
Prediction and Adaptation in Active Harmony1

Jeffrey K. Hollingsworth and Peter J. Keleher
University of Maryland

{hollings,keleher}©cs.umd.edu

We describe the design and early functionality of the
Active Harmony global resource management system.
Harmony is an infrastructure designed to efficiently
execute parallel applications in large-scale, dynamic
environments.

Harmony differs from other projects with similar goals
in that the system automatically adapts ongoing com-
putations to changing conditions through online reco n-
figuration. This reconfiguration can consist of system-
directed migration of work at several different levels, or
automatic application adaptation through the use of
tuning options exported by Harmony-aware applica-
tions.

We describe early experience with work migration at the
level of procedures, processes and lightweight threads.

1. Introduction
Meta-computing, the simultaneous and coordinated use
of semi-autonomous computing resources in physically
separate locations, is increasingly being used to solve
large-scale scientific problems. By using a collection of
specialized computational and data resources located at
different facilities around the world, work can be done
more efficiently than if only local resources were used.
However, the infrastructure to support this type of
global-scale computation is not yet available.

Both meta-computer environments and the applica-
tions that run on them can be characterized by distrib u-
tion, heterogeneity, and changing resource requirements
and capacities. These attributes make static approaches
to resource allocation unsuitable. Systems need to dy-
namically adapt to changing resource capacities and
application requirements in order to achieve high per-
formance in such environments.

We are designing and building Active Harmony, a
software architecture that manages distributed execution
of computational objects in such environments. Our
primary focus is on the following three areas:
• Support for dynamic execution environments:

Dynamic adaptation to network and resource ca-
pacities, both when computational objects are cre-
ated, and when application requirements or resource

capacities change. Active Harmony attempts to
maximize data affinity (moving computation near
its data) and load balancing through intelligent r e-
source allocation and object migration. Harmony
supports an extensible metric interface that permits
the sharing of resource capacity and utilization in-
formation among components in a distributed sys-
tem.

• Application adaptation: A measurement and feed-
back system that adapts computational objects and
their execution environment to improve the overall
performance of the distributed system via runtime
adaptation of algorithms, data distribution, and load
balancing. Active Harmony exports a detailed met-
ric interface to applications, allowing them to access
processor, network, and operating system parame-
ters. Applications export tuning options to the sys-
tem, which can then automatically optimize re-
source allocation. Measurement and tuning there-
fore become first class objects in the programming
model. Programmers can write applications that in-
clude ways to adapt computation to observed per-
formance and changing conditions.

• Shared-data interfaces: Active Harmony supports
single-system semantics among computational ob-
jects regardless of location, including consistent
shared data segments. Shared data segments allow
both peer-to-peer and client-server computations to
exploit the simplified programming model and fine-
grained sharing permitted by shared-memory envi-
ronments. Innovations include support for hetero-
geneity of both data and program code, and support
for the dynamic execution environment. Harmonys
shared data interface also includes methods of
measuring the data affinity between arbitrary ob-
jects.

The Active Harmony system is targeted at long-
lived and persistent applications. Examples of long-lived
applications include scientific code and data mining
applications. Persistent applications include fife servers,

1 Supported in part by NSF awards ASC-9703212, CCR-9624803 and ACI-9711364.

20000505 057

DISTRIBUTION STATEMENT
Approved for Public Release

Distribution Unlimited

DTIC QÜÄLETY mSSBCTED 1

information servers, and database management systems.
We target long-lived applications because they persist
long enough for the global environment to change, and
hence have higher potential for improvement.

Our emphasis on long-lived applications allows us
to focus on relatively expensive operations such as object
migration. The cost of these operations can be amortized
across the life of the object. Additionally, in order to
implement a feed-back loop that does not oscillate out-
of-control, changes must be implemented gradually in
order to allow the effects of one change to settle before
other changes are made.

