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Automated Cartographic Feature Attribution Using Panchromatic and 
Hyperspectral Imagery 

DARPA/APGD Yearly Report 1997-1998 

1.    Introduction 

This report summerizes the primary accomplishments made during the first year of the Defense Advanced 
Research Projects Agency (DARPA) Automated Population of Geographic Databases (APGD) program. 
Prior to this contract, late in 1995, we organized a hyperspectral data acquisition using the Naval Research 
Laboratory's (NRL) Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor system over 
Fort Hood, TX. This acquisition resulted in hyperspectral data with a nominal 2-meter ground sample dis- 
tance collected with 210 spectral samples per pixel. This data formed the basis of our program of research 
under APGD. 

Section 2. describes experiments in the block adjustment of linear pushbroom sensor imagery incorporat- 
ing object-space straight line constraints. Both polynomial and interpolative platform models were tested; 
the polynomial model generally performed better than the interpolative model without lines, but not as 
well as the interpolative model with straight line constraints. The greater flexibility of the interpolative 
model makes it better able to describe complex platform motion and to use the geometric strength given 
by the straight line constraints, at the expense of increased sensitivity to uneven point distributions or bad 
points [McGlone, 1998]. 

Section 3. describes current quantitative classification results for man-made and natural materials us- 
ing 14 surface material classes over selected test areas within Fort Hood. We discuss the issues encoun- 
tered in radiometric effects due to changing solar illumination and atmospheric conditions during the 
acquisition [Ford et al., 1998]. 

1.1    Background for CMU APGD Research Project 

A major focus of this research during the last 5 years has been the use of multispectral imagery to generate 
surface material maps. Surface material information is of interest to us both for cartographic feature 
extraction (CFE), to generate feature hypotheses or to refine features generated by other CFE systems, 
and for visual simulation, to select realistic visual textures. 

Some of our previous research in fusion has involved the combination of surface material information 
with high-resolution stereo elevation data to produce more refined surface material maps and to aid in 
distinguishing man-made structures within the scene [Ford and McKeown, 1992a], [Ford and McKeown, 
1992b]. We are currently studying the combination of surface material maps with automatically extracted 
buildings and roads for editing and verification. 

One important limitation in this work has been the limited spatial resolution (8-20 meters) of available 
multispectral imagery. Since we require the precise delineation of object boundaries and the attribution 
of surface materials for small regions, such as those found within urban areas, we typically work with 
panchromatic imagery with ground sample distances (GSD) of 0.3 to 1.0 meters. Combining classification 
results from multispectral imagery with much coarser spatial resolution imposes limitations on the utility 
of the fusion. 

In order to obtain data with higher spatial and spectral resolution we organized a hyperspectral data 
acquisition using the NRL HYDICE sensor. This acquisition, in October 1995, resulted in hyperspectral 
data with a nominal 2-meter GSD collected with 210 spectral samples per pixel. The acquisition covered 
56 km2 over Fort Hood, TX, a site that has been used extensively in the DARPA Image Understanding 
community to support experiments in semi-automated and automated CFE. 



1.2 Geometrie and radio-metric issues 

Two major problems, radiometry and geopositioning, must be addressed in order to effectively use the 
HYDICE imagery in conjunction with other types of imagery (panchromatic, radar, lidar) used for carto- 
graphic feature extraction. 

The radiometric problems arise from the effects of changing atmospheric conditions and solar illumina- 
tion on the ground-reflected spectral radiance collected by the hyperspectral sensor. In order to compare 
surface material properties between flightlines and to use spectral field measurements of surface materials 
for spectral analysis, atmospheric corrections are applied to convert HYDICE radiance imagery to apparent 
reflectance. 

Geometric issues are due to the dynamic nature of the image acquisition process and to the weak geo- 
metric configuration of the sensor, as discussed below, in "Registration of HYDICE Imagery." For large- 
scale mapping or more standard remote sensing applications, accurate positioning has been less important; 
however, to meet our goals of fusing surface material regions with features derived from our road and 
building extraction systems for high-resolution site modeling, extremely accurate absolute geopositioning 
and relative registration between images must be established. 

1.3 HYDICE Data acquisition 

The collection of data at Fort Hood included both airborne imagery and ground truth measurements. The 
image acquisition included hyperspectral imagery collected by the HYDICE sensor system and natural 
color film shot by a KS-87 frame reconnaissance camera. The spectral range of the HYDICE sensor ex- 
tends from the visible to the short wave infrared (400-2500 nm) regions, divided into 210 channels with 
nominal 10 nm bandwidths. 

