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Abstract  

Dynamic characterization tests were performed on the Advanced Gun System (AGS) vehicle. 
The tests were designed to provide modeling information for high-frequency shock prediction 
codes, as well as finite element codes. These data obtained were also used to validate the 
modeling codes. The vehicle was analyzed in a full-up condition with the turret attached. A 
model analysis was performed to a maximum frequency of 100 Hz. The high-frequency 
characterization was performed up to 10 kHz. 

Methodologies to extract damping estimate up to 10 kHz were developed and 
implemented. Damping estimates up to 10 kHz were extracted from the structural data obtained 
during this test. 
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1. Introduction 

A series of dynamic characterization tests was performed on the Advanced Gun System 

(AGS) vehicle. These tests were designed to provide the experimental validation of new 

high-frequency shock prediction codes, as well as a conventional finite element model. After 

validation, ballistic shock predictions based on these codes were to be compared against live-fire 

test results to assess the code's predictive capability. 

The testing was performed at the Aberdeen Test Center (ATC). Unlike previous similar tests 

(Bradley Fighting Vehicle [BFV] [1], Ml 13 armored personnel carrier [APC] [2], heavy 

composite hull [3]), testing and instrumentation were performed exclusively by ATC and U.S. 

Army Research Laboratory (ARL) employees. The Army was able to rent a large portion of the 

test instrumentation, which significantly reduced the equipment cost. A summary of the modal 

analysis theory can be found in ARL-MR-246 [2]. 

Army research has found that critical components in armored vehicles can be damaged by 

high-frequency ballistic shock waves resulting from nonperforating impacts or blast effects. To 

enhance the survivability of new vehicles, the Army has set the upper frequency range for 

ballistic shock hardness at 10 kHz, based on measurements in live-fire tests. 

Prediction of the levels of the high-frequency ballistic shock(s) under battlefield threat 

conditions is needed to establish hardness requirements for the design and test qualification of 

components in new vehicles. Prior to live-fire testing, pretest predictions are also needed to 

increase confidence in the vehicle's survivability under the test conditions. 

The 10-kHz frequency range of the shock is well beyond the practical limits of standard 

prediction techniques such as the finite element method (FEM), which is typically limited to 

500 Hz for large and complex structures such as armored vehicles. Consequently, new, practical, 

and experimentally verifiable techniques that can perform predictions at these high frequencies 

are sought.  The MANTA code, developed by Teledyne Brown Engineering, is potentially one 



such analytical tool. The code has been successfully verified on tests of surrogate armored 

vehicle structures. The AGS vehicle represents the first test/model correlation of the code for a 

fully configured armored vehicle. 

Certain operations of the MANTA Code require experimentally obtained structural 

parameters such as frequency-dependent damping and frequency response functions (FRF). 

Analytical predictions are very sensitive to damping value, but it is difficult to experimentally 

extract damping value with high accuracy, especially higher frequency damping. Therefore, the 

AGS posttest analysis concentrated on new or improved techniques to obtain more accurate 

damping estimates. 

1.1 AGS Configuration. The limited quantity of time over which the vehicle was available 

permitted testing of only a single vehicle configuration. The primary impetus for this series of 

tests was to verify ballistic shock predictions against a live-fire test. Therefore, the configuration 

with the most applicability to the live-fire test was utilized for the modal test. 

The AGS vehicle tested was number PV6. The vehicle was in operational condition and 

dressed in armor level n. Since the objective of the test was to measure the hull response, the 

external bolt-on armor had to be removed so that sensors could be mounted to the hull itself. In 

an effort to linearize the structure, the tracks and coaxial machine gun were also removed from 

the vehicle. All of the nonattached internal accessories, as well as the commander's machine gun 

mount, were removed. The wind sensor was folded down and secured with tape. Two mock 

rounds were in the autoloader throughout the test: one high-explosive antitank (HEAT) round 

and one kinetic energy (KE) round. Figure 1 is a photograph of the test setup. The fan in the 

lower left corner was used for cooling the shaker. 

