
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

AUTONOMOUS AGENTS FOR DISTRIBUTED
INTRUSION DETECTION IN A MULTI-HOST

ENVmONMENT

by

Dennis J. Ingram

September 1999

Thesis Advisor:
Second Reader:

Neil Rowe
Geoffrey Xie

Approved for public release; distribution is unlimited.

DTIC QUALITY IHSPEC^J,

19991029 085

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
Autonomous Agents for Distributed Intrusion Detection in a Multi-host
Environment

6. AUTHOR(S)
Ingram, Dennis J.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES ~~~~~

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Because computer security in today's networks is one of the fastest expanding areas of the computer industry,

protecting resources from intruders is an arduous task that must be automated to be efficient and responsive. Most
intrusion-detection systems currently rely on some type of centralized processing to analyze the data necessary to detect an
intruder in real time. A centralized approach can be vulnerable to attack. If an intruder can disable the central detection
system, then most, if not all, protection is subverted. The research presented here demonstrates that independent detection
agents can be run in a distributed fashion, each operating mostly independent of the others, yet cooperating and
communicating to provide a truly distributed detection mechanism without a single point of failure. The agents can run
along with user and system software without noticeable consumption of system resources, and without generating an
overwhelming amount of network traffic during an attack.

14. SUBJECT TERMS ~~~
Intrusion Detection, Artificial Intelligence, Autonomous Agents, Computer Security

17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT
Unclassified

NSN 7540-01-280-5500

15. NUMBER OF
PAGES

66

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited.

AUTONOMOUS AGENTS FOR DISTRIBUTED INTRUSION DETECTION IN A
MULTI-HOST ENVIRONMENT

Dennis J. Ingram
Captain, United States Marine Corps

A.S., Southeastern Louisiana University, 1984
B.S., Park College, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCDZNCE IN COMPUTER SCEENCE

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
September 1999

)an Boger, Acting Chairman,
Computer Science Department

in

IV

ABSTRACT

Because computer security in today's networks is one of the fastest expanding

areas of the computer industry, protecting resources from intruders is an arduous task that

must be automated to be efficient and responsive. Most intrusion-detection systems

currently rely on some type of centralized processing to analyze the data necessary to

detect an intruder in real time. A centralized approach can be vulnerable to attack. If an

intruder can disable the central detection system, then most, if not all, protection is

subverted. The research presented here demonstrates that independent detection agents

can be run in a distributed fashion, each operating mostly independent of the others, yet

cooperating and communicating to provide a truly distributed detection mechanism

without a single point of failure. The agents can run along with user and system software

without noticeable consumption of system resources, and without generating an

overwhelming amount of network traffic during an attack.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1
B. GOAL 2
C. THESIS ORGANIZATION 2

II. INTRUSION DETECTION 3

A. BACKGROUND 3
B. TYPES OF DETECTION SYSTEMS 3

1. Host-Based 4
2. Network-Based 4
3. Distributed 4

C. CATEGORIES OF ATTACKS 4
D. REQUIREMENTS FOR A DETECTION SYSTEM 5
E. SUMMARY 6

III. OTHER WORK IN THE AREA OF INTRUSION DETECTION 7

A. ADAPTIVE INTRUSION DETECTION SYSTEM (AID) 7
B. AUTONOMOUS AGENTS FOR INTRUSION DETECTION (AAFID) 7
C. COMPUTER MISUSE DETECTION SYSTEM (CMDS™) 8
D. EVENT MONITORING ENABLING RESPONSE TO ANOMALOUS LIVE DISTURBANCES

(EMERALD) 8

IV. HOST BASED AUTONOMOUS AGENTS 11

A. INTRODUCTION 11
B. SOFTWARE CHOICES 11
C AGENT DESCRIPTION 12

1. Agent Window Manager 12
2. Controller Module 13
3. UDP Transmitter 17
4. UDP Receiver 17
5. TCP Transmitter 18
6. TCP Receiver 18
7. Message Class Data Structure 19
8. ContactList Class Data Structure 19
9. Host Sensor 19
10. Alert Parser 20
11. Log Sensor 20

D. SUMMARY 21

V. EXPERIMENTS 23

A. INTRODUCTION 23

vii

B. RESTRICTED NETWORK TESTING 23
C. GENERAL NETWORK TESTING 24
D. CPU UTILIZATION TESTS 28
E. SIMULATED ATTACK SCENARIOS 29

1. Single-Target Attack 30
2. Multiple-Target Attack 30
3. Network Saturation Test 31

F. SUMMARY 32

VI. CONCLUSION AND FUTURE WORK 33
A. CONCLUSION 33
B. REQUIREMENTS REVIEW 33

1. The System Must Recognize Suspect Activity of ,a Potential Attack 33
2. Escalating Behavior Should Be Detected at the Lowest Level Possible 33
3. There Must Be Inter-host Communication Regarding Intrusions and Alert Levels
 • 34

4. There Must Be Appropriate Response to Changing Alert Levels 34
5. The System Must Incorporate Manual Control Mechanisms for Administrators 34
6. The System Must Be Adaptable to Changing Methods of Attack 34
7. The System Must Be Able to Handle Multiple Concurrent Attack Threads 35
8. The System Must Be Scalable and Easily Expandable 35
9. The System Must Be Resistant to Compromise and Able to Protect Itself from

Intrusion 35
10. The System Must Be Efficient and Reliable 35

C. FUTURE WORK 36
1. Secure Message Transfer 36
2. Agent Authentication 36
3. Agent Service 36
4. Using Another Programming Language 37
5. Response to Attack 37
6. Sensors 37
7. Threshold Values 37
8. Configuration File 38

APPENDIX A: PROGRAM CODE 39

LIST OF REFERENCES 63

INITIAL DISTRIBUTION LIST 65

vin

LIST OF FIGURES

Figure 1: IDAgent Block Diagram 12
Figure 2: Alert-Level Increase 14
Figure 3: Alert-Level Decrease 15
Figure 4: Login Failure Calculation 16
Figure 5: Network Bandwidth Utilization 24
Figure 6: Average Packets and Broadcasts 27
Figure 7: Percent Network Bandwidth Utilization 28
Figure 8: CPU Utilization [Z 29

IX

LIST OF TABLES

Table 1: Attack Types (from DURST99) 5
Table 2: Estimated Login Alerts 25
Table 3: Alert Levels for Single Target Attack 30
Table 4: Alert Levels for Multiple Target Attack 31

XI

Xll

ACKNOWLEDGEMENTS

I would like to thank my God for His assistance in this effort; my wife, Amy,

for her understanding and support; and my kids, Rachel, Denny, and Hannah, for

letting their dad finish his work.

I would like to thank my advisor, Professor Neil Rowe, for his assistance and

advice on the project.

Special thanks to Professor Geoffrey Xie for providing the computers and

resources necessary to complete this thesis.

Also, thanks to Major Jim Breitinger for his advice and for being a sounding

board during the programming phase of the project.

xm

XIV

I. INTRODUCTION

This thesis investigates using autonomous agents in a Windows NT network as

intrusion-detection agents that act mostly independently yet share information. There are

currently many intrusion-detection systems available, but most operate either on a

separate computer monitoring the network traffic or as fully independent agents running

on existing computers that report data to a central controller. My approach is to provide

an agent that will run on some or all platforms in the network, and operate autonomously

while at the same time cooperating with other agents to communicate threats throughout

the network, to form a robust redundant detection system.

A. BACKGROUND

In the past decade, the Internet has grown from a fledgling network of computers

to a multi million dollar industry. With everyone interconnected, the problem of security

of information is a most definite concern. With all the information available on the

Internet, intruders see the Internet as an easy opportunity for malicious mischief.

Detecting an intruder in a network environment is hard for a human. The rates of data

transfer and the amount of information flowing digitally through the physical media

require an electronic means of surveillance. Even with a computer collecting the data,

there is still too much information for a person to analyze and track in real time or even

near-real time.

To protect important systems from hackers, intrusion-detection systems are

becoming more prevalent. Hundreds of intrusion-detection systems now on the market

claim to protect your system. Most of these systems rely on centralized control and

centralized analysis of data to determine if an intruder has entered the system. This

centralized scheme of control is vulnerable since an intruder can disable or bypass it by

attacking just one host. Many of these systems are single-host-based systems that sit on

the network and monitor all traffic flowing through a segment. Other systems have

multiple agents that reside throughout the network on separate hosts and report any

abnormalities or alerts to a central repository for logging and analysis. Some programs

have tried to combat the centralization of control by allowing multiple controllers, but

this is not common.

B. GOAL

My goal is to determine, through experimentation, if multiple autonomous

intrusion detection agents can act mostly independently, running on many servers and

workstations in the network, and can collaborate to form a network protection grid with

no single controller or point of failure, without overburdening the network or an

individual workstation with network traffic. Disabling any agent should alert other

agents in the system that there is a potential problem.

C. THESIS ORGANIZATION

Chapter II describes background and puts this research into perspective. It

discusses types of detection systems and requirements for a good intrusion detection

system. Chapter III discusses other work in this area that attempts to solve the problem.

Chapter IV describes my intrusion-detection agent, its components, and how each

component operates. Chapter V provides details of experiments and tests run on the

system and the results of these tests. Chapter VI provides conclusions and future work

expectations.

II. INTRUSION DETECTION

A. BACKGROUND

Intrusion detection is an absolutely essential part of today's network-centric

digital world. An intrusion into a computer system can be compared to a physical

intrusion into a building by a thief: It is an entity gaining unauthorized access to

resources. The unauthorized access is intended to steal or change information or to

disrupt the valid use of the resource by an authorized user. Intrusion detection is the

ability to determine that an intruder has gained, or is attempting to gain unauthorized

access. An intrusion-detection system is a tool used to make this determination. The

goal of any intrusion-detection system is to alert an authority of unauthorized access

before the intruders can cause any damage or take any information, much like a burglar

alarm system in a building. However, a digital computer system is far more vulnerable

than a building and much harder to protect. The intruder can be hundreds of miles away

when the attack is initiated, leaving behind very little evidence.

Intrusions generally fall into two categories: misuse and anomalies. Misuse

attacks exploit some vulnerability in the system hardware or software to gain

unauthorized access. Many of these attacks are well documented and are easily detected

by computer systems, but new ones are constantly being discovered. Anomalies are

harder to detect since they often originate from an inside user who already has access to

the system. They are characterized by deviations from normal user behavior, and

detection requires some type of user profiling to establish a normal behavior pattern.

B. TYPES OF DETECTION SYSTEMS

There are several types of detection systems on the commercial market. These

systems can be used individually or can be combined to provide more protection.

1. Host-Based

A host-based system resides on a single host computer. It uses audit logs or

network traffic records of a single host for processing and analysis. This type of system

is limited in scope since it is only able to see its own host's environment, and cannot

detect simultaneous attacks against multiple hosts.

2. Network-Based

A network-based system is a dedicated computer, or special hardware platform,

with detection software installed. It is placed at a strategic point on a network (like a

gateway or subnetwork) to analyze all network traffic on that particular segment. It can

scan data traffic for known attack patterns. It can also determine Internet Protocol (IP)

addresses that originate outside its subnet. This system can detect attacks against

multiple hosts on a single subnet, but it usually cannot monitor multiple subnets at one

time. It also cannot detect any host-based attack that does not pass through it.

3. Distributed

Distributed systems allow detection software modules to be placed throughout the

network with a central controller collecting and analyzing the data from all the modules.

