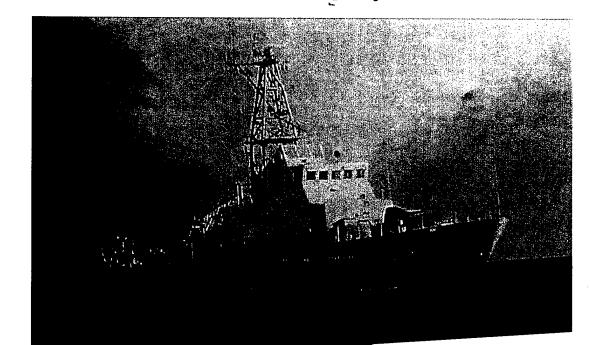
Naval Surface Warfare Center Carderock Division

9500 MacArthur Boulevard, West Bethesda, Maryland 20817-5700

NSWCCD-50-TR--1999/061


November 1999

Hydromechanics Directorate Report

U.S. Coast Guard Island Class 110 WPB: Stern Flap Evaluation and Selection (Model 5526)

By Dominic S. Cusanelli Liam O'Connell

DEIC QUALITY INSPECTED 4

20000111 038

Approved for public release; distribution is unlimited.

REPORT DO		vm Approved MB No. 0704-0188		
Public reporting burgen for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions fi Davis Highway, Suite 1204, Arlington, VA 22202-	rmation is estimated to average 1 hour per re completing and reviewing the collection of in or reducing this burden, to Washington Head \$302, and to the Office of Management and 8	ourrers Services. Directorate fo udget. Paperwork Reduction Pro	r Information Opi ect (0704-0188), v	estimate of any other aspect of this erations and Reports, 1215 Jefferson Vashington, DC 20503.
1. AGENCY USE ONLY (Leave blank	2. REPORT DATE November 1999	3. REPORT TYPE AN Final, Exper	iments co	nducted 4/99
4. TITLE AND SUBTITLE U.S. Coast Guard Island C Selection (Model 5526)	Sponson Order N	s numbers :: USCG (0.:		
6. AUTHOR(S) Dominic S. Cusanelli, Lia	m O'Connell		DTCG4	0-99-X-60002
7. PERFORMING ORGANIZATION NA NSWCCD, Code 5200 9500 MacArthur Blvd. West Bethesda, MD 2081		· · · · · · · · · · · · · · · · · · ·	REPORT	ming organization number CD-50-TR1999/061
9. SPONSORING/MONITORING AGE Boat Engineering Branch Engineering Logistics Cer United States Coast Guard 2401 Hawkins Pt. Road, N Baltimore, MD 21226-50 11. SUPPLEMENTARY NOTES	(ELC-024) hter 1 AS 25			DRING / MONITORING 7 REPORT NUMBER
Work Unit Title: USCG S	_			
Approved for public relea		ed.	126. DISTR	IBUTION CODE
Coast Guard Island Class lengths, spans, and angles maximizing power reduct prescribed at cruising spe- angle. A stern flap with c degrees trailing edge dow with the stern flap installe flap maximum power redu- reduction includes an emp tests on other ship models more than 13,000 gallons, and installation is less that	vere performed to evaluat 110 WPB patrol boat. So were evaluated. The sel ion at high speed, while se ed and best economic spe shord length 2 ft (0.61 m) n, is recommended for in ed, the maximum attainab uction of 5.8 percent was pirical 1.5% reduction for s. Stern flap annual fuel so /year. The time to recover	everal stern flap de ected stern flap de satisfying secondar eed, and limits set o , span of 8.7 ft (2.7 stallation on the Is le speed will incre attained at 16 kno stern flap scaling savings for the Isla	esigns of v sign was ry powerin on desirect 7 m), and land Class ase by 0.8 ts. This 5 effects as nd Class st for ster	various chord based upon ng criteria I running trim an angle of 7.5 s. At full load, 8 knots. The stern 5.8% powering determined from is estimated at n flap fabrication
14. SUBJECT TERMS Stern Flaps, 110 WPB, 1	Island Class, Patrol Boats		L	5. NUMBER OF PAGES
OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIF OF ABSTRACT UNCLASSIFI	ED	same as report
NSN 7540-01-280-5500	i			ndard Form 298 (Rev. 2-89) ribed by ANSI Std. 239-18 102

13. (continued)

It is recommended that bow spray rails also be installed in the Island Class. The bow spray rails affected a significant reduction in the amount of spray and forward deck-wetting generated at the bow. A new DTMB Model 5526 was constructed for this project. A ship/ model correlation allowance of CA = 0.0003 was estimated from a powering comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526.

ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
DESCRIPTION OF MODEL AND EXPERIMENTAL PROCEDURE	2
SHIP/MODEL COMPARISON - CORRELATION ALLOWANCE ESTIMATE	3
STERN FLAP EVALUATION AND SELECTION	4
STERN FLAP PERFORMANCE	5
Resistance	5
Full Scale Projected Delivered Power	
Fuel Savings Potential	
Ship Running Trim	
Stern Waves	
Effects on Propeller Cavitation	
Measurement Uncertainty	
SPRAY RAIL INSTALLATION	11
CONCLUSIONS	13
ACKNOWLEDGMENTS	14
REFERENCES	15
APPENDICES	
A - MODEL 5526 DESCRIPTION AND INSPECTION	A1
B - MODEL EXPERIMENTS AND ANALYSIS I	

CONTENTS

Page

FIGURES

Page

1.	Island Class Model 5526 with stern flap installed	3
2.	Island Class, full scale projected stern flap performance	7
3.	Island Class, stern flap effect on ship running trim	9
4.	Island Class, model scale transom flow comparison, with/without stern flap installed	10
5.	Island Class, model scale bow wave and spray comparison, with/without bow spray rails	12

TABLES

1.	Principle dimensions of stern flaps tested on Model 5526	4
2.	Summary of stern flap optimization experiments	5
3.	Island Class stern flap: Summary of full scale projected performance	7
4.	Island Class: Estimated Speed Time Profile	9

APPENDIX A - FIGURES

A1.	Photographs of Island Class Model 5526 and appendages, model tested stern flaps, "bow spray rails", and stern flap installation and testing hardware	. A5
A2.	Island Class Model 5526, graphic depiction of model surface inspection	
A3.	Island Class Model 5526, Chine Rail and Bow Spray Rail Installation	. A8
A4.	Geometry of model tested stern flaps	. A9
A5.	Representative Island Class propeller open water characteristics used in delivered power estimates, as determined on cavitation-sized model propeller 5128	. À 10

APPENDIX A - TABLES

A1.	Island Class,	bare hull h	ydrostatic	calculations	at tested]	loading	conditions	A1	1
-----	---------------	-------------	------------	--------------	-------------	---------	------------	----	---

APPENDIX B - FIGURES

Ship/Model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$.B14
Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle	.B15
Island Class, comparisons of model scale resistance and powering with/without stern flap installed, full load 163 L. tons (adjusted for stern flap scale effects)	.B23
Island Class, comparisons of model scale resistance and powering with/without stern flap installed, min-ops 144 L. tons (adjusted for stern flap scale effects)	.B23
Projected full scale stern flap performance on Island Class 110 WPB, full load (163Ltons).	.B24
Projected full scale stern flap performance on Island Class 110 WPB,	
min-ops load (144Ltons)	.B24
Ship/Model powering comparison to main engine operating envelope (Caterpillar 3516), 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$.B25
Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load	.B26
Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, min-ops load	.B28
	151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$ Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle Island Class, comparisons of model scale resistance and powering with/without stern flap installed, full load 163 L. tons (adjusted for stern flap scale effects) Island Class, comparisons of model scale resistance and powering with/without stern flap installed, min-ops 144 L. tons (adjusted for stern flap scale effects) Projected full scale stern flap performance on Island Class 110 WPB, full load (163Ltons) Projected full scale stern flap performance on Island Class 110 WPB, min-ops load (144Ltons) Ship/Model powering comparison to main engine operating envelope (Caterpillar 3516), 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$ Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load

	APPENDIX B - FIGURES (continued) Page
	Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, full load 163 L. tons
	Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, min-ops 144 L. tons
B12.	Local transom flow comparisons, with/without stern flap installed, full load 163 L. tonsB32
B13.	Bow wave and spray comparisons, with/without bow spray rails, full load 163 L. tonsB38
	APPENDIX B - TABLES
B1.	Test Agenda: Island Class 110WPB Model 5526 stern flap evaluation and selection
B2.	Island Class Model 5526, displacements, appended wetted surfaces, drafts, and other related quantities, tested loading conditions
B3.	Model 5526 uncertainty in resistance measurementsB42
B4.	BAINBRIDGE ISLAND (WPB 1343) performance trials results, 151 L. ton load conditionB43
B5.	Ship/model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, variations in correlation allowance
B6.	Island Class, resistance prediction (no flap), ship trials load condition 151 L. tons, Exp. 6 B45
B7.	Island Class, estimated powering (no flap), ship trials load condition 151 L. tons
B8.	Stern flap optimization and selection, model resistance experiments
B9a.	Island Class, resistance prediction (no flap), full load 163 L. tons, original model configuration without spray rail extension, Exp. 17
B9b.	Island Class, resistance prediction (no flap), full load 163 L. tons, Exp. 18
	with "bow spray rails"B52
B10.	Island Class, resistance prediction (no flap), min-ops 144 L. tons, Exp. 21B53
B11.	Island Class, resistance prediction with stern flap, full load 163 L. tons, Exp. 19B54
B12.	Island Class, resistance prediction with stern flap, min-ops 144 L. tons, Exp. 20B55
B13.	Island Class, estimated powering (no flap), full load 163 L. tons
B14.	Island Class, estimated powering (no flap), min-ops 144 L. tons
B15.	Island Class, estimated powering with stern flap, full load 163 L. tons
B16.	Island Class, estimated powering with stern flap, min-ops 144 L. tons
B17.	Summary of model scale stern flap and "bow spray rails" performance on Island ClassB60
B18.	Projected full scale stern flap powering on Island Class 110 WPB, full load 163 L. tonsB62
B19.	Projected full scale stern flap powering on Island Class 110 WPB, min-ops 144 L. tonsB63
B20.	Stern flap on Island Class 110 WPB: Summary of full scale projected performance
B21.	Estimate of Island Class 110 WPB main propulsion engine fuel consumption rates, with/without stern flap installed

.

<u>ABSTRACT</u>

Model experiments were performed to evaluate the performance of a stern flap on a U.S. Coast Guard Island Class 110 WPB patrol boat. Several stern flap designs of various chord lengths, spans, and angles were evaluated. The selected stern flap design was based upon maximizing power reduction at high speed, while satisfying secondary powering criteria prescribed at cruising speed, and limits set on desired running trim angle. A stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5 degrees trailing edge down, is recommended for installation on the Island Class. At full load, with the stern flap installed, the maximum attainable speed will increase by 0.8 knots. The stern flap maximum power reduction of 5.8 percent was attained at 16 knots. This 5.8% powering reduction includes an empirical 1.5% reduction for stern flap scaling effects as determined from tests on other ship models. Stern flap annual fuel savings for the Island Class is estimated at more than 13,000 gallons/year. The time to recover the estimated cost for stern flap fabrication and installation is less than one year.

It is recommended that bow spray rails also be installed in the Island Class. The bow spray rails effected a significant reduction in the amount of spray and forward deck-wetting generated at the bow. A new DTMB Model 5526 was constructed for this project. A ship/model correlation allowance of $C_A = 0.0003$ was estimated from a powering comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526.

ADMINISTRATIVE INFORMATION

The work described in this report was performed at the David Taylor Model Basin, Carderock Division, Naval Surface Warfare Center, herein referred to as DTMB, by the Hydromechanics Directorate, Resistance and Powering Department, Code 5200. The work was sponsored by the US Coast Guard, Boat Engineering Branch (ELC-024), Order No. DTCG40-99-X-60002, Work Unit No. 1-5200-056.

INTRODUCTION

The Island Class 110 WPB patrol boats, with 49 units in active service, represents the largest class of patrol vessels presently in the U.S. Coast Guard (USCG) arsenal. The hull is a modified Vosper-Thornycroft (British) patrol boat design, 110 ft (33.5 m) in overall length, with twin shafts, and 49.6 inch (126 cm) diameter fixed-pitch propellers. The Island Class was acquired for offshore surveillance, law enforcement, and search-and-rescue operations, replacing the older 95 ft (29 m) and 82 ft (25 m) WPBs; Polmar [1]. The USCG has initiated a research and development program with the intention of improving the performance capabilities of the Island Class 110 WPB patrol boats. The preliminary goals of the Coast Guard's R&D program, of which the flap selection is one area of investigation, are to increase the maximum attainable speed at full power, and to reduce the propeller cavitation and cavitation erosion damage tendencies to the propeller's blades. A secondary objective is the improvement of habitability by reducing the propulsion generated onboard radiated noise and vibration levels. In addition, ship trials on the Island Class 110 WPB series C, have indicated that the Caterpillar 3516 main propulsion engines must be operated in exceedance of the specified engine performance curve (brake horsepower vs. engine speed). This has resulted in the inability of this particular engine design, as installed in the WPB 1343, to reach full engine RPM. Therefore, an additional objective of the class performance improvement is to bring into better balance the ship's speed/power characteristics with the engine operating envelope.

As an opening phase of the Island Class 110 WPB improvement initiative, model experiments were performed to evaluate the performance of a stern flap on these patrol boats. A stern flap, which is an appendage fitted to the hull at the transom, reduces the power required to propel the ship through the water. The U.S. Navy has been investigating the potential of stern flaps, as low cost retrofits, on many recent ship designs. Stern flaps represent a viable means of reducing power and increasing top speed for many hullforms, as test programs have shown at both model scale, Cusanelli and Forgach [2], and full scale, Cusanelli [3]. Reductions in propulsion generated vibrations and in signature levels, due to improvements in propeller cavitation characteristics, can also be realized through a stern flap installation.

DTMB Model 5526, representing the Island Class 110 WPB patrol boats, was constructed for this project. Eight stern flaps were manufactured for the present Model 5526 experiments. These stern flaps were designed as a series, to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. The selection of the best stern flap design for the Island Class was based upon several factors. There was a desire to reduce power at high speed ($28 \sim 32$ knots), to satisfy secondary powering criteria prescribed at cruising speed (24 knots) and best economic speed (12 knots), and to stay within the trim criteria.

A ship/model correlation allowance was estimated by the comparison of Model 5526 data to the BAINBRIDGE ISLAND (WPB 1343) standardization trials results. A ship/model correlation insures that the most accurate assessment of ship performance will be achieved. Traditional model scale powering experiments, which are necessary for a formal determination of correlation allowance, were not performed on Model 5526. Instead, model resistance predictions were utilized to estimate Island Class powering data for comparison to the standardization trials results.

DESCRIPTION OF MODEL AND EXPERIMENTAL PROCEDURE

A new geosim model, DTMB Model 5526 (linear scale ratio $\lambda = 5.706$), representing the Island Class 110 WPB patrol boats, was constructed for this project, Figure 1. Appendages installed on the model were: twin roll stabilizer fins, twin rudders, and twin shaft and strut propulsion appendages. The model also included a 5° wedge at the transom, inlayed into the hull surface. Experiments were conducted with eight different stern flap designs. Appendix A presents a more complete description of Model 5526.

All data presented in this report are for the full scale Island Class 110 WPB patrol boats operating in smooth, deep salt water with a uniform standard temperature of 59^o Fahrenheit (15^o Celsius). Unless explicitely stated otherwise, all full scale data include all relevent corrections, <u>including</u> the correction for the stern flap scale effect, as is described in a later section. All model experiments were conducted on Carriage 1, in the deep water basin of DTMB. Model experiments were conducted in accordance with standard procedures outlined for model experiments at DTMB. A more complete description of the experimental procedure is presented in Appendix B.

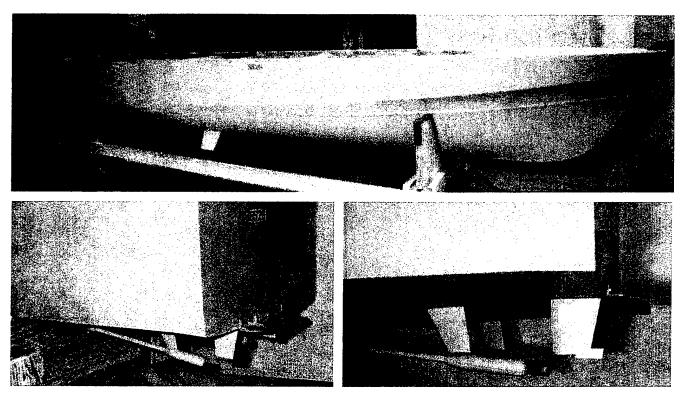


Fig 1. Island Class Model 5526 with stern flap installed

SHIP/MODEL COMPARISON - CORRELATION ALLOWANCE ESTIMATE

A ship/model comparison was performed between the BAINBRIDGE ISLAND (WPB 1343) standardization trials results, Haupt and Puckette [4], and Model 5526 estimated powering data. From this comparison, a ship/model correlation allowance was estimated for the new Model 5526. Model scale powering experiments, which are necessary for a formal determination of correlation allowance, were not performed on Model 5526. Present Model 5526 resistance test data, representative Island Class propeller open water performance data, and estimated propeller-hull interaction coefficients were utilized to estimate Island Class powering data. The estimated model powering data was then used for comparison to the ship trials results, presented in Appendix B.

From the ship/model comparison between BAINBRIDGE ISLAND (WPB 1343) trials results and Model 5526 estimated powering data, it is recommended that the value of $C_A = 0.0003$ be used as the correlation allowance for the Island Class 110 WPB. The stated Island Class correlation allowance, $C_A = 0.0003$, should be viewed only as a model testing adjustment factor which brings the present model estimated powering performance (based on resistance tests and propeller open water tests) in line with the measured trials powering data. At this time, any comparison to the US Navy Correlation Data Base [5] should be done with great caution. It is recommended that an effort should be made to determine the Island Class correlation allowance through a traditional model powering test series.

STERN FLAP EVALUATION AND SELECTION

The stern flap selection experiments were conducted at an equivalent Full Load condition of 163.39 long tons, LCG = 4.645ft (1.42m) aft of midships. Eight stern flaps were manufactured for the present Model 5526 experiments, their principal dimensions are presented in Table 1. These stern flaps were designed as a series to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. The first series, comprised of flaps #1, #2, #3, and #4, was designed to investigate variations in flap chord length, while holding span constant at 16 ft (4.9 m). The second series, comprised of flaps #3, #5, and #6, was designed to investigate variations in span, while holding chord length constant at 2 ft (0.61 m). The third series, comprised of flaps #1, #7, and #8, was also designed to investigate variations in span, while holding chord length constant at 0 ft (0.3 m). And the fourth series, comprised of flaps #1 versus #6 and #2 versus #5, was designed to investigate variation, while holding respective total planform area constant. All flaps were valuated over a range of angles, nominally 0 to 10 degrees, trailing edge down.

	Island Class	110 WPB	Stern Flaps	
	Ship S	Scale Dimen	sions	
<u>Flap#</u>	Chord Length	<u>Span</u>	Planform Area	Angles Tested
	(ft)	(ft)	(sq. ft)	(trail edge down)
1	1	16	15.6	0°, 5°, 7.5°, 10°
2	1.5	16	23.0	0°, 5°, 10°
3	2	16	30.3	0°, 5°, 7.5°, 10°
4	2.5	16	37.3	0°, 5°, 10°
5	2	12.4	23.0	0°, 5°, 7.5°, 10°
6	2	8.7	15.6	0°, 5°, 7.5°, 10°
7	1	12.4	11.9	0°, 5°, 7.5°, 10°
8	1	8.7	8.2	7.5°, 10°

 Table 1. Principle dimensions of stern flaps tested on Model 5526

The selection criteria for the Island Class 110 WPB stern flap design was prescribed by the USCG Boat Engineering Branch (USCG ELC-024), as follows:.

Selection criteria for the Island Class 110 WPB stern flap design

- Maximize reduction in ship powering over high speed range of 28 to 32 knots.
- Disallow any increase in ship powering at cruising speed, as indicated by performance at 24 knots.
- Limit ship running trim modification (bow down) to 1.0 degrees, at all speeds.

Model resistance experiments were conducted for the stern flap evaluation. Stern flap resistance performance is generally considered to be indicative of powering performance. Therefore, the prescribed powering criteria for the Island Class stern flap design were evaluated through model resistance

experiments. The complete Model 5526 data and analysis, pertaining to the stern flaps evaluation, selection, and performance, on the Island Class 110 WPB patrol boats, is contained within Appendix B. A summary of the Island Class model stern flap optimization experiments is presented in Table 2. The data of Table 2 is presented for each stern flap only at the angle where the maximum high speed performance was exhibited, while also satisfying the secondary powering and trim modification criteria.

Ste	Stern Flap Optimization - Model Scale Resistance Performance					
Flap#	Angle TED (degrees)	Economic Speed: 12 knots (PE flap/base)	Cruising Speed: 24 knots (PE flap/base)	High Speed: 30 knots (PE flap/base)	Maximum Trim Modification (∆ degrees)	
1	7.5	0.979	0.982	0.999	-0.65	
2	5.0	0.976	0.993	1.003	-0.26	
3	5.0	0.962	0.992	1.003	-0.32	
4	5.0	0.969	0.995	1.009	-0.31	
5	7.5	0.969	0.976	1.007	-1.00	
6	7.5	0.979	0.979	0.997	-0.63	
7	10.0	0.986	0.974	0.999	-0.96	
8	10.0	0.993	0.983	1.002	-0.72	

Table 2. Summary of stern flap optimization experiments

Model stern flap #6, at 7.5 degrees, exhibited the best overall reduction in ship resistance at high speed while still satisfying the secondary powering and trim modification criteria. This design represents a full scale stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5° trailing edge down relative to the local slope (run) at the 4 ft (1.22 m) buttock.

STERN FLAP PERFORMANCE

Resistance

The resistance performance of the selected stern flap, chord length 2 ft (0.61 m), span 8.7 ft (2.7 m), and angle of 7.5° TED, on the Island Class 110 WPB patrol boats, over the entire speed range of 10 through 32 knots, was predicted directly from experimental data on Model 5526. Resistance predictions were made at both the Full Load condition of 163.39 L. tons, LCG = 4.645ft (1.42m) aft of midships, and at the Minimum Operating Load (Min-Ops) condition of 143.61 L. tons, LCG = 5.253ft (1.6m) aft of midships. The following predictions are determined at model scale for the two loading conditions.

Full Load: Model resistance predictions indicate a decrease in ship effective power (P_E) when the stern flap is installed for all speeds tested (10 - 32 knots). The maximum stern flap P_E reduction is predicted to be 3.76 percent at a speed of 16 knots. The average decrease in P_E , over the high speed range (as indicated by 28 through 32 knots), is approximately 0.82 percent.

5

Min-Ops: A decrease in ship P_E , when the stern flap is installed, is again indicated for all speeds tested. The maximum stern flap P_E reduction is predicted to be 3.74 percent at a speed of 15 knots. The average high speed decrease in P_E is approximately 0.96 percent.

Full Scale Projected Delivered Power

The model resistance predictions were then used to estimate powering with and without the stern flap. Model resistance, representative class propeller open water performance data, and estimated propeller-hull interaction coefficients, were utilized to estimate Island Class powering data. For a complete description of the powering estimation procedures, refer to Appendix B.

While significant powering improvement is indicated from these Model 5526 stern flap experiments, the actual full scale stern flap on the Island Class would generally be expected to exceed the performance improvement shown on the model. Ship trials have indicated that the actual performance improvement of full scale prototype stern flaps generally exceed that of the model predictions, in the range of roughly 2% to as much as 12%, Cusanelli [3]. Within the last year, a beneficial stern flap scale effect has been firmly identified through full scale ship trials, model testing with varying model sizes, and computational fluid dynamics calculations. A simple quantitative empirical "performance projection tool", for estimating the magnitude of the stern flap scale effect, is under development. This performance tool was utilized to calculate new projections of Island Class stern flap performance.

Island Class 110 WPB stern flap performance projections, adjusted for stern flap scaling effects, are presented in Figure 3 and summarized in Table 3. Data in Figure 3 is presented as delivered power and propeller RPM ratios, defined as the value required with the stern flap installed divided by the value required for the baseline (no flap) configuration, as a function of ship speed. A ratio below 1.0 denotes a reduction in power or propeller RPM, due to the installation of the stern flap. The Island Class performance estimations, shown in figure 3 and also in table 3, do not account for propeller cavitation.

The installation of the stern flap on the Island Class 110 WPB results in a delivered power (P_D) reduction for all speeds in the ship operating profile. The incipient speed where the stern flap results in a P_D reduction is estimated to be below the 12 knot ship minimum operating speed at engine idle (best economic speed). The stern flap allows the captain the capability to maintain any ship operating speed with less delivered power, and lower engine (or shaft) speed, thus increasing range. Conversely, any equivalent engine horsepower or engine RPM maintained with the flap installed, would result in an increase in speed over the existing patrol boat.

The selected stern flap caused a power reduction at high speed, satisfied the secondary powering criteria prescribed at cruising speed and best economic speed, and did not exceed the trim criteria.

Island Class 110 WPB	Stern Flap	Projected P	erformance
Item	Design Criteria	Full Load	Min-Ops
Power @ High Speed: 28-32 knots	Maximize Reduction	-0.82%	-0.96%
Projected Maximum Speed		27.85 kts	30.38 kts
Increase in Maximum Speed		+0.80 kts	+0.38 kts
Power @ Cruising Speed: 24 knots	No Increase	-3.7%	-3.3%
Maximum Reduction in Powering		-5.8% @ 16 kts	-5.8% @ 15 kts
Incipient Speed for Effectiveness		< 12 (@ idle)	< 12 (@ idle)
Annual Fuel Consumption		-4.5%	-3.9%
Modification to Trim (Bow Down)	Not to Exceed 1.0°	-0.6°	-0.6°

Table 3. Island Class stern flap: Summary of full scale projected performance

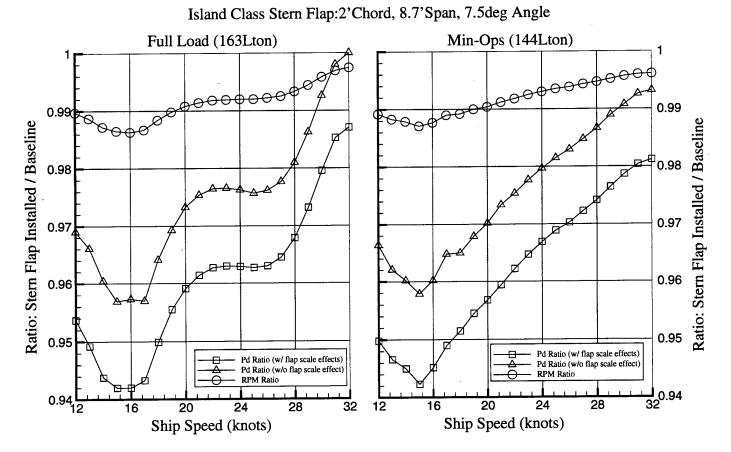


Fig 2. Island Class, full scale projected stern flap performance

The following predictions for both the Full Load condition, and the Min-Ops condition are based on model resistance data, propeller characteristics, and flap scale effect adjustments.

<u>Full Load</u>: The maximum stern flap P_D reduction is projected to be 5.8 percent at a speed of 16 knots. The maximum attainable speed, for the Island Class 110 WPB patrol boats with the stern flap installed, is projected to be 27.85 knots, at a total shaft power of 2583 hP, with a propeller speed of 786.3 RPM (engine speed 1832 RPM). This represents an increase in top speed of 0.80 knots over the existing boats.

<u>Min-Ops</u>: The maximum stern flap P_D reduction is projected to be 5.8 percent at a speed of 15 knots. The maximum attainable speed, with the stern flap installed, is projected to be 30.38 knots, at a total shaft power of 2635 hP, with a propeller speed of 812.9 RPM (engine speed 1894 RPM). This represents an increase in top speed of 0.38 knots.

The projected shaft powering at both the Full load condition and the Min-Ops condition, with/without stern flap installed, were compared to the engine operating envelope of the Island Class 110 WPB C series Caterpillar 3516 main engines. The projected performance at both the Full Load condition (163 L. tons) and at the Min-Ops condition (144 L. tons), indicate delivered power vs. engine speed requirements higher than that of the stated Caterpillar 3516 engine operating envelope (exceeds specified engine performance curve), over most of the speed range. Ship trials on the BAINBRIDGE ISLAND (WPB 1343), at the 151 L. tons displacement, also indicated that the engines were operated in exceedance of the manufacturer's specified engine performance curve. The installation of the stern flap does move the projected powering curve closer to the manufacturer's specified engine performance to remain below the manufacturer's specified engine performance envelope.

Fuel Savings Potential

The installation of a stern flap on the Island Class 110 WPB results in the capability to maintain ship speed with less delivered power, and lower shaft speed, and therefore, represents a potential for propulsion fuel savings. Fuel consumption rates, measured on the BAINBRIDGE ISLAND (WPB 1343) Caterpillar 3516 main engines, were utilized to estimate fuel consumption at the Full Load and Min-Ops conditions, with and without the flaps. An estimated speed-time profile, shown in table 4, based on 3000 annual operational hours, was supplied by USCG ELC-024 as discussed by Code 5200 personnel and customer representative Debu Ghosh. Assuming equivalent time-at-speed for the class with stern flap installed, the estimated average reduction in annual fuel consumption is 4.5 percent when operating at Full Load, and 3.9 percent for Min-Ops. Fuel savings was then estimated assuming a split of 2/3 time (2000 hr.) at full load, and 1/3 time (1000 hr.) at min-ops.

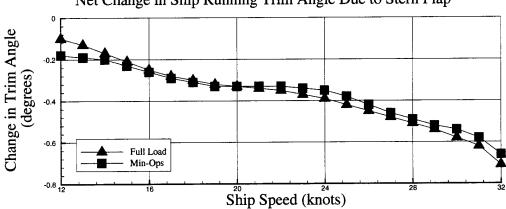

Speed	163Lton Speed-Time Profile (% of time at given speed)	144Lton Speed-Time Profile (% of time at given speed)
12	40	40
15	25	25
18	10	10
21	5	5
23	5	5
25	5	5
27	10	-
30	-	10

Table 4. Island C	Class: Estimated S	Speed Time Profile
-------------------	--------------------	--------------------

The annual fuel savings, resulting from a stern flap installation of the Island Class 110 WPB, would amount to 13,328 gallons, or approximately \$13,000 per ship / per year, on average. The indicated cost for fabrication and installation of a stern flap on this class is in the range of \$10,000 or less. Therefore, the time to recover the cost of the stern flap installation (pay-back on investment) is less than one year.

Ship Running Trim

Comparisons were made between the ship running trim, for the Island Class with and without the stern flap installed, for both the full load and min-ops conditions, Figure 3. The Island Class ship running trim, at both Full Load and Min-Ops, was affected very similarly by the stern flap. The net change in bow down trim angle, resulting from the stern flap, increased as ship speed increased. The change in trim angle remained within 0.6 degrees over the range of ship operational speeds ($12 \sim 30$ knots). Therefore, the selected stern flap satisfied the design criteria for ship running trim modification (bow down) not to exceed 1.0 degrees, at any speed.

