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ARTUS Preliminary Development 

Section 1:   Overview 

This report contains results of a transition from a 
feasibility study to the development and implementation of 
an automatic rapid target updating system (ARTUS) for use 
with Army missile guidance systems based on 2D infrared 
target images. These systems operate by matching the 
infrared image from a guidance sensor with predicted 
infrared images derived from a database of CAD models of a 
number of different possible targets. Such a system can be 
adversely affected by externally carried objects such as 
fuel tanks, supply crates, etc, not contained in the CAD 
model. The adverse effects of such objects could be 
minimized if there were a way to rapidly modify the CAD 
model to reflect the presence of such objects based on 
images obtained from reconnaissance sensors, in effect 
tailoring the CAD model to match specific targets. 

Phase I of this contract dealt with studying the 
feasibility of developing such a software system, and 
developed a plan for the system and what algorithms would 
need to be developed to create software that could carry 
out these intended tasks. See the Phase I Final Report, on 
file at Cyberdynamics, Inc, and at the U.S. Army's Redstone 
Arsenal site in Alabama. 

Phase I Option, which this report summarizes, began the 
task of implementing the plans of Phase I. A major portion 
of the ARTUS system would be to identify features of the 
target in both the infrared image and the CAD model. The 
most common feature is the intersection of lines, and that 
is what the Phase I Option work focused on. 

Finding intersections of lines in both the infrared images 
and the rendered CAD models involves determining where 
there exists edges that can be extracted from the image, 
determining what lines are created by these edges and which 
points belong to which lines, reducing the lines to line 
segments, and determining which segments intersect within 
the image. Once the intersections are found, what type of 
intersection that is found needs to be determined. That 
is, how many line segments meet at the point of 
intersection?  And, for each line segment, does the line 



segment cross the point or end at the point of 
intersection? 

Work on the location of line intersection features for the 
ARTUS system was performed during the Phase I option. Many 
methods were investigated, and a successful method to find 
line intersections was found and implemented into software. 

Section 2:  Phase I Option Work 

The following is a list of the work accomplished during the 
Phase I Option.  In this phase we: 

1. Experimented with "nearest-neighbor" techniques of 
combining adjoining points to form lines. This technique, 
only partially successful on simple images, resulted in too 
many and too short of lines, as well as creating a very 
difficult data-handling problem. 

2. Improved our edge-detection techniques on images to 
reduce the noise in the post edge-detected image. It was 
found that to find any lines within our detailed infrared 
images we needed to reduce the noise produced by the edge 
detection schemes that we had used to this point. We found 
that the Canny edge-detection scheme, along with our own 
second derivative analysis, proved to be very successful in 
reducing the noise associated with finding edges in the 
infrared image data that we had of tanks. 

3. Created a filter to remove edge points not associated 
with the target of the image. Though the edge detector we 
now had worked very well, the result was the edge detection 
of the entire image. This was a problem because we did not 
want to find lines of objects that were not part of the 
target. We developed a filter that found the area of the 
target based on the detail, of the edge detection results, 
and removed any excess from those results. 

4. Created a mathematical solution to determine the lines 
formed from the resulting points of an edge detection 
filter. Since other line-finding techniques were both poor 
and fairly random, we developed a technique to determine 
exactly what lines are within a distribution of points. By 
creating a histogram of the slope and y-intercept of the 



lines formed by joining every pair of points in the image 
that resulted from the edge detection, we could find the 
peaks of that histogram and therefore find the most 
prevalent lines in the point distribution. 

5. Determined a method to reduce the lines to segments. 
Because the lines had no end points they would include 
isolated points or groups of points that were not 
associated with the main segment of each line. Many 
methods were tried and the result was an algorithm that 
allowed some small gaps in the lines, but not a large gap, 
nor a large number of small gaps. Gaps would occur because 
of the non-perfect distribution of points after the edge 
detection. 

6. Applied these techniques to an image of a cube and to 
a CAD model of a cube. A cube was used to begin with 
because of the complicated nature of the tank images did 
not allow us to easily understand what was happening within 
our algorithms during early development. The cube provided 
an ideal environment to initially tune our algorithms, 
which we were successful at doing. 