This provides a robust mechanism for detecting intrusions across several subnets and

several hosts. But it requires a dedicated computer to act as the central controller;

centralization can make it vulnerable to attack.

C. CATEGORIES OF ATTACKS

Today's hackers use several categories of attacks ranging from simple to very

complex. The basic categories are listed in Table 1.

One-to-one Attacker uses a single machine to attack a single target machine.
Example: sendmail bugs.

One-to-many Attacker uses a single machine to attack many targets.
Example: probes, denial of service attacks.

Many-to-one Attacker divides assault among multiple outside machines to attack a single
victim. This is difficult to detect because multiple connections from
multiple sources look more innocent than multiple connections from a
single source.
Example: SYN flood using IP spoofing to deny services.

Many-to-many Many collaborating attackers divide the tasks of probing/attacking multiple
victims. This poses the same challenge as the "many-to-one" case with the
added complexity of multiple target machines. This kind of attack is very
difficult to detect.
Example: "Smurf' attack from multiple sources.

Table 1: Attack Types (from DURST99)

D. REQUIREMENTS FOR A DETECTION SYSTEM

Joseph Barras [BARRUS97] defined ten basic requirements for a good intrusion

detection system:

1. A system must recognize any suspect activity or triggering event that

could potentially be an attack.

2. Escalating behavior on the part of an intruder should be detected at the

lowest level possible.

3. Components on various hosts must communicate with each other

regarding level of alert and intrusions detected.

4. The system must respond appropriately to changing levels of alertness.

5. The detection system must have some manual control mechanisms to

allow administrators to control various functions and alert levels of the

system.

6. The system must be able to adapt to changing methods of attack.

7. The system must be able to handle multiple concurrent attacks.

8. The system must be scalable and easily expandable as the network

changes.

9. The system must be resistant to compromise, able to protect itself from

intrusion.

10. The system must be efficient and reliable.

E. SUMMARY

The problems facing computer administrators are enormous and still increasing in

scope. Protecting computer systems from attack must be automated to be efficient.

There are programs available that perform adequately, but all seem to have the

disadvantage of either being single-host or distributed with a central analysis point, which

are both vulnerable. A completely distributed system with independent agents, each

performing its own analysis and still coordinating with all other agents, might be the best

design for a modern network. There would be no single point of failure, and an intruder

would have to disable or bypass all the running agents to succeed.

III. OTHER WORK IN THE AREA OF INTRUSION DETECTION

There are hundreds of systems available that perform intrusion detection,

intrusion prevention, and system security checking. Many perform well and provide a

robust detection mechanism, but few run in a fully distributed environment. Of those that

are distributed, many are Unix-based systems and will not run on Windows NT

platforms. There are fewer still that are portable between operating systems.

The systems most similar to the one presented in this thesis all have one major

difference from it, in that they are hierarchical in nature. This places the highest

vulnerabilities at the upper level of the hierarchy. Degrading or disabling a top-level

monitor would severely limit the detection capability of the system. None of these

systems mention the use of an alert level to determine if an attack is in progress.

A. ADAPTIVE INTRUSION DETECTION SYSTEM (AID)

AID [SOBIREY99] is a client-server architecture that consists of agents residing

on network hosts and a central monitoring station. Information is collected by the agents

and sent to the central monitor for processing and analysis. It currently has implemented

100 rules and can detect ten attack scenarios. The prototype monitor is capable of

handling eight agents. This system currently runs only on UNIX-based systems.

B. AUTONOMOUS AGENTS FOR INTRUSION DETECTION (AAFID)

The AAFID architecture [ZAMBONI98] appears the most similar to the one I

propose. AAFID is designed as a hierarchy of components with agents at the lowest level

of the tree performing the most basic functions. The agents can be added, started, or

stopped, depending on the needs of the system. AAFID agents detect basic operations

and report to a transceiver, which performs some basic analysis on the data and sends

commands to the agents. A transceiver may transmit data to a transceiver on another

host. If any interesting activity takes place, it is reported up the hierarchy to a monitor.

The monitor analyzes the data of many transceivers to detect intrusions in the network. A

monitor may report information to a higher-level monitor. The AAFID monitors still

provide a central failure point in the system. AAFID has been developed into two

prototypes: AAFID, which had many hard-coded variables and used UDP as the inter-

host communication, and AAFID2, which was developed completely in PERL and is

more robust. They run only on Unix-based systems.

C. COMPUTER MISUSE DETECTION SYSTEM (CMDS™)

CMDS™ is a commercial product from Science Applications International

Corporation (SAIC) [PROCTOR96]. It is a real-time audit reduction and alerting system

that uses an expert system and statistical profiling to analyze audit records. The system

uses distributed daemons running on host machines to monitor audit files. Information is

sent to the CMDS central server for analysis by a rule-based expert system. It also uses a

hierarchical architecture with several CMDS servers reporting to a higher CMDS system.

It currently supports the operating systems SunOS, Windows NT, Solaris, Trusted

Solaris, Ops Intel Workstation, Data General DSO, HP/UX, IBM LAN Server, Raptor

Eagle Firewalls, ANS Interlock Firewalls, and SunOS BSM. This program appears to be

robust across many platforms.

D. EVENT MONITORING ENABLING RESPONSE TO ANOMALOUS LIVE

DISTURBANCES (EMERALD)

EMERALD [NEUMANN99] is a system developed by SRI International with

research funding from DARPA. The EMERALD project will be the successor to Next-

Generation Intrusion Detection Expert System (NIDES). It is designed to monitor large

distributed networks with analysis and response units called monitors. Monitors are used

sparingly throughout the domain to analyze network services. The information from

these monitors is passed to other monitors that perform domain-wide correlation,

obtaining a higher view of the network. These in turn report to higher-level enterprise

monitors that analyze the entire network. EMERALD is a rule-based system. The target

operating system has not been stated, but it is being designed as a multi-platform system.

EMERALD provides a distributed architecture with no central controller or director;

since the monitors are placed sparingly throughout the network, they could miss events

happening on an unmonitored section. My approach is to employ agents on many hosts

to attempt detection of all suspicious activity.

THIS PAGE INTENTIONALLY LEFT BLANK

10

IV. HOST BASED AUTONOMOUS AGENTS

A. INTRODUCTION

Intrusion detection in a computer network is difficult. As detection mechanisms

are designed and implemented, intruders discover new ways to infiltrate the system. Yet

currently an intrusion detection system is the best way to protect your system from

intruders.

In designing my approach, I concentrated on agent communication and

coordination. I did not try to incorporate extensive detection mechanisms into the code,

as my goal was to determine decentralized agents could be designed to run and

communicate without interfering with normal network and CPU operation. A related

thesis by Stephen Kremer [KREMER99] deals with a broader range of intrusion and

misuse phenomena in a network.

B. SOFTWARE CHOICES

The agent base design is implemented in Java® version 1.1.8 to enable it to be

platform independent. Initial tests of the communications mechanisms were done on

Windows NT 4.0 workstations and Windows NT 4.0 server and Linux version 5.2.

Several trial runs were also conducted in a mixed environment with NT 4.0 workstation,

NT Server, and Linux 5.2, running together. One problem discovered was that platform

independence was difficult to achieve for an intrusion-detection system because many of

the mechanisms used to detect intrusions, such as system logs and system alert facilities,

are specific to a certain platform. For example, a collection of data from a system log is

processed differently on a Windows NT platform than it is on a Linux or Sun®

workstation. For this reason, I chose Windows NT as the single platform for final testing.

11

C. AGENT DESCRIPTION

I chose the name ID Agent because the agents were being designed for "Intrusion

Detection" and also because the agents were supposed to operate "InDependently".

Figure 1 shows a simple block diagram of the ID Agent components needed for a

single host. All major components of the agent are constructed as threads to allow them

to run concurrently. The main components and data structures are: Controller module,

TCP Receiver, UDP Receiver, TCP Transmitter, UDP Transmitter, Agent Window

Manager, Host Sensor, Log Sensor, Message class, and Contact List of known agents.

ID Agent Block

Sensors
Log

Host

Network

File

Alert Level

To
Other

»ents

Receiver

Controller

Transmitter Msg Out
\Queue

Recent
Alerts,

Known Agents List
Name:Addr:Port:ContactTime

Figure 1: ID Agent Block Diagram

1. Agent Window Manager

The Agent Window Manager was written initially by Major Jim Breitinger to give

a basic graphical window to display information for another project. I modified it to be

used as a user interface with the IDAgent. It contains a display frame of 500 by 320

12

pixels for a text display area. The lower portion of the window contains an area with

control buttons on a colored background of green, yellow, or red, depending on the

current alert level of the IDAgent. The control buttons allow the generation of debug

data for testing, the display of the current contact list of known agents, a display of alert

messages that caused a change to the alert status, and a status which indicates a numerical

value of the current alert level.

2. Controller Module

The controller is the brain behind the IDAgent. Once the main program initializes

all variables and the Window manager is started, the Controller thread is started. The

controller, as with almost all other threads, is in a suspended mode when there is no

activity. Any activity in any sensor, receiver, transmitter, or Window Manager of the

IDAgent will activate the controller to analyze the activity. Its primary purpose is to

analyze incoming messages from other agents and internal sensors and determine if an

intrusion is in progress. The controller updates the Alert status of the agent depending on

the messages it receives. The Alert status can range from 0.0 to 1.0 and represents the

likelihood that an intrusion is taking place. Alert levels of 0.0 to 0.4 will display a green

indicator in the user display; 0.4 to 0.7 will show a yellow indicator; and above 0.7 will

display red.

The Alert level is increased depending on the "weight" of the message. All

messages are initially sent with a weight value of 0.0; this prevents the message from

affecting the alert level until the controller has analyzed the message. Once analyzed the

message will either be saved for future reference or the weight and alert level will

increase. Each message is analyzed when it arrives. If an attack is suspected, then an

appropriate weight value is assigned to that message, which in turn increases the alert

level of the IDAgent. If the message is not considered an attack, then the message weight

remains 0.0.

The normalized increase in the alert level, as shown in Figure 2, is inverse-

exponential as the alert value increases. N = ((1.0 - A) * W) + A), where A = the current

13

alert level, W = the weight value of a message, and N = the new alert value. The alert

level will approach 1.0 if many alerts are received. If no alerts are received within two

transmit intervals (10 minutes in the current implementation), the alert level will decrease

following a negative exponential curve, i.e., N = (A * Degradation Factor) where

degradation factor is a fraction (0.9 in the current implementation). Figure 3 shows the

decrease of alert level over time if no alerts are received. Eventually, the alert level will

approach 0.0.

Alert Value Changes for a given weight

DWtO.O

OWtO.1

DWtO.2

QWtO.3

■ Wt0.4

■Wt0.5^

DWt 0.6j

□Wt0.7j
OWt0.8

■Wt0.9

0.4 0.5

Old Alert Value

Figure 2: Alert-Level Increase

14

Alert Decrease Algorithm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240

Time (minutes with no alerts)

Figure 3: Alert-Level Decrease

If important information is received from an internal sensor, its agent's controller

will construct a message and send it to other agents in the network to notify them of an

event or action that is taking place on its own host. Messages from another agent are not

forwarded to other agents in the network to prevent duplicate message traffic. For an

example, assume in a network of twenty computers that the agent on computer nine

detects a failed login attempt. Its controller analyzes the attempt and constructs an alert

message that is sent to all nineteen other computers. Now should the person attempt a

login on another computer, it too would be detected and sent to all agents.

