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Abstract 

It has been stated in the literature that the case of maximal mixing angle for ve leads to 
no day-night effect for solar neutrinos and an energy independent flux suppression of 
\. While the case of maximal mixing angle and Am2 in the MSW range of parameter 
space does lead to suppression of the electron neutrinos reaching the earth from the 
sun by Ps = |, the situation is different for neutrinos that have passed through 
the earth. We make the point that at maximal mixing, just as with smaller mixing 
angles, the earth regenerates the \vx) state from the predominantly \v2) state reaching 
the earth, leading to coherent interference effects. This regeneration can lead to 
a day-night effect and an energy dependence of the suppression of solar electron 
neutrinos, even for the case of maximal mixing. For large mixing angles, the energy 
dependence of the day-night asymmetry depends heavily on Am2. With a sufficiently 
sensitive measurement of the day-night effect, this energy dependence could be used 
to distinguish among the large mixing angle solutions of the solar neutrino problem. 
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Chapter 1 

Introduction 

The solar neutrino problem is the discrepancy between the theoretical estimates and 

the experimental measurements of the solar neutrino flux. This problem has been well 

established over the past thirty years with three separate types of experiments. Neu- 

trino oscillations are thought to be a possible resolution to the discrepancy. Through 

most of the past thirty years theorists have assumed that the neutrino mixing must 

be small in analogy to the small mixing in the quark sector. The recent Super- 

Kamiokande announcement that atmospheric neutrinos are nearly maximally mixed 

has renewed much interest in the possibility that solar neutrinos might also be max- 

imally mixed. In this document we will consider only two-neutrino mixings, so by 

"maximal mixing" we are referring to the possibility that the two lightest mass eigen- 

states, \i/i) and \u2), with eigenvalues mi and m2 respectively (mi < m2), are each 

equal-probability superpositions of the flavor eigenstate \ue) (electron neutrino) and 

some other state \vx), where \ux) can be any linear combination of \v^) (muon neu- 

trino) and \uT) (tau neutrino). Many theoretical models have been proposed to predict 

the possibility of such maximal mixing (for example, see [27, 19, 18, 42, 28, 22, 33]). 

In this document we are concerned only with the MSW solutions to the solar neutrino 

problem, first proposed by Mikheyev, Smirnov, and Wolfenstein [48, 39, 40], while 

the alternative possibility of nearly maximally mixed vacuum oscillations has been 

considered by other authors [20]. The MSW effect results from the neutrino inter- 

action with matter, causing an enhancement of the conversion process transforming 



ve into vx. The MSW effect is also capable of driving neutrinos back towards a ve 

state after passing through the earth. This process would result in a change in the 

ve flux between daytime and nighttime measurements, a phenomenon known as the 

day-night effect, or more generally zenith angle dependence. Over the past decade 

there have been extensive studies of the day-night effect [21, 16,17, 36, 37, 38, 10, 49] 

which have been mostly concerned with the small mixing angle solutions to the solar 

neutrino problem. Most of these studies have used the Mikheyev-Smirnov expression 

[41] to describe the effect of the earth on the solar neutrinos, which we will hereafter 

refer to as Eq. (1.1): 

p    = Ps-sin2 ev + P2e(l-2Ps) (L1) 

cos 26v 

Here PSE is the probability that an electron neutrino originating in the sun will be 

measured as an electron neutrino after passing through the earth, Ps is the probability 

that an electron neutrino (\ue)) originating in the sun will be measured as an electron 

neutrino upon reaching the earth, P2e is the probability that a pure |z/2) eigenstate 

entering the earth will be measured as an electron neutrino when it emerges, and By 

is the vacuum mixing angle, defined through 

Wi)   =   \ve)cos6v - \vx)sm8v , (1.2a) 

\v%)   =   \vx)cos9v + \ue)sin6v . (1.2b) 

In the previous studies of the day-night effect several authors have claimed that 

there is no day-night effect at Ps = \ (for example, [10, 17]). We wish to emphasize, 

however, that the case of maximal mixing is an exception to this statement. For 

maximal mixing Eq. (1.1) is ill-defined, since cos20y = 0, and we will show below 

that generically there is a day-night effect for this case. Nonetheless, we have no 

disagreements with either the equations or the contour plots in the aforementioned 



papers, which in fact do show non-zero day-night effects at maximal mixing. The 

purpose of this thesis is to clarify the previous papers, and also to investigate more 

carefully the role of the day-night effect for maximal mixing. We will show that 

at maximal mixing PSE ^ \, implying a day-night effect and an often overlooked 

energy-dependence of the suppression of the solar neutrino flux. 

In the remainder of this document we explain in more detail why maximal mixing 

can result in a day-night effect. In Chapter 2 we begin with the background of the 

solar neutrino problem. Chapter 3 then explains the MSW solution to the solar 

neutrino problem. Next, in Chapter 4, we review the derivation of Eq. (1.1) as given 

by Mikheyev and Smirnov [41], we resolve the maximal mixing ambiguity, and we 

present results of numerical calculations showing the day-night effect at maximal 

mixing. Finally Chapter 5 summarizes the results of the thesis. In the appendices, 

we provide greater details concerning the numerical calculations presented in Chapter 

4. 

10 



Chapter 2 

Review of the Solar Neutrino 

Problem 

2.1 Overview 

The solar neutrino problem is the discrepancy between the experimental measure- 

ments and the theoretical predictions of the neutrino flux from the sun. The theo- 

retical predictions come from models of stellar interiors that calculate the neutrinos 

generated in nuclear reactions. These models are well-believed and have stood up 

to robust tests in other contexts. However, direct experimental measurement con- 

sistently yields a solar neutrino flux significantly below the theoretical prediction. 

In this chapter we review the major components of the solar neutrino problem: the 

nuclear reactions involved, the solar neutrino detectors, and the consequences of the 

missing neutrino flux. 

