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FOREWORD 

New methods for training computational neural networks for dynamic system 
identification and control have been created, performance of the training algorithms has 
been analyzed, and the resulting neural networks have been evaluated. Computational 
neural networks are shown to have excellent potential for identifying the dynamic models 
of nonlinear systems and for controlling such systems over their entire operating space. 
Three topics were addressed: 

• Aerodynamic model identification using sigmoid and radial-basis-function networks 
• Control of the preferential oxidizer for a fuel-cell power system using a neural net- 

work 
• Initializing a neural network (nonlinear) controller so that it replicates the character- 

istics of a gain-scheduled linear controller. 

This research produced new training approaches that will allow future dynamic systems 
to work with higher accuracy, greater efficiency, and improved reliability. 
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l. STATEMENT OF THE PROBLEM 

Computational neural networks are motivated by input-output and learning properties 
of biological neural systems, though in mathematical application the network becomes an 
abstraction that may bear little resemblance to its biological model. Computational neu- 
ral networks consist of nodes that simulate the neurons and weighting factors that simu- 
late the synapses of a living nervous system. The nodes are nonlinear basis functions, 
and the weights contain knowledge of the system. Neural networks are good candidates 
for performing a variety of functions in intelligent control systems because they are 
potentially very fast (in parallel hardware implementation), they are intrinsically nonlin- 
ear, they can address problems of high dimension, and they can learn from experience. 
From the biological analogy, the neurons are modeled as switching functions that take 
just two discrete values; however, "switching" may be softened to "saturation," not only 
to facilitate learning of the synaptic weights but to admit the modeling of continuous, dif- 
ferentiable functions. Furthermore other nonlinear functions, such as radial basis func- 
tions and wavelets, can be used as activation functions. 

The neural networks receiving most current attention are static expressions that per- 
form one of two functions. The first is to approximate multivariate functions of the form, 

y = h(x) (1 

where x and v are input and output vectors and h(») is the (possibly unknown) relation- 
ship between them. Neural networks can be viewed as generalized spline functions that 
identify efficient input-output mappings from observations. The second application is to 
classify attributes, much like decision trees. 

An N-layer feed-forward neural network (FNN) represents the function by a sequence 
of operations, 

r(k) = s(k)[W(k-l)r(k-l)] i s(k)[T1(k)], k = 1 to N (2 

where v = r(N) and x = r(°). W(k_1) is a matrix of weighting factors determined by the 
learning process, and s(k)[«] is an activation-function vector whose elements normally are 
identical, scalar, nonlinear functions Gi(r}i) appearing at each node: 

s(k)[T1(k)] = [ai(T, ^k)) ...an(Tin(k))]T (3 

One of the inputs to each layer may be a unity threshold element that adjusts the bias of 
the layer's output. Networks consisting solely of linear activation functions are of little 
interest, as they merely perform a linear transformation H, thus limiting eq. 1 to the form, 
v = Hx. Figure 1 represents two simple feed-forward neural networks. Each circle repre- 
sents an arbitrary, scalar, nonlinear function Oj(») operating on the sum of its inputs, and 
each arrow transmits a signal from the previous node, multiplied by a weighting factor. 

More than one set of weights could produce the same functional relationship between 
x and v. Training sessions starting at different points could produce different sets of 
weights that yield identical outputs. The result presages a well-known problem of net- 
work weight determination: multiple local minima in error-minimizing solutions that may 



prevent the identification of the best network for representing a given function. The un- 
structured feed-forward network may not have compact support (i.e., its weights may 
have global effects) if its basis functions do not vanish for large magnitudes of their 
arguments. 

a) Single-Input/Single-Output Network,     b) Double-Input/Single-Output Network. 

Figure 1. Two Feed-forward Neural Networks. 

