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ABSTRACT 

Multisensor data fusion combines data from multiple sensor systems to achieve 

improved performance and provide more inferences than could be achieved using a 

single sensor system. One of the most important aspects of data fusion is data as- 

sociation. This dissertation develops new algorithms for data association, including 

measurement-to-track association, track-to-track association and track fusion, in dis- 

tributed multisensor-multitarget environment with overlapping sensor coverage. The 

performance of the proposed algorithms is compared to that of existing techniques. 

Computational complexity analysis is also presented. Numerical results based on 

Monte Carlo simulations and real data collected from the United States Coast Guard 

Vessel Traffic Services system are presented. The results show that the proposed al- 

gorithms reduce the computational complexity and achieve considerable performance 

improvement over those previously reported in the literature. 
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I.       INTRODUCTION 

In recent years, multisensor data fusion has received considerable interest in 

both military and civilian applications. Multisensor data fusion is a process in which 

data from multiple, diverse sensors, sensing multiple objects, are combined to yield 

improved accuracy and more inferences than could be achieved using a single sensor 

system. Data refers to the measurements (attributes) obtained by the sensors, and 

fusion is the process of combining these multiple measurements into a single mea- 

surement of the sensed object. Currently, multisensor data fusion is used extensively 

in military applications for target tracking [Ref. 1, 2, 3, 6, 86]. Fusion for target 

tracking involves association and estimation [Ref. 8, 130]. In multisensor-multitarget 

(MSMT) environment, the sensors do not provide any information about the origins 

of the measurements, i.e., the association between the measurements and the targets 

is not known a priori Thus the most important function in MS MT data fusion 

is the association of the measurements to the targets before any estimates can be 

made from the measurements. Data association is responsible for partitioning the 

measurements into sets that could have originated from the same targets. 

A.  BACKGROUND 
There are two major types of data association in MS MT environments with 

overlapping sensor coverage [Ref. 7, 142,157, 161]: measurement-to-track association 

and track-to-track-association. In measurement-to-track association, measurements 

are selected from many to update the tracks (implemented at the sensor level). In 

track-to-track association, all the measured tracks are processed in a data fusion 

center to decide whether or not two tracks represent the same target (implemented at 

the fusion center level). Track-to-track association correlates redundant tracks that 

are provided from multiple sensors on the same targets into a unique set of tracks 

that represents the actual number of targets. The fusion center combines two or 

more tracks when it is decided that they represent the same target.  This problem 



is called track fusion [Ref. 116, 119, 120, 133, 137]. This dissertation addresses the 

problem of data association, including measurements-to-track association, track-to- 

track association, and track fusion, in distributed multisensor-multitarget multiple- 

attribute environment with overlapping sensor coverage. 

There are two main categories of data association in MSMT environment: 

algorithmic and nonalgorithmic [Ref. 58]. The algorithmic category is based on 

nearest-neighbor association in which one measurement, at most, can be used, ac- 

cording to some similarity measure, to update a track and all-neighbor association in 

which a track may be updated using a contribution from more than one measurement 

according to some scores. The nonalgorithmic category is based on neural network 

and fuzzy logic techniques. 

The optimum nearest-neighbor data association technique is derived in [Ref. 

3, 15, 26] by defining a likelihood function and selecting the association that maxi- 

mizes the likelihood expression. The evaluation of the maximum likelihood expression 

in each scan for all possible observation-to-track combinations is computationally in- 

feasible. Instead, suboptimal nearest-neighbor association techniques are developed. 

Blackman [Ref. 3] and Rong Li [Ref. 146] considered different examples of simple 

and suboptimal nearest-neighbor association techniques using different association 

measures. 

Bar-Shalom [Ref. 3, 7, 31] developed the nearest-neighbor standard filter in 

which data association of measurements to tracks is based on the maximum likeli- 

hood function of the residual error. Bar-Shalom and Fortman [Ref. 7] developed 

the two main techniques of all-neighbor data association: probabilistic data associ- 

ation (PDA) and joint probabilistic data association (JPDA) techniques. In these 

techniques, the updated estimate for a given track may contain contributions from 

more than one measurement with some association probabilities [Ref. 159]. The 

JPDA method is identical to the PDA except that the association probabilities are 

computed using all measurements and all tracks [Ref. 13, 18, 27, 28, 30]. The calcu- 

lation of the probability scores is quite complex and computationally intensive. Thus 



suboptimal solutions are developed. The only difference among the optimal solution 

of PDA and JPDA and the suboptimal solutions is the method of calculating the 

probability scores. A large number of suboptimal solutions has been developed in the 

literature [Ref. 29, 109, 110, 129, 145, 160]. 

The interacting multiple model joint probabilistic data association is another 

version of the JPDA [Ref. 78, 79, 141]. The interacting multiple model JDPA is a 

soft-decision zero back scan association approach, which combines in a probabilistic 

score several observations and several dynamic models to determine the target state 

estimate. Molnar et al. [Ref. 64] described an iterative procedure for time-recursive 

MSMT tracking based on an expectation-maximization algorithm. This algorithm 

depends on the maximum a posteriori (MAP) estimate of the target state. The 

algorithm is proved to be effective compared to JPDA approach at the expense of 

additional computations. 

The multiple hypothesis tracking techniques are hard-decision multiscan asso- 

ciation techniques [Ref. 3, 7, 141] in which the association process depends on the 

current as well as the past data. This approach is recognized as the theoretically 

best approach for the MSMT tracking problem under ideal modeling assumptions, 

yet it requires a considerable amount of computation and memory. Outputs from 

multiple hypothesis tracking techniques are typically a list of hypotheses that can be 

ranked by their probability estimates. The number of hypotheses grows when a new 

data set is received. The final assignment of observations to tracks is determined 

according to the maximum value of the association probability among all candidate 

hypotheses. Mori et al. [Ref. 100] described an example of this approach. The direct 

implementation of the multiple hypothesis tracking techniques is infeasible due to 

the excessive growth of the candidate hypotheses. A practical multiple hypothesis 

tracking implementation can be obtained by using pruning techniques, which limit 

the depth of the multiscan association [Ref. 3]. 

Kanyuck and Singer [Ref. 112] proposed the first modeling track-to-track as- 

sociation technique. Their correlation method simply represents a gating technique. 



Two track estimates, from two different systems, are said to be correlated if and only 

if the difference between all their attributes fall within certain gates or bounds. The 

gate sizes depend on the system accuracy in terms of the standard deviation of the 

attribute noise. Singer and Kanyuck [Ref. 113, 114] reconsidered the same problem 

and developed track-to-track association technique based on a test statistic assuming 

that the two estimation errors of two different systems are independent. The common 

test statistic is a weighted difference of estimates. The weights depend on the covari- 

ance associated with each estimate. Willner et al. [Ref. 115] addressed the problem 

of track fusion of two-track estimates, assuming independent estimation errors. Bar- 

Shalom [Ref. 7, 116] presented the same problems of track-to-track association and 

track fusion with the assumption that the estimation errors of different systems are 

correlated (dependent). The results show that the estimation error can be reduced 

by taking the cross correlation between the two estimates into consideration [Ref. 

116, 137, 133]. 

The track fusion problem with dissimilar sensor accuracies is discussed in sev- 

eral papers [Ref. 118, 119, 133, 143, 148, 149, 150, 151, 152, 153, 154]. The results 

show that under certain conditions the performance of the fused track may be worse 

than that of the better quality sensor track. Saha and Chang [Ref. 92, 120, 136] 

showed that the performance of the fused estimate is marginally better than that of 

the better quality sensor track when the sensors are dissimilar (with different sensor 

accuracies). The best performance of the fused estimate occurs when the two sensors 

are similar. The performance of the fused track is worse than the performance of 

the better quality estimate when the two sensor noise variances vary widely [Ref. 

119, 137]. In this case, it is recommended to adopt the estimate of the better quality 

sensor, and the fusion of both sensor estimates is not recommended. 

In general, the computational cost in generating the optimal solutions for the 

data association problem is excessive for real-time surveillance systems. Furthermore, 

they require ideal modeling assumptions and a priori knowledge of the signal envi- 

ronment, which is limited in practice. We can remark that the use of an optimum, 



complicated association technique under ideal assumptions may not be more desir- 

able than a suboptimal, simple association technique that requires little or no a priori 

information [Ref. 1, 2]. 

Unlike the algorithmic category, the nonalgorithmic category provides approx- 

imate solutions to the problem of data association. Sengupta and Iltis [Ref. 101] 

developed an analog neural network to emulate the JPDA. Their approach is capa- 

ble of handling six targets and twenty measurements at most. The implementation is 

difficult due to the heuristic nature of the approach. Brown et al. [Ref. 175] described 

neural network implementations for the data association algorithms in MSMT en- 

vironment. Major drawbacks to the neural network implementations are that they 

require a large number of neurons and require training using a very large set of 

tracks [Ref. 12, 132], [Ref. 163]- [Ref. 165]. 

