
_ _ Carnegie Melion
_ Software Engineering Institute

Guidelines for
Software Engineering
Education
Version 1.0

Donald J. Bagert, Texas Tech University
Thomas B. Hilburn, Embry-Riddle Aeronautical University
Greg Hislop, Drexel University
Michael Lutz, Rochester Institute of Technology
Michael McCracken, Georgia Institute of Technology
Susan Mengel, Texas Tech University

November 1999

19991109 159

TECHNICAL REPORT
CMU/SEI-99-TR-032

ESC-TR-99-002

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA

15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

I nuiresconeringaplictin

o tesesttemnt
shul bediectd

o te rovst Caneie
elon niersty 500 orbs vene.Pitsbrgh

P

CarnegieMellon
"--. Software Engineering Institute

Pittsburgh, PA 15213-3890

Guidelines for
Software Engineering
Education
Version 1.0

CMU/SEI-99-TR-032
ESC-TR-99-002

Donald J. Bagert, Texas Tech University
Thomas B. Hilburn, Embry-Riddle Aeronautical University
Greg Hislop, Drexel University
Michael Lutz, Rochester Institute of Technology
Michael McCracken, Georgia Institute of Technology
Susan Mengel, Texas Tech University

November 1999

Networked Systems Survivability Program

Unlimited distribution subject to the copyright.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.

Department of Defense.

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http:l/www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Preface vii

1 Introduction 1

2 Objectives 3

3 Guidelines Development 5

4 Software Engineering Body of Knowledge 7
4.1 Core Area 8
4.2 Foundations Area 9

4.3 Recurring Area 10
4.4 Supporting Area 11

5 A Software Engineering Curriculum
Model 13
5.1 A Profile of Graduates 14
5.2 Curriculum Architecture 14
5.3 Design Concepts 15
5.4 Curriculum Content 16
5.5 Software Engineering Modules 18
5.6 Sample Curriculum Implementations 37

6 Curriculum Support 49
6.1 Faculty 49
6.2 Infrastructure 49

6.3 Industry Participation 49
6.4 Student Involvement 49

7 Curriculum Assessment and
Accreditation 51

8 Conclusion 53

CMU/SEI-99-TR-032

DTIC QUALITY INMEMD 4

9 Acknowledgments 55

10 References 57

ii. CMU/SEI-99-TR-032

List of Figures

Figure 1: Key Elements of Curriculum Design 13

Figure 2: Curriculum Content Areas 17

Figure 3 SE Module Prerequisite Chart 18

CMU/SEI-99-TR-032 W

iv CMU/SEI-99-TR-032

List of Tables

Table 1: Knowledge Definitions 8

Table 2: SE Modules 20

CMU/SEI-99-TR-032 v

v! CMU/SEI-99-TR-032

Preface

The last twenty years have witnessed significant advancements in the state of computer
science education (and in allied fields such as computer engineering and information
systems). The Association for Computing Machinery (ACM), the IEEE Computer Society
(IEEE-CS), and the Computer Sciences Accreditation Board (CSAB) have provided
encouragement, support, and guidance in developing quality curricula that are viable and
dynamic. We have moved from language and coding centered curricula to programs that
emphasize theory, abstraction, and design. However, most academic programs in computing
still devote little time to areas such as requirements modeling, design methods, architecture,
reuse, software processes, quality issues, team skills, and other areas of software engineering
essential to effective commercial software development. Members of the Working Group on
Software Engineering Education and Training (WGSEET) have prepared this document to
provide guidance and support for the development of undergraduate computing curricula that
better support the education of software engineering professionals.

In recent years, there has been a burst of interest and activities associated with advancing the
state of the software engineering profession. Since 1993, the IEEE-CS and ACM have been
actively promoting software engineering as a profession. Special task forces have been
directed at establishing a software engineering code of ethics and professional practice,
determining accreditation criteria for software engineering programs supporting curriculum
development, and preparing a guide to the software engineering body of knowledge. In 1998,
the IEEE-CS and the ACM formed the Software Engineering Coordinating Committee
(SWECC) to foster the evolution of software engineering as a professional computing
discipline and to coordinate the various software engineering "maturing" activities. An early
draft of the Guidelines, that included a software engineering body of knowledge, was given
to the SWECC project that is developing a guide to the software engineering body of
knowledge. Another SWECC project is the Software Engineering Education Project
(SWEEP). It was established to develop curriculum recommendations for software
engineering programs. The WGSEET has shared its work on the Guidelines with SWEEP
and supports the objectives of SWEEP. As the SWEEP efforts progress, WGSEET will
continue to share its work and pursue complementary projects related to the improvement of
software engineering education.

The two central parts of the Guidelines are the description of a software engineering body of
knowledge and a curriculum model. The body of knowledge presents a high-level
organization and description of the software engineering that supports effective curriculum
design; and the curriculum model consists of a design architecture, a set of design concepts,
and curriculum content guidance. We believe that this material and other guidance offered
will provide assistance to faculty in the design and development of quality programs in
software engineering and related curricula.

CMU/SEI-99-TR-032 vii

viii, CMU/SEI-99-TR-032

1 Introduction

Into the foreseeable future, software will play an increasingly important and central role in all
aspects of daily life. The number, size, complexity, and application domains of programs
being developed will grow dramatically. Unfortunately, there are serious problems in the
cost, timeliness, and quality of development of many software products. The code in
consumer products is doubling every two years; it is almost the norm for software projects to
overrun their planned cost and schedule. Many large-scale development projects are never
completed, and many of those completed do not meet the user requirements and are of poor
quality [Gibbs 94]. These issues have placed an increasing demand for software developers
who are equipped not only to deal with the scientific and technical aspects of computing, but
for those who have professional education and preparation for the practice of software
engineering [Denning 92, Ford 96, Lethbridge 98]. This includes practice related to use of
software processes, measurement and analysis, front-end development methods, quality
engineering, software maintenance, testing, and working as part of a team. Unfortunately,
too few academic programs offer curricula that focus on this type of education. The solution
to this problem depends heavily on the ability of faculty to redesign and implement curricula
that not only emphasize computer science, information science, and technology, but also
focus on the "practice" of software engineering (SE) and include the equally critical people
and process issues. The main purpose of these Guidelines is to provide assistance to faculty
in the design and development of programs in software engineering and related curricula.

CMU/SEI-99-TR-032 1

2. CMU/SEI-99-TR-032

2 Objectives

The specific objectives of these Guidelines are as follows:

0 Promote discussion among professionals in education and industry that will improve
software education in all institutions at an international level.

0 Encourage greater commonality in software education within and across computing
disciplines.

* Provide a coherent, structured description of software engineering concepts, knowledge,
and practices that support software education curriculum development.

* Develop a model curriculum for software engineering that can be applied in whole, or
part, to the development of software education programs.

CMU/SEI-99-TR-032 3

4 CMU/SEI-99-TR-032

3 Guidelines Development

In November 1997, the Working Group on Software Engineering Education and Training
(WGSEET) met in Pittsburgh and discussed the need for a set of guidelines to support the
design and implementation of software engineering courses and curricula. The WGSEET is a
group of industry and academic professionals interested in promoting the development and
future outlook of software engineering education and training [WGSEET]. The WGSEET
meets twice a year (in fall at the Frontiers in Education Conference, and in spring at the
Conference on Software Engineering Education and Training) to engage in activities that
promote and support the education and training of software engineers. Although there are
existing curriculum guides produced for various computing curricula [Barnes 98, CSAB 98,
Tucker 91] and some early work done to support software engineering curriculum
development [BCS 89, Ford 90], there is no existing document that provides broad and
comprehensive information and direction for the development of undergraduate programs in
software engineering. In the past two years one of the primary activities of the WGSEET has
been to address this deficiency by preparing this document.

CMU/SEI-99-TR-032 5

6 CMU/SEI-99-TR-032

4 Software Engineering Body of
Knowledge

Software engineering as a field of study and practice is a relatively new discipline. Some
would argue that it is not even an engineering discipline; however, a more prevalent view is
that it is simply evolving and not yet mature [Ford 94]. However, in order to provide
curriculum guidance in software engineering education there is a need for a description and
understanding about what knowledge makes up the field of software engineering. There have
been recent efforts to organize and define a software engineering body of knowledge. The
IEEE-CS and the ACM have a long-term effort underway to develop a comprehensive body
of knowledge for software engineering [Dupuis 98]. A body of knowledge was developed to
help define and assess the software competencies needed in a software-intensive organization
[Hilburn 99]. However, for the purpose of this project, we felt that a simpler and more
focused description of software engineering knowledge was needed. In this section, we
present a high-level organization and description of the software engineering body of
knowledge (SE-BOK) that supports effective curriculum design. (Note that SWEBOK is the
abbreviation used in A Guide to the Software Engineering Body of Knowledge [Dupuis 98] to
designate the software engineering body of knowledge.) The SE-BOK is organized into four
"knowledge areas:" the Core Area, the Foundations Area, the Recurring Area, and the
Supporting Area. Each knowledge area is further subdivided into "knowledge components."
Definitions for the various knowledge terms used in this document are defined in Table 1. In
the following sections, we describe each knowledge area and its components.

