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EXECUTIVE SUMMARY 

This work investigated the detection of pulses and extraction of modulation 

parameters from different types of time-limited chirp signals, as may be found in pulse- 

compression radar signals. The work is split into two parts. The first part examines the 

pulse detection problem, i.e., the detection of the pulse start/stop times. Such information 

can be used to determine the pulse width and repetition rate of the radar systems under 

investigation in an automated fashion. We compare the robustness of three TCF-based 

schemes and an envelope detection algorithm in noisy environments. Results show that 

none of the pulse detection schemes considered in this work to be clearly better than the 

others for the SNR range considered, and the specific selection to be a function of the 

desirable characteristic, either PFA orPD, to be optimized. 

The second part of the work focuses on the extraction of modulation parameters 

from two specific modulation types: linear and hyperbolic chirp modulation. For the 

second part it is assumed that: 1) individual pulses have been detected and isolated prior 

to the processing, and 2) the modulation type is known, as we do not discuss issues 

related to the specific identification of the modulation scheme which are left for further 

research. The main idea behind the work reported in this section is the fact that we use an 

image processing approach. First, time-frequency/scale images of the extracted pulses are 

generated, next additional processing applied to the images allow the identification of the 

modulation parameters. Thus, different types of time-frequency and wavelet-based 

transformations are considered and applied to linear chirp signals in additive white 
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Gaussian noise. Results show that time-frequency transformations lead to better focused 

images when dealing with noisy signals, and thereby to better estimation of the 

modulation parameters than the wavelet-based decompositions do. Simulations 

investigate the robustness of the modulation estimation schemes in noisy environments 

both for linear and hyperbolic chirps. 



I.       INTRODUCTION 

A. BACKGROUND 

Numerous schemes have been proposed over the years to retrieve modulation 

parameters of chirp signals for various types of applications ranging from 

communications to radar and sonar. The capability to extract the modulation parameters 

in an automated fashion can be very useful as such procedures can be integrated in 

monitoring schemes. The report focuses on signals with constant amplitudes and various 

types of modulation types, such as constant, linear and hyperbolic intra-pulse frequency 

modulation over a given pulse. These modulation types can be found in pulse- 

compression radar signals, pulse or CW radar signals received from targets, or 

modulation signals found in communication applications. Radar intra-pulse modulation 

parameters are usually extracted using hardware schemes, as they are well suited to 

extract the instantaneous frequency at high SNR levels. This study considers the problem 

from a different angle and investigates the application of temporal correlation functions 

(TCF), time-frequency (TF) and time-scale (wavelet) transformations, and basic image 

processing techniques to detect pulse location and extract modulation information. 

B. STUDY ORGANIZATION 

This work was split into two parts. The first part examined the pulse detection 

problem, i.e., the detection of the pulse start/stop times, and compared several TCF-based 

detection schemes. This information can be used to determine the pulse width and 



repetition rate of the radar systems under investigation. The second part of the work 

focused on the extraction of modulation parameters from two specific modulation types: 

linear and hyperbolic chirp modulation. For the second part it is assumed that: 1) 

individual pulses have been detected and isolated prior to the processing discussed next, 

and 2) the modulation type is known, as we do not discuss issues related to the specific 

identification of the modulation scheme which is left for further research. 

Chapter II presents a brief review of RADAR concepts. Chapter III presents the 

concept of temporal correlation in the context of pulse detection. Chapter IV describes 

the various TCF-based signal analysis techniques considered and the detection 

performances obtained for pulses distorted by white Gaussian noise. Chapter V briefly 

describes the time-frequency transformations considered in this work to extract intra- 

pulse modulation parameters. The application of TF and Radon transforms to extract the 

modulation parameters from linear chirps is discussed in Chapter VI. Next, we 

considered the extraction of modulation parameters for hyperbolic chirps. We restricted 

our study to the top three energy TF transformations leading to the best image quality for 

the linear chirp, and derived the estimation procedure presented in Chapter VII. Finally, 

conclusions and recommendations for further research are presented in Chapter VIE. 



II.      MODERN RADAR 

Radar signal identification and parameter identification would be simple if radars 

operated at a fixed frequency with constant parameters. Modern techniques have 

improved the radar's unambiguous detection range, range resolution, and the radar's 

susceptibility to jamming while lowering the power requirements. These modifications 

tend to make the radar recognition easier, but they tend to make the detection and 

extraction of the parameters more difficult. 

The modifications tend to fall into three general categories: RF agility, inter-pulse 

and intra-pulse modulation. Some examples of the techniques and what improvements 

they can provide are discussed next. 

A.       RF AGILITY 

Radiating frequency (RF) agility is the ability to change the operating frequency 

on a pulse to pulse basis. There are many advantages to using an RF agile radar, although 

the Electronic Counter Counter Measure (ECCM) capability is generally the most 

emphasized improvement. 

Pulse frequency agile radars, particularly when the frequencies are randomized 

over the operating range of the radar, are difficult to jam [42]. RF agility is also used to 

reduce the angular error in the radar caused by glint. Glint is produced when echoes are 

treated as if they are coming from one scattering center, instead of an echo vector sum 

returned from the different scattering centers of an extended target. By using multiple 

frequencies, selecting the frequency with the strongest return tends to eliminate the large 



angle errors. The minimum frequency difference between pulses required for glint 

reduction is given by 

Pulse to pulse frequency agility is a successful technique to counter ECCM. Radars 

can also employ a dwell and switch RF hopping scheme. In this case, a given frequency 

for a number of pulses or scans is used followed by a jump to another frequency. The 

frequencies are usually discretely spaced in a given band. The frequency hop can occur 

after a set number of pulses, after a set scan time, or with a PRF jump. 

B.        INTERPULSE MODULATION 

Inter-pulse modulation refers to the modulation of the PRF or PRI of a radar pulse 

train. This combines the advantages of a low with that of a high PRF radar. These 

techniques also minimize range eclipsing which occurs when the target's echo arrives 

during the next pulse receive cycle. PRF modulation does not require complex circuits, so 

it is often used to improve the radar performance. Four common techniques are described 

below [41]. 

1. PRF Switching 

A PRF switching radar switches between a few discrete PRF's.   Typically one 

PRF will be used for a set time interval such as one scan interval or a given number of 

pulses, which is then switched to another PRF for the next period. Some RF agile radars 

can also hop in frequency as the PRF switch occurs. 



Careful selection of the PRF's can extend the blind speeds beyond the range of 

expected values. Only two or three discrete PRF values are necessary to resolve most 

ambiguous range problems [41]. 

2. Staggered PRF 

The PRF switches on a pulse to pulse basis. This technique is mainly used to 

eliminate blind speeds and blind ranges [41]. Second time around clutter echoes do not 

cancel since the clutter does not appear at the same range from pulse to pulse. It takes 

several looks to determine whether or not a target is in motion [42]. 

3. Sliding PRF 

The PRF is continuously varied, typically starting at a low and increasing to a high 

PRF value. Then the PRF jumps back to the low value to begin sliding again. Though the 

low-to-high variations tend to be repeated, the PRF values are not always the same [41]. 

By continuously increasing the PRF the target echo can not catch up with the 

range, and range eclipsing will not occur. Because of this, Sliding PRF is often used in 

target tracking radar [41]. 

4. Jittered PRF 

The start time of each successive pulse is varied (jittered) relative to where it 

should have started in a regular pulse train. Jitter is normally classified by the percent 

jitter, which is the maximum jitter time divided by the normal pulse interval, and by the 



manner in which the jitter time varies. The jitter may vary randomly from pulse to pulse 

but the actual variations may be from a pre-determined discrete set. The variation may 

also follow a sinusoidal, a triangular, or some other prescribed pattern [41]. 

Jittering the PRF improves the radar's performance both with respect to blind 

speed and the unambiguous range. Some commonly used jitter time distributions can 

improve both parameters by a factor of two or more [41]. 

C.       INTRA-PULSE MODULATION 

Intra-pulse modulation in conjunction with pulse compression delivers the power 

of a long pulse (a better maximum range) while keeping the range resolution of a short 

pulse. There are two methods to obtain intra-pulse modulation, frequency modulation of 

the pulse (FMOP) and phase modulation of the pulse (PMOP) [41]. 

Pulse compressed radars have a greater effective range and range resolution. They 

also are less susceptible to jamming as the jammer's power is spread over a larger 

bandwidth. Pulse compression radars are more tolerant of other radars operating in the 

same frequency spectrum (mutual interference). They can operate in a given spectral 

band with another pulse-compressed radar if each of them has its own characteristic 

modulation [42]. 

Some disadvantages of intra-pulse modulation are the increase in cost and 

complexity of the system. Also, the time sidelobes arising from compression can mask or 

be mistaken for a target [41]. 



Relative to short pulse radars, pulse compressed radars have the disadvantage of a 

longer minimum range. If the sidelobes are limited small signals may be lost. Finally, 

pulse compressed radars do not have the short pulse radars natural immunity to repeat 

jammers and range gate stealing jammers [42]. 

1. Frequency Modulation on the Pulse (FMOP) 

A common type of FMOP uses linear frequency modulation. This modulation, 

also known as a "chirp", linearly increases (or decreases) the frequency of the pulse over 

a small frequency range while holding the amplitude and pulse width constant. The 

receiver is designed so that all the frequencies arrive at the detector at the same time. 

This compresses the pulse to a bandwidth equal to the frequency shift of the pulse [41]. 

Another prominent FMOP technique is FM Stepping. The pulse is broken up into 

sub pulses that are held at a constant frequency, but stepped up or down by a discrete 

frequency value. The bandwidth of the compressed signal is the number of steps times 

the change in frequency [41]. 