Net Change in Ship Running Trim Angle Due to Stern Flap

Fig 3. Island Class, stern flap effect on ship running trim

Stern Waves

Visual observations and photographs were taken of the local transom flow generated behind Model 5526, with and without the stern flap installed, at 2 knot increments of ship speed, from 10 to 32 knots. The complete set of photographs is presented in Appendix B. Figure 4 presents the with/without stern flap comparison photographs at a ship speed of 16 knots, at the Full Load condition. The character of the transom flow was considerably altered by the stern flap over the speed range of 12 ~ 20 knots. Within these speeds, the transom flow appears to be decreased in both wave height and overall width by the stern flap. The ship speed at which the transom flow detaches (break-away) was reduced from approximately 17 knots for the baseline hull to 15 knots with the stern flap installed. Referring to Figure 4, the baseline hull at 16 knots still exhibits attached flow, while the stern flap case exhibits fully detached flow. At this speed, the stern flap exhibited the greatest modification to the transom flow. Not coincidentally, the stern flap also exhibited its maximum powering reduction at this 16 knot speed. For speeds in excess of 22 knots, there appears to be little visual difference in the local transom flow generated behind Model 5526 with or without the stern flap installed. However, at these higher speeds, the stern flap does appear to reduce the visual wake deficit behind the rudders, which appears as a trail of "white water" behind each rudder. This change in the rudder wake is a stern flap effect which had not previously been documented.

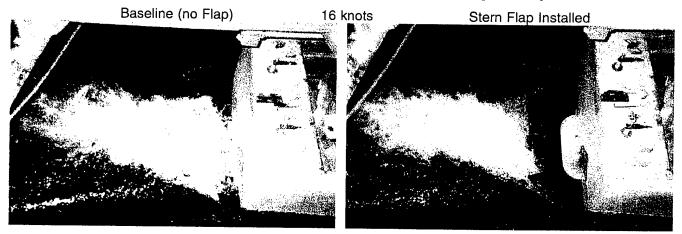


Fig 4. Island Class, model scale transom flow comparison, with/without stern flap installed

A qualitative assessment as to stern flap effects on transom flow can be generalized as follows. The stern flap causes a reduction in the observed slopes of the trailing waves, the overall height and sharpness of the ridges along these waves, the amount of residual "white water" trailing in the wake, the apparent height of the first wave crest (transom convergence wave), and the location of the first wave crest. The amount of wave breaking both directly behind the stern (the rooster tail) and also at the edge of the inner transom wave region is visually reduced with the flap.

Effects on Propeller Cavitation

Cavitation may be induced on a full scale ship propeller over parts of it's operating profile, due to the wide range of demands on speed and power. Propeller cavitation effects are not simulated in traditional tow tank model experiments. The reduced power due to the stern flap, leading to reduced propeller loading, combined with the flap's associated increased pressure and reduced flow velocity under the hull, can serve to suppress propeller cavitation and reduce thrust breakdown losses. Slight improvements in cavitation inception speed can also result from the reduced propeller loading at moderate speeds.

A complete assessment of the possible stern flap effects on propeller cavitation, will be made by NSWCCD Code 5400 during the Island Class 110 WPB propeller design study. This information will be published in a later report.

Measurement Uncertainty

As part of the standard model testing procedure for the David Taylor Model Basin, an estimate of the uncertainty in the model measurements is prepared. The details of the uncertainty analysis, as well as the repeat model test data, are presented in Appendix B, Table B3. The estimated uncertainty in the resistance measurement is 0.49% at 16 knots and 0.96% at 24 knots.

For this hullform, the measured improvement in the model resistance due to the stern flap is 3.8% at 16 knots and 2.2% at 24knots The magnitude of the performance improvement due to the stern flap far exceeds the uncertainty in the measurement.

SPRAY RAIL INSTALLATION

In order to promote a cleaner flow separation along the model lower chine, model scale chine rails were installed along an 87 inch (221 cm) length of the chine. This is a technique used at model scale only, in order to promote flow separation similar to that of the full scale ship, along the existing ship lower chine. This model scale chine rail is not to be interpreted as an additional hull treatment or appendage necessary for flow separation at full scale.

However, during model testing, it was noted that a significant amount of spray was being generated from the bow region, forward of the chine rails, at ship speeds in excess of 24 knots. At higher speeds, this spray resulted in model deck-wetting. Representatives of the USCG ELC-024, present at the model testing, reported that similar spray patterns - leading to forward deck-wetting, have been observed at full scale. The flow streamlines, which appear to generate this spray, originate in the region of the bow between the forwardmost edge of the bow stem and the ship's existing lower chine. Since there is nothing in the hull lines to deflect these flow streamlines (either at ship or model scale), the water tends to cling to the hull and progress upwards. At ship speeds of $24 \sim 30$ knots, the flow appears to separate off the

upper chine. At higher speeds, the flow progresses all the way to the deck line before separating. Once at the upper chine or deck level, the flow separates in a spray sheet which increases in size as speed increases. It was suggested by the DTMB test engineers to add "bow spray rails" as a continuation of the chine rails, in order to promote better flow separation of the flow streamlines which appeared to generate the bow spray sheet.

In contrast to the chine rails which were installed on the model, the addition of "bow spray rails" extending forward of the existing hull lower chine represents a modification to the existing Island Class hull. The bow spray rails promoted flow separation at the level of the lower chine for all ship speeds, and affected a significant reduction in the amount of spray generated by the bow at higher speeds. Figure 5 shows a comparison of the bow wave and spray with/without bow spray rails installed, for full load at 28 knots. With the bow spray rails installed, there was no forward deck-wetting observed on the model at any speed. Model test data showed that the bow spray rails increase the effective power 0.2 to 1.3% for the 14 ~ 19 knot speed range, but do not affect the predicted power above 19 knots (see table B9a. "Island Class, resistance prediction (no flap), full load 163 L.tons, original model configuration without spray rail extension, Exp. 17" and table B9b. "Island Class, resistance prediction (no flap), full load 163 L.tons, Exp. 18 with "bow spray rails""). See Appendix A, "Model 5526 Description and Inspection", for further details regarding the installation of the chine rail, and bow spray rails on the model.

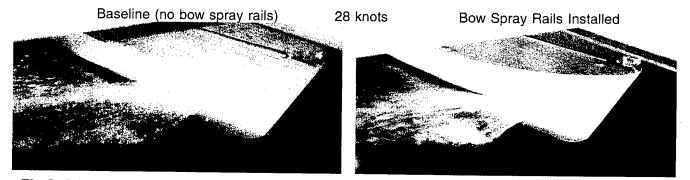


Fig 5. Island Class, model scale bow wave and spray comparison, with/without bow spray rails

It is recommended that bow spray rails be installed in the Island Class. The exact length of the bow spray rails should be determined through observation of the full scale spray pattern on the Island Class Patrol Boat. They should extend aft <u>at least</u> 7.25 ft (2.2 m) from the bow stem, following the contour indicated by the existing lower chine line, and project from the hull (thickness) approximately 1.5 inches (3.8 cm).

CONCLUSIONS

The U.S. Coast Guard initiated a research and development program with the intention of improving the performance capabilities of the Island Class 110 WPB patrol boats. As an opening phase of this program, model experiments were performed to evaluate the performance of a stern flap on this class. Eight stern flaps were designed and tested on Model 5526. These stern flaps were designed as a series, to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution.

The recommended stern flap for the Island Class 110 WPB is: chord length 2 ft (0.61 m), span 8.7 ft (2.7 m), and angle of 7.5° trailing edge down relative to the local slope (run) at the 4 ft (1.22 m) buttock.

The model tests directly show that the Full Load performance on the Island Class 110 WPB, with the stern flap, will have the following characteristics:

- Maximum attainable speed of 27.55 knots, increase of 0.5 knots
- Power reduction of 2.4% at cruise speed of 24 knots (Conversely range increased by 2.4%)
- Annual propulsion fuel savings of approximately \$8,500 per ship.

Our experience with stern flaps scale effects (model scale to ship scale performance) indicates that there will be an additional benefit above and beyond the benefit shown by the model tests.

With stern flap scaling taken into account the Full Load Performance on the Island Class 110 WPB, with stern flap, will have the following characteristics:

- Maximum attainable speed of 27.85 knots, increase of 0.8 knots
- Power reduction of 3.7% at cruise speed of 24 knots (Conversely range increased by 3.7%)
- Annual propulsion fuel savings of approximately \$13,000 per ship.

It is also recommended that bow spray rails be installed on the Island Class 110 WPB. The bow spray rails promoted flow separation at the level of the lower chine for all ship speeds, and caused a significant reduction in the amount of spray generated by the bow at higher speeds. At ship scale, the bow spray rails should extend at least 7.25 ft (2.2 m) aft from the bow stem, and follow the contour indicated by the existing lower chine line. The bow spray rails should project from the hull (thickness) approximately 1.5 inches (3.8 cm).

In order to insure that an accurate assessment of ship performance was achieved, a ship/model correlation allowance of $C_A = 0.0003$ was estimated, from model resistance experiments, prior to the stern flap testing. It is recommended, however, that an effort should be made to determine the Island Class correlation allowance through a traditional model powering test series.

ACKNOWLEDGMENTS

The authors would like to thank Chris Barry and Debu Ghosh, of the U.S. Coast Guard, Boat Engineering Branch (ELC-024), for their contributions and support towards this project.

<u>REFERENCES</u>

- [1] Polmar, N., <u>Naval Institute Guide to the Ships and Aircraft of the U.S. Fleet</u>, Sixteenth Edition, Naval Institute Press, Annapolis, Maryland, (1997).
- [2] Cusanelli, D.S., and K.M. Forgach, "Stern Flaps for Enhanced Powering Performance", Proceedings of Twenty-Fourth American Towing Tank Conference, College Station, Texas, (Nov. 1995).
- [3] Cusanelli, D.S., "Stern Flap Installations on Three U.S. Navy Ships", ASNE 1998 Symposium 21st Century Combatant Technology, Biloxi, Mississippi, (Jan. 1998).
- [4] Haupt, K.D., and L.T. Puckette, "U.S. Coast Guard 110 ft WPB Island Class C Standardization Trials Results USCG BAINBRIDGE ISLAND (WPB-1343)", NSCSES Report No. 60-264, (Oct. 1991).
- [5] Karafiath, G., "US Navy Ship-Model Powering Correlation and Propeller RPM Prediction", Proceedings of Propellers/Shafting '97 Symposium, Hampton Roads, VA, (Sept. 1997)
- [6] Cusanelli, D.S. and J. Bradel, U.S. Patent Number 5,343,742, "Floating Platform Tow Post", (Sept. 1994).
- [7] Grant, J. W., and C. J. Wilson, "Design Practices for Powering Predictions", DTNSRDC/SPD-0693-01, (Oct. 1976)
- [8] Hadler, J.B., et al., "Ship Standardization Trial Performance and Correlation with Model Predictions", SNAME Transactions, Vol. 70, (1962)

APPENDIX A

MODEL 5526 DESCRIPTION AND INSPECTION

- APPENDIX A -

A new geosim model, DTMB Model 5526, representing the U.S. Coast Guard Island Class 110 WPB patrol boats, was built for this project. Descriptions of Model 5526 hull, fabrication, and comparisons of the model hull surface to the numerical model, and descriptions of all model appendages included on the model during testing, are contained within this appendix.

MODEL 5526 - HULL

Model 5526, representing the USCG Island Class 110 WPB, is built to a scale ratio $\lambda = 5.706$ and is shown in figure A1, and in table A1. The model is constructed of sugar pine and was cut on a 5-axis numerically controlled milling machine based on a non-uniform rational b-spline (NURBS) Fastship file. The file is based on offsets provided by the sponsor in the form of an electronic data file.

An inspection of model 5526 was performed using DTMB's Laser Scanner and the results compared to the original Fastship surface. The results of the comparison are shown in figure A2. The results indicate that the majority of the model is within .03 inches (.076cm) of the Fastship surface and all points on the surface are within .05 inches (.13cm). Anything within a tolerance of .05 inches is considered acceptable.

MODEL 5526 - APPENDAGES

Appendages installed on Model 5526 during all the present experiments were: twin roll stabilizer fins, twin rudders, and open shaft and strut propulsion appendage suite. Experiments were also conducted with six different stern flap designs installed. The model surface also included a small wedge at the transom. All appendages were inspected in accordance with Code 52 ISO 9000 requirements and found to be acceptable.

<u>Chine Rails</u>: In order to promote a cleaner flow separation along this chine, model scale chine rails were installed. The chine rails were installed on both port and starboard sides of the model, extending from 15.25 in (38.7 cm) aft of the bow stem to 8.0 ft (2.43 m) aft of the bow stem on the model. The chine rails were made of plexi-glass 1/4 inch (0.64 cm) thick, and 1/2 inch (1.28 cm) in height. Therefore, the chine rails extended the lower chine 1/4 inch (0.64 cm) beyond the existing hull lines. This is a technique used at model scale only, in order to promote flow separation similar to that of the full scale ship along the existing ship lower chine. Figure A3 depicts the installation of the chine rails.

<u>"Bow Spray Rails"</u>: In contrast to the chine rails, additional "bow spray rails" were added to the model which represent an additional hull treatment which will alter the location of flow separation at full scale in addition to model scale. The bow spray rails extend from the bow stem to 15.25in (38.7cm) aft of the bow stem along the line indicated by the existing lower chine. These bow spray rails were added to the model at the suggestion of the DTMB engineers when tests indicated that there was significant bow spray at model scale. Representatives of the USCG ELC-024, present at the model testing, reported that similar

spray patterns - leading to forward deck-wetting, have been observed at full scale. Figure A3 depicts the installation of the bow spray rails.

Stern Flaps: Eight stern flaps were designed and manufactured for the Model 5526 experiments. A small-scale sketch depicting the geometry of the model tested stern flaps, and tabulated principal dimensions, are presented in Figure A4. These stern flaps were designed as several different series to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. The first series, comprised of flaps #1, #2, #3, and #4, was designed to investigate variations in flap chord length, while holding span constant at 16 ft (4.9 m). The span selected was the maximum reasonable width across the transom, without the flap impinging on the wake off the corners of the transom, and without requiring significant curvature of the flap around the tight radius at the turn of the bilge. The second series, comprised of flaps #3, #5, and #6, was designed to investigate variations in span, while holding chord length constant at 2 ft (0.61 m). The third series, comprised of flaps #1, #7, and #8, was also designed to investigate variations in span, while holding chord length constant at only 1 ft (0.3 m). And the fourth series, comprised of flaps #1 versus #6 and #2 versus #5, was designed to investigate variations in planform area distribution, while holding respective total planform area constant. A simple radiused corner treatment (in plan view) equal to the flap chord length, was chosen for all flap designs, to simplify construction and reduce full scale flap manufacturing costs. All flaps were evaluated over a range of angles, nominally in 2.5 degree increments, from 0 to 10 degrees trailing edge down (TED). The coordinate system used for flap angle is defined with zero degrees parallel to the slope of the local buttock angle (run) at the 4 ft (1.22 m) buttock. The gap between the transom and the flap was bridged by a small fairing strip fastened to the model to prevent cross-flow and pressure loss at the intersection between the forward edge of the flap and the transom.

<u>Transom Wedge</u>: A small transom wedge designed to be an integral part of (inlayed into) the ship plating at the transom. The manufacture of Model 5526 included this wedge as part of the model surface, and therefore, as on the ship, it is not a removable appendage. Bollinger Shipyard drawing No. 110WPB 085-003 indicates that the transom wedge has a longitudinal chord length of 2.5 ft (0.76 m) and a wedge angle of 5 degrees specified at the 4 ft (1.22 m) buttock.

<u>Rudders</u>: The rudders were designed and built for Model 5526 to conform with Bollinger Shipyard drawing No. 110BWPB 562-001. The rudders are designed with a root chord length 2.35 ft (0.72 m), a tip chord length 1.68ft (0.52m), and a total rudder height of 2.5ft (0.76m). The total wetted surface for the pair of rudders is 21.1ft² (1.96m²). The rudders were aligned parallel to the ship centerline for all experiments on Model 5526.

<u>Roll Stabilizer Fins</u>: The roll stabilizer fins were designed and built for Model 5526 to conform with Bollinger Shipyard drawing No. 110BWPB 565-001. The roll stabilizer fins are designed with a root chord length 3.75ft (1.14 m), a tip chord length 2.75ft (0.84m), and a total fin height of 3.0ft (0.91m).

The twin roll stabilizer fins total wetted surface is 40.0ft² (3.72m²). The roll stabilizer fins were aligned parallel to the ship centerline for all experiments on Model 5526.

<u>Propulsion Suite</u>: The open shaft and strut propulsion (twin shaftline) appendage suite consists of the shafts, main and intermediate shaft support struts, and main and intermediate strut barrels. The appendage were designed and built for Model 5526 to conform with Bollinger Shipyard drawing No. 110BWPB 161-001. Shaft angle relative to the baseline is 6.9 degrees, parallel to the ship centerline. The scope of the present model tests did not include model self-propulsion (powering) experiments. Therefore, in order to provide a model at a lower cost, the Model 5526 propulsion appendage suite was constructed of renwood in lieu of standard construction materials. This necessitates that standard functioning propulsion appendages must be manufactured for Model 5526 if future model experiments are to include self-propulsion.

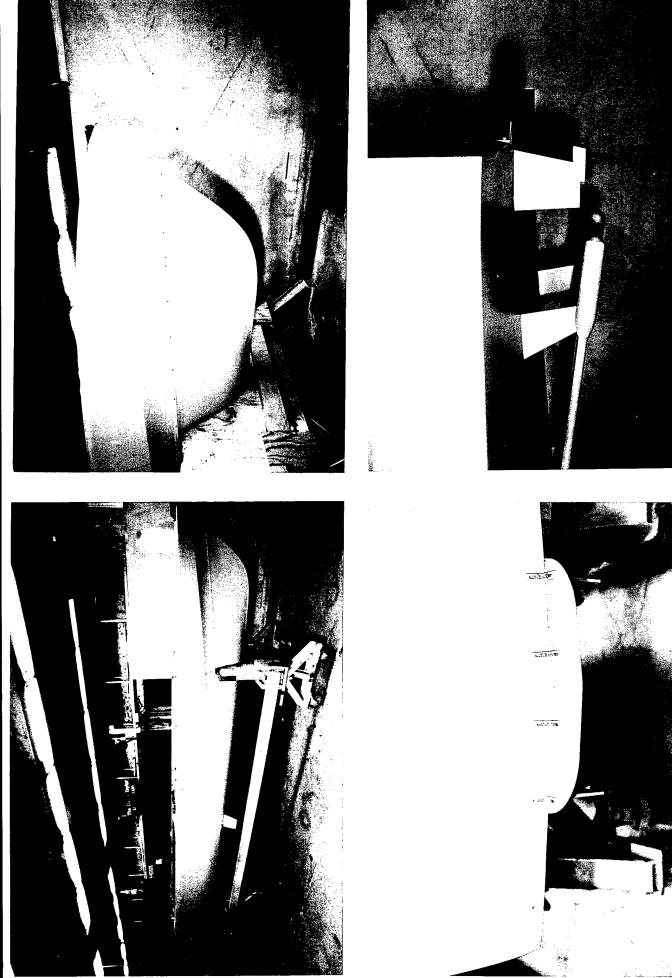
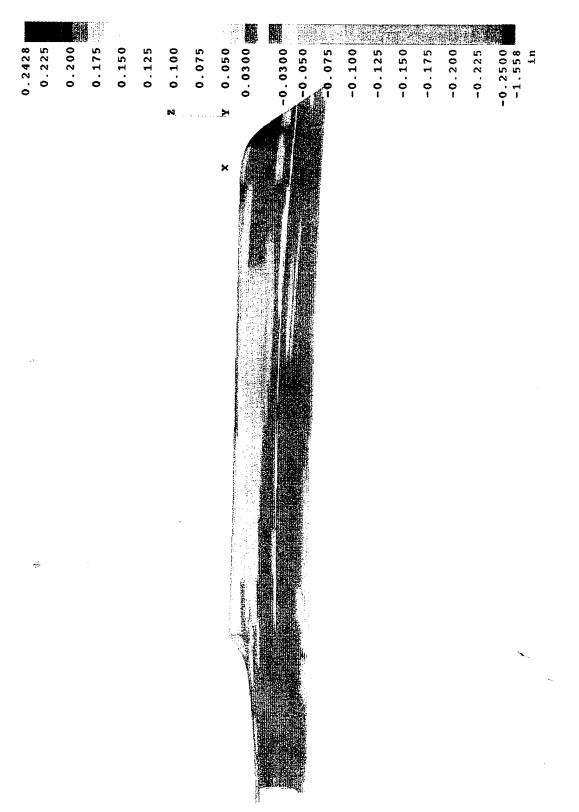
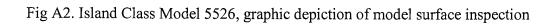
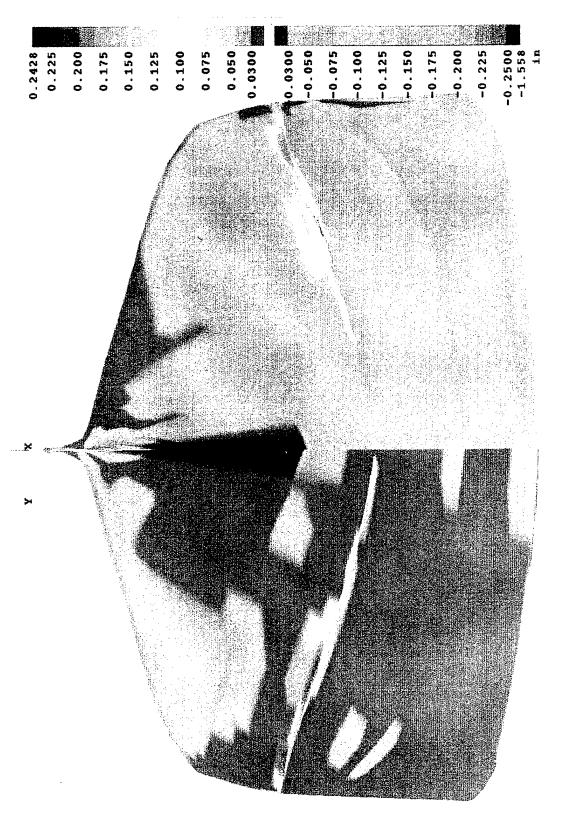
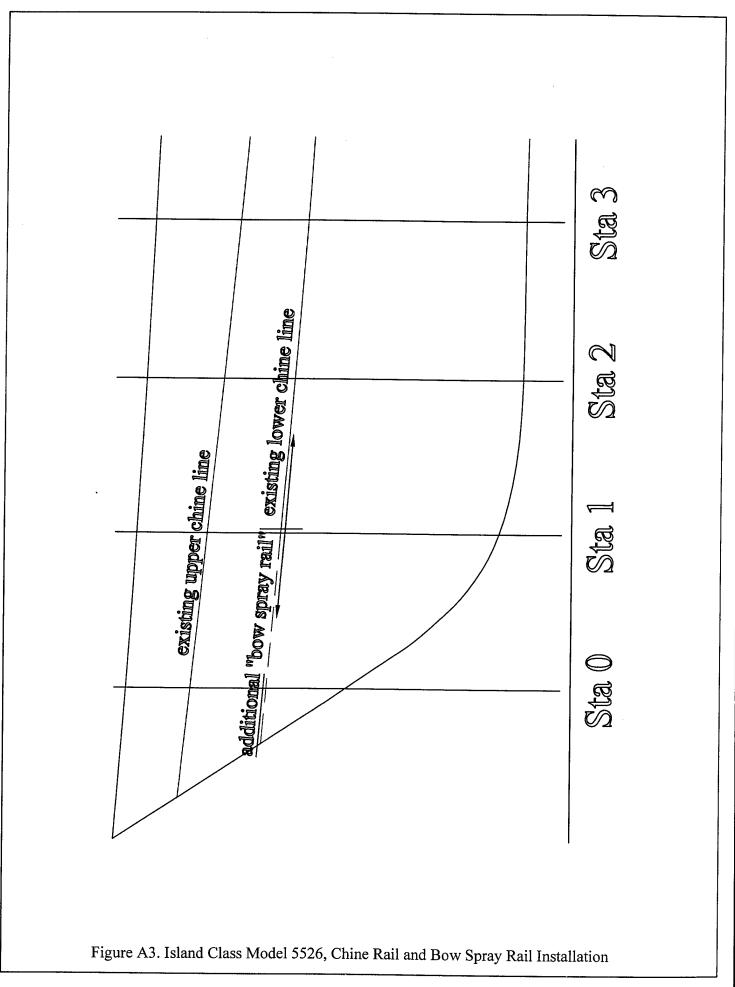
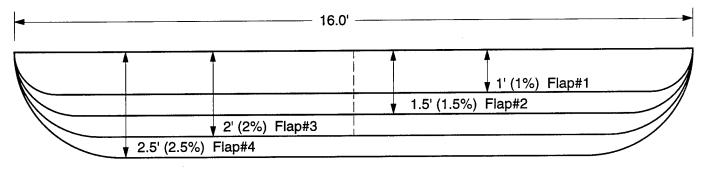
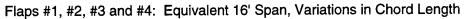
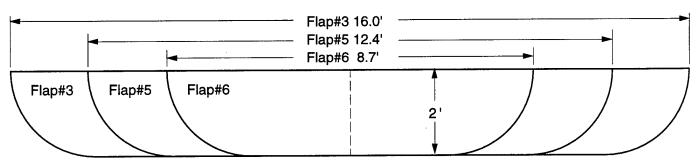




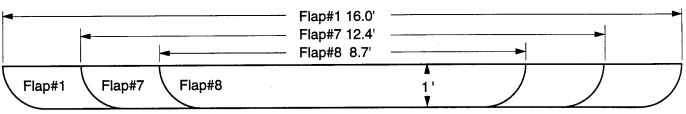
Fig A1. Photographs of Island Class Model 5526 and appendages, model tested stern flaps, "bow spray rails", and stern flap installation and testing hardware

Difference Between Actual and Desired Model Offsets

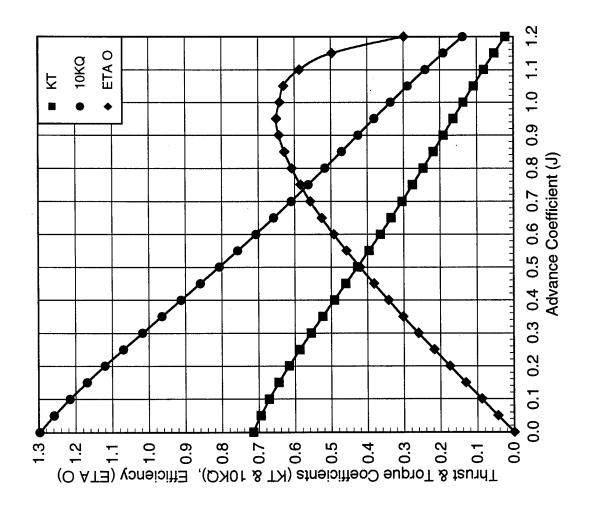
Difference Between Actual and Desired Model Offsets


Fig A2. Island Class Model 5526, graphic depiction of model surface inspection (cont.)