2.2 The nuclear reactions in the sun 

Solar neutrinos provide a unique opportunity to see the nuclear reactions in the core 

of the sun [9]. Because of the high opacity of the solar interior, the photons generated 

in these regions are heavily scattered and most of the information about the processes 

which created them has been lost [3]. Neutrinos, however, can relay this information 

11 



Reaction Abbreviation Neutrino Energy (MeV) 
p + p -+2 H + e+ + i/e PP 0.0 - 0.4 
p + e- + p ->-2 H + ue pep 1.4 
2H + p ->3 He + 7 
3He +3 He ->4 He + 2p 
3He +4 He -*7 Be + 7 
e~ +7 Be ->-7 Li + ve 

7Be 0.38, 0.86 
7Li + p ->4 He +4 He 
7Be + p ->8 B + 7 
8B -»8 Be + e+ + ue 

8B 0.0 - 14 
3He + p-f4He + e+ + ^e hep 1 - 18.8 

Table 2.1: The pp chain of nuclear reactions in the sun, and the energy of the resulting 
neutrinos. 

since they have an extraordinarily small cross section which allows them to leave 

the sun almost unaffected. Through models of the solar interior we can predict the 

quantity and the energy of the neutrinos produced in the sun. These models entail 

complicated numerical simulations that establish hydrostatic equilibrium between 

the gravitational force and the thermal pressure from the nuclear reactions, while 

accounting for opacity, heat transfer, abundance and diffusion of elements. Each of 

these factors feed back into calculating the rates of all the nuclear reactions which 

in turn affects the thermal pressure, opacity, and abundances of the elements. The 

computer code is iterated until a steady state solution is attained. Similar models are 

used to simulate the complete life of the star. There are two main sequences of nuclear 

reactions occurring in the solar interior: the pp chain and the CNO chain. The pp 

(proton - proton) chain dominates the energy production in the sun, while the CNO 

(carbon - nitrogen - oxygen) chain accounts for only 1% of the total power output 

of the sun [26]. Table 2.2 shows nuclear reactions in the pp chain and the expected 

energy range of the neutrinos in these reactions [5, 13]. Fig. 2-1, in the next section, 

also shows the neutrino energy spectrum from each of these reactions. Measurement 

of a neutrino flux from these reactions consistent with theoretical prediction would 

be very strong evidence that our understanding of the physics of the solar interior is 

correct. 

12 



2.3    The solar neutrino experiments 

Experiments have been designed and built to measure the solar neutrino flux [3]. 

There are currently three main types of experiments; they function by detecting 

the neutrino reactions in chlorine, gallium, and water. The chlorine experiment 

(Homestake[23]) relies on the reaction 

37Cl + */e->e-+37Ar (2.1) 

to convert chlorine into argon and is sensitive to neutrino energies greater than 0.9 

MeV. The experiment utilizes the fact that argon is a noble gas and can be separated 

from the other reactants. The quantity of the isotope 37Ar is measured by monitoring 

its decay. The gallium experiments (GALLEX[29] and SAGE[31]) rely on the reaction 

71Ga + i/e-^e-+71Ge (2.2) 

to convert gallium into germanium and are sensitive to neutrino energies above 0.2 

MeV [7]. Again, one performs the measurement by counting the amount of germa- 

nium produced after exposing the gallium target to solar neutrinos. The chlorine and 

the gallium experiments both operate by separating and measuring the products of 

the reactions after weeks of exposure to solar neutrinos. In contrast, the water exper- 

iments (Kamiokande[32] and Super-Kamiokande[49]) measure the Cerenkov radiation 

from the recoil electrons in the scattering reaction 

ve + e~ -> ue + e~. (2.3) 

The Cerenkov radiation allows both the energy of the electron and direction of the 

momentum of the electron to be measured in real time. The energy and momentum 

vector of the recoil electron in turn provide indirect information about the energy and 

momentum vector of the incoming neutrino. The water experiments are sensitive to 

neutrino energies greater than 6.5 MeV. The predicted neutrino energy spectrum and 

13 
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Solar neutrino energy spectrum 

Figure 2-1: The solar neutrino energy spectrum, and the experiments sensitive to 
each reaction. [From Bahcall et. al. in Refs. [6, 8]] 

the experiments sensitive to the various energy ranges can be seen in Fig. 2-1. These 

three types of solar neutrino experiments, involving chlorine, gallium, and water, have 

collected over thirty years of data spanning most of the neutrino energy spectrum. 

2.4    The missing neutrino flux 

The disagreement between the predicted neutrino flux from the solar models and 

the measured neutrino flux from the chlorine, gallium, and water neutrino detectors 

is called the solar neutrino problem. The chlorine experiment measures only 1/3 

the theoretically predicted flux, the water experiments only 1/2, and the gallium 

experiments only 3/5. Fig. 2-2 shows the comparison between the experimental mea- 

surements and theoretical predictions. The hashed regions indicate the uncertainty in 

the theoretical estimate or the uncertainty in the measurement. This disagreement is 

14 



Total Rates: Standard Model vs. Experiment 
Bahcall-Pinsonneault 98 

7 7+1.8 
'• '-1.0 
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0.47±0.02| 
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78±6 

GALLEX 

Cl 
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■ 7Be ■ P-P. Pep Experiments 
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Figure 2-2: The solar neutrino flux deficit for each of the three types of experiments. 
The hashed regions indicate the uncertainty in the theoretical estimate or the uncer- 
tainty in the measurement. [From Bahcall, Refs. [6, 5]] 
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the solar neutrino problem; more than thirty years of measurements by three different 

types of experiments and continual refinement of the solar model with improved cross 

sections and accounting for smaller order effects have not resolved the disparity. 

The disagreement between theory and experiment must mean one of three things: 

the solar model is incomplete, our understanding of the neutrino cross section is 

flawed, or something beyond the standard model of particle physics happens to the 

neutrinos in transit to the earth. Currently, measurements of the speed of sound 

in the sun (known as helioseismology) lead us to have great faith in the standard 

solar model [8]. Additionally, variants of the standard solar model also have large 

disagreements with the measured neutrino flux making it hard to believe that the 

solar model is the problem. A wide variety of accelerator experiments verify our un- 

derstanding of particle physics cross sections and the nuclear reactions. Therefore, 

physicists strongly suspect the mystery lies in what happens to the neutrinos as they 

travel to the earth. In the standard model of particle physics neutrinos are massless. 

This means that the flavor eigenstates (ue, vß, and vT) and the energy eigenstates 

can be simultaneously diagonlaized. If neutrinos have non-zero mass then it is pos- 

sible that the flavor eigenstates would not correspond to the mass eigenstates, and 

therefore the flavor eigenstates could be superpositions of the mass eigenstates. This 

superposition of mass eigenstates results in neutrino oscillations. Quantum mechani- 

cal interference between mass eigenstates oscillating at different frequencies causes a 

component of the electron neutrino to oscillate into a neutrino of a different flavor. 