2. Phase Modulation on the Pulse (PMOP) 

The pulse is broken into N equal length sub pulses. Each of these sub pulses is 

either in phase or 180 degrees out of phase. The phase of the sub pulses is determined by 

a preset code, usually a Barker code or a pseudo random noise sequence. A matched filter 

cross correlates the received signal with a template. When the received signal and the 

template match up, the receiver returns a large peak [41]. 
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3. FMOP and PMOP Comparison 

The PMOP radar has ä poor resolution in a dense target environment. PMOP 

radars benefit from the different phase coded sequences that can be assigned to different 

radars, so that a number of PMOP radars can operate in the same frequency band. PMOP 

radars are less susceptible to repeat jammers than FMOP radars are, since the code can be 

changed to counter a repeater mimicking it. FMOP radars are likely to be used when a 

wide bandwidth or very narrow compressed pulse is desired. A PMOP radar is likely to 

be used when jamming is a problem or when there will be multiple radars using the same 

portion of the frequency band [42]. 

D. COMBINING TECHNIQUES 

While each of the three techniques have been discussed separately it is not 

unusual for a radar system to use a combination of these techniques. It is also important 

to note that a radar system may have multiple operational modes which can use any one 

or a combination of the techniques. 

A typical example is a missile system radar. It may use a constant PRF while in a 

search mode, switch to an RF dwell and switch mode to acquire the target, and then 

switch to an RF agile, PRF staggered, chirped pulse modulation to track a target before 

launching a missile. 



III.     TEMPORAL CORRELATION FUNCTION 

The temporal correlation function allows for non-stationary situations. It is 

indexed in time and in delay. 

A.       CORRELATION FUNCTION DEFINITION 

Depending on the underlying process, various definitions are given to the 

auto-correlation function (ACF). The process may be deterministic, stochastic, 

finite-energy, infinite-energy, non-time-varying (stationary) or time-varying 

(non-stationary). 

The ACF of a stochastic process is the correlation between two samples of the 

process taken at ti and t2, and is defined as: 

Rxx(ti,t2) = E{x (u) x*(t2)J, (nU) 

where E(.) is the expectation operator and * stands for the complex conjugation. For a 

stationary (or wide-sense stationary) process, R(t,,t2) depends only on the time lag 

T = r, -t2, resulting in a stationary spectrum. The Wiener-Khinchin theorem defines the 

relationship between the correlation function and spectral density as 

Sxx(co) = JRxx(r)e-^dr. (m2) 

B.        INSTANTANEOUS CORRELATION FUNCTION DEFINITION 

The ACF of deterministic and stochastic processes are computed using time 

domain averaging and the expectation operator, respectively. This means that a 

smoothing process has to be applied to compute the correlation  functions.  The 



instantaneous correlation function (ICF) does not use an averaging operation (integration 

nor expectation). The instantaneous correlation function is defined as the product of two 

samples of the process. These two samples are drawn at two time instants centered about 

i     1   M 
I 

Lit izläämmmÄhkkflth 

where i denotes the instantaneous nature of the correlation function. 

If x(t) is a sinusoidal signal then the multiplication to obtain the instantaneous values 

of Ri(t,t) generates cross terms in the ICF. For example, the real-valued sinusoidal 

signal x(t)= A cos (cot) has an ACF given by: 

A2 

R(t) = COS(Ü)T), 
2 

while the ICF is given by: 

A2 

Rl (t,T) = [COS(2Ö)0 + COS(Ö)T)]. 

The ACF of a single sinusoidal signal has only one component and no cross term, 

while the ICF has cross terms. If the signal x(t) is represented by its analytic 

formx(0 = Aeim, then its ICF is given by: 

Ri(t,t) = A2ejm. 

That is, the ICF of a single complex exponential signal has no cross-terms. 
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C. HILBERT TRANSFORM 

The Hubert transform allows the use of the analytic signal. In general taking the 

real valued signal and adding the Hubert transform as the imaginary part accomplishes 

the analytic signal generation, i.e., one-sided spectral density. We note that in MATLAB 

taking the Hilbert transform amounts to generating the analytic signal. 

D. MEDIAN FILTERING 

Median filtering is a non-linear filtering technique that ranks the data in amplitude 

over a window of consideration and replaces the center of the window with the center 

(median) of the ranked data vector. 

11 



IV.     SIGNAL ANALYSIS TECHNIQUES AND SIMULATION 

A. PULSE GENERATION 

For simulation purposes a frequency hopped radar pulse sequence (i.e., interpulse 

modulation) is generated, consisting of ten pulses. At each signal to noise (SNR) level 

100 realizations are obtained, making a set of 1000 pulses available at each SNR level. 

The spacing between the ten pulses is randomized. The pulses can take on, in a random 

fashion, one of six possible carrier frequencies. The signals are used to obtain information 

about the false alarm rate (PFA ), the probability of detection (PD), and what we define as 

the probability of multiple detection (PMUL)- The definition of PFA and PD are the classical 

ones, relating to the probability of detecting a pulse when there is noise only and the 

probability of detecting the pulse in the presence of noise, respectively. PMUL denotes the 

improper detection of more than one pulse when only one pulse is present. This can be a 

problem in an automated detection system operating at low SNR levels or at high SNR 

levels if the threshold is set high. The experimental SNR ranges from 3 to 20 dB. For 

perfect detection and for perfect false alarm rate experiments SNR values from 6 to 20 dB 

are used. 

B. DETECTION TECHNIQUES 

Figure IV. 1 shows the four processing techniques described in this chapter. The 

test signals are real valued, but when appropriate their analytic signal versions are 

processed [48]. Time domain data in real or analytic form is used to obtain the time 
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correlation function (TCF) or it is used directly in an envelope detector. The triangular 

sections of the TCF, indicating the time ranges when pulses are present, have noise and 

modulated signal components, while the remainder of the surface has noise only. In the 

description of the operation, i.e., Figure IV. 1, the block labeled "Hubert" denotes the 

operation to obtain the analytic signal. A detailed discussion of the TCF can be found in 

[46,47]. 

1. Real Processing: 

Real valued data is used in the computation of the TCF. To extract the 

envelope of the TCF the absolute value of its analytic signal representation 

(denoted by Hubert and the summation symbol) is taken. Next, the values are 

summed over both the +45° and -45° degree directions. The next processing step 

is a median filtering operation that smoothes the data but retains the sharp edges 

indicating the onset and the end of a pulse. The final procedure, used as the final 

step in all four processing techniques, is a threshold operation. The onset of a 

pulse and end of a pulse are declared when the threshold is crossed in an upward 

or downward fashion, respectively. 

2. Triangle Processing: 

This operation is identical to that described for the Real Processing technique 

with one exception. The exception is that the Hubert transform, necessary for 

13 



obtaining an analytic signal is taken along the 45° angle, rather than the pre- 

programmed 90° directions. 

3. Complex Processing: 

For this processing technique the analytic signal representation of the time 

domain data is used. From the analytic (complex valued) data the TCF is 

computed. This operation is followed by sequentially taking the magnitude 

(absolute value) and the sum as described in the Real Processing technique, i.e., 

summing up the magnitudes in both the plus 45° and minus 45° degree directions. 

The next step is the median filtering operation to smooth the data. The final 

operation is the threshold operation. When the threshold is exceeded the onset of a 

pulse is declared. Conversely, the end of a given pulse is declared when falling 

below the threshold level. 

4. Envelope Processing: 

As the name implies the envelope is extracted by taking the absolute value of 

the analytic data (absolute value of the analytic signal values). The envelope of the 

data is filtered by a median filter, which is followed by the threshold detection 

mentioned before. 

14 
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Figure IV.l: Envelope-based and TCF-based detectors. 

Figure IV. 1 shows the four processing techniques, outlined before, in a block diagram 

form. The top channel shows the "Real Processing" scheme, while the second channel 

shows the "Triangle Processing" technique. The third and fourth channel show the 

Complex and Envelope Processing techniques, respectively used. 

C.       SIMULATION RESULTS 

Threshold sensitivity can be established by examining the number of pulses 

detected and the threshold. The threshold is expressed in integer multiples of the noise 

only standard deviation. Figures rv.2 to rv.4 show results for SNR values of 20dB, lOdB, 

and 6dB. In each graph the minimum threshold, in integer multiples of the noise only 
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Standard deviation, which allows a false alarm rate of zero is provided. Each figure 

consists of four graphs, where each graph shows simulation results for one detector. 

There are four detection schemes, hence there are four graphs per figure. The SNR is 

fixed at a given value for the four graphs of a given figure. 

Each graph can be broken into four sections. In the first section the threshold is 

too low, hence the noise causes false alarms. If the threshold is increased above the noise 

peaks only the signal is detected. If the threshold is further increased a region where the 

processed pulses begin to break apart, is reached. This causes the number of detected 

pulses to increase (a given pulse becomes multiple events, or multiple pulses). In the 

fourth region the number of detection begins to drop, eventually going to zero as the 

threshold is increased. 

Each graph displays two curves. The lower one shows the probability of detection, 

while the upper one shows the total number of detection, expressed in a normalized 

percentage. For example, a value of 2.2 for the top trace, at a value of 0.9 for the lower 

trace, corresponds to a total number of detection of 220 percent with a probability of 

detection of 90% and a number of (improper) multiple detection of 130%. So for 1000 

realizations, one has 900 proper detections, 1300 improper multiple detections and hence 

a total of 2,200 detections. This information is useful in assessing an appropriate 

threshold setting and to determine over what range of thresholds one can accurately detect 

the number of radar pulses. 
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Complex Envelope 

5 10 15        20        25 

Real Triangle 

0 5 10 15 20 0 20 40 

Figure 2a. Performance curve normalized percentage versus noise sigma, SNR=20dB. 

