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Abstract 

The impact of Domain Specific Languages (DSLs) 
on software design is considerable. They allow 
programs to be more concise than equivalent pro- 
grams written in a high-level programming lan- 
guages. They relieve programmers from making 
decisions about data-structure and algorithm de- 
sign, and thus allows solutions to be constructed 
quickly. Because DSL's are at a higher level of 
abstraction they are easier to maintain and reason 
about than equivalent programs written in a high- 
level language, and perhaps most importantly they 
can be written by domain experts rather than pro- 
grammers. 

The problem is that DSL implementation is costly 
and prone to errors, and that high level approaches 
to DSL implementation often produce inefficient 
systems. By using two new programming language 
mechanisms, program staging and monadic abstrac- 
tion, we can lower the cost of DSL implementations 
by allowing reuse at many levels. These mechanisms 
provide the expressive power that allows the con- 
struction of many compiler components as reusable 
libraries, provide a direct link between the seman- 
tics and the low-level implementation, and provide 
the structure necessary to reason about the imple- 
mentation. 

1     Introduction 

We outline an improved method for the design 
and implementation of Domain-Specific Languages 
(DSLs). The method builds upon our experience 
with staged programming using the staged program- 
ming language METAML [27, 26]. The method also 

incorporates ideas from other researchers in the ar- 
eas of modular language design [28, 24, 12], correct 
compiler generation [15, 19, 18, 16, 10], and par- 
tial evaluation [8, 13]. While relying on recent ad- 
vances in functional programming (such as higher- 
order type constructors, and local polymorphism), 
it is applicable to all kinds of languages, not just 
applicative ones. The method unifies many of these 
ideas into a coherent process. 

A problem with the DSL approach to software con- 
struction is its cost. Realizing a DSL requires an im- 
plementation. Such implementations are large and 
expensive to produce. So, unless many solutions 
are required, it may not pay to build a compiler 
or other implementation mechanism. DSL imple- 
mentation is also conceptually hard. Most software 
engineers are not comfortable taking on the task of 
language design and implementation. Even if they 
are, language implementation is a difficult, complex 
process that does not easily scale. An implementa- 
tion for a simple language often does not scale as the 
language evolves to meet newer demands. Lowering 
the cost of DSL implementations, and making good 
ones more manageable, will make the DSL approach 
applicable to a broader domain of problems. 

Our approach to solving these problems is to apply 
new methods of abstraction such as monads [28, 31] 
and staging [27, 26] to the implementation of DSLs. 
This makes the effort required to build a compiler 
for a DSL reusable and spreads the cost over sev- 
eral DSLs. To make language implementation man- 
ageable for the masses, there must exist good rules 
of thumb for language implementation. One way 
to accomplish this is by elaborating a step by step 
method that splits the labor into well-defined steps, 
each with a relatively small amount of work. In our 
method, each step deals with an orthogonal design 
decision. By using good abstraction principles, our 
method partitions each design decision into a sepa- 



rate code module. In addition, our method makes 
explicit the propositions that must be proved to 
show the correctness of the compiler with respect 

to its semantics. 

Our method comprises the following steps. First, 
construct the denotational semantics as an inter- 
preter in a functional language. Second, cap- 
ture the effects of the language, and the environ- 
ment in which the target language must run, in a 
monad. Then rewrite the interpreter in a monadic 
style. Third, stage the interpreter using meta- 
programming techniques. This staging is similar to 
the staging of interpreters using a partial evalua- 
tor, but is explicit rather than implicit, since the 
programmer places the annotations directly, rather 
than using an automatic binding time analysis to 
discover where they should be placed. This leaves 
programmers in complete control, and they can 
limit what appears in the residual program. Fourth, 
the resulting program is both a data-structure and 
a program, so it can be both directly executed and 
analyzed. This analysis can include both source to 
source transformations, or translation into another 
form (i.e. intermediate code or assembly language). 
Because the programmer has complete control over 
the earlier steps, the structure of the residual pro- 
gram is highly constrained, and this final translation 
can be a trivial task. 

Staging of interpreters using partial evaluation has 
been done before [1, 5]. The contribution of this 
paper is to show that this can all be done in a single 
program. A system incorporating staging as a first 
class feature of a language is a powerful tool. While 
using such a tool to write a compiler the source 
language can be given semantics, it can be staged, 
translated, and optimized all in a single paradigm. 
It requires neither additional processes nor tools, 
and is under the complete control of the program- 
mer; all the while maintaining a direct link between 
the semantics of interpreter and those of the com- 
piler. 

<int> (pronounced "code of int"). The annotation, 
"e splices the deferred expression obtained by eval- 
uating e into the body of a surrounding Bracketed 
expression; and run e evaluates e to obtain a de- 
ferred expression, and then evaluates this deferred 
expression. It is important to note that "e is only le- 
gal within lexically enclosing Brackets. We illustrate 
the important features of the staging annotations in 
the short METAML sessions below. 

-1  val z = 
val z = 7 

3+4; 
:   int 

Users access METAML through a read-type-eval- 
print top-level. The declaration for z is read, type- 
checked to see that it has a consistent type (int 
here), evaluated (to 7), and then both its value and 

type are printed. 

