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INTRODUCTION 

Traumatic brain injury (TBI) is the leading cause of death in the United States for 
people under age 45. Despite marked improvements in the medical management of TBI, 
only minor reductions (10-15%) have been observed in the incidence of fatal and severe 
injuries (Bullock and Fusijawa, 1992). The morbidity and neurological deficits 
associated with TBI are hypothesized to be attributable to both primary and secondary 
neuropathological events. Although the damage associated with primary events may be 
difficult to reverse, it is believed that secondary damage may be largely preventable with 
appropriate pharmacological intervention. Brain-derived neurotrophic factor (BDNF) has 
a well-established role in promoting cell survival during development, and may also 
provide neuroprotection following central nervous system insults in mature animals. The 
purpose of this study was to investigate the role of BDNF in attenuating neurological 
deficits in a well-characterized rodent model of traumatic brain injury, the lateral fluid 
percussion (FP) brain injury model. 

BODY 

The purpose of the first year of the grant was to determine if alterations in 
BDNF and its receptor, trkB, are associated with neuronal survival following lateral 
FP brain injury. Using in-situ hybridization and histological analysis following FP 
injuries of moderate severity we found that BDNF and trkB mRNA levels increased 
significantly in regions of the hippocampus that are resistant to cell death (Hicks et al., 
1997, Appendix I; Hicks et al, 1998a, Appendix II). In cortical regions with the most 
profound loss of cells, we saw a significant decrease in BDNF and trkB mRNA (Hicks et 
al., 1999a, Appendix III). Following a FP injury of mild severity, we saw similar 
temporal and spatial patterns of gene expression in the hippocampus, except for one 
notable difference (Hicks et al., 1999b, Appendix IV). Alterations in gene expression in 
the hippocampus following a moderate injury were bilateral, whereas following a mild 
injury there were restricted to the hippocampus ipsilateral to the injury (Hicks et al., 
1999b). In addition, because recent studies suggest that BDNF and NT-3 may have 
opposing roles, we also examined alterations in this neurotrophin and its receptor trkC 
mRNA levels. As expected based on previous studies in other injury models, NT-3 
mRNA levels were significantly decreased in regions of the hippocampus where BDNF 
mRNA levels were increased, (Hicks et al., 1997). No significant alterations were 
observed in trkC (Hicks et al., 1998a). 

The purpose of the second year of the grant was to determine if alterations in 
BDNF/trkB signal transduction are associated with neuronal survival following 
lateral FP brain injury. Specifically, we examined protein levels of BDNF, trkB, 
phosphorylated trkB, extracellular signal-regulated kinase (ERK, a member of the MAP 
kinase family), and phosphorylated ERK (MAPk) in the injured cortex and bilateral 
hippocampus between 6 and 96 h after FPL 

Male Sprague-Dawley rats (300-350g; n=32) received an experimental brain 
injury of moderate severity (2.0-2.1 atm) using the lateral fluid percussion brain injury 



model. This model is well-characterized and has been previously described in detail 
(Mclntosh et al., 1989; Hicks et al., 1996). Briefly, animals were anesthetized with 
sodium pentobarbital (60 mg/kg, i.p.) 10 min after receiving 0.15 ml of atropine (0.4 
mg/ml, i.m.), and given a 5 mm diameter craniotomy which was centered 3 mm lateral to 
the sagittal suture and 4.5 mm posterior to bregma. A Luer-loc hub was rigidly fixed 
with dental cement to the craniotomy. The hub was then attached to the FPI device, and a 
pressure fluid pulse was rapidly transmitted to the epidural space, generating mechanical 
stress forces to the brain. Following FPI injury, rats were euthanatized at 6, 24,48, or 96 
h in order to assess alterations in protein levels in response to the injury. Additional 
control animals (n=32) underwent anesthesia and surgery but were not injured (sham 
injury). 

After the appropriate survival times, the rats were deeply anesthetized with an 
overdose of sodium pentobarbital, decapitated, and the brains were rapidly removed and 
dissected. Injured cortical tissue from the left neocortex and the bilateral hippocampi 
were collected in eppendorf tubes, weighed, frozen in liquid nitrogen, and then stored in 
at -80° C until used. Samples from half of the animals were used to measure BNDF 
protein levels with a two-site ELISA, and the other half were used to measure trkB and 
ERK protein levels with Western blot procedures (4/group). 

For the ELISA procedure, samples were homogenized in 350 ul of sample buffer 
(0.1 M PBS, 0.4 M NaCl, 0.1% Triton X-100, 2 mM EDTA, 1 mM benzethonium 
chloride, w mM benzamidine, 0.1 mM PMSF, 20 trypsan inhibitor unit/ml aprotinin, and 
0.5% BSA, pH 7.4) and spun at 14,000 rpm for 30 min at 4° C. The supernatants were 
assayed in triplicate using the BDNF Emax Immunoassay system (Promega). Dynatech 
immunolon plates were coated with an anti-BDNF monoclonal antibody to capture the 
soluble BDNF from the supernatant solution. Bound BDNF complexes were exposed to 
an anti-human BDNF polyclonal antibody, and the amount of antibody was detected 
using an anti-IgY antibody conjugated to horseradish peroxidase. Unbound conjugate 
was removed by washing, and the chromogenic substrate 3,3',5,5'-tetramethyl benzidine 
(TMB) was added. BDNF protein levels in the samples were determined by colorimetric 
analysis with a microplate reader. Unknown sample values were normalized to a BDNF 
standard curve with values ranging between 0.005 ng/ml and 5 ng/ml. 

The primary antibodies used for Western blot analysis included anti-trkB and 
anti-ERK (Transduction Laboratories, Lexington, KY), and anti-ACTIVE MAPk 
(Promega, Madison, WI). The anti-trkB antibody is reported to be able to recognize the 
145 kD full length catalytic form of trkB, as well as the 95 kD truncated, non-catalytic 
version of this protein (Barbacid et al., 1991). The anti-ERK antibody recognizes the 42 
kD MAP Kinase protein (Boulton and Cobb, 1991). The anti-ACTIVE MAPK antibody 
is specific for the phosphorylated and activated form of MAP Kinase. Tissue sections 
were homogenized in Tris-saline containing leupeptin (10 uM), EDTA-Na + (1 uM), 
Pepstatin A (1 uM), and AEBSF (0.25 uM). The homogenates were centrifuged twice at 
14,000 g for 15 at 4° C. The protein content in the supernatants was determined by the 
micro-BCA method (Pierce). Equivalent amounts of protein from 4 injured and 4 control 
animals from the same post-injury time points were separated by SDS-polyacrylamide 



gel electrophoresis for each antibody. For trkB, 60 |ig of protein was loaded per lane on 
a 6.5% gel, and for ERK and MAPk, 20 ug of protein on a 10% gel. After 
electrophoretic separation, the proteins were transferred to nitrocellulose membranes 
(Bio-Rad) and immunoreacted with the proteins of interest (trkB, 1:200; ERK, 1:5000; 
MAPk, 1:20,000).    Immunoreactive bands were visualized using a chemiluminescence 
method (Pierce) and quantitated by densitometric analysis (NIH Image, version 1.60). 
Results were expressed as percent of control. Levels of protein immunoreactivity were 
linear over a threefold range of tissue concentration for each of the proteins analyzed. 

The immunoprecipitations were conducted as described previously (Stein- 
Behrens et al.,1994; Keller et al.,1997), with some modifications. Briefly, homogenates 
(300 ug) from fluid percussion and sham injured animals were heated for 5 min at 60oC 
and brought to a volume of 1 ml in ice cold RIPA buffer (50 mM Tris-HCl [pH 7.5], 10% 
glycerol, 1% Triton X-100, 150 mM NaCl, 100 mM NaF, 5mM EDTA, 2 mM PMSF, 
and 1 ug/ml leupeptin. Protein A was then added, and the solution incubated for 30 min 
at 4°C, then centrifuged at 500g for 3 min to preclear the sample. The first antibody 
(anti-TRKB or anti-PhosphoTyrosine) was added, and allowed to incubate at 4°C for 2 h 
on shaker. Protein A was then added and allowed to incubate on shaker for 2 h. The 
solution was then pelleted by centrifugation at 3000g and washed 3 times in PBS. The 
pellet was then resuspended in 25 ul of RIPA buffer and electrophoresed by 7.5% SDS- 
polyacrylamide gel electrophoresis. Following transfer to nitrocellulose sheet, the protein 
was incubated with primary antibody and then processed further with alkaline 
phosphatase-conjugated secondary antibody and resolved using an enhanced 
chemiluminescent system. 

A student's T-test was used to determine if there were significant differences in 
protein levels (p < 0.05) between the injured or control groups. All analyses were 
performed with SYSTAT 9 (Chicago, IL). All values are presented as percent control ± 
SEM. 

The BDNF ELISA revealed significant increases in BDNF protein in the injured 
cortex at 6 h post-FP injury and in the bilateral hippocampi at 48 h (Fig. 1) compared to 
sham-injured controls. There was also a trend toward a decrease in the injured cortex at 
48 h (p < 0.1). Western blots for analysis of nonphosphorylated trkB protein levels 
yielded consistent blots only for the noncatalytic 95 kD protein (trkB95) and not for the 
full-length, catalytic 145 kD isoform. Therefore, only trkfigs protein levels were 
evaluated. No significant differences were observed in trkB95 in either the injured cortex 
or in the hippocampus, although there was a trend toward an increase at 96 h in the 
hippocampus (Table 1). However, phosphorylated trkB protein levels increased in the 
injured cortex at 6 h in the injured animals (Fig. 2), although not in the hippocampus at 
48 h postinjury. Despite the increases in phosphorylated trkB protein, no significant 
changes were seen in ERK or phosphorylated ERK (MAPk) protein levels between FPI 
and sham-injured animals, except for a decrease in MAPk in the injured cortex at 24 h 
after FPI (Table 1). 
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Fig. 1. Temporal pattern of alterations in endogenous BDNF protein levels in the injured 
left parieto-occipital cortex and in the bilateral hippocampus of rats following FP injury. 
BDNF ELISA kits were used to measure protein levels. Note the significant increase in 
BDNF protein levels in the hippocampus at 48 h. In the injured cortex there was an 
increase at 6 h and a trend toward a decrease at 48 h. Values represent percent control 
levels (sham injury) ± SEM..  

Table 1. Percent change for injured rats compared to control (sham-injured) rats in the 
injured cortex and hippocampus at various postinjury time points for BDNF, trkB, ERK, 
and MAPk protein evels. 
Region 
&Time 

BDNF 
(%) 

P = TrkB95 P = ERK P = MAPk P = 

Cor-6h +51.4 0.028 -13.3 0.427 +4.2 0.692 -3.1 0.877 
-24h +2.2 0.912 -14.2 0.485 +1.6 0.788 -42.9 0.039 
-48h -58.1 0.076 + 9.4 0.468 +4.2 0.602 -5.5 0.615 
-96h -1.5 0.965 -34.6 0.374 -5.6 0.929 -34.7 0.203 

Hip-6h +2.7 0.805 +8.0 0.704 +6.2 0.671 +28.6 0.800 
-24h +15.5 0.501 +10.0 0.504 -5.8 0.719 +14.9 0.122 
-48h +82.3 0.001 +14.6 0.265 +13.2 0.082 +20.6 0.766 
-96h -2.7 0.927 +31.5 0.069 +11.0 0.582 +37.7 0.269 
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Fig. 2. Fluid percussion injury increases trkB phosphorylation. Brain homogenates, 
collected from rats 6 h following either fluid percussion (FP) or sham (S) surgery, were 
immunoprecipitated with anti-TRKB antibody, subject to electrophoresis, and 
immunoreacted using anti-Phosphotyrosine antibody. Data presented are typical of 
results from 2 separate experiments. Similar results were obtained when 
immunoprecipitation using anti-Phosphotyrosine were immunoreacted with anti-trkB 
(data not shown). The high molecular weight trkB and IgG artifact are indicated on the 
margin of Western blot.  

Numerous investigations are currently underway to elaborate the specific actions 
of BDNF and how it may promote neuronal survival during development or after brain 
injury. BDNF is believed to initiate its effects by binding to either a common low- 
affinity neurotrophin receptor, p75 (Rabizadeh et al., 1993; Carter et al., 1996) and/or to a 
high-affinity tyrosine kinase receptor (trkB) (Meakin and Shooter, 1992; Barbacid, 1994). 
It is believed to act primarily in an autocrine or paracrine fashion (Acheson et al., 1995), 
although there is also evidence of retrograde (Watson et al, 1999) and anterograde 
transport (Altar et al., 1994, Tonra, 1999) of BDNF. BDNF/trkB interactions result in 
trkB dimerization and phosphorylation, Which can lead to the subsequent activation of 
two known intracellular signaling cascades, the extracellular-regulated kinase/mitogen- 
activated protein kinase (ERK/MAP kinase) pathway or the phosphotidylinositol-3 kinase 
(PI3 kinase) pathway (Gottshalk et al, 1999). In vitro studies have begun to differentiate 
the roles of these two pathways. Apoptosis secondary to serum deprivation can be 
blocked by BDNF, and activation of the PI3, but not the MAP kinase pathway is reported 
to be critical for this process (Hetman et al., 1999, Bhave et al., 1999, Dolcet et al, 1999; 
Encinas et al., 1999). Although studies have primarily linked MAP kinase signal 
transduction with neuronal plasticity (Derkinderen et al., 1999; Impey et al., 1999), a 
recent study reported that apoptosis secondary to DNA damage was blocked by BDNF 
activation of the MAP kinase pathway (Hetman et al., 1999). These studies suggest that 
both of these BDNF/trkB downstream pathways can mediate neuroprotection, but that 
they may be specific for various types of cellular insults. However, we did not see 



evidence of activation of the ERK/MAP kinase pathway following modest injury-induced 
increases in BDNF protein levels. 

The purpose of the third year of the study was to determine if BDNF improves 
outcome following FP brain injury. Specifically we examined the effects of 
intravenous administration of BDNF following FP injuries of mild and moderate severity 
on BDNF protein levels, weight loss, neuropathology in the cortex and hippocampus, and 
cognitive deficits. 

Animals (n=49) were anesthetized and received a FPI of either moderate severity 
or mild severity (1.0 atm), or a sham injury as described above. Fifteen minutes after the 
FP injury, animals received an injection of either BDNF (10 mg/kg in 150 mM NaCl, 10 
mM sodium phosphate buffer, pH 7.0, and 0.004% Tween -20, Regeneron, N.J., i.v.) or 
an equivalent amount of sterile saline (approximately 0.3 ml) into the femoral vein. 
Animals were euthanized with an overdose of sodium pentobarbitol at either 2 h, 7 or 14 
days after the FP injury. 

Experiment 1: Determine if the BDNF is reaching the injured cortex and 
hippocampus. Animals were euthanized 2 h after FPI (2.0 atm) and injection of either 
BDNF or saline (n=3/group) and the brains rapidly removed and dissected into the 
following regions: injured cortex (InjCor), contralateral cortex (OppCor), injured 
hippocampus (JH), and contralateral hippocampus (OH). The tissue was rapidly frozen in 
liquid nitrogen and stored at -80 °C until ready for use. The ELISA procedure as 
described above was used to measure BDNF protein levels. Protein levels were 
significantly increased in the injured cortex (p < 0.02) compared to the contralateral side 
and to animals that received saline (Fig. 3). In the hippocampus, there were no 
significant differences between the groups (Fig. 3). 

Fig. 3. Graph shows BDNF protein levels in 
the cortex and hippocampus 2 hours after 
animals were given a FPI followed by 
administration of either BDNF (10 mg/kg, 
i.v.) or saline (n=3/group) 15 min after the 
injury. BDNF ELISA kits (Promega) were 
used to measure protein levels in the injured 
and contralateral (homotypic) cortex and 
hippocampus in animals that received either 
BDNF or saline after FPI. BDNF was 
significantly increased (p < 0.02) in the 
injured cortex after BDNF injection 
compared to the contralateral cortex or to 
animals that received saline. There was a 
trend toward an increase in the hippocampus, 
but this did not reach significant levels. 
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Experiment 2: Determine if BDNF attenuates neuropathology after FP. Animals 
received a FP injury of moderate severity, followed by injection of either BDNF or saline 
(n= 5/group). Seven days post-FP injury, animals were anesthetized, and then perfused 
with saline followed by 4% paraformaldehyde. The brains were removed, post-fixed 
with paraformaldehyde overnight, and then transferred into a solution of 25% sucrose in 
PBS for cryoprotection. Brain sections throughout the extent of the injury (bregma 0 to - 
6.5 mm) were cut into 40 urn thick sections on a microtome. Sections were mounted 
onto slides and stained with cresyl violet to evaluate the extent of neuronal injury. The 
cortical damage was quantified by digitizing 9 brain sections/animal with image 
processing software (Image 1.60, NIH) and measuring the area of the neocortex on the 
injured and uninjured sides of the brain. Neocortical volumes were then determined 
using the Cavalieri method (Michel and Cruz-Orive, 1988). Neuropathology was 
assessed by calculating the percent difference in the volume of the injured and uninjured 
cortices [uninjured cortex (mm3) - injured cortex (mm3)/ uninjured cortex (mm3)]. This 
method takes into consideration differences in animal brain size, tissue shrinkage 
secondary to processing, and the collapse of cortical tissue into the damaged region. In 
the hippocampus, a semi-quantitative scoring method was used to evaluate cell loss. 
Scores were assigned as follows: 0 = no visible cell loss or damage; 1 = cell loss 
restricted to the hilar region of the dentate gyrus; 2 = cell loss in the hilar region and 
slight cell loss in the CA3 pyramidal cell layer; and 3 = cell loss in the hilar region and a 
marked cell loss in the CA3 region. 

