
AFRL-IF-RS-TR-2000-20
Final Technical Report
March 2000

^'rj^0

DEVELOPMENT OF APPLICATION SOFTWARE
HIERARCHY FOR REUSE (DASH'R)

Template Software, IBM, Honeywell, and ISX

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. C540

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

20000412 027
AIR FORCE RESEARCH LABORATORY

INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK

^CQÜAIJTYlNspEcTBD|

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2000-20 has been reviewed and is approved for publication.

APPROVED: y l&voA Ü. *M&lsC&>

NANCY A. ROBERTS
Project Engineer

FOR THE DIRECTOR: /&tJ^*

NORTHRUP FOWLER
Technical Advisor
Information Technology Division

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

DEVELOPMENT OF APPLICATION SOFTWARE HIERARCHY FOR REUSE
(DASH'R)

Consortium of Companies & People

Contractor: Template Software, IBM, Honeywell, and ISX
Contract Number: F30602-95-2-0006
Effective Date of Contract: 08 April 1995

30 June 1999
6.3.3
Development of Application
Software Hierarchy for Reuse
(DASH'R)
Apr 95 - Jun 99

Contract Expiration Date:
Program Code Number:
Short Title of Work:

Period of Work Covered:

Principal Investigator:
Phone:

AFRL Project Engineer:
Phone:

Larry Sentman
(703)413-3106
Nancy Roberts
(315)330-3566

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Nancy Roberts, AFRL/IFTD, 525 Brooks Road, Rome, NY.

REPORT DOCUMENTATION PAGE
form Approved

OMB No. 0704-0188

1. AGENCY USE ONLY /Leave blank] 2. REPORT DATE

MARCH 2000

3. REPORT TYPE AND DATES COVERED

Final Apr 95 - Jun 99

4. TITLE AND SUBTITLE
DEVELOPMENT OF APPLICATION SOFTWARE HIERARCHY FOR REUSE

(DASH'R)

6. AUTHOR(S)

Consortium of Companies & People

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Template Software, Hemdon VA
IBM, Austin TX
Honeywell, Minneapolis MN
ISX, Westlake Villaee CA

9. SPONSORING/MONITORING AGENCY NAMEIS1 AND ADDRESSIESI

Defense Advanced Research Projects Agency Air Force Research Laboratory/IFTD
3701 North Fairfax Drive 525 Brooks Road
Arlington VA 22203-1714 13441-4505

5. FUNDING NUMBERS

C - F30602-95-2-0006
PE- 63570E
PR- C540
TA- 00
WU-01

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2000-20

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Nancy Roberts/IFTD/(315) 330-3566

12a. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 woros/ . ,,„<-,.„„,
The coal of this Technology Reinvestment Program Focus Area is to radically reduce the effort required to tield new

software°aPplications throueh the development of reusable software components. Today an estimated 85% of the installed ^
base is a custom application, with all components written especially for that software package. "Object Oriented Software,
an emerging software technology, which is becoming widely used in the development of new software, offers the promise
of reusability and ease of modification for both Defense and commercial applications. However, the promise can only be
realized if the use of object oriented software is created according to an established set of standards and if appropriate
reusable software components are developed. Building on emerging industry standards for software object technologies,
these projects will sisnificantly accelerate development of tools to help build the infrastructure for component ware, create a
pool of developers experienced with applying the new tools, and deliver a series of demonstration applications with both

commercial and defense relevance.

14. SUBJECT TERMS

Object Oriented Technology, Reuse, CORBA

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

134
IB. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
PmcnMbr AKSI Sll 231.1«

.PlrttraPttWHSIDIOILDctM

DASH'R (Development of Application Software Hierarchy for Reuse)

EXECUTIVE SUMMARY: Technology Reinvestment Program

The Technology Reinvestment Program (TRP) is a multi-agency, dual-use technology
investment effort that includes the Departments of Defense (represented by the Advanced
Research Projects Agency and the three military Departments), Commerce, Energy, and
Transportation, the National Science Foundation, and the National Aeronautics and Space
Administration. It is the continuing mission of the TRP to simulate the transition to a
growing, integrated, national industrial capability which provides the most advanced,
affordable, military systems and the most competitive commercial products. TRP
programs are structured to expand employment opportunities in dual-use United States
industries and demonstrably enhance U.S. competitiveness and National security. The
TRP fulfills its mission through the application of defense and commercial resources to
develop dual-use technologies, to deploy manufacturing assistance to small firms, and to
establish education and training programs that enhance U.S. manufacturing skills and
target displaced defense industry workers. TRP was formed to execute statutory
Programs enacted by Congress in the Defense Technology Conversion, Reinvestment,
and Transition Act of 1992. These Programs have common requirements, including
specified minimum participation with an emphasis on "partnerships", coat sharing
between participants and the Federal Government, and defense relevance. All funds
under these Programs are awarded through competitions.

The DASH'R (Development of Application Software Hierarchy for Reuse) consortium of
Template Software, IBM, ISX, and Honeywell plans were to concurrently evolve and
develop the following major technical elements as follows:

• A Core Technology Base (CTB) with integrated first generation CORBA 2.0
technology and complete with a high productivity visual software development
and execution environment supporting Object Oriented development. This was
accomplished by technology advancements of IBM and Template Software, Inc.

• A defense oriented Preventive Medicine Planning Tool (PMPT) a six phase
interactive requirements and information process to assist Medical Planners in the
development of a Preventive Medicine (PM) Plan, accomplished by ISX.

• A commercial in-line Batch Manufacturing Scheduling (BMS) application for
orchestrating the completion of flexible manufacturing batches applicable to key
U.S. industries, accomplished by Honeywell.

This report details the DASH'R TRP's success in completing these efforts.

Table Of Contents
EXECUTIVE SUMMARY: Technology Reinvestment Program /

1. Introduction 1

1.1 Project Global Technical Objective 1

1.2 Implementation Strategy 7

1.3 Synopsis of Consortium Product Results 7

2. Template Software, Inc. H

2.1 Template Software Products 11

2.2 SNAP and Workflow Within the TRP - Overview 13

2.3 SNAP and Workflow Within the TRP - Results 14

2.4 Screen Shots of the Current State of SNAP and Workflow Development 16

2.5 SNAP and Workflow Within the TRP - Results 18

3. ISX 20

3.1 Overview 20

3.2 Background 21
3.2.1 UCSD 21

3.2.2 SPT 21

3.3 Military Application 22
3.3.1 ACE/USE 22

3.3.2 PMPT 23

3.3.3 Domain Description 23
3.3.4 Healthcare & Information Technologies Group 26
3.3.5 Visionary Demonstration 27

3.3.6 First Application 29

3.3.7 Second Application 30

3.4 Lessons Learned 32
3.4.1 June 1996 Lessons Learned Document 32
3.4.2 Advantages of SOM/DSOM 32
3.4.3 Problems with SOM/DSOM 32

3.4.4 Advantages of SNAP 33

3.4.5 Problems with SNAP 33

3.5 Strategic Planning Toolkit 34
3.5.1 Domain Description 34

3.5.2 System Vision: 35

3.5.3 Status 35

3.5.4 Data Access Services 3^
3.5.5 Authentication Services 35

3.5.6 SPT Core 36

3.5.7 Management Services 36

11

3.6 Medical Waiver 36

3.6.1 Domain Description 36
3.6.2 Summary 37

4. Honeywell ^

4.1 HTC Role in Consortium 41

4.2 Objectives 42

4.3 Scheduling Technique: Constraint-Envelope Scheduling 43

4.4 Development Method 44

4.5 Course of Development 45

4.6 Road Map to Document 45

4.7 Background 46

4.7.1 Honeywell Technology Center 46

4.7.2 Batch Manufacturing 5°
4.7.3 Batch Manufacturing Scheduling Problem 51

4.8 Constraint-Envelope Scheduling 53

4.9 System Requirements ->6

4.10 Mixed-Initiative Interaction 5^

4.11 Interaction with Control System 59

4.12 Sending instructions to the DCS 59

4.13 Retrieving information from the DCS 60

4.14 Interaction with Production Planning 60

4.15 Closing the planning loop "°

4.16 Updating plans based on actual plant events 61

5. Domain Models "^

5.1 Activity and Task Model 64

5.2 Activities 64

5.3 Resources "4

5.4 Resource Requirements 65

5.5 Batch Object Model 65

6. Flexible, Object Oriented Constraint Satisfaction 66

6.1 Search Engines and Search Problems 67

6.2 Variables and Restrictions 68

7. Development Process 70

7.1 Initial prototype 71

in

7.2 Iterative Development: BMS Reimplementation. 71

7.3 C++implementation 71

7.4 Java implementation 75

7.5 Enterprise Integration Demonstration 76

7.6 Follow-on Work for Continuous Manufacturing 77

8. Development Tools 75

8.1 Design Tools 78

8.2 Rational Rose 78
8.2.1 DoME 79

8.3 Programming Languages 84
8.3.1 Common Lisp 84

8.3.2 SNAP 85

8.3.3 C++ 85

8.3.4 Java 86

8.4 CORBA 87

8.4.1 SOM/DSOM 87

8.4.2 ILU 87

8.5 Program Development Environments 88
8.5.1 Common Lisp 88

8.5.2 C++ 89

8.5.3 Java 89

9. Commercialization °9

9.1 Honeywell IAC 89

9.2 Original Commercialization Plans 90

9.3 Honeywell Hi-Spec Solutions 91

9.4 Updated Commercialization Plans 91

9.5 Other Concurrent Commercialization Efforts 91
9.5.1 AMOSS 91

9.5.2 RAMPS , 92

10. Conclusions ^

11. Screen Shots of BMS Prototype. 93

11.1 Screen Shots of BMS Prototype 93

12. IBM. 98

12.1 SOM / DSOM Development 98

APPENDIX A: SOW. m

A-l. Introduction 101

A-2. IBM Tasking for SOM & DSOM 101

IV

A-3. Template Software Tasking for Core Technology' Base 104

A-4. ISX Tasking for Air Campaign Planner 107

A-5. Honeywell Tasking for Manufacturing Scheduler 109

A-6. Interoperability Tasking 112

A-7. Program Scheduler Management 112

APPENDIX B: Schedule 114

APPENDIX C: Honeywell Glossary and Acronyms 115

List Of Figures
Figure 1 View of DASH'R Consortium and DARPA Management 4

Figure 2 View of DASH'R Consortium and Technology Interaction 7

Figure 3 SNAP Development Environment 8

Figure 4 Template Software WEB Home Page 12

Figure 5 Hierarchy of Templates 13

Figure 6 SNAP Development Environment 15

Figure 7 The WorkFlow Main Window 16

Figure 8 The WorkFlow Task Editor 17

Figure 9 The SNAP Development Environment 17

Figure 10 The SNAP Development Environment 18

Figure 11 Organization Product Relationships 21

Figure 12 Preventive Medicine Planning Process 25

Figure 13 PMPT Visionary Demonstration Introduction Screen 27

Figure 14 PMPT Visionary Demonstration Overview Screen 28

Figure 15 PMPT Visionary Demonstration SPT Architecture Screen 28

Figure 16 PMPT Visionary Demonstration Mission Query Screen 29

Figure 17 Sample Screen from the PMPT OS/2 Version 30

Figure 18 Start-up Screen from the PMPT Windows Version 31

Figure 19 Location Editing Screen from the PMPT Windows Version 31

Figure 20 Asset Editing and Force Lookup Screens from the PMPT Windows Version. 32

Figure 21 Navy Medical Waiver Process 37

Figure 22 Honeywell Technology Center 47

Figure 23 History of Scheduling at HTC 48

Figure 24 Manufacturing Communication Gap 56

Figure 25 Bridging the gap between business and operations 57

Figure 26 Enterprise Integration Architecture 62

Figure 27 Scheduler System Architecture 63

Figure 28 The effect of assigning a variable 69

Figure 29 An inconsistent assignment 69

Figure 30 Original Design of Enterprise Integration Demonstration 72

Figure 31 CORBAIDL interface design 73

Figure 32 Experimental client-server system 74

Figure 33 Results of scheduling test problem 75

Figure 34 Architecture of Batch Plant Enterprise Integration Demonstration 76

Figure 35 Model-based design 80

Figure 36 DoME screen dump from design session 81

Figure 37 ProtoDoME model 82

Figure 38 Initial Screen 94

Figure 39 Plant layout 94

Figure 40 Order Entry 95

Figure 41 Initial schedule 95

Figure 42 Order view of initial schedule 96

Figure 43 The situation after BMS is informed one of unit has malfunctioned 96

Figure 44 Schedule after revision to compensate for malfunction 97

Figure 45 IBM SOMobjects WEB Page 100

Figure 46 IBM WEB Page For Selecting SOMobjects Downloads 100

List Of Tables
Table 1 DASH'R Consortium Tasks 6

Table 2 ISX Reported SNAP Advantages and Disadvantages 18

VI

Technology Reinvestment Program (TRP)
DASH'R (Development of Application Software Hierarchy for Reuse)

1. Introduction

The purpose of this project was to pursue research and development in "Object
Technology for Rapid Software Development and Delivery". This project was
authorized under AO#C540/PR C-5-2753. This project plan summarizes overall project
coordination, elements, and methods.

IT Project Global Technical Objective

Principle Customer:

DARPA represented by Howard Shrobe DARPA / SISTO. Principal government contact
for TRP completion was Nancy Roberts of Rome, NY.

• Customer Vision •'

The goal of this TRP Focus Area is to radically reduce the effort required to field new
software applications through the development of reusable software components. Today
an estimated 85% of the installed base of software is a custom application, with all
components written especially for that software package. "Object Oriented Software," an
emerging software technology, which is becoming widely used in the development of
new software, offers the promise of reusability and ease of modification for both Defense
and commercial applications. However, the promise can only be realized if the use of
object oriented software is created according to an established set of standards and if
appropriate reusable software components are developed. Building on emerging industry
standards for software object technologies, these projects will significantly accelerate
development of tools to help build the infrastructure for component ware, create a pool of
developers experienced with applying the new tools, and deliver a series of
demonstration applications with both commercial and defense relevance.

An increasing portion of DoD funding is directed to software development and
maintenance. The Object Technology Focus Area will lead the way to radical reductions
in these costs through the assembly of portable, interoperable software components into
deployed applications. The three chosen projects will each provide for two prototype

1 The Customer Vision is taken from the SOW and initial TRP documentation.

software developments, one for commercial and the other for military application.
Perhaps as important, a collective impact of these efforts will be to promote shared, open,
standards-based object technology, encouraging full access by the military to the
commercial object-based software approach. If successful, this set of TRP activities will
also avoid the compartmentalization of object-based software by strictly proprietary
development.

Emerging object technologies and services promises to radically reduce the amount of
new code required to field an application. Instead, new applications will be substantially
assembled through the interconnection of application objects, object services, common
facilities and an object request broker. The goal is to accelerate this technology's
emergence. Projects will result in the creation of an object-technology-based design,
development, and execution environment based on emerging industry standards. The
environment should support a user-centered software life cycle model and multiple
programming languages, be portable and interoperable with components and services
from other providers in a distributed computing environment, and be potentially
extensible to support real-time applications.

Projects are expected to result in functional demonstration applications, integrated design,
development and run-time environments in the form of standards-based infrastructure,
object services, common facilities, and application/ tool objects. Infrastructure and
application development are expected to adhere to a user-centered process characterized
by rapid system building, frequent incremental demonstrations, an aggressive schedule
and strong team empowerment (including end-users and developers). Metrics for success
include demonstrations of performance, cost to develop, utility (user's perspective,
includes application developers and users), evolvability (ease of changing functionality,
or add features), interoperability, and timeliness (speed of functionality delivery).

Project Details "~'Z.Z'7L \"ZZiZ....:.— .- - -*.. . ~ •- -•

The project is organized as a joint research and development Consortium to engage in a
collaborative research effort of limited duration to gain further knowledge and
understanding of technologies described in this plan. The consortium is founded on the
Articles of collaboration for Object Technology for Rapid Software Development TRP
Consortium dated TBD. DARPA is in partnership with the Consortium by way of a
Cooperative Agreement Under 10 U.S.C. 2371 between The United States of America
U.S. Air Force, Air Force Material Command Rome Lab and the consortium.

Additionally, there are two other consortiums in similar arrangements with DARPA to
create "Object Technology for Rapid Software Development and Delivery". One team is
comprised of Anderson consulting and their partners GoGenTex, Expersoft and Raytheon
while the other is composed of I-Kinetics and their partners Heuristics Research, Iona
Technologies, Navy/ Naval Sea Command, Netlinks Technology, SunSoft, and UTC-

Pratt & Whitney-Government Engines and Space Propulsion. The three consortiums will
work together to demonstrate technology interoperability.

The project will be directed by a Consortium Management Committee (CMC) according
to the articles of collaboration and managed according to Figure 1 View of DASH'R
Consortium and DARPA Management.

DARPA
,......."]

/', Howard Shrobe;
•:

;. Principal Government - <■
:' V, - Contact ' %*l

[Nancy Roberts iltli
Rome, NY ; $

^Consortium Management :
Committee ;f

P~ ': - . .-•s3>

CMC

Figure 1 View of DASH'R Consortium and DARPA Management

Project Goals

The project effort will positively demonstrate next generation object technology
capabilities for development and delivery of rapid software systems based on open
standards. Core Technology Base combining CORBA based object technology and a
comprehensive rapid software development environment provides the infrastructure for
proposed efforts. Two planning and scheduling demonstration applications developed
with core technology will show an existence proof of project goals over traditional
practice.

Synopsis of Major Tasks and Responsibilities .

The proposed effort will accelerate open, object technology infrastructure commercial
availability. An end to end demonstration will provide an existence proof and will allow
accumulation of experience with rapid software development and delivery. Finally, the
project will conduct an interoperability test with other object technology consortia based
on industry standard CORBA.

This plan schedules three major technology elements to support program objectives. An
iterative approach and user-centered methods govern technical plan execution. The

consortium will concurrently evolve and develop the major technical elements shown in
Table 1 DASH'R Consortium Tasks below:

Table 1 DASH'R Consortium Tasks

Task(s)
A Core Technology Base (CTB) with integrated first
generation CORBA technology and complete with a
high productivity visual software development and
execution environment supporting Object Oriented
development.

• CTB Visual Development Tools

Campaign Planner

Interoperability Demonstrations

A defense oriented Preventive Medicine Planning
Tool (PMPT) a six phase interactive requirements
and information process to assist Medical Planners
in the development of a Preventive Medicine (PM)
Plan

A commercial in-line Batch Manufacturing
Scheduling (BMS) application for orchestrating the
completion of flexible manufacturing batches
applicable to key U.S. industries.

Contract Coordination/ Administration

Contractors)
IBM and Template

Template

ISX

Honeywell

Template

Technology interaction is shown in Figure 2 View of DASH'R Consortium and
Technology Interaction below.

1 IBM

Coordination

Coordination %

' Template Y
Software 1

SNAP Product
Family releases

/" "\ CP Demo
/ \ ^

1 ISX 1
\ J INTEROP Demo

SNAP Product
Family releases

Coordination Batch
v Manufacturing
^V^ Scheduler

/ Honeywell \ ^

i »(
TJSOM releases

^__

Figure 2 View of DASH'R Consortium and Technology Interaction

W^i^ßemen^orr^ai^

Provision for management monitoring, control, and reporting are centered on an iterative,
phased development approach. Phases will be generally be six to twelve months in
duration. Each consortium member will have a phasing plan that will synchronize with
others to support the "pipeline" dependencies suggested by the preceding diagram. The
completion of phases serves not only to limit risk into finite R&D phases but also allows
regular and frequent opportunity for DARPA and consortium management review of
progress and level of effort. Given the research nature of the effort, the planning will also
be updated on a phased basis by consortium members, one month before the phase
begins. Appendix A contains the overall SOW and Appendix B the schedule.

%3 Synopsis of Consj^um Productffesülts^

IBM provided SOMobjects development as a Core Technology. SOMobjects forms the
basis for IBM's implementation of the Object Management Group's (OMG) Common
Object Request Broker Architecture (CORBA) and Object Services. SOM provides an
object-structured protocol that allows applications to access and use objects, regardless of
the programming language in which they were created and regardless of where the object
resides on host/client or client/server networks. For enterprise-wide distributed
computing, SOMobjects 3.0 brings critical flexibility to object-oriented programming,
object reuse and sharing.

The SOMobjects 3.0 for AIX, OS/2 and Windows NT provides increased compliance
with OMG's CORBA specifications and Object Services. SOMobjects 3.0 is
commercially available via the Web.

Template Software's TRP effort was to provide an Interface to the IBM SOM/DSOM

Product Workflow Template (WFT) Visual Development Tools SNAP 8.0 language
visual editors as a part of the Core Technology.

• • Interface to the IBM SOM/DSOM Product
• SNAP 7.0 and the SNAP 7.6 products support a link to the SOMobjects 3.0.
• Will continue support and update through the SNAP 8.0 product release.

• • Workflow Template (WFT) Visual Development Tools
• WFT 3.6 was created to work with the SNAP 7.6 product.

• WFT 3.6 has a series of enhancements in queue management that aid in very
large-scale work flow systems

• WFT 4.0 with improvements from WFT 3.6 is underway and will be real-time
based
• The WFT visual environment will be updated to take advantage of and be

consistent with the new SNAP 8.0 visual development environment.

SNAP Development Environment
»frrv"*^*"*1 »***>'»' ■~i*ft**w:;;

,Hrr ...n.n..m.HP»ni« w..'3oa
i^a-J ■■■■■ i.——J J...... * ——J -I,«—i.

»^lolvlTitai^ljF

SNAP 8.0 language visual editors was developed for release in First Quarter 1997
• The baseline of SNAP 7.6 production

environment is testing a wide range of
graphic tools and graphic rewrites to
support the new 8.0 editors
• The underlying graphic system has

been streamlined and modified to
support geometry management. This
SNAP Development Environment
low level rewrite is complete and in
SNAP 7.6 production version.

• SNAP 7.6 has been ported and is in
production in Windows

• OS/2 porting is complete and will
be released as a production system
in SNAP 8.0

• Implementation of new widgets
(pane, drop down list, tabbed
window, etc.) is complete and
available in SNAP 7.6

• See sample of SNAP 8.0 interface Figure 3 SNAP Development
Environment.

..„ :-I^^.rl_y^*■rftJlJ■

,*** ■"■aioLi: ■■"■...:■

,, .»JUW*.-
.^li*_*&!^.*.X.T! ■:■

l*!®!Ü®i

.-.»««.I . Km-n.-

PKX*C"!
rttASK BT-tC?" 'lyrern-rer*

Figure 3 SNAP Development Environment

• The design of SNAP 8.0 was in Alpha release in mid-January 97
• Visual editors are complete and implementation has begun.
• SNAP C++ Generation A basic design for SNAP generation of C-

now in place.
• See sample of SNAP 8.0 interface at the right.

code is

Manufacturing Scheduling (BMS) application - Honeywell:

• Spend rate smooth now that has departed from "front-loaded" plan.

• Experimenting with schedule server and UI client.

• Developed broad outlines of client server architecture.

• Developed IDL interface spec for architecture

• Conducted preliminary experiments with architecture

• Publish CORBA interfaces.

• Schedule Server, Comm. Object, View Object, Order Services, and Schedule
Client.

• Completed development of core modules: search, Temporal Constraint Graph
(TCG) and task and resource model.

Batch Manufacturing Scheduling (BMS) application - Honeywell:

• Continue to develop the core technologies

• Non-unary resources, e.g. storage tanks, work shifts

• Better heuristics

Work towards a demonstration system.

Campaign Planning Tool (CPT)/ Strategic Planning Toolkit (SPT) - ISX:

• Strategic Planning Toolkit (SPT)
• Glen Reece , Ph.D. From Edinburgh, Scotland, in charge of effort.

• Technical Lead Assigned, meetings and design proceeding.

• Preventive Medicine Planning Tool (PMPT)
• First release of PMPT to NEHIC made 10/24/96.

• Next release week of 12/16/96.
• Demonstration of PMPT to CHPPM conducted 10/24/96.

• Ongoing ,meetings with NEHC and on PMPT. Discussions center on
Industrial Hygiene, User Feedback, and Scenario possibilities.

• Some implementation issues remaining with SOMobjects. Release in January
of SOMobjects 3.0 will help solve the interface problems.

• Health Promotion Computer Associate (HPCA) with Copper's Institute and
NEHC
• Start date not set, waiting on NEHC funding.

• USE Documentation

• Rev. 1 released and being placed onto the WEB.

• Strategic Planning Toolkit
• Meetings and design proceeding.

• Preventive Medicine Planning Tool (PMPT)

. Ongoing ,meetings with NEHC and on PMPT. Discussions center on
Industrial Hygiene, User Feedback, and Scenario possibilities.

Planned PMPT showing at Conference in Virginia Beach, VA, at NEHC's booth
in February 1997.
Health Promotion Computer Associate (HPCA) with Copper's Institute and
NEHC planned with no start date set.

10

DASH'RTRP
Final Report

Template Software, Inc.
April-95 through November-97

By: O. L. Sentman

2. Template 'Software,/Inc.
Template Software, founded in 1978, is a publicly held company trading on the
NASDAQ (TMPL). The company is headquartered in Dulles, Virginia, with European
headquarters in Windsor, Berks, UK. The company has over 500 customers worldwide.
Template has a growing multi-channel distribution network through direct sales,
distributors and service partners that contribute to the rapid expansion of Template's
presence worldwide.

The TRP was conducted during the time that Template Software became a public
company. The support of DARPA in the TRP development was great aid in supporting
Template's efforts to go public. The success of the Template products technically was
helped greatly by our participation in the TRP.

2.1 Template Software Prodt/cts 7 :.,J~V-
Overview

Offering both process automation and enterprise integration products, Template is
dedicated to applying its advanced technology and expertise to meeting the challenges of
the information enterprise. Template's advanced integration architecture and innovative
business-oriented software templates enable the rapid delivery of custom solutions at
package prices.

Process Automation

Template Software's enterprise-wide templates and turn-key business solutions combine
the benefits of customized application solutions, with the cost and time-to-market
benefits of off-the-shelf packaged applications. Our proven, reusable software templates
allow each project to start with a baseline of functionality that can represent up to 90
percent of a complete, customizable application.

This pre-developed functionality, in the form of reusable objects, typically represents the
portions of the application that are the most difficult to build and maintain and which do
not add value through competitive differentiation. Free to focus on the business problem,
Template is able to deliver high-quality, high-value process automation solutions in less
time and at lower cost.

11

For more extensive information on the current extent and capabilities of Template
Software's products, visit Template's WEB site (See Figure 4 Template Software WEB
Home Page below) located at http://www.template.com.

wr,.pMlm.i).ii.ii.»-iijMa'ii|.u-ii,BBirg
j ffa £« Y«w fio Fjvwi« üete

a a 5T : U Sa äT § a3 B ä S
Sip R*oh Home I Seach Favtrt«. Higa? Ctowl. Fitowi Mai Pirt Edt

i«^^«//-.-^ -^^^^^-^ ffi,^^N^ Q^S.« ^.S^.^^^T^^.^^^^,^.-
iUnlu ((gCuäonrängWomelE

»mpürt*Soft¥mr» \
to lh« laadtng ^

" provMeJro? ^, ■
"bvslnn*4aats*<i |

computing Rotation» t
:, «ptimtjwd to eaptmr», i
■utCMMttc* AHO ivfin0 |
bMiAM« pmntwt. ?
w« d«liv»r «nrtorny j

production ap>pne«f KHM <
that torn yottrimtfnMS <;
Knowf«iff« •»»•«* »«to ?■

Website Highlights:

: Ce.tp^tete Information

► LtfBB! NffWfi Releases

ft» updated Corporate
Overview

ft» flew! Enterprise

Integration with AIM"

Looking for a busine«« «ohiiion* partner? Tfaii »ection highlight«
Template Software's hirtory, technology and solution« we provide.
Office location« and executive biographiei can alio be found here

tevtFsorR'fo.Uoi;*

[How'« ow «tock doing? Financial performance, SEC filing*, hnk» to
i «lockinformation and tniwe« to frequently aiked qu*«tion« ere
j provided here.