Nine HYDICE flightlines, each 640 meters wide (cross-track) and 12.6 km long (along-track), were flown 
over Fort Hood's motor pool, barracks, and main complex areas from an altitude of approximately 4,000 me- 
ters above ground level. After each flightline, the HYDICE sensor was flown over and imaged a six-step (2, 
4, 8, 16, 32 and 64 percent) gray-scale panel, providing in-scene radiometric calibration measurements for 
each flightline. Prior to the start of the HYDICE flight collection, several ground spectral measurements 
were made for each gray level panel in an attempt to characterize its mean spectral reflectance curve. A 
more detailed description of the HYDICE sensor system, Fort Hood image acquisition and ground truthing 
activities, can be found in [Ford et ah, 1997a]. 

2.    Block Adjustment of Linear Pushbroom Imagery with Geometric Con- 
straints 

Linear pushbroom imaging sensors have become widely used within the last few years as a cost-effective 
means to obtain aerial digital imagery. Linear arrays are less expensive to fabricate than area arrays and 
require no moving parts, unlike scanners or panoramic cameras. 

The main drawback to the use of linear pushbroom sensors is their weak geometry; each image line is, 
in effect, an independent one-dimensional image. Resecting an individual line is an indeterminate prob- 
lem, while using the whole image requires that a model of the platform motion as a function of time be 
solved. The availability of accurate navigation data, such as differential GPS and high-resolution Inertial 
Navigation System (INS) sensors, has alleviated this problem somewhat. Another approach has been 
to use multiple linear arrays, pointing in the nadir and off-nadir directions, to improve the geometry by 
obtaining a wider cone of rays from the same sensor position and also to allow stereo viewing. Examples 
of this configuration include the Monocular Electro-Optical Stereo Scanner (MEOSS) and the Modular 
Optoelectronic Multispectral Stereo (MOMS-02) sensors [Ohloff, 1995]. 

This annual report describes block adjustment experiments using linear pushbroom and frame imagery. 
This solution differs somewhat from current practice in that only limited navigation information (nominal 
GPS positions) was available, due to equipment problems during data acquisition. While these experiments 
may not appear directly relevant to the state of the art, they are important for several reasons: 



• From a practical standpoint, navigation equipment sometimes fails and reflights are not always an option. 
Alternative methods of positioning can be necessary. 

• Navigation information may not provide sufficient absolute positioning accuracy due to the inherent errors 
of the navigation sensors. As higher-resolution digital imagery becomes available, the positioning require- 
ments will become greater. These requirements may be met by improving navigation sensors or by adding 
additional information to the solution; the choice is a matter of the economics of the particular system. A 
related issue is the discrete nature of the positioning information, which is available only at intervals. Sen- 
sor behavior between readings must be interpolated, on the assumption that the characteristics of the plat- 
form motion do not change. Adding external information between reference points will make this interpo- 
lation more valid. 

• An increasing amount of work is currently being devoted to the fusion of imagery from different sensors, 
taken at different times. While each set of imagery may be positioned to some level of absolute accuracy, 
the accumulated relative error between image sets may make fusion difficult. A simultaneous adjustment 
of all the imagery, with additional information in the form of tie points and geometric constraints, is nec- 
essary in such a case. 

• Positioning from navigation data alone is inherently open-loop, in that there is no external verification or 
redundant determination of the positions. For this reason, most block solutions based on navigation infor- 
mation use a few control points to establish the datum for verification purposes. This level of redundancy 
is adequate for well-calibrated photogrammetric systems; however, for experimental remote sensing systems 
such as the HYDICE, which are not designed as mapping systems, the system calibration may not be suf- 
ficient for reasonable positioning accuracy. Including external data can provide assurances on the quality 
of the results and also insights into any calibration deficiencies. 

The main topics in these experiments were evaluating the differences between polynomial and inter- 
polate platform models and evaluating the use of geometric information, straight lines in the scene, to 
improve the block adjustment. 

Our interest in HYDICE positioning is driven by two main goals. First, we want to generate high- 
resolution surface material maps, for densification of land-cover information and for realistic material 
rendering in visual simulation databases [Ford et al, 1998]. Our second goal is to support work in the 
fusion of disparate types of image information, in order to improve cartographic feature extraction [Ford 
and McKeown, 1992b; Ford et al, 1997b]. While some amount of mis-registration can be corrected by 
local refinement during the fusion process, an inaccurate initial registration greatly increases the amount of 
down-stream work required and may adversely impact the final quality of the fusion results. 

