.7: Overview of the Driver-Subprogram style and environment 

nent that triggers the execution of each of the subprograms. Unlike the batch sequential 
style, in which one specific sequence of operations are performed on all records, in the 
driver-subprogram style the driver can dynamically select which operation/subprogram will 
be performed at each step of the processing. 

The driver component sends its requests to each of its subprograms over processing request 
connectors. These connectors transport requests from a single driver to a single subprogram. 
All connectors in this style are processing requests (or subtypes of processing requests). The 
key connector-related design issues that arise when working in this style include specifying 
the request or requests that will be sent through the connector, and specifying whether the 
requests will be sent synchronously, asynchronously, locally, or remotely. The Armani 
processing request connector type makes designers address these issues by requiring that they 
specify the requests that each instance of this connector type will convey. The style also 
defines multiple subtypes of the processing request connector type that capture 
synchronous, asynchronous, local, and remote variations on the base type. 
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Although there can be only one primary driver component in a driver-subprogram system, 
the style allows a system to have multiple subdriver components. A subdriver component is a 
non-leaf, non-root node in the system's structure graph. From the perspective of the 
(sub)driver sending it a request, a subdriver component appears to be a subprogram. From 
the perspective of the subprograms that it invokes, it appears to be a driver. The subdriver 
component type subtypes both the driver and subprogram component types to provide 
these facades. It can be thought of as an abstract functional unit that drives other 
subprograms to compute its function. 

Given this palette of design rules, component and connector types, architects working with 
this style are able to address the key systemwide issues they face when building driver- 
subprogram systems. These issues include: establishing how functionality and responsibility 
are divided between different components, establishing appropriate modularity and 
abstraction boundaries to minimize the effects of anticipated system evolution paths, reuse 
of system infrastructure across similar systems, and the ability to cleanly separate business 
policies from system implementation. The Armani specification for this style provides both a 
framework for addressing these issues and a basic reusable design for building this type of 
system. 

The DB-Driver-Subprogram style 

The driver-subprogram style provides a standard infrastructure for a significant class of 
information processing applications. The style does not, however, provide any built-in 
structure for interacting with databases or handling transactions that persist across multiple 
requests to a driver's subprograms. To address this limitation, I used Armani's substyle 
construct to create a new architectural style called the db-drker-subprogram style that explicitly 
supports the specification of database and transaction management components and 
connectors. 

As Figure 7.8 indicates, the db-driver-subprogram style defines three new component types 
and two new connector types to support database access and complex transactions. All of 
these types are provided in addition to the vocabulary elements (types) defined in the driver- 
subprogram superstyle (which are also available when working in the substyle). The three 
new component types defined in the style are the database, dbaajsss-subprogram, and transaction 
manager types. As their name suggests, database components persistently store data that is 
shared by multiple subprograms (and even multiple systems). Db access subprogram 
components are subtypes of subprogram that support database queries and updates. 

The transaction manager component type is the most architecturally interesting of the 
additional component types. Every db-driver-subprogram based system has a single 
transaction manager component that manages access to the databases. The transaction 
manager receives requests to begin, commit, and abort transactions from the system's 
primary driver. It then limits and allows the db-access-subprograms to access the system's 
databases appropriately. Having a single transaction manager that controls access to all of 
the databases allows the driver to invoke multiple subprograms within the context of a single 
transaction. In many situations this approach significantly simplifies the programming model 
for creating drivers to solve specific business problems. 
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The style also introduces two new connector types, both of which are subtypes of the 
processing request connector type. Db-query-update connectors allow db-access-subprograms to 
access database components. As their name suggests, they support requests to both query 
and update the database. Although these connectors provide the ability to request access to a 
database, the requests will only be honored if the transaction manager has given the 
requesting component permission to access the database. The second new connector type is 
the transaction request. A system's driver component interacts with the transaction manager 
through a transaction request connector. The transaction manager also uses transaction 
request connectors to interact with a system's databases. 

The additional vocabulary and design rules introduced in this style proved effective at 
helping architects call out and explicitly make the key system-level design decisions they face 
when working in this style. The infrastructure carried over from the basic driver-subprogram 
style helps the architect address the issues that the substyle shares with the super style 
(determining the functional breakdown and processing requirements for a system's individual 
subprograms, separating business logic from infrastructure, etc.). The db-specific substyle 
also helps an architect address issues relating to the database structure of a system the 

DB-Driver-Subprogram Style 
Category: Call and Return 

Semantics Statistics 
Extended component types: 
- Transaction Manager 
- Database 

- DB Access SubProgram 
Extended connector types: 
- DB Query Update 
- Transaction Request 

Sample design rule: 
- A system has exactly one 

Transaction Manager that 
must be connected to all 
databases. 

New types defined: 12 
Additional design rules: 6 
Time to define: 2.0 hours 
Lines of Armani code: 63 

Environment Statistics 
New shapes defined: 12 
Customization time: 2 hours 
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Figure 7.8: Overview of the Database extension to the Driver-Subprogram style and environment 

156 



transaction models that the databases (and entire system) will support, the database query 
protocols supported by the individual databases and required by the subprograms that access 
them, transaction abortion and error recovery schemes, and modeling of system 
performance. As this length list illustrates, the extensions that the substyle adds to the base 
style provide significant analytical and modeling power. 

Discussion and evaluation 

Overall, this proved to be an informative and compelling case study with (at least) four 
interesting findings. First, I was able to use Armani to capture a pair of proven styles that are 
commonly used for developing large information processing systems. Second, I was able to 
take a fairly generic Armani base style specification and naturally extend it to capture 
significant additional design expertise in a substyle. Third, I was once again able to capture 
significant design expertise with relatively small Armani specifications. 

Finally, these styles (especially the db-driver-subprogram style) provide very detailed 
guidelines on how to structure systems. The styles provide not only vocabulary and design 
rules, but also a partially instantiated skeletal system structure to use as a starting point for 
building systems. An architect designing a system with these styles starts with a skeletal but 
extensible system structure already in place. The architect extends the skeletal specification 
by providing additional details about each of the core components and connectors. He can 
also add any additional design elements required by the system. As a result, the fact that the 
style binds many of the design decisions an architect faces in designing a system instance 
provides a great deal of design leverage at a relatively low cost. 

7.2.6  Case study 6: a data sharing style 

A traditional test of the expressive power of a programming language is to build a compiler 
both for and in that language. After creating a small, bootstrapping compiler in a different 
language, this allows all development of the new language processing tools to be done in the 
new language itself. For the final structured case study, I conducted a similarly recursive test 
with Armani. The Armani language is a design language rather than a programming 
language, so it is not appropriate for actually implementing a configurable design 
environment. I did, however, use it to create an architectural style that captures the 
vocabulary, design rules, and reference architecture for designing custom Armani environ- 
ments. This style, called the Armani enucronment style, is an instance of a data ^baring style, 
which is the sixth and final top-level category of the Shaw/Clements style taxonomy. This 
dissertation serves as the published specification for the Armani environment style. 

Style overview 

The Armani environment style captures and defines the core architectural concepts and 
structure used in creating the generic Armani environment, the constructs used to capture 
variability amongst different styles, and the mechanisms used to integrate external design 
tools with an Armani-based environment. Figure 7.9 outlines some of the key elements of 
the style and the standard, default structure it provides. Because Chapter 5 describes the 
design of the Armani environment in great detail, I will review only its fundamental design 
points here. 
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Armani Environment Style 
Category: Shared Data 

Semantics Statistics 
Primary component types: 
- Arch. Design Representation 
- Armani Parser 

- Armani Unparser 
- Armani Tool 

Primary connector type: 
- Armani Text Stream 
- Direct Design Rep Access 

- Design Rep Tool Interface 
Sample design rule: 
- Exactly one Arch. Design 

Representation component 
per system 

New types defined: 39 
Additional design rules: 3 
Time to define: 4.5 hours 
Lines of Armani code: 147 

Default Style Structure 

Design Parser 
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Figure 7.9: Overview of the Armani Environment Style 

All system instances defined in the Armani environment style must have exactly one 
ardntectwe design representation (ADR) component. This core component stores the architec- 
tural design representations that the environment's tools share, manipulate, and evaluate. The 
ADR stores the shared data that lies at the heart of the data sharing style. In addition to the 
Architecture Design Representation component, all design environment systems need to 
have exactly one Armaniparser component and one Armani unparser component. The Armani 
parser converts textual Armani representations into object-oriented design representations 
stored in the ADR. The Armani unparser reverses this process, converting a design stored in 
the ADR into a textual Armani description. These textual Armani specifications are used 
both for persistent storage of Armani designs and also as a mechanism for loosely 
integrating design tools through the interchange of Armani design descriptions. 

The fourth component that all Armani design environment systems need to include is a type 
manager^ that performs both type-checking and constraint management for the ADR. The 
Armani Type Manager is an instance of the Armani tod component type. All entities in an 
environment instance that can evaluate, manipulate, display, or generally operate on an 
Architecture Design Representation are modeled as Armani Tools. Three of the four 
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primary component types used in the Armani environment style (ADR, Armani Parser, and 
Armani Unparser) must be instantiated exactly one time in each design. Environments 
generally have multiple instances, however, of the Armani Tool type. The standard way to 
customize and extend the generic Armani design environment with additional capabilities is 
to add Armani Tool components to the system. In addition to the Acme Type Manager, two 
additional examples of Armani Tool instances include the standard graphical user interface 
that ships with the Armani system and the performance analysis tool we added to the 
Armani system in the three-tier client-server style case study described in section 7.2.4. 

The key component types used in this style are fairly straightforward. Much of the 
complexity of integrating a wide variety of tools to concurrently access and update a shared 
data repository (the ADR), however, is encapsulated in this style's connectors. The three 
primary connector types defined in this style are the Armani text stream, the direct design rep 
access, and the design rep tool interface. The Armani text stream connector simply streams textual 
Armani design descriptions from one component to another. These connectors are typically 
used by the system's parser and unparser to save and read Armani descriptions to the file 
system, or to transfer design descriptions between Armani Tools and the ADR. The direct 
design rep access connector provides an API that Armani Tools use to directly access the 
ADR. 

The third connector type, the design rep tool interface, is the most interesting and complex of 
the primary connector types. These connectors have two primary uses. The first use is to 
provide Armani Tools with a limited, but potentially more semanticalry rich, interface to the 
ADR The second use is to handle the interaction mismatch that arises when tool 
components were designed to use a different interaction mechanism than the API to the 
ADR. The connector that links Armani's standard Visio-based graphical user interface to the 
ADR is the canonical usage example for this type of connector. Design rep tool interfaces 
implement a very thin interface to the shared design representation that provides the Visio- 
based GUI with a relatively small collection of methods it can invoke on the design 
representation. All of these methods are directly related to the visualization and 
manipulation of design elements. The Visio-based GUI uses a COM-based integration 
mechanism [Box98] rather than the Java-based API provided by the ADR. To bridge this 
mechanism-mismatch, the connector provides one role with a COM interface and one role 
with a Java interface. The internals of the connector then provide the appropriate 
translations from COM requests to Java requests and vice-versa. 

Discussion and evaluation 

This case study proved to have three key interesting aspects. The first of these is that the 
style defines multiple rich and interesting connectors. These connectors, especially the design- 
rep tool interface connector, address some significant component mismatch problems and 
provide useful transformations between request formats and semantics. The ability to 
capture specific API's in a set of role types and then add those roles to connectors in 
multiple combinations allowed me to separate the API-level interaction from the semantics 
that the connector itself captured. This connector type proved very effective at capturing 
standard, abstract interactions between the components that could be instantiated as needed 
to connect components that used disparate protocols (such as Java vs. COM). 
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The second interesting aspect of this case study was that, out of the eight styles created for 
these structured experiments, this style is the most specialized and focused. It also has the 
most detailed semantic specification. The style is not intended to be broadly or generally 
applicable. It provides a framework for designing and developing a very specific set of 
systems that share a lot of common infrastructure, a standard set of component interaction 
mechanisms, and a common core data representation. In exchange for choosing to work in 
this constrained style, architects and environment designers free themselves from having to 
research and make a wide variety of basic design decisions. These decisions have already 
been made in a standard and proven way. As a result, the designers can focus their efforts 
and energy on adding the specific customizations they need to the partially instantiated 
framework. 

The third interesting aspect of this case study is that many of the types defined in the style 
correspond to concrete, implemented components. The configurable Armani environment 
described in this dissertation, for example, provides implementations for the architecture 
design representation, Armani parser, and Armani unparser components. It also provides 
implementations for the Armani text stream and direct design rep access connectors, as well 
as a number of instances of the design rep tool interface connector. Likewise, the COMand 
Java API port and role definitions model concrete, existing, implementation APIs. The 
application of Armani types to describe concrete, implemented, components demonstrates 
that the overall Armani approach is useful not only for blue-sky abstract modeling, but also 
as a technique for composing systems out of existing, proven systems. Although I did not 
create any significant generation tools to use with this system beyond the Armani 
environment itself, the highly focused, semantically rich nature of the style, combined with 
the existence of concrete component and connector implementations argues that it should 
be straightforward to do so. 

7.3 Experimental results. 

These case studies demonstrate that Armani is capable of capturing a broad range of 
interesting and powerful design expertise. In addition, the quantitative results of the case 
studies provide compelling evidence that Armani dramatically reduces the time, effort, and 
thus cost, of producing custom software architecture design environments. 

Table 7.10 provides a detailed accounting of the time and effort expended producing custom 
design environments for these case studies. The rows of the table capture the four 
fundamental tasks required to create a custom software architecture design environment 
(from the task analysis in Chapter 6). The columns represent the six toplevel categories of 
architectural style that the case studies captured. Entries in the table specify the observed 
time to complete each task for each of the case studies. As indicated earlier, the domain 
analysis task was factored out of the case studies. Likewise, only two of the case studies 
(data-centric repository and caU-and-retum) included significant evolutionary modifications to an 
existing customized design environment. As a result, the time required for evolutionary 
maintenance was only recorded for these two case studies. 
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The broad result that table 7.10 illustrates is that in each of the case studies I was able to 
specify and implement a style-specific software architecture design environment with no 
more than one full day's development effort. Compared to the time required using the 
traditional ground-up approach, which generally requires months or years to produce 
comparable custom tools, the Armani approach provides significant savings. 

The quantitative observations from these case studies corroborate the estimates of the time 
required to create such a set of environments using Armani. Table 7.11 compares the effort 
observed using Armani to construct the case study environments to the effort predicted by 
the previous chapter's task analysis for both an Armani-based approach and the traditional 
approach. In an attempt to make as fair a comparison as possible between the task analysis' 
estimates and the measured effort to develop the case study environments I assumed that 
each of the case studies fall into the "best-case" scenarios described in Chapter 6's task 
analysis framework. This assumption is supported by the facts that I am expert at using 
Armani, that the styles for which I was creating environments were all reasonably well 
defined, and that none of the environments created required significant integration with 
legacy analysis tools. 