The current implementation includes only basic intrusion capabilities for testing.

It includes an external sensor written by Stephen Kremer [Kremer99] that scans the

system logs for login attempts. The log sensor (section 11) is the internal interface

15

between his program and the IDAgent that retrieves the login attempts. The attempts are

passed to the agent where they are processed by the controller. The controller analyzes

each failed login attempt and calculates a fraction of failed attempts as compared to the

total attempts. This calculation is done both for attempts on a single host and the network

as a whole. If either the host or network fraction reaches the threshold value for the

agent, an alert message is constructed with a weight value of (fraction - threshold). To

overcome the problem that occurs with small login ratios (1 login attempt and 1 failure is

100% failure rate), the following formula is used to calculate the login-failure fraction:

Fraction = (LoginFailures - 1 / Total Attempts). Figure 4 shows the effect of this

calculation.

Weight Values of Login Failures

2 Attempts

3 Attempts !

4 Attempts

5 Attempts

6 Attempts

7 Attempts |

8 Attempts

9 Attempts

10 Attempts

5 6

Login Failures

Figure 4: Login Failure Calculation

Another internal sensor included in the agent is the host sensor, which uses the

contact list of known agents to determine if an agent has stopped responding. The host

sensor monitors how many remote agents have contacted it and checks to make sure they

16

are all still functioning (see section 9). If the number of agents not responding reaches a

threshold, a message is sent to the controller.

3. UDP Transmitter

The Unreliable Datagram Protocol (UDP) Transmitter thread generates a UDP

packet that contains the port number that the agent's Transmission Control Protocol

(TCP) receiver is listening on and identification of the local host on which it is running.

It sends this packet as a broadcast message to the network on a port number determined at

startup. This broadcast occurs every five minutes. The thread initiates the first contact

and maintains the contact between all agents.

4. UDP Receiver

The UDP Receiver's primary function is to receive the UDP broadcast messages

of other agents and process them. The broadcast port number by default is 8000.

Although any unused port number may be designated at system startup, all agents in the

network must be running on the same port number. The UDP Receiver establishes a

listener on the given port and waits for a broadcast message from another ID Agent. If a

message is not in the correct format, an exception is generated and the broadcast is

discarded. Otherwise, a contact record is created with the remote agent's identifying

information, the port number of its TCP receiver, and the time that the message was

received. The contact record is placed in a list of known contacts that is used by the

controller and transmitter when sending messages. Each time a broadcast is received, the

new contact record is compared to the contact list. If a match is found, the timestamp and

the TCP receiver port number of the original record are updated. The port number is

updated in case an agent was restarted and is now listening on a different TCP port. The

timestamp allows the controller to determine the last time that an agent contacted it to aid

the host sensor in detecting a non-responding host. If an agent fails to broadcast for 3.5

17

transmit intervals, it is considered by other hosts to be non-responding and this may result

in an alert being generated (see section 9).

5. TCP Transmitter

The Transmission Control Protocol (TCP) Transmitter thread sends messages

between agents. A message contains information that an agent needs to report an attack.

Since the delivery of such a message helps in the detection of an intruder, some guarantee

of delivery must be expected. The Unreliable Datagram Protocol (UDP) Transmitter as

the name implies does not provide such assurance, but the TCP protocol is connection-

oriented and does [COURTOIS98]. Message composition is covered in more detail in

section 7. In the current configuration, the transmitter will deliver any message to all

known agents on the contact list. It establishes a connection with the remote agent's TCP

Receiver, transmits all currently available messages, and closes the connection.

6. TCP Receiver

The TCP Receiver thread picks a port to listen on that is not being used by any

other components of the computer on which the agent resides. It returns this port to a

global variable in the IDAgent so the UDP transmitter explained above will be able to

access it to tell other agents which port the receiver is listening on. When a message is

received, the TCP Receiver queues it for the controller in the message-in queue and

continues listening for additional messages. A TCP socket connection must be

established between two agents for the message transfer to take place. If a connection

cannot be established, the sending agent should become aware of the problem and can

report it to its own controller.

18

7. Message Class Data Structure

A Message Class defines message objects that can be constructed and transmitted

from one host to another. The class contains a message code, a data field for a

description of the message, an identifier, a target address, a source address, a time stamp,

and a message weight. The message code indicates why the message was sent. The

string data field relates to the code and provides additional description of the code. The

identifier supplies operands, if any, for the code. For example, if a message were for a

failed login attempt, the identifier would store the account name. The target address is

the Internet address and host name of the recipient. The source address is that of the

current host. Each message is given a timestamp at origination. The message weight is

the relative importance of the message as determined by the controller following the

methods in section 2. In the current configuration of the ID Agent, the message size is

787 bytes when the host name is eight characters.

8. ContactList Class Data Structure

The ContactList class is a data structure storing information about other known

agents. It consists of an InetAddress, a port number, and a timestamp. The InetAddress

is a Java data type that contains the Internet address and host name of a remote host. The

port number is the port that the remote host has a TCP receiver listening on. The

timestamp contains the last contact time of a remote agent.

9. Host Sensor

The function of the host-sensor thread is to determine if any remote agents are not

broadcasting using the UDP transmitter. It checks the contact list of known agents and

compares the time of last contact to the current time. If the host has not responded, an

alert message is generated and placed in the controller queue (see Figure 1). The

19

controller will calculate a message weight based on previous messages. It will then use

the message weight, of this internally generated message, to determine if there is

sufficient evidence to update the system alert level. The fraction of hosts not currently

responding determines the weight, to limit false alerts when an agent is stopped or

restarted by an administrator. The host sensor does not cause any external messages to be

generated. It is assumed that each IDAgent will detect a non-responding host, and

therefore external messages would be redundant.

10. Alert Parser

The alert parser thread is a utility thread that maintains the internal messages that

the controller uses to detect intrusions. The alert parser runs approximately every thirty

minutes or six broadcast intervals. It looks through a list of old alerts and discards any

over twenty-four hours old. It scans a list of recent alerts and places any over twelve

hours old into the old alert list. This allows the controller to run more efficiently when it

only needs to scan recent events. For the current configuration, only the recent alerts are

used for processing. The alerts over twelve hours old were included for future sensor

capabilities and are not currently used.

11. Log Sensor

The log sensor is another independent sensor thread. LT Steven Kremer

[Kremer99] wrote the log sensor that automatically retrieves all login attempts from the

system log and passes them to the internal log sensor thread. This requires that the

system audit capabilities be turned on. Once the log sensor is instantiated, it periodically

checks to see if anything has been passed in. If a login was attempted, a message to the

controller is generated indicating the time, type of attempt, the host that the attempt was

made on, and the name of the account used for the attempt. The controller stores the

message and analyzes all previous attempts to try to detect a pattern. The log sensor

20

currently only detects login attempts, but it could be modified to detect other system

events. The log sensor does not perform calculations to adjust the weight of the message.

D. SUMMARY

The ID Agent has been designed in a modular fashion to allow easy incorporation

of new functionality and changes to internal components. It contains transmitter and

receiver components for the transmission of messages to other agents in the network and

a controller component to analyze the messages received. Other threads provide

rudimentary intrusion-detection facilities and permit analysis of the data traffic and

functioning of the components.

21

THIS PAGE INTENTIONALLY LEFT BLANK

22

V. EXPERIMENTS

A. INTRODUCTION

To conduct experiments, a program was designed that uses some simple detection

mechanisms along with all the necessary components to transmit and receive data over

the Internet. The first test was performed in the early stages of code development. Only a

basic agent skeleton with TCP Transmitter and TCP Receiver classes was used in order to

make an initial determination of network overhead usage. Follow-on tests were then

conducted with other parts of the agent operating to get the full effect on network and

CPU utilization. Finally, simulated alert messages were sent to see how the agents

reacted and what impact this reaction would have on CPU utilization of the host.

B. RESTRICTED NETWORK TESTING

Initial throughput testing of the ID Agent was conducted on a closed network of

three Micron 166Mhz Pentium computers, each running the Windows NT 4.0 operating

system as server or workstation. Two of the machines were configured as workstations

with 32MB of RAM, and one was configured as a server with 64MB of RAM. To prove

portability of the basic agent, tests were also performed on the same machines running

the Linux operating system version 5.2. However, no other portions of the testing were

done on Linux, and the results were only used to show portability of the agent to other

platforms.

The agents had no detection capabilities or message processing capabilities during

the initial testing. Only the network-bandwidth utilization was compared. Using an

Observer® network-packet "sniffer" (a software program used to capture and analyze

information being transmitted over a network), I monitored the network to determine the

average bandwidth utilization for the three agents on a 10Mbps Ethernet lOBaseT

network. The bandwidth measurement includes usage resulting from network polling,

broadcasts, and network overhead on both the Windows NT and Linux operating

systems. The ID Agents were configured to send 5,000 static messages of approximately

23

155 bytes each to each of the other agents. With three agents running, 45,000 messages

or approximately 6.975 Megabytes of data was transmitted. The test was repeated three

times to get an average transmit time. Figure 5 shows the results.

Percent of Network-Bandwidth Utilization

-% Bandwidth Utilize

■Normalized Averagi

Time (110 seconds total)

Figure 5: Network Bandwidth Utilization

The transmission of 45,000 messages took approximately 110 seconds, and the

average bandwidth never exceeded 10% of the lOMegabit Ethernet network. The results

were very encouraging since it will rarely be expected that an agent will need to transmit

5000 messages in such a short time.

C. GENERAL NETWORK TESTING

The second test was conducted on an open network in the Computer Science

Department at the Naval Postgraduate School. The subnet I used is the same one used by

most students, faculty, and researchers in the department. I used the same three

24

computers and added four additional workstations, all running the Windows NT

operating system version 4.0 workstation. The IDAgent was fully configured and

included login detection, as described in Chapter IV section C sub-section 11, and host

failure detection as described Chapter IV section C sub-section 9. Any successful or

unsuccessful login attempts generate a message from the agent sent to all other hosts that

have the IDAgent running; a broadcast message is sent by each host at five-minute

intervals to update the contact list of known agents. Some general assumptions were

made for this test to determine what an adequate number of login attempts should be. We

estimated the number of daily login alerts based on a ten-user network. We assumed

each user performs a login approximately three times a day. We assumed each user locks

the computer screen an additional four times a day, requiring a password to unlock it, and

generating an authentication alert. Windows NT authenticates users on the network who

map a drive to a shared resource, which also generates an authentication alert on login

since the resource is still open during a screen lock. It is assumed for this scenario that

each user maps two network drives: one for shared applications and one for a shared file

storage location. An expected login failure rate of 15% is set as the threshold in the

IDAgent to reduce false alerts. With these assumptions, a network of ten users will

generate approximately 130 login alerts per day, which will average approximately 16.25

logins per hour. Table 2 shows the expected login alerts and the acceptable login failure

rate for other numbers of users.

Users Logins /Day Locks/Day Mapped
Drives

Estimated
Alerts

Acceptable
Failure Rate

10 3 4 2 130 19.5

20 3 4 2 260 39

30 3 4 2 390 58.5

40 3 4 2 520 78

50 3 4 2 650 97.5

100 3 4 2 1300 195

Table 2: Estimated Login Alerts

25

Using the same network sniffer as in earlier testing, I monitored the network with

no agents running for one hour to establish baseline utilization. I then ran seven

IDAgents on the network for one hour, generating over 50 login alerts and producing

over 400 message transmissions. This is three times more than the average number for an

hourly period in my assumptions.

