
AFRL-IF-RS-TR-2000-19
Final Technical Report
March 2000

DEVELOPMENT OF AN ADAPTIVE COMPUTING
SYSTEM WITH REMOTE PODS FOR DATA
ACQUISITION AND SENSOR INTEGRATION

Acquisition Systems, LLC

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F227

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

20000420 149

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-19 has been reviewed and is approved for publication.

APPROVED:

RALPH KÖHLER
Program Manager

FOR THE DIRECTOR:

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTC, 26 Electronic Pky, Rome, NY 13441-4514.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

DEVELOPMENT OF AN ADAPTIVE COMPUTING SYSTEM WITH REMOTE
PODS FOR DATA ACQUISITION AND SENSOR INTEGRATION

Bruce Pirger

Contractor: Acquisition Systems, LLC
Contract Number: F30602-97--0285
Effective Date of Contract: 16 September 1997
Contract Expiration Date: 15 September 1998
Program Code Number: 62301E
Short Title of Work: Development of an Adaptive Computing

System with Remote Pods Data Acquisition
and Sensor Integration

Period of Work Covered: Sep 97 - Sep 98

Principal Investigator: Bruce Pirger
Phone: (607) 255-5892

AFRL Project Engineer: Ralph Köhler
Phone: (315)330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Ralph Kohler, AFRL/IFTC, 26 Electronic Pky, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMBNo. 07040188

o,... „ „ ■,.„,._ ... ,hy, ,.te,|i«, 0| .„formation I» estimated to average I horn per response, inclodmg Ihe lime lor reviming intlnrcliois. searching easting data sourtes, gathering ana maintaining the data needed, and completing and revievviig
K o SÄ « »y.tl«f »pc« ol thisUctbn .. inlormatk», ircbding suggestions: fo, '^.'*Ä?;Ä"Ä *°m *ma°m° '" '"
OperaS anil Roports! 1215 Jeilerst.. Da.b Hrghway, Suite 1204. Arlington. VA 22202-4302, and to the OH« .1 Management and Budget. Paper»* Rtducliort Protect IO704-0I8BI. Washington. DC 20503.

1. AGENCY USE ONLY /Leave hlank) 2. REPORT DATE

MARCH 2000

3. REPORT TYPE AND DATES COVERED

Final Sep 97 - Sep 98
4. TITLE AND SUBTITLE
DEVELOPMENT OF AN ADAPTIVE COMPUTING SYSTEM WITH REMOTE
PODS FOR DATA ACQUISITION AND SENSOR INTEGRATION

6. AUTHOR(S)

Bruce Pirger

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESSIESI

Acquisition Systems, LLC
26 Lake Street
Trumansburg NY 14886

9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTC
3701 North Fairfax Drive 26 Electronic Pky
Arlington VA 22203-1714 Rome NY 13441-4514

5. FUNDING NUMBERS

C - F30602-97-C-0285
PE- 62301E
PR- D002
TA- 02
WU-P9

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONS0RINGIM0NIT0RING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-19

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Ralph Kohler/IFTC/(315) 330-3016

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words/
This project consisted of the development of an adaptive computing system with an emphasis on remote sensor control, data
acquisition, and sensor data processing. During the project, two hardware platforms were designed and developed and
software was modified and extended to the new platforms. The developed hardware was then integrated into an existing
infrared focal plan array sensor package and used for sensor control and data acquisition. The use of reconfigurable
hardware has extended the capabilities of the sensor platform considerably and has proven very successful.

14. SUBJECT TERMS
Remote Pod, CompactPCI Bus, Infrared Focal Plane Array Control and Data Acquisition,

15. NUMBER OF PAGES

56
Hardware Platform Development 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL 1
Prescribed try ANSI Std.23B.18 „
Designed using Perform Pro. WHSfQIQR. On M

Table of Contents

1
1 Project Goals/Achievements
1.1. Hardware/Software Development
1.2. infrared Focal Plane Array Control and Data Acquisition 2

2, Hardware Platform
2.1. Altera, CompactPCI, Cypress HOf Link, ZBT SRAM, AMCC 5933 PCI Interface,

SHARC 21060 DSP, Daughter Card Format 3

2.1.1. Altera
2.1.2. CompactPCI
2.1.3. Cypress Semiconductor HOTLink •

2.1.4. Memory Selection •
2.1.5. AMCC 5933 PCI Interface 5

2.1.6. SHARC 21060 DSPs 6

2.1.7. Daughter Card Format

2.2. Remote Pod
2.2.1. 10K50FPGA ' 9

2.2.2. SRAM '. •
2.2.3. Cypress HOTLink Interface 9

2.2.4. I/O Pins 1

10 2.2.5 Clock Distribution •

2.2.6. BootEPROM -10

10
2.2.7. JTAG •
2.3. Base Platform
2.3.1. 10K250AAFPGAS - 13

2.3.2. 5933 PCI Interface 13

2.3.3. ZBT Synchronous SRAM -14

2.3.4. Dual Port SRAM M

2.3.5. 21060 SHARC DSP -15

2.3.5.1. Dual Port SRAM ; 15

2.3.5.2. Link Ports '■ 1ß

2.3.6. Programmable Oscillator iQ

2.3.7. Daughter Card Interface 16

2.3.8. Debugging Port -17

2.4. Daughter Card Fiber Interface -17

3, Software Platform Extension * *-u

on
3.1. ASbridge Host Interface iU

on
3.1.1. General Program Design 'u

3.1.2. Platform-Specific Extensions 21

3.1.3. Software Scatter/Gather 23

oo
3.1.4. SHARC/Host Communication * "

3.2. Hardware Promela Extension "
3.2.1. Hardware Interface Library 24

3.2.2. Software Interface Library 25

3.2.3. Extensions to this platform 2°
3.2.3.1. Fiber Optic Channels *"
3.2.3.2. ZBT Synchronous SRAM 29

on
3.2.3.3. SHARC Communication JU

3.2.3.4 DMA channels ou

Table of Contents

op
3.2.3.5. Summary of Hardware Promela Extensions... 0i

4. integration with Infrared Focal Plane Array Sensor System 34

4.1 Existing System •
4.1.1. Focal Plane Array Control and Data Acquisition

4.1.2. Communication Link with Host

4.1.3. Stepper Motor Control
4.2. Physical Integration of Remote Pod
4.3. FPGA Coding and System Operation

4.4. New Capabilities

5. Platform Evaluation • •■•■•

5.1. Remote Pod ■ • ;
5.2. Base Platform •
5.3. Software Interfaces... ■
5.3.1. Asbridge ■— • •
5.3.2. Hardware Promela —

5.4. The Next Step
List of Figures

Fig 1 Quad Chart • •••

Fig 2 Remote Pod •■

Fig 3 Base Platform • •
Fig 4 Fiber Interface Daughter Card • •
Fig 5 FPGA Coding and System Operation.... • •

List of Photos
Photo 1 Remote Pod • "'

Photo 2 Base Platform — •• '"
Photo 3 Fiber Daughter Card •

35

,35

.36

37

38

39
.40

.41

.42

42

42

.42

.44

.2

. 7

.11
.18

.38

. 8

.11
..19

ii

1. Project Goals/Achievements

This projected consisted of the development of an adaptive computing system with an
emphasis on remote sensor control, data acquisition, and sensor data processing.
During the project, two hardware platforms were designed and developed and
software was modified and extended to the new platforms. The developed hardware
was then integrated into an existing infrared focal plane array sensor package and
used for sensor control and data acquisition. The use of reconfigurable hardware has
extended the capabilities of the sensor platform considerably and has proven very
successful.

This is the Final Report for this development effort. The remainder of this document
will describe the developed hardware platforms (Section 2), system software (Section
3), and discuss the successful integration with an existing sensor system (Section 4).
In Section 5 we will provide our overall system evaluation, lessons learned, and
suggested next steps.

A separate document will serve as the User's Documentation for further development
with this platform, including both hardware and software documentation.

The remainder of Section 1 will provide a brief introduction to the project.

1.1. Hardware/Software Development

The project's quad chart is on the following page in Figure 1. It summarizes the
project and its goals very well. The goal of the project was to extend reconfigurable
hardware directly to sensor platforms. Previous R&D efforts have focussed on large
scale computing platforms, striving to achieve the first Tera-op scale computing
platform in a compact size by allowing custom configuration of reconfigurable
resources. Acquisition Systems desired to extend the utility of reconfigurable
hardware not only to large scale computing, but also to direct integration and control
with external sensor and actuator systems. To accomplish this, we designed a small,
compact reconfigurable system we call the remote pod which is intended to be
directly integrated into existing sensor platforms or used as a foundation for sensor
platform development. This small remote pod is linked via a fiber optic interface to a
host platform we call the base platform. This base platform utilizes the CompactPCI
bus. Hence the entire platform, consisting of the base, remote pod, and host
CompactPCI computer can provide the complete foundation for development of
advanced sensor platforms.

In order for large scale reconfigurable computing systems to be widely adopted and
therefore deemed successful, they must become much easier to program.
Furthermore, most current systems require programming at the hardware design level,

excluding nearly all software programmers from utilizing the capabilities of such a
platform. Many researchers are trying to develop high level languages which can be
used by software programmers to develop custom applications. During this effort we
ported one such high level language to the base platform.

Development of an Adaptive Computing System with Remote Pods

Reconfiguräble
Platform

for CompactPCI
500K Gates

Reconfiguräble
Remote

Daughter Pods

Fibers

Impact:
• Provide an easy to integrate platform

for application development.
• Embedded I/O and remote pods provide

integrated access and control of multiple
sensors concurrently.

• High logic density and I/O daughter
cards provide building block for
large systems.

New Ideas:

• Embedded fiber I/O provides integrated
data acquisition for real-time processing.

• Remote reconfiguräble pods brings the I/O
to the sensor for easy integration.

• Standard CompactPCI and Windows NT
environment.

Final Report
Acquisition Systems

104 Langmuir Lab
Ithaca, NY 14850

acqsys@acqsys.com

Figure 1. Quad Chart

1.2. Infrared Focal Plane Array Control and Data Acquisition

During the effort, the remote pod was integrated into an existing sensor platform.
The pod was used to control an instrument built by Cornell University for infrared
astronomy. The pod completely controls a HgCdTe 1024x1024 near infrared focal
plane array, the data acquisition system used to digitize the sensor pixels, the
communication link to/from the host computer, and controls six motors used within
the instrument to select various filters and optical configurations. The platform
replaced an expensive, inflexible array controller platform and resulted in excellent
noise performance, critical to signal starved astronomical applications.

2. Hardware Platform Development

The project's goal was to extend reconfigurable hardware directly into sensor
platforms, not just customizable large scale computing applications. Reconfigurable
hardware allows for both reconfigurable logic resources for computing and I/O pin
control. Hence, for the first time, it is now possible to interface many different sensor
and actuator platforms to the same controlling hardware. Furthermore, reconfiguring
the hardware to control a different sensor, or perhaps the same sensor in a different
fashion as dictated by changing conditions (wide field target search as opposed to
narrow field target tracking), can be accomplished in-circuit in milliseconds. The
potential for reduced volume, reduced mass, reduced cycle and re-fit time, reduced
inventory and maintenance is considerable when using reconfigurable hardware. For
example, UAV systems of the future may offer quickly interchangeable sensor
platforms in a very simple bolt-and-go manner or perhaps various sensors can be
selected in-flight as needed and controlled using the same embedded controller,
simply be reconfiguring the controller.