2.1    Related work 

Most recent work on the orientation of linear pushbroom sensors has been focused on satellite sensors, 
especially SPOT [Kratky, 1989] and MOMS-02 [Ohloff, 1995]. This differs from the airborne problem in 
that the platform motion is smoother and is determined by the orbital parameters. 

In airborne work, [Heipke et al, 1996] summarize work on the airborne test data from the MEOSS 
sensor, which uses three linear arrays, (forward-, nadir-, and backward-looking), to obtain stronger ge- 
ometry. They use an interpolative platform model with full navigation information and a large number of 
automatically-generated tie points in a block adjustment of four image strips. 

Most work on using geometric constraints for orientation has been done using frame imagery [Mikhail, 
1993], applying projective geometry to relate image- and object-space lines. The research described in 
this annual report is most closely related to [McGlone and Mikhail, 1981; McGlone and Mikhail, 1982; 
McGlone and Mikhail, 1985], which applied straight-line constraints in the block adjustment of airborne 
multispectral scanner data, and [Paderes et al, 1984], which used lines in the rectification of SPOT im- 
agery. 



2.2 The HYDICE sensor geometry 

HYperspectral Digital Imagery Collection Experiment (HYDICE) is an experimental 210-channel hyper- 
spectral imaging system developed by the Naval Research Laboratory. The HYDICE sensor is geomet- 
rically a linear pushbroom sensor 320 pixels wide; each pixel has an instantaneous field of view of 0.5 
milliradians, giving a total field of view of approximately 9 degrees. Physically, the sensor is an area array, 
with each row of the array producing one band of the image by imaging the incident energy from a different 
portion of the spectrum. The spectral range of the HYDICE sensor extends from the visible to the short 
wave infrared regions (400 to 2500 nm), divided into 210 channels. The channel bandwidths range from 7.6 
to 14.9 nm, depending on the channel location in the electromagnetic spectrum. 

Ancillary navigation and environmental information is recorded during the acquisition of HYDICE im- 
agery. This includes INS and GPS position and orientation data, flight stabilization platform angles, and 
instrument engineering measurements. More detailed descriptions of the HYDICE sensor system can be 
found elsewhere [Kappus et al., 1996]. 

Unfortunately, equipment failures during flight and some problems in system integration resulted in 
most of the navigation data being unusable. Turbulent atmospheric conditions, unavoidable due to sensor 
scheduling constraints, also degraded the geometry of the imagery. 

2.3 Mathematical model 

The mathematical model has several different parts; the sensor model, which describes the imaging ge- 
ometry of the linear pushbroom sensor, the platform model, a representation of the aircraft position and 
orientation with respect to time, and the block adjustment incorporating the geometric (straight line) 
constraints. This section discusses each aspect of the mathematical model. 

2.3.1    Linear pushbroom sensor model 

A linear pushbroom sensor can be thought of as a frame sensor with only one line in the x, or flight line, 
direction. The collinearity equations, modified for use with linear pushbroom imagery, are [McGlone, 1996]: 
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where the x coordinate is 0, y is the image coordinate and y0 is the principal point along the sensor, / 
is the focal length, and Xp, Yp, Zp are cartesian world coordinates of the point. The position parameters, 
Xc, Yc, Zc, and the angular orientation parameters w, <f>, K, (which determine the orientation matrix M3i3) 
are given by the platform model as functions of time, or equivalently, of line number. 

Not all of the six orientation parameters can usually be recovered in a resection solution, due to the 
linear sensor geometry. The 4> (pitch) angle is highly correlated with position along the flight line, while 
the narrow field-of-view and lack of terrain relief means that the ui (roll) angle is correlated with the cross- 
strip position. Without external information, such as angles or positions from navigation sensors, the u> 
and 4> parameters must be held to 0 in the adjustment. 

2.3.2     Platform model. 

The platform model describes the behavior of the orientation parameters as a function of time or line 
number. Two different models were studied in this work, the polynomial model and the interpolative 
model. 



Polynomial platform model.    In the polynomial platform model, the value of each parameter (Xc, Yc, Zc, 
U,4>,K) at a particular line is written as a polynomial function of line number x. The block adjustment 
solution determines the polynomial coefficients, instead of the parameters themselves. 

To model complex platform motions over a long period of time would require high-order polynomials, 
which could lead to unstable solutions. Instead, the flight line is divided into sections, with each section 
having its own set of lower-order polynomials (in this case, cubic). Continuity constraints on the orienta- 
tion parameters at the section boundaries ensure that calculated ground positions are continuous across 
the boundary. 