Figure IV.2: Performance curve; normalized percentage versus noise sigma; SNR=20dB. 
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Complex Envelope 

5 10 15 20 

Real Triangle 

25 0 5 10 15 0 5 10 

Figure 2b. Performance curve normalized percentage versus noise sigma, SNR=10dB. 

Figure IV.3: Performance curve; normalized percentage versus noise sigma; SNR=10dB. 
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Complex Envelope 

Real Triangle 

Figure 2c. Performance curve normalized percentage versus noise sigma, SNR=6dB. 

Figure IV.4: Performance curve; normalized percentage versus noise sigma; SNR=6dB. 
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Table IV. 1 uses a threshold of three noise standard deviations for each of the four 

detectors. It shows the performance in terms of the PFA as a function of SNR for a PD of 

1.0, except when specially denoted. It is apparent that the Real (followed by the 

Complex) Processing scheme is the most promising one in the SNR range between 6 and 

20 dB. 

PD = 1.0 

SNR 20 dB 16 dB 13 dB 10 dB 6dB 3dB 

TRIANGLE 0.046 0.056 0.060 0.095 0.165 0.236 

COMPLEX 0 0 0.001 0.012 0.047 0.120 

REAL 0 0 0 0.004 0.039 0.091 @ 
PFA=0.99 

5 
ENVELOPE 0 0.006 0.022 0.045 0.094 0.133 @ 

PFA=0.99 
8 

Table IV.1: Performance for fixed threshold. 

Table TV.2 shows the performance in terms of the PD as a function of SNR for a 

PFA equal to 0. It is apparent that the Complex (followed by the Envelope) Processing 

scheme is the most promising one in the SNR range between 3 to 20 dB. 
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PFA- 
0.0 

SNR 
20 dB 16 dB 13 dB 10 dB 6dB 3 dB OdB 

TRIANGLE 1.0 1.0 1.0 1.0 0.973 0.438 0.036 

COMPLEX 1.0 1.0 1.0 1.0 1.0 0.653 0.029 

REAL 1.0 1.0 1.0 1.0 0.9677 0.479 0.071 

ENVELOPE 1.0 1.0 1.0 1.0 1.0 0.312 0.017 

Table IV.2: Performance for fixed PFA = 0. 

Table IV.3 allows the comparison of the detectors in terms of the sensitivity to the 

multiple detection of a given pulse. For the tests executed for this section, 100 

realizations of a pulse train with 10 members is undertaken. This fixes the total number of 

possible pulses to 1000 for each SNR. The top line shows the number of properly 

detected pulses, while the lower line shows the number of multiple detection of the pulse 

trains. It is apparent that the Real, followed by the Envelope, detectors provide the most 

robust schemes. 
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PD=1.0 

SNR 20 dB 16 dB 13 dB 10 dB 6dB 

TRIANGLE 1000 
0 

1000 
0 

1000 
0 

1000 
95 

COMPLEX 1000 
0 

1000 
0 

1000 
0 

1000 
1694 

REAL 1000 
0 

1000 
0 

1000 
0 

1000 
0 

1000 
1311 

ENVELOPE 1000 
0 

1000 
0 

1000 
0 

1000 
3 

Table IV.3: Detection versus SNR level. 

It becomes apparent that with pulsed signals, depending on the importance of the 

undesirable characteristics, any of the three detectors (Complex, Real or Envelope) can be 

used. From the point of view of processing cost, the Envelope detector is preferable over 

the other two. From the point of false alarm rate or probability of detection the Complex 

or Real detector, respectively is more desirable. 
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V.      TIME-FREQUENCY REPRESENTATIONS 

A. BACKGROUND 

Numerous schemes have been proposed over the years to retrieve modulation 

parameters of chirp signals for various types of applications ranging from 

communications to radar and sonar. This chapter focuses on signals with constant 

amplitudes and linear and hyperbolic intra-pulse modulation. Such types can be found in 

pulse-compression radar signals, pulse or CW radar signals received from targets, or 

modulation signals found in communication applications. Radar intra-pulse modulation 

parameters are usually extracted using hardware schemes, as they are well suited to 

extract the instantaneous frequency at high SNR levels. In this work we consider the 

problem from a different angle and investigate the application of time-frequency (TF) and 

basic image processing techniques to extract the modulation information. 

This work assumes that 1) individual pulses have been detected and isolated prior 

to the processing discussed next, and 2) the modulation type is known, as we do not 

discuss issues related to the specific identification of the modulation scheme which is left 

for further research. 

B. INTRODUCTION 

Several different types of approaches to estimate the modulation parameters from 

chirp signals have been proposed in the literature over the years [25-31,33,34,36-40]. 

Maximum likelihood estimates of the chirp parameters can be derived in theory. 
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However they often lead to complicated algorithms, which may require n-dimensional 

optimization steps depending on the specific modulation type. Phase unwrapping 

techniques, application of the high-order ambiguity function [27], sub-optimal schemes to 

the maximum likelihood estimates [25], and others have also been proposed, each with its 

own advantages and drawbacks. In addition, combinations of TF representations and 

pattern recognition schemes have been considered to estimate chirp parameters [28- 

30,33,36]. 

Our study considers the combination of TF representations and pattern recognition 

schemes to estimate the chirp modulation parameters, and compare the resulting 

performances in various white Gaussian noise levels. The schemes proposed by 

Barbarossa et al. [28,29] and Wood and Barry [36] both combine the TFR-based Wigner- 

Ville (WV) transformation and the Radon (Hough) transform to estimate the chirp 

parameters, as the WV transform is well localized for linear chirps. Barbarossa also 

indicated that any TFR could potentially be considered, provided that it has good 

localization and concentration properties, and is robust to noise degradations. However, 

no performance comparisons were made available. 

Our study considers a wide range of TFRs and identifies the top three 

representations best suited to the follow-on extraction scheme. We selected eleven 

different time-frequency and wavelet transformations (TFR) and applied a Radon-based 

transform step to extract the parameters from linear chirps, as discussed in Sections VLB 

and VI.C. The selection of the top transformations was made by comparing the resulting 

errors in the estimation of the modulation parameters, as discussed in Section VI.C.3. 
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The second phase of the study considered the extraction of modulation parameters 

for hyperbolic chirps. We restricted our study to the top three energy distributions leading 

to the best image quality for the linear chirp, and derived the estimation procedure 

presented in Section VE. 

C.      TIME-FREQUENCY REPRESENTATIONS DESCRIPTION 

1.   Introduction 

Generally, a signal can be represented using different types of decompositions. 

The two most widely used representations are the time domain and the frequency domain 

representation. The first shows how the amplitude of the signal changes with respect to 

time while the second shows how often these changes occur. However, the Fourier 

transform is not well suited to represent non-stationary signals, as it provides no exact 

information regarding the variations of the signal characteristics as a function of time. 

Analyzing such signals requires a joint time-frequency representation. Several techniques 

have been developed for this type of representation. This study considered the following 

eleven transformations from the two major classes of atomic decompositions and energy 

distributions. The goal was to select a small number of transformations leading to the best 

"image quality" from that set. We briefly introduce each of them.    Further details 

regarding each of them may be found in Moraitakis [33, Sect. JE\.  The transformations 

considered are: 

-Wavelet packet best basis, 

-Cosine packet best basis, 

-Wavelet pursuit, 
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-Cosine pursuit, 

-Wigner-Ville distribution, 

-Pseudo Wigner-Ville distribution, 

-Reassigned Pseudo Wigner-Ville distribution, 

-Smoothed Pseudo Wigner-Ville distribution, 

-Reassigned Smoothed Pseudo Wigner-Ville distribution, 

-Spectrogram distribution, 

-Reassigned spectrogram distribution. 

For comparison purposes, Figure V.l shows the resulting images obtained for a linear 

chirp with SNR=10dB when no energy thresholding is applied to the images. 

Wavelet Packet Cosine Packet 

0.4 

0.2 

0.4 
0.21- 

0.4 
0.21- 

0 
0 

Reassigned PWVD 

Reassigned SPWV 

n       Reassigned Spectrogram 

Figure V.l:  Various time-frequency representations, linear chirp, SNR=10dB, Frequency 
normalized to sampling frequency. 
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2.   Description 

Wavelet and cosine decompositions were implemented with the software 

"Wavelab 7.01" software [12], while all others used the "Time-Frequency Toolbox" 

[9,11]. 

1. Wavelet packet best-basis decomposition (WPD): 

This decomposition performs a multi-resolution decomposition by partitioning the 

frequency axis. It can be viewed as an extension of the wavelet transform where both 

high-pass and low-pass components are decomposed, thereby allowing for more 

flexibility in the decomposition than the wavelet transform does. Selection of the specific 

basis (called the "Best Basis") is obtained by using a user-specified information cost 

criterion [3,5-7]. 

2. Cosine packet best-basis decomposition (CPD): 

This decomposition is similar in concept to the WP decomposition, but performs a 

multi-resolution decomposition by partitioning the time axis instead. It is well matched 

to narrowband signals [5]. 

