
ADST-II-CDRL-MODARC-9800135A
1 September 1999

ADVANCED DISTRIBUTED

SIMULATION TECHNOLOGY II

(ADST II)

MODSAF ARCHITECTURE

(DO #0066)

CDRLAB01

SCIENTIFIC AND TECHNICAL REPORTS

FINAL

MODSAF RE-ARCHITECTURE REPORT II

For:

United States Army
Simulation, Training, and Instrumentation Command

12350 Research Parkway
Orlando, Florida 32826-3224

By: 19991115 063
Science Applications International

Corporation
12479 Research Parkway
Orlando, FL 32826-3248

Lockheed Martin
Information Systems Company

12506 Lake Underhill Road
Orlando, FL 32825

LOCKHEED MARTIN

Approved for public release; distribution is unlimited

"■WHBaWBD, UNCLASSIFIED

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
1 SEP 1999

3. REPORT TYPE AND DATES COVERED
final

4. TITLE AND SUBTITLE
Advanced Distributed Simulation Technology II
Final MODSAF Re-Architecture Report II

(ADST-II)

6. AUTHOR(S)

5. FUNDING NUMBERS
N61339-96-D-0002

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin Information Systems
ADST-II
P.O. Box 780217
Orlando Fl 32878-0217

8. PERFORMING ORGANIZATION
REPORT NUMBER

ADST-II-CDRL-MODARCH-980013 5

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

NAWCTSD/STRICOM
12350 Research Parkway
Orlando, FL 32328-3224

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The purpose of this report is to document the ADST II ModSAF Re-Architecture modifications and lessons-
learned from the analysis conducted to facilitate the use and development of the ModSAF system. The tasking
under this Delivery Order (DO) is a follow-on effort to the ModSAF Program DO #0009, specifically in the area
of architecture. The efforts in this DO continue to expand on the findings of the Re-Architecture Report from
DO #0009. These efforts focused on reducing maintenance costs and improving usability, and increasing
general capabilities by architectural enhancements.

14. SUBJECT TERMS
STRICOM, ADST-II, MODSAF, simulation, Re-Architecture

15. NUMBER OF PAGES
18

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT UNCLASSIFIED

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

ADST-II-CDRL-MODARC-9800135A
1 September 1999

Document Control Information

Revision Revision History Date
Preliminary 05/10/98

A Final 09/01/99

Approved for public release; distribution is unlimited

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

Table of Contents

INTRODUCTION.

1.1 PURPOSE
1.2 TECHNICAL OVERVIEW .

2. APPLICABLE DOCUMENTS.

2.1 GOVERNMENT
2.2 NON-GOVERNMENT .

3. MODSAF RE-ARCHITECTURE STUDY RESULTS 2

3.1 SINGLE PROCESSOR THREADING EXECUTION 2
3.1.1 Conclusions Concerning the Threaded Socket Interface 3
3.1.2 Combination Testing Results 4
3.1.3 General Conclusions Regarding Threading ofModSAF Capabilities 4

3.2 MEMORY ANALYSIS CAPABILITY 6
3.3 DYNAMICALLY LINKING MODSAF MODULES 7
3.4 FSM COMPILER ENHANCEMENTS 7
3.5 TIME MANAGEMENT 10
3.6 DIGITAL MESSAGE INTERFACE 10

4. CONCLUSION 12

5. POINTS OF CONTACT 14

6. ACRONYM LIST 15

Approved for public release; distribution is unlimited

UNCLASSIFIED

ADST-II-CDRL-MODARC-980013 5 A
1 September 1999

1. Introduction

1.1 Purpose

The purpose of this report is to document the ADST II ModSAF Re-Architecture
modifications and lessons-learned from the analysis conducted to facilitate the use and
development of the ModSAF system. The tasking under this Delivery Order (DO) is a
follow-on effort to the ModSAF Program DO #0009, specifically in the area of architecture.
The efforts in this DO continue to expand on the findings of the Re-Architecture Report from
DO #0009. These efforts focused on reducing maintenance costs and improving usability,
and increasing general capabilities by architectural enhancements.

1.2 Technical Overview

Architectural enhancements to be addressed under this DO include:

• Single Processor Threading Execution
• Memory Analysis Capability
• Dynamically Linking ModSAF Modules
• FSM Compiler Enhancements
• Time Management
• Digital Message Interface

These enhancements and their efficacy within ModSAF system are described in the following
paragraphs.