Acquisition Systems also developed a state-of-the-art adaptive computing platform
which provides significant logic resources for large scale computing applications in a
low-cost, standard environment. The base platform provides 500,000 gates of user
configurable logic on a CompactPCI 6U card. Furthermore, while not in our initial
proposal (or budget!), we integrated two Analog Devices SHARC 21060 DSPs into
the base platform.

With the combination of an embedded sensor or actuator controller, and a large scale
processing platform, direct processing of real-time sensor data and actuator control is
possible using the developed adaptive computing hardware.

2.1. Altera, CompactPCI, Cypress HOTLink, ZBTSRAM, AMCC 5933 PCI
Interface, SHARC 21060 DSP, Daughter Card Format

Before discussing the design of each hardware platform in detail, we will first discuss
why we made some of the various chip and platform choices.

2.1.1. Altera

We chose Altera for the following reasons.

1. The 10K architecture (the 20K family was not yet announced) provides
Embedded Array Blocks (EABs) which are "large" blocks of SRAM, easily made
into FIFOs and other extended memory structures.
2. The 10K family offers "cross-chip" routing resources which we believe is
superior for non-floorplanned logic design (which will result when designing on
this platform with high level languages).
3. We were familiar with the 10K architecture.

2.1.2. CompactPCI

We chose CompactPCI for the following reasons.

We wanted to develop a platform which offered considerable resources and "off-
the-shelf utility. Many previously developed systems where somewhat esoteric
stand-alone platforms which were not easily adopted by others. Desktop PCI
platforms are somewhat limited in mechanical ruggedness, cooling, and external
I/O space. We investigated using VME as the host platform, but preferred the
lower cost of CompactPCI, the emerging CompactPCI technology, and higher
performance of the established CompactPCI technology vs. moving target VME
specifications. Furthermore, we had experience with PCI. CompactPCI also
allowed for the use of a "dual PCI bus" architecture. In summary, the base
platform, a 6U Compact PCI card, has two completely isolated compact PCI
busses available over the host backplane, for increased I/O to other CompactPCI
hardware.

2.1.3. Cypress Semiconductor HOTLink

We chose the Cypress Semiconductor HOTLink interface for the following
reasons:

Integrated I/O was very important to our overall design concept. It was clear that
the link between the base and remote pods was integral to our design. Fiber was
chosen for its speed and transmission line characteristics. The remote pod and
base platform can be separated by hundreds of meters without concern over the
high speed communication link between the remote pod and base platform
(except for the obvious increased latency). Communication link bandwidth was
traded off with ease-of-use, power dissipation, and physical size. We investigated
Gigabit Link Module (GLM) technology, but found it would drive all end-user
designs to operate at sufficiently high speeds. Meeting the roughly 52 MHz 16-
bit word size data rate to support the GLM technology for applications developed
with a high level compiler was not likely to be successful. Furthermore, our
intended applications are imaging applications with data rates more often in the
10-30 MByte/second range, not 100 MByte/sec. Our platform was also to support
multiple fiber links (four) to allow for use with multiple simultaneous remote
pods. Physical size and power dissipation of GLM's was excessive. Cypress
Semiconductor's HOTLink chipset was found to be satisfactory. It also held the
added promise of a fully CMOS low-power version, but this has failed to appear
from Cypress Semiconductor.

2.1.4. Memory Selection

The type of memory used in the base and remote pod platforms was driven by
numerous issues. SDRAM was desired for its large size and low cost. However,
use of SDRAM required either a dedicated SDRAM controller or use of logic
resources within the platforms reconfigurable resources to support the SDRAM.
This latter was deemed unacceptable for two reasons (absolute requirement of
resources and unknown affect of end user design on SDRAM controller speed).
SDRAM's inherent refresh requirement also implies the requirement of wait
states in memory access. This was undesirable, as it would add a complication to
all end user programs. SRAM is desirable for its high speed and static nature.
However it is limited in density and is expensive. It was determined that the use
of newly available Zero Bus Turnaround (ZBT) Synchronous SRAM was the best
choice for the base platform. While at the time of hardware design SSRAM
density was limited, the hardware platform was designed to accommodate the
expected higher density components when available. The base platform was
designed and fabricated prior to the availability of SSRAM and hence
asynchronous SRAM was used. Furthermore, the requirement to operate with
large format infrared focal plane array detectors (1024x1024) demanded large
memories for the remote pod.

2.1.5. AMCC 5933 PCI Interface

This design selection received extensive review. The PLX 9080 was released
during the design cycle for the base platform. The 9080 was extensively
considered for the platform. In fact, a complete base platform design was
investigated using 9080 PCI interfaces and shared memory (using either dual
ports or more likely bus switched designs) between the 9080 and reconfigurable
resources. This design was abandoned however due to the significantly increased
complexity and resulting risk to the on-budget success of the project. The initial
proposal called for 5933 interfaces, with which we were familiar and satisfied. It
is clear however that a shared (bus switched) interface with the 9080 and platform
FPGAs would offer many advantages.

We quickly dismissed using the reconfigurable resources as the PCI interface.
End user designs would certainly affect the timing requirements of the PCI
interface within the device. This complication is not desired, although some
interesting opportunities for tailored PCI interfaces would be possible. Using a
second FPGA, not part of the end user reconfigurable resources, was also
investigated. However developing a PCI interface within an FPGA is not the
design goal of this project or the end users of this platform.

An off the shelf ASIC provides an excellent interface to the platform. The 5933
also provides many forms of communication between the reconfigurable

resources and PCI bus, which proved useful for housekeeping design
(configuration of the resources, communication with DSPs, etc.)

2.1.6. SHARC 21060 DSPs

During initial work on the project, it became clear that floating point operations
would suffer in the reconfigurable resources. Furthermore, wide fixed-point
multiplication operations are also large (and hence slow) in FPGAs. While not in
the original proposal (or budget) for this project, we investigated the inclusion of
floating point DSPs into the platform. The TIC40 and Analog Devices 2106x
families were compared, and the SHARC family was found to be superior. Its
large internal memory would allow for the expected method of interface between
the platforms FPGAs and DSPs. The newer C62xx family was not yet available
at the time of design, and hence was not selected.

2.1.7. Daughter Card Format

The base platform daughter card format was investigated. It was suggested that
the format could be the PCI Mezzanine Card (PMC) format. This was considered
and investigated but rejected for a few reasons. One was space constraints, as this
would have demanded clearance heights and undesired component placement.
We also were opposed to using a physical form factor specification identical to a
popular standard but NOrthat standard. It was conceivable that a PCI interface
could have been created within the reconfigurable resources of the platform and
hence end users could use off-the-shelf PMC hardware directly, however
development of such an interface would interfere with end user custom logic
configurations and add undesired difficulty. A high quality connector was
selected and 90 I/O pins are available on the connector directly from the FPGA,
as well as +3.3V and +5V. In the original proposal, the fiber optic links where to
be fixed to the base platform and not on daughter cards. However, it was realized
that end users might desire to use other I/O formats and not communicate directly
with the remote pods. For example, a FPDP daughter card could be readily
designed and allow for integration into other systems via the FPDP standard.

2.2. Remote Pod

The remote pod is a standalone printed circuit board which was designed to be
embedded into sensor or actuator control systems and link back to the base platform
via a fiber optic link. An FPGA has access to memory, a communication port back to
the host, and numerous I/O pins to the outside world. The FPGA boots from a local
EPROM at power up and can be reconfigured over the fiber at any time. An onboard
PLD is used to configure the FPGA from the fiber receiver.

It is the I/O pins which give the remote pod its versatility. It was intended that the
end user would design the remote pod into a developing or existing system by
accommodating the remote pod's footprint into the new design. The remote pod then
"plugs in" via sockets in the developing system or can be permanently soldered. The
remote pod's I/O pins can then be routed to various components in the developing
system, for example digital control signals, analog to digital converters, digital to
analog converters, etc. The FPGA is then configured as desired to control the system.
The FPGA also has access to the memory and fiber interface on the remote pod,
proving a compact yet powerful and flexible control platform. The same remote pod
can be attached to a different sensor platform, reconfigured, and control a completely
separate device.

The board is physically small, measuring 3.875" x 5.125" and requires a single +5V
supply to operate all functionality. The design could be more compact, but is limited
by the large SIMMs and low density connectors. The design block diagram is in
Figure 2 below. I/O pins are available from the FPGA via two 100 pin connectors.
These connectors are low density .l"x.l" connectors with Ground-Signal-Signal-
Ground pin configurations. Power can be supplied via these connectors or through a
separate screw-terminal post for bench top development.

JTAG

8
00
.Tfr

Bills

LEDs

00

Figure 2. Remote Pod

Photo 1 below is a photo of the remote pod. The fibers can be seen exiting to the top
of the photo. Power is being supplied in this stand-alone mode via the wires entering
the bottom of the photo. When integrated into a system, power is supplied via the
100 pin connectors.

The design is simple. A single Altera 10K50 FPGA has dedicated access to 1MX64

bit wide SRAM via two 72 pin SIMM sockets, a Cypress Semiconductor HOTLink
chipset, and 48 bits of dedicated I/O are available on the daughter card connector. All
components on the pod are clocked from a single clock source. Each component is
discussed in detail below.

Photo 1. Remote Pod

2.2.1. 10K50FPGA

An Altera 10K50 (50,000 nominal logic gates) is used as the remote pod FPGA.
The 240 RQFP footprint will accept a wide range of compatible FPGAs, ranging
from the 10K30 (30,000 gates) to the 10K70 (70,000 gates) without board
modifications. The FPGA is configured at power up from the local EPROM and
then may be reconfigured at any time over the fiber interface.

2.2.2. SRAM

The FPGA has direct and dedicated access to 1MX64 bit wide SRAM via two 72
pin SIMM sockets. The 64 bit data bus to this memory is also available on a 100
pin low density connector (.l"x.l"). This allows the 64 I/O pins from the FPGA
to be used for other functions besides SRAM data bus pins if the SRAM is not
required. It is also possible to populate only 1 SIMM socket or populate the
SIMM sockets with other memories or custom hardware. The SRAM address and
control lines are not brought to the SRAM data bus header connector. SRAM
SIMMs are available off-the-shelf in various speed grades. It is also possible to
build custom memory modules in the SIMM sockets.

2.2.3. Cypress HOTLink Interface

The Cypress Semiconductor HOTLink interface provides an 8 bit communication
link. The chipset employs internal 8B/10B encoding and serializes an 8-bit word
into a 10-bit stream. This is then transmitted via the fiber link to the receiver,
where the 10-bit stream is parallelized into an 8-bit byte. The HOTLink chipset
therefore is a byte wide link. It also supports a number of "special characters"
which can be used to establish command sequence or communication protocols.
A ninth bit is written to the chipset which indicates whether the output byte is a
data character or special character. Only a handful of special characters are valid,
so this is not a true 9 bit link. The HOTLink receiver provides a DATARDY
strobe when it has valid data ready. The receiver also indicates if the incoming
byte is a special character or data character.

A Cypress Semiconductor HOTLink interface is available to the FPGA. The
HOTLink transmitter is directly connected to the FPGA. However incoming data
from the HOTLink receiver is first intercepted by the PLD. The PLD writes
incoming data to a FIFO which is then connected to the FPGA. The PLD is used
to both configure the FPGA over the fiber (when the FPGA is obviously not able
to control the incoming data stream) and also to allow for FPGA resets (setting
the FPGA into an un-configured state, ready for reconfiguration over the fiber). It
should be noted that this PLD can be programmed in-circuit using the JTAG
interface header on the remote pod and the Altera ByteBlaster. End users can
customize the PLD receiver interface if desired.