Environment 
development 
task 

Toplevel style category 

•B 

Q en 

3 

.1 1 

-I5 

1 
1 is   5 

(1) Domain 
analysis Not tested Not tested Not tested Not tested Not tested Not tested 

(2) Schema 
capture 3.5 hours 1.5 hours 2.25 hours 3.5 hours 4.5 hours 4.0 hours 

(3) Environment 
implementation 3.0 hours 1.25 hours 5.0 hours 5.75 hours Not tested 4.0 hours 

(4) Evolutionary 
maintenance 4.0 hours 3.5 hours Not tested Not tested Not tested Not tested 

Table 7.10: Case study environment development effort log. Each cell indicates the time 
required to complete that stage of the case study. 
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Environment 
Development Task 

(1) Domain Analysis 
(2) Schema Capture 

(3) Environment 
implementation 
(4) Evolutionary 
maintenance 

Tmie ^qun-ed (m Engiheer/Da^s, Weeks, Months, or ^ftsars) 
Armani 

case studies 
(observed times) 

Not tested 
Mean: 3.2 hours 
Range: 1.5 to 4.5 hrs 
Mean: 3.2 hours 
Range: 1.25 to 5.75 hrs 
Mean: 3.75 hours 
Range: 3.5 to 4.0 hrs 

Armani task 
analysis 

(projections) 
1 week 

0.5 days 

1 day 

15 minutes 

Traditional approach 
task analysis 
(projections) 

1 week 

2 days 

1 month 

1-5 days 

Table 7.11: Comparison of observed environment creation time using Armani with the 
times projected by the task analysis in Chapter 6. All projections are for "best- 
case" scenarios described in Chapter 6's task analyses. 

The case study observations reported in table 7.11 argue strongly for the value of the 
Armani approach and the validity of the task analysis conclusions. The times projected in 
the task analyses are very rough estimates that are likely to have high variance in practice. 
The observed times for capturing a style's schema, however, were all at or below the 
estimated "best-case" time from the task analysis. The experimental numbers for the 
environment implementation task in the case study argue even more strongly for the 
effectiveness of the Armani approach and the validity of the task analysis (at least for the 
"best-case" version of the Armani task analysis). The observed environment implementation 
times were all significantly lower than the estimated best case, requiring only 3.2 hours on 
average per stylized environment. 

The times observed for the evolutionary maintenance task in the case studies were higher 
than the projected effort required in the "best-case" scenario with Armani, but still a major 
improvement over the projected time required using the traditional approach. A quick 
investigation into the case studies reveals, however, that the evolutionary maintenance task 
was only measured for two case studies, providing a limited sample. Further, the evolutionary 
tasks undertaken in these case studies extended significantly beyond the description and 
estimating basis used in the task analysis. Specifically, the task analysis assumed the need to 
make a small incremental change and projected that an experienced Armani user could make 
such a change in as little as 15 minutes. The evolutionary modifications actually undertaken 
in these case studies, however, involved much more significant style and environment 
modifications. Each of these modifications effectively defined a new architectural style that 
was significantly more rich than the original style, in one case more than doubling the 
vocabulary elements defined in the initial environment. An alternative way to account for 
these case study tasks is to look at them as a series of smaller incremental evolutionary 
changes to an environment rather than a single atomic modification. Using this approach, 
the time and effort required for the evolutionary modification task is in line with the 
projections of the task analysis as well as a significant improvement over the time required to 
perform this task using the traditional approach. 
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Chapter 8 

External Case Studies 

The experiments presented in the previous chapter demonstrate that it is possible to 
incrementally bvrild design environments for a broad variety of architectural styles using 
Armani. Further, they demonstrate that these rapidly-produced environments can encap- 
sulate significant design expertise and analytical capabilities. 

This chapter builds on these findings with a set of case studies in which software design 
environment developers who were not affiliated with me or my research group used Armani, 
or a portion of Armani, to build their own software architecture design tools and 
environments. These case studies, referred to as external case studies, illustrate how 
independent domain experts have used Armani to solve their design and tooling problems. 
In doing so they demonstrate that Armani can be used effectively by a variety of people and 
provide insight into Armani's strengths and weaknesses. 

8.1 Experimental structure 

In an unconstrained world, it would be desirable to extend the validation presented in the 
previous chapter with a set of controlled experiments in which real software architects used 
Armani to construct production-quality industrial design environments for their specific 
design domains. These experiments would be instrumented and controlled so that they 
yielded quantitative results that could be compared to the hypothesized values of the task 
analysis. 

Given the scope, budget, and duration of this thesis research, however, such a study was not 
feasible. As a result, I took a more qualitative approach with these case studies. Specifically, I 
provided practicing software architects and software architecture researchers with the 
Armani toolset and environment infrastructure and observed how they used the tools to 
model their software systems, build custom design environments, and solve the software 
design problems that they faced. At the conclusion of each of these case studies I did a 
post-mortem analysis of the case study and the artifacts the participants had developed. I 
also held a wrap-up discussion with the participants to discuss their overall experience with 
the Armani approach and to solicit comments and suggestions for improvements. As we will 
see, the open-ended nature of these case studies proved to be effective at highlighting 
Armani's capabilities, strengths, and weaknesses. 

The purpose of these case studies was to evaluate the effectiveness, power, and generality of 
the Armani system and the approach it embodies to rapidly developing custom software 
architecture design environments. Objectively determining the utility, polish, and power of 
the tools produced with the Armani system in each of the case studies was, however, explicitly 
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beyond the scope of this thesis research. To this end, the case studies attempted to answer 
the following three questions: 

1) Were the positive results of the case studies described in Chapter 7 due solely to the fact 
that the person conducting the case studies was also the primary developer of the 
Armani design language and design environment? Is it possible for other software 
architects and tool developers to effectively use Armani? 

2) Did Armani's representation of architectural designs and design expertise allow the case 
study participants to capture the important design vocabulary, rules, and analyses for 
their specific domain of expertise? What did they find straightforward to represent and 
what did they find difficult to represent? 

3) What aspects or features of the Armani environment did the case study participants find 
useful? What did they find unnecessary or counterproductive? 

To ensure that the case studies could provide useful answers to these questions I required all 
of the case studies to satisfy four criteria. First, each study had to have one or more 
practicing software architects or tool builders (other than myself) who wanted to use Armani 
to solve a real and specific architectural design or tooling problem. Target problems included 
specifying the architecture for a significant software system or family of systems, creating 
new architectural design tools, and extending existing design tools. Second, to provide an 
accurate approximation of the motivations underlying "real" software design and 
development projects, case study participants had to have a selfish interest in the success of 
their project. Third, the pool of case studies selected had to span a variety of design 
domains and problem. Finally, the organization or person participating in the case study had 
to be willing to work with research prototype tools and to make the results of their 
expenence usmg Armani available for publication in this dissertation. 

These criteria insured that the external case studies addressed this chapter's three key 
questions. Having architects and tool developers other than myself use Armani to solve their 
own design and tooling problems insured that the case studies addressed the first question. 
Having the case study participants use Armani to solve problems in their areas of expertise 
addressed the second question. Finally, requiring the case study participants to have a selfish 
interest in the success of their project motivated them to deeply explore and test Armani's 
capabilities and expose its weaknesses, addressing the third question. 

The Armani project was sufficiently well publicized to interest numerous people and 
organizations m using the tool and participating in the case studies. Four of these groups 
satisfied the case study selection criteria and formed the basis for the case studies described 
in this chapter. The four case studies selected included (1) modeling the Department of 
Defense's Global Transportation Network and building tools to assist the system's designers, 
(2) building a set of styles and an analytical tool suite for architectures that can be reliably 
and safely modified at runtime, (3) creating a software architecture design environment for 
analyzing a system's security and fault tolerance properties, and (4) integrating Armani with 
an architecture reconfiguration tool to handle architectural constraint specification and 
management. 
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Although the details of the experimental process undertaken for the case studies varied 
significantly from study to study, all of the studies followed the same basic steps: 

Step 1: I worked with the target organization to identify a design or tooling problem that 
their organization faced and hypothesized how Armani could address it. If Armani did 
not appear to be a good match for their problem, or other issues such as an inability to 
disclose experimental results made the case study appear unattractive then we stopped 
here. 

Step 2: After deciding that the case study was likely to be promising for both parties, I 
helped the case study participants install Armani at their site and together we charted a 
course for how they were going to use Armani to address their specific software design 
problems. Once they acquired a general understanding of how Armani worked, I tried to 
remove myself from the development process in order to let the users explore the tool 
and its capabilities on their own. 

Step 3: In each of the case studies, the Armani users eventually ran into certain roadblocks 
and sought my advice on how to proceed. I took a consulting role at this point and 
helped them determine how they could best take advantage of Armani's capabilities to 
overcome their immediate problem. Generally, this simply required a fresh perspective, 
but sometimes this process uncovered bugs in the design and implementation of the 
Armani design language and environment. I recorded the problems and issues raised 
and, when we discovered a significant bug in Armani, I tried to fix it and return a fresh 
release of Armani as soon as possible. This proved to be a valuable mechanism for 
rapidly improving the Armani language and environment. In most of the case studies, 
we repeated this step numerous times until an effective and working tool, environment, 
or design emerged. 

Step 4: Once the finished tool, environment, or design emerged from the case study, I 
conducted an informal post-mortem evaluation of the project. This evaluation examined 
Armani's role in the success or failure of the project, the capabilities that the participants 
were able to produce in the case study, the strengths and weaknesses of the Armani 
approach, and possible improvements to the Armani system. 

For each of these steps, I worked as a passive observer attempting to answer the questions 
laid out at the beginning of this chapter. In some of the studies, such as the effort to model 
the Global Transportation Network, I also took an active role in helping the study 
participants use Armani effectively. In other studies, such as the effort to integrate Armani 
with an architecture reconfiguration tool, I provided almost no guidance beyond some initial 
assistance in installing the Armani distribution. 

8.2 Case study details 

Having laid out their structure and goals in the previous section, this section discusses each 
case study in detail. 
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8.2.1   Case study 1: Modeling the Global Transportation Network 

In the first case study, two computer scientists from Lockheed Martin used Armani to model 
the architecture of the U.S. Department of Defense's Global Transportation Network 
(GTN). The Global Transportation Network, currently under development by Lockheed 
Martin and others, provides military logistics planners the capability to manage the 
movement of troops, cargo, patients, materiel, and vehicles throughout the entire Defense 
Transportation System (DTS). GTN tracks and schedules items moving through the system, 
as well as providing analysis capabilities to help logistics planners optimize system flow and 
resource utilization [LM98]. 

From a very high-level perspective, the baseline architecture for the GTN system consisted 
of a set of relational databases that keep track of all assets in the DTS, various analysis and 
scheduling tools that operate over these databases, a set of client application components 
that provide a user-interface to the system, a collection of data feeds bringing data into the 
system, and a proprietary middleware communications infrastructure that links these 
components together. Needless to say, GTN is a large, complex, system. 

Lockheed Martin, as the prime contractor for the design and development of GTN, was 
interested in exploring how architecture design tools such as Armani could assist them in 
their efforts to design, build, and deploy large, complex, and heterogeneous software 
systems. When we began this case study, a prototype of the GTN system had already been 
developed and fielded. This experience exposed some design problems and limitations with 
the original design that needed to be addressed before the final system was deployed 
worldwide. We decided to use Armani to analyze proposed architectural modifications that 
would address the design issues raised by experience with the initial prototype. In the interest 
of keeping research projects off of the critical path for GTN's development, however, we 
agreed that the Armani modeling was best done as a supplementary design exercise rather 
than the project's primary system design effort. 

To focus the scope and goals of the case study, we decided to attack two specific 
architectural problem that the GTN team faced. First, the GTN designers wanted to explore 
the implications of moving from a proprietary middleware communications infrastructure to 
a CORBA-based distributed object infrastructure16. Second, they wanted to explore the 
feasibility of migrating the client applications to Java-based applets that could be run in web 
browsers. To further refine the scope of the experiments, we decided to limit the initial 
investigation to determining how these changes would affect the performance and security 
aspects of the overall GTN system. 

The scope of the GTN project is quite large and the system is expected to evolve and 
remain operational for many years. We therefore decided that it would be worthwhile to 
create a custom style and set of modeling tools that can be reused as the system evolves. To 
this end, the specific tasks of this case study involved defining an architectural style, building 
custom analysis tools to evaluate design alternatives, and using the Armani infrastructure as 

CORBA (Common Object Request Broker Architecture) is a standard framework for implementing distributed 
objects. The full CORBA specification can be found at the Object Management Group's website, www.omg.org An 
introduction to CORBA for the lay-dummy can be found in [S098]. 
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an integration framework to leverage design tools created independent of Armani. Finally, 
after the design environment and style had been created, the Lockheed Martin scientists used 
the resulting environment to model and evaluate alternatives designs for the GTN system 
architecture. A brief overview and evaluation of this case study written by the participants is 
available in [KC98]. 

Creating the GTN style 

After installing Armani, the Lockheed Martin team developed a style to capture the 
vocabulary and design rules used in the GTN system. Because they had previously modeled 
the existing GTN system design with the Aesop design environment17 they decided against 
recreating the original GTN design in Armani. Rather, they decided to compare the 
performance and security properties of the new design to those calculated with Aesop for 
the original design. 

GTN is a highly heterogeneous system designed to use a variety of component and 
connector technologies. The architects captured the diverse types of design elements and 
design rules for composing them with the Armani design language. These design elements 
included GTN's core database, which would be carried over from the previous design, its 
new CORBA-based distributed object middleware infrastructure, and the Java applets that 
were to serve as the clients in the new GTN system architecture. To capture this design 
expertise, the Lockheed Martin team created a single Armani style that captured the 
description of all of these key vocabulary elements. Table 8.1 describes the six core 
component types and three core connector types defined in the Armani-based GTN style. 

Lockheed Martin GTN Architectural Style Overview 

Component Types: 
■ DatabaseServer- manages and provides system data 

■ Browser - client that provides the system's user interface 
■ WebSeruer - intermediary that routes applets and HTML pages from the 

DatabaseServers to the Browsers. 
■ GorbaGomponent - generic base type from which all Corba-compliant types are 

subtyped. 
■ CorbaJawApp - Java-based applet that interacts with CotbaGampormüs. 
■ GorbaSeamty - GTNs basic security manager type specification. 

Connector Types: 
■ HOP - mediates the interaction between a pair of GorbaComponerüs. 
■ JDBC - allows web servers and GjrbaSeatrity components to access DatabaseServers. 

■ HTTP - transfers requests between Browser and Webserver components. 

Table 8.1 Core component and connector types defined in the revised GTN style. 

17 For further information on the Aesop system please see section 3.1.1 in the related work chapter of this 
dissertation, or [GA095]. 
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Design rule specification in Armani 

Topology: 
Invariant Forail d : component in self.components | 

Forall c2: component in self.components | 
Forall conn : connector in self.connectors | 

(affac/?ed(c1,conn) and attached(c2, conn)) ■ 
(validCORBAconnectionfä, c2, conn) 

OR validDBconnection(C\, c2, conn)); 

Security constraint: 
Invariant Forall d : component in self.components | 

DeclaresType(c1, Webserver) -> 
Exists c2: CORBASecurity in self.components | 

Connecfecf(c1,c2); 

Discussion 

Specifies valid combinations of connected 
(component, connector, component) 
triples. The analyses validCORBAconnection and 
validDBconnection, defined elsewhere by the 
style, establish which components can talk 
to each other and via which connector 
types. Along with two other related 
invariants, this invariant ensures valid 
system topologies. 