1.2 Vehicle Support System. There were two primary objectives that the vehicle support 

structure had to satisfy. First, the support had to have as rninimal an effect on the structural 

dynamics of the hull as possible.  Second, the test boundary conditions must be easy to model 
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Figure 1. Modal Test Setup. 

numerically.  This can be a difficult task since a true free-free or fixed-fixed condition is very 

difficult to realize in an experimental setup. 

If the vehicle can be suspended on a very soft suspension, such that the six rigid-body modes 

are well below the first flexible mode, then the hull can be considered to be in a free-free 

boundary condition. To this end, the vehicle was placed on top of five Firestone airmount 

airbags. Two airbags were placed under the front corners of the vehicle. Three airbags were 

required under the rear of the vehicle due to the weight of the engine and its associated 

components. Each bag was kept inflated to 60 psi for the duration of the test. A specification 

sheet for the airbags appears in Appendix A. The suspension can easily be modeled as a set of 

springs with their spring rates given by the known airbag pressure and the specification sheet. 

2. Modal Test and Analysis 

2.1 Excitation System. Four MB Dynamic Modal 50 shakers were used to excite the AGS 

vehicle. Each shaker is rated at 50 lb of force with the use of forced cooling and 25 lb of force 



utilizing natural convection cooling. Due to time constraints, only a single excitation 

configuration was tested. The two front shakers were placed just behind the lowest glacis panel 

on the floor of the vehicle at the left and right sides. The two rear shakers were also placed on 

the floor of the vehicle just forward of the final drive sprockets along the edge of the floor. 

The excitation forces were measured with PCB Model 208A02 force transducers. The 

shakers were attached to the vehicle with a small-diameter stinger. The stinger arrangement 

significantly reduces the magnitude of nonaxial forces that are transmitted through the force 

transducer. The force transducers were then screwed into metal plates that were cemented with 

dental adhesive onto the underside of the vehicle. At each force input location, a driving-point 

accelerometer was also attached. 

Figure 2. Excitation Setup. 



The burst random method of excitation was chosen for this test. This excitation method 

minimizes the leakage and is well suited to heavily damped structures such as this vehicle hull. 

The bandwidth of the excitation was identical to the measurement bandwidth. 

2.2 Response Measurement. Endevco Model 7254A and Model 61 accelerometers were 

used. Both the 100- and 500-mV/g sensitivity versions of these sensors were utilized. The 

less-sensitive sensors were placed closer to the sources of excitation to maximize the 

signal-to-noise ratio. The 7254A accelerometers were used for the driving-point acceleration 

measurements. 

The data acquisition was performed using a Hewlett-Packard 725 workstation and a 

Hewlett-Packard 3565 data-acquisition front end. A PCB data harvester was utilized to provide 

low-pass analog signal filtering and to provide power to the accelerometers. The 3565 front end 

was configured with 40 input channels and 4 output channels. Data were collected up to 100 Hz 

at a resolution of 0.0625 Hz. Datasets were also collected to ascertain the degree of nonlinearity, 

as well as the predominate noise floor. 

2.3 Modal Model. The modal model consists of 164 nodes. It is pictured in Figure 3. The 

nodal locations were chosen to provide a complete geometric description of the basic AGS hull. 

In addition, a set of sensors was allocated for each panel and hatch that could move 

independently of the basic hull. A set of transducers was allocated to the gun tube and another 

set to the engine/transmission assembly. The additional sensors permit the description of 

localized motion of the various parts of the hull. Although these modes have little effect on the 

overall flexibility of the structure, they account for the majority of differences between the 

various mode shapes. 

2.4 Qualitative Data Assessment of Results. A noise floor measurement (NFM) was taken 

in addition to the data that were acquired for analysis. This dataset is acquired in an identical 

fashion to the other datasets. The only difference between the two datasets is that the NFM has 



Figure 3. Modal Model. 

the excitation signal turned off. Therefore, any signal present in the NFM is due to a noise 

source. A comparison of the NFM with the analyzed data indicates that the noise floor is at least 

one order of magnitude less than the data signal in most of the measurements. 