Figures 6 and 7 show the average number of network packets per second, average

number of broadcasts per second, and percentage of network-bandwidth utilization for

the one hour period both with and without agents running. The average number of

packets sent while the agents were running was actually slightly lower than without. The

average number of broadcast messages increased slightly as expected; the average

network utilization decreased slightly as shown in Figure 7, which was not expected.

However, looking at the percentage of bandwidth used, the slight drop is insignificant

when compared to the total bandwidth available. The "average maximum utilization"

averages the peak bandwidth usage for each ten-second interval. This average went up

slightly from 1.9 to 2.3, which indicates that the packet transmissions show more short

bursts of data. From the data collected, it appears that the ID Agent has little effect on

bandwidth consumption in an open network. During the one-hour time that the agents

were running, approximately 64,000 packets were captured. Of those packets, only 5,391

were from one of the computers running an IDAgent, which is about 8%. The remaining

92% were from normal network activity.

26

Average Number of Network Packets

25

20

15 c
o u
o
I»

01 a

1 10
Q.

■ ' ' • 22.01357341

■

■

17.88448753 -

': V '' ' '•
^^^^^^^^^^^^^H

• ^^^^^^^|

I

DAvg Pkts - No Agent

■Avg Pkt - with Agent

EAvg BrdCast - No Agent

■Avg BrdCast with Agent

1

Average Packets per second

Figure 6: Average Packets and Broadcasts

27

Average Network Utilization

2.5

•D
O a
D

•a
i v
S 1-5
m

a a.

0.5

1 9?714ßR14* ■

z.oöf^ö/yjo

: 0.8033241 j '
0.692243767

DAvg Net Util - -NoA

■Avg Net Util - - Agen

■ Avg Max Util -NoA

■ Avg Max Util -Agen

1

Averages for 1 hour

Figure 7: Percent Network Bandwidth Utilization

D. CPU UTILIZATION TESTS

Another test was conducted using the Windows NT performance monitor and

logging tool. I was able to log and graph the CPU utilization over time with an IDAgent

running to see its impact. I configured the performance monitor to log processor usage

for user programs and started one IDAgent; no other user programs were running on its

computer. An IDAgent was also started on another host and login alerts were generated

from both computers. During the thirty-minute analysis period, approximately 20 alerts

were generated. Figure 8 shows that the maximum CPU utilization of the agent was

28

8.145%. The average utilization over the entire period was 0.329%. There are several

small usage periods, when the IDAgent was active in receiving and sending messages.

ig' Performance Monitor - idagent.pmc

File Edit View Options Help

KSIÜI E3 i

r^i'j + ax: b

18

16

14:

12

10

8

6

Last;

^AJVJK^^U'
2 470 Average 0.329 Mini 0.000 Max' 8.145 Graph Time. 2235.000

Color <!Scale Counter

1.000 X User Time

Instance Parent Object

Processor

Computer

WJAMBOREE

]Data- CSidagent log,Save File: idagent.pmc

Figure 8: CPU Utilization

E. SIMULATED ATTACK SCENARIOS

Several scenarios were used to test the reaction of the IDAgent. Three computers

were used. In the first scenario, all three computers had several successful logins from

users; then one computer had a series of unsuccessful login attempts on a single account.

In the second scenario, several successful login attempts were performed on each

computer, followed by a series of unsuccessful attempts. In the third scenario, all three

computers were used, and many rapid consecutive unsuccessful login attempts were

made from a single administrator account on one machine.

29

1. Single-Target Attack

After allowing all three agents to run for several minutes with no activity, two

successful logins were made on each computer followed by an attack on machine three.

The attacker produced six successive login failures. Table 3 shows the login attempts

and reactions of the agents with their corresponding alert level changes. Machine three

responded differently because its weight calculation was based on attempts being made

on its own host, while the other two machine calculations were based on attempts

throughout the entire network because the messages originated from another machine

(See Chapter IV, section 2 for calculation details). The result is a higher alert level on the

machine where the attack is taking place.

Total # of
Attempts

Total # of
Failures

Machine
#1
Message
Weight

Machine
#1
Alert
level

Machine
#2
Message
Weight

Machine
#2
Alert
level

Machine
#3
Message
Weight

Machine
#3
Alert
level

7 1 0.0 0.1 0.0 0.1 0.0 0.1
8 2 0.0 0.1 0.0 0.1 0.1 0.19
9 3 0.072 0.1648 0.072 0.1648 0.249 0.392
10 4 0.150 0.290 0.150 0.290 0.35 0.605
11 5 0.2136 0.4417 0.2136 0.4417 0.4214 0.771
12 6 0.2666 0.5905 0.2666 0.5905 0.475 0.880

Table 3: Alert Levels for Single Target Attack

2. Multiple-Target Attack

The second scenario was much like the first but with an attacker attempting to

login on to all three machines simultaneously instead of just one. Table 4 shows the

results of the test. The alert levels for all machines were very close together since login

failures were spread across all hosts. The second machine reached a yellow alert level of

0.423 on the twenty-first login attempt with three local failed attempts, four remote failed

attempts, and fourteen successful logins. The remaining machines reached a yellow alert

30

level of 0.486 after two more attempts; one successful and one failure. A total of twenty-

three logins were attempted; eight login failures and fifteen successful logins.

T
otal L

ogin
A

ttem
pts

M
achine #1 L

ogin
Failures

M
achine #2 L

ogin
Failures

M
achine #3 L

ogin
Failures

M
achine #1

M
essage W

eight

M
achine #1 A

lert
L

evel

M
achine #2

M
essage W

eight

M
achine #2 A

lert
L

evel

M
achine #3

M
essage W

eight

M
achine #3 A

lert
L

evel

11 0 0 0.0 0.1 0.0 0.1 0.0 0.1
13 1 0 0.0 0.1 0.0 0.1 0.0 0.1
14 2 0 0.0 0.1 0.05 0.1450 0.0 0.1
16 2 1 0.0375 0.1337 0.0375 0.177 0.0375 0.1337
17 2 2 0.0852 0.2076 0.0852 0.247 0.0852 0.2076
19 2 2 2 0.1131 0.2972 0.1131 0.3324 0.1131 0.2972
21 2 3 2 0.1357 0.393 0.1357 0.423 0.1357 0.393
23 2 3 3 0.1543 0.486 0.1543 0.512 0.1543 0.486

Table 4: Alert Levels for Multiple Target Attack

3. Network Saturation Test

The IDAgent is designed to suspend transmission of messages for a short period

of time if it comes under a repeated attack, to prevent a flood of network traffic from its

own messages. To test this, three test machines were started and 40 rapid login attempts

were made against an administrator account on a single host. After transmitting 25

messages to the other agents, the IDAgent being attacked continued to log the attack, but

it did not continue transmitting messages until five minutes after the attack had stopped.

Agent response was successful: The attacked machine had an alert level of 1.0, the

highest that can be reached, while both remaining agents had an alert level of 0.999.

31

F. SUMMARY

Testing showed that neither CPU utilization nor network utilization were heavily

loaded by the ID Agent. Even with over 50 login attempts within one hour, the network

traffic, broadcasts, and processing did not interfere with normal computer and network

operations. The ID Agent was also able to detect several scenarios of login attempts from

both a single host and multiple hosts, and escalated the alert level of each agent

appropriately.

32

VI. CONCLUSION AND FUTURE WORK

A. CONCLUSION

This thesis has proposed distributed nonhierarchical autonomous agents as an

intrusion-detection mechanism. Testing demonstrated that such use of an agent in this

environment can be successful.

B. REQUIREMENTS REVIEW

We can assess our system in terms of the ten basic requirements for a good

intrusion detection system listed in Chapter II:

1. The System Must Recognize Suspect Activity of a Potential Attack

The prototype system could effectively recognize failed logins, both on a single

host and across distributed hosts. To recognize other types of activity, sensors would

have to be written. The modular design of the IDAgent allows the straightforward

integration of new sensors.

2. Escalating Behavior Should Be Detected at the Lowest Level Possible

The requirement to detect an intruder at the lowest level possible is very

subjective. Triggering an alert the instant a failed login occurs would generate a large

number of false positive alerts; waiting until an attack is absolutely certain might be too

late. The threshold values in the IDAgent allow the level of detection to be adjusted to

meet requirements. I believe my IDAgent detected login attacks at an appropriate level.

33

3. There Must Be Inter-host Communication Regarding Intrusions and

Alert Levels

The IDAgent program was designed specifically to meet this requirement. Its

transmitter and receiver components are the means of communication, and the Message

Class data structure carries the information between hosts.

4. There Must Be Appropriate Response to Changing Alert Levels

This requirement was not implemented in the current configuration of the

IDAgent.

5. The System Must Incorporate Manual Control Mechanisms for

Administrators

The user interface for the IDAgent includes some control for debugging and

determining the status of the agent. There are no controls for resetting thresholds or other

parameters, but they could easily be added.

6. The System Must Be Adaptable to Changing Methods of Attack

This requirement was only partially met because only login sensors were written.

Multiple sensors would be needed to detect changing attack methods.

34

7. The System Must Be Able to Handle Multiple Concurrent Attack

Threads

IDAgent is a multi-threaded application that is capable of detecting multiple

attack scenarios. If multiple login attacks were taking place, the IDAgent should be able

to detect all suspicious activity.

8. The System Must Be Scalable and Easily Expandable

This requirement is fully met by IDAgent. To scale to a large network, you

simply start agents on the added hosts. Expandability is allowed through the modular

design of the agent.

9. The System Must Be Resistant to Compromise and Able to Protect Itself

from Intrusion

This is left as future work. Java® provides many built-in security features,

though none were incorporated yet.

10. The System Must Be Efficient and Reliable

Determination of efficiency was one of the primary goals of this thesis and has

been adequately achieved in this prototype. Network bandwidth consumption and CPU

utilization were both tested. The system was reliable under our limited testing.

35

C. FUTURE WORK

Some of the following would provide for a more robust agent for future work and

testing:

1. Secure Message Transfer

The current agent does not incorporate security or secure message handling to

prevent blocking of messages or generation of false messages. Java® does provide built-

in encryption mechanisms that could be used.

2. Agent Authentication

How does one determine if an agent that is responding is really a trusted agent or

a piece of malicious software used by a hacker? Some form of authentication should be

used to ensure security.

3. Agent Service

Running the ID Agent as an application under Java required a few work-arounds

during testing. If the IDAgent was running and the user logged off, the ID Agent would

terminate leaving no protection. The answer to this problem is to run IDAgent as an NT

service. This was done successfully; however, the user interface cannot be seen or

accessed making it difficult to monitor the agent. These problems would have to be

overcome to successfully use the agent in a live network.

36

4. Using Another Programming Language

The version of Java used in this implementation is an interpreted language and as

such runs much slower than an application written in a lower level language. Java was

sufficient for prototyping and allowed rapid development of the communication portions

of the agent. However, other languages should be researched.

5. Response to Attack

There must be a response to an attack or intrusion to prevent entry. The system

should be reactive.

6. Sensors

The IDAgent tested here had limited sensor capability. It could detect user login

attempts and when another agent was not responding. Other sensors could scan for

network traffic patterns, known attacks, or other system log entries. The agent was

written in a modular fashion to allow such sensor threads to be included easily.