Because the solar neutrino experiments are mostly sensitive to ve measurements, if 

the neutrinos oscillate into a different flavor then they would pass through the exper- 

iments undetected. If the lepton mixing mirrors the quark mixing, then one would 

expect the neutrinos to be only slightly mixed. However, a small mixing leads to only 

a small fraction of ve oscillating into some other flavor ux, and this would not account 

for the large discrepancy between experiment and theory. Nonetheless, the neutrino 

oscillation hypothesis is the dominant candidate proposed to solve the solar neutrino 

problem. 

16 



Chapter 3 

The MSW Effect 

3.1    Overview of the MSW solution to the solar 

neutrino problem 

The MSW effect, first proposed by Mikheyev, Smirnov, and Wolfenstein [48, 39, 40], 

allows a small mixing angle to significantly change the fraction of neutrinos arriving 

at the earth. The effect results from the neutrino interaction with matter which shifts 

the instantaneous energy eigenvalues of the Hamiltonian. In this high density medium 

of the solar interior the \ue) state, 

\ue) = cosOMWi) + sinöM|^2), (3.1) 

is a superposition of the two instantaneous mass eigenstates with a definite phase 

relationship expressed in terms of the matter mixing angle 6M- If the states evolve 

adiabatically, the fraction of the neutrinos in each adiabatic states, \vi) and l^), 

remains approximately constant. However, in the vacuum the \ve) state is given by a 

different superposition, 

\ve) = cos9v\vi) +sin0y|^2), (3.2) 

expressed in terms of the vacuum mixing angle Qy which is significantly different from 

the high density matter mixing angle 6M- The change in the definition of the \ve) state 

17 



in the vacuum compared to the high density region is responsible for the conversion 

process transforming ve into vx, where vx is some neutrino flavor other than ve. This 

conversion is a possible solution to the solar neutrino problem by enabling some of 

the ve generated in the sun to be converted into a flavor that is not detected by the 

neutrino experiments, even with a small vacuum mixing angle. 

In this document we are concerned only with the MSW solutions to the solar 

neutrino problem. The alternative possibility of nearly maximally mixed vacuum 

oscillations has been considered by other authors [20]. 

3.2    Derivation of MSW equations 

We now present a more detailed derivation of the MSW effect. First we derive the 

MSW equations of motion for an individual neutrino. We then find the energy eigen- 

states of the system and use them to find the wave function amplitudes for electron 

neutrinos produced in the sun and evolved into the vacuum. To describe the ensemble 

of neutrinos we introduce the density matrix. After averaging out the rapid oscilla- 

tions we find a steady state solution to the density matrix equations of motion. We 

average this solution over the regions of neutrino production. 

We begin by finding the MSW equations of motion for an individual neutrino. 

The coupling describing the interaction between electron neutrinos and electrons is 

Htm = y/2GFNe, (3.3) 

where Ne is the number density of electrons. This contribution to the interaction 

Hamiltonian is added to the Schrödinger equation written in the flavor basis. We 

assume that \ue) can be written as a superposition of only two mass eigenstates, \vx) 

and \v2). We let \ux) denote the orthogonal linear combination of \vx) and \v2), which 

might be any superposition of \vß) (muon neutrino) and \vT) (tau neutrino).   The 

18 



transformation between the P\-U2 and ue-i/x bases is then given by 

C, 

a 
V\ 

v2 , 

'cosfly    — sin#y\ f C, 

sin By      COS Oy   )  \C, 

ve 

Vx 

(3.4) 

where the variable 0y is the vacuum mixing angle, and Cv = (H*) for v = u\, u2, ve 

or vx. This equation can be written compactly by introducing the index notation 

Cvi — UijCv; , (3.5) 

where the repeated index / is summed over ve and vx, and i is summed over the mass 

eigenstates. The Schrödinger equation for this system is: 

id* 
a Ve 

Cu. 
u p + 2p 0 

0 p+ 
u* + 

V2GFNe   0' 

2p 0 0 

'a Ve 

a (3.6) 
Vx 

where we have expanded the energy in the ultra-relativistic limit so that E = p+ TJ^-. 

We now substitute U into the Schrödinger equation, obtaining 

idt 

a Ve 

Cvx 

B     A 

A   -B 

a Ve 

a (3.7) 
Vx 

where 

A   =   -^ sin 20v 

B   =   ^.GFNe-^-co820v, 

(3.8) 

(3.9) 

(3.10) 

and where we have dropped the term p + (mi^,m2 + ^GFNe which is proportional to 

the identity, because terms proportional to the identity cannot contribute to mixing. 
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The eigenvalues are ±A(iVe), where X(Ne) = VA2 + B2, and the eigenvectors are: 

(3.11) 

Since these eigenvectors form the matrix that will diagonalize the interaction matrix 

in the presence of matter, it is useful to parameterize them by a matter mixing angle 

9M(Ne):   ,  

or equivalently 

or 

cos 9M = \I   2A   ,   and   sin9M = y   ^   , (3.12) 

\cos26M = -B, (3.13) 

\sin29M = A. (3.14) 

Defining the matrix 
(cos 9 M     sin 6 M \ 

(315) 
— sin UM    COS UM ) 

the Hamiltonian can be diagonalized as 

/-A    0\ (B     A \ 
^«)(0     ,)*('»)= (A    _B). (3-16) 

We maintain the notation introduced in Eq. (3.5) so that CVi(6M) = U}f(9M)CVf in 

or out of matter, where CVi{9M) = (^i|*) denotes the amplitude for the overlap of 

the neutrino state with instantaneous mass eigenstates \vi). 

To describe the evolution of the neutrinos as they travel to the earth from their 

creation point in the sun, it is useful to develop the adiabatic approximation, in which 

one assumes that the density changes imperceptibly within an oscillation length. 