Find out how we build cujtom, production applications thai capture
your unique outness proctst in «lgnificanüy less time and at lower
co«t than i*po»*ible with othertechmquej.Customer«ucces« «tone«
provide inaight mto how Template Software he« helped «otve many
operational challenge«.

. A 9 133a 6 2) B|H8a 3# '* P.fe ffl 3 9 <
""!": "~i"'" fjjj Intamet wine

Figure 4 Template Software WEB Home Page

Market View

Shrinking global markets and deregulation mean that more companies are competing for
the same market segment. Differentiation is required, time-to-market is increasingly
critical and cost containment vital. "Getting there first" is more important than ever,
placing greater pressure on rapid development and deployment of business-critical
applications.
To compete effectively in this dynamic environment, organizations have shifted focus
from "what" products they make to "how" they make and deliver them. Applications that
improve an organization's essential business processes - and add competitive Template
Software's distributed object technology, uniquely packaged into reusable Software
Templates, enables a new model-driven approach to software development, allowing
organizations to innovate while preserving legacy investments. Capitalizing on this new
approach we deliver enterprise-wide solutions in significantly less time and at a lower

12

cost than is possible with other techniques. We are uniquely positioned to address your
most demanding business computing requirements - turning your business knowledge
assets into working computing solutions.

The following diagram (Figure 5 Hierarchy of Templates) illustrates our hierarchy of
templates and how they are designed to be used together to provide as much pre-written
software code as possible in developing customized applications:

▲
CempteffcM -

Business
Templates

Process
Templates

[Worflow
; Template is
| a Process
| Template

SNAP is a
Foundation

Tempate

/

/

Figure 5 Hierarchy of Templates

2.2 SNAP and Workfj^Wifoif^ 1
The Template Software objective was to create enhancements to its SNAP Product
Family supporting consortium goals. The SNAP Product Family, as described above, is
object technology-based development environments for peer-to-peer distributed
applications. Planned enhancements fall into three categories — SOM integration, C++
code generation, and visual tools development. SOM integration will provide a CORBA
standards-based substrate to the SNAP Product Family for object interoperability and
services. C++ code generation eliminates applications dependence on Template
development tools for maintenance, in step with TRP standards thrust and in the direction
of interoperability at the development environment level. Incorporation of visual

13

development tools will enhance SNAP Product Family's characteristics of rapid
application and user-centered development.

A. 3.1 Work Effort Partitioning

SOM integration extensions to the SNAP Product Family are independent from visual
tool enhancement and define a natural work effort partitioning.

SOM Integration — the primary objective of SOM integration is to make the
SNAP Product Family both a producer and consumer of reusable object services
through SOM. To accomplish this, the External Application Software Component
of SNAP will be extended to integrate SOM at the emitter framework level. This
level of integration will make it possible for a SNAP developer to use externally
created object components simply by writing method invocations in the SNAP
language. Conversely, SNAP objects will be accessible to non-SNAP
programmers writing in other SOM-compliant languages.

As ISX and Honeywell experience grows with this capability, other extensions
regarding SOM may be made. Such extensions might include integration of
selected SOM services and better leveraging of SNAP Product Family object
services via SOM

c++ code generation — the SNAP Product Family Development Environments
will be enhanced to allow generation of C++ class hierarchies

Visual Tools Enhancement — the SNAP Product Family Development
Environments will be enhanced with new visual tools to simplify and speed up the
development process. Anticipated extensions include:

A new visual editor to graphically specify an application process
object model.

A language editor that can be invoked as needed by the various visual
editors.

Visual editors allowing end to end development, where end to end
development includes business process analysis through system
deployment

Support for team development of multiprocess applications.

2.3 SNAP and Workflow Withini tfte TRP - Resu/te

Template Software's TRP effort was to provide an Interface to the IBM SOM/DSOM
Product Workflow Template (WFT) Visual Development Tools SNAP 8.0 language
visual editors as a part of the Core Technology. The following are the results ofthat

effort:

14

• Interface to the IBM SOM/DSOM Product

- SNAP 7.0 and the SNAP 7.6 products support a link to the SOMobjects 3.0.

- Will continue support and update through the SNAP 8.0 product release.

• Workflow Template (WFT) Visual Development Tools

- WFT 3.6 was created to work with the SNAP 7.6 product.

- WFT 3.6 has a series of enhancements in queue management that aid in very
large scale work flow systems

- WFT 4.0 with improvements from WFT 3.6 is underway and will be run-time
based

- The WFT visual environment will be updated to take advantage of and be
consistent with the new SNAP 8.0 visual development environment.

• SNAP 8.0 language visual editors was developed for release in First Quarter 1997

- The baseline of SNAP 7.6 production
environment is testing a wide range of
graphic tools and graphic rewrites to
support the new 8.0 editors

The underlying graphic system has
been streamlined and modified to
support geometry management. This
SNAP Development Environment low
level rewrite is complete and in SNAP
7.6 production version.

SNAP 7.6 has been ported and is in
production in Windows

OS/2 porting is complete and was
released as a production system in
SNAP 8.0

SNAP Development Environment
||H|» VHAf ItowtftfriwwtKi

[3 ■ pUrn _-.rmwwmtoi.-;^|i*..*w« £m4*i<«r <MM. ?v

W^hi±l»lM l*|gjlJ®

Jl * ViS.iXViM.'

fJS.

+*T y».yu;

■♦VBJ.JCt
rt *l_BL:i.lJ_.V.T-l!
.**» neue
A nut

't.uilU.' rCT«*W * *rr*r*r*%

;
a /

■•;: "/

T!iT/KllrT*TiVC rwcnra-TCT

Figure 6 SNAP Development Environment

Implementation of new widgets (pane,
drop down list, tabbed window, etc.) is
complete and available in SNAP 7.6

See sample of SNAP 8.0 interface at the right (Figure 6 SNAP Development
Environment).

15

• The design of SNAP 8.0 was in Alpha release in mid-January 97

- Visual editors are complete and implementation has begun.

- SNAP C++ Generation A basic design for SNAP generation of C++ code is
now in place.

- See sample of SNAP 8.0 interface at the right.

Z4Screen ShotspfihiCmrmState of SNAP and Workflow Development

The screen shots in this appendix show the current state of the Workflow and SNAP
interfaces.

The SNAP Development Environment main window appears when you start the SNAP
Development Environment. Examples of the windows in the SNAP Development
Environment are shown in Figure 7 The WorkFlow Main Window, Figure 8 The
WorkFlow Task Editor, Figure 9 The SNAP Development Environment, and Figure
10 The SNAP Development Environment. Note that the application name appears in

the title bar of the window.
Editor buttons

Menus

Workspace I Indicator toots

Figure 7 The WorkFlow Main Window

16

Toolbox Button for accessing the TaskEditor Workspace

.--A.•.~I>-,-■ v - ■:•-..;.■:'- '..■' ■ , «

THRiTHgp

JE

.=>rr-.-v- a*T>i»i

.-j-r*-.»-i a-.lir.1~

a
(Aiif^-w^Mf

TC

i _

lf«
„

11.1 v.tK i-1H.rj>

.V(-,rfftU^C*.1f^[

A|jprwv K>ml.

w

Work Item Design Hierarchy
Forms fe/box ist box

Figure 8 The WorkFlow Task Editor

 _w__ _--_ ■ ■ » .» • ■■ ■ ■> - ' l ■■■-. ■-■ .ii

▼ Vie* Cornand;

SMi= Devclrpicnt &tvir_nicnt - '^^^--^{^^.-^^.l:^

0pt::n3 ihou help

äs@'iJEB31 3t>jcet Mod:. Jrcu^cr- \m >*i &

■»JÜWWHWBI
■!*,> Joy:tickr

-»*« Kfty:«f1

»♦«UNi (BSrL.TE
.f\l IN Ml- IVI

■'..imffim
■•fc =_bl:: Con:t3n^:
-fc^iW.. Taw
■•■«. =_b]:: Own Nttrib,tcc
r-i-^jbl:: At:-.an«

Lo-9hrt Iren
- In._CtrL*>

— >:«r»d_on_3I

Hits >vcn"

=urclo3:c3!

:r- [tor

,'tcJ <Öi, Intel MS. Int:. Pctiun. To-.or:
Uii'/el. 'onit:ri. .UJilY. Keyptd. lunrtion
UirHr**, Inp.t. »ft---«, /»rrfh- -, 1 -thr-H,
P1n-.fft-x, fTAH, IVi-l-r.i, Tniwr Or-j"-g*y..
1. Fun- -, FHMIK In Hrfl«. RTCt, "mnr Lirx.
Pl*jrr*. L*f»r _iv< :l«j«fY. T.rl_^=v. E
F „in H-Hril vli =T filii H iir*1 Ifcril P.-

.: KKCO. l-Ub. Color M:nitcr3, JJarl; ond *hitc H:nLto'o.
Irypad. U>e:::J:y <eybo:i-:i. nice. ir:ckb-l.«. Jo^iccs.

hnt.A, !rJ*T>"i"A, 1 «■.t.A-Hjihitft, olnr, A.vr .l-t.. -k . «r
-k r«-t.piri=ft, l«k«t.-.-5., ftipz" irtA, "VA'IKI, "r-irtl, HAII»
rt-rl_T#i "t«."r iiHiLiny F_uiy. Ri:niw-, T./i-Nrtl..- D1^"X- A"
us} LAV v. S vskwv, $Kvv. B|ui|i. VIR», V..*w.d"y, TVv, V i J=«
i— vir. Sr.KHkU-1 R-.I— (1 MM in Witf

Figure 9 The SNAP Development Environment

17

Tool box

^^^^«S;^j,^(4li^^feS»Ö^

▼ li*t UIHM'HA l^tij-it -L*Vii to.il SI.M U*MK a'-iLw;

BHHfflEHEH

^■P

N

SlUHlTlllIÄlBEl

If.»*» jvu- 3EVI:»I

U-f^lln-il-rr-*

|7..^ fr.^ irrr A

Ij. |t»St>»Ult»j <3itoard3

£.rt,fty!VrrH IM1.-

Rradj

Classes list box

Figure 10 The SNAP Development Environment

Workspace

2.5 SNAP and Workflow Within the TRP-Results

ISX noted some issues that pointed towards advantages to SNAP and also some
disadvantages. Those comments are listed here. Improvements to SNAP 8.0 have
corrected all problems noted by ISX. The following table, Table 2 ISX Reported SNAP
Advantages and Disadvantages, indicates that status.

Table 2 ISX Reported SNAP Advantages and Disadvantages

PROBLEM

Advantages of SNAP

1. Has allowed for the rapid creation of a prototype system.

2. SNAP includes ways to indirectly reference and manipulate classes,
objects and attributes that has proved useful.

FIXED IN
SNAP 8.0

NA

NA

18

3. A "tab card" widget for modifying objects was provided by SNAP and
has proved useful. This widget is still experimental and needs refinement.

NA

4. Code developed using SNAP is cross-platform and can be easily ported
to other operating systems. We will experiment with this feature by
porting the PMPT to SNAP running under Windows NT.

NA

Problems with SNAP

1. Custom relational attribute modification dialogs are better supported in
7.0, but are still cumbersome.

YES

2. No built in hypertext help supported (plans for HTML support are being
considered)

YES

3. No support for "wave over" or help text or "tool tips" (planned for SNAP
7.5)

YES

4. Spin control and pull down lists do not function or are not available (not
planned)

YES

5. Some of the development features found in commercial PC software
development systems that are inadequate in the SNAP development
environment include:
a. The debugger is cumbersome and inadequate for easily visualizing

program execution (scheduled to be improved in SNAP 8.0)
b. A separate debugger must be used to visualize C code
c. A secondary editor is required to write code, the integrated code

editor is inadequate (scheduled to be improved in SNAP 8.0)
d. Graphic objects can not be copied and pasted between two canvases

(Change request submitted)
e. No online help/examples are available, only online reference matl.

YES

19

DASH'R TRP
Final Report

ISX
April-95 through November-97

By: Charles L. Channell

3. ISX

ISX today is in the business of providing Advanced Concept Engineering (ACE)
services. We engineer systems that leverage advanced technologies to solve operational
problems, and programs that are designed to facilitate rapid development and maturation
of new technology.

ISX applies innovative engineering methods, known as User-centered Software
Engineering (USE), to rapidly design, prototype, and deliver computer system solutions
that solve users' real-world operational problems. ISX engineers are exceptionally skilled
at working with user/experts to quickly grasp operational problems, to visualize feasible
automation solutions, and to communicate that vision both to decision-makers and to the
software implementation. The development team uses scenario-based development, rapid
prototyping, and continuous intensive involvement by users in all phases of the system
design and development. ISX has successfully applied these methods to operational
problems in many domains.

13.1 Overview ,

This is ISX's Final Report on ISX's effort under the Dynamic Analysis of Software
Hierarchy for Reuse Technology Reinvestment Program (DASH'R TRP) originally
known as the Object Technology for Rapid Software Development (OTRSD) TRP. This
effort started in April 1995 and was to last 2 years through April 1997, but was extended
through November 30, 1997 as a no cost extension.

For this TRP, ISX was a member of a consortium of companies which consisted of
Template Software as the prime contractor, with IBM, Honeywell and ISX. The overall
intent of the TRP was to produce object oriented software development
environments/tools that could be effectively used in both the commercial and military
domains. IBM and Template produced the Core Technology Base (CTB) and Honeywell
and ISX produced proof of concept applications that employed the CTB (see Figure 11
Organization Product Relationships). Honeywell operated in the commercial domain
and ISX in the military domain. This report focuses upon ISX's effort.
ISX used the CTB for two applications. One application, the Preventive Medicine
Planning Tool (PMPT), was defined from the beginning of the program and helped to
drive the requirements fed back to the technology providers on how appropriate the CTB
was to military applications. The second application, a Navy Medical Waiver

20

Administration Tool, was started towards the end of the TRP period of performance and
validated the improved CTB.

Coordination

Coordination

CP Demo

INTEROP Demo

Template
Software

SNAP Product
Family releases

DSOM releases
/ X^^ Coordination Batch
^v N. Manufacturing

N. ^^ ^ Scheduler
Demo

SNAP Product % / \
Family releases (Honeywell]

Figure 11 Organization Product Relationships

3.2 Background
ISX had the following tasks:

Documenting and distributing the Used Centered Software Development
(UCSD) methodology to the consortium members;

Creating the Strategic Planning Toolkit (SPT) which is a generic version of
the Air Campaign Planning Toolkit (ACPT);

Development of a military application using the CTB and based upon ISX's
Air Campaign Planning Toolkit (ACPT).

3.2 1 ÜCSD _ ;
One of the first tasks that ISX started under the TRP was the UCSD effort. This task
consisted of surveying projects throughout ISX for the extent that the UCSD approach
was used. The best examples were then explored in greater detail and put into the UCSD
document.

3.2.2 SPT .; ";;"".".." .'.ysZ- . .1 7 .. .
Another product of the TRP, was a generic strategic planning toolkit which employed the
ACPT's strategy-to-task (STT) planning methodology. ISX funded a multi-year effort
using ISX's TRP cash contribution in the form of IRAD funds. The SPT was driven by
the requirements from various programs including air campaign planning and preventive
medicine deployment planning.

21

3.3 Military Application
The intent of the military application effort was to provide a "proof of applicability" of
the CTB to military applications and to provide an example set of requirements to the
CTB development effort. The original choice of the military application was a rehost of
the ACPT into the CTB. However, it was decided to not be worthwhile as the rehost
approach wouldn't deliver to the end-users anything that they didn't already have along
with the added burden of creating two separately maintained ACPTs. Further, the CTB
version would be at least 1 year behind the original version. As a result, the decision was
made to select a new domain and a new application. ISX was given latitude regarding the
domain selection for the military application with the major criteria of "the end users
must like the end product and applaud the development process". Eventually, it was
decided to work with the Navy Environmental Health Center (NEHC (pronounced "knee-
hick")) to create a Preventive Medicine Planning Tool.

Towards the end of the project, about $70k of additional funds were made available to
ISX with the consortium deciding to pursue a different domain and to employ as much of
the CTB as possible. From working with CAPT Breeden (now of the Navy's Bureau of
Medicine and Surgery (BuMed)) on the PMPT, he pointed the team to CAPT Jones, also
of BuMed, and the domain of Navy Medical Waivers. The final project was decided to
see how far ISX could get in putting together a Medical Waiver Application tool.

3.3.1 ACE/USE
This section encompasses the brief history of ACE components, accompanying terms
used in the ACE methodology, and the results of a survey of ISX employees during the
summer of 1995 under the TRP effort. Advanced Concept Engineering (ACE) is the
methodology that enables ISX to continue to develop software systems that exceed
customer and user expectations, while reaching new capabilities with every project.

ISX embraced software industry concepts of rapid prototyping and incremental delivery
soon after its formation; and modified the standard Waterfall Methodology to avoid
dependence on overly precise requirements that hampered development. The modified
Waterfall was called Intelligent Systems Engineering (ISE), and was followed during the
development of the Pilot's Associate. ISX soon realized that ISE set up conditions which
forced freezing requirements for long periods of time. Ultimately, engineers concluded
that without direct user interaction during the early development period, the delivered
results were below expectations.

Steps were taken to improve user interaction during initial prototype development and
maintained through full development in programs such as the Air Campaign Planning
Tool This strategy became a guide as engineers quickly realized the value of user input
beyond initial requirements. User-Centric Software Engineering (USE), also called User
Centered Software Development (UCSD), refined rapid prototyping, eliminated
middlemen, and switched system development focus from solving an operational
problem to creating greater capabilities for the user.

Key ISX engineers came to the realization that—to more fully enable transfer of new
technologies into the mainstream— one must manage and encourage the development of

22

new technologies and manage the environments (programs) in which these technologies
can first come to bear, as well as the organizations controlling these environments. ACE
integrates USE and Advanced Technology Management (ATM - evaluates emerging
technologies to best fit the user's needs) to manage organizations, programs, or systems.
ACE combines ATM principles with more efficient management of multi-use projects. In
the future, ACE will expand to include many other methods, tools, and concepts.

Development trends in the software industry are coming to a crossroads between open
and closed architectures. Both schools of thought have their proponents and detractors,
however ISX is currently not in the position to determine how commercial software will
be designed. Understanding this, it has been to ISX's advantage to follow the ACE
methodology to determine the most appropriate architecture for a task. As ISX's position
in the industry grows stronger, it will have more control over the commercial
architectures it chooses to integrate and interoperate with. While ISX is evolving so will
ACE. Current constraints will diminish as ISX, through ACE, becomes more proficient at
managing its technologies, growing core competencies, and drawing more input from
users.

3.3.2 PMPT

. 3.3.3 Domain Description

Preventive Medicine (PM) deals with preventing the military fighting units from
suffering casualties due to disease and other non-battle injuries (DNBI). Usually, this
entails educating the soldiers about the medical and environmental threats, providing
prophylaxis and ensuring that proper sanitary procedures are followed. PM in the
deployment context used in this effort deals with populations and not with individuals.
Medical threats include diseases (e.g. malaria) and the disease vectors (e.g. mosquitoes).
Environmental threats could include contaminated soils (e.g. heavy metal pollution of the
top soils and water supplies), water and air in a general area or a specific area (e.g. a
destroyed manufacturing area). Another threat is that posed by nuclear, biological or
chemical (NBC) weapons and the manufacture, storage and deployment of those
weapons.

When a deployment of US soldiers is planned, an OPLAN is created which outlines the
mission, the chain of command, what units are participating, where they are going, etc.
One component of the OPLAN is the Medical appendix of which the Preventive
Medicine subcomponent is an annex. In the planning process, there is usually one
medical officer assigned whose specialty within the medical domain varies. Due to the
nature of preventive medicine, a large portion of the PM activities need to occur at the
very beginning of the planning process. These activities can include determining which
shots need to be administered to the deploying troops and then having those shots given.
To be effective, the shots need to be given some time before exposure to the medical
threats occur.

The primary end-user for the PMPT is the preventive medical officer (PMO) assigned to
the Joint Task Force (JTF) Surgeon's Staff. This PMO could be inexperienced in
deployment planning or could be a medical officer without PM training. An

23

inexperienced PMO is a possibility because the US military usually rotates its personnel
every 2-4 years. Hence, just as a person gains a good level of experience in a particular
position, they are rotated out and a new, inexperienced person takes over. A MO without
PM training is a possibility because a PMO wasn't handy at the time that assignments
were being made.

These aspects of the PM domain and the military planning process allow for automation
via the PMPT to improve the overall process. Some of the PMPT features that improve
the PM planning process are:

• Mistake Avoidance: The PMPT will step a neophyte Preventive Medicine Officer
(PMO) or a medical officer without PM training, through the PM planning process.
By going through the process, the PMO will be exposed to the major issues of PM
and will have to address them. Thus, avoiding overlooking any major "gotchas".

• One-stop Information: A PMO uses a small set of information sources to do the
majority of their planning. These sources include the US Army's MEDIC, the US
Navy's DISREP and VECTRAP, the CIA's World Fact Book, the CCDM manual, etc.
Most of these sources are available electronically and can be accessed with the
PMPT.

• Provide Guidance in creation of PM portion of OPLAN: In stepping the PMO
through the PM planning process, much of the information about the mission and the
medical threats have been entered into the computer. This information is then used by
the PMPT to provide rough draft versions of the PM portion of the OPLAN, emphasis
letters to the chain of command, to-do lists for the PMO, etc. These documents are
available electronically and can then be edited further by the PMO to produce the
final versions.

The PMO will be following three major steps (See Figure 12 Preventive Medicine
Planning Process):

• Determine Requirements: What are the requirements of the troops/mission and what
medical threats will need to addressed.

• Situation Definition: Given the medical threats and what resources a PMO can
expect, what additional resources will be required to adequately address the medical

threats.

• Generate Outputs: Once all the information has been entered, the PMPT can generate
draft versions of the documents needed by the PMO.

The first set of information that is needed is the mission statement and the definition of
the mission. This includes what troops are involved, why they are involved, when and for
how long, what type of mission will it be (e.g. combat, keeping the peace, etc.), etc. In
the current version of the PMPT, this information is entered by the PMO. In later
versions of the PMPT, this information could be downloaded from an existing source.
From this information, the populations involved can be derived along with locations. This
includes how many US troops will be involved, their origination point, their destination,
any intermediate points, other populations involved (e.g. refugees, NATO soldiers) and

24

where they came from, are going to and through. Thus, the PMPT is creating lists
describing the populations and countries/regions of interest to the PMO.

population
--■ ^•«?'/$&z*m

»■■IJIJIIIUI.JJ

.^'cafröri'sl
a*fesspfoiy,aaa

Determine
Requirements Food & Water

Vectors
Others

Define
Situation

l;;Coünterp
tMeäsuresI

Pefspnne.-,., SüppL
H.»^:w^a-.^.j.- !'J

Generate
Outputs

Figure 12 Preventive Medicine Planning Process

Based upon the populations and locations lists, the PMO can now refer to the standard
information sources to determine the likely medical threats. The locations information
coupled with the time of year (e.g. rainy season) will dictate much about the
environmental threats and the diseases and vectors that will be encountered by the US
personnel. The populations information dictates how sanitary are the practices of the
populations, any social customs that need to be taken into account (e.g. separation of
male and female adult populations), population demographics and total quantities of
populations.

Based upon these lists of medical threats, the PMO uses his judgment to prioritize the
lists and then uses the lists to set up a counter-measures list. The counter-measures
includes the entire range of activities from sending out orientation booklets to the
populations, to providing inoculations, to spraying for vectors, to monitoring the
incidence of DNBI, to providing sanitary facilities to refugee populations, etc. All of
these countermeasures require a certain amount of personnel, equipment and/or supplies
to properly fulfill and will be based upon the total number of populations involved and
the physical distribution of those populations. Thus, the next step of the PMPT is
generate three more lists of the equipment needed along with personnel and supplies to
address the countermeasures. Some of these materials/personnel can be provided

25

organically by the units participating in the deployment. The PMO can now examine the
lists and determine what is still needed and can then work to find out how these
materials/personnel can be supplied.

Since the PMPT now contains a large set of information about the mission, it can now
generate outputs automatically which the PMO can then edit. Within the PMPT are
various common formats used in previous deployments and are available for the PMO to
chose between to get a strong start.

Additional advantages provided by the PMPT include its ability to be used by non-PM
trained personnel and in its bundling of various PM information materials. This can then
be used as the basis for general information about regions.

A future version of the PMPT could be tied in with the electronic OPLAN and could
upload the latest PM annex and could download the latest mission plan etc. and then be
used to modify the PM annex.

During execution, a future version of the PMPT could be used to monitor the status of the
PM plan. It could provide standard forms (e.g. DNBI incidence reports). Accumulate
information and provide part of the lessons learned basis.

vSZ5& Healihcare & Information Technologies Group

One of the major applications that ISX worked on under the TRP, was a Preventive
Medicine Planning Tool. The Navy Environmental Health Center provided domain
expertise along with access to domain experts from the various services, to help define
and refine a tool that assists the CING Surgeon and his staff in defining the Preventive
Medicine portion of the OPLAN. Some of the tool highlights are:

• Preventive Medicine Planning Tool (PMPT): Identifies impacts of plan changes and
provides guidance to Preventive Medicine Professionals in developing a preventive
medicine plan;

• Intelligent Information Integration: Provides easy access for software to information
stored in multiple heterogeneous data sources;

• Medical Readiness Strategic Plan Evaluation Tool (MiRSP-ET): Assists the
Department of Defense (Health Affairs) personnel with authoring and evaluation of
the MRSP;

• Information Support for Law Enforcement: Assists law enforcement agents with case
development, management, and analysis;

• Environment Restoration Information System II: Assists a program manager in charge
of a restoration site to manage the data for a project.

Currently, ISX is working with NEHC and the Navy Bureau of Medicine and Surgery to
further develop the tool and deploy it across the services.

Customers for these projects include the Defense Advanced Research Projects Agency,
the Idaho National Engineering Laboratory, the FBI and the Office of the Assistant
Secretary of Defense (Health Affairs). The HIT personnel are skilled in working on a

26

variety of platforms using the latest development tools and object oriented programming
techniques.

The Preventive Medicine Planning Tool (PMPT) has been developed as one of the
programs of the TRP called Object Technology for Rapid Software Development. The
team consists of the Defense Advanced Research Projects Agency, the Honeywell
Technology Center, IBM, ISX Corporation, and Template Software. The goal of the
project is to utilize a core technology base to demonstrate how such technology can (1)
improve developer productivity, (2) reduce time-to-market, and (3) facilitate the reuse of
system components.

3.3.5 Visionary Demonstration ^ I 1£
The first step ISX took in creating the PMPT was to work with the NEHC personnel to
determine the overall requirements of the tool. This process employed ISX's Advanced
Concept Engineering (ACE) process to capture the requirements and to provide a
mechanism for the end-users to provide feedback to the tool designers. A key part of this
process was the creation of a Visionary Demonstration (viz-dem) which is a non-
functioning prototype that captures the look and feel of the final prototype quickly. (See
Figure 13 PMPT Visionary Demonstration Introduction Screen, Figure 14 PMPT
Visionary Demonstration Overview Screen, Figure 15 PMPT Visionary
Demonstration SPT Architecture Screen, and Figure 16 PMPT Visionary
Demonstration Mission Query Screen). This then allows the developers to meet with
the end-users, extract information about the PM process, codify the process in the viz-
dem, demonstrate the proposed process to the end-users, and then receive feedback from
the end-users. This provides a sanity check to the whole process without a significant
investment in time or resources before a discontinuity is detected between the developers
and the end-users.