CMU/SEI-99-TR-032 7

Term Definition

Knowledge the whole spectrum of content for the discipline: information, terminology, artifacts,
data, roles, methods, models, procedures, techniques, practices, processes, and
literature

Body of a hierarchical description of software engineering knowledge that organizes and
knowledge structures the knowledge into two levels of hierarchy: "knowledge areas" and
(BOK) "knowledge components"

Knowledge a sub-discipline of software engineering that represents a significant part of the body
Area (KA) of software engineering knowledge. Knowledge areas are high-level structural

elements used for organizing, classifying, and describing software engineering
knowledge. A knowledge area is composed of a set of "knowledge components."

Knowledge a subdivision of a KA that represents SE knowledge that is logically cohesive and
Component related to the KA through inheritance or aggregation
(KC)

Table 1: Knowledge Definitions

4.1 Core Area

The Core Area includes those components that define the essence of software engineering:

"* Software Requirements
"* Software Design
"* Software Construction
"* Software Project Management
"* Software Evolution

A. Software Requirements Component

The Software Requirements component includes knowledge concerned with establishing
a common understanding of the requirements to be addressed by a software project. It
includes methods, techniques, and tools associated with the collection, analysis,
specification, and review of software requirements.

8 CMU/SEI-99-TR-032

B. Software Design Component

The Software Design component includes knowledge about principles, methods and
techniques for describing how a software product will be implemented so that its
requirements are satisfied. This includes methods, techniques, and tools associated with
the various types of design activities: architectural design, component design, interface
design, data design, and algorithm design.

C. Software Construction Component

The Software Construction component includes, in addition to knowledge about language
syntax, issues related to coding style and standards, internal documentation, code
prototyping, code reuse, analysis and choice of implementation tools, and
implementation strategies in the use of various language paradigms (such as assembler,
procedural, and object-oriented).

D. Software Project Management Component

The Software Project Management component addresses issues involving the creation,
development, and maintenance of software projects. This area includes project
management, risk analysis, project planning, project administration, and configuration
management.

E. Software Evolution Component

The Software Evolution component addresses the knowledge and techniques necessary to
enhance, perfect, and modify software over time. It includes the issues of software
maintenance, extensibility, software adaptability to different environments, and software
reengineering.

4.2 Foundations Area

The Foundations Area includes those components which undergird the Core Area and
Recurring Area (explained on page 10). The Foundations Area consists of the following
components:

"* Computing Fundamentals

"* Human Factors

"* Application Domains

CMU/SEI-99-TR-032 9

A. Computing Fundamentals Component

The Computing Fundamentals component addresses those topics upon which effective
software development can be built. The topics include foundations of computing,
programming, programming language concepts, history of computing, data structures,
algorithm analysis, compiler organization, computer complexity, operating systems, and
computer architecture.

B. Human Factors Component

The Human Factors component encompasses the two broad categories characterized by
users who utilize software and by system developers who construct software. In these
two categories, interface design, ergonomics, development environments, team
dynamics, and communication are of primary concern to facilitate and make efficient the
human-computer interface.

C. Application Domains Component

The Application Domains component includes knowledge about how software
engineering techniques should be used effectively in various application domains: real-
time systems, database and information systems, high-performance computing,
intelligent systems, graphics applications, systems software, and so on.

4.3 Recurring Area

Components in the Recurring Area are threads that occur through all of the Core Area
components. The Recurring components include the following:

"* Ethics and Professionalism

"* Software Processes

"* Software Quality

"* Software Modeling

"* Software Metrics

"* Tools and Environments

"* Documentation

A. Ethics and Professionalism Component

The Ethics and Professionalism component addresses those ethical, social, and
professional issues inherent in producing software and interacting with colleagues and
clients. This component includes legal, quality, confidentiality, environmental, safety,
workplace and harassment, and professional certification concerns.

10 CMU/SEI-99-TR-032

B. Software Processes Component

The Software Processes component involves the definition, implementation, evaluation,
and improvement of software engineering processes. It includes models for categorizing
software maturity and applying software skills and techniques.

C. Software Quality Component

The Software Quality component encompasses the techniques and skills necessary to
assure that software meets its requirements, that software development and maintenance
processes are sound and measurable, and that, when required, software exhibits the
characteristics of survivability, safety, and fault tolerance.

D. Software Modeling Component

The Software Modeling component covers principles and methods for modeling software
architectures and software development entities. This includes techniques for using
abstraction, modularity and hierarchy to model software functionality, data object
relationships, behavior models, and formal methods.

E. Software Metrics Component

The Software Metrics component encompasses the tools and techniques for performing
experimental analysis on, keeping historical records on, and monitoring the progress of
software engineering processes, artifacts, and resources. It involves metrics definitions,
data collection, and experimental techniques.

F. Tools and Environments Component

The Tools and Environments component includes knowledge about the tools and
environments that automate software processes at various stages of the software life
cycle. It includes tool analysis, selection, and operation.

G. Documentation Component

The Documentation component encompasses all of the material required to support the
building and later maintenance of a software product. It includes methods, tools, and
standards to write clear and accessible material for all artifacts and processes of the
software life cycle.

4.4 Supporting Area

The components in the Supporting Area include other fields of study which provide building
blocks for rounding out the education of students in software engineering. They include, but
are not limited to, general education, mathematics, natural sciences, social sciences, business
studies, and engineering.

CMU/SEI-99-TR-032 11

12 CMU/SEI-99-TR-032

5 A Software Engineering Curriculum
Model

The curriculum model shown in the figure below is meant to provide a design abstraction that
could be used to develop a variety of software engineering curricula. The model's
development was influenced by a number of sources and experiences [Cowling 98, Hilburn
97, Naveda 98]. It consists of a design architecture, a set of design concepts, and curriculum
content guidance. Although the actual implementation of a curriculum design depends on a
number of requirements and constraints posited by an academic institution and its faculty, we
believe this model can provide insight and structure that will help in developing a quality
curriculum.

Accreditation
Criteria

Desgn oncptsEngneein Curriculum

Designrionulpt Objectives

Figure 1: Key Elements of Curriculum Design

CMU/SEI-99-TR-032 13

5.1 A Profile of Graduates

A degree program focused on software engineering is designed to prepare a new generation
of software developers who concentrate on the engineering of software systems that meet
specified requirements, are built with industrial quality standards, and are within cost and
schedule. Graduates of such programs will be able to function as proficient software
developers and effective team members. They will have preparation in communication,
mathematics and science, and the cultural, historical and social issues that influence and
affect software development. They will have knowledge about and experience with software
product engineering and engineering management and an understanding of professional
issues and practice. Graduates will be able to understand and assess their own software
capabilities and performance. They will also have the knowledge and ability to assess the
competencies of others working on a project team. This will allow them, with appropriate
practice and experience, to assume leadership positions in a software development
organization [Diaz-Herrera 99].

5.2 Curriculum Architecture

When developing a curriculum, there are key elements that must be considered in its design.
The first and perhaps most important step is to determine the curriculum's objectives. This
involves consideration of the institution's mission and the strategic goals of the department.
At a more fundamental level, all the stakeholders (faculty, students, employers, etc.) in the
curriculum need to be involved in setting these objectives.

The SE-BOK provides the foundation for the curriculum content, while accreditation criteria
gives structure and discipline to the curriculum design and forms the basis for assessment and
evaluation. But objectives, assessment criteria, and content are not alone sufficient to design
a quality curriculum. There must be an underlying philosophy of how these elements fit
together. The design concepts presented in the next section furnish a philosophical
framework for the development of effective software engineering curricula and are the
foundation for our curriculum model.

14 CMU/SEI-99-TR-032

5.3 Design Concepts

The list of concepts in this section provides both foundation principles for the software
engineering curriculum model and specific suggestions for creating a design.

A. The curriculum model supports the development of a variety of degree programs which

emphasize and focus on software engineering:

"* BS in Software Engineering

"* BS in Computer Science

"* BS in Information Systems

"* BS in Computer Engineering

B. The model introduces students, at the beginning of their studies, to the nature, scope, and
importance of software engineering.