-|   val quad = 
( 3+4,     <3+4>, 

val quad = 
( 7, <3 •/.+ 4>,  <7>, 
(  int * <int> *      <int> 

lift   (3+4),  <z>    ) 

<'/.z>  ) 
<int>) 

The declaration for quad contrasts normal evalua- 
tion with the three ways objects of type code can be 
constructed. Placing brackets around an expression 
(<3+4>) defers the computation of 3+4 to the next 
stage, returning a piece of code. Lifting an expres- 
sion (lift (3+4)) evaluates that expression (to 7 
here) and then lifts the value to a piece of code that 
when evaluated returns the same value. Brackets 
around a free variable (<z>) creates a new constant 
piece of code with the value of the variable. Such 
constants print with a '/. sign to indicate they are 
constants. We call this lexical-capture of free vari- 
ables. Because in METAML operators (such as + 
and *) are also identifiers, free occurrences of op- 
erators in constructed code often appear with '/. in 
front of them. 

2     Staging in MetaML 
-1 fun inc x 

val inc = Fn 

<1 + ~x>; 
:   ['a].<int> -> <int> 

METAML is almost a conservative extension of 
Standard ML. Its extensions include four staging 
annotations. To delay an expression until the next 
stage one places it between meta-brackets. Thus the 
expression <23> (pronounced "bracket 23") has type 

The declaration of the function inc illustrates that 
larger pieces of code can be constructed from smaller 
ones by using the escape annotation. Bracketed ex- 
pressions can be viewed as frozen, i.e. evaluation 
does not apply under brackets. However, is it often 
convenient to allow some reduction steps inside a 



large frozen expression while it is being constructed, 
by "splicing" in a previously constructed piece of 
code. METAML allows one to escape from a frozen 
expression by prefixing a sub-expression within it 
with the tilde (~) character. Escape must only ap- 
pear inside brackets. 

-I   val six = inc <5>; 
val six =    <1 '/.+ 5>   :   <int> 

In the declaration for six, the function increment 
is applied to the piece of code <5> constructing the 
new piece of code <1 '/,+ 5>. 

-|   run six; 
val it = 6   :   int 

Running a piece of code, strips away the enclosing 
brackets, and evaluates the expression inside. To 
give a brief feel for how MetaML is used to construct 
larger pieces of code at run-time consider: 

-|   fun mult x n = 
if n=0 then <1> 

else < "x * "(mult x  (n-1))  >; 
val mult = fn    :   <int> ->  int    -> <int> 

-I   val cube = <fn y => "(mult <y> 3)>; 
val cube = <fn a => a *   (a *   (a *  1))> 

:   <int    ->  int> 

-|   fun exponent n = <fn y =>  "(mult <y> n)>; 
val exponent = fn     :   int    -> <int    ->  int> 

The function mult, given an integer piece of code x 
and an integer n, produces a piece of code that is an 
n-way product of x. This can be used to construct 
the code of a function that performs the cube opera- 
tion, or generalized to a generator for producing an 
exponentiation function from a given exponent n. 
Note how the looping overhead has been removed 
from the generated code. This is the purpose of 
program staging and it can be highly effective as 
discussed elsewhere [4, 6, 11, 23, 27]. In this paper 
we use staging to construct compilers from inter- 
preters. 

3    Monads in Langauge Design 

We make significant use of the notion of monads. 
A good way to think of a monad is as an abstract 

datatype that captures the side effects and actions 
inherent in the language being translated in the 
methods of the abstract datatype. An important 
feature of a monad is that also describes, in a purely 
functional way, how these effects and actions inter- 
act. Like any good abstract datatype, we are free 
to implement the actions in any way we want as 
long as our implementation behaves like its purely 
functional description. 

The ultimate efficiency of the compiler depends on 
making good use of the low-level primitives of the 
target language. Monads are the glue that we use 
to tie high-level (purely functional) descriptions of 
languages to the low-level implementation features 
of the target environment. 

A monad is a type constructor M (a type constructor 
is a function on types, which given a type produces 
a new type), and two polymorphic functions unit : 
a -+ M(a) and bind : M(a) -> (a -»■ M{b)) -)• 
M(b). The way to interpret an expression with type 
M(a) is as a computation that represents a potential 
action and that also returns a value of type a. 

An action might perform I/O, update a mutable 
variable, or raise an exception. One can implement 
a monad in a purely functional setting by emulat- 
ing the actions. This is done by explicitly thread- 
ing "stores", "I/O streams", or "exception continu- 
ations" in and out of all computations. We call such 
an emulation the reference implementation. Using 
a functional implementation allows equational rea- 
soning about the reference implementation, however 
it is usually quite inefficient. 

The two polymorphic functions unit and bind must 
meet the following three axioms: 

(left id) bind (unit x) (\y.e) =    e[x/y] 

(right id) bind e (Ay.unit y) =    e 

(bind assoc)    bind (bind e (Xx.f)) (Xy.g) = 

bind e (Xz.bind (f[z/x])(\w.g[w/y])) 

where e[x/y] is the result of the substitution of the 
free occurrences of the variable x in e by the variable 

The monadic operators, unit and bind, are called 
the standard morphisms of the monad. The unit 
operator takes a pure value and turns it into an 
empty action. The bind operator sequences two ac- 
tions.  A useful monad will also have non-standard 



morphisms that describe the primitive actions of the 
monad (like read the value from a variable and write 
a variable in the monad of mutable state). 