It is assumed the end user programming at the hardware level will be familiar
with the operation of the HOTLink chipset or will refer to the Cypress data sheets.
The chipset is easy to use and a quick summary has been provided here. The
transmitter is clocked synchronously with the FPGA clock and a transmit enable
pin is driven low to transmit a byte over the fiber link. The receiver data is
available to the FPGA from a synchronous FIFO. The FIFO status flags are
available to the FPGA.

As delivered, the PLD interprets a special character 02 as the command to reset
the FPGA (drive it into the non-configured state). Any following received bytes
are expected to be configuration data for the FPGA and are written to the FPGA
as configuration data. When the FPGA is again configured, the PLD writes
incoming data to the FIFO for FPGA reception.

2.2.4. I/O Pins

48 I/O pins are available on a 100 pin connector for integration into an external
platform. These I/O pins are direct from the FPGA. They are unbuffered and can
be used as bi-directional pins. Care should be taken when driving external loads
with these unbuffered pins directly. They should be treated as FPGA I/O pins.

2.2.5. Clock Distribution

The remote pod is clocked by a single clock source. This source can be the on-
board oscillator or an externally supplied clock. In either case, a clock
distribution chip is used to distribute the CLK and CLK/2 (the input clock divided
by two) across the platform. Solder jumpers located on the pod printed circuit
board select where CLK or CLK/2 is used for the HOTLink interface. The FPGA
is always provided with both CLK and CLK/2. The on board oscillator clock is
also available on the 100 pin connector. This allows for a design utilizing
multiple remote pods to run off the same clock or the entire external system to run
synchronous to the remote pod.

2.2.6. BootEPROM

At power up the remote pod will configure from a local EPROM. This is an
Altera EPC1 EPROM which is one-time programmable. Altera or third party
programmers must be used to program this EPROM. End users must program an
EPC1 device with an initial power up FPGA configuration. Reconfiguration via
the fiber link is available any time after initial power up. Note that in conditions
of brown out the FPGA may be configured from the EPROM.

2.2.7. JTAG

The Altera FPGA can be configured via the JTAG port using the Altera
ByteBlaster cable interface. This method of configuration can be very useful

10

during development of a stand alone application where the fiber is not used. The
onboard PLD can also be programmed via the JTAG port.

2.3. Base Platform

The base platform is a 6U CompactPCI card which provides considerable logic
resources for adaptive computing applications and an interchangeable daughter card
port intended for I/O applications. When used with the developed HOTLink fiber
interface daughter cards, a single base platform can access four remote pods
concurrently.

The base platform block diagram is show in Figure 3 below. The design is divided
into two nearly identical halves, named I and II. Each half consists of an Altera
10K250A (250,000 gates) FPGA, an AMCC 5933 PCI interface, two independent
banks of 128Kx36 ZBT SSRAM, a 64Kx36 bank of dual port SRAM with a SHARC
21060 DSP sharing the SRAM, daughter card interface, and a debugging port. Each
half has access through a AMCC 5933 to a PCI bus. The platform was designed
using Ziatech Corporation's dual PCI bus specification.

Jl 32-bit 33MHz PCI Bus

< * >

J4 32-bit 33MHz PCI Bus

< * >

v ^_^ V

mm^ S5933 PCI S?9?3 ?f?

H ■ ■ ' ^ Link Ports X

^J™TT= I I ==^—
lizappplswl ^^^^^H foügtjpdortl ■■■■ ■■■■ P^n^^^^^l
 *U SRAM ^^H ^^H^ i**»ti mmmmm

I'"!.'.' 'V'MI1 BMI' *** *m*r-1—>jpm
um

I I/O Card Header (901/Os)J ■ |l/Q Card Header (9(i _j— m x I/O Card Header (901/Os) I I/O Card Header (901/Os)

Figure 3. Base Platform

FPGA configuration, DSP programming, oscillator programming, and platform house
keeping functions are accomplished through 59331. Pass thru regions 3 and 4 of
5933 I are decoded by the on-board PLD. The PLD passes the data to the proper
location, whether it be FPGA configuration data, DSP programming or
communication, or oscillator frequency programming. FPGA I does not have access
to pass thru regions 3 and 4 but has access to all remaining 5933 I functionality.

11

The two FPGAs are connected together through 40 I/O pins. The two FPGAs have
identical pin configurations and therefore an FPGA configuration may run unchanged
on either FPGA. The limitation to this is the 40 pin interconnection between the two
FPGAs. The end user must be certain that these I/O pins will not drive in conflict
between the two FPGAs. Also, pass thru region 3 and 4 are not available to FPGA I
as they are used by the on-board PLD. Furthermore, the user must be certain the
attached daughter cards are identical (the daughter card connector pins are identical).

A programmable oscillator (programmable through the PCI bus) provides the
synchronous clock used by the entire system. Each FPGA, the ZBT SSRAM, and the
daughter card ports are provided copies of this programmable clock. All of these
resources run synchronous to this clock. The FPGA can interface with the AMCC
5933 either synchronous to the PCI bus clock (33MHz) or asynchronously. To enable
a PCI synchronous interface, the PCICLK is available to the FPGA (buffered by the
5933, called BPCLK). An asynchronous interface between the FPGA and 5933
(asynchronous with respect to the PCI clock) runs synchronous to the platform
distributed clock (called CLKIN). The PCI synchronous clock provides for higher
PCI throughput (achieving PCI bus mastering throughputs of over 100 Mbytes/sec)
but requires the synchronization within the FPGA of the PCICLK and the platform
distributed clock.

The design is a mixed +5V and +3.3V design, with nearly all components running at
+3.3V. The AMCC 5933 PCI interface chips and platform boot PLD are the only
+5V components. The Altera 10K250A FPGA's are +3.3V core devices with +5V
tolerant I/O pins.

Photo 2 below is a photograph of the base platform. Note that the fiber daughter card
is attached to FPGA I. The daughter card port for FPGA II is not populated in the
photo. The fiber daughter card can be used on either (or both) ports.

12

Photo 2. Base Platform with fiber daughter card attached.

The remainder of this section (2.3) will discuss the individual components of the
platform in more detail.

2.3.1. 10K250AFPGAS

Altera 10K250ABC-600 FPGAs have been selected for this platform in a 600 ball
BGA package. The devices use a +3.3V core voltage and are +5V tolerant. The
devices were the highest density logic devices soon to be available during the
design phase of this hardware platform. Offering 250,000 gates of "nominal"
logic each FPGA provides 12,160 logic elements (4 input LUT and register), 20
Embedded Array Blocks (totaling 40,960 memory bits), and over 400 I/O pins.

2.3.2. 5933 PCIInterface

The base platform was designed to work with Ziatech Corporation's 6U
CompactPCI Dual PCI Bus architecture. In this specification, the Jl and J4
connectors on the CompactPCI backplane each provide their own independent
PCI bus. This allows the host single board computer to access PCI peripherals on

13

two independent PCI busses, providing for more PCI peripherals and higher
system bandwidth.

The base platform has access to each PCI bus using an AMCC 5933 PCI
interface. The 5933 provides a flexible interface to the PCI bus. Each FPGA has
direct connections to the 5933 add-on bus (backside) control pins. The FPGA is
programmed by the end user to use the desired 5933 functions. The 5933 is
capable of bus mastering at speeds exceeding 100 Mbytes/sec into PC system
memory. The 5933 sports a bi-directional FIFO interface to the PCI bus, mailbox
registers, pass thru regions (allowing memory mapping into the host computers
address space), and various interrupt generation/notification schemes. It is
expected that the end user developing on the platform from a hardware level will
be familiar with the AMCC 5933.

2.3.3. ZBT Synchronous SRAM

Each FPGA has access to two independent banks of 128Kx36 bit Zero Bus
Turnaround Synchronous SRAM memories. These memories operate
synchronously with the system clock, called CLKDSf. Read and write operations
can be performed on every clock cycle, including back to back read and writes
without any wait states.

The ZBT banks, referred to as ZBTA and ZBTB, are completely independent.
Each FPGA has dedicated access to these memories.

The base platform was designed to accommodate ZBT memories up to 512Kx36
in density. Two extra address pins have been provided in the platform design.

2.3.4. Dual Port SRAM

Each FPGA has access to a bank of 64Kx36 dual port asynchronous SRAM. This
SRAM serves as the primary interface between the FPGA and an Analog Devices
21060 SHARC DSP. The asynchronous SRAM is directly connected to the
FPGA on one port and a SHARC DSP on the other.

The dual port memory has an interrupt generation capability between the two
users of the SRAM. When the FPGA writes to a specific location, the SHARC
DSP will receive an interrupt. Likewise, when the SHARC writes to a specific
location, the FPGA will receive an interrupt.

The primary intended interface arrangement between the FPGAs and SHARCs
will be discussed in detail in Section 2.3.5.1 below. However, the dual port
memory provides a shared memory between the FPGA and DSP and the end user
can use this relationship in any manner.

14

The use of synchronous dual port SRAM was desired. However, during the
design cycle for the base platform no synchronous SRAMs were available which
met the timing requirements of the SHARC DSPs.

2.3.5. 21060 SHARC DSP

FPGAs are not very well suited for high speed, wide word multiplication or
floating point arithmetic. Numerous logic resources within the FPGA are
consumed and speed is slow. On the other hand, multipliers and floating point
units are often required in many signal processing applications. This requirement
has led to the development of ASIC circuits dedicated to multiplication, division,
floating point operations, etc. In order to provide the resources for optimal
system throughput, we decided to include a dedicated ASIC circuit to perform
these calculations.

We opted to use a SHARC DSP as a "programmable ASIC". The SHARC DSP is
a 32-bit floating point processor with 4Mbits of dual ported internal SRAM. It
performs single cycle memory fetches in parallel with single cycle
multiplications. We designed the SHARC into the system interfacing with the
FPGAs through a dual port SRAM for primary data exchange. Dual port
interrupts are used to synchronize the FPGA and DSP.

Programming of the SHARCs occurs over PCI bus I from the host computer via
the SHARC Link Port. SHARC programs are written using the Analog Devices
DSP development software.

2.3.5.1. Dual Port SRAM

The primary data interface between the FPGA and the DSP is the dual port
SRAM. SHARC Link Ports also connect between the FPGA and the SHARC,
but Link Ports are only 4 bits wide and are NOT intended as a primary data
transfer mechanism. They are discussed more in section 2.3.5.2 below.

The primary synchronization method between the FPGA and SHARC is use of
the dual port interrupt. When the FPGA writes to dual port location FFFF, the
SHARC will receive an interrupt (SHARC IRQO). The SHARC clears this
interrupt by reading dual port location FFFF. When the SHARC writes to dual
port location FFFE, the FPGA will receive an interrupt signal on FPGA input
pin DPnlNT. The FPGA clears this interrupt by reading location FFFE.

We intend to use the SHARCs as programmable arithmetical ASICs. A
program will be running on the SHARCs. This program is to be fetched
completely from SHARC internal memory. Data will be downloaded into the
dual port memory and the SHARC or FPGA will be signaled of the availability
of the data by writing to the dual port interrupt generating register.