3. Wavelet pursuit (WP): 

The wavelet pursuit is an iterative procedure where the signal is decomposed 

adaptively into a set of functions, not necessarily orthonormal. This procedure has been 

shown to be well suited to represent non-stationary signals with varying time-frequency 

characteristics [4,8]. 
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4. Cosine pursuit (CP): 

The cosine pursuit is similar in concept to the wavelet pursuit, where the signal is 

decomposed into a set of locally defined cosine functions [4]. 

5. Wigner-Ville distribution (WVD): 

The WVD belongs to the Cohen's class of energy distributions [2,10].  It allows 

for perfect localization of linear chirps. However, its quadratic definition is responsible 

for interference terms that appear when the signal is not linearly modulated or more than 

one signal is present. Figure V.2 shows the WVD and the effect of the cross terms on four 

different signals. The effect is negligible in the noise-free linear chirp scenario only. 

Cross-terms show as a line between the two true components when the signal is 

composed of two parallel chirps. 

Linear Chirp 
0.5 

0.4 

0.3 

0.2 

0.1 

0 

Two linear Chirps 

1  0.5 
Linear Chirp in Noise (SNR=2db) 

0.5 

Hyperbolic Chirp 

03 
D 
V 
£ 

LL 

■a 

o 
Z 
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0.3 

0.2 

0.1 

0 
0.5 

Figure V.2: Wigner-Ville distribution; time normalized to the pulse length. 
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6. Pseudo Wigner-Ville distribution (PWVD): 

The PWVD introduces a time-window to the WVD definition, thereby reducing 

the interferences present in the transform, as illustrated in Figure V.3. However, the time 

windowing worsens the frequency resolution and the PWVD looses many of the valuable 

properties of the WVD [2]. 

Linear Chirp 

0 0.5 1 

Linear Chirp in Noise (SNR=2db) 

Two linear Chirps 

0.5 

Hyperbolic Chirp 

Figure V.3: Pseudo Wigner-Ville distribution; time is normalized over the pulse duration. 

7. Smoothed Pseudo Wigner-Ville distribution (SPWVD): 

The SPWD provides an attenuation of the interference terms by smoothing both in 

in frequency and time domains. The drawback of this method is that the frequency 

resolution further degrades. Figure V.4 shows that the cross-terms have almost been 

eliminated while the frequency resolution has degraded. 
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Linear Chirp in Noise (SNR=2db) 

0.5 
Two linear Chirps 

0.5 

0.5 

Hyperbolic Chirp 

Figure V.4: Smoothed Pseudo Wigner-Ville distribution; time is normalized over the pulse 
duration. 

8. Spectogram: 

The spectrogram is defined as the magnitude of the Short-Time Fourier transform 

[2]. 

9. Reassigned spectogram: 

We see that the WVD resolution worsens when we try to suppress the interference 

terms. The reassignment method was introduced in an attempt to improve the resolution 

of the transformation [9]. This scheme assumes that the energy distribution in the time- 

frequency plane resembles a mass distribution and moves each value of the time- 

frequency plane located at a point (t,f) to another point (t',f), which is the center of 

gravity of the energy distribution in the area of (t,f). The result is a very focused 
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representation with high intensity since the value at the point (t',f) is the sum of all the 

neighboring values. The reassignment method can be applied to most energy 

distributions as well as to the spectrogram. However, the computational load is quite 

high. The top plot in Figure V.5 shows the hyperbolic chirp used in Figures V.2 to V.4, as 

represented for the reassigned spectrogram distribution. 

Reassigned Spectogram 

Figure V.5: Reassignment method applied to a hyperbolic chirp test signal; time is 
normalized over the pulse duration. 

10. Reassigned Pseudo Wigner-Ville distribution (RPWVD): 

The reassignment method, as discussed above, is applied to the PWVD. The 

middle plot in Figure V.2 shows the hyperbolic chirp used   in Figures V.2 to V.4, as 

represented for the reassigned RPWVD. 
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11. Reassigned Smoothed Pseudo Wigner-Ville distribution (RSPWV): 

The reassignment method, as discussed above, is applied to the SPWVD. The 

bottom plot in Figure V.5 shows the hyperbolic chirp used in Figures V.2 to V.4, as 

represented for the reassigned  RSPWVD. Note the quality of the focusing in all three 

reassigned methods and the resulting lack of cross terms. 

Simulations showed that the best image quality for the various time-frequency and 

time-scale representations of the noisy chirps is obtained with the time-frequency 

transformations, as illustrated in Figure V.l  above which shows a more focused 

representation of the information.  Therefore, one would expect better estimation of the 

chirp  parameters  when using time-frequency representations  than  with time-scale 

represenations as the SNR decreases. Section VI confirms these findings by investigating 

the    estimation   performance   obtained   from   each   of   the   time-frequency/scale 

transformations. 
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VI.     APPLICATION OF THE RADON TRANSFORM TO LINEAR 
CHIRP PARAMETERS ESTIMATION 

Once the time-frequency representation of the signal information is obtained, the 

Radon transform is applied to extract the modulation parameters for linear chirp signals. 

The Radon transform has been used extensively in image processing for edge detection 

[13,14] and has been generalized to detect curves of arbitrary shapes [17]. We briefly 

review its concept, before presenting its application to our problem. 

A.       INTRODUCTION 

Let's assume we have an arbitrary function f(x,y) in a subspace of R2. The two- 

dimensional Radon transform is defined as the projection or line integral of the function 

f(x,y) along all possible lines L [13]. Mathematically, the transformation is described as: 

R = jf(x(s,L),y(s,L))ds. (VI-1) 
L 

Recall that the equation of a line in polar coordinates is given by: 

p = x ■ cos(tf) + v • sin(#), (VI-2) 

where p and ■& represent the distance from the origin and the angle measured 

counterclockwise from the x axis respectively, as shown in Figure VI. 1. Now suppose we 

use another coordinate system with axes rotated by the angle ■&. The new x-axis lies on 

the line with associated orthogonal direction "s". The two cartesian systems xoy and pos 

are related to each other via the following relation: 
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COST?     sint? 
-sint?     cost? 

(VI-3) 

Equation (IV-1) can be rewritten as: 

+°° 
R(p,&) =  [ f (pcos$-s sind, psinti + scosd)-ds (VI-4) 

The above equation shows that the Radon transform translates a two-dimensional 

function of the variables (x,y) to one with variables (p,&). Thus, the Radon transform of 

an image taken at a specific angle & is the projection of the image onto the line which 

forms an angle # with the x-axis. 

i >y 
\ i3 

\L 

f(x,y)f     \ ys 
V 

fc 
\o 

w 

X 

Figure VI.l: Two-dimensional Radon transform. 

The Radon transform of a single line with a slope angle (p for the specific angle 

71 $ = — + (p is a single point with intensity equal to the sum of the intensities at each point 
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on the line. This property allows detection of lines in an image. In addition, the transform 

is also robust to noise degradations. 

B.       LINE PARAMETER IDENTIFICATION 

Line parameters can be obtained using the Radon transform as follows: Assume 

the image under investigation contains a line which has an angle cp with the x-axis, as 

shown in Figure VI.2. The equation of the line can be defined in terms of its slope a and 

initial offset value b. 

y = a-x + b,    a = tan(<p). (VI-5) 

The Radon transform R(p,i!>) of the image for angles 0° to 180° is maximum when 

the projection of the line has a minimum area. Thus, it is maximum when the line is 

perpendicular to the projection line, i.e., when &=(p+90", which leads to 

a = tan(#-90°). (VI-6) 

Now, if we take the Radon transform of the image for the specific angle 

&=(p+90", we can estimate the offset parameter b from the position of its maximum value 

along the axis p. This position is indicated in Figure VI.2 as "C". Next, the offset 

parameter b can be computed as: 

N      OC-^sm($-90°)    N      0C + ^cos(#) 
b = ^- + 2 = ^L + 2 ^ (VI.7) 

2 cos(tf-90°) 2 sin(tf) 
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where Ny is the length of the vertical side of the image, while N is the length of 

the horizontal side (in this case Nx=Ny=256). Note that the distance OC can be positive or 

negative and is actually negative in Figure VI.2. 

Thus, the equation of the line can be determined by first applying the Radon 

transform of the image for angles between 0° to 180°, then finding the coordinates of the 

maximum point (tW, pmax), as shown in Figure VI.3, and finally using equations (VI-6) 

and (VI-7) using OC=pmax and ifc&mwc. Note that the accuracy of the estimates depends 

on the resolution of the image and the size of the angle step selected for the Radon 

transform. Unfortunately, any attempt to increase the resolution (size) or decrease the 

angle step results in increasing the computation load. 

50 100 150 200 250 

Figure VI.2: Radon transform geometry; image containing a single line. 

36 



-150 . 
C 

•£ -100 ' 
;a -so 'Pmax ... ;k±^£ 
£        0 W\^l 

D
is

ta
nc

e 
fr

om
 

8 
   

  g
 

! 

150 !i5 

50 100 150 
Angle in degrees 

Figure VI.3: Radon transform for line shown in Figure VI.2; for #=0 ,...,180°, 1 inc. 

To minimize the computational load we apply the Radon transform in two stages. 

First, we scan the image from 0° to 179° in steps of 2°. We determine the angle •dim that 

corresponds to the column that includes the point with the highest intensity. Next, we 

scan the image from the angle -dim-l° to #im+l° in steps of 0.1°. Using this 

implementation allows the maximum line slope error to decrease to ±0.05° without 

having to cover the whole range of angles at that rate. 

C.        LINEARLY MODULATED CHIRPS 

This section presents the scheme used to estimate linear chirp parameters. First, 

we present the method used to generate the signals. Next, we describe the image 

processing technique applied to extract the features from the time-frequency image. 