In animals that received BDNF there was a significant reduction in the lesion 
volume in the cortex 7 days post-FP injury (p < 0.05) compared to animals that received 
saline (Fig. 4 and 5). In the hippocampus, there were no significant differences in 
neuropathology between groups (data not shown). 

Fig. 4. The percentage of the cortex that was 
damaged after FPI was calculated by measuring the 
area of the injured and contralateral neocortices 
from 9 brain sections taken throughout the level of 
the injury site.   The mean difference in areas was 
expressed   as   a   percentage   of   the   uninjured 
neocortical area and compared between animals that 
received BDNF or saline after FPI [volume of 
contralateral    cortex    -    volume    of   ipsilateral 
cortex/volume  of contralateral   cortex].     BDNF 
significantly attenuated the cortical damage (p   < 
0.05). 
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Fig. 5. Photomicrographs of coronal sections of the side of the brain ipsilateral to the FP 
injury in representative animals that received either saline or BDNF after the injury. 
Note the attenuation of damage to the cortex (arrows) and subcortical white matter with 
BDNF treatment after FP injury. 

Experiment 3: Determine if BDNF attenuates cognitive deficits after FP injury of 
moderate severity. Animals received either a FP injury of moderate severity or a sham 
injury, followed by either administration of BDNF or saline as described above. Twelve 
days post-FP injury, animals were tested for spatial learning and memory deficits using a 
modified 2 day Morris Water Maze (MWM) procedure as described previously (Kraemer 
and Randall, 1995; Kraemer et al., 1996). All testing was performed by an observed 
blinded to each animal's treatment. Animals were trained to find a hidden platform in the 
pool using external visual cues. Animals were trained beginning on day 12, performing 
two blocks of four acquisition trials per day for 2 days, for a total of 16 trials. The time 
required for each animal to find the platform (goal latency) was recorded for each trial. 
After completing the last acquisition trial, animals underwent a single probe test to assess 
their spatial memory. The platform was removed and the swim pattern of each animal 
was videotaped for 90 seconds. The distance, time, and number of visits to the previous 
platform location, as well as visits to similar regions in the other quadrants was computed 
by a video motion analyzer (Videomex V, Columbus Instruments). Mean zone 
differences were calculated by subtracting the visits to the wrong target from visits to the 
former platform location. 

FPI animals were significantly impaired in learning to find the hidden platform 
after the 4th trial block (p < 0.01) compared to sham injured animals (Fig. 6). 
Administration of BDNF following FP injury or sham injury was without significant 
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effects on goal latencies (Fig. 6).   Mean zone differences also revealed no significant 
effects of BDNF on spatial memory following FP injury (data not shown). 
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Fig. 6. Spatial learning and memory was evaluated in a Morris Water Maze two weeks 
after animals were subjected to either a mild or moderate FPI or a sham injury, 
followed by administration of BDNF or saline 15 min later. The time it took the 
animals to swim to the platform (goal latency) was significantly longer after moderate 
FPI compared to sham injury (p < 0.01).   Adminstration of BDNF did not attenuate 
these impairments in spatial learning. Although there was a trend toward a delay in 
learning after mild FPI, all the animals learned the procedure by the fourth trial block 
(L4)-  

After the behavior testing was completed, animals were weighed, euthanized and 
their brains removed and analyzed for neuropathological damage as described above. 
There was a trend toward attenuation of the cortical lesion volume 14 days post FP injury 
in the group that received BDNF, but this did not reach stastitical significance (Table 2). 
This is in contrast to the animals that were analyzed 7 days post-FP where there was a 
modest but significant improvement. The data demonstrate that the differences between 
7 and 14 days are between the animals that received saline, not BDNF (Table 2). 
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Table 2. Cortical lesion volume (%) in animals with 7 and 14 day survival periods 
following FP injury.  

7 day survival 
14 day survival 

FP + Saline 
23.8% 
20.3% 

FP + BDNF 
14.8% 
14.6% 

0.042 
0.126 

Weight loss was also investigated in this experiment because of a previous study 
which demonstrated an association between BDNF and weight loss in rats (Pellymounter, 
1995). Animals that received BDNF lost significantly more weight (16.6 g) compared to 
animals that received saline (1.6 g) (p < 0.001) (Table 3). This finding is surprising given 
that animals received just one acute injection of BDNF after FP injury. However, it 
suggests that BDNF is reaching the brain and exerting physiological effects. 

Table 3. Change in weight after FP injury in animals that received either saline or BDNF 
treatment. 

FP + Saline FP + BDNF P 
14 day survival -1.6 g -16.6 g 0.001 

Experiment 4. Determine if BDNF attenuates cognitive deficits after FP injury of 
mild severity. This study was identical to that described above except that the animals 
received a FP injury of mild severity. Previous studies have demonstrated that mild FP 
injury is also associated with acute deficits in retrograde spatial memory and learning 
(Hicks et al., 1993). However, the MWM testing procedure employed in this study 
examines anterograde memory deficits, and we did not observe any significant 
differences in goal latencies or mean zone differences between mild FP and sham injured 
animals (Fig. 6). Thus, this test was not sensitive enough to detect behavioral deficits 
after mild FP injury, and thus cannot evaluate the effects of BDNF. We also investigated 
effects of BDNF on cortical lesion volume following FP injury and found no differences 
between those that received BDNF (cortical damage = 8.0 ± 2.0 %) or saline (7.0 ± 2.0 
%). 

Experiment 5. Determine if exercise-induced increases in endogenous BDNF are 
associated with a reduction in cognitive deficits after FP injury. Using in-situ 
hybridization and histological analysis following FP injuries of moderate severity we 
found that treadmill exercise increased BDNF mRNA levels significantly in the 
hippocampus (Hicks et al., 1998b, Appendix V). However, the exercise-induced 
increases in endogenous BDNF mRNA were not associated with attenuation of 
impairments in spatial learning and memory (Hicks et al., 1998b). 

Numerous studies have demonstrated that BDNF affords neuroprotection in a 
variety of in vitro and in vivo animal models of brain injury, including ischemia (Kindy 
et al., 1993, Beck et al, 1994, Larsson et al., 1999, Yamashita et al., 1997, Schabitz et al., 
1997), hypoglycemia (Nakao et al., 1995), excitotoxicity (Dekker et al., 1994, Cheng and 
Mattson, 1994, Hayes et al. 1995, Mattson et al., 1995) oxidative damage (Skaper et al, 
1998, Yamagata et al.,1999), glucocorticoid toxicity (Nitta et al., 1999), and nerve 
transection (Mansour-Robaey et al., 1994, Klocker et al, 1998, Hagg et al., 1998).  Our 
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findings are in agreement with these previous studies undertaken in different injury 
models. In contrast to studies demonstrating neuroprotective effects of BDNF, there have 
also been a few studies that reported an actual increase in cell death associated with 
BDNF/trkB signal transduction following injury, both in vitro (Koh et al., 1995, Kim, 
1999) and in vivo (Rudge et al., 1997, Alessandrini, 1999). These conflicting results 
underscore the need to understand molecular events associated with various injury 
processes and how BDNF interacts with these events prior to clinical applications. 

Enhancing cell survival after injury is important, but the ultimate goal is to 
enhance recovery of function.   Much less is known about the role of BDNF in restoring 
function after brain injury. However, following spinal cord injury, BDNF promoted 
regeneration as well as functional improvements (Liu et al., 1999; Jakeman et al., 1998). 
Interestingly, in animals with basal ganglia lesions, BDNF improved locomotor activity, 
but did not alter neuronal survival (Klein et al., 1999). We did not find evidence of 
enhanced cognitive performance with BDNF following FP injury. However, the tests we 
administered are believed to be dependent upon the hippocampus, and we did not see 
significant alterations in BDNF protein levels or attenuation of neuropathology in this 
region with our intervention. Thus, whether BDNF can attenuate deficits associated with 
the cortex following FP injury is unknown, and should be investigated in future studies. 
Furthermore, whether the modest neuroprotection afforded by BDNF following moderate 
FP injury can be enhanced by using it at other doses or in combination with other drugs is 
unknown and should be investigated in the future. 

KEY RESEARCH ACCOMPLISHMENTS 

• Characterized effects of mild and moderate experimental brain trauma on gene 
expression of BDNF, trkB, NT-3, and trkC in the cortex and hippocampus. 

• Demonstrated that BDNF and trkB gene expression increases in brain regions that are 
resistant to cell damage and decreases in regions that are vulnerable following 
experimental brain trauma. 

• Demonstrated that alterations in endogenous BDNF protein levels following FP 
injury do not activate the ERK/MAP kinase signal transduction pathway. 

• Demonstrated that administration of BDNF following moderate FP injury attenuates 
neuropathological damage in the cortex, but does not attenuate cognitive deficits. 

• Demonstrated that exercise following FP injury induces BDNF gene expression in the 
hippocampus, but is not associated with improvements in cognitive performance. 

REPORTABLE OUTCOMES 

Manuscripts 
1. Hicks RR, Numan S, Dhillon HS, Prasad MR, Seroogy KB. 1997. Alterations in 

BDNF and NT-3 induction in the hippocampus following lateral fluid percussion 
brain injury in the rat. Mol. Brain Res. 48:401-406. 

2. Hicks RR, Zhang L., Dhillon H.S., Prasad M.R., Seroogy K.B. 1998a. Expression of 
trkB is altered in rat hippocampus after experimental brain trauma. Mol. Brain. Res. 
59: 264-268. 
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3. Hicks RR, Boggs A, Leider D, Kraemer P, Brown R, Scheff SW, Seroogy KB. 
1998b. Effects of exercise following lateral fluid percussion brain injury in rats. Res. 
Neurol. Neurosci. 12:1-6. 

4. Hicks RR, Li C, Zhang L, Prasad MR, and Seroogy KB. 1999a. Alterations in 
BDNF and trkB mRNA levels in the cerebral cortex following experimental brain 
trauma in rats. J. Neurotrauma 16:501-510. 

5. Hicks RR, Martin VB, Zhang L, Seroogy KB. 1999b. Mild experimental brain 
injury differentially alters the expression of neurotrophin and neurotrophin receptor 
mRNAs in the hippocampus. Exp. Neurol. 160:469-478. 

Manuscripts in Preparation 
1. Hicks RR, Keller JN., 2000a. BDNF and Phosphorylated trkB Protein Levels are 

Altered in the Cortex and Hippocampus after Lateral Fluid Percussion Brain Injury. 
2. Hicks RR, Mace D, Billings B, Li C, Kraemer P. 2000b. BDNF attenuates cortical 

damage but not cognitive deficits after experimental brain trauma in rats. 

Presentations 
1. Hicks RR, Prasad MR, Dhillon HS, Dose JM, Numan S, Seroogy K. 1996. 

Alterations in BDNF and NT-3 mRNAs in the hippocampus following traumatic 
brain injury in the rat. Society for Neuroscience Annual Meeting. Washington, D.C. 

2. Hicks RR, Boggs A, Scheff SW, Kraemer P, Brown R, Zhang L, Seroogy KB. 1997. 
Exercise alters BDNF mRNA expression, but not behavior, after fluid percussion 
brain injury in rats. Society for Neuroscience Annual Meeting, New Orleans. 

3. Hicks RR, Prasad MR, Zhang L, Dhillon HS, Li C, Seroogy KB. 1997. Alterations in 
BDNF mRNA in the cortex after lateral fluid percussion brain injury. Neurotrauma 
Society Annual Meeting, New Orleans, and Seventh International Neural 
Regeneration Symposium, Pacific Grove, Ca 

4. Boggs A, Scheff SW, Kraemer P, Brown R, Zhang L, Seroogy KB, Hicks RR. 1998. 
Effects of exercise on neural plasticity and behavior after traumatic brain injury in 
rats. Combined Sections Meeting, APTA, Boston. 

5. Hicks RR, Prasad MR, Zhang L, Dhillon HS, Seroogy KB. 1998. Lateral fluid 
percussion brain injury alters trkB and trkC mRNA levels in rat hippocampus. 
Society for Neuroscience Annual Meeting, Los Angeles, and The Fourth Annual 
Kentucky Spinal Cord and Head Injury Research Symposium, Lexington, KY. 

6. Hicks RR, Perkins VB, Zhang L, Seroogy KB. 1998. Mild experimental brain injury 
produces alterations in BDNF, trkB, and NT-3 mRNA in the hippocampus. National 
Neurotrauma Society Meeting, Los Angeles. 

7. Meeker P, Lear B, Li C, Hicks RR. 1998. Is exercise neuroprotective for traumatic 
brain injury? APTA Section on Research Neuroplasticity Research Retreat, 
Newport, RI. and APTA Combined Sections Meeting, Seattle. 

8. Li, C, Billings B., Hicks, RR. 1999. Lateral fluid percussion brain injury alters 
brain-derived neurotrophic factor protein levels in the cortex and hippocampus. 
Submitted to Society of General Physiologists, 53rd Annual Meeting and 
Symposium, Woods Hole, MA. 
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CONCLUSIONS 

1. Experimental brain trauma induces acute alterations in BDNF, trkB, NT-3 and trkC 
mRNA levels in the cortex (ipsilateral to the injury) and the bilateral hippocampus. 

2. Endogenous increases in BDNF and trkB mRNA levels following experimental brain 
trauma result in relatively minor alterations in BDNF protein levels, and these 
alterations do not activate the ERK/MAP kinase signal transduction pathway. 

3. Intravenous administration of BDNF following moderate FP injury reaches the 
injured cortex. This finding has important clinical relevance because it demonstrates 
that a simple intravenous injection given shortly after TBI can be effective in 
targeting injured regions of the brain. Personnel with first aid training, such as 
emergency medical technicians, could give intravenous injections as soon as they 
arrive at the scene of the injury. 

4. Administration of BDNF after a moderate FPI provides modest neuroprotection to 
cells in the injured cortex, but does not attenuate cognitive deficits. Future studies 
should be undertaken to determine if these neuroprotective effects of BDNF after FP 
injury can be enhanced, either by increasing the dose or by using it in combination 
with other neuroprotective agents. 
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Abstract 

Previous studies have suggested that the neurotrophins brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are 
neuroprotective or neurotrophic for certain subpopulations of hippocampal neurons following various brain insults. In the present study, 
the expression of BDNF and NT-3 mRNAs in rat hippocampus was examined after traumatic brain injury. Following lateral fluid 
percussion (FP) brain injury of moderate severity (2.0-2.1 atm) or sham injury, the hippocampi from adult rats were processed for the in 
situ hybridization localization of BDNF and NT-3 mRNAs using 35S-labeled cRNA probes at post-injury survival times of 1, 3, 6, 24 and 
72 h. Unilateral FP injury markedly increased hybridization for BDNF mRNA in the dentate gyrus bilaterally which peaked at 3 h and 
remained above control levels for up to 72 h post-injury. A moderate increase in BDNF mRNA expression was also observed bilaterally 
in the CA3 region of the hippocampus at 1, 3, and 6 h after FP injury, but expression declined to control levels by 24 h. Conversely, NT-3 
mRNA was significantly decreased in the dentate gyrus following FP injury at the 6 and 24 h survival times. These results demonstrate 
that FP brain injury differentially modulates expression of BDNF and NT-3 mRNAs in the hippocampus, and suggest that neurotrophin 
plasticity is a functional response of hippocampal neurons to brain trauma. © 1997 Elsevier Science B.V. 