System performance/load balancing: 
Heuristic Forall comp in self.components | 

comp.componentUtilization <= 0.5; 

Overall system performance: 
Heuristic self.responseTime <= 10.0; 

Ensure that all Webserver components are 
attached to one or more CORBASecurity 
components to support authentication, 
authorization, and auditing system-wide. 

Heuristic to indicate that no components in 
the system should be utilized more than 
50%, in the average case. The value of the 
componentUtilization property of each 
component is calculated by the external 
queuing network-based performance 
analysis tool. 

Heuristic that suggests the overall system 
response time should be less than 10.0 
seconds. 

Table 8.2 Selected design rules from the GTN architectural style 

Architectural analyses 

Specifying the GTN style in Armani provided a basis for modeling and analyzing the GTN 
system. To extend the utility of this model, the Lockheed Martin scientists linked a 
performance analysis tool into the GTN-customized Armani environment to analyze certain 
performance characteristics of the GTN system. This tool, described in [SG98], uses 
queuing networks to evaluate the flow of messages and requests through a system. 

To support the performance analysis tool, the component and connector types in the GTN 
style were annotated with a few additional properties, such as the latency expected in 
connector types and the request response time expected for components. Using this 
approach, an architect specifies the performance characteristics of a system's individual 
components and connectors working in isolation. These values can be obtained either by 
instrumenting and measuring the element in question, if the concrete implementation of the 
design element is built and available for testing, by providing estimates of expected 
performance, or by setting performance requirements for a design element that is yet to be 

168 



built. The performance analysis tool then uses the individual component and connector's 
performance information to compute the throughput, latencies, and potential bottlenecks 
for the entire system as a whole. 

The Lockheed team successfully used the performance analysis tool to compare the 
performance properties of the old design to the performance properties of the proposed 
CORBA-based revisions. They also compared the performance properties of various 
architectural design alternatives for the revised GTN architecture. This analysis helped them 
rule out some of their proposed architecture modifications and fine tune the more 
promising design proposals (see [KC98]). 

Estimating and evaluating the performance of a revised GTN system architecture was only 
part of the goal of the case study. System security (authorization, authentication, audit trail, 
etc.) in a defense system such as GTN is a critical concern for the system's designers and 
users. Moving from the proprietary middleware infrastructure of the previous design to the 
standard CORBA-based middleware infrastructure of the proposed design was only possible 
if doing so did not violate the system's security integrity. 

The Lockheed Martin system modelers did not have a tool available to quantitatively analyze 
system security as they had done with the performance analysis. As a result, they were forced 
to take a different approach to using Armani to reason about security issues in their GTN 
designs. The approach they chose was to encode well known architectural patterns and best 
practices for building secure systems in the GTN style's vocabulary and design rules. This 
allowed the architects to demonstrate that they were using a well known and proven 
approach to creating secure systems, as well as providing visibility into the specific ways that 
GTN architectures addressed their security requirements. 

The specific architectural pattern used to insure security in the revised GTN system design 
proposals required one or more GORBA Security components to mediate the interactions 
between the GTN system's key components. Not surprisingly, requiring the CORBASecurity 
component to take such an active role in all transactions introduced a number of 
performance issues. The quantitative performance analysis tool integrated with the GTN- 
specific environment helped to address this problem by allowing the GTN architects to 
quickly experiment with the performance and security tradeoffs of multiple designs. This 
combination of quantitative design analysis tools, design patterns, and best practices allowed 
the Lockheed Martin team to build an effective and useful custom architectural design 
environment. 

Evaluation 

By using Armani to model a complex, heterogeneous style with real industrial applicability, 
this case study provided a useful validation of the overall Armani approach. The study 
provided three specific encouraging findings. First, after a few iterations the Lockheed 
Martin scientists were able to concisely specify both the GTN style and the GTN system 
architecture. Second, Armani and it's Acme subsystem proved an effective framework and 
infrastructure for integrating architectural design tools. Third, the environment designers 
were able to use the design expertise that they captured with the Armani design language and 

169 



through the linked-in tools to perform useful analyses of the GTN system's performance 
and security 

Although the case study was an overall success, it illuminated two challenges facing the 
Armani approach. The first of these issues is that although Armani can provide significant 
leverage when used properly it does not relieve its users of the need to be skilled modelers 
and architects. This is especially true of those using Armani to specify architectural styles 
and create custom design environments, rather than simply using a custom Armani 
environment created by somebody else. The Lockheed Martin scientists had to iterate 
through multiple design alternative before finding an effective way to represent GTN's core 
vocabulary and design rules. Although the structure Armani provides appeared to assist 
them in this process, it still required significant intellectual effort to deeply understand the 
important issues in the GTN design. 

The second issue was raised by one of the Lockheed Martin scientists participating in this 
case study. He found the declarative nature of Armani's design language challenging to take 
advantage of and use to its full potential. Specifically, he found it difficult to make the 
conceptual leap from specifying how a component should perform its task (as a programmer 
does) to simply declaring the desired structure, vocabulary, and design rules of an 
architectural design or style. This struggle was most apparent in the difficulty he had in 
specifying the design rules that defined topological and interface constraints. In the initial 
iteration he created unnecessarily complex analyses to verify interface matches. With a little 
guidance from me, however, he was able to rephrase these analyses by simply placing a few 
short design rules (on the order of 1-2 lines of code each) into the appropriate type 
definitions. Eventually, he acquired an appreciation for the simplicity of this approach, but 
getting to this point required a nontrivial amount of training. 

Epilogue 

The Lockheed Martin architects seemed to be satisfied with the modeling tools that they 
built on top of Armani and felt that the tools ended up providing them with some useful 
analytical leverage. It is, however, unclear how much effect their architectural analysis had on 
the eventual evolution of the GTN architecture. It does not appear that the tools they built 
have made the transition from an interesting research project to daily use within Lockheed 
Martin. Their experience with Armani and its associated performance analysis tool were, 
however, apparendy successful enough that the tools were included in an internal Lockheed 
Martin follow-on project to continue pursuing the use of architecture design and analysis 
tools. 

8.2.2   Case study 2: Building an analytic tool-suite 

In the second case study, a computer scientist at the Software Engineering Institute (SEI) 
and a graduate student in Electrical and Computer Engineering at Carnegie Mellon 
University used Armani to define an architectural style called MetaS and to create a tool suite 
for analyzing system designs done in the MetaS style. The new style used the Sinplex 
architectural style [WS97, Sha96] and Honeywell's MetaH architecture description language 
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Figure 8.3 Simple MetaS architecture illustrating generic ARC representation 

[Ves94] for its conceptual foundation. As the project grew, the developers also extended 
some of these analytic tools to work with other, more general, architectural styles. 

The MetaS architectural style 

The MetaS architectural style supports the safe, online upgrade of software components in 
mission-critical, real-time systems. The key technical concept supporting MetaS's safe run- 
time upgrade capability is the use of Analytkolty Redundant Components, or ARCs. An ARC 
consists of four subcomponents. Three of these subcomponents, called variants, provide 
redundant implementations of the component's functionality with different non-functional 
properties. The fourth subcomponent, called the DecisionUnit, monitors the output of the 
variants and selects the results of one of them for propagation to the parent ARCs output 
interfaces. Figure 8.3 provides a graphical depiction of a generic ARCs substructure. This 
diagram is based on the graphical depictions the case study participants used to describe the 
MetaS style's ARCs. 

ARCs can have up to three variant subcomponents - an experimental variant that represents 
the least-proven version of the component, a baseline variant that represents a more proven 
but not necessarily bulletproof version, and a safety variant that represents the most reliable 
version of the component available. These three variants, along with the DecisionUnit, work 
together to ensure that the safety of the overall system is not compromised by any 
undiscovered bugs that a system upgrade might have introduced. 

Although an ARC may contain multiple variants, precisely one of each ARCs variants is 
preferred at any given moment. As long as the preferred variant's results are within the range 
of acceptable output values its results are propagated to the ARCs output port or ports. If, 
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however, the preferred variant's results stray outside the range of acceptable values then the 
ARCs DecisionUnit subcomponent can over-rule the preferred variant and switch to an 
alternative variant. At this point, the alternative variant selected becomes the new preferred 
variant. Because the MetaS style is intended for real-time, mission-critical systems this 
switching has to be performed while the system is running and without violating any of the 
system's real-time requirements. MetaS' ability to safely upgrade software components comes 
directly from the interactions of these four ARC subcomponents and their ability to do this 
real-time component switching. 

As suggested by figure 8.3, the case study participants chose to model ARCs in Armani by 
creating an ARC component type. The ARC component type contains a representation with 
the three variants, a DecisionUnit component, a set of connectors to link the variants to the 
DecisionUnit, and appropriate bindings between the ports of the outer ARC and it's inner 
variants and DecisionUnits. Which variant is preferred is specified by a property placed on the 
DecisionUnit subcomponent. 

The MetaS toolkit 

After capturing the MetaS architectural style in an Armani specification, the case study 
participants built a set of tools for analyzing MetaS system designs. This toolkit provided 
analyses for insuring data format consistency throughout a MetaS system, analyzing the 
impact of design modifications, and maintaining configuration consistency constraints A 
brief overview of each of these analytical capabilities follows: 

Insuring data format consistency. The MetaS style provides a collection of properties, 
design rules and analyses for maintaining consistent data formats across all of a system's 
connected components. These properties, design rules and analyses provide a mechanism 
by which architects can specify the preconditions, postconditions, and obligations that 
ports and roles place on the data flowing through them. This capability was implemented 
entirely with native Armani constructs. As a result, the style developers were able to 
leverage Armani's type and constraint management system and provide this verification 
capability with minimal effort. 

Impact analysis. The effects of modifying one aspect of a software system frequently 
ripple throughout the rest of the system in unexpected ways. To address this issue, the 
MetaS tool builders developed a tool to track dependencies throughout a system and 
analyze the impact of modifications to the system. Known dependencies are specified by 
annotating a MetaS system description with dependency properties. The style and tools 
support various types of dependencies, such as dataflow dependencies (e.g. preconditions, 
postconditions, and obligations), implementation dependencies, timing dependencies, etc 
The impact analysis tool is capable of extrapolating from explicitly specified 
dependencies and inferring implicit dependencies to evaluate the effects of proposed 
changes. 

The case study participants implemented the impact analysis tool as a collection of 
properties, design rules, and design analyses written in Armani, augmented with an 
anafysis tool written in Java and linked into their tool suite through Armani's external design 
analysts construct. The decision to supplement the native Armani with an external Java- 
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based tool was made based on efficiency concerns. When they implemented a simplified 
version of this analysis using only native Armani analysis functions they found that their 
implementation suffered from combinatorial explosion problems. The general 
quantification algorithms used by the Armani system simply considered too many 
alternatives as the systems grew large. To increase the efficiency of the analysis they re- 
implemented it directly in Java using the Armanilib's API. Explicitly specifying the 
analysis algorithm in Java increased the efficiency of the analysis by allowing the tool 
builders to use domain-specific knowledge to carefully prune the impact analysis search 
tree. As a result, they were able to significantly reduce the number of possibilities that the 
analysis had to consider. 

The Armani design language's declarative nature allows an architect to specify whet an 
analysis should calculate but it does not support the ability to carefully tune how that 
analysis performs the calculation. This experience with the MetaS impact analysis 
illustrates some of the inherent limitations of a purely declarative language and why it is 
important to be able to augment such a language with algorithmic specifications. I will 
discuss the implications of this approach on system performance and analysis 
development effort in greater detail in Chapter 9. 

Maintaining configuration consistency constraints. The third key analytical capability 
provided by the MetaS tool suite is the ability to discover and maintain configuration 
consistency constraints. In a MetaS architecture, a corfgurauon is defined as a system and a 
specification of which variants are preferred for each ARC. A single system architecture 
can therefore have many different configurations, some of which will likely be valid and 
some of which will likely be invalid. Furthermore, a system's configuration can change 
while the system is executing if one of the ARCs changes its preferred variant. 

Because some system configurations may be invalid, it is important to be able to detect 
invalid configurations and prevent the system from attempting to transition into them. 
The MetaS run-time environment is designed to detect errors in individual ARCs and 
change the preferred variant for that component accordingly. Much of MetaS' power and 
utility comes from this observe-and-repair approach. This approach does, however, have 
its limitations. For example, it is possible that the variant selected to replace the failing 
variant will itself cause the system to go to an invalid configuration. 

To address this problem, the MetaS run-time infrastructure needs to be able to verify that 
it is not trying to move the system to an invalid configuration. This check can be 
performed at run-time, just before the ARC switches its preferred variant. Because MetaS 
is designed for real-time-mission critical systems, though, this check must be very fast. 
Performing an on-line change impact analysis and verifying that all architectural 
constraints are satisfied is impractical for arbitrarily complex architectures. Although these 
analyses are relatively quick to perform at design time, Armani can not guarantee that they 
will be completed in a fixed number of milliseconds, as the MetaS runtime infrastructure 
requires. The MetaS tool suite avoids this problem by performing a static design-time 
analysis on system specifications to determine which configurations are valid and which 
are invalid. The results of this analysis are be cached by the running system so that 
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verifying the validity of a proposed configuration change is a fast, simple, cache-lookup 
operation. 

The MetaS tool suite developers implemented such a configuration consistency analysis 
tool. This tool tests all possible system configurations to determine which ones satisfy its 
design rules and data-format consistency checks. Unlike the other two analytical 
capabilities built for the MetaS tool suite, the consistency analysis was implemented as an 
independent tool that operates on Armani design representations through the ArmaniLib 
API. Once the analysis is complete, the tool annotates the Armani system with a property 
describing the system's valid configurations. To operate efficiently, this tool, like the 
impact analysis, had to be able to prune the configuration evaluation search tree. As a 
result, it was best implemented as an external tool rather than a design analysis captured 
with the Armani predicate language. 

In implementing these three analytical capabilities, the tool developers realized that only the 
configuration constraint management analysis was specific to the MetaS style. The data 
format consistency and impact analysis capabilities were relatively generic and could be 
applied to systems built in other styles, provided that they had some of the characteristics of 
the MetaS style, such as dataflow-based connectors. Based on this realization, they chose to 
use a two-tiered approach to implementing the analyses. Specifically, they divided the MetaS 
style into two separate styles - a base style that contained the generic design analyses imple- 
menting the data format consistency and impact analyses, and a substyle (the MetaS style) 
that defined the MetaS-specific vocabulary and the interfaces to the configuration constraint 
analysis. Their experience with this approach argues favorably for Armani's tight integration 
of the style construct with its type system. By using subtyping with the style specification 
they were able to create a reusable collection of generic design analyses without any 
detrimental affect on the MetaS-specific style or the tool suite's capabilities. 

Evaluation 

Overall, this case study makes a strong argument for the claim that people other than myself 
can use Armani to capture powerful design expertise. The MetaS tool developers pushed 
heavily on the limits of what the Armani language, type system, and built-in analysis 
capabilities could represent and check. The use of Armani's representation construct, for 
example, to capture multiple variants of an ARC's lower-level design was an innovative use 
of the language for capturing a fundamental architectural concept. The developers also 
pushed on the use of external design analyses to extend the language's analytical capabilities. As 
a result, they were able to create an architectural style (the MetaS style) and tool suite capable 
of performing compelling, non-trivial analyses on designs done in that style. Furthermore, 
the results of these static, design-time analyses could be carried over to the MetaS run7time 
environment to guide MetaS' real-time dynamic reconfiguration and fault recovery. 