Figure 13 PMPT Visionary Demonstration Introduction Screen

27

Preventive Medicine Planning Tool

Tool Overview
UseriyTF-rSurgeon, PfevMfiii attacheÄ.

'-|»w v.. ? f
-» — — *-- —"«Surgeon

Purp6si|S*pvides guhetanceln defining\#ffiv»Qed
□IanVor»al^en missions!!!! ,

I ^ IF m§ W r -m* .
Features: |gr » >^
• Define Missen '
• Define Force^Composition and Organic Assets
• Define Medical Threats
• Define Additions/Deletions to PrevMed Assets
• Evaluate Plan
> Create Checklists, PM Anne* Q, FmphasisJetter— o) r o)

Figure 14 PMPT Visionary Demonstration Overview Screen

d?)

9PT Generic Architecture Wagrem
figl

DataMananer ,6UI Manager

Grenh Manager

Object I
Manager)

\\

**\ simulator \A

iK^Ser ^

-* rnessBoe'datj —* broadestt "♦ poinHo-poInt
communication communication communication
(Isgacysystem)

. — —., ,-

Figure 15 PMPT Visionary Demonstration SPT Architecture Screen

28

2 3 4 5 6 7 8
L Populillon* Region» Dl»awi Vector* Vroct&ares ^enonTi^_Svs]^_

Figure 16 PMPT Visionary Demonstration Mission Query Screen

3.3.6 First Application
Using the viz-dem as a guide, the ISX team attended courses on Template's Snap product
and produced an initial design for the PMPT. Due to the newness of the CTB and a PC
platform requirement by NEHC, it was decided to use an OS2 platform. The combination
of OS2 and Snap hosted onto OS2 limited the GUI possibilities (an example of a screen
from the OS2 prototype is shown in Figure 17 Sample Screen from the PMPT OS/2
Version). This proved to be a major problem from the end-users' standpoints (see section
3.4.1). Part of this problem was alleviated by the Template personnel producing custom
widgets for use by ISX. Once a prototype was created, it was decided to abandon the OS2
platform and the heavy reliance upon Snap and go with a Windows 95/NT platform and
much less reliance upon Snap. Two major reasons for the decision were:

• End-user feedback: The end-users wanted a user interface that was much more
mainstream then what was provided by the CTB. They wanted a look and feel similar
to most PC applications. Further, not many Navy PCs had OS2 loaded. If the PMPT
required a OS2 system, then additional PCs would be needed by the Navy along with
personnel who could support those OS2 PCs. This forced aligning the application
with a Microsoft development environment.

• Future support of the OS2/Snap combination: Developing in OS2 required a
significant investment in programmer training and in infrastructure. At this time, IBM
made a corporate decision not to target the OS2 product for the personal computer
market, but instead as a server in a business environment. Thus, a business decision
forced that OS2 be dropped and a Microsoft development environment be chosen.

At the time that the decision was made, the CTB wasn't supported very well in the
Microsoft development environment. Thus, a small portion of the CTB was selected to
continue to be used in the PMPT (i.e. the rule based decision engine) and a mainstream
Microsoft development environment was used instead of the CTB.

29

MISSION:Provide Comfort

details
What kind of entry will the populations involved in this missior

be making?

ientryjfgrced <1.00> !▼!

How large is the population that will be responsible for the
execution of this mission?

| force sizekgoo Calculate

How large is the population that this mission will effect?
jtarget sizejggoo

How much time until this mission begins executing?

! prep timeh

Wh at members of the target population should receive priority?

imission priorities
Back I Next

Figure 17 Sample Screen from the PMPT OS/2 Version

3.3.7 Second Application " .". .

Once the decision to proceed with a Microsoft development environment was made, the
ISX development team examined how much of the old OS2 design could be used. Due to
problems of switching from OS2 and Snap to a MS environment, very little could be used
from the old design. Thus, the team redesigned the entire PMPT based upon the lessons
learned from the first application. The redesigned system was much more acceptable to
the end-users, but cost another 6 months in schedule. Examples of the screens from the
new application are shown in Figure 18 Start-up Screen from the PMPT Windows
Version Figure 19 Location Editing Screen from the PMPT Windows Version and
Figure 20 Asset Editing and Force Lookup Screens from the PMPT Windows
Version.

30

■ -1*1x1
n* •>* 'um" "A-

n|u*|M- .i|»--.|i2| ^JJVl

±L

PMPT
„..-.»•lli«»-'

y-M*-'"- I

Z3
H ril !■■■■■■

SIU'IM.Ir-Ä

|--^"g"1 H » /■ |

,<,VM. I -I

Figure 18 Start-up Screen from the PMPT Windows Version

Editing LOCATION:Albania

Location Attributes I Location Descriptors j Location Info | General Attributes |

Digraph W&

Area: |0

Description:

Agriculture:

Environment:

Capital City: JTirane

Square Kilometers View/Edit Sites

Southeastern Europe, bordering the Adiiatic Sea and Ionian Sea. between _^J
Greece and Serbia and Montenegro

accounts for 552 of GDP; arable land per capita among lowest in Europe; _^J
80% of arable land now in private hands; 60% of the work force engaged in
farming; produces wide range of temperate-zone crops and livestock ^ i

current issues: delorestation; soil erosion; water pollution from industrial and
domestic effluents ; natural hazards: destructive earthquakes; tsunami
occur along southwestern coast ; international agreements: party to •

Industries: foocj processing, textiles and clothing, lumber, oil. cement, chemicals. _^J
mining, basic metals, hydropower

CIA World Factbook| DISRAP | VECTRAP | AFMIC | Map |

OK Cancel Appiy

Figure 19 Location Editing Screen from the PMPT Windows Version

31

Pcr«onnc|A«ibutC3 *«* I GcncfolAtUbAs)

EsliiidUuii Irilu

^jjubJunAujieüTj fiöccöo

SjjueülsdCu^iVd) [35

j jggeited Ccuit jwr-war): pfl

Vicw.'Edi: CalcjdtisnVducoj

Pm
Suppnn=r

bJU

1C00

5C00

"0,300

20,300

nnm

40,300

wuiiu

pwrn"v
SM'-fnrj Safling:

OK Cancel J

Figure 20 Asset Editing and Force Lookup Screens from the PMPT Windows
Version

3.4 Lessons Learned

This section goes over the lessons learned as part of the ISX development effort. The
bulk of this section is extracted from a report to Template in June 1996 which covered the
problems encountered with implementing the PMPT first version (section 3.3.6). Note
that most of the problems encountered with Snap were slated to be addressed in later
Snap versions.

3.4.1 June 1996 Lessons Learned Document

3.4.2 Advantages of SOM/DSOM ~'_.Y'™"

• Contains many features that extend the CORBA standard, such as transaction
processing features, persistent storage functionality and security.

• Provides inter-orb operability (HOP)

13:4.3 Problems with SÖM/DSÖM ' ,„

• Has a steep system dependent learning curve for installation and setup.

• Currently only runs on OS/2 and AIX and neither of these operating systems
provide functionality required by our customer.

• Restrictions imposed by OS/2 include:

32

1. Lack of API libraries for accessing structured text data sources (e.g.
Adobe Acrobat, MediaViewer, DynaText, ODBC)

2. Severely limited choices for support and development software

3. None of the ISX SPT software has been ported to OS/2 (e.g. Query
Mediator)

4. Can not dynamically communicate with CD data sources via OLE

5. Difficult to install and configure the operating system (days vs. hours
for NT)

6. Non-preemptive multi-tasking causes hanging and crashes

!3j43T Advantages of SNAP

• Has allowed for the rapid creation of a prototype system.

• SNAP includes ways to indirectly reference and manipulate classes, objects
and attributes that has proved useful.

• A "tab card" widget for modifying objects was provided by SNAP and has
proved very useful. This widget is still experimental and needs some
refinement.

• Code developed using SNAP is cross-platform and can be easily ported to
other operating systems. We will experiment with this feature by porting the
PMPT to SNAP running under Windows NT.

3.4.5 Problems wiitiSNAP^Z ~ ' ~. 7
• Custom relational attribute modification dialogs are better supported in 7.0,

but are still cumbersome.

• No built in hyper-text help supported (plans for HTML support are being
considered)

• No support for "wave over" or help text or "tool tips" (planned for SNAP 7.5)

• Spin control and pull down lists do not function or are not available (not
planned)

• Some of the development features found in commercial PC software
development systems that are inadequate in the SNAP development
environment include:

1. The debugger is cumbersome and inadequate for easily visualizing
program execution (scheduled to be improved in SNAP 8.0)

2. A separate debugger must be used to visualize C code

3. A secondary editor is required to write code, the integrated code editor is
inadequate (scheduled to be improved in SNAP 8.0)

33

4. Graphic objects can not be copied and pasted between two canvases
(Change request submitted)

5. No online help/examples are available, only online reference material.

3.5 Strategic Planning Toolkit

3.5.1 Domain Description
In late-1994, a goal was established for ISX to develop a generic toolkit which would
enable rapid development of strategic plan authoring tools for new domains. The idea
was to draw upon the knowledge and experience gained through efforts in the areas of
advanced planning and objective based planning systems, and develop a component set
which would form the basis of a toolkit for strategic plan authoring.

In March of 1995, Gary Edwards and Glen Reece, Ph.D. began to analyze a sampling of
domains which required or could benefit from strategic planning. This was to determine
how well the existing Air Campaign Planning Tool could be transitioned to those
domains in a generic way as to be widely applicable. Nine potential domains were
evaluated to a greater or lesser degree and from this evaluation a set of base requirements
were established. These are:

1. The use of simulation to assist with understanding plan sensitivity issues.

2. Provide the support necessary to project different potential outcomes and understand
their likelihood.

3. Provide the support necessary to make resource constraint projections and understand
the incremental benefits of plans that more aggressively utilize resources versus ones
with less aggressive utilization.

4. Provide the ability to identify side-effects of an action(s) and to be able to constrain
those side-effects.

5. Provide the ability to quantify objectives so that the user can observe expectations
from simulation versus actual data as the plan unfolds (we need a well defined
method to develop metrics associated with objectives).

The main concern for any domain to which the SPT is to be applied is whether we can
gather the necessary information into SPT so the appropriate decisions can be made. This
will have to be determined in USE sessions as we become more serious about applying
SPT to a particular domain. Due to other obligations, this effort was put on the back
burner after this initial session.

In August 1995, Richard Myers brought a group together in Westlake to discuss SPT
architectural issues. This meeting was essentially a session in which the ISX personnel
that were intimately familiar with the ACPT were interrogated about how they perform
the task of building strategic planning tools and were asked to describe what facilities the
SPT would have to provide to improve this process.

In 1996 we again focused on the SPT concept. These efforts, as well as, our work in
developing a strategic planning tool for medical readiness have lead to the development
of the SPT Core (the generic class model for the SPT).

34

\3.5.2System Visiönr \ 7 ."" *.T ..L:ZI"]^T^TZ:'I;™Z17":^':I.'
The goal of the SPT Project is to produce a suite of software components which will
enable the rapid construction of strategic planning systems for a wide variety of domains
addressing an equally wide variety of functional requirements. This means that many
small software components will be designed and implemented with well-defined
interfaces which can be plugged together with other components to provide required
capabilities.

We want to be able to build upon our previous development efforts and apply our
knowledge and expertise in advancing the state-of-the art of strategic planning tools and
not have to spend so much time on reimplementation because we (1) didn't "expect" to
reuse developed capabilities, (2) we didn't have time to develop a generic capability, or
(3) we didn't plan to have to run the system on another platform.

The SPT will enable us to chose from a "component library" those capabilities we need
for implementing a strategic planning system for a particular domain and focus on
developing new capabilities to exceed the customer's expectations while giving us a new
set of capabilities to add to the component library for future efforts.

3.5.3 Status " ' '
The TRP SPT effort was focused in four main areas as a first step towards developing a
component library. The focus areas for the project were (1) Data Access Services, (2)
Authentication Services, (3) SPT Core, and (4) Management Services. The results of
each of these areas are described in greater detail below.

3.5.4 Data Access Services ' ~.. . ,'""
A vital component of SPT Suite or component library is that of a service for allowing and
managing data access. The type of services we envision is modeled upon the 13 Service
Architecture which were Query Services, Source Services, and Integration and
Transformation Services. These services come together to provide a mediation capability
for repositories of information. In this effort we focused on how to enhance the core
capabilities provided by ISX.

The first area was in evaluating existing systems to determine whether our existing
capabilities could be augmented by adopting a specific approach or extrapolating from a
particular approach. The two systems which were examined were SIMS (from USC
Information Sciences Institute) and HERMES (from the University of Maryland).

The second area was in review of our Source Service code and libraries to determine how
best to restructure them to support the development of plug-and-play components such as
those we envisioned for the component library. This effort lead to a redesign of the code
structure and library hierarchies.

\3J5.5: Äu^n^catiörfServices! iSl&a^W^&*»^wiG»^r:^^ ^Ö^M&äM^^äiai^X^c

In several other previous projects there was a ubiquitous requirement to provide
controlled access by users to the system and to specific capabilities of the system. We
saw this as a prime example of the type of capability which could be provided in a

35

component library and used across a wide variety of systems regardless of the specific
domain. Therefore we designed and implemented a CORBA-based component for user
authentication called the Account Manager.

3.5.6 SPT Core

Design and initial implementation of the SPT Core model was based upon the STT
paradigm. The majority of the STT functionality is embedded with the SPT Core. This
functionality included the ability to represent the various strategy levels, the relationships
(e.g., dependencies) between the strategy levels and the nodes (the tasks), abilities to
evaluate the completion of a task, the roll-up of the completion statuses to an overall
status, etc. This effort also developed the necessary test databases, tools for populating
the databases, error logging, etc.

3.5.7 Management Services

Similar to the ubiquitous requirement of having authentication services for a wide range
of systems, there is likewise a requirement to provide a capability to manage contact
information for related and responsible parties. We saw this as another example of the
type of capability which could be provided in a component library and used across a wide
variety of systems regardless of the specific domain. Therefore we designed and
implemented a CORBA-based component for contact management called the Contact
Manager. We did not complete the entire implementation, as the client side was not
implemented, but the server is fully functional under Windows NT 3.51 (and would
require little effort to migrate it to another platform).

3.6 Medical Waiver

Towards the end of the contract's period of performance, IBM had some money left over
which was distributed to the other three contractors. ISX used the funds to continue
support on the PMPT but also to explore another application. One criteria on the
consortium's part, was to use the CTB to a much greater extent then was done with the
PMPT. After some discussion with the Navy's Bureau of Medicine and Surgery
(BuMed), it was agreed to look at the Navy's Medical Waiver process. This process was
fairly well defined, could use automation, had a progressive-minded point of contact
(CAPT Warren Jones), and lent itself well to Snap's WorkFlow tool. Due to the very
limited amount of money available for this effort, it was agreed with CAPT Jones to
implement as much functionality as possible, but no promises were made and with the
understanding that a completed, hardened tool wouldn't be possible under these funds.

3.6.1 Domain Description _:.^_j_^^~„w-~ _-_-->.--.-__ - J
The Medical Waiver process allows individuals who don't pass a Physical Examination
(PE) for a position for which they are applying", to be allowed to continue pursuing that

" The Physical Examinations are administered when a person is making a major transition. Some situations
when the PE is required is when a person enlists, when a person applies for Officer Candidate School,

36

position. A person could be granted a waiver if their job category is in high demand, their
job category doesn't require full physical abilities, etc. Thus, the Waiver process allows
the Navy to "stretch the rules" when the stretching doesn't affect the ability to get the job
done.

The Medical Waiver process is diagrammed in Figure 21 Navy Medical Waiver
Process. There are multiple places where BuMed would receive a waiver application and
then issue their recommendation. The entire waiver process lends itself well to
Template's Workflow tool. The initial assessment, which was later proven by the
application development, showed that all the application development could be done
within the Workflow development environment. The tool allowed the creation of user
types (e.g., Applicant, Waiver Recommendation Reviewer), their corresponding interface
screens, the documents and the document flow between the end-users/organizations.
Unfortunately, TRP time and money did not allow for a completion of the demonstration
application which is now pending additional funds from BuMed.

Ill Applicant |||
Recalling
Command

Medical Waiver Process
Information Flow
Belinda Hardman
10/02/97

Complete
Screening Forms —»««itoMEPS

MEPS
Perform Exam

i
BUMED
Courtesy

Evaluation

RC
Review Results

RC
Review Results

I DEP or Ship Datei

vC
BUMED

Evaluation
RC

Review Results

^f DEP or Ship Date)

MEPS
Get More Info

Figure 21 Navy Medical Waiver Process

3.6.2 Summary , , _„ _.

ISX's major role in the TRP was to provide a proof of concept application of the CTB to
military applications and to feed in military-domain requirements to the CTB. Two
applications were developed to fulfill this. The first application was the Preventive

when a person graduates from the Naval Academy, etc. Situations where a PE is not administered is when a
person has a normal grade promotion, during the course of their normal work assignment, etc.

37

Medicine Planning Tool upon which the bulk of ISX's effort was spent. The development
of this tool initially used as much of the CTB as possible. However, due to user
requirements and the unavailability of certain features when needed, only a small portion
of the CTB was used in the final PMPT. Feedback was generated by ISX during the
application development stage and given to Template and IBM. These companies did use
this information in making decisions on their product's features with many of the PMPT
developer's "wish list" becoming part of the CTB.

The second proof of concept application was developed towards the end of the TRP. This
application applied one of Template's products to automating the Navy's Medical Waiver
process. With limited time and funds, only a visionary demonstration was attempted. This
effort did show that all of the end user requirements could be met by using the CTB.

Overall, the TRP accomplished what it set out to do; namely, creating a software
development environment which shortens the development time and is applicable to
military domain projects.

The next page is a description of the PMPT used at the NEHC Conference in Virginia
Beach in February 1997.

38

LHi,m'J.') 7«',!".'H ■ .l,.l',^Jl^'J^^ll^^■^^l'^^■^J!l^*^'Ty;W^■■J'-g■^■■;l^ .'..k .'■»yj.t,.g.^»j;lW|J^-"-"',-"-8.",.^.«-'V."-,.7 "■'■""

rPreventativeMedicmePlannmg^jool^#£##m?^ '
a&?,=^rt,y.<^-. -1' ".■■■; .-•■f,, . ■ ■■■!■ ?:-^.^j^;^

:-?^^-^l^:'..>^-^:. 'S.iliS ^.S^^l;:^.^,^--.^..^...-.;,!

Technologe7 that works the way a Preventative
Medicine professional does:

• Assists by ensuring mistake avoidance

• Provides guidance throughout the PM planning
process

• Identifies impacts of plan changes

• Incorporates PM calculations for personnel,
equipment and supplies

• Reduces administrative burden by generating
PM Appendix 8 to Annex Q for OPLAN, to-do
lists and draft versions of CO Emphasis letters,
and Line Letters.

• Provides single point of access to information
from many sources including MEDIC, CCDM,
DISRAP, VECTRAP, Maps, and the Internet.

• Provides PM mission guidance and advice to
the Medical Planner through the use of
embedded rules based upon previous experience
(i.e., lessons learned).

Addresses the full spectrum of PM missions for war
and military operations other than war.

State of the art Technology

• Graphical User Interface that allows easy
manipulation of information and interaction

• Standards-based client/server tool implemented
in C++, Snap™, and SOM/DSOM (CORBA).

• Takes advantage of existing COTS products to
display information in a variety of formats.

• Offers a wide range of data and information
management tools including Cut & Paste
features from any information source, and pop-
up advice (based upon historical operations, PM

iii#cvr<i

39

guidelines, and unique situations and lessons
learned).

40

DASH'RTRP
Final Report
HONEYWELL

April-95 through November-97
By: Robert Goldman

4. Honeywell
In this introduction, we briefly summarize the final report. We begin by explaining
Honeywell Technology Center's role in the DASH'R OTRSD Consortium, that of
providing civilian validation of the consortium's dual-purpose object technology. This
validation was done by developing a civilian advanced software scheduling application
for batch manufacturing (itself a dual-use manufacturing technique). Accordingly, we
provide a brief introduction to batch manufacturing and the corresponding scheduling
problem. We then present our objectives—the features we identified as essential for this
application. We met these objectives by using a proprietary scheduling technique we call
constraint-envelope scheduling, which we introduce in the following section. We then
discuss our development method and the course of development we followed in this
program. Finally, we conclude by outlining the rest of the document, which provides
further details on all these topics.

J4.1^ HTCRoiemC^so^um ' ~ " "
Honeywell Technology Center (HTC) has provided civilian validation of the dual-use
technology developed by Consortium members Template Software and IBM. HTC has
demonstrated the consortium object technology by using it in the construction of a
commercially available scheduling system for batch manufacturing. Batch manufacturing
is an increasingly important form of manufacturing that is a hybrid between discrete and
continuous manufacturing. Batch manufacturing is important for both civilian and
military production. In the following section, we give a brief introduction to batch
manufacturing and the corresponding scheduling problem (more details are given in the
body of the document).

Batch manufacturing, a dual-use manufacturing technique, occupies the gray area
between continuous and discrete manufacturing. In continuous manufacturing, a stream
passes through a process, yielding a continuous stream of product. In discrete
manufacturing, an identifiable individual product is created through a series of steps in a
plant. In batch manufacturing, there are neither individual products nor a stream of
product; rather, one makes product in batches.

Some sample batch manufacturing processes are the making of food mixes, composite
materials (e.g., for airplane control surfaces), and beer brewing. These show the wide
range of complexity within batch manufacturing. Food mix manufacturing is often
largely a matter of materials handling: getting the right mix of substances into a container
and stirring. On the other hand, both composite materials manufacture and beer brewing
involve complex chemical reactions.

41

Batch manufacturing was chosen as an application for this TRP for several reasons. First,
batch manufacturing is an important dual-use technology. Advanced batch manufacturing
techniques are widely used in the aviation industry for building aircraft components out
of advanced composite materials. Second, a batch manufacturing scheduler provides an
important opportunity for commercialization. Although there are a wide variety of
programs available for scheduling discrete manufacturing processes and planning for
continuous processes, few, if any, scheduling products are capable of tackling the
distinguishing features of batch manufacturing (e.g., tank handling, variable changeover
times). Finally, HTC had already developed a prototype Batch Manufacturing Scheduler
suitable for reimplementation according to the purposes of this TRP. The previously
existing prototype was ill-suited for productization because it was implemented in the
Common Lisp programming language, which is rarely used in the software industry.
However, this prototype did tackle the full range of batch manufacturing phenomena and
was written in an object-oriented style.

The scheduling problem for batch manufacturing is different from the corresponding
problem for discrete manufacturing, hence the need for a special-purpose scheduling
system. Scheduling systems for discrete manufacturing are typically based on ihe job-
shop scheduling problem (i.e., jobs must be scheduled for exclusive use of workstations
in the plant). Although scheduling workstations is an important part of batch
manufacturing scheduling, it is only a part. A full solution to the batch scheduling
problem must also take into account the connections between workstations m a plant,
since typically batches of product will have to be moved from workstation to workstation
through a restricted network (e.g., a set of pipes or headers). Properly handling this
problem requires us to model the hierarchical structure of batch recipes (the procedures
by which products are manufactured) and the topology of the plant floor. Another
important issue in batch manufacturing is storage management. In many batch plants,
products must be stored in sets of tanks. The proper use of these tanks—avoiding
overflow, underflow, or time-consuming cleaning processes—is a critical issue for batch
manufacturing that does not arise in discrete manufacturing. Finally, we must handle the
relationships between the various jobs in the plant. In batch plants, complex relationships
often exist between consecutive jobs on a particular piece of equipment. For example, in
a food plant, one always wishes to make light-colored foods before dark-colored foods,
because this can be done without having to clean the equipment; if a product is made
using eggs, the equipment must be steam-cleaned before it can be used again, so it is
better to make one large batch of mayonnaise rather than two smaller batches.

4.2 Objectives '....; 11-..^- .-..:•!'*~_~..^...- • *-• • • -
Our objective in this program was to develop an integrated batch manufacturing
scheduling (BMS) system and prepare it for commercialization. A secondary objective
was to develop a version of HTC's library of scheduling algorithms and object classes
that would provide a foundation for fielding scheduling systems for a wide variety of

markets.
For HTC to meet its objectives in BMS development, (1) the resulting system must be
suitable for incorporation into the existing organization of batch manufacturing

42

enterprises and (2) the BMS must be built using software techniques that are readily
maintained by Honeywell software engineers.

We have identified two requirements for a scheduling system to be of value to a
customer's enterprise. First, it must fit within the enterprise's organizational structure. In
the case of batch manufacturing enterprises, the scheduling system must be capable of
working with enterprise planners and with plant operations personnel. Enterprise planners
typically use some form of materials requirement planning (MRP) system to manage
inventory and meet customer orders. Plant operations personnel are responsible for
meeting the production orders issued by enterprise planners. The key tool used by plant
operations personnel is the distributed control system (DCS). We discuss these interface
requirements in greater detail below. The scheduling system provides a point of contact
between business concerns and operations. To provide that point of contact, the
scheduling system must be distributed. It must be possible for multiple parties in a given
enterprise to interact with the BMS; it is not sufficient that it be a desktop tool supporting
only a single access.

The second requirement for a useful BMS system is that it must provide and maintain
schedules that meet key constraints. In the case of batch manufacturing, the key
constraints are exerted by the structure of the plant, supply of raw materials, production
orders, and product recipes. We stress the maintenance of schedules as artifacts because
this has been a weak point of previous scheduling systems. Previous scheduling systems
have concentrated on providing an initial schedule and have ignored the problem of
schedule maintenance.

It is not sufficient to design and develop a useful software application; we must also get it
into the hands of users. The Honeywell Technology Center is not a product development
center. Rather, HTC provides R&D services to the Honeywell divisions (Home and
Building Control, Industrial Automation and Control, and Space and Aviation) and, under
contract, to external customers. HTC does not have the facilities to support and market
software applications. Accordingly, it is critical that software systems developed at HTC
be built in a way that fosters technology transfer.

The DASH'R OTRSD Consortium technology provided HTC an opportunity to take an
existing BMS prototype system and reimplement it in a form more suitable for transfer to
the Industrial Automation and Control (IAC) division of Honeywell. In particular, we
used the object-oriented enterprise integration framework supplied by Template
Software, together with CORBA, to provide a distributed application framework suitable
for integration into enterprise information systems. At the same time, we took the core
facilities of the existing BMS system and translated them into conventional object-
oriented languages (C++ and Java) for maximum efficiency, portability, and
maintainability.

J4.3 Sch^Ung TecM^ I "7
In our approach, which we call constraint-envelope scheduling (CES), schedules are
constructed by a process of "iterative refinement" in which scheduling decisions
correspond to constraining an activity with respect to either another activity or to some
timeline. The schedule becomes more detailed as activities and constraints are added.

43

Undoing a scheduling decision means removing a constraint, not removing an activity
from a specified place on the timeline. CES is a least-commitment approach. We do not
assign a set of activities to places on a timeline, assigning each activity a start and end
point. Rather, we collect sets of activities and constrain them only as needed.