Keywords: Traumatic brain injury; Lateral fluid percussion; Brain-derived neurotrophic factor; Neurotrophin-3; Hybridization, in situ; Neuronal plasticity 

Secondary or delayed injury processes that begin to 
develop within minutes and continue to develop for hours 
after traumatic brain injury can contribute to irreversible 
tissue damage [3]. Although the sequence and timing of 
these processes are largely unknown, they are thought to 
be initiated by the release of neurotransmitters such as 
excitatory amino acids [8,23,35,37] and acetylcholine [14], 
and by the subsequent activation of neurotransmitter recep- 
tors, including NMDA-receptor subtypes, muscarinic 
cholinergic receptors, and opioid receptors [6,16,29,38]. 
An increase in intracellular calcium and the subsequent 
stimulation of calcium-dependent enzymatic activities are 
implicated mediators in some of the neurotransmitter- 
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induced    generation    of   secondary    injury    factors 
[6,10,16,19,45]. 

Several studies indicate that activation of excitatory 
amino-acid receptors in neurons can also result in the 
induction of neurotrophic factors, such as nerve growth 
factor (NGF) and brain-derived neurotrophic factor (BDNF) 
[34,47] (for review, see [26]). Accordingly, increased gene 
expression for BDNF and NGF in the brain has been 
observed in several models of central nervous system 
injury, such as ischemia and seizures, where excitatory 
amino-acid receptors are implicated in the pathogenesis 
[12,21,27,46]. In contrast to the up-regulation of NGF and 
BDNF mRNAs, down-regulation of neurotrophin-3 (NT-3) 
mRNA has also been observed with cerebral ischemia and 
seizures [12,27]. It has been suggested that these neu- 
rotrophins may provide neuroprotection by playing a role 
in the maintenance and survival of neurons after traumatic 
brain injury [31,33]. Therefore, it is important to character- 
ize the spatial and temporal patterns and levels of neu- 
rotrophic factor expression after experimental brain injury. 

0169-328X/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved. 
PIl S0169-328X(97)00158-7 
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Relatively few studies have examined alterations in the 
neurotrophin family of trophic factors after traumatic brain 
injury. Recent reports have, however, demonstrated in- 
creases of BDNF and NGF mRNAs and NGF protein in 
cortical areas after cortical contusion brain injury [5,15,48]. 
The present study characterized the changes in BDNF and 
NT-3 mRNAs in the hippocampus after lateral fluid per- 
cussion (FP) brain injury, another established model of 
traumatic brain injury. The hippocampus was of particular 
interest because of its prominent expression of and respon- 
siveness to neurotrophins [2,13,22,25], its vulnerability to 
neurodegeneration subsequent to various brain insults [41], 
and its role in learning and memory dysfunction following 
FP injury [18,44]. 

Male Sprague-Dawley rats (325-350 g) were anes- 
thetized with sodium pentobarbital (60 mg/kg i.p.) 10 min 
after receiving 0.15 ml of atropine (0.4 mg/ml i.m.), and 
placed in a stereotaxic frame. The scalp and temporal 
muscles were reflected, and a stainless-steel screw was 
secured to the skull 1 mm anterior to bregma. A hand-held 
trephine with a 4.9 mm diameter was used to make a 
craniotomy, which was centered between bregma and 
lambda, 3 mm lateral to the sagittal suture. A Luer-loc hub 
was rigidly fixed with dental cement to the craniotomy. 
Experimental lateral FP brain injury of moderate severity 
(2.0-2.1 atm) was induced in the anesthetized animals 
(« = 20) using a well-characterized model that has been 
previously described in detail [20,32]. Following FP injury, 
rats were allowed to survive for 1, 3, 6, 24 or 72 h before 
euthanasia, in order to assess the acute response of the 
neurotrophins to the injury. A subset of animals (n = 4; 3 
h survival period) underwent anesthesia and surgery but 
were not injured (sham treatment). 

After the appropriate survival times, the rats were deeply 
anesthetized with an overdose of sodium pentobarbital and 
decapitated. Brains were rapidly removed and frozen over 
dry ice. Tissue sections through the hippocampus were cut 
in the coronal plane at 10 /xm in a cryostat, thaw-mounted 
onto Superfrost Plus (Curtin Matheson Scientific) glass 
slides, and stored at - 20°C until processing for hybridiza- 
tion. Adjacent sections throughout the hippocampus of 
animals from the various injury and sham groups were 
processed for the in situ hybridization localization of mR- 
NAs for BDNF and NT-3 as previously described 
[11,42,43]. The cRNA probes were prepared by in vitro 
transcription from linearized cDNA constructs with the 
appropriate RNA polymerase in the presence of [35S]UTP. 
The 550-base rat NT-3 cRNA is complementary to 392 
bases of the mature rat NT-3 coding region, whereas the 
540-base BDNF cRNA includes 384 bases complementary 
to the rat BDNF mRNA coding region [11,21]. Hybridiza- 
tion was conducted at 60°C for 18-24 h with the 35S- 
labeled cRNA at a concentration of 1 X 106 cpm/50 
/xl/slide. Following post-hybridization washes and ribo- 
nuclease treatment, the sections were air-dried and exposed 
to /3-Max Hyperfilm (Amersham) for 14-18 days at room 

temperature for generation of film autoradiograms. After 
autoradiographic film development, the sections were 
dipped in NTB2 nuclear track emulsion (Kodak; 1:1 in 
H20), air-dried, and exposed in light-tight boxes at 4°C for 
4-6 weeks. After autoradiographic development of the 
emulsion, the sections were counterstained with Cresyl 
violet, coverslipped in D.P.X. mounting medium (Fluka), 
and analyzed with a Nikon Optiphot-2 microscope equipped 
with brightfield and darkfield optics. Cells were considered 
labeled if the density of reduced silver grains overlying the 
perikarya was at least 10-fold greater than background. 
Control sections that had been treated with ribonuclease A 
(45°C for 30 min) before hybridization or processed for 
hybridization with appropriate sense-strand riboprobes (see 
[11]) were devoid of specific labeling. 

Film autoradiograms were analyzed with Image 1.50 
software (NIH) to compare the density of hybridization for 
the neurotrophin mRNAs in various hippocampal subfields 
(dentate gyrus, CA1 and CA3) after sham treatment to that 
found after the various survival periods following lateral 
FP injury. Three to seven sections were analyzed per 
animal. All measurements are expressed as the mean + 
S.E.M values. The data sets were compared using a two- 
way analysis of variance (ANOVA) for side (ipsilateral 
and contralateral to the injury) and groups (5 injury sur- 
vival times and sham treatment). Newman-Keuls post-hoc 
analyses were used for pairwise comparisons with a signif- 
icance level set at P < 0.05. BDNF and NT-3 mRNA 
levels did not differ by side for any of the hippocampal 
regions investigated, nor was there a side by group interac- 
tion (data not shown). Therefore, the hybridization data 
from the ipsilateral and contralateral sides were combined. 
The mean value of the sham control (3 h survival) was 
also compared to additional sham treatment animals with 
survival periods of 1, 6, 24, and 72 h (n = 3/group) 
post-surgery. No significant differences were found in 
hybridization densities among sham treatment groups with 
various survival periods for either BDNF or NT-3 mRNAs 
in any of the hippocampal subfields (data not shown). 

Hybridization for BDNF mRNA was present in the 
granule cell layer of the dentate gyrus (stratum granulo- 
sum) and in regions CA1-CA3 of the hippocampus in the 
control (sham treatment) animals (Fig. 1A), similar to 
previous reports in normal, uninjured rats [7,21]. Unilateral 
FP injury resulted in a marked bilateral increase in the 
expression of BDNF mRNA in the dentate gyrus granule 
cell layer, which peaked at 3 h and remained above control 
levels for up to 72 h after injury (Fig. 1B-D). Densitomet- 
ric measurements of film autoradiograms demonstrated 
that BDNF mRNA hybridization was significantly in- 
creased in the granule cell layer at all post-injury time 
points (P < 0.001; Fig. 2A). Expression of BDNF mRNA 
was also significantly elevated bilaterally in the hippocam- 
pal CA3 region at 1, 3 and 6 h after FP injury (P < 0.001), 
but returned to control levels by 24 h (Figs. 1 and 2B). 
Again, the most pronounced increase in labeling in the 
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Fig. 1. Prints of film autoradiograms showing expression of BDNF (A-D) and NT-3 (E-H) mRNAs in coronal sections from control (sham) rats (A,E), 
and from rats subjected to moderate unilateral FP brain injury with 3 (B,F), 24 (C,G), and 72 h (D,H) survival periods. Note the increased hybridization for 
BDNF mRNA bilaterally in the dentate gyrus granule cell layer (stratum granulosum; sg) at all survival times following injury (B-D), and in the 
hippocampal CA3 region at the 3 h post-injury time point (B). In contrast, NT-3 mRNA levels are decreased bilaterally in the dentate gyrus at 24 h 
post-injury (G). Arrowheads in appropriate panels indicate the cell layers and survival times which differ significantly from the sham controls (see 
quantification in Figs. 2 and 3). Scale bar = 500 (im. 
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Fig. 2. Graphs showing corrected optical density (O.D.) measurements of hybridization for BDNF mRNA in the dentate gyrus stratum granulosum (A), 
hippocampal CA3 (B), and hippocampal CA1 (C) regions over time following lateral FP brain injury. Note the significant increase in BDNF mRNA 
expression in the dentate gyrus granule cell layer at all post-injury times (A), and in the hippocampal CA3 region at 1, 3, and 6 h following injury (B), 
compared to the sham treatment group (* P < 0.001). Lateral FP injury did not alter BDNF mRNA levels in the hippocampal CA1 region at any of the 
survival times (C). Values represent mean + S.E.M. 
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CA3 region was evident at 3 h after injury (Fig. IB). No 
changes in expression of BDNF mRNA occurred in the 
CA1 region of the hippocampus following FP injury (Figs. 
1 and 2C). 

In the control, sham-injured animals the most prominent 
expression of NT-3 mRNA was localized to the dentate 
gyrus granule cell layer (Fig. IE). Labeled cells were also 
present in regions CA2 and extreme medial CA1 of the 
hippocampal pyramidal cell layer, as well as infrequently 
scattered throughout the dentate gyrus hilus and hippocam- 
pal molecular layers (Fig. IE). This distribution is in good 
agreement with previous descriptions in normal rats [7,13]. 
Following unilateral FP injury, hybridization for NT-3 
mRNA was decreased bilaterally in the dentate gyrus 
granule cell layer at the 6 and 24 h survival times (Fig. 
IG). By 72 h post-injury, hybridization levels had returned 
to near-control (sham injury) levels (Fig. 1H). Quantitative 
measurements of film autoradiograms confirmed that NT-3 
mRNA expression was significantly reduced in the granule 
cells at both 6 and 24 h after FP injury (P < 0.001; Fig. 3), 
compared to sham controls. Although not analyzed densit- 
ometrically, visual examination of NT-3 mRNA hybridiza- 
tion in CA2 and medial CA1 indicated no apparent change 
in expression at any of the survival times post-injury, 
compared to sham controls. 

The present results demonstrate that FP brain injury 
induces pronounced alterations in the expression of neu- 
rotrophin mRNAs in the hippocampus. Levels of BDNF 
mRNA were substantially increased post-injury in both the 
dentate gyrus granule cell and CA3 pyramidal cell layers. 
In contrast, expression of NT-3 mRNA was transiently 
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Fig. 3. Graph showing corrected optical density (O.D.) measurements of 
NT-3 mRNA hybridization in the dentate gyrus granule cell layer over 
time following lateral FP brain injury. Note the significant decline in 
NT-3 mRNA expression at 6 and 24 h after injury compared to the sham 
treatment group (*P < 0.001). Values represent mean±S.E.M. 

decreased in the dentate gyrus, and the response was 
delayed relative to the early change in BDNF. Thus, 
traumatic brain injury differentially modulates neu- 
rotrophin gene expression in the hippocampus, in patterns 
and directions similar to findings in other brain injury 
paradigms including ischemia and seizures [12,13,27,28]. 
Although the present study focused on the hippocampal 
formation, it should be noted that obvious alterations in 
neurotrophin expression following FP injury were also 
observed in other brain regions, including the cortical 
lesion site, adjacent neocortical areas, the piriform cortex, 
and several medial thalamic nuclei (data not shown). 

Our results are consistent with recent data on the acute 
modulation of neurotrophin gene expression obtained with 
another model of traumatic brain injury, the cortical contu- 
sion impact model [48]. That study reported an increase in 
BDNF, but no change in NT-3, mRNA levels in the 
dentate gyrus granule and hippocampal pyramidal cell 
layers at 1, 3, and 5 h (the longest survival time examined) 
post-injury. The lack of change in NT-3 mRNA expression 
may reflect the acute time course of their study, since in 
the present study the decrease in NT-3 expression was not 
evident until 6 h after FP injury. In any event, it is now 
apparent from two different paradigms that a consistent 
response of hippocampal neurons to traumatic brain injury 
is dramatic, differential regulation of neurotrophin expres- 
sion. 

The bilateral alterations in BDNF and NT-3 expression 
are in contrast to the gross morphological and histological 
damage which has been primarily identified in hippocam- 
pal regions ipsilateral to the impact site [4,20]. However, 
they are consistent with more subtle changes, such as the 
bilateral loss of hilar neurons [30] and bilateral alterations 
in the expression of immediate-early genes and tumor 
necrosis factor-a [9,39], which have been observed follow- 
ing unilateral FP injury. Whereas no evidence of abnormal 
behavior or overt seizure activity was noted in any of the 
experimental groups in this study, nor in a previous study 
with FP injury of this severity [30], it is possible that 
post-traumatic subclinical seizures contributed to the alter- 
ations in expression of BDNF and NT-3. However, neuro- 
chemical changes that would be expected to occur bilater- 
ally following seizures have only been observed unilater- 
ally following FP brain injury [6,36,38]. 

The significance of the alterations in BDNF and NT-3 
expression on cell survival following lateral FP injury is 
unclear. The dentate gyrus showed the greatest increase in 
BDNF compared to control values and cells in this region 
are selectively resistant to cell death following lateral FP 
injury [4,20,30]. However, BDNF expression was also 
elevated bilaterally in the hippocampal CA3 region, which 
contains numerous injured neurons on the side ipsilateral 
to the impact [4,20]. Numerous previous studies have 
supported the hypothesis that BDNF is neuroprotective 
following injury [1,2,17,27,28,46], whereas others have 
found no trophic effect [40] or an actual increase in 
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neuronal death [24] with BDNF treatment. Although fur- 
ther studies are necessary to clarify the role of BDNF 
following injury, one hypothesis is that it is the amount of 
BDNF available that is critical for promoting cell survival. 
The functional consequences of the concurrent decrease in 
NT-3 expression in the same cells (stratum granulosum) 
marked by the BDNF increase, also remain unknown. It is 
possible that whereas optimal neurotrophin levels may 
promote survival, insufficient or excessive levels may 
exacerbate neuronal loss. Moreover, injury-induced alter- 
ations in levels and functional states of appropriate neu- 

i rotrophin receptors may also be important determinants of 
resulting neurotrophic functions. 

In conclusion, lateral FP brain injury differentially mod- 
ulates expression of BDNF and NT-3 in hippocampal 
neurons. These alterations are consistent with the hypothe- 
sis that widespread secondary events, including neu- 
rotrophin plasticity, occur following traumatic brain injury. 
Further investigations are necessary to evaluate the role of 
these neurotrophic factors on cell survival after experimen- 
tal brain trauma. 
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Abstract 

Recent investigations have shown that expression of mRNAs for the neurotrophins brain-derived neurotrophic factor (BDNF) and 
neurotrophin-3 (NT-3) is differentially altered in the hippocampus following traumatic brain injury. In the present study, modulation of 
neurotrophin receptor expression was examined in the hippocampus in a rat model of traumatic brain injury using in situ hybridization. 
Messenger RNA for trkB, the high-affinity receptor for BDNF and neurotrophin-4 (NT-4), was increased between 3 and 6 h bilaterally in 
the dentate gyrus following a lateral fluid-percussion brain injury of moderate severity (2.0-2.1 atm). No time-dependent alterations were 
observed for trkB mRNA in hippocampal subfields CA1 and CA3. Levels of mRNA for trkC, the high-affinity receptor for NT-3, did not 
change in any region of the hippocampus. These data demonstrate that lateral fluid-percussion injury modulates expression of trkB mRNA 
in the hippocampus and support a role for BDNF/trkB signalling mechanisms in secondary events associated with traumatic brain injury. 
© 1998 Elsevier Science B.V. All rights reserved. 

