
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

ATM SECURITY VIA "STARGATE" SOLUTION

by

Katrina Hensley
and

Fredrick Ludden

September 1999

Thesis Advisor: Geoffrey G. Xie

Approved for public release; distribution in unlimited.

DTTC QUALITY INSPECTED 4 19991126 079

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE :

ATM Security Via "Stargate" Solution

6. AUTHOR(S)
Hensley, Katrina and Ludden, Fredrick

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A

10. SPONSORING/
MONITORING

AGENCY REPORT
NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution in unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

In today's world of integrating voice, video and data into a single network, Asynchronous Transfer Mode (ATM)
networks have become prevalent in the Department of Defense. The Department of Defense's critical data will have
to pass through public networks, which causes concern for security. This study presents an efficient solution aimed at
authenticating communications over public ATM networks.~The authenticating device, "Stargate," utilizes a high
speed, low level authentication protocol that offers the low cost, flexibility, and extensibility of software, while still
capable of yielding performance comparable to hardware-based authentication.

14. SUBJECT TERMS

Authentication, Asynchronous Transfer Mode (ATM), Key Management, Security,
Networking

15. NUMBER
OF PAGES

89

16. PRICE
CODE

17. SECURITY
CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20.
LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution in unlimited.

ATM SECURITY VIA "STARGATE" SOLUTION

Katrina Hensley
Captain, United States Marine Corps
B.A., University of Oklahoma, 1991

Fredrick Ludden
Captain, United States Army

B.S., Virginia Tech, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Authors:

Approved by:

Katrina Hensley 61

rey G. Xie, Thesis Advisor

hia E. Irvine, Second Reader

Dan Boger, Chair, Department of Computer Science

in

IV

ABSTRACT

In today's world of integrating voice, video and data into a single network,
Asynchronous Transfer Mode (ATM) networks have become prevalent in the Department
of Defense. The Department of Defense's critical data will have to pass through public

networks, which causes concern for security. This study presents an efficient solution

aimed at authenticating communications over public ATM networks. The authenticating
device, "Stargate," utilizes a high speed, low level authentication protocol that offers the
low cost, flexibility, and extensibility of software, while still capable of yielding
performance comparable to hardware-based authentication.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. MOTIVATION 1
B. EXECUTIVE SUMMARY 2
C. THESIS OUTLINE 2

II. BACKGROUND 3
A. INTRODUCTION . 3
B.ATM 3
C. ATM SECURITY 6

1. Threats 6
2. Existing Technology 6

D. LOW-LEVEL AUTHENTICATION PROTOCOLS 8
HI. DESIGN AND IMPLEMENTATION OF "STARGATE" SOLUTION 1

A. INTRODUCTION 1
B. PROTOTYPE ENVIRONMENT 1

1. Hardware 1
a. ATM Cell Generator and Receiver 1
b. Washington University Gigabit ATM Switch 1
c. ATM Switch controller 12

2. Software 12
a. ATM Cell Generator and PVC creation 12
b. ENI155P ATM NIC Driver 12
c. Gigabit Network Switch Controller 13
d. Jammer 13
e. NetBSD Native ATM networking protocol 13
f. MD5 Message Digest Algorithm 15
g. Network Time Protocol (NTP) 15

C. STARGATE CONCEPTUAL DESIGN 17
1. Relationship to CellCase Technology 17
2. Relationship to LLPA Protocol 18
3. Relationship to WUGS Technology 18

D. STARGATE IMPLEMENTATION 18
1. Testbed Layout 18
2. "Public Network" Simulation Layout 19
3. Cell Authentication 20

a. Signing 20
b. Authentication 21

4. Key Management 22
a. Key Distribution Center responsibilities 23
b. Stargate key management responsibilities 27

IV. PERFORMANCE EVALUATION 31
A. TEST DESIGN AND DATA COLLECTION 31
B. RESULTS 32

V. LESSONS LEARNED AND RECOMMENDATIONS 35
A. AUTHENTICATION LESSONS LEARNED 35

1. Setting up the Testbed 35
2. Authentication Performance Issues 36

B.KEY MANAGEMENT LESSONS LEARNED 36
1. Language Integration 37

Vll

2. Communication Integration 37
C. SUGGESTED FURTHER RESEARCH 38

APPENDIX A. JAMMER SCRIPT 39
APPENDIX B. BSD KERNEL MODIFICATION CODE 41

A. README 41
B. IF_ATM.H 42
C.IF_ATMSUBR.C 48

APPENDIX C. ATM AUTHENTICATION CODE 57
A.ATM_AUTH.H 57
B.ATM_AUTH.C 57

APPENDIX D. KEY MANAGEMENT CODE 63
A.KDC.JAVA 63
B. STARGATED.C 68

LIST OF REFERENCES • 69
BIBLIOGRAPHY 71
INITIAL DISTRIBUTION LIST 73

vm

LIST OF FIGURES

Figure 1. ATM Cell Formats 4
Figure 2. AAL5 Framing and Segmentation 5
Figure 3. CellCase Concept 7
Figure 4. Conceptual Stargate Design 17
Figure 5. Physical Layout 19
Figure 6. Logical Layout ; 20
Figure 7. Signing Operation 21
Figure 8. Authentication Operation 22
Figure 9. Key Distribution Center Conceptual Design 23
Figure 10. Key Management Timing Relationships 26
Figure 11. Multiple Stargate Timing Relationship 27
Figure 12. Key Window Concept 28
Figure 13. Timing Implementation of Throughput Test 32
Figure 14. ATM Authentication Module Performance 34

IX

LIST OF TABLES

Table 1. Performance Data for sign () and auth () Functions 33

XI

Xll

ACKNOWLEDGMENT

The authors would like to thank Geoffrey Xie for providing guidance and
mentorship as well as expert assistance with "C" and mathematical formulas. Special
thanks goes to Cary Colwell, who provided invaluable assistance throughout our thesis
work. He was always available to listen, troubleshoot, or provide brilliant insight without
which we would have been lost.

Captain Ludden would also like to extend special thanks to his wife, Terri, and

family who put up with late nights and odd schedules while he completed his studies. He

would also like to give a special tribute to William R. Stevens, who recently passed away,
for his unsurpassed technical expertise in the BSD TCP/IP network protocol.

Captain Hensley would also like to extend special thanks to her husband, David,
for his constant support. His encouragement was the foundation for success.

xin

XIV

I. INTRODUCTION

A. MOTIVATION

The Department of Defense (DoD) is continuing to increase its use of the Internet
and other unsecured networks to pass data. Throughout the world, the Department of

Defense is upgrading its telecommunication networks to provide support for voice and

video in addition to text and image data. However in many cases, the budgets for
maintaining the network infrastructure are not increasing; therefore, finding solutions that
maximize efficiency and performance at a reasonable cost is driving network policies and
acquisitions. The emergence of broadband services, such as Asynchronous Transfer
Mode (ATM), will allow the same network to support voice, data and video. The
capability to support all forms of information on one network allows for easier
management and reduced costs of installation and maintenance. With an optimized ATM

network, IT managers can gain up to 95% efficiency of the network [Ref. 1].
Furthermore, ATM offers guaranteed Quality of Service, important for critical DoD
applications/users. ATM also offers an additional advantage, which is of particular
interest to the Department of Defense. This advantage is ATM's ability to carry data for
existing legacy applications while laying the foundation for emerging IP and multimedia
applications.

The growth of ATM is on the rise by civilian companies and DoD. The Defense
Information Services Agency (DISA) has proceeded with standards for implementing
ATM infrastructures for the support of the Defense Integrated Services Network (DISN).
Another ATM network initiative is the Navy Wide Internet (NWI), which is underway in
San Diego, California. Furthermore, the majority of commercial telephony and data
networks are already connected by ATM networks operated by companies like MCI
WorldCom and AT&T.

The reality is that the DoD can not own the entire path upon which its data must
travel. Therefore, public ATM networks will be used to link DoD sites together. The use
of public ATM networks increases the concern about security of DoD's sensitive data.
To combat possible security problems, several solutions have been proposed for
networks that can be adapted to work with the ATM infrastructure. These solutions serve
as a basis for the Stargate concept and will be discussed in Chapter n.

The security threats that Stargate is designed to thwart are those attacks that affect
the integrity and authenticity of network traffic, and also to some extent the availability of
network resources. Integrity ensures that only authorized parties are allowed to modify
transmitted messages. Unauthorized editing, replaying or changing the status of the
transmitted message must be detected. Authentication ensures that the origin of a
message is correctly identified and that identity is not false. Examples of "active" attacks
that affect integrity, authenticity and availability include attacks such as IP spoofing,
identity theft, E-mail forgeries, playback attacks, E-mail or IP flooding, and inserting
viruses into messages. While other attacks do exist, the Stargate device is not meant to
be an all-encompassing security solution. Stargate is intended to be an inexpensive first

line of defense which may be used in conjunction with other security techniques such as

strong encryption to provide data confidentiality.

B. EXECUTIVE SUMMARY

This thesis focuses on ATM cell origin authentication and authentication key
management for end-to-end transmissions across public networks. The goal of this thesis
is to demonstrate a low-cost, high-speed method for authenticating ATM cells via a
device called Stargate. This device will apply digital signatures to ATM traffic, which
can be deciphered by the destination Stargate device to verify the source and integrity of
the ATM traffic. Cells that can not be authenticated successfully will be thrown away.
Additionally, an authentication solution involving keys must demonstrate successful key
management. Another goal of this thesis is to study the management of dynamic
authentication key tables. Specifically, this thesis looks at efficiency and synchronization
issues involved with creating and maintaining authentication tables between a Central
Authority, which manufactures authentication keys, and the Stargate device.

C. THESIS OUTLINE

This thesis is broken into five parts. Chapter II will give an overview of ATM and
ATM security, to include the influences that contributed to the Stargate design and key
management technique. Chapter m focuses on the design and implementation of the
Stargate device. Chapter IV will focus on the performance evaluation of the Stargate
device in a small testbed network. Finally, Chapter V will focus on the lessons learned
and recommendations concerning additional research work involving Stargate.

II. BACKGROUND

A. INTRODUCTION

This chapter discusses background information on ATM, ATM security, and some

existing proposals for establishing secure communications through public networks such

as the Internet. Section B describes the ATM protocol. Section C summarizes the

existing and proposed security solutions aiming to secure communications over ATM

networks. Low-level authentication protocols that provide the framework for our

research are discussed in Section D.

B. ATM

Asynchronous Transfer Mode (ATM) is a connection-oriented high speed, low

delay switching technology using short, fixed-size packets called "cells". ATM is a

transport technology for all types of data (text, voice, video, image, etc.). The

asynchronous nature of the technology refers to its non-periodic transmission of data

(bursty traffic) that are being transmitted across the ATM network. Primarily, the

asynchronous label refers to voice and video data.

ATM networks typically consist of a set of end hosts connected by ATM links to

an ATM switch. An ATM switch receives data from the hosts connected to it and

forwards the data to the destination. The destination host can either be an end-point or it

can be an intermediate ATM switch on the path from the data's source to its eventual

destination.

Data are transmitted over an ATM network in "ATM cells". A cell is a fixed-size

53 byte data structure that contains 48 bytes of data and 5 bytes of control information.

Figure 1 depicts the two possible cell structures; the User-Network Interface (UNI) and

the Network-Network Interface (NNI). The UNI cell structure is used between the user

and the switch. The NNI cell structure is used between switches. Each cell's control

information includes a "virtual circuit" number. This number is used by ATM switches

to determine where the cell should be sent, and it is used by the receiving end hosts to

determine which process' buffer should receive the data. The generic flow control (GFC)

field of the UNI cell structure supports simple multiplexing implementations.

8

0 GFC VPI[7:4]

1 VPI[3:0]

2 VCI 5

3 PT CLP

4 HEC

0

47

Payload 48

0 VPI[11:4]

1 VPI[3:0]

2 VCI 5

3 PT CLP

4 HEC

0

47

Payload 48

UNI Format NNI Format

Figure 1. ATM Cell Formats.

The virtual circuit number is composed of two numbers: the virtual circuit

identifier (VCI) and virtual path identifier (VPI). The numbers in brackets after VPI refer

to the bit numbers (e.g., VPI[3:0] means that bits 3, 2,1, and 0 are contained in this field).

All data sent over an ATM network are associated with a virtual circuit. There are two

types of virtual circuits: permanent virtual circuits (PVCs) and switched virtual circuits

(SVCs). PVCs are usually set up in an ATM switch by a network administrator. SVCs

are connections that are established "on demand" through the use of complex signaling

protocols.

PT or payload type discriminates between a cell payload carrying user information

and one carrying management information, such as signaling mechanisms to establish

SVCs. Cell Loss Priority (CLP) indicates the loss priority of an individual cell. Either

the end user or the network may set this bit. A value of 0 in the CLP field means that the

cell is of the highest priority and least likely to be discarded by the network during

periods of congestion. Header Error Control (HEC) provides error checking for the

header only.
The 48 byte data area of an ATM cell is quite small when compared to the data

area of an Ethernet packet. To address this problem, ATM includes a number of "ATM

adaptation layers" (AALs). The most widely used framing methods are AALO and

AAL5. AALO allows a host to send and receive individual ATM cells. AAL5 allows a

host to send and receive frames up to 64KB in size. When a host sends a AAL5 frame,

the ATM host's network interface segments it up into ATM cells. When the cells arrive

at the receiving host, these cells are reassembled into a frame by the receiving machine's

ATM network interface. AAL5 allows hosts to send and receive frames and not have to

worry about how to package data into small ATM cells. Figure 2 illustrates the framing

of user data into AAL5 frames and the segmentation of those frames into ATM cells. An

eight byte trailer is appended to every AAL5 frame. This trailer consists of a variable

length PAD such that the entire frame is a multiple of 48 bytes so that it can be directly

segmented into cell payloads. User-to-User (UU) indication field is used for the

transparent transfer of user-to-user information. The Common Part Indicator (CPI) is

used to align the trailer to 64 bits. The length and CRC are similar in function to a

standard TCP/IP packet.