15

For example, we imagine writing 64K dwords from the FPGA into dual port
memory and then reading the products of these dwords. It is equally easy to
write samples to the dual port and read back a completed FFT from the dual
port, allowing the SHARCs to perform the DSP using the optimized ASIC. The
FPGA resources could then be used for pattern matching on the power
spectrum, perhaps looking for a specific radar signature.

This combined FPGA and DSP architecture provides the end user with the
ability to run algorithms on the proper hardware. In the example above, the
SHARC DSP is more likely superior in executing a 32 bit floating point FFT
whereas the FPGA resources are better suited to a bit-level pattern matching
routine in identifying the measured power spectrum.

2.3.5.2. Link Ports

Link Ports are SHARC communication ports. Six 4 bit link ports are part of the
21060 DSP. Link ports are intended to be used for multiple SHARC processor
farms for processor to processor communication and additional external I/O.

Link ports are used in the base platform to allow for communication between
the SHARC and FPGA, FPGA and SHARC, PCI and SHARC, SHARC and
PCI, and SHARC to SHARC. The link ports are assigned as:

SHARC LINK PORT DESTINATION
0 OTHER SHARC PORT 1
1 OTHER SHARC PORT 0
2 FPGA TO SHARC communication
3 SHARC to FPGA communication
4 PCI to SHARC communication
5 SHARC to PCI communication

It is not intended to use the FPGA and PCI link ports as primary data transfer
routes as they are not intended for maximum throughput. However they do
provide very useful communication and synchronization pathways between the
various components of the system.

An enhanced design using the link ports was considered for this platform, but
was not pursued to budgetary constraints. Inclusion of DSPs into the base
platform was not in the original proposal or budget.

2.3.6. Programmable Oscillator

The base system clocks synchronously to a distributed clock, named CLKIN. The
rate of this clock is programmable by the end user over the PCI bus. The rate of
this clock is selected by the end user to comply with the timing requirements of

16

the specific design. The clock range can be from approximately 300 kHz to 100
MHz in fine, high resolution steps.

2.3.7. Daughter Card Interface

The daughter card interface is a 100 pin, high quality connector. The connector
used employs internal ground planes which are carried continuously from base
platform to daughter card board. This provides a high quality signal environment
as well as allows all 100 pins to be used for signaling.

90 of the connector's pins are directly connected to FPGA I/O pins. One pin is
clocked at the system distributed clock and one pin is an FPGA dedicated input
pin. Power is supplied to the daughter card via 4 pins at +5V and 4 pins at +3.3V.
This is summarized below.

Number of Pins Function
90 Direct I/O pins from FPGA

1 Distributed system clock CLKIN
1 Dedicated input to FPGA
4 +5V
4 +3.3V

2.3.8. Debugging Port

An additional header was designed into the base platform accessible from the
CompactPCI front panel. This header has 8 pins connected directly to 81/Os on
each of FPGA I and FPGA II. The header also supplies GND and +5V. This
header is intended to serve as a debugging port, allowing end users easy access to
these 8 pins for logic analyzer or oscilloscope probing. It is also possible to build
a small indicator board to use this header as a status monitor for end users, for
example a segmented display or simple LEDs.

Test point vias are located throughout the base platform at strategic places.
Probing of these test points requires operation of the base platform on extender
cards out from the host CompactPCI chassis. A list of these test points is located
in the User's Guide documentation.

2.4. Daughter Card Fiber Interface

During this effort a fiber optic daughter card was developed. The fiber daughter card
provides two independent fiber transmit and receive channels, each utilizing the
Cypress Semiconductor HOTLink chipset. Each fiber daughter card can interface to

17

two remote pods. The base platform can accept two daughter cards, allowing one
base platform to communicate with up to four remote pods.

Figure 4 below is the fiber daughter card block diagram. Each channel of the fiber
interface appears as two synchronous FIFOs to the base platform FPGAs. The FPGA
interface simply reads or writes to the synchronous FIFOs (synchronous with the base
distributed clock CLKIN).

Each channel on the daughter card is identical to the other. The TX FIFO is read by
the PUD and the data is transmitted out the transmitter. The RX FIFO is written by
the PLD when data is received from the receiver. Note that each channel is clocked
by its own oscillator. This permits the two channels to operate at a different clock
frequency if desired. Note that a HOTLink requirement is that both ends of the fiber
optic cable must run at the same clock speed. Therefore with this arrangement two
remote pods can be controlled at different speeds with respect to each other and a
different speed from the base platform.

I/O Card Header
(901/Os)

Fiber Cable Fiber Cable

Figure 4. Fiber Interface Daughter Card

Oscillator 1 and 2 can operate up to 27 MHz in speed. This limitation is due to the
electro-optical TX/RX used on the daughter card. If these devices were upgraded to a
higher speed grade, operation up to 40 MHz is possible. This requires the fastest
speed grade HOTLink chipset, and correspondingly faster FIFOs and PLDs.

Throughput of the daughter card as designed with 270 MBits/sec electro-optical
components is 27 Mbytes/sec in and 27 MBytes/sec out. The channels both operate
in full duplex and in parallel, providing up to 108 MBytes/sec of sustained I/O per
daughter card. Note that this is not limited by distance from remote pod to base
platform, up to a fiber optic cable length of a few hundred meters.

18

Photo 3 below is a photo of the fiber daughter card.

■$""•■■ ■■■--'-«' ^

?,: ;:.H- 'V^-'V''■.■|'.'. *

» ■ ■.«?*' V* C*- 2 '■' i JlwP3 • * ^

S&Wy.'';' t ■ J!■•**"* ,.-*%«*:*
SäSäSfSf- ''S"' r'

V.*-'::**"' i'iÜ" 'ivS'*'; .Vrj
9®W.S tci. •

..-.'. -,jf'j<*

Si1
■^■»■'«■V

aHSK?**- *■■• *T:: * <-'
»■.u-«^««-^ -^.^'j^**'?'

KSK
:'■."*.•" :.V."

^•--. < '*.* ■-'• <■'- r^ :''.li?::1 ■

■?:'-?"
■;■■■; *_■■-**;

'V;t ^^,4* \

■ ,,v;.'-Q/ ^:i";s'* -*]^:k®-^iSl%s

Photo 3. Fiber Daughter Card.

The PLD is not necessary in the above design, but was used to allow for maximum
end user flexibility when using the daughter card interfaces. The PLDs can be
programmed in-circuit using Altera's ByteBlaster cable and the daughter card JTAG
interface port. For example, the PLD can be used to implement a hardware "stop
sending" and "start sending" scheme (by monitoring the FIFOs status flags and using
HOTLink special characters), independent of the base platform FPGAs. There are
also unused I/O pins directly from the daughter card's control PLDs to the base
platform's FPGA, via the daughter card connector, bypassing the FIFOs.

19

3. Software Platform Extension

Project software development involved two areas: host system hardware control and
high level programming of reconfigurable hardware.

When the project began, Acquisition Systems had developed an appropriate graphical
user interface and interactive interpreter environment for Windows. For this project,
core additions to the user interface application were made to support the new
hardware platform.

A reconfigurable hardware compiler, under license from Cornell University, was
ported for use with this hardware platform.

3.1. ASbridge Host Interface

ASbridge is a Win32 application that communicates with Windows NT device drivers
for hardware access, interrupt handling, and other host system resource control.
Graphical components provide intuitive functionality such as PCI interface register
views, FPGA and DSP configuration download, and PCI interface nvRAM
configuration. For programmatic interaction with the hardware, a comprehensive
command line interpreter is a central component.

The base platform resides on a CompactPCI system with two (2) independent PCI
busses. As described elsewhere, the base platform has 2 similar FPGA's, each with an
associated DSP, daughter card, etc. These FPGAs interface to the separate PCI
busses. Host software provides symmetric access to the PCI side of each of these 2
base platform PCI interfaces.

The overall intent is to provide a user environment for hardware application
development and testing.

3.1.1. General Program Design

Host platform hardware resides in a CompactPCI system. A host computer
supporting a standard operating system interacts with this hardware through PCI
interfaces, in this case AMCC S5933 PCI interface devices. ASbridge runs under
the Windows NT operating system and is designed to handle multiple S5933 PCI
interfaces on multiple PCI busses.

There are two (2) NT device drivers. One provides functionality related to PCI
Configuration Space, such as the "plug&play" detection of multiple Acquisition
Systems devices on multiple PCI busses. The other driver is handed a list of
devices which it then uses internally. The application and this second device
driver then use an index into this device list to refer to the individual devices. All

20

driver functionality used by the ASbridge program is exposed and documented for
end-user custom application development (see the files asriocfg.txt and
asriopci.txt for reference documentation for the two NT device drivers).

All device driver calls are through the DeviceloControl function using custom
control codes exclusively. Asynchronous communication from the device driver,
optionally initiated in a hardware-generated interrupt service routine, is via user-
mode Asynchronous Procedure Calls (APC).

The S5933 contains an nvRAM (non-volatile random-access memory) component
that is used on power-up for setting certain device parameters. ASbridge makes
use of otherwise unused portions of the nvRAM for user-specified identification
of the device. In particular a user-settable byte-wide device "ED" allows
programmatic access to each S5933 in the system unambiguously, even after
changing the devices' physical locations in a PCI bus/slot hierarchy.

The versatility of ASbridge lies in its command line interpreter. This is a FORTH-
like pseudo byte-code compiled language interpreter. It is FORTH-like, and not a
true byte-code language, in that compiled byte-code is not transferable to another
environment, i.e. the compiled code uses non re-locatable addressing. It is
compiled for speed of execution only.

3.1.2. Platform-Specific Extensions

The command line interpreter (as well as the graphical user interface) has
functionality common to any S5933 PCI interface, and also functionality
particular to this project's base platform hardware. For base platform FPGA-
specific functionality, such as status register interpretation, download of 10K250
FPGA configurations, etc., a family of commands with the word "base" in their
names was developed. Similarly, for base platform DSP-specific functionality, the
commands include "share" in their names.

Following are listings of these ASbridge interpreter commands. Programmable
clock control is listed as FPGA-related since this clock's output is available to
both FPGAs. It is used, for instance, to drive Hardware Promela applications
(Sect 3.2).