7. Applied these techniques to the images of a tank 
provided by the Army, and revised our techniques based on 
the problems that arose from these more complicated images. 
Moving from the cube to the tank demonstrated the 
difficulties with such detailed images. This was the 
impetus for developing improved edge detection schemes, a 
filter to remove edge detected points not associated with 
the main target of the image, and a method to reduce lines 
to segments, discussed in items 2, 3, and 5 of this 
section, respectively. 

Section 3:  Nearest-Neighbor Line Finding 

A common technique for finding lines from a distribution of 
points, similar to that resulting from applying an edge 
detection mask to an image, is to start with a point, move 
to all of it's nearest neighbors. From there, determine if 
any lie along the line being created, and then do the same 
for each of the points included in that line. This 
technique, however, is always demonstrated using very few 
points, almost all of which fall within that line, and when 



looking for a line in a known direction. We were dealing 
with detailed images that, even with superb edge detection, 
create point distributions that are very complicated and 
full of indeterminate choices for the line finding 
algorithm. We also need to be able to find an undetermined 
number of lines that are in undetermined directions. 

To start the algorithm we would pick a point in the scene, 
look at the surrounding square of eight pixels for other 
points. If none were found, we would expand the square to 
look at the next biggest square of fourteen pixels for 
other points. If other points were found, the line-finding 
algorithm would start off in the direction of the found 
points, looking of a continuous series of points in that 
direction. Before knowing whether a line exists in a 
certain direction, however, it is impossible to know how 
large gaps may be within a line or how far from the line 
points may stray. Giving up on directions because gaps 
were found at the starting point caused lines to not be 
found or to be cut-off short. Allowing for too large of 
gaps caused large numbers of "noise" lines to be found. 
Following points that strayed from a line would cause the 
algorithm to not know what direction a line should be 
continue. Not selecting these points when they were part 
of the line would reduce the number of points in the line 
and might cause the line to stray off course in the 
opposite direction. 

A further problem to this method is that with undetermined 
lines, every point must be tried as the starting point for 
lines (a point may exist in multiple lines), causing the 
amount of time needed to complete such an algorithm with an 
image of any detail to become enormous. 

We determined that this method of line finding would not be 
successful for our use. 

Section 4:   Improved Edge Detection 

A better edge detector was needed to handle the type of 
data we needed to evaluate. The edge detectors that had 
been used previously in Phase I, namely Prewitt, Sobel, and 
Kirsch detectors, worked well with many color photos but 
had limitations with the infrared data, such as large 
amounts of noise and broken edge lines.  These detectors 



tended to have too much noise and too little of the actual 
edges detected, or broken edges when the edges were found. 
After trials with other options, it was found that the 
combination of the Canny Edge Detector, discussed by 
Hancock, Kittler, and Petrou (References 1 and 2), and our 
second-derivative edge detector (described in our Phase I 
Final Report) was exceptional in comparison with other 
detectors. 

The Canny edge detector takes the following steps: 

1. The image data is smoothed by a two-dimensional Gaussian 
function of width specified by a user parameter. In 
practice, two-dimensional convolution with large Gaussians 
takes a long time, so that in practice we approximate this 
by two one dimensional Gaussians, one aligned with the x- 
axis, the other with the y axis. This produces two (rather 
than one) values at each pixel. The Gaussian function in 
one dimension is expressed as: 

G(x) = 
42na 

,2cr2 

2. Assuming two-dimensional convolution at stage 1, the 
smoothed image data is differentiated with respect to the x 
and y directions. It is possible to compute the gradient 
of the smooth surface of the convolved image function in 
any direction from the known gradient in any two 
directions. 

Assuming the one-dimensional approximation at stage one, 
which we use, then the values in the x-smoothed image array 
are convolved with a first derivative of a one dimensional 
Gaussian of identical sigma aligned with y. Similarly, 
values in the y-smoothed image array are convolved with a 
first derivative of a one dimensional Gaussian of identical 
sigma aligned with x. Sigma is the user-set width of the 
Gaussian function. During the Phase I Option we used a 
sigma value of 1.0 for most operations. This width needs 
to be tested more extensively during Phase II to find an 
optimal level of performance. 