Their experience implementing these analyses indicates that the Armani approach provides 
the ability to succinctly express complex analyses with Armani's declarative language while 
still allowing a tool developer to write more efficient forms of those analyses if and where 
required. The developers were able to capture all of the expertise and analyses they needed 
directly in the Armani design language. To address efficiency concerns, however, they re- 
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implemented two of these analyses directly in Java and provided interfaces to the analyses 
through Armani's external design analysis construct. 

As in the GTN case study, this experiment revealed that tool developers vary widely in their 
skill with using declarative languages. Once again, one of the participants in this study had a 
difficult time making the leap from specifying how a design rule should be enforced to simply 
specifying inhat the design rule was so that the Armani constraint manager could enforce it. 
Interestingly, the other primary participant in the study immediately picked up on the 
benefits of the declarative approach and used it to great effect, writing a remarkable number 
of small, useful design rules and analyses very quickly. The full implications of this case 
study with respect to the value of the declarative approach to design specification are 
unclear. Three lessons do, however, seem clear. The first is that the learning curve for using 
Armani effectively varies significantly between individuals. The second is that the declarative 
model is not an immediate and intuitive match to the way that all software designers model 
their software. The third is that the declarative approach can be very effective once an 
architect becomes familiar with it and adjusts his or her design technique to take advantage 
of its strengths. 

A final observation from this case study is that it took significantly longer than the other 
studies. The development described here took a team of two people working part-time 
about five months to complete. There were a number of reasons for the extended duration 
of this study. First, the participants were not sure what they wanted to accomplish at the 
beginning of the study. They used the toolkit as a platform for experimenting with 
numerous possibilities. Second, they were not sure how they would go about accomplishing 
it. Again, the Armani infrastructure provided them with a testbed for exploring different 
approaches. Finally, the timeline for their project extended for a full year, so they were more 
concerned with fully exploring alternative analytical options than they were with simply 
building a tool suite quickly. The process of developing the MetaS style and its associated 
tool suite was therefore highly iterative and experimental. Armani's lightweight incremental 
design model proved to be very effective for rapid experimentation and prototyping of 
design and tooling ideas, providing a good match for the needs of the MetaS tool 
developers. 

Epilogue 

At the time of this writing, the participants of this case study are still actively extending their 
tool suite and exploring ways in which they can use the tools. They had, however, 
successfully used their tools to model and analyze two architectural systems. The first system 
was a research control-system project designed to control two carts with inverted pendulums 
that the controller had to prevent from falling. The second system was a portion of the 
avionics system from an F/16 fighter jet. In each case, the tools that they created were able 
to analyze the systems for reliability and fault tolerance properties, as well as evaluate run- 
time configurations to insure that the system did not attempt to reconfigure itself into an 
invalid configuration while it was running. Both of these projects were demonstrated at a 
Defense Advanced Research Projects Agency (DARPA) conference in the summer of 1999. 

The case study participants are still using Armani to experiment with various analyses. The 
tools will be used as the basis for one of the participant's doctoral thesis. Once they have 
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completed their experiments they intend to package and distribute the tools for general use 
by the software development community. 

8.2.3   Case study 3: Security and fault-tolerance evaluation with DesignExpert 

In the third external case study, a team of computer scientists from Key Software 
Corporation [Key99] used the Armani infrastructure to build a software design environment. 
This environment, called DesignExpert [WMK98], provides an integrated suite of tools for 
graphically editing architectural system designs and analyzing their fault-tolerance and 
security properties. 

Unlike the previous case studies, the Key Software tool builders did not take advantage of 
the complete Armani system to build their custom software architecture design environment. 
Rather, they used Armani's design representation and analysis capabilities as an integration 
framework to tie together three existing design tools they had in various stages of 
development. The Key Software team chose this approach because they needed a way to 
integrate their existing analysis tools to form a common design and analysis environment 
without having to rebuild the tools from scratch. These design tools included a fault- 
tolerance analysis tool (called FTA), a security analysis tool (called SA), and a graphical 
architecture design editor (called GADE). The Armani design representation and analysis 
infrastructure provided a common design representation on which these tools could operate 
and through which they could share the results of their analyses. 

Another difference between this case study and the two discussed previously is that I took a 
very hands-off approach on this project. Although I provided some initial guidance in using 
Armani to help get their project underway, most of my interactions with the Key Software 
team after the initial startup phase simply involved fixing Armani bugs they uncovered. The 
fact that this project was successful with very little guidance from me argues for my claim 
that people other than the me can use Armani to solve real problems. 

To provide a common design representation for the various analysis and display tools of the 
DesignExpert environment, the Key Software team created an Armani style that captured 
the core semantic structures used by the environment and its constituent tools. Figure 8.4 
outlines the core elements and properties captured in the DesignExpert style. As the figure 
indicates, the DesignExpert style stretches Armani's original intention of handling only 
software architectures by defining types to represent hardware components and connectors. 

The analysis tools integrated into the DesignExpert tool suite require a system designers to 
specify a mapping from a system's Software Processes to its Hardware Processors. Because Armani 
does not provide built-in support for specifying this kind of mapping, the tool developers 
used Armani's property construct to capture the mapping. The DesignExpert environment's 
external analysis tools were then able to read and evaluate these system-wide properties and 
perform their analysis. 

This core DesignExpert style served as an integration standard for three architectural design 
and analysis tools. The first of these tools, FTA, evaluates the fault-tolerance properties of 
system designs. FTA first does a Monte-Carlo simulation that exposes the effects of 
individual component failures and the probabilities that these individual failures will 
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propagate and cause systemic failure. The results of these simulations are used to estimate 
system availability, Mean Time To Failure (MTTF), Mean Time Between Failures (MTBF), 
and Mean Time To Repair (MTTR). After completing one or more of these simulations, 
FTA provides a critique of the system's overall fault-tolerance and makes recommendations 
on ways in which the reliability of the system can be improved. If necessary, the tool also 
suggests additional simulations that should be run to improve the accuracy of the estimates. 

The second analysis tool integrated with the DesignExpert environment is the Security 
Assistant (SA) tool. SA uses an expert-system to critique system designs, expose security 
flaws, and highlight places where the security requirements of a system are unlikely to be 
met by a proposed design. Like the FTA tool, SA provides architects with useful analytical 
capabilities and operates directly on Armani design representations. 

The third tool that DesignExpert provides on top of the Armani infrastructure is an 
architectural visualization and editing tool (called GADE) that allows designers to graphically 
construct and edit system designs. GADE is tightly integrated with the Armani semantic 
representation, as well as the FTA and SA tools. As a result it supports animated visual- 
izations of the FTA's Monte-Carlo simulation as well as the results of the SA's security 
analyses. 

Evaluation 

The DesignExpert team's need to capture the mapping between software and hardware 
architectures illustrated the limitations of encoding important semantic concepts in 
properties rather than as first-class Armani language constructs. Specifically, using properties 
to encode the mapping from software entities to the hardware entities on which they execute 

DesignExpert Architectural Style Overview 

Component Types: 
■ Hardware Processor - models physical processors in a joint hardware/software system 
■ Software Process - models a process running on a Hardwire Processor 

Connector Types: 
■ Network Communication Channel - models physical networks of Hardware Processors 
■ Message Passing Channel - models message passing channels between Software Processes 

Properties: 
■ Failure, repair, and replication rates are provided for all components, connectors, and 

systems 
■ Number of failures tolerated for each replicated ensemble of components and 

connectors 
■ Failure model assumed for each component (crash or byzantine) 
■ Security policies and requirements for each component, connector, and system 
■ Mapping of software components to hardware components (captured via properties) 

Figure 8.4 Summary of DesignExpert architectural style [WMK98]. 
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works smoothly when an environment's analytical capabilities are encoded primarily in 
external analysis tools. If, on the other hand, the tool developers had written their analyses 
directly in the Armani design language, then specifying the design rules to manage and 
constraint these mappings could have become unwieldy as the number of components and 
connectors in a system grew large. 

In this case study, however, the important analytical capabilities provided by DesignExpert 
came from its analysis tools rather than its built-in design rules. As a result, the property- 
based mapping proved an appropriate choice for this case study. The case study did, 
however, expose some significant limitations with this general approach to defining map- 
pings. Experience with this case study and, to a lesser degree, with the case studies described 
in Chapter 7, indicates that a first-class mapping construct would be a useful addition to the 
Armani design language. To address this need, a group of researchers at Carnegie Mellon are 
currently exploring ways to add a native mapping construct to the Armani language. For the 
purposes of this dissertation, however, this effort should be considered "future work." 

Overall, this case study successfully illustrated Armani's utility as a platform for creating and 
integrating architectural design and analysis tools. The DesignExpert developers found it 
straightforward to capture and represent the architectural features, characteristics, and 
properties required by their analysis tools with an Armani style. Having captured this 
expertise, the DesignExpert team was able to integrate their analysis tools with the Armani 
infrastructure to create a powerful design environment that supports two important types of 
design analyses - fault-tolerance and security - and a variety of interesting design 
visualization capabilities. Further, although the bulk of the work done in this case study 
involved building custom design tools on top of Armani, the Armani design language 
proved sufficient for, and effective at, capturing the important semantic concepts needed to 
support the external analysis tools. 

Epilogue 

The DesignExpert tool was handed off from its developers at Key Software to the Rome 
Air Force Research Labs. A group within Lockheed Martin's research organization also 
acquired the tool and integrated it into a prototype suite of Acme-based architectural 
specification and analysis tools. It is unclear how extensively the tool is currently used inside 
Rome Labs or Lockheed Martin. The tool builders at KeySoft, however, reported that they 
were able to use Armani successfully for modeling the fault-tolerance and reliability expertise 
that they needed to capture for the project. They also reported that Armani's simple and 
straightforward design and implementation allowed them to quickly prototype and build 
their tools. 

8.2.4   Case study 4: Dynamic, run-time, architectural reconfiguration 

In the previous case studies the participants followed the general approach outlined in this 
dissertation to create a custom Armani software architecture design environment. In this 
fourth and final case study, I describe how a software architecture researcher at The 
University of California at Irvine (UCI), took a different approach to incrementally 
customizing a set of design tools with Armani. Rather than using the entire Armani 
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infrastructure as a basis for creating a custom design tool, he linked just the Armani parsing, 
design representation, and constraint management subsystems into his own design 
environment and toolset. In doing so, he demonstrated that the Armani infrastructure is 
sufficiently modular and decomposable that selected pieces of it can be reused to build 
design tools that extend beyond the original scope of Armani. 

The environment developed at UCI and used as a basis for this case study is called 
ArchStudio [OMT98]. ArchStudio provides a design environment for representing and 
displaying architectural designs (through its Argo subsystem [RHR98]) as well as a 
component called the Architecture Evolution Memoir (AEM) that controls the dynamic 
reconfiguration of system architectures. Software architects can use ArchStudio to design 
software system architectures and to dynamically modify the architecture of running systems 
created with the environment. 

Prior to this case study, ArchStudio was designed exclusively for use with the C2 architectural 
style [Tay+96], also developed at UCI. Recognizing the need for a more general architectural 
modification tool, we decided to explore whether Armani would be an appropriate platform 
for building a similar but more generic tool for dynamic architectural reconfiguration of 
software systems. It quickly became apparent that a complete rebuild with Armani was 
unnecessary. Although Armani's flexible GUI and user interface were appealing, the real 
leverage that Armani could provide would come from the reuse of its design representation 
and verification infrastructure. It was also apparent that Armani's ability to represent a broad 
variety of architectural styles and perform generic architectural constraint management 
would be a valuable addition to ArchStudio. Therefore, we decided to integrate Armani's 
parsing, design representation, and constraint management subsystems with ArchStudio. 

Because both ArchShell and Armani are fully compliant with the Acme architecture 
interchange standard [GMW97], integrating them was quick, straightforward, and relatively 
easy. Conceptually, as Figure 8.5 indicates, the integration required only the addition of the 
Armani infrastructure (parsing, design representation, and constraint management 
components) to the ArchStudio environment, the introduction of an Acme connector to 
connect Armani to ArchStudio's AEM component, and the definition of a basic and 
extensible Armani style for representing ArchStudio designs. The Acme connector used is 
simply a stream that carries textual Acme descriptions of the proposed architectural 
modifications from the AEM to Armani. Armani converts the Acme descriptions into 
Armani architectural specifications and evaluates the proposed modifications to see if they 
are consistent with the system's declared architectural style(s) and instance level design rules. 
After this evaluation is complete Armani returns either a success message or an error 
messages indicating where and why the proposed modifications violate the design rules of 
the system or its styles. 

This integration allowed the combined ArchStudio/Armani environment to verify that 
proposed modifications to the running system did not violate the constraints of that 
system's architectural style or styles. By performing this check after a user or a tool requested 
an architectural change but before the change was actually implemented in the running 
system, the updated environment was able to catch architectural mismatch problems before 
they corrupted the running system. Armani's flexible and incremental language for 
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Figure 8.5 Simplified architectural view of ArchStudio's integration with Armani 

expressing design rules also significant expanded the scope and variety of design constraints 
an architect could express in his or her ArchStudio-based design specification. 

Evaluation 

This case study was a resounding success. Adding the Armani core design representation and 
constraint management infrastructure to ArchStudio substantially improved the ArchStudio 
environment, providing significant additional functionality and power in exchange for only 
minimal effort on the part of the tool developer. Further, the integration of Armani's 
constraint management system into ArchStudio was done extremely quickly, the entire 
process requiring less than one week's effort. 

The task of expressing ArchStudio's core concepts in an Armani style was straightforward 
and quickly handled, requiring only about two days worth of work. The ease with which the 
core concepts embodied in Armani meshed with ArchStudio was very encouraging, 
demonstrating the flexibility and power of Armani's basic model for representing software 
architectures, architectural styles, and design rules. 

In addition to illustrating the flexibility of Armani's core constructs, this case study 
demonstrated that Armani's modular architecture allows tool developers to selectively and 
incrementally reuse specific pieces of the Armani system. As a result, Armani's support for 
incremental development extends beyond the ability to customize a generic Armani design 
environment. Armani also allows design tool and environment developers to extract, extend, 
and reuse the pieces of Armani that they find useful for meeting their specific tooling needs. 
Although Armani's constraint management system, for example, was not originally designed 
to handle dynamic run-time constraint checking, this capability was easily created by 
combining Armani with ArchStudio. 
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The Acme architectural interchange format was one of the key aspects that made this 
integration so easy. By providing a common representation for architectural specifications, 
along with a way to embed each tool's specification details in this common representation, 
Acme makes it straightforward to loosely couple architectural design tools. For the purposes 
of this case study, a loose coupling between the tools was sufficient to create the desired 
functionality in the combined environment. 