The sigmoid is commonly used as the artificial neuron.  It is a saturating function 
defined variously as G(TJ) = 1/(1 + e^) for output in (0,1) or a(n) = (1 -e-2ü)/(l + e"2Tl) = 

tanh T| for output in (-1,1). Recent results indicate that any continuous mapping can be 
approximated arbitrarily closely with sigmoidal networks containing a single hidden layer 
(N = 2). Symmetric activation functions like the Gaussian radial basis function (a(T|) = 

e-r   Wr) have better convergence properties for many functions and have more compact 
support as a consequence of near-orthogonality. In such case, eq. 2 is rewritten as 

r(k) = s(k)[r(k-DT W(k-Dr(k-1)] = S(k)[r|(k)] , k = 1 to N (4 

In control application, neural networks perform functions analogous to gain schedul- 
ing or nonlinear control. Consider the simple two-input network of Fig. lb. The scalar 
output and derivative of a single sigmoid with unit weights are shown in Fig. 2. If u is a 
fast variable and v is a slow variable, choosing the proper weights on the inputs and 
threshold can produce a gain schedule that is approximately linear in one region and non- 
linear (with an inflection point) in another. More complex surfaces can be generated by 
increasing the number of sigmoids. If u and v are both fast variables, then the sigmoid 
can represent a generalization of their nonlinear interaction. In that regard, the FNN may 
represent a nonlinear control function directly, or it may represent a nonlinear dynamic 
model that is to be inverted by separate control logic. 



a) Sigmoid. b) x-Derivative of Sigmoid. 

Figure 2. Example of Sigmoid Output with Two Inputs. 

For comparison, a typical radial basis function produces the output shown in Fig. 3. 
Whereas the sigmoid has a preferred input axis and simple curvature, the RBF admits 
more complex curvature of the output surface, and its effect is more localized. The most 
efficient nodal activation function depends on the general shape of the surface to be 
approximated, as well as on the importance of compact support. 

The cerebellar model articulation controller (CMAC) is an alternate network formu- 
lation with somewhat different properties but similar promise for application in control 
systems. The CMAC performs table look-up of a nonlinear function over a particular 
region of function space. CMAC operation can be split into two mappings. The first 
maps each input into an association space A. The mapping generates a. selector vector a 
from overlapping receptive regions for the input. The second mapping, R, goes from the 
selector vector a to the scalar output y through the weight vector w, which is derived from 
training: 

y = wTa (5 

Training is inherently local, as the extent of the receptive regions is fixed. The CMAC 
has quantized output, producing "staircased" rather than continuous output. 

The FNN and CMAC are both examples of instantaneous networks, that is, their out- 
puts are essentially instantaneous: given an input, the speed of output depends only on the 
speed of the computer. Dynamic networks rely on stable resonance of the network about 
an equilibrium condition to relate a fixed set of initial conditions to a steady-state output. 
Bidirectional Associative Memory (BAM) networks are nonlinear dynamical systems 
that subsume Hopfield networks, Adaptive-Resonance-Theory (ART) networks, and 
Kohonen networks. Like FNN, they use binary or sigmoidal neurons and store knowl- 
edge in the weights that connect them; however, the "neural circuits" take time to stabi- 
lize on an output. While dynamic networks may operate more like biological neurons, 
which have a refractory period between differing outputs, computational delay degrades 
control functions; hence, instantaneous networks are preferred in many identification and 
control applications. 



a) Radial Basis Function (RBF). b) x-Derivative of RBF. 

Figure 3. Example of Radial Basis Function Output with Two Inputs. 

1.1 Aerodynamic Model Identification 

Aerodynamic model identification is an example of the generic multivariate func- 
tion approximation problem with certain constraints on the training space. The multi- 
variate functions ~ in this case, aerodynamic coefficients that have nonlinear dependence 
on several variables - are embedded in high-order ordinary differential equations. The 
goal is to derive the aerodynamic models from measurements of physically realizable 
trajectories in the state and control space in two steps: generation of the training set and 
training of the network. First, an extended Kaiman filter (EKF) processes simulated or 
actual measurements to minimize the effects of measurement error, to account for likely 
disturbance effects on the dynamical system, and to estimate the forces and moments 
related to the aerodynamic coefficients. The state, control, forces, and moments are the 
training set for a feed-forward neural network (FNN) (also called a "back-propagation 
network," although different training algorithms are used here). Second, the FNN, con- 
taining a single hidden layer of sigmoid or radial-basis-function "neurons," is trained on 
this set using a separate EKF, a genetic algorithm (GA), or a combination of the two. 