Interpolative platform model    The interpolative model stores the orientation parameters of reference 
lines at regular intervals, then calculates the parameters of intervening image lines by polynomial interpo- 
lation. In this case, two reference lines on either side of the line of interest are used, resulting in a cubic 
interpolation polynomial [Press et al, 1989]. 

The interpolative model has become more widely used in recent years since navigation data are usually 
available to specify the parameters of the reference lines. When no navigation data are available, as is 
the case with this data set, the parameters of each reference line must be solved in the adjustment. If no 
control or tie points are within the interpolation range of a particular reference line, the parameters of that 
line will not be adjusted. A continuity constraint is applied between reference lines to ensure that all lines 
have consistent parameters. 

2.3.3 Block adjustment procedure 

The bundle block adjustment is performed using an object-oriented photogrammetry package [McGlone, 
1995] that allows the use of images with different geometries and the rigorous incorporation of geometric 
constraints. 

2.3.4 Straight-line geometric constraints 

Straight-line constraints effectively provide a tie point in each image line, particularly important in this 
case where no navigation data are available and the imagery is severely deformed. The straight lines are 
easy to obtain interactively from the imagery, and do not require field surveying or additional navigational 
equipment. 

The equation of a straight line is written as [Mikhail, 1993]: 

a(X-Xo) + ß(Y-Yo) + j{Z-Zo) = 0 "(2) 

The line equation has six parameters, 4 of which are independent. The direction of the line is represented 
by the direction cosines a, ß, 7, while the location is fixed by specifying the coordinates of a reference point 
on the line, Xo,Yo,Zo, and constraining that point to be the point on the line closest to the origin. 

Two additional constraint equations are required: 

«2 + /32 + 7
2   =    1 

X0a + Y0ß + Z0j   =   0 
(3) 

The first constraint normalizes the direction cosines, while the second constraint equation is necessary to 
give a unique definition of the reference point. 

Saying that the projection of an image point, »,-, y,-, lies on a given line in object space is equivalent to 
saying that the vector (image ray) from the perspective center, Xc, Yc, Zc, through the image point, with 
direction cosines ctj, /?,-, 7,- is coplanar with the line vector a, /?, 7 through point X0, Y0, Z0. This is expressed 
by the scalar triple product: 

XQ — Xc   YQ — Yc    Zo — Zc 

a ß 7 
on ßi 7* 

= 0 (4) 



An important consideration in the use of constraints is efficiency. This has two aspects; reducing the 
number of parameters involved, and formulating the equations to allow the most efficient normal equation 
structure. The straight line constraint is written so that point object space coordinates are not explicitly 
referenced in the equations, thereby reducing the number of total number of parameters in the solution. 
This also means that corresponding points do not have to be identified and measured on all images, thereby 
simplifying the measurement process. 

2.4    Experimental plan 

2.4.1 Source imagery 

Three sets of imagery are available over Ft. Hood and will be used in the final block adjustment of the 
HYDICE imagery. 

• The HYDICE imagery, collected in nine sidelapping flight lines with a ground sample distance (GSD) of 
2-meters. 

• KS-87 color frame imagery, also collected on the HYDICE flights. The KS-87 is an uncalibrated frame re- 
connaissance camera with a 6-inch focal length and a 5-inch format. The imagery was scanned at a 1-meter 
GSD. 

• The Research And Development for Image Understanding Systems (RADIUS) Ft. Hood imagery. These 
are about 40 nadir and oblique images, taken with a frame mapping camera and scanned at a GSD of 0.3- 
meters for the vertical images. These images have been previously block adjusted using surveyed ground 
control, and provide the basic geometric strength for the adjustment. 

The control points for the adjustment were originally surveyed for the adjustment of the RADIUS im- 
ages. Tie points are measured between all images. 

2.4.2 Experimental data set 

For the purposes of this annual report, a small sub-block of the available data is being used. The sub-block 
includes two sidelapping 1,280-line HYDICE images, four KS-87 images, and four RADIUS vertical images. 
Tie points between the HYDICE images and the frame images were established by manual measurement, 
with all tie points being measured on at least two frame images. Straight lines also were measured manu- 
ally on at least two frame images. The two HYDICE images used are shown in Figure 1. Tie points for the 
heavy density case (described below) are shown as diamonds while check points are shown as crosses. The 
straight lines used in the solution also are shown. 

Three levels of tie point density were established, as shown in Figure 2 and Table 1. 
The same 37 check points shown in Figures 1 and 2(d) were used for each experiment. Check points that 

appear on both HYDICE images are counted twice, as they are treated independently. 
All measured object-space straight lines were horizontal and were constrained to be horizontal. 