Island	d Class 110 WPE	3 Stern F	laps	Model 5526 $\lambda = 5.706$	
<u>Flap#</u>	Ship So Chord Length (ft)	c <mark>ale Dime</mark> <u>Span</u> (ft)	nsions <u>Planform Area</u> (sq. ft)	<u>Series</u>	Comments
1	1	16	15.6	chord series @16' span, span series @1' chord	Area Equivalent to #6
2	1.5	16	23.0	chord series @16' span	Area Equivalent to #5
3	2	16	30.3	chord series @16' span, span series @2' chord	
4	2.5	16	37.3	chord series @16' span	Longest Chord
5	2	12.4	23.0	span series @2' chord	Area Equivalent to #2
6	2	8.7	15.6	span series @2' chord	Area Equivalent to #1
7	1	12.4	11.9	span series @1' chord	
8	1	8.7	8.2	span series @1' chord	Smallest flap

Flaps #3, #5, and #6: Equivalent 2' Chord Length, Variations in Span



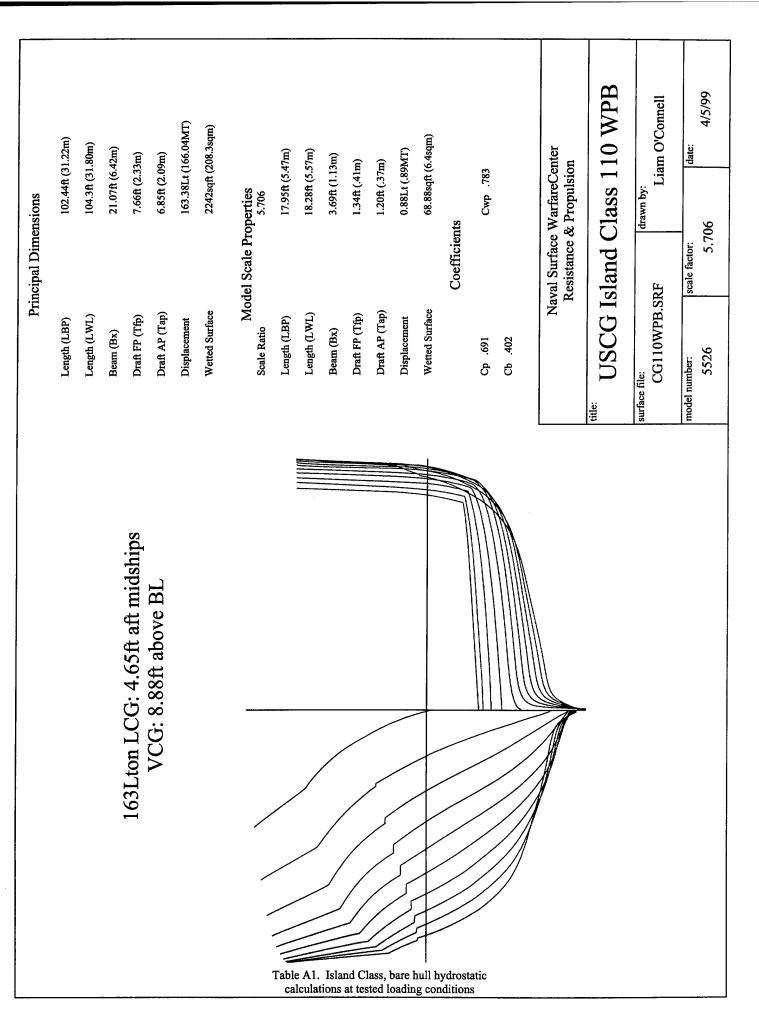
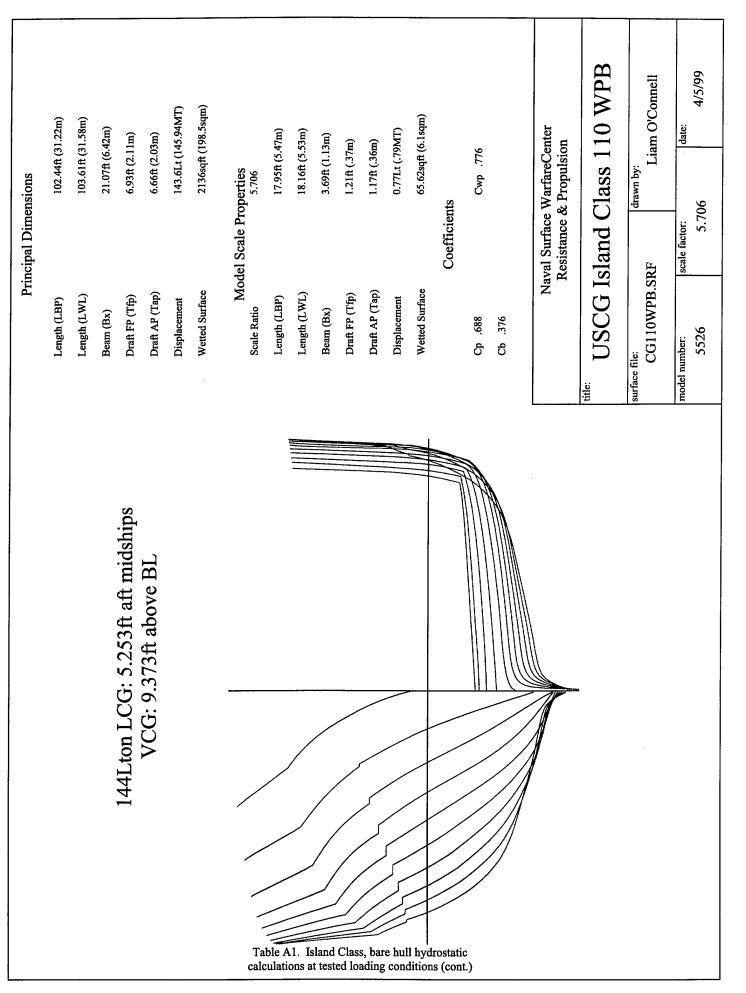

Flaps #1, #7, and #8: Equivalent 1' Chord Length, Variations in Span

Fig A4. Geometry of model tested stern flaps A9


Fig A5. Representative Island Class propeller open water characteristics used in delivered power estimates, as determined on cavitation-sized model propeller 5128

ICIENTS PELLER 5128 .00	ETAO	0.000	0.	. •	Τ.	•	0.218	.26	30.	4	0.383	.42	0.458	49.		പ	0.584		N	0.643	0.650	0.641	0.630	Ω.	0.497	0.299	ר (0.7R) ח	ROTATION RH
TER COEFF TION PROF EXP NO. 1	10KQ	1.298	1.259	2	1.169	1.120	1.070	1.018	0.965	0.913	0.860	0.808	0.757	0.707	.65	.61	56	0.517	0.471	0.426	ω	0.336	0.289	Ň	0.191	0.138	CHORD LENGT 9.190 in	ADES
OPEN WATI RD CAVITA %90	Ł	0.716	Ö.	.67	0.645	.61	0.587	0.556	0.524	0.492	0.460	0.428	0.396	0.365	0.335	.30	0.276	4	0.219	σ	0.164		0.109	.08	0.052	0.022	в ^с	NO. BL 5
FAIRED OP COAST GUARD 2/6/90	-7	0.000	0.050	0.100	0.150	0.200	0.250	0.300	0.350	0.400	0.450	0.500	0.550	•	0.650	0.700	0.750	0.800	0.850	0.900	0.950	1.000	1.050	1.100	1.150	1.200	DIAMETE 15.502 ir	P/D (0.7R) 1.238

Ising constrained with the second of the		Princ	Principal Dimensions	
model nui on		Length (LBP)	102.44ft	.(31.22m)
title:		Length (LWL)	103.67f	(31.60m)
model nui of		Beam (Bx)	21.07A	(6.42m)
model nui on	sqidships	Draft FP (Tfp)	7.18ft (2	.19m)
Displacement 151.01.(153.46MT) Weted Surface 151.01.(153.46MT) Weted Surface 151.01.(153.46MT) Weted Surface 151.01.(153.46MT) Weted Surface Model Scale Properties Store 151.01.(153.46MT) Model Scale Properties Store 151.01.(153.46MT) Model Scale Properties Store Model Scale Properties Store 151.01.(153.46MT) MIR Properties Model Scale Properties Store Model Scale Properties Store 151.01.02.1.60MT) MIR Properties Model Mire Model Scale Properties Store Model Scale Properties Store Model Scale Properties Store Model Mire Model Mire <thmire< th=""> Model Mire <thm< td=""><td>11tt above BL</td><td>Draft AP (Tap)</td><td>6.74ft (2</td><td>.05m)</td></thm<></thmire<>	11tt above BL	Draft AP (Tap)	6.74ft (2	.05m)
Weted Surface 2135sett (202.1stm) Andel Scale Properties 5706 Seale Ratio 5706 Length (LBP) 1295 (547m) Length (LBP) 1395 (547m) Length (LBP) 1395 (547m) Length (LBP) 1395 (547m) Dent PP (TP) 1817 (554m) Dent PP (TP) 1186 (547m) Dent PP (TP) 0.811 (130M) Dent PP (TP) 0.811 (130M) Dent PP (TP) 0.811 (130M) Internet: 0.811 (100M) Internet: 0.5100M)		Displacement	151.0Lt	(153.46MT)
Model Scale Properties seate Ratio Model Scale Properties 5.706 Length (J,W1) 1.795ft (5.4m) Length (J,W1) 18.17ft (5.4m) Draft AP (Tap) 1.18ft (3.6m) Draft AP (Tap) 0.811.4 (3.3m) Verted Surface 6.82aft (6.2agm) Draft AP (Tap) 0.811.4 (3.3m) Draft AP (Tap) 1.18ft (3.6m) Draft AP (Tap) 1.18ft (3.6m) Draft AP (Tap) 1.18ft (3.6m) Draft AP (Tap)		Wetted Surface	2175sqf	t (202.1sqm)
Length (LBP) 1795ft (5.47m) Length (LWU) II.176ft (5.54m) Beam (BA) 3.60ft (1.13m) Draft PP (TP) 1.26ft (3.8m) Draft PP (TP) 1.26ft (3.8m) Draft PP (TP) 1.16ft (3.6m) Draft PP (TP) 1.26ft (3.8m) Draft PP (TP) 0.811.1 (81) Draft PP (TP) 1.26ft (3.8m) Draft PP (TP) 0.811.1 (81) Draft PP (TP) 0.911.1 (91) Draft PP (TP) 0.911.1 (91) <td></td> <td>Model Scale Ratio</td> <td>l Scale Properties 5.706</td> <td></td>		Model Scale Ratio	l Scale Properties 5.706	
Length (LWL) I.176 (5.54m) Beam (BX) 3.60f (1.13m) Draft PF (Tp) 1.26f (38m) Draft AP (Tap) 1.18f (36m) Draft AP (Tap) 0.8114 (33MT) Weted Surface 0.8114 (33MT) Coefficients 6.82sqft (6.2sqm) Coefficients 6.82sqft (6.2sqm) Coefficients 0.8114 (33MT) Coefficients 6.82sqft (6.2sqm) Coefficients 6.82sqft (6.2sqm) Coefficients 6.82sqft (6.2sqm) Table Coefficients Coefficients 6.82sqft (6.2sqm) Coefficients 6.83sqft (6.2sqft (6.2sqf		Length (LBP)	17.95 f (5.47m)
Beam (BX) 3.69ft (1.13m) Dark FP (Tip) 1.26ft (38m) Dark AP (Tap) 1.26ft (38m) Draf AP (Tap) 1.18ft (36m) Draf AP (Tap) 0.81Lt (83MT) Wetted Surface 6.82seft (6.2spm) Cp. 69 Cwp. 778 Cp. 59 Cwp. 778 Cb. 386 Cwp. 778 Ch. 386 Cmp. 778 Ch. 386 C		Length (LWL)	18.17ft (;	5.54m)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Beam (Bx)	3.69 ft (1	13m)
Draft AP (Tap) 118R (36m) Displacement 0.81Lt (83MT) Verted Surface 66.82sqft (6.2sqm) Verted Surface 66.82sqft (6.2sqm) Coefficients Coefficients Cp. 59 Cwp. 778 Cp. 386 Cwp. 778 Ch. 386 Cwp. 778 Ch		Draft FP (Tfp)	1.26A (.3	8m)
Displacement 0.811.4 (.83MT) Weted Surface 66.82aqft (6.2aqm) Weted Surface 66.82aqft (6.2aqm) Coefficients Coefficients Cp. 59 Cwp778 Cp. 50 Cwp778 Cp. 50 Cwp778 Cp. 50 Cwp778 Cp. 50 Cwp778 Coefficients Complexion Inite: Naval Surface WarfareCenter Nite: USCG Island Class 110 WPB Inite: CG110WPB.SRF Inder number: Scale factor: 5526 5.706 4/5/99		Draft AP (Tap)	1.18ft (.3	6m)
Wetted Surface 66.82stft (6.2stm) Coefficients Coefficients Cp. 69 Cwp. 778 Cp. 386 Cwp. 778 Cb. 386 Cwp. 778 Ch. 386 Cwp. 778 Statistic & Propulsion Naval Surface WarfareCenter Resistance & Propulsion Itien: Inite: USCG Island Class 110 WPB Statistic file: Itian O'Connell Inotei scale factor: Itian O'Connell Statistic file: Statistic factor: Itian O'Connell		Displacement	0.81Lt (.	33MT)
Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Coefficients Comparison Naval Surface WarfareCenter Resistance & Propulsion Itile: USCG Island Class 110 WPB Itile: USCG Island Class 110 WPB Itile: Coll 10WPB.SRF Transformer S526 S.706 4/5/99		Wetted Surface	66.82sqf	(6.2sqm)
Cp. 69 Cwp. 778 Cb. 386 CarfareCenter Resistance & Propulsion Naval Surface WarfareCenter Resistance & Propulsion Resistance & Propulsion Intle: USCG ISland Class 110 WPB Surface file: Idrawn by: CG110WPB.SRF Idrawn by: model number: scale factor: 5526 5.706		0	Coefficients	
Cb. 386 Naval Surface WarfareCenter Resistance & Propulsion Itile: USCG Island Class 110 WPB Srife: CG110WPB.SRF Model number: 5226 5.706 1/15/0 1/		Ср. 69	Cwp .77	8
Naval Surface WarfareCenter Resistance & Propulsion ittle: USCG Island Class 110 WPB under drawn by: cG110WPB.SRF drawn by: model number: scale factor: date: 5526 5.706 4/5/99		Cb .386		
title: USCG Island Class 110 WPB surface file: CG110WPB.SRF CG110WPB.SRF Liam O'Connell nodel number: 5526 5.706 4/5/99		Naval Res	l Surface WarfareC sistance & Propulsi	enter on
10WPB.SRF drawn by: Liam O'C scale factor: 6 5.706			and Class 1	10 WPB
scale factor: date: 6 5.706		urface file: CG110WPB.SRF	drawn by	am O'Connell
-		9	ale factor: 5.706	

APPENDIX B

MODEL EXPERIMENTS AND ANALYSIS

- APPENDIX B -

Model scale data and analysis pertaining to the evaluation, selection, and performance of a stern flap design for the U.S. Coast Guard Island Class 110 WPB patrol boats are contained within this appendix.

Hardware and Procedures

The Test Agenda, which includes a list of experimental numbers and corresponding ship/model conditions, is presented in Table B1. All data contained herein was collected on Carriage 1 in the deep water basin of DTMB. Model 5526 was ballasted to three different representative displacements and loading conditions for this test series. A Ship Trials loading condition of 151 L. tons, LCG = 5.09ft (1.55m) aft of midships, static trim = -1.0° , was utilized for the ship/model comparison between the standardization trials on the BAINBRIDGE ISLAND (WPB 1343) and powering estimates on Model 5526. The stern flap evaluation, selection, and performance, was determined at the Full Load condition of 163.39 L. tons, LCG = 4.645ft (1.42m) aft of midships. Stern flap performance at a second condition of Min-Ops loading 143.61 L. tons, LCG = 5.253ft (1.6m) aft of midships, was also determined. The Model 5526 displacements, appended wetted surfaces, drafts, and other related quantities, pertaining to the three tested loading conditions, are presented in Table B2.

The model was restrained in surge, sway, and yaw, but was free to pitch, heave, and roll. Data measurements were made using DTMB standard instrumentation. Model resistance was measured using a 200 lbf (890 N) capacity 4 inch (10.16 cm) block gauge. The linear bearing, floating platform tow post system was utilized; Cusanelli and Bradel [6]. The static location of the model tow point was at 81.5 inches aft of the FP, parallel to, and at the same level as, the water surface. Side force was measured with a 20 lbf (89 N) capacity 4 inch (10.16 cm) block gauge. Dynamic running rise/sinkage was determined at the forward and aft perpendiculars by wire potentiometers. Resistance experiments, to determine stern flap performance, were conducted nominally at two knot (ship scale) increments over the full range of ship speeds from 12 through 32 knots. Model data was collected over smaller speed increments when determined necessary. Stern flap evaluation/optimization experiments were conducted at six speeds, in 4 knot increments over the speed range, (12, 16, 20, 24, 28, 32 knots). The ship/model comparison experiments were conducted at the corresponding ship speeds measured during the standardization trials on the BAINBRIDGE ISLAND (WPB 1343). The appropriate force measurements and/or coefficients were monitored and/or plotted throughout the experiments, until the Project Manager (Model Test) determined that necessary and sufficient measurements had been collected to fulfill the experimental agenda.

In order to induce turbulent flow over the length of the model hull, one-eighth inch (0.318 cm) diameter by one-tenth inch (0.254 cm) height turbulence stimulator studs were placed aft of the stem at approximately 1 percent of the waterline length, spaced 1 inch (2.54 cm) apart.

Measurement Uncertainty

Resistance measurement uncertainties (precision errors) were examined on Model 5526 at two ship speeds, 16 and 24 knots. The precision error, also known as random or repeatability error, is an indicator of the "scatter" in the data. Table B3 summarizes the measured uncertainty (precision errors) in resistance measurements for the present Model 5526 experiments. For Island Class Model 5526, the uncertainty is in the range of $\pm 0.5 \sim 1.0$ percent of the nominal resistance measurement. Precision error is a function of the unsteadiness of the phenomenon being measured, and the instability of test equipment. For the reported uncertainty analysis, the precision error limit values were determined directly from repeated model test measurements. A minimum sample size of 12 individual data spots was utilized for each analysis. These are first-order precision limits, reflecting the scatter in a data set collected over the time span of a single experiment, with the identical model, equipment, and instrumentation, utilized throughout the model experiments reported herein.

Data Analysis

Resistance and powering data presented in this report are for the full scale Island Class 110 WPB patrol boats operating in smooth, deep salt water with a uniform standard temperature of 59^o Fahrenheit (15^o Celsius). The 1957 ITTC Model-Ship Correlation Line was used for the frictional resistance calculations. Stern flap performance, as determined from resistance and estimated powering results, are presented at one knot (ship scale) increments over the full range of ship speeds from 12 through 32 knots. Stern flap evaluation/optimization experiments are presented at six speeds, in 4 knot increments over the speed range. The ship/model comparison is presented at the corresponding ship speeds as measured during the standardization trials on the BAINBRIDGE ISLAND (WPB 1343).

Full scale Island Class effective power (P_E) predictions were determined directly from resistance experiments conducted on DTMB Model 5526. Model self-propulsion (powering) experiments were not conducted on Model 5526 at this time. Estimates of the Island Class delivered power (P_D), propeller RPM, with and without stern flap, were made by the combination of the following elements:

- Effective Power (P_F) from the present resistance experiments on Model 5526.
- Representative class propeller open water performance data, as measured on a single 15.502 inch (39.37 cm) cavitation-sized model propeller 5128. Model 5526 propulsion-sized propellers, which would have a model scale diameter of 8.7 inches (22.1 cm), do not exist for the Island Class.
- Assumed propeller-hull interaction coefficients of 1-t, $1-W_T$, and η_R , representative of similar patrol craft, and iterated to values which best matched estimated model powering data to full scale powering data.

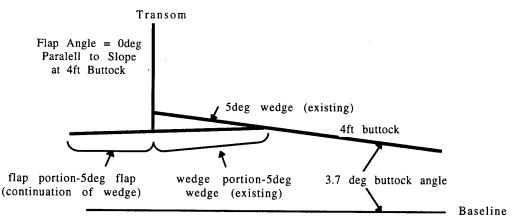
Ship/Model Comparison - Correlation Allowance Estimate

Prior to the stern flap evaluation and selection, it was necessary to perform a ship/model comparison between Model 5526 and standardization trials results from the BAINBRIDGE ISLAND (WPB 1343). This comparison was made in order to estimate the ship/model correlation allowance for the new Model

5526. A ship/model correlation insures that the most accurate assessment of ship performance will be achieved. Powering performance trials were conducted on the BAINBRIDGE ISLAND (WPB 1343), off the coast of Cape Henry, Virginia, in 1991; Haupt and Puckette [4]. An excerpt from this powering trials report is presented as Table B4. This table contains the propulsion performance data at a loading condition of 151 long tons, LCG of 5.09' aft of midships, static trim of -1.0°. This loading condition was chosen by USCG ELC-024, for the ship/model comparison, because it was the most representative of the intended Island Class full load condition of 163 long tons (nominal).

Model scale powering experiments, which are necessary for a formal and precise determination of correlation allowance, were not performed on Model 5526. Instead, model resistance predictions, representative class propeller open water performance data, and assumed propeller-hull interaction coefficients, were utilized to estimate Island Class powering data for comparison to the ship trials results. Since powering experiments were not conducted on Model 5526, the standard methods by which ship/model correlation coefficients are determined could not be utilized. A method relating model resistance predictions to ship trials powering data had to be developed. A powering estimate for the Island Class, at the trials loading condition, was prepared by DTMB. It was desired that this powering estimate reflect the exact speeds, delivered powers, and propeller RPMs measured during the WPB-1343 standardization trials of Table B4. Propeller-hull interaction coefficients of 1-t , 1-W_T, and η_R , representative of similar patrol craft, were then assumed, and propeller efficiency was calculated from the trials RPM and the open water coefficients from model propeller 5128. An iterative process of "fairing", or smoothing, of the assumed and/or calculated coefficients was necessary in order to retain all values within reasonable bounds for similar craft. Ultimately, ship resistance predicted from the Model 5526 experiments was utilized with the presumed propeller-hull interaction coefficients, to estimate full scale powering data. The ship/model powering correlation allowance was determined by solving for the value of C_A which, when used with the standard DTMB powering prediction method, Grant and Wilson [7], results in the best agreement between the ship standardization trial measured delivered power and the estimated delivered power from model experiments, Hadler, et al. [8]. Due to variations of C_A correlation with speed, some engineering judgment is used to select the best value. Though the full scale trial data often includes slow speed measurements, in practice, the correlation is done for the speeds where sufficient power is developed for accurate measurements. The highest speeds are generally of the most interest, because the high speed data for both model and ship is considered more accurate, and the prediction of maximum speed and power is a primary concern. However, for the Island Class at full power, the ship propellers exhibit characteristics of propeller cavitation. Comparison of full scale data at speeds where the ship propeller exhibits cavitation, to that of the (non-cavitation corrected) model predictions, would result in an erroneous correlation allowance.

Table B5 presents the ship/model powering comparison between BAINBRIDGE ISLAND(WPB 1343) and Model 5526, at the 151 L. ton loading condition, with variations in correlation allowance. The


comparisons, between ship trials measured delivered power and estimated model delivered power, are presented in DTMB standard form utilized for formal ship/model correlations: Power correlation C_p , and RPM correlation, C_N , which are defined as non-dimensional coefficients of: trial measurement / model prediction. It is recommended that the value of $C_A = 0.0003$ be considered the appropriate correlation allowance for the Island Class 110 WPB. The complete model resistance and powering (no flap), at 151 L. ton load condition, at $C_A = 0.0003$, are presented in Tables B6 and B7, and compared to the BAINBRIDGE ISLAND trials results in Figure B1. The stated correlation allowance, $C_A = 0.0003$, for the Island Class and the present ship/model comparison on the Bainbridge Island, should be viewed only as a model testing adjustment factor which brings the present model resistance predictions, utilized to estimate ship powering, in line with the measured ship trials data. At this time, any comparison to the NAVSEA Correlation Data Base [5] on other U.S. Navy ships, should be done with great caution. Prior to adding this Island Class correlation allowance to the data base, it is recommended that an effort be made to determine the ship model correlation allowance through a traditional model powering test series.

Stern Flap Evaluation and Selection

The stern flap optimization and selection experiments were conducted at an equivalent Full Load condition of 163.39 L. tons, LCG = 4.645' aft of midships, for six speeds, in 4 knot increments over the speed range, (12, 16, 20, 24, 28, 32 knots). Eight stern flaps were manufactured for the present Model 5526 experiments. Small-scale sketches and principal dimensions were presented in Figure A3. These stern flaps were designed as a series to systematically investigate variations in flap dimensions of chord length, span, angle, and planform area distribution. All eight flaps were evaluated over a range of angles, nominally in 2.5 degree increments, from 0 to 10 degrees trailing edge down. Stern flap design is affected greatly by mission requirements and selection criteria, as well as hullform design. Stern flaps exhibit specific resistance performance trends with respect to the design parameters. Increasing flap chord length or angle generally reduces the low speed performance, but improves the high speed resistance reduction. A compromise must customarily be reached between high and low speed performance, with the particular ship's operating profile indicating the relative importance of each. For the Island Class design, particular attention was also made as to the effects of the stern flap designs on ship running trim. Increasing flap chord length or angle tends to increase the magnitude of the generated bow down trim moment.

Stern Flap Coordinate System: The coordinate system used to define the stern flap angle (see following diagram) is referenced to the local run angle near the transom along the 4 ft (1.22 m) buttock. A zero degree (0°) stern flap is one which is a continuation of (or parallel to) this run angle. Flap angle is increased by rotating the flap trailing edge downward (TED). The run angle, on the Island Class 110 WPB, is 3.7° relative to the ship baseline. Ship drawings specify the angle of the transom wedge (inlayed into the present hull design) to be 5° at the 4 ft (1.22 m) buttock. In the defined coordinate system, a 5° flap angle would be a continuation (continuous parallel bottom surface) of the 5° wedge angle, whereas, a

 0° flap angle would be parallel to local run angle. The 4 ft (1.22 m) buttock was selected as the position for measuring the flap and wedge angles because it was the position at which the transom wedge angle was specified in the full scale drawings. (For reference, the bottom surface of the present 5° wedge is 1.3° TED, relative to the ship baseline.)

The selection criteria for the Island Class 110 WPB final stern flap design was prescribed by USCG ELC-024. Stern flap selection was based upon maximizing power reductions at high speeds, while satisfying secondary powering criteria prescribed at cruising speed and best economic speed, and upon limits set on maximum ship trim modification. The stern flap selection criteria, as prescribed by ELC-024, was stated specifically in terms of ship powering. However, the scope of the present model tests did not include model self-propulsion (powering) experiments. The prescribed criteria for the Island Class stern flap design selection were evaluated through model resistance experiments only. It is assumed that the stern flap configuration which exhibited the lowest resistance at the critical speeds would also have the lowest delivered power. In general, delivered power reductions average a few percent greater than resistance reductions during model powering tests with stern flaps. An examination of the historical data base of model stern flap experiments shows that stern flaps can cause an improvement in propulsive efficiency, due to reductions in wake factor and increases in propulsion efficiency. Therefore, model stern flap effective power performance is considered indicative of delivered power performance, and in most cases, represents the lower bounds of the powering reduction potential. The model scale predicted resistance for the Island Class with each of the eight stern flap designs at all tested flap angles, were compared to the baseline (no flap) predicted resistance, at each of the six tested ship speeds. Likewise, the ship dynamic running trim for each flap case was compared to the baseline configuration. By this method, a direct stern flap performance can be determined. The prescribed criteria for the Island Class stern flap design were as follows:

Selection criteria for the Island Class 110 WPB final stern flap design -

- Maximize reduction in ship powering over high speed range of 28 to 32 knots.
- Disallow any increase in ship powering at cruising speed, as indicated by performance at 24 knots.
- Limit ship running trim modification (bow down) to 1.0 degrees, at all speeds.

Comparisons of the effective power performances and trim modifications of the eight tested stern flap designs, at all tested flap angles and optimization speeds, are presented in Table B8. Results of the stern flap optimization experiments, depicted graphically as effects on resistance and ship running trim, for all variations in flap chord length, span, and angle, are presented in Figure B2.

All tested flaps were able to satisfy the secondary powering criteria prescribed at cruising speed and best economic speed. Many of the stern flap designs exhibited resistance reductions from ship speeds of 12 up to 28 or 30 knots. However, none of the designs, at any tested flap angle, appeared to have a potential for substantial resistance reduction at the top speed tested, 32 knots. Increasing flap angle to 10°, tended to result in the lowest resistance in the range of 20 knots, however, dramatically increased the 32 knot resistance. Flap angles of 10°, for all but the two smallest flaps, exceeded the maximum allowable ship running trim modification. Several of the larger flap designs also exceeded the trim criteria at angles of 7.5°. The performance of the tested series of flaps can be summarized as follows:

- Flap chord variations at constant span of 16 ft (4.9 m): For flap angles of 0° and 5°, the chord variations resulted in minimal (± 1.0%) resistance differences. At a flap angle of 10°, lengthening the chord resulted in reduced resistance at 20 knots (-3%), but resulted in an equivalent increase in resistance at 32 knots.
- Flap span variations at constant chord length of 2 ft (0.61 m) or constant chord length of 1 ft (0.3 m): In general, for all angles tested, trends indicated that increasing span resulted in reduced resistance at 12 ~ 20 knots, but resulted in increased resistance at 24 ~ 32 knots.

Severe deck-wetting resulted from any ship running trim modification (bow down) that exceed approximately 1.2 degrees. At the top speed tested, 32 knots, severe deck-wetting occurred whenever the ship running trim modification reached approximately 1.0 degrees. A effort was made to insure that the Island Class 110 WPB selected stern flap design did not approach the originally stated 1.0 degree ship running trim modification criteria. Note: The subsequent bow spray rail design effort successfully reduced the bow spray sheet which resulted in the aforementioned deck-wetting at high speeds.

Model stern Flap #6 at 7.5 degrees exhibited the greatest reduction in high speed ship resistance while still satisfying the secondary resistance and trim modification criteria. This design represents a full scale stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5° trailing edge down relative to the local slope (run) at the 4 ft (1.22 m) buttock.

Stern Flap Performance

Performance predictions are for the selected Island Class 110 WPB stern flap with chord length 2 ft (0.61 m), span of 8.7 ft (2.7 m), and an angle of 7.5° trailing edge down.

Resistance and Delivered Power Performance

The selected stern flap resistance performance on the Island Class 110 WPB patrol boats, over the entire speed range of 10 through 32 knots, was predicted from experiments on Model 5526. Resistance predictions were made at both the Full Load condition of 163.39 L. tons, LCG = 4.645' aft of midships, and at a second condition of Min-Ops loading 143.61 L. tons, LCG = 5.253' aft of midships. Island Class effective power (P_E) predictions, both with and without the stern flap installed, for both loading conditions, are presented in Tables B9 through B12. The P_E predictions were determined directly from resistance experiments conducted on DTMB Model 5526.

The model resistance predictions were then used to estimate powering with and without the stern flap, by the technique detailed previously. Island Class estimated delivered power (P_D), propeller RPM, and other related quantities, both with and without the stern flap installed, for both loading conditions, are presented in Tables B13 through B16, and summarized in Table B17. The model scale performance of the Island Class stern flap design, in terms of resistance, delivered power, and propeller RPM, is depicted in Figure B3 for full load, and Figure B4 for min-ops. Data is presented as ratios, defined as value required with the stern flap installed divided by value required for the baseline (no flap) configuration, as a function of ship speed. A ratio value below 1.0 denotes a reduction due to the stern flap.

Projected Full Scale Stern Flap Performance

While significant powering improvement is indicated from these Model 5526 stern flap experiments, the actual full scale stern flap on the Island Class would generally be expected to exceed the performance on the model. Prior to any full scale stern flap installation, an appropriate stern flap design is determined through model experiments and CFD calculations. While significant powering improvement is indicated from these model experiments, the actual performance of the full scale prototype stern flap generally exceeds that of the model predictions, Cusanelli [3]. Ship trials indicate that the model experiments were under-predicting the stern flap performance in the range of roughly 2% to as much as 12%. Closer examination of these trials shows that the major improvement in ship performance due to the flap that is not duplicated at model scale tends to occur at lower speeds. Stern flap ship trials have shown no adverse affect on ship powering at any speed tested, indicating that the low speed powering penalty of model stern flaps may be attributable to model scale phenomena. These circumstances lead the designer to conclude that, as a consequence of the smaller scale, the flow conditions around the model stern flap are not truly representative of that on the ship. Indications are that the stern flap scale effect might have a strong

Reynolds Number dependency. Therefore, stern flap performance may not extrapolate correctly by the standard techniques. Although the stern flap is itself a source of drag, its interaction with the ship's hull results in a net decrease in effective power. The drag on the model stern flap may be disproportionately large, as evidenced by the increase in resistance measured at low speeds. This may be due to incorrect scaling of drag associated with interference, separation, or interaction of the stern flap induced flow with the afterbody flow patterns, or any combination of these and other effects. Because of these issues, it became necessary to modify the standard techniques for extrapolation of model scale stern flap data to ship performance.

Three sets of ship trials, and recent testing on various size models, have been conducted with and without the stern flaps, in an effort to better understand the stern flap scale effect. Computational efforts for studying this scale effect have been made possible by the recent emergence of improved computers and flow codes that can perform calculations at full scale Reynolds numbers. Great strides have been made, towards verification and explanation of performance and flow observations of stern flaps, through the combination of these full scale, model scale, and computational efforts; Cusanelli et. al. [9]. This unique data set has been used to develop a simple quantitative empirical "performance projection tool", for estimating the magnitude of the stern flap scale effect. This performance adjustment tool loosely simulates the full scale experience, i.e., indicating greater model data adjustments at lower speeds and at increasing model scale ratio. Performance projections, adjusting model data for scaling effects by the performance adjustment tool did tend to bring the model data more in line with the full scale results. However, the adjustment tool needs to be used with some attentiveness, as stern flaps on ships still performed better than the model data indicated at several speeds, even with adjustments to model scale data.

The performance adjustment tool was utilized to calculate new projections of Island Class 110 WPB full scale stern flap performance, from the Model 5526 data. These new stern flap performance projections, adjusted for scaling effects, are presented in Tables B18 and B19, and Figures B5 and B6, for both load conditions. The performance projections are summarized in Table B20. The presented Island Class performances do not account for propeller cavitation.

Performance within Engine Operating Envelope

Projected shaft powering comparisons were made to the Island Class main propulsion engine operating envelope, Figures B7 through B9. Island Class 110 WPB C series Caterpillar 3516 main propulsion engines were utilized for this comparison. Data pertaining to the engine operating envelope was supplied by USCG ELC-024. The depicted engine envelope represents the "upper curve" on engine brake horsepower, BHP, defined by the equation: BHP = (engine RPM / 1910)^2.7 * 2730. This curve of engine brake horsepower vs. engine speed has typically been referred to as the engine performance curve. A transmission gear loss of 3% was utilized for the conversion between BHP and delivered shaft

horsepower, SHP. The transmission gear ratio between engine RPM and shaft RPM is 2.33:1. Also depicted on these figures is the engine maximum power, with bands representing \pm 3% on maximum power.

The BAINBRIDGE ISLAND (WPB 1343) ship trials data and Model 5526 powering data (at the estimated correlation allowance $C_A = 0.0003$) are compared to the engine operating envelope, for the trials 151 L. ton load condition, in Figure B7. As shown by this figure, the WPB 1343 trials data, except for the two lowest speeds, exhibits delivered power vs. engine speed requirements in excess of the stated Caterpillar 3516 engine operating envelope (exceeding specified engine performance curve). This has resulted in the inability of this particular engine design, as installed in the WPB 1343, to reach full engine RPM. The data spot depicting maximum ship speed attained, 29.2 knots, falls slightly below the engine maximum power, but within the - 3% power band.