Epilogue 

The tool created in this case study proved to be very effective for defining and managing 
constraints on the run-time evolution of software architectures. The tool was successfully 
demonstrated at a large DARPA-sponsored conference in Jury, 1999. Although it is unclear 
how or if the tool built in this case study will be used outside of a research environment, it is 
sufficientyl powerful and useful to be a key element of the system that the UCI researcher 
built to demonstrate his doctoral thesis. 

8.3 Summary and discussion 

At the beginning of this chapter I laid out three questions that I hoped to answer with these 
external case studies. In this section I evaluate the overall results of the case studies and 
discuss the answers they provided to these questions. The first question was: 

1) Were the positive results of the case studies described in Chapter 7 due solely to the fact that the 
person conducting the case studies was also the primary developer of the Armani design language 
and design environment? Is it possible for other software architects and tool developers to effectively 
use Armani? 

The fact that the participants in these case studies used Armani to create a wide variety of 
interesting and useful design and analysis tools clearly indicate that it is possible for people 
other than me to effectively use the Armani design language and environment. Although I 
provided the case study participants with varying degrees of assistance to get them started 
with Armani and teach them how to use the tool, in each study the participants did the 
critical modeling, design, and toolbuilding work. The case studies were all a resounding 
success with respect to this question. 

Having established that it is possible for people other than me to use Armani, the second 
question explores how well Armani meets the needs of custom design environment builders: 

2) Did Armanis representation of architectural designs and design expertise allow the case study 
participants to capture the important design vocabulary, rules, and analyses for their specific 
domain of expertise? What did they find straightforward to represent and what did they find 
difficult to represent? 

The results of the case studies provided a very positive answer to this question. One of the 
basic findings from the studies was that Armani's core concepts are surprisingly flexible and 
powerful. Participants in the case studies captured a broad variety of design vocabulary, 
design rules, analyses, and architectural styles with Armani. The nature of the expertise, for 
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example, captured in the GTN case study was significantly different from the expertise 
captured to support ArchStudio's dynamic architectural reconfiguration style. 

Likewise, the tools and environments created in the case studies encapsulated a wide variety 
of analytical capabilities. The fact that each of the environments or tools created in these 
case studies solved a real problem faced by software architects further strengthens the 
argument that the study participants captured real, useful, and non-trivial expertise with 
Armani. 

One unfortunate finding was that there was a wide variance in the ease with which individual 
tool and environment developers were able to use Armani's declarative design language. Of 
the seven primary participants in these case studies (other than myself), two people picked 
up the power of the declarative approach right away and were able to use it to great effect. 
Two other people had a significant difficulty making the jump from specifying how to 
maintain a design rule, as they would in an imperative programming language, to simply 
specifying ishat the design rules were that they would like maintained. The experience of the 
remaining three participants fell somewhere in between these two extremes. As a result, the 
primary finding about what was difficult to represent with Armani was not an issue of what 
it was that the participants were trying to represent so much as who it was using the tool to 
represent it. 

Therefore, the basic answer to the second question was that the case study participants 
generally found it possible to use the Armani design language to represent a broad variety of 
design expertise. The third question followed-up on this result by asking: 

3) What aspects or features of the Armani environment did the case study participants find useß? 
What did they find unnecessary or oomterpmductke? 

The most interesting finding related to this question is that in these case studies Armani's 
configurable graphic environment did not prove to be a critical feature. Rather, the case 
study participants found that Armani's semantic design representation, conceptual 
framework, and tool integration capabilities were more important than its GUI. This finding 
was somewhat surprising because my initial investigation into Armani's requirements, 
revealed that the need for a configurable GUI was high on the list of potential Armani users' 
needs. 

There are at least four explanations for this finding. The first explanation is that the external 
case studies we undertook were not representative of the general target audience for 
Armani. The fact that we only conducted four case studies, and that the participants in three 
of these case studies already had existing graphical design editing tools that they wanted to 
integrate with Armani argues for this explanation. The second explanation is that Armani's 
core semantic and tool integration infrastructure was much more robust than its 
configurable GUI, especially for the earlier case studies. Developers' tendency to quickly 
discard software components that they perceive as buggy argues for this explanation. The 
third explanation is that a configurable GUI provides a snazzy demonstration for Armani, 
but that the real leverage Armani provides its users comes from its role as an integration 
framework and its ability to capture, model, and enforce design expertise. Experience 
working with the case study participants argues for this third explanation. The fourth 
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explanation is that the tools that the case study participants were integrating with Armani 
provided their own user interfaces and they needed only Armani's representation and 
analysis capabilities. This was the case with the C2 and DesignExpert case studies, but not 
with the other two case studies. Overall, the evidence does not strongly support any of these 
explanations exclusively. Rather, I suspect that this finding is best explained by a 
combination of all four of them. 

Another surprising finding from the case studies was the participants' willingness to drop 
below the level of the Armani design language and extend Armani's built-in design analyses 
with complex analytical functions written in Java. I had expected that most of the 
participants would want to work directly in the high-level declarative Armani design language 
if at all possible and only write new low-level analyses if absolutely necessary. "What I found 
instead was that about half of the study participants preferred to capture only the basic 
vocabulary specifications and design rules in the Armani design language and then write 
their complex Java-based analytical tools to access the Armani design representation via the 
ArmaniLib's API. 

The sample size is too small to draw general conclusions about how tool and environment 
developers will divide their development efforts between the Armani design language and 
the ArmaniLib API from these findings. It does, however, argue, that Armani's clean and 
coherent API for external tools is an important feature of the overall Armani system that 
environment and tool developers are likely to use frequently. 

Overall, the case studies successfully demonstrated the utility and power of Armani, as well 
as its applicability to a wide variety of architectural styles and tasks. 
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Chapter 9 

Discussion and Evaluation 

The case studies presented in the previous three chapters demonstrate that the Armani 
project was broadly successful in meeting its goals. Armani allows software architects and 
architecture design environment builders to incrementally capture design expertise and to 
leverage that expertise in their tools and environments. In this chapter, I revisit some of the 
key design decisions I made in creating Armani. I first present and discuss a set of design 
decisions that proved to be highly effective. I then discuss some decisions that initially 
seemed promising but produced mixed results when implemented. 

9.1 Design decisions that proved to be highly effective 

Sections 9.1.1 to 9.1.4 describe four key design decisions I made in creating Armani that 
proved to be highly effective. The applicability of these decisions for other software 
development projects varies broadly. The discussion of each of these decisions, however, 
offers insights into ways to successfully build configurable software systems. 

9.1.1   Supporting a rapid and iterative environment development process 

Forty five years of software development history has illustrated that it is very difficult to 
correctly establish all of a system's requirements before the system is built. Likewise, it is 
nearly impossible to anticipate all of the implications of individual design decisions before 
the system has been built, integrated into its environment, and deployed. One of the 
standard ways of addressing this issue is to build software iteratively, using each iteration as a 
learning experience that helps clarify the requirements and the design of the next release of 
the software. Software design and development environments face these problems just like 
any other large software development project. 

To address this issue, one of the premises underlying the Armani project was that the ability 
to rapidly iterate and experiment with multiple design alternatives provides environment 
developers and architects with significant leverage. Armani environment designers can 
rapidly and iteratively experiment with numerous alternatives for the design environment 
itself. Experimentation at this stage includes determining the appropriate design rules and 
vocabulary to support in a custom environment, selecting visualizations for design elements, 
and determining the analytical capabilities that the environment needs to provide. Because 
these design decisions are loosely bound in the environment they can be quickly revised or 
augmented as experience is gained using the environments. Armani pushes iterative 
evolution further than most systems by allowing not only the original environment 
developers to upgrade and evolve the system, but by also allowing architects using the 
environment to adapt it themselves to meet their needs. This rapid update capability allows 
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good design ideas, analyses, and tools to be prototyped and quickly added to an 
environment. It also allows environment designers to revisit and quickly repair design 
decisions that proved less effective than hoped. 

The advantages of this rapidly iterative approach spill over from the environment design 
task into the process of using a customized environment to design other systems. Architects 
using Armani can rapidly iterate through, and experiment with, a wide variety of design 
alternatives before binding design decisions for the systems they are producing with the 
environment. Supporting rapid iteration and experimentation of design alternatives reduces 
the risk associated with early design decisions by allowing a designer to quickly experiment 
with and test multiple alternatives before firmly binding a design decision. 

The traditional alternative to using rapid, incremental evolution and configuration of 
software systems is to think very carefully through all of the system's requirements and the 
implications of various design decisions. Armani's support for rapid iteration and 
experimentation does not mitigate the need to deeply understand a system's requirements 
and the implications of design decisions. It does, however, help designers understand these 
issues better by allowing them to experiment with alternatives. It also reduces the risk 
associated with making these early decisions because they can be more easily rectified later if 
they prove to be poor decisions. 

AH of the experience and experiments with Armani argue strongly for the value of this 
rapidly iterative approach. Breaking from the traditional approach in this way turned out to 
be one of the best decisions of the entire project. Although it is unlikely that all software 
tool development projects would benefit from the extreme flexibility and late binding of 
design decisions that Armani provides, the approach is widely applicable and likely to be of 
great benefit to many different tool development projects. 

Supporting an incremental and experimental approach to developing custom environments 
seems to significantly help environment developers build environments quickly, and 
experiment with multiple alternatives before binding design and implementation decisions. 
As I discuss in section 9.2.2, however, the decision to also put this incremental configuration 
power into the hands of the environments' end-users introduced some significant 
configuration and compatability issues. 

9.1.2   Selecting first-order predicate logic as the formalism for design rules 

Selecting first-order predicate logic (FOPL) as the formal foundation for expressing design 
rules and design analyses in Armani's design language proved to be an excellent design 
decision for (at least) three reasons. First, experience with Armani and other design tools 
indicates that FOPL is well understood by the architects and environment designers who 
make up Armani's target audience. It also appears to be a good match with their intuitions 
for expressing design rules. Further, the case studies described in Chapters 7 and 8 illustrate 
that design rules relating to system structure, topology, and properties are readily captured 
with predicates. Although a small portion the tool builders in these case studies had some 
difficulty adapting to the declarative nature of the Armani design language, none of them 
had any significant problem using predicates to express individual design rules.. 
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Second, evaluating whether a FOPL expression holds over a set of assertions (given in the 
form of a system specification) is algorithmically straightforward. Likewise, the subset of 
FOPL used in Armani insures that checking whether a system's design rules hold is a 
decidable question. As discussed previously, the language insures decidability by disallowing 
quantification over infinite sets. This limitation, discussed in section 4.3.1, has not proven to 
be problematic in practice. 

Third, FOPL predicates are readily specified independent of the environment in which they 
are eventually evaluated. As a result, using FOPL as the underlying design rule formalism 
made it possible to achieve the modularity, composability, and encapsulation of design rules 
required by the Armani design language. 

Alternatives considered 

Although FOPL clearly had many desirable properties, I also considered a number of other 
formalisms as a basis for the Armani constraint language. The alternatives included higher- 
order logics, temporal logics, and model-checking formalisms. All of these alternative 
candidate formalisms, however, had significant limitations. Solving the undecidability 
problem for higher-order logics, for example, proved to be more complex than solving the 
problem for first-order predicate logic. Because the higher-order logics did not present a 
sufficiently compelling increase in expressiveness to warrant the additional complexity they 
were removed from consideration. 

The Armani constraint language's need to specify bounded ranges of valid design 
modifications led to the consideration of various temporal logics. Surprisingly, Armani's 
emphasis on static structure did not prove to be an effective match for the natural 
expressiveness of temporal logics. The expressive power gained by using temporal logic 
rather than FOPL was not sufficient to warrant the additional complexity it introduced into 
the language semantics and the automated checking tools. 

I also considered various model-checking formalisms such as SMV [McM93] but then- 
emphasis on states and state transitions did not provide a particularly natural match to the 
structural constraints that Armani had to be able to express. Likewise, their ability to explore 
enormous state spaces looking for any possible constraint violation was not necessary for 
the types of checking that Armani does. Armani constraints are simply a form of checkable 
redundancy for verifying the consistency of a static design specification. It is not necessary 
to demonstrate that an Armani description can never violate its constraints because it is a 
static specification. The critical check is that a specific design instance does not currently 
violate its constraints. This distinction is a subtle but important. 

In light of the benefits of first-order predicate logic and the limitations of the alternative 
formalisms explored, selecting FOPL as the formalism underlying Armani's design rules 
proved to be a good design decision. 

9.1.3   Appropriately scoped design rule checking capabilities 

Using a predicate-based formalism for capturing design rules opens up the possibility of 
supporting a wide spectrum of different kinds of  design checking. Solutions at the 
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impoverished end of the spectrum do little more than check individual design specifications 
for syntactic well-formedness. Analyses at the other end of the spectrum support proofs 
about types, styles, and the composition of design elements. The verification techniques that 
kve along this spectrum can provide computational validation tools, mechanisms to support 
human reasoning, or both. 

In general, as a tool builder moves along this spectrum from providing very simple 
techniques to supporting sophisticated proofs, the power of the analyses increases as does 
the value of the analytical results. Unfortunately, there are also a number of trade-offs that 
she must make in order to get the more sophisticated analytical results. These trade-offs 
include: greater difficulty creating the analytical tools, a more focused scope of problems 
diat the techniques addresses, a decrease in the speed with which results can be returned, and 
decidability problems. 

Selecting an appropriate point on this spectrum for Armani's built-in analytical capabilities 
proved to be a crucial design decision. My goal was to provide as powerful a set of design 
rule checking capabilities as possible while still being able to meet the requirements laid out 
for the design language and configurable environment. The key requirements that seemed to 
be endangered by making the design rule checking too powerful were the ability to guarantee 
fast, interactive, environment performance and ensuring decidability of design rule checking 
(which was also a prerequisite for a good interactive environment). 

Fortunately, I was able to create a set of design checking capabilities that provided designers 
with significant analytical power yet still met Armani's key requirements. This approach 
supports automated type checking techniques to verify that a specific design instance 
satisfies its design rules and all of the design rules stored in its types and styles. In the 
following Armani specification, for example, the Armani toolset can automatically determine 
that component A satisfies type T and that component B does wet satisfy type T. 

Component Type T={Property X: int;} 
System S = { 

Component A: T = {Property X: int = 7;}; 
Component B: T= {Property Y: int = 7;}; 

}; 

As we have seen throughout the dissertation, the ability to determine whether an instance 
satisfies its design rules provides designers with significant analytical capability. A logical next 
step, then, is to ask whether a type or a style is internally consistent. In Armani, the question 
of whether a type is internally consistent can be reduced to the question of whether it is 
possible for any instance to satisfy the constraints of the type. The following Armani code 
snippet illustrates a type specification that is internally inconsistent. It is obviously not possible 
for an instance of type Tto have a property x that is both less than 100 and greater than 100 
at the same time. 
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Component Type T={ 
property x; int; 
invariant x > 100; 
invariant x < 100; 

}; 

Unlike determining whether an instance satisfies a type, determining that an arbitrary type is 
inconsistent proves to be very difficult. As the previous example illustrates, however, it is 
frequently relatively straightforward for a human to make such a determination. Therefore, 
Armani provides an intellectual framework that a designer or architect can use to verify that 
the types and styles specified are internally consistent. This framework consists of the 
defined semantics for the language and the rules of predicate logic. One of Armani's key 
design principles is to have the computer perform the tasks at which machines are better 
than people and to have the architect perform the tasks that humans do better than 
machines. Following this principle, Armani does not support automated checking of internal 
type and style specifications consistency. 