For more background on the use of monads see [29, 

31, 30]. 

In addition the syntactic sugar of the Do allows a 
sequence of x; <- e,- forms, and defines this as a 
nested sequence of Do's. For example: 

Do m { xl <- el;  x2 <- e2   ;  x3 <- e3   ;   e4 } 
Do i { xl <- el; 

Do i { x2 <- e2   ; 
Do m { x3 <- e3   ;   e4 }}} 

4    Monads in METAML 

In METAML a monad is a data structure encapsu- 
lating a type constructor M and the unit and bind 
functions. 

Users may freely construct their own monads, 
though they should be very careful that their in- 
stantiation meets the monad axioms. The monad 
axioms, expressed in METAML'S DO and Return no- 
tation are: 

datatype  CM  :   * -> *  )  Monad = Mon of 
(* unit function *) 
(['a],   'a ->  'a  'H)  * 
(* bind function *) 
([■a.'b].   'a   'M ->   ('a ->   'b   'H)  ->   'b M); 

Do { x <- Return e   ;  z } = z[e/x] 
Do { x <- m ;  Return x } = m 
Do { x <- Do { y <- a  ; b }  ;  c } = 

Do { y'  <- a ;  Do { x <- b[y'/y]   ;  c } } = 
Do { y'  <- a  ;  x <- b[y'/y]   ;   c } 

This definition uses SML's postfix notation for type 
application, and two non-standard extensions to 
ML. First, it declares that the argument ('M : * 
-> * ) of the type constructor Monad is itself a 
unary type constructor [7]. We say that 'M has 
kind: * -> *. Second, it declares that the argu- 
ments to the constructor Mon must be polymorphic 
functions [17]. The type variables in brackets, e.g. 
['a, 'b] , are universally quantified. Because of the 
explicit type annotations in the datatype defini- 
tions the effect of these extensions on the Hindley- 
Milner type inference system is well known and 
poses no problems for the METAML type inference 

engine. 

In METAML, Monad is a first-class, although pre- 
defined or built-in type. In particular, there are 
two syntactic forms which are aware of the Monad 
datatype: Do and Return. Do and Return are 
METAML'S syntactic interface to the unit and bind 
of a monad. We have modeled them after the do- 
notation of Haskell[9, 20]. An important difference 
is that METAML'S Do and Return are both param- 
eterized by an expression of type 'M Monad. Do and 
Return are syntactic sugar for the following: 

(* Syntactic Sugar Derived Form *) 

Do   (Mon(unit,bind))  { x <- e;  f  }      = 
bind e   (fn x => f) 

Illustrating our compiler develop- 
ment method 

In this section, we illustrate our method by building 
the front end of a compiler for a small imperative 
while-language. We proceed in three steps. First, 
we introduce the language and its denotational se- 
mantics by giving a monadic interpreter as a one 
stage METAML program. Second, we stage this in- 
terpreter by using a two stage METAML program 
in order to produce a compiler. Third, we illustrate 
the usefulness of the staging approach, by showing 
how using MetaML's intensional analysis tools can 
be used to optimize or further translate the output 

of a staged program. 

5.1     The while-language 

In this section, we introduce a simple while-language 
composed from the syntactic elements: expressions 
(Exp) and commands (Com). In this simple language 
expressions are composed of integer constants, vari- 
ables, and operators. A simple algebraic datatype to 
describe the abstract syntax of expressions is given 
in METAML below: 

Return (Mon(unit,bind)) e unit e   datatype Exp 



Constant of int 
Variable of string 
Minus of (Exp * Exp) 
Greater of (Exp * Exp) 
Times of (Exp * Exp) ; 

(* 5 *) 
(* x *) 
(* x - 5    *) 
(* x > 1    *) 
(* x * 4    *) 

Commands include assignment, sequencing of com- 
mands, a conditional (if command), while loops, a 
print command, and a declaration which introduces 
new statically scoped variables. A declaration intro- 
duces a variable, provides an expression that defines 
its initial value, and limits its scope to the enclosing 
command. A simple algebraic datatype to describe 
the abstract syntax of commands is: 

datatype Com = 
Assign    of (string * Exp) 
Seq of (Com * Com) 
Cond        of (Exp * Com * Com) 
While      of (Exp * Com) 
Declare of (string * Exp * Com) 
Print      of Exp; 

(* ****** Example Concrete Syntax ******* *) 
(* Assign x := 1 *) 
(* Seq { x :=1; y:= 2 } *) 
(* Cond if x then x := 1 else y := 1 *) 
(* While while x>0 do x := x - 1 *) 
(* Declare declare x = 1 in x := x - 1 *) 
(* Print print x *) 

A simple while-program in concrete syntax, such as 

declare x =  150  in 
declare y = 200  in 

{ while x > 0 do { x 
print y } 

i; y i }; 

is encoded abstractly in these datatypes as follows: 

val SI = 
Declare("x",Constant 150, 
Declare("y",Constant 200, 

Seq(While(Greater(Variable "x",Constant 0), 
Seq(Assign("x",Minus(Variable "x", 

Constant 1)), 
AssignC'y", Minus (Variable "y", 

Constant 1)))). 
Print(Variable "y")))); 

5.2     The structure of the solution 

Staging is an important technique for developing ef- 
ficient programs, but it requires some forethought. 
To get the best results one should design algorithms 
with their staged solutions in mind. 