C. The model incorporates two levels of software engineering education:

i) "Software Engineering in the Small"

> the application of software engineering principles to the development of a
software product by an individual

> the software developed is typical of that encountered in lower division software
courses

ii) "Software Engineering in the Large"

> the application of software engineering principles to the development of a
software product by a team

>' the software developed is typical of that encountered in upper division software
courses, or small to moderate size industrial software projects

D. The model advocates a balance between "product" activities and "process" activities.

"* Product activities include methods, techniques, and skills used to build the
components and artifacts associated with a software product (development plans,
quality assurance plans, requirements specifications, design specifications, code, and
product documentation).

"* Process activities include the standards, procedures, guidelines, measurement, and
support and analysis techniques that provide a framework for how to carry out the
product activities in an effective and efficient manner.

E. The model provides guidance for development of degree programs that can be accredited
by an appropriate accreditation organization such as the Accreditation Board for Engi-

CMU/SEI-99-TR-032 15

neering and Technology (ABET) or the Computing Sciences Accreditation Board
(CSAB).

F. The model includes ethical, professional, and social issues that are related to the practice
of software engineering.

G. The model places special emphasis on the importance of teamwork, and the team dy-
namics and team-building efforts and experiences that support effective collaborative
software development activities.

H. The model provides for acquisition of knowledge in a particular application domain (e.g.,
embedded systems, database and information systems, intelligent systems, telecommuni-
cations and networking, etc.).

I. A key feature of the model is the provision for students to engage in the practice of soft-
ware engineering. Such "practice" can be realized in a variety of ways:

i) scheduled laboratories offered in conjunction with specific computer science and
software engineering knowledge courses

ii) software engineering project labs

(1) Software Studio model (Carnegie Mellon University, [Garlan 97])

(2) Real World Lab model (Georgia Institute of Technology, [Moore 94])

iii) cooperative education and intern work in the software industry

5.4 Curriculum Content

Although the organization, implementation, and delivery of various SE-focused curricula
might differ, they should all offer courses and activities that include the content areas
depicted in Figure 2. The "domain knowledge" area is recognition that software engineering
is applied in a variety of domains that each require specialized knowledge by the software
developer. For example, the development of a financial software package requires quite
different knowledge and skills than the development of software for an embedded flight
control system. Of course the domain area of a curriculum also influences some of the
decisions on what to include in the other content areas (e.g., the type and level of courses
needed in mathematics, the natural sciences, and computer science).

16 CMU/SEI-99-TR-032

•iiiiiiiiiiiiiil Education Knowledge

! !!!!!!!!!!!!!!! ::::::::::::::::::::` •. !.
S....... ;;;;;i;;~i

Figure 2: Curriculum Content Areas

The following list describes, as a minimum, what we believe should be included in each area:

A. Computer Science Fundamentals

•" programming, data structures, and algorithms
Gnprogramming language concepts

Edcomputer organization

>" system software (process and resource management, concurrent and distributing

computing, networking, and telecommunications)

B. Mathematics

•" discrete math

•- probability and statistics

C. Natural Sciences

CMU/SEI-99-TR-032 17

D. General Education

> Communication (oral and written)

>' Humanities and Social Sciences

E. Software Engineering

> Software Requirements Engineering

> Software Design

> Software Quality

> Software Architectures

> Software Construction

> Software Evolution

> Formal Methods

> HCI (Human-Computer Interaction)

> project organization, planning, and tracking

> Software Processes

> Software Engineering Ethics and Professionalism

5.5 Software Engineering Modules

This section includes a specification for software engineering modules that would form the
core for any computing program with a focus in software engineering. The modules are
based on the curriculum content listed above and represent material that should be
incorporated in required courses for the curriculum. Table 2 lists and describes the modules.
Figure 3 shows the prerequisite relationship between the modules.

SE 4

SE I SE 2 SE 3 SE 5 SE 6 SL S

SE? 7E

Figure 3 SE Module Prerequisite Chart

18 CMU/SEI-99-TR-032

Each of the modules could be developed into a complete course. However, depending on the
objectives and nature of a curriculum, some modules could be incorporated in a course with
other material. For example, SE 5 and SE 6 might be combined to produce one course in
"Software Analysis and Design,"

Module Title Description

SE 1 Introduction to This module provides an introduction to
Computer Science for programming, usually with the procedural paradigm.
Software Engineers 1 The basic features of software engineering are

integrated throughout the module.

SE 2 Introduction to This module investigates data structures and the
Computer Science for object-oriented paradigm while continuing with an
Software Engineers 2 introduction to software engineering.

SE 3 Introduction to The module provides an overview of software
Software Engineering engineering as a discipline; the module introduces

students to the fundamental principles and
methodologies of software engineering.

SE 4 Professionalism and The module covers material on the historical, social,
Ethics and economic issues in software engineering. It

includes study of professional responsibilities, risks
and liabilities, and intellectual property relative to the
software engineering profession.

SE 5 Software This module introduces basic concepts and principles
Requirements of software requirements engineering, its tools and

techniques, and methods for modeling software
systems.

SE 6 Software Design This module covers the methods and techniques used
in the design of software systems. It includes
architectural and detailed design, with an emphasis on
object-oriented methods, the design process, and the
design documentation and review.

SE 7 Software Quality This module looks at how software quality assurance
and configuration management are performed and
how software process improvement is maintained in
order to assure the highest possible quality.

CMU/SEI-99-TR-032 19

Module Title Description

SE 8 Software This module examines issues, methods, and
Construction and techniques associated with constructing software,
Evolution given a high-level design, and for maintaining

software over its lifetime.

SE 9 Software Design This module allows the students to use the skills
Project gaining in previous modules as part of a development

team on a semester-long software engineering project.

Table 2: SE Modules

The templates on the following pages provide more detail on the module content and
information that would support course and curriculum design.

20 CMU/SEI-99-TR-032

Module: SE 1 Introduction to Computer Science for Software Engineers 1

Prerequisite Pre-calculus and programming knowledge through loops in some
Knowledge language

Description This module provides an introduction to programming usually with the
procedural paradigm. The basic features of software engineering are
integrated throughout the module.

Module Upon completion of this module, students should be able to:
Objectives

" Implement programs using features such as arrays, strings, and
records.

"* Perform elementary analysis and design tasks using the procedural
paradigm.

"* Do individual inspections ("desk checking").
"• Develop and implement a test plan.

Module Content The module will include the following topics:

* review of the most basic programming constructs (assignments,
input/output, selection constructs, and loops)

* more advanced programming constructs (one-dimensional arrays,
strings, multi-dimensional arrays, text files, and records)

* introduction to structured analysis and top-down design, including
appropriate documentation

* inspection and testing in the procedural paradigm

Recommended 0 four semester credits
Module Format 0 three lecture hours per week
and Learning * two to three laboratory hours per week (investigating
Activities programming features)

* individual projects involving elementary software engineering
_...... _______ • techniques using the procedural paradigm

CMU/SEI-99-TR-032 21

Module: SE I Introduction to Computer Science for Software Engineers 1

Resources and 0 Dale, Nell B.; Weems, Chip; & Headington, Mark. Programming
References in C++. Sudbury, Massachusetts: Jones and Bartlett, 1998.

" Dale, Nell B. Introduction to Turbo Pascal and Software Design.
Sudbury, Massachusetts: Jones and Bartlett, 1997.

" Deitel, Harvey M. & Deitel, Paul J. C++: How to Program. Upper
Saddle River, New Jersey: Prentice-Hall, 1997.

" Deitel, Harvey M. & Deitel, Paul J. Java: How to Program.
Upper Saddle River, New Jersey: Prentice-Hall, 1997.

" Dale, Nell B. A Laboratory Course in C++. Sudbury,
Massachusetts: Jones and Bartlett, 1997 (lab manual).

" Humphrey, W. S. Introduction to the Personal Software Process.
Reading, Massachusetts: Addison-Wesley, 1997.

Comments The courses titled Introduction to Computer Science for Software
Engineers 1 and 2 (CS 1 and CS2) have been structured in the
traditional manner for such courses in that the procedural paradigm is
used in the first module, and the object-oriented paradigm in the
second. A variation of this is to teach objects from the beginning, with
procedural constructs being introduced as necessary.

These modules differ from the traditional CS 1 and CS2 courses in that
the basics of software engineering (e.g., life cycle, inspections,
configuration management, and quality assurance) are integrated into
the various software development tasks undertaken.

22 CMU/SEI-99-TR-032

Module: SEE 2 Introduction to Computer Science for Software Engineers 2

Prerequisite SE 1
Knowledge

Description This module investigates data structures and the object-oriented
paradigm while continuing with an introduction to software
engineering.

Module Upon completion of this module, students should be able to:
Objectives

"" Implement programs using features such as classes and pointers.
"* Write recursive programs.
"* Program using elementary data structures.
"" Perform analysis and design tasks using the object-oriented

paradigm.
"" Work in a small team (four to six people) on the analysis, design,

implementation, and testing of a project.
"" Do inspections and reviews within a team.
"* Do elementary configuration management and quality assurance

within a small team.