Keywords: Traumatic brain injury; Lateral fluid percussion; Neurotrophin receptors; In situ hybridization; Neuronal plasticity 

The trophic properties of neurotrophins are mediated 
through interactions with their high-affinity receptors, 
which are transmembrane protein-tyrosine kinases (trks) 
[4,14,20]. The widely expressed trkB protein is the high-af- 
finity receptor for brain-derived neurotrophic factor 
(BDNF) and neurotrophin-4 (NT-4) [4,20]. The trkC pro- 
tein is also broadly expressed throughout the nervous 
system and is the high-affinity receptor for neurotrophin-3 
(NT-3) [4,17]. Activation of trk receptors involves ligand 
binding by the neurotrophin, receptor dimerization, auto- 
phosphorylation, and activation of tyrosine residues on 
various intracellular substrates [14]. Under normal devel- 
opmental and mature conditions, these intracellular sub- 
strates serve as signals for survival, proliferation, differen- 
tiation, and synaptogenesis, as well as for other forms of 
neural plasticity [18,33]. Following various types of neural 
injury, neurotrophin/trk interactions have been linked to 
neuroprotection and recovery of function [22,28]. 

*   Corresponding    author.    Fax: 
rrhick00@pop.uky.edu 

1-606-257-1816;    E-mail: 

Previous investigations into the role of neurotrophins in 
experimental brain trauma have demonstrated that BDNF 
mRNA is elevated in the hippocampus as early as 1 h after 
lateral fluid percussion (FP) [12] or cortical contusion [35] 
brain injury, and expression remains elevated up to 72 h 
post-injury [12]. Conversely, NT-3 mRNA levels decrease 
in the hippocampus following lateral FP brain injury [12]. 
However, the injury responsiveness of neurotrophin recep- 
tors in such brain trauma paradigms has yet to be deter- 
mined. Therefore, to further investigate the role of neu- 
rotrophin/trk interactions in brain trauma, we examined 
whether trkB and trkC mRNAs in the hippocampus are 
altered following lateral FP brain injury in rats. 

Male Sprague-Dawley rats (325-350 g) were anes- 
thetized with sodium pentobarbital (60 mg/kg, i.p.) 10 
min after receiving 0.15 ml of atropine (0.4 mg/ml, i.m.), 
and placed in a stereotaxic frame. The scalp and temporal 
muscles were reflected, and a stainless-steel screw was 
secured to the skull 1 mm anterior to bregma. A cran- 
iotomy with a 5-mm diameter was centered between 
bregma and lambda, 3 mm lateral to the sagittal suture. A 
Luer-loc hub was rigidly fixed with dental cement to the 
craniotomy. Experimental brain injury of moderate sever- 

0169-328X/98/$19.00 © 1998 Elsevier Science B.V. All rights reserved. 
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ity (2.0-2.1 atm) was induced in the anesthetized animals 
(n = 20), using the lateral FP brain injury model. This 
model is well-characterized and has been previously de- 
scribed in detail [6,13,24]. Following FP injury, rats were 
euthanatized at 1, 3, 6, 24, or 72 h (four per survival 
period), in order to assess the acute response of trkB and 
trkC to the injury. Additional animals (n = 15; three per 
survival period) underwent anesthesia and surgery but 
were not injured (sham treatment). 

After the appropriate survival times, the rats were deeply 
anesthetized with an overdose of sodium pentobarbital, 
decapitated, and their brains were rapidly removed and 
frozen over powdered dry ice. Coronal sections (10 n,m 
thick) were cut through the hippocampus in a cryostat, 
thaw-mounted onto Superfrost Plus (Curtin Matheson Sci- 
entific) glass slides, and stored at - 20°C until processing 
for hybridization. Adjacent sections throughout the hip- 
pocampus of animals from the various injury and sham 
groups were processed for the localization of mRNAs for 
trkB and trkC using in situ hybridization as previously 
described [30,31]. Sense and antisense cRNA probes were 
prepared by in vitro transcription using appropriate lin- 
earized DNA constructs in the presence of the proper RNA 
polymerase (T3 or T7) and [35S]UTP (New England Nu- 
clear). The cDNA constructs for trkB and trkC (plasmids 
kindly provided by D. McKinnon, State University of New 
York at Stony Brook) resulted in antisense RNA tran- 
scripts that were 196 and 374 bases in length, respectively. 
The trkB cRNA probe detects the kinase-specific, full- 
length catalytic form of the receptor mRNA [10,27]. The 
probe used to detect trkC mRNAs recognizes transcripts 
for both the full-length catalytic and kinase domain inser- 
tion/deletion non-catalytic forms of the receptor [1,7,34]. 
Sections were hybridized at 60°C for 18-24 h with 
[35S]labelled cRNA probes at a concentration of 1.0 X 106 

c.p.m./50 (xl/slide. After post-hybridization ribonuclease 
treatment and washes, film autoradiograms were generated 
by exposure of the sections to ß-Max Hyperfilm 
(Amersham) for 7 days. Following film development, the 
sections were dipped in NTB2 nuclear track emulsion 
(Kodak; 1:1 in H20), air-dried, and exposed in sealed slide 
boxes at 4°C for 4-6 weeks. The emulsion was developed 
in D19 (Kodak) and fixed with Rapidfix (Kodak). The 
slides were then counterstained with Cresyl violet (Sigma) 
and coverslipped with DPX mountant (Fluka). Pre-hybridi- 
zation treatment of tissue with ribonuclease A and hy- 
bridization of sections with sense transcript controls re- 
sulted in no specific hybridization signal. 

Film autoradiograms were analysed with Image 1.60 
software (NTH) to measure the density of hybridization for 
the trk mRNAs in several hippocampal subfields (stratum 
granulosum of the dentate gyrus, strata pyramidale of CA1 
and CA3). Background optical density (O.D.) measure- 
ments were taken in adjacent white matter of the corpus 
callosum and subtracted from the O.D. measurements in 
the hippocampal subregions in order to obtain corrected 

O.D. measurements. At least three sections were analysed 
per animal. All measurements are expressed as the mean 
values plus or minus the standard error of the mean 
(S.E.M.). The effects of treatment (injury vs. sham), sur- 
vival time, and their interaction effects were analysed with 
a two-way analysis of variance (ANOVA) in each hip- 
pocampal subfield for the side of the brain ipsilateral to the 
injury, contralateral to the injury, and for the bilateral 
sham data. Bonferonni post-hoc analyses were used for 
pairwise comparisons with a significance set at P < 0.05. 

Hybridization for trkB and trkC mRNAs was present in 
the granule cell layer of the dentate gyrus (stratum granu- 
losum) and in regions CA1-CA3 of the hippocampus in 
the control (sham treatment) animals (Fig. 1A, Fig. 3A), 
similar to previous reports in normal, uninjured rats 
[3,9,25]. Following FP injury, increases in trkB mRNA 
levels were evident in the dentate gyrus granule cell layer 
at 3 and 6 h post-injury, but not at 1, 24 or 72 h (Figs. 1 
and 2), in comparison to levels in sham animals. Densito- 
metric measurements of film autoradiograms confirmed 
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Fig. 1. Film autoradiograms showing hybridization for trkB mRNA in 
coronal sections through the hippocampus of a control (3 h sham) rat (A) 
and of rats subjected to lateral FP brain injury of moderate severity with 3 
(B), 6 (C), and 72 (D) h survival times. Note the increase in hybridization 
signal in the dentate gyrus granule cell layer (stratum granulosum; sg) at 
the 3 and 6 h post-injury timepoints [arrowheads in (B), (C)], and the 
return to control levels by 72 h (see quantification in Fig. 3). Scale 
bar = 1 mm. 
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Fig. 2. High-power brightfield photomicrographs showing autoradiographic labeling for trkB mRNA in the dentate gyrus stratum granulosum in a control 
(6 h sham injury) rat (A) and in a rat subjected to FP brain injury with a 6-h survival time (B). Note the substantial increase in hybridization density over 
the granule cells at the 6 h post-injury timepoint (B). Scale bar = 20 |xm. 

that hybridization for trkB mRNA was significantly ele- 
vated in both the ipsilateral and contralateral stratum gran- 
ulosum of FP-injured animals as compared to sham con- 
trols at 3 h (P < 0.005) and at 6 h (P < 0.05) (Fig. 3). In 
the strata pyramidale subfields, CA1 and CA3 (Fig. 1), 
O.D. measurements indicated that there were no time-de- 
pendent changes in trkB mRNA after FP injury (data not 
shown). Hybridization for trkC mRNA in the dentate gyrus 
granule cell layer, CA1 or CA3 hippocampal subfields, 
was unchanged following FP injury for all timepoints 
(Figs. 4 and 5). 

TrkB mRNA Exl    Sham 

Ü    FP - Contralateral 

H    FP - Ipsilateral 

24 h   72 h 
Fig. 3. Changes over time in corrected optical density (O.D.) measure- 
ments of trkB mRNA hybridization in the ipsilateral and contralateral 
dentate gyrus in rats subjected to FP injury and in the bilateral dentate 
gyrus in control (sham injury) rats. Note the significant increase in trkB 
mRNA expression at 3 and 6 h after injury as compared to the sham 
treatment group (* P < 0.05). Values represent mean + S.E.M. 

The results of the present study demonstrate that ex- 
pression of trkB mRNA in the hippocampus is transiently 
up-regulated following lateral fluid-percussion brain in- 
jury. The alterations in trkB mRNA that we observed in 
the dentate gyrus at 3 and 6 h post-injury are in general 
agreement with previous investigations utilizing other 
models of central nervous system (CNS) injury. For exam- 
ple, induction of seizures following kindling caused a rapid 
and transient elevation in trkB mRNA in the dentate gyrus, 
which peaked at 30 min and tapered off to near control 
values by 4 h [26]. Increases in trkB mRNA in the dentate 
gyrus were also observed at 2 h following an ischemic 
insult [26], and at 2-4 h following a mechanical injury to 
one side of the brain [29]. Our finding that trkC expression 
in the hippocampus was not affected by lateral FP injury is 
in agreement with observations reported after seizures [26]. 
However, in contrast to these similar observations, 2-4 h 
after a focal mechanical injury, an increase in trkC mRNA 
was found in the dentate gyrus [29]. Thus, despite some 
differences in trkC responsiveness following injury, the 
similar alterations in trkB mRNA across models suggest 
that common mechanisms may be involved in the modula- 
tion of neurotrophin expression after CNS injury. 

Our previous study demonstrated that levels of BDNF 
mRNA in the dentate gyrus increased by approximately 
200% of sham values between 1 and 72 h after FP injury 
[12]. The present increase in trkB mRNA (approximately 
35%) in the dentate gyrus after FP injury was much less 
robust and slightly delayed relative to the onset of signifi- 
cant alterations in its ligand, BDNF. Nevertheless, the 
complementary increase in BDNF and trkB mRNAs sug- 
gests that this signal transduction pathway may be further 
enhanced in the dentate gyrus during the acute periods 
following FP injury. This is a noteworthy observation 
because chronic exposure to exogenous BDNF has been 
shown to down-regulate trkB mRNA and protein in vivo 
[8,16]. Thus, since acute increases in BDNF mRNA fol- 
lowing FP injury are not associated with decreases in trkB 
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mRNA, acute administration of BDNF may be more effec- 
tive than chronic administration in activating BDNF/trkB 
signal transduction pathways and influencing hippocampal 
cell survival and function. 

The functional significance of the increase in 
BDNF/trkB mRNA in the dentate gyrus following FP 
injury is presently unknown. Neurotrophin/trk interactions 
are believed to be important for selective neuronal survival 
[2,15], and this role may also be important following FP 
injury. BDNF/trkB signalling mechanisms may have a 
neuroprotective effect on the granule cells of the dentate 
gyrus following FP injury, as these cells are selectively 
resistant to death [6,13,21]. However, CA1 pyramidal cells 
are also resistant to lateral FP-induced degeneration, and 
increases in BDNF/trkB were not observed in this region 
of the hippocampus ([12]; present study). NT-3/trkC sig- 
nal transduction has also been found to have neuroprotec- 
tive effects in some models of neuronal injury [11,19], but 
this appears unlikely following FP injury, as the NT-3 
mRNA levels are decreased [12] and the trkC mRNA 
levels remain unchanged. 

TrkC mRNA 

150-1 

Fig. 4. Film autoradiograms showing hybridization for trkC mRNA in 
coronal sections through the hippocampus of a control (24 h sham) rat 
(A) and of rats subjected to lateral FP brain injury of moderate severity 
with 3 (B), 24 (C), and 72 (D) h survival times. Hybridization signal for 
trkC mRNA is unchanged for any of the timepoints that were analysed 
(see quantification in Fig. 5). Scale bar = 1 mm. 
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FP - Ipsilateral 

o 
1 

Fig. 5. Corrected O.D. measurements over time of trkC mRNA hybridiza- 
tion in the ipsilateral and contralateral dentate gyrus in rats subjected to 
FP injury and in the bilateral dentate gyrus in control (sham injury) rats. 
No statistically significant differences were observed in injured rats as 
compared to control rats. Values represent mean + S.E.M. 

Both BDNF and trkB have also been associated with 
synaptogenesis and neural plasticity, and thus, may be 
important for recovery of function following injury. Block- 
ing trkB receptors interfered with the normal development 
of ocular dominance columns in the visual cortex [5]. 
Removal of facial vibrissae in mice during development 
resulted in a decrease in BDNF mRNA in the correspond- 
ing cortical barrel region, but an increase in the contralat- 
eral barrel region [32]. Moreover, recent evidence indicates 
that BDNF and NT-3 may have antagonistic actions on 
dendritic growth in cortical neurons [23]. If a similar 
relationship exists in the hippocampus, then the decrease in 
NT-3 mRNA following FP injury [12] may further amplify 
the effects of BDNF/trkB signal transduction on neural 
plasticity. 

In summary, our results demonstrate that increases in 
trkB occur bilaterally in the dentate gyrus following lateral 
FP injury. These data complement our previous studies 
that have shown similar alterations in BDNF mRNA in 
this same region of the hippocampal formation. The coor- 
dinated up-regulation of BDNF/trkB expression may be 
important for neuronal survival or neural plasticity follow- 
ing traumatic brain injury. 
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ABSTRACT 

Recent studies have suggested that brain-derived neurotrophic factor (BNDF) and its receptor, trkB, 
may provide neuroprotection following injury to the central nervous system. Conversely, other stud- 
ies have implicated BDNF as a contributing factor to neurodegenerative events that occur follow- 
ing injury. In order to further investigate the role of BDNF in neuroprotection, we subjected adult 
rats to a lateral fluid percussion (FP) injury of moderate severity (2.0-2.1 atm) or sham injury. Af- 
ter survival periods of 1, 3, 6, 24, or 72 h, the brains were processed for the in situ hybridization 
localization of BDNF and trkB mRNAs using 35S-labeled cRNA probes. Hybridization levels were 
compared between injured and sham animals for regions of the cortex that were located within, ad- 
jacent to, and remote from the site of the cortical contusion. BDNF mRNA levels were significantly 
decreased in the injured cortex at 72 h, increased in adjacent cortical areas at 3 h, and increased 
bilaterally in the piriform cortex from 3 to 24 h post-FP injury. Expression of trkB mRNA was sig- 
nificantly decreased at all postinjury time-points in the injured cortex and at 24 h in the adjacent 
cortex. These results demonstrate that, following lateral FP injury, BDNF and trkB mRNA levels 
are decreased in cortical regions that contain degenerating neurons, generally unchanged in adja- 
cent regions, and increased in remote areas. Thus, injury-induced decreases in the expression of 
BDNF and trkB may confer vulnerability to neurons within the cortical contusion. 

Key words: head injury; neurotrophic factors; traumatic brain injury 

INTRODUCTION brain trauma effectively reproduces this feature of TBI, 
as a cortical contusion is the most pronounced form 

TRAUMATIC BRAIN INJURY (TBI) is a major health prob- of neuropathology associated with this injury device 
lern, especially for adolescents and young adults. It (Mclntosh et al., 1989; Hicks et al., 1996). 

accounts for 25% of injury-related deaths and is also a Previous studies have suggested that the neuronal dam- 
major cause of lifelong disability and impairment (Sosin age following experimental TBI may initially be re- 
et al., 1989). Although the neuropathology associated versible (Cooper, 1985). It is believed that the impact and 
with TBI is variable, a cortical contusion is a frequently shear forces generated at the time of the injury cause pri- 
encountered form of neuronal injury (Adams, 1992). The mary neuronal damage, followed by a cascade of sec- 
lateral fluid percussion rodent model of experimental ondary excitotoxic biochemical events (Faden et al, 

'Division of Physical Therapy, department of Anatomy and Neurobiology, department of Surgery, University of Kentucky, 
Lexington, KY. 
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1989; Katayama et al., 1990). Identifying pharmacologic 
agents to block these secondary neurodegenerative events 
has been a primary focus of TBI research. To this end, 
administration of the trophic factor basic fibroblast 
growth factor has been reported to result in a significant 
decrease in the cortical contusion volume following fluid 
percussion (FP) injury in rats (Dietrich et al., 1996). 