The meaning of a while-program depends only on 
the meaning of its component expressions and com- 
mands. In the case of expressions, this meaning is 
a function from environments to integers. The en- 
vironment is a mapping between names (which are 
introduced by Declare) and their values. 

There are several ways that this mapping might be 
implemented. Since we intend to stage the inter- 
preter, we break this mapping into two components. 
The first component, a list of names, will be com- 
pletely known at compile-time. The second com- 
ponent, a list of integer values that behaves like a 
stack, will only be known at the run-time of the 
compiled program. 

The functions that access this environment dis- 
tribute their computation into two stages. First, 
determining at what location a name appears in the 
name list, and second, by accessing the correct in- 
teger from the stack at this location. In a more 
complicated compiler the mapping from names to 
locations would depend on more than just the dec- 
laration nesting depth, but the principle remains the 
same. Since every variable's location can be com- 
pletely computed at compile-time, it is important 
that we do so, and that these locations appear as 
constants in the next stage. 

Splitting the environment into two components 
is a standard technique (often called a binding 
time improvement) used by the partial evaluation 
community[8]. We capture this precisely by the fol- 
lowing purely functional implementation. 

type location = int; 
type index = string list; 
type stack = int list; 

(* position :   string ->  index -> location *) 
fun position name index = 

let fun pos n  (nm::nms) = 
if name = nm 

then n 
else pos   (n+1)  nms 

in pos  1  index end; 



(* fetch : location -> stack -> int *) 
fun fetch n (v::vs) = 

if n = 1 
then v 
else fetch (n-1) vs; 

(* put: location -> int -> stack -> stack *) 

fun put n x (v::vs) = 
if n = 1 

then x: :vs 
else v::(put (n-1) x vs); 

The meaning of Com is a stack transformer and an 
output accumulator. It transforms one stack (with 
values of variables in scope) into another stack (with 
presumably different values for the same variables) 
while accumulating the output printed by the pro- 

gram. 

To produce a monadic interpreter we could define 
a monad which encapsulates the index, the stack, 
and the output accumulation. Because we intend 
to stage the interpreter we do not encapsulate the 
index in the monad. We want the monad to en- 
capsulate only the dynamic part of the environment 
(the stack of values where each value is accessed by 
its position in the stack, and the output accumula- 

tion). 

The monad we use is a combination of monad of 

state and the monad of output. 

datatype 'a H = 
StOut of (stack -> ('a* stack * string)); 

fun unStOut (StOut f) = f; 
fun unit x = StOut(fn n => (x,n,"")); 
fun bind e f = 

StOut(fn n => 
let val   (a,nl,sl)  =  (unStOut e)  n 

val   (b,n2,s2) =    unStOut(f a)  nl 
in  (b,n2,sl "  s2)   end); 

(* mswo  is the Monad of  state with output *) 
val mswo   :   H Monad = Mon(unit,bind); 

The non-standard morphisms must describe how the 
stack is extended (or shrunk) when new variables 
come into (or out of) scope; how the value of a par- 
ticular variable is read or updated; and how the 
printed text is accumulated. Each can be thought 
of as an action on the stack of mutable variables, or 
an action on the print stream. 

(* read  :   location ->  int M *) 

fun read i = StOut(fn ns =>   (fetch i ns.ns,"")); 

(* write  :   location ->  int -> unit    M *) 
fun write  i v = 

StOut (fn ns =>(  0, put i v ns,  "" )); 

(* push:   int -> unit    M *) 
fun push x = StOut(fn ns =>  (  (), x  :: ns,  "")); 

(* pop : unit M *) 
val pop = StOut(fn (n::ns) => ((), ns, "")); 

(* output: int -> unit M *) 
fun output n = 

StOut (fn ns => ( 0, ns, (toString n)"" ")); 

5.3     Step 1: monadic interpreter 

Because expressions do not alter the stack, or 
produce any output, we could give an evaluation 
function for expressions which is not monadic, or 
which uses a simpler monad than the monad de- 
fined above. We choose to use the monad of state 
with output throughout our implementation for two 
reasons. One, for simplicity of presentation, and 
two because if the while language semantics should 
evolve, using the same monad everywhere makes it 
easy to reuse the monadic evaluation function with 
few changes. 

The only non-standard morphism evident in the 
evall function is read, which describes how the 
value of a variable is obtained. The monadic inter- 
preter for expressions takes an index mapping names 
to locations and returns a computation producing 

an integer. 

