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We describe the design and early functionality of the 
Active Harmony global resource management system. 
Harmony is an infrastructure designed to efficiently 
execute parallel applications in large-scale, dynamic 
environments. 

Harmony differs from other projects with similar goals 
in that the system automatically adapts ongoing com- 
putations to changing conditions through online reco n- 
figuration. This reconfiguration can consist of system- 
directed migration of work at several different levels, or 
automatic application adaptation through the use of 
tuning options exported by Harmony-aware applica- 
tions. 

We describe early experience with work migration at the 
level of procedures, processes and lightweight threads. 

1. Introduction 
Meta-computing, the simultaneous and coordinated use 
of semi-autonomous computing resources in physically 
separate locations, is increasingly being used to solve 
large-scale scientific problems. By using a collection of 
specialized computational and data resources located at 
different facilities around the world, work can be done 
more efficiently than if only local resources were used. 
However, the infrastructure to support this type of 
global-scale computation is not yet available. 

Both meta-computer environments and the applica- 
tions that run on them can be characterized by distrib u- 
tion, heterogeneity, and changing resource requirements 
and capacities. These attributes make static approaches 
to resource allocation unsuitable. Systems need to dy- 
namically adapt to changing resource capacities and 
application requirements in order to achieve high per- 
formance in such environments. 

We are designing and building Active Harmony, a 
software architecture that manages distributed execution 
of computational objects in such environments. Our 
primary focus is on the following three areas: 
•     Support for dynamic  execution  environments: 

Dynamic adaptation to network and resource ca- 
pacities, both when computational objects are cre- 
ated, and when application requirements or resource 

capacities change. Active Harmony attempts to 
maximize data affinity (moving computation near 
its data) and load balancing through intelligent r e- 
source allocation and object migration. Harmony 
supports an extensible metric interface that permits 
the sharing of resource capacity and utilization in- 
formation among components in a distributed sys- 
tem. 

• Application adaptation: A measurement and feed- 
back system that adapts computational objects and 
their execution environment to improve the overall 
performance of the distributed system via runtime 
adaptation of algorithms, data distribution, and load 
balancing. Active Harmony exports a detailed met- 
ric interface to applications, allowing them to access 
processor, network, and operating system parame- 
ters. Applications export tuning options to the sys- 
tem, which can then automatically optimize re- 
source allocation. Measurement and tuning there- 
fore become first class objects in the programming 
model. Programmers can write applications that in- 
clude ways to adapt computation to observed per- 
formance and changing conditions. 

• Shared-data interfaces: Active Harmony supports 
single-system semantics among computational ob- 
jects regardless of location, including consistent 
shared data segments. Shared data segments allow 
both peer-to-peer and client-server computations to 
exploit the simplified programming model and fine- 
grained sharing permitted by shared-memory envi- 
ronments. Innovations include support for hetero- 
geneity of both data and program code, and support 
for the dynamic execution environment. Harmonys 
shared data interface also includes methods of 
measuring the data affinity between arbitrary ob- 
jects. 

The Active Harmony system is targeted at long- 
lived and persistent applications. Examples of long-lived 
applications include scientific code and data mining 
applications. Persistent applications include fife servers, 
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information servers, and database management systems. 
We target long-lived applications because they persist 
long enough for the global environment to change, and 
hence have higher potential for improvement. 

Our emphasis on long-lived applications allows us 
to focus on relatively expensive operations such as object 
migration. The cost of these operations can be amortized 
across the life of the object. Additionally, in order to 
implement a feed-back loop that does not oscillate out- 
of-control, changes must be implemented gradually in 
order to allow the effects of one change to settle before 
other changes are made. 

Inherent to our assumption that we can adapt long- 
lived parallel applications is the belief that the past per- 
formance of an application is a good predictor of future 
behavior. We feel this is true because many programs 
tend to be cyclic or iterative in nature. As a result, if we 
can measure a program for one cycle, we can then adapt 
it for the next cycle and hope to improve its perform- 
ance. Examples of applications that have this behavior 
include most scientific codes and periodic requests to 
information and database severs. 

Resource management in meta-computing envi- 
ronments is a complex task. This paper focuses on the 
problem of developing metrics to measure changing 
computational needs and the techniques to react to them. 
Section 2 describes the overall architecture of the Har- 
mony System. Section 3 describes Harmonys use of 
LBF, a performance metric designed to predict the im- 
pact of migrating both process-level and procedure-level 
computation tasks. Section 4 describes Harmonys ap- 
proach to communication minimization through thread 
migration. Finally, Section 5 discusses related work and 
Section 6 concludes. 