Module Content The module will include the following topics:

* basic data structures (stacks, queues, binary trees)
* introduction to recursion
* introduction to object-oriented analysis and design, including

appropriate documentation
* abstract data types and classes
0 pointers and linked lists
* inspection and testing in the object-oriented paradigm
* introduction to configuration management and quality assurance

Recommended * four semester credits
Module Format * three lecture hours per week
and Learning 0 two to three laboratory hours per week (investigating data
Activities structures)

• individual and team projects involving elementary software
engineering techniques using the object-oriented paradigm

CMU/SEI-99-TR-032 23

Module: SE 2 Introduction to Computer Science for Software Engineers 2

Resources and 0 Budd, Timothy. Data Structures in C++ Using the Standard
References Template Library. Reading, Massachusetts: Addison-Wesley,

1997.
* Main, Michael & Savitch, Walter. Data Structures and Other

Objects Using C++. Reading, Massachusetts: Addison-Wesley,
1997.

0 Main, Michael. Data Structures and Other Objects Using Java.
Reading, Massachusetts: Addison-Wesley, 1998.

* Roberg6, James. Data Structures in C++: A Laboratory Course.
_ _Sudbury, Massachusetts: Jones and Bartlett, 1997 (lab manual).

Comments The courses titled Introduction to Computer Science for Software
Engineers 1 and 2 (CS 1 and CS2) have been structured in the
traditional manner for such courses in that the procedural paradigm is
used in the first module, and the object-oriented paradigm in the
second. A variation of this is to teach objects from the beginning, with
procedural constructs being introduced as necessary.

These modules differ from the traditional CS 1 and CS2 courses in that
the basics of software engineering (e.g., life cycle, inspections,
configuration management, and quality assurance) are integrated into
the various software development tasks undertaken.

24 CMU/SEI-99-TR-032

Module: SE 3 Introduction to Software Engineering

Prerequisite SE 2
Knowledge

Description This module provides an overview of software engineering as a
discipline; the module introduces students to the fundamental
principles and methodologies of software engineering. It covers basic
knowledge about software requirements, software design, software
construction, software management, and software quality. It provides
minimum prerequisite knowledge for more detailed and specialized
study of software engineering. Students gain experience, via a team
project, about life-cycle development of software systems.

Module Upon completion of this course, students should be able to:
Ob ectives

* Identify and discuss the technical and engineering activities of
producing a software product.
Describe issues, principles, methods and technology associated
with software engineering theory and practices (e.g., planning,
requirements engineering, design, coding, testing, quality
assurance, and configuration management).

* Working as part of a team, use a software development process to
develop a software product.

Module Content The module will include the following topics:

* introduction to software engineering
* models of the software development process
0 project planning and organization
* software requirements and specifications
* software design techniques
* software quality assurance
0 software testing
* software tools and environments
* team project activities

Recommended 0 three to four semester credits
Module Format 0 three lecture/discussion hours per week
and Learning 0 two to three laboratory hours per week - team process.and team
Activities project work (status reports, team meetings, reviews and

inspections, tests and demonstrations)

CMU/SEI-99-TR-032 25

Module: SE 3 Introduction to Software Engineering

Resources and 0 Pressman, Roger S. Software Engineering: A Practitioner's
References Approach, 4th ed. New York, New York: McGraw-Hill, 1997.

* Sommerville, I. Software Engineering, 5h ed. Reading,
Massachusetts: Addison-Wesley, 1995.

* Pfleeger S. Software Engineering Theory and Practice. Upper
Saddle River, New Jersey: Prentice-Hall, 1998.

* Humphrey, W. S. Introduction to the Team Software Process.
Reading, Massachusetts: Addison-Wesley, 1999.

* Brooks, F.P. The Mythical Man-Month, Essays on Software
Engineering, anniversary ed. Reading, Massachusetts: Addison-
Wesley, 1995.

* Marciniak, John J. Encyclopedia of Software Engineering. New
York, New York: John Wiley & Sons, Inc., 1994.

0 Dorfman, M. & Thayer, R., eds. Software Engineering. Los
Alamitos, California: IEEE Computer Society Press, 1997.

26 CMU/SEI-99-TR-032

Module: SE 4 Professionalism and Ethics

Prerequisite SE 3
Knowledge

Description This module covers material on the historical, social, and economic
issues in software engineering. It includes the study of professional
responsibilities, risks and liabilities, and intellectual property relative
to the software engineering profession.

Module Upon completion of this module, students should be able to:
Objectives

* Describe and discuss historical, social, economic, ethical, and
professional issues related to the discipline of software
engineering

0 Identify key sources for information and opinion about
professionalism and ethics.

° Analyze, evaluate, and assess ethical and professional computing
and software engineering case studies.

Module Content* The module will include the following topics:

* historical, social, and economic context of software engineering
* definitions of software engineering subject areas and professional

activities
* professional societies

* professional ethics

* professional competency and life-long learning

* uses, misuses, and risks of software

* information security and privacy

0 business practices and the economics of software

0 intellectual property and software law

0 social responsibilities

Recommended * three semester credits
Module Format 0 three lecture/discussion hours per week
and Learning 0 presentation of ethical and professional case studies in computing
Activities and software engineering

* individual projects:

- write an expository paper on an historical, social, economic,
or professional issue in software engineering

- write a position on a module case study (on an ethical or
. .professional issue)

CMU/SEI-99-TR-032 27

Module: SE 4 Professionalism and Ethics

Resources and 0 Edgar, S.L. Morality and Machines: Perspectives on Computer
References Ethics. Sudbury, Massachusetts: Jones and Bartlett, 1996.

" Epstein, R. G. The Case of the Killer Robot. New York, New York:
John Wiley, 1997.

" ACM/IEEE-CS Task Force, Software Engineering Code of Ethics
and Professional Practice Project [online]. Available WWW
<URL: htp://www.acm.org/serving/se/SWCEPP.htm> (1999).

" Boehm, B. W. Software Engineering Economics. Upper Saddle
River, New Jersey: Prentice-Hall, 1981.

28. CMU/SEI-99-TR-032

Module: SE 5 Software Requirements

Prerequisite SE 3
Knowledge Introduction to Software Engineering

Description This module introduces basic concepts and principles of software
requirements engineering, its tools and techniques, and methods
for modeling software systems. Various approaches to
requirements analysis are examined; structured, object-oriented,
and formal approaches are studied.

Module Upon completion of this module, students should be able to:
Objectives

"" Describe the role of requirements engineering within the
software life cycle.

" Describe, compare and contrast, and evaluate structured,
object-oriented, data-oriented, and formal approaches to
requirements modeling.

"" Gather the requirements necessary to develop the
specifications, given a "customer" who wants a software
system to be developed.

" Perform an analysis, do some planning and risk assessment,
and develop an informal requirements specification, given a
set of requirements.

"* Model, prototype, and specify requirements for a software
system.

* Review and inspect software requirements.

CMU/SEI-99-TR-032 29

Module: SE 5 Software Requirements

Module Content The module will include the following topics:

* software life-cycle models

* introduction to project planning and risk management

* requirements modeling and analysis

* Software requirements specification

* Software requirements elicitation and analysis
* Structured methods

* object-oriented methods

* formal methods in requirements (formal and executable
specifications)

* requirements verification and validation

* requirements elicitation (e.g., scripting, development of use
cases and interface)

* software requirements metrics

* prototyping user interfaces

* customer acceptance of requirements

Recommended 0 one to three semester credits
Module Format 0 three lecture/discussion hours per week
and Larnitng 0 a team or individual project to collect, prototype, model,
Activities specify, and verify the requirements for a software system

Resources and 0 Davis, A. Software Requirements: Objects, Functions, &
References States. Upper Saddle River, New Jersey: Prentice Hall, 1993.

o Jackson, M. Software Requirements & Specifications: A
Lexicon of Practice, Principles and Prejudices. Reading,
Massachusetts: Addison-Wesley, 1995.

* Dorfman, M., Thayer, R., & Davis, A., eds. Software
Requirements Engineering, 2nd ed. Los Alamitos, California:
IEEE Computer Society Press, 1997.

* Dorfman, M. & Thayer, R., eds. Software Engineering. Los
Alamitos, California: IEEE Computer Society Press, 1997.

* Loucopoulos, P. & Karakostas, V. Systems Requirements
Engineering. New York, New York: McGraw-Hill, 1995.

* Marciniak, John J. Encyclopedia of Software Engineering.
New York, New York: John Wiley & Sons, Inc., 1994.

30 CMU/SEI-99-TR-032

Module: SE 6 Software Design

Prerequisite, SE 3, SE 5
.,Knowledge

Description This module covers the methods and techniques used in the design of
software systems. It includes architectural and detailed design, with
an emphasis on object-oriented methods, the design process, and the
design documentation and review.