2. Applicable Documents

2.1 Government

ADST II Statement of Work (SOW) for ModSAF Architecture Delivery Order, AMSTI-97-
W087, 9 September 1997.

2.2 Non-Government

ModSAF Re-Architecture Report, ADST-II-CDRL-011R-9600207,28 June 1996.

Approved for public release; distribution is unlimited

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

3. ModSAF Re-Architecture Study Results

3.1 Single Processor Threading Execution

In general, it is believed using a multithreaded execution model would significantly increase
overall performance of the ModSAF runtime, even on a single processor based system.
Separate parts of the program could be divided into individual threads, each performing its
clearly defined task in concert with the others. Processor time then could be put to better use
by dispatching these threads when processor time is available. The context of a thread is
much less than that of a process, and data is automatically shared across sibling threads. The
kernel's scheduling algorithms are clearly a better choice to support multithreaded execution
because of their efficiency and portability. Useful work could be performed by the CPU,
instead of waiting during expensive delay loops, or for alarm signals to perform task
switching functions. The complexity of design and code for new tasks would not be as
dependent on overall program execution flow, providing less development impact for new
DOs.

Threads in the ModSAF program were created indirectly through the development of the
libsafthrd API interface. When a thread object is created, it is spawned by a call to the
safthrdcreate library operation. This service creates the thread by configuring the thread's
execution attributes and using the underlying system's capabilities to begin the new thread's
execution. The following figure shows the flow of this operation. Allowing the safthrdcreate
call to establish thread attributes and initiate the new thread abstracts thread creation away
from the calling environment.

Enter Thread Create

Validate Creation Parameters

Yes

Process Thread Execution,
Scheduling, and Priority Attributes

Report Thread Creation Error
Status

(Run the Thread Routine Using the
Thread Attributes Specified with the

Thread Creation Call)

Exit Thread

Approved for public release; distribution is unlimited

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

Thread execution attributes are made available to the initiator through enumerated types
defined in the libsafthrd library. Other values, such as thread priority, are passed to the
creation operation and tested for compliance with the capabilities of the underlying
implementation. Should these values be invalid, an error is reported. If the thread attributes
are valid, they are used to modify the execution characteristics of the thread prior to calling
the target routine. The thread function pointer that is provided in the input to the creation
operation is used to run the target routine in the context of the new thread. Parameters for this
target function are also passed to the routine using a parameter list pointer. Any resource
allocation needed to create the thread will be made by the libsafthrd library through the
underlying architecture. If the target function is joinable and provides return status, this status
will be propagated back to a joining thread when this thread exits. If the thread is created as a
detached or server thread, it never has to exit and returns no status.

3.1.1 Conclusions Concerning the Threaded Socket Interface

The benchmark test results demonstrate the implementation of the threaded socket interface
is functionally operational for packets sent to, and received from the same workstation. While
the throughput increase was not as dramatic as expected, it was at least as good as the non-
threaded version. With a single processor platform, this lack of extensive improvement is not
unreasonable. The normal operation on network packets in the benchmark is to send a packet
onto the network, then read a packet back. In either the non-threaded version, or the threaded
version this sequence requires the nearly same amount of functional overhead to be
expended.

The basic socket interface is now using a blocked socket, instead of an unblocked socket
connection. This allows the socket connection to synchronize data transfers through it. The
non-threaded version needed to make adjustments in the application code to achieve the same
result. When packet transactions are performed to the network, most of the conditions
bypassing the application overhead will be satisfied, resulting in more efficient execution.

The socket thread is performing much of the low-level functions and absorbing the system
interface overhead associated with the socket read calls. When this threaded version is ported
to a multiprocessor system, the socket thread overhead can be further segregated from the
main application by separating the executions of the two threads onto separate CPUs.
Because the main thread has only the overhead of buffer reads, and is not severely impacted
by the high overhead socket read calls, the network PDU packet reads will less impact it.
Because the packet interface buffer between the threads can be adjusted in size, the efficiency
of the buffer interface may be tuned for the best performance.

The tests that capture the throughput of packets between the workstations represent closer to
the normal network packet activity in ModSAF during general use than the activity in the
benchmark tests. These results again show a minimal gain in packet throughput for a low
numbers of packets read, but they also show an increase percentage gain when the number of
PDU packets transacted increases. Again, many of the observations and conclusions stated

Approved for public release; distribution is unlimited 3

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

for the benchmark tests can be applied to the explanation of gains when packets are read from
external stations.