(*    evall:  Exp ->  index ->  int M *) 
fun evall exp  index = 
case exp of 

Constant n => Return mswo n 
I   Variable x => let val loc = position x index 

in read loc end 
I   Minus(x,y)  => 

Do mswo { a <- evall x  index  ; 
b <- evall y  index; 
Return mswo   (a - b)   } 

I   Greater(x.y) => 
Do mswo { a <- evall x  index  ; 

b <- evall y  index; 
Return mswo  (if  a  '>' b 

then 1  else 0)   } 
I   Times(x,y)  => 

Do mswo { a <- evall x  index  ; 



b <- evall y  index; 
Return mswo  (a * b)   }; 

The interpreter for Com uses the non-standard mor- 
phisms write, push, and pop to transform the stack 
and the morphism output to add to the output 

stream. 

(*  interpret 1   :  Com ->  index -> unit H *) 
fun interpret 1 stmt  index = 
case stmt of 

Assign(name,e)  => 
let val loc = position name index 
in Do mswo { v <- evall e  index  ; 

write loc v } end 
I   Seq(sl,s2) => 

Do mswo { x <- interpret 1 si index; 
y <-  interpret 1 s2  index; 
Return mswo   ()   } 

I   Cond(e,sl,s2)  => 
Do mswo { x <- evall e  index; 

if x=l 
then interpret1 si  index 
else  interpretl s2 index } 

I   While(e,b) => 
let fun loop  0  = 

Do mswo 
{ v <- evall e  index  ; 

if v=0 
then Return mswo   () 
else Do mswo {  interpretl b  index 

loop  0   } } 
in loop  ()   end 

I   Declare(nm,e,stmt) => 
Do mswo { v <- evall e  index  ; 

push v   ; 
interpretl stmt   (nm::index); 
pop } 

I   Print  e => 
Do mswo { v <- evall e  index; 

output v }; 

Although interpretl is fairly standard, we feel 
that two things are worth pointing out. First, the 
clause for the Declare constructor, which calls push 
and pop, implicitly changes the size of the stack and 
explicitly changes the size of the index (nm: index), 
keeping the two in synch. It evaluates the initial 
value for a new variable, extends the index with the 
variables name, and the stack with its value, and 
then executes the body of the Declare. Afterwards 
it removes the binding from the stack (using pop), 
all the while implicitly threading the accumulated 
output. The mapping is in scope only for the body 
of the declaration. 

Second, the clause for the While constructor intro- 
duces a local tail recursive function loop. This func- 
tion emulates the body of the while. It is tempting 
to control the recursion introduced by the While by 
using the recursion of the interpretl function itself 
by using a clause something like: 

I   While(e.b) => 
Do mswo 
{ v <- evall e  index  ; 

if v=0 
then Return mswo  () 
else Do mswo 

{  interpretl b  index  ; 
interpretl  (While(e,b))   index } 

} 

Here, if the test of the loop is true, we run the body 
once (to transform the stack and accumulate out- 
put) and then repeat the whole loop again. This 
strategy, while correct, will have disastrous results 
when we stage the interpreter, as it will cause the 
first stage to loop infinitely. 

There are two recursions going on here. First the 
unfolding of the finite data structure which encodes 
the program being compiled, and second, the recur- 
sion in the program being compiled. In an unstaged 
interpreter a single loop suffices. In a staged inter- 
preter, both loops are necessary. In the first stage 
we only unfold the program being compiled and this 
must always terminate. Thus we must plan ahead as 
we follow our three step process. Nevertheless, de- 
spite the concessions we have made to staging, this 
interpreter is still clear, concise and describes the se- 
mantics of the while-language in a straight-forward 

5.4    Step 2: staged interpreter 

To specialize the monadic interpreter to a given pro- 
gram we add two levels of staging annotations. The 
result of the first stage is the intermediate code, that 
if executed returns the value of the program. The 
use of the bracket annotation enables us to describe 
precisely the code that must be generated to run 
in the next stage. Escape annotations allow us to 
escape the recursive calls of the interpreter that are 
made when compiling a while-program. 

(* eval2:  Exp ->  index -> <int H> *) 



fun eval2 exp  index = 
case exp of 

Constant n => <Return mswo "(lift n)> 
I   Variable x => 

let val loc = position x index 
in <read "(lift loc)> end 

I   Minus(x,y)  => 
<Do mswo { a <- "(eval2 x  index)   ; 

b <- "(eval2 y  index); 
Return mswo  (a - b)   }> 

I   Greater(x.y)  => 
<Do mswo {  a <-  "(eval2 x index)   ; 

b <-  "(eval2 y index); 
Return mswo   (if a   '>' b 

then 1 
else 0)  }> 

I  Times(x,y) => 
<Do mswo { a <- 

b <- 
'(eval2 x index)   ; 
'(eval2 y index); 

structed. Recall that escapes may only appear at 
level-1 and higher. Splicing is axiomatized by the 
reduction rule: ~<x> —> x, which applies only at 
level-1. The final step, where mswo and - become 
'/.mswo and '/.-, occurs because both are free variables 
and are lexically captured. 

Interpreter for Commands. 

Staging the interpreter for commands proceeds in a 

similar manner: 

Return mswo  (a * b)   }>; 

The lift operator inserts the value of loc as the 
argument to the read action. The value of loc 
is known in the first-stage (compile-time), so it 
is transformed into a constant in the second-stage 
(run-time) by lift. 