Island Class projected shaft powering at both full load and min-ops, with/without stern flap installed, are compared to the operating envelope, in Figures B8 and B10. As was the case at 151 L. tons, the data at both the higher full load (163 L. tons) and lower min-ops (144 L. tons), indicate delivered power vs. engine speed requirements higher than that of the stated Caterpillar 3516 engine operating envelope (exceeding specified engine lug curve), over most of the speed range. The installation of the stern flap shifts the projected powering curve closer to the defined engine operating envelope. However, an even greater reduction in the ship's power vs. speed relationship is necessary for the performance to remain within the envelope.

Ship Maximum Speed Determination

The Island Class projected maximum speeds, at both full load and min-ops, with/without stern flap installed, were determined from the comparison of the projected powering to the Caterpillar 3516 engine operating envelope. Maximum SHP and engine RPM were determined where the projected powering curve intersected the line defining the engine maximum power. Maximum ship speed was then determined at this powering point. For the full load condition, the maximum attainable speed, for the Island Class 110 WPB patrol boats with the stern flap installed, is projected to be 27.85 knots, at a total shaft power of 2583 hP, with a propeller speed of 786.3 RPM (engine speed 1832 RPM). This represents an increase in top speed of 0.80 knots over the existing boats. At min-ops, the maximum attainable speed, with the stern flap installed, is projected to be 30.38 knots, at a total shaft power of 2635 hP, with a propeller speed of 812.9 RPM (engine speed 1894 RPM). This represents an increase in top speed of 0.38 knots.

Savings Potential

The installation of a stern flap on the Island Class 110 WPB results in the capability to maintain ship speed with less delivered power, and lower shaft speed, and therefore, represents a potential for propulsion fuel reduction. Data pertaining to the fuel consumption rates, of the Island Class 110 WPB C

series Caterpillar 3516 main propulsion engines, was collected during the standardization trials on the BAINBRIDGE ISLAND (WPB-1343). Fuel consumption rates were recorded for ship speeds in the range of 15 through 29 knots, at a loading condition of 151 long tons, LCG of 5.09' aft of midships, static trim of -1.0°. These fuel rates were utilized to estimate fuel consumption (gal/hr.) at the full load and min-ops conditions, with and without the flap. An estimated speed-time profile was supplied by USCG ELC-024, based on 3000 annual operational hours. Summation of the weighted time at speed and the estimated fuel consumption rates, yields an estimate of the annual fuel consumption of the Island Class at each loading condition, with and without the stern flap, Table B21. It is assumed that the time-at-speed for the class with the stern flap installed will be equivalent to that of the present ship. The estimated average reduction in annual fuel consumption, provided for by the installation of the stern flap, is 4.5 percent when operating at full load, and 3.9 percent for min-ops. Fuel savings was estimated assuming a split of 2/3 time (2000 hr.) at full load, and 1/3 time (1000 hr.) at min-ops. The annual fuel savings, resulting from a stern flap installation of the Island Class 110 WPB, would amount to 13,328 gallons, or approximately \$13,000 per ship / per year, on average.

Effects on Ship Running Trim

Ship sinkage at both the forward and aft perpendiculars, and the ship trim, for the Island Class with and without the stern flap installed, for both the full load and min-ops conditions, are presented in Figures B10 and B11. The effect of the stern flap on ship trim was then determined. The Island Class ship running trim, at both full load and min-ops, was affected very similarly by the stern flap. The net change in bow down trim angle, resulting from the stern flap, increased as ship speed increased. The change in trim angle remained within 0.6 degrees over the range of ship operational speeds ($12 \sim 30$ knots). Therefore, the selected stern flap satisfied the design criteria of ship running trim modification (bow down) not to exceed 1.0 degrees, at any speed.

Effects on Stern Waves

Wave breaking, eddy-making, and turbulence, represent lost energy in the local transom flow of a vessel. A great deal of information can be obtained about the performance of a stern flap by careful observations of its effects on the flow past the transom and the localized waves generated at the transom. Transom flow can be categorized by three simplified descriptions. At slower speeds, the transom and flap are fully wetted and the flow is said to be "attached". Resistance is increased by the added wetted surface and significant eddy-making. As speed increases, the transom becomes less submerged and less water tends to flow back over the flap. Over a small speed range the stern flow becomes "transitional", periodically breaking free of transom and flap then rolling forward to wet them again. At some greater speed, the flow detaches cleanly or "breaks-away" from the bottom edge of the transom or flap. The speed at which this detachment occurs is affected by factors which include ship displacement, ship trim,

transom design and depth of submergence, and the specific design of the transom and stern flap. The effect of the stern flap on the localized flow around the transom, and its effects on the ship speed at which the stern flow breaks away from the transom, is carefully observed and photographed at model scale.

Visual observations and photographs were taken of the local transom flow generated behind Model 5526, with and without the stern flap installed, at full load, for 2 knot increments of ship speed, from 10 to 32 knots, Figure B12. The character of the transom flow was considerably altered by the stern flap over the speed range of 12 ~ 20 knots. Within these speeds, the transom flow appears to be decreased in both wave height and overall width by the stern flap. The ship speed at which the transom flow detaches (break-away) was reduced from approximately 17 knots for the baseline hull to 15 knots when the stern flap was installed. Referring to the comparison photographs at 16 knots, the baseline hull still exhibits attached flow, while the stern flap case exhibits fully detached flow. At this speed, the stern flap exhibited the greatest modification to the transom flow. Coincidentally, the stern flap also exhibited its maximum powering reduction at this 16 knot speed.

For speeds in excess of 22 knots, there appears to be little visual difference in the local transom flow generated behind Model 5526 with or without the stern flap installed. However, at these higher speeds, the stern flap does appear to reduce the visual wake deficit behind the twin rudders. This stern flap effect had not previously been documented.

Spray Rail Installation

During the initial model testing, observations of the flow patterns off the model lower chine, lead the test engineers to conclude that proper flow separation was not being achieved over this region at model scale. In order to promote a cleaner flow separation along this chine, a model scale chine rails were installed. Plexi-glass spray rails were installed on both port and starboard sides of the model, following the contour indicated by the existing lower chine line The spray rails extended the lower chine 1/4 inch (0.64 cm) beyond the existing hull lines. This is a technique used at model scale only, in order to promote flow separation similar to that of the full scale ship along the existing ship lower chine. This model scale spray rail is not to be interpreted as an additional hull treatment or appendage necessary for flow separation at full scale. These spray rails were installed on the model for all of the experiments reported herein.

However, it was further noted during the stern flap evaluation and selection phase of the model testing, that a significant amount of spray was being generated from the bow region at ship speeds in excess of 24 knots. This spray resulted in a serious amount of model deck-wetting at still higher speeds. This was not believed to be solely a model scale flow separation phenomena. Representatives of the USCG ELC-024, present at the model testing, reported that similar spray patterns - leading to forward deck-wetting, have been observed at full scale. The flow streamlines, which appear to generate this spray, originate in the region of the bow between the forwardmost edge of the bow stem and the ship's existing lower chine.

Since there is nothing in the hull lines to deflect these flow streamlines (either at ship or model scale), the water tends to cling to the hull and progress upwards. At speeds of $24 \sim 28$ knots, the flow appears to separate off the upper chine. At higher speeds, the flow progress upwards all the way to the deck line before separating. Once at the upper chine or deck level, the flow separates in a spray sheet which increases in size as speed increases.

It was suggested by the DTMB test engineers to add "bow spray rails" as a continuation of the model scale chine rails forward to the bow stem. It was believed that spray rails in this forwardmost bow region would promote separation of the flow streamlines which appeared to generate the spray sheet. In contrast to the chine rails, this addition of the "bow spray rails" forward of the existing hull chine, does represent a modification to the existing Island Class hull. At ship scale, the bow spray rails extend 7.25 ft (2.2 m) from the bow stem, following the contour indicated by the existing lower chine line. The bow spray rails extend off the hull (thickness) approximately 1.5 inches (3.8 cm). Model scale experiments were conducted at full load, with and without the bow spray rails. Effective power predictions showed a relatively small increase (0.2 to 1.3%) over the very small speed range of 14 ~ 19 knots. However, as can be seen in the comparison photographs of Figure B13, the bow spray rails effected a very significant reduction in the amount of spray generated by the bow. In fact, with the bow spray rails installed, throughout the speed range tested there was not any significant amount of spray or forward deck-wetting observed. It was recommended by the DTMB test engineers that bow spray rails remain installed at model scale for all of the subsequent model experiments with and without the selected stern flap. Continuation of the model testing, with bow spray rails installed, was agreed to by the representatives of the USCG ELC-024.

It is recommended that "bow spray rails" be installed in the Island Class. The bow spray rails extend aft 7.25 ft (2.2 m) from the bow stem, following the contour indicated by the existing lower chine line, and extend off the hull (thickness) approximately 1.5 inches (3.8 cm).

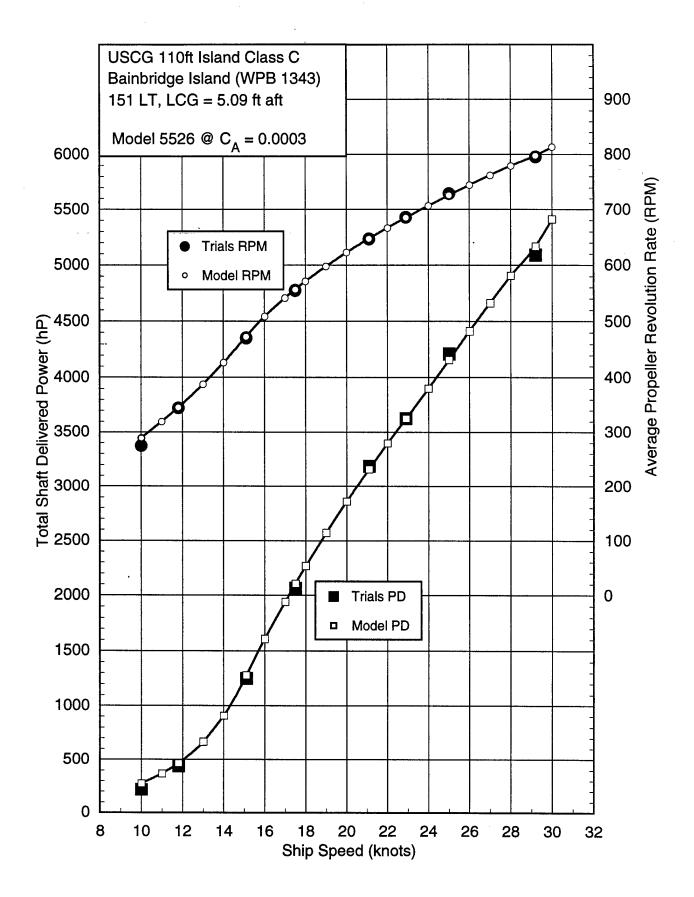


Fig B1. Ship/Model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$

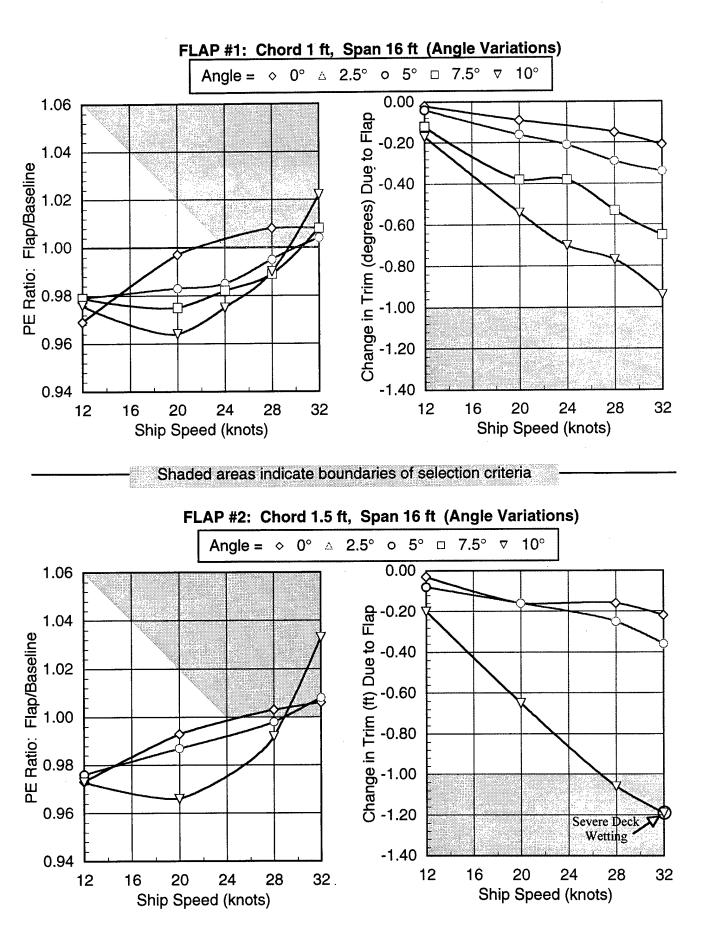


Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle

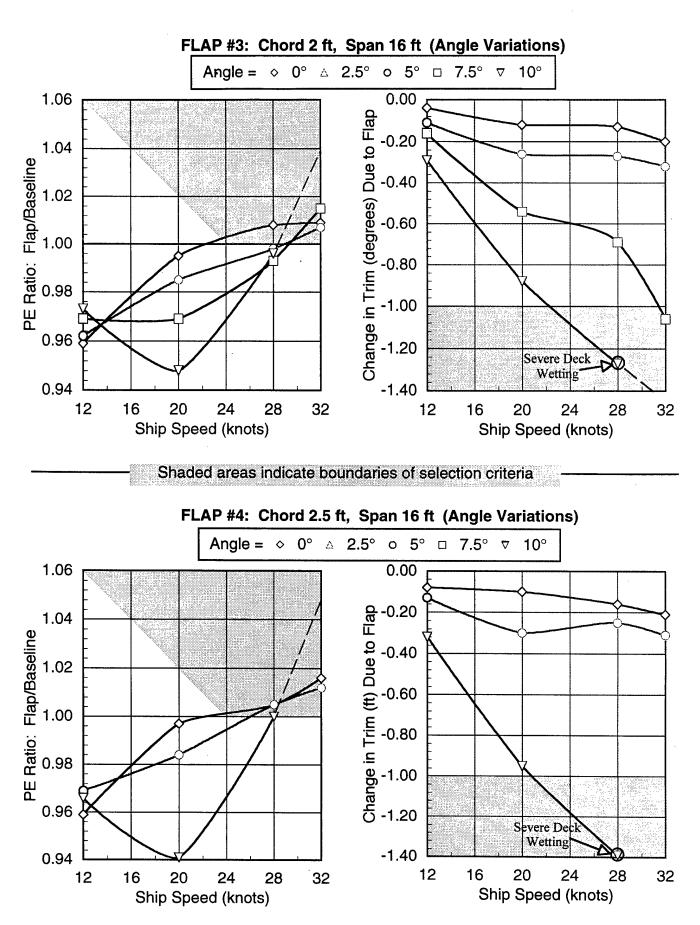
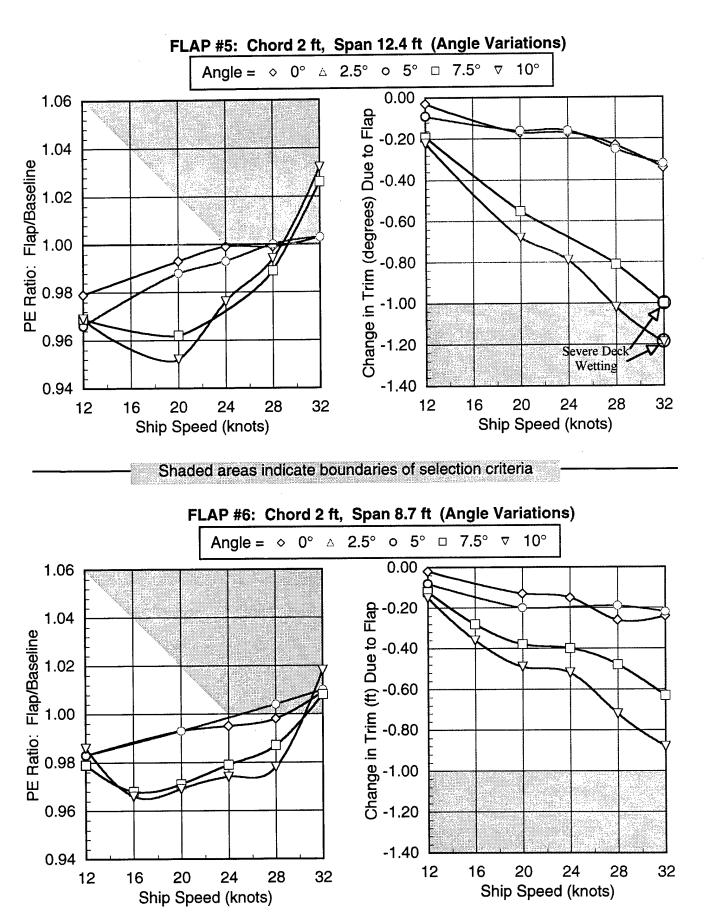
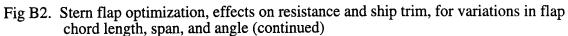




Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

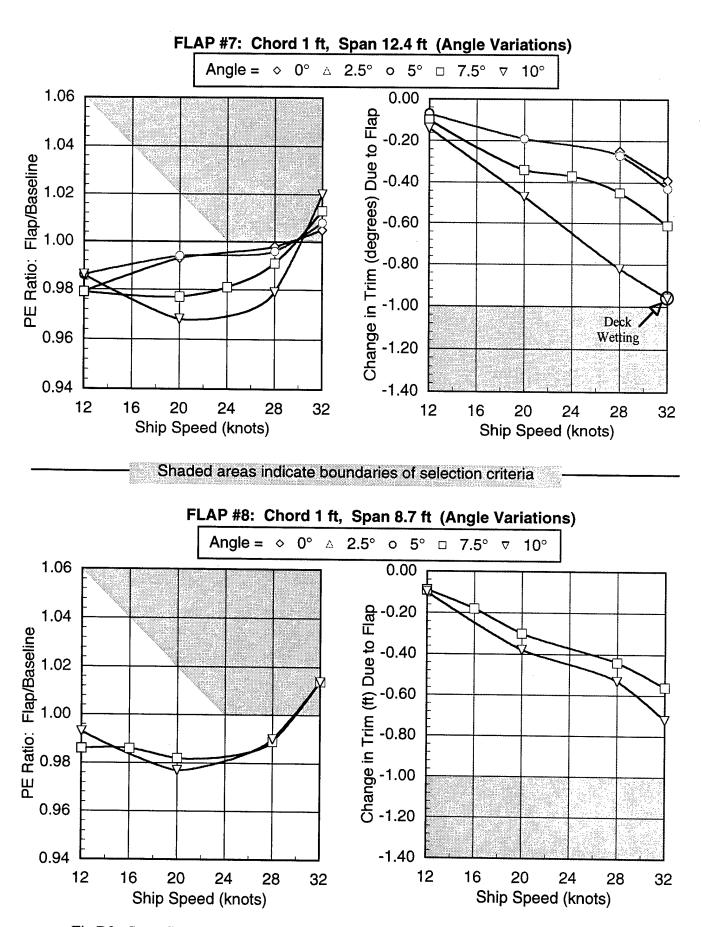
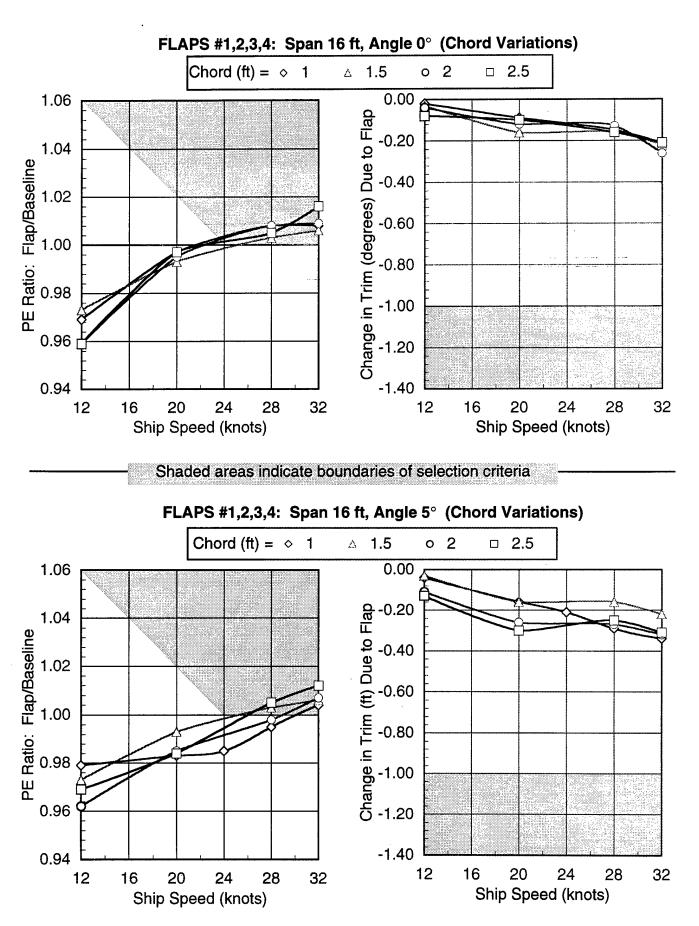
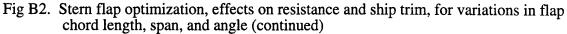




Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

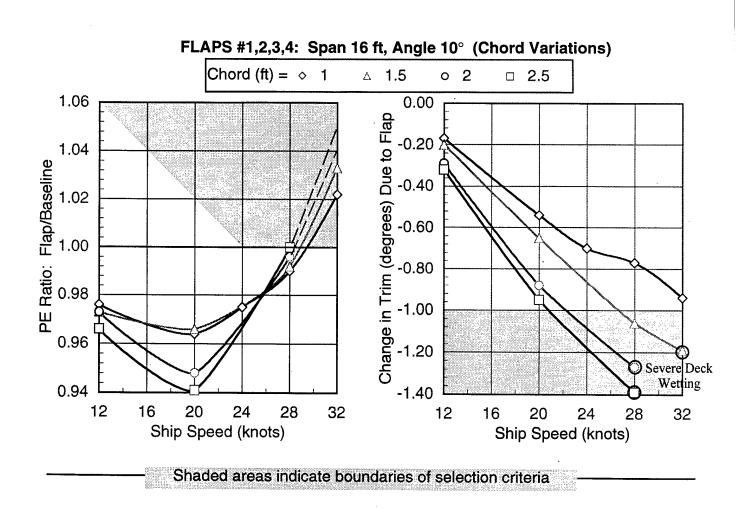
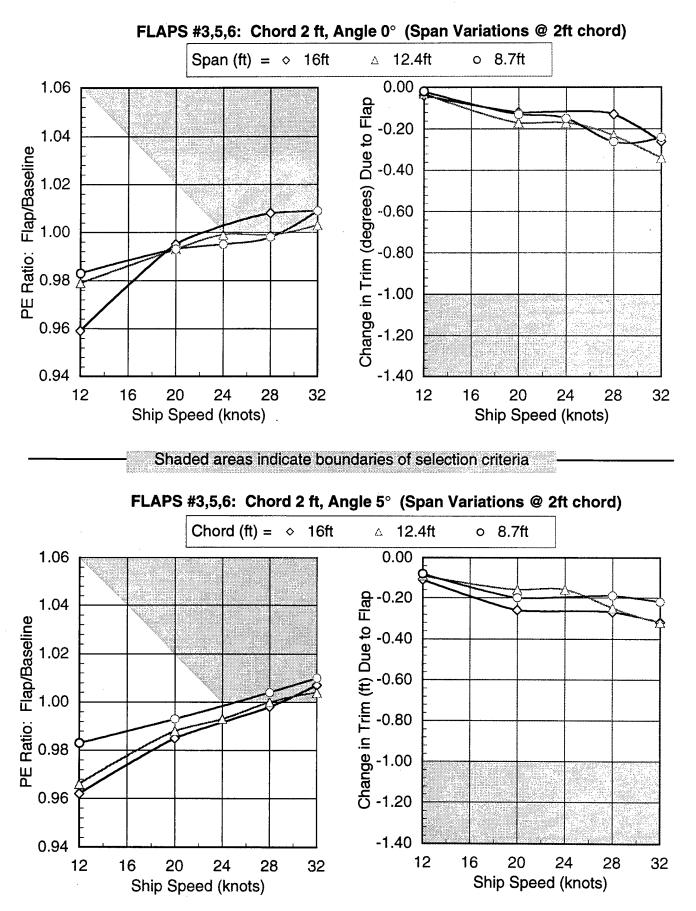
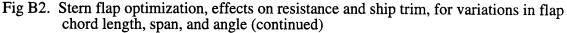




Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

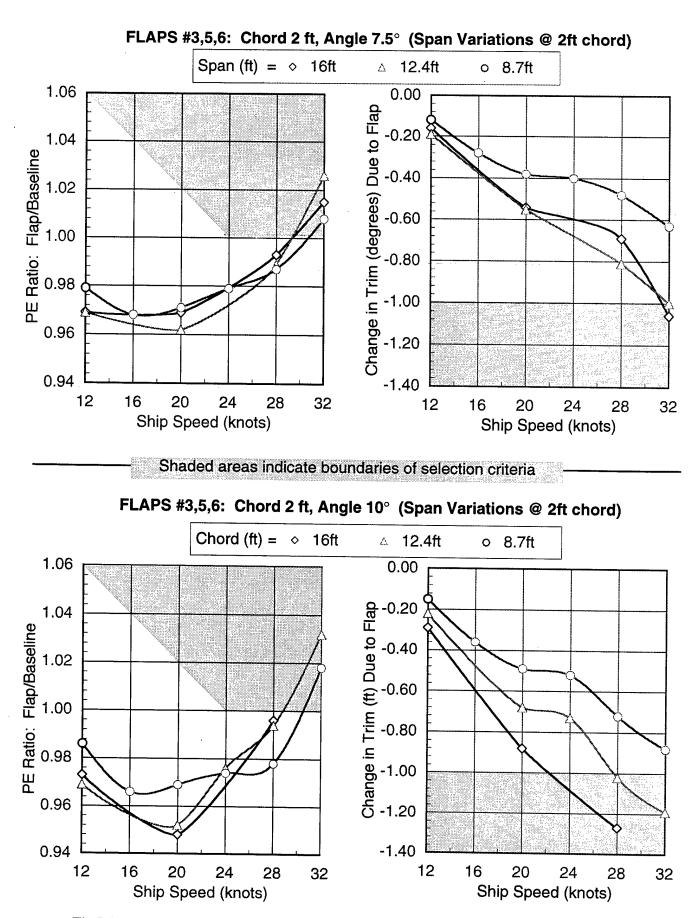


Fig B2. Stern flap optimization, effects on resistance and ship trim, for variations in flap chord length, span, and angle (continued)

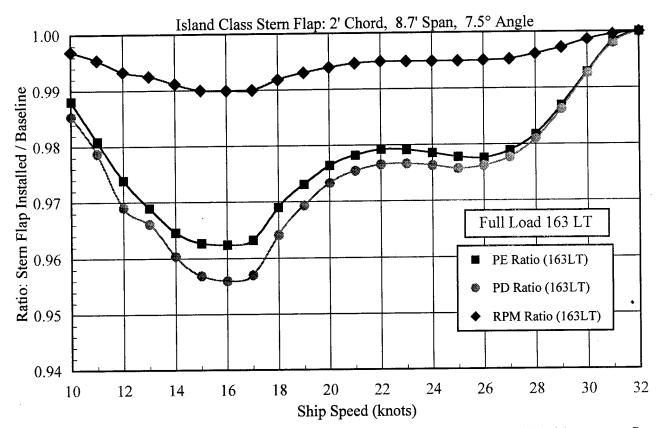
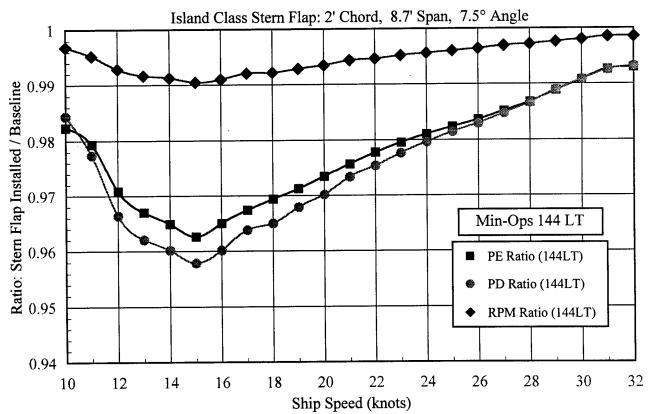
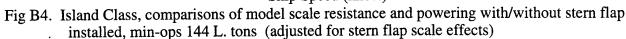
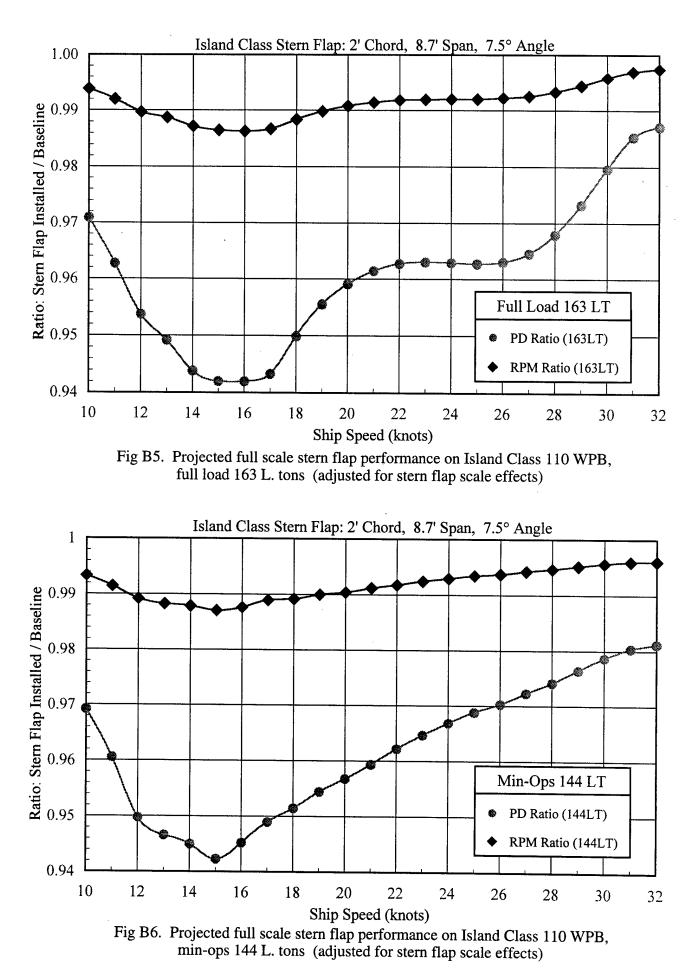





Fig B3. Island Class, comparisons of model scale resistance and powering with/without stern flap installed, full load 163 L. tons (adjusted for stern flap scale effects)