2. Scheduling and adaptation 
Traditional approaches to resource management, such as 
space sharing and gang scheduling, rely on the system 
being static and under the full control of a centralized 
scheduler. They also rely on all system jobs being ho- 
mogenous, at least to the level of the types of informa- 
tion that can be obtained from the jobs. Harmonys ta r- 
get environment is dynamic, heterogeneous, and can 
contain sub-systems that are not fully under Harmonyfc 
control. Furthermore, we intend to exploit application- 
specific information to improve resource utilization. 

For example, the underlying system can obtain 
sharing information about threads in distributed shared 
memory (DSM) applications. Another application might 
explicitly export tuning options to the system. These 
options might allow the system to adapt the application 
to available memory and CPU resources. Such disparate 
types of information present inherently different chal- 
lenges and opportunities to schedulers, and could proba- 

bly be best handled in a decentralized fashion. However, 
global schedulers provide a single point where broad 
policy decisions can be made 

2.1 Adaptation policies 
The primary motivation of Harmonys application and 
environment characterizations is their use in improving 
resource utilization and throughput. Traditional ap- 
proaches to scheduling, such as space sharing and gang- 
scheduling, rely on the system being static and under the 
full control of the scheduler. Our target environment is 
neither. Among the issues that we address are the fol- 
lowing: 
1) centralized versus decentralized control - Cen- 

tralized control usually implies better decision- 
making because of more complete information. 
However, up-to-date information is expensive to 
collect in large or dynamic systems. Since our target 
environments are both, we expect the ability to 
profitably use slightly stale system information to be 
important. 

2) data-shipping versus function-shipping - At any 
point where computational objects interact with ei- 
ther remote data sources or objects, the system can 
potentially improve performance by migrating the 
objects closer together. The systems must determine 
when this is appropriate, and in what fashion any 
migration would be accomplished. 

3) throughput versus response time - While through- 
put is likely to be the most important measure of 
system performance, the application mix will in- 
clude applications for which response time is im- 
portant, and the system might also be forced to co- 
exist with applications that are both outside the 
control of the system, and whose performance must 
not be degraded. 

Harmony supports both domain-specific decision proc- 
esses and global policies through hierarchical resource 
management. The adaptation controller exports broad 
policy choices through a domain-independent interface 
to domain schedulers. Similarly, domain-independent 
resource and capacity information is passed from the 
domain schedulers up to the adaptation controller. Each 
domain scheduler translates global policies into policies 
specific to the type of application it controls. 

2.2 HarmonyS structure 
Harmonys structure is shown in Figure 1. The major 
components are the following: 

Adaptation controller 
The adaptation controller is the heart of the system. The 
controller must gather relevant information to be used as 



input, project the effects of proposed changes (such as 
migrating an object) on the system, and weigh compet- 
ing costs and expected benefits of making various 
changes. 

The design of the adaptation controller has yet to be 
finalized. However, the system will probably use a pä- 
tern-matching approach. Patterns will be used categorize 
potential problems into specific problem domains, and to 
apply sophisticated domain-specific optimizations. For 
example, if the adaptation controller contained a predi- 
cate that indicates the system is suffering from poor load 
balance, the pattern that recognizes the situation might 
trigger one or more load balancing algorithms. To- 
gether, the problem-recognition patterns and the do- 
main-specific techniques will form a complete resource 
management system. 

Active Harmony provides mechanisms for applica- 
tions to export tuning options, together with information 
about the resource requirements of each option, to the 
adaptation controller. The adaptation controller then 
chooses among the exported options based on more 
complete information than is available to individual 
objects. A key advantage of this technique is that the 
system can tune not just individual objects, but also en- 
tire collections of objects. Possible tuning criteria in- 
clude network latency and bandwidth, memory utiliza- 
tion, and processor time. Since changing implementa- 
tions or data layout could require significant time, we 
propose to include a cost function that can be used by 
the tuning system to evaluate if a tuning option is worth 
the effort required. 

Metric interface 
The metric interface provides a unified way to gather 

data about the performance of applications and their 
execution environment. Data about system conditions 
and application resource requirements flow into the met- 
ric interface, and on to both the adaptation controller 
and individual applications. 