Inherent to our assumption that we can adapt long-
lived parallel applications is the belief that the past per-
formance of an application is a good predictor of future
behavior. We feel this is true because many programs
tend to be cyclic or iterative in nature. As a result, if we
can measure a program for one cycle, we can then adapt
it for the next cycle and hope to improve its perform-
ance. Examples of applications that have this behavior
include most scientific codes and periodic requests to
information and database severs.

Resource management in meta-computing envi-
ronments is a complex task. This paper focuses on the
problem of developing metrics to measure changing
computational needs and the techniques to react to them.
Section 2 describes the overall architecture of the Har-
mony System. Section 3 describes Harmonys use of
LBF, a performance metric designed to predict the im-
pact of migrating both process-level and procedure-level
computation tasks. Section 4 describes Harmonys ap-
proach to communication minimization through thread
migration. Finally, Section 5 discusses related work and
Section 6 concludes.

2. Scheduling and adaptation
Traditional approaches to resource management, such as
space sharing and gang scheduling, rely on the system
being static and under the full control of a centralized
scheduler. They also rely on all system jobs being ho-
mogenous, at least to the level of the types of informa-
tion that can be obtained from the jobs. Harmonys ta r-
get environment is dynamic, heterogeneous, and can
contain sub-systems that are not fully under Harmonyfc
control. Furthermore, we intend to exploit application-
specific information to improve resource utilization.

For example, the underlying system can obtain
sharing information about threads in distributed shared
memory (DSM) applications. Another application might
explicitly export tuning options to the system. These
options might allow the system to adapt the application
to available memory and CPU resources. Such disparate
types of information present inherently different chal-
lenges and opportunities to schedulers, and could proba-

bly be best handled in a decentralized fashion. However,
global schedulers provide a single point where broad
policy decisions can be made

2.1 Adaptation policies
The primary motivation of Harmonys application and
environment characterizations is their use in improving
resource utilization and throughput. Traditional ap-
proaches to scheduling, such as space sharing and gang-
scheduling, rely on the system being static and under the
full control of the scheduler. Our target environment is
neither. Among the issues that we address are the fol-
lowing:
1) centralized versus decentralized control - Cen-

tralized control usually implies better decision-
making because of more complete information.
However, up-to-date information is expensive to
collect in large or dynamic systems. Since our target
environments are both, we expect the ability to
profitably use slightly stale system information to be
important.

2) data-shipping versus function-shipping - At any
point where computational objects interact with ei-
ther remote data sources or objects, the system can
potentially improve performance by migrating the
objects closer together. The systems must determine
when this is appropriate, and in what fashion any
migration would be accomplished.

3) throughput versus response time - While through-
put is likely to be the most important measure of
system performance, the application mix will in-
clude applications for which response time is im-
portant, and the system might also be forced to co-
exist with applications that are both outside the
control of the system, and whose performance must
not be degraded.

Harmony supports both domain-specific decision proc-
esses and global policies through hierarchical resource
management. The adaptation controller exports broad
policy choices through a domain-independent interface
to domain schedulers. Similarly, domain-independent
resource and capacity information is passed from the
domain schedulers up to the adaptation controller. Each
domain scheduler translates global policies into policies
specific to the type of application it controls.

2.2 HarmonyS structure
Harmonys structure is shown in Figure 1. The major
components are the following:

Adaptation controller
The adaptation controller is the heart of the system. The
controller must gather relevant information to be used as

input, project the effects of proposed changes (such as
migrating an object) on the system, and weigh compet-
ing costs and expected benefits of making various
changes.

The design of the adaptation controller has yet to be
finalized. However, the system will probably use a pä-
tern-matching approach. Patterns will be used categorize
potential problems into specific problem domains, and to
apply sophisticated domain-specific optimizations. For
example, if the adaptation controller contained a predi-
cate that indicates the system is suffering from poor load
balance, the pattern that recognizes the situation might
trigger one or more load balancing algorithms. To-
gether, the problem-recognition patterns and the do-
main-specific techniques will form a complete resource
management system.