From the computed x and y gradient values, the magnitude 
and angle of the slope can be calculated from the 
hypotenuse and arctangent. 



The first derivative of the Gaussian function is expressed 
as: 
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3. Having found the rate of intensity change at each point 
in the image, edges must now be placed at the points of 
maxima, or rather non-maxima must be suppressed. A local 
maximum occurs at a peak in the gradient function, or 
alternatively where the derivative of the gradient function 
is set to zero. However, in this case we wish to suppress 
non-maxima perpendicular to the edge direction, rather than 
parallel to (along) the edge direction, since we expect 
continuity of edge strength along an extended contour. The 
second derivative of the Gaussian function is expressed as: 

„2 

V2;r<7 '-7 
Rather than perform an explicit differentiation 
perpendicular to each edge, another approximation is often 
used. Each pixel in turn forms the center of a nine-pixel 
neighborhood. By interpolation of the surrounding discrete 
grid values, the gradient magnitudes are calculated at the 
neighborhood boundary in both directions perpendicular to 
the center pixel, as shown in Figure 4.1, below. If the 
pixel under consideration is not greater than these two 
values (i.e. non-maximum), it is suppressed. 

a b 
\ 

c 

d V e 

f A h 

Figure 4.1: From central 
gradient value, interpolate 
gradient value at dot from 
gradient values at e, g, and 
h. Repeat in opposite 
direction. Suppress if non- 
maximum. 



4. The thresholder used in the Canny operator uses a method 
called "hysteresis". Most thresholders used a single 
threshold limit, which means if the edge values fluctuate 
above and below this value the line will appear broken 
(commonly referred to as v'streaking'') . Hysteresis 
counters streaking by setting an upper and lower edge value 
limit. Considering a line segment, if a value lies above 
the upper threshold limit it is immediately accepted. If 
the value lies below the low threshold it is immediately 
rejected. Points which lie between the two limits are 
accepted if they are connected to pixels which exhibit 
strong response. The likelihood of streaking is reduced 
drastically since the line segment points must fluctuate 
above the upper limit and below the lower limit for 
streaking to occur. 

Figures 4-2, 4-3, and 4-4 show the results of thresholding 
the same tank image with Prewitt, Sobel, and Canny edge 
detectors, respectively. Notice the improved signal-to- 
noise and the reduced line-breaking in the Canny threshold 
image. 

Figure   4-2:   Prewitt 
detection of tank image. 

edge 



Figure   4-3:    Sobel 
detection of tank image. 

edge 

Figure   4-4:    Canny 
detection of tank image. 

edge 

Section 5:  Filtering Non-Target Data 

After using the new edge detection scheme, though most of 
the noise was cleared from the resulting point 
distribution, there remained the problem of edges detected 
that were not associated with the target of interest. To 
solve this problem a filtering algorithm was developed that 
removed the extraneous points from the resulting image. 

This filter is based on the assumption that the important 
points of the target are contained within long strings of 
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connected points. We call them strings and not curves or 
lines since we allow the branching off of curves at every 
point, just as long as we have no space between points. 
With the infrared data that we have in our possession, this 
seems to be an accurate assumption. 

A list of strings is created by starting at a point, 
assigning it to a new string, searching all surrounding 
pixels to that point for other points, and adding any 
bordering points to the same string. Then for every found 
point, proceed with the same logic, until all points are 
assigned to a string. 

The largest string is then found, and all points belonging 
to strings that are within a certain percentage of the 
largest string are kept, while all other points are 
discarded. This percentage is currently set manually and 
we have found that 70% of the largest string works well 
with our specific data. We hope to find a method of 
automatically choosing what size of string to keep. 

Figures 5-1 and 5-2 show the result of an edge detection 
scheme before and after the use of this filter. 

Figures 5-1 & 5-2: Edge detection before and after filtering. 