21

FPGA-related command functionality

basettf

baserbf

baseshowconfigs

baseconfigl

baseconfig2

baseconfigboth

baseresetl

basereset2

baseresetboth

basesetclk

baseuseclk

basestep

bases tatus

read a 10K250 Altera Tabular Text File into one of the
sixteen host memory buffers
read a 10K250 Altera Raw Binary File into one of the sixteen
host memory buffers
display current status of all non-empty configuration buffers,
including source file name and download (FPGA
configuration) status
configure FPGA1 from one of the sixteen host memory
buffers
configure FPGA2 from one of the sixteen host memory
buffers
configure both FPGA's simultaneously from the same host
memory buffer

reset (un-configure) FPGA1

reset (un-configure) FPGA2

reset (un-configure) both FPGA's simultaneously

set one of three registers in the programmable oscillator to
specify a specific frequency
set one of the three frequency registers of the programmable
oscillator to be active, i.e. clock begins output at registered
frequency
single-step the programmable oscillator, assumes the
frequency has been set to zero (0)

read and interpret base platform status register

SHARC-related command functionality

sharcldr

sharcconfigl

sharcconfig2

sharcshowconfigs

sharcresetl

sharcreset2

share wlpl

load an Analog Devices ldr file into one of 16 SHARC
configuration (program) host memory buffers
configure (program) SHARC 1 from one of the SHARC
configuration buffers
configure (program) SHARC2 from one of the SHARC
configuration buffers
display current status of all non-empty configuration buffers,
including source file name and download (SHARC
programmed) status

reset (unprogram) SHARC 1

reset (unprogram) SHARC2

write dword to SHARC 1 link port

22

sharcwlp2

sharcwlpboth

write dword to SHARC2 link port

write dword to both SHARCs' link port simultaneously

3.1.3. Software Scatter/Gather

The S5933 does not support scatter/gather bus mastering so software
scatter/gather capability was designed into the NT device driver. This works by
creating a list of variable-length contiguous memory regions, each of which can
support a single bus-mastering transfer. As each bus-mastering transfer
completes, a hardware interrupt is generated and the interrupt service routine in
the driver sets up and initiates a bus-mastering transfer for the next region in the
list. We find that this software scatter/gather technique achieves good
performance, as long as there is enough hardware data buffering to allow for the
interrupt latencies. For large transfers with just a few sub-regions, performance is
virtually indistinguishable from the equivalent single large transfer. In a
somewhat extreme case of small sub-regions, a 256 Kbyte transfer, consisting of
16 separate bus-mastering transfers, is completed at an overall rate of 104
MBytes/sec. while the comparable single large bus-mastering transfer takes place
at 128 MBytes/sec.

3.1.4. SHARC/Host Communication

SHARC DSP programming is handled by the host similarly to FPGA
configurations. The host software (ASbridge) maintains a number of variable-
length RAM buffers to contain programs compiled for the SHARC by Analog
Devices' compilers. The compilers (C-compiler and Assembler) run on Intel
hardware under NT. The compiled code is downloaded on demand to one of the
two DSPs via a SHARC link port ("link port booting").
Once programmed, the SHARC has access to PCI data through another of its link
ports and the ASbridge interpreter provides for writing 32-bit data to these link
ports (one for each of the two SHARCs). The four SHARC programmable "flags"
are brought out to the PCI interface and show up as individual bits in one of the
PCI interface registers.

3.2. Hardware Promela Extension

Hardware Promela is a high level language capable of generating Altera Hardware
Description Language (AHDL) code for Altera FPGA's. Developed at Cornell
University by Dr. Geoffrey Brown, it is licensed from Cornell by Acquisition
Systems. The language is a variant of the protocol description language Promela,
designed by Gerard Holzmann (Design and Validation of Computer Protocols, 1991).
Hardware design languages are relatively inaccessible to large numbers of computer

23.

programmers. Hardware Promela is intended to provide a configurable hardware
design environment more familiar to the typical programmer, like that provided by
the "C" and similar programming languages.
One aim of this project was to port Hardware Promela to this hardware platform. This
involved extending Hardware Promela to incorporate specific hardware features in
the Hardware Promela programming environment.

3.2.1. Hardware Interface Library

Hardware Promela source code is run through the Hardware Promela Compiler
(HPC) to generate equivalent AHDL. The resultant AHDL file, named
"promela.tdf', is then input, along with related Hardware Promela files (see
below), to the Altera tools MAX+Plus II to compile, synthesize, and place and
route the configuration for a particular Altera device. The resulting configuration
file can be downloaded directly to the FPGA.

In the Hardware Promela (HP) system, hardware platform specifics reside in a
module referred to as the hardware interface library. This hardware interface
library references the sub-design "promela" which has an effect similar to an
"extern" declaration in C . The effect is to make the interface defined in
"promela.tdf' (which was generated by HPC) available to the rest of the hardware
interface library. The interface library is responsible for hardware access,
synchronization, etc. In order to add new hardware functionality, the hardware
interface library is extended, and users' Hardware Promela code can then refer to
the new entities in the interface library.

For example, if an FPGA output pin were referred to as PINOUT, it could be
made available to Hardware Promela by setting PINOUT =
prom.Vw_pinout_data_ in the hardware interface library and declaring externo
int: 1 pinout in the HP source file. In the body of the HP source, the statement
pinout = 1 would set the physical PINOUT output high. This declaration
("externo int:l") results in the entry "Vw_name_data_" in the Interface section of
promela.tdf. If the integer width is greater than one, the AHDL format is
Vw_wame_data_[n], where n is the bit width. In general, a Hardware Promela
external declaration generates multiple signals in the hardware description
depending on its type and data width.

Hardware Promela "channels" are an integral part of the hardware interface
library. They provide synchronization between elements of a user's Hardware
Promela program or between the user's program and the hardware interface
library. In the latter case, channels must be instantiated in the hardware library
interface. A corresponding declaration in Hardware Promela user code results in
the generation of the required Promela-side channel interfaces. Each external
Promela channel exposes nine (9) I/Os to the hardware interface library. These
include send- and receive-side request- and acknowledge-signals. Each end of the

24

Channel specifies its own clock input. The Promela side uses the one clock
specified for all of Promela user code. On this platform the Hardware Promela
clock is the programmable oscillator output.

For example, for use on this hardware platform, where Altera FPGAs are wired to
the AMCC S5933 PCI interface with its 8 dword FIFO, the hardware interface
library monitors PCI output control signals and FIFO status registers to read and
write the FIFO in concert with Hardware Promela user code. The hardware end of
the channel runs off the PCI clock for accesses synchronous to the PCI bus, while
the Promela end of the channel is clocked at whatever rate Promela is being
driven. In the Hardware Promela user code, the statements:

externi chan fifoin of {int: 32};
externo chan fifoout of {int: 32};

define input and output channels to read and write the (32-bit wide) S5933 FIFO.

Another component of the hardware interface library provides RAM access. The
statement:

extern ram:32 DP[65535];

provides array-style access to the 64 Kdword dual port memory. The
implementation involves no handshaking nor timing constructs, and thus is useful
only with asynchronous memories.

Although any given Hardware Promela resource that is handled in the interface
library does not require actual use of that resource in a Hardware Promela
program, the Hardware Promela program file must declare the resource in order to
generate all the various interface components.

3.2.2. Software Interface Library

For platforms such as this one, where the FPGA can communicate with a host
processor, some intermediate software is needed to supply an interface between
code run by the host processor, and Hardware Promela code on the FPGA. In one
sense, ASbridge itself is such a software library (and user interface) because it
provides easy host-side programmatic access to the hardware. Within ASbridge,
though, one can build software modules to provide specific functionality designed
for use with specific Hardware Promela programs. As a platform for application
development, ASbridge interpreter code interfacing to Hardware Promela can be
an effective tool.

For example, suppose we want to send data out one of the platform's fiber
channels and verify the data at the remote site. We want to fill one of the ZBT

25

memory banks with known data, and may wish to use various bit patterns
according to various tests. We write a Hardware Promela program to accept test
data from the host and place it in local memory (a ZBT memory bank connected
to the FPGA), and then on command from the host output some or all of that data
to the fiber interface. A small amount of coding of Hardware Promela for FPGA
configuration and of ASbridge interpreter code is all that's needed. All necessary
code is shown below.

The fiber optic hardware provides a byte wide channel, and for simplicity the
Hardware Promela code below just uses the low 8 bits of 32-bit data. To transfer
all 32 bits, Promela code could easily transfer the multiple bytes sequentially. Or,
for increased efficiency, the hardware interface library could accept 32 bits from
Promela and write the individual bytes sequentially itself.

See the accompanying document ASPromela.doc for information necessary to
write and compile Hardware Promela programs. The following Hardware Promela
examples use channels and certain flow control operators. Output to an output
channel named "chan_out" looks like: chanjout! value . Similarly, the syntax for
input from an input channel named "chain_in" to a variable named "var" is:
chanjn ? var, spaces not required. The Promela "if.. fi" construction executes
the first enclosed list that begins with a statement that evaluates to "true" (lists are
preceded with double semicolons). A channel access evaluates to "false" or "true"
depending on whether it would or would not block, respectively. The Promela "do
.. od" construction is equivalent to "if.. fi" except that it is re-evaluated and
executed repeatedly. Also note that the statement separators ";" and "->" are
completely equivalent and are used alternately just for readability.

See section 3.2.3.2 for details of Hardware Promela handling of ZBT memory, as
used in the example below. The accompanying file fiber.p contains the listing
below as well as the unused external declarations necessary to compile this
program. The complete external listing also appears in section 3.2.3.5.

26

Hardware Promela program for fiber output

// File: fiber.p
// Hardware Promela program to store host-supplied data
// and output it on demand over fiber channel

externi chan fifoin of {int: 32}; // fifo input
extemi chan aptin of {int: 32}; //PT1 in (1st passthru region)
externi chan bptin of {int: 32}; // PT2 in (2nd passthru region)
extemi chan azbtin of {int: 32}; // memory read bank A, increments address
externo chan azbtout of {int: 32}; // zbt memory write bank A, increments address
externo chan azbtbase of {int: 17}; // set base address
externi chan afiberin of {int: 9}; // data input, channel A
externo chan afiberout of {int: 9}; // data output, channel A

<unused external declarations (see Section 3.2.3.5) left out for brevity >

int: 17 address; // define variable to hold address
int: 17 count; // variable to hold transfer dword count
int: 32 newdata;
int: 9 data;

par // execute following lists ("do..od" blocks) in parallel
::do //repeat

:: aptin?address -> // get ZBT base address over channel (passthru region)
azbtbase ! address // set base address for ZBT bank A

od // end repeat block
::do

:: fifoin?newdata -> // get data over channel (fifo)
azbtout! newdata // write one dword to ZBT bank A, increments address

od
::do

:: bptin?count -> // get count for transfer from ZBT to FIBER
do
:: azbtin ? data -> // read ZBT, increments address

afiberout! data; // send byte out fiber
count = count -1; // decrement count
if
:: count == 0 -> break // if count is zero, break out of do
:: skip // else nothing
fi

od
od

27

rap
//

Corresponding ASbridge interpreter program to supply data
and control fiber output

ASbridge macros to support interactive control
of the above Hardware Promela configuration
hex # set default numeric radix to hexadecimal
array ax # define dword array named "ax"
20000 ax fix # allocate contiguous memory equal to ZBT bank size,

requires 17-bit addressing
macro setbase { PT1 0 put} # takes number from stack and writes Promela channel

aptin, which alters ZBT memory "current" address
macro emit { PT2 0 put} # takes number from stack and writes Promela channel

bptin, which specifies number of
bytes to transmit on fiber...

also serves as a command to start this transmission
macro useax { 0 setbase # set ZBT memory base address to zero

axsizeofO # place zero and size of array ax (20000 hex) on the stack
bmo } # write all data in ax, starting at offset 0,

to Promela input channel fifoin, which Promela then
transfers to ZBT memory

Interactive use of ASbridge interpreter to communicate with Hardware Promela

With the above programs loaded, interactive use of ASbridge could be as below
(without the comments):
0 ax sizeof 1 - loop{ i ff & ax i put} # put ascending byte values 0,1,2,... into array
(filling the array could be done by reading in a file, instead)
useax # transfer this data to ZBT memory
0 setbase # set ZBT base address to zero (0)
ax sizeof emit # transmit data in ZBT bank A over fiber link
100 setbase # set ZBT base address to 100
10 emit # transmit 10 bytes over fiber link

See section 3.2.3.5 for a listing of the various I/O channels defined for Hardware
Promela on this platform. See the ASbridge Software Reference Guide for
complete details of the ASbridge interpreter.