Another potentially neuroprotective agent for TBI is 
brain-derived neurotrophic factor (BDNF). Numerous 
studies have demonstrated that administration of BNDF 
can protect cells from a variety of central nervous sys- 
tem insults both in vitro (Skaper et al., 1993; Cheng and 
Mattson, 1994; Hayes et al, 1995; Mattson et al, 1995; 
Kubo et al, 1995; Nakao et al, 1995) and in vivo (Kindy, 
1993; Beck et al, 1994; Mansour-Robey et al, 1994; 
Yurek et al, 1996; Cheng et al, 1997; Schabitz et al, 
1997; Klocker et al, 1998; Hagg, 1998). However, there 
is also evidence to suggest that BDNF potentiates neu- 
ronal injury in vitro (Koh et al, 1995) and in vivo (Rudge 
et al, 1998). 

BDNF mediates its effects through interaction with a 
tyrosine kinase receptor, trkB (Barbacid, 1994; Lindsay 
et al, 1994). Both BDNF and trkB mRNA levels increase 
significantly in the hippocampus following lateral FP 
(Hicks et al, 1997, 1999) and cortical impact injury 
(Yang et al, 1996). Acute increases in BDNF mRNA lev- 
els have also been observed in the ipsilateral neocortex 
up to 5 h after a cortical impact injury (Yang et al, 1996). 
In the present study, we were interested in exploring al- 
terations in expression of BDNF and its functional re- 
ceptor, trkB, in relationship to their potential roles in neu- 
roprotection and/or neural plasticity following the lateral 
FP model of TBI. Thus, we investigated time-dependent 
(1-72 h) alterations in expression of both BDNF and trkB 
mRNAs in specific subregions of the cortex that undergo 
varying degrees of neuronal degeneration following a lat- 
eral FP injury. 

METHODS 

Surgery and Fluid Percussion Injury 

Male Sprague-Dawley rats (325-350 g) were injected 
with atropine (0.15 ml i.m.) 10 min prior to being anes- 
thetized with sodium pentobarbital (60 mg/kg i.p.) and 
placed in a stereotaxic frame. After reflecting the scalp 
and temporal muscles, the animals were given a 5-mm 
craniotomy with a hand-held Michele trephine over the 
left parieto-occipital cortex. The craniotomy was cen- 
tered between bregma and lambda, and was lateral to the 
sagittal suture. A hollow Luer-Lok fitting was fixed 
rigidly with dental cement to the craniotomy. Experi- 
mental brain injury of moderate severity (2.0-2.1 atm) 

was induced in the anesthetized animals (« = 20), using 
the lateral FP brain injury model. This model is well- 
characterized and has been previously described in detail 
(Mclntosh et al, 1989). Following FP injury, rats were 
euthanatized at 1, 3, 6, 24, or 72 h (n = 4 per survival 
period), in order to assess the acute response of BDNF 
and trkB mRNAs to the injury. Additional animals (n = 
15; 3 per survival period) underwent anesthesia and 
surgery but were not injured (sham injury). 

After the appropriate survival times, the rats were 
deeply anesthetized with an overdose of sodium pento- 
barbital and decapitated. Brains were rapidly removed 
and frozen over dry ice. Tissue sections through the level 
of the hippocampus were cut in the coronal plane at 10 
/xm in a cryostat, thaw-mounted onto Superfrost (Plus 
Fisher Scientific) glass slides, and stored at -20°C until 
processing for hybridization. Adjacent sections through- 
out the cerebral cortex of animals from the various in- 
jury and sham groups were processed for the in situ hy- 
bridization localization of mRNAs for BDNF and trkB 
as previously described (Gall et al, 1992; Seroogy et al, 
1994; Numan and Seroogy, 1997; Seroogy and Herman, 
1997). The cRNA probes were prepared by in vitro tran- 
scription from linearized cDNA constructs with the ap- 
propriate RNA polymerase in the presence of 35S-UTP. 
The 540-base BDNF cRNA (plasmid kindly provided by 
J. Lauterborn and C. Gall, University of California, 
Irvine) includes 384 bases complementary to the rat 
BDNF mRNA coding region (Isackson et al, 1991; Gall 
et al, 1992). The cDNA construct for trkB (plasmid 
kindly provided by D. McKinnon, State University of 
New York at Stony Brook) resulted in an antisense RNA 
transcript that was 196 bases in length. The trkB cRNA 
probe detects the kinase-specific, full-length catalytic 
form of the receptor mRNA (Middlemas et al, 1991; 
Goodness et al, 1997). Hybridization was conducted at 
60°C for 18-24 h with the 35S-labeled cRNAs at a con- 
centration of 1 X 106 cpm/50 /xl/slide. Following post- 
hybridization washes and ribonuclease treatment, the sec- 
tions were air-dried and exposed to /3-Max Hyperfilm 
(Amersham) for 14-18 days at room temperature for gen- 
eration of film autoradiograms. After autoradiographic 
film development, the sections were dipped in NTB2 nu- 
clear track emulsion (Kodak; 1:1 in H20), air-dried, and 
exposed in light-tight boxes at 4°C for 4-6 weeks. After 
autoradiographic development of the emulsion, the sec- 
tions were counterstained with cresyl violet, coverslipped 
in DPX mounting medium (Fluka), and analyzed with a 
Nikon Optiphot-2 microscope equipped with brightfield 
and darkfield optics. Cells were considered labeled if the 
density of reduced silver grains overlying the perikarya 
was at least tenfold greater than background. Control sec- 
tions that had been treated with ribonuclease A (45 °C for 
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ALTERATIONS IN BDNF AND trkB mRNA LEVELS IN THE CEREBRAL CORTEX 

FIG. 1. Schematic representation of cortical regions analyzed 
for optical density measurements of hybridization for BDNF and 
trkB mRNAs: IC, the cortical region that comprises the lesion 
site following lateral FP injury; AC, the adjacent neocortical re- 
gions that surround the injury site; OC, the cortical region on the 
opposite side of the brain that is comparable in size and location 
to the IC; and PC, the bilateral piriform cortices. The AC and 
OC were subdivided into superficial and deep layers. 

30 min) before hybridization or processed for hybridiza- 
tion with appropriate sense-strand riboprobes were de- 
void of specific labeling. 

Film autoradiograms were analyzed with Image 1.60 
software (NIH) to measure the density of hybridization 
for BDNF and trkB mRNAs in the following cortical re- 
gions: injured cortex (IC), superficial and deep layers of 
the adjacent cortex (AC) and opposite (homotypic) cor- 
tex (OC), and the bilateral piriform cortex (PC) (Fig. 1). 
Background optical density (OD) measurements were 
taken in adjacent white matter of the corpus callosum and 
subtracted from the OD measurements in the cortical re- 
gions in order to obtain corrected OD measurements. Hy- 
bridization levels observed after lateral FP injury were 
compared to those found after sham injury with equiva- 
lent survival periods. At least three and an average of 
seven sections were analyzed per animal. All measure- 
ments are expressed as the mean values plus or minus 
the standard error of the mean (SEM). The effects of treat- 
ment (injury versus sham), survival time, and their in- 
teraction effects were analyzed with a two-way analysis 

FIG. 2. Prints of autoradiograms showing expression of BDNF mRNA in coronal sections from a rat 3 h after a sham injury 
(A), 3 h after a lateral FP injury (B), 72 h after a sham treatment (C), and 72 h after a FP injury (D). Note the up-regulation of 
BDNF 3 h after a FP injury in the bilateral piriform cortices (arrowheads, B) and in the superficial layers of the adjacent cortex 
(arrows, B), and the decrease in BDNF mRNA in the injured cortex at 72 h post-injury (arrowheads, D). The mild increase in 
BDNF mRNA hybridization levels in the superficial layers of the OC 3 h after FP injury (B), was not significantly different com- 
pared to sham animals. Bar = 1,000 /xm. 
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of variance (ANOVA) for each cortical region. BDNF 
and trkB mRNA levels did not differ by side for the PC. 
Therefore, the hybridization data from the right and left 
sides were combined. Bonferonni post hoc analyses were 
used for pairwise comparisons with a significance set at 
p < 0.05. 

RESULTS 

Hybridization for BDNF and trkB mRNAs in the cor- 
tex in the control (sham injury) animals (Fig. 2A,C; also 
see Fig. 4A below), was similar to previous reports de- 
scribed for normal, uninjured rats (Ernfors et al., 1990; 
Fryer et al., 1996). Following FP injury, BDNF mRNA 

levels in the IC did not differ from sham levels until 72 
h, when they were significantly decreased (p < 0.01; 
Figs. 2D and 3A). This is in contrast to the superficial 
layers of the AC, where BDNF mRNA was significantly 
increased at 3 h postinjury (p < 0.02; Figs. 2B and 3B), 
and to the PC, where levels were significantly increased 
bilaterally (p < 0.02) at 3, 6, and 24 h in the FP injured- 
animals (Figs. 2B and 3C), compared to shams. In the 
deep layers of the AC and in all layers of the OC (Fig. 
2), densitometric measurements revealed no time-depen- 
dent changes in BDNF mRNA after FP injury (quantita- 
tive data not shown). 

The response of cortical trkB mRNA expression to FP 
injury was generally quite different from that of BDNF 

mRNA. No cortical regions for any of the survival peri- 
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FIG. 3. Graphs showing corrected optical density (OD) measurements of hybridization for BDNF mRNA in the injured cortex 
(A), superficial layers of the adjacent cortex (B), and bilateral piriform cortex (C) over time following lateral FP brain injury. 
Note the significant decrease in BDNF mRNA expression in the injured cortex at 72 h following injury (A), and the significant 
increase in the superficial layers of the adjacent cortex at 3 h post-injury (B), and in the bilateral piriform cortex at 3, 6, and 24 
h following injury (C) compared to the sham injury groups (*p < 0.02). 
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FIG. 4. Prints of autoradiograms showing expression of trkB mRNA in coronal sections from a rat 24 h after a sham injury 
(A), 3 h after a lateral FP injury (B), 24 h after a lateral FP injury (C), and 72 h after a lateral FP injury (D). Note the decreased 
hybridization for trkB mRNA in the injured cortex at all time-points (arrows, B,C,D) and in the superficial layers of the adjacent 
cortex at 24 h postinjury (arrowheads, C). Note also the increased hybridization for trkB mRNA in the granule cell layer of the 
dentate gyrus of the hippocampus at 3 h post-FP injury (arrowheads, B). Bar = 1,000 /am. 

ods following FP injury demonstrated an increase in hy- 
bridization for trkB mRNA. Rather than an increase, ex- 
pression of trkB mRNA in the IC was significantly de- 
creased (p < 0.001) at all times following the FP injury 
compared to sham animals (Figs. 4 and 5A). There was 
also a significant decrease (p < 0.03) of trkB mRNA lev- 
els in the superficial layers of the AC at 24 h post-FP in- 
jury (Figs. 4C and 5B). In the deep layers of the AC, all 
layers of the OC, and bilaterally in the PC, no time-de- 
pendent alterations in trkB mRNA were observed after 
FP injury (Fig. 4; quantitative data not shown). 

DISCUSSION 

The purpose of this study was to characterize the re- 
sponse of BDNF and trkB mRNAs to lateral FP brain in- 
jury in cortical regions that undergo varying degrees of 
neurodegeneration. To this end, we evaluated time-de- 
pendent changes in BDNF and trkB mRNA levels in cor- 
tical tissue within, adjacent to, and remote from the con- 

tusion site. The hybridization levels for BDNF mRNA 
varied by region, with a persistent increase bilaterally in 
the PC, a transient increase in the superficial layers of 
the AC, no change in the deep layers of the AC, no change 
in the OC, and a delayed decrease in the IC. These cor- 
tical alterations in BDNF mRNA are in general agree- 
ment with those observed in a different model of exper- 
imental brain trauma, the cortical impact injury (Yang et 
al, 1996). The hybridization levels for trkB mRNA did 
not change in the cortex following FP injury, except for 
an immediate and persistent decrease in the IC, and a de- 
layed transient decrease in the superficial layers of the 
AC. 

This study also expands upon our previous investiga- 
tions into alterations of neurotrophin levels in the hip- 
pocampus following FP (Hicks et al., 1997, 1999). The 
persistent increase in BDNF mRNA observed through- 
out most of the acute period following FP injury in the 
PC is similar to the increases we observed in the dentate 
gyrus granule cell layer and the CA3 pyramidal cell layer 
in the hippocampus (Hicks et al., 1997). Conversely, the 
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FIG. 5. Graphs showing corrected optical density (OD) measurements of hybridization for trkB mRNA in the injured cortex 
(A) and superficial layers of the adjacent cortex (B) over time following lateral FP brain injury. Note the significant decrease in 
trkB mRNA expression in the injured cortex at all time points following injury (A), and at 24 h in the superficial layers of the 
adjacent cortex (B) compared to the sham injury groups (*p < 0.03). 

alterations in trkB mRNA following FP differed for cor- 
tical and hippocampal regions. No increases were ob- 
served in trkB mRNA in any of the cortical areas we in- 
vestigated, whereas significant increases were observed 
in the granule cell layer of the dentate gyrus at 3 and 6 
h post-FP (Hicks et al., 1998; see also Fig. 4B). 

The most pronounced increases in BDNF mRNA hy- 
bridization levels were observed in the bilateral PC at 3, 
6, and 24 h post-FP injury. Conversely, trkB mRNA lev- 
els remained unchanged in these cortical regions. Simi- 
lar observations have been reported following seizures, 
with significant increases in BDNF mRNA, and no 
change in trkB mRNA in the PC between 1 and 24 h 
postkindling (Ernfors et al., 1991; Kokaia et al., 1996a). 
However, other studies have not only observed increases 
in BDNF mRNA in the PC, but also trkB mRNA 3^1 h 
following seizures (Mudo et al., 1993, 1996). 

The PC has been described as a selectively vulnerable 
region for seizures (Tanaka et al., 1996). The possibility 
that the increases in BNDF mRNA in the PC following 
FP injury are attributable to seizures cannot be com- 
pletely eliminated in the present study. However, evi- 
dence against this possibility include the absence of ab- 
normal behavior or overt seizure activity in any of the 
animals in this study, or in a previous study of moderate 
FP injury (Lowenstein et al., 1992), and a lack of bilat- 
eral neurochemical changes that would be expected with 
seizures (Padmaperuma et al., 1996; Prasad et al., 1994). 
Furthermore, increases in BDNF mRNA in the neocor- 
tex following FP injury differ from those observed fol- 

lowing seizures. FP injury-induced changes are restricted 
to the superficial layers of the neocortex, whereas seizure- 
induced changes are observed in all neocortical layers 
(Gall, 1993). 

Another possible explanation for the robust increase of 
BDNF mRNA in the PC, a region that is remote from the 
FP injury and associated with a role in memory and learn- 
ing (Litaudon et al., 1997), may be its relatively high den- 
sity of glutamate receptors (Sato et al., 1995). Within the 
hippocampus, another region with high levels of gluta- 
mate receptors (Sato et al, 1995), the CA3 pyramidal cell 
layer and the granule cell layer of the dentate gyrus also 
undergo marked increases in BDNF and trkB expression 
following FP injury (Hicks et al., 1997, 1998). Previous 
studies have demonstrated that basal levels of BDNF are 
regulated by 7V-methyl-D-aspartate (NMDA) receptor ac- 
tivation, whereas alterations in response to acute injuries 
are regulated by non-NMDA receptors (Lindholm et al., 
1994; Lindvall et al., 1992; Wetmore et al., 1994). Glu- 
tamate increases after FP injury (Faden et al., 1989; 
Katayama et al., 1990) and may thus mediate the in- 
creases in BDNF mRNA expression in the PC. Follow- 
ing ischemic injury in the rat, BDNF mRNA also in- 
creases acutely in both the PC and hippocampus 
(Tsukahara et al., 1998). Inhibition of specific glutamate 
receptors with selective antagonists differentially modu- 
lated the expression of BDNF in these two areas follow- 
ing ischemic injury (Tsukahara et al., 1998). These find- 
ings suggest that the increased expression of BDNF in 
the PC and hippocampus following ischemia involves in- 
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dependent regulatory mechanisms. Whether this is also 
true following FP injury remains to be determined with 
future studies. 