1-65,535 bytes AAL 5 Traile^-
Applicationadata PADlUUlCPIlLENlCRC

0-47 1 1

AAL 5

Framing

48bvtes 48rbvtes 48 bvtes
Data

Segmentation

10DRI Payload HDR Pavload • •• HDR
48 48

"'PapbacE
48

ATM Cell

Assembly

Note: One bit AALJhdicate field (non-zero) of
the PT indicates end of frame.

Figure 2. AAL5 Framing and Segmentation.

One advantage of ATM is its use of virtual circuits which makes it easier to

provide network performance guarantees to individual applications. Each active virtual

circuit on an ATM network can be allocated a fixed portion of the network's bandwidth.

If a host attempts to exceed the allocated bandwidth for a virtual circuit, the ATM switch

may drop the cells rather than allow the host to congest the network and affect other

circuits. ATM delivers the cells at several standard speeds including 155 Mbps, 622

Mbps, 1.2 Gbps, and 2.4 Gbps.

C. ATM SECURITY

1. Threats

ATM networks are able to carry a variety of types of information - voice, video,

and data - which can be of a private or sensitive nature. Therefore, like any other

communication network, ATM networks are vulnerable to some of the same threats and

attacks. They are listed below:

■ Violation of data secrecy through eavesdropping.

■ Unauthorized modification or corruption of information.

■ Impersonation of authorized sender/recipient by masquerading.

■ Repudiation of a message sent/received.

■ Denial of service by blocking or saturating the network.

To counteract these threats, ATM networks require security services such as information

confidentiality, integrity, authentication, access control and non-repudiation. The first

service, confidentiality, requires some sort of encryption to render the payload unreadable

to malicious persons. The last two, non-repudiation and denial of service, are not

addressed by our solution. The second and third, integrity and authentication, can be

provided by the same encryption mechanism that provides confidentiality. However,

good encryption incurs a high overhead in computation and thus can affect throughput. In

an attempt to overcome this limitation, encryption algorithms have been moved into

hardware. This solution has the drawback of increased cost. We believe that integrity

and authentication can be supported by software mechanisms that yield high throughput

and are inexpensive and thus provide a first-line of defense to a more costly encryption

scheme.

2. Existing Technology

For the Stargate device to be successful, the technology has to be at least as

efficient as existing commercial products, yet cheaper to encourage the promulgation of

the device throughout the Department of Defense. To accomplish this goal, there were

several innovations that influenced the Stargate design. This chapter introduces each of
these influences.

Many existing security devices are designed with an IP network in mind. One
impressive device, called CellCase, is marketed by Celotek Corporation. This non-key
agile device provides a hardware solution for encrypting data that are passed between two

different, "trusted" networks, using a public ATM network as the link between them.

Figure 3 shows the conceptual design of a virtual private network using the CellCase

solution. A hardware encryption device positioned between each private ATM LAN and
the public .ATM network provides the full spectrum of security services, except for
prevention of denial of service. Each CellCase node ranges from $40,000 to $52,000
depending on speed and level of security. CellCase45 operating at T3 speed with single

DES encryption retails for approximately $40,000 while CellCase 155 operating at OC-3

speed with Triple DES encryption is approximately $52,000. Both claim to operate at
full link speed (T3 or OC-3) while handling 35 secure calls per second with a hardware
encryption overhead of approximately 20 \isec for each call [Ref. 2].'

 Ehoyjitei Infarmrtfoit

Figure 3. CellCase Concept.

The KG-189 is another available encryption device which was developed by the

National Security Agency. The KG-189 provides services similar to CellCase at OC-

3(155 Mbps) and OC-12(622 Mbps) speeds. It is also quite expensive, costing from

$48,000 (non-redundant OC-3) to $63,000 (redundant OC-12).

The NSA also has two new devices in development, FASTLANE and TACLANE.

These are key agile in-line network security products that provide confidentiality, data

integrity, and authentication (via an add-on called FIREFLY). FASTLANE is designed to

operate at network speeds from DS-1(1.54 Mbps) up to OC-12(622 Mbps). The price for

these devices was not specified, but should be similar to previous hardware encryption

devices. TACLANE is a slower and more rugged version designed for use over twisted

pair at the DS-1(1.54 Mbps) and DS-3(25 Mbps) rates. TACLANE is expected to cost

approximately $8000 per device.

The preceding devices are all designed to protect an entire LAN.

CryptoRunnerLE produced by Fore Systems is a hardware encryption device designed to

protect one end-host. Based on the ForeRunnerLE 155C ATM NIC, it combines a

cryptographic daughter card which is FASTLANE/TACLANE compatible. The cost of

one unit should be approximately $1000. This provides a lower cost solution for

protecting individual computers and small LANs.

D. LOW-LEVEL AUTHENTICATION PROTOCOLS

While there are several authentication protocols in existence, such as IPsec, one

protocol, TIP A, promises a low cost, flexfble solution for authenticating IP traffic.

TIPA stands for Link Layer Packet Authentication and it was recently developed at the

Naval Postgraduate School in Monterey, California [Ref. 3]. LLPA is described as a

high-speed authentication protocol for IP traffic. Although there are aspects of the

protocol that have yet to be tested, i.e. key management, this protocol was a valuable

basis for setting up the Stargate authenticator. The appeal of the LLPA protocol is its

performance. Two of the key considerations for the Stargate concept are speed and cost;

consequently, the ability to quickly authenticate traffic with software addressed these two

concerns. To test the LLPA protocol, two categories of tests were developed. The first

test category was designed to test "good" IP traffic, which referred to sending datagrams

that were properly signed by the LLPA signing process. The second test category was

designed to test "bad" IP traffic, which referred to sending datagrams that were not

properly signed by the LLPA signing process. The initial tests showed signing of DP
traffic to take the average time of 153.26ns and authentication of "good" IP traffic to take
the average time of 150.28|is, while it only took on average 0.16|xs to authenticate typical

"bad" IP traffic [Ref. 3]. Furthermore, the suggested approaches to key management
were a useful guide for setting up and retrieving authentication keys. Specifically, the use

of masks and key windows was designed to speed up performance. The concept of using
masks avoids lengthy transmissions of key tables. The use of a key window that holds

just three necessary keys avoids having to search large tables for correct keys.

THIS PAGE INTENTIONALLY LEFT BLANK

10

III. DESIGN AND IMPLEMENTATION OF "STARGATE" SOLUTION

A. INTRODUCTION

This chapter discusses the conceptual design and actual implementation of our
proposed solution. Section B is an overview of the hardware used in the test
implementation. The software programs used are discussed in Section C. A conceptual
overview of the Stargate idea is given in Section D. Finally, Section E describes the
actual implementation constructed to test our security solution.

B. PROTOTYPE ENVIRONMENT

1. Hardware

a. A TM Cell Generator and Receiver

A Fore Systems ForeRunner LE 155Mbps ATM network interface card
transmitting over OC-3 fiber optic cable was used as the cell generator and receiver for all
development and testing. The cards were installed in two Dell brand Intel Pentium
processor based systems, a dual Pentium 400 Mhz and a Pentium Overdrive 200 Mhz,
operating under Windows NT 4.0. The newer system was significantly faster than the
older one, which later caused a performance problem. Both systems were equipped with
Ethernet network interface cards and attached to the local area network. IP over ATM
was not implemented on these systems, so TCP/IP and ATM communications were
completely isolated from each other.

b. Washington University Gigabit ATM Switch

The Washington University Switch (WUGS 20) is a high speed, multicast
virtual circuit experimental ATM switch funded by the Defense Advanced Research
Projects Agency and the National Science Foundation. It has eight ports, two dual OC-3
(155Mbs) line cards and six G-link (1.2Gbs) line cards. The open architecture enables
experimental modification at all levels. The switch's external cell format follows the

11

ATM standard and therefore the switch can be integrated into both local area networks

and wide area networks with little or no modification. One feature in particular, a novel

nonblocking cell-recycling architecture, was used in the Stargate project to simulate a

public ATM network. The switch has no internal processing capability, it therefore,

requires an external controller in the form of a standard PC.

c. ATM Switch controller

An Efficient Networks ENI155P 155Mbps ATM network interface card

with 512K of on-board RAM transmitting over OC-3 fiber optic cable was used in the

ATM switch controller for the WUGS 20. The controller was a generic Pentium Pro

200Mhz processor based system with 128MB of RAM operating under NetBSD 1.32.

The system was also equipped with an Ethernet network interface card and attached to the

local area network. As with the cell generator and receiver systems, IP over ATM was

not implemented, so TCP/IP and ATM communications were completely isolated from

one another.

2. Software

a. ATM Cell Generator and PVC creation

The Fore Systems ForeRunner LE ATM network interface card came with

a CD containing drivers and testing code. The cell generation utility provided by Fore

Systems (perf.c and sockutils.c) created a PVC and generated a continuous

stream of ATM cells framed with AAL5. The continuous stream was undesirable for

development purposes, so the code was modified to transmit a single user specified text

message. This allowed for greater ease of debugging during development. The cell

payloads transmitted through the switch could then be intercepted and analyzed for

correctness. Once development was completed, the continuous stream was again used to

test the throughput and speed.

b. EM155P ATM NIC Driver

The Efficient Networks ENI155P ATM network interface card driver

midway, c is included in the NetBSD source code under /usr/src/sys/dev/ic/.

12

The driver must be added to the kernel configuration file, usually the "generic"

configuration file /usr/src/arch/i386/conf/GENERIC and then compiled into

the kernel. Once compiled the new kernel file, netbsd, must be copied over the

existing file in the root directory (/).

c. Gigabit Network Switch Controller

The purpose of this software is to control one WUGS and hide hardware

details as much as possible. The Gigabit Network Switch Controller (GBNSC) monitors

the state of the switch and provides access to all hardware details for client applications.

Since the switch has no processing engine, a standard PC running GBNSC controls the

switch. Access to the switch is through ATM cells transmitted by the controller. These

special cells, called control cells, have special formats defined and are sent on VPI0 VCI

32. The switch's internal routing tables and maintenance registers are modified and

monitored by the control cells.

d. Jammer

Jammer is a script-based client utility used to access all the bits in the

switch's tables and registers. It connects to GBNSC through a TCP IPC socket and issues

pre-defined commands to ping the switch, read or write routing tables, read maintenance

registers, or reset/clear the switch. Users can create Jammer scripts to automate routing

table programming. See Appendix A for script used with our implementation.

e. NetBSD Native A TM networking protocol

BSD ATM provides support for ATM networking under a traditional

BSD-based operating system. The networking subsystem of the BSD kernel is composed

of three layers: the socket layer, the protocol layer, and the network interface layer.

Transmitted data travels from the application through the socket and protocol layers to the

network interface layer. Received data arrives at the network interface and are passed up

towards the socket layer. All data in the networking subsystem are stored in a data

structure called an "mbuf'. There are two basic types of mbufs: small mbufs and large

mbufs. Small mbufs contain 108 bytes of data and are used for small data or packet

headers. Large mbufs typically contain either 2K or 4K of data. Mbuf structures can be

linked together to form an "mbuf chain".

13

The socket layer has two main roles. First, it transfers the data between a

user's address space and kernel layer mbufs. Second, it queues the data between the user

and the kernel. If a process attempts to transmit too much data and its socket buffer

becomes full, the socket layer will put the process to sleep until room is available.

All networking protocol processing is done at the protocol layer. ATM,

TCP, UDP, and IP are all implemented in the BSD networking subsystem's protocol

layer. When transmitting, the protocol layer receives data from the socket layer, adds the

necessary headers, and passes the packet to the network interface layer for transmission.

When receiving, the protocol layer dequeues packets from its input queue, and determines

the destination of each packet. If the packet is to be forwarded to another host, then the

protocol passes it back to the network interface layer. If the packet is bound for a local

process, then the protocol layer enqueues the packet on the receiving process' receive

buffer and notifies the socket layer that new data are available.

The network interface layer transfers packets between the networking

hardware and the protocol layer. When transmitting, the network interface layer receives

packets through its interface queue and transmits them on the network. When receiving,

the network interface layer determines which protocol to pass the inbound packet to,

enqueues the packet for the protocol, and then schedules a software interrupt to service

the protocol.

ATM networking is integrated into the BSD kernel through a device-

independent ATM networking layer and a device-specific driver for the Midway-based

ATM card (ENI155P). The device-independent layer provides support for using IP over

ATM through PVCs and also provides support for "native" mode ATM sockets to send

and receive raw ATM cells or AAL5 frames. An ATM pseudo header structure is used to

route the ATM packets through the BSD networking subsystem. This four-byte header

consists of the virtual circuit number (VPI and VCI) and a set of flag bits. The first flag

bit indicates whether AALO or AAL5 is being used. This pseudo header is needed

because the normal ATM header is removed from each cell in hardware by the network

interface layer. The pseudo header only exists in the protocol layer and is removed before

it is passed up to the socket layer or down to the network interface layer.

The device-dependent layer of BSD ATM supports only ATM cards based

on the Efficient Networks "Midway" ATM chipset. To transmit data, the protocol layer

enqueues an mbuf chain on the network device's input queue and calls the device's start

routine. The start routine immediately removes the outbound packet from the network

14

interface queue and inspects the packet's ATM pseudo header to determine on which
transmit channel to enqueue the packet. Then the driver inserts a Transmit Buffer
Descriptor (TBD) at the front of the packet and a trailer to the end of the data area so that
it is the proper length. The TBD is read by the hardware to determine size and
destination of the packet and then discarded. When a Midway card receives a complete

AAL5 frame or an AALO cell into its on-board memory it puts the virtual circuit on a

hardware-managed "service list" and generates a "receive" interrupt. The driver's

interrupt handler responds by taking the virtual circuit off the hardware service list and
placing it on a software managed service list. The software list is needed in case there is
a shortage of memory resources. The driver allocates mbuf chains for each frame and
then programs the Midway card to transfer the data from on-board memory to host
memory. The mbuf chain receiving the data is placed on the receive queue and the driver
removes the circuit from the software service list. The packet is pulled off the receive
queue and passes it up to the protocol layer.