Section 6:  Lines from Histogram 

Because other methods of finding lines proved to be 
inadequate, and relied on user selection at that, we sought 
to  find  another  way  to  identify  lines  within  the 
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distribution of points resulting from the edge detection 
and filtering algorithms. A purely mathematical solution 
was sought, and was found. 

The new method involved creating a histogram that counted 
the number of lines created by each pair of points in the 
image. A 2-dimensional histogram was created, where one 
axis was the y-intercept and the other the slope (A 
variation on this definition of a line was used because 
both slope and y-intercept continue to infinity and do not 
lend themselves to creating cells in a histogram. The 
variation involved finding the angle the line made with the 
horizontal, from -pi to pi radians, and the closest 
distance of the line to the point in the center of the 
image. The distance was considered to have direction so 
that a line on one side of the center would not be confused 
with a line on the opposite side of the center with the 
same slope or angle and distance magnitude). 

Figure 6-1 shows an original cube image, figure 6-2 shows 
the cube after edge detection and filtering was performed, 
and figure 6-3 shows the results of creating such a 
histogram from that cube. Nine peaks in the histogram 
appear far above all other noise in the histogram, and the 
locations in the histogram match the slope and y-intercept 
of the obvious lines in figure 6-1. 

Figure 6-1: Image of cube 
used during Phase I Option 
testing. 

Figure 6-2:  The result of using a 
Canny edge detector and target 
filter on a cube. 
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Figure 6-3: A histogram of lines formed by point pairs for a cube. 
Angle of line runs approximately from left to right (and wraps), and 
distance from center from a negative distance (far end) to a 
positive distance (near end). In this figure, the tallest peak is 
blue, then purple, then yellow, and those in the noise are green. 

Figure 6-4: One of several 
images of a tank used during 
Phase I Option testing. 

Figure 6-5: The result of using 
a Canny edge detector and target 
filter on a tank image. 

13 



Figures 6-4, 6-5, and 6-6 show the same examples for an 
image of a tank. Notice that straight lines are not as 
prominent, and that the peaks do not stick out of the noise 
nearly as  far. 

Figure 6-6: A histogram of lines formed by point pairs for a tank. 
Angle of line runs approximately from left to right (and wraps), and 
distance from center from a negative distance (far end) to a 
positive distance (near end). There are many horizontal lines from 
this image, as can be evidenced by the many peaks down the middle 
(at angle = 0 degrees) . The peaks are color-coded by height, with 
the green peaks  in the noise. 

To recreate the lines from the histogram, the position of 
each peak was found in the histogram. Then, all points in 
the post-edge detection image that lay upon the lines 
defined by the slope and y-intercept of these peaks would 
be added to a  list  of points  contained in that  line. 

When moving to more complicated images, many adaptations 
were necessary to correct for some of the imperfections of 
discrete mathematics of pixel geometry. Commonly the slope 
of the line from the peak may be off by significant 
fractions of a degree, as well as the distances being off 
by fractions  of a pixel. 

A weighted-smoothing function was used when defining the 
locations of the peaks. After peaks were found by finding 
2-dimensional local maxima among the locations' 
neighborhoods, and peaks within the noise were eliminated, 
a situation existed with clusters of double or triple peaks 
at  many   locations.     A weighted-sum  of  the   cluster  was   used 
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to combine the cluster into a single peak. This also 
appeared to cause the peak to agree more with the point 
distribution, causing more points to lie along the line 
defined by the peak. 

Since each line is actually infinitely thin, and because of 
some slight errors caused by the discreteness of the image, 
it was necessary to allow some deviation from the straight 
line defined by each peak when deciding which points 
belonged to each line. Therefore, points that lay within a 
small perpendicular distance to the line were included. 

Section 7:  Lines To Segments 

Lines were originally sought so that we could find the 
intersection of lines, which would relate to corners on the 
surface of the target. The lines themselves, then, relate 
to actual edges of the target. 

The set of lines found by using the histogram method 
described in the previous section were drawn on the screen 
by using the points from the post edge detection image that 
fell on these lines. Though the proper line would be 
drawn, many points that existed far away from the main 
segment were not part of the same edge, and generally were 
not part of an edge that was oriented in the direction of 
that line. In addition, and more importantly, the fact 
that lines are infinite (or at least extend to the edge of 
the image in this case), many lines intersect at points not 
associated with corners of the target as they are not along 
edges of the target at the point of intersection. 