Remembering that U, 9M, and A are all functions of the local electron density Ne, 

and hence functions of time, we write the Schrödinger equation in the basis Vi(9M) of 

20 



the instantaneous mass eigenstates: 

(3.17) 

(3.18) 

The adiabatic approximation is the assumption that the off-diagonal terms 8X9M can 

be neglected, in which case the equation is easily integrated: 

Cn{t,))      V     °        e-'m) \Cn(to)J 

where 

<j,(tf) = f
tf X(t)dt . (3.20) 

Jto 

Because the adiabatic states form a complete basis, we can always write the exact 

solution as a superposition of the two adiabatic states. This final superposition is 

expressed by two unknown variables, ai and a2 where \ai\2 + \a2\2 = 1. The |a2|
2 

parameter represents the probability of a non-adiabatic transition, which is most 

likely to happen when the neutrinos cross resonance, the density at which B = 0, 

when the two eigenvalues become nearly equal. Likewise |ai|2 = 1 would represent 

adiabatic evolution. Given any initial state ^/(io) in the flavor basis, the final state 

can be written in the general form: 

Cn(t,)J      \-ai   a;    J\    0       e"*WJ     V        '' 

For an electron neutrino originating in a medium of mixing angle 6M, the above 

equation implies that the final state in the vacuum is given by 

'Cn(tf)\ _ (Ai\ _ / aiCOS0Me+^ + a2sin0Me-^ \ 

Cviitf)) ~ \A2)      \-a^cosöMe+^ + atsinöMe-^y 

We now go on to talk about the ensemble of neutrinos reaching the earth.  To 

21 



describe a quantum mechanical ensemble of neutrinos, it is useful to introduce the 

density matrix 

psE/iMM, (3-23) 
i 

where fa denotes the probability that the particle is in the quantum state \ui). The 

density matrix corresponding to a single neutrino as described by Eq. (3.22) is there- 

fore given by 

P = 
\A,\2   AXA% 

A\A2    \A2 |s 
(3.24) 

where 

kill2 = 

AXA\   = 

\A2\2   = 

2 
1  . 
-sin 
2 

1 rl + COS20M (l - 2|a2|
2)] + i [aia*2 sin20A,e

2^(i') + c.c]    (3.25) 

29M [al<?Wi) - a^e-2^/)] - aia2 cos 26M (3.26) 

\ [l - cos20M (l - 2|a2|
2)] - \ [a1a*2sm20Me2i<t>{tf) + c.c]    (3.27) 

In Sec. 3.3 we explain why this process allows us to eliminate the terms that have 

rapidly oscillating phases. In particular, the phase angle <f>(tf) and the phases of the 

complex numbers ai and a2 are all rapidly varying functions of the neutrino energy, 

the location in the sun where the neutrino is produced, and the precise time of day 

and year at which the neutrino is observed. The density matrix which describes the 

ensemble of observed neutrinos is constructed by averaging over these quantities, so 

any quantity with a rapidly oscillating phase will average to zero. This is equivalent 

to the statement that the vx and v2 components arriving at the earth are incoherent, 

so we average over their phases. The matrix elements of the phase-averaged density 

matrix are given by 

(l^il2) 

(A1A*2) 

(\A2\2) 

i[l + cos2^(l-2|a2|
2)] 

=   |[l-cos20M(l-2|a2|
2)] 

(3.28) 

(3.29) 

(3.30) 
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The term |a2|
2 = -Pjump is the probability of crossing from one adiabatic state to 

the other during the time evolution of these operators. An approximate expression 

for Pjump can be found by using a linear approximation for the density profile at 

resonance [43], yielding 

P™ = GXP [-   4Pcos(20v)N>(Xres)   ) • (3-31) 

Here N(xres) is the density at the point where the neutrino crosses resonance, and 

N'(xTes) is the first derivative of the density at resonance. More accurate approxima- 

tions to Pjump and the details of their derivation can be found in Refs. [14, 15] and 

the references therein. 

The density matrix corresponding the ensemble of observed neutrinos must be 

obtained by averaging over the production sites in the sun. While we have already 

made use of this fact in dropping all terms with rapidly oscillating phases, we must still 

average the slowly varying terms which remain. Letting 8B(r) denote the normalized 

probability distribution for production at a distance r from the center of the sun, one 

finds 

where 

°° = 2 Jo      dT      (r) COS(2ÖM(r)) (1 "2Pjump) • (3-33) 

Note that the diagonal entries of p are just the fractions k\ and k2 of v\ and u2 flux 

from the sun. Therefore 

h = ^ + C0, k2 = ±-C0. (3.34) 

Finally, we transform to the ue-vx basis, so 

(3.35) 
Are     Pxx / 

One then finds that the probability of observing a neutrino reaching the surface of 
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the earth as an electron neutrino is given by 

Ps = Pee = \ + Co cos 20v . (3.36) 

The off-diagonal matrix element is given by 

pxe = -CQsm29v. (3.37) 

Our numerical simulations have all been performed by integrating Eq. (3.7) to 

solve for P2e, and also by integrating the density matrix equations of motion. The 

evolution of the density matrix is given by 

ihdtp=-[p,H]. (3.38) 

Using Eq. (3.38) with the Hamiltonian in the flavor basis, we find that our new 

equations of motion are 

idtPee = A{pxe-Pxe) (3.39) 

idtPxe = 2(Apee - Bpxe) - A , (3.40) 

where A and B are defined in Eqs. (3.9) and (3.10). This allows us to perform 

calculations using the complete mixed ensemble. The expressions given in Eqs. (3.36) 

and (3.37) form a steady state solution of the density matrix equations of motion in 

the vacuum. 

Applying the MSW effect to the neutrinos produced in the sun creates three 

possible solutions to the solar neutrino problem, pictured in Fig. 3-1. The plot is 

given as a function of the two basic parameters involved in neutrino oscillations: the 

vacuum mixing angle expressed as sin2 29v and the mass squared difference between 

the two mass eigenstates Am2. The shaded areas are regions of the sin220y - Am2 

parameter space that are not excluded (i.e. allowed) by the measured neutrino flux 

rates of the chlorine, gallium, and water experiments at the 99% confidence level. 
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Figure 3-1: MSW Solutions: The shaded areas are regions of the sin2 26y - Am2 

parameter space that are not excluded (i.e. allowed) by the measured neutrino flux 
rates of the chlorine, gallium, and water experiments at the 99% confidence level. 
[From Bahcall, Krastev, and Smirnov in Ref. [12]] 
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3.3    Validity of the steady state approximation 

Most of the work in the past decade on the MSW effect has assumed that the en- 

semble of neutrinos reach the earth in a steady state solution of the density matrix 

(i.e., in an incoherent mixture of the mass eigenstates vx and v2). There are several 

reasons that the neutrinos reach the earth in a steady state: (a) The separation of 

the \ui) and \v2) wave-packets while propagating from the sun to the earth exceeds 

the size of the individual wave packets, eliminating the interference effects, (b) The 

eccentricity of the earth's orbit results in a daily change of the earth-sun radius larger 

than the vacuum oscillation length of the neutrinos, (c) The neutrinos are produced 

in a region much larger than their local oscillation length, (d) The energy resolution 

of the current detectors coupled with the earth-sun radius perform an average. We 

now proceed to map out the parameter space justifying where the steady state ap- 

proximation is valid. First we consider the separation of the two eigenstates during 

transit to the earth. This results in system that is an incoherent superposition of \vx) 

and \v2). The width of the wave-packets, ax, is given by Ref. [34]: 

ax » 0.9 x 10_r cm. (3.41) 

This results in a coherence length given by: 

Lcoh = 2V2ax£^. (3.42) 

We lose coherence between the mass eigenstates if Lcoh < 1 AU = 1.5 x 1013 cm. 