Tuning interface 
The tuning interface provides a method for applications 
to export tuning options to the system. Each tuning op- 
tion defines the expected consumption of one or more 
system resources. The options are intended to be 
'knobs" that the system can use to adjust applications to 
changes in the environment. The main concern in d e- 
signing the tuning interface is to ensure that it is expre s- 
sive enough to describe the effects of all application 
tuning options. 

3. Adaptation metrics 
To make informed choices about adapting an applica- 
tion, Harmony needs metrics to predict the performance 
implications of any changes. To meet this need, we have 
developed a metric called Load Balancing Factor (LBF) 
to predict the impact of changing where computation is 
performed. This metric can be used by the system to 
evaluate potential application reconfigurations before 
committing to potentially poor choices. 

We have developed two variants of LBF, one for 
process level migration, and one for fine-grained proce- 
dure level migration. Process Load Balancing Factor 
(LBF) predicts the impact of changing the assignment of 
processes to processors in a distributed execution envi- 
ronment. Our goal is to compute the potential improve- 
ment in execution time if we change the placement. Our 
technique can also be used to predict the performance 
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Figure 1: Major Components of Active Harmony 



gain possible if new nodes are added. Also, we are able 
to predict how the application would behave if the per- 
formance characteristics of the communication system 
were to change. 

To assess the potential improvement, we predict the 
execution time of a program with a virtual placement, 
during an execution on a different one. Our approach is 
to instrument application processes to forward data 
about inter-process events to a central monitoring sta- 
tion that simulates the execution of these events under 
the target configuration. 

The details of the algorithm for process level-LBF 
are described in [1]. Early experience with process-LBF 
is encouraging. Figure 2 shows a summary of the meas- 
ured and predicted performance for a TSP application, 
and four of the NAS benchmark programs [2]. For each 
application, we show the measured running time for one 
or two configurations and the predicted running time 
when the number of nodes is used. For all cases, we are 
able to predict the running time to within 6% of the 
measured time. 

While process LBF is designed for course-grained 
migration, procedure-level LBF is designed to measure 
the impact of fine-grained moved of work. The goal of 
this metric is to compute the potential improvement in 
execution time if we move a selected procedure, F, from 
the client to the server or visa-versa. 

Application Meas. Pred. Error Pred. Error 
Target Time 

TSP 4/1 4/1 
4/4 85.6 85.5 0.1    (0.1%) 85.9 -0.3 (-0.4%) 
4/1 199.2 197.1 2.1    (1.1%) 198.9 0.3   (0.2%) 

EP - class A 16/16 16/8 
16/16 258.2 255.6 2.6    (1.0%) 260.7 -2.5 (-1.0%) 

FT- class A 16/16 16/8 
16/16 140.9 139.2 1.7    (1.2%) 140.0 0.9   (0.6%) 

IS- class A 16/16 16/8 
16/16 271.2 253.3 17.9    (6.6%) 254.7 16.5   (6.0%) 

MG- class A 16/16 16/8 
16/16 172.8 166.0 6.8    (4.0%) 168.5 4.3   (2.5%) 

Figure 2: Measured and predicted time for LBF. 
For each application, we show 1-2 target configura- 
tions. The second column shows the measured time 
running on this target configuration. The rest of the 
table shows the execution times predicted by LBF 
when run under two different actual configurations. 

The algorithm used to compute procedure is based on 
the Critical Path (CP) of a parallel computation (The 
longest process time weighted path through the graph 
formed by the inter-process communication in the pro- 
gram). The idea of procedure LBF is to compute the new 

CP of the program if the selected procedure was moved 
from one process to another2. 

In each process, we keep track of the original CP 
and the new CP due to moving the selected procedure. 
We compute procedure LBF at each message exchange. 
At a send event, we subtract the accumulated time of the 
selected procedure from the CP of the sending process, 
and send the accumulated procedure time along with the 
application message. At a receive event, we add the 
passed procedure time to the CP value of the receiving 
process before the receive event. The value of the pro- 
cedure LBF metric is the total effective CP value at the 
end of the program fe execution. Procedure LBF only 
approximates the execution time with migration since 
we ignore many subtle issues such as global data refer- 
ences by the "moved" procedure. Figure 3 shows the 
computation of procedure LBF for a single message 
send. Our intent with this metric is to supply initial 
feedback to the programmer about the potential of a 
tuning alternative. A more refined prediction that inco r- 
porates shared data analysis could be run after our met- 
ric but before proceeding to a full implementation. 

call(F) 

F startRecv 

Cs-F 

Before "moving" F After "moving" F 

Figure 3: Computing procedure LBF - The PAG 
before and after moving the procedure F. The time 
for the procedure F is moved from the sending proc- 
ess (which is on the application^ critical path) to 
the receiving one (which is not). 