The least-commitment nature of our schedules is an important advantage when it comes
to rescheduling. If an event arises that makes a resource unavailable, or an ongoing
activity takes longer than expected, the effect on the schedule is minimized. First, only
those activities related by a chain of constraints to the activities explicitly moved will be
affected. Second, if the set of constraints in the schedule are consistent with the new
event, the projected effect of the schedule can be updated efficiently, without any
rescheduling at all. This is how we implement the distinction between schedule
modification and rescheduling, discussed in the previous section. For example, if one step
of a complex process takes longer than expected, but the process (and the other processes
that follow it) can still be completed before their deadlines, then all that needs happen is
to update the estimated start and completion times—a task that can be accomplished very
quickly. No reordering or reassignment of activities need take place.

Our successful application of constraint-envelope scheduling relies heavily on three
supporting facilities. The first is a set of sophisticated search techniques, loosely based on
an extension to Ginsberg's dynamic backtracking.1" The second is a highly optimized
temporal constraint engine. Determining the impact of a scheduling decision on a set of
temporal constraints is the activity that is the "inner loop" of our scheduling approach.
Our search engines must be able to explore the consequences of many different
scheduling decisions. This is made possible by the effective exploitation of an extremely
efficient temporal constraint manager called the Interval Constraint Engine (ICE). The
final supporting facility is a library of object classes that provide flexible constraint
objects (FCOs). The FCOs stand between a domain model, which represents the problem
to be solved, and the search engine, which provides the means of finding a solution.
Because of this intermediate layer, we need not develop new search engines for each
scheduling problem; we need only supply a set of flexible constraint objects that
implement a set of transactions between the search engine and the problem to be solved.

4.4 Development Method""'""" Z"^".7~~ J
For this project, HTC adopted an approach of iterative development from an existing
research prototype. Over the course of the project, we attempted to develop a new version
of the complete BMS system every six months. Each new version differed from its
predecessor either in having a more complete implementation of existing features or in
having a more complete set of features. This development technique has two major
advantages. First, when developing an experimental product like the BMS, this maintains
assurance of feasibility. When building an experimental product and developing in the
conventional design-specify-implement framework, there is always the danger of
designing a product with an infeasible set of features. Second, having a prototype to
demonstrate at any time makes it easier for us to validate the system against user needs.

ai Matthew L. Ginsberg, "Dynamic Backtracking," Journal of Artificial Intelligence Research 1, 25-46,

1993.

44

476 Course of Development
The existing BMS prototype was developed at HTC in 1994, supported by internal R&D
funding. The environment in which the prototype was developed placed a premium on
rapid prototyping. Rapid prototyping permitted us to develop a version of the system,
display it to customers, and alter system features quickly to converge on a key set of
features and algorithms to support those features. However, the tools used for rapid
prototyping, object-oriented Common Lisp and the Garnet user interface prototyping
system, made technology transfer difficult.

Our actual development process was not quite a pure version of iterative development.
Rather than plunging directly into the development process, we went through an early
design phase during which we captured the object-oriented design of the existing BMS
and revised it for the new, distributed 00 framework. After this, we began by translating
the core facilities of CES—the search algorithm, the interval constraint engine, and the
core activity and task models. Simultaneously, we were experimenting with CORBA for
distributed object orientation, using the existing (Common-Lisp) batch scheduling
system.

In the last year and a half of the project, the original prototype was increasingly discarded
and work focused on the final system. During the final year, a significant change of
direction took place. Work was proceeding too slowly on the core facilities, developed in
C++. Accordingly, we decided to implement those core facilities in the new
programming language, Java, rather than C++. Because our Java code development was
so much more efficient, and because existing work in C++ could be translated to Java
with little effort, the change in programming language did not cause a net delay to the
project.

In the final six months of the project, our attention shifted to using SNAP'S Workflow
Template (WFT™) technology to provide an enterprise integration framework within
which to deploy the BMS. We used WFT to provide communication between the three
enterprise layers: the BMS, production planning (represented in the demonstration system
by order management), and a plant control system simulation.

Finally, we were provided with the opportunity to extend the period of the contract and
perform additional work. During this period of performance, we focused on preparing the
BMS for commercialization. To do so, we concentrated on extending the applicability of
the BMS from batch manufacturing to the continuous process industries, particularly oil

refining.

4.6 Road Map to Document
In the following section, we provide some background necessary to understand our work
in this project: what sort of organization HTC is, what batch manufacturing is, and how
batch manufacturing gives rise to scheduling problems. We also introduce HTC's
distinctive scheduling technology, CES. With the background filled in, we go on to
explain the requirements for a BMS. We focus on the interactions required of the BMS:
with the user, with the manufacturing plant's control system, and with production
planning systems. We then describe the system architecture we have developed to meet
these requirements. The system architecture is based on a set of models, both generic

45

scheduling models and specializations of these models that capture particularly
distinctive features of batch manufacturing. To interact with those models in an object-
oriented and modular way, we have developed a method of flexible, object-oriented
constraint satisfaction, whose implementation has been carried through in the course of
this program. After describing these key features of the BMS, we move on to give an
account of the course of our development. For the reader interested in more engineering
specifics, this is followed by a section that discusses the tools we used in our
development process. After that, we outline our plans for making the work done on this
project into Honeywell products. We conclude with a brief summary.

4.7 Background

4.7.1 Honeywell Technology Center '"'.".
Honeywell has built its long-standing reputation as a leader in control systems by
balancing investment in visionary research and integration of state-of-the-art
technologies. This historic strength is reflected in the diverse technology areas that
comprise its core business, including aircraft flight management and avionics, industrial
plant control, spacecraft and satellite control, and home environment control.

HTC is an organization of over 300 scientists and engineers based in the Minneapolis/St.
Paul metropolitan area (See Figure 22 Honeywell Technology Center). HTC also has
satellite organizations in Prague and Phoenix, Arizona. HTC is the company's primary
research and development organization, delivering the advanced technology, processes,
and product and service concepts needed to satisfy Honeywell's aerospace, industrial,
and home and building control customers worldwide. HTC maintains a broad technology
base in controls, systems and software, information processing and displays, and sensors.
HTC technology developments are currently responsible for hundreds of millions of
dollars in Honeywell revenues each year. About half of the research performed at HTC is
funded by federal agencies, including DARPA, NASA, NIST, the FAA, FHA, and the
DOE. Additional support comes from Honeywell divisions. The HTC web site
http://www.htc.honeywell.com is currently under construction but does provide a high-
level overview of the research center.

46

HTC Organization

Minneapolis

"«*.... "^ä b.
Plymouth Phoenix Prague

Technologies
Sensors

Systems and Software
Controls and Navigation

Information Processing and Displays

Honeywell

Honeywell Technology Center

Figure 22 Honeywell Technology Center

Technology transfer is a charter task of HTC. Concept development and demonstration is
just the first step in any truly successful development program. The transfer and
implementation of any technology to industry in support of military and commercial
business opportunities is the true test of the value of the technology and the commitment
of the participants.

HTC's corporate charter is to transfer leading-edge technology to Honeywell customers,
including Honeywell product divisions, related industrial partners, and military prime
contractors. HTC's technology transfer success stories include the highly successful
Boeing 777 integrated avionics, dual-use ring-laser-gyro product family, Ada, and
VHSIC, to name a few. Because HTC supports both military and commercial product
divisions, we have demonstrated dual-use technology transfer for more than 10 years. In
addition, HTC has a proven record of technology transfer to both industrial and academic
communities. We continue this tradition of open community technology transfer in the
current DARPA-funded programs DSSA, RASSP, and Prototech.

The work performed under this contract was primarily done within the Automated
Reasoning group at HTC. The Automated Reasoning group consists of 16 research staff,
plus supporting personnel, within the Systems and Software technology area. We have
ongoing projects in the areas of planning and scheduling, constraint-based design,
simulation, health maintenance and diagnosis, real-time AI, information modeling, neural

47

nets, data mining, and collaborative agent-based systems. The work environment fosters
the development of individual research projects either within or complementary to
current research areas. The research we conduct tends to be applied. Proving out ideas
through the construction of prototype systems is a common activity, though not to the
complete exclusion of more theoretical research. Interaction with the larger research
community and collaboration with researchers both inside and outside of Honeywell are
encouraged

9 Dean's Thesis

Honeywell TMM Contract

Kronos Scheduler

SAFEbus™ Scheduler

EOSDIS Scheduling

Batch Manufacturing

Distributed Scheduling
Collaborative Problem Solving
Scheduler Reimplimentation and Rehqsting

Refinery Scheduling

1 TMM Development at Brown University

 I

19 B5 19B6 1987 19 38 19B9 1990 1901 1992 1993 1994 1995 1996 1397

Figure 23 History of Scheduling at HTC

Scheduling has long been a key thrust area of the Automated Reasoning group. This
thrust area has grown out of an initial DARPA contract to develop a version of the Time-
Map Manager (TMM). Scheduling tools based on the TMM technology have been
developed for a wide variety of domains, including operations planning for a Space
Shuttle science module, satellite data analysis and retrieval for NASA's Mission to Planet
Earth, processor and communication scheduling for the Boeing 777 Flight Management
System, and batch scheduling (see Figure 23 History of Scheduling at HTC). These
systems run the gamut from predominantly manual to completely automatic.

Spacehab. The Kronos scheduler was developed for the purpose of assisting humans in
scheduling experiments for a science module that has flown on several Space Shuttle
missions. The scheduling process is largely manual. Activities are manually selected to
be added to the schedule. Constraints such as execution windows and
predecessor/successor relationships are enforced automatically. The availability of
needed resources is also checked automatically—a real benefit, since resource
requirements can be complex—but the choice of resource assignment is left to the human

48

user, unless there is only a single consistent assignment. Possible and necessary resource
conflicts are detected and presented to the user for resolution, either through the addition
of ordering links between activities or by changing resource assignments. These
"resource bounds" are the visible manifestation of the envelope of schedules consistent
with the current set of constraints.

EOSDIS. NASA's Earth Observing System (EOS) is a multiyear, multibillion-dollar
project aimed at gathering scientific information about the Earth's environment through
satellite-based remote sensing. The EOS Data and Information System (EOSDIS) will be
responsible for archiving and analyzing the resulting data. EOSDIS functions include
managing mission information, archiving and distributing data, and generating and
disseminating scientific data products. We have provided two separate applications in
support of this process. The first is the Data Archiving and Distribution Scheduler
(DADS), which schedules the retrieval of data from terabyte tape archives, its staging on
disk during processing, and eventual distribution to the interested parties. DADS includes
an interface to an execution and dispatch system through which the schedule is updated
automatically as the course of events diverges from that predicted in the current schedule.
This updating capability highlights one of the strengths of the least-commitment CES
approach. As long as the course of events does not diverge too far from that predicted, the
system simply updates the projected start and end times of activities as appropriate. When
a deadline or some other commitment is threatened, that fact is detected and the system
will reschedule, either automatically or by prompting a human user to make a decision.

The other system we have provided is an extension of an existing NASA planning tool
for image analysis, based on NONLIN. Our extension of this tool in a system called
PLASTIC adds the ability to backtrack in planning based on estimates on the duration of
planning (sub)tasks at any level in the planning hierarchy. These duration estimates are
ultimately derived from worst-case bounds on execution times for the primitive subtasks
involved, but can also be modified directly based on previous experience. The estimates
are updated automatically as the system runs, permitting a smooth response to a changing
computational environment.

Avionics scheduling. Another of the applications to which we have applied CES is the
generation of static schedules for processing time and bus communications, involving
safety-critical applications running on flight hardware on a commercial airplane. The
schedule is static for reasons having to do with verifiability and repeatability of behavior,
and ultimately with FAA certification for flight safety. This problem is both large and
complex. In a typical problem instance, there are approximately 30,000 activities. There
are six processors, all between 80% and 90% loaded, with processes periodic at rates
between 5 and 80 Hz. Data communication is specified between processes, not between
process instances. To make matters worse, we are constructing a schedule for a 200-ms
"frame" that itself runs at 5 Hz. Communication from one instance of this frame to the
next is entirely legal, so there is in some sense a circular model of time in which
constraints on activities late in the frame may affect activities early in the frame.

The system constructed for this problem generates an initial schedule entirely
automatically—the problem is too big for any but the most abstract level of manual
intervention. Rescheduling is a more interactive process in which the user may specify
preferences regarding what in the existing schedule will change. These preferences are

49

structured according to how changes in the schedule affect the certification level of
various system functions.

4J.2 Batch Manufacturing
Batch manufacturing occupies the gray area between continuous and discrete
manufacturing. In continuous manufacturing, a stream passes through a process, yielding
a continuous stream of product. In discrete manufacturing, an identifiable individual
product is created through a series of steps in a plant. In batch manufacturing, there are
neither individual products nor a stream of product; rather, one makes product in batches.

Some sample batch manufacturing processes are the making of food mixes, composite
materials (e.g., for airplane control surfaces), and beer brewing. These show the wide
range of complexity within batch manufacturing. Food mix manufacturing is often
largely a matter of materials handling: getting the right mix of substances into a container
and stirring. On the other hand, both composite materials manufacture and beer brewing
involve complex chemical reactions.

Batch manufacturing processes share several common features. Batch processes are
characterized by relatively frequent changes from product to product. We typically see
more frequent change of product than in continuous manufacturing, where one attempts
to maintain stable conditions, but less than in flexible discrete manufacturing, where one
sees production of customized single products (e.g., cars). Control of batch processes
requires a combination of both continuous and discrete process control. One feature often
found in batch processes is limitations on the amount of production in a single batch,
imposed by vessel sizes. For example, in beer brewing, the amount of brew that can be
made in a batch depends on the sizes of the kettles in the brewery.

Batch processes are performed according to procedure descriptions called recipes.
Recently, recipe terminology has been standardized by the Instrument Society of America
(ISA). Recipes are hierarchically organized. There are three levels of recipe. The highest
level is the general recipe that describes the make up of the product. For example, in a
reactive process,iv this might be a description of the set of operations necessary and the
proportions of the various ingredients. At the next lower level, the site recipe describes
how a product is made at the particular plant in question. One of the most significant
pieces of information at this intermediate level is a description of the process train: the
set of plant units that the batch will pass through. At the lowest level is the unit recipe—
the set of operations that will be executed by a particular piece of the plant. For example,
a chemical process might have two unit recipes, one for a premixer that mixes the set of
ingredients and ensures that the proportions are correct and one for a reactor that is
charged by the premixer (and possibly with some catalysts as well), heats and agitates the
mixture, and finally dumps it to a storage tank.

iv We use the term "reactive" to mean a process that involves chemical reaction, such as composite curing
or beer fermentation. This is distinguished from nonreactive processes such as mixing, used in making, for
example, powdered food mixes.

50

4.7.3 Batch Manufacturing Scheduling Problem^ I

4J.3T1 Elementsof the scheduling problem"

Batch scheduling is the problem of fulfilling a set of product orders, which must be made
according to some recipes, within the limitations of a particular plant and subject to a set
of constraints.

Orders. The orders specify substances to be produced, amounts and deadlines, and
release times. These represent the request that a certain amount of the substance in
question be produced by the deadline. The release time indicates the earliest time
production can start; this is often necessary for products that can spoil. The production
orders need not correspond one-to-one to customer orders. In a just-in-time (JIT)
manufacturing plant, production orders are only issued in response to customer orders, so
for each customer order, there will be a production order for each product the customer
wants. However, most plants today are not pure just in time plants. Instead, most plants
try to keep a particular size inventory of each product. Often the size of this inventory is
determined based on projected demand, according to an MRP regime (see discussion of
interfaces, below, 4.14).

Recipes. Each product has an associated set of recipes (for most plants there will be only
one recipe per product). Each recipe defines how the activity of producing a batch of
product is decomposed into a set of individual activities. The recipe will also have
associated with it a nominal production amount and a minimum and a maximum
production amount. The minimum and maximum production amounts will typically be
determined by the capabilities of key pieces of equipment. For example, in a brewery, the
size of a batch of beer will typically be limited by the size of the kettles in the plant. If the
largest kettle is 1000 gallons, that will be the size of the largest batch.

Each of the activities in the recipe will have an associated set of resource requirements
and a duration. Typically, the resource requirements will include a piece of plant
equipment that the activity will need to have for its exclusive use. For example, when
fermenting beer, one must have a tank exclusively devoted to fermenting the batch in
question. There may also be ancillary requirements. Typical ancillary requirements
include the use of metric resources shared across the plant. Depending on the plant, labor
may be an important ancillary requirement. In reactive processes, plant utilities such as
steam heat and electrical power may be limiting factors. The duration of the activity may
be a function of the size of the batch. For example, when mixing a batch, the agitation
time typically is determined by the amount to be mixed.

The batch recipe must also specify connectivity requirements. For example, if two
substances are going to be sifted together in a premixer and then added to the batch
proper in a reactor, the premixer chosen must be able to dump into the reactor where the
batch is cooking. In many batch plants, it is too expensive to make all possible
connections, so connectivity is an important factor in correct scheduling.

The Plant. The plant configuration often provides the most important limitations on
productivity. We have already discussed the question of connectivity. The model of the
plant to be scheduled must contain specifications of the units, their capacities, and the
connections between them. In very large plants, it will also be important to specify the

51

rate at which substances can be moved along connections. It is possible that the time a
batch spends in various pipes will be the determining factor in the batch duration.

A very important feature of plant configuration is the amount of storage present in the
plant. If a product cannot be stored or shipped immediately, it should not be produced!
The plant model must specify how much tankage (or other storage) is available, what
substances can be stored in what tanks, what the tanks are connected to, and so on.

Handling storage is a key requirement for batch scheduling. One reason that previous
scheduling systems have not been popular in batch process industriesv is that they have
not successfully tackled storage management. In many batch processes, storage capacity
is a key limiting factor; that is, if we make a batch of product, we must be certain that
there is an appropriate tank (or other storage location) in which to put it. Likewise, we
must postpone production of a particular substance until such time as we have sufficient
stocks of all the raw materials. Previously, scheduling products for batch manufacturing
have been job-shop schedulers for discrete manufacturing that have been minimally
extended. They have not been able to take into account the continuous aspects of the
batch scheduling problem.

Changeovers. One aspect of batch manufacturing not handled by previous scheduling
systems was the issue of changeovers between activities. Often activities in a batch
process will leave a piece of equipment in a particular state, and this state will have a
profound effect on the next activity to use that equipment. To this end, we model some
activities as having state requirements and as having a duration that are a function of the
immediately preceding state of the equipment.

Miscellaneous Constraints. Miscellaneous constraints are used to capture other features
of the scheduling problem. Two particularly important kinds of constraints are nonlocal
limitations and user constraints. Nonlocal limitations are constraints concerning
interacting activities. One particularly important class of constraints is setup and cleaning
times. Another important class of constraints is labor supply. Often the pool of plant labor
is not tied to particular units, but simply specifies a plantwide limitation on task
completion.

User constraints are important to capture features of the problem that are not amenable to
explicit modeling. For example, rather than specifying a complex model of preferences,
the plant manager may simply wish to specify that batch A should be done before batch
B, because the manager knows that the customer who has requested batch A needs it
more urgently than the customer for batch B.

4.7.3.2 -"'s6\iMoi^ziiizzr.ziiiir^Z7sz'7.'"'. ~ . .
A schedule is a solution to the above problem. To be valid, a schedule must contain the
following elements:

• Assignment of resources to each activity;

' Or the continuous process industries, for that matter.

52

• A partial order over the set of activities in the schedule, such that the resulting
schedule has no possible resource contentions.

The partial order is constructed by making a set of pairwise ordering decisions on
activities in the schedule. These decisions are made to avoid resource contention.

^ Cons^m^Envne/ope Scheduling ^^^^^^111
Over the past years, the Automated Reasoning group at HTC has developed and
implemented the techniques required to solve large, complex scheduling problems.
Solving a scheduling problem does not mean simply implementing an algorithm for
solving a particular constraint satisfaction or constrained optimization problem. For many
organizations, constructing schedules is an extended, iterative process that may involve
negotiation among various agents, scheduling choices made for reasons not easily
implemented in an automatic scheduler, and last-minute changes when events do not go
as expected. Any attempt to provide a useful scheduler must consider the process by
which a schedule is constructed and used in the organization.

In our approach, which we call constraint-envelope scheduling, schedules are constructed
by a process of "iterative refinement" in which scheduling decisions correspond to
constraining an activity with respect to either another activity or to some timeline. The
schedule becomes more detailed as activities and constraints are added. Undoing a
scheduling decision means removing a constraint, not removing an activity from a
specified place on the timeline.

CES is a least-commitment approach. We do not assign a set of activities to places on a
timeline, assigning each activity a start and end point. Rather, we collect sets of activities
and constrain them only as needed. Constraints may be in terms of relations between
activities (e.g., the dumping phase of a reactor activity must follow the heating phase) or
relative to metric time (the heating phase takes 2 hours, or the batch must be done by the
close of business on Tuesday). Additional constraints are automatically added only as
needed to resolve conflicts over resources. For example, two activities that use the same
reactor in a plant must be ordered with respect to one another. On the other hand, if these
two activities used different reactors, their ordering would not have to be determined.

The least-commitment nature of our schedules is an important advantage when it comes
to rescheduling. If an event arises that makes a resource unavailable, or an ongoing
activity takes longer than expected, the effect on the schedule is minimized. First, only
those activities related by a chain of constraints to the activities explicitly moved will be
affected. Second, if the set of constraints in the schedule is consistent with the new event,
the projected effect of the schedule can be updated efficiently without any rescheduling at
all.

Our schedulers distinguish between schedule modification (or schedule update) and
rescheduling. For example, if one step of a complex process takes longer than expected,
but the process (and the other processes that follow it) can still be completed before their
deadlines, then all that needs happen is to update the estimated start and completion
times—a task that can be accomplished very quickly. No reordering or reassignment of
activities need take place. Only if some constraint is violated (e.g., an activity cannot be

53

completed by its deadline) need we actually reschedule and change the scheduling
decisions previously made.

The assumptions underlying constraint envelope scheduling are as follows:

1. Explicitly modeling the constraints resulting from specific scheduling decisions
makes the schedule easier to construct and modify.

2. Representing only those relationships required by the current set of constraints (the
decisions made so far) provides a more useful picture of the current state of the
scheduling effort.

The main consequence of this approach is that the scheduler does not manipulate totally
ordered timelines of activities and resource utilization. Instead, the evolving schedule
consists of a partially ordered set of activities becoming increasingly ordered as
additional constraints are added (or less so, as those decisions are rescinded). This basic
approach is not unique to Honeywell. What is unique to our approach is the support
provided for reasoning about partially specified schedules and the techniques we use for
searching through the resulting space.

Although providing increased flexibility (through delaying commitment), the explicit
representation of partially ordered activities in the time map makes reasoning about
resource usage and other state changes more complicated. It is no longer possible to
construct a single timeline representing, for example, changing resource availability over
time. Instead, the system computes bounds on the system's behavior.

Despite the approximate nature of this reasoning, we are ahead of the game: where the
least-commitment approach to scheduling can at least provide approximate answers in
support of scheduling decisions (for example, what order activities should occur in),
timeline schedulers make the same decisions arbitrarily—putting an activity on the
timeline is a stronger commitment than constraining it to occur, say, between two other
activities or within a given time window.

Our successful application of CES relies heavily on two supporting facilities. The first is
a set of sophisticated search techniques loosely based on an extension to Ginsberg's
dynamic backtracking/1 Dynamic backtracking is a smart search strategy in which the
stack can be rearranged during search so as to focus attention on the relevant parts of the
problem. This rearrangement is directed and controlled through the application of a set of
specialized no-goods called eliminations, based on the set of assigned variables. These
eliminations are explanations—in terms of other decisions—for why a particular decision
cannot be made. For example, in a batch scheduling problem, one might not be able to
process a batch Bl on a particular reactor (reactor A) because another job (B2) is using
the reactor. So the reason (elimination explanation) we can't assign reactor A to Bl is our
earlier choice to assign it to B2. What that means is that we must either choose a different
reactor for this job, relax its deadline, or move the other job.

Our extensions to dynamic backtracking include the ability to return inconsistent sets of
variables upon failure and to attempt assignments that are not known to be consistent.

' Ginsberg, op. cit.

54

These techniques provide us with the ability to tackle large constraint satisfaction
problems efficiently and to provide information about sets of inconsistent constraints.
These constraints provide an explicit record of previous decisions (deadlines, activity
orderings, etc.), allowing us to provide guidance to users in reformulating problems
when, for example, a deadline is too tight or resources are oversubscribed.

We also make use of a highly optimized temporal constraint engine. Determining the
impact of a scheduling decision on a set of temporal constraints is the activity that is the
"inner loop" of our scheduling approach. Our search engines must be able to explore the
consequences of many different scheduling decisions. This is made possible by the
effective exploitation of an extremely efficient temporal constraint manager called the
Interval Constraint Engine (ICE), which is tuned to provide efficient support for a
dynamically changing graph of temporal constraints. The underlying representation
manipulated by ICE is a graph of time points t and constraints of the form t2 - h <d. The
inference supported by ICE involves proving or disproving possible relations between
points, given the current set of constraints. For example, in adding an ordering between
activities to resolve a resource conflict, ICE would be consulted to determine which of
the possible orderings was feasible given the current state of the schedule.

ICE is a difficult level at which to encode a scheduling problem, because it simply talks
about time points and the relationships between them. Accordingly, we support our
schedulers with an activity and task model that captures common features of a wide
variety of scheduling problems. These different problems had widely differing kinds of
significant activities. However, in all of them, a scheduler needs to be able to do similar
things to activities—put one before another, choose what resources to assign to meet the
requirements of an activity, and so on. Accordingly, we developed a library of objects
and methods encapsulating the common features.

The differences between scheduling problems cannot be wished away, however. Building
a scheduler for, NASA EOSvii data archiving operations for example, differs substantially
from building one for batch manufacturing or avionics software. These different domains
have widely differing kinds of significant activities, so each scheduling problem requires
us to design new activities and methods that inherit from those in the common task and
resource model.

The interaction between the search engine (the dynamic backtracker) and these domain-
specific activities is mediated by flexible constraint objects (FCOs). We developed FCOs
so that we would not have to reengineer the search engine for each new scheduling
problem. The FCOs capture the common features in interactions between the search
engine and the domain model. Essentially, a search engine makes decisions or assigns
variables. These decisions have to be translated into effects on the domain model (like
putting one activity before another). The FCOs are objects that encapsulate the
transactions between the problem solver and the domain model. Many of these can be
reused from scheduler to scheduler—for example, the FCO that handles the decision to
put activity A before activity B, or vice versa. Others have to be built specifically for a

1 Earth Observing System.

55

gi\ en scheduling problem—for example, the FCO that handles the effects of assigning a
g en ground station to handling transmissions from a particular satellite.

4.9 System Requirements
In this section, we discuss how the batch scheduling program must interact with other
elements of enterprise management in a manufacturing site. We start by discussing how
human schedulers should work with the scheduling program. On the basis of our
experience with manufacturing enterprises and with several previous scheduling systems,
we argue for a mixed-initiative approach in which computer system and human scheduler
work together to solve the scheduling problem. We discuss this in Section 4.10.

Production
Planning

Finite Capacity
Scheduling

Process Control,
Process Optimization

Figure 24 Manufacturing Communication Gap

Automated scheduling systems provide an opportunity to solve a key problem in
manufacturing integration: overcoming the gap between business management (the "bean
counters") and plant operations personnel (see Figure 24 Manufacturing
Communication Gap). Business-oriented personnel in the batch (and discrete)
manufacturing industry organize operations using production planning systems, typically
based on some flavor of materialsv,ii resource planning (MRP or MRP-II) system. Plant
personnel, on the other hand, work in terms of process control and optimization, typically
using some form of distributed control system (DCS). The world view of these two
systems diverges widely.
One critical difference between production planning and process control models is that
the MRP system models simply consider limits on the rate at which various products can
be made, and they consider these rates independently. For example, if there are two
products, a and b, the MRP system will contain information about how much of each can

viii Sometimes written as "manufacturing" rather than "materials."