3.2.3. Extensions to this platform

The Hardware Promela hardware interface library was modified and extended for

28

use with the current hardware platform. An Altera Assignment and Configuration
file was written and the AHDL hardware interface library modified according to
the FPGA I/O connectivity. Besides the address/data, status, and control lines of
the S5933 PCI interface, device accesses from a single FPGA include fiber optic
channels, multiple banks of random access memories, FPGA-to-FPGA ties, host-
interrupt, dual-ported-memory interrupt, and SHARC- shared-memory-addressing
status. All of these channels have been implemented in Hardware Promela and are
discusses below.

3.2.3.1. Fiber Optic Channels

Each of the base platform's two 10K250 FPGA's has access to two pairs of
fiber optic channels, each pair providing one input and one output channel. The
fiber optic transceivers are connected through dedicated FIFO's to the FPGA.

Each fiber channel's dedicated FIFO has multiple status lines. It would be
possible to simplify use of these fiber channels in Promela programs by
handling the FIFO status information in the hardware interface library, so that
Promela code could then send and receive on these channels without regard to
FIFO status. The hardware library would block (temporarily stall) the process
when necessary. However it is desirable to be able to monitor data transfer
status in the user-level (Promela) code, especially when communicating with
external systems. Therefore all fiber FIFO status flags are made available to the
Promela program. These flags include almost full and full flags for each output
channel and almost empty and empty flags for input channels. Input and output
FIFO reset controls are also present for each of the two fiber I/O pairs.

3.2.3.2. ZBT Synchronous SRAM

Each of the base platform's two 10K250 FPGA's has access to two banks of
Zero Bus Turnaround synchronous random access memory. This SRAM
architecture was chosen for its synchronous operation and the fact that
sequences that involve alternate read and write access ("turnaround") do not
incur a performance penalty. With an eye to optimizing Hardware Promela's
access to this memory, the usual "device[address]" syntax was not attempted.

It is assumed that where speed is desired, sequential addressing can be used, i.e.
a packed block of data will be transferred with increasing sequential addressing.
We provide three separate Promela channels for reading, writing, and
addressing ZBT memory. The address-channel allows Promela code to set a
"base address" for a block transfer. Using a read- or write-channel has the side
effect of incrementing the address after the memory access. This way the
hardware addressing can take place in parallel with Promela data access and
performance is maximized.

29

This ZBT memory access method could determine the best way to allocate ZBT
memory in a particular Hardware Promela application. For instance, instead of
placing blocks of data that are to be alternately read and written into distinct
(separate) memory ranges, it may be possible to interleave the two blocks so
that alternate reads and writes access the alternate data sets. However, it seems
likely that at some point one would prefer each data set to appear contiguous,
e.g. for wholesale transfer over some external channel. With this in mind, it
would be straightforward to add another Promela ZBT channel that would set
the address increment. With such an arrangement, the Hardware Promela
programmer could adjust the memory "granularity" at will. For example, if the
desired data set were distributed in every fourth location in ZBT memory,
setting the "granularity" to four would allow sequential access to this data set
without any performance penalty.

3.2.3.3. SHARC Communication

Each FPGA shares a bank of dual-ported SRAM with a SHARC 21060 DSP,
and the high address bit being used by the SHARC is made available to
Hardware Promela via the sharchimem external variable. This allows the
Promela code to monitor SHARC access of shared memory and determine when
it is in the upper half of available memory. Another channel into Promela, dpint,
comes from the dual-port-memory interrupt. This line is triggered when the
SHARC writes any value to a specific address at the high end of the dual port
memory address range. Similarly, SHARC programs can be interrupted when
the FPGA (Promela) writes to its specific address at the high end of the dual
port memory range. Cooperative programming between FPGA and SHARC can
use these methods to insure program synchronization.

3.2.3.4. DMA channels

The speed at which any particular Hardware Promela program can be run is
generally unpredictable until it is completely synthesized and routed. This is a
general feature of such high-level approaches to reconfigurable hardware
design. (See section 5.3.2 for more on this topic).

In order to provide high speed data transfer capability to Hardware Promela
programs, we designed a more complex Hardware Promela "channel" to clock
data transfers at a higher rate than the Promela clock. Just as DMA hardware on
a PC transfers data independently of the central processor, our "dma" channel,
being designed in the hardware interface library, acts independently of Promela
per se. We use a Hardware Promela external integer to specify the memory base
address, and a channel interface for count-initialization and completion
synchronization.

30

One of two channels is used for transferring in a given direction, one for PCI to
DP (dual port memory), the other for DP to PCI transfers. The hardware
interface side of the channels and the data transfer circuitry run off the 33 MHz
PCI clock, while the Promela side of the channels operate with the rest of
Promela at the Promela clock rate (programmable clock). An example program
using these channels is given here.

Hardware Promela program using "dma" channels

// Hardware Promela program for storing 256 KBytes of host-supplied data,
// automatically signaling DSP that data are present in shared memory,
// then transferring data to host upon DSP-done-signal.
// Entire process repeats indefinitely.

externo chan fifo_dp of {int: 16}; // dma PCI to DP
externo chan dp_fifo of {int: 16}; // dma DP to PCI
externo int:16dpbase; //DP base address for dma

<unused external declarations left out for brevity»

int 1: junk; // needed to receive during channel synchronization, value not used
do // repeat

:: dpbaselO -> // set Dual Port (shared with DSP) memory base for "dma" transfer
fifo_dp!65536; // do transfer from PCI host to DP memory; DSP gets interrupt

// when high memory address is written
dpin?junk; // wait for DP interrupt when DSP writes its high memory address,

// presumably after processing data
dpbaselO -> // set DP memory base for next transfer
dp_fifo 165536 // do transfer from DP to PCI host

od
//

Corresponding ASbridge interpreter interactive use to supply data for DSP
processing

ASbridge interactive communication
with the preceding Hardware Promela configuration

decimal # set default numeric radix to decimal
array ax # define dword array named "ax"
65536 ax fix # allocate contiguous memory equal to transfer desired
ax sizeof 0 rdec c:/data/data_file # read data into array from ASCII decimal file on disk
ax sizeof 0 bmo # transfer all data into fifo, to be written by Promela to DP memory
ax sizeof 0 bmi # transfer all (processed) data back to the original array
ax sizeof 0 wdec d:/processed/proc_file # write to disk

31

This sort of interaction could continue indefinitely

On the current platform, this type of "dma" channel can be applied only to the
asynchronous dual port (DP) memory, since the ZBT memories and fiber optic
FIFOs are all synchronous with the Promela clock. Experimental
implementation of these channels also entailed the removal of the Hardware
Promela "ram" interface to DP memory. For these reasons, these "dma"
channels are not present in the demonstration version of Hardware Promela.

3.2.3.5. Summary of Hardware Promela Extensions

We have ported Hardware Promela in a straightforward manner for use on this
hardware platform. We have experimented with platform and application
specific extensions such as providing high- speed DMA-type data transfer to the
user Hardware Promela code.

Hardware Promela programs can run on either (or both) of the platform's two
10K250 FPGAs. On either FPGA, Hardware Promela has read/write access to
the DP memory shared with a SHARC DSP. It can also tell when the SHARC is
accessing the upper half of shared memory, as well as detecting interrupt
notification from this shared memory which can be generated by a SHARC
access. On either FPGA it also has access to the two banks of ZBT memory and
four separate fiber optic ports (2 read, 2 write). Hardware Promela can interrupt
the host processor via the PCI interface, and fiber optic channel FIFO flags are
available to Hardware Promela so that programs can monitor data transfer status
with external devices.

Below is a table of hardware channels available to Hardware Promela on the
base platform. Although FPGA-to-FPGA communication is possible and has
been tested, this requires that different Promela configurations be run on the two
FPGAs. One version must treat the relevant I/O's as inputs while the other
configures them as outputs. Furthermore, mistakenly setting both to outputs
could result in physical damage to the platform hardware. For this reason,
FPGA-to-FPGA communication is not included in the demonstration version of
Hardware Promela.

The list below conforms to the syntax of Hardware Promela declarations. This
list is necessary in any Promela program that is to link with the supplied
dcpcihp.tdf hardware interface library. The "extemi" declaration indicates
INPUT (read access) and "extemo" indicates OUTPUT (write access). The
number in curly braces is the channel bit-width.

32

Hardware Promela hardware channels on Base Platform

externi chan fifoin of {int: 32};
externo chan fifoout of {int: 32};
externi chan aptin of {int: 32};
extemo chan aptout of {int: 32};
externi chan bptin of {int: 32};
externo chan bptout of {int: 32};
externo chan inthost of {int: 1};
externi chan dpint of {int: 1};
extern ram:32 DP[65535];
externi chan azbtin of {int: 32};
externo chan azbtout of {inf. 32};
externo chan azbtbase of {int: 17};
externi chan bzbtin of {int: 32};
externo chan bzbtout of {int: 32};
externo chan bzbtbase of {int: 17};
externi chan afiberin of {int: 9};
externo chan afiberout of {int: 9};
externi chan afiberaf of {int: 1};
externi chan afiberff of {inf. 1};
externi chan afiberae of {int: 1};
externi chan afiberef of {int: 1};
externo int: 1 afiberreset;
extemi chan bfiberin of {int: 9};
externo chan bfiberout of {int: 9};
externi chan bfiberaf of {int: 1};
externi chan bfiberff of {int: 1};
externi chan bfiberae of {int: 1};
externi chan bfiberef of {int: 1};
extemo int: 1 bfiberreset;
externi int: 1 sharchimem;

// S5933:
// S5933:
// S5933:
// S5933:
// S5933:
// S5933:
// S5933:
//DPw/SHARC:
//DPw/SHARC:

FIFO input
FIFO output
PT1 input (1st passthru region)
PT1 output
PT2 in (2nd passthru region)
PT2out
interrupt host

interrupt from dual port memory
dual port memory read/write

// ZBT: read memory bank A (current address, see text)
// ZBT: write memory bank A (current address, see text)
// ZBT: set base address bank A (see text)
// ZBT: read memory bank B (current address, see text)
// ZBT: write memory bank B (current address, see text)
// ZBT: set base address bank B (see text)
// FIBER: data input, channel A
// FIBER: data output, channel A
// FIBER: almost-full flag (TX FIFO), channel A
// FIBER: full flag (TX FIFO), channel A
// FIBER: almost-empty flag (RX FIFO), channel A
// FIBER: empty flag (RX FIFO), channel A
// FIBER: reset (RX and TX FIFO), channel A
// FIBER: data input, channel B
// FIBER: data output, channel B
// FIBER: almost-full flag (TX FIFO), channel B
// FIBER: full flag (TX FIFO), channel B
// FIBER: almost-empty flag (RX FIFO), channel B
// FIBER: empty flag (RX FIFO), channel B
// FIBER: reset (RX and TX FIFO), channel B
// SHARC: high address bit active

33-

4. Integration with Infrared Focal Plane Array Sensor System

During the effort a remote pod was integrated into a HgCdTe 1024x1024 near
infrared (1.0-2.5um) focal plane array control and data acquisition system. This
system is used by Cornell University astronomers to operate the focal plane array in a
near infrared camera at the Palomar Observatory 200" telescope.

A single remote pod was used to control the entire camera. The remote pod
performed the following functions:

• Generation of focal plane array clocking patterns, including various
sampling techniques and sub-frame clocking.