Finally, we compare the results obtained for each time-frequency representation 

considered and their robustness to noise degradations. 
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1.   Signal Generation 

The radar signals considered in this study are synthetic and consist of a train of 

several linearly modulated pulses, as shown in Figure VI.4. 

<- 
<H> 

Figure VI.4: Synthetic radar signal; linear chirp modulation. 

First, we assume that we can isolate one single pulse of duration x. This extraction 

can easily be done with an energy detector in medium to high SNR levels. Thus, the 

received signal has an instantaneous frequency f(t) defined as: 

f(t) = f0+k-t (VI-8) 

Some of the time-frequency transformations considered in the study use the 

analytical version derived from the real received signal. In such cases, the analytical 

signal is computed with the Hubert transform. The analytical noise-free linear chirp 

signal s(t) is given as: 

s(t) = e 2 (VI-9) 
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The signal is assumed to be sampled a rate of 512 [samples/pulse length]. Recall that the 

sampling frequency for a real signal must be equal to at least twice its highest frequency 

component. Thus, the signal may be heterodyned down to a lower frequency if needed. 

The discrete real part of the signal is given as: 

s[n] = Re(e     f>    2f'     ) = cos(2n(^-n + -^T-n2)),     n=l,..,512 (VI-10) 

We can rewrite the above equation as: 

s[n] = cos(27C(fn0-n + ^-n2))  where     fn0 = y-,     a-—-,n=l,..,512 
2 fs fs 

(VI-11) 

The terms a and/„o represent the normalized slope and the normalized starting 

frequency respectively, with respect to the sampling frequency fs. Thus, the normalized 

frequency equation for the linear chirp discrete signal is given by: 

fn=fnO+a-n , n=l,..,512. (VI-12) 

Normalizing the time index over the pulse length leads to the following 

normalized frequency equation for the linear chirp: 

fnn=fn0/N + (a/N)-n, n=l,..,512. 

Multiple linear chirp signals trials were generated by randomly selecting both the 

initial frequency and the slope. Note that sampling constraints need to be satisfied to 

avoid aliasing in the resulting discrete linear chirp. For example, the parameter a needs to 

be selected so that the final instantaneous frequency doesn't exceed 0.5 for a given initial 
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frequency/„o. As a result, aliasing may be avoided by selecting both the initial and final 

normalized instantaneous frequencies within the range [0, 0.5], and computing the 

corresponding slope parameter a. Initial and final frequencies are selected from a 

uniform distribution defined in the range [0,0.5]. Next, the chirp is corrupted by 

additive white Gaussian noise. Analytical expressions needed to compute some of the 

time-frequency transformations are obtained with the Hubert transform of the noisy 

signal. Real signal expressions were used to compute the wavelet-based decompositions. 

2.   Simulation Set-up and Extraction 

The eleven different time-frequency and wavelet-based representations described 

in Section V were considered. The goal was to select a small number of transformations 

leading to the best "image quality" from that set. Recall that the representations 

considered were: 

-Wavelet packet best basis, 

-Cosine packet best basis, 

-Wavelet pursuit, 

-Cosine pursuit, 

-Wigner-Ville distribution, 

-Pseudo Wigner-Ville distribution (PWVD), 

-Reassigned Pseudo Wigner-Ville distribution (Reassigned PWVD), 

-Smoothed Pseudo Wigner-Ville distribution (SPWVD), 

-Reassigned Smoothed Pseudo Wigner-Ville distribution (Reassigned SPWVD), 

-Spectrogram, 

-Reassigned spectrogram. 
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Figure VI.5 presents the image obtained for the various time-frequency 

representations considered for a linear chirp with SNR=10dB. A few comments are in 

order regarding the selection of the transform parameters. 

1. Number of Atoms 

Recall that defining a line in a plane requires two points only. However, these two 

points must be perfectly localized in both time and frequency, and must be immune from 

any noise interference. Theoretically, we could use two atoms only from an atomic 

decomposition to define the linear frequency equation. However, this doesn't hold in 

practice, as the atoms are not perfectly localized. Note that a larger number of atoms may 

better represent the line trend. However, some of the atoms may represent noise 

contributions for noisy signals. Therefore, selecting the number of atoms to represent a 

linear chirp in noise requires a trade-off between these two issues: fewer atoms to denoise 

the signal and more atoms to improve the resolution. We selected 10 atoms per 

decomposition for the atomic decompositions used in our study after running several trial 

cases. 

2. Maximum Decomposition Level 

Next, the maximum decomposition level was set to 7, as simulations showed no 

advantage in going to higher levels. 

3. Wavelet Type 

The mother wavelet function was selected after several trials among the readily 

provided functions in the Wavelab software [12]. Finally, we selected Daubechie-IV 

since it gave the best time-frequency representation for the types of signal considered. 
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4. Image Thresholding 

No image intensity thresholding was applied to the time-frequency images, as 

simulations showed that it this step worsened the results for low SNR levels. Note that 

implicit denoising is actually performed by selecting a small number of atoms for the 

atomic decompositions. 

5. Window Length 

The PWV, SPWV and Reassigned SPWVD transformations use a frequency 

window which has a Hamming (N/4) time domain expression, and a Hamming (N/10) for 

time smoothing window. The analysis window selected for the spectrogram is Hamming 

(N/4), where N is the length of the signal (512 bins). 
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Figure VI.5: Various time-frequency representations for a linear chirp; SNR=10dB, 
Normalized frequency. Frequency normalized to sampling frequency. 

6.   Radon Transformation Implementation Issues 

The Radon transform is selected to extract the line equation from the time- 

frequency image, as described earlier in Section VLB. We use a two-stage 

implementation with final degree increment 0.1°. The size of the resulting image for each 

time frequency representation is set to 256x256 points, as the Radon transform for larger 

images would be too computationally expensive for a MATLAB implementation. One 

hundred randomly generated linear chirps for a given SNR level were generated, and the 

SNR varied in the range -lOdB to lOdB. Next, the chirp parameters were estimated from 
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the images generated by each of the eleven time-frequency transformations considered. 

Performance comparisons are presented next. 

3.   Performance Results 

3.a) Evaluation of Time-frequency Representations 

Recall that the maximum theoretical slope error is ±0.05° since the final step 

angle in the radon transform is 0.1°, as discussed in Section V. However, we also have to 

add noise effects, and quantization errors introduced by the finite resolution in the image. 

Figures VI.7 to VI.9 present the mean and the standard deviation of the absolute slope 

and offset errors as a function of the SNR level for all time-frequency transformations 

considered in the study. Figure VI. 6 represents an idealized image which could be 

obtained with a time-frequency transformation. Note that the frequency axis is 

normalized by the sampling frequency, and the time axis is normalized by the pulse 

length. Thus, the chirp slope parameter expressed in degrees is given by: 

a = tan   (/,-/0), 
it 

and the offset value expressed in number of (frequency) bins is given by: 

/n0=/0x512, 

where f0 and /, respectively represent the normalized starting and ending chirp 

frequencies. The offset value is multiplied by the length of the frequency transformation 

used. 
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Figure VI.6: Time-frequency image for a linear chirp; normalized frequency (fs = 1), 

starting frequency /0 = .2 and ending frequency. /, = 0.4 
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Figure VI.7: Slope and offset errors for wavelet and cosine packet, wavelet and cosine 
pursuit decompositions for linear chirp signals; SNR given in dB. 
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SPWV decompositions; linear chirp signals; SNR given in dB. 
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Figure VI.9: Slope and offset errors for the Wigner-Ville decomposition, Spectrogram, and 
reassigned Spectrogram; linear chirp signals; SNR given in dB. 

A few comments are in order: 

1. Results show that all the energy distributions perform better than the atomic 

(i.e., wavelet-based) decompositions. This is to be expected as they provide a 

more accurate "image" in the time-frequency plane. Note that atoms cannot 

be well localized in both time and frequency, as would be required to 

represent linear chirps accurately. The best-basis cosine packet decomposition 

gives the best results followed by the cosine pursuit scheme for atomic 

decompositions. 
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2. Most of the energy distributions have slope errors very close to the theoretical 

value of 0.05° for medium to high SNR levels. All transformations show a 

SNR level breaking point at which the errors suddenly increase. This is to be 

expected as the extraction relies on the quality of the TFR. Figures VI. 10 and 

VI. 11 illustrate the degradation which may occur in the TFR image quality at 

SNR=-10dB and the corresponding parameter estimation results. 

3. The Wigner-Ville distribution has a very good and almost stable performance 

for SNR's in the range of-6dB to lOdB. The smoothing time window present 

in the Pseudo Wigner-Ville distribution improves the estimation in higher 

SNR but shrinks the effective range. The Smoothed Pseudo Wigner-Ville 

distribution has a slightly worst performance at high SNR but also has the 

widest effective range. The smoothing in time and in frequency eliminates the 

interference terms almost completely so that the representation is more 

immune to the noise than other transformations are. However, frequency 

smoothing results in lowered performance at high SNR levels. 

4. Results show that the reassign method usually improves the performance at 

high SNR levels, as it forces the representations to be more "focused". 

Unfortunately, applying the reassigned method in low SNR levels worsens the 

performances. This is to be expected as the presence of noise close to the line 

moves the local center of gravity of the distribution away from its theoretical 

value. 
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Figure VI.IO: Linear chirp trial case 1; SNR=-10dB; true and estimated modulation 
parameters. 
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Figure VI.11: Linear chirp trial case 2; SNR=-10dB; true and estimated modulation 
parameters. 
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Table VI. 1 lists the mean absolute error for the frequency slope and offset 

parameters at SNR equal to lOdB for all transformations considered for a "rough" 

comparison of the transformation performances. In addition, Table VI. 1 lists the SNR 

level at which the errors suddenly increase, indicating the SNR level at which using a 

specific distribution may become more questionable. 