To understand why the escape operators are nec- 
essary, let us consider a simple example: eval2 
(Minus(Constant 3,Constant 1)) [] . We will 
unfold this example by hand below: 

eval2  (Minus(Constant 3,Constant 1))   []   = 

< Do mswo 
{ a <- "(eval2 (Constant 3) []) ; 

b <- "(eval2 (Constant 1) []); 
Return mswo (a-b)} > = 

< Do mswo 
•£ a <- "<Return mswo 3>; 

b <- "<Return mswo 1>; 

Return mswo (a - b)} > = 

< Do mswo 
{ a <- Return mswo 3; 

b <- Return mswo 1; 

Return mswo (a - b)} > = 

< Do '/.mswo 
{ a <- Return '/.mswo 3; 

b <- Return '/.mswo 1; 

Return '/.mswo (a '/.- b)} > 

Each recursive call produces a bracketed piece of 

code which is spliced into the larger piece being con- 

(* interpret2 : Com -> index -> <unit M> *) 

fun interpret2 stmt index = 

case stmt of 

Assign(name,e) => 
let val loc = position name index 
in <Do mswo { n <- "(eval2 e index) ; 

write "(lift loc) n }> 

end 

I Seq(sl,s2) => 

<Do mswo { x <- "(interpret2 si index); 
y <- "(interpret2 s2 index); 

Return mswo () }■> 
I Cond(e,sl,s2) => 

<Do mswo 
{ x <- "(eval2 e index); 

if x=l 
then "(interpret2 si index) 

else "(interpret2 s2 index)}> 

I While(e,b) => 
<let fun loop () = 

Do mswo 

{ v <- '(eval2 e index); 
if v=0 

then Return mswo 0 

else Do mswo 
{ q <- "(interpret2 b index); 

loop ()} 

} 
in loop () end> 

I Declare(nm,e,stmt) => 

<Do mswo { x <- "(eval2 e index) ; 
push x ; 
"(interpret2 stmt (nm::index)) ; 

pop }> 

I Print e => 

<Do mswo { x <- "(eval2 e index) 

output x }>; 



5.4.1     An example. 

The function interpret2 generates a piece of code 
from a Com datatype. To illustrate this we apply 
it to the simple program: declare x = 10 in { x 
:= x -  1;  print x }    and obtain: 

<Do Xmswo 
{  a <- Return '/.rnswo  10 
;   '/.push a 
;  Do y.mswo 

{ e <- Do y,mswo 
{ d <- Do y.mswo 

{ b <- '/.read 1 
;   c <- Return Xmswo 1 
;   Return y.mswo b 'I,- c 
} 

;  y.write  1 d 
} 

;  g <- Do y.mswo 
{ f  <- '/.read 1 
;   y.output f 
} 

;   Return '/.mswo  () 
} 

; '/.pop 
}> 

Note that the staged program is essentially a com- 
piler, translating the syntactic representation of 
the while-program into the above monadic object- 
program that will compute its meaning. Note that 
in the object-program all of the compile-time op- 
erations have disappeared. This object-program is 
fully executable. Simply by using the run opera- 
tor of METAML, it can be executed for prototyping 
purposes. 

6    Step 3:   Back-end translation and 
intermediate code optimization 

METAML is a meta-programming system. It has 
an object language and a meta-language. Meta- 
programs are programs that manipulate object pro- 
grams. In METAML both the object language and 
the meta-language are ML. In METAML an object- 
program is both a data structure that can be ma- 
nipulated, and a program that can be run. 

This duality plays an important role in target code 
generation. The result of applying the staged inter- 

preter from the previous step (a meta-program) to a 
DSL program to be compiled is a highly constrained 
residual program (an object program). This pro- 
gram is both a data-structure and a program, so it 
can be both directly executed (rapid prototype) and 
analyzed. 

We use the object-code analysis capabilities of 
MetaML to transform the object program into the 
final target language. This analysis can include both 
source to source transformations, or translation into 
another form (i.e. intermediate code, assembly lan- 
guage, or target language). 

Control over the form of the residual program is 
crucial here. The residual program is always an ML 
program (ML is the object language). But the user 
can control the form of this ML program. A goal 
of the translation is to make the object program 
use only those ML features directly supported by 
the target language. For example, we may struc- 
ture the staged interpreter such that the residual 
program is first order, or just a sequence of primi- 
tive actions encoded as non-standard morphisms in 
the monad. This is where we connect the abstract 
monadic actions to their efficient implementations. 

The object program produced above is an ML code 
fragment. It can be executed or analyzed. The 
code produced by interpret2 is a restricted sub- 
set of ML. Disregarding the higher-order functions 
implicit in the monad, it is first order, and contains 
only Do expressions, Return expressions, if expres- 
sions, calls to the non-standard morphisms read, 
write, push , pop, and output, primitive arithmetic 
operators - and ' >', and local looping functions 
(like loop above). The code is so regular that it can 
be captured by a simple grammar. The next step 
is to analyze this code to make the final translation 
to the target language, or to apply some ML-source 
to ML-source level optimizations. The reader might 
notice that the object-program above could be con- 
siderably, further simplified by applying the monad 
laws. There are many opportunities for doing so. 
After these laws are applied we obtain the much 
more satisfying: 

<Do '/.mswo 
{ '/.push 10 

a <- '/.read 1 
b <- Return '/.mswo a '/,-  1 
c <- '/.write 1 b 
d <- '/.read 1 
e <- '/.output d 