Module Upon completion of this module, students should be able to:
Objectives

"* Prototype a user interface, given a set of interface requirements.
"* Perform an object-oriented architectural design in a team of three

to five people, given a requirements specification document
developed by someone else.

"* Perform a partial design and prototyping in one or more iterations,
given a requirements specification document developed by
someone else.

"* Develop a detailed design, given a preliminary design document.
"* Code a design in a particular language, given a detailed design.

Module Content The module will include the following topics:

0 introduction to software architecture
* design patterns
0 object-oriented architectural design
* experimentation in design
* design prototyping
0 working on a design team
0 detailed design and implementation issues
* design reviews (preliminary and detailed)
* using the design document for coding

Recommended • one to three semester credits
Module Format • three lecture hours per week for each module
and Learning * individual and team projects
Activities

CMU/SEI-99-TR-032 31

Module: SE 6 Software Design

Resources and 0 Booch, Grady. Object-Oriented Analysis and Design with
References Applications, 2 d ed. Redwood City, California:

Benjamin/Cummings, 1994.
"" Easteal, Charles & Davies, Gordon. Software Engineering

Analysis and Design. New York, New York: McGraw-Hill, 1989.
"" Shaw, Mary & Garlan, David. Software Architecture: Perspectives

on an Emerging Discipline. Upper Saddle River, New Jersey:
Prentice-Hall, 1996.

"* Bass, Len; Clements, Paul; & Kazman, Rick. Software
Architecture in Practice. Reading, Massachusetts: Addison-
Wesley, 1998.

"* Jacobson, Ivar et al. Object-Oriented Software Engineering: A
Use-Case Driven Approach. Reading, Massachusetts: Addison-

I Wesley, 1992.

32 CMU/SEI-99-TR-032

Module: SE 7 Software Quality

Prerequisite SE 3
Knowledge

Description This module looks at how software quality assurance and
configuration management are performed and how software process
improvement is maintained in order to assure the highest possible
quality.

Module Upon completion of this module, students should be able to:
Objectives

"* Understand the role and importance of software quality assurance
in a software project.

"* Understand the role and importance of configuration management
in a software project.

" Understand how software metrics are developed and used to insure
quality.

"" Develop a quality assurance plan.

"" Develop a configuration management plan.

"* Perform reviews, inspections, and audits.

"" Understand how a configuration control board works.
"" Understand how the major methods for software process

____________ improvement work.

Module Content The module will include the following topics:

* software quality assurance
. software quality metrics

* software configuration management

& software verification and validation (V&V)
* reviews, inspections, and audits

0 configuration control boards

. software process improvement models

Recommended • three semester credits
SModule Format three lecture hours per week
~and arning * individual and team projects
Activities

CMU/SEI-99-TR-032 33

SModule: SE 7 Software Quality

Resources and • Freedman, Daniel & Weinberg, Gerald. Handbook of
References Walkthroughs, Inspections, and Technical Reviews, 3 rd ed. New

York, New York: Dorset House, 1990.

" Ayer, Steve & Patrinostro, Frank. Software Configuration
Management. New York, New York: McGraw-Hill, 1992.

"* Humphrey, Watts S. A Discipline for Software Engineering.
Reading, Massachusetts: Addison-Wesley, 1995.

"* Paulk, M.; Weber, C.; Curtis, B.; & Chrissis, M. The Capability
Maturity Model: Guidelines for Improving the Software Process.
Reading, Massachusetts: Addison-Wesley, 1995.

". Schmauch, Charles H. ISO 9000for Software Developers, revised
_ _ _ed. Milwaukee, Wisconsin: ASQ Quality Press, 1995.

Module: SE 8 Software Construction & Evolution

Prerequisite SE 2, SE 3, SE 6
Knowledge course/module in Data Structures and Algorithms

Description This module examines issues, methods, and techniques associated with
constructing software, given a high-level design, and for maintaining
software over its lifetime.

Module Upon completion of this module, students should be able to:
Objectives

"" Use programming languages, software design knowledge, and
construction tools to implement a high-level design.

"" Use and analyze an individual software process in constructing a
software module or unit.

* Use software implementation tools to construct software.
* Analyze the impact of the design and construction process on

long-term software maintainability and evolution.

* Describe and discuss maintenance processes and techniques.

34 CMU/SEI-99-TR-032

Module: SE 8 Software Construction & Evolution

Module Content The module includes the following topics:

. software construction overview

* detailed design

* individual software process and metrics

. programming language issues

* implementation tools

0 coding standards and styles

• review and testing
, software reuse
* maintenance overview

0 maintenance process and metrics

* maintenance techniques

Recommended 0 one to three semester credits
,Module Format 0 three lecture/discussion hours per week
and Leamng 0i individual projects involving unit/module development and
Activities maintenance (design, coding, review, testing)

Resources and 0 Humphrey, W. S. A Discipline for Software Engineering. Reading,
References Massachusetts: Addison-Wesley, 1995.

* Meyer, B. Object-Oriented Software Construction. Upper Saddle
River, New Jersey: Prentice Hall, 1997.

0 Deimel L. & Naveda, F. Reading Computer Programs: Intructor's
Guide and Exercises (CMU/SEI-90-EM-3). Pittsburgh, Pa:
Software Engineering Institute, Carnegie Mellon University,
August 1990.

0 Pigoski, T.M. Practical Software Maintenance. New York, New
York: John Wiley & Sons, 1997.

"* Dijkstra, E. A Discipline of Programming. Upper Saddle River,
New Jersey: Prentice-Hall, 1976.

' Marciniak, John J. Encyclopedia of Software Engineering. New
York, New York: John Wiley & Sons, Inc., 1994.

0 Dorfman, M. & Thayer, R., eds. Software Engineering. Los
____________ :• :: Alamitos, California: IEEE Computer Society Press, 1997.

CMU/SEI-99-TR-032 35

Module: SE 9 Senior Design Project

Prerequisite SE 3, SE 5, SE 6, SE 7, SE 8
Knowledge Domain-specific knowledge may be needed depending on the project.

Description This module allows the students to use the skills gained in previous
modules as part of a development team on a semester-long software
engineering project.

Module Upon completion of this module, students should be able to:
Objectives

" Understand the major aspects of software project management.
"" Work on a large team project.
"" Work for a client on a project that will actually be used.
". Make oral and written project presentations.

Module The module will include the following topics:
Content

* project planning and risk analysis
* project tracking and scheduling
, large-team project roles and structure
* team and client presentations

Recommended * four semester credits
'Module Format * The number of lecture hours per week can vary and would include
and Learing team presentations at various points during the semester.
Activities 0 a single semester-long team project

Resources and a Brooks, Frederick. The Mythical Man-Month, 20th anniversary ed.
References Reading, Massachusetts: Addison-Wesley, 1995.

* Humphrey, W. S. Introduction to the Team Software Process.
Reading, Massachusetts: Addison-Wesley, 1999.

. Yourdon, Edward. Death March: The Complete Software
Developer's Guide to "Mission Impossible" Projects. Upper
Saddle River, New Jersey: Prentice-Hall, 1997.

36. CMU/SEI-99-TR-032

5.6 Sample Curriculum Implementations

This section contains a description of a sample curriculum in software engineering and
descriptions of three software engineering focused curricula in computer science, information
systems, and computer engineering.

A. Sample Curriculum in Software Engineering

i) Curriculum Objectives

This curriculum leads to a BS degree in Software Engineering. A student completing
this curriculum would be prepared for the following:

"* To be employed as an entry-level software engineer

"* To pursue graduate work in computer science (with additional undergraduate
courses in computer science)

"* To pursue graduate work in software engineering

ii) Curriculum Design

(1) The sample curriculum was designed so that it could be adapted to programs that
wish to evolve from a "traditional" computer science program into a program
with more emphasis on software engineering.

(2) The sample curriculum is based upon the design concepts set down earlier in this
document. Its design is influenced by the curriculum guidance provided in
Computing Curricula 1991 [Tucker 91] and Engineering Criteria 2000: Criteria
for Accrediting Engineering Programs [ABET].

(3) The curriculum includes a total of 120 semester credit hours distributed as
follows:

Area Credit
Hours

Computer Science - required 21
Software Engineering - required 24
Computer Science / Software Engineering - electives 9
Lab Science 12
Engineering Sciences (other than CS) 9

Mathematics (including discrete mathematics) 24
Communication/Humanities/Social Sciences 18
open electives 3

total 120

CMU/SEI-99-TR-032 37

(4) This 120 semester-hour curriculum was designed both to satisfy the growing
movements towards government constraints on credit hours while still satisfying
ABET and licensing exam requirements. If more than 120 hours is allowed in
the curriculum, additional requirements might include the substitutions of several
courses in the place of Software Systems 1 and 2 and Engineering Sciences 1 and
2 that are listed below in the curriculum schedule.

iii) The next section contains a semester-by-semester schedule of the courses that make
up the sample curriculum. The following comments elaborate on the courses and
schedule:

(1) The one-credit Software Engineering Seminar course would provide a "breath-
first" overview of the software engineering discipline. It would also include an
introduction to professional ethics.