Fuzzy systems have been successfully applied to many important application 

areas, such as medical imaging, robot vision, remote sensing, sonar systems and 

pattern recognition [Ref. 43, 80, 97, 166]. Fuzzy logic based algorithms have become 

a powerful technique for multisensor data fusion [Ref. 62, 99, 105, 139, 158, 178]. 

Fuzzy systems are well-suited to manage uncertainty and to model decision making 

processes [Ref. 39, 54, 55, 96] and offer the advantage of a clear understanding of their 

operation because they construct knowledge by rules that resemble human thinking. 

In fuzzy system design, users start with some fuzzy rules, which are chosen 

heuristically based on their experience, and membership functions, which in many 

cases are chosen subjectively based on an understanding of the problem, and they 

use the resulting system to tune these rules and membership functions. For the prob- 

lem of data association in MSMT environment, the distributed sensors use their 

input data (features) to form an opinion, in the form of a fuzzy membership, on 

the environment [Ref. 57]. The features and known prototype features are fuzzified 

using the same membership functions. The outputs from the fuzzification are val- 

ues between 0 and 1 and represent the grades of membership of all data points to 

all clusters.   These outputs are called fuzzy outputs.   The fuzzy outputs from the 



fuzzification process are processed using fuzzy rules represented as IF THEN rules. 

The defuzzification process converts the fuzzy outputs to non-fuzzy outputs, which 

are called crisp data. The defuzzified outputs are analyzed and compared with each 

other or with thresholds to determine the actual clustering (association). 

Several recent studies have been devoted to the application of fuzzy techniques 

to data association. Wide et al. [Ref. 17] developed a fuzzy technique for classifi- 

cation of measurements in different known quality profiles. Hossam et al. [Ref. 11] 

developed a fuzzy approach for solving the data association problem in target tracking 

assuming a single sensor. In their approach, the measurement that has the maximum 

degree of membership is chosen as the true measurement. Smith [Ref. 14, 74, 91] de- 

veloped a fuzzy logic association approach for track-to-track association in a MS MT 

environment. He utilizes the fuzzy clustering algorithm to determine the grades of 

membership of all observations for a known number of targets. His approach requires 

initialization of either the prototype values or the grades of membership. Tummala et 

al. [Ref. 75, 76, 77, 131] developed a fuzzy track-to-track association algorithm. It is 

applied to a real scenario of multisensor multi-vessel within the United States Coast 

Guard Vessel Traffic Services system. In their algorithm, the differences between at- 

tributes of two tracks are fuzzified using fuzzy membership functions and compared 

to that of the fuzzified outputs subject to sensor accuracy limitations. A member- 

ship function for each attribute is chosen subjectively according to the corresponding 

system error. Their algorithm is tested using simulated and real data and is proved 

to be efficient. 

Singh and Bailey [Ref. 58] developed the first fuzzy logic approach for measurement- 

to-track association in MSMT tracking. In their approach, fuzzified position and 

velocity errors are used by a fuzzy knowledge-base (IF THEN rules). The position 

and velocity errors are fuzzified using triangular membership functions. Then de- 

fuzzification and fuzzy set decision are performed to obtain the actual association of 

observations to tracks. Their approach is applied to the cases of one and two targets. 

Unfortunately, the extension of their approach to the case of large number of targets 



is fairly complex due to the large number of rules required. Furthermore, as the 

system complexity increases, it becomes difficult to determine the right set of rules 

and membership functions to describe the system behavior. Although Singh and Bai- 

ley [Ref. 58] addressed the critical problem of constructing the optimal membership 

function for a given distribution of the data, constructing membership functions from 

statistical data requires the knowledge of the distribution of the data and assumes 

stationarity of the statistical environment. Furthermore, the optimal membership 

function in fuzzy system design is constructed by approximating a number of sub- 

membership functions [Ref. 56, 58, 102, 103]. In general, the fuzzy logic approach to 

data association provides an approximate solution, and the accuracy of the solution 

depends on several factors, such as the number of input variables, the number of 

linguistic variables, the choice of membership function, and the accuracy of the fuzzy 

rules and statements. 

B.     DISSERTATION OBJECTIVE 

The main objective of this dissertation is to develop fuzzy techniques to solve 

the problems of measurement-to-track association, track-to-track association, and 

track fusion in multisensor-multitarget environment with overlapping sensor coverage. 

The other objectives are to reduce the computational complexity and to achieve 

performance improvement with little or no prior knowledge. 

Data association is the central function of Level 1 processing in the data fusion 

model. Given measurements (observations) from different distributed sensors, data 

association is responsible for partitioning these measurements into sets that could have 

originated from the same targets. In measurement-to-track association, measurements 

are selected from many sensors to maintain and update the tracks. The key function 

here is the association of measurements to targets before target state estimates can be 

made from the measurements. The performance of any tracking algorithm is mainly 

governed by the performance of the data association technique used. Correct data 

association enhances the tracking performance and vice versa. If the sensor selects 



the right observation to update a target state estimate, then the target will be tracked 

correctly and the estimated target's position will be close to the true target positions; 

otherwise, the track will be lost. In track-to-track association, all measured tracks 

from different sensors are processed in a data fusion center to determine whether 

or not two tracks represent the same target (distributed data association problem). 

Track-to-track association combines redundant tracks, provided by different sensors 

on the same targets, into a unique set of tracks. Track fusion addresses the issue of 

fusing two or more tracks if it is determined that they represent the same target [Ref. 

3, 7, 92, 134, 147]. Fusion of sensor tracks improves track performance if track fusion 

is done appropriately. 

C.     ORGANIZATION 
The remainder of the dissertation is organized as follows. In Chapter II, we 

introduce the general model of multisensor data fusion. In Chapter III, we describe 

the general data association process and survey different techniques of measurement- 

to-track association, track-to-track association, and track fusion including algorithmic 

and nonalgorithmic techniques. In Chapter IV, we develop a nearest-neighbor fuzzy 

measurement-to-track association approach. The performance and the computational 

complexity of the proposed approach are analyzed and compared to that of conven- 

tional fuzzy approaches reported in the literature [Ref. 58]. In Chapter V, we develop 

a new all-neighbor fuzzy association approach. Its performance is evaluated and com- 

pared to that of nearest-neighbor standard filter and perfect data association. The 

main focus of Chapter V is to demonstrate the feasibility of applying fuzzy logic 

techniques to all-neighbor association techniques. In Chapter VI, we propose a novel 

fuzzy track-to-track association and track fusion approach. We also develop fuzzy 

association techniques based on the fusion of association decisions. A new fuzzy as- 

sociation rule based on the concept of cross-resolution is developed. Applications of 

the proposed track-to-track association to real data obtained from the United States 

Coast Guard Vessel Traffic Services system are demonstrated. 



Since the primary function of sensor fusion is the detection of targets before any 

data association can be made, we address the problem of optimum decision fusion rules 

in multisensor distributed detection systems in Chapter VII. The two major structures 

for decision fusion: centralized (optimum structure) and decentralized structure, are 

analyzed. An efficient fuzzy logic (soft) decision approach in multisensor distributed 

detection systems is proposed. The proposed approach has detection probability 

improvement over a comparable hard-decision approach. The results characterize 

the performance trade-off between the centralized, decentralized, and soft decision 

approaches, allowing us to choose a preferred communication architecture according 

to the available communication bandwidth. Finally, in Chapter VIII, we present 

conclusions and suggestions for future research. 

There are five appendices in the dissertation. Appendix A includes the Kaiman 

filter equations. Appendix B presents the derivation of the covariance update equa- 

tion of the probabilistic data association filter. The derivation of track fusion rela- 

tionships that minimize the expected mean square error is included in Appendix C. 

Appendix D contains the definitions and operations of the fuzzy set theory. Deriva- 

tion of the fuzzy clustering means algorithm is presented in Appendix E. 
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II.        MULTISENSOR DATA FUSION 

Data fusion is an important problem in a variety of applications. In a data 

fusion system, a number of distributed sensors, with different accuracies and charac- 

teristics, sense multiple objects in a noisy environment and report all the processed 

data to a data fusion center. The data fusion center combines (integrates) all the 

received information from the multiple sensors into a unique set of meaningful infor- 

mation of the sensed objects. Data fusion improves system performance and yields 

more accurate information if fusion is done appropriately. The data fusion systems 

may consist of local sensors linked physically to a data fusion center, distributed 

sensors linked electronically to a data fusion system, and other data, such as data 

base information and reference data fused in a central processor [Ref. 130]. Appli- 

cations for multisensor data fusion are widespreaded in both military and civilian 

applications. This chapter provides an overview of data fusion, introducing the data 

fusion model, data fusion applications and taxonomy of multisensor multitarget data 

fusion [Ref. 1, 2, 5, 9, 130, 182]. 