2.4.3 Evaluation procedure 

Evaluation was done by comparing the calculated world X,Y coordinates of the check points against the 
values using the frame images. No evaluation was done on the Z coordinate, since the HYDICE sensor has 
a very narrow field-of-view (9 degrees) and elevation recovery is weak. For this reason, the Z coordinates of 
the check points were held fixed in the solution, and points that appeared on both HYDICE images were 
evaluated as two separate points. Deviations in the X, Y, and XY coordinates were calculated in a local 
vertical coordinate system, with X being east and Y north. In this case, X also corresponds to the along- 
strip direction and Y to the cross-strip direction. 

In order to gain a better understanding of the characteristics of the solution, three different statistics 
were calculated: the median absolute deviation, the root-mean-square (RMS) deviation, and the maximum 
absolute deviation. Since the RMS statistic is extremely sensitive to large outliers, the median and maxi- 
mum statistics are used to give a better sense of the distribution. 
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(a) 4_3. 

-• - ''u 

(b) 5.3. 

Figure 1: HYDICE test images, with tie points (diamonds), check points (crosses), and constrained lines. 
North is to the left. 
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Table 1: Point test cases. 

Case Figure Pts on 4_3 Pts on 5_3 Pts on both 
1 (heavy) 2(a) 18 17 8 
2 (medium) 2(b) 14 12 5 
3 (sparse) 2(c) 6 6 3 

(a) Point case 1 (heavy). (b) Point case 2 (medium). 

(c) Point case 3 (sparse). (d) Check points. 

Figure 2: Point test cases, check points, and image coverages. 

2.5     Block Adjustment 

The results of the evaluation runs are given in Table 2 and graphically in Figure 3. The interpolative 
model solution for the sparse point case (3) with no lines and 32-line spacing did not converge, due to weak 
geometry with the reduced number of points, so no results are given. 

We rely mostly on the median statistics in analyzing the results, due to the characteristics of the check- 
point errors. The test runs show that there are often one or two very large check-point deviations, not 
representative of the rest of the points. The RMS is greatly affected by these large values, as opposed to 
the median, which gives a better sense of how most of the points behaved. 

Polynomial vs. interpolative platform models.    The motion of an airborne platform can be incred- 
ibly complex, with its characteristics changing during flight. For instance, compare the differences in de- 
formation between images 4_3 (Figure 1(a)) and 5_3 (Figure 1(b)), from adjacent flight lines; in particular, 
straight roads and buildings are much more severely deformed in 5_3 than in 4_3. Whether it is derived 
from navigation data, by a resection solution, or a combination of both, the platform model must meet 
a set of contradictory requirements.  It must have enough degrees of freedom to model the actual motion 
with high fidelity, while too many degrees of freedom may result in an unstable solution susceptible to bad 
measurements. Insufficient degrees of freedom will result in aliasing, with unpredictable results between 
control points. 



Table 2: Check-point error (meters) for HYDICE images. 

Model Pt 
case 

Lines Ref. line 
spacing 

X Y XY 
Med RMS Max Med RMS Max Med RMS Max 

Poly 1 N - 3.1 5.3 10.6 5.7 8.6 22.8 7.7 10.1 24.0 

Poly 2 N - 3.7 5.3 10.8 6.4 9.2 26.1 7.7 10.7 26.9 

Poly 3 N - 4.6 5.7 13.3 5.1 10.1 29.0 6.9 11.6 29.1 

Poly 1 Y - 3.1 5.2 10.6 5.7 8.6 22.8 7.7 10.1 24.0 

Poly 2 Y - 3.7 5.2 10.7 6.3 9.2 26.1 7.6 10.6 26.9 

Poly 3 Y - 4.3 5.6 13.2 5.3 10.1 29.0 6.9 11.6 29.1 

Interp 1 N 32 8.0 19.9 61.8 8.1 14.3 35.4 15.5 24.5 70.3 

Interp 2 N 32 11.7 21.0 58.8 9.2 15.3 42.5 17.1 25.9 67.5 

Interp 3 N 32 Did not converge 
Interp 1 Y 32 3.3 4.8 12.8 4.5 8.5 30.0 5.9 9.8 30.7 
Interp 2 Y 32 2.5 4.8 13.0 5.1 9.6 28.1 6.0 10.8 28.3 
Interp 3 Y 32 5.2 12.3 36.7 5.9 14.0 39.4 10.2 18.7 40.5 