Active Harmony provides mechanisms for applica-
tions to export tuning options, together with information
about the resource requirements of each option, to the
adaptation controller. The adaptation controller then
chooses among the exported options based on more
complete information than is available to individual
objects. A key advantage of this technique is that the
system can tune not just individual objects, but also en-
tire collections of objects. Possible tuning criteria in-
clude network latency and bandwidth, memory utiliza-
tion, and processor time. Since changing implementa-
tions or data layout could require significant time, we
propose to include a cost function that can be used by
the tuning system to evaluate if a tuning option is worth
the effort required.

Metric interface
The metric interface provides a unified way to gather

data about the performance of applications and their
execution environment. Data about system conditions
and application resource requirements flow into the met-
ric interface, and on to both the adaptation controller
and individual applications.

Tuning interface
The tuning interface provides a method for applications
to export tuning options to the system. Each tuning op-
tion defines the expected consumption of one or more
system resources. The options are intended to be
'knobs" that the system can use to adjust applications to
changes in the environment. The main concern in d e-
signing the tuning interface is to ensure that it is expre s-
sive enough to describe the effects of all application
tuning options.

3. Adaptation metrics
To make informed choices about adapting an applica-
tion, Harmony needs metrics to predict the performance
implications of any changes. To meet this need, we have
developed a metric called Load Balancing Factor (LBF)
to predict the impact of changing where computation is
performed. This metric can be used by the system to
evaluate potential application reconfigurations before
committing to potentially poor choices.

We have developed two variants of LBF, one for
process level migration, and one for fine-grained proce-
dure level migration. Process Load Balancing Factor
(LBF) predicts the impact of changing the assignment of
processes to processors in a distributed execution envi-
ronment. Our goal is to compute the potential improve-
ment in execution time if we change the placement. Our
technique can also be used to predict the performance

/ System \
\ (Execution Environment) 1

•s^ Capacity and
Tuning •' >v Utilization
Control : \ Information

"" Resource ~^~~~^^
Availability and
Requirements

Adaptation A / Metric A
Controller / ''••._ Tuning

'•. Control

\ Interface J

J Resource
Tuning \ /Requirements
Options \.

• 1 Application and \
V Libraries /

Figure 1: Major Components of Active Harmony

gain possible if new nodes are added. Also, we are able
to predict how the application would behave if the per-
formance characteristics of the communication system
were to change.

To assess the potential improvement, we predict the
execution time of a program with a virtual placement,
during an execution on a different one. Our approach is
to instrument application processes to forward data
about inter-process events to a central monitoring sta-
tion that simulates the execution of these events under
the target configuration.

The details of the algorithm for process level-LBF
are described in [1]. Early experience with process-LBF
is encouraging. Figure 2 shows a summary of the meas-
ured and predicted performance for a TSP application,
and four of the NAS benchmark programs [2]. For each
application, we show the measured running time for one
or two configurations and the predicted running time
when the number of nodes is used. For all cases, we are
able to predict the running time to within 6% of the
measured time.

While process LBF is designed for course-grained
migration, procedure-level LBF is designed to measure
the impact of fine-grained moved of work. The goal of
this metric is to compute the potential improvement in
execution time if we move a selected procedure, F, from
the client to the server or visa-versa.

Application Meas. Pred. Error Pred. Error
Target Time

TSP 4/1 4/1
4/4 85.6 85.5 0.1 (0.1%) 85.9 -0.3 (-0.4%)
4/1 199.2 197.1 2.1 (1.1%) 198.9 0.3 (0.2%)

EP - class A 16/16 16/8
16/16 258.2 255.6 2.6 (1.0%) 260.7 -2.5 (-1.0%)

FT- class A 16/16 16/8
16/16 140.9 139.2 1.7 (1.2%) 140.0 0.9 (0.6%)

IS- class A 16/16 16/8
16/16 271.2 253.3 17.9 (6.6%) 254.7 16.5 (6.0%)

MG- class A 16/16 16/8
16/16 172.8 166.0 6.8 (4.0%) 168.5 4.3 (2.5%)

Figure 2: Measured and predicted time for LBF.
For each application, we show 1-2 target configura-
tions. The second column shows the measured time
running on this target configuration. The rest of the
table shows the execution times predicted by LBF
when run under two different actual configurations.