56

be made in a day. However, the MRP system will not specify whether or not a and b can
be made simultaneously. The person using the MRP system will not know whether or not
a and b require the same piece of production equipment and may end up generating
schedules that are not feasible when the plant's finite capacity is taken into account.

In the design of MRP systems, the above gap is supposed to be filled by finite-capacity
scheduling. However, there are few very good finite-capacity scheduling systems
available at all, and no good ones for batch manufacturing; finite-capacity scheduling for
discrete manufacturing is much better understood than capacity scheduling for batch. The
upshot is that most batch manufacturing enterprises are left in the unhappy situation
shown in Figure 24 Manufacturing Communication Gap.
The communications gap is not simply a problem of communicating top down. Bottom-
up communication is also affected. It is very difficult to determine the effect on business
concerns of events at the DCS level. For example, at this level, one typically only has
aggregate quantities of products and raw materials, rather than customer orders. Often it
is even difficult to identify what events have happened—all one has is measurements of
particular process variables such as vessel temperatures, etc.

Productio
nPlanning

Feasibility
information
actual
pgwimtion

Production
argets

Schedulin
_g

Dispatch in
Jasks for
execution

Control
System

Task
execution
informatio
n

Figure 25 Bridging the gap between business and operations.

Schedulers must bridge the gap between operations and business concerns, as Figure 14
shows. However, most human schedulers have no tools to help them in this task. The
information generated by production planning and process control systems is not aimed at
their concerns. Our scheduling technology bridges this gap by communicating directly
with production planning and distributed control systems, as shown in Figure 25. To do
this, the scheduling system must be able to read data from DCS and MRP systems and
also produce information that those systems can import.

57

4.10 Mixed-Initiative Interaction
Any scheduling system for batch manufacturing must support mixed-initiative
interaction. What this means is that the automated system and the human user must be
able to work together to construct a schedule. Successfully supporting plant management
in batch manufacturing draws on both human expertise and the patient exploration of
many scenarios, of which modern, high-powered workstations are capable, especially
when aided by clever algorithms.

Human expertise is needed because of limitations in the models used by automated
scheduling systems. For example, consider a case where a plant is being used at full
capacity and then a new order is received from customer ,4. Customer A is a very
important customer to the enterprise and needs this order completed immediately, to
satisfy one of its own key customers. We do not want the plant manager to have to devise
a complex objective function or set of rules to ensure that customer A's job will be given
priority. The plant manager should simply be able to insert the new order into the
schedule at an appropriate point, and the scheduling system should appropriately adapt
the schedule.

That example concerned the setting of objectives. Plant personnel also often have
experience that is difficult to capture. For example, consider the case of a food oil plant.
The plant engineers may simply know that, because of hot, humid weather, it will take
longer than normal to winterize a batch of oil. They are not likely to have an in-depth
physical or mathematical model from which this can be predicted. Despite this, their
knowledge is reliable and should be exploited. It should be possible for a plant engineer
to examine the schedule, say "this operation will not be completed in 8 hours; I think it
will probably take 12," and simply make the required edit to the schedule (e.g., by
stretching a ribbon on a Gantt chart display). Again, the automatic scheduling program
should respond appropriately.

So far, we have talked only about why the automatic scheduling system needs to respond
to human knowledge. What does the automatic scheduling system bring to the table? The
scheduling system supplies two essential capabilities: projection (or simulation) and
search.

Projection—To schedule any process, one must be able to make scheduling decisions
(such as "start batch a before batch b" or "start batch a at 12:00 tomorrow") and
determine what effect these decisions will have. In complicated processes, this projection
may be very difficult, since a single, early decision may have ramifications throughout
the period of the schedule. An automatic system, armed with a process model, can do
better than humans at tracking out all the ramifications of scheduling decisions (provided
the model it is given is accurate).

In many applications, providing model-based projection alone is sufficient. This is not the
case in batch manufacturing. In even relatively modest batch plants, an immense number
of scenarios must be explored in making a schedule. We know of many cases where a
sophisticated scheduler, trying to solve his or her scheduling problem, has developed a
spreadsheet that is capable of projecting the effects of scheduling decisions, yet the
scheduling problem remains too difficult. The problem is that human beings are ill-suited

58

to exploring a large space of possible scheduling decisions systematically. This search
task is better left to a computer.

However, search alone is not sufficient. The scheduling system must be able to
effectively communicate the results of its search to users. For example, any effective
scheduling system for a moderately complex domain needs to support the user in
constructing an initial schedule, modifying an existing schedule, and detecting and
characterizing unfeasibility. The last of these functions is not universally recognized as
crucial, but we have found it to be of great importance. The initial stages of solving a
scheduling problem can involve an extended period in which those responsible for
generating the initial schedule requirements must be persuaded to modify those
requirements to achieve consistency.

4.11Interaction wW Control System
To meet the needs of enterprise integration, the scheduling system must be able to do two
things:

1.Generate instructions that the control system, with its human operators, can execute.

2.Track what actually happens on the plant floor in order to:

a. Update its own model, so that the schedule continues to be an accurate picture
of plant events and capabilities;

b. Provide feedback to the business planners about the successful completion of
their plans (or any disruptions).

4/12 Sending instructions to the DCS
In the current state of the art, automatic generation of instructions for execution is
difficult because batch control systems are not standardized. Accordingly, there is no
standard format in which these orders can be generated, nor is there even a firm set of
concepts common to all batch control systems. The ISA SP88 standard aims to fill this
gap, but it is not yet completed. For purposes of this project, we have constructed a batch
control system simulator based on our knowledge of currently available batch control
systems and features likely to be present in future batch control systems. It made the most
sense for us to use a simulated system to develop a demonstration system while
productization plans are firmed up. The interface with the simulated system was based
loosely on our knowledge of Honeywell batch control products like Batch Supervisor PC
(BSPC)™ and TotalPlant Batch™.

We did not assume a very sophisticated interface, but simply the ability to trigger
particular recipes with particular scale factors. Often batch recipes are encoded in terms
of a standard batch size, in much the same way cooking recipes give a standard amount,
say, "24 medium-sized cookies." Like a chef with an especially large or small group of
diners, the batch plant operator will adjust the scale of a recipe within the limits of the
plant and the recipe—for example, one can't brew more beer in one batch than the largest
vessel will hold, and there's some minimum amount below which the batch will not be
large enough to ferment correctly.

59

4.13 Retrieving information fromiheDCS ^
Typically, distributed control systems provide information about significant events by
producing an event stream, or history stream. The event stream will be made up of time-
stamped event tokens. In a regulatory control system, the plant history is likely to be
made up simply of measurements of significant elements of plant state (usually referred
to as points). In more sophisticated batch control systems, there will also be event tokens
in the history stream for significant events in the execution of batch recipes, for example,
the beginning or end of a unit recipe. Many distributed control systems provide a plant
history database, such as Honeywell's Uniformance™. A plant history database relieves
parties interested in significant events from the necessity of watching and parsing the
event stream. Instead, they can simply query the database in a standard relational format,
and some plant history databases (e.g., Honeywell's Uniformance with InterPlant™
Operation Events) will issue notifications when significant events occur.

In our demonstration system, we have built a plant DCS simulator that generates a stream
of time-stamped recipe (and phase) begin and end events. The scheduling system reads
these events and, based on them, updates its schedule with actual begin and end times.
The effects of these can ripple out. For example, if the schedule dictated that batch B
must start between 9:00 and 10:00 and the scheduler learns that it has actually begun at
9:30, the scheduler will update its estimates of when other activities will occur. Activities
that must wait for B to end—either because they must work on what B produces or
because they must wait for B to finish to get access to some piece of equipment—will
have their time intervals updated.

As the schedule in the scheduling tool is updated, the HBS will check the estimates of
completion time against the orders it has received from the production planning system
(see Section 4.11) and generate updates to the production planning system, so that
business personnel can determine when customer orders will be fulfilled and when more
raw materials will be needed.

4.14 Interaction with Production Planning
MRP-based production planning works in terms of inventory to meet orders (both known
customer orders and expected orders, projected from past demand). Interacting with MRP
planning, the scheduler must do two things:

1. Provide feedback to the planner about the feasibility of his/her production plans and

2. Update the planner's inventory information based on actual plant performance.

4.15 Closing the planning loop " „ „ .._
As mentioned earlier, MRP systems do not take into account the finite capacity of actual
plants. Therefore, it is possible for them to generate production plans that are not feasible.
The HBS provides feedback to the production planner's MRP system, so that production
plans can be adjusted to fit the realities of plants.

To understand the role of finite-capacity scheduling, it will help to know a little about
how MRP systems work. MRP systems generate production orders for finished products

60

based on projected demand. For more JIT-style enterprises, production orders for finished
products will be generated directly from customer orders.

The MRP system will determine, from the finished products to be made, what
intermediate products need to be made (e.g., in a margarine plant, before one can make
margarine, one must produce deodorized oil from some raw vegetable oil), and from the
intermediate products, what raw materials must be procured and when they must arrive.

The MRP system generates a set of planned orders in this process. Some of these orders
become firm planned orders.

Interacting with the MRP system, the scheduler accepts a set of planned final product
orders (it can actually handle intermediate products as well, along the same lines). These
come in with release times and deadlines. The scheduler will either successfully schedule
all of the orders or indicate an infeasibility. In the event of scheduling all orders, the
scheduler will return a more accurate picture of when production will take place. This can
be used to update the MRP system's planned production orders to firm planned orders.
From this new estimate, the MRP system will be able to compute more accurate estimates
on when raw materials (and intermediate materials) will be needed.

Sometimes the set of orders that the production planner requests will not all be
satisfiable. In this case, the scheduler will recognize the infeasibility and identify a subset
of the requests that create an inconsistency. For example, if the production planner
requests three batches of yogurt on Wednesday afternoon, the scheduler may report that
these cannot all be done, say, if there is only one vessel available for fermentation. The
BMS will not simply say no. It will distinguish the set of orders involved in the
infeasibility from other activities (e.g., other yogurt batches needed later in the week and
orders for other products that do not require a fermentation vessel). This feedback will
give the production planner the opportunity to revise the orders, either by relaxing
deadlines or release times or by canceling orders. This process of planning and feasibility
testing will be an iterative one, continuing until a schedule agreeable to both parties can
be devised.

4.16 Updating plali![E^d]w
The interaction with production planning will not stop when an initial schedule is
derived. That would only work if production were completely predictable and reliable,
which no real process is. In fact, processes get delayed, equipment breaks, customers
cancel orders, and so on.

Process delays and equipment breakdowns will be noticed by the BMS, either from its
connection to the plant control system (see Section 4.11) or from notification by plant
personnel (e.g., in cases where an expert can predict, based on past experience, that some
activity will take more or less time than expected). The BMS will then roll these events
into its schedule, determine whether any will prevent the planner's objectives from being
met, and, if so, notify the planner.

Schedule upsets can occur from the top down as well as the bottom up: for example,
urgent new orders can arrive, orders may be canceled by customers, or necessary raw
materials may fail to arrive. In that case, updates will have to be generated from the

61

production planning/inventory system to the BMS. The BMS will pick these up, and the
schedule can be updated, possibly involving a discussion with the production planners
along the lines outlined in the previous section.

System Architecture
During this contract, HTC has implemented a Batch Manufacturing Scheduler system. To
demonstrate the integration potential of the BMS, HTC, with help from Template
Software, has also constructed a simple enterprise integration simulator. The architecture
of this integrated manufacturing logistics demonstration is shown in

Figure 26 Enterprise Integration Architecture

. The components built by Template Software are illustrated in gray, and those built by
HTC are shown in green. The Template components, and communication between them
and the scheduler, were built using Template Software's Workflow Template.

The scheduler itself is decomposed according to a functional, object-oriented structure.
Major components of the scheduler are illustrated in Figure 27 Scheduler System
Architecture. As far as the core functionality of scheduling is concerned, the scheduler
operates by transactions between a problem solver (or search engine) and a domain
model. The domain model is the formulation of the scheduling problem. It is the search
engine's job to explore possible alternative decisions and the domain model's job to
determine whether a decision is good or not. Communication between the domain model
and the search engine is encapsulated in a set of flexible constraint objects, or FCOS.
This intermediate layer allows us to have generic search engines, applicable to many
problems; the FCOS translate decisions made by the search engine into changes to the
domain model.

Billing
<■ K->

Figure 26 Enterprise Integration Architecture

62

.... ' . .- - L
- - • ■•■•■

tää»ääfe"S&wrMfe^

BäfemodefeS
■ . ■ w^ • **^v.-. •»■••.7]

ComÄMs£^
^ra*

RJsrÄeM^il
i **'-,;• ."'i?'-''"'

SJ? iV ST*;-*??-

Constraint
§K"Engine|"j

Figure 27 Scheduler System Architecture

The domain model as a whole is decomposed into three components: the domain model
proper, the common task and resource model, and the temporal constraint engine. The
temporal constraint engine (also referred to as the Interval Constraint Engine, or ICE)
acts as a database of time points and constraints between those points. For example, when
we decide to schedule activity A before activity B, we can do this by constraining the end
point of activity A to be before (less than or equal to) the start point of activity B. ICE
will record and propagate the effects of such constraints.

As our example above illustrated, when solving scheduling problems, we do not typically
think about time points. Rather, we think in terms of activities and the relationships
between them. In our example, we think of scheduling activity A before activity B, not of
a relationship between time points. The Common Task and Resource (CTR) Model
captures an activity-based model of schedule construction. It provides a layer of
abstraction permitting us to talk about ordering activities rather than points. Typically, we
need to order activities because they must use resources (e.g., plant equipment), and there
is some limit on how much of a given resource can be used at any time. For example, if
two activities need to use the same reactor, they can't both occur at the same time. Since
reasoning about resources is central to scheduling, the CTR model provides attributes and
methods to represent and reason about the resource requirements of activities.

The CTR model includes objects and methods that we have found useful across a wide
variety of scheduling problems. However, we have always found that individual
scheduling problems require their own special facilities. Accordingly, we complete the
domain model by adding special objects and methods for the particular domain in which
we are working (in this case, batch manufacturing).

The final two components are the schedule server and the graphical user interface (GUI).
The BMS is built using a client-server architecture in which the scheduler as a whole
offers services. The most common way to take advantage of these services is to interact

63

with the schedule server through the GUI. However, in an integrated scheduling
application, there are other interactions with the scheduler. For example, the scheduler
must watch the plant history stream to observe events on the plant floor. The scheduler
can then update its forecast of future events based not only on the user's plan, but also on
what has happened in the execution of the plan The client-server architecture also
simplifies our job of providing a scheduling system that multiple users can interact with
concurrently. Multiple access is important because, in most organizations, responsibility
for planning operations is shared among multiple stakeholders.

§. Domain Models
Following the principles of object-oriented design, the design of our BMS centers around
a model of its domain, batch manufacturing. The batch object model we have developed
is a layered one. The entities in the batch object model are all specializations of a
common activity and task model (CATM).

:5.j Activity and Task Model
The Common Activity and Task Model (CATM) contains the object classes we have
found useful in most, if not all, of our scheduling applications. The most important
elements of the CATM are:

1. Activities,

2. Resources, and

3. Resource requirements.

5.2 Activities
A central purpose of the activity object class is to simplify programmers' interaction with
the interval constraint engine (see Section 4.3). The ICE is able to track bounds on
significant points in time and acts as a database and consistency checker in the scheduling
process (see Section 6.2). However, it is often inconvenient to work in terms of simple
time points. Rather, we often wish to work at the level of activities (e.g., "put activity A
after activity B") The activity object permits us to work at this level.

The activity class, in combination with the resource requirement class, also helps us track
the use of resources over time, since resources are typically used by activities. We will
discuss this later in this report.

5.3 Resources "*_. ,~"'.'.Z.."""__. -.^—^ - J_~___-_~:-.-
In all but the simplest scheduling problems, the key issue is determining how to allocate
resources to activities and how to spread those activities over time. In general, the need to
sequence activities arises because they require resources. For example, in a simple job-
shop scheduling problem, a number of jobs must be put through a number of machines. It
is only because these jobs must compete for the machines that they cannot simply be
done simultaneously.

64

Accordingly, resources are a central component of our CATM. Resources come in
different classes, depending on the extent to which they can be shared. There are unary
resources that can have only a single user at a time, like the machines in a job-shop
problem. There are also metric resources (pools of indistinguishable resources). For
example, a manufacturing plant with a steam heat system may only be able to heat some
n reactors at a time. We could model this as a pool of heat of size n. Finally, there are
consumable resources. These are things like tank inventory that are consumed by
shipments, as opposed to simply being employed for a time, like the heat in the previous
example.

5.4 Resource Requirements
Resource requirements are the final piece of specifying a scheduling problem. As stated
earlier, it is only because of finite resources that scheduling problems arise. Resource
requirements provide the way to map from activities to resources. Resource requirements
are objects that can be attached to activities and that specify the resources the
corresponding activity needs. Then, to solve the scheduling problem, we can identify
resource contentions (sets of activities that might overlap and might overuse the
resources). By scheduling those activities apart from each other, we solve the scheduling
problem.

5.5 Batch Object Model r/~~"^~.ZllZ~L"'7Z~~~L..".:l. 'I. .
The classes in the batch object model are all specializations of CATM classes. The key
extension we needed to make for batch manufacturing was a set of special hierarchical
activities to capture batches made according to recipes. These hierarchical recipes are
based on the specification of batch recipe terminology given in the ISA SP88 standard.

Batch recipes are organized into three levels:

1. Batch recipe,

2. Unit recipe,

3. Phase.

A batch recipe specifies the full set of activities needed to make a batch of a particular
substance. In complex, multistage batch plants, this will be made of multiple unit recipes.
A unit recipe specifies the set of actions that must be taken in a particular unit as part of
the process of making a batch. For example, in brewing beer, there might be three unit
recipes: one for the kettle or reactor in which the cooking takes place, one for the
fermentation tank, and one for the filtration plant. Unit recipes are composed of phases,
that correspond to individual control programs. From a scheduling point of view, phases
provide information about the synchronization of activities and about activities' use of
resources. To return to our beer brewing example, it is the way the pouring phase at the
end of the kettle unit recipe lines up with the filling phase of the fermentation unit recipe
that allows us to correctly sequence the batch as a whole. Likewise, we may track the use
of additional resources, such as process heat at the phase level—(e.g., the heating phase
of the kettle unit recipe will have a resource requirement for some amount of process

heat).

65

6. Flexible, Object Oriented Constr^nt ptisfäction
One technology HTC has brought to fruition through this program is flexible, object-
oriented constraint satisfaction. We have used object-oriented methods to develop loosely
coupled search engines and domain models. In the past, search engines and the variables
they worked on have been tightly coupled. This hinders reuse and modularity of design.
We have overcome this problem using flexible constraint objects.

Our development of FCOs has been pushed by two design criteria. First, we need to be
able to employ multiple, alternative search techniques in solving our constraint problems.
Second, we wish to distinguish the domain model from the search model.

We have found that different scheduling problems benefit from radically different search
methods. For example, in the scheduling of the Boeing 777 avionics, we used Ginsberg's
dynamic backtracking algorithm and found that it provided performance we could not
achieve with chronological backtracking (approximately two orders of magnitude). On
the other hand, when attempting to build a scheduler for satellite operations, we found
that the dynamic backtracking method could substantially hinder the scheduler. We have
found there is room for a wide variety of search techniques, varying particularly on the
dimension of how much effort is expended in identifying backtrack points. Therefore, we
believe it is essential to develop an interface between search problem and search engine
that permits the introduction of alternative search engines without a dramatic rewrite of
the overall scheduler.

A second separation we would like to enforce is between the model of the domain to be
scheduled and the search problem itself. A search problem is a specification of a set of
decisions to be made, but the domain model is a specification of the actual activities in
the domain. It is important that we be able to develop the domain model without making
undue commitments to the design of the search problem, because scheduling problems
vary widely in their characteristics, and the effect these variations will have on the
scheduling approach are difficult to determine in advance. Accordingly, we often find
ourselves wanting to be able to model the domain separately and only afterward choose
an appropriate search engine.

The way that we have arranged to meet these needs is to have, first of all, a domain
model. The domain model makes use of the Common Task and Resource Model
discussed earlier. We also have a search engine, or problem solver (or actually, a set of
alternative search engines to apply). This search engine works on a Search Problem
object. The key responsibility of the search problem is to supply a set of variable objects
for the search engine. The search engine solves the scheduling problem by assigning
values to these variables until all variables have been assigned and the set of variable
assignments is consistent. To determine whether variable assignments are consistent, we
must translate assignments of values to variables into scheduling decisions that affect
activities and determine the effect of these decisions. In other words, we must translate
between the language of assignments that the search engine operates in and the language
of orderings of activities, assignments of resources to activities, that is the province of the
domain model.

The translation between variable assignments and scheduling decisions is made by FCOs.
These objects are attached to search variable objects. By communicating with the domain

66

model, FCOs are able to answer key questions for the search engine, such as: "What
values of a search variable can be assigned, consistent with assignments to other
variables?" and "What assignments to other variables rule out assigning a value to this
variable?" The FCOs also translate the assignments made by the search engine into
scheduling decisions whose effects will be understandable by the user.

6.1 Search Engines and Search Problems. 1
As stated earlier, a search engine is a procedure that solves assignment problems. An
assignment problem is one of assigning values to a set of variables such that every
variable has a value and that these value assignments obey the constraints between
variables.

It is not a simple process to phrase a scheduling problem in such a way that a search
engine can solve it. Consider three alternative ways to schedule a number of jobs on a
single machine:

1. One could have a set of variables, one for the start time of each activity. The
constraints between variables would be that the start variables must be assigned so
that the activities will not overlap.

2. Alternatively (and this is an oversimplified description of the approach we take), one
could create a different set of variables, one for each pair of activities, and for each
pair of activities, choose which one of them comes first. Then the constraints must be
such that the activities can actually be ordered in this way. For example, the
constraints must ensure that we cannot put A after B, B after C, and C after A.

3. A final way to achieve the same task would be to have one variable for each activity.
The variables would take on values from 1 to n, indicating the position of the
corresponding task in the order. So if the variable for task ,4 took on value 5, A would
be the fifth task. A's start time could be calculated from the start time of the tasks
assigned indices 1, 2, 3, and 4.

The most effective way to pose the problem to a search engine will vary, depending on
the characteristics of the problem.

Not only are there various ways of presenting a problem to a search engine, there are
widely differing search strategies as well. A search engine is simply a program that
carries out a search strategy. The simplest, most common search strategy is chronological
backtracking: we go through a list of variables, assigning a value to each one in turn,
until we come to a variable that cannot be assigned a value. At this point, we backtrack to
the immediately preceding variable, unset it, try the next possible value for that variable,
and then move forward again. On many problems, chronological backtracking is not
sophisticated enough. We have experimented with several other search regimes,
including: dynamic backtracking, backjumping, and dependency-directed backtracking.
All of these spend varying amounts of effort (time and space) to cleverly choose where to
backtrack.

Although search problems and search engines can vary, what the search engine does will
nevertheless be the same: it searches for an acceptable assignment of variables.
Essentially, the search engine must be able to:

67

1. Get a new variable to assign,

2. Check to see if it has successfully completed the problem,

3. Assign a value to a variable,

4. "Unassign" a value to a previously assigned variable.

Wherever we have a standard interface, we may introduce objects to capture the essence
of this interface, hide information, and simplify code reuse. That is what we have done
here, first by introducing a class of Search Problem objects.

Essentially, what a Search Problem object does is handle the presentation of variables to
the search engine. That is, the search engine can request a new variable from the search
problem (or, more generally, can request a set of remaining variables, from which it can
attempt to choose the best to work on next), and can ask the search problem whether the

it has been solved yet.

The Search Problem object(s) for a scheduler, then, capture the global aspects of framing
the scheduling problem in terms appropriate to a search engine. However, Search
Problems are not enough, because they do not capture the second two interactions in our
list: they do not handle assignment and unassignment. These behaviors are handled by
variable and flexible constraint objects.

{^Variables and Restrictions "

Our initial attempts at object-oriented design had, in addition to search problems, only
search variables. These search variables encapsulated two behaviors (and, hence, two
"transactions" with the search engine): assignment of value and retraction (or
"unassignment"). However, search problems and search variables alone turned out not to
be sufficient, and we were led to introduce flexible constraint objects (FCOs).

The two behaviors that a variable must support—assignment and unassignment—are by
no means simple ones. In particular, when asked to take on a value,'" a variable must do
two critical things:

1. Update the domain model to reflect the variable assignment and

2. Determine whether or not the assignment request is valid and, if not, identify what
other variables' settings make it invalid.

ix Taking on a value is what a variable does in response to an assignment request from the search engine.

68

BEFORE

B

AFTER

I m

B

0 4

Figure 28 The effect of assigning a variable

Let us consider a variable assignment that corresponds to the decision to put activity A
after activity B. When this assignment is made, the domain model must be updated
accordingly. For example, in our framework, we add to the temporal constraint graph (see
Section 4.3) an edge between the end point of activity B and the start point of activity A.
We show this process in Figure 28 The effect of assigning a variable. Note that after
the variable is assigned, the model is updated so that we can see that A must start after
time 4.

/
' vl ' v2

B:

10 14

Figure 29 An inconsistent assignment

Now consider what happens when we try to assign the same variable inconsistently. This
scenario is shown in Figure 29 An inconsistent assignment. In this situation, we have
previously assigned variable vl, putting A before C and v2 and putting C before B. So we

69

cannot put A after B; it is simply impossible. It is not enough that we simply report that
the assignment fails. Instead, the variable must also indicate why the assignment has
failed—in this case, because of vl 's and v2's assignments. This explanation can be used
by the search engine to backtrack to one of those earlier variables in the case of a failure.
It can also be presented to the user to explain a scheduling failure.

However, it turns out that the search variables are not the appropriate objects to
encapsulate the behaviors we have just discussed. The search variables do encapsulate the
behaviors of assignment and unassignment, but we need additional objects to capture the
process of putting these assignments into effect.

These additional objects, which we call flexible constraint objects, are associated with
variables and capture the interactions between variables. They are best modeled as
separate objects because they capture interactions between other objects. For example,
consider three variables:

1. A variable that represents the choice of workstation for activity A;

2. A variable that represents the choice of workstation for activity B; and

3. A variable that represents ordering between A and B: the decision to put A before B,
put B before A, or allow them to occur in any position.

Now, when variables 1 and 2 are bound to the same workstation (i.e., both A and B must
be done on the same machine), A and B cannot occur simultaneously; that is, variable 3
must be set to either "A before B " or "B before A" Conversely, if variable 3 is be set to
either "A before B " or "B before A," variables 1 and 2 may be set to the same value,
otherwise they must be set to different values.

Conceptually, the behaviors above are all one single constraint, and representing them
three different times, in three different places (variables 1, 2, and 3), is poor design.
Instead, in cases like this we design a single FCO that can be attached to each of the
search variables. These FCOs are invoked when a variable is assigned or unassigned, and
it is the responsibility of the FCO to put assignments into effect. The advantage s that
search variables are completely generic and portable between applications.

7. Development Process _!
We can identify four phases to our development process under the OTRSD TRP. The
first centers around the previously existing BMS prototype, written in Common Lisp. In
this phase, we used that initial prototype as a reference point in designing the
commercializable BMS and experimented with alterations to the design, often by
applying these alterations to the running prototype before incorporating them in our
product design. The second phase centers around the new version of the BMS, gradually
leading to the abandonment of the Common Lisp prototype. The most significant change
of direction in this phase was to build the core functions of the BMS in C++ rather than
in Java. The third phase, overlapping with the second somewhat, consists of working with
Template Software to construct the Enterprise Integration Demonstration. Finally, during
an extension of the contract under a modification to our original SOW, we have been
investigating how the technology developed in this program may be applied to
continuous manufacturing, in particular, petroleum refining operations.