A.     APPLICATIONS OF MULTISENSOR DATA FUSION 

Multisensor data fusion has a wide variety of application areas ranging from 

military to nonmilitary applications. Historically, data fusion has been devoted to 

military applications. Nevertheless, several nonmilitary applications in the civilian 

world have been studied recently. Military applications include remote sensing, ocean 

surveillance, guidance and control of autonomous vehicles, automated threat and tar- 

get recognition, air-to-air and surface-to-air defense, and battlefield surveillance. In 

air-to-air defense and surface-to-air defense applications, the main objectives are to 

detect, track and identify aircrafts. In these systems, generally called identification 

friend and foe (IFF) [Ref. 138], electromagnetic radiation (such as infrared and 

radio frequencies) are observed using passive sensors (such as electronic support mea- 

sures receivers) and active sensors (such as radar) in a surveillance volume to identify 
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whether the sensed aircraft is a friend or a foe aircraft. A similar nonmilitary ap- 

plication is the identification of an incoming aircraft at civilian airports [Ref. 2]. 

Nonmilitary applications include automated monitoring of equipment, medical diag- 

nosis, and robotics. Multiple sensor medical data (such as ultrasound, x-ray images 

and chemical tests) are tested to diagnose the illness of a patient [Ref. 1, 2]. 

B.     MULTISENSOR DATA FUSION MODEL 

A functional model for multisensor data fusion is illustrated in Figure 1 [Ref. 

36]. It incorporates three basic levels of processing: levels 1,2, and 3. Level 1 pro- 

cessing consists of positional fusion, which combines locations derived from all sensor 

data to obtain the most accurate estimate of an entity's position [Ref. 1, 9, 19, 20] 

and velocity, and identity fusion, which combines data related to the identity of en- 

tities (e.g., classification of entities into classes and the identity of an enemy aircraft, 

ship or emitter) [Ref. 24, 25]. The term entity refers to a target, an emitter, or a 

platform. 

The positional fusion is divided into two subgroups: parametric association 

and estimation techniques [Ref. 6, 8] (see Figure 2). Parametric association asso- 

ciates (correlate) observations from multiple sensors to individual entities (tracks). 

That is, multiple targets are observed by multiple sensors, and the association be- 

tween observations and targets is not known a priori. Parametric association is 

important because an incorrect data association would affect the performance of the 

target tracking. Given the association of each observation to each target, estimation 

techniques are then used to combine the data to obtain better estimate of the state 

vector attributes (such as position and velocity). 

Level 2 processing is aimed at situation assessment, a process by which a de- 

scription of the relationships among all entities is developed. In this level, the outputs 

from Level 1 processing are analyzed and examined to bring out the essential features 

of the distributed combat units and weapon systems. Level 3 processing is used for 

threat assessment. Its purpose is to determine the meaning of the fused data, such as 
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an estimate of enemy lethality, expected courses of action, unit compositions and de- 

ployment, and an estimate of threat. This level usually employs heuristic techniques 

similar to those for situation assessment in addition to utilizing the knowledge-based 

systems or expert systems (support data base). The aim of this dissertation is to 

develop techniques for data association and sensor fusion in distributed MSMT en- 

vironment, which are part of Level 1 processing. 

1.      Level 1 Processing in Multisensor Data Fusion 

Level 1 processing performs four main functions: (1) data alignment, (2) data 

association, (3) tracking, and (4) identification [Ref. 1, 2, 6, 130]. Figure 3 illustrates 

the four basic functions involved in Level 1 processing. The data alignment function 

transforms sensor data into a common set of coordinates and units. Converting the 

data received from each sensor to a common coordinate system is necessary to fuse tar- 

get information from dissimilar sensors (sensors with different accuracies/resolutions). 

The data association function correlates the sensors data to entities, and the track- 

ing function combines positional data to yield an estimate of the target state vector. 

The two main techniques used for estimation are batch estimation techniques and 

sequential estimation techniques. The identification function combines information 

to determine the identity of entities (classification of targets) [Ref. 24]. We focus on 

data association techniques in the remainder of the dissertation. 

C.     BENEFITS OF DATA FUSION 

Multisensor data fusion takes advantages of redundancy and diversity present 

in the data. Consider an example [Ref. 130] in which an aircraft is observed by two 

different sensors: a pulsed radar and an infrared imaging sensor (see Figure 4). The 

radar can measure range with high accuracy but measures the direction of the aircraft 

with low accuracy. On the other hand, the infrared imaging sensor can measure the 

direction of the aircraft with high accuracy but cannot measure the aircraft's range. 

If the measured data from both sensors are correctly combined, then the fused sensor 

data has better accuracy in both range and bearing, i.e., a performance improvement 
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is achieved over either of the two independent sensors. 

Practical determination of the advantages of data fusion requires simulated 

examples (Monte Carlo simulations). Ashraf et al. [Ref. 194] provide a simulated 

example in which two dissimilar sensors observe a common target. In this example, 

each sensor output is a decision, u^i = 1,2, regarding the presence (UJ = 1) or the 

absence («j = 0) of the target. The sensor decisions are reported to a data fusion 

center, which combines them to obtain a global decision (w0). Since the reported 

sensor data is binary, two possible fusion rules are the OR fusion rule (a target is 

present if either of the two sensors detects the target) and the AND fusion rule (a 

target is present if and only if both sensors detect the target). Figure 5 compares the 

receiver operating characteristic (ROC), a plot of the detection probability versus the 

false alarm probability, of the OR and the AND fusion rules as well as the individual 

sensor's ROCs for the case of exponentially distributed observations. The global 

performance improvement of the OR and the AND fusion rules over the individual 

sensors ROCs is obvious. 

Hall [Ref. 2] describes the benefits of data fusion and the corresponding ap- 
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plications for both military and nonmilitary applications. The various benefits result 

in improved operational performance, extended spatial coverage, extended temporal 

coverage, increased confidence, reduced ambiguity of inferences, improved detection 

performance, enhanced spatial resolution, improved system operational reliability, 

and increased dimensionality. 

D.     MULTISENSOR DATA FUSION ARCHITECTURES 

Waltz and Hall [Ref. 1,130] describe three architectural approaches to data fu- 

sion: centralized, decentralized, and hybrid. In the centralized architecture, all sensor 

observations (raw data) are transmitted to a central processor. The central processor 

processes all the sensors information and performs Level 1 processing. The sensors 

do not process the observations. This requires transmission of sensor information 

without delay which requires a large communication bandwidth and memory. 

In the decentralized architecture, the processing is distributed among the sen- 

sors and a fusion center. The sensors process the observations and derive local tracks. 

The fusion center combines the received tracks from the various sensors into a unique 
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Figure 5. Comparison of ROCs of Two Dissimilar Sensors Using AND and OR Fusion 
Rules as well as the Individual Sensor ROCs 

set of tracks. In this case, Level 1 processing is performed on state vectors rather 

than raw data. Despite performance loss which could result from this architecture, 

an important practical advantage is the requirement of low-bandwidth data links be- 

tween the sensors and the central processor [Ref. 59]. Even though the centralized 

architecture is theoretically the optimum architecture, due to considerations such as 

communication bandwidth and memory, it is not used in practice [Ref. 50]. The 

hybrid architecture is a combination of the centralized and the decentralized archi- 

tectures. The trade-offs among the three architectures are the required communica- 

tion bandwidth, memory, and computational complexity of the data fusion center. 

Hall [Ref. 2] presents a detailed description of these trade-offs among these three 

architectures. 
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III.        TECHNIQUES FOR DATA 
ASSOCIATION 

A.     DATA ASSOCIATION PROCESS 

A general data association process consists of three main steps: a gating tech- 

nique, an association metric and an assignment strategy. This is illustrated in Fig- 

ure 6 [Ref. 2, 3, 180]. The Gating technique eliminates unlikely observation-to-track 

pairings using a priori statistical knowledge. This step is used to reduce the number 

of combinations of observations-to-track pairs that will be considered for data associ- 

ation. In the second step, we determine a similarity measure between all observations 

and all tracks of existing targets. In the final step, we solve the problem of assigning 

observations to tracks. 

Gating 
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Assignment 
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'easible 
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re                          Assignment 

Figure 6. A General Data Association Process 
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1.      Gating Techniques 

Given a set of attributes {y;}, gates are formed around the predicted target 

attributes {v,}, represented as a function of the state vectors {x;}. The target 

attributes are parameters, such as velocity, position, bearing, and ID number. If 

some attributes fall within the gate of a track, they may be associated with the 

corresponding track . All other attributes outside the gate cannot be associated to 

the target. If a single observation falls within a gate and does not fall within any other 

track's gate, that observation will be associated to the corresponding track and no 

further action is needed in the data association process (no conflict situation). If more 

than one observation fall within a gate or if an observation falls within more than one 

gate, further processing is needed (conflict situations). Thus the gating techniques 

reduce the number of computations by providing only feasible pairs of observations 

and tracks [Ref. 3, 7, 34, 144]. 

Gating techniques can solve the problem of data association if there are no 

conflicts. Figure 7 shows an example of three targets and four observations with no 

conflict. Since only one observation falls within each target's gate, each observation 

is assigned to the corresponding track. Figure 8 illustrates the same scenario with 

conflict. As shown in Figure 8, y: can be associated to target 1 or target 2, y2 can 

be associated to target 2 or target 3, and y3 can be associated to target 1 or target 

3. Observation y4 cannot be associated to any target since it is outside the gates of 

all targets. 