B24

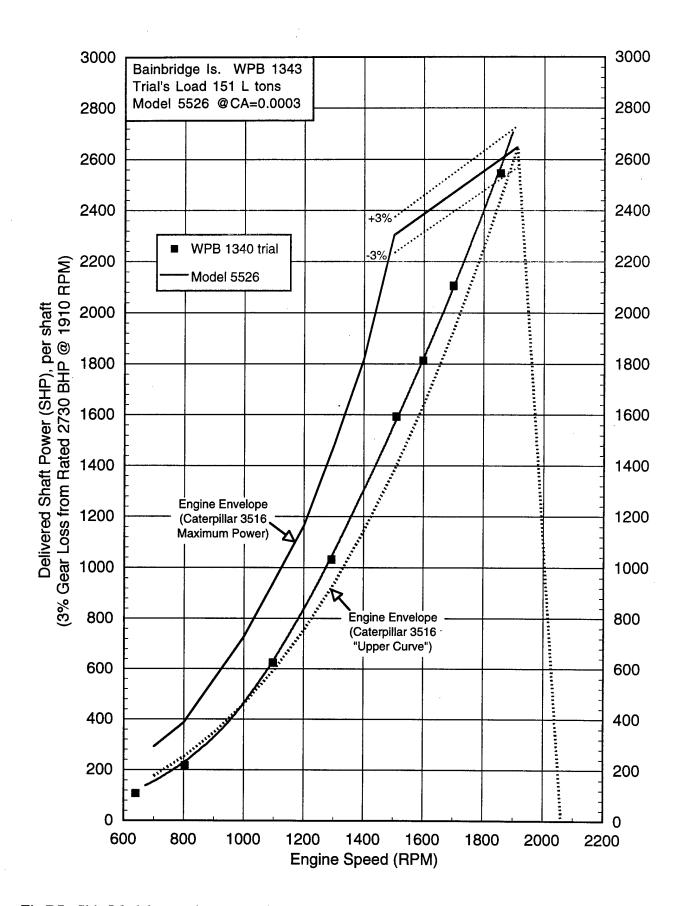


Fig B7. Ship/Model powering comparison to main engine operating envelope (Caterpillar 3516), 151 L. ton load condition, at estimated correlation allowance $C_A = 0.0003$

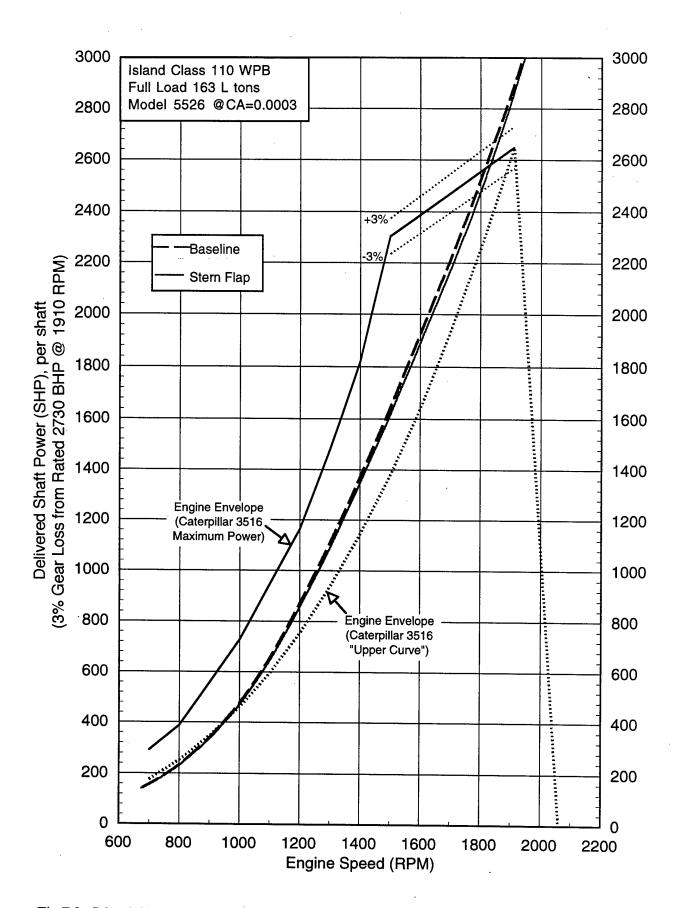


Fig B8. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load

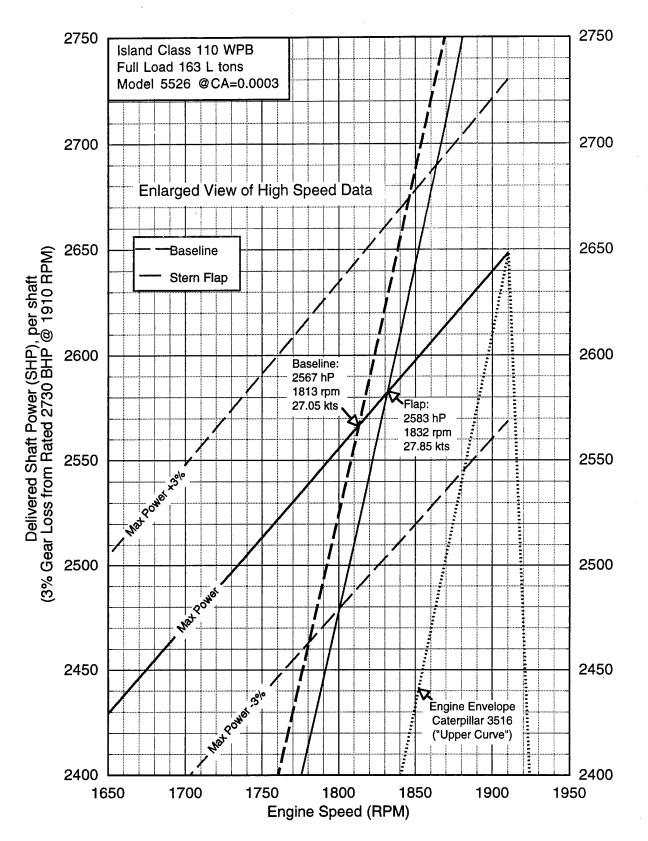


Fig B8. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, full load (continued)

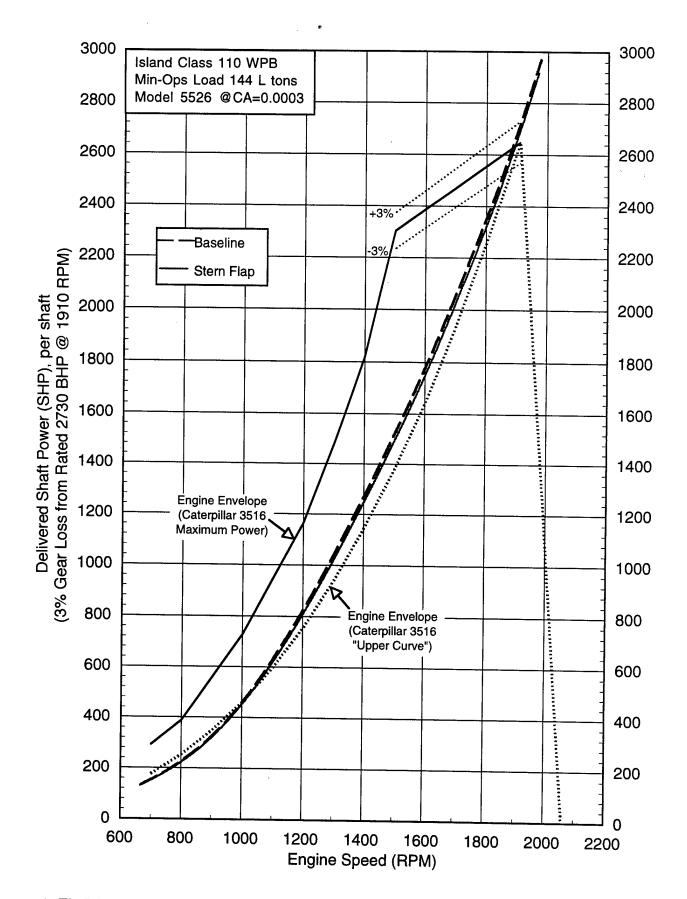


Fig B9. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, min-ops load

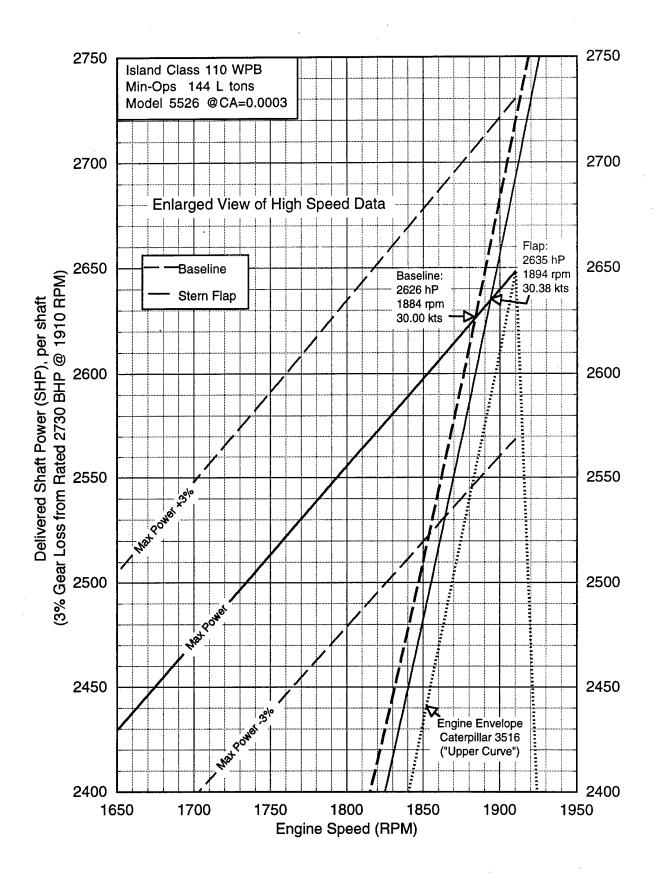


Fig B9. Island Class 110 WPB, projected shaft powering comparison to main engine operating envelope (Caterpillar 3516), with/without stern flap installed, min-ops load (continued)

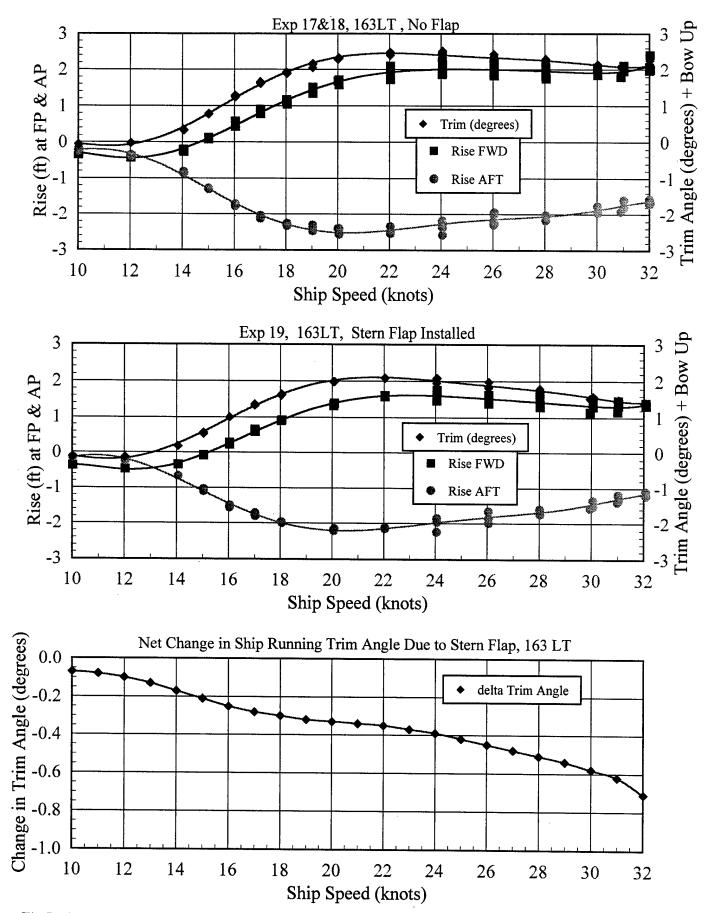


Fig B10. Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, full load 163 L. tons

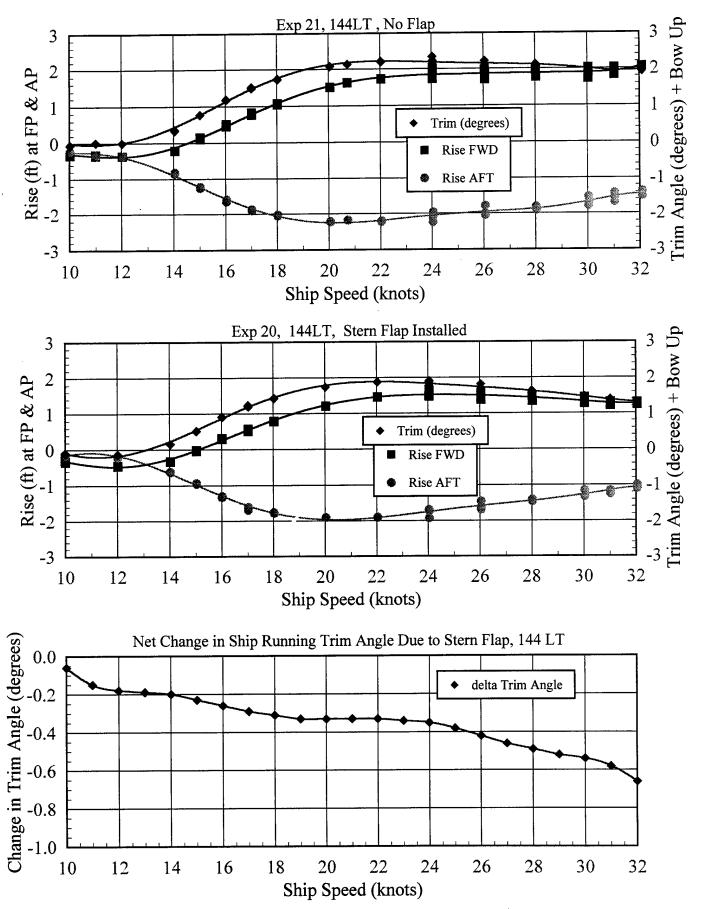
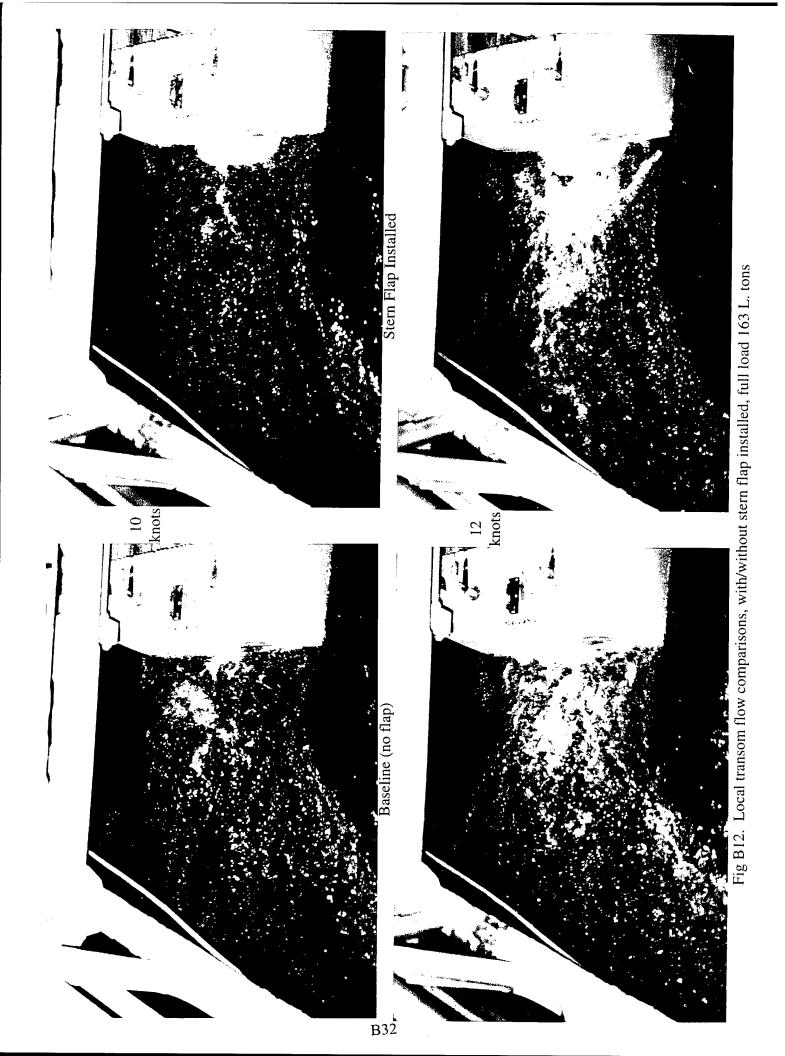
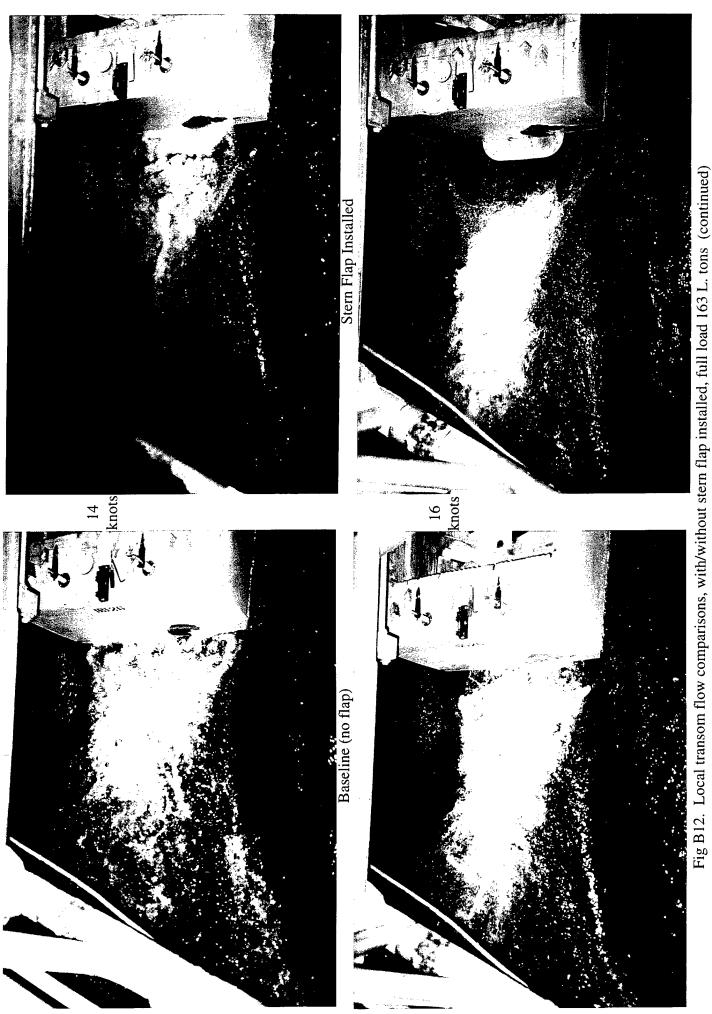
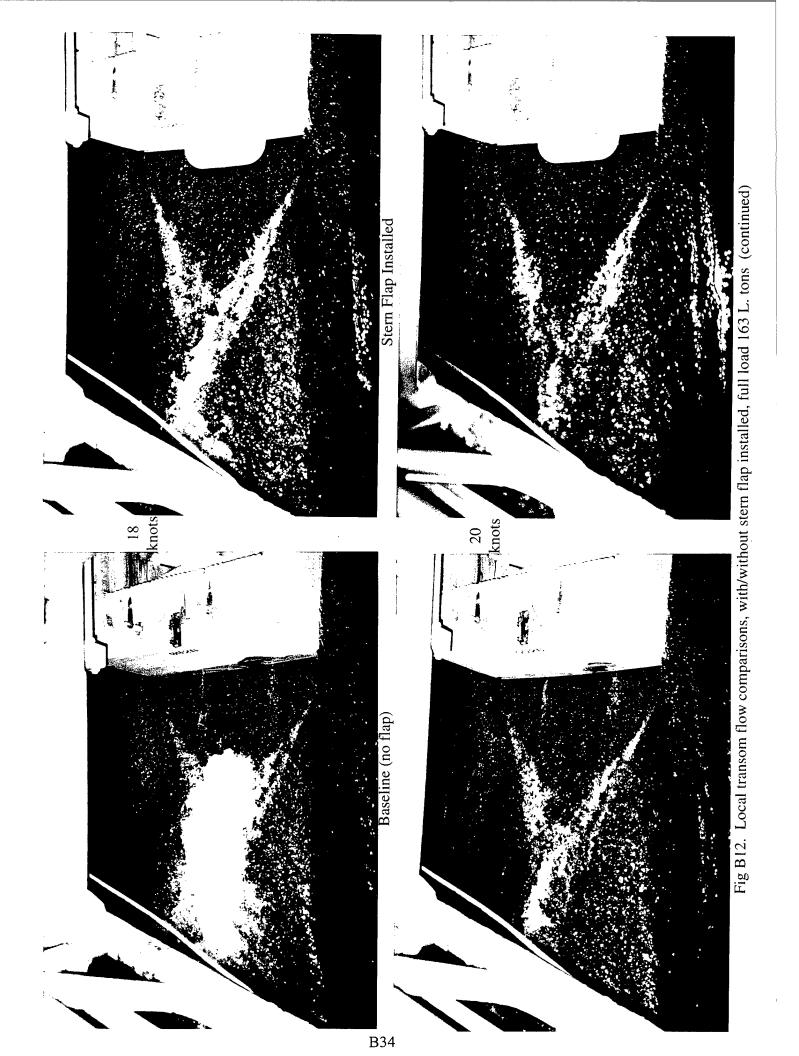





Fig B11. Island Class, comparisons of model scale dynamic running trim with/without stern flap installed, min-ops 144 L. tons

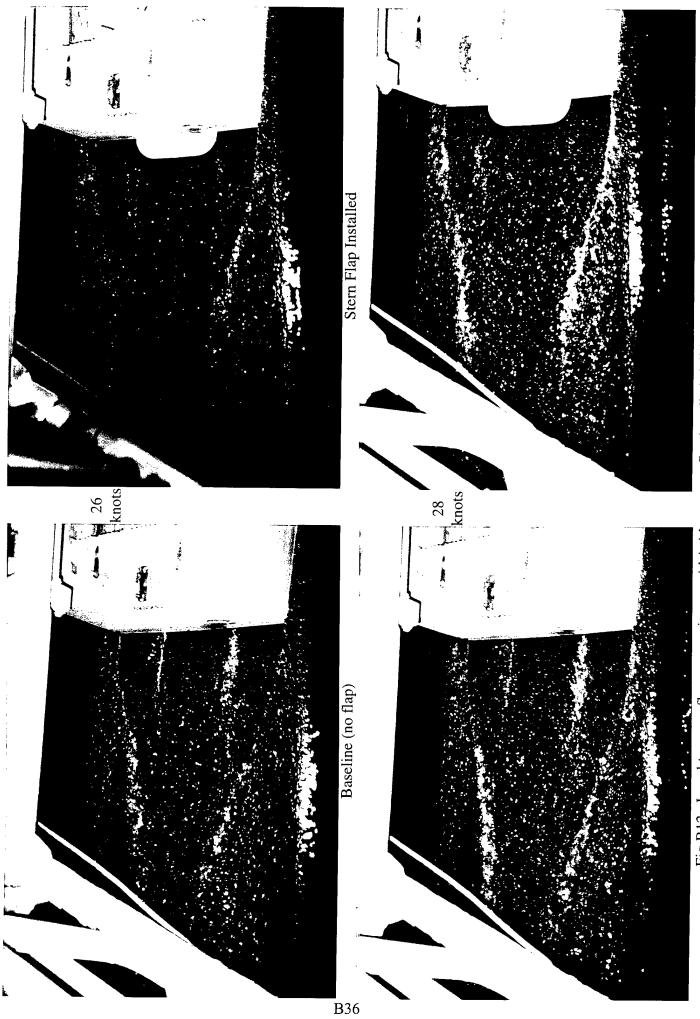


Fig B12. Local transom flow comparisons, with/without stern flap installed, full load 163 L. tons (continued)



Fig B13. Bow wave and spray comparisons, with/without bow spray rails, full load 163 L. tons

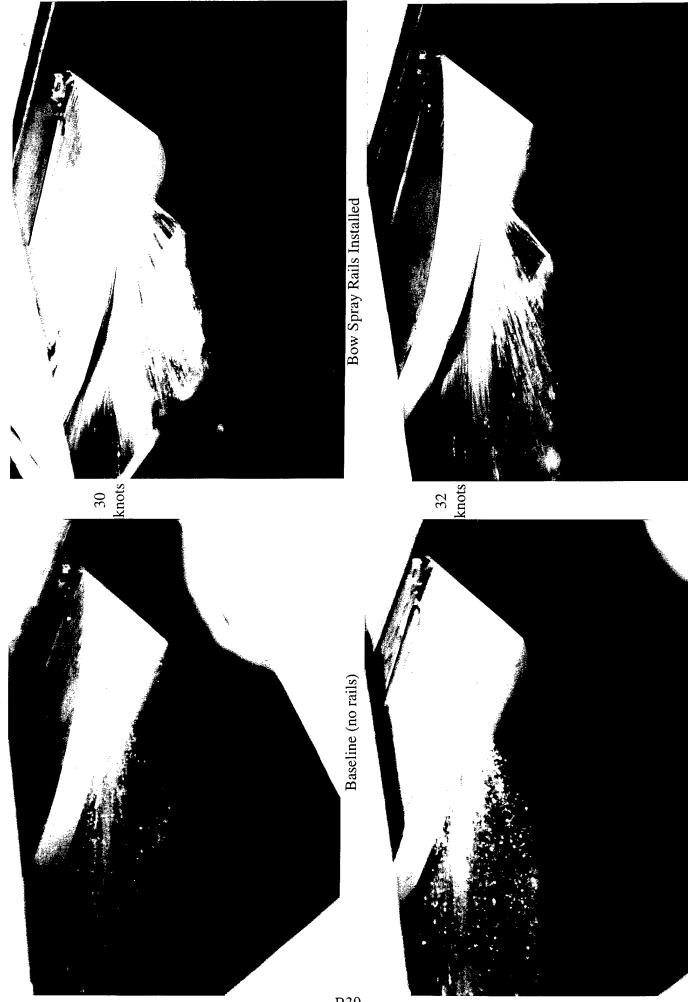


Fig B13. Bow wave and spray comparisons, with/without bow spray rails, full load 163 L. tons (continued)

ţ

Table B1. Test Agenda: USCG Island Class 110 WPB Model 5526 stern flap evaluation and selection

Experiments Conducted 4/22/99 - 4/27/99

ription	Yaw angle adjustments to zero side force	ertainty Analysis	determine CA vs. Bainbridge Island ship trials	Baseline (no flap) speeds for flap comparisons	on		·
Comments/Description	Yaw angle adjustmer	Data Collect for Uncertainty Analysis	determine CA vs. Bai	Baseline (no flap) spi	Flap angle optimization	or repairs to keel.	Spray Rail Installed: 1/4" thick plexi-glass rail along 8' of lower chine to promote cleaner flow/spray separation at chine.
Speeds (knots)	16, 20, 24	16, 24	trials speeds	12-32 (4kt Incs)	12-32 (4kt Incs)	First series of experiments aborted after Test 5. Model 5526 was returned to woodshop for repairs to keel	omote cleaner flow/spi
Stern Flap	NO flap	NO flap	NO flap	NO flap	Flap #1	el 5526 was rei	ver chine to prc
Loading Long Tons Appendages	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	r Test 5. Mod	il along 8' of lov
Long Tons	151	151	151	163.39	163.39	aborted afte	lexi-glass ra
Loading	Corr	Corr	Corr	Full Load	Full Load	xperiments	1/4" thick p
Test # Test Type Loading Long T	Set-Up/Trials	Uncertainty	Correlation	PE Resistance	Flap Evaluation	First series of e	y Rail Installed:
Test #	-	0	ŝ	4	S		Spra

Experiments Conducted 5/3/99 - 5/13/99.