The algorithm used to compute procedure is based on
the Critical Path (CP) of a parallel computation (The
longest process time weighted path through the graph
formed by the inter-process communication in the pro-
gram). The idea of procedure LBF is to compute the new

CP of the program if the selected procedure was moved
from one process to another2.

In each process, we keep track of the original CP
and the new CP due to moving the selected procedure.
We compute procedure LBF at each message exchange.
At a send event, we subtract the accumulated time of the
selected procedure from the CP of the sending process,
and send the accumulated procedure time along with the
application message. At a receive event, we add the
passed procedure time to the CP value of the receiving
process before the receive event. The value of the pro-
cedure LBF metric is the total effective CP value at the
end of the program fe execution. Procedure LBF only
approximates the execution time with migration since
we ignore many subtle issues such as global data refer-
ences by the "moved" procedure. Figure 3 shows the
computation of procedure LBF for a single message
send. Our intent with this metric is to supply initial
feedback to the programmer about the potential of a
tuning alternative. A more refined prediction that inco r-
porates shared data analysis could be run after our met-
ric but before proceeding to a full implementation.

call(F)

F startRecv

Cs-F

Before "moving" F After "moving" F

Figure 3: Computing procedure LBF - The PAG
before and after moving the procedure F. The time
for the procedure F is moved from the sending proc-
ess (which is on the application^ critical path) to
the receiving one (which is not).

We created a Synthetic Parallel Application (SPA) that
demonstrates a workload where a single server becomes
the bottleneck responding to requests from three clients.
In the server, two classes of requests are processed: ser-
vBusyl and servBusy2. ServBusyl is the service re-
quested by the first client and servBusyl is the service
requested by the other two clients.

2 Our metric does not evaluate how to move the procedure.
However, this movement is possible if the application uses
Harmony's shared data programming model.

The results of computing procedure LBF for the
synthetic parallel application are shown in Figure 4. To
validate these results, we created two modified versions
of the synthetic parallel application (one with each of
servBusyl and servBusy>2 moved from the server the
clients) and measured the resulting execution time3. The
results of the modified programs are shown in the third
column of Figure 4. In both cases, the error is small in-
dicating that our metric has provided good guidance to
the application programmer.

Procedure
Proce-

dure LBF
Measured

Time
Differ-

ence
ServBusyl

ServBusy2

25.3

23.0

• 25.4

23.1

0.1
(0.4%)

0.1
(0.6%)

Figure 4: Procedure LBF accuracy.

For comparison to an alternative tuning option, we
also show the value for the Critical Path Zeroing metric
[3]. CP Zeroing is a metric that predicts the improve-
ment possible due to optimally tuning the selected pro-
cedure (i.e., reducing its execution time to zero) by
computing the length of the critical path resulting from
setting the time of the selected procedure to zero. We
compare LBF with Critical Path Zeroing because it is
natural to consider improving the performance of a pro-
cedure itself as well as changing its execution place
(processor) as tuning strategies.

The length of the new CP due to the movement of
servBusyl is 25.4 and the length due to servBusyl is
16.1 while the length of the original CP is 30.7. With
the Critical Path Zeroing metric, we achieve almost the
same benefit as tuning the procedure ServBusyl by sim-
ply moving it from the server to the client. Likewise, we
achieve over one-half the benefit of tuning the Ser-
vBusyl procedure by moving it to the client side.

Procedure LBF
Improve-

ment
CP

Zeroing
Improve-

ment

ServBusyl
ServBusy2

25.3
23.1

17.8%
25.1%

25.4
16.1

17.4%
47.5%

Figure 5: Procedure LBF vs. CP Zeroing.