The simplest gating technique is the rectangular gating which defines a region 

such that an observation is associated to a track if all the attributes {yk} satisfy the 

following relation [Ref. 3, 7]: 

|yfc-y*Hy*l<G**r, (ni.i) 

where ar is the residual standard deviation and is given by: 

or = v^"^ (in-2) 
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where a is the measured standard deviation and ap is the standard deviation obtained 

from the Kaiman filter. The basic equations of Kaiman filtering are summarized in 

Appendix A [Ref. 78, 84]. The gating constant Gk depends on the density of the 

distributed observations, the detection probability and the dimension of the state 

vector [Ref. 3]. 

Unlike the rectangular gating techniques, the ellipsoidal gating techniques de- 

pend on the norm of the residual vector. An observation y is said to be within the 

gate of a given track of predicted attribute vector y if the norm of the residual vector, 

d2, satisfies the following relation: 

d2 = (y-yyS-l(y-y)<G, (III.3) 

where G is a gating constant and S is the residual covariance matrix. The optimum 

gating constant Go is obtained as a function of the detection probability pa, the 

number of attributes, the new target density ßNt, the false target density ßFt, and 

the residual covariance matrix S  [Ref. 3, 171, 172]: 

G0 = 2 £n[ ^ ==]. (HI.4) 

Another test is to define G based on the chi-square distribution. Since d2 

is the sum of the squares of M independent Gaussian random variables, it has chi- 

square probability distribution with M degrees of freedom, where M is the total 

number of attributes (measurements). Let PG be the value of the probability of a 

valid observation is within the gate, then 

P{d2 >G} = 1-PG, (III.5) 

which can be determined using standard chi-square table. The performance of the 

ellipsoidal gating is noticeably better than the standard rectangular gating tech- 

niques [Ref. 3]. 

2.      Association Metrics 

For each feasible observation-to-track pair, an association metric, expressed 

as distance, is computed. The association metric represents the degree of similarity 
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between two entities. There are four standard criteria that can be used to determine 

whether or not a metric d is a true metric [Ref. 37, 177]: 

d(a, b) = d(b, a) > 0 Symmetry, 

d(a, b) < d(a, c) + d(b, c) Triangle inequality, 

if (a, b) ^ 0, then o/6, Distinguishability 

if d(a, b) = 0, then a = b Indistinguishability. 

There are four types of distance metric [Ref. 177]: correlation coefficients, dis- 

tance measures, association coefficients, and probabilistic similarity coefficients. The 

selection of a similarity measure depends on the application. 

a.        Correlation Coefficient 

Given two observation vectors x and y of dimension M, the correlation 

coefficient between the two vectors is defined as [Ref. 85]: 

_ £&(*-«)(»-a , (IIL6) 

where Xi is the ith attribute, and x is the mean of all attributes for observation vector 

x; — 1 < rxy < 1. The correlation coefficients can be used for any kind of data. The 

correlation coefficient describes a shape measurement (geometric distance) and has 

no obvious meaning because the mean of each vector is summed across all attributes 

of each vector. This drawback makes the correlation coefficient insensitive to the 

differences in the magnitude of the attributes used to compute the coefficient. The 

vectors of high correlation are distributed along a straight line, and the vectors of low 

correlation are distributed in a wide space. Despite that the correlation coefficient 

not being a true metric and not satisfying the triangle inequality, it is proven to be 

effective in a wide variety of applications [Ref. 177]. 

6.        Distance Measure 

The distance measure is the simplest and widely used association mea- 

sure.   Unlike the correlation coefficient, the distance measure is a true metric and 
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sensitive to differences in the magnitude of the attributes. The distance measure has 

no upper bound and is applicable only to continuous variables. The distance measure 

has many representations [Ref. 1, 2, 37, 177]; the most common representation is the 

Euclidean distance 

("Xy     

\ 

M 

E(** - Vi)\ (III.7) 
»=i 

which is a special case of the Minkowski distance of order r defined as 

M 

Manhattan distance (city block distance) is another commonly used measure 

M 

dxy = Yl\ Xi ~Vi\- (IIL9) 

Distance measure is widely used in positional data fusion. 

c.        Association Coefficient 

The association coefficient establishes similarity between vectors of bi- 

nary variables. An association table is formed between two vectors x and y. A typical 

association table is shown in Table I; 1 refers to the presence of a variable, and 0 refers 

to its absence. The scalar value a represents the number of features that are present 

in both x and y (value of 1) and b represents the number of features that are present 

in x but absent in y. The scalar values c and d represent the opposite. An association 

coefficients can then be defined as [Ref. 1, 85] 

Sxy =   (;+rf) (lino) y     (a + b + c + d) v ' 

The value of Sxy ranges from zero to one, where Sxy = 1 represents complete similar- 

ity, and Sxy = 0 represents complete dissimilarity. There are many definitions of the 

association coefficients as described in [Ref. 2, 177]. 
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Table I. An Association Table 

Vectors of Binary Elements x / y 1 0 

1 0 b 

0 c d 

d.       Probabilistic Similarity Coefficient 

This type of measure is different from all the previous measures. It is 

not determined directly from the values of the two vectors. Instead, it depends on 

a priori statistical distribution of the underlying process. This is presented in detail 

in [Ref. 3, 7, 78, 79] and summarized in Section C. 

3.      Assignment Strategies 

The assignment strategies determine the actual association of the observations 

to the tracks. This can be done after constructing an association matrix between 

all the observations and all the tracks. Each element in the association matrix is 

determined using one of the similarity measures described in the previous section. 

The optimal solution is to choose the assignment that minimizes/maximizes 

the summed total similarity measure [Ref. 3]. Table II shows a typical association 

matrix for the example given in Figure 8, where the rows represent tracks and the 

columns represent observations. Table III shows the association matrix after apply- 

ing the rectangular gating technique. The values in Table III are obtained using the 

Euclidean distance measure and are chosen arbitrarily to highlight concepts. The 

optimal solution for this assignment is to choose the assignment that minimizes the 

summed total distance. In the case of two or three targets and observations, develop- 

ing the optimal solution can easily be determined by enumeration. In case of a large 
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Table II. Assignment Matrix for Three Targets and Four Observations 

Targets/Observations yi y2 y3 y4 

Target 1 dn dw ^13 du 

Target 2 ^21 d>22 ^23 d24 

Target 3 ^31 dz2 dzz ^34 

number of targets and observations, finding the optimal solution is time consuming, 

thus suboptimal solutions are developed. 

A possible suboptimal solution is to search the association matrix for the 

minimum distance measure and make the indicated assignment. This step is repeated 

until all the tracks are assigned to observations. The suboptimal solution for the 

example of Table III results in the assignment of observation y3 to target 1, y2 to 

target 3 and yx to target 2. The summed total distance in this case is 19. The 

optimum solution for the same example requires the assignment of observation yt to 

target 1, y2 to target 2 and y3 to target 3. The summed total distance in this case is 

17. 

In the literature, there are two main categories of data association for MS MT 

tracking systems: algorithmic and nonalgorithmic [Ref. 58]. The algorithmic cate- 

gory is based on nearest-neighbor and all-neighbor techniques. The nonalgorithmic 

category is based on neural network and fuzzy logic techniques. 
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Table III. Assignment Matrix for Example of Figure 8 

Targets/Observations yi y2 ys y4 

Target 1 5 X 4 X 

Target 2 9 7 X X 

Target 3 X 6 5 X 

B.     NEAREST-NEIGHBOR DATA ASSOCIATION TECH- 
NIQUES 
In the nearest-neighbor techniques, one observation, at most, can be used to 

update a given track. The nearest-neighbor techniques use only the nearest-neighbor 

measurement to update a given track. The nearest-neighbor measurement is the mea- 

surement that is closest to the predicted target measurement. In this approach, mea- 

surements are assigned to existing tracks in such a way to minimize/maximize an over- 

all similarity measure. Blackman [Ref. 3] provides an excellent description of nearest- 

neighbor association for MSMT tracking. Bar-Shalom [Ref. 120, 137, 146] analyzes 

the performance of nearest-neighbor techniques under many association events. The 

similarity measures considered in Section A are classes of suboptimal solutions for the 

nearest-neighbor data association techniques. An optimum nearest-neighbor data as- 

sociation technique is derived in [Ref. 3, 15, 26] by defining a likelihood function. 

The likelihood function in a given scan k is denned as a product of the following 

probability distributions 

Lk = fer(y I Nu) fDT(Nu I D) fTL(D | Nt) fo(Nt,Ft), (III.ll) 
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where fo(NT, Ft) is the probability distribution that there are Nt true targets and Ft 

false targets, D is track length for a given track, JTL(D) is the probability distribution 

of track length D for a given track, JDT{NU \ D) is the probability distribution 

that a given track uses Nu observations that produce Nu detections for track update 

given that the track length is D, and fer(f | Nu) is the probability distribution of 

residual error y between a given track and an observation within the gate of the 

track. The conditional probability distributions of Equation III. 11 are evaluated 

based on predefined standard models. For r observations received in a given scan k, 

the likelihood L^ given by Equation III.11 is evaluated for all possible combinations 

among all tracks and all observations. The optimum solution to partition the r 

observations into tracks is the solution that maximizes the likelihood function Lft. 