Two main conclusions may be stated from the results of the network packet tests using the
Blaster program:

A. The threaded version of ModSAF functionally operates as expected from the intent of the
design.

B. The threaded version of ModSAF functionally performs equally as well as the non-
threaded version, even when high numbers of packets-per-second are being processed.

3.1.2 Combination Testing Results

The test runs executed as a combination of the benchmark and network packet tests provides
an even greater opportunity to test the packet throughput capability for the threaded version
of ModSAF. These tests show a significant improvement in packet throughput over the
comparable non-threaded version of the program. These performance gains most likely are a
result of the operation of the main thread in this type of test execution mode. The
combination of packet transactions from within the same station and also from remote
stations provides a greater availability of packets to process, and therefore a greater number
of packets in the buffer, for the main thread to process. The socket thread can fill the packet
buffer when it gets time to run and spends less time waiting for packets from the network as
these packets come from both the local station and other stations. While the performance of
throughput of 91.7% for the first test may be exceptional, the improvement is still significant
as verified by the 36.6% increase from the second test. This type of improvement gives
credibility to the assumption that multiple processor platforms will provide significant
performance improvement with the threaded version of ModSAF.

3.1.3 General Conclusions Regarding Threading of ModSAF Capabilities

In the process of creating the thread API library libsafthrd and converting the socket read
capability in libpktvalve several issues were addressed to accomplish these goals:

A. First, libsafthrd is ultimately intended to provide a generic threads API for the ModSAF
program. Other parts of ModSAF will be easily able to create and use threads on any
platform where ModSAF runs. The support on various platforms is not so generic and is
not supported as consistently as would be desired. The current implementation of
libsafthrd uses a minimal POSIX pthreads interface and consequently will function
properly on any platform that supports a pthreads API. While POSIX pthreads is defined
as a standard, it is not implemented in a similar way across all platforms supporting it.
Libsafthrd uses a minimal subset of pthread functionality and may not realize any
detrimental effects from this, as long as the minimal requirements for libsafthrd
operations are met.

Approved for public release; distribution is unlimited

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

B. Second, the implementation of the read socket interface was more problematic at the level
of implementation than first thought during design of the interface. Several issues about
how much functionality in libpktvalve should be put into the thread, or left in the main
thread were complicated by several sub-functions being performed in libpktvalve by the
read routines. These sub-functions include the unbundling of packets, the filtering of
PDU packets, and the dispatching of PDU packets. The reduced risk of the lower layer of
implementation allowed the socket thread to divorce itself of these issues by passing the
packets to the main thread were these operations could be performed as needed. The
downside of this implementation was the inability to take advantage of threading the
socket interface at a higher implementation level and separating more functionality into
the socket interface thread. The risk at this level is greater, but the benefits could also be
greater if successful.

C. The third issue is in regards to the general threading of ModSAF functionality.
Conceptually, threading of an application requires several characteristics be present to
accomplish performance improvements or even the basic ability to thread the application.
These characteristics include the following:

1. A task must be identifiable as an independent functional module. Does it use
common resources of the other parts of the program? Does it depend extensively
on other parts of the program? Can it execute separately and minimally effect
other parts of the program?

2. The task must be able to run when necessary to accomplish its duty. Does the task
become blocked extensively waiting for a resource? Does the task need to
interface often with other parts of the program? Can the task tolerate either of
these conditions and still perform its job effectively?

3. The task must be able to interface asynchronously with the other parts of the
program. Are the objects affected by the task used by many other operations
within the program? Are the objects affected by the task universally available to
all tasks using them? Do the objects affected by the task change often? Are the
objects affected by the task critical to the operation of the program? Will
synchronization of these objects adversely affect program performance?

4. The relative importance of the task must be controlled. Can the priority or
scheduling of a task be set relative to the other work occurring in the program?
Will simultaneous execution severely impact overall program performance?

ModSAF has many operations that do not conform to some or all of these basic requirements
allowing them to be easily converted into a threaded implementation. The liberal use of
dynamically created objects complicates the ability to thread and synchronize many tasks.
The multifunctional nature of many operations makes the separation of these tasks into
threads more problematic. Although the results of the threading of the socket read task were
completed successfully, the implementation was not straightforward due to the complexities

Approved for public release; distribution is unlimited 5

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

of the code and may be more complicated in other areas of the program. Before the threading
of a particular operation is attempted, the conformance to the requirements listed above needs
to be carefully evaluated.