/. MD5 Message Digest Algorithm

The MD5 message-digest algorithm was developed by Ron Rivest at M3T
[Ref. 4]. Until the last few years, when both brute-force and cryptoanalytic concerns have
arisen, MD5 was the most widely used secure hash algorithm. The block-chained
algorithm takes as input a message of arbitrary length and produces as output a 128-bit
message digest. The MD5 algorithm has the property that every bit of the hash code is a
function of every bit of the input. The complex repetition of the basic functions in the
algorithm produces results that are well mixed and it is unlikely that two messages, even
if they exhibit similar regularities, will have the same hash code. Even so, from a
cryptoanalytic point of view, MD5 must be considered vulnerable to cryptoanalysis or
brute-force attack. Since MD5 is a 128-bit hash functions, it must either be replaced by a
stronger algorithm which uses a longer hash function or, as we propose, be used for only
a very short duration. The exact duration should be based on current computer
capabilities.

g. Network Time Protocol (NTP)

Network Time Protocol (NTP) is a distributed computer clock
synchronization protocol that has been in use for more than 20 years. The work done on

15

NTP has been through the cooperation of several people, but under the oversight of David

L. Mills. While there are other synchronization protocols available, such as Digital Time

Synchronization (DTSS), NTP is "the longest running, continuously operating application

protocol" in the Internet today [Ref. 5]. Some of the appeal of NTP is also due to the

many platforms to which it has been ported. Of specific import to Stargate, NTP has

been ported to Windows NT and NetBSD. However, the build for Windows NT is less

stable than that of the Unix versions.

NTP can be used in various modes. NTP is widely used in the classic

client-server mode with a hierarchy built in to reduce network traffic and latency. NTP

can also be used in symmetric mode by isolated networks, such as a peer to peer network.

The symmetric mode is ideal for the Stargate prototype. Finally, NTP can operate in a

broadcast mode if there are a large number of clients involved.

The standard time used by most nations of the world is Universal

Coordinated Time (UTC), formerly known as Greenwich Mean Time (GMT). NTP uses

UTC to synchronize "primary" servers via radio, satellite receiver or modem. These

primary servers then adjust the clocks of secondary servers/clients. In order to correctly

adjust clocks of secondary servers over a LAN or WAN, a time offset of the server clock

relative to the client clock is computed by the client running NTP. In existence today,

there are 79 public primary servers synchronized directly to UTC, located in every

continent except Antarctica. There are over 100 public secondary servers synchronized to

the primary servers and providing synchronization to more than 100,000 clients and

servers in the Internet. Additionally, there are an unknown number of private servers

utilizing NTP. The general model for discovering the clock offset starts with a server

sending a message that includes its current clock value to the client, which could be

another server or workstation. The client records its own current clock value upon arrival

of the message. For accuracy, the client has to measure the server-client propagation

delay. NTP measures the total roundtrip delay and assumes the propagation times are

statistically equal in each direction. [Ref. 5]

Clock errors are due to variation in network delay and latencies in computer

hardware and software (jitter), as well as clock oscillator instability (wander). According

to NTP documentation, NTP in the majority of cases can keep clock synchronization

within a few milliseconds on LANs and a few tens of milliseconds on WANs [Ref. 5].

This performance is acceptable for the Stargate project.

16

C. STARGATE CONCEPTUAL DESIGN

Stargate is a software-based authentication solution designed to provide
transparent protection for autonomous private networks connected across a public

network. Figure 4 illustrates the conceptual implementation of the Stargate solution. A
single Stargate protects each private network. A data frame leaving the private network

passes through a Stargate where it is signed using a unique key. The key's index and the
computed digital signature are appended to the outgoing data frame and forwarded across
the public network to the Stargate protecting the receiving private network. The key

index contained in the data is used to retrieve the corresponding key and a new signature
is created. The signature contained in the data is compared with the newly computed

signature. If they match the original data are forwarded to the end host. If not, the data
are discarded. This concept is scalable to protect any number of private networks.

(any protocol)

End-to-end connection

Figure 4. Conceptual Stargate Design.

1. Relationship to CellCase Technology

Stargate employs the same concept as the CellCase technology. Isolated private
networks connected across a public network are each protected by a "black box".
CellCase provides this protection with strong encryption performed in hardware. This

17

solution is both inflexible and expensive. We believe that a simple software solution will

provide similar results at a fraction of the cost.

2. Relationship to LLPA Protocol

Stargate extends the LLPA protocol to ATM networks. LLPA authenticates IP

packets. Porting LLPA to authenticate ATM cells is not trivial because of their small size

(53 bytes). If each cell is authenticated, a large processing overhead is incurred, so

grouping of the cells is required. If the groups are too large, then the authentication

would introduce an unacceptable delay. Fortunately, ATM provides framing in the form

of AAL5 which easily solves the problem. Using AAL5, the LLPA port is fairly straight

forward since the NetBSD ATM protocol uses the same data structures and conventions

as TCP/IP.

3. Relationship to WUGS Technology

The WUGS 20 became an important tool in our prototype implementation. It

allowed us to simulate the data flow across a public network and also provided

convenient access to the ATM cell stream. Since the WUGS 20 has no processing

capability, it requires a controlling PC. This PC monitors and modifies the switch using

Washington University's GBNSC and Jammer programs which are written for the

NetBSD operating system. The controller provides a convenient platform on which to

implement our Stargate solution since we have access, through NetBSD's open

architecture, to the native ATM protocol and to the ATM cells which are passing through

the switch. Additionally, NetBSD's open architecture allows us to modify the NetBSD

kernel to include the signing and authentication module and the key management

daemon.

D. STARGATE IMPLEMENTATION

1. Testbed Layout

Figure 5 depicts the physical layout of our test implementation. The computers,

Pine and Cypress, simulate the source and destination end-hosts. They are connected to

ports 1A and IB of one of the WUGS 20's two dual OC-3 line cards. Stargate is

18

connected to port OA of the other dual OC-3 line card which it shares with the WUGS

controller. Cypress also acted as the Key Distribution Center (KDC) for the key

management process. A separate TCP/IP path was created to emulate the network path
between Stargate and the KDC.

StarGate
NMBSD

WUGS software

ENIATMNIC

TCP/IP connection to KDC

Cypress
WinNT

ForcRunner ATM NIC

Figure 5. Physical Layout.

2. "Public Network" Simulation Layout

To simulate the conceptual design of two Stargates, sender and receiver, we used
the WUGS 20 to recirculate the ATM cells. Figure 6 demonstrates the logical flow of the
cells through the switch. First, ATM AAL5 frames were generated and sent from one
end-host to the WUGS 20. The WUGS 20 routes the cells to Stargate. Stargate signs the
AAL5 frame, changes the VCI by adding 100, and forwards the cells back to the WUGS
20. To simulate travel through a public ATM network infrastructure, the cells received
on VCI 133/134 are recycled through the switch and back to Stargate. Now, acting as the
receiving Stargate the frame is authenticated, the VCI is changed by subtracting 100, and
then the frame is forwarded back to the switch (WUGS 20). The switch routes the cells
to the receiving end-host.

19

VCI34

*VCI 33

input output

Figure 6. Logical Layout.

3. Cell Authentication

a. Signing

Based on the principles of LLPA. ATM cell signing was implemented by

intercepting the ATM cells in the WUGS" 20 controller. Figure 7 illustrates the
procedure. After a complete AAL5 frame is received by the NIC, the headers are stripped
in hardware and the data payload is passed up to the ATM layer process associated with
that particular VPFVCI combination. Data bound for VPI 0 VCI 32, the reserved
controller circuit, are allowed to continue up the protocol stack. All other data begins the
signing process by appending a 26 byte trailer to the AAL5 frame. The trailer consists of
two bytes for version/option bits, four bytes for a sequence number, and four bytes for a
key index provided by the key management daemon. The corresponding 16 byte key is
appended next and the entire frame is hashed with the MD5 algorithm. The resulting 16
byte message digest is copied over the key and the AAL5 frame is put in the outgoing
queue. The NIC processes the frame into individual ATM cells and transmits it through

the public network.

20

MD5

r
Version/Options

Authentication Trailer
 X

^

VPI/VCI| payload Mll&f^kjil Key
, (optional)

AAL frame payload

Incoming cells

(2) (4) (4) (16 bytes)
MAC

(16)

Outgoing cells

Figure 7. Signing Operation.

b. Authentication

The authentication process as illustrated in Figure 8 is similar to the
signing process. Once a complete AAL5 frame is received, the hardware again strips the
cell headers and forwards the payload up to the ATM layer. If the payload is not destined
for the switch controller, the Key Index (KI) and message digest are extracted from the
payload. The key management daemon provides a key based on the received KI. The
message digest in the authentication trailer is replaced with the key and a new message
digest is created by hashing the frame with the MD5 algorithm. The new message digest
is compared with the received message digest. If they match, then the trailer is stripped
and the AAL5 frame is placed in the outgoing queue for transmission to the end host. If
the digests do not match, the frame is dumped.

21

r
Authentication Trailer
 A

^

MD5 VPI/VCI Payload v/o seqfr KI Key
(optional)

Signed AAL frame payload

Incoming cells

(2) (4) (4) (16 bytes).

MAC2
(16)

if 1 MAC , = |MAC2
then

Payload v/o t,eq# KI MAC
AAL frame payload

Outgoing cells

>

Figure 8. Authentication Operation.

4. Key Management

One important factor to the success of the Stargate device is its key management.
This section will discuss the methodologies for creating authentication tables and keys for
optimal security. There are a few assumptions made in order to clarify the key
management process. First, when a Stargate device is started, there is a logon process
where each Stargate is authenticated to a managing Key Distribution Center, which acts
as the Central Authority for authentication keys. Since this thesis did not deal with
signaling, this logon process had to be assumed and therefore no security threats of
impersonating the KDC were tested. Furthermore, normally the transmission of key
tables and masks between a KDC and a Stargate device would require some form of

heavy encryption, such as Triple DES [Ref. 6]. This encryption was not added to the

transmissions for simplicity of testing and evaluation. Finally, timing between the KDC
and Stargate device is critical. While timing issues are addressed when discussing
synchronization of key tables and masks, it was assumed that the computer clocks
between the KDC and Stargate are synchronized automatically with the use of NTP.

The best design for testing Stargate's key management process was a design that
is very similar to the "Gateway" approach mentioned in the LLPA protocol [Ref. 3]. For

22

this thesis, the design of the key management process involved one Key Distribution
Center (KDC) and one Stargate device. Figure 9 shows the conceptual design for
broadening the key management process to two or more Stargate devices, which are

handled by a single KDC. This lends Stargate devices to be "grouped" as peer devices

and serviced by a single KDC. The rest of this chapter will discuss the purpose and key
issues surrounding the KDC and Stargate independently.

Key Distribution Center

Figure 9. Key Distribution Center Conceptual Design.

a. Key Distribution Center responsibilities

The KDC is the keeper of the authentication keys. It has three main
responsibilities: creation of authentication key tables, creation of masks, and
establishment of timing. The KDC was written in Java. The selection of Java was due in
large part for the benefit of platform-independence. The code for the KDC is found in
Appendix D.

In parallel with the LLPA protocol, the Stargate's authentication table is
created with a 4-byte key index (KI) and 16-byte authentication key. By using a smaller
key index, searching for the correct authentication key is much faster. The number of
keys needed in the authentication key table is based on two important design decisions.

23

Those design decisions are (1) the lifetime for each key and (2) the time specified for
replacing the key table. Due to the relative strength of the 128-bit key, it is obvious that

the lifetime for each key would have to be smaller than the time required to break the key
with a brute-force attack. The selected lifetime for each key was set at 2 minutes for
testing purposes. After two minutes, the current key would be permanently discarded

from the available keys in the key table.
The time for replacing the authentication key table is based on a

distinction between the types of key authentication tables used in the key management
process. First "base tables" are referred to as the complete tables sent from the KDC.

When referring to generic "key table(s)" in this section, we are referring to the current

authentication table that is being used by the Stargate device during the signing and

authentication processes. For security and efficiency reasons, base tables are created less

frequently than the current key table. At startup, the Stargate device from the KDC
receives a base table and an initial mask. The current key table is then created by XORing
the base table and mask, which is 20-bytes in length. This process is required so the base
table can never be discovered by unauthorized users. Inevitably, these base tables will be
replaced by the KDC and sent to the Stargate device at specified intervals, but current key
tables can be more readily created with the use of randomly generated masks sent by the
KDC. Replacing base tables is an expensive process because the tables are large.
Conceptually, the interval for replacing base tables could be once a month.

The design decision was made to create an authentication table that would
contain enough keys for a 24-hour period of service. Before the key table expires, the
KDC will send a new mask and then the Stargate device can recreate a new, current key

table. By replacing the key indexes and keys in the authentication table once a day, it
would require fewer transmissions between the KDC and Stargate, but the time period for
replacing the key indexes and authentication keys is variable based on the implementation
of the KDC and Stargate(s). For our testing, changing key indexes and authentication
keys every day, plus a 2-min key lifetime would require an authentication table of 720

KI/keys. A few keys are added as padding.
The randomness of key indexes, keys and masks is important. If the same

key index or key appeared in the same table, security risks and unpredictable behavior by
the Stargate device is expected. Java's random number generator creates the key table
and masks. It is possible that over time, a pattern will emerge in the numbers a computer
generates. To get truly random results, there are devices under development at various

24

universities and corporations, such as Intel, that harness thermal noise to produce random

numbers [Ref. 7].

The final responsibility of the KDC involves the synchronization of key

tables. The KDC has to tell the Stargate devices when to start using a new key table to

ensure all Stargates are synchronized with each other as well as with the KDC. Due to

clock drift and network latency, if a Stargate device started to immediately use a key

table, then within a short time two Stargate devices would no longer be synchronized;

therefore, keys would not match and traffic would be discarded. The starting time for all

Stargates is chosen to be far enough into the future to overcome synchronization issues

that are not associated with clock synchronization, i.e. network latencies. It is assumed

that clock drift is within tolerances. For testing purposes, the start time was chosen to be

20 minutes into the future.