1.2 Cerebellar Model Articulation Controller 

The cerebellar model articulation controller (CMAC) is based on a sequence of 
memory and data mappings rather than on interconnected neurons. The CMAC maps an 
input vector to an output vector in two steps. In the first mapping, the input is discretized 
and quantized in the receptive region; in the second mapping, outputs of the receptive 
region form the conceptual or association memory that produces the desired output. 
There also may be a hashing region that compresses memory requirements with little 
degradation in performance. For the application described in Section 2.2, the CMAC 
operates in parallel with a proportional-integral-derivative (PID) controller, which pro- 
vides initial stabilization as the CMAC learns its weights through error-gradient-based 
training. The CMAC gradually takes over from the PID controller, providing improved 
nonlinear control in the process. 



1.3 Classical/Neural Synthesis of Nonlinear Control Systems 

Classical/neural synthesis of control systems combines the most effective ele- 
ments of old and new design concepts to produce better control systems. There is con- 
siderable precedent for applying gain-scheduled linear controllers to nonlinear systems, 
especially those that can be approximated as linear-parameter-varying systems; however, 
a means for transferring the insights gained from these linear controllers to nonlinear 
Controllers remains to be identified. Thus research initiated a new approach for designing 
nonlinear control systems that takes advantage of prior knowledge and experience in 
designing linear controllers, while capitalizing on the broader capabilities of adaptive, 
nonlinear control theory and artificial (or computational) neural networks. Central to 
this new approach is the recognition that the gradients of a nonlinear control law must 
represent the gain matrices of an equivalent, locally linearized controller. Hence, a fam- 
ily of satisfactory linear controllers specified over the operating envelope of the system 
forms a suitable starting point for the definition of a global nonlinear controller. The ini- 
tial specification for the controller, which can be represented by neural networks, retains 
the stability, performance, and robustness guarantees of the linearized model for small 
perturbations. On-line learning improves control response for large, coupled motions, 
accounting for differences between actual and assumed dynamic models and for nonlin- 
ear effects not captured in the linearization. 

2. SUMMARY OF IMPORTANT RESULTS 

2.1 Aerodynamic Model Identification 

Model identification results focus on the speed and accuracy of FNN training, the 
effects of using alternate nodal activation functions, the ability of the network to gener- 
alize from trajectory training data, and the ability of a pre-trained network to learn a new, 
localized feature of the function. Six methods of training a sigmoidal FNN for model 
identification are compared in [3]. (Related research on the use of a GA for learning the 
design parameters of a linear compensator is documented in [10].) The task is to estimate 
the lift coefficient of an aircraft as a function of up to three variables. Of the six methods, 
(four EKFs, a genetic algorithm, and a hybrid GA-EKF), the most successful is an 
extended Kaiman filter with fictitious process noise. It had been anticipated that the 
hybrid method, which combines an initial global search by GA with the strong conver- 
gence properties of the EKF, would prove efficient, and it was four to nine times faster 
than either GA or EKF alone. However, the EKF with process noise proved quickest to 
converge, an additional five to 20 times faster than the GA-EKF. 

An apparent advantage of using a radial basis function (RBF) for a nodal activa- 
tion function rather than a sigmoid is that its domain of significant effect is more compact 
[4,8]. The sigmoid extends from zero to one across the input domain, while the RBF 
produces an exponential "bump" at its center, trailing off to zero elsewhere. If features of 
the training function change locally, it seems likely that an RBF network would learn 
these features more quickly than a sigmoid network and with less disturbance to the 
trained function elsewhere. Our investigation confirms this hypothesis. The RBF net- 
works typically converge to the new feature several times faster than the sigmoid net- 
works. 