• Convert pulse generation for analog to digital converters and data
collection from 4 ADC channels.

• Communication link over fiber optic lines (HOTLink) with a host
computer. Link was used for uploading commands and downloading
data.

• Index control (step generation and limit switch monitoring) of six
stepper motors.

The remote pod was physically integrated into the system by development of a
"motherboard" to accept the remote pod.

This remainder of this section will discuss in more detail the integration of the remote
pod in to the camera controller system.

4.1. Existing System

The remote pod was used to control and infrared camera/spectrograph used for
astronomical observation by Cornell astronomers. The pod controls the array
clocking and data acquisition, communication link with the host computer (in this
case a Sun workstation), and six stepper motors. Each of these subsystems was
completely implemented in the Altera 10K50 FPGA on the remote pod, using less
than 30% of the FPGAs resources. This section will discuss each of these subsystems
in more detail.

The focal plane arrays may be clocked differently for different types of observations.
For example, for some observations perhaps only a subset of pixels from the focal
plane array is desired. For others, multiple sampling techniques to achieve lower
device read noise are required. This places a requirement of flexibility on the array
controller system. The system must be capable of providing these various clocking
schemes and resulting signal acquisition.

It is also necessary that the controlling system be fundamentally flexible. Infrared
focal plane array development is an ongoing research effort at Cornell University.

34

Array controller systems must be flexible enough to adapt to the changing
requirements of various focal plane arrays.

4.1.1. Focal Plane Array Control and Data Acquisition

A 1024x1024 HgCdTe infrared focal plane array, manufactured by Rockwell and
named HAWAII, is used in the Cornell infrared instrument (named PHARO,
Palomar High Angular Resolution camera). The instrument is a diffraction
limited spatial resolution camera/spectrograph designed to work with an adaptive
optics (AO) system on the 200" Mt. Palomar telescope. The camera combined
with the new AO system will carry the 200" telescope into the next century and
permit leading edge science to continue with the famous 200" telescope.

Infrared focal plane arrays require digital clocking patterns to clock through the
individual pixels in the detector array. The HAWAII detector has four parallel
analog outputs and requires five digital clocks for proper operation. As the digital
clock patterns are presented to the focal plane array, the various pixel values
(analog signals) are presented on the outputs. These analog signals are then
digitized with 16-bit analog to digital converters at up to 1 MHz, yielding a digital
pixel rate of 4 Mpixels/second (four outputs, each digitized at 1 MHz), or 8
MBytes/sec. The controller system must generate the properly timed convert
pulses to the analog to digital converters, read the data values from the converters,
and process this data stream. In the case of this effort, the processing of the data
stream consisted only of relaying the pixel values back to the host computer via
the fiber optic link.

The Cornell instrument used analog array electronics from the University of
Hawaii. Cornell opted not to use the same digital controller system used by
Hawaii due to excessive cost, poor flexibility, and a poor noise performance. The
digital system used at Hawaii consisted of multiple boards, each using a dedicated
Motorola DSP to generate digital timing patterns, collect data, and communicate
to a host computer. The Hawaii digital system was based on a VME architecture,
requiring a VME host computer. This system was reported by astronomers at the
University of Hawaii to introduce increased noise into their imaging systems.
This is not acceptable in astronomical applications, as the detection of the faintest
possible objects is paramount.

4.1.2. Communication Link with Host

The remote pod is the sole interface between the PHARO instrument and its host
control computer, a Sun workstation in this case. A commercial S-Bus card,
using the Cypress Semiconductor HOTLink chipset, was purchased by Cornell
University to communicate with the remote pod. The link consists of a single
full-duplex fiber optic connection operating at 200 MBits/sec (20
MBytes/sec/direction). All communication between the instrument and host

35

computer is achieved through this single fiber connection. This includes
commands to the instrument, status information from the instrument, and data
from the instrument. Six stepper motors and associated home sensors or limit
switches are also controlled through this single fiber link. The host computer is
located in the control room with the astronomer working directly on this
workstation to operate the instrument. The fiber optic cable is snaked through the
observatory conduit between the host computer and instrument. The length of
this fiber is approximately 100m.

This is in great contrast to previous array controller systems at Cornell. Previous
systems have required a PC to be mounted within 20 feet of the instrument on the
telescope directly. Copper ribbon cables (two 37 pin cables) were linked between
the instrument and this PC. These cables were observed to produce electrical
interference with the previous array controller system and were limited to 20' in
length due to transmission line characteristic. Data rates over these cables where
limited to less than 1 MByte/sec. The astronomer operated the instrument from a
workstation in the telescope control room via ethernet communication to the PC
on the telescope. Other cables from the PC are required for motor control or other
miscellaneous functionality.

During this effort, a simple communication protocol was developed for
commanding the remote pod from the host workstation. The host computer
would transmit out a command, consisting of 16 bytes of data. The remote pod
would echo each byte as it received it. The host computer would then receive
these echoes and compare with the sent command. If in agreement, a checksum
was then transmitted by the host. The remote pod would compare this checksum
with an internally calculated checksum and if equivalent the checksum was
echoed back to the host and the command was executed. If the checksums did not
agree, the remote pod would discard the errant command.
A number of commands where developed for instrument control. The astronomer
can command the acquisition of data in one of several modes and control the
integration time (effectively the exposure time) of the specific observation. All
stepper motors can be moved in the selected direction a specified number of steps.
Home sensors in the instrument could also be monitored to stop the motors at the
home position. The remote pod provided all indexer functionality to external
stepper motor drivers and monitored the motor home sensors and limit switches
when available.

4.1.3. Stepper Motor Control

The PHARO instrument contains six stepper motors to select different optical
configurations for astronomical observations. Previous Cornell systems used a
separate I/O board in a controlling PC to control motion devices.

These motors where all controlled from the remote pod. Each of the motors was
monitored for position either with a home sensor (which is not a physical limit to
motion, rather a reference point) or limit switches (which represented the end of

36

allowable motor travel). The workstation would issue a command to the remote
pod to move a particular motor a certain number of steps in a certain direction.
The remote pod would then generate the proper digital control signals to the
motor drivers. It is possible to move the motors and ignore the home/limit
switches, or move the motors and stop when reaching the home/limit switches. In
either case, at the end of the motor move, the remote pod would return status
information to the host computer.

4.2. Physical Integration of Remote Pod

The remote pod was designed as a stand alone PCB which communicates to a host (if
desired) via a fiber link. It was intended that the remote pod would be designed into a
system by providing for its footprint (two 100 pin .l"x.l" connectors). For the
integration with the PHARO instrument, a separate "motherboard" printed circuit
card was developed which accepted the remote pod. The remote pod controlled
various subsystems of the array controller (analog to digital converters, array clock
generation, and stepper motor controllers). Each of these subsystems had various
connector and drive electronic requirements. The motherboard was used to route the
I/O pins from the remote pod to the pins of the various connectors for the subsystem.
The interfaces to the analog to digital converters and stepper motor controllers were
also completely optically isolated to provide a low noise environment. These optical
isolators were all placed on this motherboard.

A photograph of the completed array electronics assemble is displayed below. Note
the remote pod and motherboard mounted in the lower left section of the electronics
box. The pod mates to the motherboard via sockets and can be removed if necessary.
However, since it can be reconfigured in-circuit via the fiber link, removal has not
been necessary.

In the photo below (Figure 5), four connectors can be seen on the motherboard (white
and oblong, D type connectors). These connectors are used to interface with the
various subsystems of the array controller. The empty sockets on the motherboard
are stuffed with optical isolators are digital buffers to drive the various subsystems.
Note that the FPGA pins are NOT used to directly drive cables to other subsystems,
but are buffered on the motherboard. The analog to digital converters are located in
the upper left section. The digital array clocks are delivered to the signal conditioner
board in the lower right section. The stepper motors are controlled through a cable
external to this electronics box. The stepper motor cable bundle can be seen under
development on the left side of the box. The hardware in the upper right corner is the
analog signal preamplifier.

37

Figure 5. Remote pod and motherboard in PHARO (lower left corner).

4.3. FPGA Coding and System Operation

The Altera 10K50 FPGA on the remote pod provides all control functions for the
camera using less than 30% of available resources. The remote pod design was
completed entirely in AHDL (Altera HDL) and was not optimized in any fashion.

The design consists primarily of three state machines: PARSER, DETCLOCK, and
DAT ATX. The PARSER machine waits for an incoming command from the host
workstation. When it arrives, the command is verified against the checksum. As the
command bytes are read by the PARSER machine, they are directly latched into the
control registers (i.e. parsed) for the various commands. If the command's
checksums match, the command is then executed. For motor moves, the PARSER
command pauses until the movement is complete (or home sensor/limit switch has
been detected) and then returns to the host computer the instrument status after the
movement. If the command is to acquire data, the PARSER machine sets flags in the
DETCLOCK machine to acquire data and returns to its idle state.

The DETCLOCK machine actually generates the digital clocking patterns for the
focal plane array. Successive states of the machine are cycled through and the digital
clocking bits are toggled as required. When a convert pulse is required, the
DATATX machine is activated by the DETCLOCK machine. DETCLOCK
continues to run at all times, always clocking out the focal plane array, even if data is
not being acquired. This state machine has parameters passed to it from the
astronomer to select various sampling methods and sub-regions within the 1024x1024
pixels as desired.

38

The DAT ATX machine reads the data from the analog to digital converters and
returns the data over the HOTLink fiber interface to the host workstation. The
DAT ATX machine reads the four analog to digital converters sequentially as
individual 16 bit words. These data values are then written one byte at a time over
the fiber interface to the host workstation. When complete, it returns to its idle state
and awaits another convert pulse from DETCLOCK.

There are a few issues that are critical to point out. Infrared focal plane arrays are
very sensitive to small changes in temperature. Thermally generated dark current and
other detector properties are affected by even small changes in the clocking pattern.
It is therefore critical that the focal plane arrays remain clocked uniformly at all
times. This includes when motors are in motion, data is being returned, the telescope
is being moved, and other times when the astronomer is not actually collecting data
with the focal plane array.

It is critical that the array control system be a reproducible and guaranteed timing
system. Use of DSPs or other programmable processors is not a guaranteed reliable
method of clock pattern generation unless very careful attention is paid during
programming. Small program changes can result in significant timing changes, even
when programming directly in low level assembler. Pipeline flushes and other
processor issues can wreak havoc on guaranteed timing systems.

On the other hand, FPGAs excel at exactly this requirement. While it is true that the
system timing parameters may change with system modifications, as long as the user
is not attempting to clock a design at the highest speeds of the devices, timing is a
guaranteed parameter. In all work done under this effort with the PHARO
integration, the remote pod was operated at the targeted speed of 20 MHz with the
slowest speed grade FPGA.

4.4. New Capabilities

The remote pod has brought a revolution to the capabilities of the array controller
system at Cornell University. The revolution can be discussed on two significant
fronts, pure performance and widespread ease-of-use.

For the first time, it is now possible for all instruments at Cornell to use the same
array controller hardware. A wide range of requirements is placed upon the controller
due to a range of instrument specialties. Wide band thermal infrared imaging requires
raw speed to handle data rates approaching 20 Million/pixels per second (16 bit
pixels) whereas detector research and development requires highly flexible
controllers to adopt new testing schemes and sampling techniques as they are
conceived.