3.2 Memory Analysis Capability

The memory management task resulted in the development and testing of a general purpose
library that provides benefits to applications like ModSAF.

This library started out as MemBoy and is now called HeapMan. HeapMan provides
specialized allocation pools on top of the standard memory allocation mechanisms available
in ANSI-C (i.e. malloc, realloc, free). These specialized pools can be used to take advantage
of specific patterns of memory allocation and deallocation that take place in ModSAF.

HeapMan provides three types of pools:

• Fixed-size block: Useful for code that needs to manage many objects that are the
same size.

• Constant: Useful for code that allocates lots of memory without the intent of ever
deallocating it.

• List: A pool of objects that have built in doubly-linked list functionality.

These pools can be stacked. For example, a list pool can be built from fixed size objects that
are in turn permanent objects.

HeapMan also provides hook functions that can be used to insert debugging code at any point
in the allocation process. This is useful for tracking bugs.

This library was linked into an experimental version of the ModSAF source code. A few
libraries were picked to upgrade to it based on their heavy use of memory allocation and their
use of memory in specific ways that is covered by HeapMan.

Testing was done to determine the impact of these changes. The testing showed that just by
changing a few libraries, approximately 6% less memory was consumed by the SAF for a
benchmark run. This represented 2.4 megabytes of the approximately 40 megabytes
consumed total. Performance was improved by just over 1%.

This code is clearly worthy of integration because it improves both performance and memory
consumption. It has not been integrated so far because it will have an impact on many
libraries in the system.

Approved for public release; distribution is unlimited 6

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

3.3 Dynamically Linking ModSAF Modules

The purpose of the dynamically loadable modules (DLM) task is to make the SAF more
modular at run-time. This means making some functionality loadable at run-time upon
demand instead of requiring it to be always available at link time.

Examples of the kind of functionality that can be loaded at run-time include the behavior and
physical models. Ideally, these models would be loaded at run-time upon the creation of a
unit that uses those models. This way, changes to these models have less impact on the rest
of the system at build time.

This task implemented the necessary infrastructure to dynamically load behavior modules.
This includes the code necessary to remove the compile-time dependencies that behavior
libraries have on each other in the form of a resource database that can be used to share data.
Also, many changes were made to the build process to make it possible to specify which
behaviors were statically linked into the monolithic executable and which ones are
dynamically loaded.

For this task, one behavior library, urendevous, was updated to take advantage of the new
architecture. This library was chosen because of its small number of dependencies on other
behaviors. The rest of the behaviors will take more work to flush out the legacy
dependencies.

3.4 FSM Compiler Enhancements

ModSAF behaviors are implemented as a variant of traditional Finite State Machines
(FSMs). ModSAF maintains a special C extension language for developers to define
behaviors. The FSM compiler, fsm2ch, converts this language into C code. The C extension
language describes the structure of the behavior and provides the syntax on the mechanics of
the behavior (e.g., how to transition between states, how to handle events). This language is
augmented by C code to fill in the details of the behavior.

This behavior language benefits developers by automatically generating interfaces to the task
manager and the rest of the system (thus ensuring consistent interfaces), automatically filling
in the details of the task transitions, and establishing event handlers parameter changes and
the behavior getting its normal time to run (tick). This auto-generation of code frees
developers from writing largely duplicate code to handle the mechanics of the SAF's FSMs
and reduces maintenance costs since the code is generated.

In the existing (platoon and above) behaviors, the unit executing a behavior often checks to
see if their subordinates have changed (e.g., been deleted, destroyed, mobility impaired) and
if so, react accordingly (e.g., shuffle their formation, call off the attack). Unfortunately there
was no support in the FSM language to help with this, and so behavior writers have all

Approved for public release; distribution is unlimited 7

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

established their own methodology and code to handle these cases. This has made the
behaviors unnecessarily difficult to read for SAF developers, and created a bevy of
duplicated code.

To remove the need for developers of future behaviors to create their own checks to
determine if their subordinates have changed, an optional new event handler was added to the
FSM language called subord_changed. As part of this effort, modifications were also made
to the task manager, which controls behavior execution on entity. Before these
modifications, the task manager would invoke a behavior's parameter change handler if its
parameters had been altered since it last ran, and if its time to tick had arrived. The task
manager was modified to now check if an entity's subordinates had changed since the last
time the task manager ran this a given behavior, and if so, it would invoke the behavior's
subord_changed event handler, if one was defined.