4. Adaptation via thread migration
LBF allows Harmony to evaluate the computational ef-
fects of moving procedures and processes among distinct

3 Since Harmony's shared data programming model is not yet
fully implemented, we made these changes by hand.

nodes. This section discusses Harmonys ability to
gather and use somewhat analogous information from
shared-memory applications.

Harmony provides a shared memory abstraction to
parallel applications running on networks of worksta-
tions. Systems with such support are commonly termed
distributed shared memory (DSM) systems. DSM appli-
cations are multi-threaded, and assumed to have many
more threads than the number of nodes used by any one
application. Overall performance depends on parallel-
ism, load balance, latency tolerance, and communication
minimization. In this paper, we focus on communication
minimization.

Communication results primarily from data sharing
between threads. Hence, co-locating communicating
threads on the same nodes can reduce communication.
Harmony obtains sharing information through an active
correlation-tracking mechanism [4]. Previous systems
obtained page-level access information by tracking ex-
isting page faults. Page faults occur when local threads
access invalid shared pages. Invalid pages are re-
validated by fetching the latest version of the shared
page from the last node that modified it. The underlying
system keeps track of the thread that caused each page
fault, slowly building up a pattern of the pages accessed
by each thread. The correlation between a pair of
threads is the number of shared pages that they access in
common.

The problem is that there are usually multiple
threads running on each machine, and these threads
share state. Once the first thread on a node re-validates a
given page, all other local threads can access the page
without invoking the DSM system.

Hence, the system only gains partial information
about the sharing behavior of local threads. Any migra-
tion decisions are therefore made with only partial in-
formation, often leading to bad long-term choices. Bad
choices are discovered only after the threads have been
migrated to other processors. Once a thread migrates off
of a local host, the interactions between that thread and
those left behind become visible in the form of network
page faults (unless masked by the actions of other
threads on the new node). These faults can be used to
identify threads that should then be moved back to their
original position, resulting in ping-ponging of threads
across the system.

Active correlation-tracking avoids these problems
through a one-time correlation-tracking phase. Briefly,
the algorithm is as follows:

1) All pages are marked invalid.
2) At each access fault caused by the above step (a

correlation fault), the page is noted and the pages
protection is returned to its original state.

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Migration Rounds

-barnes ffl5 ocean —K— sor water

Figure 6: Passive information-gathering

3) At the next barrier, untouched pages are returned
to their previous protection level.

After the tracking phase has ended, each processor has a
complete record of all pages accessed by local threads.

We measure the performance impact of correlation-
tracking on several applications from several standard
DSM applications4. The tracking phased primary ove r-
head results from the correlation faults. However, be-
cause the faults are incurred in parallel across all nodes
in the system, they cause an overhead of less than 20%.
Furthermore, this overhead only occurs during the
tracking phase. Since the tracking phase usually only
occurs once at the beginning of an applications exec u-
tion, this cost has a negligible effect on overall perform-
ance.

Note that active correlation-tracking gives Harmony
complete sharing information without network commu-
nication. Hence, a new configuration can be imple-
mented in only a single round of thread migrations. By
contrast, Figure 6 shows that the passive approach re-
quires an average of more than six rounds of mass
thread migrations before the amount of information sta-
bilizes. Each point shows the percentage of total infor-
mation learned by the passive approach at that round.
Even at the end of the migrations, the passive tracking
only comes close to obtaining complete information for
sor, by far the least complex of our applications.

Information obtained from the active correlation-
tracking mechanism is used to create correlation maps,
which summarize sharing information among all
threads in the system. Figure 7 shows a 16-thread cor-
relation map of a 3-D FFT with 64 by 64 by 16 data
points. The map shows a well-defined structure in which
all of the high peaks are concentrated along the diag o-
nal. Extension along the z axis represents the correlation
(in terms of the number of pages shared between threads

Threads
Threads

4 Please see [5, 6] for details of our test applications.

Figure 7: 16-thread FFT

x and y) between the two threads identified by the x and
y coordinates. The majority of FFTs data sharing occurs
inside four-thread groupings. The lowest peak represents
sharing among threads 1-4, the next peak represents
sharing between among nodes 5-8, etc. This map im-
plies that a mapping of four threads to each of four
processors would avoid network communication for the
majority of the sharing between threads. However, an
eight by two mapping would exclude the majority of the
peaks, implying that it would cause much more commu-
nication mapping. What is not clear from the map is to
what extent this communication advantage would
translate into a performance advantage.