Mean of absolute slope 
error   @ SNR=10dB 

(in degrees) 

Mean of absolute offset 
error   @ SNR=10dB 

(in bins) 

Breaking point 
(in dB) 

Wavelet Packet 0.375 4 0 

Cosine Packet 0.5149 3.98 0 

Wavelet Pursuit 0.37 2.35 4 

Cosine. Pursuit 0.4297 2.35 0 

WV 0.1198 1.08 -7 

PWV 0.0623 1.02 -4 

Reassigned PWV 0.0729 1 -5 

SPWV 0.0792 1.02 -7 

Reassigned 
SPWV 

0.0563 1.02 -7 

Spectrogram 0.098 1.77 -7 

Reassigned 
Spectrogram 

0.12 1.78 -7 

Table VI.l: Mean absolute errors for frequency slope and offset. 100 trials, SNR=10dB, 
performance breaking points for all time-frequency methods considered. 
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3.b) Error Evaluation 

Recall the received signal was sampled at a rate of 512 [samples/pulse period] 

while the image size was set to 256x256 bins in order to speed up the computations. 

However, the errors presented were corrected to correspond to an image with size 

512x256, where the time and frequency axes have 512 and 256 bins respectively. Next, 

the goal is to investigate how the estimated errors relate to the frequency error obtained 

for the frequency expression given in equation (VI-8). 

Recall that the normalized frequency expression is given by: 

and the slope angle i3- measured in the image is: 

a-N-2Nf 
tan(0) = L, (VI-12) 

where a is the frequency slope parameter, N is the length of the signal, and Nf and 

Nt represent the number of bins in the frequency and time axis respectively. In our case 

Nf=N/2 and Nt=N. Thus, equation (VI-12) simplifies to: 

tan(t?) = a • W . (VI-13) 

Recall that 

a f k 
s[n] = cos(2n(fn0-n + --n2)), where     fn0 =-j-,     a =—- , n=l,..,512 

^ Js J s 

Let's assume that the linear chirp has frequency slope k0 and that #0 is the 

corresponding angle, which leads to: 
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j^ = ao=^W (VI.14) 

Js 

Now, let's assume we estimate an angle equal to #ejr instead of $0 due to errors in 

the estimation process. Thus, 

0„,=0O+A0, (VI-15) 

where A& is the angle error. As a result, the resulting estimated frequency slope 

kest expression is given by: 

(VI-16) 

,     _ ,2        _ ,2   tan(fl0+Afl) 
^est  ~ Js    ' aest  * Js    ' >r 

_//    tan(^0) + tan(A^) 

N   l-tan(t?0)-tan(At?) 

^fc0-/f
2-JV + //-tan(At?) 

//■JV-ViV2-tan(A#)' 

Thus, the final frequency slope error is: 

k0-N
2-tan(A&)-fs

2-N 

The slope frequency error Ak is expressed in terms of the angle error, but also 

depends on the sampling frequency, and the length of the signal N. 

If we assume again that/0 is the initial offset value corresponding to equation (VI- 

8), then the normalized offset frequency is derived from equation (VI-11) asfn0=f(/fs. The 

value fbo measured is expressed in bins and is related to/„o by: 

fb0=fn0-2-Nf (VI-18) 

Assume the estimated initial offset value fbest contains an error Afb. Thus, 
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fbest=fbO+*fb, (VI-19) 

and the estimated value for fo according to equations (VI-11) and (VI-8) is given 

by: 

hest=fs-fb<)+iSfb=f0"rfs-^-- CVI-20) JOest      Js 2N^ JU      Js    2N^ 

When Nf=N/2, the resulting error is: 

*fo=fo-foe«=-fs~- (VI-21) 

Equations (VI-17) and (VI-21) provide the relations between errors measured in the time- 

frequency image representation of size N/2xN, where N is the length of the signal, and 

the corresponding errors in the initial time-varying frequency expression given in 

Equation (VI-8). Note that Afb is measured in bins. 

3.c) Multi-pulse processing results 

Up to this point, all results were derived by extracting the frequency modulation 

parameters from one noisy radar pulse. Performances improve when using more than one 

pulse. Assume we isolate five radar pulses, where each pulse contains the same 

transmitted signal at a given SNR level. Note that the signal information gets mapped to 

the same location of the time-frequency plane, while the noise contributions scatter to 

different location in each trial. Thus, averaging multiple time-frequency images improves 

the quality of the signal information. 
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Thus, averaging the contribution of five pulses leads to the results shown in 

Figure VI. 12 obtained for the Smoothed Pseudo Wigner-Ville transformation. One 

hundred realizations per SNR level are used, and SNR levels varied from -20 to OdB. 

Note that there is no need to consider higher SNR levels as the error curves already flatten 

for SNR=0dB. Results show a significant improvement over using one pulse only. 

Further improvements may be obtained by considering a larger number of pulses. 

However, this will result in a direct increase of the computation time. 
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Figure VI.12: Slope and offset error for the SPWV distribution; five realizations. 

3.d) Application to the AN/SPS-40B radar 

We apply the above results to a specific radar using pulse compression readily 

available to us: the SPS-40B radar. The Radar Set AN/SPS-40B is used for the detection 

56 



ranging and tracking of air targets at long range in American and foreign navy services 

[24]. In this pulse mode, the pulse length is T=60p,sec. The transmitted waveform inside 

the pulse is a linear modulated down-chirp with a bandwidth of 2MHz centered at a 

frequency that can be varied manually by the operator from 402.5 to 447.5 MHz. 

Let's assume that the radar operates at 437.5 MHz, i.e., the chirp starts with a 

frequency 438.5MHz and decays linearly to 436.5 MHz. Our ESM (Electronic Support 

Measures) receives a series of noisy pulses from this radar. Further, assume we can 

isolate one pulse perfectly and that the estimated received signal is centered at 438MHz 

with a bandwidth equal to 2MHz. Given that the duration of the pulse is 60(isec and if we 

use 512 [samples/pulse duration], the sampling frequency should be set at: 

fs = ^-MHz = S.53MHz . (VI-22) 
60 

This sampling frequency does not satisfy the Nyquist rate. Thus, we can either 

increase the sampling frequency or heterodyne to a lower center frequency.   The first 

option has the drawback of increasing the number of samples to deal with, and the 

computational load of the estimation schemes considered. Heterodyning the signal down 

to the baseband can be accomplished by multiplying the received signal with a cosine 

function, and using a lowpass filter to extract the information. Assume the heterodyning 

frequency is selected as 440MHz. Thus, the resulting chirp signal is an up-chirp at the 

frequency 440-437.5=2.5MHz with bandwidth equal to 2MHz after heterodyning and 

filtering. The theoretical time-frequency representation is shown in Figure VI.13. Thus, 

the instantaneous frequency of the heterodyned signal is given by: 
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/(0=1.5-106+3.33-10I0-f. (VI-23) 

The   heterodyned   signal   may  be   sampled   with   a  frequency   fs=8.53Mhz, 

corresponding to 512 samples/pulse duration. 

Assume we use the SPWV distribution and the chirp parameter estimation 

procedure described above in Section V-B. Figure VI. 12 shows that the mean slope error 

is 0.09° and the mean offset error is 1 bin when the SNR is equal to 5dB. Using equations 

(VI-17) and (VI-21) leads to: 

IAkl=2.6108 and IAf0l=1.67104, 

meaning that the normalized errors for the frequency slope and offset are equal to 

|A*|        nMO   __ noaL „„,     lAfol   _  = 0 008   or 0.8% and      '      '    =0.0104   or  1.04%  respectively for the 
3.33. io10 1.2-106 

heterodyned signal. 

Note that the normalized slope error remains the same for the original received 

signal, as the signal bandwidth has not been changed by the heterodyning process, while 

the normalized frequency offset error becomes equal to 1.67104/438.510 , i.e., 0.0038%. 
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Figure VI.13: Instantaneous frequency for the heterodyned signal; Normalized frequency 

4.   Comparisons 

Other schemes extracting the modulation parameters have been proposed in the 

literature with their own advantages and drawbacks [25-33]. In this section, we consider 

the scheme proposed by Peleg and Porat which estimates the parameters of a complex 

linear FM scheme from a finite number of noisy observations 

x[n] = s[n] + w[n],n = 1,...,N, where w[n] is white noise and s[n] is a linear chirp signal 

defined as: 

s[n] = cos(2n;(fn0n +—n2)),n = l,...,N, 

which leads to the following normalized time-varying frequency for the chirp: 

fn=f«o+an>n = l>-N- 

4.a) Introduction 
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Peleg and Porat proposed a fast estimation scheme based on two FFT operations 

and two one-dimensional searches of the resulting FFT quantities [25]. The scheme uses 

the fact that the maximum likelihood estimates of the parameters of a complex linear FM 

signal can be derived by the two-dimensional maximization of the maximum likelihood 

function L(a,fn0 ) defined as: 

L(aJno) = 
ja2n 

£x„exp( —+ />) 
n=\ 

Peleg and Porat proposed to replace the two-dimensional maximization operation 

by two successive one-dimensional maximization searches to obtain a sub-optimal 

solution obtained with the following steps: 

1) Compute the discrete form of the ambiguity function DAF(x, CO,n0) defined as: 
N-n0 

DAF(x,co,n0)=
y£xn+zXy

m, 
71=1 

The parameter n0 is chosen equal to N/2, as this value minimizes the mean square error of 

the slope parameter a as a function of n0/N, as shown by Peleg and Porat [25]. 