We created a Synthetic Parallel Application (SPA) that 
demonstrates a workload where a single server becomes 
the bottleneck responding to requests from three clients. 
In the server, two classes of requests are processed: ser- 
vBusyl and servBusy2. ServBusyl is the service re- 
quested by the first client and servBusyl is the service 
requested by the other two clients. 

2 Our metric does not evaluate how to move the procedure. 
However, this movement is possible if the application uses 
Harmony's shared data programming model. 



The results of computing procedure LBF for the 
synthetic parallel application are shown in Figure 4. To 
validate these results, we created two modified versions 
of the synthetic parallel application (one with each of 
servBusyl and servBusy>2 moved from the server the 
clients) and measured the resulting execution time3. The 
results of the modified programs are shown in the third 
column of Figure 4. In both cases, the error is small in- 
dicating that our metric has provided good guidance to 
the application programmer. 

Procedure 
Proce- 

dure LBF 
Measured 

Time 
Differ- 

ence 
ServBusyl 

ServBusy2 

25.3 

23.0 

•   25.4 

23.1 

0.1 
(0.4%) 

0.1 
(0.6%) 

Figure 4: Procedure LBF accuracy. 

For comparison to an alternative tuning option, we 
also show the value for the Critical Path Zeroing metric 
[3]. CP Zeroing is a metric that predicts the improve- 
ment possible due to optimally tuning the selected pro- 
cedure (i.e., reducing its execution time to zero) by 
computing the length of the critical path resulting from 
setting the time of the selected procedure to zero. We 
compare LBF with Critical Path Zeroing because it is 
natural to consider improving the performance of a pro- 
cedure itself as well as changing its execution place 
(processor) as tuning strategies. 

The length of the new CP due to the movement of 
servBusyl is 25.4 and the length due to servBusyl is 
16.1 while the length of the original CP is 30.7. With 
the Critical Path Zeroing metric, we achieve almost the 
same benefit as tuning the procedure ServBusyl by sim- 
ply moving it from the server to the client. Likewise, we 
achieve over one-half the benefit of tuning the Ser- 
vBusyl procedure by moving it to the client side. 

Procedure LBF 
Improve- 

ment 
CP 

Zeroing 
Improve- 

ment 

ServBusyl 
ServBusy2 

25.3 
23.1 

17.8% 
25.1% 

25.4 
16.1 

17.4% 
47.5% 

Figure 5: Procedure LBF vs. CP Zeroing. 

4. Adaptation via thread migration 
LBF allows Harmony to evaluate the computational ef- 
fects of moving procedures and processes among distinct 

3 Since Harmony's shared data programming model is not yet 
fully implemented, we made these changes by hand. 

nodes. This section discusses Harmonys ability to 
gather and use somewhat analogous information from 
shared-memory applications. 

Harmony provides a shared memory abstraction to 
parallel applications running on networks of worksta- 
tions. Systems with such support are commonly termed 
distributed shared memory (DSM) systems. DSM appli- 
cations are multi-threaded, and assumed to have many 
more threads than the number of nodes used by any one 
application. Overall performance depends on parallel- 
ism, load balance, latency tolerance, and communication 
minimization. In this paper, we focus on communication 
minimization. 

Communication results primarily from data sharing 
between threads. Hence, co-locating communicating 
threads on the same nodes can reduce communication. 
Harmony obtains sharing information through an active 
correlation-tracking mechanism [4]. Previous systems 
obtained page-level access information by tracking ex- 
isting page faults. Page faults occur when local threads 
access invalid shared pages. Invalid pages are re- 
validated by fetching the latest version of the shared 
page from the last node that modified it. The underlying 
system keeps track of the thread that caused each page 
fault, slowly building up a pattern of the pages accessed 
by each thread. The correlation between a pair of 
threads is the number of shared pages that they access in 
common. 

The problem is that there are usually multiple 
threads running on each machine, and these threads 
share state. Once the first thread on a node re-validates a 
given page, all other local threads can access the page 
without invoking the DSM system. 