Given complete information on the sharing between
threads, Harmony attempts to reduce communication by
co-locating thread pairs that share the most data.

This problem is NP-complete, so we evaluated sev-
eral heuristics for mapping specific threads to nodes.
Briefly, we looked at both leader-based and leaderless
variants of AscEdge, DesEdge, and DesNode [4]. As-
cEdge treats threads and their communication (or cor-
relation) as nodes and edges of a weighted graph, re-
spectively. We map threads to nodes by sorting edges by
weight (communication cost) in ascending order. The
threads representing the endpoints of each edge are put
onto distinct nodes, if possible. Each thread is mapped
to the node with which the thread has the highest aggr e-
gate correlation. DesEdge differs in that the edges are
sorted in descending order, and threads are placed on
the same nodes, if possible. DesNode sorts threads by
aggregate correlation, and maps each thread to the node
with which it has the highest aggregate correl ation.

Figure 8 shows the communication costs that result
from running each of the heuristics on information
gathered through active correlation-tracking. The first
five columns give communication costs in the number of
pages shared by pairs of threads. The second set of five

columns gives the number of kilobytes communicated
per iteration, and the last five columns give the number
of messages sent per iteration. The heuristics AscEdge,
DesEdge, and DesNode are abbreviated 'ae', üe' and
'dn', respectively. Leader-based variants are identified
by -1'suffixes. Additionally, we also show the comm u-
nication costs of the optimal configuration (bpt), and
of a random configuration (r).

There is a large amount of variation across the di f-
ferent applications, but de-1 generally performs the best,
and random the worst. On average, de-1 obtains a solu-
tion within 0.3% of optimal. This performance appears
to rest on two advantages. First, de-1 is usually able to
group threads connected by high-cost nodes together on
the same nodes. Second, the leader-based approaches
appear to help ensure that the nodes are filled at the
same pace, rather than having the first node fill co m-
pletely, then the second, etc. The problem with filling
nodes unevenly is that it increases the chance that a
high-cost edge has to be split across nodes because of
one node being filled.

The relative communication cost magnitudes match
up quite well with the number of bytes communicated
and messages sent. However, the differences in commu-
nication cost are exaggerated in the byte and message
totals. This implies that the page sharing addressed well
by all of the heuristics causes relatively less communi-
cation than the pages that are handled better by some
heuristics than others.

5. Related work
Process migration techniques have been investigated in
depth [7-9]. Recent work has investigated using hetero-
geneous migration in conjunction with typesafe lan-
guages, and in situations where the type-safety of appli-
cations written in non-typesafe languages can be verified
[10]. Harmony is different in that we focus on the policy
issues of when to migrate large, long-running distributed
applications; and whether to migrate the process or the
data.

Farming computational objects to nodes of a dis-
tributed system has been exploited by many projects [11-

19]. Several projects also allow process migration across
homogeneous processor borders for purposes of load
balancing. Dome [18] also allows migration across het-
erogeneous boundaries, but uses high-level checkpoints
consisting of user-written routines that marshal and un-
marshal significant data structure manually. Addition-
ally, Dome only supports applications based on a library
of parallel data structures; arbitrary parallel applications
are not supported. The Harmony project is distinguished
from these projects by the following factors: emphasis
on dynamic environments, integration of application
tuning options and semantic information into resource
management algorithms, and inclusion of such into r e-
source management algorithms.