As designs, styles, and types become complex and they are arbitrarily composed it can 
become difficult to determine whether a type is internally consistent. There is clearly some 
benefit to being able to automate the detection of such inconsistencies. Many of these 
inconsistencies can be detected using theorem proving techniques. The PVS theorem- 
proving system [OS97], for example, detects inconsistencies of this sort. 

Unfortunately, although this technique can be used to find inconsistencies in type and design 
specifications, because it can run arbitrarily long to prove its theorems and requires sporadic 
input from the user, it is not particularly effective as a substrate for interactive design 
environments or fully automated analysis tools. Armani trades off the ability to prove the 
internal type consistency for the ability to definitively (and quickly) determine whether a 
given instance of a design specifies its type constraints. 

The standalone Armani system provides most of the checking capability of PVS, but it does 
not support theorem proving. Integrating PVS with Armani would allow the Armani 
environment to support both an interactive environment for rapidly evaluating design 
instances and the ability to perform more sophisticated analyses of type and style 
consistency. Such an integration is beyond the scope of this dissertation, but a promising 
direction for future work. 

9.1.4   Straightforward type and constraint checking algorithms 

In implementing Armani's typechecking and constraint management systems, wherever 
possible I opted for simplicity and extensibility of implementation rather than run-time 
performance. This proved to be a good design decision. 

One of the assumptions that I made for performance evaluation was that architectural 
specifications will generally be relatively small - on the order of tens or hundreds of 
components and connectors. I found that straightforward type-checking and design rule- 
checking algorithms were sufficient for designs of this size. In fact, the algorithms I 
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implemented to do the checking proved sufficiently fast on designs with up to one thousand 
components and connectors. Evaluating designs with less than one hundred components 
and connectors for type and constraint satisfaction generally appear almost instantaneous to 
the architect using the tool. Typically, the time required to pass a request from the Visio- 
based GUI to the Armani constraint management engine was longer than the time required 
for the checking engine to validate the design. The complete design checking process, 
however, was still fast enough to support interactive evaluation. 

Because the simple type and constraint checking algorithms executed so quickly, it was not 
necessary to implement more complex algorithms. Although these simple algorithms might 
not scale to designs with tens of thousands or millions of design elements, such a detailed 
specification is unlikely to be an architectural specification. An architectural specification 
describes a system abstraction that must be comprehensible to humans. A design with tens 
of thousands of interacting elements is not likely to satisfy this criterion. Armani 
specifications generally achieve scale in terms of total components and connectors through 
hierarchical decomposition and abstraction. That is, a component at one level of abstraction 
might be represented as a complete system (with Armani's representation construct) at a more 
detailed level of abstraction. Armani's type and constraint checking algorithms take 
advantage of this built-in notion of abstraction boundaries to scale performance as system 
designs get large. The algorithmic heavy-lifting generally occurs at a single level of 
abstraction in a design (ie within a single system description). By evaluating these 
encapsulated abstractions as a series of individual and largely independent entities, the 
algorithm scales linearly in the number of systems evaluated. The task of evaluating each 
individual system can, however, be arbitrarily complex depending on the complexity of the 
predicates declared to hold over that system. 

Although the overall performance of these evaluation algorithms was acceptable, a 
performance issue arose in one of the case studies regarding the use of a declarative 
language. Specifically, one of the case study participants created an analysis that, when 
expressed naively in the Armani design language, evaluates an unnecessarily large search tree 
of potential system configurations. The tricky problem with Armani's declarative design 
rules that this case revealed is that it is not always clear when they will require inefficient and 
cumbersome evaluation processing. Experience using Armani, however, indicates that just as 
it is possible to write either very efficient imperative code or very inefficient imperative code, 
so too is it possible to write either relatively efficient or relatively inefficient declarative code. 
Gaining experience using Armani appears to help architects mitigate this problem. As the 
case study participants (and I) became more proficient at using the Armani design language 
it became much easier to write clean, efficient design rules. In general, these design rules also 
grew shorter, simpler, and more readable as we got better at writing them. 

This problem is not unique to Armani. Other tools, such as model checkers, also face this 
issue. In many model checkers slight changes in a model's representation can result in huge 
variations (i.e., orders of magnitude) in run-time performance. Supplying users with a set of 
heuristics and a basic understanding of how their specification choices can affect run-time 
performance is an important first step in addressing this problem. As these heuristics 
become better understood, automated tools can be created to help designers make use of 
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them. Although this is fertile ground for future work, solving this problem is beyond the 
scope of this thesis. 

An important step that I took to address the need for tuning the evaluation efficiency of 
selected design rules was to provide an interface that tool developers and style designers can 
use to implement their design rules and analyses directly in Java. By providing this interface, 
tool developers can adjust where and how their design rules are evaluated and implement the 
evaluation mechanisms with an imperative algorithm instead of a declarative statement. The 
tool builders in the case study just described (and described in detail in section 8.2.2) used 
this approach to move his analysis into Java. By doing so he was able to dramatically prune 
the search tree and improve evaluation performance. 

In this case study, as well as in others, however, this step was rarely required purely for 
performance reasons. As discussed in chapters 4 and 5, the Armani design language is not 
well suited for expressing all types of design analyses. In this instance, the analyses were 
moved from Armani to Java because the style designer found it easier to express the analyses 
imperatively rather than declaratively. Performance was a secondary issue, though in this case 
moving to a Java-based analysis that could prune its search tree improved performance 
dramaticalry. Combining a clean, declarative language for expressing most design rules with 
the ability to escape to an imperative language where necessary for performance or 
expressiveness concerns allows Armani to provide appropriate performance characteristics 
for a wide variety of designs and analyses. 

9.2 Design decisions that yielded mixed results 

Unfortunately, not all of the design decisions I made for Armani proved to be as effective in 
practice as I had intended. The results of two specific decisions proved to be particularly 
suprising. The first of these was the decision to use a completely declarative design language 
and the second of these was the decision to build extreme run-time flexibility into the 
environment. In the following two subsections I discuss each of these design decisions and 
their implications in greater detail. 

9.2.1   Using a completely declarative design language 

The Armani design language is fundamentally declarative. An Armani specification provides 
a blueprint from which a system can be built and a description of the properties of the 
system to be constructed. It does not provide an operational description of the steps 
required to build the system. Nor does an Armani specification describe the mechanism to 
use to verify that the constraints imposed on the design are met. Both of these tasks are left 
to the language processing tools that operate on Armani descriptions. 

Using a declarative language frees an architect or environment developer from the need to 
specify how to enforce his design rules. He simply needs to declare what the design rules are 
and the environment will enforce them for him. In general, the size of declarative design 
rule specifications is significantly smaller than the amount of code required to describe the 
mechanism for checking those specifications in an imperative language. Likewise, the 
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declarative nature of the language encourages, if not insures, modularity and principled 
composition of design elements. Integrating operational specifications of design vocabulary 
and design rules that were not originally designed to work together tends to be much more 
difficult and complicated than the relatively straightforward composition of declarative 
specifications [Kai85]. 

"With all of these potential benefits, it seemed that a declarative design specification language 
would provide designers with a great deal of leverage for minimal cost. In training other 
people to use the Armani language, however, I discovered that this approach has a 
significant drawback. Specifically, I found that some designers who are primarily 
programmers by training and experience found it difficult to make the conceptual leap from 
specifying how to construct a design and what that design should do to simpry specifying whet 
the design should be. Although I suspect this difficulty is intertwined with the difficulty that 
case study participants had in making the transition from thinking at the programming level 
to thinking at the architecture level, I don't have any strong evidence other than my case 
study observations to support this hypothesis. 

Throughout the case studies, approximately half of the participants found the declarative 
language powerful, easy, and natural to use. Approximately one quarter of the participants 
struggled with the declarative nature of the language initially but eventually discovered how 
to use it effectively. The most disappointing finding was that the final quarter of the 
participants were never really able to use the declarative language effectively. Even after 
acquiring significant experience with Armani they had enough difficulty expressing their 
ideas with the declarative language that they wrote most of their design rules and analyses 
directly in Java and imported them into the environment as external analyses. In almost all of 
these cases, I was able to help them write appropriate declarative statements that provided 
their desired capability after they had completed their experiments. This revision exercise 
demonstrated that the problem was not Armani's inability to capture this kind of expertise 
declaratively Rather, the problem was that the Armani language did not provide a good 
match with these designer's mental concepts for how the expertise that they wanted to 
express should be captured. 

Although the number of case studies was too small (approximately eight environment 
developers and architects participated) to be conclusive, this finding raises a concern with the 
Armani approach. The declarative nature of Armani provides a lot of leverage for those to 
whom thinking architecturally and declaratively comes naturally. Environment developers, 
however, who have trouble making the jump to a declarative architectural model will likely 
have trouble taking full advantage of Armani's potential benefits. Armani's support for 
writing external analyses and design rules directly in Java addresses this issue partially. Given 
an opportunity to redesign a second generation of the Armani system, I would strongly 
consider adding algorithmic extensions to the Armani design language. 

9.2.2   Building extreme flexibility and reconfigurability into the environment 

One of the original hypotheses underlying Armani was the idea that providing software 
architects with the ability to arbitrarily reconfigure their tools and environments would allow 
them to closely match their tools' semantic and visual design representations to the represen- 
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tations they used informally and independent of the tools. Driving this idea was the further 
hypothesis that allowing the architects and designers who actively use these tools to do the 
customizations themselves would unleash their creativity and allow them to build powerful, 
task-specific tools without having to be expert toolbuilders. In the course of conducting this 
research I created a configurable environment infrastructure with which these hypotheses 
could be explored. The goal of this research was not, however, to rigorously test whether 
these hypotheses held. 

As the previous chapters have illustrated, Armani does indeed provide its end-users with 
tremendous flexibility and configuration capability. Experience using the tool also seems to 
confirm the hypothesis that it allows architects to incrementally customize their 
environments in powerful and useful ways without having to be expert toolbuilders. Whether 
this capability, when deployed on a large scale, will result in a groundswell of compelling 
custom design tools remains an open question. The case studies, however, point to the 
possibility of this outcome. 

Although experience building and using Armani provides a compelling argument that these 
hypotheses hold, this experience unfortunately also illuminates two drawbacks to Armani's 
extreme reconfigurability. The first drawback is that although it is easy to modify an Armani 
environment, it is still difficult to create great customizations. The process of customizing an 
Armani environment is simple and straightforward; the changes can be made in very small 
increments; and the structure of the language and environment provide designers with 
significant guidance in making appropriate customizations. Defining or selecting appropriate 
expertise to load into the environment, however, still requires significant taste and judgement 
on the part of the person customizing the environment. Both visual and semantic 
customizations face this difficulty. 

Armani's style construct goes a long way towards mitigating the seriousness of this problem 
by providing a mechanism for aggregating coherent collections of related design expertise 
and visualizations. One easy guideline that an architect can use to address this problem is to 
customize the environment only at the granularity of complete styles. By using only 
complete style specifications created by experts in those domains the likelihood that the 
expertise captured by the style will work together in a sensible way is greatly increased. As an 
architect becomes more confident in her ability to articulate design expertise in the Armani 
design language, she can begin to experiment with creating new styles that encapsulate her 
expertise and are applicable to her design domains. 

The second drawback introduced by Armani's extreme configurability is that there is 
significant value in standardization amongst a group of software designers and developers 
on the tools (and the configurations of those tools), the vocabulary, and the design rules that 
they choose to design and build their system. Used properly, Armani encourages such a 
group to develop their own shared set of standard design expertise with a single agreed 
upon semantic definition and set of visual depictions. Used improperly, this capability results 
in chaos with all members of the development team customizing their individual tools until 
they have significantly different configurations, utilize little or no shared vocabulary or 
design rules, and provide different graphical depictions of design elements. This result is not 
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necessarily undesirable in all design and development situations. In many organizations, 
however, this chaotic approach is unlikely to lead to the timely delivery of great software. 

In order for Armani to be effectively deployed in a wide range of software design and 
development organizations, it is important that the organization set up guidelines and 
procedures for managing changes and customizations to the Armani environments used by 
its architects. Details of the strictness and specificity of these guidelines can vary 
significantly depending on the development organization's processes. Defining these 
guidelines is outside of the scope if this dissertation, but it certainly provides an avenue for 
useful future research. 

Armani's radical flexibility and reconfigurability provides architects with the opportunity to 
build highly customized design tools that solve their specific design problems and closely 
match their conceptual models. Taking full advantage of this capability, however, requires 
those using the tool to also be vigilant of the approach's potential pitfalls. 
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Chapter 10 

Conclusions and Future Work 

10.1  Summary 

In this dissertation, I have demonstrated my thesis claim that: 

It is possible to capture a significant and useful collection of software architecture design 

expertise with a language and mechanisms for expressing design vocabulary, design rules, and 

architectural styles. Further, this captured design expertise can be used to incrementally 

customize software architecture design emironments. 

To demonstrate this claim I built such a language and incrementally configurable software 
architecture design environment. In the first chapter I argued the need for rapidly 
customizable software architecture design environments and presented my plan for 
providing them. I illustrated how such an environment can be constructed and customized 
in Chapter 2. I reviewed relevant related work and concluded that all previous attempts at 
addressing this problem either failed to fully provide the required capabilities or solved a 
somewhat different problem (described in Chapter 3). In Chapter 4 I described the Armani 
design language and illustrated how it's constructs for expressing system descriptions, design 
vocabulary, design rules, and architectural styles can be used to capture both architectural 
specifications and design expertise. Having specified a language that addresses the first half 
of the thesis, I created the Armani configurable design environment and described in 
Chapter 5 how its architecture allows it to be rapidly reconfigured with design expertise 
specifications captured in the Armani design language. Chapter 5 also illustrates Armani's 
flexibility for integrating external tools (which can also contain significant design expertise) 
and its usefulness as a platform for building new custom design tools. Together, chapters 4 
and 5 demonstrate that it is feasible to use these techniques and mechanisms for capturing 
design expertise and rapidly developing custom software architecture design environments. 

To validate the overall approach and support the thesis claim I conducted a set of case 
studies. Chapters 6, 7, and 8, described these experiments and their results. In Chapter 6 I 
provided a detailed analysis and comparison of the tasks required to create a custom design 
environment using Armani vs. the tasks required to build a comparable environment from 
the ground-up using current methods and tools. The results of this analysis argue that if the 
time and effort estimates used in Chapter 6 hold up to experimental verification then 
Armani provides a significant advantage over the status quo. To validate the analytical results, 
I conducted eight case studies, described in Chapter 7. One of the key results of these case 
studies was that I had been overly conservative in my previous estimates. Armani's 
performance proved to be even better than the analysis had predicted. In addition to 
verifying the task analysis, the case studies in Chapter 7 demonstrated the breadth, power, 
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and incrementality of the Armani approach. The fact that I conducted all of the case studies 
described in Chapter 7 by myself raises the issue of whether the results of those case studies 
were overly skewed by the fact that I both built the tool and tested it by building sample 
custom environments. To address this issue, I conducted four additional case studies in 
which other software architects, researchers, and tool builders used Armani to create custom 
design environments and tools that solved specific design problems they faced. These case 
studies also extended the previous chapter's demonstration of Armani's power, breadth, and 
incrementality. Chapter 8 summarizes the results of these case studies. 