Due to limited funds, the test was completed with a limited number of transducers and 

acquisition channels. Twenty-two different patches were required to obtain the complete dataset. 

As a result, several patches of data had to be taken over several days. A complete set of 

driving-point measurements was acquired during every acquisition cycle. A comparison of these 

records yields a measure of the time variance of the acquired data. Figure 4 is a plot of the FRFs 

from driving-point 3. Each curve on this plot utilizes the same excitation amplitude, excitation 

point, and response point. If the system were time invariant, these 18 curves would overlap each 

other identically. However, due to the time variance, there is a difference between the curves. In 

some frequency ranges, the difference is severe. 

As previously mentioned, modal analysis assumes that the structure under test is linear. A 

simple technique of verifying this assumption is to input varying force levels to the structure and 

measure the ensuing FRFs. For an ideal linear structure, all of the FRFs overlay each other 

exactly. The FRFs measured from three force levels are shown in Figure 5. Since a single 50-lb 

shaker was utilized for the linearity check, the total force input level was small. A driving-point 

response location was utilized for these measurements. At the these small force levels, the 

structure appears to be linear. 
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Figure 4. Time Variance of Driving-Point Measurements. 
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Figure 5. Linearity Check for Three Excitation Levels. 

2.5 Parameter Extraction. All parameter extraction and data acquisition were performed 

on an HP725 workstation, utilizing SDRC's I-DEAS software. The time-domain polyreference 

method of curve-fitting was used throughout the analysis.   The FRFs of interest are inverse 



transformed into their impulse response functions (IRFs). Then these IRFs are curve-fit with a 

least-squares curve-fitter to extract the modal parameters. A complete description of this 

curve-fitting technique can be found in Brown, Allemang, and Zimmerman [4]. 

2.6 Accuracy and Certainty. The accuracy and uncertainty of the extracted modal 

parameters are heavily dependent on the nature of the structure under test. In a lightly damped 

structure with distinct modes, high accuracy is easily obtained. However, if the structure is 

heavily damped with many closely coupled modes, the extraction of individual modal parameters 

proves to be extremely difficult. 

Unfortunately, the AGS vehicle, as tested, falls into the latter class of structures. The 

frequencies less than 50 Hz extracted in the modal analysis are accurate to within 3%. The 

frequencies over 50 Hz are accurate to within 7%. Clusters of extracted modes exist at various 

frequencies. In some instances, these clusters result from time-variant measurement data. The 

extracted damping parameters are accurate to with 10% below 20 Hz and 50% over 20 Hz. The 

damping values are extremely difficult to extract from these measurements. Since many of the 

extracted modes entail movement of various hatches, the damping and frequency parameters are 

heavily dependent on the condition of the rubber gaskets on those panels, as well as the tightness 

of the fasteners used to secure them. 

2.7 Mode Shapes and Frequencies. Due to the complexity of the AGS structure, this report 

does not attempt to describe each mode shape, but they are illustrated in Appendix B. A 

description of the common features of groups of mode shapes is included in this report and a 

digital copy of the full set of mode shapes will be provided upon request. (A set of 

ARL-authored MATLAB scripts can also be supplied to facilitate viewing the mode shapes on 

any computational platform supporting MATLAB V4.2c.m files.) 

Figure 6 displays the four driving-point FRF measurements from the AGS vehicle test. The 

measurements are the highest quality FRFs measured and give an indication of the modal density, 

as well as an indication of the form and quality of the response FRFs. 
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Figure 6. Driving-Point FRFs. 

The mode indicator function (MIF) is shown in Figure 7. Minimas in the solid dark curve of 

this function indicate the presence of modes at those frequencies. The sharper the niinima, the 

stronger the mode. Minimas in the other curves may indicate a cross-over point or a double 

mode. 

The MIF can be used to ascertain the modal density of the structure. Many closely spaced 

minimas indicate high modal density and a high degree of modal coupling. Sharper minimas 

with more space between them indicate a low modal density with little interaction between 

modes. The AGS has a high modal density with significant coupling between modes. 