7. Threshold Values

The threshold values in the agent were set based on my knowledge of network

administration. Testing on a live network would allow the adjustment of the threshold

values to better match the nature of the users in the network.

37

8. Configuration File

A configuration file that would allow an administrator to change parameters,

variables, and threshold values without modification of the IDAgent would be a

beneficial addition to the system.

38

APPENDIX A: PROGRAM CODE

0
* IDAgent is the main executable class of the Java program. All global variables

D
* are defined here and all internal threads for other classes are initialized

D
* and started here. The Agent is designed to run independently on a computer
* transmitting and receiving messages to other known Agents as detections or
* anomalies are sensed.
*

* @author Capt Dennis Ingram, USMC
* (aversion Last Updated on, %G%
* @since JDK1.1
* @param portnum The port that the machine will be listening on
* This is set at 8000 by default but may be changed

by the user at startup. It must be the same for
all agents
*
*

*/

In your network.

import java.io.*;
import j ava.net.*;
import j ava.lang.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import Java.text.*;

public class IDAgent {

final static int TRANSMITINTERVAL = 300000; //5 minutes default transmit
interval
// static int TRANSMITINTERVAL = 60000; //I minutes
// static int TRANSMITINTERVAL = 30000; //30 sec

final static double DEGREDATION = 0.9; // for degrading the alert
level.

final static int HOUR = 3600000; // 1 hour
final static int MINUTE = 60000; //l minute
final static String BROADCAST = "255.255.255.255";
static double AlertLevel = 0.1; //AlertLevel between 0.0 and 1.0
static int TotalKnownAgents = 1; //How many Agents have been on the net

count myself.
static int TotalAlertMsgsRcvd = 0;
static int TotalAlertMsgsSent = 0;
static int TotalBcastRcvd = 0;
static int TotalBcastSent = 0;
static Date StartTime = new Date();
static Date EndTime = new Date();

// msgs coming in from other agents
static Vector MsglnQueue = new Vector();

// msgs going out to other agents
static Vector MsgOutQueue = new Vector();

// Internal msgs from sensors to the controller
static Vector ControllerQueue = new Vector();

39

//create a list of Known Agents,
static Vector AgentList = new Vector();

static AgentWindowMgr WinMgr;
static agent_controller Controller;
static TCPtransmit sender;

//List of all local addresses
static InetAddress[] LOCALADDRESSES;
static int TCPport = 8002;

public static void main(String args[]) throws Exception {
//parameters = portnumber to listen on
//example: c:\java IDAgent [portnum] (*portnum optional),

int portnum = 0;
try {

LOCALADDRESSES =
InetAddress.getAllByName(InetAddress.getLocalHost().getHostName());

portnum = Integer.parselnt(args[0]); //get a port for
UDPreceiver

}
catch (Java.net.UnknownHostException e) {}
catch (Java.lang.ArraylndexOutOfBoundsException e) {

portnum = 8000; // if not set, use default 8000
}

try {

WinMgr = new AgentWindowMgr(portnum);
WinMgr.addWindowListener(new CloseWindowandExit());
Controller = new agent_controller();
TCPreceiver listener = new TCPreceiver(portnum);

System.out.println("controller starting...");
UDPreceiver 11 = new UDPreceiver(portnum);
UDPtransmit tl = new UDPtransmit(portnum);
System.out.println("receiver starting...");

sender = new TCPtransmit();
System.out.println("transmitter starting");
HostSensor hsl = new HostSensor(); //checks Status of known hosts.
AlertParser apl = new AlertParser(); //checks Status of old Alerts.

LogSensor lsl = new LogSensorO; //check the sys log.
}
catch (Exception e) {System.out.println("Main exception.
e.printStackTrace();}

} //end main
} //end class IDAgent

+ e)

/*

it

A thread within the Agent that controls the flow of message traffic and contains
the logic for handling incoming and sensor data. This class is the brain
of the Agent. It continually monitors incoming messages from other Agents, and
messages from sensor threads and takes any necessary actions to notify the user
and other Agents in the network of anomalies. When there is no data to process

suspends until needed.

Sauthor Capt Dennis Ingram, USMC

V

class agent controller extends Thread {

40

final double MAXALERT =1.0;
final double HOSTTHRESHOLD = .35;
final int MSGTHRESHOLD = 25;
final double NETLOGINFAILTHRESHOLD = .15;
final double HOSTLOGINFAILTHRESHOLD = .15;
Date LastAlertTime = new Date();
//Vector for storing alerted msgs for use only by the controller.
private Vector RecentAlerts = new Vector(); //within 12 hours old
private Vector OlderAlerts = new Vector(); //over 12 hours old,purged daily
private boolean StopSending = false; //flag on message sending.
private int ResponseCnt = 0;

agent_controller() {
this.start();

} //end agent_controller constructor

public void run() {
boolean run_flag = truer-
try {

while(run_flag) {
if((System.currentTimeMillis() - LastAlertTime.getTime()) >
(IDAgent.TRANSMITINTERVAL * 2)) {

StopSending = false; //reset the flag if no alerts
generated.

IDAgent.DEGREDATION)

0.05

reached, reset.

ResponseCnt = 0; //reset counter.
//reduce alert level by Degredation factor
IDAgent.AlertLevel=(IDAgent.AlertLevel *

if(IDAgent.AlertLevel < 0.05)
IDAgent.AlertLevel = 0.05; //never go less than

LastAlertTime = new Date(); //when LastAlertTime is

} //end if
//check the alert status and change the window.
double alrt = IDAgent.AlertLevel;
if(alrt > 0.0 && alrt <= 0.4) {

IDAgent.WinMgr.buttonPanel.setBackground(Color.green);
IDAgent.WinMgr.buttonPanel.repaint();

} //end if
if(alrt > 0.4 && alrt <= 0.7) {

IDAgent.WinMgr.buttonPanel.setBackground(Color.yellow);
IDAgent.WinMgr.buttonPanel.repaint();

} //end if
if(alrt > 0.7 && alrt <= 1.0) {

IDAgent.WinMgr.buttonPanel.setBackground(Color.red);
IDAgent.WinMgr.buttonPanel.repaint();

} //end if
//If nothing to do now, suspend and wait for something to do.
if(IDAgent.MsglnQueue.isEmpty() & S

IDAgent.ControllerQueue.isEmpty()) {
currentThread().suspend(); //wait until called for.
IDAgent.sender.resume() ;

} //end if

synchronized(IDAgent.MsglnQueue) {
if(!IDAgent.MsglnQueue.isEmpty()) { //get a message for

processing.
Message inboundl =

(Message)IDAgent.MsglnQueue.firstElement();

IDAgent.MsglnQueue.removeElement((Message)IDAgent.MsglnQueue
.firstElement());

41

ProcessExt(inboundl);
} //end if

} //end synch MsglnQueue
synchronized(IDAgent.ControllerQueue) {

if(!IDAgent.ControllerQueue.isEmpty()) { //get a message
for processing.

Message localmsgl =
(Message)IDAgent.ControllerQueue.firstElement();

IDAgent.ControllerQueue.removeElement((Message)IDAgent.ControllerQueue
.firstElement()) ;

Processlnt(localmsgl);
} //end if

} /*end synch CQ*/

} //end while runflag — main controller loop
} // end try
catch (Exception e) {System.out.println("Controller exception.. " + e);}
} //end run

/**

* Processes all messages from an external source eg. another Agent.
* Sparams inbound The reference to the message to process.
*/

private void ProcessExt(Message inbound) {
LastAlertTime = new Date(); //update at each event.
System.out.println("Processing message from another host " + inbound

+ ":"
+ inbound.getWeight());

synchronized(RecentAlerts) {
RecentAlerts.addElement(inbound);

} //end synch
int codel = inbound.getCode();
if(codel == 529 || codel == 531) {

ResponseCnt++;
inbound.setWeight(0.0); //reset the weight until evaluated by

this agent.
CheckLogins(inbound);

}
//Algorithm for increasing alert level,
//result = ((1.0 - a) * x) + a;
IDAgent.AlertLevel = (((MAXALERT - IDAgent.AlertLevel) *

inbound.getWeight())
+ IDAgent.AlertLevel);

} //end method ProcessExt

/**

* Processes all messages or events received from internal sensors
' * eg. a failed logon attempt on the local machine.

* Sparams localmsg The reference to the message to process.
*/

private void Processlnt(Message localmsg) {
//only internal alerts should generate output Messages for other

Hosts.
LastAlertTime = new Date(); //update at each event.
System.out.println("Processing a local message " + localmsg + ":"

+ localmsg.getWeight());
synchronized(RecentAlerts) {

RecentAlerts.addElement(localmsg);
} //end synch
if(localmsg.getCodeO == 529 || localmsg.getCode() == 531) {

//Failed login detected, check for other failures.

42

//if successful login detected, put in recent alerts.
ResponseCnt++;
CheckLogins(localmsg);

}// end if
if(localmsg.getCode() == 6) {

ResponseCnt++;
double si = CheckHostStatus () ;
System.out.println("Agents down = " + si);
if(si > HOSTTHRESHOLD) {

localmsg.setWeight(si);
} // end if si;

} // end if code == 6;
System.out.println("Alert level is " + IDAgent.AlertLevel);
IDAgent.AlertLevel = (((MAXALERT - IDAgent.AlertLevel) *

localmsg.getWeight())
+ IDAgent.AlertLevel);

if(ResponseCnt > MSGTHRESHOLD) {
StopSending = true;
System.out.println("Stopped Sending messages temporarily");
//Premise is that if an agent is sending more than a certian

number of

stop
//messages in one Transmitlnterval, then something is wrong. So

//flooding the network.
} //end if
System.out.println("Changing Alert level by " +

localmsg.getWeight()) ;
System.out.println("New Alert level is " + IDAgent.AlertLevel);

if(localmsg.getCode() != 6 && !StopSending) {
//if msg is 'host not responding', don't send msg to others,
//if StopSending flag set, don't send anymore messages right

now.

list.

synchronized(IDAgent.MsgOutQueue) {
IDAgent.MsgOutQueue.addElement(localmsg) ;
IDAgent.sender.resume();

} // end synch
} // end if

} //end method Processlnt

/**

* Processes the RecentAlerts list and purges the old contents to
* a new list called OlderAlerts.
* This assists in the determination of whether an Alert has already come
* in recently on a particular problem.
* It also purges any messages older than 24 hours from the OlderAlerts

*/
public void CheckForOldAlerts() {

System.out.println("Checking for old Alerts ");
if(!OlderAlerts.isEmptyO) { //purge old messages

Message ml = new Message(); // allocate ml
for (Enumeration e = OlderAlerts.elements() ;

e.hasMoreElements();){

ml = (Message)e.nextElement() ;
if((System.currentTimeMillis() -

ml.getTimeStamp().getTime()) >

IDAgent.HOUR * 24) { //greater than 24 hours old
synchronized(OlderAlerts) {

OlderAlerts.removeElement (ml) ;
} //end synch

} // end if
} //end for

} // end if

43

if(IRecentAlerts.isEmpty()) { // move non recent messages
Message ml = new Message (); //allocate ml
for (Enumeration e = RecentAlerts.elements();

e.hasMoreElements();){
ml = (Message)e.nextElement();
if((System.currentTimeMillis() -

ml.getTimeStamp().getTime()) >
(IDAgent.HOUR * 12)) { // move message to older Alerts

list.
synchronized(RecentAlerts) {

OlderAlerts.addElement(ml);
RecentAlerts.removeElement(ml);