	Speeds (knots) Comments/Description	trials speeds correlate vs. Bainbridge Is. trials, repeat Test 3 w/chine rail	12-32 (4kt Incs) Baseline (no flap) speeds for flap comparisons	12-32 (4kt Incs) Lc=1ft, Span=16ft, angle optimization (0°, 5°, 10°)	12-32 (4kt Incs) Lc=1.5ft, Span=16ft, angle optimization (0°, 5°, 10°)	12-32 (4kt Incs) Lc=2ft, Span=16ft, angle optimization (0°, 5°, 10°)	12-32 (4kt Incs) Lc=2.5ft, Span=16ft, angle optimization (0°, 5°, 10°)	12-32 (4kt Incs) Lc=2ft, Span=12.4ft, angle optimization (0°, 5°, 7.5°, 10°)	12-32 (4kt Incs) Lc=2ft, Span=8.7ft, angle optimization (0°, 5°, 7.5°, 10°)	12-32 (4kt Incs) Angle optimization (Re-Tests at additional 7.5° angle)	12-32 (4kt Incs) Lc=1ft, Span=12.4ft, angle optimization (0°, 5°, 7.5°, 10°)	12-32 (4kt Incs) Lc=1ft, Span=8.7ft, angle optimization (7.5°, 10°)	12 through 32 Baseline (no flap) PE Experiment, entire speed range	Spray Rail extended forward to bow stem for all remaining experiments of this series.	12 through 32 PE Experiment to determine effect of extending spray rail	12 through 32 Selected Flap PE Experiment	12 through 32 Selected Flap PE Experiment, alternate loading	12 through 32 PE Experiment (no flap), alternate loading
	Stern Flap	NO flap	NO flap	Flap #1	Flap #2	Flap #3	Flap #4	Flap #5	Flap #6	Flap #1,3	Flap #7	Flap #8	NO flap	for all remaining e	NO flap	Flap#6 @7.5°	Flap#6 @7.5°	NO flap
	Loading Long Tons Appendages	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, H, HS	S&S, R, RS	S&S, H, HS	S&S, R, RS	t to bow stem	S&S, R, RS	S&S, R, RS	S&S, R, RS	S&S, R, RS
10/33.	Long Tons	151	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	163.39	nded forwarc	163.39	163.39	143.61	143.61
10 - 22/010	Loading	Corr	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	Full Load	ay Rail exter	Full Load	Full Load	Min-Ops	Min-Ops
Experiments Conducted 2/3/33 - 3/13/33.	Test Type	Correlation	PE Resistance	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	Flap Evaluation	PE Resistance	Spr	PE Resistance	PE Resistance	PE Resistance	PE Resistance
	Test #	9	7	8	6	10	11	12	13	14	15	16	17		18	19	20	21

Appendages: Shafting and struts (S&S), rudders (R), roll stabilizers (RS)

Table B2. Island Class Model 5526, displacements, appended wetted surfaces, drafts,and other related quantities, tested loading conditions

	Woder 5520	LAMDA -			litter much en O		
	condition	number 1	condition	number 2	condition	number 3	
	USCG Island C	lass	USCG Island C	lass	USCG Island C	lass	
	Trial Condition	n 151 LT	Min-Ops 143.	61 LT	Full Load 163	.39 LT	
	SHIP	MODEL	SHIP	MODEL	SHIP	MODEL	
LBP (ft)	102.44	17.953	102.44	17.953	102.44	17.953	
LWL (ft)	103.67	18.169	103.61	18.158	104.30	18.279	
WET SURF HULL(sq ft)		66.803	2136	65.605	2242	68.861	
WET SURF APP(sq ft)		3.8	123.7	3.8	123.7	3.8	
TOTAL WET SURF(sq ft)		70.602	2259.7	69.404	2365.7	72.660	
DISPLACE (ton, lbs)		1770	143.61	1684	163.39	1916	
BOW DRAFT (ft)		1.258	6.93	1.215	7.66	1.342	
STERN DRAFT (ft)	1	1.181	6.66	1.167	6.85	1.200	
SHIP TRIM (+ft bow up)	1	-0.077	-0.27	-0.047	-0.81	-0.142	
BEAM (ft)		3.693	21.07	3.693	21.07	3.693	
TEMP (F)	59	68	59	68	59	68	
RHO	1.9905	1.9367	1.9905	1.9367	1.9905	1.9367	
NU	1.2817	1.0836	1.2817	1.0836	1.2817	1.0836	
Bow Deck/Keel (ft)	15.4	2.695	15.4	2.695	15.4	2.695	
Mid-Ship Deck/Keel (ft)		-	-	-	-	-	
Stern Deck/Keel (ft)		2.695	15.4	2.695	15.4	2.695	
BOW HOOK SET (ft)		1.437	-	1.480	-	1.353	
MID HOOK SET (ft)			-		-	t 1 1	
STERN HOOK SET (ft)		1.514	· ·	1.528	-	1.495	
						1 1 1	
PROP #, port	-	-	-	-	-	-	
PROP #, stbd	1	-	-	-	-	-	
PROP DIA (in)		-	-	-	-	-	
PROP ROTATION		-	-	-	-	-	
SPEED RANGE, low (kts)	12.0	5.02	12.0	5.02	12.0	5.02	
high (kts)		13.40	32.0	13.40	32.0	13.40	
C				I I T		1	
MODEL DISP total (lbs)	-	1770	-	1684	-	1916	
MODEL WEIGHT (lbs)		1456	-	1456	-	1456	
Floating Platform (lbs)		45		45		45	
BALLAST needed (lbs)		269	-	183	-	415	
. ,				F F 8		1	
APPENDAGES, ws (sqft)	61.07	1.876	61.07	1.876	61.07	1.876	
Stabilizer Fins (2)		1.228	40	1.228	40	1.228	
Rudders (2)	4	0.648	21	0.648	21	0.648	
				1		1 · · · ·	
		-					
		1					

Model 5526 LAMDA = 5.706

Ship Speed (knots)	Measure- ment	Units	Nominal Mean	Bias Limit (±)	Precision Limit (±)	Uncertainty* units (±)	Uncertainty percent (±)
16	Rt	lbf ्	97.05	0.17	0.446	0.477	0.49%
24	Rt	lbf	166.27	0.17	1.584	1.593	0.96%

Table B3. Model 5526 uncertainty in resistance measurements

Mo	del Measur	ements for P	recision Err	or	
Spot	Vsk	Rt	Vsk	Rt	
1	24.06	165.66	16.02	97.071	
2	24.06	166.62	16.03	96.862	
3	24.06	166.97	16.02	96.916	
4	24.06	165.61	16.02	96.843	
5	24.06	166.86	16.02	96.664	
6	24.06	166.8	16.02	97.067	
7	24.05	164.84	16.02	97.081	
8	24.05	167.17	16.02	97.403	
9	24.06	165.53	16.02	97.13	
10	24.05	166.3	16.02	97.271	
11	24.05	166.09	16.02	97.062	
12	24.05	166.83	16.02	97.234	_
		166.27		97.050	Average (Nominal Mean)
		0.727		0.205	Standard Deviation
		1.584		0.446	t dist * Std Dev = Precision (Units)

Table B4. BAINBRIDGE ISLAND (WPB 1343) performance trials results, 151 L. ton load condition

	Running	Trim,	Ref. B.L.	(Degrees)		-1.2	-	-0.2	0.8	1.5	1.7	1.6	1.3
	Propulsion	Fuel	Consumption	Total	(GPH)	3	I	69.6	114.0	163.2	188.3	215.2	276.0
ļ		wer		Total		217	436	1250	2065	3187	3627	4213	5092
343) .0°		Shaft Horsepower		Stbd		108	217	609	1013	1562	1782	2041	2545
0 (WPB 13 Trim = -1		Shaf		Port		109	219	641	1052	1624	1845	2172	2547
Performance Trials Results BAINBRIDGE ISLAND (WPB 1343) 151 LT, LCG = 5.09 ft. Aft of Midships, Static Trim = -1.0°		Shaft Torque	(Ft- Lbs)	Stbd		2054	3299	6817	9605	12663	13609	14707	16687
s BAINBRID Aft of Midsl		Shaft	(Ft-	Port		2086	3346	7132	9958	13201	14193	15657	16927
rials Result = 5.09 ft.	Engine	Speed	(RPM)	Average		640	803	1097	1292	1508	1597	1698	1854
formance T			1	Average		275	345	471	555	647	686	729	796
Perl 15		Shaft Speed	(RPM)	Stbd		275	345	469	554	648	688	729	801
		0,		Port		275	344	472	555	646	683	728	190
		Average	Speed	(Knots)		10.0	11.8	15.1	17.5	21.1	22.9	25.0	29.2
		Bun	Number			1/2	3\4	5/6	7/8	9/10	11/12	13/14	15/16

Reproduced from Table 3.1.3. of NSCSES Report No. 60-264; Haupt and Puckette [4]

В 43

Table B5. Ship/model comparison between BAINBRIDGE ISLAND (WPB 1343) and Model 5526, 151 L. ton load condition, variations in correlation allowance

51 LT,			hips, Static Trim =		MODEL DATA	ORRELATION CA =	0.0003	
L peed No.	FULL Ship Speed (knots)	SCALE TRIALS Shaft Speed RPM (avg)	Shaft Power Total (hP)	Ship Spec (knots)	ed Shaft Speed	Shaft Power PD (hP)	Correlation Cn Ship/Model	Correlation Cp Ship/Mode
1 2 3 4 5 6 7 8	10.0 11.8 15.1 17.5 21.1 22.9 25.0 29.2	275.0 344.5 470.5 554.5 647.0 685.5 728.5 795.5	217 436 1250 2065 3187 3627 4213 5092	10.0 11.8 15.1 17.5 21.1 22.9 25.0 29.2	288.8 345.5 473.1 556.4 647.3 684.9 725.9 797.9	275 466 1278 2105 3160 3626 4159 5167	0.952 0.997 0.995 0.997 1.000 1.001 1.004 0.997	0.787 0.936 0.978 0.981 1.009 1.000 1.012 0.985

r			CA -	0.0002			MODEL DATA	CA =	0.00025	
Speed No.	Ship Speed (knots)	MODEL DATA Shaft Speed RFM	Shaft Power PD (hP)	Correlation Cn Ship/Model	Correlation Cp Ship/Model	Ship Speed (knots)	Shaft Speed	Shaft Power PD (hP)	Correlation Cn Ship/Model	Correlatio Cp Ship/Moc
	10.0	287.9	271	0.955	0.799	10.0	288.4	273	0.954	0.793
1 2	11.8	344.5	459	1.000	0.950	11.8	345.0	462	0.999	0.943 0.983
3	15.1	471.9	1263	0.997	0.989	15.1	472.5	1271 2094	0.996 0.998	0.986
4	17.5	555.0	2083	0.999	0.992	17.5	555.7 646.5	2094 3141	1.001	1.015
5	21.1	645.6	3122	1.002	1.021 1.013	21.1 22.9	684.0	3602	1.002	1.007
6	22.9	683.0	3579	1.004 1.006	1.013	25.0	724.8	4130	1.005	1.020
7	25.0	723.8	4102 5087	1.000	1.001	29.2	796.6	5127	0.999	0.993
8	29.2 Cn and Cl	795.4 o averages (sp			1.008	Cn and C	p averages (sp	eeds 3 - 7) =>	1.000	1.002

r				0.00025		MODEL DATA CA = 0.0004						
Speed No.	Ship Speed (knots)	MODEL DATA Shaft Speed	CA = Shaft Power PD (hP)	0.00035 Correlation On	Correlation Cp	Ship Speed (knots)	Shaft Speed FIPM	Shaft Power PD (hP)	Correlation Cn Ship/Model	Correlation Cp Ship/Model		
1	10.00	289.3	278	Ship/Model 0.951	Ship/Model 0.781	10.00	289.8	280	0.949	0.775		
2	11.80	346.1 473.7	469 1285	0.995 0.993	0.929 0.972	11.80 15.10	346.6 474.3	472 1293	0.992	0.967		
3 · 4	17.50	557.0	2117	0.996 0.998	0.976 1.003	17.50 21.10	557.7 649.0	2128 3198	0.994 0.997	0.971 0.997		
5 6	21.10 22.90	648.2 685.8	3649	1.000	0.994	22.90 25.00	686.8 728.0	3672 4216	0.998 1.001	0.988 0.999		
7 8	25.00 29.20	726.9 799.1	4188 5207	1.002 0.995	0.978	29.20	800.4	5248 eeds 3 - 7) =>	0.994 0.996	0.970 0.984		
	Cn and C	p averages (sp	eeds 3 - 7) =>	0.998	0.990	on and o						

٦

Table B6. Island Class, resistance prediction (no flap), ship trials load condition 151 L. tons, Exp. 6

		= "Ехрб Мо			 Flan w/R	 ail″						
MODEL CO	NDITION =	= "нхро ма	Jael 5520	erorni, No	riap, w/it							
EHP RESU	LTS FROM EX	PERIMENT NU	MBER = 6									
DTRC MOD	EL NUMBER =	= 5526 DTRC	DSC	14-May-99								
		SHIP			MODE	ն						
LENGTH		02 44 FT (31.2 M)		17.95 FT (5.472 M)							
TENGIU	- 	02.44 II (000 SO FT (214 50	M)	70.60 SQ FT (6.56 SQ M)							
WEITED S		L51.TONS (153. T)	0.79	TONS (0.8	0 т)					
		1 0005 (21 00F M	OVY (MVV /)	1 936	a (31	026 N SXX	2/MXX4)				
NU (E+5)		1.2817 (0.11907 S	Q M/SEC)	1.9369 (31.026 N SXX2/MXX4) 1.0983 (0.10204 SQ M/SEC)							
	•		ICTION LIN									
				ANCE (CA)	0.00030							
v		PE		FRICTIONAL		FN	V-L	1000CR				
KNOTS		 HP	KW	HP	KW							
10 00	Б 1Л		 108 0	45.9	34.2	0.294	0.988	4.945				
10.00 11.00	5.14	144.8 197.9	147.6	60.4	45.0	0.323	1.087	5.165				
11.80	6.07	197.9 252.3	188.1	73.9	55.1	0.347	1.166	5.428				
12.00	6 17	268.3	200.0	77.6	57.9	0.353	1.186	5.517				
13.00	6.69	252.3 268.3 363.3	270.9	97.7		0.382	1.284	6.044				
14.00	7.20	494.8	369.0	121.0	90.2	0 /12	1 3 8 3	6.812				
			501.9	147.5	110.0	0.412	1.482	7.786				
	7.77	602 1	516.4	150.4		0.444	1.492					
16.00	8.23	869.6	648.4	177.7	132.5			8.446				
17.00	8.23 8.75	1053.4	785.5	211.6	157.8	0.500	1.680					
17.50	9.00	1145.0	853.8	230.1	171.6	0.514 0.529	1.729	8.536				
	9.26	1235.3	921.2	249.5	186.1 217.5	0.529	1.778	8.452				
19.00	9.77	1411.7	1052.7	291.6	217.5	0.559	1.877	8.165				
20.00	10.29	1582.1	1179.8	138.1	252.I	V.300						
21.00	10.80	1747.8	1303.3	389.2	290.2	0.617	2.075	7.289				
21.10	10.85	1764.0	1315.4	394.6	294.3	0.620	2.085					
22.00	11.32	1910.7 2057.7	1424.8	445.1	331.9	0.647	2.1/4	6.487				
22.90		2057.7	1534.4	499.7	372.6	0.673	2.203	6 111				
23.00	11.83			506.0		0.0/0	2.272	6.038				
24.00	12.35	2241.5	1671.5	572.2	426.7	0.706	2.371	5.670				
25.00	12.86	2415.5	1801.3	643.7	480.0	0.735 0.764	2.470	5.343				
26.00	13.38	2599.0	1938.1	720.9	537.6	0.784	2.668	5.055				
27.00	13.89	2793.7	2083.3	803.9	599.4 665.8	0.794	2.766	4.801				
28.00	14.40	3000.6	2237.6	892.9	736.8	0.823	2.865	4.574				
29.00	14.92	3219.1	2400.5	988.1 1007 9		0.858	2.885	4.532				
29.20	15.02	3264.5	2434.3 2573.0	1007.9 1089.7	812.6	0.882	2.964	4.372				
30.00	15.43	3450.5	2313.0									

Table B7.	Island Class,	estimated	powering (r	o flap)	, ship trials	load	l condition 151 L. to	ms
-----------	---------------	-----------	-------------	---------	---------------	------	-----------------------	----

.

•

				e 151L	r Ca=0.0	003 FEET (31.2 M	FULLER C)			
		HIP LENG			151.			ETRIC TO	NIC)		
					2299.			D METERS			
					.00030	SQFI (ETTC FRI	~			
	C	JKRELAT.	LON ALL	JWAINCE	.00030	-					
I	SHTD	SPEED	RESTD	IARY	EFFEC	TVE	DE	LIVERED	PI	ROPELLER	I
I	DIIII		RES.C			- PE				REV. PER	I
I	(KTG)	(M/S)			(HP)				√)	MINUTE	I
I	•		4.94		144.8				5.3	288.8	I
I			5.42		252.3				7.2	345.5	I
ī	12.0	6.17	5.51		268.3	200.0	404	E 260	8.8	352.4	I
I	14.0	7.20	6.81		494.8	369.0		6 67	5.1	426.5	I
I	15.1	7.77	7.87		692.4	516.4	1278.	0 953	3.0	473.1	I
I	16.0	8.23	8.44		869.6	648.4		9 119	9.7	508.3	I
I	17.5	9.00	8.53			853.8			0.0	556.4	I
I			8.45		1235.3	921.2			9.9	570.9	I
I	20.0	10.29	7.77		1582.1	1179.8				622.5	I
I	21.1	10.85	7.28		1764.0	1315.4		9 235	6.3	647.3	I
ī	22.0	11.32	6.88		1910.7	1424.8				666.7	I
I	22.9	11.78	6.48		2057.7	1534.4				684.9	I
I	24.0	12.35	6.03		2241.5	1671.5			9.8	706.6	I
I	25.0	12.86	5.67		2415.5	1801.3		0 310	1.3	725.9	I
I	26.0	13.38	5.34	3	2599.0	1938.1	4414.	6 329	2.0	744.6	I
I	28.0	14.40	4.80	1	3000.6	2237.6	4905.	0 365	7.7	779.3	I
I	29.2	15.02	4.53	2	3264.5	2434.3	5167.	2 385	3.2	797.9	I
I	30.0	15.43	4.37	2	3450.5	2573.0	5410.	8 403	4.9	813.3	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
I	SPEED							WAKE FA		COEF.	I
I	(KTS)	ETAD	ETAO	ETAH		ETAB		1-WFTT			I
I		0.525	0.635	0.810		0.650	0.825	1.015			I
I	11.8	0.540	0.630	0.820		0.660	0.835	1.020			I
I	12.0	0.540	0.630	0.820		0.665	0.835	1.025			I
I	14.0	0.545	0.620	0.825		0.660	0.850	1.030			I
I	15.1	0.540	0.615	0.830		0.655	0.860	1.040			I
I	16.0	0.540	0.610	0.830		0.650	0.865	1.040	1.085		I I
I		0.545	0.610	0.840		0.650	0.880	1.050	1.090		I
I	18.0	0.545	0.615	0.840		0.650	0.885	1.050			I
I	20.0	0.555	0.620	0.850		0.650	0.900	1.055	1.085		
I	21.1	0.560	0.625	0.855		0.650	0.905	1.055	1.080		I I
I	22.0	0.560	0.630	0.865		0.650	0.915 0.920	1.060 1.055	1.075		I
I	22.9	0.570	0.635	0.870		0.650	0.920	1.055	1.070		I
I	24.0	0.575 0.580	0.640 0.640	0.880		0.655 0.655	0.930	1.050	1.065		I
I	25.0	0.580	0.640	0.890		0.655	0.933	1.045	1.060		I
I T	26.0 28.0	0.590	0.640	0.900		0.655	0.940	1.030	1.045		I
I I	28.0	0.610	0.645	0.945		0.670	0.960	1.015	1.035		ī
I	30.0	0.630	0.645	0.955		0.670	0.965	1.015	1.035		I
-	50.0	0.040	0.040	0.200	1.010	0.070				-	

	ŝ
ĺ	Ξ
	ഉ
	Ξ
•	Ę.
	ď
	X
	0
	ຮ
	Ē
	10
•	3
	ĕ
_	-
_	e)
	g
	Ā
	Ľ,
	[ION
•	Ξ
	ត្ត
-	S.
	Select
•	d
	Ξ.
	₫.
	na
	lon a
•	ation a
•	zation a
•	nization a
•	limization a
•	optimization a
•	optimization a
•	ap optimization a
	tlap optimization a
	'n flap optimization a
	ern Ilap optimization a
	Stern flap optimization a
	cern Ilap o
	 Stern IIap optimization a
	B8. Stern Ilap optimization a
	le B8. Stern flap optimization a
	ible B8. Stern flap optimization a
	l able B8. Stern flap optimization a

	Flap Angle	10°	Trim Angle	-0.19		1.79	1.72	1.49	1.13	A Angle	10°	-0.17		-0.54	-0.70	-0.77	-0.94		Flap Angle	10°	Trim Angle	-0.22		1.68		1.20	0.89	Angle	10°	-0.20		-0.65		-1.06	-1.19
	Flap Angle Fl	7.5°	gle	-0.14		1.95	2.04	1.73	1.43	Angle	7.5°	-0.12		-0.38	-0.38	-0.53	-0.65		Flap Angle Fl	7.5°	Trim Angle Tr							e	7.5°						
oan 16 ft		5°	Trim Angle	-0.07		2.17	2.21	1.97	1.74	∆ Angle	5 °	-0.04		-0.16	-0.21	-0.29	-0.34	Span 16 ft		5°	Trim Angle	-0.10		2.17		2.02	1.82	A Angle	5°	-0.08		-0.16		-0.25	-0.26
Expertise Elenses Chord 1 th Span 16 th	Flap Angle	°	Trim Angle	-0.04		2.24		2.11	1.87	A 'Angle	°	-0.02		-0.09		-0.15	-0.21	chord 1.5 ft. Span 16	Flap Angle	°	Trim Angle	-0.05		2.17		2.10	1.85	∆ Angle	°	-0.03		-0.16		-0.16	-0.22
Vi Flan#1 (Baseline	Full Load	Trim Angle	-0.02	1.24	2.33	2.42	2.26	2.08	A Angle		ı	1	ı	·	ı	•	Exo9 TRIM: Flap#2.1		Full Load	Trim Angle	-0.02	1.24	2.33	2.42	2.26	2.08	∆ Angle		ı	ı	ı	ı	ı	ł
Exea TRI		Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32	Exo9 TRI		Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32
i e	Flap Angle	10°	PE (hP)	285		1711	2415	3281	4482	PE Ratio	10°	0.976		0.964	0.975	0.990	1.022		Flap Angle	10°	PE (hP)	284		1715	-	3286	4530	PE Ratio	10°	0.973		0.966		0.992	1.033
1 ft Span 16 ft	p Angle Flap Angle	7.5°	PE (hP)	286		1730	2434	3275	4420	PE Ratio	7.5°	0.979		0.975	0.982	0.989	1.008	d 1.5 ft Span 16 ft	Flap Angle Flap Angle Flap Angle	7.5°	PE (hP)							PE Ratio	7.5°						
ard 1 ft St	Flap Angle	5°	PE (hP)	286		1745	2444	3298	4403	PE Ratio	5°	0.979		0.983	0.986	0.995	1.004	ord 1.5 ft	Flap Angle	2 °	PE (hP)	285		1752		3307	4422	PE Ratio	5°	0.976		0.987		0.998	1.008
EYNA RESISTANCE: Flankt Chard	Flap Angle Fla	°0	PE (hP)	283		1770		3339	4420	PE Ratio	°0	0.969		0.997		1.008	1.008	Ex09 RESISTANCE: Flap#2. Chor	Flap Angle	°0	PE (hP)	284		1762		3323	4411	PE Ratio	°0	0.973		0.993		1.003	1.006
NSTANCE.	Baseline	Full Load	PE (hP)	292	966	1775	2478	3313	4385	PE Ratio		•	ı	ı		·	ı	SISTANCE	Baseline	Full Load	PE (hP)	292	996	1775	2478	3313	4385	PE Ratio		•	•	·	1	ı	
FYNA RES		Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32	Exo9 RES		Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32

Table B8. Stern flap optimization and selection, model resistance experiments (continued)

Exp10 B	ESISTANCI	5: Flap#3. C	Exp10 RESISTANCE: Flap#3, Chord 2 ft, Span 16 ft	Span 18 ft		Exoto TF	liM: Flap#3.	Exol0 TRIM: Flab#3. Chera 2 tt Sean 16 ft	Span 16 ft		
	Baseline	Flap Angle	Flap Angle Flap Angle Flap Angle	Flap Angle	Flap Angle		Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
Speed	Full Load	°0	5°	7.5°	10°	Speed	Full Load	°0	5°	7.5°	10°
(knots)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
12	292	280	281	283	284	12	-0.02	-0.07	-0.13	-0.18	-0.31
16	966					16	1.24				
20	1775	1767	1749	1720	1682	20	2.33	2.21	2.07	1.79	1.45
24	2478					24	2.42				
28	3313	3338	3308	3290	3300	28	2.26	2.13	1.99	1.57	0.99
32	4385	4423	4415	4452		32	2.08	1.81	1.76	1.02	
Speed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	∆ Angle	Δ Angle	∆ Angle	∆ Angle
(knots)		°0	5 °	7.5°	10°	(knots)		°0	5°	7.5°	10°
12	ı	0.959	0.962	0.969	0.973	12	ı	-0.04	-0.11	-0.16	-0.29
16	ı					16				;	
20	ı	0.995	0.985	0.969	0.948	20	•	-0.12	-0.26	-0.54	-0.88
24	ı					24	ı				
28	1	1.008	0.998	0.993	0.996	28	ı	-0.13	-0.27	-0.69	-1.27
32	•	1.009	1.007	1.015		32	ı	-0.26	-0.32	-1.06	
Exp11 RI	ESISTANCE	EXP11 RESISTANCE: Flap#4, Cho	hord 2.5 ft,	rd 2.5 ft, Span 16 ft		Exp11TB	EXP111TRIM: Flap#4		Chord 2.5 ft, Span 16	H (1)	
	Baseline	Flap Angle	gle		Flap Angle		Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
Speed	Full Load	°0	5 °	7.5° 10°	10°	Speed	Full Load	°0	ີຄູ	7.5°	10°
(knots)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
12	292	280	283		282	12	-0.02	-0.10	-0.16)	-0.34
16	996					16	1.24				
20	1775	1770	1746		1670	20	2.33	2.23	2.03		1.38
24	2478					24	2.42				
28	3313	3330	3330		3313	28	2.26	2.10	2.01		0.88
32	4385	4453	4437			32	2.08	1.86	1.76		
Speed	PE Ratio	PE Ratio	PE Ratio	PE Ratio	PE Ratio	Speed	∆ Angle	Angle	∆ Angle	∆ Angle	∆ Angle
(knots)		°0	5°	7.5°	10°	(knots)		°	5°	7.5°	10°
12	•	0.959	0.969		0.966	12	ı	-0.08	-0.13		-0.32
16	ı					16	·				
20	·	0.997	0.984		0.941	20		-0.10	-0.30		-0.95
24						24	•				
28	,	1.005	1.005		1.000	28	2	-0.16	-0.25		-1.39
32	,	1.016	1.012			32	•	-0.21	-0.31		

.

Flap Angle	10°	Trim Angle	-0.24		1.65	1.69	1.25	0.89	∆ Angle	10°	-0.22		-0.68	-0.73	-1.02	-1.19		Flap Angle	10°	Trim Angle	-0.17	0.88	1.84	1.90	1.54	1.20	∆ Angle	10°	-0.15	-0.36	-0.49	-0.52	-0.72	-0.88
t Flap Angle	7.5°	Trim Angle	-0.21		1.78		1.45	1.07	∆ Angle	7.5°	-0.19		-0.55		-0.81	-1.00	2	Flap Angle	7.5°	Trim Angle	-0.14	0.96	1.95	2.02	1.79	1.45	∆ Angle	7.5°	-0.12	-0.28	-0.38	-0.40	-0.48	-0.63
Span 12.4 f Flap Angle	5°	Trim Angle	-0.11		2.17	2.26	2.02	1.76	∆ Angle	5 °	-0.09		-0.16	-0.16	-0.25	-0.32	Span 8.7 ft	Flap Angle	5°	Trim Angle	-0.10		2.13		2.07	1.85	∆ Angle	5 °	-0.08		-0.20		-0.19	-0.22
Exp12 TRIM: Flap#5, Chotd 2 th Span 12.4 f Baseline Flap Angle Flap Angle	°	Trim Angle	-0.06		2.16	2.25	2.03	1.74	∆ Angle	°0	-0.03		-0.17	-0.17	-0.23	-0.34	Exp13 TRIM: Flap#6, Chord 2.11, Span 8.7	Flap Angle	°0	Trim Angle	-0.04		2.20	2.27	2.00	1.84	∆ Angle	°	-0.02		-0.13	-0.15	-0.26	-0.24
IM: Flap#5, Baseline	Full Load	Trim Angle	-0.02	1.24	2.33	2.42	2.26	2.08	∆ Angle		ı	ı	ı	ı		ı	IN: Flap#6.	Baseline	Full Load	Trim Angle	-0.02	1.24	2.33	2.42	2.26	2.08	∆ Angle		ı	ı	ı	ı	·	•
Exp12 TR	Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32	Exp13 TR		Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32
Flap Angle	10°	PE (hP)	283		1690	2418	3294	4527	PE Ratio	10°	0.969		0.952	0.976	0.994	1.032	1	Flap Angle	10°	PE (hP)	288	933	1720	2413	3240	4462	PE Ratio	10°	0.986	0.966	0.969	0.974	0.978	1.018
5 pan 12.4 f Flap Angle	7.5°	PE (hP)	283		1707		3275	4498	PE Ratio	7.5°	0.969		0.962		0.989	1.026	rd 2 ft. Span 8.7 ft	Flap Angle	7.5°	PE (hP)	286	935	1723	2425	3270	4420	PE Ratio	7.5°	0.979	0.968	0.971	0.979	0.987	1.008
: Flap#5, Chord 2 ft, 5 Flap Angle Flap Angle	5°	PE (hP)	282		1754	2460	3313	4401	PE Ratio	5°	0.966		0.988	0.993	1.000	1.004	thord 2 M. 1	Flap Angle	5°	PE (hP)	287		1763		3325	4430	PE Ratio	5 °	0.983		0.993		1.004	1.010
Flap#5, C Flap Angle	°0	PE (hP)	286		1762	2476	3309	4398	PE Ratio	°0	0.979		0.993	0.999	0.999	1.003	: Flap#6, C	Flap Angle Fl	°	PE (hP)	287		1763	2465	3307	4425	PE Ratio	°	0.983		0.993	0.995	0.998	1.009
SISTANCE Baseline	Full Load	PE (hP)	292	966	1775	2478	3313	4385	PE Ratio		ı	ı	ı	•			Exp13 RESISTANCE: Flap#6, Chio	Baseline	Full Load	PE (hP)	292	996	1775	2478	3313	4385	PE Ratio		•	٠	ı	ı	ı	r
Exp12 Rf	Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32	Exol3 RE		Speed	(knots)	12	16	20	24	28	32	Speed	(knots)	12	16	20	24	28	32

Table B8. Stern flap optimization and selection, model resistance experiments (continued)

Table B8. Stern flap optimization and selection, model resistance experiments (continued)

Exp15 RESISTANCE: Flap#7, Ch Baseline Flap Angle F Sneed Full Load 0°	Щ	Flap#7. (lap Angle	: Flap#7, Chord 1 tt, Span 12.4 ft Flap Angle Flap Angle Flap Angle Flap Angle 0° 5° 10°	lord 1 tt. Span 12.4 ft lap Angle Flap Angle F 5° 7 5°	Flap Angle	EXP15 TH	TIM: Flap#7 Baseline	Exp15 TRIM: Flap#7, Chord 1 11, Span 12.4 11 Baseline Flap Angle Flap Angle F	Span 12.4 Flap Angle		Flap Angle
0° 5° PE (hD) DE (hD)	0° 5° PE (hD) DE (hD)		č	7.5° DE (hD)	10° DE (ND)	Speed	Full Load	° °	ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ เ	7.5°	10°
286 288	ге (IIF) 288		⊔ ∾ L	E (NF) 286	РЕ (NP) 288	(knots) 12	I rim Angle -0.02	l rim Angle	Trim Angle -0.09	Trim Angle	Trim Angle -0 16
966						16	1.24			1	
1775 1763 1764 1734	1764		173	4	1719	20	2.33		2.14	1.99	1.86
			243	0		24	2.42			2.05	1
3308	3299		328	4	3242	28	2.26	2.01	1.99	1.81	1.44
4385 4409 4419 4440	4419		444(~	4473	32	2.08	1.69	1.65	1.47	1.12
tío PE Ratio P	PE Ratio		PE Rat	0	PE Ratio	Speed	∆ Angle	Angle	∆ Angle	∆ Angle	∆ Angle
0° 5° 7.5°	5°		7.5°		10°	(knots)		°	2° ⁻	7.5°	10°
- 0.979 0.986 0.979	0.986		0.979		0.986	12			-0.07	-0.10	-0.14
						16	ı				
- 0.993 0.994 0.977	0.994		0.977		0.968	20	ı		-0.19	-0.34	-0.47
			0.981			24	ı			-0.37	
	0.996		0.991		0.979	28	1	-0.25	-0.27	-0.45	-0.82
- 1.005 1.008 1.013	1.008		1.013		1.020	32	ı	-0.39	-0.43	-0.61	-0.96
Exp16 RESISTANCE: Flap#8, Chord 1 ft, Span 8.7 h	E: Flap#8, Chord 1 ft. Span 8.7	hord 1 ft. Span 8.7	pan 8.7	Ŧ		Exp15 TH	Exp15 TRIM: Flap#8,	Chord 1 ft.	Span 8.7ft		
Flap Angle Flap Angle Fla	Flap Angle Flap Angle Flap Ang	Flap Angle Flap Ang	Flap Anç		Flap Angle		Baseline	Flap Angle	Flap Angle	Flap Angle	Flap Angle
0° 5°	ນິ		7.5°		10°	Speed	Full Load	°	້າ	7.5°	10°
PE (hP) PE (hP) PE (hP) PE (hP)	PE (hP)		PE (hP)		PE (hP)	(knots)	Trim Angle	Trim Angle	Trim Angle	Trim Angle	Trim Angle
	288	288	288		290	12	-0.02			-0.11	-0.12
966 952	952	952	952			16	1.24			1.06	
1775 1743	1743	1743	1743		1735	20	2.33			2.03	1.95
					~	24	2.42				
	3275	3275	3275		3279	28	2.26			1.82	1.73
4385 4445	4445	4445	4445		4446	32	2.08			1.52	1.36
tio PE Ratio P	PE Ratio	_	PE Ratio		PE Ratio	Speed	A Angle	∆ Angle	A Angle	∆ Angle	∆ Angle
	5°		7.5°		10°	(knots)		°	ົ້	7.5°	10°
- 0.000 0.000 0.986	0.000		0.986		0.993	12	·	0.02	0.02	-0.09	-0.10
- 0.986	0.986	0.986	0.986			16	·			-0.18	
- 0.982	0.982	0.982	0.982		0.977	20				-0.30	-0.38
ı						24				2	222
- 0.989	0.989	0.989	0.989		0.990	28	\$			-0.44	-0.53
- 1.014	1.014	1.014	1.014		1.014	32	•			-0.56	-0.72

Table B9a. Island Class, resistance prediction (no flap), full load 163 L. tons, original model configuration without spray rail extension, Exp. 17

MODEL CO	NDITION	= "Exp17	,163LT, No	Flap, no E	xtRails"		•	
		EXPERIMENT N = 5526 DTR						
SHIP			MOD	EL				
LENGTH		102.44 FT (31.2 M)		17.95	FT (5.	472 M)	
WETTED S	URFACE	2366.SQ FT (220. SQ	M)	72.66	SQ FT (6.	75 SQ M)	
DISPLACE	MENT	163.TONS (166. T)	0.86	TONS (0.8	7· T)	
RHO		1.9905 (31.885 N	SXX2/MXX4)	1.936	i 9 (31	.026 N SXX	2/MXX4)
NU (E+5)		163.TONS (1.9905 (1.2817 (0.11907 S	Q M/SEC)	1.098	3 (0.	10204 SQ M	I/SEC)
			RATIO		5.706			
			ICTION LIN					
		CORRELA	TION ALLOW	ANCE (CA)	0.00030			
v	·	PE		FRICTIONAL	POWER	FN	 V-L	1000CR
KNOTS	M/S			HP				
10.00		 150.9				0.294	0.988	5.035
11.00	5.66	150.9 209.8	156.5	62.2	46.4	0.323	1.087	5.035 5.390
12.00	6.17	291.0 402.1 549.8	217.0	79.9	59.5	0.353	1.186	5.936
13.00	6.69	402.1	299.8	100.6	75.0	0.382	1.284	6.668
14.00	7.20	549.8	410.0	124.5	92.8	0.412	1.383	7.531
15.00	7.72	743.0	554.1	151.8	113.2	0.441	1.482	8.510
16.00	8.23	963.5	718.5	182.9	136.4	0.470	1.581	9.260
17.00	8.75	743.0 963.5 1177.6 1379.3	878.2	217.8	162.4	0.500	1.680	9.492
18.00	• 9.26	1379.3	1028.5	256.8	191.5	0.529	1.778	9.351
19.00	9.77	1576.9	1175.9 <i>•</i>	300.1	223.8	.0.559	1.877	9.044
20.00	10.29	1764.2 1943.0	1315.6	348.0	259.5	0.588 0.617	1.976	8.601
21.00				400.6	298.7	0.617	2.075	8.092
22.00	11.32	2116.3 2288.5	1578.1	458.1	341.6	0.647 0.676	2.174	7.566
23.00	11.83	2288.5	1706.6	520.8	388.4	0.676	2.272	7.059
24.00		2464.2				0.706		
25.00	12.86 13.38	2648.0	1974.6	662.5 741.9	494.0	0.735	2.470	6.174
26.00								
27.00	13.89	3053.0 3278.3	2276.6	827.3	616.9	0.794	2.668	5.494
28.00	14.40	3278.3	2444.6	918.9	685.2	0.823	2.766	5.222
29.00		3518.7						
30.00	15.43	3776.1 4052.8	2815.9	1121.5	836.3	0.882	2.964	
31.00								
32.00	16.46	4355.9	3248.2	1351.3	1007.6	0.941	3.162	4.455

* Only at these speeds does the addition of the "bow spray rails" affect the resistance.