Nevertheless, RBF networks, as typically defined, suffer from a "curse of dimen- 
sionality," growing exponentially and inefficiently as the number of independent vari- 
ables increases. We have defined a new, hierarchical type of RBF network that is espe- 



cially well-suited to on-line learning [9]. The model update is developed over time 
through the use of three approximations, all housed within one neural network. Gaussian 
radial basis functions with the centers placed on grids of different resolutions serve as 
the network activation functions, or nodes, where each grid is assigned a set of width 
ranges. Network training is reduced to a nodal selection/output-weight calculation prob- 
lem. The network considers two surfaces: the Baseline and Residual-Surface. The Base- 
line portion of the network is initialized prior to flight. Its parameters remain fixed dur- 
ing system operation while the residual surface, that surface defined by the difference 
between actual flight data and the current Baseline Approximation, is captured by the 
Residual-Surface Approximation. This approximation is also built with two surfaces- the 
Interim and Flight Approximations. The Flight model is generated during system opera- 
tion using a selection procedure based on nodal output magnitudes and the Givens least- 
squares algorithm for output-weight calculation. The Interim Approximation is generated 
at fixed time intervals, and it efficiently replaces the Flight model. The information held 
in the Interim model is used to update the Baseline Approximation. The Baseline and 
Interim surfaces are generated with a new, fast, accurate training procedure for problems 
that include several inputs. Models must be able to generalize or respond accurately to 
data not seen during training; this quality is monitored during all phases of learning and 
considered for approximation establishment. 

2.2 Cerebellar Model Articulation Controller 

Ground vehicles fueled by hydrocarbons or alcohols and powered by proton 
exchange membrane (PEM) fuel cells address world air quality and fuel supply concerns 
while avoiding hydrogen infrastructure and on-board storage problems. Instead of car- 
rying gaseous hydrogen on vehicles, fuel cell developers are exploring on-board fuel 
processors that convert a hydrogen-containing fuel - such as methanol, ethanol, or gaso- 
line - into a hydrogen-rich gas. These fuels are easier to store and distribute than hydro- 
gen gas, and fuels such as gasoline have a production and distribution infrastructure 
already in place. However, a major concern when operating PEM fuel cells on the 
hydrogen-rich gas from a fuel processor is the poisoning of the fuel cell's anode catalyst, 
and thus the degradation of vehicle performance, by carbon monoxide. The gas stream or 
"reformate" from a fuel processor contains hydrogen, carbon dioxide, water, and carbon 
monoxide. Care must be taken to reduce the carbon monoxide level in the gas to only a 
few parts per million before it enters the fuel cell. In an on-board fuel processor, the final 
carbon monoxide clean-up step is performed by a relatively new catalytic reactor called 
the preferential oxidizer or PrOx. Reduction of the carbon monoxide concentration in the 
on-board fuel processor's hydrogen-rich gas by the preferential oxidizer (PrOx) under 
dynamic conditions is crucial to avoid poisoning of the PEM fuel cell's anode catalyst 
and thus malfunction of the fuel cell vehicle. 

The CMAC has been used as a nonlinear controller for a fuel cell's PrOx [5 6] 
The gas flow rate and temperature of the PrOx have nonlinear effects on the reaction and 
must be carefully controlled to maximize the performance and life of the fuel cell - 
hence the need for an adaptive, nonlinear controller. The CMAC is shown to perform 
better than a PID controller alone, given slow and inaccurate sensors, rapid fuel processor 
transients, and systematic fuel processor changes due to aging. 

A dynamic control scheme for a single-stage, tubular, cooled PrOx was been 
shown to perform better than conventional industrial controllers. The hybrid control 
system contains a CMAC artificial neural network in parallel with a conventional PID 
controller. A computer simulation of the preferential oxidation reactor illustrated the 
abilities of the controller and compared its performance to the performance of conven- 
tional controllers. Realistic input patterns were generated for the PrOx by using models 



of vehicle power demand and upstream fuel processor components to convert the speed 
sequences in the Federal Urban Driving Schedule (FUDS) to PrOx inlet temperatures, 
concentrations, and flow rates. The hybrid controller generalizes well to novel driving 
sequences after being trained on other driving sequences with similar or slower tran- 
sients. Although it is similar to the PID in terms of software requirements and design 
effort, the hybrid controller performs significantly better than the PID in terms of hydro- 
gen conversion setpoint regulation and PrOx outlet carbon monoxide reduction. 