70

JA Initial prototype '""".'".""" ...".'
As discussed earlier, we began this program with a working prototype BMS written in
Common Lisp. This prototype provided most, though not all, of the desired functions but
was not acceptable to Honeywell divisions as a basis for technology transfer. Some
screen shots of the initial prototypes are shown in Section Error! Reference source not
found..

Our first task, then, was to design the product version of the BMS. This was done initially
using the Rational Rose™ tool (see Section 8.2). At the same time we were designing the
new version of the BMS, we were familiarizing ourselves with the key concepts of the
Consortium technology: SNAP™ and CORBA.

In keeping with our philosophy of iterative development, we kept the initial prototype in
working order in the early stages of this project and used it to experiment with new
features and development strategies. For example, our earliest experiments with
distributed systems structure used the Common Lisp prototype, first with sockets and
then with CORBA (through Xerox PARC's ILU; see Section 8.4.2).

7:2 Iterative Devdopinerit BMS Reimplemeniatiori
The division between the phase of working with the Common Lisp prototype and work
on the BMS reimplementation is not an absolute break. We had begun work on
reimplementing the lowest levels of functionality as early as the second quarter of this
project. As mentioned earlier, this phase divides into two subphases. In the first subphase,
we were developing a C++ implementation of the BMS. Although this work resulted in
an initial working version, there was growing disappointment about features of the C++
language. When Java became widely available toward the end of 1996, we became
increasingly excited about its possibilities. This culminated in the eighth quarter of the
contract, when we translated the C++ version of the scheduler into Java, which has been
the basis of all our follow-on work.

7.3 C++implementation' 2 «.—-
Essentially, the C++ implementation phase of the project ran from the second through the
seventh quarters (from approximately June 1995 until December 1996). We took the C++
version to a relatively complete BMS system (though not integrated with the other
aspects of the simulated batch enterprise). By that time, however, we were concerned that
the characteristics of C++ made this new version brittle, difficult to maintain, and a poor
basis for code reuse (for a discussion of these problems, see Section 8.3.3). These
problems led us to move to Java, as discussed in the following section.

In the second quarter of the project, we had complete C++ versions of two core
components of constraint-envelope scheduling: the Interval Constraint Engine and the
Dynamic Backtracking Search Engine. In this quarter, we also worked with Template
Software to suggest enhancements to their SNAP product, particularly in the area of user
interfaces, to enable it to deal with complex scheduling systems. At this point, we were
still concurrently developing the overall BMS design and were experimenting with new
functions in the original prototype.

71

Orders are sent from Production
Planner to Scheduler

Scheduler updates Production
Planner

£■
1OT)UI Ttc?T***t' Cenl

Scheduler

Scheduler

Md«j¥ili Tttfrd^y Ccret

Scheduler informs simulated
control system

Simulated control system sends
history stream to scheduler

W
wrrvnand to

Scheduler

v\ T) r=i n-rr

•—j—>*-u <i —'n-

E E PP

Simulated
Control
System

Scheduler

Htretwl Ttatr«*«/ tent'

Uot Satfr.' PKEMK-A1-PHASE
&fclr. »TO»
Toi«i lyfp.' START
Tare: a_.

Ha»l*«l ■^ffnd^W »nB

Figure 30 Original Design of Enterprise Integration Demonstration

In the third quarter, we focused on the design of the overall batch enterprise management
system, sketching out the interactions discussed above in Section 4. Our presentation to
the Consortium quarterly review meeting showed the basic structure in place, and this
structure remained the same throughout the rest of the contract with minor changes (see
Figure 30 Original Design of Enterprise Integration Demonstration). In this quarter,
work on the implementation continued, but at a slower pace than hoped, due to a shortage
of labor that was to plague us for several quarters; later in the program we made up lost

time.
In the fourth quarter, we demonstrated the integration architecture for the first time.
Unfortunately, because our development of the enterprise architecture ran ahead of
development of a communications infrastructure, we had to simulate CORBA
communication through raw socket connections, which made the demonstration very
expensive to do. Furthermore, although the final version of the production planning
component was to be written in SNAP, we had to build a mock-up ourselves in C++. This
was regrettable but unavoidable. We felt it was important to keep to our iterative
prototyping process of having a working system available at all times.

72

The distribution design and demonstration in the third and fourth quarters led to a more
formal, CORBA-based distribution design that we presented in the quarterly meeting
after the sixth quarter of the program," a very productive quarter for us. We developed
and circulated to the Consortium members an IDL specification for a client-server
scheduler architecture (see Figure 31 CORBA IDL interface design), and we
experimented with this client-server interface using the original scheduler prototype as an
instance of the schedule server and a new schedule-browsing UI as the client (see Figure
32 Experimental client-server system).

Structure of IDL interface

:■;■;■: Sthedule^w:
erverv

Horapnl IwfwdflgyCoitaf

lnt(Bifaces

Interface
Specifications ;;
Scl«4aT*S«mr

CcBtBJlO^JJlCl . : '

Stf*4li obj«a ■ ,J-\\

Key operations

A «iddtktiarK^ Kheikllti
Rtocribe,UMQbs<ri>*,

"'. pti*w ":'
VMW object . .jnmdxntcftttWitx« .

": <xm«tatfcg«.p«»i>«bM
■■ anfdnaaV

.Oid«S«y»x ; .■ *dd_<ed«r cad «chi4jl« fi

Schedule Client : ..' V&klt .■■.■;■

lt*ey*rtU«ln»<e5yCinw hja.»>u,;t

Figure 31 CORBA IDL interface design

x At the fifth quarterly meeting we proposed this development to the Consortium but had little else to
report, as our labor shortage recurred in this quarter.

73

Order Ul Schedule GUI

♦ Connect to cotnm
IViO ■■■ t* object
fl .1 •■ 11.• [M>je«rt .■><•*■■■,.':

• Create new: :;:
schedule •tftw Ksmszzx

*i ... r >. l> ■"' -,.,
- .ii.. ■ 1»:,

=j • May be packaged
with OrderUl-or ;-J
separately (for
browsing)

• Connect to schedule

• Provide dient object!

* mwifi TB*uaiBr cm ■■\Uf**mtM:-

Order Ul Schedule Ul (two views)

pw-'i F;»sBa

• Add orders to
schedule

• Request automatic
scheduling

Receive update message
Fetch objects for views
Redraw sere ens as n ece ssary

Hoi*y«li!Hin«hirCK*r MUWWK^HIMU« ontv;:

Figure 32 Experimental client-server system

In the sixth quarter, we also completed our C++ reimplementation of the Common
Activity and Task Model (CATM). At this point, we had in place a complete C++
implementation of the infrastructure for constraint-envelope scheduling.

At the review meeting for the seventh quarter, HTC unveiled the first full scheduling
system in C++. This marked the completion of a batch manufacturing model based on the
CATM developed earlier in the project. We demonstrated this system on a test problem
and showed the results at the meeting (see Figure 33 Results of scheduling test
problem).
Although at this point in the project, we had completed a full C++ implementation of the
BMS, we were by now totally dissatisfied with C++ as an implementation language.
Thus,' this quarter marked the end of the C++ phase of our core implementation effort.

74

First Schedule! Resource view

ii i^.t

1 -
1 ~ — ■^--Ri':-a3-"~'_, i

r~^ ». ..._.. i,.

* — _^i ■»-»■"■ "~T*"

£■**"

\
i

| —-
— I —

——

iMiiBgaBg

kd«W.
ta

■MepBllHfiiafcv enter

Figure 33 Results of scheduling test problem

'774. Java implementation -_.,.,_,; t_,_...;:_-j..;„^:;^_,,,._...:,; ..,.;...,^ ^^-^, ...,;.
The shift to Java began as a result of a training exercisex,by Mark Ringer, one of the
engineers working on the BMS. As a way of learning the language, Mark translated the
search engine into Java. The results were instructive: although the program ran somewhat
slower, the slowdown was acceptable and the code was far simpler. Better yet, the code
was more reliable as a result of being simpler.

Based on this initial experience, Java seemed a better programming language for our
development purposes. However, that was not sufficient reason to switch. Two other
considerations—technology transfer and ease of translation—combined to push us to the
decision.

Our initial reason for switching from Common Lisp to C++ was a concern for technology
transfer. Although the superior speed of execution of C++ has been widely reported, our
experience did not bear this out. Rather, we found that the key to providing superior
performance lay in being able to rapidly develop and deploy better algorithms and found
this was far easier to do in Common Lisp. Note that we do not say that Common Lisp is
generally better than C++, only better for the kinds of problems that interest us, the
Automated Reasoning group at HTC. Those problems are likely to involve more complex
and varying data types and more intensive computation than most programs, and
certainly more than the systems programs for which C and C++ were designed.

So our decision to adopt C++ was driven by a need to be able to transfer our research
systems to Honeywell divisions for productization. Accordingly, when we were
considering Java as an alternative to C++, we consulted our divisions about the
acceptability of Java and did not go ahead until they had deemed it acceptable.

Even though Java was acceptable to our divisions and easier for us to use, that was still
insufficient reason for us to abandon C++. The final factor in our decision was

xi Funded by internal HTC resources rather than under the auspices of this program.

75

discovering how easy it would be to translate our existing C++ code into Java. We were
pleased to find that, since the syntax was similar, and since Java has a simpler object
model than C++, we could automate large parts of the translation process. Further, most
of the hand editing needed to complete the transition consisted of removing from the code
complications (particularly concerning memory management) that were necessary to C++
but that were handled automatically in Java. In fact, we were able to complete translation
to Java of all the existing C++ code in only 2 man-months. The results bore out Ringer's
experience with the search engine port: the resulting code was simpler and, as a result,
contained fewer errors. We presented the Java translation at the meeting following the
eighth quarter of the program, held in April 1997.

7J5'EnterpriseIntegration Demonstration ~

The eighth quarter also marked the beginning of our work with Template Software to
develop the final version of the Enterprise Integration Demonstration (EID). Together,
we decided that Template's Workflow Template was the appropriate vehicle for such an
enterprise integration. For more details about WFT, see Section2. We also agreed that it
would be best to communicate between components by means of shared databases.

The communication structure, together with the responsibilities of the two firms, is
shown in Figure 34 Architecture of Batch Plant Enterprise Integration
Demonstration. In this illustration, the shared databases are shown in blue, HTC's
modules are shown in green, and Template's in gray. The shared databases were designed
by HTC based on our expertise in batch manufacturing. They were implemented by
Template Software using Microsoft Access™.

Design for Integration

Template SAW

Order Editing

1
Inventory |

DB '"•

Plant. .

- i

HTC

llulli.-)**.-!

■war
llowywl Iri«lwC«w Heim/Aul rvqzntfvr/ Hid Ocn-idmbu Id

Figure 34 Architecture of Batch Plant Enterprise Integration Demonstration

76

The Batch Plant EID was completed in the ninth quarter of this program and
demonstrated at the final quarterly meeting of the DASH'R Consortium. The
demonstration was videotaped at HTC in Minneapolis, and a copy of the videotape is
available.

7.6I Follow-on Work for Continuous Manufacturing

During the last six months of this project, we have been investigating extension of the
batch manufacturing scheduler to cover continuous manufacturing (particularly
petroleum refineries) as well as batch. This follow-on work has been "pulled" by
marketing considerations and "pushed" by technological developments and by new
technology transfer opportunities.

Honeywell traditionally has a very strong presence in continuous manufacturing such as
petroleum refining, petrochemicals, and pulp and paper. Honeywell Industrial
Automation and Control is the leading automation supplier to the hydrocarbon processing
industry (HPI), including refining and petrochemical operations. Our automation systems
are installed in 19 of the world's 20 largest integrated petroleum companies and in plants
of 1 of the top 20 petrochemical producers. With their plants successfully controlled,
Honeywell customers are interested in making them more profitable through more
efficient scheduling of plant operations.

The key technological development that has pushed us to work on continuous
manufacturing is a new understanding of the integration of discrete decision making, like
that done in our previous schedulers, with continuous optimization, like that done by
linear programming tools.

The key technology transfer development has been the acquisition of Honeywell Hi-Spec
Solutions. The Hi-Spec Solutions group is a leading supplier of advanced computer
applications, training, and services for the hydrocarbon processing and chemicals
industries. Hi-Spec Solutions applications are engineered to ensure the production of
high-quality products consistently, safely, and profitably. Hi-Spec Solutions has a staff of
more than 600 technology experts with more than 6000 staff-years of experience. These
technologists are primarily experienced process engineers with chemical engineering and
process control training, but they also include a number of specialists in mathematics,
software development, and information systems. We expect Hi-Spec to be the recipient of
the technology transfer of the BMS. The fact that their primary focus is refining and
petrochemicals, has helped direct us towards continuous manufacturing.

77

8. Development Tools
The development of the Honeywell BMS has been significantly influenced by the tools
used. We have made extensive use of Computer-Aided Software Engineering (CASE)
tools throughout the development process with varying success. We have used software
for object-oriented design, both the mass-produced product, Rational Rose, and DoME™,
developed at Honeywell Technology Center. Even with the design in place, no fewer than
four programming languages were used in the course of this project: Common Lisp,
SNAP, C++, and Java. Finally, in making this a distributed application, we had at our
disposal two implementations of the CORBA standard: IBM's SOM/DSOM™ and Xerox
PARC's ILU. We discuss our experiences with these tools in the following sections.

8.1 Design Tools ri .7 1
We used two design tools development of the BMS. Initially, we used Rational Rose to
design our model of batch manufacturing enterprises; however, our experiences with
Rational Rose were not satisfying, and we completed the design using our own product,
the Domain Modeling Environment (DoME). Essentially, the difference between these
tools lay in the extent to which we could specify and control the automatic translation of
design specifications into actual program code. In this respect, DoME was far more
satisfactory.

%.Z Rational Rose „..,_.' _ .. -:
Our initial design work"" in this project was done using Rational Rose. Prior to the
development of UML, Rational Rose was an excellent editor for the Booch notation for
object-oriented software design, "a software-engineering tool that allows users to
graphically develop, verify, and document the analysis and design model of their
software."""1

Our experience with Rational Rose was not, however, satisfactory. We did not like its use
of the Booch notation as much as the Coad-Yourdon format with which we were more
familiar. Further, we found the generation of code from the diagrams insufficiently
controllable.

We found the Booch notation overly restrictive and overly tied to the C++ programming
language object model. For example, the Booch notation requires designers to indicate
whether a given attribute of an object is "really there" in an object, or whether there is
just a pointer to that object. This is a distinction critical in C++X1V but is a concept that
does not make sense in other object-oriented languages, such as Java, Smalltalk, and
Common Lisp. Not only is this distinction extremely language-specific, it does not seem
appropriate to specify it as part of a high-level design process, since a decision about this
in one place is intimately tied to the details of other decisions and one's memory

xii Over a period of approximately the first half year of the project.
xiii From the Rational Software Corporation web-site, November 1997.
xiv Not one of our favorite features of the language!

78

management strategy. We preferred the Coad-Yourdon modeling notation, which was
more familiar to us through years of use in the DoME tool (see Section 8.2.1).

Our other reason for being dissatisfied with the Rose tool had to do with its automatic
generation of program code. The version of the Rose tool we used took some (but not all)
the diagrams drawn by users and automatically translated them into C++, which was
problematic for two reasons. First, many of the diagrams generated as part of the Rose
design process had no semantics; they did not yield either code or checkable
requirements documents. Such diagrams present two problems: (1) since they are not
aligned with program code, their content tends to stray as the program code is altered; (2)
partly due to the first problem, they provide their reader with a false sense of knowledge
about what the system designed will do. The other problem with Rose code generation
was that we did not have sufficient control over the process. We are more familiar with
the approach taken in our own DoME tool, with which one can actually program (or
modify through programming) the code generation behavior of an editor. In this way, we
could take design diagrams developed for the earlier, Common Lisp version of the batch
scheduler and simply port them.

:07f"pöw:;"~7.37"riII3T.ZT'" .""" ':
Honeywell's Domain Modeling Environment (DoME) tool set is an extensible collection
of integrated model-editing, metamodeling, and analysis tools supporting a model-based
development approach to system/software engineering. One of the key ideas behind
DoME is that the design model is a primary representation of the corresponding piece of
software. To that end, the design document supports automatic translation into program
source code. We have made extensive use of this capability in building the Batch
Manufacturing Scheduler.

In model-based development, the model is the primary representation of the product.
Automated transformations (e.g., code generators) convert the model into other forms
needed for producing the product (e.g., source code). This implies, among other things,
that engineers should treat a model as source code and rely on (automatic) transformation
mechanisms to produce the object code. In return, this approach requires that the model
specification tool(s) provide adequate expressive power to say all that need be said and
execute the translation steps in a transparent, robust manner that is painless to the user.

In model-based development, the development process is partitioned into three
components (see Figure 35 Model-based design) all of which our DoME tool supports:

1. Methodologists analyze modeling methods and build model-authoring tools to
support the capture and management of domain-specific models.

2. Product developers describe the product or system being developed using formal
modeling techniques and the model-authoring tools developed by methodologists.

3. Component/infrastructure developers use their knowledge of the target environment
to (a) develop model analysis mechanisms that enhance model understanding, and (b)

79

transform models into software artifacts (source code, documentation, test cases),
interface specifications, analysis algorithms, and generators (specialized back-ends).

Methodologists

Modeling"
Languages,

Meta-Models,
Methodologies

Tool
Specifications,

Ontology,
Training

Product
Developers

System Models,
Product Models,

V&V Models,
Configuration

Models

Processes,
Domain-Specific

Tools

Component/
Infrastructure

Developers

Figure 35 Model-based design

Since its beginning, the DoME project at HTC has sought to enhance the prototyping and
production of graphical model-based development environments. DoME focuses on the
second division of labor in the engineering process triad, providing powerful tools and
support for product developers.

Model-based development requires model authoring tool(s) to provide rich, expressive
power while employing a wide variety of abstraction techniques. DoME was developed
for just this purpose. It supports a wide range of domain-specific graphical notations;
more than 10 notations are included with DoME, and more than 40 have been used in the
past. A screen shot of DoME being used to edit a Colbert object-oriented design diagram
is shown in Figure 36 DoME screen dump from design session.

All of DoME's tools are based on a common foundation cultivated by HTC over the past
several years. This foundation (GrapE) consists of a multilayered hierarchy of classes
supporting both graphical model semantics and user interfacing. In addition to supporting
multiple model-editing tools, GrapE provides a framework from which new, robust,
domain-specific tools can be developed and displayed within a matter of a few hours to a
few days. And DoME's thorough on-line help gives you convenient assistance for putting
all of DoME's features to work for you. DoME's core features include:

• Enforcement of notation-specific syntactic and semantic constraints,
• Multiple hierarchical decomposition,
• Customizable model/diagram navigation,
• Alternative model views and overlays,
• User-defined, typed property annotations.

80

Figure 36 DoME screen dump from design session

Domain-specific syntax rules enforced. For example, our Petri Net model editor will
not let you connect one transition, to another transition since Petri Nets are bipartite.

Change impacts automatically propagated. Changing a property of one visual object
may affect the appearance of one or more related objects. For example, changing the
name of a data flow in a parent Data Flow Diagram (DFD) will automatically change the
names of all views ofthat flow in hierarchical subdiagrams.

DoME inherently supports reuse. Some DoME notations may contain a reuse
repository called the "Shelf." Items placed on the Shelf can be reused with full
traceability in subsequent diagrams.

Objects in hierarchical models can have multiple subdiagrams. In notations that
provide this capability, the various subdiagrams, or "implementations," of parent objects
are resolved through the use of configuration identifiers.

Nodes can contain things. Nodes can be adorned with other kinds of objects. For
example, Petri Net places can contain marks (tokens) and Coad-Yourdon classes can
contain lists of attributes and services.

In some notations, entire hierarchical subdiagrams can be contained and displayed from
within a node or connector. You can directly manipulate these items in various ways
(e.g., one common operation is to move them from one node to another).

Node size automatically determined. Node boundaries generally expand or shrink to fit
the text inside. This is a design decision for each specific notation, which often results in
cleaner, simpler interfaces.

81

Diagrams can interrelate. Diagram components can refer to other components or
diagrams in separate models, through either hierarchy relationships or more general
cross-reference relationships.

Because DoME's foundation is Smalltalk, it has a lot of flexibility and growth potential.
New editors based on new visual grammars can be added, often in just a few hours. Most
of the DoME tool set has been automatically generated using DoME Tool Specifications.
When working with these specifications, you first enter a graphical, high-level
specification of node and connector types, connection constraints, and additional syntax
and semantics. The ProtoDoME tool for modeling tool developers can get you up and
running with the prototype of a new tool in just minutes (see Figure 37 ProtoDoME
model). And the Projector/Alter extension languages allow you to write new functions
that are tightly integrated with DoME.

"wyho«90-v2.«fl«j'

SIE Edit. Vicv L«a* IOCS vvixla», Help

H

P
O
®

U!

^y&f^'ii r^E
imiB'jrt-rSj&fu

F1

df
M

»•n*

d
iL

Figure 37 ProtoDoME model

Create New Graphical Languages. Using ProtoDoME—available with DoME 5.0—
you can create new tools with DoME Tool Specifications. First, you begin to develop a
new object model (class diagram) using the graphical DoME Tool Specification
Language. You specify your visual notation by filling in properties on your object model.
Your tool specification can include object classes, property definitions, relationship
definitions, as well as connector types, dynamic object appearances, tool buttons, menus,
annotations, semantic relationships, and other elements. Your graphical languages can

82

also include textual, numeric, and symbolic annotations. A sample ProtoDoME diagram
is shown in Figure 37 ProtoDoME model.

During development of your new notation, you can use ProtoDoME to run, view, and
update your new model editor. Most changes to your DoME Tool Specification are
immediately propagated to all relevant open models.

Generate Code and Documents from Models. DoME provides two artifact generation
tools: Projector and Alter. These tools are built into and use the DoME infrastructure to
assist in the extraction and manipulation of data represented in the foundation. Projector
is a visual dataflow language; Alter is its functional textual cousin. Together they provide
the functionality to write complex model transformations. Current uses include
document, code, and test case generation, simulation and test execution, and model
migration. (The end result of the transformation is really up to your imagination.)

We already support several common output formats. PostScript, Rich Text Format (RTF),
Interleaf, and (Frame) Maker Interchange Format (MIF) are supported for documentation.
Several software generators (specialized back-ends) have been written for the Coad-
Yourdon tool that generate database schema code. In fact, you can write additional
functions for any DoME tool.

Use Built-in Notations. In DoME 5.0 you have your choice of the following predefined
notations: Coad-Yourdon OOA Colbert OOSD (three notations), Data Flow Diagram
Document Outline DoME Tool Specification IDEF-0 and IDEF-lx diagrams Petri Net
Projector Diagram (DoME visual programming system), State-Transition Diagram
Colbert Object-Oriented Software Development (OOSD).

Ed Colbert, founder and president of Absolute Software Inc. and author of the Colbert
OOSD method, has consulted with the DoME group at HTC during our implementation
of his methodology.

On the surface, OOSD appears very much like many of the other 00 methods, including
Booch, Rumbaugh, and UML. OOSD differs in that the primary focus is on object
interaction instead of object structure. OOSD also has fairly strict rules when crossing the
boundaries between the Object Interaction, Behavior or State, and Class diagramming
notations. These strict rules allow for a more maintainable and complete model that
translates more readily to either Ada or C++ code. Currently, only one other application
implements the Colbert OOSD methodology. Each has its strengths and weaknesses.
Although the other product covers more of the notations, users have praised DoME for
consistency maintenance, ease of use, and its powerful infrastructure.

Platforms. The platforms we currently support for DoME 5.0 are SunOS™ and Solaris™
(X-Windows™) and Windows™ NT and 95. DoME 5.0 is priced according to the
number of concurrent users and has an annual subscription rate. Call for details.

The Automated Reasoning group at HTC has always made extensive use of the DoME
tool. DoME was used in creation of the initial Common Lisp prototype of the BMS. Our
initial design efforts for this project were made in Rational Rose (see Section 8.2 above),
but we found this tool too limited for our liking. We switched back to DoME and

83

developed the rest of our design using that tool. In particular, major chunks of our IDL
interfaces and C++ code were designed and then automatically generated using DoME.

To support the design of the BMS, we developed three DoME code generators. These all
took Coad-Yourdon OOA diagrams and translated them into program source code. We
developed Alter (see previous section) filters that would translate Coad-Yourdon
diagrams into: C++ header files (with function prototypes), C++ "skeletons" (boilerplate
common to C++ programs; a simple labor-saving maneuver), and CORBA IDL.
Ordinarily, we would have written a Coad-Yourdon-to-Java translator, but we generated
most of our Java automatically from C++ source, instead of from the design document.

8.3 Programming Languages
In our work on the Honeywell batch manufacturing scheduler (BMS), we have used four
programming languages, each with its own strengths and weaknesses. The initial
prototyping effort was done (prior to the start of the OTRSD) using Common Lisp, and
some additional work was done in Common Lisp early in the contract to quickly test
features before reimplementation. The overall framework of the enterprise integration
demonstration was provided by SNAP, particularly its Workflow Template. At the start
of the program, core facilities were programmed in C++. We were looking for a lower-
level language than SNAP to code up core capabilities. Unfortunately, C++ proved to be
a poor choice. While C++ is widely used, and hence held out the promise of easy
technology transfer, it did not provide facilities needed for programs like the BMS.
Accordingly, in the last year of the program, we changed the implementation language
for core facilities from C++ to the recently developed Java language. Java provided a
better mix of high- and low-level programming and enabled us to finish the
implementation successfully.

8.3.1 <fommon[üsp~~.ZL i_. .
The initial version of the Honeywell BMS was written in Common Lispxv on Sun
workstations. We have been very pleased with Common Lisp as a rapid-prototyping
environment. The Common Lisp Object System (CLOS) provided the facilities needed
for modeling the plant, recipes, resources, and so forth in a way that could easily be
changed during the process of gathering more information about various kinds of batch
manufacturing. The subtyping and method-specialization facilities of CLOS provided us
with very effective mechanisms for code reuse. We have used the same core Common
Lisp libraries to build scheduling systems for a wide variety of applications.

Although we have been happy with Common Lisp as a prototyping tool, it poses severe
barriers to product deployment. The primary concerns are program size, user interfaces,
and technology transfer. It is difficult to develop a reasonably sized executable system
using Common Lisp. Lisp images are still very large. Another issue is that Lisp vendors
seem to be behind C and C++ vendors (and far behind Java!) in providing multiple-
platform user interfaces. Finally, conventional software organizations are unable to
support and maintain Lisp code. This by itself effectively rules out any possibility of

xv Initially Lucid Common Lisp, later also Allegro Common Lisp.

84

providing a product in Lisp, since HTC's charter in Honeywell does not extend to final
product development, deployment, and support; that responsibility rests with other
Honeywell divisions.

$.3.2 SNAP v;';:TZZ".'".. 'Z~..Z■ 7.. 7 ZZZZZZZJZZZZZZZ■ "IIT'
Our work on the BMS in this project assumed an enterprise integration framework for the
demonstration system that was provided by Template Software through their Workflow
Template. Template's SNAP product and its associated templates—System Management
Template and Workflow Template—are described in Section 2.

£3.3 C++ "~"'"ZZ7'1
As mentioned earlier, our initial BMS prototype was developed in Common Lisp, but
Common Lisp provided a poor choice for productization. SNAP provided the framework
for enterprise integration, but we still needed a programming language for the core
functionality, which is very compute-intensive. Our initial choice of programming
language—prompted by concerns for technology transfer—was C++. Unfortunately, as
we will explain below, C++ turned out to be a very poor fit for our requirements, and we
redirected our efforts toward Java.