If we require that the incoherence condition apply up to 14 MeV to include all 8B 

neutrinos, we find that for all of sin2 29v where Am2 > 6.63 x 10~6 eV2 the wave- 

packets have separated upon reaching earth. This corresponds to the region above the 

line labeled (a) in Fig. 3-2. Because there is a continuous beam of neutrinos arriving 

from the sun, we can ignore the fact that the lighter mass eigenstate arrives first, and 

simply drop terms that rapidly oscillate due to the lack of interference between the 

two states. 

26 



In the previous case the interference effects vanish because of a loss of coherence 

between the mass eigenstates for a neutrino produced at a specific place and time. In 

the remaining topics the interference effects vanish due to averaging over the ensemble 

of neutrinos which reach the detector. 

Next, we analyze the effect of the eccentricity of the earth's orbit . We are inter- 

ested in day-night effects; therefore, if the earth-sun radius changes by more than an 

oscillation length during one day, this will result in washing out any phase dependence 

in the results measured over a period of one year. Between perihelion and aphelion 

the earth-sun radius changes by 2e(l AU) = 5.1 x 1011 cm, where e = 0.017 is the 

earth eccentricity. The earth-sun radius changes by this quantity once every 180 days 

giving an average daily change in radius of 2.83 x 109cm. This ensures our incoherent 

phase for Am2 > 1.2 x 10-6 eV2. This region is denoted by everything above the 

line marked (b) in Fig. 3-2. 

Third, we study the impact of where the neutrinos were produced. If the neutrino 

region of production is greater than the local oscillation length of the neutrinos, then 

neutrinos of all possible phases exist in the ensemble. For a continuous beam of 

neutrinos, this also results in dropping the rapidly oscillating terms. The condition 

is satisfied for the entire parameter space under consideration 0.001 < sin2 20y < 

1 and 1 x 10_n eV2 < Am2 < 1 x 10-3 eV2. However, one must be careful in 

making this statement. Although the region of production may be greater than the 

neutrino oscillation length in the sun, the neutrinos could undergo a non-adiabatic 

transition, and thus bring a specific phase into dominance. This is the case for 

vacuum oscillations (Am2 w4x 10-10 eV2). The 8B neutrinos are produced mostly 

at RBB = 0.046 RSun = 3.2 x 109cm. The vacuum oscillation length is on the order 

of 1 AU. However the oscillations length near the solar core where these neutrinos 

are produced is about 1.8 x 107cm <C R&B. Although the neutrinos are produced 

in a region larger than their oscillation length, they acquire roughly the same phase 

in the process of leaving the sun. This occurs because the density change upon 

leaving the sun occurs more rapidly than the oscillation length of the neutrinos, 

violating the condition of adiabaticity. To express this quantitatively we estimate that 
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if -Pjump < 0.1 for 14 MeV neutrinos that the initial randomly distributed oscillation 

phases at the time of production will persist as the neutrinos leave the sun and enter 

the vacuum. This leads to a steady state solution applicable in the parameter space 

above the diagonal line labeled (c) shown in Fig. 3-2. 

Last, we study the impact of the energy resolution on our ability to discriminate 

phases. Assuming perfect coherence between the two mass eigenstates the phase upon 

reaching the earth is given by 

Am^tlAU) 
4phc 

Our uncertainty in energy impacts our uncertainty in phase through error propaga- 

tion: 

5<j) = 
d<ß .       Am2(lAU)t .      . 
dp 5P=      4p>Hc     5P- (3-44) 

If the uncertainty in our phase is greater than 2ir we are again justified in treating our 

ensemble as a steady state. Using conservative figures for energy (p = 14 MeV), and 

the energy resolution (8p « 1 MeV) [11], we find that for Am2 > 6.5 x 10~9 eV2 we are 

justified in the steady state approximation. This inequality corresponds to parameter 

space above the line labeled (d) in Fig. 3-2. Recently Ref. [24] also reached the same 

conclusions outlined in this section. 
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Regions Satisfying Steady State Density Matrix 

0.001 0.01 0.1 

sin2(20y) 

Figure 3-2: The regions satisfying the conditions for steady state density matrix. 
Above the line (a) is in steady state because of wave packet separation. Above the 
line (b) can be treated as steady state because of the eccentricity of the earth's 
orbit. Above the diagonal line (c) is in steady state because the region producing the 
neutrinos is much larger than an oscillation length, and this phase averaging survives 
until the neutrinos reach the vacuum. Above line (d) is in steady steady state because 
of the energy resolution of our detectors. 
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Chapter 4 

The Day-Night Effect at Maximal 

Mixing 

4.1    Overview 

We have thus far explained the solar neutrino problem, and the MSW solution to the 

problem. The neutrino interaction with matter can also play a role when the neutrinos 

pass through the earth. This process would result in a change in the ve flux between 

daytime and nighttime measurements, a phenomenon known as the day-night effect. 

Most of the studies of the day-night effect in the past decade [17, 36, 37, 38, 10, 49] 

have used the Mikheyev-Smirnov expression [41] to describe the effect of the earth on 

the solar neutrinos, introduced earlier as Eq. (1.1): 

_Ps-sm2ev + P2e(l-2Ps) (11) 
SE COS20y ' K   '   ' 

Again PSE is the probability that an electron neutrino originating in the sun will be 

measured as an electron neutrino after passing through the earth, Ps is the probability 

that an electron neutrino (\ve)) originating in the sun will be measured as an electron 

neutrino upon reaching the earth/ P2e is the probability that a pure \u2) eigenstate 

entering the earth will be measured as an electron neutrino when it emerges, and 6V 

is the vacuum mixing angle as defined in Chapter 3. 
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In the Refs. [10, 17] the authors have claimed that there is no day-night effect at 

Ps = 1/2. In Eq. (1.1), the properties of the earth enter only through P2e, which is 

explicitly multiplied by (1 - 2Ps). We would like to stress that the case of maximal 

mixing is an exception to this statement. For maximal mixing Eq. (1.1) is ill-defined, 

because cos20y = 0. We will now show that at maximal mixing PSE ¥" 1/2, implying 

a day-night effect and an often overlooked energy-dependence of the suppression of 

the solar neutrino flux. 