A heavily coupled dynamic response makes the extraction of modal parameters very difficult. 

The MIF shown in Figure 7 is heavily coupled and exhibits a high modal density. 
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Mode Indicator Function 

Frequency (Hz) 

Figure 7. Mode Indicator Function. 

Figure 8 is a graphical representation of the modal assurance criterion (MAC) matrix. The 

MAC provides an indication of the linear independence of each mode. In an ideal analysis, the 

MAC will have a value of 1 along the diagonal and value of 0 everywhere else. The majority of 

the modes extracted from this analysis are linearly independent. However, the duration over 

which a single dataset was measured resulted in time-varying data. This variance is somewhat 

accounted for by curve-fitting multiple modes where a single mode exists. This effect accounts 

for a portion of the linearly dependent mode shapes. 

The first extracted mode of the AGS entails movement of the main weapon (7.9 Hz). The 

driver's hatch is the primary participant in the second mode (14.5 Hz). The next several modes 

include various combinations of motion in the turret hatches in conjunction with gun tube 

motion. The gun tube moves in both the vertical and horizontal planes. Mode 9 (26.2 Hz) 

begins to include some elements of motion on the rear deck of the hull. 

11 
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Figure 8. MAC Matrix Representation. 

Mode 12 (27.9 Hz) begins to show an indication of global motion as the hull twists slightly in 

the rear sections. Mode 14 (28.6) begins to show some interactive motion between the turret and 

the hull. The next several modes include various combinations of tube motion, slight hull 

twisting, and hull/turret interaction. 

Mode 21 (33.5 Hz) begins to show flexibility of the sponson. This type of motion is very 

similar to the flexibility that was seen in testing other vehicles of similar design.   Mode 23 

12 



(36.9 Hz) includes significant flexure of the upper surface of the hull deck, particularly in the rear 

portion. The first primary global torsional mode is mode 25 (40.6 Hz). Although this mode 

includes motion of various hatches, its dominant feature is global torsion of the hull. 

Mode 28 (44.9 Hz) begins to indicate flexibility in the hull floor and Mode 31 (47.2 Hz) 

indicates flexibility in the forward section of the hull. The next several modes include various 

combinations of the previous motions. Mode 37 (51.1 Hz) shows motion of the engine within its 

mounts. Sponson rotation is the primary motion exhibited by Mode 48 (64.3 Hz). The 

intervening modes, as well as the remaining modes, include various combinations of hatch, 

engine, floor, hull, and tube motion. 

3. High-Frequency Dynamics Test 

3.1 Experimental Damping Analysis Methods. Four different methods are utilized to 

determine damping. 

(1) The conventional modal analysis theory based method works on high-quality FRFs. 

Results from the AGS modal test and analysis were obtained via this method and are 

presented elsewhere in this report. The method is very accurate when structural modes 

are well separated. As a result, this method is limited to the lower frequency range 

where distinct modes exist. 

(2) A technique relying on narrow-band filtering and exponential curve-fitting was utilized. 

The accuracy of this method is reduced by two conflicting factors. When a passband is 

too wide, modal coupling can lead to a "beating" phenomena, which degrades the 

exponential curve-fit quality. When the passband is too narrow, the filtering itself 

causes unwanted distortion in the time domain signal. Nevertheless, this method is 

conceptually simple and easy to understand. It is also recommended by the MANTA 

developer. Therefore, AGS damping values used for MANTA predictions were 

obtained from this method. 

13 



(3) The power injection method evolved from Statistical Energy Analysis (SEA) and is 

based on energy conservation between input power and structural response. This 

method works well on simpler structures where response velocity and mass are known 

or can reliably be measured. This method is usually implemented in conjunction with 

obtaining vibration transmission coefficients (VTC) that are needed for certain 

analytical predictions. Some recent work, performed on the composite armored vehicle 

(CAV) composite panels, utilized this method and resulted in reasonable damping 

estimates. The method requires a response energy measurement on all structural panels, 

which was well beyond the scope of the AGS test. In general, experience has shown 

that this method is not practical for complex structures due to its tedious test process 

and a potential numerical difficulty resulting from matrix inversion. 