After presenting a detailed description of how Armani satisfies the thesis claim, along with 
an analysis and case studies to validate the claim, I provided a critical evaluation of 
interesting issues surrounding the Armani project in Chapter 9. Finally, in this chapter I 
discuss the thesis' contributions and describe opportunities for future research that this work 
has uncovered. 

10.1.1 Contributions 

Having explored a new approach to rapidly developing custom software architecture design 
environments, let us revisit the contributions that this research makes to the field of 
Computer Science. The research presented in this dissertation provides: 

• A technique for dramatically reducing the time, cost, and difficulty of building a 
significant class of customized software architecture design environments. This 
dissertation's roadmap describing how to use this technique provides significant value, 
independent of the Armani implementation, to a variety of audiences. This technique 
benefits software architecture design environment builders by demonstrating how a 
variety of design tools can be built through principled, incremental adaptations to a 
common shared infrastructure. It benefits software development organizations by 
providing access to highly customized tools at a much lower cost than current 
development techniques allow. It benefits practicing software architects by providing 
them with tools that closely match their design domain. Finally, it benefits researchers 
studying software development tools by providing a general customization technique that 
can likely be extended to other design and problem domains. 

• A design language. The dissertation describes a software architecture design language 
that is capable of incrementally capturing software architecture design expertise with 
modular, reusable, first-class language constructs. The design language is also a full- 
fledged architecture description language (ADL) capable of describing the structure of 
software architectures and the constraints and guidelines under which those systems 
were designed and may be evolved. 

The design language contributes to the software architecture research community by 
demonstrating that a first-order predicate logic-based constraint language can be used to 
define interesting and useful design rules to guide software design and evolution. 
Further, the language articulates and encodes an extensible framework for capturing 
software architecture design expertise. In addition to its benefit to researchers, the design 
language also benefits software development organizations by providing a way to capture 
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and reuse the organizational design expertise they develop in building software systems. 
Finally, it benefits software architects by providing an explicit technique for capturing 
and expressing architectural design constraints in software architecture specifications. 

• A reference architecture. The dissertation describes a reference architecture, or 
architectural style, for software architecture design environments that support incre- 
mental customization. It describes the architecture of the Armani design environment, 
describes the mechanisms that the environment's architecture provides for incremental 
adaptation, and discusses some fundamental tradeoffs facing architects working in this 
style. This architecture is proven, applicable, and appropriate for creating software 
architecture design environments beyond the Armani environment described in this 
dissertation. This contribution is particularly useful for software tool builders who need 
adaptable, modular architectures to use for design tools and environments. 

• A set of case studies. A set of detailed examples and case studies are presented to 
illustrate how the technique, language, and integration framework just described can be 
used to effectively capture software architecture design expertise and rapidly develop 
custom software architecture design environments. The case studies benefit people using 
Armani to design software architectures and build custom software architecture design 
environments. They provide a framework for conducting validations of similar research 
in software design and development tools. Finally, they are useful for researchers 
interested in further exploration of the ideas presented in the dissertation. 

10.2 Future work: 

The process of designing, building, and using Armani introduces opportunities for further 
research. In this section I discuss the most promising of these. 

10.2.1 Generalizing flexible configuration strategies 

Armani provides a point solution to the general problem of separating the standard 
infrastructure shared by all members of a family of systems from the variable aspects of 
those systems. Specifically, it allows software architecture design environment developers to 
incrementally configure their design environments. The principles embodied in the Armani 
approach are, however, almost certainly applicable to other design domains. Although 
developing a general solution for configuring arbitrary families of systems is beyond the 
scope of this thesis, the research suggests three general principles for replicating this 
approach in other domains. 

The first of these principles is that establishing the core concepts and underlying formalism 
as an initial step makes the creation of the configurable tools much easier. The hardest task 
in developing Armani was defining the Armani design language, its core concepts, and its 
extensibility semantics. Once I had developed the language and an infrastructure for 
processing the language it proved straightforward to implement the configurable environ- 
ment on top of the language infrastructure. The key configurable aspects of the Armani 
environment were built directly into the language so I simply had to make the environment 
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expose these configuration capabilities to the end user. The applicability of this approach to 
other domains is an open question and fertile ground for further research. 

The second core principle is that the infrastructure that serves as the basis for the family of 
custom software systems needs to provide a useful set of capabilities. If the domain does 
not have a standard set of system capabilities common to all systems in the domain, then the 
domain is probably not a good candidate for using this approach. The minimal, 
unconfigured Armani design environment, for example, is a fully functioning design envi- 
ronment. It supports the representation of system designs, graphical design depiction and 
manipulation, design rule checking, and the integration of external tools. Further research is 
needed to develop guidelines for determining a domain's key common infrastructure pieces. 

The third core principle is that it is important to provide multiple, complementary, 
mechanisms for configuring the core infrastructure. Armani provides a core set of tools and 
constructs common to all Armani environments, a language for configuring the design 
expertise stored in the environment, and mechanisms for integrating external tools and 
building new tools that couldn't be represented with the configuration language. Each of 
these mechanisms can be used to configure and create custom design environments. If an 
environment developer can't attain the desired configuration using one of these techniques, 
he can almost always achieve the configuration using one of the other techniques. These 
three techniques proved appropriate and useful for the domain of custom software 
architecture design environments. It is not clear, however, that they are optimal configuration 
techniques for all possible domains. Developing additional configuration techniques and 
providing guidance for mapping domain characteristics to configuration techniques both 
provide compelling opportunities for future research. 

It appears that variations on the Armani approach can be applied with significant benefit to 
many different software development domains. Exactly which aspects of the approach need 
to be modified for different domains and which can be reused directly is an open question. 
Along the same lines, it is not clear whether Armani's use of a rich declarative language as 
the basis for the bulk of the configuration information is widely applicable beyond the 
domain of software architecture design environments. Significant future research is needed 
to address these questions. Ideally, these experiments will attempt to apply the broad Armani 
approach to creating configurable infrastructures in other domains and report on the 
effectiveness of the technique. 

10.2.2 Integrating the Armani toolset with full software lifecycle processes 

To limit the scope of this research, I did not directly explore Armani's roles in full software 
lifecycle processes. Likewise, my research does not provide any definitive answers on 
whether or how the Armani approach changes, or should change, these processes. Mature 
software development organizations, however, will only be able to take full advantage of 
Armani if they can integrate the tool into their software development, deployment, and 
maintenance processes. As a result, determining how the Armani design approach can be 
integrated with popular development processes, as well as discovering new processes enabled 
by Armani's flexibility and power, are both promising directions for future work 
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There are four specific research topics within this general area that are likely to be fruitful. 
The first of these is developing techniques for relating system requirements to architectures. 
Providing the ability to directly track how an architecture addresses a system's requirements 
is a key capability, though figuring out how to do so effectively will require a non-trivial 
research effort. Armani's constructs for specifying software architectures and design rules 
potentially provide a useful platform for mapping such a relationship. Further, Armani's 
ability to rapidly experiment with different environment capabilities and system design 
options potentially introduces an opportunity to create a tight feedback loop between the 
requirements gathering task and the system architecting task. The process of designing a 
system to meet a set of requirements frequently sheds light on the requirements themselves. 
An additional avenue for further research is the development of processes that can take 
advantage of this potential tight feedback loop. 

The second research topic is establishing more effective techniques for mapping architec- 
tures to implementation code. Ideally, this mapping process will allow system designers and 
developers to generate significant system implementation code in the process. Although 
architectural specifications are valuable and important as blueprints for how a system should 
be built, using a manual process to go from an architectural specification to the system 
implementation presents (at least) two problems. The first problem is architectural drift. 
Because the architectural specification is just a blueprint, it is possible and even probable that 
the completed system will not implement the architectural specification perfectly. This 
problem becomes more acute as a system evolves throughout its lifetime and the 
architectural documents fail to keep pace. The bigger and more complex the project is, the 
more likely this is to be true. The second problem is that implementation still requires a 
tremendous amount of effort relative to the architectural specification. 

One obvious technique that could address both of these issues is providing tools for 
generating a significant body of implementation code from the architectural specification. 
Generating even skeletal code constructs could both significantly speed implementation time 
and improve the match between architectural specifications and the code that implements 
those specifications. One promising approach to making such generation feasible is to link 
tools that know how to produce code for common components and connectors given a set 
of parameters by an architect. The UniCon project [Shaw+95] takes this approach with its 
experts concept. UniCon experts describe how an architectural construct should be realized in 
implementation code. Although beyond the scope of this dissertation, developing a 
technique to couple UniCon's experts with Armani's design rules is a promising avenue for 
adding code generation capabilities to Armani. 

The third research topic explores whether Armani, and other tools that emulate its extreme 
flexibility, introduces opportunities to use software processes that are radically different from 
those popular today. Armani allows a designer to quickly change not only the design of the 
system that he is building, but also the tools that he is using to build that system. The 
research I presented in this dissertation does not solve the problem of how best to harness 
this capability to build software better, faster, and cheaper. The ability to adapt your tools to 
solve the problem at hand instead of adapting your problem to fit the tools available, 
however, can fundamentally change the dynamics of software development processes. 
Specifically, assumptions about what kinds of tasks and capabilities are expensive and which 
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are cheap may need to be re-evaluated. Such a re-evaluation can lead to useful insights into 
alternative processes and techniques. The opportunities for innovative software processes 
become even greater as additional software development tools take Armani's lead and are 
made highly configurable for customization by their end-users. Providing the Armani toolset 
to a larger audience of practicing architects and observing how they adapt their design 
process as a result of using the tools is a promising next step for exploring this topic. 

The fourth opportunity for future process-related research lies in devising techniques and 
protocols for managing architects working with Armani. The freedom that Armani provides 
designers in configuring their design tools and environments may or may not be desirable at 
the organizational level. Requiring that all designers and developers use a standard set of 
tools and techniques, for instance, is often a good way to insure that designers can 
communicate and readily share designs and specifications. 

At the same time, allowing all designers to customize their design tools with their own design 
vocabulary, design expertise, and visualization mechanisms offers the potential for chaos. 
Armani's ability to quickly distribute expertise and environment specifications between 
designers, however, also allows designers to quickly experiment with different environment 
configurations and share discoveries with their collaborators. The opportunity for chaos is 
present, but the opportunity for rapid and organic evolution of design techniques and tools 
is also present. The goal is to achieve this rapid organic evolution without suffering from 
excessive chaos. Developing techniques, protocols, and mechanisms for tuning and main- 
taining the desired level of flux in environment configurations is an important area for 
follow-on research. One promising direction is to attempt to incorporate a standard access 
control policy and/or model with Armani to define the specific permissions that each 
member of an architecture team has. 

10.2.3 Building effective design tools 

In the first chapter of this dissertation I argued that design tools are effective when they 
capture the fundamental desigi expertise of a specific design domain. Armani builds on this 
assumption by providing a language for capturing design expertise and a configurable 
software architecture design environment that can be incrementally customized with this 
captured expertise. The case studies presented in chapters 6, 7, and 8 explore and 
demonstrate Armani's ability to capture such design expertise and to use that expertise in 
creating custom Armani environments. The case studies do not, however, evaluate the 
effectiveness of these custom environments for designing software architectures in an 
industrial setting. 

Although conducting such a set of experiments was beyond the scope of this thesis, this 
issue points to an important avenue for future work. Specifically, Armani relies on the 
environment developers and architects who use it to configure the generic environment with 
useful design expertise. Developing a better understanding of how and where different kinds 
of expertise provide architects with leverage should improve the quality of customized 
Armani environments. Along the same lines, providing a set of guidelines for effectively 
using Armani can help new environment developers become proficient with the tool more 
quickly. 
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Armani can be easily reconfigured, external tools can be readily integrated with the 
environment, and its extensible infrastructure can be used to rapidly develop and deploy 
experimental design tools. As a result, it provides an excellent platform for exploring what 
makes design tools effective and experimenting with a wide variety of alternative tools and 
design expertise. 

10.2.4 Composable connectors 

The availability of pre-built connector types and connection infrastructure is often a more 
important design decision driver than the availability of pre-built components. Building 
complex connectors can be very difficult, or impossible, without access to underlying system 
services. It is, for example, difficult to use a shared-memory connection between processes if 
the underlying operating system doesn't support inter-process shared memory blocks. 

Dynamic composability of connector characteristics and generation of custom connectors 
could significantly alleviate this problem. It is important that this composability be provided 
at more than the formal level (though that's a good start). The model and technology must 
also support the creation of an executable, run-time connection infrastructure from the 
formal specifications. UniCon [Shaw+95] provides a good initial cut at connector gene- 
ration, but it does not support the creation of new connection mechanisms through 
composition. 

Throughout the process of designing the Armani environment's architecture, finding an 
appropriate set of reusable components proved less difficult than assembling a set of 
connection mechanisms that worked properly with the selected components. Without 
appropriate connection mechanisms, however, I was unable to take advantage of many of 
these reusable components. It was frequently easier to duplicate the component's 
functionality than it would have been to integrate them using existing connector tech- 
nologies. In other cases, the performance of the integrated components was simply too 
unreliable to be usable in the production system. In these cases, the connection mechanisms 
were "black boxes" that frequently and mysteriously failed to work. Debugging these failures 
was almost impossible because the connection mechanisms were proprietary and exposed 
very few details to the developer. Providing tools and techniques for generating connectors 
with reliable, composable, functionality and properties would go a long way towards 
addressing these challenges. 

10.2.5 Distribution and installation of component-based systems 

One of the underlying experiments in designing the Armani environment infrastructure was 
to exploit the current state-of-the-practice in building component-based systems. Along 
these lines, I selected the Microsoft Java VM as the run-time environment for the Armani 
infrastructure, Visio as the basis for building the Armani GUI, and ActiveX [Cha96] and 
JavaBeans [Ham97] technologies to connect the components and wrap external tools. I 
needed to distribute about a half dozen components with the full Armani solution. For even 
with this small group of components, however, it proved effectively impossible to create an 
automated installation script that could reliably install and integrate all of the components. 

201 



My difficulties in putting together the Armani distribution had both a legal component and a 
technical component. At the heart of the legal difficulties was the fact that none of the 
component vendors I selected allowed me to distribute their components with the Armani 
release. They wanted to maintain full control over who received these components and how 
they were licensed. From a business perspective, this is not an unreasonable position. An 
important implication of this approach, however, is that anybody who wanted to install 
Armani at their local site had to first visit multiple places to purchase, download, and install 
half a dozen different components from multiple locations before they could even attempt 
to install the Armani system. Providing an automated script to do the purchasing, 
downloading, and installation required for these packages was effectively impossible. 

I suspect that if I had been a large corporation selling hundreds of thousands of copies of 
this software, I probably could have negotiated licensing and distribution agreements with 
each of these vendors that would have allowed me to distribute their components, perhaps 
for a fee. As a lone graduate student trying to make a research prototype freely available over 
the internet, however, I had neither the time, resources, nor clout to make this solution 
feasible. The need to conduct these lawyer-intensive negotiations severely limits the 
scalability of current component-based system technologies. 