Clearly the evaluation of the maximum likelihood expression in a given scan for 

all possible observation-to-track combinations is computationally infeasible. Thus the 

expression of Equation III.11 is never implemented in practice. Instead, suboptimal 

solutions are developed. 

The most common data association technique, based on the maximum likeli- 

hood function approach, is the nearest-neighbor standard filter. The nearest-neighbor 

standard filter chooses the assignment that maximizes the likelihood function of the 

residual error. For a given track i and an observation j, the likelihood function of the 

residual error is 
e-4- 

Lij = ,   , (111.12) 

where d?- is the statistical distance (weighted sum of innovations), given by 

4 = y^-Sf%, (111.13) 

and Si is the residual covariance matrix and is defined in Appendix A. The vector yj,- 

is the residual vector between observation j and track i. The optimum assignment is 

the one that maximizes the likelihood function L^ between observations and tracks. 

By taking the first derivative of the logarithmic function of Equation 111.13, it is easy 

to see that maximization of the likelihood function is equivalent to minimizing the 
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following distance [Ref. 3]: 

^ = 4 + ^1^1. (111.14) 

Thus for a given track i the observation that produces the maximum value of the 

distance measure d2 is selected to update the track. 

C.     ALL-NEIGHBOR DATA ASSOCIATION TECHNIQUES 
All-neighbor data association techniques update a given track using more than 

one observation. Bar-Shalom and Fortman [Ref. 7] developed the probabilistic data 

association (PDA) filter and the joint probabilistic data association (JPDA) filter 

in which each measurement is assumed to have originated from either a known target 

or clutter. The result is that the updated estimate for a given track may contain con- 

tributions from more than one observation with some association probabilities [Ref. 

159]. In PDA and JPDA, the predicted target state is updated using a probability 

weighted sum of innovations (probabilistic score). The JPDA method is identical to 

the PDA except that the association probabilities are computed using all measure- 

ments and all tracks [Ref. 13, 18, 27, 28, 30, 33]. A detailed derivation of the PDA 

and the JPDA can be found in [Ref. 7, 32, 35]. The results are briefly described 

here. 

For a given track j and Nv valid observations, the state estimate at time k + 1 

is given by 

Nv 

Xj-(Jfe +1 | Jfc +1) = £j{k +1 | k) + Kj(k + 1) E ßij(k) fi(k + !)>* = 1» -> c> (IIL15) 

where c is the total number of targets, y{(k + 1) is the innovation due to observation 

i at time instant (k + 1) 

y{(k + 1) = Yi(k + 1) - y,(* + 1), (HI.16) 

and K(fc + 1) is the standard Kaiman filter gain. The state update equation can be 

written as 

%(/c + 1 | k + 1) = ±j(k + 1 | k) + Ki(k + 1) fj(k + 1), (111.17) 
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where 

yj(k + l) = f^ßij(k + l)yi(k + l) (IIL18) 

is the sum of all weighted innovations. The weights are the probabilities that the ith 

observation comes from a given target j. The update of covariance matrix can also 

carried out as (see [Ref. 7] and Appendix B for the derivation): 

P(* + 1 | k + 1) = ß0(k + 1)P!(A: + 1 | k + 1) + P(fc + 1), (111.19) 

where 

Pi(fc + 1 | k + 1) = [I - K(Jfc + l)H(Jfc + l)]P(fc + 1 | k) (111.20) 

is the standard covariance update equation, ßo(k) is the probability that none of the 

received observations within the gate of a given track originated from the target, and 

Pik + y^Kik + y&ß^k + VUk + mik + V-Uk + ljy'iik + lKK'ik + l). 

(III. 21) 

If there is no observation within the gate of a given track, the updated state estimate 

and covariance matrix will be the previous estimate and the previous covariance 

matrix, i.e., 

x(* + l | fc + 1) = x(fc + 1 | Jfc), (111.22) 

P(Jfc + l|Jfc + l) = P(ifc + l|A:). (111.23) 

The calculation of the probability scores is quite complex and computationally 

intensive; thus optimal solutions are used. The only difference among the optimal 

solution of PDA, and JPDA and the suboptimal solutions is the method of calculat- 

ing the probability scores {/%(&)}• A large number of suboptimal solutions has been 

developed in the literature [Ref. 29, 109, 110, 129, 145]. 

Another version of the JPDA is the interacting multiple model joint prob- 

abilistic data association. The interacting multiple model JPDA is a soft-decision 

zero back scan association approach (memoryless approach) which combines in a 

probabilistic score several observations and several dynamic models, in a given scan, 
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to determine the target state estimate [Ref. 78, 79, 141]. Molnar et al. [Ref. 64] 

describe an iterative procedure for time-recursive MSMT tracking based on an 

expectation-maximization algorithm. This algorithm depends on the maximum a 

posteriori {MAP) estimate of the target state and is proven to be effective compared 

to the JPDA approach at the expense of additional computations. 

D.     MULTIPLE HYPOTHESIS TRACKING TECHNIQUES 

In the data association techniques previously discussed, only the current re- 

ceived observations on each scan are used for the data association process to update 

the target tracks. This technique is termed single hypothesis tracking. Unlike the 

single hypothesis tracking techniques, which use hard-decision and zero-backscan as- 

sociation, the multiple hypothesis tracking techniques use hard-decision multiscan 

association. This means that the association process does not only depend on the 

current data but also on the previous data [Ref. 3, 7, 155, 173]. 

Mori et al. [Ref. 100] describe an example of a multiple hypothesis tracking 

approach. This approach is recognized as the theoretically best approach for the 

MSMT tracking problem under ideal modeling assumptions, yet it requires a con- 

siderable amount of computation and memory. Outputs from multiple hypothesis 

tracking approaches are typically a list of hypotheses that can be ranked by their 

probability estimates. A number of candidate hypotheses are generated, and the 

corresponding probability estimates are evaluated after receiving more data. Thus 

the multiple hypothesis tracking uses later observations to determine prior associa- 

tion. Blackman [Ref. 3] provides more details about the multiple hypothesis tracking 

techniques. The association probabilities are computed using Bayes' rule 

m | y) = mp, (111.24) 

where y is the current measurement data, Hi is a generated hypothesis, P(Hi) is 

the a priori probability of hypothesis Hi before receiving the data y, P(y \ Hi) is 

the probability of receiving y given hypothesis Hi and P{Hi \ y) is the a posteriori 
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probability of hypothesis H{ after receiving the data y. The probability of receiving 

the data y, P(y) can be calculated from 

P(y) = J2p(y\Hi)p(Hi)- (m-25) 
i 

The derivation of the association probabilities in three different cases can be found 

in [Ref. 3, 78, 79]. The results are summarized below. 

Case 1: If the observation is a false target 

P(Ht) = ^'^Pm, (111.26) 

where ßpT is the density of false targets, pd is the detection probability, P(H-) is the 

probability that Hi is true before receiving the data, NT is the total number of exist- 

ing targets and C is a constant that depends on the scan volume and the densities of 

the new and false targets. 

Case 2: If the observation j belongs to an existing track i 

P(Hi) = Pddi^-^Ntp(H'^ (111.27) 

where d{j is the likelihood function associated with observation j and track i and is 

given by Equation III. 13. 

Case 3: If the observation belongs to a new target 

pm = pNt{1~Pd)Ntpm, (m.28) 

where ß^t is the probability density of new targets. 

The central part of the multiple hypothesis tracking is the hypotheses tree 

representation, which is a representation of the candidate hypotheses after receiving 

new data [Ref.   2, 3, 64, 78, 79, 94].   Figure 9 illustrates a simple example of the 
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hypotheses tree given two observations and two scans. Whenever a new observation 

is received and there is a conflict, a list of hypotheses is generated. Figure 9 uses 

the notation fa for false target and Ntx for a new target x. In the first scan, when 

observation y^l) is received, two hypotheses are generated; false target and new 

target A. In the same scan, when observation y2(l) is received, four new hypotheses 

are generated. The number of hypotheses grows when a new data set is received in 

the second scan, and the process continues. The final assignment of observations to 

tracks is determined according to the maximum value of the association probability 

among all candidate hypotheses. 

yi(i) 
First Scan (Data Set) Second Scan (Data Set) 

y2(i)     yi(2) y2(2) 
Ja       

Nn 

Ntl 

Ja 

Ja 

fa 

Nt2 

t2 .. 
Nt3 

fa     ■ 

h     .. 

Nt3 

Ja 

Nt3 

fa     - 

t2     .. 

Figure 9. An Example of a Hypotheses Tree Representation 
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The direct implementation of the multiple hypothesis tracking techniques is 

infeasible due to the excessive growth of the candidate hypotheses. A practical multi- 

ple hypothesis tracking implementation can be obtained by limiting the depth of the 

multiscan association. The techniques that limit the number of hypothesis are called 

pruning techniques. The selection of a pruning technique depends on the application. 