Interp 1 N 64 8.1 11.1 27.5 9.3 13.4 32.2 13.4 17.4 37.6 
Interp 2 N 64 11.1 11.9 24.8 10.5 13.9 34.4 15.5 18.3 39.2 
Interp 3 N 64 12.8 20.7 56.5 15.4 23.5 51.8 24.0 31.3 58.6 

Interp 1 Y 64 3.0 4.7 10.8 3.6 7.3 21.7 5.2 8.7 22.5 
Interp 2 Y 64 3.2 4.7 10.8 3.4 8.2 21.7 4.8 9.4 24.1 
Interp 3 Y 64 3.6 6.7 19.7 5.8 15.5 56.2 8.1 16.9 56.6 
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Figure 3: Median absolute XY check-point error, meters. 
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Table 3: Check-point error (meters) on each HYDICE image, using interpolative model. 

Image Pt 
case 

Lines Ref. line 
spacing 

X Y XY   

Med RMS Max Med RMS Max Med RMS Max 
4.3 
5.3 

1 
1 

Y 
Y 

64 
64 

4.1 
2.4 

4.9 
4.6 

9.7 
10.8 

3.4 
3.9 

3.6 
9.2 

5.9 
21.7 

6.0 
5.2 

6.1 
10.3 

9.8 
22.5 

4_3 
5_3 

2 
2 

Y 
Y 

64 
64 

3.9 
2.7 

4.8 
4.6 

9.6 
10.8 

3.5 
3.4 

4.6 
10.1 

10.9 
21.7 

5.6 
4.7 

6.6 
11.1 

12.5 
24.1 

4.3 
5_3 

3 
3 

Y 
Y 

64 
64 

3.7 
3.0 

8.4 
5.1 

19.7 
10.8 

4.8 
7.6 

7.0 
19.6 

14.7 
56.2 

8.2 
8.1 

10.9 
20.3 

24.6 
56.6 

♦ ♦ 

1, I 

(a) Heavy point density (case 1). (b) Sparse point density (case 3). 

Figure 4: Check point errors for interpolative model with line constraints. 

For this data set, the polynomial model generally performed better than the interpolative model without 
lines, but not as well as the interpolative model with straight line constraints. The interpolative model 
without straight line constraints degrades more rapidly than the polynomial model as the amount of con- 
trol is decreased (going from the heavy (1) to the sparse (3) point densities). This is particularly evident in 
the maximum error statistic in the Y direction. 

In nearly all cases, the error in the Y direction (approximately cross-strip) is worse than in the X direc- 
tion (approximately along-strip). A possible explanation for this is uncompensated sensor roll, due to a 
combination of atmospheric turbulence and a malfunctioning stabilization platform. 

Effectiveness of straight line constraints.    The inclusion of straight line constraints in the interpola- 
tive model solutions improved the results in every case. While decreasing the number of tie points still 
increased check-point error, the results from the runs with sparse points (case 3) are still better than the 
results for the heavy point density (case 1) without lines. This indicates that straight line constraints can 
be used both to improve a solution or as an effective substitute for additional tie points; however, adding 
the straight line constraints to the polynomial model solution made only negligible differences. It may be 
that the polynomial model, with its more limited flexibility, is unable to use the additional information 
from the line constraints. 

It is interesting to note the improvement in the X direction from the addition of the lines. The lines 
are selected parallel to the flight direction and would be expected to mostly improve positioning in the Y 
(cross-strip) direction. It is possible that since the lines make an approximate 30-degree angle to the flight 
direction, they add some geometric strength in the X direction. 

Reference line spacing    Decreasing the reference line spacing for the interpolative model will make 
the model more flexible by increasing its degrees of freedom. Given enough information to determine 
the model, it should recreate the platform motion more accurately and give better results. In this case, 
however, decreasing the reference line spacing generally degraded the results. The additional degrees of 
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(a) RADT9 test area from Flightline 4 (b) CHAFFEE test area from Flightline 7 

Figure 5: Simulated Daedalus ATM near infrared imagery (Band 7) of classification test areas. 

freedom were not adequately determined by the available information, and, in fact, the solution using the 
sparse point density without lines did not converge. 

Variation between images.    As mentioned above, the characteristics of the platform motion can change 
drastically during a mission. The two HYDICE images used in this experiment demonstrate this; exam- 
ination of Figures 1(a) and 1(b) show that image 5_3 is much more deformed than image 4_3. Statistical 
evidence of this is given in Table 3 for a few selected test cases (interpolative model with line constraints). 
Note that the median deviations for the two images are very comparable for each case, but the maximum 
check-point deviations are much larger for image 5.3 than for 4_3. 