(4) Initial experiments on a wavelet-transform-based new method seem promising, but 

further investigations are needed. 

Method 1 is used to analyze the low-frequency modal data (to 100 Hz), while methods 2 and 

4 were used to analyze the high-frequency data (to 10 kHz) in the AGS test. 

3.2 High-Frequency Damping Determination by Wavelet Transform. The continuous 

wavelet transform (CWT) expands a signal into a time-scale space via correlation with a wavelet, 

generating a CWT coefficient <£. When the wavelet is chosen such that its spectral energy 

includes only a single mode, the scale of the transform is correlated to frequency. In other words, 

wavelet transforms decompose the signal in the frequency spectrum while retaining the 

time-domain information. 

«>a,b(x) = lx(t)h:,b(t)dt, (1) 

where O is the wavelet transform coefficient, x(t) is the time signal to be transformed, and ha,b(t) 

is the family of wavelets scaled and shifted from h(t) and is defined as 

14 



Mt)=-U' 
Va   I 

't-b^ (2) 

The CWT process is computationally intensive, but its concept is straightforward, as shown 

in Figure 9. 

(1) Starting from the left, compute the coefficient (1) between the wavelet and that section 

of the signal. 

(2) Shift the wavelet to the right and repeat step 1 until the end of the signal. This results 

in a row of the coefficient matrix C. 

(3) Change the scale/frequency of the wavelet (by stretching or compressing it) and repeat 

steps 1-2 to cover the entire frequency range of interest. 

The aforementioned process generates the desired wavelet transform coefficient matrix C, where 

each scale forms a row and each wavelet time shift forms a column. From the definition of 

CWT, it can be seen that each element of the C matrix represents how closely the wavelet 

correlates to the signal at certain frequencies and times. When a typical structure is subjected to 

impact, its exponentially decaying responses are indicative of the damping characteristics. As 

energy is dissipated through various structural damping mechanisms, the unimodal energy (a row 

in C matrix) decreases along the time axis of the matrix. This time-dependent behavior of the 

CWT coefficients is observable and can be used to calculate the damping as follows: 

Gm = 
2d)„ 

-In 
O a,b2 

<D a,bj b2-b, 
(3) 
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Figure 9. Time Shifting of Wavelet in CWT Process. 

0.07 

3. 
The damping ratio (<>) can be extracted from, (3), where —- is the elapsed time between 

the two wavelet coefficients <Da,„2 and <Da>v A better estimate can be made by performing a 

curve-fit on a range of coefficients with the corresponding time as the ordinate. The process can 

be further simplified by linear curve-fitting the log of the coefficient ratio. The least-squared 

curve-fit reduces the effect from experimental noise and therefore generates more accurate 

damping estimates as can be seen in Figure 10. Because of the nature of wavelet transforms, 

coefficients of a mode may contain energy from adjacent modes. Therefore, the coefficients 

should be considered as moving averages in time and scale. Experience indicated that, in 

practice, high-frequency damping only changes gradually along the frequency axis (i.e., without 

sudden or wide variations), so the moving averages issue is insignificant. 

The computation process is tested and validated using synthesized signals with known 

damping values. An example of these waveforms is shown in Figure 11, which is synthesized 

from damped sinewaves of 4,6, and 7 kHz. 

16 
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Figure 10. Curve-Fit of CWT Coefficients. 
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Figure 11. Synthesized Time Domain Signal. 

Figure 12 compares the known damping ratios from the synthesized functions with the 

damping extracted by the CWT method from the same functions. Only a few selected AGS 

impact responses are analyzed by the wavelet method for comparison purposes. Figure 13 shows 

the typical structural response (due to hammer impact) and its FFT. Figure 14 is a CWT 

coefficient matrix of the time history. Figure 15 is an example of curve-fitting a row of CWT 

coefficients to obtain damping. 

17 
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Figure 12. Comparison of Known vs. Synthesised Damping. 
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Figure 13. Typical AGS Impact Response. 

