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1. INTRODUCTION 

Accurate prediction of hurricane tracks may require re- 
solving the flow both within and around the storm. Since 
the spatial scales in these two regions differ substantially, 
uniform resolution is inherently inefficient: the grid should 
be refined only near the storm. This paper describes the 
performance of a barotropic model with an adaptive multi- 
grid scheme which automatically refines the mesh around 
the storm as it moves. 

2. MODEL DESCRIPTION 

We formulate the model on a section of the sphere 
using a Mercator projection (true at latitude cf> = <f>c). The 
model consists of the modified barotropic vorticity equation 

g+m2J(^C)+/?m^=™VC, (1) 

where the relative vorticity £ and streamfunction ip are re- 
lated by 

Lip := fv2 - £) i> = -% (2) 

Here V2 = d2/dx2 + d2/dy2, J(*/>,0 is the Jacobian 
of (V'JC) w'tn respect to {x,y), ß = 2Q.cos<j>/a (with 
a and fi the radius and rotation rate of the earth), and 
m = cos cf>c/ cos cp is the map factor. There are two quasi- 
physical parameters: the diffusion coefficient v, and the 
parameter 7 (inverse of the effective Rossby radius) which 
helps prevent retrogression of ultralong Rossby waves. The 
model domain is a rectangle in x and y centered at (x, y) = 
(0,0), where (A, <p) = (Ac, </>c). At the boundaries we spec- 
ify the streamfunction ip (and thus the normal component 
of ithe Velocity); where there is inflow, we also specify the 
vorticity £. 

,■ The space discretization uses second-order finite dif- 
ferences on uniform rectangular grids (as explained below), 
approximating the advection terms by the Arakawa Jaco- 
bian. The time discretization uses the classical fourth-order 
Runge-Kutta (RK4) scheme; this is highly accurate, allows 
relatively large time steps for stability, and—since it is a 
o'Ae-step scheme—is easy to implement and has no spurious 
computational modes. These discretizations are embedded 
in an adaptive method which includes local refinements in 
both,space and time as detailed in the next section. 

3.     ADAPTIVE MULTIGRID METHOD 

To adapt the resolution near the storm we superimpose 
nested uniform grids with different mesh sizes. The base 
grid G\ covers the the entire computational domain, while 
successively finer patches G2, G3, ■■■ are strictly nested 
as shown in Fig. 1. The basic time stepping algorithm is 
similar to that used in most nested models (e.g., Berger 
and Öliger, 1984). Specifically, with two grids (coarse and 
fine) one full time step is executed as follows: 

1. One step (length At) on the coarse grid, 
2. Two steps (length At/2) on the fine grid, with bound- 

ary values interpolated from the coarse grid in space 
and time, 

3. Transfer the fine-grid solution to the coarse grid where 
they overlap. 

This algorithm generalizes recursively to more than two 
grids. Each time step consists of four RK4 stages, each 
of which involves predicting £ from (1) and diagnosing ip 
from (2). 

To solve for ip on any computational grid Gi we use a 
multigrid method. With local time stepping as above, the 
next coarser grid Gi-i may be at a different time t, so the 
multigrid method usually requires using an additional set of 
coarse grids covering the same domain as G;. If these "local 
coarse grids" are used at all times, the resulting method 
includes only one-way interaction between the grids: the 
fine grid uses boundary values from the coarse grid, but its 
effect is only felt on the coarse grid through the solution 
transfer in the overlap region at the end of the time step. 
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Figure 1. Computational grids (h = 128, 64, 32, 16 km). 
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The local coarse grids must be used in the first time 
step on the fine grid Gi in the Berger-Oliger algorithm. 
However, in the final RK4 stage of the second fine-grid time 
step—when the next coarser computational grid Gi-i is at 
the same time level—the full computational grid G\-\ may 
be used instead of the first local coarse grid in the multigrid 
cycling. In this way, fine-grid information can affect the en- 
tire coarse grid immediately through the relaxation process, 
so the multigrid algorithm automatically achieves two-way 
interaction between the computational grids. Note that 
this approach requires Full Approximation Scheme (FAS) 
processing, since each grid patch covers a smaller domain 
than the previous one. Specifically, if we denote the dis- 
crete approximation to (2) on the fine grid Gi with mesh 
size h = hi as 

Lhi>h = Fh, (3) 

then the corresponding equation to be solved in the overlap 
region on the coarse grid G;_i with mesh size 2h = hi-i 
is 

L2h^2h = p2h  ._ L2h(J2fc^ + j2h^Fh _ Lh^h^     ^ 

and the corresponding correction to the fine-grid solution 
is given by 

ACCURACY VS. EFFICIENCY 
1000 

V>ft <r- V>h +J2\($
2 h  1p   )• (5) 

Here, iph represents the approximate solution for ip on 
the fine grid, the fine-to-coarse transfer operators I^h and 
Iflh represent injection and full weighting, respectively, and 
the coarse-to-fine transfer operator j£h represents bilinear 
interpolation. In the region of the coarse grid not cov- 
ered by the fine grid, the FAS equation (4) is replaced by 
r2h,2h F     and no correction (5) is needed. 

4.    SELF-ADAPTIVITY 

In previous versions of the model (e.g., Fulton, 1997) 
the grid sizes were fixed in advance, and simply moved when 
necessary to keep the location of the vorticity maximum 
roughly centered on each patch. Figure 2 shows sample 
results quantifying the gains in efficiency available with the 
mesh refinement strategy given above. Each point gives the 
mean track error over 72 h for a single model run; the label 
gives the finest mesh size (in km) and size of the patches, if 
any (side length as a fraction of the full domain width, with 
A=l/2, B=3/8, C=l/4, D=3/16, and E=l/8). For exam- 
ple, the grids in Fig. 1 are for the run 128BCD. The gain in 
efficiency due to mesh refinement varies significantly, with 
the best combinations of patches giving speedups in the 
range 10-20. Since the optimal combination of patch sizes 
will depend on both the vortex and the surrounding flow 
and may vary as the solution evolves, a fully self-adaptive 
procedure would be advantageous. Here we introduce such 
a method, using truncation error estimates to decide auto- 
matically where to refine or coarsen the mesh. 

The necessary truncation error may be estimated es- 
sentially for free using FAS processing as described above. 
Specifically, the relative truncation error 
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Figure 2. Accuracy vs. efficiency (from Fulton, 1997) 

provides a fourth-order approximation to the difference in 
truncation error between grids h and 2h. Thus, the trun- 
cation error on grid h can be approximated with accuracy 
0(h4) as rh « \T^K. This estimate is computed at each 

point on grid h at the end of the time step. Where rh is 
small, the current fine grid h is no longer needed, so its ex- 
tent may be reduced. Conversely, where rh is large, further 
refinement may be beneficial, so these points are flagged 
and a new finer grid h/2 enclosing them is introduced. The 
determination of what is "small" or "large" follows the al- 
gorithm outlined in Brandt (1977, sec. 8), which uses a 
parameter A to control the trade-off between increased ac- 
curacy and increased work. Note that since Fh and F2h 

are already computed in the solution process, computing 
the truncation error estimate requires very little additional 
work. Also, the estimated truncation error can be used in 
an extrapolation method to obtain fourth-order accuracy 
from the second-order discretization. We will present re- 
sults at the conference quantifying the performance of the 
self-adaptive method outlined above. 
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