One might try to check whether the intersection occurred at 
a location where points existed on both lines. Two 
problems exist with, this solution: one being the 
aforementioned situation where points exist on the line far 
beyond the end of an edge, and the other being that gaps 
exist in the list of points that are along the edge due to 
the imperfections of edge detection. 

So a method was required to find end points to the lines, 
changing the lines to line segments. 
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Many ideas were experimented with, but the method we have 
settled on is an algorithm that allows some gaps in the 
points, but not too many or too large of gaps. 

The algorithm starts by looking for the longest continuous 
section of the line. A continuous section is defined as a 
line segment with no space between consecutive points. A 
continuous section may contain one or more points. All of 
the continuous sections are found, and the section with the 
most points is considered the base of the ultimate segment 
to be found. 

Moving both directions along the line we add at most two 
more continuous sections each direction. Requirements for 
incorporating the additional sections are that there is no 
more than a certain maximum distance (gap) between 
sections, and the cumulative gap is not larger than a 
certain value. Both the maximum gap size and the maximum 
cumulative gap are user-defined parameters, as is the 
number of continuous sections incorporated into the segment 
(though we found that two on each side definitely tends to 
be as many as is wanted in the majority of cases) . The 
result was a collection of line segments that defined some 
of the edges of the target being observed. 

Figure 7-1: Lines derived 
from a tank image, using the 
histogram method of Section 

Figure 7-2:  Segments extracted 
from lines using the segment- 
finding algorithm. 
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Figures 7-1 and 7-2 show the lines and segments, 
respectively, derived from an image of a tank. The 
algorithm currently removes too much information in terms 
of number and length of segments, reducing the number of 
intersections among the segments (which will be discussed 
in the next section). This algorithm will be improved in 
Phase II of this contract. 

Section 8:  Finding Intersections 

We are interested in finding features of the target that 
will allow us to compare it to CAD models to find the 
quality of a match. Though edges are certainly features, 
they provide little in the way of information that will 
allow us to align the images with CAD models; they are 1- 
dimensional in a 2-dimensional medium. Intersections of 
these edges, however, will form a 2-dimensional feature in 
these images that will provide greater amounts of 
information for image alignment. 

Once the edges of the target are found in the form of line 
segments, the edges can be found by simple line- 
intersection algorithms. For example, we will use the 
algorithm: 

Let LI and L2 be two line segments we are testing for 
intersection, and let (xl,yl) and (x2,y2) be the end points 
of LI and (x3,y3) and (x4,y4) be the end points of L2. 
Set dlx = x2 - xl, dly = y2 - yl, 

d2x = x4 - x3, d2y = y4 - y3, 
then the vectors defining the lines LI and L2 are <dlx,dly> 
and <d2x,d2y> so that the equation of segment LI can be 
written: 

LI = (xl,yl) + t * <dlx,dly>, 
where 0 <= t <= 1, and similarly for L2.  Since we know 
that two vectors are parallel if their cross-product, LI x 
L2, is equal to zero, we set 

delta = LI x L2 = dlx * d2y - dly * d2x. 

If delta = 0 then there is no intersection, otherwise the 
infinite lines (not necessarily the segments) do intersect. 
To find the point of intersection remember that: 

LI = (xl,yl) + t * <dlx,dly> and 
L2 = (x3,y3) + s * <d2x,d2y>. 

17 



The point of intersection, in terms of parameters t and s 
will be: 

t = ( (x3 - xl) * d2y - (y3 - yl) * d2x ) / delta, 
and s = ( (x3 - xl) * dly - (y3 - yl) * dlx ) / delta. 
This point of intersection is within the segment if and 
only if t and s are both between 0 and 1. 

To find the point (x,y) of intersection, simply plug into 
either line equation.  Using LI, we find: 

x = xl + t * dlx, and 
y = yl + t * dly. 