} //end synch
} // end if

}// end for
) // end if

} //end method CheckForOldAlerts()

/**

* This method is used when displaying the relevant alerts on the screen
* for the user.
* Sparams code A code used for debugging. Under normal

circumstances
* only relevant messages are displayed. If

the code is
* set to 1 then all messages will be

displayed for debugging
*/

public void ShowAlerts(int code) {
Message ml = new Message();
IDAgent.WinMgr.display("There are " + RecentAlerts.size()

+ " Recent Alerts and " + OlderAlerts.size() + " Old Alerts");
IDAgent.WinMgr.display("Displaying relevant messages");
for (Enumeration e = RecentAlerts.elements(); e.hasMoreElements();){

ml = (Message)e.nextElement();
if(ml.getWeight() > 0.0 && code == 0)

IDAgent.WinMgr.display(ml.toString());// print selected
else

System.out.println(ml.toString()); //print all

}// end for
System.out.println("There are " + OlderAlerts.size() + " Old

Alerts")
System.out.println("Displaying messages");
for (Enumeration e = OlderAlerts.elements(); e.hasMoreElements();){

ml = (Message)e.nextElement();
if(ml.getWeight() > 0.0 || code == 1)

System.out.println(ml.toString()); //code 1 = print all.
}// end for

}// end method ShowAlerts()

/**

* This method checks the status of hosts when a host not responding message
* is found. If the number of hosts down is > the HOSTTHRESHOLD value then
* increase the alert level according to the percentage of down hosts.
* It only runs a check when an alert to a down host is received.
* Sreturns double The percentage of agents that are down.
* Sauthor Dennis J Ingram, USMC.
*/

public double CheckHostStatus() {
int cntr = 0;

44

Message ml = new Message(); //allocate mem for a new message.
for (Enumeration e = RecentAlerts.elements(); e.hasMoreElements();){

ml = (Message)e.nextElement();
if(ml.getCode() == 6) {

cntr++;
System.out.println("Check Host — Found 1 " +

ml.getWeight()) ;

if(ml.getWeight() > 0.0) {
cntr = 0; //reset, all previous already used.

} // end if wt.
} // end if code.

}// end for
if(cntr > 0) {

//I have an alert I am processing, if there are more, use this
one also.

cntr++;
}
System.out.println("cntr is " + cntr + " Total agents is " +

IDAgent.TotalKnownAgents);
return (cntr/(double)IDAgent.TotalKnownAgents); //return the

percentage of down agents.
}// end method CheckHostStatus.

/**

* This method performs all necessary checks on previous login attempts
* to try to determine a pattern of intrusion. If a pattern is detected
* on the current host or across multiple hosts, then a message is sent to
* all other hosts to warn of the intrusion.
* Sparams ml The local message that was generated.
* Sauthor Dennis J Ingram, USMC
*/

public void CheckLogins(Message inl) {
boolean found = false;
double TotalNetLoginAttempts = 0.0;
double TotalHostLoginAttempts = 0.0;
double NetLoginFailures = 0.0;
double HostLoginFailures = 0.0;
double PercentNetLoginFailures = 0.0;
double PercentHostLoginFailures = 0.0;
Vector LoginTable = new Vector(); //Temp Vector of User Login

Message ml = new Message(); //allocate mem for a new message.

for (Enumeration e = RecentAlerts.elements(); e.hasMoreElements();){
ml = (Message)e.nextElement();
int code = ml.getCode();
boolean local = false;
for(int i=0;i < IDAgent.LOCALADDRESSES.length;i++) {

if(ml.getFromAddress().getHostAddress().equals
(IDAgent.LOCALADDRESSES[i].getHostAddress())) {

local = true;
} // end if

}//end for

switch(code) {
case 0 : //A locally generated code,

//reset all counters
TotalNetLoginAttempts = 0.0;
TotalHostLoginAttempts = 0.0;
NetLoginFailures = 0.0;
HostLoginFailures = 0.0;

45

Failures.

break;
case 528 : //Successful login

if(local) {
System.out.println("Code 528 local");
TotalHostLoginAttempts++;
TotalNetLoginAttempts++;

} //end if
else {

TotalNetLoginAttempts++;
} //end else
break;

case 529 : //Failed Login
if(local) {

System.out.println("Code 529 local");
TotalHostLoginAttempts++;
TotalNetLoginAttempts++;
HostLoginFailures++;
NetLoginFailures++;

} //end if
else {

NetLoginFailures++;
TotalNetLoginAttempts++;

} //end else
found = false;
for(Enumeration el = LoginTable.elements();

el.hasMoreElements();) (

(LoginRecord)el.nextElement();
LoginRecord rl =

if (rl.Name, equals (ml. getlDO)) {
rl.Fail++;

rl.Machines.addElement(ml.getFrom()); //where attempt came from
found = true;

} // end if
}//end for
if(!found) {

LoginRecord L2 = new LoginRecord();
L2.Name = ml.getlDO;
L2.Fail++;
L2 .Machines.addElement(ml.getFrom()) ;

//where attemp came from.
LoginTable.addElement(L2);

}//end if (!found)
break;

case 531 : //Acct Locked, Failed Login
found = false;
if(local) {

System.out.println("Code 531 local");
TotalHostLoginAttempts++;
TotalNetLoginAttempts++;
HostLoginFailures++;
NetLoginFailures++;

} //end if
else {

NetLoginFailures++;
TotalNetLoginAttempts++;

} //end else
for(Enumeration el = LoginTable.elements();

el.hasMoreElements();) {

(LoginRecord)el.nextElement(),
LoginRecord rl =

if(rl.Name.equals(ml.getlDO)) {
rl.Fail++;

46

r1.Machines.addElement(ml.getFrom());
found = true;

} // end if
}//end for
if(!found) {

LoginRecord L2 = new LoginRecord();
L2.Name = ml.getlDO ;
L2.Fail++;
L2.Machines.addElement(ml.getFrom()) ;
LoginTable.addElement(L2);

}//end if (!found)
break;

case 538 : //Successful Logoff
//No action taken

break;
default :

break;
}// end switch()

}// end for
PercentNetLoginFailures = (NetLoginFailures/TotalNetLoginAttempts);
if(PercentNetLoginFailures-(1/TotalNetLoginAttempts) >

NETLOGINFAILTHRESHOLD) {
inl.setWeight((PercentNetLoginFailures-

(1/TotalNetLoginAttempts))
- NETLOGINFAILTHRESHOLD) ;

System.out.println("New wt set Net%=" + PercentNetLoginFailures
+ " wt=" +

inl.getWeight());
}
PercentHostLoginFailures =

(HostLoginFailures/TotalHostLoginAttempts);
if((PercentHostLoginFailures-(1/TotalHostLoginAttempts) >

HOSTLOGINFAILTHRESHOLD)
S& ((PercentHostLoginFailures-(1/TotalHostLoginAttempts))

- HOSTLOGINFAILTHRESHOLD > inl.getWeight())) {
inl.setWeight((PercentHostLoginFailures-

(1/TotalHostLoginAttempts))
- HOSTLOGINFAILTHRESHOLD) ;

System.out.println("New wt set Host%=" +
PercentHostLoginFailures + " wt=" +

inl.getWeight());
}
System.out.println("Total Login Attempts " + TotalNetLoginAttempts);
System.out.println("Total Attempts this host " +

TotalHostLoginAttempts);
System.out.println("Total Failed Logins " + NetLoginFailures);
System.out.println("Total Failures this Host " + HostLoginFailures);
// enumerate LoginTable and check for trends here.
// Future work.

}//end method CheckLogins.

/**

* This method defines the response that the controller will take to a
specified

* attack or alert. A response may range from turning on more enhanced
monitoring

* to shutting down the network interface for a period of time.
*

* 8params response The response code representing the action to be
taken.

* @author Capt Dennis Ingram, USMC
*/

47

public void Responder(int response) {
switch (response) {

default :
break;

}// end switch
} // end method

} //end class

/**

* Processes all incoming messages from other Agents and sends them to the
* Controller for processing. Chooses a random port to listen on and informs
* the broadcast mechanism to inform other Agents.
*

* @author Capt Dennis Ingram, USMC
* @param portnum The port number that this TCPreceiver is to listen on.
*/

class TCPreceiver extends Thread {
int portnum;
ServerSocket listen_socket;

TCPreceiver(int recport) {
portnum = recport+2;
this.start();

}

public void run() {
boolean badport;

do {
badport = false;
try {

do {
IDAgent.TCPport = (int)(Math.random() * 10000);

} while (IDAgent.TCPport < 1025);
listen_socket = new ServerSocket(IDAgent.TCPport,20);

} catch (BindException e) { badport = true;
System.out.println("BadPort " + IDAgent.TCPport);)

catch (IOException e) { System.out.println (e);}

} while (badport);
try {

while (true) {

Socket sock = listen_socket.accept();
ObjectlnputStream is = new

ObjectInputStream(sock.getInputStream());
try {

while(true) {
Message c = new Message();
c = (Message)is.readObject();
synchronized(IDAgent.MsglnQueue) {

IDAgent.MsglnQueue.addElement((Message)c);
IDAgent.WinMgr.display("Rcvr Msg

+ (Message)c + ":"
+ sock.getPort ());

IDAgent.TotalAlertMsgsRcvd++;
} // end synch

} //end while
} //end try
catch (java.io.EOFException ie) { }
catch (Java.net.NoRouteToHostException ie) {

48

System.out.printin("Computer Not Available " +
InetAddress.getLocalHost()) ;

}
is.close();
sock.close();
IDAgent.Controller.resume();

} // end While(true)
} //end try-
catch (Exception e) {System.out.println("Receiver exception .. " +

e);}
} //end run

} //end class TCPreceiver

/**

* Receives and processes all broadcasts from other Agents. Maintains a list
* of Known Agents in the Local Network.
*

* Sauthor Capt Dennis Ingram, USMC
* @param portnum The port that this receiver listens on for broadcasts.
*/

class UDPreceiver extends Thread {
int portnum;

UDPreceiver(int recport) {
portnum = recport;
this.start();

}

public void run() {
try {

DatagramSocket listen_socket = new DatagramSocket(portnum);
System.out.println("UDP—Listening on Port: " +

listen_socket.getLocalPort()) ;

while (true) {
byte datalf] = new byte[4];

DatagramPacket pktl = new
DatagramPacket(datal,datal.length);

listen_socket.receive(pktl);
IDAgent.TotalBcastRcvd++;

ContactList cl = new
ContactList(pktl.getAddress(),Integer.parselnt(

new String (pktl.getDataO))) ;

synchronized(IDAgent.AgentList) {
if(!cl.exists()) {

IDAgent.AgentList.addElement(cl);
IDAgent.TotalKnownAgents++; //keep track of

total.
} //end if

} //end Synchronized

IDAgent.Controller.resume();
} // end While(true)

} //end try
catch (java.io.EOFException ie) { }
catch (Java.net.NoRouteToHostException ie) {

System.out.println("Computer Not Available "); }
catch (java.net.UnknownHostException ie) {

System.out.println("Unknown Host rec " + ie); }
catch (Exception e) {

49

System.out.println("UDPReceiver exception .. " + e);}
} //end run

} //end class UDPreceiver

/**

* Responsible for transmitting all message traffic to other Agents in the network.
* Suspends until the controller signals that there is traffic to send. Processes
* all messages and sends them to all Known Agents in the Local Network.
*