The results of the present study also suggest that up- 
regulation of BDNF/trkB mRNA within the IC does not 
contribute to neuronal degeneration as hybridization re- 
mained at or below control levels for all time points. 
These findings are consistent with those observed fol- 
lowing ischemic injury (Kokaia et al., 1996b). However, 
it does not eliminate the possibility that anterograde trans- 
port of BDNF from the AC may contribute to degenera- 
tive events. Anterograde transport of BDNF in mossy 
fibers of the dentate gyrus following kainic acid injec- 
tions is believed to exacerbate the neuronal degeneration 
in the CA3 pyramidal cells of the hippocampus (Rudge 
et al., 1998). This appears unlikely following FP injury, 
though, because whereas corticocortical connections are 
prevalent between neurons in adjacent cortical regions in 
layers II and III (Kolb, 1990), neuronal degeneration is 
observed fairly uniformly throughout all layers (Hicks et 
al., 1996). 

However, the cortical afferent projections from the IC 
may be related to the transient increase in BDNF mRNA 
that is observed at 3 h postinjury in the AC, because the 
increase was localized to cells in the superficial but not 
the deep layers of this region. Alternatively, because non- 
NMDA receptors are more prevalent in the superficial 
than deep layers of the neocortex (Huntley et al., 1994), 
the differential response between layers may be attribut- 
able to post-FP injury elevations in glutamate. Similar in- 
creases in BDNF hybridization were not observed in the 
OC. Thus, while adjacent and opposite cortical regions 
have been observed to undergo cortical reorganization 
following various injuries and are hypothesized to play 
a role in recovery of function (Barneoud et al., 1991; Cas- 
tro-Almancos and Borrel, 1995; Dietrich et al., 1987; 
Dunn-Meynell and Levin, 1995), we did not observe sus- 
tained alterations in BDNF or trkB mRNA in either of 
these cortical regions, at least during the initial (72 h) pe- 
riod following FP injury. 

In summary, lateral FP injury produces alterations in 
BDNF and trkB mRNA levels in several regions of the 
cerebral cortex. The largest increase in BDNF mRNA 
following FP injury was observed in the bilateral PC, re- 
gions relatively remote from the impact and injury sites. 
The functional significance of the increase in the bilat- 
eral PC remains to be determined. The IC, the site of the 
contusion, demonstrates normal or below normal levels 
for both BDNF and trkB mRNA throughout the acute pe- 
riod following injury, suggesting that up-regulation and 
enhanced activation of BDNF/trkB signal transduction 
pathways are not contributing to the neuropathology. 
However, it is possible that the injury-induced loss in ex- 

pression of BDNF and trkB may confer vulnerability to 
neurons within the cortical contusion. Other neocortical 
regions either showed no significant alterations, or 
changes of very short duration, suggesting that injury-in- 
duced regulation of BDNF/trkB pathways is somewhat 
unlikely to have a significant influence on neuronal sur- 
vival, at least during the acute periods following FP in- 
jury. Future studies are needed to examine the effects of 
manipulating BDNF/trkB signal transduction activity on 
neuroprotection following lateral FP brain injury. 
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The molecular events responsible for impairments in 
cognition following mild traumatic brain injury are 
poorly understood. Neurotrophins, such as brain- 
derived neurotrophic factor (BDNF), have been identi- 
fied as having a role in learning and memory. We have 
previously demonstrated that following experimental 
brain trauma of moderate severity (2.0-2.1 atm), mRNA 
levels of BDNF and its high-affinity receptor, trkB, are 
increased bilaterally in the hippocampus for several 
hours, whereas NT-3 mRNA expression is decreased. In 
the present study, we used in situ hybridization to 
compare BDNF, trkB, NT-3, and trkC mRNA expression 
in rat hippocampus at 3 or 6 h after a lateral fluid 
percussion brain injury (FPD of mild severity (1.0 atm) 
to sham-injured controls at equivalent time points. 
Mild FPI induced significant increases in hybridiza- 
tion levels for BDNF and trkB mRNAs, and a decrease 
in NT-3 mRNA in the hippocampus. However, in con- 
trast to the bilateral effects of moderate experimental 
brain injury, the present changes with mild injury 
were restricted to the injured side. These findings 
demonstrate that even a mild traumatic brain injury 
differentially alters neurotrophin and neurotrophin 
receptor levels in the hippocampus. Such alterations 
may have important implications for neural plasticity 
and recovery of function in people who sustain a mild 
head injury,   o 1999 Academic Press 

Key Words: BDNF; NT-3; trkB; trkC; hippocampus; 
traumatic brain injury. 

INTRODUCTION 

Clinically, the vast majority of head injuries (75- 
90%) are classified as mild (46, 49), because posttrau- 
matic amnesia is present for less than 24 h (37). 
Despite the rather benign acute symptoms, 50% of the 
individuals who sustain a mild head injury demon- 
strate residual impairments 1 year later (86). These 
impairments include cognitive deficits (66), emotional 
disturbances (65), and abnormal EEG recordings (86). 
Relatively little is known about the neuropathological 
consequences of mild head injury and how they might 

contribute to acute and chronic impairments in func- 
tion. 

Neurotrophins are a family of structurally related 
polypeptides that have been shown to play a critical 
role during neuronal development and appear to medi- 
ate a protective response in mature animals (26, 54). 
Members of the neurotrophin family include nerve 
growth factor (NGF), brain-derived neurotrophic factor 
(BDNF), neurotrophin-3 (NT-3), neurotrophin 4/5 (NT- 
4/5), neurotrophin 6 (NT-6), and neurotrophin-7 (NT-7) 
(4, 5, 24, 80). Neurotrophins are believed to promote 
their cell survival, growth, and differentiation effects 
through interactions primarily with specific high- 
affinity tyrosine kinase (trk) receptors and subsequent 
activation of intracellular signal transduction path- 
ways (4, 58, 78). 

Numerous investigations are currently underway to 
elaborate the specific actions of the various neurotroph- 
ins and how they may promote neuronal survival or 
functional recovery after brain injury. In brief, NGF/ 
trkA interactions are believed to be important for cell 
survival during development and following injury (for 
review, see 54) and to promote sprouting and synapto- 
genesis of cholinergic neurons (13, 82). In an animal 
model of traumatic brain injury (TBI), infusion of NGF 
into the injured cortex improved cognitive function 
without reducing the size of the lesion, although cell 
death in the septum was attenuated (76). BDNF is the 
most abundantly expressed neurotrophin in the ma- 
ture central nervous system (32) and supports the 
survival of many types of neurons (51). BDNF/trkB 
interactions appear to be neuroprotective following 
various forms of brain injury (6, 11, 25, 41, 47, 70, 77), 
although this is controversial as a few studies have 
implicated BDNF as a contributing factor to neuronal 
degeneration (42, 69). BDNF also appears to be impor- 
tant for learning and memory, including roles in long- 
term potentiation (15, 18, 45), dendridogenesis (55), 
and activity-dependent neuroplasticity (21, 68). NT-3/ 
trkC signal transduction has also been found to have 
neuroprotective effects in some models of neuronal 
injury (23, 51) and has recently been found to promote 
axon regeneration after spinal cord injury (84). Less is 
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known about the other members of the neurotrophin 
family, but they may also have a role in neuroprotection 
following various CNS disorders (51, 54). 

The expression of BDNF, trkB, and NT-3 in the 
hippocampus is altered following experimental trau- 
matic brain injury of moderate severity (27, 30, 87). 
However, much less is known about modulation of 
neurotrophin and neurotrophin receptor expression 
following traumatic brain injury of mild severity. The 
purpose of the present study was to examine mRNA 
levels of BDNF, NT-3, trkB, and trkC in the hippocam- 
pus following mild experimental brain injury. 

MATERIAL AND METHODS 

Surgical Procedures 

Mild lateral fluid percussion injury (FPI) or sham- 
injury was produced in male Sprague-Dawley rats 
(n = 14, 300-350g) as previously described (28, 57). 
The rats were anesthetized with sodium pentobarbital 
(60 mg/kg i.p.) 10 min after receiving 0.15 ml of 
atropine (0.4 mg/ml, i.m.). The head was rigidly fixed in 
a stereotaxic frame while the scalp and temporal 
muscles were reflected, and a 5.0 mm craniotomy was 
made with a hand-held trephine over the parieto- 
occipital cortex. The craniotomy was centered between 
bregma and lambda, 3 mm lateral to the sagittal 
suture. A Luer-Loc hub was fixed to the craniotomy 
with dental acrylic and filled with sterile saline. One 
hour after the animals were injected with sodium 
pentobarbital, a fluid percussion device (Department of 
Biomedical Engineering, Medical College of Virginia) 
was used to induce a lateral FPI of mild severity (1.0 
atm). At the time of injury, the animals were fully 
anesthetized, as indicated by absence of a corneal reflex 
and toe-pinch withdrawal response, but their breathing 
was deeper and more regular than at earlier postanes- 
thesia time points. Control animals received a sham 
injury, which consisted of anesthesia, a craniotomy, and 
attachment of the hub with dental acrylic. The sham 
injury procedure was identical to the surgical prepara- 
tion for the FPI except that the animals were not 
subjected to the injury Following FPI, rats were al- 
lowed to survive 3 or 6 h before euthanasia. These time 
points were selected because following moderate FPI, 
pronounced alterations in BDNF, trkB, and NT-3 gene 
expression occurred at 3 and 6 h postinjury (27, 30). 

Tissue Processing and in Situ Hybridization 

Following deep anesthesia with an overdose of so- 
dium pentobarbital, the animals were decapitated and 
the brains rapidly removed and frozen over dry ice. 
Coronal brain sections (10 urn) were cut in a cryostat, 
thaw-mounted onto Superfrost Plus (Fisher Scientific) 
glass slides, and stored at -20°C until processing for 

hybridization. Adjacent sections through the hippocam- 
pal formation were processed for the detection of BDNF, 
NT-3, trkB, and trkC mRNAs by using in situ hybridiza- 
tion with 35S-labeled cRNA probes as described in detail 
previously (27,63,64, 71, 72). Briefly, following pretreat- 
ment consisting of fixation in 4% paraformaldehyde, 
rinses in 0.1 M phosphate buffer, acetylation, dehydra- 
tion, and delipidation, the sections were hybridized for 
18-24 h at 60°C in hybridization cocktail. The hybrid- 
ization solution consisted of 50% formamide, 10% dex- 
tran sulfate, IX Denhardt's solution, 0.15 mg/ml yeast 
tRNA, 0.33 mg/ml denatured salmon sperm DNA, 40 
mM dithiothreitol, 1 mM EDTA, 20 mM Tris-HCl, and 
the 35S-labeled cRNA probe at a concentration of 1.0 X 
106 cpm/50 pl/slide. The sense and antisense cRNA 
probes were prepared by in vitro transcription using 
appropriate linearized DNA constructs in the presence 
of the proper RNA polymerase (T3 or T7) and 35S-UTP 
(New England Nuclear). The cDNA constructs for BDNF 
and NT-3 (kindly provided by J. Lauterborn and C. 
Gall, University of California-Irvine) resulted in anti- 
sense RNA transcripts of 550 and 540 bases, respec- 
tively (36, 50). The cDNA constructs for trkB and trkC 
(plasmids kindly provided by D. McKinnon, State Uni- 
versity of New York at Stony Brook) resulted in anti- 
sense cRNAs that were 196 and 374 bases in length, 
respectively. The trkB cRNA probe detects the kinase- 
specific, full-length catalytic form of the receptor mRNA 
(22, 60), whereas the trkC cRNA probe recognizes 
transcripts for both the full-length catalytic and kinase 
domain insertion/deletion noncatalytic forms of the 
receptor (2, 14, 83). After posthybridization ribonucle- 
ase treatment and washes, film autoradiograms were 
generated by exposure of the sections to ß-Max Hyper- 
film (Amersham) for 10 (trkB and trkC), 14 (BDNF), or 
21 (NT-3) days. Following film development, the sec- 
tions were dipped in NTB2 nuclear track emulsion 
(Kodak; 1:1 in H20), air-dried, and exposed in light- 
tight boxes at 4°C for 6-10 weeks. The emulsion was 
developed in D19 (Kodak) and fixed with Rapidfix 
(Kodak). The slides were then counterstained with 
cresyl violet (Sigma) and coverslipped with DPX moun- 
tant (Fluka). The emulsion-dipped slides were ana- 
lyzed under both brightfield and darkfield conditions 
using a Nikon Optiphot-2 microscope. In control proce- 
dures, pre-hybridization treatment of tissue with ribo- 
nuclease A or use of sense-strand riboprobes resulted in 
no specific hybridization signal. 

Quantitative Image Analysis 

Film autoradiograms were digitized and analyzed 
with image processing software (Image 1.60, NIH). An 
average of 5, and at least 4, sections were analyzed per 
animal to compare the density of hybridization for 
BDNF, NT-3, trkB, and trkC mRNAs in the hippocam- 
pus between the FPI and sham groups. Sections were 
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spaced 150 urn apart and analyzed in the dorsal 
hippocampus (approximately -3.14 to -4.3 mm poste- 
rior to bregma). Optical densities (O.D.) of BDNF, trkB, 
and trkC hybridization signal were measured by manu- 
ally outlining the stratum granulosum of the dentate 
gyrus and the strata pyramidale of subfields CA1 and 
CA3 for the left (ipsilateral to the impact site) and right 
(contralateral) sides of the brain for the FPI group. 
Right and left side data for the sham animals were 
combined. NT-3 cRNA hybridization was only mea- 
sured in the dentate gyrus, because it is not expressed 
in the CA1 or CA3 regions (17). Background O.D. 
measurements were taken in adjacent white matter of 
the corpus callosum and subtracted from the O.D. 
measurements in the hippocampus in order to obtain 
corrected values. All measurements are expressed as 
the mean values plus or minus the standard error of the 
mean (SEM). The effects of group (FPI-ipsilateral, 
FPI-contralateral, and sham-bilateral), survival time 
(3 and 6 h), and their interaction effects were analyzed 
for each hippocampal subfield with a two-way analysis 
of variance (ANOVA). Bonferonni post-hoc analyses 
were used for pairwise comparisons with a significance 
set atP< 0.05. 

RESULTS 

Hybridization patterns and levels for BDNF, NT-3, 
trkB, and trkC mRNAs in the sham animals were 
similar to previous reports in normal, uninjured rats (3, 
17, 20, 36, 59). There were also no differences in the 
mRNA levels in the corpus callosum (background mea- 
surements) between the FPI and sham-injured animals 
(data not shown). 

BDNF mRNA 

Increases in hybridization for BDNF mRNA were 
evident in the dentate gyrus and CA3 regions of the 
hippocampus on the ipsilateral side of the brain follow- 
ing mild FPI compared to the contralateral side or the 
sham animals (Figs. 1A, IB, and 2). Statistical analysis 
revealed no time-dependent changes, but there were 
significant differences across groups. At both 3 and 6 h 
postinjury, O.D. measurements of BDNF mRNA in the 
ipsilateral dentate gyrus were significantly greater 
than on the contralateral side or in sham animals 
(P < 0.001) (Fig. 3). Increases were also observed in the 
CA1 and CA3 regions on the ipsilateral side of the brain 
compared to sham animals (Figs. lAand IB), but these 
increases did not reach statistical significance unless 
the 3- and 6 h data was pooled. When the 3- and 6-h 
data were combined, hybridization in the CA3 region 
was greater on the ipsilateral than on the contralateral 
side after FPI and greater than sham animals (P < 0.01) 
(Fig. 4). Combining the data also revealed small but 
significant differences between mRNA levels in the CA1 

region on the ipsilateral side following FPI compared to 
sham injured animals (P < 0.05) (Fig. 4). 

trkB mRNA 

The mild FPI induced marked increases in trkB 
hybridization levels in the dentate gyrus on the ipsilat- 
eral side of the brain compared to the contralateral side 
or sham animals (Figs. 1C and ID). Alterations were 
not observed in the CA1 and CA3 regions (Figs. 1C and 
ID). Statistical analysis confirmed that there was a 
significant difference in trkB mRNA levels in the 
dentate gyrus on the side ipsilateral to the injury 
compared to the contralateral side or to levels in sham 
animals at 3 h (P < 0.001) and at 6 h (P < 0.005) 
(Fig. 5). 

NT-3 mRNA 

Hybridization for NT-3 mRNA was visibly decreased 
following mild FPI in the ipsilateral dentate gyrus 
compared to the contralateral side or sham animals 
(Figs. IE and IF). Statistical analysis revealed that 
there were time and group differences and a significant 
interaction between them. At 6 h postinjury, NT-3 
mRNA levels were significantly reduced in the dentate 
gyrus on the ipsilateral side compared to both the 
contralateral side (P < 0.001) and to sham levels 
(P < 0.001) (Fig. 6). In addition, NT-3 hybridization 
levels in the ipsilateral dentate gyrus were signifi- 
cantly lower at 6 than at 3 h after FPI (P < 0.05) 
(Fig. 6). 

trkC mRNA 

No differences were revealed either in the film autora- 
diograms (Figs. IG and 1H) or by statistical analysis of 
densitometric measurements (data not shown) in trkC 
mRNA levels between FPI and sham animals at either 
3 or 6 h postinjury. 