Although the legal difficulties with distributing the full Armani system proved daunting, the 
technical difficulties proved even more challenging. Each of the component vendors rapidly 
put out new versions of their components, often introducing incompatibilities in the 
process. Unfortunately, when vendors introduce a new version of a component they 
frequently stop supporting older versions of it, or, even worse, they stop distributing the 
older versions at all.18 As a result of this rapid upgrade cycle, it is effectively impossible to 
keep up with all of the possible combinations of different versions of the same components that 
a customer who downloads and attempts to install Armani is likely to encounter. 

Allowing system developers to distribute these components directly with their system 
installation package would help to address this compatibility issue, because it would allow the 
installer to have a consistent set of components to install. This solution solves some of the 
distribution problems, but it is still not perfect. If the system to be installed uses a widely 
available component that is shared by multiple applications, installing a new version of that 
component on the target machine may disrupt previously installed applications. Microsoft's 
COM technology [Box98] has made significant progress in addressing the multiple versions 
problem. Taking advantage of this solution, however, requires a developer to completely 
buy-in to a large collection of proprietary Microsoft standards. 

My experience distributing the Armani system indicates that the current state of the practice 
for distributing component-based systems with components from multiple vendors does not 
scale to systems with six distributable components. Failure to work for a system this small 
indicates that current distribution and installation solutions are highly unlikely to effectively 
scale to support the distribution of  large, heterogeneous, component-based software 

Fortunately, in the only case I encountered where the vendor completely stopped distributing the older version of 
their component (on which Armani was dependent), I was allowed to distribute the old component with the Armani 
distribution. If I had not been so fortunate, I would have had to make significant, costly upgrades to Armani iust to 
keep it available. 
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systems. Interestingly, this problem is not limited to large, complex, software systems. The 
state-of-the-practice techniques and infrastructure for distributing component-based systems 
are also problematic for small, inexpensive software systems produced by development 
organizations that lack the resources to negotiate with large component vendors. 

Developing configuration management and distribution systems that address both technical 
and legal issues is a critical area for future research. Without dramatic improvements in this 
area, the optimistic projections of component-based software evangelists are unlikely to 
come to fruition and software development organizations are unlikely to be able to take 
significant advantage of component-based technologies. 

10.2.6 Selecting appropriate styles and design expertise 

Armani provides software architects and design environment builders with a great deal of 
flexibility for expressing, capturing, and reusing design expertise and architectural styles. It is 
not, however, particularly effective at guiding architects faced with a specific design problem 
in selecting appropriate architectural styles or collections of design expertise. This process 
still requires significant taste and judgement on the part of the architect. 

Researchers working in other specialties have made progress on the general problem of 
mapping common design problems to understood solutions (to cite three examples, see the 
work in the design patterns community such as [Gam+95], Lane's thesis on user-interface 
development [Lan90], and Kruegger's work on selecting object-oriented database designs 
[Kru97]). There has, however, been little progress on this problem in the software 
architecture research community. Although solving this problem is outside of the scope of 
this thesis, experience with Armani underscores its importance as an area for future work. 

10.3 Conclusion 

In this dissertation I have demonstrated that it is possible to capture software architecture 
design expertise in small, reusable, and incrementally composable units. I've also shown that 
it is possible to build a configurable software architecture design environment that can be 
incrementally customized to support a wide variety of architectural styles by simply loading 
these design expertise units into the environment. 

The case studies presented in this dissertation illustrate selected ways that this technique and 
technology can be used to inexpensively and quickly provide software architects with highly 
customized tools. The true power of Armani, however, remains to be discovered by the 
architects and environment developers who will use it to harness and leverage their creative 
skills and to create great software. 

The mark of a great tool, it has been said, is its use in ways that its creator never imagined. 
Hopefully those who use Armani will use it not only as I've described in this dissertation but 
also as a springboard for creating powerful new design tools and techniques. 
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Appendix A 

Armani Design Language BNF 

BNF Meta-Syntax 

Keywords are specified with bold text. Keywords are case-insensitive 

Non-Terminals are specified with italics 

(...)  Parentheses group tokens and productions 

[...]    Indicates an optional production 

(...)? Indicates a sequence of zero or one elements (synonymous with rj) 

(...)+ Sequence of one or more elements 

(...)* Sequence of zero or more elements 

|        Seperates alternative choices 

Armani Grammar 

ArmaniDesign ::= ( TypeDeclaration 
| FamilyDeclaration 
j DesignAnalysisDeclaration )* 

[ SystemDeclaration ] 
<EOF> 

Design Element Types: 

FamilyDeclaration ::= Family Identifier ["("")") "=" FamilyBody [";" ] 

FamilyBody ::= "{' ( TypeDeclaration )* "}" 

TypeDeclaration ::= ElementTypeDeclaration \ PropertyTypeDeclaration 

ElementTypeDeclaration      ::= ComponentTypeDeclaration 
| ConnectorTypeDeclaration 
j PortTypeDeclaration 
j RoleTypeDeclaration 

ComponentTypeDeclaration ::= Component Type Identifier"^' 
parse_ComponentDescription [";" ] 
I 
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Component Type Identifier Extends 
Identifier ("."Identifier)* 
With parse_ComponentDescription [";" ] 

ConnectorTypeDeclaration  ::= Connector Type Identifier "=" 
parse_ConnectorDescription [";" ] 

.1 
Connector Type Identifier Extends 
Identifier ("."Identifier)* 
With parse_ConnectorDescription [";" ] 

PortTypeDeclaration ::= Port Type Identifier "=" parse_PortDescription [";" ] 
| Port Type Identifier Extends Identifier ("," Identifier) 

With parse_PortDescription [";" ] 

RoleTypeDeclaration     ::= Role Type Identifier "=" parse_RoleDescription [";" ] 
| Role Type Identifier Extends Identifier ("," Identifier)* 
with parse_RoleDescription [";" ] 

lookup_ComponentTypeByName ::= Identifier 

lookup_ConnectorTypeByName ::= Identifier 

lookup_PortTypeByName ::= Identifier 

lookup_RoleTypeByName ::= Identifier 

lookup_PropertyTypeByName ::= Identifier 

Design Elements: 

SystemDeclaration 

SystemBody 

ComponentDeclaration 

ComponentsBlock 

::= System Identifier (":" Identifier)? "=" systemBody [";" ] 

::= ( New lookup_ComponentTypeByName | 
urn 

(ComponentDeclaration \ ComponentsBlock 
| ConnectorDeclaration \ ConnectorsBlock 
j PortDeclaration | PortsBlock | RoleDeclaration 
I RolesBlock | PropertyDeclaration \ PropertiesBlock 
j AttachmentsDeclaration | RepresentationDeclaration 
j DesignRule 

)* 
inn 

) 
[ Extended With SystemBody ] 

::= Component Identifier 
[":" lookup_ComponentTypeByName ] 
("=" parse_ComponentDescription";" |";") 

:=  Components"{" 
(Identifier 

[":" lookup_ComponentTypeByName ] 
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("=" parse_ComponentDescription";" I ";") 
T 
Tt";"] 

parse_ComponentDescription ::= ( New lookup_ComponentTypeByName 
I 
"{" ( PortDeclaration \ PortsBlock 

| PropertyDeclaration 
| PropertiesBlock 

| RepresentationDeclaration 
j DesignRule )* 

Hill 

) 
[ Extended With parse_ComponentDescription ] 

ConnectorDeclaration    ::=  Connector Identifier 
[":" lookup_ConnectorTypeByName ] 
("=" parse_ConnectorDescription";" |";") 

ConnectorsBlock ::=  Connectors"{" 
(Identifier 

[":" lookup_ConnectorTypeByName ] 
("=" parse_ConnectorDescription";" |";") )* 

in ii r ii.M -I 

parse_ConnectorDescription ::=   ( New lookup_ConnectorTypeByName 
I 
"{" (RoleDeclaration 

| RolesBlock 
j PropertyDeclaration 
j PropertiesBlock 
j RepresentationDeclaration 
j DesignRule )* 

Mill 

) 
[ Extended With parse_ConnectorDescription ] 

PortDeclaration ::= Port Identifier 
[":" lookup_PortTypeByName ] 
("=" parse_PortDescription";" |";") 

PortsBlock ::= Ports"{" 
(Identifier 

[":" lookupJPortTypeByName ] 
("=" parse_PortDescription";" \";") )* 

T[";n] 

parse_PortDescription   ::= ( New lookup_PortTypeByName 
I 
"{" ( PropertyDeclaration \ PropertiesBlock 

| RepresentationDeclaration \ DesignRule )* 
in II 

) 
[ Extended With parseJPortDescription ] 

©BOB MONROE PAGE 213 08/20/99 



RoleDeclaration ::= Role Identifier 
[":" lookup_RoleTypeByName ] 
("=" parse_RoleDescription";" \";") 

RolesBlock ::= Roles"{" 
(Identifier 

[":" lookupJRoleTypeByName ] 
("=" parse_RoleDescription";" |";") )* 

parse_RoleDescription  ::= ( New lookup_RoleTypeByName 
|"{" ( PropertyDeclaration | PropertiesBlock \ 

Representation Declaration \ DesignRule )* 
T ) 

[ Extended with parseJRoleDescription ] 

AttachmentsDeclaration ::= [ Identifier "=" ] 
Attachments"{" 
(Identifier"." Identifier to Identifier"." Identifier 
["{" ( PropertyDeclaration \ PropertiesBlock )* "}" ] 
";" )* 
in it n.ii 

Properties: 

PropertyDeclaration       ::= Property parse_PropertyDescription";" 

PropertiesBlock ::= Properties"{" 
[ parse_PropertyDescription 
(";" parse_PropertyDescription |";" )* 

] 
T[V] 

parseJPropertyDescription   ::=        [Property] Identifier 
":" PropertyTypeDescription 
[ "=" PropertyValueDeclaration ] 
[  "«" parseJPropertyDescription 

(";" parseJPropertyDescription \";" )* 
"»" 

I 

] 

PropertyTypeDeclaration     ::=        Property Type Identifier 
/    if. ii 

I  ' 
"=" (lnt"\" | Long";" | Double";" | Float";" 

\String";" \ Boolean";" | Any";" 
\Enum ["{" Identifier ("," Identifier )*"}" ] ";" 
\Set ["{""}" ]";" 
\Set"{" PropertyTypeDescription"}"";" 
(Sequence [ "<•• ••>" ] ••;•• 
[Sequence "<" PropertyTypeDescription ">"";" 
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\Record"[" parse_RecordFieldDescription 
(";" parse_RecordFieldDescription |";" )*"]"";" 

\Record ["[""]" ]";" 
identifier";" 

) 
) 

PropertyTypeDescription      ::=        Int \ Long \ Float | Double | String 
| Boolean \ Any 
I Set ["{" [ PropertyTypeDescription ]"}" ] 
j Sequence [ "<" [ PropertyTypeDescription ] ">" ] 
j Record"[" parse_RecordFieldDescription 

(";" parse_RecordFieldDescription \";" )*"]" 
| Record ["[""]" ] 
| Enum ["{" Identifier ("," Identifier )*"}" ] 
| Enum ["{" y ] 
| Identifier 

parse_RecordFieldDescription ::=        Identifier ("," Identifier )* 
[":" PropertyTypeDescription ] 

PropertyValueDeclaration    ::= lnteger_Literal | Floating_Point_Literal \ 
String_Literal | False | True \ AcmeSetValue \ 
AcmeSequenceValue \ AcmeRecordValue \ Identifier 

AcmeSetValue ::=     "{""}" 
|"{" PropertyValueDeclaration 

("," PropertyValueDeclaration )*"}" 

AcmeSequenceValue    ::= "<" ">"| 
"<" PropertyValueDeclaration 

("," PropertyValueDeclaration )* ">" 

AcmeRecordValue ::= "[" RecordFieldValue (";" RecordFieldValue \";" )*"]" 

RecordFieldValue ::= Identifier ":" PropertyTypeDescription "=" 
PropertyValueDeclaration 

Representations and Bindings: 

RepresentationDeclaration   ::=        Representation "{" 
SystemDeclaration 
[ BindingsMapDeclaration ] 

BindingsMapDeclaration      ::=        Bindings "=""{" ( BindingDeclaration )* "}" [";" ] 

BindingDeclaration        ::= [Identifier"."] Identifier to 
[Identifier"."] Identifier 
["{" ( PropertyDeclaration \ PropertiesBlock )*"}" ]";" 
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Design Rules and Analyses: 

Design Rule 

DesignRuleExpression 

QuantifiedExpression 

BooleanExpression 

OrExpression 

ImpliesExpression 

IffExpression 

EqualityExpression 

RelationalExpression 

AdditiveExpression 

MultiplicativeExpression ::= 

UnaryExpression ::= 

PrimitiveExpression 

Id 

DesignAnalysisCall 

LiteralConstant 

ActualParams 

FormalParams 

ActualParam 

:= ( Design )? (Invariant \ Heuristic) 
DesignRuleExpression";" 

:=  QuantifiedExpression \ BooleanExpression 

( forall | exists) Identifier":" 
lookup_arbitraryTypeByName in 
SetExpression "\" DesignRuleExpression 

OrExpression ( and OrExpression )* 

ImpliesExpression ( or ImpliesExpression )* 

IffExpression ("->" IffExpression )* 

EqualityExpression ("<->" EqualityExpression )* 

RelationalExpression ("==" RelationalExpression 
| "!=" RelationalExpression )* 

AdditiveExpression 
("<" AdditiveExpression | ">" AdditiveExpression 

| "<=" AdditiveExpression \ "=>" AdditiveExpression )* 

MultiplicativeExpression 
("+" MultiplicativeExpression 
|"-" MultiplicativeExpression )* 

UnaryExpression 
("*" UnaryExpression 

|"/" UnaryExpression 
I"%" UnaryExpression )* 

"!" UnaryExpression 
|"-" UnaryExpression 
I PrimitiveExpression 

"(" DesignRuleExpression")" 
| LiteralConstant \ DesignAnalysisCall \ Id 

Identifier ("." Identifier )* 

Id "("ActualParams")" 

IntegerLiteral \ FloatingPointLiteral \ StringLiteral 
| true | false 

(ActualParam ("," ActualParam )* )? 

( FormalParam ("," FormalParam )* )? 

LiteralConstant | DesignAnalysisCall \ Id 
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FormalParam 

SetExpression 

SetReference 

SetFunction 

LiteralSet 

SetConstructor 

::= Identifier ("," Identifier )*":" 
(Identifier | Component | Connector \ Port | Role 

| Int | Float | String \ Boolean ) 

::= ( SetReference \ SetFunction | LiteralSet 
| SetConstructor) 

::= Identifier (("." Identifier) | ("." Components ) 
| ("." Connectors ) \ ("." Ports ) \ ("." Roles ) 
I ("." Representations ) | ("." Properties ) )+ 

::= ( Union \ Intersection \ Setdiff) 
"(" SetExpression "," SetExpression")" 

::= (TT I 
T ( LiteralConstant \ld)("," ( LiteralConstant \ld))* 
"}") 

::= "{" Select Identifier":" lookupjarbitraryTypeByName in 
SetExpression "|" DesignRuleExpression"}" 

© BOB MONROE PAGE 217 08/20/99 