* Sauthor Capt Dennis Ingram, USMC
*/

class TCPtransmit extends Thread {
TCPtransmit() {

this.start();
}

public void run() {

Socket s = null;
ObjectOutputStream out = null;
try {

while(true) {
currentThread().suspend(); //wait for something to do.
synchronized(IDAgent.MsgOutQueue) {
synchronized(IDAgent.AgentList) {

while(!IDAgent.MsgOutQueue.isEmpty() &&
!IDAgent.AgentList.isEmpty()) {

for (Enumeration e =
IDAgent.AgentList.elements(); e.hasMoreElements();){

ContactList cl =
(ContactList)e.nextElement();

try {
s = new

Socket(cl.getHost(), cl.getPort()) ;

ObjectOutputStream(s.getOutputStreamO),

IDAgent.MsgOutQueue.elements();

out = new

IDAgent.TotalAlertMsgsSent++;
for (Enumeration m =

m.hasMoreElements() ;) {
Message tempi = new

tempi =
Message ();

(Message)m.nextElement();

tempi.setTarget(cl.getHost ().getHostName());
tempi.setFrom();
out.writeObj ect(tempi);
out.flush();

} //end for more Messages
out.close();
s.close ();
} // end try
catch (SocketException el) {

System.out.println("Socket caught "
+ el);}

} //end for more Agents.
IDAgent.MsgOutQueue.removeAHElements () ;

} //end While messages is not empty
} //end AgentList synch

} //end synch MsgOut

IDAgent.Controller.resume();

50

} // end while
} // end try-

catch (Exception e) {
System.out.println("TCPtransmit exception .. " + e);}

} //end run TCPtransmit
} // end class TCPtransmit

/**

* Responsible for periodically broadcasting to the network the host and port
number
* of the Agent. The broadcast is used by all other Agents to maintain the Known
* Agents list and determine if an Agent is active.
*

* @author Capt Dennis Ingram, USMC
* @param sendport The port that the Agent will transmit the broadcast message to,
* all agents must be listening on the same port in

the Local
* Network in order to communicate.
*/

class UDPtransmit extends Thread {
int sendport;

UDPtransmit(int sendon) {
sendport = sendon;
this.start();

}
public void run() {

try {
InetAddress al = InetAddress.getByName(IDAgent.BROADCAST);

while(true) {
DatagramSocket si = new DatagramSocket();
byte dl[] = new byte[4];
dl[0] = '6
dl[l] = '0',
dl[2] = '0'
dl[3] = '2'
String s2 = String.valueOf(IDAgent.TCPport);
dl = s2.getBytes();
DatagramPacket pi = new

DatagramPacket(dl,dl.length,al,sendport);
si.send(pi);
IDAgent.TotalBcastSent++ ;
si.close ();
currentThread().sleep(IDAgent.TRANSMITINTERVAL);

} // end while
} // end try

catch (SocketException el) {
System.out.println("Socket caught " + el);}
catch (UnknownHostException el) { System.out.println("Unknown Host

trans");}
catch (Exception e) {

System.out.println("TCPtransmit exception .. " + e);}
} //end run UDPtransmit

} // end class UDPtransmit

/**

* A class to hold login information and record counts for
* all login attempts. Allows for tracking of unlimited user accts.
* This class record will only be used to hold information temporarily while
* the alert calculations are being made.
*/

class LoginRecord {

51

double Fail = 0;
String Name = new String(); //user account used to atternp login
Vector Machines = new Vector(); //list of machines attempted.

* Constructor for a blank login record.
* These records are only used temporarily in the checking of Login Failures
*/

public LoginRecordO {}
public String toStringO {

return (new String(Name + " Fail= " + Fail));
} //end toString.

}//end class LoginRecord

/**

* Provides storage fields and manipulation methods for an Agent Message, ensuring
that
* all messages sent and received have a common format.
* @param Code Message code number
* @param Data A string data message
* Sparam Identifier A string identifier of the origin of the attack if known.
* @param Target The target host to receive the message
* @param From The sending host
* @param TimeStamp The date/time the message was constructed.
* @param Weight The weighted value that the message carries, the seriousness of
* the message. Used to when calculating the

AlertLevel.
*/

class Message implements Serializable {
private int Code;
private String Data;
private String Identifier;
private InetAddress Target;
private InetAddress From;
private Date TimeStamp;
private double Weight;
//Used for the data string
private String msglistf] = {"Unknown Attack type",

"1 Successful Login Attempt",
"2 Failed Login Attempt",
"3 Invalid Login Attempt, 1 user, multi-host",
"4 Invalid Login Attempt, multi-user, 1 host",
"5 Invalid Login Attempt, multi-user, multi-host",
"6 Agent Has Stopped Responding",
"7 Test Message",
"8 Test Message"};

/**
* Constructor for a Message
*/

public Message() {
Code =0; // Default code
Data = new String(msglist[Code]) ;
Identifier = new Stringf");
try {

Target = InetAddress.getLocalHost(); //return address of
localhost.

localhost.

found");}

From = InetAddress.getLocalHost(); //Initially set both to

} catch (UnknownHostException e) { System.out.println("Host not

TimeStamp = new Date();
Weight = 0.0; //default weight.

} // end Message default constructor

52

* Retrieves the Message code from a Message
* 8return Code
*/

public int getCodeO {
return Code;

} //end getCode

/**
* Set the Code value for an existing Message, also sets the message
* data string and the default Weight value for a message.
* Sparam incode value to set the Code to.
*/

public void setCode(int incode) {
Code = incode;
if(Code < msglist.length) {

Data = msglist[Code];
Weight = 0.0;

}
else {

Data = msglist[0];
Weight =0.0;

}
} //end setCode

/**
* Gets the value of the Data String
* Sreturn this.Data
*/

public String getDataO {
return this.Data;

}//end getData.

/**
* Sets the value of the Data field when different than msglist
* @param dl String to set data to
*/

public void setData(String dl) {
Data = dl;

}//end setData.

/**
* Sets the Identifier of the Message.
* Sparam id The string value of the Identifier.
*/

public void setID(String id) {
this.Identifier = id;

}//end setID.

/**
* Gets the Identifier String of the Message.
* Sreturn Identifier The string value of the Identifier.
*/

public String getlDO {
return this.Identifier;

}//end getlD.

l-k-k

* Sets the Target value of a Message
* Sparam hostname String value to set Target to
*/

53

public void setTarget(String hostname) {
try {

Target = InetAddress.getByName(hostname);
}
catch (Exception e) {System.out.println(e);}

} //end setTarget

/**

* Sets the From field of a Message to the current Local Host.
*/

public void setFromO {
try {

From = InetAddress.getLocalHost() ;
}
catch (Exception e) {System.out.println("setFrom exception " + e);}

} //end setFrom

/**

* Sets the From field of a Message to a specified Host.
*/

public void setFrom(InetAddress al) {
From = al;

} //end setFrom(InetAddress)

/**

* Gets value of From field from a Message
* @return String
*/

public String getFrom() {
return this.From.toString() ;

} //end getFrom

* Gets InetAddress value of From field of a Message
* @return InetAddress
*/

public InetAddress getFromAddress() {
return this. From;

} //end getFromAddress

/**

* Gets value of Target field from a Message
* Sreturn String
*/

public String getTo() { //who is the packet going to.
return this.Target.toString();

} //end getTo

/**

* Gets the value of the Date field from a Message
* Sreturn Date;
*/

public Date getTimeStamp() {
return this.TimeStamp;

}

/**

* Sets the value of the TimeStamp to the current Time
*/

public void setTimeStamp() {
this.TimeStamp = new Date();

} //end setTimeStamp.

54

* Sets the value of the TimeStamp to the Date/Time passed in
* @param dl Date to set the time to.
*/

public void setTimeStamp(Date dl) {
this.TimeStamp = dl;

}//end setTimeStamp.

/**

* Gets the value of the Weight assigned to the current message.
* Sreturn''double;
*/

public double getWeightO {
return this.Weight;

}

/**

* Sets the Weight value of the current message.
* Sparam wt The value to set the Weight to.
*/

public void setWeight(double wt) {
this.Weight = wt;

}

/**

* Overrides Object.toString().
*/

public String toString() {
String si = new String(Code + " " + Data + " " + getFromO

+ " " + TimeStamp + " " + Identifier + " " + Weight);
return si;

} //end override toString
} //end class Message

/**

* Contains the fields and methods for tracking and storing information about other
* Known Agents in the Local Network. This information is used when transmitting
* messages to other hosts.
*

* Sauthor Capt Dennis Ingram, USMC
* @param al InetAddress of another Agent on another host computer.
* Sparam Portl The Port number of another Agent that you need to communicate

with.
* @param ContactTime The time stamp of the last broadcast received from an

Agent..
*/

class ContactList {
private InetAddress al;
private int Portl;
private Date ContactTime;

/**

* Constructor for a ContactList when passing in a String and a Port number
* Sparam a A string name of the host contacting.
* Sparam p An integer port number sent from the contacting host.
*/

public ContactList(String a,int p) {
try {

al = InetAddress.getByName(a);
Portl = p;
ContactTime = new Date();

} //end try

55

e);}

e);}

catch (Exception e) {System.out.println("Contact List exception " +

} //end Constructor

/**

* ContactList constructor passing in an InetAddress and Port number
* @param a An InetAddress of a Contact.
* @param p The port number sent by the remote host.
*/

public ContactList(InetAddress a,int p) {
try {

al = a;
Portl = p;
ContactTime = new Date () ;

} //end try
catch (Exception e) {System.out.println("Contact List exception2 " +

} //end Constructor

/**

* Overrides Object.toStringO
*/

public String toStringO (
String si = new String(al + " : " + Portl + " : " + ContactTime);
return si;

} // end toString override

/**
* Retrieves the InetAddress of a particular Contact.
* ©return InetAddress
*/

public InetAddress getHostO {
return this.al;

} //end getHostO

/**

* Retrieves the Port number of a particular Contact.
* ©return int
*/

public int getPortf) {
return this.Portl;

} //end getPort()

/**

* Sets the port number of the current object to a specified port number
*/

public void setPort(int port) {
this.Portl = port;

} //end setPort();

/**

* Retrieves the time that an Agent last broadcast to the network.
* ©return Date
*/

public Date getDateO {
return this.ContactTime;

} // end getDateO

/**

* updates a Contacts' last broadcast time.
*/

public void setDate() {
ContactTime = new Date ();

56

} // end setDate()

/**

* Determines if a Contact is either already in the Known Agents list or
* if the Agent is the Local Host computer.
* @returns boolean
*/

public boolean exists{) {
int nocontact =0;
for (Enumeration e2 = IDAgent.AgentList.elements() ;

e2.hasMoreElements() ;) {
ContactList c2 = (ContactList)e2.nextElement() ;
if(this.al.equals(c2.al)) {

c2.setDate(); // update the Agent.ContactTime.
c2.setPort(this.Portl); //update the port number

// in case the agent
was brought down and back up

return true;
} // endif

}// end enum
for(int i=0;i < IDAgent.LOCALADDRESSES.length;i++) {

if(this.al.getHostAddress().equals(IDAgent.LOCALADDRESSES[i].getHostAddress(
))) {

return true;
} //endif

} //endfor
return false;

}// end exists();