In addition to setting the start time for all Stargate devices, the KDC must

also set the time for itself to issue the next mask. The size of the table and the start time

interval are factors in calculating when the next transmission between the KDC and

Stargate(s) will take place. The next transmission obviously has to happen prior to the

expiration of the key table, but it also has to occur in enough time to set the "start time"

before the last key is used. To accomplish this synchronization, a simple formula will

suffice. The formula for determining consecutive transmissions, which is set to the

constant variable, sendWai tTime, is:

sendWaitTime = tableDuration - startWaitTime,

where tableDuration is calculated as:

tableDuration = keyLifeTime * (numOfKeys - 1),

where numOfKeys refers to the actual number of keys in the authentication table and

keyLifeTime refers to the length of time for which each key will be used. The

sendWaitTime is set to a constant time interval, meaning its value will not change

once initialized; however, its initialization will vary based upon the input values for the

above formula. To control consecutive transmissions, the main thread is put to sleep for

the time interval specified by the sendWai tTime parameter.

25

The Stargate device has to be told by the KDC when to begin using a new

table. This is required to overcome the delays associated with sending the table through

the network. The starting time for Stargate to start using its new table is set to the

variable, startTime, and is calculated as:

startTime = startTime + tableDuration,

but startTime has to be initially set to the current time of when the table is sent;

otherwise, the Stargate may try to sign or authenticate traffic without the key table being

ready for use. Figure 10 shows the relationship of the before mentioned timing variables

on a timeline. This diagram will help visualize the interaction of the KDC and a single

Stargate device. The scenerio in Figure 10 is the same as the Stargate testbed scenerio.

Figure 11 shows the scenerio of a Stargate device coming online with other existing

Stargate devices that are all controlled by a single KDC. In this more complex scenerio,

the first startTime, base table and mask are identical to what the existing Stargate

devices are using; therefore, the startTime appears on the timeline before the new

Stargate is operational. The KDC is responsible for setting all of the timing variables,

thus maintaining control over the key management process.

Short latency

TABLE DURATION fee. 24 hours)

sendWaitTlme

^>

startWaitTlme
, ■*■ .

(Next) TABLE DURATION

*startTime is initially set
to the current time

TIME

startTime

KDC sends base table &
first mask

startTime

KDC sends
next mask

Figure 10. Key Management Timing Relationships.

26

Existing
Stargates
currently
lunnini

New
Stargate
joins

TABL|E DURATION

Network latency
overcome

TABLE DURATION

startWait'

JL

sendWaitTime
 ^ startWaitTiifie

TIMF,

original
startTime

New Stargate
is now
operational

StartTime

KDC sends next
mask and new
startTime to all
Stargates*

Stargate receives
the current base
table, mask and
StartTime

startTime

KDC sends next mask
and new startTime to
all Stargates

* Since the KCD controls the timing, all
Stargates receive the new mask and
startTime simultaneously, regardless of
when a Stargate becomes operational.

Figure 11. Multiple Stargate Timing Relationship.

b. Stargate key management responsibilities

Once the Stargate device receives its initial authentication table and
subsequent masks from the KDC, the focus of key management changes to the Stargate
device. Key management responsibilities for the Stargate device centers around
interfacing with the authentication program. Specifically, getting the current key and
verifying a key index are the two main responsibilities of the Stargate device. In order to
perform either of these functions, the Stargate device uses a key window to speed up
performance. As mentioned earlier, searching for a possible key is quicker by searching a
key window that only contains three keys vice a table that contains hundreds of keys.

The key window contains the last key used, current key and future key.
Figure 12 shows the key window concept. The reason for using three keys is discussed in
the LLPA protocol [Ref 3]; however, the use of three keys has an enormous security
benefit besides improving performance. For example, a key could not be used beyond its
lifetime because it would no longer be in the search window. This is how Stargate
reduces the effectiveness of flooding and/or playback attacks. The updating of the key
window has to be a function of time. There are two possible methods for updating the
key window.

27

window of valid keys
at source StarGate

1 cey-index key

0 \ :
1 \ ■

'■ \ :
h-1 I [h-1] \ Klh-U

* 1' (hi mi 1
h+1 I [h+1] K[h+1]

' '
•

key table at source StarGate

window slides down one row
per half of key-lifetime (T/2)

2
zr ts*
n'

■I.

window of valid keys
at destination StarGate

h-1

' h

h+1

key-index key

I[h-1] K[h-1]

l[h] K[h]

I[h+1] Kfh+1]

key table at destination StarGate

window slides down one row
per half of key-lifetime (T/2)

Figure 12. Key Window Concept.

The first method is to create a program that would rely on software

interrupts (i.e. Thread, sleep()) to control when the key window would "move,"

updating the current batch of keys from the overall key table. This method, although

simple and requiring no any mathematical computation, was eliminated from

consideration for several reasons. First, this method would have unpredictable behavior.

With the possibility of another program running that might have a higher precedence, the

time for the move_window () to actually run could be delayed. Secondly, once a delay

is encountered, the delay will continue to manifest itself for each subsequent execution.

The second method, which was adopted, was to create a function that can

be called by the get_key() and veri_key() that would update the key window

using a mathematical computation. This computation is as follows:

(T - T0)/p

where T refers to the current time, T0 refers to the starting time of when the key table was

put into use and p refers to the lifetime for the keys (e.g., 2 minutes). This computation

would be performed to find the index of the key table and then the current key would be

28

set to this index. For authentication purposes, the 3 possible keys in the key window
would include the key before and the key after the calculated index. For instance, if the

key table has been in use for 6 minutes and the lifetime for each key is 2 minutes, then the

current key would be retrieved at the third row of the key table. The drawback to this

approach is the mathematical computation involved each time the authentication keys are
needed. The benefit of this method, which outweighs the drawback, is that if a delay was
encountered, it would not affect subsequent calculations.

The updating of the key window is accomplished by calling the
move_window(). Both the get_key() and veri_key() call move_window()

before doing anything else. The get_key() will return the current key for creating the

message digest. The veri_key () is called by passing a key index as the function's

argument. If the key index is found in the key window, the key is returned for the
authentication process.

The Stargate device does one other important function. When the KDC
passes it a new mask, the Stargate device will bitwise XOR the mask with each entry of
the base table to create a new authentication key table. This new table is created as soon
as the mask is sent, even though it will not be put to use until the start time is reached.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

IV. PERFORMANCE EVALUATION

A. TEST DESIGN AND DATA COLLECTION

We tested our prototype using AAL5 frames generated by the software provided
with the Fore Systems ForeRunner LE ATM cards (perf. c and sockutils. c).

As discussed in Chapter HI, Section D.l and illustrated in Figure 5, Pine simulated the
sending host and Cypress acted as the receiver. Pine created a PVC on VPI0 VCI 33 to
Cypress. The WUGS routing table was programmed according to the Logical Layout in
Section D.2 and the illustration in Figure 6. The routing table on Port 1 routed VCI 33 to
the switch controller (OA). The routing table on port 0 routed VCI 133 back to the switch
controller (OA) and VCI 33 to the high side output of port 1 (IB).

We tested the throughput of two functions, sign() and auth(). Both
functions are compiled into the NetBSD kernel as part of the atm_auth. c file. The
kernel function micro time () was inserted in the ATM protocol function,
atm_input () to measure beginning and end times for both sign () and auth().

atm_input() is contained in the if_atmsubr.c file. Figure 13 illustrates the
points at which timing measurements were taken.

To factor out the CPU execution time of the microtime () function, two
consecutive calls to the function were made prior to actual testing. The function's
execution time was determined by subtracting the second time from the first. The
execution time, 3 usec was then subtracted from all test measurements for each function

call. Additionally, no computations were made during the execution of the test. All
times were stored in a two-dimensional array during execution and upon completion of
the required number of test iterations, an average time was computed.

31

application layer

2i ij?_atmsubr. c ä&^'äuth^c:
r~~^~i sig.it)

network layer

physical layer

Xi = time recorded

Figure 13. Timing Implementation of Throughput Test.

B. RESULTS

To compute the throughput of the function, the following formula was used.

(Bytes/frame*8) /average execution time

Pine generated AAL5 frames from 32 bytes to 5120 bytes in length. The average

execution time of the function and the computed throughput is listed in Table 1 for each

frame size tested. A graphical presentation of the results is shown in Figure 14. We

found, as expected, that the throughput was low for smaller frame sizes, but quickly grew

as frame size increased. Throughput rose sharply up to approximately 1KB and then

leveled off between 60 Mbps and 70 Mbps. This is comparable to the results observed

with the LLPA implementation although slightly slower. We attribute this difference to a

slightly different approach used to manipulate the mbufs and the authentication trailer.

To eliminate the complicated logic required to process the four possible types of mbufs,

Stargate copies the entire mbuf into a char array and then appends the authentication

trailer. This made indexing, copying, and extracting authentication information much

32

simplier. Once signing is complete, the procbuf, with authentication trailer, is copied
back to the mbuf using m_copyback () function which will extend the mbuf chain if
required. This is a performance trade-off we made to simplify the coding and its impact
is noticeable. The sign ()function is slower than the auth() function because there is
only one copy operation to the procbuf for authentication. It was not necessary to

m_copyback () the authenticated mbuf since we only need to remove the trailer. We

simply cropped the authentication trailer from the mbuf with m_adj ().

Number of bytes of
data per frame

Avg. execution
time for sign ()
function (usec)

Through put of
sign() function

(Mbps)

Avg. execution
time for auth()
function (jisec)

Through put of
auth() (Mbps)

32 39 6.56 34 7.53
64 40 12.80 35 14.63

128 47 21.79 41 24.98
256 59 34.71 53 38.64
512 85 48.19 79 51.85

1,024 154 53.19 135 60.68
1,536 217 56.63 191 64.34
2,048 278 58.94 245 66.87
2,560 342 59.88 305 67.15
3,072 399 61.59 360 68.27
3,584 460 62.33 413 69.42
4,096 526 62.30 474 69.13
4,608 585 63.02 545 67.64
5,120 647 63.31 609 67.26

Table 1. Performance Data for sign () and auth() Functions.

An interesting observation made during testing was that we were unable to drive
the packet generation software fast enough to overwhelm Stargate's authentication
software. However, at its best speed, Pine was producing cells fast enough to overwhelm
Cypress. We observed that with less than half the raw CPU power of Pine, but
comparable to Stargate, Cypress was dropping 75-85% of the transmitted frames. Yet,
Stargate processed every packet correctly. While Stargate was only handling one
connection, we feel that if implemented on a high end machine, the software will handle
multiple connections with similar results. Another important limitation of our prototype
is the ENI155P ATM card. It has only 512KB onboard RAM and has only 7 receive
buffers. Efficient Networks makes a 2MB version of the ENI155P which handles many
more connections simultaneously. By improving the component parts of the computer,

33

the performance of Stargate can be improved as well. This provides easy extensibility as

computers evolve.

80

70

60

50

w
£40

30

20

10

0

3,000

6,000

-- 2,000

Bytes of data per AAL5 frame

 Avg. throughput of signQ Avg. throughput of authQ Bytes/frame

Figure 14. ATM Authentication Module Performance.

34

V. LESSONS LEARNED AND RECOMMENDATIONS

A. AUTHENTICATION LESSONS LEARNED

1. Setting up the Testbed

We started building the testbed with the idea that we could use one high-speed

computer with two ATM network interface cards as our "Stargate". This did not work
because we did not have access to the source code for the Fore Systems ForeRunner LE
ATM cards. An alternative we considered was implementing the authentication module

at the application layer, but we felt this was not optimal and would affect our test results.
We then fell upon the WUGS 20 as an intriguing alternative since it is based on NetBSD
and therefore open source software. Email exchanges with Fore Systems technicians
confirmed that we would not be able to get the source code for the ForeRunner LE cards.
We therefore turned our attention to the WUGS and NetBSD's ATM protocol
implementation. Although Washington University used NetBSD to implement the
original WUGS 20 controller, they had a Linux version available which would have been
preferred because of our familiarity with Linux. After several weeks of frustration, we
were unable to compile a working Linux based controller on the high end system, which
eventually became our frame generator (Pine). We abandoned Linux and started over
with the NetBSD version and attempted to compile the software on our high end, dual
processor computer. Unfortunately, NetBSD is not as well supported as Linux and is
therefore not as advanced in its support for new hardware. We were unable to use
NetBSD with the new computer. Yet again, we started over using the older, slower
computer from the LLPA implementation. Here we were successful. We set up NetBSD
as the WUGS controller and dissected the kernel's ATM network protocol source code.
Fortunately, the ATM network protocol is very similar to the BSD TCP/IP network
protocol implementation. Stevens' books on TCP/IP were invaluable in deciphering and
documenting the TCP/IP protocol [Ref. 8].

A thorough analysis of the ATM protocol identified several places that the ATM
cells could be "intercepted" enroute up the protocol stack. One possibility was in the
kernel's ENI155P driver code, but this was rejected since it would make the code

35

hardware specific. We settled on the function call, atm_input (Jfrom the ATM layer
which allows us to create a hardware independent implementation based on the BSD
ATM network protocol. Once this was decided, the LLPA code which is a BSD based
TCP/IP kernel modification, was ported fairly easily to an ATM network kernel
modification. A good knowledge of the BSD ATM network protocol helped immensely

in this task.

2. Authentication Performance Issues

How could this software be made to execute faster? Since the creation of a

message digest is integral to our solution, it is crucial that we use the fastest algorithm

available. Hardware issues aside, we believe that MD5, in its standard form, is not the
fastest solution for creating a message digest [Ref. 9]. MD5 is conveniently implemented
in the NetBSD kernel, but other options exist such as HMAC, SHA-1, and PJPEMD-160
[Ref 6]. Although, we did not specifically measure the performance of MD5 or substitute
other message digest algorithms, we think further investigation is warranted to determine
the most advantageous method of creating the "digital signature".

Another possibility to increase performance would be to create a large RAM disk
and load the Stargate system into memory to eliminate slower disk accesses. This
approach is commonly used by high speed internet servers to provide increased system

performance.

B. KEY MANAGEMENT LESSONS LEARNED

The lessons learned involving the key management process were primarily
integration issues. The original plan was to use a high-level programming language, Java,
to write the KDC and Stargate key management functions. Java development is generally
quicker than with other languages because of its true object oriented approach enhanced
in this case by the experience of the programmer. This quicker development coupled
with Java being platform-independent appeared to make Java the perfect choice initially;
however, integration with the kernel-level authentication program and communication
between the KDC and Stargate device became significant hurdles to overcome.