To categorize the intersection we again look at s and t. 
Many of the intersections tend to be corners where the 
segments do not extend beyond the intersection. In this 
case, t will be either 0 or 1, as will s. If just one of 
these two parameters is either equal to 0 or 1, and the 
other resides somewhere between 0 and 1, then we have a T 
intersection. If both parameters reside between 0 and 1, 
then we have a cross. These are the three types of 
intersections that we will use in Phase II to align and 
match infrared images with CAD model images. 

Section 9:   Cube Applications 

To develop and test many of our ideas, a simple CAD model 
and an equally simple and clear image with little detail 
other than the specific target was used to begin with. For 
the development of the line algorithms a cube was chosen 
due to its simplicity and the existence of many corner 
features. 

First a CAD model of a cube was created. Then, an observer 
position and viewing direction relative to the cube's CAD 
model coordinates that would allow a view of three sides of 
the cube was chosen. The 'CAD model was rendered with this 
view, and an image of that rendering was saved. This 
became the representation of the infrared image that was 
tested. 

Originally the Nearest-Neighbor line finding algorithm was 
tested on a more complicated image, but then on the cube. 
Even on the cube, very poor results were obtained with this 
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algorithm. Then the Histogram Line Finding algorithm was 
tested on the cube, with excellent results. This gave us 
confidence that the histogram method was indeed both 
accurate and very useful. It became apparent, however, 
while testing with the cube, that the lines would have to 
be shortened to segments. Infinite lines would not only 
discover the points associated with the edge of the cube 
being found, but also with a point or two on a different 
edge, often quite far away from the original edge. 

Upon successful experimentation with the cube, the 
histogram line-finding method was deemed appropriate for 
use with the ARTUS software. It was time to test these 
methods with a more complicated model, but the cube will be 
used in future testing as well. 

Section 10:   Tank Applications 

To test our software applications fully, data similar to 
that which would be used in the field, was used so that the 
algorithms' effectiveness against real data could be 
measured. Infrared images of a tank were used. While 
using the tank image, algorithms that were successful 
against the cube image proved to be far less effective 
against the tank image. 

Though the histogram-based line-finding algorithm 
definitely turned up lines from the tank, it also turned up 
a large amount of noise; so much noise that it was 
difficult to make out the lines from the tank. By 
examining the histogram closely it was determined that the 
tank lines were the most prominent, but the noise levels 
were so high that it was difficult to make a distinction 
between the two.  Somehow the noise had to be reduced. 

The first step taken to reduce noise was to change the 
edge-detection algorithm. We had formerly used a Sobel, 
Prewitt, or Kirsch edge detector, adding our own second 
derivative detector on the tail end (all of these are 
described in the Phase I Final Report). We kept the second 
derivative tail end, but changed the front end to a Canny 
edge detector, described in Section 4. The Canny/second 
derivative edge detector was ideal for the infrared data 
that we were studying, eliminating almost all of the noise. 
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Though much of the noise was removed, there remained many 
lines not associated with the target since there really 
were edges of objects not associated with the target within 
the image. A way to determine which lines were part of the 
target and which were not was needed, so the algorithm of 
Section 5 was developed. 

Section 11:   Conclusions 

The Phase I Option portion of this contract developed one 
part of the ARTUS system, transitioning from the planning 
stage of Phase I to the system development stage of Phase 
II. After examining different methods, we were successful 
and creating a method to extract lines from infrared 
images. The method involved creating a histogram of all of 
the possible lines within the results from an edge- 
detection process. This operation required improved edge- 
detection from our earlier work, as well as a new algorithm 
to filter the target data from the non-target data. Both 
of these tasks were successfully completed. 

Following the location of lines, we created an algorithm to 
parse the lines into line segments. This process was 
partially successful, but needs further enhancement during 
Phase II to allow for more line segment intersections. All 
of the line intersections that were possible to find were 
successfully located using a newly developed algorithm to 
find line segment intersections. 

During Phase II this portion of the ARTUS system will be 
incorporated with the other necessary components of the 
system, such as image alignment with CAD models, match 
quality measurement, difference detection, and rapid CAD 
model updating. 
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