The advantages of these modifications were then demonstrated in an existing behavior,
urwaassemble. A snippet of code from a state in the original behavior used to look like:

assembling
tick

{
int32 i, all_done;
UUTIL_NUM_SUBS num_subs;

/*
* If the number of subordinates has changed
* then reassign the tasks.

*/
num_subs =
unitutil_subordinates_changed(priv->n_subordinates,
priv->subord_id,
unit_entry,
SAFCapabilityMobility);

if (num_subs != UUTIL_NUM_SUBS_SAME)
Ado_stop; kids have changed

/* Check to see if all the vehicles have arrived
* at their assigned positions:

*/
for (all_done = TRUE, i = 0; i < priv->n_subordinates;

i++)
{

if (!vrmove_done(priv->po_db,
&state->vrmove_tasks[i]))

all_done = FALSE;

}
if (all done)

Approved for public release; distribution is unlimited

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

params

in_assembly;

}

{
urass_update(priv, state, unit_entry,
parameters, vehicle_id);
'"do_stop;

}

Became:

assembling
tick

{
int32 i, all_done;

/* Check to see if all the vehicles have arrived
* at their assigned positions:

*/
for (all_done = TRUE, i = 0; i < num_subordinates;

i++)

{
if (!vrraove_done(priv->po_db,

&state->vrmove_tasks [i]))
all_done = FALSE;

}
if (all_done)

■*in_assembly;

params
{

urass_update(priv, subordinates, num_subordinates,
state, unit_entry,

parameters, vehicle_id);
*do_stop;

}

}

subord

*do_stop; kids have changed

Note that the highlighted areas in the original code have been changed the highlighted areas
in the modified code. These behaviors perform functionally equivalent.

These modifications will allow more consistent behavior development without adding
duplicate, difficult to maintain code, and eases visibility of the logic of the behavior for
maintainers.

Approved for public release; distribution is unlimited 9

UNCLASSIFIED

ADST-II-CDRL-MODARC-9800135A
1 September 1999

The FSM compiler enhancements have reduced the amount of code development necessary
for future behavior programmers. The subordinate changed event handler now provides a
consistent and maintainable mechanism for dealing with subordinate changes. Any changes
to the mechanics of how a behavior determines that its subordinates have changed can be
made in the task manager, rather than in the individual behaviors that use this approach. This
functionality was incorporated into ModSAF 5.0, and developers of future platoon and above
behaviors should take advantage of it

3.5 Time Management

This effort was not implemented, as per customer request, as a duplicate effort is being
performed by another organization sponsored by STRICOM.

3.6 Digital Message Interface

A Digital Message Interface (DMI) was implemented in order to support Command, Control,
Communication, and Computer Interface (C4I) and digital messaging. This implementation
is incorporated into the OneSAF Testbed Baseline, Build B software tree.

The DMI provides the mechanism to send and receive FBCB2 Variable Message Format
(VMF) messages contained within Signal PDUs on the Simulation Local Area Network. The
DMI utilizes the network communication libraries currently implemented in the SAF. The
two main components of the DMI are the Digital Message Manager (DMM) and the Digital
Data Manager (DDM).

The DMM interfaces directly with the SAF network communications library in order to
process incoming and outgoing digital messages. The DMM utilizes configuration files that
describe the message type formats (e.g., VMF), therefore if a message format changes it will
not affect the DMM implementation. The DMM maps the message format described in the
configuration file with the message data provided by the DDM.

The DDM interfaces with the behavior libraries by providing a mechanism for the libraries to
register their pertinent data for outgoing messages, and register for callbacks for significant
event information in incoming messages.

The VMF messages implemented within the SAF behaviors utilize the new C4I interface to
send and receive messages. The messages implemented are described in the following table.

Message Predicate Condition Send
Receive Response

Approved for public release; distribution is unlimited 10

UNCLASSIFIED

ADST-II-CDRL-MODARC-980013 5 A
1 September 1999

Message Predicate Condition Send
Receive Response

1. Situation Report
K05.14

A subordinate unit detected low fuel or
ammo, has been resupplied, or has just
engaged enemy.

The situation report message will be sent
from a subordinate unit to its immediate
superior.