2) Find the frequency (ö^ which maximizes the magnitude of DAF(x, Q),n0), leading to 

-    6)m„ 

3) Define: 

a 

z=xe(-jan),n = l,...,N. 

4) Compute the parameter fn0 which maximizes L{(0, a) with respect to CO: 

L(co,a) = \DFT(zn,(of = ,z„e 
-jam 

71=1 
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Peleg and Porat showed that their scheme approaches CRB values for SNR values above 

5dB. They also indicated that the SNR level should satisfy the following constraint for a 

given number of data points: 

SNR > — (50 + V2500 + 5(W \ 

where N represents the data length, for the results to be meaningful [25]. 

4.b) Simulations 

We generated one hundred linear chirps of length 512 samples with random start 

and stop normalized frequencies in the range [0, .5] for a given SNR level. The SNR was 

varied in the -lOdB to lOdB in steps of 2dB, as done previously in Section VI.C.3, and 

the chirp parameters estimated following the scheme proposed by Peleg and Porat. 

Figure VI. 14 presents the results obtained. We compared the results obtained for our best 

three transform types (Pseudo Wigner-Ville, reassigned pseudo Wigner-Ville, and 

reassigned smoothed Pseudo Wigner-Ville distributions) to those obtained by Porat and 

Peleg. Results show that the Porat and Peleg scheme: 

1) starts to break down around -7dB, and 

2) is not as robust to noise degradations as those based on combined TFR/Radon 

transforms as the estimation errors are significantly larger for SNRs below - 

5dB. 
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Figure VI.14: Slope and offset errors obtained with Peleg and Porat' scheme; linear chirp 
signals [25]; 100 trials per SNR level; left plot: slope error; right plot: offset error. 
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VII.    HYPERBOLIC CHIRP PARAMETERS ESTIMATION 

This section considers the estimation of hyperbolic chirp parameters. As before, 

the starting point is the time-frequency image representation of the information. 

However, generalizations of the Radon transform to hyperbolic line types were not used. 

Instead, we consider an iterative procedure to estimate the chirp parameters. 

Note that we assume we know the type of modulation transmitted, as we do not 

address issues related to distinguishing between linear and hyperbolic modulation types. 

Such classification issues are left for future work. 

A.        SIGNAL GENERATION 

1.   Introduction 

Assume that we can isolate individual pulses of duration x=512 samples. Thus, a 

received signal with hyperbolic modulation frequency is given by: 

x(t) = cos(2ff (Aln(f +10) + B ■ t)), (VI-1) 

where 

f(t) = -^- + B. (Vn-2) 
t + tQ 

The analytical signal s(t) obtained from x(t) with a Hubert transform is given by: 

x(t) = eJWAW+^Bt) (vn_3) 

The corresponding discrete signal x[n] is given by: 

j27c(AM—+—)+B—) j2n(AMn+n0)-AWf1)+—-n) 

x[n] = e h u     f'   =e L    , (VH-4) 
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or finally 

x[n] = K ■ eW^»*^; (VE-5) 

where: 

a = A,  b = —, n0=fs-t0, and K = ej2nAln{f<) . (VH-6) 
Js 

The normalized instantaneous frequency expression is given by: 

fH[n] = -±- + b. (VH-7) 

Recall that we need to select the parameters a, b and no such that the range of the 

normalized frequency f„[n] is between 0 and 0.5 to prevent aliasing, which leads to the 

following ranges: 

ae[0,oo],   n0e[0,°°], be [—,0.5] (VH-8) 

A valid selection for a, b and n0 is obtained by selecting one parameter in its 

allowed range, and then the other two so that they also fall in their allowed ranges. In the 

simulation, we first select a value for b from a uniform distribution in the region [0, 0.5]. 

The starting frequency at n=0,fn(0) ,is selected from a uniform distribution in the region 

[b, 0.5]. The final frequency fn(N), for n=N, where N is the signal length, can be selected 

in the range [b,fn(0)]. Defining b, fn(0), and fn(N) leads to the following values for a and 

n0: 

a_(fn(Q)-b)-(b+fnm-N 

(fn(0)-fn(N)) 
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«n =■ 
(b + fn(N))-N 

(fn(0)-fn(N)) 
(vn-io) 

Note that this random selection can sometimes lead to a frequency equation with a 

very steep slope at the beginning, as shown in Figure VII. 1. Such a behavior is 

undesirable because none of the time-frequency representations gives good resolution in 

the area of the steep slope, and this modulation type is not typical in radar applications. 

Theoretical Time-Frequency diagram 

500 

Figure VII.l: Hyperbolic modulation; normalized frequency for a=10, n0=25, b=0.05. 

2.   Hyperbolic Line Parameter Constraints 

We wish to restrict our random selection of the signal parameters to those leading 

to chirps without steep slopes, and need to automate the process so that we can run 

multiple trials to study the scheme robustness to noise degradations. Thus, we define a 

figure of merit that describes the amount of curvature present in a given hyperbolic line. 

65 



The parameter selected to characterize the curvature of the chirp is the distance d defined 

as the maximum distance between any point of the curve and its cord. 

Note the parameter b shifts the hyperbolic chirp up or down without affecting the 

shape, thereby its curvature. Therefore, we assume that b=0 for simplicity.   In such a 

a 
case, the chord associated to the hyperbolic chirp fn[n] = is a line passing through 

n + n0 

the points (0,—) and (N, ) with equation: 
n0 N + n0 

a a a 

n0 _ N + UQ «o 

n-0 N-0 

The resulting chord equation is given by: 

a-n + n0-(N + n0)-f-a-(N + n0) = 0, (VH-11) 

which leads to: 

/= — n + —. (Vn-12) 
n0-(N + n0)       n0 

Recall that the gradient of a curve at a given point is a line that passes through that 

point and has a slope equal to the derivative of the curve at that point. Thus, the gradient 

at any point of the hyperbolic line is: 

A = f=     ~a      ■ (Vn-13) 
(n +no) 
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Figure VII.2: Maximum distance between a hyperbolic line and its chord; a=12, n0=25, 
b=0. 

The distance d is maximum at the point n=% where its gradient is parallel to the 

chord. As a result, the gradient slope at the point n=£ is equal to the slope of the chord. 

Thus the position of the point n=% can be estimated from (VII-11) and (VTI-13) as: 

-a -a 

(Z+n0)
2     n0-(N + n0) 

which yields the coordinates of the point t, as: 

^=yjn0(N + n0)-n0.. (vn-14) 

f& 
jn0(N + n0) 

(vn-i5) 

Recall  the  distance  d between  a  point  (xi,yO   and  a line  with  equation 

aj • x + a2 ■ y + «3 =0 is given by the equation: 
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,f      lQl^l+fl2-yi+^l (vn.16) 

/    2 2 
•Vfll   + a2 

Thus, the distance between the chord and the point (£,f(£>) can be computed using 

equations (VE-11), (VII-14), (VII-15), and (VII-16), which leads to: 

\a-Z+no-(N + n0)-f(g)-a-(N + n0)\ 
d=- 

^a2+nZ(N + n0y 

and: 

\a\ 
d= — 

(N + 2-n0)-2-JnQ(N + n0) 
(vn-17) 

^a2+nl(N + n0)
2 

The distance d can be viewed as a figure of merit for the curvature of the 

hyperbolic line. A high value of d means the curvature is high and the time-frequency 

representation near the time origin is poor. However, very small values of d represent 

cases for which the hyperbolic curve is almost indistinguishable from a straight line. 

Thus, we restricted the chirp signals generated so that the distance d is in the region 

20 80 to avoid such cases. 
1024    J    1024 

Next, additive zero-mean white Gaussian noise is added to generate the noisy 

chirp with a specific SNR level. 

B. FEATURE EXTRACTION 

1.   Introduction 

The signal time-frequency representation can be obtained with any of the energy 

distributions   discussed   earlier   in   Section   V.   However,   note   that   the   atomic 
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decompositions are not as well suited as the energy distributions for the task at hand, as 

they do not describe the hyperbolic line curvature accurately. Therefore, we only consider 

energy distributions in this chapter. 

At this point the task is to extract the three unknowns parameters (a,b,no) for a 

given time-frequency representation. The basic Radon transform can no longer be 

applied, as it is defined for straight lines only. The Radon transform was extended to 

detect functions of arbitrary shape [17], however the computational load is significantly 

higher. 

RPWV of a noisy hyperbolic modulated signal (SNR=2db) 
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Figure VII.3: Extraction of the instantaneous normalized frequency expression from the 
time-frequency image. Before and after median smoothing, L=5. 
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The method considered here approaches the problem quite differently. It is an 

adaptive procedure which fixes one of the three unknown parameters at each iteration, 

and estimates the other two. The resulting scheme is presented next. 

2.   Method Description 

The instantaneous frequency expression for the hyperbolic chirp is extracted from 

the two-dimensional image by selecting the peak values obtained at each time bin of the 

image. The result is a vector containing the frequency values for each time bin, as shown 

in Figure VII.3. 

Note that the 2-D instantaneous frequency approximation is very accurate at high 

SNR levels, and degrades as the SNR level decreases. In noisy environments, the pixel 

with the highest energy obtained at a given time bin may be an outlier, resulting in spikes 

in the instantaneous frequency estimate, as illustrated in the middle plot of Figure VII. 3. 