DISCUSSION 

The major finding of this study is that even mild head 
injury induces alterations in neurotrophin gene expres- 
sion in the hippocampus. BDNF mRNA expression was 
markedly increased in the granule cells of the dentate 
gyrus and moderately increased in the CA1 and CA3 
pyramidal cell layers of the hippocampus. Conversely, 
NT-3 mRNA was significantly decreased in the dentate 
gyrus. Mild FPI also increased trkB mRNAlevels in the 
dentate gyrus, but did not alter trkC mRNAlevels. The 
overall timing, subregional localization, and direction 
of the acute alterations in neurotrophin and trk mRNA 
levels are in general agreement with those observed 
after a moderate FPI (27, 30), except for one major 
difference. Unlike the bilateral changes in neuro- 
trophin gene expression observed in the hippocampus 
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SHAM 
A   CA1 

MILD FPI 

FIG. 1. Film autoradiograms showing expression of BDNF (A, B), trkB (C, D), NT-3 (E, F), and trkC (G, H) mRNAs in coronal sections 
through the hippocampus in control (sham injury) rats (A, C, E, G) and in rats subjected to mild FPI (B, D, F, H). Survival periods shown were 
either 3 h (A-D) or 6 h (E-H) following FPI or sham injury. Following the mild injury, hybridization for BDNF mRNAis dramatically increased 
in the dentate gyrus stratum granulosum (sg) (arrowhead, B) and less so in hippocampal CA3 and CA1 regions (arrows, B) ipsilateral to the 
injury. Similarly, expression of trkB mRNA is also elevated in the sg ipsilateral to the mild FP injury (arrowhead, D). In contrast, NT-3 mRNA 
levels are unilaterally decreased in the dentate gyrus sg ipsilateral to the mild injury (arrowhead, F). Hybridization for trkC mRNA is 
unaltered in the hippocampal formation after mild FP brain injury (H). Note that all changes in expression are restricted to the side ipsilateral 
to the unilateral FPI. Scale bar, 1000 urn. 

after an injury of moderate severity (27, 30), the 
alterations following a mild injury were restricted to 
the side of the brain ipsilateral to the impact site. These 
findings demonstrate that there is a clearly graded 
response to sham, mild, and moderate FPI and suggest 
that some sort of threshold for regulating neurotrophin 
gene expression may exist. 

This pattern, unilateral response following mild FPI 
and bilateral response following moderate FPI, was 
also characteristic of alterations in the immediate early 
genes c-fos, c-jun, and junB (67). The present changes, 
however, are probably not directly related to the activa- 
tion of the above transcription factors because, to our 
knowledge, the BDNF, NT-3, and trkB genes do not 
contain AP-1 binding sites. Since BDNF promoters are 
regulated by CREB (74), it would be interesting to 
examine the levels of CREB phosphorylation in the 
hippocampus in the present head injury paradigm. It 
has also been suggested that up-regulation of BDNF 
mRNA following various  brain  injuries,  including 

trauma, may be caused by spreading depression (40, 
44, 79). Although this is possible, it appears unlikely 
because we did not see evidence of seizure activity after 
FPI, and sodium pentobarbital anesthesia is associated 
with decreased cortical activity (85). In addition, spread- 
ing depression was not observed following a mild injury 
with the cortical contusion model of experimental brain 
injury (62). 

The coincident increases in mRNA for BDNF and its 
high-affinity receptor, trkB, in the dentate gyrus sug- 
gest that mild FPI may lead to activation of the 
BDNF/trkB signal transduction pathways. Further 
studies examining alterations in protein levels after 
mild FPI are required to confirm this, but in our 
laboratory, increases of a similar magnitude in BDNF 
mRNA in the hippocampus following a moderate FPI 
were associated with significant increases in BDNF 
protein levels (unpublished data). The functional conse- 
quences of these alterations in neurotrophin gene ex- 
pression following injury are unknown, but intriguing 
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because of their putative roles in neuroprotection (6,11, 
25, 41, 47, 70, 77) and learning and memory (1, 35, 38, 
39). In the CA1 and CA3 regions of the hippocampus, 
alterations in BDNF and trkB mRNA levels did not 
covary. BDNF, but not trkB, mRNA levels were signifi- 

100 
BDNF mRNA in 
the Dentate Gyrus 

FIG. 2. High-power brightfield photomicrographs showing auto- 
radiographic labeling for BDNF mRNA in the dentate gyrus stratum 
granulosum in a control (3-h sham injury) rat ipsilateral to sham 
surgery (A) and in a rat subjected to mild unilateral FPI with a 3-h 
survival time on the side ipsilateral to injury (B) and on the side 
contralateral to injury (C). Note that the substantial increase in 
hybridization density over the granule cells following mild FPI is 
limited to the side ipsilateral to the injury (B). Scale bar, 20 um. 
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FIG. 3. Alterations in BDNF mRNA levels in the dentate gyrus 
following mild lateral FPI. Corrected O.D. measurements of hybrid- 
ization for BDNF mRNA demonstrated a marked increase in the 
ipsilateral dentate gyrus granule cell layer (*P < 0.001) compared to 
the contralateral side or to sham injury. These differences were 
observed at both 3 and 6 h after mild FPI. Values represent mean ± 
SEM. 

cantly increased in the CA1 and CA3 regions, although 
these alterations were not as robust as in the dentate 
gyrus. Similarly, the increases in mRNA levels in the 
dentate gyrus were more pronounced for BDNF than 
for trkB. Thus, it is possible that the regulatory mecha- 
nisms that resulted in these smaller increases in BDNF 
mRNA were not of a sufficient magnitude to induce 
alterations in trkB mRNA levels in the CA1 and CA3 
regions. Alternatively, the differential response may be 
related to differences in basal levels of the full-length 
isoform of trkB, which are lower in the CA3 region than 
the dentate gyrus in normal adult rats (81). 

Although numerous studies have demonstrated neu- 
roprotective effects of BDNF in rescuing injured neu- 
rons (6,11,25,41,47, 70, 77), other studies suggest that 
it may potentiate neurodegeneration (7, 42). The rea- 
sons for these different findings are unclear, but the 
type of cell death (apoptotic or necrotic), the location 
where BDNF is mediating its effects (autocrine/ 
paracrine or anterograde transport), and the timing of 
the alterations in gene expression (immediate or de- 
layed) may be important factors (7). After FPI, granule 
cells in the dentate gyrus are the most resistant to cell 
death, and CA3 pyramidal cells are the most vulner- 
able (12, 29). The most pronounced increases in BDNF 
mRNA are in the dentate gyrus, thus these alterations 
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may be promoting cell survival in this region. However, 
increases were also observed in the CA3 region, the 
most vulnerable region. If BDNF is transported in an 
anterograde manner in the mossy fibers after FPI, it 
may lead to further increases of this neurotrophin in 
the CA3 region and exacerbate the neuronal injury. For 
example, anterograde transport of BDNF in the mossy 
fibers is associated with neurodegeneration in the CA3 
region following excitotoxic insults (69). Future studies 
utilizing exogenous administration of neurotrophins or 
substances that inhibit signal transduction are neces- 
sary to clarify the role of BDNF/trkB after FPI. 

In contrast to BDNF and trkB, NT-3 mRNA de- 
creased and trkC was unchanged in the dentate gyrus 
after mild FPI, suggesting that the NT-3/trkC signal 
transduction pathway may be inactivated. These oppos- 
ing patterns of BDNF and NT-3 expression have also 
been observed after a moderate lateral FPI (27), isch- 
emia (52), and seizures (21), as well as during develop- 
ment (55, 56). It is possible that inactivation of NT-3/ 
trkC signal transduction pathways after mild FPI 
confers vulnerability on neurons, as increases in NT-3 
protein levels were associated with neuroprotection 
and regeneration in other injury models (23, 51,61, 84). 
Alternatively, there is also evidence from a study 
utilizing NT-3 knock-out mice to suggest that inactiva- 
tion of this pathway may inhibit seizures (16) and 
attenuate secondary pathological events. 

BDNF mRNA in 
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FIG. 4. Regional alterations in BDNF mRNA levels following 
mild lateral FPI. Slight, but significant increases in the ipsilateral 
CA1 region of the hippocampus were present compared to levels in 
sham injured animals (*P < 0.05) when the 3- and 6-h data were 
combined. There were also group, but not time differences in the CA3 
region with a significant increase on the ipsilateral side compared to 
contralateral or sham levels (*P < 0.01). Values represent mean ± 
SEM. 
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FIG. 5. Alterations in trkB mRNA levels in the dentate gyrus 
following mild lateral FPI. Corrected O.D. measurements of hybrid- 
ization for trkB mRNA demonstrated a significant increase in the 
ipsilateral dentate gyrus granule cell layer compared to the contralat- 
eral side or to sham injury at both 3 (*P < 0.001) and 6 h (*J° < 0.005) 
postinjury. There were no significant differences in the CA1 and CA3 
regions of the hippocampus. Values represent mean ± SEM. 

Posttraumatic amnesia is a common feature during 
the acute stages following a mild head injury and is 
associated with impairments in learning and memory 
(48, 86). These impairments after mild injury have 
been observed both in clinical cases (48, 86), as well as 
in rodent models of TBI (28, 33, 53, 73). The underlying 
cause of the cognitive dysfunction is unclear, but physi- 
ological consequences of a mild FPI include an impair- 
ment in long-term potentiation (LTP) in the CA1 region 
of the hippocampus (75). BDNF and NT-3 have both 
been linked with development of LTP in the hippocam- 
pus and visual cortex (1, 18, 35, 38, 39). Since mild FPI 
alters neurotrophin mRNA levels in the hippocampus, 
it is possible that these alterations influence the excit- 
ability of neurons. The up-regulation of BDNF in the 
hippocampus following a mild injury would appear to 
support the generation of LTP, rather than to attenuate 
it (1,18, 35). However, there is evidence to suggest that 
the down-regulation of NT-3 mRNA in the dentate 
gyrus may influence neural plasticity of hippocampal 
circuits. A study undertaken in NT-3 knock-out mice 
demonstrated that short-term facilitation, but not LTP, 
was reduced in the hippocampus compared to controls 
(43). Whether the decrease in NT-3 mRNA in the 
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NT-3 mRNA in 
the Dentate Gyrus 

in the hippocampus. These alterations may underlie 
some of the cognitive deficits associated with mild head 
injury. In addition, because the alterations induced by a 
mild FPI are distinctly unilateral, this level of trauma 
may be advantageous for illuminating regulatory 
mechanisms and functional consequences of neuro- 
trophin/trk signal transduction pathways, as well as 
other intracellular signaling pathways. 
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FIG. 6. Alterations in NT-3 mRNA levels in the hippocampal 
dentate gyrus following a mild lateral FPI. Corrected O.D. measure- 
ments of hybridization for NT-3 mRNA demonstrated a significant 
decrease in the ipsilateral dentate gyrus granule cell layer 6 h after 
FPI compared to both the contralateral side and to sham injury 
(*P < 0.001). In addition, the decrease in the ipsilateral dentate 
gyrus was greater at 6 h than at 3 h postinjury (P < 0.05). Values 
represent mean ± SEM. 

granule cells of the dentate gyrus following mild FPI is 
associated with impairments in short-term facilitation 
or LTP in the hippocampus remains to be determined. 

One of the perplexing characteristics of mild head 
injury is that cognitive deficits often persist despite a 
lack of pronounced neuropathological alterations (8, 9, 
10, 31). It has been suggested that less overt changes in 
the brain following a mild head injury may be respon- 
sible for the cognitive and neurophysiological impair- 
ments. In the present study, we only examined acute 
changes in neurotrophin and trk receptor gene expres- 
sion after mild FPI. However, a recent paper demon- 
strated that administration of BDNF enhanced re- 
sponses for reward-related stimuli following cocaine 
injection and that these enhancements persisted for 1 
month after treatment (34). Therefore, it appears that 
even temporary changes in BDNF levels may exert 
long-lasting changes in behavior. Furthermore, BDNF 
up-regulates tissue-type plasminogen activator, which 
converts plasminogen to plasmin, a protease capable of 
degrading most extracellular proteins (19). These alter- 
ations could underlie structural changes at the synapse 
and mediate chronic changes in behavior. 

In summary, a FPI of mild severity produces unilat- 
eral alterations in expression of BDNF, trkB, and NT-3 
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Abstract 

Previous studies have suggested that brain-derived neurotrophic factor (BDNF) is involved in memory and learning, and may 
be neuroprotective following various brain insults. Exercise has been found to increase BDNF mRNA levels in various brain 
regions, including specific subpopulations of hippocampal neurons. In the present study, we were interested in whether follow- 
ing traumatic brain injury, exercise could increase BDNF mRNA expression, attenuate neuropathology, and improve cognitive 
and neuromotor performance. We subjected adult male Sprague-Dawley rats to a fluid percussion brain injury, followed by 
either 18 days of treadmill exercise or handling. Spatial memory was evaluated in a Morris Water Maze (MWM) and motor 
function was evaluated with a battery of neuromotor tests. Neuropathology was evaluated by measuring the cortical lesion vol- 
ume and the extent of neuronal loss in the hippocampus. Expression of BDNF mRNA in the hippocampus was assessed with in 
situ hybridization and densitometry. Hybridization signal for BDNF mRNA was significantly increased bilaterally in the exer- 
cise group in hippocampal regions CA1 and CA3 (p < 0.05), but not in the granule cell layer of the dentate gyrus. No significant 
differences were observed between the groups in neuropathology, spatial memory, or motor performance. This study suggests 
that after traumatic brain injury, exercise elevates BDNF mRNA in specific regions of the hippocampus. 

Keywords: brain-derived neurotrophic factor, cognition, traumatic brain injury 

1. Introduction 

An important question facing rehabilitation specialists is 
how to maximize functional recovery after traumatic brain 
injury (TBI). A v.^iety of functional deficits may be present 
after TBI, but impairments in information processing, per- 
ceptual function, and memory are the most common [27]. 
Numerous studies have demonstrated that exercise may be 
important for maintaining cognitive and memory function in 
humans (for review see [10]). Although the exact physiolog- 
ical mechanisms underlying these improvements are un- 
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known, several molecular events in the brain that are associ- 
ated with physical activity may be important. 

In humans, moderate to high intensity exercise increases 
regional cerebral blood flow [22,47], as well as plasma lev- 
els of noradrenaline and serotonin, neurotransmitters that are 
thought to be associated with memory storage and retrieval 
[9]. In animal studies, exercise has been linked to an increase 
in neuronal activity in the hippocampus, as demonstrated by 
elevations in extracellular lactate [5]. In aged rats, exercise 
increases antioxidant enzymes in brain tissue [45]. Exercise 
prior to an ischemic injury in gerbils, lowered mortality and 
attenuated damage in the cortex, striatum, and hippocampus 
[46]. Alterations in neurotrophic factor levels have also been 
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associated with exercise. Following 2-7 days of exercise on 
free-running wheels, brain-derived neurotrophic factor (BD- 
NF), nerve growth factor (NGF), and basic fibroblast growth 
factor (bFGF) were increased in various regions of the hip- 
pocampus and cortex in rats [15,34,35]. 

BDNF is the most prevalent neurotrophin in the brain, with 
especially high levels in the neocortex, cerebellum and hip- 
pocampus [19,28]. Although the function of BDNF is incom- 
pletely understood, it appears to play a role in long-term po- 
tentiation (LTP) and memory formation [8,12,24], and activ- 
ity-dependent neuroplasticity [13,30,39]. Housing rats in an 
enriched environment not only improves spatial memory 
[16,32] and increases synaptic density and branching in the 
hippocampus [23], it also up-regulates BDNF mRNA [11]. 
The present study tested whether exercise following a lateral 
fluid percussion (FP) brain injury could increase BDNF 
mRNA expression in the hippocampus and attenuate the neu- 
ropathology and behavioral deficits that are associated with 
this model of experimental brain injury in rats [17,43]. 

2. Materials and methods 

2.1. Surgical procedures 
Lateral FP brain injury was performed as previously de- 

scribed [31]. Briefly, male Sprague-Dawley rats (360- 
410 g, n = 20) were anesthetized with sodium pentobarbital 
(60 mg/kg, i.p.) ten minutes after receiving 0.15 ml of atro- 
pine (0.4 mg/ml), and placed in a stereotaxic frame. The 
scalp and temporal muscles were reflected, and a stainless- 
steel screw was secured to the skull 1 mm anterior to breg- 
ma. A Luer-Lok connector was rigidly fixed with dental ce- 
ment to a 5 mm diameter craniotomy centered over the left 
parieto-occipital cortex, midway between bregma and lamb- 
da. Sixty minutes after receiving anesthesia, rats were re- 
moved from the stereotaxic frame, attached to the FP device 
via the connector, and given a unilateral brain injury of mod- 
erate severity (2.0-2.1 atm). Following the injury, the Luer- 
Lok connector was removed from the scalp and the skin was 
sutured. Normothermia was maintained throughout the pro- 
cedure by placing the animal on a heating pad. 