The simplest technique is to remove the hypotheses that have probabilities less than 

a predefined threshold. Blackman [Ref. 3] describes more details about the pruning 

techniques. 

Feo et al. [Ref. 141] provide a quantitative evaluation of the multiple hypoth- 

esis tracking performance and compare its performance with that of nearest-neighbor 

standard filter . Their results conclude that the multiple hypothesis tracking tech- 

nique is superior to the nearest-neighbor standard filter as expected at the expense 

of additional computations. 
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E.     MULTISENSOR-MULTITARGET DATA ASSOCIATION 
TECHNIQUES 

In a MSMT environment, there are distributed sensors observing different 

targets with overlapping coverage.   Figure 10 shows a typical example of MSMT 

environment.   Each sensor processes its own observations and sends a number of 

tracks to a data fusion center. The data fusion center processes all the sensor tracks. 

There are two important questions in such scenario [Ref. 92, 125]. The first question 

is how to decide whether or not two tracks from different sensors represent the same 

target (track-to-track association) [Ref. 3, 7, 16, 155]. The second question is how to 

combine (fuse) the corresponding tracks if it is decided that the}' represent the same 

target (track fusion) [Ref. 3, 7, 92, 134, 136]. The use of multiple sensors improves 

the data association performance and yields more accurate estimates if track fusion 

is done correctly. 

CD   CD 

Figure 10. MSMT Environment in Overlapping Coverage Scenario 
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1. Track-to-Track Association Using Gating Techniques 

The first track-to-track association approach was implemented using empirical 

procedures based on the human operator. Due to the limitations of human senses and 

abilities, especially in a dense target environment, the manual techniques have poor 

performance. In 1970, the first computer correlation technique has been developed by 

Kanyuck and Singer [Ref. 112]. This is a gating technique. Given two estimates, x^ 

and x.jk at time instant k, from two different systems, i and j, the two estimates are 

said to be correlated (i.e., they represent the same target) if and only if the difference 

between all their attributes falls within certain gates in at least one of two successive 

time intervals i.e., if 

| Xit(k) - xjt(k) \< Gt(k), for ,£ = 1,2,..., M, for k = 1, or 2, or both,     (111.29) 

where M is the total number of attributes, k represents the measurement time in- 

tervals, and Gi(k) is the gating constant at time scan k. The gate sizes depend on 

the system accuracy in terms of the attribute standard deviations. If we assume 

that the state estimate contains x and y positions and velocities, then the optimum 

value of the position gate size is 2ax(2ay), and the optimum value of the velocity 

gate size is 4aVx(4aVy). In some examples, this simple track-to-track association tech- 

nique provides about 15% association improvement over the manual techniques [Ref. 

112]. The advantages of the track-to-track association using gating techniques are 

simplicity and ease of implementation. 

2. Track-to-Track Association Using Test Statistic As- 
suming Independent Estimation Errors 

Singer and Kanyuck [Ref. 113, 114] considered the same problem and devel- 

oped a correlation technique based on a test statistic assuming that the estimation 

errors of the two different systems are independent. The common test statistic is a 

weighted difference of estimates, given by: 

d2 = (±i(k | k) - Xj(k | k))'{Pi(k | k) + Pj{k | Jfc))"1^^ I k) ~ Mk I k))>   (HI.30) 
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where P; is the covariance associated with the estimate x, (for simplicity, we ignore 

the time index k). If d2 is below a certain threshold A, then the two tracks are the 

same (i.e., they represent the same target); otherwise , they are different (i.e., they 

represent different targets). Threshold A is determined using chi-squared distribution 

of d2 assuming Gaussian distributed observations. 

3.      Track Fusion: Independent Estimation Errors 

Willner et al. [Ref. 115] introduced the Kaiman filter algorithms for multi- 

sensor multitarget systems. They use a test statistic to determine whether or not 

two tracks are the same and solve the problem of track fusion assuming independent 

estimation errors. There are two different implementations of the fusion algorithms: 

parallel and sequential [Ref. 93, 95,115]. In a parallel fuser, the estimates Xj with the 

corresponding covariances Pj are applied simultaneously to the fusion center. The 

fused estimate, which minimizes the expected mean square error, and the correspond- 

ing covariance are given by: 

x/=pf;p^, (IIL31) 
n 

p_1 = £pr\ (ni.32) 
i=l 

where iV is the total number of the tracks considered in the fusion. In a sequential 

fuser, the estimates are fused sequentially. The fused estimates of any two tracks iq 

and ±j are given by [Ref. 3, 115] (see Appendix C for the derivation): 

Xf = PjiPi + Pi)-% + Pi(Pi + Pj)-1^, (IIL33) 

P = Pi(Pi + P,)-1Pi. (111.34) 

The sequential and the parallel fusers are equivalent in terms of the accuracy 

of the fused estimate. However the sequential fuser is faster than the parallel fuser 

since it requires (N—l) inversions ofMxM covariance matrix as opposed to (2N—1) 

inversions of the same matrix in the parallel fuser. 
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4.      Track-to-Track Association and Track Fusion:  De- 
pendent Estimation Errors 

Bar-Shalom [Ref. 7, 116] retreated the problems of track-to-track association 

and track fusion under the assumption that the estimation errors of different systems 

are correlated. Bar-Shalom mentioned that the measurement noises of two different 

systems can be assumed to be independent but that is not sufficient to yield the 

independence of their estimation errors. This is because the same process noise in 

the dynamic model makes the two estimation errors correlated. 

By assuming that the difference between two estimates from different systems 

i and j is 

dij =xt- -Xj, (111.35) 

the covariance matrix of the difference of the two estimates is 

£{d^-dy = E{{±{ - *,)(*,• - xj)'}. (111.36) 

The covariance of the difference can be rewritten as 

£{dydy = ^{(xi-x-(%-x))(xi-x-(x,-x))'} = Pi + P^.-Py.-P^, (HI.37) 

where Py represents the cross-correlation between the two estimates and is given by 

P(j = E{{% - x)(xj - x)'} = £{xiXi} = Vji. (111.38) 

Taking into consideration the cross-correlation terms, the test statistic given 

by Equation III.30 will be replaced by 

d2 = (±i - XjO'CPi + Pj - Py - Pji)-\*i ~ *;). (111.39) 

In this case, the results of the fused estimate and the corresponding covariance which 

minimize the MSE will be (see [Ref. 116] and Appendix C): 

Xf = % + (Pi - Py)(P; + P,- - Py - Py)-1^ - *), (111.40) 

P = P, - (P4 - Py)(Pi + Pi - Py - Py-^Pi - Py), (IIL41) 
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where P# is determined from the following recursive equation: 

Py = (/ - KB) (FPijF' + Q)(I- KB)', (111.42) 

where K is the Kaiman filter gain, F is the state transition matrix, Q is the plant 

noise covariance matrix, and H is the measurement matrix. If correlation between 

the two estimation errors P^ = 0, then Equation 111.40 reduces to Equation 111.33 

and Equation 111.41 reduces to Equation 111.34. 

Bar-Shalom [Ref. 117] considers the effect of the common process noise on the 

fused estimates of two different systems. The results show that the cross-correlation 

between the two estimates reduces the estimation error by about 70% as opposed to 

50% when the dependence of the estimation errors is ignored. 

The problem of track fusion with dissimilar sensor accuracies is discussed in 

several papers [Ref. 21, 61, 118, 119,133, 143, 149,157]. The results show that under 

certain conditions the performance of the fused track may be worse than that of the 

better quality sensor estimate. Numerical [Ref. 118] and theoretical [Ref. 119] results 

indicate that the performance of the fused estimate is marginally better than that 

of the better quality sensor estimate when the sensors are dissimilar (with different 

sensor noise variances). The best performance of the fused estimate occurs when the 

two sensors are similar. The performance of the fused track is worse than that of the 

better quality estimate when the sensor noise variances vary widely. In this case, it 

is recommended that the estimate of the better quality sensor be adopted and the 

fusion is not performed. 

5.      Track-to-Track Association of Different Dimension- 
ality Estimates 

So far, we considered the association of different tracks with the same number 

of attributes. Here, the association of tracks with different dimensionality is ad- 

dressed. In radar to electronic support measures (ESM) association [Ref. 126, 127], 

radar typically provides three attributes while ESM being a passive sensor can only 

provide bearing information.  The radar measurements are more accurate than the 
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ESM measurements. The association problem can be described as follows: given an 

ESM track specified by n ESM bearing measurements, it is required to associate the 

ESM track to one of mT radar tracks. The problem can be described as a multiple 

hypothesis testing problem: 

Hj :    ESM track associates with the jth radar track 

H0 :    ESM track does not associate with a radar track 

The ESM-Radar association process was developed by Coleman [Ref. 174] 

and Trunk and Wilson [Ref. 10]. Coleman [Ref. 174] presents a Bayesian multiple 

hypothesis test, which determines the a posteriori association probability of an ESM 

track to each radar track. The hypothesis with the largest a posteriori probability 

is chosen. By assuming that the ESM measurement errors are independent and 

Gaussian distributed with zero mean and variance a2, the hypothesis with minimum 

dj is chosen [Ref. 174], where 

»=i 

9e(ti) is the given measurements of ESM sampled at times U, n is the total number 

of ESM measurements, and Ojfa) is the estimated radar bearing of radar track j 

at the same time t{. Since the ESM measurements are assumed to have Gaussian 

distribution, dj has a chi-square density function with n degrees of freedom.  Thus 

the a posteriori probability is 

Pj = P{z>dj}, (111.44) 

where z is a x2(n). The association process chooses the hypothesis that has maximum 

a posteriori probability Pmax- If Pmax is less than a threshold T, then hypothesis HQ 

is selected. The threshold value depends on the rejection rate. 