Hence, the system only gains partial information 
about the sharing behavior of local threads. Any migra- 
tion decisions are therefore made with only partial in- 
formation, often leading to bad long-term choices. Bad 
choices are discovered only after the threads have been 
migrated to other processors. Once a thread migrates off 
of a local host, the interactions between that thread and 
those left behind become visible in the form of network 
page faults (unless masked by the actions of other 
threads on the new node). These faults can be used to 
identify threads that should then be moved back to their 
original position, resulting in ping-ponging of threads 
across the system. 

Active correlation-tracking avoids these problems 
through a one-time correlation-tracking phase. Briefly, 
the algorithm is as follows: 

1) All pages are marked invalid. 
2) At each access fault caused by the above step (a 

correlation fault), the page is noted and the pages 
protection is returned to its original state. 
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Figure 6: Passive information-gathering 

3)   At the next barrier, untouched pages are returned 
to their previous protection level. 

After the tracking phase has ended, each processor has a 
complete record of all pages accessed by local threads. 

We measure the performance impact of correlation- 
tracking on several applications from several standard 
DSM applications4. The tracking phased primary ove r- 
head results from the correlation faults. However, be- 
cause the faults are incurred in parallel across all nodes 
in the system, they cause an overhead of less than 20%. 
Furthermore, this overhead only occurs during the 
tracking phase. Since the tracking phase usually only 
occurs once at the beginning of an applications exec u- 
tion, this cost has a negligible effect on overall perform- 
ance. 

Note that active correlation-tracking gives Harmony 
complete sharing information without network commu- 
nication. Hence, a new configuration can be imple- 
mented in only a single round of thread migrations. By 
contrast, Figure 6 shows that the passive approach re- 
quires an average of more than six rounds of mass 
thread migrations before the amount of information sta- 
bilizes. Each point shows the percentage of total infor- 
mation learned by the passive approach at that round. 
Even at the end of the migrations, the passive tracking 
only comes close to obtaining complete information for 
sor, by far the least complex of our applications. 

Information obtained from the active correlation- 
tracking mechanism is used to create correlation maps, 
which summarize sharing information among all 
threads in the system. Figure 7 shows a 16-thread cor- 
relation map of a 3-D FFT with 64 by 64 by 16 data 
points. The map shows a well-defined structure in which 
all of the high peaks are concentrated along the diag o- 
nal. Extension along the z axis represents the correlation 
(in terms of the number of pages shared between threads 

Threads 
Threads 

4 Please see [5, 6] for details of our test applications. 

Figure 7: 16-thread FFT 

x and y) between the two threads identified by the x and 
y coordinates. The majority of FFTs data sharing occurs 
inside four-thread groupings. The lowest peak represents 
sharing among threads 1-4, the next peak represents 
sharing between among nodes 5-8, etc. This map im- 
plies that a mapping of four threads to each of four 
processors would avoid network communication for the 
majority of the sharing between threads. However, an 
eight by two mapping would exclude the majority of the 
peaks, implying that it would cause much more commu- 
nication mapping. What is not clear from the map is to 
what extent this communication advantage would 
translate into a performance advantage. 

Given complete information on the sharing between 
threads, Harmony attempts to reduce communication by 
co-locating thread pairs that share the most data. 

This problem is NP-complete, so we evaluated sev- 
eral heuristics for mapping specific threads to nodes. 
Briefly, we looked at both leader-based and leaderless 
variants of AscEdge, DesEdge, and DesNode [4]. As- 
cEdge treats threads and their communication (or cor- 
relation) as nodes and edges of a weighted graph, re- 
spectively. We map threads to nodes by sorting edges by 
weight (communication cost) in ascending order. The 
threads representing the endpoints of each edge are put 
onto distinct nodes, if possible. Each thread is mapped 
to the node with which the thread has the highest aggr e- 
gate correlation. DesEdge differs in that the edges are 
sorted in descending order, and threads are placed on 
the same nodes, if possible. DesNode sorts threads by 
aggregate correlation, and maps each thread to the node 
with which it has the highest aggregate correl ation. 

Figure 8 shows the communication costs that result 
from running each of the heuristics on information 
gathered through active correlation-tracking. The first 
five columns give communication costs in the number of 
pages shared by pairs of threads. The second set of five 



columns gives the number of kilobytes communicated 
per iteration, and the last five columns give the number 
of messages sent per iteration. The heuristics AscEdge, 
DesEdge, and DesNode are abbreviated 'ae', üe' and 
'dn', respectively. Leader-based variants are identified 
by -1'suffixes. Additionally, we also show the comm u- 
nication costs of the optimal configuration (bpt), and 
of a random configuration (r). 