3.3 Moving Bandpass Filter and Log Decrement Method. This method extends the 

conventional single-mode log decrement method to a band-filtered signal. The procedure is 

outlined as follows. 

(1) The response signal is band-filtered by a fifth-order Butterworth filter moving from low 

to high frequency covering the entire 10-kHz range. The typical moving filter center 

frequency increment is 100 Hz. A synthesized test signal and its FFT (q = 0.02) are 

shown in Figure 16. 
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Figure 14. Typical AGS CWT Coefficients. 
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Figure 15. Curve Fit of CWT Coefficients. 

(2) Each band-filtered time series now contains only the energy within the passband. Peaks 

of the damped oscillation are selected as indicated by +'s in Figure 17. 

(3) The peaks selected from step 2 are curve-fit based on the formula for an underdamped 

single-mode time response to an impulse, x(t)= e"w sin\Jl-q2(j)n +$). When only 

the oscillation peaks are used for curve-fitting, the sin() factor can be ignored and the 

peaks fit by x(t)=e~w. Figure 17 shows the synthesized damping curve plotted 

against the filtered time domain signal. 
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Figure 17. Synthesized Test Waveform With Constant Damping. 

(4) This process is then repeated for each filter bank. When the entire frequency range is 

analyzed, the damping can be plotted as a function of filter bank center frequencies, as 

shown in Figure 18. Figure 18 compares the synthesized damping values with the 

damping values obtained by the wavelet method and filtering methods. In general, it is 

very difficult to accurately extract high-frequency structural damping. All three 

high-frequency methods described (power injection, bandpass, wavelet) yield 

approximate damping values. 
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Figure 18. Comparison of Damping Obtained by Wavelet 
and Exponential Decay Methods. 

3.4 High-Frequency FRF Test Description. The data gathered from the high-frequency 

testing were intended for MANTA model correlation and as a base to obtain live-fire test 

predictions. Since the vehicle could not be excited at ballistic levels for this test, hammer impact 

data were obtained from a variety of locations. Consequently, a thorough mapping of FRFs was 

obtained from this testing. This mapping consisted of 11 excitation input locations and 64 

response locations, resulting in over 700 FRFs. Multiple excitation techniques were also used to 

provide a measure of data consistency and repeatability. These were broadband random, discrete 

sine sweep, and hammer impact excitations. The data obtained by the alternate excitations were 

particularly useful for estimating the high-frequency damping, which is a difficult parameter to 

characterize. 

Because of the high-frequency range of this test, careful consideration was given to 

accelerometer selection and mounting. Also, since the loading levels used in this nondestructive 

testing Were small, sensitive accelerometers were necessary. Endevco Model 7254A 

accelerometers were selected based on the following factors:  (1) acceptable frequency response 
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to 10 kHz, (2) high sensitivity (500 mV/g for most accelerometers), and (3) extremely low noise 

floor (the noise floor is equivalent to 0.0002 g for model 7254A_500). 

In order to assure a good frequency response measurement of the structure up to 10 kHz 

without influence of the accelerometer mount, direct screw mounting of the accelerometer is 

preferable. Fortunately, the threaded bolt holes normally used for attaching armor and 

accessories could be used with replacement bolts to house the accelerometers. The hex tops of 

these replacement bolts were drilled and tapped so that each accelerometer could be 

stud-mounted. The specially prepared replacement bolts were then screwed directly to the 

vehicle body at or near the desired measurement locations. For vehicle locations where threaded 

holes were not available, dental cement or glue was used. Experiments were performed prior to 

the AGS vehicle test to ensure that the adhesive-mount frequency responses, though not ideal, 

were acceptable. Figure 19 shows a typical stud-mounted sensor. 

Figure 19. Typical High-Frequency Sensor Attachment. 

Careful consideration was also given to exciter selection and technique to ensure that the 

exciter had sufficient power to propagate vibration throughout this massive structure at levels 

above noise. It is difficult to provide this excitation since the available electrodynamic shakers 

are only designed to provide excitation below 5 kHz. 