(2) The courses titled Introduction to Computer Science for Software Engineers 1
and 2 would be delivered with two hours of lecture per week and a two to three
hour closed lab. Software engineering concepts and practices would be
introduced in these two courses. The lab would provide the opportunity to
introduce students, at an early stage, to disciplined engineering practices.

(3) The Introduction to Software Engineering course would be delivered with two
hours of lecture per week and a two to three hour closed lab. The lab would
introduce students to a team software process to be used in a team project.

(4) The courses titled Engineering Sciences 1 and 2 would provide an overview of
the following topics in the engineering sciences: dynamics, electric circuits, fluid
mechanics, material science, mechanics of materials, statics, and
thermodynamics.

(5) The courses titled Software Systems 1 and 2 would provide an overview of
various software systems: database systems, operating systems, compilers and
translators, and concurrent and distributed systems.

(6) The courses titled Software Analysis and Design 1 and 2 would educate students
in the concepts and practices used in the requirements analysis and design of a
large software system.

(7) The Senior Design Project course would involve the development of a software
product for a real customer. The course deliverables (project plans, requirements
and design specifications, test plans, source code, inspection reports, and
user/reference documents) would be used to assess the software engineering
objectives of the curriculum.

38. CMU/SEI-99-TR-032

iv) Curriculum Schedule

[J ourses Crdt___ ICoursesffCei
SE - SE Seminar 1 CS - Intro to CS 3

for SE 2
CS - Intro to CS for SE 3 MA - Discrete Math 3
1

Sem MA - Calculus 1 4 Sem MA - Calculus 2 4
1 2

SC - Chemistry 1 4 HU/SS elective 3
HU - Communications 1 3 HU - 3

Communications 2
total 15 total 16

CS - Data Structure & 3 SE - Intro to 4
Algorithms Software

Engineering
CS - Computer 3 MA - Differential 3
Organization Equations I

Sem MA - Calculus 3 4 Sem CS - Programming 3
3 4 Languages

SC - Physics 1 4 SC - Physics 2 4
total 14 total 14

SE - Software Anal. & 3 SE - Formal 3
Design 1 Methods
MA - Probability and 3 SE - Software 3
Statistics Quality

Sem CS - Software Systems 3 Sem CS - Software 3
5 1 6 Systems 2

HU - Technical Writing 3 EN - Engineering 3
Economics

EN - Engineering 3 EN - Engineering 3
Sciences 1 Sciences 2
total 15 total 15

SE - Software Anal. & 3 SE - Senior Design 4
Design 2 Project
CS/SE elective 3 CS/SE elective 6

Sem MA - Linear Algebra 3 Sem open elective 3
7 8

SE - Professional Ethics 3 HU/SS elective 3

HU/SS elective 3
total 15 total 16

total credits = 120

CMU/SEI-99-TR-032 39

B. A Sample Curriculum in Computer Science with an emphasis in Software Engineering

i) Curriculum Objectives

This curriculum leads to a BS degree in Computer Science with a prescribed part
devoted to the study and practice of software engineering. A student completing this
curriculum would be prepared for the following:

* To be employed as an entry-level software engineer

* To pursue graduate work in computer science

* To pursue graduate work in software engineering

ii) Curriculum Design

(1) The sample curriculum was designed so that it could be adapted to programs that
wish to evolve from a "traditional" computer science program into a program
with more emphasis on software engineering. To achieve the above objective of
"be employed as an entry-level software engineer," additional courses in
software engineering may be required.

(2) The sample curriculum is based upon the design concepts set down earlier in this
document. Its design is influenced by the curriculum guidance provided in
Computing Curricula 1991 [Tucker 91] and CSAC/CSAB Criteria 2000 [CSAB].

(3) The curriculum includes a total of 120 semester credit hours distributed as
follows:

Area Credit

Hours

Computer Science - required 24
Software Engineering - required 9
Computer Science / Software Engineering - electives 9
Science 12
Mathematics 18
Communication/Humanities/Social Sciences 30
open electives 12

total 120

40 CMU/SEI-99-TR-032

iii) The next section contains a semester-by-semester schedule of the courses that make
up the sample curriculum. The following comments elaborate on the courses and
schedule:

(1) The one-credit Introduction to Computing course would provide a "breath-first"
overview of the computing discipline. It would also include an introduction to
professional ethics.

(2) The courses titled Computer Science 1 and 2 would be delivered with two hours
of lecture per week and a two to three hour closed lab. Software engineering
concepts and practices would be introduced in these two courses. The lab would
provide the opportunity to introduce students, at an early stage, to disciplined
engineering practices.

(3) The Introduction to Software Engineering course would be delivered with two
hours of lecture per week and a two to three hour closed lab. The lab would
introduce students to a team software process to be used in a team project.

(4) The Software Analysis and Design course would educate students in the concepts
and practices used in the requirements analysis and design of a large software
system.

(5) The Senior Design Project course would involve the development of a software
product for a real customer. The course deliverables (project plans, requirements
and design specifications, test plans, source code, inspection reports, and
user/reference documents) would be used to assess the software engineering
objectives of the curriculum.

CMU/SEI-99-TR-032 41

v) Curriculum Schedule

BS in Computer Science (emphasis in Software Engineering)

F Courses ýcredit [___courses J Credit

CS - Intro to Computing 1 CS - Computer 3
Science 2

CS - Computer Science 3 MA - Discrete Math 3

Sem MA - Calculus 1 4 Sem MA - Calculus 2 4
1 2

HU - Communications 1 3 SC - Physics 1 4

HU/SS elective 3 HU/SS elective 3

total 14 total 17

CS - Data Structure & 3 SE - Intro to Software 3
Algorithms Engineering
CS - Computer 3 MA - math elective 4
Organization

Sem SC - Physics 2 4 Sem SC - science elective 4
3 4

HU - Communications 2 3 HU/SS elective 3
HU/SS elective 3
total 16 total 14

CS - Programming 3 CS - Formalisms & 3
Languages Computation
CS/SE elective 3 SE - Software Analysis 3

& Design
Sem MA - Probability & 3 Sem open elective 6
5 Statistics 6

open elective 3 HU/SS elective 3
1U13 - Technical Writing 3
total 15 total 15

CS - Concurrent/ 3 SE - Senior Design 3
Distributed Sys project
CS/SE elective 3 CS/SE elective 3

Sem MA - math elective 3 Sem MA - math elective 3
7 8

CS - Professional Ethics 2 open elective 3
HU/SS elective 3 HU/SS elective 3

total .. 14 . t otal_ 15

total credits = 120

42 CMU/SEI-99-TR-032

C. A Sample Curriculum in Information Systems with an emphasis in Software Engineering

i) Curriculum Objectives

This curriculum leads to a BS degree in Information Systems with a prescribed part
devoted to the study and practice of software engineering. A student completing this
curriculum would be prepared for the following:

"* To be employed as an entry-level software engineer for information systems

"* To pursue graduate work in information systems

"* To pursue graduate work in software engineering (perhaps with some additional
computer science or mathematics courses as prerequisite to program entry)

ii) Curriculum Design

(1) The sample curriculum was designed so that it could be adapted to programs that
wish to evolve from a "traditional" information systems program into a program
with more emphasis on software engineering. To achieve the above objective of
"be employed as an entry-level software engineer," additional courses in
software engineering may be required.

(2) The sample curriculum is based upon the design concepts set down earlier in this
document. Its design is influenced by the curriculum guidance provided in
IS'97: Model Curriculum and Guidelines and Undergraduate Degree Programs
in Information Systems [Davis 97] and the draft accreditation criteria for
information systems degrees [Gorgone 99].

(3) The curriculum includes a total of 120 semester credit hours distributed as
follows:

Area Credit
Hours

Information Systems and Software Engineering 32
Humanities 24
Business 18
Computer Science 12
Mathematics and Statistics 14
Social Science 12
Natural Science 8

total 120

CMU/SEI-99-TR-032 43

iii) The next section contains a semester-by-semester schedule of the courses that make
up the sample curriculum. The following comments elaborate on the courses and
schedule:

(1) The courses titled Computer Science 1 and 2 would be delivered with two hours
of lecture per week and a two to three hour closed lab. Software engineering
concepts and practices would be introduced in these two courses. The lab would
provide the opportunity to introduce students, at an early stage, to disciplined
engineering practices.