C++ is an object-oriented extension of the venerable systems-programming language C
that has become the most popular object-oriented programming language now available.
Fortunately for its success, but unfortunately for our purposes, two design philosophies
guided its development: provide functionality that could be done immediately (at the time
of its inception) and maintain compatibility with C.XV1

Unfortunately, these design philosophies led to C++ being a language without automatic
memory management ("garbage collection") and with a very weak treatment of multiple
inheritance. These limitations of C++ make it difficult to use in applications that must do
a lot of memory allocation and deallocation and that have complex object models.

Unfortunately— for us, our scheduling systems have both of these characteristics: they
are built on complex object models that represent the processes to be scheduled, and they
make use of search algorithms that often allocate and free memory. Worse, the objects
allocated and then thrown away are often complex objects with many pointers to other
objects. This further complicates the task of memory management. Finally, our programs
were initially written (and their algorithms designed) in the functional programming
paradigm, in which functions are invoked and values are returned, and it is difficult to
follow this paradigm in C++, since one must determine at what point a return value needs
to be (can be) deallocated.

Another problem with C++ from our standpoint was that, despite being a standardized
language, it was not easy to move C++ programs from one platform to another, and at
HTC we use many different computing systems. For one thing, the C and C++ standards
are notoriously weak where arithmetic is concerned. For example, it was difficult for us
to get a 64-bit-long integer to use in our scheduling on both Windows NT and Unix.

1 See Bjarne Stroustup, The Design and Evolution of C++, Addison-Wesley, 1994.

85

Another problem was implementations offering different subsets of the behavior the
standard calls for. Finally, the standardization of libraries for the language has progressed
more slowly than that of the kaguage itself, causing there to be multiple different
libraries for the same key operations, notably Microsoft's Foundation Classes and the
Standard Template Library.

A final problem with C++ was the excessive complexity of writing software in this
language. The excess complexity arises partly from the way object-oriented concepts
have been grafted onto a very low-level systems programming language. This leaves the
programmer with a great many details to track. There are the issues of memory-
management discussed earlier, but there are also questions such as whether an object
contains another object versus containing a reference to another object, the distinction
between objects, pointers to objects, references to objects, and so on.

For all of these reasons, fairly late in the project, we became dissatisfied enough with
C++10 want to abandon it. Fortunately, at this same time, Sun's Java programming
language became widely available.

8.3.4 Java
Java provided a much better compromise between rapid prototyping and productization
than did C++. It was superior for cross-platform portability and was also more genuinely
object-oriented and hence far simpler. Further, Java, unlike object-oriented languages
such as CLOS or Smalltalk, provided an acceptable path to technology transfer through
its popularity.

Unlike C++, Java was designed from the beginning to be an object-oriented programming
language™" As a result, the language is far simpler than C++. Unlike C++, it simply has
objects, rather than objects and various kinds of references to those objects. Also unlike
C++, it has no automatic type coercion feature to complicate the use of methods.

Again, because Java was designed from the bottom up to be object oriented, and did not
have to maintain backward compatibility, it contains automatic memory management.
The programmer is not responsible for tracking memory allocations and cleaning them
up.

Finally, an important part of Java's raison d'etre was achieving cross-platform
portability. To that end, it has a very strong standard. Further, Java provides standard
objects for user interfaces, filling a gap in C++.

Java uses C++ syntax, which has contributed to its widespread acceptance. The
advantage this provided for us was that translation of our existing C++ code to Java could
be done substantially automatically. We wrote a number of scripts (using perl) to
translate C++ source to Java source automatically and thus were able to complete the
transfer from C++ to Java rapidly.

xvii Although it still retains the distinction between primitive types and objects.

86

8AC0RBA"". IVvVVTVZVZrVVV IVVZZV VVVV
One of the activities of this project was development of a version of Template Software's
SNAP that would work with CORBA, a framework for distributed, object-oriented
systems based on the notion of object request brokers. Template and IBM have
successfully developed such a version (see their chapters of this report). We attempted to
make use of CORBA in our BMS, and did experiment extensively with it, using both
IBM's SOM/DSOM and Xerox PARC's Inter-language Unification (ILU) software.
However, in the end, the CORBA framework was not sufficiently mature to be employed
in a productizable manufacturing scheduling system.

An object request broker (ORB) is a middleware component that supports interobject
communication in a distributed, multiplatform, multilanguage environment. OMG's
Common Object Request Broker Architecture (CORBA) is an API and protocol
specification for ORBs. CORBA defines an object model, an Interface Definition
Language and interface repository, and services for invoking methods and managing
object implementations. Bindings for C, C++, and Smalltalk are defined, as is a mapping
to Microsoft's OLE/COM. Several vendors offer ORBs built to the CORBA
specification. The common CORBA API permits application portability across ORBs;
the common protocol permits interoperability among ORBs.

WLI SÖM/DSOM ; /;; 7V 1 - "" V".
The IBM chapter of the Consortium's document contains a detailed discussion of IBM's
SOM/DSOM product, enhanced under this program. Unfortunately, although we
experimented with this product fairly extensively during the project, it was not employed
in the BMS. We would have liked to have access to a commercial, supported CORBA
implementation, but we were never able to use SOM/DSOM. During this project, IBM's
focus for SOM/DSOM shifted to supporting its own operating systems (e.g., on PC
platforms, OS/2), rather than attempting to provide a solution for all operating systems.
Accordingly, at no time during the project was there a fully functioning version of
SOM/DSOM available that ran on Windows NT and worked with Microsoft's C++
compiler. Further, when we began to use Java, there was no SOM/DSOM protocol to
work with Java,xviii and developing a suitable SOM/DSOM version was outside the scope
of IBM's statement of work. Unfortunately, the constraints of our own commercialization
plans precluded our developing a BMS that would only operate on IBM operating
systems; Honeywell Industrial Automation and Control's standard platform for the future
is Windows NT.

8.4.2 ILU _ __ _ ___^ --- ■
In early development work, we made use of Xerox PARC's Inter-Language Unification
(ILU) framework to experiment with distributed, object-oriented systems. Xerox
describes ILU as follows:

The Inter-Language Unification system (ILU) is a multilanguage

xviii At the time of this writing, we do not know of any commercially-available Java ORB, able to
interoperate with other ORBs.

87

object interface system. The object interfaces provided by ILU hide
implementation distinctions between different languages, between
different address spaces, and between operating system types. ILU can be
used to build multi-lingual object-oriented libraries ("class libraries") with
well-specified language-independent interfaces. It can also be used to
implement distributed systems. It can also be used to define and document
interfaces between the modules of non-distributed programs. ILU
interfaces can be specified in either the OMG's CORBA Interface
Definition Language (OMGIDL) or ILU's Interface Specification
Language (ISL).X,X

For our purposes, ILU had two advantages: it was available for our C++ environment
early in the project, and it had a defined Common Lisp interface. This permitted us to use
ILU early in our project to examine how our system could employ CORBA. We
conducted several experiments in which different components of the batch enterprise
system (e.g., scheduler system and user interface, scheduler system and batch plant
simulation) communicated through CORBA. However, ILU is not a commercially
supported product, and not a component that would be acceptable to our divisions as part
of a Honeywell product, so in the end the ILU work was scrapped. We had planned for
that all along, intending to replace ILU with IBM's SOM/DSOM, but that was never
possible (see preceding section).

8.5 Program Development Environments " ... _

For each of the three programming languages used on this program—Common Lisp,
C++, and Java (SNAP is treated elsewhere at greater length)—we had to use at least one
program development environment. In this section, we briefly discuss each of these
environments.

8.5.1 Common Lisp „..I"_._...
For our limited work on the previously existing prototype, we used Allegro Common
Lisp on Sun workstations.

Our Lisp prototype uses Garnet"" for its graphical user interface. Garnet is a constraint-
based user-interface construction toolkit developed at Carnegie-Mellon University and
was funded by DARPA under its Human Computer Interaction (HCI) program.

*ix From Xerox PARC's ILU web page: ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

"" "Garnet: Comprehensive Support for Graphical, Highly-Interactive User Interfaces."
Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie,
Ed Pervin, Andrew Mickish, and Philippe Marchal, IEEE Computer, Vol. 23, No. 11,
November 1990.

88

Through its constraint-based structure, Garnet provided us with an ability to support rapid
redesign of user interfaces. For example, when displaying objects corresponding to
activities, we could simply define how they would appear in terms of a relationship
between the duration of an activity, the width of the Gantt chart on which it was to
appear, and the amount of time depicted in the Gantt chart. Little actual program code
needed to be written, and these constrained objects could readily be reused. In turn, the
ability to experiment with different user interfaces rapidly allowed us to home in on the
needs of users by rapidly demonstrating working systems with very different GUIs.

8.5.2^ c++ — "- """'" " ~ ~'~~ -------

We used two C++ tools, depending on whether we were working on Sun™ UNIX™
systems or on Windows NT™. On the Suns, we used Sun's own SunPro C++ compiler,
and on Windows NT, we used Microsoft's Visual C++.

With C++, we used the Rogue Wave™ libraries to provide general utilities and data
structures. We also used XVT to provide cross-platform portable user interface objects.

$5.3 Java ; _..;, „^.-^H^^li l^i.i^^i^^ii.^^i^.^^J^i^w^

For our Java development, we used Symantec's Visual Cafe™ and then, when it became
available, Visual Cafe Professional Development Environment™.

In our Java code, we have made substantial use of the ObjectSpace's Java Generic
Library (JGL). JGL provides us standard data structures such as lists.

9. Commercialization
We plan to commercialize the scheduling technology developed under this TRP through
Honeywell's Industrial Automation and Controls (IAC) division. At the time this project
was conceived and proposed to DARPA, our original plans were to commercialize the
resulting BMS through the Chemicals Industry business unit of IAC. However, several
strategic changes in IAC made this infeasible. Current plans are to extend the BMS to
cover continuous process industries (see Section 7.6) and take it to market through
Honeywell IAC's Hi-Spec Solutions business unit.

9i Honeywell IAC '" ' ["" "~rTIIl"~" ~".'~ , 1_". . 1 ~
Industrial Automation and Control is a business unit within Honeywell's Industrial
Control business. Industrial also includes the Sensing and Control business unit, based in
Freeport, Illinois, and Honeywell-Measurex, a wholly owned subsidiary of Honeywell
Inc., based in Cupertino, California. Honeywell Industrial Automation and Control's
markets include the following industries: hydrocarbon processing; oil and gas exploration
and transport; pulp and paper; chemicals; power generation; food, pharmaceuticals and
other consumer goods; mining, metals and minerals; and semiconductors.

Honeywell, the world's leader in control technology, traces the origin of its industrial
business to 1885, with the invention of a thermostat system to adjust the dampers of coal

89

furnaces. It was one of the first control systems to employ electrical signals, and it helped
establish an industry.

Honeywell formally entered the automation and controls business in 1934, when it
purchased Philadelphia-based Brown Instrument Co. This business was strengthened in
1974 with the acquisition of General Electric's process computer operations in Phoenix.

The Industrial Automation and Control business was created in November 1989 with the
consolidation of three operations: the Industrial Automation Systems Division in
Phoenix, the Industrial Controls Division in Fort Washington, and the Industrial Services
Center in York.

Honeywell pioneered the concept of distributed digital process control with the
introduction of Total Distributed Control (TDC) 2000 in 1975.

The scope of process control was significantly expanded in the mid-1980s with the
introduction of TDC 3000™. In 1992, the evolution of TDC 3000 continued with the
introduction of TDC 3000X, which featured open systems access to plant information
networks while maintaining a robust, secure pathway to the critical processes it
controlled.

In conjunction with the announcement of TDC 3000X, Honeywell introduced
TotalPlant® open solutions, which are best-value, integrated system solutions for
defined industries consisting of products and services from Honeywell, supplemented by
third parties, and built around an open Honeywell architecture. With TotalPlant
solutions, a company can achieve the flexibility, product quality, productivity, and
profitability needed to compete in today's marketplace.

In 1996, Honeywell introduced the TotalPlant Solution (TPS) system, the first industrial
automation system designed to unify business and control information throughout a plant
or mill. The new system takes full advantage of the power of Microsoft's Windows NT
operating system. The benefits of the TPS system include higher overall productivity, and
the ability to produce consistently high-quality products as economically as possible.

9.2 Original Commercialization Plans ~ „
Our original plans were to take the BMS to market in coordination with the Chemicals
Industry vertical market unit of Honeywell IAC. We have had expressions of interest
from the Chemicals vertical market organization, both in the United States and overseas
(Europe and Australia); however, over the course of this project, the original
commercialization plans had to be scrapped. Energy within the Chemicals vertical market
has been refocused in directions other than scheduling, leaving no resources available to
receive a technology transfer on this scale.

However, we have been in contact with Honeywell Hi-Spec Solutions (HSS), another
component of Honeywell IAC, and are now working to take the BMS to market with that
organization.

90

&3 Honeywell Hi-Spec Solutions '"^' ■'■ '"."31 .■"] 'Z~"'Z.'J'- ZZZZ. :..
Honeywell Hi-Spec Solutions is a leading supplier of advanced applications, training, and
services for the hydrocarbon processing, chemicals, and pulp and paper industries.
Formed by the merger of Honeywell Profimatics and SACDA operations, its best-in-class
advanced applications and services are tailored for the process industries. They are
engineered to ensure the production of high-quality products consistently, safely, and
profitably.

The Hi-Spec Solutions misson statement is to improve the competitiveness of its
customers by:

• Improving process profitability through automation,

• Improving process profitability through improved staff effectiveness,

• Reducing costs through technology and service.

HSS has grown rapidly over the years as a result of listening to its customers and
successfully meeting their needs. HSS staff has grown to more than 600 process experts
in advanced applications and services for the process industries with more than 6,000
staff-years of experience. HSS is headquartered in Phoenix, Arizona, and holds offices in
16 other locations around the world.

\9AUpdaiedC6m

HSS sees petroleum refining as the best initial market for HTC's scheduling technology.
Accordingly, we are currently working with representatives of HSS and a major oil
company to extend the BMS to be able to handle continuous processes such as petroleum
refining. Our current expectation is for a pilot project in 1998, to be followed by
productization in 1999.

\9.5 Other Concurrentfoirnm^
As this project has progressed, there has been growing interest in using the technology as
the basis for other scheduling systems for Honeywell. In particular, we expect the core
technology developed here to appear in scheduling systems sold by Honeywell's
Commercial Aviation subsidiaries. In particular, we expect to provide scheduling
functionality to the Honeywell Air Transport Systems Division AMOSS offering and the
Honeywell Business and Commuter Aviation Systems RAMPS offering.

9.5J AMoss '7_J1Z11 Z T "T-'TTZr/.-
Air Transport Systems (ATS), headquartered in Phoenix, Arizona, along with Business
and Commuter Aviation Systems (BCAS) in neighboring Glendale, make up
Honeywell's commercial aviation business, each serving a segment of the market for
commercial avionics. Air Transport Systems serves the market for large commercial
airliners. It offers the widest range of commercial products and systems of any avionics
supplier. ATS is also the world's premier systems integrator, with more experience
managing major flight deck integration programs than any other company.

91

Both ATS and BCAS are making a major thrust in enterprise and operations integration
for ground operations. ATS has established a new business unit within Air Transport
Systems to provide data licenses for essential products and services to airline customers
for use in simulator and flight training devices, for flight management systems
(navigation database), to support the Boeing 777 aircraft (ground-based software tools),
and for other maintenance and flight operations support systems for various aircraft
types.

One such product is AMOSS, the Airline Maintenance and Operations Support System.
In AMOSS, Honeywell's diagnostic technology, successfully applied on the Boeing 777,
has been expanded to cover other airplanes and significantly improve the accuracy of
diagnosis and reduce the time to maintain the fleet.

Using proven model-based diagnostic technology, AMOSS improves maintenance
efficiency by:

• Reducing No-Fault-Found removals,

• Reducing repeat faults,

• Reducing maintenance-related delays and cancellations,

• Reducing maintenance backlog to support more aircraft.

Honeywell developed extensive capabilities in model-based diagnostic and
troubleshooting systems as a result of experience on the 777 Central Maintenance
Computer program. This experience, along with subsequent research and development,
led to a cost-minimizing algorithm for troubleshooting an aircraft.

The system provides explicit direction for the optimal sequence of activities, as well as an
option for the user to override the recommendation. All interactions and outcomes are
recorded so that the algorithm actually learns from all of its "experience."

The diagnostics provide a mechanism by which testing and repair decisions are
automatically analyzed for cost-effectiveness. Recognizing that activities are performed
on a single aircraft by different crews at different facilities at different times, one
important feature is that the system supports distributed fault isolation activities. The
system implements record keeping and communication processes that allow this to occur
with the same effectiveness as if they had been performed by a single crew at a single
visit.

The overall approach provides a very accurate recommendation to the user that
minimizes the cost of performing isolation and repair.

HTC is currently prototyping a maintenance scheduling system for AMOSS, and we
anticipate that it will be added to the AMOSS package. The expected time of integration
is toward the end of 1998.

W3ZTMM/iP$

BCAS designs, develops, manufactures, distributes, and services avionics systems and
products for the worldwide business aircraft, regional airline, and helicopter marketplace.
We provide these products and services to original equipment manufacturers (OEMs),

92

regional airlines, and owners of aircraft in the after-market through dealers and
completion centers.

BCAS is preparing the Ramp Asset Management and Productivity System (RAMPS),
which will provide an integrated approach to asset management for baggage handling and
ground operations. RAMPS will track ground assets, track resource utilization, and
manage tugs. HTC's scheduling technology is expected to play a central role in this
product.

10. Conclusions
Through DARPA's support, we have been able to apply state-of-the-art object-oriented
software technology to the development of a scheduling system for dual-use batch
manufacturing. We have taken research center software, partially supported by previous
DARPA funding, and rebuilt it to be product-ready. We anticipate that this effort will
lead to the offering of commercial scheduler systems through Honeywell's Industrial
Control and Space and Aviation Control divisions.

HTC has also, in the course of this project, shown how Consortium-developed
technology can be used as the basis for Enterprise Integration. Specifically, we have
shown that Template Software's Workflow Template can be used as the communications
backbone for an enterprise automation scheme uniting production planning, production
scheduling, and plant operations

11. Screen Shots of BMS Prototype

11,1 Screen Shots of BMS Prototype
The screen shots in this appendix show a short scenario of interaction with the prototype
Honeywell batch manufacturing scheduler. Figure 38 Initial Screen shows the initial
screen layout. Figure 39 Plant layout shows the scheduler's plant layout display popped
up, to examine the units in the plant and their connections. The next several figures show
a scenario beginning with the entry of customer orders (Figure 40 Order Entry). The
user schedules the batches necessary to meet these orders. Two views of the resulting
schedule are given (Figure 41 Initial schedule and Figure 42 Order view of initial
schedule), the first showing how the batches use units in the plant and the second
showing how the user can track the completion of a set of batches for particular orders.
We then show how to react to a plant upset. Figure 43 The situation after BMS is
informed one of unit has malfunctioned shows what the scheduler screen looks like
when the scheduler learns that a plant unit has malfunctioned. Finally, Figure 44
Schedule after revision to compensate for malfunction shows how the scheduler reacts
to the malfunction, delaying some activities and reallocating others.

93

"3! EMEhfeMi*r

- ' §1 Ql [g

3

£)j^J %\=i^ ?J^

Honeywell Bitch Scheduler

Figure 38 Initial Screen

b «• «■ , l* * 4S

c
*-^t. »■«

D
C

□
a

äJ

»nsmriiJv -

L—J ^ ^

[}

D

D

[}

D

rC

>o

-0-C
oo

O^J

- so

04

Ü

a

ji.ji

II » U U X 41

Honeywell Bitch Scheduler

Figure 39 Plant layout

94

0 rd or Hum b©r

I*\I* ixutl

I u biL«n ce

a
a

Qu «nLitj

t.rp~~~ »i jd

Eolett« Tim •

>.T|I JO .!£-

>.7 n 2ü: 2d

».7 I» _!£_h JU

t.r l JU' JU

•T |» IL1-- stl

ud

«j

NM> a **•.-] sth»mii» »11 j *1**]

Figure 40 Order Entry

8 ■
Ö'
Q
Ö
a
o
n
D
D
D

UchEdwii*

-"■"-"i g^| 6^| m\ @|B 91 if Quit

G

II.

|> W *> , !> » *» 4 ,J

Honeywell Bitch Scheduler

Figure 41 Initial schedule

95

~z k.J

lüJ i»ri»> »•■•" _?y_5jj!] ^ I o iM *n ""'

I ..TO... |

I .I..... I

j „Tu,.., ~1

j ■...:.. , ' -iwiwu

R ry ■ i i ■ ■ ■
,' läB». UHU, MUM, »»», MH», UUHk "». ««> lä^, K»4,l*»4,,»».,««$,l**>,,1ä»»,,"Mtt, JlH»,.&l«»„läH», JSU^.IUM; .UHU,!**), UMJ .MM^IlUq, HM« .UK

HoneyYiell Bitch Sehtiuler

Figure 42 Order view of initial schedule

jjji

0<j; '»■

J^Jül

ü ec| ol HJ^iJEJ^Jr

:± Op12t S;. E3

ö
n
Ü
o
D
0

« » -H . » » ** t t* -»

HeneyyitllBitch Schitvler

Figure 43 The situation after BMS is informed one of unit has malfunctioned

96

nx -jij-

Ö
D

0
0
C
C

»U - I <5^| 6^| m\ K\FH <?U-

KI -i
11 * u u * *i II » U ,' U J» *l 4 14 » * „ 14 * *i

Honeywell Bitch Scheduler

II X 41 , li

Figure 44 Schedule after revision to compensate for malfunction

97

DASH'R TRP
Final Report

IBM Corporation
April-95 through November-97

By: W. K. Centofonti

12. IBM
As part of the DARPA TRP, IBM plans on performing the following enhancements to
SOM/DSOM technology. The enhancements fall into three categories: Object Services,
ORB Interoperability and Core enhancements.

12.1 SOMIDSOM Development _„„.__,,.;•....•_— ,
Aslconsortmm member of the DARPA TRP, IBM's tasks were focused on their
deliverables which were elements of the Core Technology Base. These tasks were
centered on a distributed object solution through enhancing and extending the
SOMobjects technology. These enhancements fell into three major categories:

1. Object Services

2. ORB Interoperability

3. Core enhancements

The SOM/DSOM technology provides an object-structured protocol that allows
applications to access and use objects, regardless of the programming language in which
they were created and regardless of whether the object resides on host/client or
client/server networks. For enterprise-wide distributed computing, this brings critical
flexibility to object-oriented programming, object reuse and sharing. The Object Services
portion of the deliverables provides application writers with an efficient and convenient
way to use CORBA defined standard object API's and have access to services such as
naming and externalization. The primary objective would be to provide a functionally
sufficient set of object services to enable fully object-oriented application development
around the CORBA implementation. Some of the services provided were implemented
from scratch while others leveraged existing implementations (i.e. naming service). ORB
interoperability permits objects residing on one CORBA-compliant implementation to
interoperate with objects residing on another CORBA-compliant implementation. This is
achieved through a common interoperability protocol between the two ORBs.

The core enhancements to the DSOM portion of SOMobjects deal mainly with making it
a much more open architecture. The benefits of such openness are several: scalability,
support for multiple protocols to co-exist (of which the CORBA interoperability protocol
is one), customization with respect to storing DSOM repositories, leveraging target
platform's architectural capabilities, and the ability to plug in different
transaction/security implementations on top. The work was partitioned across the three
primary areas of focus (Object Services, ORB Interoperability, and Core Enhancements).

98

The partition of work was further grouped into phases consisting of

Phase 1: Intitial design and implementation of object services,

object service enhancements and core services.

Phase 2: Refinements of the phase 1 implementations and the design

and implementation of ORB interoperability.

Phase 3: Refinements of ORB interoperability

Phase 4: Support for interoperability.

Each phase had related tasks to progress toward the final delivery. Tasks identified were
Design, Integration, Test, Refinement, Packaging and Reporting. Testing of the
enhancements and extensions to Object Services, ORB Interoperability and Core
Enhancements was done on a multi-level basis. Functional verification testing was
completed on each of the enhanced areas.

Early project drivers were made available to selected customers for a beta level of testing.
Consortium members were members of this set of customers receiving the early project
drivers. System Verification Test composed the final testing stage. This testing stage
focused on the full project scope of function, performance and stability.

Special test arrangements were made with other ORB providers as a complement to the
System Verification Test involving interoperability scenarios. Of particular focus were
objects residing on one CORBA-compliant implementation interoperating with objects
residing on another CORBA-compliant implementation. This demonstrated the flexibility
of the project when using a standards-based object technology.

The results of this effort resulted in a commercially available product, SOMobjects R3.0
for AIX, OS/2, and Windows NT made accessible as of 12/31/96. The latest version of
SOMobjects is available via the Internet at: http://www.software.ibm.com/ad/somobjects/

The SOMobjects R3.0 for AIX, OS/2 and Windows NT provides increased compliance
with OMG's CORBA specifications and Object Services. It forms the basis for IBM's
implementation of the Object ManagementGroup's (OMG) Common Object Request
Broker Architecture (CORBA) and Object Services.

See Figure 45 IBM SOMobjects WEB Page and Figure 46 IBM WEB Page For
Selecting SOMobjects Downloads below for the WEB pages that allow entry into the
download process for IBM SOMobjects.

99

a "a ta"r"l a 0 § a <s g g
Stoc R*«h Ham Saarrfi Fwnte H*tor* Qm* Fufecwwi Hal "**. ."* .„

- Mtoi)jj r*tp //WW ifrftware cm con^ad/iwiottecli/ ^ __ ______ .—..- _- . —»
!-lrtu ÖC^-^-ö'^—E»^- G^-i-W* <ä<W&i ©C«*arr«ui, fit^t^reiHam ^tntr«. Sft jt5e«ttr6.Hnp.*3Wm»eTari^

Ijgo«

SOMobjects

SOMobjects forms the basis fat IBM's implementation of the Object
Management Group's (OMG) Common Objed Request Broker Architecture
(CORBA) and Object Services. SOM provides an object-structured protocol
that allows applications to access and use objects, regardless of the
programming language in which they were created and mgardless of where the
object resides on host/client or client/server networks For enlerpnse-wide
distributed computing, this bnngs critical flexibility to object-onented
programming, object reuse and sharing

Somviin

IHM

asurtl äj|l^ |:»»tei>ti34i'3aa3Bä!!33«VBSaa?:ll

■SSI

. SOM 'J 0 Irjr Aift. OS/2 ari Windows N"
Providing increased compliance with OMG's CORBA specifications end
Object Services, this object-onented programming development product
speaks many languagesl (Please remember that OpenDoc currently
uses SOM 2.1 and has not been tested with this code.)

Figure 45 IBM SOMobjects WEB Page

ljg.0,

IBM SOMobjects Developer's Toolkit Version 3.0
for Windows NT, OS/2 Warp, and A1X

Welcome to IBM SOMobjects Developer's Toolkit Version 3.0'

The Readme file is available m both y&fc and UsI versions. Reading this file is a must before
proceeding with downloading the files. Once you have read Ihis file (rt contains all ol the information on
this page and much more), proceed to download the package.

System : ♦ Click r-.tm lo review the hardware, operating system, and networking
Raquhamaim software requirements

Tha
Documentation

• Ravitw lha BEfiCtiE file.
■ »Review the documentation

: Approximately 9 meg are required when the documentation is installed on
■ your local machine

= The documentation consists of two books:

. SOMobjids Developer-! Toolkit Version 3.0 Programming Guide
■ SOMobjects Developers Toolkit Version 3.0 Programming Reference

The documentation is in postscript files, so youH need to use a poitscnpt

. viewer like friSSrc* to read them.