Physically, the day-night effect survives because the neutrino beam reaching the 

earth, for all MSW solutions, is predominantly \u2). For maximal mixing this state is 

half ue and half ux, but there is a definite phase relationship, \u2) = (\ue) + \ux))/\/2, so 

the density matrix is not proportional to the identity matrix. A coherent component 

of \v\) is regenerated as this beam traverses the earth, leading to interference with the 

incident \u2) beam. The case is rather different from the small mixing-angle case, for 

which Eq. (1.1) really does imply the absence of a day-night effect when Ps = 1/2. 

For a small mixing angle Ps equals 1/2 only when conditions in the sun drive the 

ensemble into a density matrix proportional to the identity matrix, in which case the 

earth would have no effect. 

4.2    Derivation of Equation (1.1) 

The key assumption necessary for the derivation of Eq. (1.1) is that the neutrino 

beam arriving at the earth can be treated as an incoherent mixture of the two mass 

eigenstates \vi) and \u2). That is, we assume that there is no interference between 

the V\ and v2 components reaching the earth, or equivalently that the off-diagonal 

entries of the density matrix in the V\-v2 basis are negligibly small. The physical 

effects which cause this incoherence are discussed in Appendix 3.3. In the case of 

maximal mixing, the incoherence is ensured for Am2 > 6.5 x 10~9 eV2 because of 

the energy resolution of current detectors. Other sources of incoherence include the 

separation of |i/i) and \v2) wave packets in transit to the earth, the averaging over 

the regions in the sun where the neutrinos were produced, and the averaging over the 
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changing radius of the earth's orbit [24]. In Appendix 3.3 we comment on the regions 

of parameter space for which the assumption of incoherence is valid. 

Given the assumption of incoherence, we write the fractions of \i/i) and \v2) flux 

from the sun as ki and k2, respectively1. Since there is no interference, the probability 

that a solar neutrino will be measured as ve upon reaching the surface of the earth is 

given by 

|2   ,   7     I/.. I.. \|2 
PS    =    fcl |(^eh)r+ ^1(^2)1' 

=   k\ cos2 $v + k2 sin2 Qy 

=   cos2 9V - k2 cos 20y , (4.1) 

where we have used Eqs. (1.2) and the fact that kt + k2 = 1. Similarly, the probability 

that a solar neutrino will be measured as ve after passing through the earth, when it 

is no longer in an incoherent superposition of the mass eigenstates, is given by 

PsE = k1Ple + k2P2e, (4.2) 

where Pie (P2e) is the probability that a \vi) (\u2)) eigenstate will be measured as 

ve after traversing the earth. Finally, the unitarity of the time evolution operator 

implies that the state vectors of two neutrinos entering the earth as \vx) and \v2) 

must remain orthonormal as they evolve through the earth and become \Di) and \ü2), 

respectively. Therefore 

Pie + P2e = \(Ve\h)\2 + |<^2>|2 = 1 • (4-3) 

Eq. (1.1) can then be obtained by using Eq. (4.1) and the above equation to eliminate 

Pu, hi, and k2 from Eq. (4.2). 

From the above derivation, one can see that the singularity of Eq. (1.1) at maximal 

mixing arises when Eq. (4.1) is solved to express k2 in terms of Ps.   For maximal 

aFor large mixing angles, sin220v > 0.5 and 5 x 10-5 < Am2(eV)2 < 1 x 10 7, k2 « 1 and 
ki RS 0. 
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Evolution of Maximally Mixed Solar Neutrino Ensemble Crossing the Earth 

-1.5 -0.5 0 0.5 
R in units of Rearth 

1.5 

Figure 4-1: The evolution of P„e_>.„e as the ensemble of neutrinos propagates across 
the center of the earth. The neutrinos enter the earth as an incoherent mixture of 
the energy eigenstates vi and v2 which is almost completely v2. This plot shown is 
for Am2 = 1.3 x 10"5 eV2 and a neutrino energy E = 6.5 MeV. 

mixing Ps = 1/2 for any value of k2, so k2 cannot be expressed in terms of Ps. The 

ambiguity disappears, however, if one leaves k2 in the answer, so Eq. (4.3) can be 

used to rewrite Eq. (4.2) as 

PsE = l + 2{k2-l)(p2e-\) (4.4) 

Thus, PSE = 1/2 only if k2 = 1/2 or P2e = 1/2. For the MSW solutions at maximal 

mixing one has k2 « 1, and there is no reason to expect P2e = 1/2. Generically 

PSE ¥" 1/2 for the case of maximal mixing. 

4.3    Analysis at maximal mixing 

Using the evolution equations derived in Chapter 3 and the procedures described 

in Appendix A, we have calculated a variety of properties concerning the day-night 

effect for maximal mixing angle. The calculation parameters are chosen for those of 

the Super-Kamiokande detector. 

Figure 4-1 shows the evolution of P(ue ->• ue), the probability that a solar neutrino 
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Figure 4-2: The day-night asymmetry (Arf_n = (N - D)/(N + D)) as a function of 
mixing parameters calculated using the density matrix. On the left is a three dimen- 
sional surface where the height of the surface is the day-night asymmetry. Notice 
that the exposed edge is calculated at maximal mixing and is clearly non-zero. On 
the right is a contour plot showing the lines of constant day-night asymmetry. 

will be measured as ve, as the beam of neutrinos traverses a path through the center 

of the earth. Notice that after traversing the earth the ensemble of neutrinos is no 

longer in a steady state, but instead P(ue —>■ ve) continues to oscillate in the vacuum. 

Prom the perspective of the mass eigenstates, the neutrinos under consideration arrive 

at the earth roughly in a \p2) state. Upon reaching the earth, the step-function-like 

changes in the electron density profile (see Fig. A-l) cause non-adiabatic evolution, 

regenerating the \vi) state and leading to interference effects. In the regions of pa- 

rameter space where the day-night effect is maximal because the oscillation length of 

these interference terms coincides with the length of the slabs of near constant density 

composing the earth, the resulting buildup of ue flux has been called oscillation length 

resonance [44, 45, 2]. 