36

1. Language Integration

While the Stargate key management object and KDC object worked together
perfectly when written in Java, there was an integration issue when trying to get the

Stargate object to work with the kernel-level authentication program, which must be
written in C. Since the Java Classpath is a user environment setting, the Stargate program

could not be initiated by the kernel during the bootup process. How was the kernel going

to be able to retrieve key objects from the user environment? Researching the problem,

we discovered that Java has addressed the problem of integrating native code with Java.
The Java solution is called Java Native Interface (JNI). JNI acts as an interface between
the C code and the Java code. The key to this process is building a shared object library
out of the JNI code. In the Stargate testbed, building shared object libraries in NetBSD
became very time consuming; therefore, in the interest of time this approach had to be
abandoned. The only recourse was to rewrite the Stargate object in C and then compile
the code into the kernel, so the authentication program could easily access the

get_key() and veri_key() methods. While this solved the problem of integrating
the key management code with the authentication code, it was anticipated that going back
and integrating the communication between the new kernel-level Stargate key
management object and the KDC object could be difficult.

2. Communication Integration

After rewriting the Stargate object using C, communication between the Stargate
object and KDC did not work. The KDC was written using a Java ServerSocket and the
Stargate object was written as a client in C. As initially written, the Stargate client would
send a request to the KDC for either a table or a mask and then the KDC would respond
accordingly. The KDC and Stargate could make a socket connection, but the KDC could
not read what was being sent on the input stream. The programs for the KDC and
Stargate were tested against Java clients and C servers respectively. Both programs
worked as designed, but they would not work together. Through much testing, it was
decided to change the Java program to be a Socket client instead of a ServerSocket. The
Stargate object was rewritten to act as the server and run as a startup daemon, constantly
listening for connections from the KDC. This scenario was successful in passing Strings,
but there are formatting problems with putting the Strings into a useable format on
Stargate, which have yet to be overcome.

37

C. SUGGESTED FURTHER RESEARCH

This exploratory study has only begun to uncover the growing body of knowledge
on the authentication of ATM traffic. The following list is specific areas to the Stargate
concept that were not addressed by this thesis, but would be valuable follow-on research

topics:
■ Expanding and evaluating multiple Stargates in a larger testbed environment.

■ Implement clock synchronization.

■ Evaluate other message digest algorithms.
■ Evaluating Stargate's performance with streaming traffic, such as video or

voice.
■ Develop the secure signaling process between the KDC and Stargate or

Stargate to Stargate.
■ Research to improve the randomness for the generation of security

keys/masks.

38

APPENDIX A. JAMMER SCRIPT

Set port 1A->0A and 1B->0A
and port 0A->1A or 0A->1B or 0A->0A based on VPI/VCI
using VPI 0 and VCI 33/34 or VCI 133/134
NOTE: OC-3 duplex card does not allow TX/RV on same VCI
OBSCURE POINT: To access upper half of OC-3 duplex (B port),
the line card uses bit VPI[7] (ie VPI >128 = B port).

(1A->0A) CC VVBVVBAA
V YYUUVR PCDPCDDD
PXBR CCCDDSPCBI IIIIIRR
PIICD12S12CTOR1 1122212

write vcxt 1 33 1 2 1 0 0 0 0 0 0 0 0 0 0 33 0 0 0 0 0 0
write vpxt 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

(1B->0A)
V

C C
Y Y u u V R

V
P

V
C

B V V B A A
D P C D D D

P X B R C C C D D S P C B I I I I I I R R
P I I C D 1 2 s 1 2 C T 0 R 1 1 12 2 2 12

write vcxt 1 34 121000000000 0 34 000000
write vpxt 1 128 101000000100 0 0 000000

(0A->1A) CC VVBVVBAA
V YYUUVR PCDPCDDD
PXBR CCCDDSPCBI IIIIIRR
PIICD12S12CTOR1 1122212
#-

write vcxt 0 34 121000000000 0 34 000010

(0A->1B) CC VVBVVBAA
V YYUUVR PCDPCDDD
PXBR CCCDDSPCBI IIIIIRR
PIICD12S12CTOR1 1122212

write vcxt 0 33 121000000000 128 33 0 0 0 0 1 0

(0A->0A) CC VVBVVBAA
V YYUUVR PCDPCDDD
PXBR CCCDDSPCBI IIIIIRR
PIICD12S12CTOR1 1122212

write vcxt 0 133 121000000000 0 133 0 0 0 0 0 0
write vcxt 0 134 121000000000 0 134 0 0 0 0 0 0
write vpxt 0 0 101000000100 0 0 000000

39

(SET I 4R) F T R R V
I S C C P S H s
E T 0 B B c S R S R c
P L G F D H N R L L L E L

4

P D I F T D T E E E E T T

write mr 1 2 0 128 32 0 255 1 1 1 1 100000 0
write mr 0 2 0 128 32 0 255 1 1 1 1 100000 0

40

APPENDIX B. BSD KERNEL MODIFICATION CODE

A. README

Stargate

**
IMPORTANT! Stargate authentication runs in
the NetBSD kernel. Changes to the source code
could possibly corrupt the kernel/filesystem.
**

The source code for Stargate is compressed in the file Stargate-0.1.tar.gz.

README
stargated.h
stargated.c
atm_auth.h
atm_auth.c
if .h
if_atmsubr.c
KDC.java'
set_switch.stargate

Uncompress the files with a command similar to the one below.

gzip -de the-file.tar.gz | tar -xvf

Configuration Notes

Stargate was developed on a Dell OptiPlex GXMT 5200 with a 200 Mhz Pentium Pro,
ENI155P ATM card, 3COM 3C509 Ethernet card, and 128 MB RAM running NetBSD 1.3

To compile the stargate source into the NetBSD kernel:

1) Start with standard kernel compiled with ATM support and WUGS package
installed.
2) cp (overwrite) if.h and if_atmsubr.c to /usr/sre/sys/net.
3) cp stargated.h, stargated.c, atm_auth.h, and atm_auth.c to
/usr/sre/sys/netnatm.
4) Modify Makefile in /usr/src/sys/arch/i386/compile/"name-of-your-kernel" to
include dependencies for files in step 2.
5) Run make from same directory.

To setup and run stargate:

1) Boot Stargate machine
2) Run GBNSC <GBNSC config.portl> (See big red book for more info).
3) Run Jammer -cJammer 0.1 stargate 5551> (See big red book for more infor).
4) Set switch tables using Jammer -«include set_switch.stargate>.
5) Setup a PVC (VPI 0 VCI 33) between the end hosts.
6) Connect end hosts to ports 1A and IB of the WUGS.
7) Stargate daemon is running waiting for key table from KDC.

41

KDC:

1) Start KDC.Java on KDC machine <java KDC stargate> (must have TCP/IP
connection to stargate).
2) KDC sends key table and periodic masks.
3) Stargate ready to authenticate traffic. (Only on VCI 33 and 34)

General Notes

Switch routing tables must be changed to handle other than VCI 32, 33, and 34.
Logic in if_atmsubr.c must be changed as well.

Authentication will handle all four varieties of mbuf since we use m_copyback
and m_adj. See Stevens TCP/IP Vol 2 for more info on m_buf functions.

B. IF_ATM.H

/* $NetBSD: if.h,v 1.29 1997/10/02 19:41:57 is Exp $ */

/*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.^
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/,or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS 'XAS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.h 8.1 (Berkeley) 6/10/93
*/

#ifndef _NET_IF_H_
»define _NET_IF_H_

#include <sys/queue.h>

/*

42

* Structures defining a network interface, providing a packet
* transport mechanism (ala level 0 of the PUP protocols).
*
* Each interface accepts output datagrams of a specified maximum
* length, and provides higher level routines with input datagrams
* received from its medium.
*
* Output occurs when the routine if_output is called, with four parameters:
* (*ifp->if_output)(ifp, m, dst, rt)
* Here m is the mbuf chain to be sent and dst is the destination address.
* The output routine encapsulates the supplied datagram if necessary,
* and then transmits it on its medium.
*
* On input, each interface unwraps the data received by it, and either
* places it on the input queue of a internetwork datagram routine
* and posts the associated software interrupt, or passes the datagram to a raw
* packet input routine.
*
* Routines exist for locating interfaces by their addresses

• * or for locating a interface on a certain network, as well as more general
* routing and gateway routines maintaining information used to locate
* interfaces. These routines live in the files if.c and route.c
*/

/* XXX fast fix for SNMP, going away soon */
#include <sys/time.h>

struct mbuf;
struct proc;
struct rtentry;
struct socket;
struct etherjieader;

/*
* Structure defining statistics and other data kept regarding a network
* interface.
*/

struct if_data {
/* generic interface information */
u_char ifi_type; /* ethernet, tokenring, etc. */
u_char ifi_addrlen; /* media address length */
u_char ifi_hdrlen; /* media-header length */
u_long ifi_mtu,- /* maximum transmission unit */
u_long ifi_metric; /* routing metric (external only)'*/
u_long ifi_baudrate; /* linespeed */
/* volatile statistics */
u_long ifi_ipackets; /* packets received on interface */
u_long ifi_ierrors; /* input errors on interface */
u_long ifi_opackets; /* packets sent on interface */
u_long ifi_oerrors; /* output errors on interface */
u_long ifi_collisions; /* collisions on csma interfaces */
u_long ifi_ibytes; /* total number of octets received */
u_long ifi_obytes; /* total number of octets sent */
u_long ifi_imcasts; /* packets received via multicast */
u_long ifi_omcasts; /* packets sent via multicast */
u_long ifi_iqdrops; /* dropped on input, this interface */
u_long ifi_noproto; /* destined for unsupported protocol */
struct timeval ifi_lastchange; /* last updated */

};

/*
* Structure defining a queue for a network interface.
*
* (Would like to call this struct *'if", but C isn't PL/1.)

43

*/
TAILQ_HEÄD(ifnet_head, ifnet); /* the actual queue head */

/'
* Length of interface external name, including terminating '\0'.
* Note: this is the same size as a generic device's external name.
*/

#define IFNAMSIZ 16

struct ifnet { /* and the entries */
void *if_softc; /* lower-level data for this if */
TAILQ_ENTRY(ifnet) if_list; /* all struct ifnets are chained */
TAILQ_HEAD(, ifaddr) if_addrlist; /* linked list of addresses per if */
char if_xname[IFNAMSIZ]
int i f_pcount;
caddr_t i f_bp f;
u_short if_index;
short if_timer;
short if_flags;
short if padl;
struct if_data if_data;

/* procedure handles */
int

external name (name + unit) */
number of promiscuous listeners */

/* packet filter structure */
/* numeric abbreviation for this if */

time 'til if_watchdog called */
up/down, broadcast, etc. */

(*if_output)
 P((struct ifnet *

struct rtentry
void (*if_start)

 P((struct ifnet
int (*if_ioctl)

 P((struct ifnet
int (*if_reset)

 P((struct ifnet
void (*if_watchdog)

 P((struct ifnet *));
struct ifqueue {

struct mbuf *ifq_head;
struct mbuf *ifq_tail;
int ifq_len;
int ifq_maxlen;
int ifq_drops;

} if_snd; /*
struct sockaddr_dl *if_sadl;
u_int8_t *if_broadcastaddr;

/* be nice to m68k ports */
/* statistics and other data about if */

f output routine (enqueue) */
struct mbuf *, struct sockaddr

*));
/* initiate output routine */

*));
/* ioctl routine */

*, u_long, caddr_t));
'/* XXX bus reset routine */

*));
/* timer routine */

output queue */
/* pointer to our sockaddr_dl */
/* linklevel broadcast bytestring */

};
#define
#define
#define
#define
#define
#define
#define
#define
#define
♦define
idefine
#define
#define
tdefine
#define
#define
#define
#define

#define

if_mtu
if—type
if_addrlen
if_hdrlen
if_metric
if_baudrate
if_ipackets.
if_ierrors
if_opackets
ifoerrors

i f_data.i f i_mtu
if_data.ifi_type

if_data.ifi_addrlen
if_data.ifi_hdrlen
if_data.ifi_metric
i f_data.i fi_baudrate
if_data.ifi_ipackets
if_data.ifi_ierrors
if_data.ifi_opackets
if_data.ifi_oerrors

if_collisions if_data.ifi_collisions
if_ibytes
if_obytes
if_imcasts
if_omcasts
if_iqdrops
if_noproto

if_data.ifi_ibytes
if_data.ifi_obytes
if_data.ifi_imcasts
if_data.ifi_omcasts
if_data.ifi_iqdrops
if_data.ifi_noproto

if_lastchange if_data. if i_lastchange

IFF_UP Oxl /* interface is up */

44

#define IFF_BROADCAST 0x2 /*
»define IFF_DEBUG 0x4 /*
#define IFF_LOOPBACK 0x8 /*
#define IFF_POINTOPOINT 0x10 /*
#define IFF_NOTRAILERS 0x20 /*
#define IFF_RUNNING 0x40 /*
#define IFF_NOARP 0x80 /*
#define IFF_PROMISC 0x100 /*
#define IFF_ALLMULTI 0x2 00 /*
#define IFF_OACTIVE 0x400 /*
#define IFF_SIMPLEX 0x800 /*
#define IFF_LINK0 0x1000 /*
#define IFF_LINK1 0x2000 /*
#define IFF_LINK2 0x4000 /*
#define IFF_MULTICAST 0x8000 /*

broadcast address valid */
turn on debugging */
is a loopback net */
interface is point-to-point link */
avoid use of trailers */
resources allocated */
no address resolution protocol */
receive all packets */
receive all multicast packets */
transmission in progress */
can't hear own transmissions */
per link layer defined bit */
per link layer defined bit */
per link layer defined bit */
supports multicast */

/* flags set internally only: */
#define IFF_CANTCHANGE \

(IFF_BROADCAST|IFF_POINTOPOINT|IFF_RDNNING|IFF_OACTIVE|\
IFF_SIMPLEX|IFF_MULTICAST|IFF_ALLMULTI)

/*
* Output queues (ifp->if_snd) and internetwork datagram level (pup level 1)
* input routines have queues of messages stored on ifqueue structures
* (defined above). Entries are added to and deleted from these structures
* by these macros, which should be called with ipl raised to splimpO.
*/

»define IF_QFULL(ifq) ((ifq)->ifq_len >= (ifq)->ifq_maxlen)
»define IF_DROP(ifq) ((ifq)->ifq_drops++)
«define IF_ENQUEUE(ifq, m) { \

(m)->m_nextpkt = 0; \
if ((ifq)->ifq_tail == 0) \

(ifq)->ifq_head = m; \
else \

(ifq)->ifq_tail->m_nextpkt = m; \
(ifq)->ifq_tail = m; \
(ifq)->ifq_len++; \

}
»define IF_PREPEND(ifq, m) { \

(m)->m_nextpkt = (ifq)->ifq_head; \
if ((ifq)->ifq_tail == 0) \

(ifq)->ifq_tail = (m); \
(ifq)->ifq_head = (m); \
(ifq)->ifq_len++; \

}
»define IF_DEQUEUE(ifq, m) { \

(m) = (ifq)->ifq_head; \
if (m) { \

if (((ifq)->ifq_head = (m)->m_nextpkt) == 0) \
(ifq)->ifq_tail = 0; \

(m)->m_nextpkt =0; \

} \
(ifq)->ifq_len—; \

»define IFO_MAXLEN 50
»define IFNET_SLOWHZ 1 /* granularity is 1 second */

/*
* The ifaddr structure contains information about one address
* of an interface. They are maintained by the different address families,
* are allocated and attached when an address is set, and are linked
* together so all addresses for an interface can be located.