Figure 4 shows the check-point errors for the heavy (1) and sparse (3) point densities (interpolative 
model using line constraints, 64 reference line spacing). Note that check-points that appear on both HY- 
DICE images have two error vectors, since they are treated as independent points in each image. The 
sparse case shows much larger check-point errors for a few points; the largest for the sparse case is 56.6 
meters, but 21.7 meters for the heavy case. In both cases, most points have relatively small errors, with 
the larger errors occurring in groups. These groupings tend to indicate areas of higher image deformation 
or weaknesses in the control configuration. 

3.    Automated Analysis of HYDICE imagery 

Because of the volume of image data collected by the HYDICE hyperspectral sensor, these classification 
experiments used a reduced image dataset. To build on our previous experience with Daedalus ATM 
imagery, we simulated Daedalus ATM imagery by averaging the HYDICE imagery bands contained within 
the solar reflective bandpasses of the Daedalus ATM scanner (Table 4). 

Figure 5 shows the two test areas used in the surface material classification experiments. The test areas' 
scene composition include motor pool/barracks (Figure 5(a)) and residential (Figure 5(b)) landscapes. 
Differing percentages and types of natural and man-made materials are present in each of these test areas. 

The test areas are from Flightlines 4 and 7, which have acquisition time differences of 60 minutes. Down- 
welling radiometric conditions between these flightlines changed significantly, as recorded by ground spec- 
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Table 4: Daedalus ATM spectral bandpasses. 

Band 
Number 

Bandpass 
(micrometer) 

Band 
Number 

Bandpass 
(micrometer) 

1 
2 
3 
4 
5 

0.420 - 0.450 
0.450 - 0.520 
0.520 - 0.600 
0.600 - 0.620 
0.630 - 0.690 

6 
7 
8 
9 

10 

0.690 - 0.750 
0.760 - 0.900 
0.910-1.050 
1.550 - 1.750 
2.080 - 2.350 
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Figure 6: Test area subsection surface material classification. 

tral radiance measurements during the overflights. To minimize the effects of changing solar illumination 
and atmospheric conditions between flightlines, the simulated Daedalus ATM imagery was converted to ap- 
parent reflectance by using the gray-scale panel imagery and spectral reflectance measurements to calculate 
band gain and offset coefficients for each flightline. 

Manually-selected training sets for the materials listed in the "Fine Surface Material" column of Table 5 
were compiled from an earlier section of Flightline 4. A Gaussian Maximum Likelihood (GML) classifica- 
tion was performed using the 10 simulated Daedalus ATM bands and selected training sets. Figure 6 shows 
a surface material subsection map from the resulting classification. These subsection maps correspond to 
the outlined regions shown in Figure 5 for the respective test areas. 

The resulting surface material maps were evaluated against manually-generated surface material ground 
truths for each test area. Classification accuracies are 57.9 percent for RADT9 and 60.4 percent for CHAFFEE. 

From Table 6, almost 20 percent of RADT9's classification error is associated with confusion among con- 
crete, asphalt, soil and gravel. Looking at Figure 6(a), there is breakup of the parking lot into asphalt and 
concrete sections probably influenced by surface weathering and vehicular traffic. Also, the barrack roofs 
fluctuate in surface material classification due to illumination changes influenced by building roof struc- 
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Table 5: Fine-to-coarse class grouping. 

Coarse 
Surface Material 

Fine 
Surface Material 

man-made surface asphalt 
concrete 

bare earth 
soil 
clay 

gravel 

vegetation 
grass 

deciduous tree 
coniferous tree 

water deep water 
turbid water 

man-made roofing 
new asphalt roofing 
old asphalt roofing 
sheet metal roofing 

shadow shadow 

Table 6: RADT9 top 5 confusion pairs. 

Ground Truth 
Class 

Classification 
Class 

Number 
Confused 

Error 
Percentage 

concrete asphalt 7074 10.3% 
soil gravel 2756 4.0% 

grass soil 2233 3.3% 
asphalt soil 1703 2.5% 
concrete soil 1558 2.3% 

Total 15324 22.4% 

Table 7: CHAFFEE top 5 confusion pairs. 