N/A N/A

2. Spot/Salute Report
K04.1

A subordinate unit receives an OTB SAF
operator's command to send a spot
report, the unit detects enemy contact,
engagement, or/and salute events

Subordinate units transmit spot, contact,
engagement, and salute events in the
Spot/Salute report.

N/A N/A

3. Message To
Observer

K02.14

Transmission of fire mission data to the
originator of the Call for Fire.

N/A N/A

6. Call for Fire (CFF) /
On-Call Fire
K02.4
K02.12

N/A N/A

The designated artillery unit receives the
order.

The artillery unit fires at the proper target
locations.

Ack req'd.

7. Subsequent Adjust
Command
K02.22

N/A N/A

The designated artillery unit will receive
the order.

The artillery unit changes the target
locations.

Ack req'd

Approved for public release; distribution is unlimited

UNCLASSIFIED

11

ADST-II-CDRL-MODARC-980013 5 A
1 September 1999

Message Predicate Condition Send
Receive Response

8. Check Fire
K02.

N/A N/A

The artillery unit receives the Check Fire
message.

The artillery unit halts engagement. After
receiving this message the artillery unit
may receive an End of Mission message
from the FBCB2 unit to halt the mission.

Ackreq'd

In the DMI implementation, there is Message Managers and Data Managers at the vehicle,
platoon, company, and battalion behavior levels to process the SA/C2 messaging for and
between the respective levels, and a utility library to provide dynamically bound interfaces.

A new library, Libdmiutil, provides a set of functions to allow behaviors, the Data Manager,
and the Message Manager to communication in a common way. The design uses routines
similar to libpduapi to load data files and to allow another library to define which attributes
in the data file's fields will be used in the interface.

New libraries, Lib*dmimm, represents the DMI Message Manager library at the vehicle
level, libvdmimm; at the unit level, libudmimm; at the company level, libucdmimm; and at
the battalion level, libubndmimm.. The basic functional requirements for each of the
Message Managers is to provide a generic interface with the respective Data Manager and
pass information to and from SAF's network libraries.

New libraries, Lib*dmidm, represents the DMI Data Manager library at the vehicle level,
libvdmidm; at the unit level, libudmidm; at the company level, libucdmidm; and at the
battalion level, libbndmidm. Each of these libraries contain data structures for
communication at the appropriate echelon level.

The Digital Message Interface architectural changes were found to be successful in the
transmission and reception of digital messages and will be incorporated into the OneSAF
Testbed Baseline Build B which will be released in November 1999.

4. Conclusion
Under this DO, several architectural enhancements were analyzed, implemented, and
evaluated for their impact upon reducing maintenance costs, improving usability, and
increasing general capabilities of the ModSAF baseline. Some enhancements, such as the
with the FSM compiler and Digital Message Interface, provided immediate improvement to
the system and were incorporated into a release of the software. Other enhancements, such as

Approved for public release; distribution is unlimited

UNCLASSIFIED

12

ADST-II-CDRL-MODARC-9800135A
1 September 1999

Single Processor Threading and Memory Management require further analysis and
development so that their benefits to the system can be fully realized. Dynamically linking
ModSAF modules proved to be a considerable benefit and an initial implementation was
incorporated into the ModSAF 5.0 baseline, and further implementation is anticipated to be
released in the near future.

Approved for public release; distribution is unlimited 13

UNCLASSIFIED

ADST-H-CDRL-MODARC-980013 5 A
1 September 1999

5. Points of Contact

ADSTII ModSAF Architecture Team
Bryan Cole
Project Director
407-306-4062
Brvan.A.Cole@saic.com

Derrick Franceschini
Project Engineer
407-306-4113
Derrick.J.Franceschini@saic.com

Deanna L. Nocera
OTB C4I Lead
407-306-3706
Deanna.L.Nocera@saic.com

James (Gene) McCulley
407-306-2557
James.E.McCullev@saic.com

Barry Savchuk
407-306-5589
savchukb@adstii.com

Approved for public release; distribution is unlimited

UNCLASSIFIED

14

ADST-II-CDRL-MODARC-9800135A
1 September 1999

6. Acronym List

ADST

DO

FSM

ModSAF

SAF

SOW

STRICOM

Advanced Distributed Simulation Technology

Delivery Order

Finite State Machine

Modular Semi-Automated Forces

Semi-Automated Forces

Statement of Work

(US Army) Simulation Training and Instrumentation Command

Approved for public release; distribution is unlimited

UNCLASSIFIED

15