Return '/.mswo  () 
'/.pop 

}> 

In addition to the monad laws which hold for all 
monads, we can also use laws which hold for partic- 
ular non-standard morphisms. For instance, in the 
example above, we could avoid the second read of 
location 1 using the following rule: 

Do { el 
;   c <- '/.write  1  b 
;  d <- '/.read 1;   e2 

Do { e 
;   c <- '/.write 1 b 
;  e2[b/d] 
} 

Every target language will have many such laws, 
and because our target language is both executable- 
code, and data-structure we can perform these op- 
timizations. The final step is to translate the ML 
code fragment into the target language. This step 
uses the same intensional analysis of code capabili- 
ties of the optimization steps, and is the subject of 

the next section. 

6.1     Intensional   analysis 
ments 

of  code   frag- 

In this section, we outline how we do intensional 
analysis of residual code. We provide a high-level 
pattern matching based interface. Code patterns 
can be constructed by placing brackets around code. 
For example a pattern that matches the literal 5 can 
be constructed by: 

-|   fun is5 <5> = true 
I   is5 _ = false; 

val is5 = fn     :   <int> -> bool 

-I   is5  (lift   (1+4)); 
val it = true    :  bool 

-I   is5 <0>; 
val  it = false     :   bool 

The function is5 matches its argument to the con- 
stant pattern <5> if it succeeds it returns true else 

false. Pattern variables in code patterns are indi- 
cated by escaping variables in the code pattern. 

-I fun parts < ~x + "y > = S0HE(x,y) 

I parts _ = NONE; 
val parts = fn  : <int> -> (<int> * <int>) option 

-I parts <6 + 7>; 
val it = SOME (<6>,<7>) : (<int> * <int» option 

-I  parts <2>; 
val it = NONE    :   (<int> * <int>)  option 

The function parts matches its argument against 

the pattern < ~x + ~y >. If its argument is a piece 
of code which is the sum of two sub terms, it binds 
the pattern variable x to the left subterm and the 
pattern variable y to the right subterm. 

We use higher-order pattern variables[22, 21] for 
code patterns that contain binding occurrences, 
such as lambda expressions, let expressions, do ex- 
pressions, or functions. 

For example, a high-order pattern that matches the 
code of a function <fn x => . . .>, of type <'a -> 
'b> is written in eta-expanded form <fn x => "(g 
<x>)>. When the pattern matches, the matching 
binds the higher-order pattern variable g to a func- 
tion with type <' a> -> <' b> 

Every higher order pattern variable must be in fully 
saturated form, by applying it to all the bound 
variables of the code pattern. For example if g is 
a higher-order pattern variable with type <' a> -> 
<'b> -> <'c> then we must write "(g <x> <y>). 
The arguments to the higher-order pattern variable 
must be explicit bracketed variables, one for each 
variable bound in the code pattern at the context 
where the higher-order pattern appears. A higher- 
order pattern variable is used like a function on the 
right-hand side of a matching construct. 

For example functions which implement the three 
monad axioms are written as follows: 

fun monadl 
<do mswo 

{ x <- return mswo  "e 
;   ~(z <x»   }> 

= z e 

fun monad2 <do mswo { x <-  ~m;  return x }> = m 



fun monad3 
<do mswo 

{ x <- do mswo <y < 
; '(b <y»} 
; -(c <x> }> 

= <do mswo { y> <- "a 
; do mswo { z <- 
; "(c <z» }}> 

(b <y'>) 

When the function monad 1 is applied to the 
code <do mswo {a <- returm mswo (g 3); h(a 
+ 2)}>, the pattern variable e is bound to the 
function fn x => <h("x + 2)> which has the type 
<int> -> <int M>. The right-hand side of monad 1 
rebuilds a new code fragment, substituting formal 
parameter x of e by <g 3>, constructing the code 
<h((g 3)+ 2)>. 

This technique can be used to build optimizations, 
or to translate a residual program into a target lan- 
guage. 

7    Conclusion 

The important issues of efficient language imple- 
mentation by refinement from high-level specifica- 
tions are: the efficient use of the underlying tar- 
get environment, and removing the layer of inter- 
pretative computation introduced by such specifica- 
tions. We have shown that monads and staging are 
the right abstraction mechanisms to accomplish the 
task. To effectively use these tools we propose that 
DSL implementers follow a well defined method. We 
reiterate our method here: 

• Domain analysis. The problem domain is an- 
alyzed to find the common abstractions around 
which the language is designed. This step is 
perhaps the most important step in a good 
language design. It has been studied exten- 
sively by others [32, 2, 3]. Our research group 
has been investigating the integration of DSL 
design and domain analysis for several years. 
Recently Widen and Hook have summarized a 
"top level" view of this integration, which is 
called the Software Design Automation (SDA) 
method [33]. This method provides a design 
process and many synthesis techniques to fa- 
cilitate the integration of traditional domain 

analysis activities with language design and im- 
plementation. The method we propose can be 
used in the context of SDA. It specifically ad- 
dresses the language implementation phase of 
the process. 