(2) The courses titled Information Systems 1 and 2 would be delivered with three
hours of lecture per week and a one to two hour closed lab. The lab would
introduce students to elements of information technology including personal
computing applications, programming, databases, and Internet technologies.

(3) The Requirements Analysis course would educate students in the concepts and
practices used in the specification and design of a large software system. The
course would cover the diagrammatic formalisms of structured or object-oriented
methods.

(4) The Design Project course would involve the development of a software product
for a real customer. The course deliverables (project plans, requirements and
design specifications, test plans, source code, inspection reports, and
user/reference documents) would be used to assess the software engineering
objectives of the curriculum.

44 •CMU/SEI-99-TR-032

v) Curriculum Schedule

BS in Information Systems (emphasis in Software Engineering)

_ Courses riCredit ___ Courses

IS - Information Systems 1 4 IS - Information 4
Systems 2

BS - Economics 1 3 BS - Economics 2 3
Sem MA - Calculus 1 4 Sem MA - Calculus 2 4
1 _ _ 2

HU - Communications 1 3 HU - Communications 2 3
total 14 total 14
IS - Database Management 3 IS - Requirements 3

Analysis
CS - Computer Science 1 3 CS - Computer Science 3

2
Sem MA - Discrete Math 3 Sem BS - Financial 3
3 4 Accounting

SC - Natural Science 1 4 SC - Natural Science 2 4
SS - General Psychology 3 SS - Cognitive 3

Psychology
total 16 total 16
IS - Human-Comp. 3 IS - Software 3
Interaction Engineering
CS - elective 3 CS - elective 3

Sem BS - Applied Statistics 3 Sem SS - Research Methods 3
5 6

BS - elective 3 HU - Logic 3
HU - Techniques of 3 HU - Technical Writing 3
Speaking
total 15 total 15

IS - Design Project 3 IS - Design Project 3
IS - Distrib. Computing & 3 IS - elective 3
Networking

Sem HU - Critical Reasoning 3 Sem HU - Computer Ethics 3
7 8

BS - Organizational 3 SS - elective 3
Behavior
BS - elective 3 HU - elective 3

I_ Itotal 15 _____ total 15
Total credits = 120

CMU/SEI-99-TR-032 45

D. A Sample Curriculum in Computer Engineering with an emphasis in Software Engi-
neering

i) Curriculum Objectives

This curriculum leads to a BS degree in Computer Engineering with a prescribed part
devoted to the study and practice of software engineering. A student completing this
curriculum would be prepared for the following:

"* To be employed as an entry-level software engineer

"* To pursue graduate work in computer engineering

"* To pursue graduate work in software engineering

ii) Curriculum Design

(1) The sample curriculum was designed so that it could be adapted to programs that
wish to evolve from a "traditional" computer engineering program into a
program with more emphasis on software engineering. To achieve the above
objective of "be employed as an entry-level software engineer," additional
courses in software engineering may be required.

(2) The sample curriculum is based upon the design concepts set down earlier in this
document. Its design is influenced by the curriculum guidance provided in
Computing Curricula 1991: Report of the A CM/IEEE-CS Joint Curriculum Task
Force [Tucker 91], the CSAC/CSAB Criteria 2000: Criteria for Accrediting
Programs in Computer Science in the United States [CSAB], and the
Engineering Criteria 2000: Criteria for Accrediting Engineering Programs
[ABET].

(3) The curriculum emphasizes digital hardware and embedded software systems.

(4) The sample curriculum was designed to insure that it meets the minimal ABET
curriculum content requirements:

(a) one year of math/basic science (32 hours)

(b) one-half year of humanities/social sciences (16 hours)

(c) one and one-half year of engineering topics (1 course outside of the major
disciplinary area) (48 hours)

(5) A typical computer engineering program does not seem to exist. Some programs
have more computing courses than electrical engineering and vice versa. Since a
wide variation exists, the curriculum given below is not meant as a rigid template
(i.e., it is open to change depending upon the goals of the curriculum designers).

46 CMU/SEI-99-TR-032

The curriculum includes a total of 124 semester credit hours distributed as follows:

Area Credit
Hours

Electrical Engineering - required 30
Electrical Engineering - electives 3
Computer Science - required 15
Software Engineering - required 9
Software Engineering - electives 3
Science 12
Mathematics 21
Communication/Humanities/Social Sciences 24
Engineering/Engineering Science 5

total 122

iii) The next section contains a semester-by-semester schedule of the courses that make
up the sample curriculum. The following comments elaborate on the courses and
schedule:

(1) The two-credit Introduction to Engineering course would provide a "breath-first"
overview of the engineering discipline. It would also include an introduction
professional ethics.

(2) The courses titled Computer Science 1 and 2 would be delivered with two hours
of lecture per week and a two to three hour closed lab. Software engineering
concepts and practices would be introduced in these two courses. The lab would
provide the opportunity to introduce students, at an early stage, to disciplined
engineering practices.

(3) The Introduction to Software Engineering course would be delivered with two
hours of lecture per week and a two to three hour closed lab. The lab would
introduce students to a team software process to be used in a team project.

(4) The Software Analysis and Design course would educate students in the concepts
and practices used in the requirements analysis and design of a large software
system.

(5) The Embedded Systems course would emphasize the development of real-time
software for computers embedded in systems. The concepts of synchronization,
schedulability analysis, and fundamental control theory, would be studied.

(6) The EE Project Lab courses would ideally need to focus on capstone computer
engineering projects at the senior level. Where software is involved, appropriate
software engineering principles would be employed.

CMU/SEI-99-TR-032 47

iv) Curriculum Schedule

BS in Computer Engineering (emphasis in Software Engineering)

ECourses ICredit]Courses I Credit

ER - Intro to 2 EE - Fundamentals 3
Engineering
CS - Computer 3 CS - Computer Science 2 3
Science 1

Sem MA - Calculus 1 3 Sem MA - Calculus 2 3
1 _ 2

HU - Communications 3 HU - Communications 2 3
1
SC - Chemistry 1 4 HU/SS elective 3
total 15 total 15

EE - Digital Systems 3 EE - Digital Design 3
CS - Discrete Math 3 SE - Intro to Software 3

Engineering
Sem MA - Calculus 3 3 Sem MA - Linear Algebra 3
3 4

SC - Physics 1 4 SC - Physics 2 4
HU/SS elective 3 MA - Differential 3

Equations

total 16 total 16

EE - Project Lab 1 3 EE - Project Lab 2 3
SE - Software Analy. 3 SE - Embedded Systems 3
& Design

Sem MA - Probability and 3 Sem CS - Algorithms 3
5 Statistics 6

EE - Electronics 1 3 EE - Electronics 2 3
ER - Thermodynamics 3 EE - Communication 3

Systems
total 15 total 15
EE - Project Lab 3 3 EE - Project Lab 4 3
MA - Numerical 3 SE elective 3
Analysis

Sem EE/CS - Computer 3 Sem EE elective 3
7 Architecture 8

HU/SS elective 3 HU/SS elective 3
HU/SS elective 3 HU/SS elective 3
total 15 L j total 15

[total credits = 122

48 CMU/SEI-99-TR-032

6 Curriculum Support

6.1 Faculty

A high-quality faculty and staff is the single most critical element in the success of a
program. Faculty needs both advanced education in computing and experience in software
engineering practice. Because of the dynamic nature of computing, it is essential that faculty
continue to engage in professional development (research, participation in professional
societies, consulting, and technical training).

6.2 Infrastructure

The program must provide adequate infrastructure and technical support. This includes well-
equipped laboratories and classrooms, modem CASE Tools, and sufficient reference and
documentation material.

6.3 Industry Participation

A critical element in the success of a software engineering curriculum is the involvement and
participation of industry. Industrial advisory boards and industry-academic partnerships help
maintain curriculum relevance and currency.

6.4 Student Involvement

Interaction with students about curriculum development and delivery provides valuable
information for assessing and analyzing a crriculum. Involvement of students in
professional organizations and activities extends and enhances their education.

CMU/SEI-99-TR-032 49

50 CMU/SEI-99-TR-032

7 Curriculum Assessment and
Accreditation

In order to maintain a quality curriculum, a software engineering focused program should be
assessed on a regular schedule. The assessment should evaluate the objectives, curriculum
content, curriculum delivery, and outcomes of the program. This is best accomplished in
conjunction with a recognized accreditation organization. In the United States ABET and
CSAB provide curriculum guidance and accreditation criteria for the accreditation of
engineering and computing programs [ABET, CSAB]. A joint IEEE-CS/ACM committee has
developed draft accreditation criteria for software engineering programs [Barnes 98].