Several studies [7] claim that load-balancing via
process migration is not a viable strategy for improving
performance, primarily because of large migration over-
head. We believe that two changes in current systems
make these results less relevant today than with systems
of a decade ago. First, computationally intensive appli-
cations are now a mainstay on the type of workstations
we are considering in our work. These applications have
large resource demands, and sufficient execution time to
amortize the cost of process migration. Second, the
prevalence of parallel and client-server applications
means that data affinity becomes at least as important as
processor cycles for these applications. Hence, there is
more potential for improved performance with current
applications than with typical applications of a decade
ago.

Globus [20] and Legion [21] also provide infra-
structures that support program execution in a meta-
computing environment. Harmony differs from these
systems by focusing on developing metrics and algo-
rithms for program adaptation, and by our use of shared-
data interfaces as part of the programming model. Gl o-
bus and Legion provide other essential services for
meta-computing including naming, security, and com-
munication. We are investigating using one or both of
these systems as a test-bed for the resource management
policies we are developing.

AppLeS [22] provides programmers with applica-

barnes
Shared Pages

fft ocean sor water

Total KBytes Communicated
barnes fft ocean sor water barnes

Data Request Messages
fft ocean sor water

ODt 99458 2240 12774 924 11696 21122 17096 49876 867 8165 15011 3583 25727 196 2441

ae
ae-l

102121
99458

2960
2960

14176
14343

928
932

12290
12192

26885
21122

29703
31748

82810 982
77736 1098

13899
13467

24649
15011

6450
6737

34965
33557

224
252

4199
4064

de
rlp-l

100918
100416

2240
2240

15526
12774

924
928

12058
11696

23450
23347

17096
19021

144028 867
49876 982

11683
8176

16873
17494

3583
3812

51818
25727

196
224

3547
2442

dn
dn-l

101276
100416

2240
2240

17218
14447

928
924

12407
12313

24726
23348

17190
17191

162050 982
103845 867

14555
13559

18182
17502

3583
3587

61330
41049

224
196

4106
4097

r 103723 3440 17067 992 12620 27632 51428 121948 2943 14979 22022 10974 40689 700 4158

Figure 8: Shared pages and performance

tion level scheduling. Harmony differs in that our focus
is on providing middle-ware that provides metrics and
mechanisms to alter the behavior of a program in exe-
cution. In AppLeS, the application programmer is sup-
plied information about the computing environment [23]
and given a library to let them react to the changes in
available resources. In Harmony, we are trying to have
the application supply alternative ways of executing the
program and then let the runtime software select among
these options based on observations of the environment.

6. Summary and discussion
We have described Active Harmony, a new infrastruc-
ture for managing resources in large, dynamic environ-
ments. One of Harmony s major strengths is its ability to
gather and exploit many types of application-specific
information. This information can then be used to aut o-
matically reconfigure running applications at several
levels. This paper has concentrated on two such mecha-
nisms. First, the LBF metric predicts the performance
impact of moving procedures and processes. Second,
active correlation- tracking is used to gather data shar-
ing information and drive thread migration decision
heuristics.

However, Harmonys strength is not in the indivi d-
ual mechanisms and metrics used, but in the interfaces
that allow global policy decisions and many types of
application-specific information to be tied together.
Harmony is a work in progress, and we are continuing
to evaluate new sources of information and new mecha-
nisms for possible inclusion in the system.

7. References
[1] H. Eom and J. K. Hollingsworth, "LBF: A Performance

Metric for Program Reorganization," in The Interna-
tional Conference on Distributed Computing Systems,
May 1998.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, and D. S.
Browning, "The NAS Parallel Benchmarks," Interna-
tional Journal of Supercomputer Applications, vol. 5,
pp. 63-73,1991.

[3] J. K. Hollingsworth, "An Online Computation of Critical
Path Profiling," in SPDT96: SIGMETRICS Symposium
on Parallel and Distributed Tools, Philadelphia, PA,
1996.

[4] K. Thitikamol and P. Keleher, "Thread Migration and
Communication Minimization in DSM Systems," The
Proceedings of the IEEE, 1998.