Trunk and Wilson [Ref. 10] developed a solution for the problem of ESM- 

Radar association based on multi-threshold decision making. Their association pro- 

cess has better performance than that of the single threshold association described 

by Coleman [Ref. 174]. 
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In general, optimal solutions for data association are not computationally fea- 

sible for real-time surveillance systems. Furthermore, the assumptions about a priori 

knowledge of the signal environment limit their usefulness in practice. We can con- 

clude that the use of an optimum, complicated association technique under ideal 

assumptions may be not better than suboptimal, simple association technique that 

requires little a priori information. 

Unlike the algorithmic category, the nonalgorithmic category provides approx- 

imate solutions to the problem of data association. Sengupta and Iltis [Ref. 101] 

developed an analog neural network to emulate the JPDA. Their approach is capa- 

ble of handling six targets and twenty measurements at most. The implementation 

is difficult due to the heuristic nature of their approach. Brown et al. [Ref. 175] 

described neural network implementations for data association in MSMT environ- 

ment. A major drawback to the neural network implementations is the need for an 

unreasonable number of neurons. 

F.     FUZZY METHODS FOR MULTISENSOR DATA FU- 
SION 
Fuzzy systems are well-suited to manage uncertainty and to model decision 

making processes [Ref. 39, 54, 55, 96]. Fuzzy systems offer the advantage of a clear 

understanding of their operation because they construct knowledge by rules that 

resemble human thinking. They can handle numerical data and linguistic information 

(knowledge), both of which can be transformed into a form of IF THEN rules. 

Fuzzy systems have been proven to be successful in many important application 

areas, such as medical imaging, robot vision, remote sensing, sonar systems and 

pattern recognition [Ref. 23, 38, 43, 80, 97, 166] and are becoming a choice technique 

for multisensor data fusion [Ref. 62, 99, 105, 139, 158, 178]. The distributed sensors 

use their input data to form local decisions, in the form of fuzzy membership values 

on the environment; then the local decisions are combined in a data fusion processor 

to reach a global decision. The basics of fuzzy sets and fuzzy membership functions 
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are presented in Appendix D. 

1.      Clustering Techniques 

The purpose of any clustering technique is to partition given data into groups 

or clusters having some common similarity measure. The clusters can be used in 

classification of the underlying entities. The basic steps involved in any clustering 

technique are feature selection, similarity measure, clustering, and validation [Ref. 

2, 81]. The selection of features depends on the underlying environment. The fea- 

tures can be the measurements themselves. They can be kinematic attributes, such 

as position, velocity, and bearing, or non kinematic attributes such as shape size and 

ID number. The features are extracted from the received measurements from all dis- 

tributed sensors. The similarity measure represents the similarity between the entities 

based on the selected features. Several types of similarity measures are described in 

Subsection B.2 of this chapter. The similarity measure must be calculated among 

all combinations of the entities. The next step is to use a cluster technique to parti- 

tion the data into entities and then use a validation criterion to express the quality 

of clustering. Many clustering algorithms have been reported in the literature [Ref. 

87]- [Ref. 90], [Ref. 169, 170]. We will describe the Euclidean clustering algorithm 

to illustrate the concept of clustering. We apply Euclidean clustering to five data 

points with x and y positions as attributes; the error resolutions of x and y positions 

are A(x) and A(y). The minimum and maximum number of clusters, c^n and Cmax, 

are assumed to be two and three, respectively. The cluster radius A(x, y) is defined 

as [Ref. 14, 74, 91]: 

A(x,y) = {[A(x)2 + A(y)2)}0-5. (111.45) 

The steps of Euclidean clustering are: 

1. Start with Cmm number of clusters with a radius of A/10. As shown in 

Figure 11, the 5 data points cannot be covered with two clusters. 

2. Increase the number of clusters by 1 and repeat. Figure 12 shows that the 

data points cannot be covered with three clusters and a cluster radius of A/10. 
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Figure 11. Euclidean Clustering: Step 1 

3. Increase the cluster radius to 2A/10 and repeat if we reach the maximum 

number of clusters, Cmax, without covering all the data. Figure 13 shows the results 

of this step. 

4. Repeat steps 2 and 3 until all the data points are covered. As shown in 

Figure 14, all data points are covered using three clusters with cluster radius 2A/10. 

2.      Fuzzy Clustering Techniques 

Conventional clustering is hard clustering whereas fuzzy clustering is soft clus- 

tering. In fuzzy clustering, each data point can be associated with more than one 

cluster with some degree of membership. The membership degrees are determined 

in a way to minimize or maximize a function. The concept of fuzzy clustering is 

illustrated in Figure 15. As shown in Figure 15, the features are extracted from the 

received data. The extracted features and known prototype features are fuzzified 

using membership functions. The outputs from the fuzzification are values between 
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Figure 14. Euclidean Clustering: Step 4 

0 and 1 and represent the grades of membership of all data points to all clusters. 

These fuzzy outputs are processed using fuzzy IF THEN rules. The defuzzification 

process converts the fuzzy outputs to non-fuzzy outputs or crisp data. The defuzzified 

outputs are analyzed and compared with each other or with thresholds to determine 

the actual clustering. The two main methods for defuzzification are presented in 

Appendix D. 

There are two types of clustering: in supervised clustering, the number of 

clusters is unknown; in unsupervised clustering, the number of clusters is known. In 

unsupervised clustering, the clustering procedures are repeated for all feasible number 

of clusters until a satisfactory number of clusters that minimize/maximize a pre- 

defined partition measure is found. The partition measures are chosen heuristically. 

The process involved in the determination of the optimum number of clusters is called 

fuzzy validity. There are many partition measures developed in the literature, such as 

partition exponent [Ref. 107], partition entropy [Ref. 168], partition difference [Ref. 
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166] and partition coefficient [Ref.   43].   For example, the partition coefficient is 

defined as 
c       2 

~~ "" (111.46) 
k=l   n 

where Ü G Mfc is a fuzzy c-partition of n data points, c is the number of clusters 

and ßik is the degree of membership between measurements i and k. The optimum 

number of clusters, copt, is the value that maximizes the partition coefficient among 

all possible solutions, i.e., choose the number of clusters subject to 

maxc{max^€n{F(Ü, c)}}, 

where Q,c is the set of all optimal solutions for a given c. 

(111.47) 

Recently, fuzzy clustering has been applied to data association and target 

identification. Wide et al. [Ref. 17] developed a fuzzy technique for classification 

of measurements in different known quality profiles. In their approach, the quality 

profiles and the sensor measurements are fuzzified using arbitrary (triangular) mem- 

bership functions. The resulting fuzzy measurements and fuzzy profiles are compared 
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to choose the most representative quality profile for each measurement. Hossam et 

al. [Ref.   11] developed a fuzzy approach for solving the data association problem 

in target tracking. Their approach selects the true target measurement from many 

received measurements for a single target. A fuzzy membership function is assigned 

to each attribute of the measurement vector. The resulting fuzzy measurements are 

then defuzzified such that the measurement with the maximum degree of membership 

is chosen as the true measurement. Smith [Ref. 14, 74, 91] developed a fuzzy logic 

association approach for measurement-to-track association in MSMT environment. 

He utilizes the fuzzy clustering algorithm to determine the grades of membership of 

all observations to a known number of target tracks by defining an array of cluster 

centers with elements 

=   Wvi-VjW (nL48) 

max(ai, Oj) 

where 
n 

Oft ,E^(^-^/EA (111.49) 
i=l 

,m 

** =     ft y (IIL5°) 
are the fuzzy standard deviation and fuzzy mean, respectively. Two clusters i and j 

are merged into one if their cluster centers Cy < A, where the threshold A is determined 

according to the distribution of the data. For example in case of Gaussian distributed 

observations, most of the data points fall within three standard deviations of the mean 

value; thus a suitable value of the threshold is A =3. 

Singh and Bailey [Ref. 58] developed a fuzzy logic approach for the data 

association of observations to tracks. Their approach can be applied to solve data 

association problems in MSMT tracking. The distance measure has not been used 

in the usual manner, but the distance measures are fuzzified for use by the fuzzy 

knowledge-base (IF THEN rules). Their approach is applied in case of one and two 

targets with two attributes, position and velocity. The position and velocity errors 

are fuzzified using triangular membership functions. Defuzzification using centroid 

method (see Appendix D), and fuzzy set decision are performed to obtain the actual 
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Figure 16. Example of Fuzzy Measurement-to-Track Association Approach 

association of observations to tracks. Figure 16 shows the basic steps involved in this 

approach. The major advantage of this approach is its ability to handle different 

types of information. Unfortunately, the extension of their approach to the case of 

more than three or four targets is computationally infeasible due to the large number 

of rules. 