In Fig. 4-2 we present a contour plot calculated from the density matrix that 

exemplifies the non-zero nature of the day-night effect at maximal mixing. On the 

left is a three-dimensional surface where the height of the surface is the day-night 

asymmetry. Notice that the exposed edge is calculated at maximal mixing and is 

clearly non-zero. On the right is a contour plot showing the lines of constant day- 

night asymmetry, a plot which is identical to those produced in other references. 
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4.4    Induced energy dependence 

We now explain how the inclusion of the day-night effect at maximal mixing resolves 

a certain confusion that has arisen in the past because of its neglect. As a result of 

the non-zero day-night effect, there exists an energy dependence at maximal mixing, 

as can be seen in Fig. 4-3. If one assumes that the flux suppression at maximal 

mixing has no energy dependence, as was done in Ref. [30], then there is an apparent 

discrepancy between two sections of Ref. [12]. Sec. IV-D excludes the possibility 

of energy-independent oscillation into active (as opposed to sterile) neutrinos at the 

99.8% confidence level, while Fig. 2 shows some regions of the maximal-mixing-angle 

parameter space not excluded at the 99% confidence level (we have reproduced Fig. 2 

of Ref. [12] as Fig. 3-1 in this thesis). Ref. [30] has tried to resolve this discrepancy 

without including the day-night effect, concluding that maximal mixing is excluded at 

the 99.6% confidence level. The actual resolution to this apparent discrepancy is that 

Fig. 2 of Ref. [12] includes the energy dependence induced by the day-night effect 

at maximal mixing, while Sec. IV-D discusses the case of energy-independent flux 

suppression and does not apply to maximal mixing. The correct conclusion is that of 

Fig. 2, which shows that maximal mixing is not excluded at the 99% confidence level. 

Whether or not the day-night effect is included, maximal mixing is not a very good 

fit to the experimental data from the three neutrino experiments (chlorine, gallium, 

and water) [12]. However, maximal mixing does fit well if the chlorine data is excluded 

on the suspicion of some systematic error [46]. Ref. [18] has argued that if the 8B 

flux is about 17% lower than the standard solar model (BP98) [8], then a bi-maximal 

mixing scenario becomes a tenable solution to the solar neutrino problem. The MSW 

mechanism described here is applicable for Am2 > 6.5 x 10~9 eV2. In the bi-maximal 

mixing scenario that we consider the upper bound on Am2 is set by the CHOOZ data 

constraining Am2 < 0.9 x 10~3 eV2 [47]. 

When detailed studies of the day-night effect are completed, the energy (and 

zenith angle) dependence will be valuable additional information. To the best of our 

knowledge, the Super-Kamiokande Collaboration has not published their day-night 
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Energy Dependent Flux Supression at SuperKamiokande 
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Figure 4-3: The predicted flux suppression as a function of energy. Notice that the 
predicted overall flux suppression is not 1/2, due to day-night effects, even though 
the mixing angle is maximal. The plot is for Am2 = 1.0 x 10~5 eV2 which is near 
the border of the region excluded by the small day-night effect (Ad„n) measured at 
Super-Kamiokande. 

asymmetry as a function of recoil electron energy. Past studies of the day-night effect 

have noted the energy dependence of the day-night asymmetry [38, 10]. While for 

small mixing angles \Ad_n\ < 0.02 without a clear energy dependence [10], for large 

mixing angles the Ad~n energy dependence can be significant and informative. Fig. 4- 

4 shows the theoretical predictions of the day-night asymmetry in the electron recoil 

spectrum at Super-Kamiokande for two cases of maximal mixing: Am2 = 2 x 10~5 eV2 

and Am2 = 3 x 10~7 eV2. Note that the two curves have opposite slopes. 

The approximate shape of the graph of Ad-n vs. recoil electron energy can be 

understood from Fig. 4-2, using the fact that Fig. 4-2 is dominated by the peak of the 
8B neutrino spectrum at about 6.5 MeV. It is shown in Appendix 3.2 that the neutrino 

evolution equations (Eqs. (3.7)-(3.10)) depend on Am2 and the neutrino energy (or 

momentum) E only through the combination Am?/E. Thus, Fig. 4-2 shows that for 

any value of sin2 26v, Ad„n has a maximum at Am2/E » 2.5 x 10-6 eV2/(6.5 MeV). 
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Figure 4-4: The day-night asymmetry (Ad-n = (N - D)/(N + D)) as a function 
of recoil electron energy at Super-Kamiokande. Both plots are at maximal mixing 
angle, with Am2 at the upper and lower borders of the region disfavored by the 
smallness of the day-night effect observed at Super-Kamiokande. The rising line is 
for Am2 = 2 x 10~5 eV2, and the descending line is for Am2 = 3 x 10~7 eV2. 

When E is varied at fixed Am2, Ad-n will have a peak at 

E 
Am2 

2.5 x 10-6 eV2 x 6.5 MeV (4.5) 

So for Am2 = 2 x 10~5 eV2 the peak lies far to the right of the scale in Fig. 4-4, so 

the curve slopes upward. For Am2 = 3 x 10-7 eV2 the peak lies far to the left, and 

the curve slopes downward. 

Fig. 4-2 shows that the peak in the graph of Ad-n vs. Am2 is higher at large 

mixing angles (sin220y « 0.7) than it is at maximal mixing, so the same will be 

true for the energy dependence of the day-night effect. For sin2 29y = 0.63 and 

Am2 = 1.3 x 10-5 eV2, for example, the slope of the graph of Ad_n vs. recoil electron 

energy is about twice the magnitude of the slopes shown in Fig. 4-4. Thus, the day- 

night asymmetry as a function of recoil electron energy could be a strong indicator of 

Am2 if the solar neutrinos have a large or maximal mixing angle in the MSW range 

of parameters. 
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Chapter 5 

Conclusions 

In this thesis we have reviewed the solar neutrino problem, and we have derived the 