Table B9b. Island Class, resistance prediction (no flap), full load 163 L. tons. Exp. 18 with "bow spray rails"

.

MODEL CONDITION = "Expl8, Baseline 163LT, No Flap, ExtRails"

EHP RESULTS FROM EXPERIMENT NUMBER = 18 DTRC MODEL NUMBER = 5526 DTRC DSC 5-19-99

SHIP	MODEL	
LENGTH	102.44 FT (31.2 M)	17.95 FT (5.472 M)
WETTED SURFACE	2366.SQ FT (220. SQ M)	72.66 SQ FT (6.75 SO M)
DISPLACEMENT	163.TONS (166. T)	0.86 TONS (0.87 T)
RHO	1.9905 (31.885 N SXX2/MXX4)	1.9369 (31.026 N SXX2/MXX4)
NU (E+5)	1.2817 (0.11907 SQ M/SEC)	1.0983 (0.10204 SQ M/SEC)
	LINEAR RATIO	5.706
	ITTC FRICTION LINE	
	CORRELATION ALLOWANCE (CA)	0.00030

v 	S	PE		FRICTIONA	L POWER	FN	V-L	1000CR
KNOTS	M/S	HP	KW	HP	KW			
10.00	5.14	150.9	112.5	47.3	35.2	0.294	0.988	5.035
11.00	5.66	209.8	156.5	62.2	46.4	0.323	1.087	5.390
12.00	6.17	291.0	217.0	79.9	59.5	0.353	1.186	5.936
13.00	6.69	402.1	299.8	100.6	75.0	0.382	1.284	6.668
14.00	7.20	550.3	410.4	124.5	92.8	0.412	1.383	7.540
15.00	7.72	749.9	559.2	151.8	113.2	0.441	1.482	8.610
16.00	8.23	976.2	727.9	182.9	136.4	0.470	1.581	9.410
17.00	8.75	1182.5	881.8	217.8	162.4	0.500	1.680	9.540'
18.00	9.26	1382.7	1031.1	256.8	191.5	0.529	1.778	9.380
19.00	9.77	1578.3	1177.0	300.1	223.8	0.559	i.877	9.054
20.00	10.29	1764.2	1315.6	348.0	259.5	0.588	1.976	8.601
21.00	10.80	1943.0	1448.9	400.6	298.7	0.617	2.075	8.092
22.00	11.32	2116.3	1578.1	458.1	341.6	0.647	2.174	7.566
23.00	11.83	2288.5	1706.6	520.8	388.4	0.676	2.272	7.059
24.00	12.35	2464.2	1837.5	588.9	439.1	0.706	2.371	6.591
25.00	12.86	2648.0	1974.6	662.5	494.0	0.735	2.470	6.174
26.00	13.38	2843.3	2120.3	741.9	553.2	0.764	2.569	5.809
27.00	13.89	3053.0	2276.6	827.3	616.9	0.794	2.668	5.494
28.00	14.40	3278.3	2444.6	918.9	685.2	0.823	2.766	5.222
29.00	14.92	3518.7	2623.9	1016.9	758.3	0.853		4.984
30.00	15.43	3776.1	2815.9	1121.5	836.3	0.882	2.964	4.777
31.00	15.95	4052.8	3022.2	1232.9	919.4	0.911	3.063	4.599
32.00	16.46	4355.9	3248.2	1351.3	1007.6	0.941	3.162	4.455

* Only at these speeds does the addition of the "bow spray rails" affect the resistance.

MODEL CO	NDITION	= "Exp21	, 144LT, 1	No Flap, ExtH	Rails"			
		XPERIMENT N = 5526 DTR						
RHO	SURFACE 2 MENT	1.9905 (210. SQ 146. T 31.885 N	M)) SXX2/MXX4) SQ M/SEC)	69.40 0.75 1.936	FT (5. SQ FT (6. TONS (0.7 9 (31	45 SQ M) 6 T) .026 N SXX	
		LINEAR			5.706			
			ICTION LIN TION ALLOV	JE VANCE (CA)	0.00030			
v	'S	PE		FRICTIONAL	POWER	FN	V-L	1000CR
	M/S	HP		HP	KW			
10.00	5.14	142.4	106.2	45.1	33.7	0.294	0.988	
11.00	5.66	194.5	145.1	59.4 76.3	44.3	0.323	1.087	5.165
12.00	6.17	261.6	195.1	76.3	56.9	0.353	1.186	5.455
13.00	6.69	351.7	262.3	96.0	71.6	0.382	1.284	5.920
14.00	7.20	479.1	357.3	118.9 145.0	88.7	0.412	1.383	6.677
15.00	7.72	649.8	484.5	145.0	108.2	0.441	1.482	7.607
16.00	8.23	832.0	620.4	174.7 208.0	130.3	0.470	1.581	8.163
17.00	8.75	1003.4	748.2	208.0	155.1	0.500	1.680	8.234
18.00	9.26	11/2.3	874.2	245.3 286.7 332.4	182.9	0.529	1.778	8.085
19.00	9.77	1539.3	998.7	480./	213.8	0.559	1.877	7.444
20.00	10.29	1503.2	1240.9	334.4 202 £	24/.9	0.566	1.976	7.444
21.00 22.00	11 22	1004.0	1240.9	382.6 437.6	200.0	0.617	2.075	7.038
22.00	11 83	1921 7	1477 9	497 5	320.3	0.04/	2·1/4 2 272	6 205 6 205
23.00	12 35	2143 7	1598 5	497.5 562.5	419 4	0.706	2 271	5 81 9
25.00	12.86	2311 9	1724 0	562.5 632.8	471 9	0.735	2.371	5 466
26.00	13.38	2489.6	1856.5	708.6	528.4	0.764	2.569	5 154
27.00	13.38 13.89	2680.5	1998.9	708.6 790.2	589.3	0.794	2,668	4 885
		2886.7	2152.6	877.7	654.5	0.823	2,766	4.655
29.00	14.92	3109.3	2318.6	877.7 971.3	724.3	0.853	2.865	4.459
30.00	15.43	3348.9	2497.3	1071.2 1177.6 1290.7	798.8	0.882	2.964	4.291
31.00	15.95	3603.5	2687.2	1177.6	878.2	0.911	3.063	4.142
32.00	16 16	2070 0	2006 5	1000 7	000 5	0 0/1	2 1 (2)	4 005

Table B10. Island Class, resistance prediction (no flap), min-ops 144 L. tons, Exp. 21

...

••

Table B11. Island Class, resistance prediction with stern flap, full load 163 L. tons, Exp. 19

~•

EHP RESU		-	, 10011,	Stern Flap,	Extrails"			
	ILTS FROM	EXPERIMENT N	IUMBER = 1	9				
DTRC MOE	DEL NUMBER	= 5526 DTR	C DSC	5-19-99				
		SHIP			MODE	аL.		
LENGTH		102.44 FT (31.2 M)		17.95	FT (5.	472 M)	
WETTED S	SURFACE	2366.SQ FT (220. SQ	M)	72.66	SO FT (6.	75 SO M)	
DISPLACE	MENT	163.TONS (166. т)	0.86	TONS (0.8	7 T)	
RHO		1.9905 (31.885 N	SXX2/MXX4)	1.936	59 (31	026 N SXX	(2/MXX4)
NU (E+5)		1.2817 (0.11907	M)) SXX2/MXX4) SQ M/SEC)	1.098	33 (0.	10204 SQ N	1/SEC)
			RATIO		5.706			
			ICTION LI		5.750			
				WANCE (CA)	0.00030			
					0.00050			
v	75	PE	3	FRICTIONAL	POWER	FN	V-L	1000c
KNOTS		HP		HP				
10.00				47.3 62.2	35.2	0.294	0.988	4.94
11.00	5.66	149.1 205.8	153.4	62.2	46.4	0.323	1.087	5.24
12.00	6.17	283.4	211 4	79 9	59 5	0 353	1 106	5.72
13.00	6.69	389.6	290.5	100.6 124.5 151.8	75.0	0.382	1.284	6.39
14.00	7.20	530.8	395.8	124.5	92.8	0.412	1 383	7 19
15.00	7.72	721.9	538.3	151.8 182.9	113.2	0.441	1.482	8.20
16.00	8.23	939.5	700.6	182.9	136.4	0.470	1.581	8.97
17.00	8.75 9.26	1139.0	849.4	217.8 256.8	162.4	0.500	1.680	9.11
18.00	9.26	1339.9	999.2	256.8	191.5	0.529	1.778	9.02
19.00	9.77	1535.8	1145.3	300.1	223.8	0.559	1 877	8 75
20.00	10.29	1722.6	1284.5	300.1 348.0	259.5	0.588	1.976	8.34
21.00	10.80	1900.7	1417.3	400.6	298.7	0.617	2.075	7.87
22.00	11 32	2072 2	1545 2	458.1	341.6	0.647	2.174	736
23.00	11.83	2240.7	1670.9	520.8	388.4	0.647 0.676	2.272	
24.00	10 35	2/11 2	1798.1	588.9	439.1	0.706	2 371	6.00
25.00	12.86	2589.2	1930.7	588.9 662.5	494.0	0 735	2.371	5 99
26.00	13.38	2779.6	2072.8	741.9	553 2	0 764	2.4/0	5.33
28.00	14.40	3218.6	2400.1	827.3 918.9	685 2	0.724	2.000	5.33
29.00	14.92	3472.6	2589.5	1016 9	758 3	0.023	2./00	5.09
30.00	15.43	3748.9	2795 6	1016.9 1121.5	, 30.5 876 7	0.000	2.000	4.89
31.00	15.95	4045.4	3016.7	1232 9	919 4	0.002	2.304	4.72
32.00	16.46	4355.9	3248.2	1232.9 1351.3	1007 6	0.911	3 160	4.58

* Addition of "bow spray rails" results in a change in Cr over full speed range.

B54

MODEL CC	NDITION	= "Exp2	0, 144LT,	Stern Flap,	ExtRails	41	-	
EHP RESU	ILTS FROM :	EXPERIMENT N	UMBER = 20					
DTRC MOL	DEL NUMBER	= 5526 DTR	DSC DSC	5-19-99				
		SHIP			MODE	т.		
TENCTIF		102 44 FT (31.2 M)		17.95	ביים דידי (5	472 M)	
MEMUTIC S	TIPEACE	102.44 FT (2260.SQ FT (210 50	M()	69.40	SO FT (6.	45 SOM)	
DISDUACE		144 TONS (146 T)	0.75	TONS (0.7	бт)	
RHO		1.9905 (31.885 N	SXX2/MXX4)	1.936	9 (31	.026 N SXX	2/MXX4)
MI (E+5)		144.TONS (1.9905 (1.2817 (0.11907 5	SO M/SEC)	1.098	3 (0.	10204 SO M	(SEC)
NO (1.5)		112017		L ,		• • • •	~	
		LINEAR	RATIO		5.706			
		ITTC FR	ICTION LIN	IE				
		CORRELA	TION ALLOW	VANCE (CA)	0.00030			
 7	 /S	PE	~~~~~~~~	FRICTIONAL	POWER	 FN	 V-L	1000CR
KNOTS		HP	KW		KW			
10.00	5.14	139.9	104.3	45.1	33.7	0.294	0.988	4.820
11.00	5.66	190.5 254.0	142.0	59.4	44.3	0.323	1.087	5.010
12.00	6.17	254.0	189.4	76.3	56.9	0.353	1.186	5.232
13.00	6.69	340.1 462.3	253.6	96.0	71.6	0.382	1.284 1.383	5.650
14.00	7.20	462.3	344.8	118.9	88.7	0.412	1.383	6.366
15.00	7.72	625.5	466.4	145.0	108.2	0.441	1.482	7.241
16.00	8.23	802.9 971.7	598.7	174.7	130.3	0.470	1.581	7.801
17.00	8.75	971.7	724.6	208.0	155.1	0.500	1.680	7.906
18.00	9.26	1136.4 1300.9	847.4	245.3	182.9	0.529	1.778	7.772
19.00	9.77	1300.9	970.1	286.7	213.8	0.559	1.877	7.521
	10.29	1463.4	1091.2	332.4	247.9	0.588	1.976	7.191
21.00	10.80 11.32	1623.6 1782.4	1210.7	382.6 437.6	285.3	0.617	2.075	6.816
22.00	11.32	1782.4	1329.1	437.6	326.3	0.647	2.174	6.424
23.00	11.83	1941.3 2103.2	1447.6	497.5	371.0	0.676	.2.272	6.036
24.00	12.35	2103.2	1568.3	562.5	419.4	0.706	2.371	5.669
25.00		2271.3	1693.7	632.8	471.9	0.735	2.470	5.334
26.00	13.38 13.89	2449.1	1826.3	708.6 790.2	528.4	0.764	2.569	5.037
27.00	13.89	2640.7	1969.2	790.2	589.3	0.794	2.668	4.782
28.00	14.40	2848.7 3074.8 3318.2	2124.3	877.7	654.5	0.823	2.766	4.567
29.00	14.92	3074.8	2292.9	971.3	724.3	0.853	2.865	4.387
30.00	15.43	3318.2	2474.3	1071.2	798.8	0.882	2.964	4.233
31.00	15.95	3577.2 3843.7	2667.5	1177.6	878.2	0.911	3.063	4.097
32.00	16.46	3843.7			962.5	0.941	3.162	3.963

Table B12. Island Class, resistance prediction with stern flap, min-ops 144 L. tons, Exp. 20

Table B13. Island Class, estimated powering (no flap), full load 163 L. tons

WPB	estima	te 1631	J No Fl	.ap, in	cluding	"bow spi	ay rail	ls″			
	S	HIP LEN	IGTH		102.4	FEET (31.2 N	TETERS)			
	S	HIP DIS	SPLACEME	INT	163.	TONS (166. N	ÆTRIC 1	ONS)		
	S	HIP WET	TED SUF	RFACE	2366.	SQFT (220. 8	SO METER	S)		
						- 1					
I	SHIP	SPEED	RESII	DUARY	EFFE(CTIVE	DH	LIVEREI)	PROPELLER	I
I			RES.C	OEF.	POWEI	R- PE	PC	WER- PI)	REV. PER	I
Τ	(KTS)	(M/S)	(CR*1		(HP)	(kW)	(HP)			MINUTE	ī
I	10.0	5.14	5.04		151.0	112.6		.4 21	.5.1		I
I	11.0	5.66	5.39		210.0	156.6		5 29	4.2	324.3	I
I		6.17			291.0	217.0		.8 40	4.0	359.4	ī
I		6.69			402.0					397.5	I
I		7.20	7.53			410.1		.3 76			ī
I	15.0	7.72	8.61		750.0	559.3			7.5		ī
I	16.0	8.23	9.40		976.0	727.8			1.4	524.0	ī
I		8.75	9.54		1183.0	882.2			6.3	557.9	I
I		9.26	9.38		1383.0	1031.3			5.3	587.9	I
I		9.77				1176.7			0.9		
I		10.29	8.60								I
I						1315.4			.5.8		I
I		10.80	8.09			1448.9			4.2		I
		11.32	7.56			1577.9	3809.	7 284	0.9		I
I	23.0	11.83	7.06		2289.0	1706.9			8.3	703.3	I
I	24.0	12.35	6.59		2464.0	1837.4			7.3	722.3	I
I	25.0	12.86				1974.6			4.6	741.1	I
I	26.0	13.38	5.80		2843.0				2.4		I
I	27.0	13.89	5.49	4	3053.0	2276.6	5119.		7.6		I
I	28.0	14.40	5.22	1 :	3278.0	2444.4	5379.	3 401	1.4		I
	29.0	14.92	4.98	5	3519.0	2624.1	5627.	6 419	6.5	810.4	I
I		15.43				2815.8			6.0		I
I						3022.3			3.3		I
I	32.0	16.46	4.45	5 4	4356.0	3248.3	6692.	6 499	0.7	869.6	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	JST DEDU	CTION	ADVANCE	I
I	SPEED			-			AND	WAKE FA	CTORS		I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WF	TQ ADVC	I
I	10.0	0.525	0.630	0.810	1.025		0.825			0 0.850	I
٠I	11.0	0.530	0.630	0.815	1.040	0.655	0.830	1.020			I
I	12.0	0.535	0.625	0.820	1.050	0.655		1.025			I
I	13.0	0.540	0.620	0.820	1.060	0.655	0.845	1.030	1.06		ī
I	14.0	0.535	0.610	0.825	1.065	0.650	0.850	1.030	1.07		I
I	15.0	0.535	0.605	0.830	1.065	0.645	0.860	1.035	1.08		I
I	16.0	0.530	0.600	0.830	1.065	0.640	0.865	1.040	1.090		I
I	17.0	0.535	0.600	0.835	1.060	0.635	0.875	1.045	1.090		I
I	18.0	0.535	0.605	0.840	1.055	0.635	0.885	1.050	1.090		I
I	19.0	0.540	0.605	0.845	1.050	0.640	0.890	1.055	1.090		Ĩ
I	20.0	0.545	0.610	0.850	1.045	0.640	0.900	1.055	1.090		I
I	21.0	0.550	0.620	0.855	1.040	0.640	0.905	1.055	1.085		I
I	22.0	0.555	0.625	0.865	1.035	0.645	0.915	1.060	1.080		ī
I	23.0	0.560	0.630	0.870	1.030	0.645	0.920	1.055	1.075		
I	24.0	0.570	0.630	0.880	1.025	0.645	0.920	1.055	1.07		I
I	25.0	0.575	0.635	0.890	1.020	0.650	0.935	1.055	1.065		I
I	26.0	0.585	0.640	0.900	1.020	0.650	0.935	1.030	1.06		I
ī	27.0	0.595	0.640	0.910	1.025	0.655	0.940	1.045 1.040			I
I	28.0	0.610	0.640	0.925	1.025	0.650	0.955	1.040	1.055		I
ĩ	29.0	0.625	0.640	0.940	1.030	0.665	0.955	1.030	1.045		I
I	30.0	0.635	0.640	0.955	1.035	0.670	0.960		1.040		I
ī	31.0	0.645	0.645	0.960	1.040 1.040	0.670	0.965	1.015	1.035		I
I	32.0	0.650	0.645	0.970	1.040 1.045			1.010	1.035		I
-		2.000	0.040	0.970	7.040	0.670	0.975	1.010	1.030	0.910	I

Table B14. Island Class, estimated powering (no flap), min-ops 144 L. tons

. '

	S. S. S.	HIP LENG HIP DISH HIP WETT	nate 144LT No STH PLACEMENT TED SURFACE ION ALLOWANCE	102.4 144. 2260.	FEET (TONS (SQFT ("bow spra 31.2 METE 146. METE 210. SQ M TTC FRICTI	RS) LIC TONS) ETERS)	
-	~	SPEED	RESIDUARY	EFFEC	ישת דר וווי	DELIV	TRRFD.	PROPELLER
I I	SHIP	SPEED	RES.COEF.	POWER		POWEF		REV. PER
÷ I	(KTS)	(M/S)	(CR*1000)	(HP)	(kW)	(HP)	(kW)	MINUTE
ī	10.0	5.14	4.927	142.0	105.9	269.5		287.5
Ī	11.0	5.66	5.183	195.0	145.4	363.3	270.9	318.6
I	12.0	6.17	5.467	262.0	195.4	481.7		350.4
I	13.0	6.69	5.926	352.0	262.5	641.9		
ī	14.0	7.20	6.675	479.0	357.2	873.9	651.7	423.1
I	15.0	7,72	7.610	650.0	484.7	1191.3	888.3	464.6
I	16.0	8.23	8.163	832.0	620.4	1529.1	1140.3	502.5
I	17.0	8.75	8.230	1003.0	747.9	1835.5	1368.8	534.3
I	18.0	9.26	8.082	1172.0	874.0	2133.6	1591.0	563.3
I	19.0	9.77	7.804	1339.0	998.5	2422.5	1806.4	589.9
I	20.0	10.29	7.443	1503.0	1120.8	2699.4	2012.9	614.7
I	21.0	10.80	7.038	1664.0	1240.8	2965.2	2211.2	637.4
I	22.0	11.32	6.618	1823.0	1359.4	3225.5	2405.3	
I	23.0	11.83	6.206	1982.0	1478.0	3476.1	2592.1	679.9
I	24.0	12.35	5.819	2144.0	1598.8	3720.2	2774.2	699.6
I	25.0	12.86	5.466	2312.0	1724.1	3970.7	2961.0	719.0
I	26.0	13.38	5.155	2490.0	1856.8	4221.8	3148.2	737.8
I	27.0	13.89	4.886	2681.0	1999.2	4469.0	3332.5	755.7
I	28.0	14.40	4.656	2887.0	2152.8	4715.8	3516.6	773.1
I	29.0	14.92		3109.0	2318.4	4953.6	3693.9	789.6
I	30.0	15.43	4.291	3349.0	2497.3	5251.4	3916.0	808.4
I	31.0	15.95	4.143	3604.0	2687.5	5590.4	4168.8	828.7
I	32.0	16.46	4.005	3871.0	2886.6	5947.6	4435.1	849.1

I I I I

I I I I I I I

I

I

Ι

Ι

I

I I I I I

I

Ι

Ι

Ι

I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
I	SPEED			-		•	AND	WAKE FA	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WFTQ	ADVC	I
I	10.0	0.525	0.635	0.810	1.025	0.650	0.825	1.015	1.030	0.865	I
I	11.0	0.535	0.635	0.815	1.040	0.660	0.830	1.020	1.045	0.860	I
I	12.0	0.545	0.630	0.820	1.050	0.665	0.835	1.025	1.055	0.860	I
I	13.0	0.550	0.630	0.820	1.060	0.665	0.845	1.030	1.065	0.850	I
I	14.0	0.550	0.625	0.825	1.065	0.665	0.850	1.030	1.070	0.835	I
I	15.0	0.545	0.615	0.830	1.065	0.660	0.860	1.035	1.080	0.820	I
I	16.0	0.545	0.615	0.830	1.065	0.655	0.865	1.040	1.085	0.815	I
I	17.0	0.545	0.615	0.835	1.060	0.655	0.875	1.045	1.085	0.815	I
I	18.0	0.550	0.620	0.840	1.055	0.655	0.885	1.050	1.085	0.820	I
I	19.0	0.555	0.620	0.845	1.050	0.655	0.890	1.055	1.085	0.830	I
I	20.0	0.555	0.625	0.850	1.045	0.655	0.900	1.055	1.085	0.840	I
I	21.0	0.560	0.630	0.855	1.040	0.655	0.905	1.055	1.080	0.855	I
I	22.0	0.565	0.635	0.865	1.035	0.655	0.915	1.060	1.080	0.865	I
I	23.0	0.570	0.635	0.870	1.030	0.655	0.920	1.055	1.075	0.875	I
I	24.0	0.575	0.640	0.880	1.025	0.655	0.930	1.055	1.070	0.885	I
I	25.0	0.580	0.640	0.890	1.020	0.655	0.935	1.050	1.065	0.895	I
I	26.0	0.590	0.645	0.900	1.020	0.655	0.940	1.045	1.060	0.905	I
I	27.0	0.600	0.645	0.910	1.025	0.660	0.950	1.040	1.050	0.910	I
I	28.0	0.610	0.645	0.925	1.030	0.660	0.955	1.030	1.045	0.915	I
I	29.0	0.630	0.645	0.940	1.035	0.665	0.960	1.020	1.040	0.920	I
I	30.0	0.640	0.645	0.955	1.040	0.670	0.965	1.015	1.035	0.920	I
I	31.0	0.645	0.645	0.960	1.040	0.670	0.970	1.010	1.030	0.925	I
I	32.0	0.650	0.645	0.970	1.045	0.670	0.975	1.010	1.030	0.930	I

Table B15. Island Class, estimated powering with stern flap, full load 163 L. tons

				53LT St		o, inclu			y rail	s″	
	5	SHIP LEI	NGTH		102.4	FEET (31.2	METERS)			
	5	SHIP DIS	SPLACEM	ENT	163.	TONS (166.1	METRIC '	rons)		
	5	SHIP WE	rted sui	RFACE	2366.	SQFT (220.	SQ METEI	RS)		
	C	CORRELA	FION AL	LOWANCE	.00030		ITTC FR	ICTION (JSED		
I	SHIP	P SPEED	RESI	DUARY	EFFE	CTIVE	D	ELIVEREI	C	PROPELLER	Ī
I			RES.	COEF.	POWEI	R- PE	P	OWER- PI	C	REV. PER	I
I	(KTS)	(M/S)	(CR*)	1000)	(HP)	(kW)			<w)< td=""><td>MINUTE</td><td>I</td></w)<>	MINUTE	I
I	10.0	5.14	4.94	13	149.0	111.1			11.9	290.8	I
I	11.0	5.66	5.25	50	206.0				37.9		I
I	12.0	6.17				211.0		.0 39			I
I	13.0	6.69		11	390 0	290.8		.5 51			
I	14.0	7.20					720		01.0	394.5	I
ī	15.0	7.72			531.0 722.0	396.0		.8 73			I
I					744.0	538.4)2.4	477.3	I
	16.0	8.23			940.0	701.0			L2.8	518.7	I
I	17.0	8.75	9.11			849.4			35.1		I
I	18.0	9.26	9.02			999.2	2489	.1 185	56.1	583.1	I
I	19.0	9.77	8.75	54	1536.0	1145.4	2834	.9 211	L4.0	610.9	I
I	20.0	10.29	8.35	51	1723.0	1284.8	3153	.2 235	51.4	636.0	I
I	21.0	10.80	7.87	72	1901.0	1417.6	3445		59.3	658.6	I
I	22.0	11.32	7.36	54	2072.0	1545.1			14.2	679 9	I
I	23.0	11.83	6.86		2241.0	1671.1			57.2	699.7	ī
I	24.0	12.35	6.40		2411.0		4225		50.7	718.6	I
I	25.0	12.86	5.99		2589.0		4481		11.6		I
I	26.0	13.38	5.63		2780.0		4741		16.0		
I	27.0	13.89	5.33		2989.0	2072.0	5005	2 272			I
I		14.40	5.09	1	3219.0	2400.1	5005.	1 202	32.4		I
I		14.92	4.89) 		2400.4 2589.8	54/7.	.1 39:	5.1	791.1	I
ī		15.43								808.1	I
I						2795.6					I
Ĩ		15.95	4.58	- -						848.5	I
Ţ	32.0	16.46	4.45	5	4356.0	3248.3	6692.	.6 499	0.7	869.6	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	JST DEDU	CTION	ADVANCE	I
I	SPEED							WAKE FA			
I		ETAD	ETAO			ETAB				IQ ADVC	
I		0.525	0.630	0.810		0.645	0.825	1.015	1.030	0.855	I
I		0.535	0.630	0.815		0.655	0.830	1.020	1.045	5 0.850	I
I	12.0	0.540		0.820	1.050	0.660	0.835	1.025	1.055	0.840	I
I	13.0	0.540	0.620	0.820	1.060	0.660	0.845	1.030	1.065	0.830	I
I	14.0	0.540	0.615	0.825	1.065	0.655	0.850	1.030	1.075	0.815	I
I	15.0	0.535	0.610	0.830	1.065	0.650	0.860	1.035	1.080		I.
I	16.0	0.535	0.605	0.830	1.065	0.640	0.865	1.040	1.090		I
I	17.0	0.535	0.605	0.835	1.060	0.640	0.875	1.045	1.090		I
I	18.0	0.540	0.605	0.840	1.055	0.640	0.885	1.050	1.090		I
I	19.0	0.540	0.610	0.845	1.050	0.640	0.890	1.055	1.090		I
I	20.0	0.545	0.615	0.850	1.045	0.645	0.900	1.055	1.085		I
I	21.0	0.550	0.620	0.855	1.040	0.645	0.905	1.055	1.085		Ī
I	22.0	0.555	0.625	0.865	1.035	0.645	0.915	1.060	1.080		
I	23.0	0.565	0.630	0.870	1.030	0.645	0.920	1.055	1.075		I I
I	24.0	0.570	0.635	0.880	1.025	0.650	0.930	1.055	1.070		
I	25.0	0.580	0.635	0.890	1.020	0.650	0.935	1.055			I
I	26.0	0.585	0.640	0.900	1.020	0.650	0.933		1.065		I
I	27.0	0.595	0.640	0.910	1.025	0.655		1.045	1.060		I
ī	28.0	0.610	0.640	0.910	1.025		0.950	1.040	1.055		I
I	29.0	0.625	0.640	0.940		0.660	0.955	1.030	1.045		I
I	30.0	0.635	0.640	0.940	1.035	0.665	0.960	1.020	1.040		I
ī	31.0	0.645	0.645		1.040	0.670	0.965	1.015	1.035		I
ī	32.0	0.650	0.645	0.960	1.040	0.670	0.970	1.010	1.035		I
-	52.0	5.050	0.040	0.970	1.045	0.670	0.975	1.010	1.030	0.910	I