45

*/
struct ifaddr {

struct sockaddr *ifa_addr; /* address of interface */
struct sockaddr *ifa_dstaddr; /* other end of p'-to-p link */

#define ifa_broadaddrifa_dstaddr /* broadcast address interface */
struct sockaddr *ifa_netmask; /* used to determine subnet */
struct ifnet *ifa_ifp; /* back-pointer to interface */
TAILQJENTRY(ifaddr) ifa_list; /* list of addresses for interface *,
void (*ifa_rtrequest) /* check or clean routes (+ or -)'d */

 P((int, struct rtentry *, struct sockaddr *));
u_short ifa_flags; /* mostly rt_flags for cloning */
short ifa_refcnt; /* count of references */
int ifa_metric; /* cost of going out this interface */

};
#define IFA_ROUTE RTF_UP /* route installed */

/*
* Message format for use in obtaining information about interfaces
* from sysctl and the routing socket.
*/

struct if_msghdr {
u_short ifm_msglen; /* to skip over non-understood messages */
u_char ifm_version; /* future binary compatability */
u_char ifm_type; /* message type */
int ifm_addrs; /* like rtm_addrs */
int ifm_flags; /* value of if_flags */
u_short ifm_index; /* index for associated ifp */
struct if_data ifm_data;/* statistics and other data about if */

};

/*
* Message format for use in obtaining information about interface addresses
* from sysctl and the routing socket.
*/

struct ifa_msghdr {
u_short ifam_msglen; /* to skip over non-understood messages */
u_char ifam_version; /* future binary compatability */
u_char ifam_type; /* message type */
int ifam_addrs; /* like rtm_addrs */
int ifam_flags; /* value of ifa_flags */
u_short ifam_index; /* index for associated ifp */
int ifam_metric; /* value of ifa_metric */

};

/*
* Interface request structure used for socket
* ioctl's. All interface ioctl's must have parameter
* definitions which begin with ifr_name. The
* remainder may be interface specific.
*/

struct ifreq {
char ifr_name[IFNAMSIZ]; /* if name, e.g. "enO" */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
int ifru_mtu;
caddr_t i fru_data;

} ifr_ifru;
#define ifr_addr ifr_ifru.ifru_addr /* address */

46

#define
link */
♦define
#define
#define
♦define
#define
(overload)
♦define
};

i f rds taddr i fr_i fru.i fruds taddr /* other end of p-to-p

ifr_broadaddr ifr_ifru. if ru_broadaddr
ifr_flags
ifr_metric
i frmtu
ifr_media

ifrdata

/* broadcast address */
ifr_ifru.ifru_flags /* flags */
ifr_ifru.ifru_metric /* metric */

ifr_ifru.ifru_mtu /* mtu */
ifr_ifru.ifru_metric

ifr_ifru.ifru_data /i

I* media options

for use by interface */

struct ifaliasreq {
char i fra_name[IFNAMSIZ];
struct sockaddr ifra_addr;
struct sockaddr ifra_dstaddr;

♦define ifra_broadaddr ifra_dstaddr
struct sockaddr ifra_mask;

};

struct ifmediareq {

/* if name, e.g. ■enO"

char i fm_name[IFNAMSIZ]; /
int ifm_current; /
int ifm_mask; /
int ifm_status; /
int ifm_active; /
int ifm_count; /

int *ifm_ulist; /

if name, e.g. "enO" */
current media options */

/* don't care mask */
media status */
active options */
entries in ifm_ulist
array */

/* media words */
};

/* size of associated buffer */

/*
* Structure used in SIOCGIFCONF request.
* Used to retrieve interface configuration
* for machine (useful for programs which
* must know all networks accessible).
*/

struct ifconf {
int ifc_len;
union {

caddr_t ifcu_buf;
struct ifreq *ifcu_req;

} ifc_ifcu;
♦define ifc_buf ifc_ifcu.ifcu_buf
♦define ifc_req ifc_ifcu.ifcu_req
*/
};

♦include <net/if_arp.h>

♦ifdef _KERNEL
♦define IFAFREE(ifa) \

if ((ifa)->ifa_refcnt <= 0) \
ifafree(ifa); \

else \
(ifa)->ifa_refcnt—;

struct ifnet_head ifnet;

void ether_ifattach P((struct ifnet *, u_int8_t *)) ;
void ether_input P((struct ifnet *, struct ether_header *,
int ether_output P((struct ifnet *,

struct mbuf *, struct sockaddr *, struct rtentry *))
char *ether_sprintf P((u_char *));

/* buffer address */
/* array of structures returned

struct mbuf *))

47

void if_attach P((struct ifnet *));
void if_down P((struct ifnet *));
void if_qflush P((struct ifqueue *));
void if_slowtimo P((void *));
void if_up P((struct ifnet *));
int ifconf P((u_long, caddr_t));
void ifinit P((void));
int ifioctl P((struct socket *, u_long, caddr_t, struct proc *));
int ifpromisc P((struct ifnet *, int));
struct ifnet *ifunit P((char *));

struct ifaddr *ifa_ifwithaddr P((struct sockaddr *));
struct ifaddr *ifa_ifwithaf P((int));
struct ifaddr *ifa_ifwithdstaddr P((struct sockaddr *));
struct ifaddr *ifa_ifwithnet P((struct sockaddr *));
struct ifaddr *ifa_ifwithladdr P((struct sockaddr *));
struct ifaddr *ifa_ifwithroute P((int, struct sockaddr *,

struct sockaddr *));
struct ifaddr *ifaof_ifpforaddr P((struct sockaddr *, struct ifnet *));
void ifafree P((struct ifaddr *));
void link_rtrequest P((int, struct rtentry *; struct sockaddr *));

int loioctl P((struct ifnet *, u_long, caddr_t));
void loopattach P((int));
int looutput P((struct ifnet *,

struct mbuf *, struct sockaddr *, struct rtentry *));
void lortreguest P((int, struct rtentry *, struct sockaddr *));
#endif /*' „KERNEL */
#endif /* !_NET_IF_H_ */

C. IF_ATMSUBR.C

/* $NetBSD: if_atmsubr.c,v 1.12 1997/03/15 21:10:45 cgd Exp $ */

/*
*
* Copyright (c) 1996 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR l'AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

48

* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* if_atmsubr.c
*/

#include <sys/param.h>
#include <sys/systm.h>
♦include <sys/kernel.h>
♦include <sys/malloc.h>
♦include <sys/mbuf.h>
♦include <sys/protosw.h>
♦include <sys/socket.h>
♦include <sys/ioctl.h>
♦include <sys/errno.h>
♦include <sys/syslog.h>

♦include <machine/cpu.h>

♦include <net/if.h>
♦include <net/netisr.h>
♦include <net/route.h>
♦include <net/if_dl.h>
♦include <net/if_types.h>
♦include <net/if_atm.h>
♦include <net/ethertypes.h> /* XXX: for ETHERTYPE_* */

♦include <netinet/in.h>
♦include <netinet/if_atm.h>

♦ifdef INET
♦include <netinet/in_var.h>
♦endif
♦ifdef NATM
♦include <netnatm/natm.h>
♦include <netnatm/atm_auth.h> -
♦endif

♦define senderr(e) { error = (e); goto bad;}

♦define STARGATE /* Enable Stargate code */
♦undef STARGATE_DEBUG /* Disable debug code */
♦define MD5_METRIC /* Enable metrics */

♦ifdef MD5_METRIC
♦include <sys/time.h>
♦define TRIAL 10000 /* 5000 sign and 5000 auth */
typedef struct timeval obs[3];
obs sample[TRIAL+1];
int framecount = 0;
extern long atm_frame_ctr;
♦endif

/*
* atm_output: ATM output routine
* inputs:
* "ifp" = ATM interface to output to
* "mO" ='the packet to output

49

"dst" = the sockaddr to send to (either IP addr, or raw VPI/VCI)
"rtO" = the route to use

returns: error code [0 == ok]

note: special semantic: if (dst == NULL) then we assume "m" already
has an atm_pseudohdr on it and just send it directly,
[for native mode ATM output] if dst is null, then
rtO must also be NULL.

int
atm_output(ifp, mO, dst, rtO)

register struct ifnet *ifp;
struct mbuf *m0;
struct sockaddr *dst;
struct rtentry *rt0;

{
u_intl6_t etype = 0; /* if using LLC/SNAP */
int s, error = 0, sz;
struct atm_pseudohdr atmdst, *ad;
register struct mbuf *m = mO;
register struct rtentry *rt;
struct atmllc *atmllc;
u_int32_t atm_flags;

if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
senderr(ENETDOWN);

ifp->if_lastchange = time;

/*
* check route
*/

if ((rt = rtO) != NULL) {

if ((rt->rt_flags & RTF_UP) == 0) { /* route went down! */
if ((rtO = rt = RTALLOCKdst, 0)) != NULL)

rt->rt_refcnt— ;
else

senderr(EHOSTUNREACH);
}

if (rt->rt_flags & RTF_GATEWAY) {
if (rt->rt_gwroute == 0)

goto lookup;
if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {

rtfree(rt); rt = rtO;
lookup: rt->rt_gwroute = RTALLOC1(rt->rt_gateway, 0);

if ((rt = rt->rt_gwroute) == 0)
senderr(EHOSTUNREACH);

}
}

/* XXX: put RTF_REJECT code here if doing ATMARP */

}

/*
* check for non-native ATM traffic (dst != NULL)
*/

if (dst) { •
switch (dst->sa_family) {

50

#ifdef INET
case AF_INET:

if (!atmresolve(rt, m, dst, Satmdst)) {
m = NULL;
/* XXX: atmresolve already free'd it */
senderr(EHOSTUNREACH);
/* XXX: put ATMARP stuff here */
/* XXX: watch who frees m on failure */

}
etype = htons(ETHERTYPE_IP);
break;

#endif

default:
#if defined(NetBSD) | | defined« OpenBSD)

printf("%s: can't handle af%d\n", ifp->if_xname,
dst->sa_family);

#elif defined(FreeBSD) || defined(bsdi)
printf("%s%d: can't handle af%d\n", ifp->if_name,

ifp->if_unit, dst->sa_family);
#endif

bad:

senderr(EAFNOSUPPORT);
}

/*
* must add atm_pseudohdr to data

*/
sz = sizeof(atmdst);
atm_flags = ATM_PH_FLAGS(&atmdst);
if (atm_flags & ATM_PH_LLCSNAP) sz += 8; /* sizeof snap == 8
M_PREPEND(m, sz, M_DONTWAIT);
if (m == 0)

senderr(ENOBUFS);
ad = mtod(m, struct atm_pseudohdr *);
*ad = atmdst;
if (atm_flags & ATM_PH_LLCSNAP) {

atmllc = (struct atmllc *)(ad + 1);
bcopy(ATMLLC_HDR, atmllc->llchdr,

sizeof(atmllc->llchdr));
ATM_LLC_SETTYPE(atmllc, etype);

/* note: already in network order */
}

}

/*
* Queue message on interface, and start output if interface
* not yet active.
*/

s = splimp();
if (IF_QFULL(&ifp->if_snd)) {

IF_DROP(&ifp->if_snd);
splx(s);
s enderr(ENOBUFS);

}
ifp->if_obytes += m->m_pkthdr.len;
IF_ENQUEUE(&ifp->if_snd, m);
if ((ifp->if_flags & IFF_OACTIVE) == 0)

(*ifp->if_start)(ifp);
splx(s);
return (error);

51

/

if (m)
m_freem(m) ;

return (error);
}

/*
* Process a received ATM packet;
* the packet is in the mbuf chain m.
*/

void
ätm_input(ifp, ah, m, rxhand)

struct ifnet *ifp;
register struct atm_pseudohdr *ah;
struct mbuf *m;
void *rxhand;

{
register struct atm_pseudohdr *ah_new;
register struct ifgueue *inq;

u_intl6_t etype = ETHERTYPE_IP; /* default */
int s/*, index*/;

if ((ifp->if_flags & IFFJCJP) == 0) {
m_freem(m);
return;

}
ifp->if_lastchange = time;
ifp->if_ibytes += m->m_pkthdr.len;

* Stargate modification code. Route all packets (except vpi 0 vci 32) to
* the authentication function.
*/ ■

if ((ATM_PH_VCI(ah)) == 32){ /* must be a control cell! */
printf("counter = %ld\n"/ atm_frame_ctr);
atm_frame_ctr =0; /* reset authenticated frame counter */