MSW solution to the solar neutrino problem. We have also derived the Eq. (1.1) for 

calculations of the day-night effect. We have pointed out that Refs. [10,17] incorrectly 

assume that that Ps = 1/2 always implies PSE = V2- We have also shown that 

neutrinos with a maximal mixing angle can have a day-night effect and that they do 

not always result in a uniform energy-independent flux suppression of 1/2. Because 

the issues that we have attempted to clarify concern mainly the words that have been 

used to describe correct equations (which were generally used numerically), there are 

no changes to most constraints presented in other references. The only corrections 

apply to fits of energy-independent suppressions; that is, in contradiction with the 

assumptions of Ref. [30], the fits do not apply to the exclusion of some regions of 

maximally mixed neutrinos. Finally, we have noted that the energy dependence of 

the day-night effect can be a strong discriminator between various solutions of the 

solar neutrino problem. 
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Appendix A 

Calculation Methodology for the 

Day-Night Effect 

First we calculated Ps using Eq. (3.36) for the spectrum of Am2/p at various mixing 

angles. For a given Am2/p we averaged Ps over the regions of 8B neutrino production 

in the sun, provided by Ref. [6]. Using Ps to describe the neutrinos that arrive at the 

earth, we then performed the evolution through the earth with the density matrix 

equations of motion. The initial conditions for the density matrix are given by 

Pee = Ps, (A.l) 

and 

Pxe = - 2 (2ps ~ 1) tan 26v. (A.2) 

At maximal mixing we assume that pxe = —^ cos[26M(to)) sin20y « | which is the 

adiabatic result. This assumption is justified because in the regions of parameter 

space under consideration near maximal mixing, Pjump « 0. It follows that in these 

same regions of parameter space the evolution remains adiabatic in the limit where 

0V = 7r/4. We use the earth density profile given in the Preliminary Reference Earth 

Model (PREM) [25] (see Fig A-l). To convert from the mass density to electron 

number density we use the charge to nucleon ratio Z/A = 0.497 for the mantle 
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Figure A-l: The Preliminary Reference Earth Model (PREM) electron density (Ne) 
profile of the earth. Ne is shown in units of Avogadro's number of electrons per cm3. 

and Z/A = 0.467 for the core. The numerical calculations were performed using 

a fourth order Runge-Kutta integration programmed in C++. We propagated the 

neutrinos through the earth for 90 zenith angles, a, evenly spaced between 90 and 

180 degrees. We calculate the anticipated electron flux as a function of zenith angle 

and energy, denoted PSE(a, Eu). The calculation parameters are chosen for those of 

the Super-Kamiokande detector. The normalized 8B neutrino spectrum, $(EU), and 

solar electron densities, Ne, are also obtained from data-files provided by Ref. [6]. 

Effective neutrino cross sections are available which take into account the electron 

recoil cross section with radiative corrections, the energy resolution, and the trigger 

efficiency [11, 6]. We used these more accurate cross sections for the overall day- 

night effect plotted in Fig. 4-2. Because these effective cross sections already include 

the integration over detected electron recoil energy, to calculate the recoil electron 

spectrum we used the differential neutrino-electron scattering cross sections given 

in Ref. [4]. Using these data files and numerical results the cross section for the 

scattering of solar neutrinos of energy Ev with electrons to produce a recoil electron 

of energy T at the zenith angle a is given by 

^r{T', E„ a) = PSE(a, E„)^(T>, Ev) + [1 - PSE(a, Ev)\ ^(T>, E„).  (A.3) 
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Since muon and tau neutrinos have the same neutral current interactions, we can use 

the Up cross section for the vx. The analysis of the recoil electron spectra is explained 

in Refs. [11]. The actual flux at recoil energy, T, is 

g(a, T) = jH dEv *(£„) f™ dT' R(T, T') ^^(T', E„ a) (A.4) 

where the energy resolution of the detector is incorporated through 

R^r) - Ä^vrM^1) ■ (A5) 

The energy resolution, AT>, around the true electron energy T" for Super-Kamiokande 

is given by 

Ay, = (1.6 MeV) ^/T'/(10 MeV). (A.6) 

To calculate the average day-night effect over one year, we weight the flux by the 

zenith angle exposure function Y(a) explained in Appendix B. The daytime measured 

flux at a given measured electron recoil energy, T, is given by 

/•90 

D(T)=       da g(a,T)Y(a), (A.7) 
Jo 

and for nighttime is 
/•180 

N(T)= da g(a,T)Y(a). (A.8) 
J90 

The day-night asymmetry as a function of recoil electron energy plotted in Fig. 4-4 

is given by 
Ad    (T)     N(T)-D(T) 
Ad-n[I>- N(T) + D(TY [     } 

The final day-night asymmetry plotted in Fig. 4-2 is given by 

fZ°KtvdT(N(T) + D(T)) 

where 5 MeV is the minimum energy detected at Super-Kamiokande. Verification of 

the accuracy of the computer code has been accomplished with the help of [35], and 
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by comparing our simulations to plots and data available in the literature. 
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Appendix B 

The Zenith Distribution Function 

The zenith angle distribution function gives the fraction of the time that the sun is at 

a given zenith angle. The function is calculated by numerically simulating the orbit 

of the earth around the sun. We begin by writing the vector towards the zenith of 

the detector in coordinates for which the earth's orbit lies in the x-y plane: 

/l      0 

rz = 

0     \ 

0   cos 6    — sin 5 

VO    sin 5     cos 5 ) 

/sin(90°-L)cos<£\ 

sin(9O°-L)sin0 

V    cos(90° -L)     ) 

(B.l) 

where the north latitude is given by L, (j) gives the time of day in radians, and 

S = 23.439° is the earth's declination [1]. Because we are averaging over a one year 

time period we can arbitrarily choose the initial time of year, and the initial time of 

day. The vector pointing from the earth towards the sun is 

/cosD\ 

sinD 

V    0    J 

(B.2) 

where D is the day of the year in radians. Prom here we can find the local zenith angle 

from the dot product fs-fz = cos a. To numerically calculate the zenith function 

distribution we divided a into 360 bins evenly spaced between 0 and ir. Now we 

run 0 < D < 2TT and 0 < <j) < 2% over 1000 steps in D and 1000 steps in <f> and 
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Zenith Distribution Function 

80        100 
a in Degrees 

Figure B-l: The zenith distribution function at Super-Karaiokande. 

count how much relative time a spends over each bin. We generate the zenith angle 

distribution function for Super-Kamiokande which sits in Gifu Prefecture, Japan at 

36.43° north latitude [49]. This produces the undistorted zenith function distribution 

seen in Fig. B-l. One can also obtain this function as a data file from [6] which 

includes small corrections for the eccentricity of the earth's orbit and the wobble of 

the earth's declination. To maximize accuracy we performed our calculations using 

this data file. 
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