Table B16. Island Class, estimated powering with stern flap, min-ops 144 L. tons

Ι

I I I I I I

I I I

I I I

I I I

IIIIIIIIIIIII

	S	HIP LENG		102.4	FEET (31.2 METE	ERS)	ls"
			PLACEMENT			146. METH		
			TED SURFACE		-	~		•
	C	ORRELATI	ION ALLOWANC	E .00030	I	TTC FRICTI	ION USED	
I	SHIP	SPEED	RESIDUARY	EFFEC	TIVE	DELI	/ERED	PROPELLER
Ξ			RES.COEF.	POWEF	- PE	POWEF	R- PD	REV. PER
I	(KTS)	(M/S)	(CR*1000)	(HP)	(kW)	(HP)	(kW)	MINUTE
I	10.0	5.14	4.825	140.0	104.4	265.3	197.8	286.6
I	11.0	5.66	5.030	191.0	142.4	355.1	264.8	317.1
I	12.0	6.17	5.231	254.0	189.4	465.5	347.1	347.9
I	13.0	6.69	5.648	340.0	253.5	617.6	460.6	381.6
I	14.0	7.20	6.360	462.0	344.5	839.1	625.7	419.4
I	15.0	7.72	7.249	626.0	466.8	1141.2	851.0	460.2
I	16.0	8.23	7.802	803.0	598.8	1468.2	1094.8	498.0
I	17.0	8.75	7.909	972.0	724.8	1770.8	1320.5	530.1
I	18.0	9.26	7.768	1136.0	847.1	2059.0	1535.4	558.9
I	19.0	9.77	7.522	1301.0	970.2	2344.7	1748.5	585.7
I	20.0	10.29	7.189	1463.0	1091.0	2618.9	1952.9	610.7
I	21.0	10.80	6.818	1624.0	1211.0	2886.2	2152.2	633.8
I	22.0	11.32	6.422	1782.0	1328.8	3146.1	2346.0	655.9
I	23.0	11.83	6.035	1941.0	1447.4	3398.5	2534.3	676.7
I	24.0	12.35	5.668	2103.0	1568.2	3644.6	2717.8	696.6
I	25.0	12.86	5.333	2271.0	1693.5	3897.1	2906.1	716.2
I	26.0	13.38	5.037	2449.0	1826.2	4150.1	3094.8	735.2
I	27.0	13.89	4.783	2641.0	1969.4	4401.1	3281.9	753.4
I	28.0	14.40	4.568	2849.0	2124.5	4653.2	3469.9	771.0
I	29.0	14.92	4.387	3075.0	2293.0		3653.4	787.8
I	30.0	15.43	4.233	3318.0	2474.2	5203.1	3879.9	806.9
I	31.0	15.95	4.097	3577.0	2667.4	5549.3	4138.1	827.5
I	32.0	16.46	3.963	3844.0	2866.5	5907.2	4405.0	847.9

I	SHIP		EFFICI	ENCIES	(ETA)		THRU	ST DEDU	CTION	ADVANCE	I
I	SPEED		-				AND	wake fa	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WFTQ	ADVC	I
I	10.0	0.530	0.635	0.810	1.025	0.650	0.825	1.015	1.030	0.870	I
I	11.0	0.540	0.635	0.815	1.040	0.660	0.830	1.020	1.045	0.865	I
I	12.0	0.545	0.635	0.820	1.050	0.665	0.835	1.025	1.055	0.865	I
I	13.0	0.550	0.630	0.820	1.060	0.670	0.845	1.030	1.065	0.860	I
I	14.0	0.550	0.625	0.825	1.065	0.665	0.850	1.030	1.070	0.845	I
I ·	15.0	0.550	0.620	0.830	1.065	0.660	0.860	1.035	1.080	0.830	I
I	16.0	0.545	0.615	0.830	1.065	0.655	0.865	1.040	1.085	0.820	I
I	17.0	0.550	0.620	0.835	1.060	0.655	0.875	1.045	1.085	0.820	I
I	18.0	0.550	0.620	0.840	1.055	0.655	0.885	1.050	1.085	0.830	I
I	19.0	0.555	0.625	0.845	1.050	0.655	0.890	1.055	1.085	0.835	I
I	20.0	0.560	0.630	0.850	1.045	0.655	0.900	1.055	1.085	0.845	I
I	21.0	0.565	0.630	0.855	1.040	0.655	0.905	1.055	1.080	0.860	I
I	22.0	0.565	0.635	0.865	1.035	0.655	0.915	1.060	1.080	0.870	I
I	23.0	0.570	0.640	0.870	1.030	0.655	0.920	1.055	1.075	0.880	I
I	24.0	0.575	0.640	0.880	1.025	0.655	0.930	1.055	1.070	0.890	I
I	25.0	0.585	0.640	0.890	1.020	0.655	0.935	1.050	1.065	0.900	I
I	26.0	0.590	0.645	0.900	1.020	0.655	0.940	1.045	1.060	0.905	I
I	27.0	0.600	0.645	0.910	1.025	0.660	0.950	1.040	1.050	0.915	I
I	28.0	0.610	0.645	0.925	1.030	0.660	0.955	1.030	1.045	0.915	I
I	29.0	0.630	0.645	0.940	1.035	0.665	0.960	1.020	1.040	0.920	I
I	30.0	0.640	0.645	0.955	1.040	0.670	0.965	1.015	1.035	0.925	I
I	31.0	0.645	0.645	0.960	1.040	0.670	0.970	1.010	1.030	0.930	I
I	32.0	0.650	0.645	0.970	1.045	0.670	0.975	1.010	1.030	0.930	I

Table B17. Summary of model scale stern flap and "bow spray rails" performance on Island Class

RESISTANCE: Min-Ops (13)61 LT	io I		, 144LT, 144LT, Stern Flap	No Flap, Stern Flap, Effects,	VS ExtRails ExtRails ExtRails	10 142 140 0.982	11 195 191 0.979	12 262 254 0.971	11 13 352 340 0.967 -3.30	14 479 462 0.965	15 650 626 0.963	16 832 803 0.965	17 1003 972 0.968	18 1172 1136 0.969	19 1339 1301 0.971	20 1503 1463 0.974	21 1664 1624 0.976	22 1823 1782 0.978	23 1982 1941 0.980	24 2144 2103 0.981	25 2312 2271 0.982	26 2490 2449 0.984	27 2681 2641 0.985	28 2887 2849 0.987	29 3109 3075 0.989	30 3349 3318 0.991	31 3604 3577 0.993	
in-Ops 143.6	PE rat																											
NCE: M		Exp	1441	Stern	ExtR	14	19	25	34	46	62	80	76	113	130	146	162	178	194	210	227	244	264	284	307	331	357	
RESISTA		Exp21,	144LT,	No Flap,	ExtRails	142	195	262	352	479	650	832	1003	1172	1339	1503	1664	1823	1982	2144	2312	2490	2681	2887	3109	3349	3604	1071
					VS	01	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	ć
		PE ratio	Exp19/18,	Stern Flap	Effects	-1.19	-1.91	-2.61	-3.11	-3.54	-3.73	-3.76	-3.68	-3.10	-2.69	-2.36	2.18	-2.08	-2.09	-2.15	-2.22	-2.24	-2.11	-1.82	-1.31	-0.72	-0.18	000
L		PE ratio	Exp19/18,	Stern Flap	Effects	0.988	0.981	0.974	0.969	0.965	0.963	0.962	0.963	0.969	0.973	0.976	0.978	0.979	0.979	0.979	0.978	0.978	0.979	0.982	0.987	0.993	0.998	1 000
ad 163.39 L		Exp19,		Stern Flap,		149	206	283	390	531	722	940	1139	1340	1536	1723	1061	2072	2241	2411	2589	2780	2989	3219	3473	3749	4045	135K
CE: Full Load	PE ratio	Exp18/17,	Extended	Spray Rail	Effects	1.0	1.0	1.0	1.0	1.001	1.009	1.013	1.004	1.002	1.001	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1
RESISTANCE: F	Exp18,	Baseline	163LT,	No Flap,	ExtRails	151	210	291	402	550	750	976	1183	1383	1578	1764	1943	2116	2289	2464	2648	2843	3053	3278	3519	3776	4053	4356
		Exp17,	Baseline	163LT,	No Flap	151	210	291	402	550	743	964	1178	1379	1577	1764	1943	2116	2289	2464	2648	2843	3053	3278	3519	3776	4053	735K
					SV	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	33

•

.••

ł

Table B17. Summary of model scale stern flap and "bow spray rails" performance on Island Class (continued)

1000	POWERIN	POWERING: Full Load 163.39	d 163.39 LT	•				POWERIN	POWERING: Min-Ops 143.61 L.1	s 143.61 L.T		
163LT,		163LT,	163LT,	Stern Flap	Stern Flap		144LT,	144LT,	144LT,	144LT.	Stern Flan	Stern Flan
No Flap,		Stern Flap,	Stern Flap,	Effects,	Effects,		No Flap,	No Flap.	Stern Flap.	Stern Flan.	Effects	Fifects
RPM		Π	RPM	PD Ratio	RPM Ratio	NS	PD	RPM	PD	RPM	PD Ratio	RPM Ratio
291.7		284	290.8	0.985	0.997	10	270	287.5	265	286.6	0.984	0.997
324.3		386	322.8	0.979	0.995	Π	363	318.6	355	317.1	0.977	0.995
359.4		525	357	0.969	0.993	12	482	350.4	466	347.9	0.966	0.993
397.5		721	394.5	0.966	0.992	13	642	384.8	618	381.6	0.962	0.992
438.1		983	434.2	0.960	166.0	14	874	423.1	839	419.4	0.960	166.0
482.1		1344	477.3	0.957	066.0	15	1611	464.6	1141	460.2	0.958	166.0
524.0		1761	518.7	0.957	066.0	16	1529	502.5	1468	498.0	0960	166.0
557.9		2126	552.3	0.957	066.0	17	1836	534.3	1771	530.1	0.965	0.992
587.9		2489	583.1	0.964	0.992	18	2134	563.3	2059	558.9	0.965	0.992
615.2		2835	610.9	0.969	0.993	19	2423	589.9	2345	585.7	0.968	0.993
639.9		3153	636	0.973	0.994	20	2699	614.7	2619	610.7	0.970	0.993
662.2		3446	658.6	0.975	0.995	21	2965	637.4	2886	633.8	0.973	0.994
683.4		3720	679.9	0.977	0.995	22	3226	659.4	3146	625.9	0.975	0.995
703.3		3979	699.7	0.977	0.995	23	3476	6.679	3399	676.7	0.978	0.995
722.3		4225	718.6	0.976	0.995	24	3720	9.669	3645	696.6	0.980	0.996
741.1		4481	737.3	0.976	0.995	25	3971	719.0	3897	716.2	0.981	0.996
759.5		4742	755.7	0.976	0.995	26	4222	737.8	4150	735.2	0.983	966.0
777.2		5005	773.5	0.978	0.995	27	4469	755.7	4401	753.4	0.985	0.997
794.2		5277	791.1	0.981	0.996	28	4716	773.1	4653	771.0	0.987	0.997
810.4		5550	808.1	0.986	0.997	29	4954	789.6	4899	787.8	0.989	90.0
828.8		5891	827.6	0.993	0.999	30	5251	808.4	5203	806.9	166.0	0.998
848.9		6281	848.5	0.998	1.000	31	5590	828.7	5549	827.5	0.993	066.0
869.6		6693	869.6	1.000	1.000	32	5948	849.1	5907	847.9	0.993	666.0

Table B18. Projected full scale stern flap powering on Island Class 110 WPB, full load163 L. tons

				3LT St	ern Fla <u>r</u>						
		HIP LEN				FEET (
			PLACEME					ETRIC I			
	S	HIP WET	TED SUR	FACE	2366.	SQFT (220. S	SQ METER	S)		
	C	ORRELAT	ION ALL	OWANCE	.00030	-	ITTC FRI	CTION U	SED		
I	SHIP	SPEED	RESID	UARY	EFFEC	TIVE	DE	LIVERED) :	PROPELLER	ī
I			RES.C	OEF.	POWEF	l- PE	PC	WER- PD)	REV. PER	I
I	(KTS)	(M/S)	(CR*1	(000	(HP)	(kW)	(HP)	(k	W)	MÍNUTE	I
I	10.0	5.14	4.84	6	147.0	109.6	280.	.0 20	8.8	289.9	I
I	11.0	5.66	5.14	1	203.0	151.4	379.	8 28	3.2	321.7	I
I	12.0	6.17	5.59	9	279.0	208.1			5.3	355.7	I
I		6.69	6.26		384.0			.9 ' 52			ī
I		7.20	7.05		523.0				0.2	432.5	I
I	15.0	7.72	8.06		712.0			.8 98			I
I	16.0	8.23	8.82		927.0	691.3			1.8		I
ī	17.0	8.75	8.97			838.9					
I	18.0	9.26						.5 100	2.5	550.5	I
I			8.88		1323.0	986.6		5 184	8.9		I
		9.77	8.62		1517.0	1131.2			3.9	608.9	I
I	20.0	10.29	8.21		1701.0		3107.		6.9	634.0	I
I	21.0	10.80			1877.0		3396.		2.4		I
I	22.0	11.32	7.24		2046.0		3667.		5.0	677.8	I
I	23.0	11.83	6.75		2213.0	1650.2			5.9	697.6	I
I	24.0	12.35	6.29		2381.0	1775.5	4167.	4 310	7.6	716.5	I
I	25.0	12.86	5.89		2557.0	1906.8	4421.	.1 329	6.8	735.2	I
I	26.0	13.38			2745.0		4677.		8.3		I
I	27.0	13.89	5.24	2	2951.0		4937.		2.2	771.4	I
I	28.0	14.40	5.00		3178.0	2369.8			2.4	788.9	I
I	29.0	14.92	4.80	5	3429.0	2557.0	5476.	8 408	4.0	805.9	I
I	30.0	15.43	4.64	4	3702.0	2760.6	5814.	5 433	5.9	825.3	I
I	31.0	15.95	4.50	5	3995.0	2979.1	6201.	1 462	4.1	846.3	I
I	32.0	16.46	4.37		4301.0				6.3	867.3	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	JST DEDU	CTION	ADVANCE	I
I	SPEED						AND	WAKE FA	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WF	TQ ADVC	I
I	10.0	0.525	0.630	0.810	1.025	0.650	0.825	1.015			I
I	11.0	0.535	0.630	0.815	1.040	0.655	0.830	1.020	1.04	5 0.855	I
I	12.0	0.540	0.625	0.820	1.050	0.660	0.835	1.025	1.05		I
I	13.0	0.540	0.625	0.820		0.660	0.845	1.030	1.06		I
I	14.0	0.540	0.615	0.825	1.065	0.655	0.850	1.030	1.07	5 0.820	I
I	15.0	0.540	0.610	0.830		0.650	0.860	1.035	1.080		I
I	16.0	0.535	0.605	0.830	1.065	0.645	0.865	1.040	1.090		I
I	17.0	0.535	0.605	0.835	1.060	0.640	0.875	1.045	1.090		I
I	18.0	0.540	0.605	0.840		0.640	0.885	1.050	1.090		I
I	19.0	0.545	0.610	0.845		0.640	0.890	1.055	1.090		I
I	20.0	0.545	0.615	0.850		0.645	0.900	1.055	1.08		I
I	21.0	0.555	0.620	0.855		0.645	0.905	1.055	1.08		I
I	22.0	0.560	0.625	0.865		0.645	0.915	1.060	1.080		I
I	23.0	0.565	0.630	0.870		0.650	0.920	1.055	1.07		I
I	24.0	0.570	0.635	0.880		0.650	0.930	1.055	1.070		I
I	25.0	0.580	0.635	0.890		0.650	0.935	1.050	1.069		I
I	26.0	0.585	0.640	0.900		0.655	0.940	1.045	1.06		
I	27.0	0.600	0.640	0.910		0.655	0.940	1.040			I
I	28.0	0.610	0.640	0.925	1.025				1.05		I
I	29.0	0.625	0.640			0.660	0.955	1.030	1.049		I
I	30.0	0.625		0.940		0.665	0.960	1.020	1.040		I
I			0.645	0.955		0.670	0.965	1.015	1.035		I
I	31.0	0.645	0.645	0.960		0.670	0.970	1.010	1.035		I
Ŧ	32.0	0.650	0.645	0.970	1.045	0.670	0.975	1.010	1.030	0.910	I

B62

Table B19. Projected full scale stern flap powering on Island Class 110 WPB, min-ops 144 L. tons

	W	PB esti	mate 14	4LT St	ern Flar) (fs pro	jected)				
		HIP LEN				FEET (
			PLACEME	NT		TONS (ONS)		
						SQFT (
					.00030			CTION U			
I	SHIP	SPEED	RESID	UARY	EFFEC	TIVE	DE	LIVERED	PI	ROPELLER	I
ī	0			OEF.	POWER		PC	WER- PD]	REV. PER	I
ī	((M/S)	(CR*1		(HP)	(kW)	(HP)		W)	MINUTE	I
ī	10.0	5.14	4.72		138.0	102.9			4.8	285.6	I
I	11.0	5.66	4.91		188.0	140.2	349.		0.2	315.9	I
	12.0	6.17	4.91 5.11		250.0	186.4	457.		1.1	346.6	ī
I		6.69	5.53		230.0 335.0	188.4 249.8			3.1	380.3	I
I	13.0				456.0	340.0			6.6	418.0	Ĩ
I	14.0	7.20	6.24						7.1	458.6	I
I	15.0	7.72	7.11		617.0	460.1	1122.			496.3	I
I	16.0	8.23	7.66		792.0	590.6	1445.		7.7		I
I	17.0	8.75	7.78		960.0	715.9	1745.		1.9	528.4	
I	18.0	9.26	7.64		1122.0	836.7	2030.			557.2	I
I	19.0	9.77	7.40		1285.0	958.2	2312.		4.2	584.0	I
I	20.0	10.29	7.07		1445.0	1077.5			6.0	608.8	·I
I	21.0	10.80	6.70	-	1603.0	1195.4	2844.		1.5	631.8	I
I	22.0	11.32	6.31		1760.0	1312.4	3103.			654.0	I
I	23.0	11.83	5.93		1917.0	1429.5	3353.			674.8	I
I	24.0	12.35	5.57		2077.0	1548.8	3597.			694.7	I
I	25.0	12.86	5.24		2243.0	1672.6	3847.			714.3	I
I	26.0	13.38	4.94		2418.0	1803.1	4096.		4.6	733.2	I
I	27.0	13.89	4.69	8	2608.0	1944.8	4345.	4 324	0.4	751.4	I
I	28.0	14.40	4.48	4	2813.0	2097.7	4594.		5.9	769.0	I
I	29.0	14.92	4.30	6	3036.0	2263.9	4837.	3 360	7.2	785.8	I
I	30.0	15.43	4.15	5	3277.0	2443.7	5139.	5 383	2.5	804.9	I
I	31.0	15.95	4.02	0	3532.0	2633.8	5481.	0 408	7.2	825.4	Ī
I	32.0	16.46	3.88	9	3796.0	2830.7	5835.	9 435	1.8	845.8	I
I	SHIP		EFFICI	ENCIES	(ETA)		THRU	IST DEDU	CTION	ADVANCE	I
I	SPEED						AND	WAKE FA	CTORS	COEF.	I
I	(KTS)	ETAD	ETAO	ETAH	ETAR	ETAB	1-THDF	1-WFTT	1-WFT	Q ADVC	I
I	10.0	0.530	0.635	0.810	1.025	0.650	0.825	1.015	1.030	0.870	I
I	11.0	0.540	0.635	0.815	1.040	0.660	0.830	1.020	1.040	0.870	I
I	12.0	0.545	0.635	0.820	1.050	0.670	0.835	1.025	1.055	0.870	I
I	13.0	0.550	0.635	0.820	1.060	0.670	0.845	1.030	1.065	0.860	I
I	14.0	0.550	0.630	0.825	1.065	0.670	0.850	1.030	1.070	0.845	I
I	15.0	0.550	0.620	0.830	1.065	0.665	0.860	1.035	1.080	0.830	I
I	16.0	0.550	0.620	0.830		0.660	0.865	1.040	1.085	0.825	I
I	17.0	0.550	0.620	0.835	1.060	0.655	0.875	1.045	1.085	0.825	I
I	18.0	0.555	0.620	0.840	1.055	0.655	0.885	1.050	1.085	0.830	I
I	19.0	0.555	0.625	0.845	1.050	0.660	0.890	1.055	1.085	0.840	I
I	20.0	0.560	0.630	0.850		0.660	0.900	1.055	1.085	0.850	I
I	21.0	0.565	0.635	0.855		0.655	0.905	1.055	1.080	0.860	I
I	22.0	0.565	0.635	0.865		0.655	0.915	1.060	1.075	0.870	I
I	23.0	0.570	0.640	0.870		0.655	0.920	1.055	1.075	0.885	I
I	24.0	0.575	0.640	0.880		0.655	0.930	1.055	1.070	0.895	I
I	25.0	0.585	0.645	0.890		0.655	0.935	1.050	1.065	0.900	I
ī	26.0	0.590	0.645	0.900		0.655	0.940	1.045	1.060	0.910	I
I	27.0	0.600	0.645	0.910		0.660	0.950	1.040	1.050	0.915	I
I	28.0	0.610	0.645	0.925		0.660	0.955	1.030	1.045	0.920	ī
I	29.0	0.630	0.645	0.940		0.665	0.960	1.020	1.040	0.920	I
I	30.0	0.640	0.645	0.955		0.670	0.965	1.015	1.035	0.925	I
I	31.0	0.645	0.645	0.960		0.670	0.970	1.010	1.030	0.930	I
I	32.0	0.650	0.645	0.970		0.670	0.975	1.010	1.030	0.935	I
_						· · · -					-

B63

Table B20. Stern flap on Island Class 110 WPB: Summary of full scale projected performance (indluding flap scale effects)

- N/2 - A		Flap	cls, -	atio	34	15	92	83	62	71	11	06	92	00	04	12	18	25	30	35	38	13	17	12	2	0	
	8	Stern Flap	Effects,	RPM Ratio	0.9934	0.99	0.98	0.98	0.98	0.98	0.98	0.98	0.98	66.0	66.0	0 .09	0.99	0.99	0.99	0.99	0.99	<i>-</i> 66.0	766.0	366.0	366.0	0.996	1966.0
		Stern Flap	Effects,	PD Ratio	0.9692	0.9606	0.9498	0.9466	0.9461	0.9423	0.9452	0.9511	0.9515	0.9545	0.9568	0.9594	0.9622	0.9647	0.9669	0.9689	0.9703	0.9723	0.9742	0.9765	0.9787	0.9804	0.9812
s 143.61 L.T		144LT,	Stern Flap,	RPM	285.6	315.9	346.6	380.3	418.0	458.6	496.3	528.4	557.2	584.0	608.8	631.8	654.0	674.8	694.7	714.3	733.2	751.4	769.0	785.8	804.9	825.4	845.8
POWERING: Min-Ops		144LT,	Stern Flap,	Π	261	349	458	608	827	1123	1445	1746	2030	2312	2583	2845	3104	3353	3597	3847	4096	4345	4594	4837	5140	5481	5836
POWERIN		144LT,	No Flap,	RPM	287.5	318.6	350.4	384.8	423.1	464.6	502.5	534.3	563.3	589.9	614.7	637.4	659.4	6.9.9	9.669	719.0	737.8	755.7	773.1	789.6	808.4	828.7	849.1
		144LT,	No Flap,	DD	270	363	482	642	874	1611	1529	1836	2134	2423	2699	2965	3226	3476	3720	3971	4222	4469	4716	4954	5251	5590	5948
				VS	10	Ξ	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
		lap	ŝ	atio													_										
		Stern Flap	Effects,	RPM Ratio	0.994	0.992	0.990	0.989	0.987	0.987	0.986	0.987	0.988	066.0	166.0	166.0	0.992	0.992	0.992	0.992	0.992	0.993	0.993	0.994	0.996	766.0	0.997
		S		~																							
		2		0	0.971	0.963	0.954	0.949	0.944	0.942	0.942	0.943	0.950	0.955	0.959	0.961	0.963	0.963	0.963	0.963	0.963	0.965	0.968	0.973	0.980	0.985	0.987
<u>d 163.39 L.T</u>		2	Effects,	PD Ratio																							
G: Full Load 163.39 LT		Stern Flap	Stern Flap, Effects,	RPM PD Ratio	289.9	321.7	355.7	393.0	432.5	475.6	516.8	550.5	581.1	608.9	634.0	656.5	677.8	697.6	716.5	735.2	753.6	771.4	788.9	805.9	825.3	846.3	867.3
POWERING: Full Load 163.39 LT		163LT, Stern Flap	Stern Flap, Stern Flap, Effects,	PD RPM PD Ratio	280 289.9	380 321.7	517 355.7	708 393.0	966 432.5	1323 475.6	1732 516.8	2095 550.5	2453 581.1	2795 608.9	3107 634.0	3396 656.5	3668 677.8	3924 697.6	4167 716.5	4421 735.2	4678 753.6	4938 771.4	5207 788.9	5477 805.9	5815 825.3	6201 846.3	6606 867.3
POWERING: Full Load 163.39 LT	Baseline	163LT, 163LT, Stern Flap	No Flap, Stern Flap, Stern Flap, Effects,	RPM PD RPM PD Ratio	291.7 280 289.9	324.3 380 321.7	359.4 517 355.7	397.5 708 393.0	438.1 966 432.5	482.1 1323 475.6	524.0 1732 516.8	557.9 2095 550.5	587.9 2453 581.1	615.2 2795 608.9	639.9 3107 634.0	662.2 3396 656.5	683.4 3668 677.8	703.3 3924 697.6	722.3 4167 716.5	741.1 4421 735.2	759.5 4678 753.6	777.2 4938 771.4	794.2 5207 788.9	810.4 5477 805.9	828.8 5815 825.3	848.9 6201 846.3	869.6 6606 867.3

ased on	2000	Annual Operat	tional hours		Based on	2000	Annual Operat	tional hours	
Speed (knots)	Total Power PD (hP)	Fuel Consumption (gal/hr)	Speed-Time Profile (% time)	Annual Fuel Consumption (gal/yr)	Speed (knots)	Total Power PD (hP)	Fuel Consumption (gal/hr)	Speed-Time Profile (% time)	Annual Fuel Consumption (gal/yr)
12	542	33.4	40	26747	12	517	32.0	40	25564
13	746	45.1			13	708	43.0		
14	1023	60.3			14	966	57.2		
15	1405	79.9	25	39935	15	1323	75.8	25	37881
16	1839	100.9			16	1732	95.8		
17	2221	118.8			17	2095	112.9		
18	2582	135.5	10	27095	18	2453	129.5	. 10	25898
19	2925	151.5			19	2795	145.4		
20	3240	166.6			20	3107	160.2		
21	3533	181.2	5	18117	21	3396	174.3	5	17430
22	3810	195.6			22	3668	188.1		
23	4075	210.2	5	21015	23	3924	201.8	5	20178
24	4328	224.9			24	4167	215.4		
25	4593	241.2	5	24117	25	4421	230.5	5	23049
26	4858	258.6			26	4678	246.7		
27	5120	277.1	10	55423	27	4938	264.2	10	52833
28	5379	296.8			28	5207	283.5		
29	5628	316.9			29	5477	304.5		
30	5935	344.0			30	5815	333.1		
Total A	nnual Fu	el Consumptior	n (gallons/yr):	212449	Total A		el Consumptior al Fuel Savings		202832 9617

Table B21. Estimate of Island Class main propulsion engine fuel consumption rates. with/without stern flap installed (both include effect of "bow spray rails")

4.5%

٠

BASEL	INE (No F	lap), Min-Ops	(144 L tons)		STE	RN FLAP,	Min-Ops (144	L tons)	-
Based on	1000	Annual Operat	tional hours		Based or	1000	Annual Opera	tional hours	
	Total	Fuel	Speed-Time	Annual Fuel		Total	Fuel	Speed-Time	Annual Fuel
Speed	Power	Consumption	Profile	Consumption	Speed	Power	Consumption	Profile	Consumption
(knots)	PD (hP)	(gal/hr)	(% time)	(gal/yr)	(knots)	PD (hP)	(gal/hr)	(% time)	(gal/yr)
12	482	29.9	40	11952	12	458	28.4	40	11374
13	642	39.2			13	608	37.3		
14	874	52.2			14	827	49.6		
15	1191	69.1	25	17265	15	1123	65.5	25	16375
16	1529	86.0			16	1445	81.9		
17	1836	100.7			17	1746	96.5		
18	2134	114.7	10	11472	18	2030	109.9	10	10990
19	2423	128.1			19	2312	123.0		
20	2699	140.9			20	2583	135.5		
21	2965	153.4	5	7670	21	2845	147.7	5	7387
22	3226	165.9			22	3104	160.0		
23	3476	178.3	5	8916	23	3353	172.2	5	8609
24	3720	190.9			24	3597	184.5		
25	3971	204.4	5	10218	25	3847	197.6	5	9881
26	4222	218.6			26	4096	211.4		
27	4469	233.4			27	4345	225.9		
28	4716	249.1			28	4594	241.3		
29	4954	265.3			29	4837	257.3		
30	5251	286.9	10	28693	30	5140	278.6	10	27858
Total A	nnual Fu	el Consumption	(gallons/yr):	96186	Total	Annual Fu	el Consumptior	(gallons/yr):	92475
						Annu	al Fuel Savings	(gallons/yr):	3711
L									3.9%

Based on 3000 Annual Operating hours: 2/3 (2000 hrs) at Full Load, 1/3 (1000 hrs) at Min-Ops

Stern Flap Annual Fuel Savings (gallons/yr): 13328

Stern Flap Fuel Reduction (%): 4.3%

Annual Fuel Cost Savings (\$1/gailon): \$13,328

INITIAL DISTRIBUTION

Copy Number	Copies	Code	Name
1-12	12	USCG Boat Engineering	Ghosh, Barry
		Branch (ELC-024)	
13,14	2	DTIC	

CENTER DISTRIBUTION

Copy Number	Copies	Code	Name
15,16	2	5200	Cusanelli, Karafiath
17,18	2	5200	Correspondence File
19-30	12	5060	
31	1	5010	
32	1	Library-3442	