Such outliers can be smoothed out with a median filter. Simulations showed that a 

median filter of length 5 smoothed out potential "spikes" without loss of resolution. 

We selected the three energy transformations leading to the best time-frequency 

image quality for the linear chirp case, and restricted our hyperbolic chirp analysis to 

those. The distributions selected are: 

- Pseudo Wigner-Ville distribution, 

- Reassigned Pseudo Wigner-Ville distribution, 

- Reassigned Smoothed Pseudo Wigner-Ville distribution. 

We set the dimension of the image at 512x512 bins to increase the image 

resolution and reduce quantization errors. In addition, simulations showed that these three 
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energy distributions do not necessarily perform well at the beginning and end of the 

image. As a result, we only consider the image from time bin 60 to time bin 450. 

The second step in the proposed scheme approximates the instantaneous 

frequency adaptively with a hyperbolic line by minimizing the squared error between the 

information contained in the image and a theoretical hyperbolic curve expression. Note 

that the problem to be solved is non-linear, due to the specific frequency law to be 

approximated, as we estimate the parameters a, b and no given in equation (VII-7). We 

first tried to solve the problem using a classical nonlinear least square iteration scheme 

provided with the function "lsqnonlin" from the MATLAB optimization toolbox [15]. 

Simulations showed that the algorithm converged to different local minimum, depending 

on the initial values selected. However, this problem can be resolved using a two-step 

procedure as follows. 

Assume we wish to approximate the hyperbolic curve given in equation (VII-7) 

with a function of the form: 

y(h)=——. (VH-18) 

If we assume our estimation values obtained from the image to be equal to yest(n), 

n=l,...N, then we wish to find a and no so that: 

yesM) — = 0,forn=l...N. (VII-19) 
n + n0 

The above set of equation forms a linear system of N equation with two 

unknowns, which can be solved using a least-square method. Next, assume we have an 
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estimate of the parameter b, best, which contribution is subtracted from the frequency 

equation given in (VII-7), resulting in: 

a 
fn M - best = -Z- + b - best. (VH-20) 

n + riQ 

Thus, the problem becomes to fit the data f[n] by finding the parameters (a,n0) 

which best fit a curve of the form a/(n+n0) in a least squares sense. The set of estimated 

parameters has a mean-square error et. At this point, the problem becomes to update the 

parameter b, and re-estimate corresponding values for a and n0 so that the error function 

expressed as a function of b is convex with a strong minimum. The location of the 

minimum value for the error function is obtained for best and the best estimated values of 

a and no- 

Even though we could not formally prove that the shape of the error function as a 

function of b is convex, we observed the same type of convex shape for the error function 

over 150 randomly generated hyperbolic chirps. Figure VH4 plots the normalized errors 

and the mean values for a, b, and no. 
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Figure VII.4: Normalized errors obtained for a, b, n0; 150 randomly generated hyperbolic 
chirps. 

The mean and standard deviation of the error is: 

Mean Std Deviation 

a 0.0361% 0.000287 

b 0.1092% 0.0013 

n0 0.0262% 0.000207 

Note that the mean error for b is slightly higher than that of the other two 

unknowns. This is to be expected, as b is restricted to the range [0, 0.5]. Therefore, very 

small error values may correspond to large normalized errors. 
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We adaptively estimate the value for b, by taking advantage of the convex shape 

of the error function. First, we restrict the search to a specific region of b. Next, we select 

five values of b equally spread within that range, and compute the other two parameters 

and the resulting mean-square error. Next, we restrict the b range to that including the 

minimum location by using the information provided by the mean-square errors, and 

repeat the process. This iterative process can be performed forever, as we have no 

knowledge of the minimum mean square error. In practice, we restricted the number of 

iterations to 10, as the values of b were restricted to small range [0,0.5] in our simulations 

to keep the computational load under control. Theoretically, the range of b can set as 

large as we want. The algorithm can converge in any area of b but it will require a larger 

number of iterations to preserve the same accuracy as the range of b expands, resulting in 

a computational load increase. 

C.        SIMULATION RESULTS 

A few comments are in order before discussing the simulation results: 

1. The scheme considered above is not as robust to noise degradations as the 

linear chirp scheme described in Sections V and VI. This is to be expected as a relatively 

clear and undistorted time-frequency image is required to extract the normalized 

frequency information. 

2. The iterative scheme finds the set of a, b and n0 which minimize the mean- 

square error. However, relatively large error values in the parameter estimates may 

correspond to small error in the actual hyperbolic curves. Figure VII.5 shows true and 
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estimated hyperbolic curves. The true parameter values are: a=65, b=0.l and «0=240, 

while the estimated parameter values are: a=84, b=0.0S and «o=294. The normalized 

errors are 29%, 20% and 22% for a, b and n0 respectively, even though the two curves are 

hardly different. 

200 300 
Time bins 

400 500 

Figure VII.5: Two hyperbolic lines; Solid line: true hyperbolic curve (a=65, b=0.1 and 
n0=240, dotted line: estimated hyperbolic curve (a=84, b=0.08 and n0=294). 

Hyperbolic chirps were generated by randomly selecting the parameters a, b, and 

n0 in the allowed ranges mentioned earlier. Next, additive white Gaussian noise was 

added to generate SNR levels between 0 and 20dB, in steps of 2dB. One hundred 

realizations were generated for a given SNR level. Figures VH.6 to VII.8 plot the mean 

and the standard deviation for the normalized errors for (a, b, n0) as a function of the SNR 

level, where the normalized error is defined as: 

I true value -estimated value \ .nn „ 
norm error = — 100 % 

true value 
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Note that the above definition may lead to large errors when the parameter true 

values are very close to zero, due to the denominator. Thus, we restricted our simulations 

to cases where b is in the range [0.025, 0.5]. The other two parameters a and n0 are 

selected using the method described in section (VII-A). 

30 
Normalized Error for a 

20 h 

10 

0 

60 

40 

— Mean 
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10 
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Figure VII.6: Hyperbolic chirp; normalized errors for the SPWV distribution. 

Figures VDL6 to VH.8 show the normalized error mean-square and corresponding 

standard deviation for (a,b,n0) obtained using the Smooth Pseudo Wigner-Ville, the 

Reassigned Pseudo Wigner-Ville, and the Reassigned Smoothed Pseudo Wigner-Ville 

distribution respectively. 
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Results show that the normalized errors decrease to zero as the SNR level 

increases. They also show that the SPWV is the scheme most robust to noise degradations 

out of the three considered. 

Normalized Error for a 

10 
SNR (db) 

Figure VII.7: Hyperbolic chirp; normalized errors for the RPWV distribution. 

Results also show that the reassigned methods perform better than the SPWV for 

high SNRs. This is to be expected, as they provide a more focused image by finding the 

center of gravity of the energy distribution for each time instance, resulting in a better 

image quality. However, the reassignment process worsens the image quality, as the noise 

level increases, resulting in the estimation process breaking down. Simulations show that 
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the RPWV performs slightly better than the RSPWV does, especially for SNR's in the 

range of 2 to 5dB. 
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Figure VII.8: Hyperbolic chirp; normalized errors for the RSPWV distribution. 

The continuous parameters A, B and to in equation (VII-2) are related to the 

parameters of the discrete signal expression via equation (VH-6). Thus, the normalized 

errors estimated for the discrete values a, b and n0 are identical to those obtained with the 

continuous parameters. 
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VIM.   CONCLUSIONS 

This study investigated the detection of pulse start and stop times of noisy pulsed 

chirp signals and the estimation of chirp modulation parameters for two specific 

modulation schemes; linear and hyperbolic. 

The robustness of three TCF-based schemes and an envelope detection algorithm 

in noisy environments were compared. Results showed that none of the pulse detection 

schemes considered in this work to be clearly better than the others for the range of SNR 

levels considered, and the specific selection to be a function of the desirable characteristic 

(letitbePFA orPo) to be optimized. 

The estimation of the modulation parameters was approached from an image 

processing point of view. We compared eleven different time-frequency/scale 

transformations and investigated their robustness to represent noisy chirps. We compared 

the quality of the estimated modulation parameters obtained for linear chirps when 

applying a Radon-based transformation to the time-frequency/scale images. Results show 

time-frequency transformations to lead to better focused images when dealing with noisy 

chirp signals, and to better estimation of the modulation parameters than wavelet-based 

decompositions do. Specifically, the Smoothed Pseudo Wigner-Ville distribution had the 

best performance in low SNR environments, while the reassignment scheme improved 

the performances for high SNRs. The combination of the energy distributions and the 
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Radon transform lead to small detection errors and almost constant performances for 

SNRs as low as-7dB. 

Results also showed that the estimation performances increase when using 

multiple pulses. Simulations showed that the parameter detection SNR threshold dropped 

to -lOdB when processing five pulses simultaneously. However, the computation time 

increases significantly. 

Hyperbolic chirp parameters were extracted from the time-frequency image using 

an iterative procedure. However, this scheme requires a very good estimate of the 

instantaneous frequency expression as an initial estimate, thereby restricting its 

application to medium to high SNR levels. 

This study is restricted to two specific types of modulation; linear and hyperbolic. 

Additional work would be needed to extend this type of approach to additional 

modulation types. In addition, we assumed the modulation type to be known a-priori. 

However, modulation identification issues need to be investigated to allow for an 

automated scheme to be implemented. A significant amount of work dealing with 

modulation identification schemes is available in the literature, each with their own 

advantages and drawbacks [45-47]. Further work is needed to investigate how a 

modulation identification scheme can be integrated with the work discussed here. 
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