There is a large amount of variation across the di f- 
ferent applications, but de-1 generally performs the best, 
and random the worst. On average, de-1 obtains a solu- 
tion within 0.3% of optimal. This performance appears 
to rest on two advantages. First, de-1 is usually able to 
group threads connected by high-cost nodes together on 
the same nodes. Second, the leader-based approaches 
appear to help ensure that the nodes are filled at the 
same pace, rather than having the first node fill co m- 
pletely, then the second, etc. The problem with filling 
nodes unevenly is that it increases the chance that a 
high-cost edge has to be split across nodes because of 
one node being filled. 

The relative communication cost magnitudes match 
up quite well with the number of bytes communicated 
and messages sent. However, the differences in commu- 
nication cost are exaggerated in the byte and message 
totals. This implies that the page sharing addressed well 
by all of the heuristics causes relatively less communi- 
cation than the pages that are handled better by some 
heuristics than others. 

5. Related work 
Process migration techniques have been investigated in 
depth [7-9]. Recent work has investigated using hetero- 
geneous migration in conjunction with typesafe lan- 
guages, and in situations where the type-safety of appli- 
cations written in non-typesafe languages can be verified 
[10]. Harmony is different in that we focus on the policy 
issues of when to migrate large, long-running distributed 
applications; and whether to migrate the process or the 
data. 

Farming computational objects to nodes of a dis- 
tributed system has been exploited by many projects [11- 

19]. Several projects also allow process migration across 
homogeneous processor borders for purposes of load 
balancing. Dome [18] also allows migration across het- 
erogeneous boundaries, but uses high-level checkpoints 
consisting of user-written routines that marshal and un- 
marshal significant data structure manually. Addition- 
ally, Dome only supports applications based on a library 
of parallel data structures; arbitrary parallel applications 
are not supported. The Harmony project is distinguished 
from these projects by the following factors: emphasis 
on dynamic environments, integration of application 
tuning options and semantic information into resource 
management algorithms, and inclusion of such into r e- 
source management algorithms. 

Several studies [7] claim that load-balancing via 
process migration is not a viable strategy for improving 
performance, primarily because of large migration over- 
head. We believe that two changes in current systems 
make these results less relevant today than with systems 
of a decade ago. First, computationally intensive appli- 
cations are now a mainstay on the type of workstations 
we are considering in our work. These applications have 
large resource demands, and sufficient execution time to 
amortize the cost of process migration. Second, the 
prevalence of parallel and client-server applications 
means that data affinity becomes at least as important as 
processor cycles for these applications. Hence, there is 
more potential for improved performance with current 
applications than with typical applications of a decade 
ago. 

Globus [20] and Legion [21] also provide infra- 
structures that support program execution in a meta- 
computing environment. Harmony differs from these 
systems by focusing on developing metrics and algo- 
rithms for program adaptation, and by our use of shared- 
data interfaces as part of the programming model. Gl o- 
bus and Legion provide other essential services for 
meta-computing including naming, security, and com- 
munication. We are investigating using one or both of 
these systems as a test-bed for the resource management 
policies we are developing. 

AppLeS [22] provides programmers with applica- 
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tion level scheduling. Harmony differs in that our focus 
is on providing middle-ware that provides metrics and 
mechanisms to alter the behavior of a program in exe- 
cution. In AppLeS, the application programmer is sup- 
plied information about the computing environment [23] 
and given a library to let them react to the changes in 
available resources. In Harmony, we are trying to have 
the application supply alternative ways of executing the 
program and then let the runtime software select among 
these options based on observations of the environment. 

6. Summary and discussion 
We have described Active Harmony, a new infrastruc- 
ture for managing resources in large, dynamic environ- 
ments. One of Harmony s major strengths is its ability to 
gather and exploit many types of application-specific 
information. This information can then be used to aut o- 
matically reconfigure running applications at several 
levels. This paper has concentrated on two such mecha- 
nisms. First, the LBF metric predicts the performance 
impact of moving procedures and processes. Second, 
active correlation- tracking is used to gather data shar- 
ing information and drive thread migration decision 
heuristics. 

However, Harmonys strength is not in the indivi d- 
ual mechanisms and metrics used, but in the interfaces 
that allow global policy decisions and many types of 
application-specific information to be tied together. 
Harmony is a work in progress, and we are continuing 
to evaluate new sources of information and new mecha- 
nisms for possible inclusion in the system. 
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