#ifdef MD5_METRIC
framecount = 0; /* reset frame counter for testing */

#endif

}
else {

#ifdef STARGATE_DEBUG
ah_new = mtod(m, struct atm_pseudohdr *);
printf("message length[in] = %d\n", m->m_pkthdr.len);
printf("mbuf atm header = VPI %d VCI %d FLAGS 0x%x\n",

ATM_PH_VPI(ah_new) , ATM_PH_VCI(ah_new), ATM_PH_FLAGS(ah_new));
printf("dump original mbuf contents\n");
for(index=0; index < m->m_pkthdr.len; index ++){

printf("%02x", mtod(m, u_int8_t *)[index]);
}; printf("\n");

#endif

M_PREPEND(m, 4, M_DONTWAIT);
ah_new = mtod(m, struct atm_pseudohdr *);
ATM_PH_SETFLAGS(ah_new,1);
ATM_PH_SETVPI(ah_new,0);
if ((ATM_PH_VCI(ah)) ==33 || (ATM_PH_VCI(ah)) == 34){

#ifdef MD5_METRIC
microtime(&sample[framecount][1]);

52

#endif
sign(m);
if((ATM_PH_VCI(ah)) == 33){

ATM_PH_SETVCI(ah_new,133);
}
else{

ATM_PH_SETVCI(ah_new,134) ;
}

}
else{

#ifdef MD5_METRIC
microtime(&sample[framecount][1]);

#endif

if(auth(m))
{

if ((ATMJ?H_VCI (ah)) == 133) {
ATM_PH_SETVCI(ah_new,33);

}
else{

ATM_PH_SETVCI(ah_new,34) ;
}

}
else
{

m_freem(m) ;
return;

}
}

#ifdef STARGATE_DEBUG
printf("message length[out] = %d\n", m->m_pkthdr.len);
printfC'mbuf atm header = VPI %d VCI %d FLAGS Ox%x\n",

ATM_PH_VPI(ah_new), ATM_PH_VCI(ah_new), ATM_PH_FLAGS(ah_new));
printf("dump modified mbuf contents\n");
for(index=0; index < m->m_pkthdr.len; index ++){

printf("%02x", mtod(m, u_int8_t *)[index]);
}; printf("\n");

#endif

#ifdef MD5_METRIC
microtime(&sample[framecount][2]);
framecount++;
if(framecount >= TRIAL){

long sum_sign = 0;
long sum_auth = 0;
int i;
for(i =0; i < TRIAL; i++){

if((i % 2) == 0)
sum_sign += (sample[i][2].tv_usec - sample[i][1].tv_usec);

else
sum_auth += (sample[i][2].tv_usec - sample[i][1].tv_usec);

}
printf("Average execution time(5000 trials): %lu usec(sign) and %lu

usec(auth)\n", sum_sign/(TRIAL/2), sum_auth/(TRIAL/2)) ;
framecount = 0;

}
#endif

atm_output(ifp, m, NULL, NULL);
return;

53

* End Stargate modification code
•it***/

if (rxhand) {
#ifdef NATM

struct natmpcb *npcb = rxhand;
s = splimpO; /* in case 2 atm cards @ diff lvls */
npcb->npcb_inq++; /* count # in queue */
splx(s);
schednetisr(NETISR_NATM);
inq = Snatmintrq;
m->m_pkthdr.rcvif = rxhand; /* XXX: overload */

#else
printf("atm_input: NATM detected but not configured in kernel\n");
m_freem(m);
return;

#endif
} else {

/*
* handle LLC/SNAP header, if present
*/

if (ATM_PH_FLAGS(ah) & ATM_PH_LLCSNAP) {
struct atmllc *alc;
if (m->m_len < sizeof(*alc) && (m = m_pullup(m, sizeof(*alc))) == 0)

return; /* failed */
ale = mtod(m, struct atmllc *);
if (bcmp(alc, ATMLLC_HDR, 6)) {

#if defined(NetBSD) || defined(OpenBSD)
printf("%s: reev'd invalid LLC/SNAP frame [vp=%d,vc=%d]\n",

ifp->if_xname, ATM_PH_VPI(ah), ATM_PH_VCI(ah));
#elif defined« FreeBSD) || defined(bsdi)

printf("%s%d: reev'd invalid LLC/SNAP frame [vp=%d,vc=%d]\n",
ifp->if_name, ifp->if_unit, ATM_PH_VPI(ah), ATM_PH_VCI(ah));

#endif
m_freem(m);
return;

}
etype = ATM_LLC_TYPE(alc);
m_adj(m, sizeof(*alc));

}

switch (etype) {
#ifdef INET

case ETHERTYPE_IP:
schednetisr(NETISR_IP);
inq = &ipintrq;
break;

#endif
default:

m_freem(m)
return;

}
}

s = splimp();
if (IF_QFULL(inq)) {

IF_DROP(inq);
m_freem(m);

} else
IF_ENQUEUE(inq, m) .;

splx(s);

54

/*
* Perform common duties while attaching to interface list
*/

void
atm_ifattach(ifp)

register struct ifnet *ifp;
{

register struct ifaddr *ifa;
register struct sockaddr_dl *sdl;

ifp->if_type = IFT_ATM;
ifp->if_addrlen = 0;
ifp->if_hdrlen = 0;
ifp->if_mtu = ATMMTU;
ifp->if_output = atm_output;

#if defined(NetBSD) | | defined(OpenBSD .)
for (ifa = ifp->if_addrlist.tqh_first; ifa != 0;

ifa = ifa->ifa_list.tge_next)
#elif defined(FreeBSD) && ((FreeBSD > 2) || defined(_NET_IF_VAR_H_))
/*
* for FreeBSD-3.0. 3.O-SNAP-970124 still sets -D FreeBSD =2!
* XXX — for now, use newly-introduced "net/if_var.h" as an identifier.
* need a better way to identify 3.0. — kjc
*/

for (ifa = ifp->if_addrhead.tqh_first; ifa;
ifa = ifa->ifa_link.tqe_next)

#elif defined(FreeBSD) || defined(bsdi)
for (ifa = ifp->if_addrlist; ifa; ifa = ifa->ifa_next)

#endif

if ((sdl = (struct sockaddr_dl *)ifa->ifa_addr) &&
sdl->sdl_family == AF_LINK) {

sdl->sdl_type = IFT_ATM;
sdl->sdl_alen = ifp->if_addrlen;

#ifdef notyet /* if using ATMARP, store hardware address using the next line */
bcopy(ifp->hw_addr, LLADDR(sdl), ifp->if_addrlen);

#endif
break;

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

APPENDIX C. ATM AUTHENTICATION CODE

A. ATM_AÜTH.H

#ifdef _KERNEL
int sign(struct mbuf *);
int auth(struct mbuf *);

#endif

B. ATM_AUTH. C

I* ATM authentication code
* sign() and auth()
*/

#include <sys/param.h>
#include <sys/systm.h>
♦include <sys/kernel.h>
♦include <sys/malloc.h>
♦ include <sys/mbuf.h>
♦include <sys/md5.h>
♦include <netnatm/atm_auth.h>

/****** Define the Authentication Trailer (AT) 28 bytes **********/
♦define MAC_LEN 16 /* message digest, 128 bit */
♦define VO_LEN 2 /* version/options */
♦define SEQ_LEN 4 /* sequence number */
♦define KI_LEN 4 /* key index, 32 bit */
♦define KEY_LEN 16 /* key, 128 bit */
♦define KEYTABLE_LEN 20 /* ki and key combined in table */
♦define AT_LEN (VO_LEN + SEQ_LEN + KI_LEN +MAC_LEN)
♦define TPART_LEN 10 /* (AT_LEN - (KI_LEN + KEY_LEN)) 6 bytes */

♦ if 0
♦define AUTH_DEBUG 1 /* uncomment for debug messages */

♦endif

/* Keytable entry is ki(4 bytes) + key(16 bytes) */

typedef union _keytable {
char index[20];
struct keyinfo {

u_int32_t ki;
char key[16];

} keyinfo;
} Keytable;

/* The allocation of memory is done at the callee of getkey or
verikey */

Keytable *key_table,-.

long atm_frame_ctr = 0;

static Keytable * getkey(void);
static Keytable * verikey(u_int32_t);

57

/»«a**

* sign(struct mbuf *m)
* Used to generate and append a MAC trailer
* Uses: getkeyO (temporarily implemented below)
* MD5Init(), MD5Update(), MD5Final() (included with NetBSD)
»a***/

int sign(m)
register struct mbuf *m;

{
u_int32_t ki;
u_intl6_t vo; /* version/options field */
u_int32_t seq; /* sequence number */
unsigned char procbuf[5200]; /* work buffer for md5 computation */
unsigned char digest[MAC_LEN];
unsigned char tpartf TPART_LEN];
unsigned char at[AT_LEN];
MD5_CTX context;
struct mbuf *m_new;
int off, msg_len;

union {
u_int8_t c[4] ;
u_int32_t 1;

} l_util;

union {
u_int8_t c[2];
u_intl6_t s;

} s_util;

#ifdef AUTH_DEBUG
{ int idx;

' printf("debug[sign]: dump untouched mbuf contents\n");
for(idx=0; idx<m->m_pkthdr.len; idx++){ /*dump data*/

printf("%02x", mtod(m, u_int8_t *)[idx]);
}; printf("\n"),•

}
#endif

vo = 0; /* To be implemented in future */
s_util.s = vo;
tpart[0] = s_util.c[0];
tpart[l] = s_util.c[l];

seq =0; /* To be implemented in future */
l_util.l = seq;
tpart[2] = l_util.c[0]
tpart[3] = l_util.c[l]
tpart[4] = l_util.c[2]
tpart[5] = l_util.c[3]

key_table .= getkeyO;
ki = key_table->keyinfo.ki;
l_util.l = ki;
tpart[6] = l_util.c[0]
tpart[7] = l_util.c[l]
tpart[8] = l_util.c[2]
tpart[9] = l_util.c[3]

/* Get message length */
msg_len = m->m_pkthdr.len;

/* Copy mbuf data into procbuf */

58

off = 0;
for(m_new=m; m_new; m_new=m_new->m_next) {

bcopy(m_new->m_data, procbuf + off, m_new->m_len);
off += m_new->m_len;

}

/* Append tpart (including ki) to msg payload in procbuf */
bcopy(tpart, procbuf + msg_len, TPART_LEN);

/* Append key to procbuff */
bcopy(key_table->keyinfo.key , procbuf+msg_len+TPART_LEN, KEY_LEN);

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[sign]: dump procbuf contents\n");
for(idx=0; idx<msg_len+TPART_LEN+KEY_LEN; idx++){

printf("%02x", procbuf[idx]);
} printf("\n")•

}
#endif

/* Run MD5 on procbuf */
MD5Init(&context);

/* Exclude the psuedo-header "procbuf +4" */
MD5Update(&context, procbuf + 4, (msg_len - 4)+TPART_LEN+KEY_LEN);

MD5Final(digest, ^context);

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[sign]: message digest is\n");
for(idx=0; idx<16; idx++){

printf("%02x", digest[idx]);
} printf("\n");

}
#endif

/* compose auth trailer (at) - tpart followed by mac */
bcopy(tpart, at, TPART_LEN);
bcopy(digest, at+TPART_LEN, MAC_LEN);

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[sign]: auth trailer (at) contents\n");
for(idx=0; idx<26; idx++){

printf("%02x", at[idx]);
} printf("\n");

}
#endif

/* append at to mbuf */
m_copyback(m, msg_len, AT_LEN, at);

#ifdef AUTH_DEBUG
{ int idx;

printf ("debug [sign] : dump signed mbuf contents\n") ,-
for(idx=0; idx<m->m_pkthdr.len; idx++){ /*dump data*/

printf("%02x"/ mtod(m, u_int8_t *)[idx]);
}; printf("\n");

}
#endif

/* printf("Packet signed!\n"); */

59

/* free key_table memory */
free(key_table, M_TEMP);
return(l); /* success */

}

* auth(struct mbuf *m)
* Used on incoming frames to authenticate frames based on an
* MD5 computed message digest.
* Uses: verikeyO (temporarily implemented below)
* MD5Init(), MD5Update(), MD5Final() (included with NetBSD)
***/

int auth(m)
register struct mbuf *m;

{
u_intl6_t vo; /* version/options field */
u_int32_t seg; /* sequence number */
u_int32_t ki; /* Key Index */
unsigned char procbuf[5200]; /* work buffer for md5 computation */
unsigned char macO[MAC_LEN]; /* MAC carried by frame */
unsigned char digest[MAC_LEN];
MD5_CTX context;
struct mbuf *m_new;
int off, ki_index, mac_index, msg_len;

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[auth]: dump untouched mbuf contents\n");
for(idx=0; idx<m->m_pkthdr.len; idx++){ /*dump data*/

printf("%02x", mtod(m, u_int8_t *)[idx]);
}; printf("\n");

}
#endif

vo = 0 ;
seq = 0;
m_new = m;

/* Get message length */
msg_len = m->m_pkthdr.len; /* includes authenication trailer!!! */

#ifdef AUTH_DEBUG
printf("debug[auth]: msg_len = %d\n", msg_len);

#endif

/* Copy mbuf (including tpart and mac) to procbuf */
off = 0;
for(m_new=m; m_new; m_new=m_new->m_next) {

bcopy(m_new->m_data, procbuf + off, m_new->m_len);
off += m_new->m_len;

}

/* Extract the 4 byte key index */
ki_index = (msg_len - MACJ-EN) - KI_LEN;
ki = *(u_int32_t *)(procbuf + ki_index);

#ifdef AUTH_DEBUG
printf("debug[auth]: extracted ki = %d\n", ki);

#endif

/* Extract message digest (MAC) */
mac_index = msg_len - MAC_LEN;
bcopy (procbuf + mac_index, macO, MAC_LEN);

60

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[auth]: dump extracted mac \n");
for(idx=0; idx<MAC_LEN; idx++){ /*dump data*/

printf("%02x", macOfidx]);
}; printf("\n");

}
#endif

/* Use ki to get key */
key_table = verikey(ki); /* includes 4 byte ki and 16 byte key */