} //end class ContactList

* This class is the GUI interface that the user sees. It contains
* a text area for messages and several buttons for performing debug
* and information retrieval.
* Sauthor James Breitinger, Major, USMC.
*/

class AgentWindowMgr extends Frame implements ActionListener {
// establish frame window area
TextArea textAreal = new TextArea();
Button gettotal = new Button("Get Totals");
Button showagent = new Button("Agents");
Button alert = new Button("Alerts");
Button alertlvl = new Button("Status");
Panel buttonPanel = new Panel();
Color backgroundColor = Color.green;

public AgentWindowMgr(int portl)
{

//define window area
super("IDAgent: " + portl);

setSize(500,320);
add(textAreal, BorderLayout.CENTER);
buttonPanel.setBackground(backgroundColor);
buttonPanel.setLayout(new FlowLayout(FlowLayout.CENTER, 50, 5)) ;
buttonPanel.add(gettotal);
buttonPanel.add(showagent);
buttonPanel.add(alert);
buttonPanel.add(alertlvl);
add(buttonPane1, BorderLayout.SOUTH);

gettotal.addActionListener(this);
showagent.addActionListener(this);

57

alert.addActionListener(this);
alertlvl.addActionListener(this);

setVisible(true);
} //end constructor

public void actionPerformed(ActionEvent e)
{

Object source = e.getSource();
boolean done = false;
try (

if (source == gettotal) {
System.out.println("Total Msgs Recvd " +

IDAgent.TotalAlertMsgsRcvd);
System.out.println("Total Msgs Sent " +

IDAgent.TotalAlertMsgsSent);
System.out.println("Total Beast Recvd " +

IDAgent.TotalBcastRcvd);
System.out.println("Total Beast Sent " +

IDAgent.TotalBcastSent);
System.out.println("Start Time " + IDAgent.StartTime);
IDAgent.EndTime = new Date();
System.out.println("End Time " + IDAgent.EndTime);
IDAgent.Controller.ShowAlerts(1) ;

} //end if submitmsg
if (source == showagent) {

display("There are " + IDAgent.AgentList.size() + "
known Agents.");

for (Enumeration e2 = IDAgent.AgentList.elements();
e2.hasMoreElements();){

ContactList cl = (ContactList)e2.nextElement();
display (cl.toStringO) ;

}// end enum
IDAgent.Controller.resume ();

} // end if showagents
if(source == alert) {

IDAgent.Controller.ShowAlerts(0);
} //end if
if(source == alertlvl) {

display("Current Alert Level is : " +
IDAgent.AlertLevel);

} //end if
} //end try
catch (Exception se) { System.out.println("Action exception " + se);}

} //end actionPerformed
/**

* Method called to display a string in the text area of the Window Manager.
*/

public void display(String s) {
textAreal.append(s + "\n");

} //end display
} //end class AgentWindowMgr

/**

* Remote Host sensor that detects when a host drops off line.
* It will send an alert message to the current host controller
* for each host that is down.
* Sauthor Dennis J. Ingram USMC
*/

class HostSensor extends Thread {

HostSensorO {
setDaemon(true);
this.start();

58

} // end Constructor

public void run() {

while(true) {
System.out.printlnC"Host Sensor Running...");
Message ml = new Message();
for (Enumeration e2 = IDAgent.AgentList.elements();

e2.hasMoreElements();){
ContactList cl = (ContactList)e2.nextElement();
if((System.currentTimeMillis() - cl.getDate().getTime())

>

(IDAgent.TRANSMITINTERVAL * 3.5)) {
System.out.println("System down " + cl);
ml.setCode(6);
ml.setFrom(cl.getHost());
synchronized(IDAgent.ControllerQueue) {

IDAgent.ControllerQueue.addElement(ml);
} //end synch
IDAgent.AgentList.removeElement(cl); // remove

from list
}//end if

}// end for
try {

IDAgent.Controller.resume();
currentThread().sleep(IDAgent.TRANSMITINTERVAL);

} catch (Java.lang.InterruptedException e) {
System.out.println(e);}

} // end while
} // end run

}//end class HostSensor

/**

* This Thread runs periodically (every 6th broadcast interval) to
* scan the RecentAlerts list in the Agent_Controller for old msgs.
* If the messages are over 12 hours old, they are moved to the OlderAlerts list
* and are no longer processed under normal conditions.
* @author Dennis J. Ingram USMC
*/

class AlertParser extends Thread {

AlertParser() {
setDaemon(true);
this.start();

} // end Constructor

public void run() {
while(true) {

try {
System.out.println("Parser Running..." + (new DateO));
IDAgent.Controller.CheckForOldAlerts();
IDAgent.Controller.resume();
currentThread().sleep(IDAgent.TRANSMITINTERVAL * 6);

} catch (Java.lang.InterruptedException e) {}
} // end while

} // end run
}//end class CheckAlerts

/**

* This Thread runs periodically (every 3rd broadcast interval, 15min) to
* scan the Security Log and detect any problems that might be occuring.
* If something is detected, new Alert messages are generated.
* Sauthor Dennis J. Ingram USMC

59

*/
class LogSensor extends Thread {

Date LastProcessedTime = new DateO;
LogSensor() {

this.start();
} //end LogSensor

public void run() {
File fl = new File("c:\\secdata.log");
try {

Process myProcess = Runtime.getRuntime{).execCbu_notify.exe");

} catch (java.io.IOException ee) {
System.out.println("10 Error starting the notify process");}
String si = new String ();
while(true) {

try {
System.out.println("Log Sensor Running...");
FileReader frl = new FileReader(fl);
BufferedReader brl = new BufferedReader(frl);
while(brl.ready()) {

si = new String(brl.readLine());
Logprocessing(sl); //to process the new log.

}// end while
brl.close ();
frl.close();
f1.delete();
LastProcessedTime = new DateO; //update the last time

read,

when done.
IDAgent.Controller.resume 0; //start up the controller

} catch (java.io.FileNotFoundException e){}
catch (java.io.IOException e) {

System.out.printIn("10 Exception
BufferedReader");}

try {
currentThreadO.sleep(IDAgent.TRANSMITINTERVAL);

} catch (Java.lang.InterruptedException e) {}
} // end while

} //end run

/**

* Logprocessing produces messages in the message class format from the
* strings that are read in from the log file. Each String is processed
* as a new message. Each one is checked for validity and to see if it was
* processed previously.
* @param si String parameter used to parse and create a message.
*/

protected void Logprocessing(String si) {
Date dt3 = new DateO;
StringTokenizer stl = new StringTokenizer(si,",");
String dtl = stl.nextToken();
String timel = stl.nextToken();
int codel = (int)Integer.parselnt(stl.nextToken());
int code2 = (int)Integer.parselnt(stl.nextToken());
int code3 = (int)Integer.parselnt(stl.nextToken());
if(codel != 528 && codel != 529 && codel != 531 && codel != 538 &&

codel != 539)
return; // don't process anything if the codes don't match.

String Account = stl.nextToken(); //temp
String tempi = stl.nextToken(); //temp
String SourceCmptr = stl.nextToken();
Account = Account.toUpperCase();

60

String date2 = new String(dtl + " " + timel);
try {

SimpleDateFormat df =
(SimpleDateFormat)DateFormat.getDateTimelnstance();

df.applyPattern("MM/dd/yy HH:mm:ss");
df.setLenient(true);
dt3 = df.parse(date2);

} catch (Java.text.ParseException e) {
System.out.println("Parse Exception " + e); }

if(dt3.getTime() >= LastProcessedTime.getTime()) {
Message ml = new Message();
ml.setTimeStamp(dt3);
ml.setCode(codel);
if(codel == 529 || codel == 531)

ml.setData("Login Failure");
if(codel == 528) {

ml.setData("Login Successful");
} // end if
ml.setID(new String(Account));
if(codel == 528 || codel == 529 || codel == 531) {

synchronized(IDAgent.ControllerQueue) {
IDAgent.ControllerQueue.addElement(ml);

}//end synch
}// end if

}// end if date >=()
}//end Logprocessing()

} //end class LogSensor

/**

* Class that cleans up after a Graphics window closes
* Taken from Dietel Java Programming examples.
*/

class CloseWindowandExit extends WindowAdapter {
public void windowClosing(WindowEvent e)
{

try {
Process myProcess = Runtime.getRuntime().exec("kill.exe

bu_notify.exe");
} catch (java.io.IOException el) {}
System.exit(0) ;

}
} //end class CloseWindowandExit

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

[BARRUS97]

LIST OF REFERENCES

Barrus, Joseph D. Intrusion Detection in Real Time in a Multi-Node
Multi-Host Environment. Master's Thesis, Naval Postgraduate
School, Monterey, CA, September 1997.

[COURTIOS98] Courtios, Todd, Java Networking & Security, Prentice-Hall, Inc.,
Upper Saddle River, NJ, 1998.

[DURST99] Durst, Robert. Terrence Champion, Brian Witten, Eric Miller, and
Luigi Spagnuolo, "Testing and Evaluating Computer Intrusions
Detection Systems", Communications of the ACM, July 1999, Vol 42,
No. 7, 53-61.

[HALE98] Hale, Ron, "Intrusion Crack Down", Information Security, August
1998.

[GA096]

[KREMER99]

[MANASI98]

Government Accounting Office Report. "Information Security:
Computer Attacks at Department of Defense Pose Increasing Risks"
GAO/AIMD-96-84, May 22,1996.

Steven Kremer, Real-time Intrusion Detection for Windows NT Based
on Navy IT-21 Audit Policy, Masters Thesis, Naval Postgraduate
School, Monterey, CA, 1999.

Manasi, Mark, Mastering Windows NT Server 4, fifth edition, Sybex
Inc., AlamedaCA, 1998.

[NEUMANN99] Neumann, Peter, G., and Phillip A. Porras, "Experience with
EMERALD to Date", Proceedings 1st USENIX Workshop on
Intrusion Detection and Network Monitoring Santa Clara, CA, April
1999.

[PROCTOR96]

[SOBIREY99]

Proctor, Paul E., "Computer Misuse Detection System (CMDS)
Concepts", Science Applications International Corporation (SAIC),
May 1996.

Sobirey, Michael, and Birk Richter, "The Intrusion Detection System
AID", Brandenburg University of Technology at Cottbus,
http://www-rnks.informatik.tu-cottbus.de/~sobirey/aid.e.html

63

[ZAMBONI98] Zamboni, Diego. Jai Sundar Balasubramaniyan, Jose Omar Garcia-
Femandez, David Isacoff, Eugene Spafford, "An Architecture for
Intrusion Detection Using Autonomous Agents", COAST Technical
Report 98/05, COAST Laboratory, Purdue University, June 1998.

64

INITIAL DISTRIBUTION LIST

Defense Technical Information Center.
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Director, Training and Education
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

Director, Marine Corps Research Center
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

Director, Studies and Analysis Division.,
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

Marine Corps Representative .
Naval Postgraduate School
Code 037, Bldg. 234, HA-220
699 Dyer Road
Monterey, CA 93940

7. Marine Corps Tactical Systems Support Activity.
Technical Advisory Branch
Attn: Maj. J. C. Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

Chairman, Code/CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93940-5000

65

Dr. Neil Rowe
Computer Science Department, Code CS/Rp
Naval Postgraduate School
Monterey, CA 93943-5100

10. Dr. Geoffrey Xie
Computer Science Department, Code CS/Xg
Naval Postgraduate School
Monterey, CA 93943-5100

11. Capt. Dennis J. Ingram
P.O. Box 988
Quantico,VA 22134-0988

66