2.2. Treadmill training 
Beginning the day after FP injury, the experimental group 

of rats (n = 10) was given daily incremental exercise on a 
treadmill during the diurnal part of the light-dark cycle. On 
the first day, rats were given 5 minutes of exercise, which was 
increased by 5 minutes per day until they were exercising for 
60 minutes. The rate of the treadmill was set at 11.3 meters 
per minute with a belt inclination of 6°. On days 5-10 (20- 
45 min of exercise) rats were given one 2 min rest, and on 
days 11-14 (50-60 min of exercise) they were given two 2 
min rests. Animals were not exercised on days that they were 
undergoing cognitive and neuromotor testing (days 15-18). 
After the completion of neuromotor testing, animals resumed 
exercise for 60 min without a rest period (days 18-21). Rats 
ran a total of 7.8 km over the course of 18 days of exercise. 

On the last six days of exercise, the animals reached the max- 
imum period of 60 minutes and were running 0.68 km/day. 
The control group of rats (n = 9) did not exercise on the tread- 
mill, but were handled 30-60 s daily. All of the animals were 
housed 2-3/cage with a 12 hr light-dark cycle. Treadmill ex- 
ercise and handling procedures were given during the light 
part of the cycle. 

2.3. Cognitive and neuromotor function 
Spatial learning and memory were evaluated by using a 

Morris Water Maze (MWM) procedure as described previ- 
ously [26]. All testing was performed by an observer blinded 
to each animal's treatment. The MWM is a 1.15 m diameter 
circular pool filled with water. All animals were trained to 
find a hidden platform using external visual cues. Animals 
were trained on post-surgery days 15-17, performing one 
block of four acquisition trials per day, for a total of twelve 
trials. The time required for each animal to find the platform 
(goal latency) was recorded for each trial. After completing 
the last acquisition trial, each rat underwent a single probe 
test to assess their spatial memory. The platform was re- 
moved and the swim pattern of each animal was videotaped 
for 90 seconds. The distance, time, and number of visits to 
the previous platform location as well as visits to similar re- 
gions in the other quadrants were computed by a video mo- 
tion analyzer (Videomex V, Columbus Instruments). Rela- 
tive target visits were calculated by dividing visits to the 
platform location by the sum of the visits to all zones. 

The day after the MWM test (day 18), animals underwent 
a battery of tests for neurologic motor function that were 
adapted from previously published reports. All testing was 
performed by two independent observers that were blinded to 
each animal's treatment. The motor tests used were the in- 
clined plane test for the right and left side [38], visual limb 
placing [6], vertical righting response [29], and the grip test 
[1]. The inclined plane test measured the animal's ability to 
maintain its body position on an inclined board for 5 seconds. 
Animals were placed sideways on a board, which is covered 
with a rubber mat and inclined to a 45° angle. Animals re- 
ceived a score of 2 (able to maintain body position for > 5 
sec), 1 (able to maintain position for 1-4 sec), or 0 (unable to 
maintain position). Rats were tested for both sides of the 
body. For visual limb placing, a rat was held 10 cm above a 
table top and slowly lowered toward it with free hanging fore- 
limbs. Normal rats reach, stretch and place both forepaws on 
the table top. Animals received a score of 0 (no placing, limb 
flexion), 1 (incomplete and/or delayed), or 2 (immediate and 
complete placing). The righting response records the amount 
of time it takes within a 60 second interval for rats that are 
placed face down on a vertically oriented wire grid, to assume 
a head up position. For the grip test, rats were suspended from 
a wooden dowel (1 cm diameter) that is positioned 40 cm 
above a foam mat. The length of time the animals held on to 
the wire within a 30 second interval was measured. Mean 
scores or latencies for each test were calculated by averaging 
the values assigned to each rat by the two testers. 
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2.4. Weight loss 
Weight loss or gain was calculated by subtracting the ani- 

mals weight on day 1 (prior to the FP injury) from the 
weight on day 18. 

2.5. In situ hybridization 
Animals were deeply anesthetized with an overdose of 

sodium pentobarbital and decapitated 3 weeks after the FP 
injury. Brains from 6 randomly selected rats from each 
group were rapidly removed and frozen over dry ice. Tissue 
sections through the hippocampus were cut in the coronal 
plane at 14 u.m in a cryostat, thaw-mounted onto Superfrost 
Plus (Fisher Scientific) glass slides, and stored at -20 °C un- 
til processing for the in situ hybridization localization of 
BDNF mRNA as previously described [41,42]. The BDNF 
cRNA probe was prepared by in vitro transcription from a 
linearized cDNA construct with T3 polymerase in the pres- 
ence of 35S-UTP. The 540-base rat BDNF probe includes 
384 base pairs complementary to the rat BDNF mRNA cod- 
ing region [14,20]. Hybridization was conducted at 60 °C for 
18-24 h with the 35S-labeled cRNA at a concentration of 
lxlO6 cpm/50 u.l/slide. Following post-hybridization washes 
and ribonuclease treatment, the sections were air-dried and 
exposed to ß-Max Hyperfilm (Amersham) for 15 days at 
room temperature for generation of film autoradiograms. Af- 
ter autoradiographic film development, the sections were 
dipped in NTB2 nuclear track emulsion (Kodak;  1:1 in 
H20), air-dried and exposed in light-tight slide boxes at 4 °C 
for 4-6 weeks. After autoradiographic development of the 
emulsion, the sections were coverslipped in D.P.X. (Fluka) 
and analyzed with a Nikon Optiphot-2 microscope equipped 
with brightfield and darkfield optics. Control sections that 
had been treated with ribonuclease A before hybridization or 
processed with an appropriate sense-strand riboprobe (see 
[14]) were devoid of specific labeling. Film autoradiograms 
were analyzed with Image 1.57 software (NIH) to compare 
the density of hybridization for BDNF mRNA in various 
hippocampal subfields (dentate gyrus, CA1 and CA3) be- 
tween the exercise and control groups after FP injury. Back- 
ground hybridization in the corpus callosum was subtracted 
from the hybridization in the hippocampal subfields to ob- 
tain corrected optical density measurements (OD). At least 
three sections taken from the dorsal hippocampus between 
bregma -2.80 to -4.30 [37] were analyzed per animal. 

2.6. Histological Evaluation 
Alternate sections were fixed in formalin for 10 min, taken 

through xylenes and graded ethanols, stained with hematox- 
ylin and eosin, dehydrated, cleared, and coverslipped with 
Permount. The areas of the right and left neocortices were 
measured every 500 u.m between bregma -2.56 and -6.04 
[37] using an image processor (NIH Image, 1.57). Damaged 
or necrotic tissue in the neocortex was omitted from the area 
measurements. Neocortical volumes were calculated by sum- 
mation of neocortical areas for each animal. The percentage 
of the tissue that was damaged by the FP injury (% lesion vol- 

ume) was calculated by dividing the tissue volume on the side 
ipsilateral to the impact by the volume on the contralateral 
side and subtracting this number from 100. Previous studies 
have demonstrated that a moderate lateral FP injury typically 
damages portions of the posterior parietal, temporal, and oc- 
cipital cortices [17]. 

Hippocampal neuropathology was assessed by scoring 
neuronal cell loss and injury in the CA3 region by two inde- 
pendent, blinded investigators. The CA3 region was selected 
because previous studies have demonstrated that after FP in- 
jury, hippocampal damage is most visible in this region 
[4,17]. Neuronal loss in the CA3 region was scored as 0 
(normal), 1 (barely visible thinning of the cell layer or a few 
abnormal appearing cells), 2 (cell loss estimated to be less 
than 25 %), 3 (cell loss estimated between 25-50 %), and 4 
(cell loss estimated to be greater than 50 %). 

2.7. Statistical analysis 
All measurements were analyzed with a statistical soft- 

ware package (SYSTAT, version 5.2) and expressed as 
means ± SEM. Percent lesion volume, weight loss, grip test, 
vertical righting latencies, and MWM goal latencies and rel- 
ative target visits were compared with a Mest. Hippocampal 
damage and the inclined plane and limb placing scores were 
compared with the Mann-Whitney [/-test. A one-way 
ANOVA followed by the Newman-Keuls post-hoc test was 
used to compare right and left neocortical volumes between 
groups. A two-way ANOVA was used to compare the BDNF 
mRNA optical density measurements by group and by side. 
Statistical significance was obtained with p values < 0.05. 

3. Results 

One animal died shortly after the FP injury, therefore 9 
animals were placed in the control (handling) group. In addi- 
tion, one animal from each group was euthanized 12 days af- 
ter the FP injury because of severe weight loss and debilita- 
tion. In the surviving animals, mean weight loss was not sig- 
nificantly different between the exercise (-2.8 ± 3.6 g) and 
control animals (-6.9 ± 4.8 g). 

Treadmill exercise following FP injury increased the hy- 
bridization density of BDNF mRNA in the hippocampus 
compared to injured animals that were not exercised (Fig. 1). 
In situ hybridization for BDNF mRNA showed a clear pat- 
tern of hybridization in the hippocampal pyramidal cell lay- 
ers and the granule cell layer of the dentate gyrus, with 
emulsion grains closely associated with the cell bodies in 
these layers. No differences were observed between O.D. 
values for the right and left sides of the hippocampus, so the 
data were combined. Comparison of group mean corrected 
O.D. values revealed that significant increases in BDNF 
mRNA were present in the CA1 (F! = 7.78, p < 0.02) and 
CA3 (Fj = 5.11, p < 0.05) pyramidal cell layers in the exer- 
cise group (Fig. 2). An small increase was also observed in 
the granule cell layer of the dentate gyrus, but this did not 
reach statistical significance. 
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Fig. 1. Prints of autoradiograms showing the localization of hybridization for BDNF mRNA in hippocampi from (A) an FPI-control (no exercise after lateral fluid 
percussion injury) and (B) an FPI-exercise rat (18 days of exercise after lateral fluid percussion injury). Note the bilateral increase in BDNF mRNA hybridization 
m the hippocampal CA1 and CA3 regions in B; the apparent increase in expression seen in the dentate gyrus granule cell layer (stratum granulosum; sg) did not 
reach statistical significance (see quantification in Fig. 2). Scale bar = 1000 urn. 

Histological evaluation revealed that there were no signif- 
icant differences in the scores for hippocampal damage be- 
tween the exercise and control groups (Table 1). Nor was the 
cortical lesion volume significantly different between the ex- 
ercise and control groups (Table 1). However, there was a 
trend toward attenuation of damage in the exercise group, in 
that significant asymmetries between the left (injured) and 
right neocortical volumes were observed in the control group, 
but not in the exercise group (F3 = 5.43,/? < 0.01, Table 1). 

Analysis of MWM performance (Table 1) revealed that 
there were no significant differences in goal latencies or rel- 
ative target visits between the exercise and control injured 
animals, although both were significantly impaired com- 
pared to uninjured (sham) animals (unpublished data). Neu- 
romotor scores and timed tests after FP injury were also un- 
affected by exercise (Table 1). 

Effects of Exercise on BDNF Expression 
in the Hippocampus After FP Injury 

FPI-control   FPI-exercise 
I       w ""t 

FPI-control   FPI-exercise FPI-control FPI-exercise 
Fig. 2: Corrected optical density (O.D.) ± SEM measurements of BDNF hybridization in various regions of the hippocampus 21 days following a FP injury 
Statistically significant increases were observed in the CA1 and CA3 regions in animals that received exercise after injury (FPI-exercise) compared to those that 
were not exercised (FPI-control). 
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TABLE I. Summary of histological and behavioral data 

Control Treadmill 

Mean ± SEM Mean ± SEM 

Hippcampal cell loss (score) 1.4 ±0.5 1.3 ±0.3 

Cortical lesion volume (%) 29.6 ±7.8 17.4 ±4.5 

Left neocortical volume (mm ) 45.7 ±5.8* 54.0 ± 2.2 

Right neocortical volume (mm ) 64.1 ±2.7 63.4 ±3.2 

Goal latency (s) 22.2 ±5.5 21.6 ±7.3 

Relatively target visits (%) 30.2 ±3.0 34.8 ±8.1 

Inclined plane - left (score) 1.3 ±0.2 1.3 ±0.2 

Inclined plane - right (score) 1.9 + 0.1 1.8 ±0.2 

Limb placing (score) 1.3 ±0.3 1.7 ±0.2 

Righting response (s) 13.4 ±3.1 11.6 + 4.4 

Grip test (s) 7.0 ±2.4 7.0 ±2.3 

* The volume of the left neocortex (side ipsilateral to the injury) was sig- 
nificantly less (p < 0.01) than the volume of the right neocortex in the con- 
trol group, but not in the treadmill group. 

1. Discussion 

To our knowledge, this paper is the first investigation of 
the effects of an exercise program on neural plasticity, neu- 
ropathology, and behavior following experimental brain 
trauma. Our results demonstrate that exercise on a treadmill 
following FP injury significantly increases hippocampal 
BDNF mRNA levels compared to injured, unexercised ani- 
mals, but does not attenuate histological, cognitive, or neu- 
romotor deficits. The increase in BDNF mRNA following 
exercise is in agreement with a previous study conducted on 
normal rats [34,35]. Traumatic brain injury by itself can lead 
to up-regulation of BDNF mRNA in the hippocampus 
[18,51]. However, we believe that the increases observed in 
the present study are separate from those associated with FP 
injury because post-injury elevations in BDNF mRNA are 
acute, not chronic, and are found in different subregions of 
the hippocampus [18]. These spatial and temporal differenc- 
es suggest that FP injury and exercise may involve separate 
pathways for the up-regulation of BDNF. 

Under normal conditions, BDNF appears to be an impor- 
tant factor for neural plasticity and LTP [8,12,24,30,39]. 
BDNF has also been linked to neuroprotection following in- 
jury [2,40,48]. In the present study, the increases in BDNF 
mRNA were not associated with a significant attenuation of 
the neuropathology, however there was a trend toward im- 
provement in the injured cortex (Table 1). This trend appears 
to be related to events in the damaged tissue, rather than to 
non-specific increases in cortical volume, because the con- 
tralateral cortex was not affected by the exercise. Also, it is 
important to note that the exercise did not worsen the corti- 
cal lesion, as has been reported after a forced-use paradigm 
following cortical ablation [25]. 

There are several possible explanations for why the tread- 
mill exercise did not enhance recovery of cognitive or neuro- 
motor function after FP injury. The role of exercise on cogni- 
tive performance is controversial, with some studies reporting 
positive correlations, and others negative (see [10] for re- 
view). It has been suggested that the duration and intensity of 
the exercise are important factors, and that low levels of phys- 
ical activity are ineffective in improving cognitive perfor- 
mance. The graduated exercise program in the present study 
may not have been intense or long enough to produce effects. 

Another possible explanation is that forced, diurnal tread- 
mill training may have induced a stress response [50]. Expo- 
sure to stress is associated with impaired spatial memory and 
neuronal damage in the hippocampus [49]. Stress also sig- 
nificantly decreases BDNF mRNA levels in the hippocam- 
pus [44,49]. Thus, while exercise is generally associated 
with attenuation of the stress response [7], the conditions in 
which we exercised our rats may have actually contributed 
to it and interfered with beneficial effects of exercise on 
memory and learning. A stress response may also have at- 
tenuated the increase in BDNF mRNA that we observed in 
the hippocampus. 

It has also been suggested that activities that require mo- 
tor learning are better than repetitive exercise at enhancing 
cognitive and neuromotor performance [3]. Exposure to an 
enriched environment provides animals with an opportunity 
for motor learning as they explore novel objects placed in 
their cages. Animals placed in an enriched environment after 
a midline FP injury had improved spatial memory [16]. Af- 
ter an ischemic injury, rats placed in an enriched social envi- 
ronment or just a social environment (no access to exercise 
equipment) outperformed isolated rats with access to a free- 
running wheel on neuromotor tasks [21]. 

In conclusion, this study demonstrates that even animals 
that have undergone experimental brain trauma are able to 
increase neurotrophin levels in the brain in response to exer- 
cise. Despite these molecular events, the treadmill exercise 
program used to rehabilitate the rats after FP injury was not 
associated with an improvement in cognitive or neuromotor 
function. Whether the lack of behavioral effects are attribut- 
able to specific features of the exercise paradigm employed 
in this study or to exercise in general should be investigated 
in future studies. 
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