[5] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A.
Gupta, "The SPLASH-2 Programs: Characterization and
Methodological Considerations," in Proceedings of the
22nd Annual International Symposium on Computer Ar-
chitecture, June 1995.

[6] P. Keleher, "The Relative Importance of Concurrent
Writers and Weak Consistency Models," in Proceedings

of the 16th International Conference on Distributed
Computing Systems, 1996.

[7] D. Eager, E. Lazowska, and J. Zahorjan, "The Limited
Performance Benefits of Migrating Active Processes," in
Proceedings of the International Conference on Meas-
urement and Modeling of Computer Systems (Sigmetrics
88) , May 1988.

[8] F. Douglis and J. Ousterhout, 'Process Migration in the
Sprite Operating System," in Proceedings of the 7th In-
ternational Conference on Distributed Computing Sys-
tems, September 1987.

[9] J. M. Smith, "A Survey of Process Migration Mecha-
nisms," in Operating Systems Review, 1989.

[10] B. Steensgaard and E. Jul, "Object and Native Code
Thread Mobility Among Heterogeneous Computers," in
Proceedings of the 15,h ACM Symposium on Operating
Systems Principles, 1995.

[11] G. Weikum, C. Hasse, A. Monkeberg, and P. Zabback,
"The COMFORT Automatic Tuning Project," in Infor-
mation Systems, 1994.

[12] J. Ju, G. Xu, and K. Yang, "An Intelligent Dynamic
Load Balancer for Workstation Clusters," in osr, January
1995.

[13] S. Zhou, J. Wang, X. Zheng, and P. Delisle, 'Utopia: A
Load Sharing Facility for Large, Heterogeneous Distrib-
uted Computer Systems," SPE, vol. 23, pp. 1305-1336,
1993.

[14] P. Mehra and B. Wah, "Automated Learning of Work-
load Measures for Load Balancing on a Distributed
System," in Intl Conference on Parallel Processing ,
1993.

[15] B. Schnor, "Dynamic Scheduling of Parallel Applica-
tions," in Lecture Notes in Computer Science 964, Par-
allel Computing Technologies, Third International
Conference, PaCT-95, 1995.

[16] A. C. Dusseau, R. H. Arpaci, and D. E. Culler, "Effec-
tive Distributed Scheduling of Parallel Workloads," in
Sigmetrics96 Conference on the Measurement and
Modeling of Computer Systems, 1996.

[17] B. C. Neuman and S. Rao, "The Prospero Resource
Manager: A Scalable Framework for Processor Alloca-
tion in Distributed Systems," in Concurrency: Practice
and Experience, 1994.

[18] J. Arabe, A. Beguelin, B. Lowekamp, E. Seligman, M.
Starkey, and P. Stephan, "Dome: Parallel programming
in a heterogeneous multi-user environment," Carnegie
Mellon University CMU-CS-95-137, March 1995 1995.

[19] M. Litzkow and M. Livny, "Experience with the Condor
Distributed Batch System," in The IEEE Workshop on
Experimental Distributed Systems, October 1995.

[20] I. Foster, N. Karonis, C. Kesselman, G. Koenig, and S.
Tuecke, "A Secure Communications Infrastructure for
High-Performance Distributed Computing," in Proc. 6th

IEEE Symp. on High-Performance Distributed Com-
puting, 1997.

[21] M. J. Lewis and A. Grimshaw, "The Core Legion Object
Model," in Proceedings of the Fifth IEEE International
Symposium on High Performance Distributed Comput-
ing, August 1996.

[22] F. Berman and R. Wolski, 'Scheduling from the Per-
spective of the Application," in Proceedings of the 5th

IEEE International Symposium on High Performance
Distributed Computing, 1996.

[23] R. Wolski, "Dynamic Forecasting Network Performance
Using the Network Weather Service," UCSD, La Jolla,
CA TR-CS96-494, May 1997.