22 



Although these shakers can be used to generate force up to 10 kHz, the force is at a 

considerably reduced level. Consequently, an instrumented impact hammer was used to provide 

complimentary FRF data (and also to provide time response data for high-frequency damping 

estimates). Figure 20 shows a typical hammer force measurement. Note that the relatively flat 

frequency response extends to 8 kHz, resulting in a force signal with a signal-to-noise ratio of 

100 below 8 kHz and only about 10 from 8 to 10 kHz. The hammer provides some improvement 

at the high frequencies, but not without Umitation. 
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Figure 20. Typical Hammer Impact. 

The careful test design yielded data that were high quality and repeatable. Some interesting 

trends were apparent upon review of the data collection. First, there was a large attenuation of 

response amplitude at locations of increasing distance from the excitation source. This 

attenuation was particularly pronounced as frequency increased, as shown in Figure 21 and 

Table 2. Also noted was that for a remote excitation source, the vibration was typically uniform 

within a single panel of the vehicle structure. Table 2 compares relative responses of six 

locations on the right turret panel due to vibration input at five locations. 
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Figure 21. Octave Analysis of FRFs. 

Table 2. Response Location Statistics 

Response Location Input 2 Input 3 Input 4 Input 5 Input 6 

111 60.3 14.1 15.3 26.9 23.0 
112 49.0 15.7 17.4 26.6 25.5 
113 50.4 15.6 20.3 26.4 26.6 
114 52.3 21.6 24.2 33.7 29.0 
115 43.1 15.9 18.1 24.9 24.0 
116 49.3 14.5 15.0 25.1 21.8 

STD 5.61 2.73 3.45 3.26 2.61 
Mean 50.7 16.2 18.4 27.3 25.0 

STD/Mean 0.111 0.168 0.188 0.120 0.105 

It must be noted that these estimated damping values are very approximate because several 

modes are usually present within the bandwidth. These additional modes create an apparent 

damping value as represented by a single theoretical mode. 

An important result of the damping estimates that is of particular use to the analytical 

modeling effort is that the damping of various locations on the structure appeared relatively 
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uniform. Figure 22 shows a histogram of estimated damping (averaged over frequency) at the 

various response locations from an impact at the left hull side in the middle. The mean value is 

seen to be roughly 1.75% critical damping. The damping estimates for these locations do not 

seem to be dependent on impact location. Figure 23 shows a similar histogram for an impact at 

the left-turret middle panel. A similar result of 1.6% critical damping is seen. 

Rospons» Locations 

Figure 22. Estimated Average Damping for Various Locations for Hull Impact. 
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Figure 23. Estimated Average Damping for Various Locations for Turret Impact. 
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4. Conclusions and Recommendations 

Previous modal analyses of the BFV, Ml 13 and heavy composite hull have concentrated on 

either bare hull or almost completely stripped hull vehicles. Conversely, this modal test and 

analysis of the AGS was performed on a full-up vehicle. In addition, the test of the AGS 

included the turret, whereas all of the previous tests excluded the turret from the tested 

configuration. As a result, the measurements were extremely noisy compared to previous tests. 

Despite the high noise, modal parameters were extracted from the measured data. 

This test has shown that, although modal parameters are extractable from a full-up vehicle, 

the accuracy of the parameters is much lower. The additional noise greatly reduced the 

confidence in the mode-shape estimation. The large number of modes resulting from hatches and 

other subcomponents tended to mask global vehicle modes. However, despite the hatch-induced 

noise, at least one turret/hull interactive mode was extracted. Removal of hatches and other 

nonstructural components on future tests will enhance the ability of the analyst to extract 

meaningful structural modes from future modal tests of similar vehicles. 

The analysis was further complicated by time variance in the measured data. The large 

number of patches required for a single data set required several days to measure. Changes in the 

structural response of the vehicle occurred during the time span required to complete a single 

measurement cycle. These changes reduced the accuracy of the modal analysis. More sensors 

and data acquisition channels in future tests reduce the measurement time, thus increasing the 

accuracy of the resulting modal parameters. Ideally, a single measurement cycle should be 

completed within a few hours or, at most, a single day. 