CMU/SEI-99-TR-032 51

52 CMU/SEI-99-TR-032

8 Conclusion

Software engineering is a maturing discipline that is becoming increasingly critical in all
aspects of human endeavor. The demand for well-educated software engineers is increasing,
but sufficient computing programs to support this demand do not exist. We believe that these
Guidelines will help solve this problem by providing information and guidance that will
assist faculty and institutions in creating and implementing quality software engineering
courses and curricula.

CMU/SEI-99-TR-032 53

54 CMUISEI-99-TR-032

9 Acknowledgments

Our special thanks go to Dr. Nancy Mead of the SEI for her leadership of the WGSEET, her
substantial work in promoting efforts to improve software engineering education, and her
encouragement and support for these Guidelines.

We would also like to acknowledge the help of the following individuals in formulating
and/or reviewing this document: Neal Coulter (University of North Florida), Anthony
Cowling (University of Sheffield), Jorge Diaz-Herrera (Southern Polytechnic University),
Robert Dupuis (University of Quebec at Montreal), Peter Knoke (University of Alaska), Jim
McDonald (Monmouth University), Melody Moore (Georgia Institute of Technology),
Fernando Naveda (Rochester Institute of Technology), Dale Oexmann (Rose-Hulman
Institute of Technology), Michael Ryan (Dublin City University), and Laurie Werth
(University of Texas).

For further information about the development of this document or comments on its content,
please contact

Thomas B. Hilburn
Department of Computing & Mathematics
Embry-Riddle Aeronautical University
Daytona Beach, F1 32114
1-904-226-6889
hilburn@db.erau.edu

CMU/SEI-99-TR-032 55

56 CMU/SEI-99-TR-032

10 References

[ABET] Accreditation Board for Engineering and Technology.
Engineering Criteria 2000: Criteria for Accrediting Engineering
Programs [online]. Available WWW <URL:
http://www.abet.org/> (1998).

[Barnes 98] Barnes et al. "Draft Software Engineering Accreditation
Criteria." Computer 31, 4 (May 1998): 73-75.

[BCS 89] British Computer Society and the Institution of Electrical
Engineers. A Report on Undergraduate Curricula for Software
Engineering. London, England: Institution of Electrical
Engineers, June 1989.

[Cowling 98] Cowling, A.J. "A Multi-dimensional Model of the Software
Engineering Curriculum, "44-55. Proceedings of the 11th
Conference on Software Education & Training. Atlanta,
Georgia, February 22-25, 1998. Los Alamitos, California: IEEE
Computer Society Press, 1998.

[CSAB] Computing Sciences Accreditation Board, Inc. CSAC/CSAB
Criteria 2000: Criteria for Accrediting Programs in Computer
Science in the United States, Version 0.8 [online]. Available
WWW <URL: http://www.csab.orgb> (1999).

[Davis 97] Davis et. al. IS'97: Model Curriculum and Guidelines for
Undergraduate Degree Programs in Information Systems
[online]. Available WWW <URL:
http://www.acm.org/education/curricula.html> (1997).

[Denning 92] Denning, P.J. "Educating a New Engineer" Communications of
the ACM 35, 12 (December 1992): 83-97.

[Diaz-Herrera 99] Diaz-Herrera, J. L. A Profile of Software Engineers, (individual
communication), May 1999.

[Dupuis 98] Dupuis et al. A Guide to the Software Engineering Body of
Knowledge, A Straw Man Version. Los Alamitos, California:
IEEE Computer Society, September 1998.

CMU/SEI-99-TR-032 57

[Ford 96] Ford, G. & Gibbs, N.E. Mature Profession of Software
Engineering (CMU/SEI-96-TR-004, ESC-TR-96-004).
Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University [online]. WWW <URL:
http://www.sei.cmu.edu/publications/documents/
96.reports/96.tr.004.btml> (1996).

[Ford 94] Ford, G. A Progress Report on Undergraduate Software
Engineering Education (CMU/SEI-94-TR-01 1, ESC-TR-94-
011). Pittsburgh, Pa: Software Engineering Institute, Carnegie
Mellon University, 1994 [online]. Available WWW <URL:
http://www.sei.cmu.edu/publications/documents/
94.reports/94.tr.01 1.html> (1994).

[Ford 90] Ford, G A. 1990 SEI Report on Undergraduate Software
Engineering Education (CMU/SEI-90-TR-003, ADA22388 1).
Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University, March 1990 [online]. Available WWW
<URL: http://www.sei.cmu.edu/publications/documents/
90.reports/90.tr.003.html> (1990).

[Garlan 97] Garlan, D.; Gluch, D. P.; & Tomayko, J. E. "Agents of Change:
Educating Software Engineering Leaders." IEEE Computer 30,
11 (November 1997): 59-65.

[Gibbs 94] Gibbs, W.W. "Software's Chronic Crisis." Scientific American
271, 3 (September 1994): 86-95.

[Gorgone 99] Gorgone, John. Draft Criteria for Accrediting Programs in
Information Systems [online]. Available WWW
<URL: http://www.acm.org/education/curricula.html#IS97 >
(1999).

[Hilburn 99] Hilbum et al. A Software Engineering Body of Knowledge,
Version 1.0 (CMU/SEI-99-TR-004, ESC-TR-99-004).
Pittsburgh, Pa: Software Engineering Institute, Carnegie Mellon
University, April 1999 [online]. Available WWW
<URL: http:llwww.sei.cmu.edulpublications/documents/
99.reports/99tr004/99trOO4abstract.html> (1999).

[Hilburn 97] Hilburn, T. B. "SE Education: A Modest Proposal." IEEE
Software 14, 6 (November 1997): 44-48.

[IEEE-CS 98] IEEE-CS/ACM Joint Task Force on Software Engineering
Ethics and Professional Practices. Software Engineering Code of
Ethics and Professional Practice [online]. Available WWW
<URL: http:/•vww.computer.orgftab/`eprof/code.htrh> (1999Y.

58 CMU/SEI-99-TR-032

[IEEE-CS 97] IEEE Computer Society, Software Engineering Standards
Collection, 1997 ed. Los Alamitos, California: IEEE Computer
Society Press, 1997.

[Lethbridge 98] Lethbridge, T.C. "Survey of the Relevance of Computer Science
and Software Engineering Education," 44-55. Proceedings of the
11th Conference on Software Education & Training. Pittsburgh,
Pennsylvania, February 22-25, 1998. Los Alamitos, California:
IEEE Computer Society Press, 1998.

[Moore 94] Moore, Melody & Potts, Colin. "Learning by Doing: Goals and
Experiences of Two Software Engineering Project Courses,"
151-164. Proceedings of the Seventh Software Engineering
Institute Conference on Software Engineering Education. San
Antonio, Texas, January 6, 1994. Berlin, Germany: Springer-
Verlag, 1994.

[Naveda 98] Naveda, J. & Lutz, M. "Crafting a Baccalaureate Program in
Software Engineering," 74-80. Proceedings of the 10th
Conference on Software Education & Training. Virginia Beach,
Virginia, April 22-25, 1998. Los Alamitos, California: IEEE
Computer Society Press, 1998.

[Tucker 911 Tucker, A. B., ed. Computing Curricula 1991: Report of the
ACM/1EEE-CS Joint Curriculum Task Force. Los Alamitos,
California: IEEE Computer Society Press, 1991.

[WGSEET] Working Group on Software Engineering Education and
Training (WGSEET). Available WWW <URL:
http:llwww.sei.cmu.edultopics/collaborating/
ed/workgroup-ed.html> (1999).

CMU/SEI-99-TR-032 59

60 CMU/SEI-99-TR-032

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send com-
ments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washini ton, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

November 1999 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Guidelines for Software Engineering C - F1 9628-95-C-0003
Education, Version 1

6. AUTHOR(S)

Donald Bagert, Thomas Hilburn, Greg Hislop, Michael Lutz, Michael
McCracken, Susan Mengel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 7. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER

Carnegie Mellon University CMU/SEI-99-TR-032
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

HQ ESC/DIB AGENCY REPORT NUMBER

5 Eglin Street ESC-TR-99-002
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT 12.B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)

The two central parts of the Guidelines are the description of a software engi-
neering body of knowledge and a curriculum model. The body of knowledge
presents a high-level organization and description of the software engineering
that supports effective curriculum design; and the curriculum model consists of
a design architecture, a set of design concepts, and curriculum content guid-
ance. We believe that this material and other guidance offered will provide as-
sistance to faculty in the design and development of quality programs in soft-
ware engineering and related curricula.

14. SUBJECTTERMS 14. NUMBER OF PAGES

73
16. PRICE CODE

17. SECURITY 18. SECURITY CLASSIFICATION 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF THIS PAGE CLASSIFICATION ABSTRACT

OF REPORT UNCLASSIFIED OF ABSTRACT UL

UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

CMU/SEI-99-TR-032 61