ir- 

2.3 Classical/Neural Synthesis of Nonlinear Control Systems 

We consider dynamic systems described by the nonlinear ordinary differential 
equation: 

x = f[x(t), p(t), u(t), w(t)] (6 

x is the (n x 1) plant state, p is a (£ x 1) vector of plant and observation parameters, u is 
the (m X 1) control, and w is a (s x 1) vector of disturbance effects. The equation may 
represent a "lumped-parameter" system, or it may be an approximation to an unsteady 
partial differential equation. Plant motions, controls, and disturbances are sensed in the (r 
x 1) output ys, 

ys(t) = hs[x(t),p(t),u(t)Mt)] (7 

and the measurement, z, is subject to uncertainty, n: 

Z(t) = ys(t) + n(t) (8 

The design objective is to specify a control law of the general form 

u(t) = c[z(t),p(t),yc(t)] (9 

that has two properties: it achieves mission goals, as expressed by the (rc x 1) command 
input, yj,t), and it furnishes adequate stability and transient response, assuring that excur- 
sions from y</1) caused by disturbance or measurement error are acceptably small and do 
not require excessive control use. 

The command input, y^t), can be viewed as some desirable (possibly nonlinear) 
combination of state and control elements, and its dimension is less than or equal to the 
number of independent controls (rc < m): 

yc(t) = hc[x(t\u(t)] (10 

It could be the result of external trajectory planning (e.g., following a prescribed, possibly 
optimal, path), or it may be due to a loosely defined, subjective process (e.g., the expres- 
sion of a human operator's intent). 

For the discussion, we address the more limited goal of control with perfect meas- 
urements, simplifying the control law to 



u(t) = c[x(t),p(t),yc(t)] (11 

c[x(t),p(t),yc(t)\ may be a functional, containing functions of its arguments, such as 
integrals or derivatives of x(t) and yjt). We always can write the control law as the sum 
of a nominal effect and a perturbed effect 

u(t) = c0[x0(t),p(t),yc 0)1 + Ac[x(t),p(t),yc(t)] 
(12 

= u0(t) + Au(t) 

where, for simplicity, we assume that p(t) is known without error. Anticipated values of 
the state and command are x0 and yc , and actual values are JC and ya where 

JC = x0 + Ax 
A (13,14 

y = y0
+Ay 

Hence, the control law can be expressed as 

M(0 = co[xo(0,p(05Jco(0] + Ac[^(0,jp(0,>'co(0,Ax(0,A3;c(0] (15 

For sufficiently small state and command perturbations, the perturbed control 
effect is linear in Ax and Ay0 and it can be written as 

-\ -\ 
Au(t) = Ac|>] = -^-\x0(t),p(t),yc (t)]Ax + -^-fx0(t),p{t\yc {t)]Ayc 

dxl J        dyc
l i (16 

= CxAx + CyAyc 

Cx and Cy contain the m gradients of the control law evaluated at \x0{t),p{t),yc (t)]. 
Equation 16 can be viewed as a linear, gain-scheduled control law which, when com- 
bined with c[»], provides a close approximation to the exact nonlinear controller (eq. 11) 
for small Ax and Ay^ 

"(0 = c0[x0(t),p(t),yCo (t)] + CxAx + CyAyc (17 

It is clear that knowledge of c[x(t),p(t),yc(t)] at a single point and of Cx and Cy over the 

operating range of [*(0>P(0>yc(0] (or some suitably dense set in the space) is equivalent 
to knowledge of c[x(t), p(t),yc(t)] over the same range. Put another way, given a nonlin- 
ear control in the form of eq. 9, the corresponding gain-scheduled control law is readily 
found. Our objective is to find efficient ways of solving the inverse problem, that is, to 
derive a nonlinear control law from a satisfactory gain-scheduled control law. 