Throughout this test and analysis, several methods of damping estimation were used. Based 

on this experience, there is no single estimation technique that is best on all structures. Where 

usable, modal damping for individual modes is the most reliable method of damping estimation. 

The power injection technique is a good method for high frequencies where individual modes 
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cannot be analyzed. However, power injection is only applicable to simple plate-like structures 

under free-free boundary conditions. 

The remaining two estimation techniques are both applicable to vehicle class structures. 

Both the narrow-band filtering and the wavelet transform techniques yielded reasonable damping 

estimates. However, neither method was completely satisfactory. Other time-frequency 

decomposition techniques should be explored and compared against the modal damping and 

power-injection damping estimation techniques. 

The AGS was heavier than any previous vehicle that the authors have tested. The shakers 

utilized provided a marginal excitation force. More powerful shakers would have moved the 

data further above the noise floor, thus permitting high-quality measurements at remote hull 

locations. In addition, the hammer excitation did not come close to approximating the force 

levels expected in a live-fire test. For a reasonable comparison to live-fire predictions, the 

impact excitation should approximate the force levels expected in a live-fire test. 
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msmm ttiBmuHT  «trestone 
^^^^^AznSaaa^^ ¥ ~W ISOLATORS ~ 

Description Order No. 

Style 
113 

Blind nuts, 1/4 NPT 
Blind nuts, 1/4 NPT, bumper 
Blind nuts, 3/4 NPT 
Blind nuts, 3/4 NPT, bumper 
Button head steel bead rings, 
17/s bolts, nuts, washers 
Blind nuts, 1/8 NPT 
Blind nuts, 1V< NPT 
Rubber bellows only 

WOI-358-7103 
W01-358-7104 
WOI-358-7101 
WOI-358-7109 

WOI -358-7110 
WOI-753-7113 
W01-753-7114 
WOI-358-0135 1 

Two 
Ply 

Bellows 

Assembly weight   ..14.5lbs.■. 

Force to collapse to minimum height (@0 PSK3) 17 fos. 

Style 
128 
Four 
Ply 

Bellows 

Blind nuts. T/4 NPT 
Blind nuts, 1/4 NPT, 
rubber bumper 
Blind nuts, 3/4 NPT 
Blind nuts, 3/4 NPT, 
rubber bumper 
Rubber bellows only 

WOI -358-8151 

WOI-358-8149 
W01 -358-8152 

WOI-358-8150 
WOI-358-0231 

M-16 SUM) NUTS 
(5/8 DEEP) 

NOTE:This part Is also available with bead rings 
(ratherthan end plates). SEE PAGE 8. 

Dynamic Characteristics at 5.0 in. Design Height 
(Required for Airmount isolator design only) 

:    Volume @ 100 PSIG = 585 in3 :   Natural 
Frequency 

Gage 
Pressure 
(PSIG) 

Load 
(bs:)    : 

Spring 
flale 

(Ibs/in.) CPM   : HZ         : 

40 3,220 2,429 163 2.72 

60 5,030 3,432    "': 155 2.58 

80 6,890 4,407 150 2.50 

100 8,800 5,385 147 2.45 

RECOMMENDED 
«RMOUNT 

DESIGN HEIGHT 
SO INCHES 

Static Data 
4002 

Do noMse Airstroke iji 
rshadeil aria without 
i consulting Firestone 

HEIGHT IN.      **"%$*** 

SEE PAGEi2for instructions on how to use chart. 

Force Table (Use for Airstroke" actuator design) 

Assembly 
Height 

(in.) 

Volume 
©100 
PSIG 
On3) 

Pourds Force 

@20 
PSK3 

@40 
PSIG 

@B0 
PSIG 

@80 
PSK3 

@100 
PSIG 

5.0 585 1,540 3,220 5,030 6,890 8,800 

4.0 477 2,120 4,320 6,600 8,690 11,230 

3.0 353 2,390 4,830 7,380 9,900. 12,470 

43 
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Appendix B: 

Mode Shapes 
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