• Definitional interpreter. Once the language 
has been identified, the next step is to provide 
it with a semantics given as a pure functional 
interpreter. This program can be thought of 
as its high-level definition [14, 25]. high-level 
interpreters are usually easy to construct and 
provide a reference which can be consulted to 
resolve any ambiguity in the language specifi- 
cation discovered in further steps. By building 
it in an executable framework (a functional lan- 
guage, such as Haskell or ML) it also provides 
a rapid prototype against which expectations 
can be measured. 

• Binding time improvements. The next step 
requires a binding separation [8]. By identi- 
fying compile-time versus run-time data struc- 
tures in the definitional interpreter, we can sep- 
arate those with both components into sepa- 
rate data-structures. Examples of binding time 
improvements include the separation of envi- 
ronments, which map names to values, into a 
compile-time index and a run-time stack, and 
the introduction of a local recursive function to 
separate the recursion which drives the analysis 
of the syntax of the program being interpreted 
from the recursion that encodes the looping of 
the while command. 

• Target domain analysis. The next step 
is to analyze the target language to identify 
the primitive implementation features that will 
support the translation. This step is usually 
straight-forward as the target language is often 
fixed, and well understood. 

• Design a monad. The next step is to design 
a monad to capture the effects and actions im- 
plicit in the target language. This is a hard step 
in the process since it requires both abstract 
knowledge about the structure and properties 
of monads, and detailed concrete knowledge 
about the target domain. The choices made in 
this step influence the structure of the monad, 
the structure of the monadic interpreter, and 
the run-time system which interacts with the 
low-level effects of the target language. 

Once the monad is designed, an implementa- 
tion for the monad as a pure functional emu- 
lation must be produced. The implementation 



must emulate the actions in a purely functional 
setting by explicitly threading abstract repre- 
sentations of the actions such as "stores", "I/O 
streams", or "exception continuations" in and 
out of all computations. 

• Monadic Interpreter. The next step is to 
refine the purely functional definitional inter- 
preter into one written in a monadic style [28, 
24, 13]. This implementation is still purely 
functional because the actions of the monad 
are emulated in a functional style. But because 
the actions are now explicit, we have moved 
the form of definition closer to the target lan- 
guage. This step often requires a big change to 
the structure of the source code, because the 
monad makes implicit much of the "plumbing" 
explicit in the interpreter. The cost of this re- 
structuring is not without benefit. The removal 
of the explicit plumbing results in programs 
which are simpler, and more immune to future 
changes. 

Staging. The next step completes the binding- 
time separation begun in the binding time 
improvement step. That step separated the 
compile-time data from the run-time data. 
Staging separates the compile-time computa- 
tions from the run-time computations. This 
is done by placing explicit staging annotations 
in the program written in METAML. Staging 
is the crucial step that differentiates an (ineffi- 
cient) interpreter from an (efficient) compiler. 

• Transformation of residual code. 

The residual object-program produced by a 
staged interpreter is both a data structure that 
can be manipulated, and a program that can 
be run. Control over the form of the residual 
program is crucial here. The residual program 
is always an ML program (ML is the object 
language). But the user can control the form 
of this ML program. A goal of the translation 
is to make the object program use only those 
ML features directly supported by the target 
language. The restricted form of the residual 
object program make it possible to use the in- 
tensional analysis of object-code tools provided 
by MetaML to easily build the final translation 
step to the target language. 

7.1     Benefits of the approach 

This paper illustrated a step by step method for 
constructing correct and efficient implementations 
of DSLs. The method has the following advantages 
over building a DSL implementation in an ad-hoc 
fashion. 

• Simplicity. We divide the task of DSL imple- 
mentation of DSL into small manageable tasks. 
The compiler is constructed by a method of re- 
finement, and we use special abstraction mech- 
anisms so that each step addresses only a single 
aspect of the compiler. 

• Reuse. Our method provides many opportu- 
nities for reuse. By using the abstraction meth- 
ods of monads and staging, much of the code re- 
mains unchanged between refinement steps. In 
addition, monad implementations are reusable 
across DSLs, and multiple DLS using the same 
target language can reuse the intensional anal- 
ysis. 

• Control. Instead of using a fixed set of tech- 
niques or tool to generate compilers, we out- 
line a method which provides users control over 
each step. A good impedance match between 
low-level features of the target language and 
the high-level DSL is necessary for good perfor- 
mance. Since every compiler is different, users 
need such fine grained control. 

• Correctness. The METAML type system pro- 
vides major support for ensuring the correct- 
ness of the compilers generated. It is simply 
not possible to write a type-incorrect transla- 
tion. But type-correctness is not enough. We 
wish to prove other correctness properties as 
well, such as the equivalence between the arti- 
facts produced by each step of the method. We 
believe that it is possible for each step to make 
explicit its proof obligations, and because each 
step produces a functional program, it is possi- 
ble to use equational reasoning to prove these 
obligations 

7.2    The Implementation 

Everything you have seen in this paper, except the 
higher order pattern matching over code, has been 



implemented in the METAML implementation. The 
examples are actual runs of the system. 

The higher order pattern matching is currently un- 
der development. We found the normalizing effect of 
the monad laws so compelling that we implemented 
them in an ad-hoc fashion inside the METAML sys- 
tem. 
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