Ground Truth 
Class 

Classification 
Class 

Number 
Confused 

Error 
Percentage 

shadow deciduous tree 3571 4.8% 
deciduous tree grass 3447 4.7% 

old asphalt 
roofing 

concrete 2522 3.4% 

grass deciduous tree 2084 2.8% 
asphalt soil 1647 2.2% 

Total 13271 17.9% 

ture. Reviewing Table 7, approximately 12 percent of CHAFFEE'S classification error belongs to shadow, 
deciduous tree and grass confusions. From Figure 5(b) and Figure 6(f), trees and grass dominate the scene 
content of this test area. Some of this reported error is inherent in the ground truth due to the complexity 
of attempting to segment out regions of overlapping tree shadows and canopies surrounded by grass. 

We also are interested in coarse surface material classification, whereby the fine surface material classes 
are grouped into more general categories as listed in Table 5. This type of broad categorization is useful 
in identifying areas containing man-made or natural surface features. Table 8 and Table 9 display the 
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Table 8: RADT9 coarse classification error matrix. 

TEST 

REFERENCE 
man-made 

surface 
bare 
earth vegetation water man-made 

roofing 
shadow Row 

Total 
Commission 

Error 
man-made surface 26677 1973 1509 0 1477 608 32244 17.3 

bare earth 5129 7299 2444 0 254 58 15184 51.9 
vegetation 377 822 14666 0 117 149 16131 9.1 

water 0 0 0 0 0 0 0 * 
man-made roofing 671 182 285 0 1598 367 3103 48.5 

shadow 130 33 425 0 79 1153 1820 36.6 
Column Total 32984 10309 19329 0 3525 2335 68482 

Omission Error 17.3 51.9 9.1 * 48.5 36.6 Percent 
Overall Accuracy = 51393 / 68482 = 75.0% 

Table 9: CHAPFEE coarse classification error matrix. 

TEST 

REFERENCE 
man-made 

surface 
bare 
earth vegetation water man-made 

roofing shadow Row 
Total 

Commission 
Error 

man-made surface 6693 0 1773 0 3809 921 13196 49.3 
bare earth 2213 0 1891 0 684 548 5336 100.0 
vegetation 472 0 43949 0 644 5986 51051 13.9 

water 0 0 0 0 0 0 0 * 
man-made roofing 80 0 92 0 564 116 852 33.8 

shadow 77 0 496 0 318 2527 3418 26.1 
Column Total 9535 0 48201 0 6019 10098 73853 

Omission Error 49.3 * 13.9 * 33.8 26.1 Percent 
Overall Accuracy = 53733 / 73853 = 72.8% 

error matrices for the coarse classification for each of the test areas. Coarse classification accuracies range 
from 72.8 percent (CHAFFEE) to 75.0 percent (RADT9). For RADT9, the majority of the error (10.4 percent) 
involves man-made surface and bare earth confusions while CHAFFEE'S dominant error (8.1 percent) is 
confusion between shadow and vegetation. These coarse surface material confusions have similar trends 
that were seen in the earlier fine material classification. 

^ We are currently working on the use of HYDICE's high spectral resolution for spectral similarity and 
linear mixture analysis with ground-measured surface material reflectance curves. 

4.    Conclusions 

This work has shown the effectiveness of straight-line constraints in the block adjustment of linear push- 
broom imagery when used in conjunction with an interpolative platform model. The techniques demon- 
strated can be used in the absence of navigation data, as was the case for the HYDICE imagery, or in con- 
junction with navigation data in order to improve the accuracy and reliability of the positioning solution. 
This work will be applied to the adjustment of our full block of HYDICE imagery, now in progress. 

Despite the lack of navigation information in the current investigation, there is no theoretical or practical 
reason not to use these techniques in conjunction with GPS/INS data; indeed, our initial plan was to 
include navigation information in the block adjustment solution. Unless the navigation sensor accuracy 
and the system calibration are of very high order, or unless a very large number of high quality (possibly 
automatically generated) tie points are available, it would appear that the use of straight line constraints 
can make significant contributions to the accuracy of a block adjustment. 
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Our ongoing research will attempt to establish whether additional improvements in accuracy can be 
obtained or whether we are at the accuracy limits of the sensor/platform combination without the addition 
of further information. Possible avenues of investigation will include increasing the number of tie points 
by using automated measurement techniques [Heipke et al, 1996] and experimentation with other types of 
geometric constraints, such as right angles. 

With the acquisition of a high spatial resolution HYDICE image set, an opportunity exists to exploit 
the spectral information from hyperspectral imagery to aid urban scene analysis for cartographic feature 
extraction. Radiometrie effects from changing solar illumination and atmospheric conditions must be 
accounted for in order to support comparison of surface material properties across HYDICE fiightlines. 
To use the surface material information to its full potential, accurate geopositioning of HYDICE imagery is 
crucial for fusing surface material information with stereo and monocular cues. 
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