To download the documentation, proceed to Ihe download page or gef via
= anonymous ftp at sarvice.software.ibm.com.

• 9 1/2 x 11 format in /publications/clubod/som30/
• A4 format in /public ations/elu bo oVsom3Q/a4/

«»-I ^wj-H. oiwAaiMasaaaaaaaaaipvBarn-a»* »^aufcteji» *»p«

Figure 46 IBM WEB Page For Selecting SOMobjects Downloads

100

APPEl>Ö£)IXÄ:SOW

A-l. Introduction
The statement of work is organized by phase within consortium member plans. The
effort increments are initially described and will be updated with finer granularity as the
project progresses. The phases are shown in the Appendix B schedule.

The following sections present the SOW for each consortium member.

A-2. IBM Tasking for SOM & DSOM
As part of the DARPA TRP, IBM plans on performing the following enhancements to
SOM/DSOM technology. The enhancements fall into three categories: Object Services,
ORB Interoperability and Core enhancements.

The Object Services will permit applications to be written using CORBA defined
standard object API's for such services as object naming, life cycle, and externalization. It
is also planned to implement some extensions to these services that facilitate efficient
and/or convenient use of these object services.

The ORB interoperability will permit objects residing on one CORBA-compliant
implementation to interoperate with objects residing on another CORBA-compliant
implementation. This is achieved through a common interoperability protocol between
the two.

The third category of enhancements deals with the core enhancements in DSOM. They
mainly deal with making it a much more open architecture. The benefits of such openness
are several. To name a few: Scalability, Support for multiple communication protocols to
co-exist (of which the CORBA interoperability protocol is one), customization with
respect to storing DSOM repositories, leveraging target platform's architectural
capabilities, and the ability to plug in different transaction/security implementations on
top.

A.2.1 Work Effort Partitioning

A.2.1.1. Object Services

The primary objective is to provide a functionally sufficient set of object services to
enable fully object-oriented application development around our CORBA implementation
(i.e., SOM/DSOM). The following is the service set we plan to provide with
SOM/DSOM. Some of these may be implemented from scratch while others may
leverage existing implementations (for example, naming service).

* COSS-1 services (i.e., naming, and life cycle.)

* Enhancements to naming and life cycle services

101

* Security Service

A.2.1.2. ORB Interoperability: The ultimate objective is to implement the CORBA
2.0 interoperability specification and hence achieve interoperation between SOM objects
running under IBM ORB and objects running under another (CORBA-compliant) ORB.
The anticipated work products in this area are:

* Implementation of CORBA interoperability communication protocol as one of
the supported communication protocol under DSOM.

* Implementation of interoperable object references

* Interoperation among different hardware platforms running SOM/DSOM

A.2.1.3. Core Enhancements: The main objective is to have an open DSOM that is
flexible and scalable. The anticipated work products in this area are:

* New communication framework that allows multiple communication protocols
to co-exist among client and server objects.

* Scalable architecture for repositories that the ORB relies on.

* Improvements in the design and implementation of CORBA architecture
elements such as the object adapter, server object and CORBA pseudo objects.

* Architectural enhancements for incorporating security and transactions

* A marshaling engine for efficient marshaling of parameters

A.2.2 Phasing of Partitions:

Phase 1: Initial design and implementation of object services, object service
enhancements and core services.

Phase 2: Refinements of the phase 1 implementations and the design and
implementation of ORB interoperability.

Phase 3: Refinements of ORB interoperability

Phase 4: Support for Interoperability

A.2.3 Phase 1 Tasks

Task 1: Design, implementation, testing and integration of COSS services of
Naming, and LifeCycle.

Task 2: Security-related architectural extensions: design, implementation and
testing.

Task 3: Externalization service design, implementation and integration with other
related services (e.g., LifeCycle)

102

Task 4: Extensions to base object services

Extensions to Naming for properties and search capability

Extensions to LifeCycle for creation of objects with specific
properties

• Integration of services

Task 5: Communication Framework Reference Architecture: Design,
implementation and testing with IPC based protocol. Documenting the
reference architecture.

Task 6: Scalable Repositories: Design, implementation, and testing of new Object
Registry, Implementation repository and modifications to interface
repository.

Task 7: Improved design and implementation of CORBA architectural elements
such as the Object Adapter for openness.

• New object reference design

Re partitioning of functionality for better customizability (e.g.,
leveraging multi-processor architectures)

Task 8: Security: Architectural enhancements, design and implementation to
allow the integration of a security service with ORB.

Task 9: A marshaling engine for marshaling parameters of remote calls.

Task 10: Documentation of DSOM (open) enhancements

Task 11: Object Services documentation

Task 12: Status reports and reviews

A.2.4 Phase 2 Tasks

Task 1: Refinements on DSOM enhancements and Object Services

Task 2: CORBA 2.0 Interoperability protocol: Design, implementation and

testing of CORBA 2.0 mandatory protocol (based on TCP/IP).

Task 3: Implementation of Interoperable object references.

Task 4: Acquisition and test of another CORBA compliant ORB

Task 5: Test of interoperability between the two ORBs.

Task 6: Status reports and reviews

A.2.5 Phase 3 Tasks

Task 1: Port of SOMobjects to AIX.

103

Task 2: Port of SOMobjects to Windows NT.

Task 3: Reliability of Robustness enhancements to SOMobjects technology.

Task 4: Refinements of TCP/IP based CORBA Interoperability

Task 5: Status report/reviews

A.2.6 Phase 4 Tasks

Task 1: Support interoperability efforts.

A-3. Template Software Tasking for Core Technology Base
The Template Software objective is to create enhancements to its SNAP Product Family
supporting consortium goals. The SNAP Product Family is object technology-based
development environments for peer-to-peer distributed applications. Planned
enhancements fall into three categories — SOM integration, C++ code generation, and
visual tools development. SOM integration will provide a CORBA standards-based
substrate to the SNAP Product Family for object interoperability and services. C++ code
generation eliminates applications dependence on Template development tools for
maintenance, in. step with TRP standards thrust and in the direction of interoperability at
the development environment level. Incorporation of visual development tools will
enhance SNAP Product Family's characteristics of rapid application and user-centered
development.

A.3.1 Work Effort Partitioning

SOM integration extensions to the SNAP Product Family are independent from visual
tool enhancement and define a natural work effort partitioning.

SOM Integration — the primary objective of SOM integration is to make the
SNAP Product Family both a producer and consumer of reusable object services
through SOM. To accomplish this, the External Application Software Component
of SNAP will be extended to integrate SOM at the emitter framework level. This
level of integration will make it possible for a SNAP developer to use externally
created object components simply by writing method invocations in the SNAP
language. Conversely, SNAP objects will be accessible to non-SNAP
programmers writing in other SOM-compliant languages.

As ISX and Honeywell experience grows with this capability, other extensions
regarding SOM may be made. Such extensions might include integration of
selected SOM services and better leveraging of SNAP Product Family object
services via SOM

C++ code generation — the SNAP Product Family Development Environments
will be enhanced to allow generation of C++ class hierarchies

104

Visual Tools Enhancement — the SNAP Product Family Development
Environments will be enhanced with new visual tools to simplify and speed up the
development process. Anticipated extensions include:

A new visual editor to graphically specify an application process
object model.

A language editor that can be invoked as needed by the various visual
editors.

Visual editors allowing end to end development, where end to end
development includes business process analysis through system
deployment

Support for team development of multiprocess applications.

A.3.2 Phasing of Partitions

SOM integration and the Visual Tool Enhancement partitions each will have two phases.
The phases will overlap with alternating milestones approximately at six month intervals
to support the phasing of demonstration applications. Phase definition follows:

Phase 1: SOM Integration 1 - initial integration of the current SOM release
with the current SNAP release.

Phase 2: Visual Tool Enhancement / C++ code generation 1 - first version of
visual enhancements as part of the next planned release of the SNAP
Product Family. Initial creation of internal infrastructure to allow C++
code generation

Phase 3: SOM Integration 2 - integration of the CORBA based SOM into the
version of SNAP resulting from Phase 2 with other extensions deemed
useful.

Phase 4: Visual Tool Enhancement / C++ code generation 2 - refinement of
tools developed in Phase 2, visual tool extensions deemed useful,
conclude C++ code generation capabilities and final demonstration of
the development environments.

A.3.3 Phase 1 Tasks

Task 1: SOM Integration Design - define the design for integration of SOM
emitter frameworks with the SNAP External Application component.

Task 2: SOM Integration - implement the Task 1 design. SNAP will be
capable of acting in the role of client and server for SOM objects.

Task 3: Alpha Test - test SOM integration to demonstrate proper operation.

Task 4: Packaging - package the SNAP version including the SOM integration
for distribution to the Demonstration projects. Packaging will include
documentation on using the interface.

105

Task 5: Phase 2 Plan Refinement - refine and document scope and tasking for
Phase 2 .

Task 6: Phase 3 Plan Refinement - refine and document scope and tasking for
Phase 3.

Task 7: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.3.4 Phase 2 Tasks

Task 1: Prototype Visual Tool Concepts - create prototype of the visual tool
interfaces.

Task 2: Tool Implementation - implement tools for object model specification,
language editing, end to end development and multi-developer support

Task 3: C++ code generation - Initial design and development of internal
infrastructure to allow C++ code generation

Task 4: Alpha Test - test tools in the context of integrated SNAP Product
Family development environments.

Task 5: Packaging - package integrated SNAP Product Family development
environments for distribution to the Demonstration projects.
Packaging will include development environment documentation.

Task 6: Phase 4 Plan Refinement - refine and document scope and tasking for
Phase 4.

Task 7: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate..

A.3.5 Phase 3 Tasks

Task 1: SOM Integration - integrate CORBA based version of SOM with
SNAP.

Task 2: SOM-related Enhancements - based on Phase 1 & 2 feedback from the
demonstration projects, make further SOM-related enhancements to
SNAP improving SOM utility in the SNAP context.

Task 3: Alpha Test - test SOM integration to ensure proper operation.

Task 4: Packaging - package integrated SNAP Product Family development
environments for distribution to the Demonstration projects.

Task 5: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.3.6 Phase 4 Tasks

Task 1: Prototype visual tool extensions - create prototypes of SNAP visual
tool enhancements.

Task 2: Implement Extensions - implement visual tool enhancements.

106

Task 3: C++ code generation - finish C++ code generation capabilities

Task 4: Alpha Test - test integrated SNAP Product Family development
environments.

Task 5: Packaging - package integrated SNAP Product Family development
environments for distribution to the Demonstration projects.

Task 6: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A-4. ISX Tasking for Air Campaign Planner
ISX has two TRP major tasks: User Centered Software Development (UCSD) focal point
for the consortium; and creation of an objectives-based Campaign Planning Tool (CPT)
using the Core Technology Base (CTB) and the Strategic Planning Toolkit (SPT)
infrastructure. The CPT will use the Air Campaign Planning Tool (ACPT) as a starting
point for design and architecture. ACPT was developed by ISX and is a collection of
cooperative components. This design is consistent with the development of an object-
oriented software system. The components supply a complete collection of services and
functions that enable the planning process. Viewers, assessment functions, analysis tools,
scenario development and plan composition tools are all organized to support the
systematic development of the campaign plan. The CPT architecture will be designed to
take full advantage of the distributed object services and enable optional deployment in a
multi-process, multi-processor, heterogeneous environment.

ISX will define and formalize UCSD concepts, methods, and processes for full use
during this TRP. An initial document describing the process will be produced in the first
phase with updates in subsequent phases.

The objective of the ISX effort is to define, design and prototype an objectives-based
Campaign Planning Tool using ACPT as a starting point. This effort provides a specific
application that will use the tools and development environment produced by the other
team members, provide a requirements focus for the CTB and the main requirements
focus for the Strategic Planning Toolkit (SPT). ISX will generalize the planning process
embodied in ACPT and this TRP's CPT to create the initial infrastructure for a generic
Strategic Planning Toolkit. An instantiation of the SPT will be a planning system with a
planning process similar to ACPT's. Incremental prototypes of the CPT will be delivered
at the completion of each phase. The first two phases' work will concentrate on
requirements and infrastructure. The 3rd phase's prototype and the final system will
incorporate greater degrees of functionality.

Continuation of the current tasking, with an update to the underlying PMPT database and
the production of CDs that may be used to distribute the PMPT and its databases to users
approved by the government sponsor.

Propose the additional development of a Medical Waiver System (MWS) to produce
automating the medical waiver recommendation process. A government sponsor is
interested in this work and it is an extension of the current PMPT development in the

107

Object Environment. This development could be commercialized, an objective of the

TRP.

A.4.1 Work Effort Partitioning

The effort will focus on two items: the CPT application and the generic Strategic
Planning Toolkit (SPT) infrastructure conducted in four six month phases.

A.4.2 Phasing of Partitions

Phase 1:

Define User Centered Software Development process and capabilities
for Consortium

Provide expertise to the Consortium regarding the UCSD process

Define SPT/ CPT requirements for CTB

Define and develop the phase 1 CPT.

Phase 2:

Phase 3

Phase 4:

Update UCSD Process description

Enhance CPT with new CTB features

Define and develop the phase 2 SPT

Increase CPT infrastructure and functionality

Define and develop the initial SPT based upon CPT

Enhance CPT with CTB upgrades, planned infrastructure and
functions

Implement initial interoperability capability

Update UCSD Process description

Enhance SPT/CPT with final CTB

A.4.3 Phase 1 Tasks

Task 1: Define User Centered Software Development

Task 2: Define SPT/ CPT requirements for the CTB.

Task 3: Create phase 1 CPT definition.

Task 4: Design phase 1 / CPT

Task 5: Implement and test phase 1 / CPT

108

Task 6: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.4.4 Phase 2 Tasks

Taskl

Task 2

Task 3

Task 4

Create phase 2 SPT/ CPT definition.

Design phase 2 SPT/ CPT

Implement and test phase 2 SPT/ CPT

Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.4.5 Phase 3 Tasks

Taskl

Task 2

Task 3

Task 4

Create phase 3 SPT/ CPT definition.

Design phase 3 SPT/ CPT

Implement and test phase 3 SPT/ CPT

Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.4.6 Phase 4 Tasks

Taskl

Task 2

Task 3

Task 4

Create phase 4 SPT/ CPT definition.

Design phase 4 SPT/ CPT

Implement and test phase 4 SPT/ CPT

Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.4.7 Phase 5 Tasks

Taskl

Task 2

Task 3

Task 4

Create phase 4 MWS definition.

Design phase 5 MWS

Implement and test phase 5 MWS

Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A-5. Honeywell Tasking for Manufacturing Scheduler
The objective of the Honeywell effort is to create new manufacturing technology
products and support consortium goals Honeywell will create a Batch Manufacturing
Scheduling (BMS) application. BMS will be a mixed-initiative, on-line scheduling

109

system for batch manufacturing. The scheduler will be based upon a batch scheduler
prototype developed from DARPA-sponsored technologies.

The batch scheduler, for discontinuous manufacturing processes such as chemicals,
composites, and pharmaceuticals, schedules production to meet orders. The schedules
are produced from a plant model and recipes. The mixed-initiative scheduler will be both
interactive and reactive to accurately reflect actual plan operations and will accommodate
"what if and financial analysis.

The foundation of the mixed-initiative scheduler is constraint-based scheduling
technology by using the concept of a "constraint envelope" rather than explicit
manipulation of individual scheduling events. Constraint-Envelope Scheduling closely
relates to other constraint based systems. Constraint-Envelope Scheduling extends these
traditional approaches with its support for temporal reasoning and through the adoption
of critical principles such as "Open Scheduling" (dynamic user editing and inspection of
partial schedules), "Least Commitment" scheduling (making scheduling decisions only
when necessary), and explicit semantic representation of scheduling decisions in an
active model. These techniques allow scheduling approaches to range from fully
automated to completely directed through interaction.

Current state-of-the-art MRP II systems produce off-line, monolithic and inflexible
scheduling outputs. These systems fall short of real-world requirements which must
account for unpredictability and rapid change in operating parameters, interdependence
with plant operations and control, and large bodies of human scheduling expertise which
currently cannot be acquired in advance but must be captured at run-time through mixed-

initiative user interaction.

Correctly handling continuous manufacturing requires the scheduler to be able to
incorporate results of various numerical solvers, such as linear program solvers, etc. This
addition is relevant to military operations planning, as well as manufacturing. E.g., the
capability of interacting with special purpose numerical solvers is necessary to integrate
path planning and fuel consumption concerns into existing air operations planners.

This work will also further the commercialization of the technology, one of the objectives
of the TRP. The continuous process industries (e.g., oil refineries, paper and pulp,
polyethylene) form the core of Honeywell's Industrial Automation business.

Extending the scheduler to continuous manufacturing will provide a much larger market
and a more rapid application of the techniques developed under the TRP.

A. 5.1 Work Effort Partitioning

The BMS application will be constructed as a single work product.

A. 5.2 Phasing of Partitions

The manufacturing scheduling application will have four phases divided into six month
increments. The phases are defined as follows:

110

Phase 1: BMS increment 1 (INC1)

Phase 2: BMS INC2

Phase 3: BMS INC3

Phase 4: BMS INC4

Phase 5: BMS INC5

A.5.3 Phase 1 Tasks

Task 1: BMS INC1 Definition - Current Honeywell scheduling technologies and
prototypes will be reviewed to establish the product definition

Task 2: BMS INC 1 Design

Task 3: BMS INC1 Implementation

Task 4: BMS INC1 Alpha Test.

Task 5: BMS INC2 Definition - the scope and tasking for Phase 2 will be defined
and documented.

Task 6: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.5.4 Phase 2 Tasks

Task 1: BMS INC2 Definition - Current Honeywell scheduling technologies and
prototypes will be reviewed to establish the product definition

Task 2: BMS INC2 Design

Task 3: BMS INC2 Implementation

Task 4: BMS INC2 Alpha Test.

Task 5: BMS INC3 Definition - the scope and tasking for Phase 3 will be defined
and documented.

Task 6: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.5.5 Phase 3 Tasks

Task 1: BMS INC3 Definition - Current Honeywell scheduling technologies and
prototypes will be reviewed to establish the product definition

Task 2: BMS INC3 Design

Task 3: BMS INC3 Implementation

Task 4: BMS INC3 Alpha Test.

Task 5: BMS INC4 Definition - the scope and tasking for Phase 4 will be defined
and documented.

Ill

Task 6: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A.5.6 Phase 4 Tasks

Task 1: BMS INC4 Definition - Current Honeywell scheduling technologies and
prototypes will be reviewed to establish the product definition

Task 2: BMS INC4 Design

Task 3: BMS INC4 Implementation

Task 4: BMS INC4 Alpha Test.

Task 5: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A. 5.7 Phase 5 Tasks

Task 1: BMS INC5 Definition - Current Honeywell scheduling technologies and
prototypes will be reviewed to establish the product definition

Task 2: BMS INC5 Design

Task 3: BMS INC5 Implementation

Task 4: BMS INC5 Alpha Test.

Task 5: Reporting - support monthly status meetings and quarterly review
meetings. Provide demonstrations at quarterly reviews as appropriate.

A-6* Interoperability Tasking
The primary objective of interoperability is to ensure that SOM/DSOM interoperates with
other CORBA 2.0 compliant ORBs. IBM will perform this interoperability testing as
detailed in A.2. The consortium will work ocoperatively with the other two TRP
consortia to demonstrate ORB interoperability. ISX will play the lead role for this
interaction.

A-7. Program Scheduler Management
The project will be directed by a Consortium Management Committee (CMC) according
to the articles of collaboration. Day to day activities will be directed by individual
company team leaders and overall coordination will be carried out by a program manager
who will also be responsible for the following tasks:

Task 1: Conduct program kick-off review meeting

Task 2:Conduct monthly project status meetings

Task 3: Conduct quarterly review meeting(s)

Task 4:Submit progress reports.

112

Task 5:Consolidate and coordinate initial project work plan..

Task 6:Update and coordinate project work plan.

Task 7:Conduct end-of-project review meeting and complete final report.

113

APPENDIXE: Schedule

1996 1997 Task _ 1995_
Obj Tech (Rapid SWDev) Sked.R3 ^ ^D7F-M;A:^J^s.ONp;j;FiM:A|MJJlA.so.NDiJiFiM:A«l:J!J:Aisü:N:D

A. Program Management

1. Phase 1 Interoperable SOM
2. Phase 2 Interop. SOM Final
3. Phase 3 SOM Exts./Port
4. Phase 4 Interop. Supt.

C. Core Technology Base
0. SNAP Distro. to Developers
1. Phase 1 D/SOM
Integration

SNAP initial

2. Phase 2 Visual Programming
Tools / Initial C++ Generation

XpTia^eTD7s^F¥i^"FTna"r
Integration^ __
4. Phase4VisuaI Programming
Tools Ext / Final CH

(SNAP 8.0)
Generation

D. Campaign Planning Tool (CPT)
& Strategic Planning Toolkit (SPT)
Define/Develop

1. Phase 1C/SPT INC 1

PM
Project Startup/ Initialization CON ;
Project Status Review- Kickoff CON

CMC Quarterly / Tech Status Rep : CON :
Honeywell-6/28/95, 6/19/96
IBM-9/27/95, 9/27/96
ISX-12/13/95,12/11/96
Template 3/20/96,4/22/97,
6/30/97

PSR/TSR -End-of-project ; CON i

Project Close Out ! CON I

B.SOM ; IBM I
0. SOM 2.1 distribution to TSI

I

♦j
♦!
* i

TSI

ISX

SMI

2. Phase 2 C/SPTINC2

3.Phase3C/SPTINC3

4. Phase4C/SPTINC4
E. Batch Manufacturing Scheduling
(BMS) App Define and Develop

1. Phase 1B MS INC1
2.Phase2BMSINC2

3. Phase 3 BMS INC3
4. Phase 4 BMSJNC4

114

APPENDIX C: Honeywell Glossary and Acronyms
BMS (Batch Manufacturing Scheduler): We use this term to refer to our automated
scheduling system, as opposed to a human being who is responsible for scheduling
activities in a batch manufacturing plant.

CATM (Common Activity and Task Model): Set of object classes representing activities,
resources, and resource requirements common to schedulers written at HTC.

CORBA (The Common Object Request Broker Architecture): A framework for
distributed, object-oriented systems.

DCS (Distributed Control System)

EID (Enterprise Integration Demonstration): The overall enterprise management system,
comprising production planning, BMS, and plant control system simulation.

GUI (Graphical User Interface)

IDL (Interface Definition Language)

ILU (Inter-Language Unification): A framework for combining object-oriented programs
in different languages developed at Xerox PARC; it provides behavior that is a superset
of CORBA.

ISA (Instrument Society of America)

JIT (Just in time): A style of manufacturing; in a JIT enterprise, products are made only
in response to customer orders. This distinguishes JIT manufacturing from more
conventional inventory-maintenance manufacturing, in which a fairly steady inventory of
products is maintained in order that they be available when customer orders arrive.

MRP, MRP-II (Materials Requirement Planning)

00A (Object Oriented Analysis): In particular, diagrams in the Coad-Yourdon design
method are referred to as OOA diagrams.

ORB (Object Request Broker): Key component of a CORBA-based distributed system.

SP88: Batch manufacturing standard of ISA.

TMM (Time Map Manager): HTC's first temporal reasoning system, developed under a
DARPA contract for the DARPA/Rome Laboratory Planning Initiative.

WFT: SNAP'S Workflow Template, an object-oriented software template containing a
standard model and active components for managing workflow in an enterprise.

«U.S. GOVERNMENT PRINTING OFFICE. 2000-510-079-81:52

115

DISTRIBUTION _-

addresses number
of copies

NANCY A. ROBERTS
ftF'L/I^T!)
525 3R00KS ROAD
SQ^E/ NY 13441-4505

LA3RY SENT«AN
TEMPLATE SOFTWARE^ INC,
13100 yo»LT>G»TE DRIVE
SUITE 340
HERNDON* V& 22070

AF»L/IFOTL
TECHNICAL LIBRARY
?6 ELECTRONIC ?KY
PO".E NY 13441-4514

ATTENTION: OTIC-OCC
DEFENSE TECHNICAL INFO CENTER
p725 JOHN J. KING*AN ROAD, STE 0°44
FT. BELVOIP/ VA 22060-6215

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
7701 NORTH FAIRFAX DRIVE
ARLINGT0N VA 22203-1714

ATTN: NAN =-FRIv^ER
TIT RESEARCH INSTITUT:
201 «ILL ST.
ROME/ NY 13440

AFIT ACADEMIC LIBRARY
»FIT/LDRF 2?r0 ?.STREET
A'EA 5f a,LDG 642
WRIGHT-PATTERSON AF3 OH 45433-7765

AFRLAML*E
2977 ? STREET/ STE 6
WRIGHT-PATTERSON AF3 OH 45433-7739

DL-1

AFRL/HESC-TDC
?6'8 G 3T3-ET, 3LDG 190
WRIGHT-PAT' ' = ? i j ■ ,F3 OH 45433-7634

ATTN: 3*DC IM PL
US A 3 "Y SP AC F
p.o. aox 15JO
MUNTSVILLE AL 35?37-3fc31

OFF CHD

TECHNICAL LIBRARY D0274(^L-TS)
SPAWARSYSCFN
53560 HULL ST.
SAN DIEGO CA 92152-5031

CGvMANOER/ CODE 4TLG3CD
TECHNICAL LIBRARY*- NArfC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

CDP, US AR*Y AVIATION & "ISSILE C*D
REDSTONE SCIENTIFIC INFORMATION CT*>
ATTN: A»»3AM-pD-0 -na. (DOCUMENTS)
REDSTONE ARSENAL AL 7539P-5000

5EP0»T LI3RA~Y
^S P3öA
LOS Ai.av03 NATIONAL LABORATORY
LOS ALAMOS N*! B7545

ATTN: ,H HART
AVIATION 3DANCH SVC 122.10
F0?10A*- ?*! °31
200 INDEPENDENCE AVE/ 3W
WASHINGTON DC 205^1

AFIWC/M3Y
132 HALL 3LVD,
SAN ANTONIO TX

SIE 315
73243-7016

ATTN: KAROLA «. YO'JRISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

DL-2

USAF/AIR FO=CE RESEARCH LAPOP.ATOPY
AF9L/VS0SA(LIBCA°Y-3LDG 1103)
5 WRIGHT DRIVE
HANSCO* AF* *A 01731-3004

ATTN: EILEEN LADUKE/D460
HITRE CORPORATION
202 BUPLINGTON RD
BEDFORD VA 01730

OUSD(P>/DTSA/DUTD
ATTN: PATRICK G. SULLIVAN,
400 AR*Y NAVY DRIVE
SUITE 700
ARLINGTON VA 22202

JR.

AFRL/IFT
525 3R00KS ROAD
RO^E* NY 17441-4505

AFRL/IFT"
525 BROOK'S ROAD
BO^E* NY 13441-4505

CENTRIC ENGINEERING SYSTEM, INC.
624 EAST EVELYN AVENUE
SUNNYVALE/ CA O4036-64.R3

FLUENT INCORPORATED
500 DAVIS
tVANSTON*

STREET* SUITE 600
IL O0201

THE «ACNEAL-SCHWENDLER CORPORATION
?15 COLORADO BOULEVARD
LOS ANGELES* CA 90041-1777

MOLECULAR SIMULATI0NS* INC.
9865 SCRANTON »OAD
SAN DIEGO* CA 92121-3752

DL-3

CENTPIC FN3INE5RIN? SYSTEM/' INC.
624 EAST EVELYN AVENUE
SUNNYVALE, CA ^40S6-643£

DL-4

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