Requiring both high speed performance and high flexibility has not been possible
prior to the use of reconfigurable hardware. The high speed specifies a custom
hardware solution and flexibility of course demands software based modifications.

39

The remote pod provides a solution which can be embedded into the array control
platform and modified as required as the observation mode demands.

The remote pod offers pixel coadding at 20 Million pixels/second, a factor of two
increase over the earlier platform. The remote pod offers a simple, elegant fiber optic
interface to the host computer capable of over 20 MByte/sec. The previous system
only provided low speed (1 Mbyte/sec) copper ribbon cables, requiring a PC to be
mounted within 20' of the instrument. Clocking patterns and complete system
operation can be altered in less than one second with the downloading of a new
FPGA configuration file using the remote pod. The previous system required eprom
changes to alter array clocking and system operation was completely non-flexible.
The previous system was a dedicated hardware controller and it was difficult to
integrate new functionality into the system. Integration of external control apparatus,
for example motor controls, was not simple.

The single remote pod replaces six 6.5"x4.5" printed circuit cards, a factor of nearly 9
in printed circuit board area, while adding higher performance and an integrated fiber
optic link.

5. Platform Evaluation

In this section, we will summarize our findings when developing and working with
this platform.

The first general comment to be made is the requirement for digital design expertise
in developing with these platforms. During the integration effort with Cornell and the
remote pod, it was clear that the scientists did not have the digital design experience
to develop FPGA coding internally. Therefore the overall utility of the remote pod to
the astronomers would be restricted without the collaborative efforts during this
project. While it is clear the hardware provides a new opportunity for them, it is not
clear that without the proper high level interface they will be able to develop their
applications on the hardware. This refers to relatively simple applications on the
remote pod.

We believe AHDL or VHDL design on the base platform presents a challenge even
for the experienced digital designer. The platform provides numerous resources,
some of them potentially shared. Possible asynchronous clocking boundaries exist
(using a synchronous interface with the 5933). Developing "general purpose"
template programs for end users to use to begin their design from has proven to be
very challenging, as the possible combinations of system utilization are difficult to
generalize. Perhaps placing more restrictions on the platform (requiring a AMCC
5933 asynchronous interface for example) would allow easier development of these
general purpose templates.

A general comment can be made about the incorporation of leading edge technology.
First, it is never available when initially suggested by the manufacturer. Secondly, by
the time you get prototypes up and running, next generation components are

•40

appearing on the near horizon. A designer of such a research based developmental
system is tempted to incorporate the latest technology, but care must be made in
selection of components based on schedule as well as performance. This effort
suffered a large schedule slip due to the non-availability of the large 10K250 FPGAs
from Altera.

5.1. Remote Pod

The remote pod has been highly successful and shows the utility of reconfigurable
hardware for data acquisition and systems control. The in-circuit reconfigurability of
a high performance, custom hardware solution has been very well received by
astronomers at Cornell.

The architecture of the remote pod is simple. No resources are shared among various
processors. The entire design runs synchronous to a single clock (the on-board
oscillator or externally supplied clock). The I/O pins can be configured as necessary
and routed via a motherboard to external TTL/CMOS interface devices. End users
can develop applications on the remote pod very quickly starting from an example
AHDL design file. We think the choices that were made for the architecture of the
remote pod and its intended applications have proven to be good choices and have
resulted in a flexible platform offering unique capabilities.

Some implementation decisions regarding the pod were made that would be modified.
One design change that would be desired with the remote pod would be the choice of
connector for interfacing with the external system. .l"x.l" low density connectors
where used due to their simplicity and immediate availability. At the time of design,
a tight time schedule was presented for first light of the Cornell instrument. For
signal integrity reasons, the connector pin assignments are in a GND-SIGNAL-
SIGNAL-GND configuration, using 1/3 of the pins for GND or power propagation.
A quality, high density connector such as that used for the base platform daughter
card would be preferred. This connector was investigated during the design cycle for
the remote pod but was rejected due to lack of availability at that time.

Another design change would be choice of FPGA package. The 240 RQFP package
was selected during the design cycle to assure simplicity of assembly given very tight
first light schedule restrictions. However, a redesign of the pod would utilize the
BGA package for the 10K50 FPGA. This is to acquire more I/O pins. It is also
possible to consider a lower voltage core component, however it is unclear if
requiring a mixed +3.3V and +5.0V supply is worth the benefit. An onboard DC-DC
converter or regulator could be used to generate this +3.3V core, but then
considerations of noise generation (especially with the DC-DC converter) must be
pursued.

With the increased I/O pins from the larger BGA package, it would be feasible to
consider adding a second independent bank of SRAM for the FPGA. In many data
acquisition applications, it is desirable to have two independent banks of SRAM for

41

data buffering. This is an architectural change, however it was mandated by the lack
of available I/O pins on the 240 pin package.

5.2. Base Platform

The base platform provides considerable logic resources for adaptive computing
applications coupled with flexible I/O capabilities. The base platform has performed
as designed during this effort.

It is difficult to suggest any definite architectural design changes with the base
platform without specific consideration of the application objectives. It would be
easy to conceive of a preferred shared memory interface between the PCI bus and the
host FPGAs (as was discussed in section 2 previously), using for example the 9080
PLX chip and bus switched memories.

5.3. Software Interfaces

5.3.1. ASbridge
As expected, the ASbridge user interface for application development was found
to be appropriate and versatile in the verification of hardware functionality. Its
programmability requires learning its unique set of keywords and syntax, but
they are all very straightforward and easy to pick up by those used to
programming in any language. The ability to easily get accurate reports of event
timing, such as bus mastering transfers and even latencies due to program
execution, is always valuable. The ability for the hardware designer to have
interactive access to the developing application has proven extremely beneficial.
The hardware designer can modify the host platform interface quickly and easily
without the need of a Windows programmer.

5.3.2. Hardware Promela

The trouble with a "C"-like language compiler for reconfigurable hardware is its
unpredictable and potentially slow performance. Hardware Promela is no
exception. Achieving the goal of putting hardware design into the hands of the
typical programmer (rather than hardware design engineer) means that any
hardware-related optimizations must be built into the language compiler system
itself. The nature of general purpose programming languages, and their explicit
sequential operation, make for a complex hardware configuration that is difficult
to optimize for speed. The ease of programming in such an environment would be
removed if the programmer had to return to hardware design considerations
regarding speed of execution. The typical programmer might be used to
estimating program cycles for a conventional processor, but in this new
environment will not be able to control, or even discover, the particular signal
delays that may be preventing acceptable performance.

42

Just as the "C" language cannot standardize hardware I/O across hardware
platforms, neither can a language for reconfigurable hardware. On any particular
hardware, a "C" programming environment may expose certain hardware
features, such as access to the I/O address space on an Intel platform. Due to the
goal of making "C" platform-independent, only general functionality (such as I/O
address availability) is provided. The programmer is still left to control hardware
according to particular hardware interfaces, such as the DMA controller on an
Intel platform.

In porting a compiler system to a reconfigurable hardware platform we may
provide any degree of low-level behavioral complexity to the high-level
programming environment. A case in point is the "DMA" channels we
constructed for Hardware Promela. Use of these channels conforms to the use of
all Hardware Promela channels (trivial to use from the Promela side) yet its
function is to control high-speed block-data transfer independent of the user
Promela code.

The significance of this method of achieving high speed data throughput is similar
to that of FPGA "cores". Once the core, or in this case the "channel", is developed
and in place, user-developed programs can make use of its complex functionality
through a simple interface. FPGA cores are either compute-oriented or hardware
I/O specific. An FFT core provides optimized processing, while a PCI core
provides hardware interfacing. With Hardware Promela we have been focused on
data acquisition and flow. Further application of Hardware Promela, on this and
other platforms, will be with full consideration of this potential for easy overall
system control and development with Promela combined with optimized use of
hardware platform features. We find Hardware Promela, with its built-in
"channels", to be a convenient system for this sort of architecture development.

Supplying complex functionality this way requires platform-specific
programming in the underlying hardware description language. The choice of
functionality can be application-driven as well, and then application development
becomes a mix of HDL and the high level language. Once the desired
functionality is in place, further development can take place entirely in the high
level language accessible to the typical programmer.

Hardware Promela is seen to be unpredictable in performance, regarding
achievable speed of execution, and improving this situation while maintaining the
completely generalized approach of a C-like language appears challenging.
Although some other basic design might improve this runtime performance, it
does not seem likely that any design could begin to approach the dependable
instruction execution rate of a conventional processor. In the realm of data
acquisition, where performance requirements are determined by external
applications, speed predictability is a general requirement. Where application
speed requirements tend to increase with time, users of Hardware Promela would

43

have to depend on FPGA hardware improvements to keep up, rather than any
ability to further optimize their code. If Hardware Promela is to be made useful
for astronomy data acquisition, a means of using it as a process controller - rather
than a central processor - must be found. We have a developing sense of how this
can be done, but doing so will make each port of Hardware Promela more
platform, and perhaps application, specific.

5.4. The Next Step

As discussed elsewhere, Hardware Promela holds the promise of putting at least some
reconfigurable hardware development into the hands of the typical real-time computer
programmer. We will be developing Hardware Promela hardware interface
functionality to allow hardware-level performance for certain application-specific
functions on various hardware. With experience gained in this, we will be considering
whether such a version of Hardware Promela could succeed in giving the Cornell
University astronomy scientists developmental control over their own reconfigurable
data acquisition system.

44

RALPH L. KOHLER
AFRL/IfTC
26 ELECTRONIC PKWY
ROME NY 13441-4514

ACaUISITIOM SYSTEMS, LLC
26 LAKE STREET
TRUMANS3URS NY 14386

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROHE NY 13441-4514

ATTENTION: DTIC-OCC '
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINSMAN ROAD/ STE 0944
FT- 8ELV0IR* VA 22060-6218

DEFENSE ADVANCED RESEARCH 1

PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER 1 12

IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY 1 17

AFIT/LDR# 2950 P.STREET
AREA &, BLDS 642
«RIGHT-PATTERSON AFB OH 45433-7765

ATTN: SMDC IM PL 1 24

US ARMY SPACE & MISSILE DEF CMD
P.O. BOX 1500
HUNTSVILLE AL 35307-3801

TECHNICAL LIBRARY D0274CPL-TS) 1 26

SPAWARSYSCEN
53560 HULL ST.
SAN DIEGO CA 92152*5001

COMMANDER' CODE 4TL000D 1 27

TECHNICAL LIBRARY, NA«C-HD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

DL-1

COR, us ARMY AVIATION & MISSILE CMD 2 31
REDSTOME SCIENTIFIC INFORMATION CTR
ATTN: A«SAM-RD-03-Rr (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY 1 33

HS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AFIWC/MSY
102 HALL 3LVD, STE 315
SAN ANTONIO TX 78243-7016

38

USAF/AIR FORCE RESEARCH LABORATORY 1 *4

AFRL/VS0SACLIBRARY-BLD6 1103)
5 WRIGHT DRIVE
HANSCOM AFB MA 01731-3004

ATTN: EILEEN LADUKE/D460 1 45

MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

OUSDCPWDTSA/DUTD 1 46

ATTN: PATRICK G. SULLIVAN/ JR.
400 ARMT NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

♦Total Number of Copies is: 21

I have verified that this address list Is correct and complete
also checked the mailing labels to see that they;are correct a
for use. ^ -

Signature

DL-2

MISSION
OF

AFRL/INFORMÄTIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