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[auth]: key is \n");
for(idx=0; idx<KEY_LEN; idx++){ /*dumpdata*/

printf("%02x", key_table->keyinfo.key[idx]);
}; printf("\n");

}
#endif

/* Overwrite mac field in procbuf with key */
bcopy(key_table->keyinfo.key , procbuf+(msg_len-MAC_LEN), KEY_LEN);

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[auth]: dump procbuf contents\n");
for(idx=0; idx<msg_len; idx++){

printf("%02x", procbuf[idx]);
} printf("\n");

}
#endif

/* Run MD5 on procbuf */
MD5Init(&context);

/* Exclude psuedo-header "procbuf + 4" */
MD5Update(&context, procbuf + 4, msg_len - 4);

MD5Final(digest, &context);

#ifdef AUTH_DEBUG
{ int idx;

printf("debug[auth]: message digest is\n");
for(idx=0; idx<16; idx++){

printf("%02x", digest[idx]);
} printf("\n");

}
#endif

/* Compare computed digest with recieved MAC */
if(bcmp(digest, macO, MAC_LEN) != 0) {

printf ("Packet does not authenticate correctly! \n") ,-
free(key_table, M_TEMP);
return(O); /* failure */

} else {
/* (printf ("Packet authenticated! \n") ,-*/
atm_frame_ctr ++;
/* Remove AT from mbuf */
m_adj(m, -(AT_LEN));
free(key_table, M_TEMP);
return(l); /* success */

61

}
} /* end auth(m) */

/*************** ********** QQ^^Qy I \ **************************** I

static Keytable *getkey()
{

int i ;

key_table = (Keytable *) malloc(sizeof(u_int8_t)*20, M_TEMP, M_NOWAIT);
key_table->keyinfo.ki =101;
for(i=0; i<16; i++){

key_table->keyinfo.key[i] = 37;
}
/* should return array with ki and key */
return (Keytable *) (key_table);

}

/*********************** *verikey()****************************/
static Keytable *verikey(ki)

u_int32_t ki;
{

int i;
if(ki==101){

key_table = (Keytable *) malloc(sizeof(u_int8_t)*20, M_TEMP, M_NOWAIT);
for(i=0; i<16; i++){

key_table->keyinfo.key[i] = 37;
}
return (Keytable *) (key_table); /* success */

}
else

return(NULL); /* failure */
}

62

APPENDIX D. KEY MANAGEMENT CODE

A. KDC.JAVA

II
// Filename: KDC.java
// Date: June 1999
// Compiler: JDK 1.2
//

import java.io.*;
import java.net.*;
import java.util.Random;
import java.util.Date;

* this class creates a KDC object. This object
* acts as a client in the networking sense for Stargate
* objects. The KDC is responsible for generating ,
* the random KI's and authentication keys, as well
* as the masks for updating tables with new values.
* There are helper methods to get information about
* the KI and keys. The KDC will set up a time for
* sending masks to Stargate devices and will indicate
* to the Stargate device when new tables should be used.
* ©author Katrina Hensley
*/

public class KDC implements Serializable{

* MAXNUM is the number of objects to be created
* in the key table
*/
private static final int MAXNUM = 720;

* current_time used to hold the current time;
*/
private static long current_time;

/ + *

* sendWaitTime used to determine when to send
* the next data message to Stargate. It is
* dependent on the (cryptoperiod * # of keys-1) - startWaitTime
* -1 from # of keys is used to add in some slack
*/
private static long sendWaitTime;

/**

* startWaitTime is added to the current time to set
* the sendWaitTime variable. For testing the offset
* is set for 20 minutes or 1200000 milliseconds
*/
private static final long startWaitTime = (1000 * 60 * 20);

63

* KEY_LIFETIME is the cryptoperiod for each key
* the period for testing is 2 min
*/
private static final long KEY_LIFETIME = (1000 * 60 * 2) ;

* MAXINT is used in creating the random #'s
*/
private static final int MAXINT = 2147483 647;

/**

* type will be used by the Stargate to determine
* what information has been sent by the KDC.
* 0 = table
* 1 = mask
*/
private static String type = "0";

/ **
* data member for the 4-byte Key Index values
*/
private String keylndex = " ";

* data member for the 16-byte key values
*/
private String keyData =" ";

//A***************************************

// CLASS METHODS

/** —
* toString () to print key obj
* Sreturn String
*/
public String toString(){

String retval= " ";

//output format-> KI KEY
retval = keylndex + keyData;

return(retval);
}//end toString

/**
* get_table creates a table with KI and keys
* this should only be called when Stargates
* first come on line and then call get_mask
* to formulate updated tables.
* ©return String used for the key table
*/
private String get_table() {

64

//create the table
String table = new String() ;

Random randNumGen = new RandomO; //uses current time

//float value for new KI data member
int kiValue;

//long value for Keys data member
long keyValuel;

//long integer value for 2nd part of Keys data member
long keyValue2;

//create the max number Keys
for(int ix=0; ix < MAXNUM; ix++) {

//the random seed value based on computer time
kiValue = randNumGen.nextlnt(MAXINT);
keyValuel = Math.abs(randNumGen.nextLongO);
keyValue2 = Math.abs(randNumGen.nextLongO);
keylndex = String.valueOf(kiValue);
keyData =

String.valueOf(keyValuel) + String.valueOf(keyValue2)
table = table.concat(keylndex + keyData + " ");

}

return(table);

}//end get_table

/**
* get_mask is used to get a "mask" used to
* update existing key tables.
* ©return String
*/
private String get_mask(){

String retVal = new String();

Random randNumGen = new Random();
Random randNumGen2 = new Random() ;

retVal = retVal.concat(
String.valueOf(randNumGen.nextlnt(MAXINT)) +
String.valueOf(Math.abs(randNumGen2.nextLongO)))

return(retVal);

/**
* main function sets up connection with Stargate
* and sends data.
* ©return void
*/
public static void main (Stringf] args){

//variables

65

String host = args[0];. //provided host to connect to
int port = 8205;
Socket KDCsocket;
OutputStream outstream; //for sending info to Stargate
boolean goFlag = true; //set initial start flag to true
KDC testKDC = new KDC();
String tableToSend = new String();
String maskToSend = " ";
String startTime = " "; //tells when to begin use of table/mask
String message = " "; //holds the total data sent to Stargate

//check for argument
if (args.length < 1){

System.err.println("Argument needed: Hostname");
System.exit(0);

}

//set time for next send
//which is 2 min * #keys - 20 min
sendWaitTime = ((KEY_LIFETIME * (MAXNUM-1)) - startWaitTime);

//neverending loop to keep KDC running
while(true){

//second while loop to process on initial startup
while(goFlag == true){

//initialize the network
try {

//get Stargate's ip address
InetAddress Stargate = InetAddress.getByName(host);

//connect to port on Stargate
KDCsocket = new Socket(Stargate,port);

//setup table
tableToSend = testKDC.get_table();

//set time variables
current_time = System.currentTimeMillis() ;

//output date of next time to send to the screen
Date testTime = new Date(sendWaitTime + current_time),-
Systern.out.println

("Outputting when is next xmit " + testTime);

//set time to start using table but since it
//is the 1st table, start immediately
startTime =

String.valueOf(current_time);

//setup the message
message = type + tableToSend + startTime;
System.out.println(message);

//send the info to Stargate in the form of
//[type | data | start_time]
System.out.println("Table Sent...");

outstream = KDCsocket.getOutputStream();
PrintStream ss = new PrintStream(outstream);

66

ss.println(message);

//close socket
KDCsocket.close();
goFlag = false;

}catch(Exception e){

Systern.out.printIn("IOError...." + e.toString());

}

}//end inner while

// Start process to send mask //
try {

//now wait for the next send time
Thread.sleep(sendWaitTime);

//then open socket & send mask

//get Stargate's ip address
InetAddress Stargate = InetAddress.getByName(host);

//connect to port on Stargate
KDCsocket = new Socket(Stargate,port);

//clear the message
message = " " ;

//set type to represent a mask
type = "1";

//set time variables
current_time = System.currentTimeMillis();

//feedback
Date testTime = new Date(sendWaitTime + current_time);
System.out.println

("Outputting when next xmit " + testTime);

//set time to start using table
startTime =

String.valueOf(current_time + startWaitTime); //20 minutes

Date testTime2 = new Date(current_time + startWaitTime);

//get the mask
maskToSend = testKDC.get_mask();

//setup message
message = type + "*" + maskToSend + "*" + startTime;

//send it out
System.out.println("the starting time is " + testTime2);
System.out.println("SENDING MASK " + message);
outstream = KDCsocket.getOutputStreamO;

PrintStream ss = new PrintStream(outstream);

67

ss.println(message);

//close socket
KDCsocket.close();

}catch(Exception e){

System.out.printlnf"IOError...." + e.toStringO);

}

}//end outer while

}//end main

}//end KDC class

B. STARGATED.C

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <netinet/in.h>
#include. <arpa/inet.h>
#include <stdio.h>
#include <string.h>
#include <syslog.h>

#define MAXSOCKADDR 128
#define MAXLINE 4096

int main(int arge, char **argv)
{

int n, bytes_read;
char * s;
struct sockaddr_in *cliaddr;
unsigned int len;
static char str[MAXSOCKADDR];
char portstr[7];
unsigned char reevbuf[MAXLINE + 1];

openlog(argv[0], LOG_PID, LOG_USER);

cliaddr = malloc(MAXSOCKADDR);
len = MAXSOCKADDR;

getpeername(0, cliaddr, &len);
inet_ntop(AF_INET, &cliaddr->sin_addr, str, sizeof(str));
syslog(LOG_NOTTCE, "connection reejuest received by stargated from %s.%d",

str, ntohs(cliaddr->sin_port));

bytes_read = read(0, reevbuf, MAXLINE);
sprintf(s, "Stargate received (%d bytes):", bytes_read);
for(n = 0; n<bytes_read; n++){

sprintf(s, "%02x", reevbuf[n]);
} sprintf(s, "\n");
syslog(LOG_NOTICE, "bytes:%s", s);
close(0);
exit(0);

68

LIST OF REFERENCES

1. Cisco Systems Business Report, "Moving From TDM to Multiservice ATM," p. 17,
1999.

2. Celotek Corporation, "Frequently Asked Questions,"
http://www.celotek.com/faqbody.com, 1989.

3. Xie, G. G., Irvine, C, and Colwell C, "LLPA: A Protocol for High Speed Packet
Authentication", Department of Computer Science, Naval Postgraduate School, May
1999.

4. Rivest, Ron, "The MD5 Message-Digest Algorithm," RFC 1321, MET Laboratory for
Computer Science and RSA Data Security, Inc., April 1992.

5. "Network Time Protocol," http://www.eecis.udel.edu/~ntp/ntp_spool/html/exec.htm,
May 1998.

6. Stallings, W. Cryptography and Network Security: Principles and Practice. Upper
Saddle River, Prentice Hall, Inc., 1999.

7. Levin, C, "Safety in Random Numbers," PC Magazine, v. 18, p. 30, 22 June 1999.

8. Wright, Gary R. and Stevens, W. Richard, TCP/IP Illustrated Volume 2 The
Implementation, Addison-Wesley Longman, Inc. Reading, MA, 1995.

9. Touch, Joe, "Report on MD5 Performance," RFC 1810, Information Sciences
Institute, University of Southern California, June 1995.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

BIBLIOGRAPHY

Chuang, Shaw-Cheng (1995). "Securing ATM Networks," Cambridge

University ATM Documentation Collection 4 (The Green Book).

Denning, Dorothy E. (1999). Information Warfare and Security, ACM Press.

Flanagan, David. (1997). Java in a Nutshell. 2nd Edition, O'Reilly & Associates,

Inc., Sebastopol, CA.

Gordon, Rob. (1998). Essential JNI Java Native Interface, Prentice Hall, Inc.,

Upper Saddle River, NJ.

Kelly, Al and Pohl, Ira (1998). A Book on C Programming in C, Forth Edition,

Addison Wesley Longman Inc, Reading, MA.

Laurent, Maryline and Rolin, Pierre (1998). "ATM Security State of The Art,"

Proceedings of 1998 ATM Development, Rennes, France.

McDysan, David and Spohn, Darren (1999). ATM Theory and Applications. New

York, McGraw Hill, Inc.

Sobell, Mark G. (1995). A Practical Guide to the UMX System. Third Edition,

Addison Wesley Longman, Inc., Reading, MA.

Sridharan, Prashant. (1997). Advanced Java Networking, Prentice Hall, Inc.,

Upper Saddle River, NJ.

Stevens, W. Richard (1994). TCP/IP Illustrated Volume 1 The Protocol, Addison-

Wesley Longman, Inc., Reading, MA.

Stevens, W. Richard (1998). UNIX Network Programming Networking APIs:

Sockets and XTI, Volume 1, Prentice Hall, Inc. Upper Saddle River, NJ.

71

Stevenson, David, Hillery, Nathan, and Byrd, Greg (1995). "Secure

Communications in ATM Networks," Communications of the ACM, Vol. 38, No. 2.

72

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Road
Monterey, California 93943-5101

3. Director, Training and Education .
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

4. Director, Marine Corps Research Center
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5. Director, Studies and Analysis Division
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

6. Marine Corps Representative
Naval Postgraduate School
Code 037, Bldg. 330.IN-116
555 Dyer Road
Monterey, CA 93940

7. Marine Corps Tactical Systems Support Activity .
Technical Advisory Branch
Attn: Maj J. C. Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

8. Dr. Geoffrey G. Xie, CS/Xg
Naval Postgraduate School
Monterey, CA 93943

9. Professor Cynthia E. Irvine, CS/Ic.
Naval Postgraduate School
Monterey, CA 93943

73

10. COL Timothy A. Fong 1
Deputy CEE for Information Assurance
Commander, Information Assurance Engineering Support Organization
Defense Information Systems Agency
5600 Columbia Pike
Falls Church, VA 22041

11. Captain Katrina Hensley 1
1321 S. 60th St.
Noble, OK 73068

12. Captain Fredrick Ludden 2
121140*81.
Parkersburg, WV 26101

13. Chairman, Code CS ; 1
Naval Postgraduate School
Monterey, CA 93943

74