Gain-scheduled control laws are based on a set of linear, time-invariant (LTI) 
control laws specified throughout the plant's operating region. Given the dynamic sys- 
tem of eq. 6, a first-degree expansion can be written: 

x(t) = xo(t) + Ax(t) 

^   =/k(0,/K0,wo(0,wo(0] + A^ 

« f[x0(t),p(t),u0{t\ w0(t)] + f-Ax(0 + $-Au(t) + $-Aw(t) 
ox du dw 

= /[•] + FAx(t) + GAu(t) + LAw(t) 

(18 

The Jacobian matrices, F, G, and L, are evaluated at selected operating points and the 
perturbation model is: 

A*(0 = F[x0(t),p(t),u0(t),w0(t)]Ax(t) 

+ G[x0{t\p(t),u0{t),w0(t)]&u(t) + L[x0(t),p(t),u0{t),w0(t)}&w(t) 
(19 

This model is almost a linear, parameter-varying (LPV) plant, "almost" because 
the system matrices depend on xjt), as well as the remaining variables. In most applica- 
tions, effects of parameter variation are ignored because time-varying dynamic effects are 
small, and [F, G, L] is treated as a set of LTI plant models. Linear control gains (e g C 
and Cy) are computed for each LTI model, and the control law is implemented with inter- 
polation of gams to intermediate operating points. In past applications, the number of 
interpolating variables has been kept small. 

Future research will identify a means of greatly expanding the number of 
(independent) interpolating variables, affording an improvement in comparison to gain- 
scheduled controllers. More important, it will provide an excellent initialization point for 
the neural-network controller [7]. Given Cx, Cy, and the corresponding equilibrium points 
at each operating point, the corresponding nonlinear control law (eq. 11) will be gener- 
ated. 6 

We assume that the LTI control laws used for this pre-training phase satisfy 
accepted engineering design criteria, based on design principles described in our earlier 
work. For example, we have shown how to use Monte Carlo evaluation and genetic algo- 
rithms to design robust linear, quadratic-Gaussian (LQG) controllers that satisfy classical 
design criteria. That process begins with conventional stability and performance specifi- 
cations (e.g., negative eigenvalues, suitable limits on rise time, settling time, and control 
usage), and it generates desired values of Cx, Cy, and the equilibrium points. In the proc- 
ess, the corresponding weighting matrices for quadratic cost functions, such as, 

1 'f 1 'f 7 = ,U™ 9 J 4*(*)."(*)>fr = lim - j [X
T
(T)QX(T) + 2X

T
(T)MU(T) + uT(T)Ru(<r)\tr (20 

' o s^"° L 0 

are found. These cost functions become critical elements for on-line learning. 
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On-line training of a neural network is based on the minimization of an error 
function; the error function chosen here takes the form of eq. 15. The result is a dynamic 
programming problem, m which the nonlinear control law minimizes the expected value 
of a cost function such as eq. 20. We replace the cost function, J, by the value function 

l'r 
V(J) = - lim - jL[x(T),«(T)]rfT (21 

r^holce^fc'ont^of ^ ^^ fUnCti°n ™ ^ Hamilton-Jacobi-Bellman (HJB) equation 

dV* 
[x*(t),t] = -min dV* 

L[x * (t),u(t),t] + ~[x * (t),t]f[x * (t),u(t),t] (22 

Because the problem is stochastic, the value function is recast as the expected value of 
the integral in eq. 16: 

V(t) = -E l'r 
lim-fL[x(T),M(T)1ü?T 
tf->°° 2 J (23 

Hence, the elements of eq. 17 are expectations rather than deterministic functions. With 
sufficient smoothness, the corresponding control, W*(T), along the optimal trajectory, 
x*(t), is specified by the optimality condition 

du 
dV* 

L[x * (t),u(t),t] + ~[x * (t),t]f[x * (t),u(t),t] (24 

While this condition implicitly specifies the control, our goal is to derive an 
explicit relation in the form of eq. 11. Solution of this problem is afforded by the adap- 
tive critic architecture   This architecture consists of an action network, which expresses 
the control law (eq. 11), plus a critic network, which estimates the dVVdx required in eq 
24. ^or the linear case, optimal control perturbations can be calculated as 

dV* 
Au(t) = -R-'G7 —— = -R-*GTP(t)Ax(t) = CxAx(t) (25 

where P(t) is the solution to the well-known matrix Riccati equation. Hence, there is an 
intimate relationship between dV*/dx and the gradient of the control surface Cx. 
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