Tummala et al. [Ref. 75, 76, 77,131] developed an algorithm to solve the prob- 

lem of track-to-track association using field recording multisensor multi-vessel data. 

In their algorithm, the differences between attributes of two tracks are fuzzified and 

compared to the fuzzified outputs of the sensor accuracy parameters (see Figure 17). 

The two tracks are declared to belong to the same vessel if all fuzzy attribute dif- 

ferences exceed the fuzzy sensor accuracy limits. The membership function for each 

attribute is chosen heuristically according to the nature of the corresponding system 

error. Their algorithm can easily be extended for any number of attributes. Their 

algorithm is tested using simulated and real data and is proved to be efficient. 

The general data association process, including gating techniques, association 

metric, and assignment strategy, has been described in this chapter. A survey of dif- 
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Figure 17. Example of Fuzzy Track-to-Track Association Approach 

ferent techniques of measurement-to-track association, track-to-track association, and 

track fusion including algorithmic and nonalgorithmic techniques has been provided. 

Fuzzy methods for multisensor data fusion are highlighted. The general structure of 

fuzzy clustering and its applications to measurement-to-track association and track- 

to-track association are described. 
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IV.        AN EFFICIENT NEAREST-NEIGHBOR 
FUZZY MEASUREMENT-TO-TRACK 

ASSOCIATION APPROACH 

A fuzzy rule approach to measurement-to-track association in multisensor- 

multitarget environment is fairly complex. Furthermore, a fuzzy approach provides 

an approximate solution, and the results depend on several factors, such as the number 

of input variables, the number of linguistic variables, the membership functions, and 

the accuracy of the rules. 

Singh and Bailey [Ref. 58] developed the first fuzzy logic approach to the data 

association problem, and their approach can be applied to solve data association prob- 

lems, in MSMT tracking. In their approach, the distance measure has not been used 

in the usual manner in the sense that the distance measures are fuzzified for use by 

the fuzzy knowledge-base (IF THEN rules). The major advantage of their approach 

is its ability to handle different types of information. Although Singh and Bailey [Ref. 

58] addressed the critical problem of constructing the optimal membership function 

for a given distribution of the data, the optimal membership functions are constructed 

using approximate methods [Ref. 56, 102, 103]. Unfortunately, the extension of their 

approach to the case of more than three or four targets is computationally infeasible 

due to the large number of rules. 

In this chapter, a nearest-neighbor fuzzy logic data association approach for 

multisensor-multitarget tracking systems is proposed, based on the fuzzy clustering 

means algorithm [Ref. 43, 44, 80]. The proposed approach is applied to a two and 

a four-dimensional multisensor-multitarget tracking system using Monte Carlo simu- 

lations. Fuzzy system performance evaluation is presented to demonstrate the effec- 

tiveness of the new approach. The computational complexity of this approach is also 

analyzed and compared to that of conventional fuzzy logic data association methods. 

It is shown that considerable improvement in terms of computational complexity and 

performance is achieved. 
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A.     PROBLEM FORMULATION 
A significant problem in MSMT tracking systems is measurement-to-track 

association [Ref. 1]- [Ref. 4], [Ref. 7]. A number of approaches have been proposed 

in the literature to solve this problem ranging from sub optimal, simple, approaches to 

complex, optimal, approaches [Ref. 10, 29, 92, 93, 95,109]. The computational cost in 

generating the optimal solutions to the data association problem is usually excessive 

when the number of targets and the number of measurements are large. Thus the 

optimal solutions are not computationally feasible for real-time surveillance systems. 

Therefore, suboptimal, but computationally feasible, solutions are developed. 

Fuzzy techniques are well suited to model decision making processes [Ref. 

62, 96, 128, 179]. Although fuzzy systems have several advantages including simplic- 

ity and ease in design when the number of rules is small, they are associated with a 

critical problem. As the system complexity increases, the number of rules increases 

considerably and it becomes difficult to determine the right set of rules and member- 

ship functions to describe the system behavior. As a consequence, the application of 

fuzzy approaches to solve the problem of measurement-to-track association in MSMT 

tracking systems is complicated in a dense target environment. As an example, if we 

use conventional fuzzy logic measurement-to-track association techniques [Ref. 58] 

to solve the problem of associating 6 measurements with 6 tracks using only two in- 

put variables (position and speed errors) and 5 linguistic variables (Very Low, Low, 

Medium, High, Very High), the required number of IF THEN rules is (5 x 6)2=900. 

Thus the extension of conventional fuzzy logic systems to the case of more than three 

or four targets increases the computational complexity. Furthermore, the solution of 

the conventional fuzzy logic approach to the data association problem yields an ap- 

proximate solution, and the accuracy depends on several factors such as the number 

of input variables, the number of linguistic variables, the choice of the membership 

function, and the accuracy of the fuzzy rules and statements. 

In this chapter, an efficient nearest-neighbor fuzzy logic measurement-to-track 

association approach for MSMT tracking systems is proposed.   The proposed ap- 
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proach is developed based on the fuzzy clustering means algorithm (FCM) [Ref. 

43, 80]. The main idea is to determine a partition matrix whose elements represent 

the degrees of membership of the data in the fuzzy clusters. This approach differs 

from many fuzzy logic data association algorithms [Ref. 11, 58, 97, 98, 99], which con- 

sist of four basic elements: 1) fuzzification of crisp data into fuzzy variables, 2) fuzzy 

knowledge base containing IF THEN rules and fuzzy statements, 3) fuzzy inference 

which emulates human decision making processes to generate output fuzzy variables, 

and 4) defuzzification of fuzzy variables into non-fuzzy variables (crisp data). The 

proposed approach performs data association based on the partition matrix of data 

(measurements) in fuzzy clusters (tracks). The complexity of the proposed approach 

increases linearly with the number of observations and it can easily be applied to a 

dense target environment. Also, its performance is satisfactory in case of large num- 

ber of observations and targets. Three examples are presented to demonstrate the 

simplicity and efficiency of the proposed data association approach in a multisensor- 

multitarget tracking system. 

The remainder of this chapter is organized as follows. The problem of con- 

structing the membership functions from statistical data is addressed in Section B. 

The fuzzy clustering means algorithm is introduced in Section C. The problem formu- 

lation and the proposed fuzzy logic data association approach are presented in Section 

D. Performance evaluation and results using Monte Carlo simulations are reported in 

Section E. A comparison with other fuzzy logic data association approaches based on 

the results described in [Ref. 58] is also presented in Section E. A discussion of the 

computational complexity is presented in Section F. 

B.     CONSTRUCTING FUZZY MEMBERSHIP FUNCTIONS 

In fuzzy system design, we start with a set of fuzzy rules, which in general are 

chosen heuristically based on their experience, and membership functions, which in 

many cases are chosen subjectively based on understanding the problem, and they 

use the developed system to tune these rules and membership functions.   Starting 
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with a good set of rules and membership functions followed by proper tuning is not 

an easy task and it can be very time consuming for a reasonably complex system. 

The determination of the membership function is the most important step in the 

fuzzy system design. Since the inputs of any tracking system are statistical data, 

the determination of the membership functions based on statistical data should be 

addressed [Ref. 58]. A criterion for constructing membership functions using the 

statistics of the data is proposed in [Ref. 56]. The criterion is obtained using infinite 

dimensional optimization theory. The result is shown in the following [Ref. 56]: 

Theorem: For a given probability density function of the data {p{x)), the optimal 

membership function ß(x) is given by  [Ref. 56] 

Xp(x)   if   Xp(x) < 1 

1 if  Xp(x) > 1, 
(IV.l) ß(x) = 

where A is determined from the solution of 

A / p2(r)) dV+ f p{rj) dr,-ce = 0, (IV.2) 

and ci is a confidence level of the statistical data. 

Constructing membership functions from statistical data requires an analytic 

expression for the statistical distribution of the data (pdf) and assumes stationarity of 

the statistical environment. Furthermore, the optimal membership function in fuzzy 

systems design is constructed by approximating a number of closely submembership 

functions. Singh and Bailey [Ref. 58] applied these results to approximate the op- 

timal membership function for a Gaussian distribution, which yields a trapezoidal 

membership function. In the proposed approach, the membership function is deter- 

mined from the data using the fuzzy clustering means algorithm. The method is easy 

to implement and reasonably robust as will be illustrated in the following section. 
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C.     FUZZY CLUSTERING MEANS ALGORITHM 

The most widely used clustering algorithm is the fuzzy clustering means (FCM) 

algorithm developed by J. Bezdek [Ref. 43, 44, 80]. This section introduces the FCM 

algorithm which will be used for measurements-to-tracks association (correlation). 

The goal of any fuzzy clustering algorithm is to partition the data into a number of 

clusters (groups) [Ref. 40, 45, 90, 106] producing a degree (grade) of membership 

for each data point in each cluster. Unlike conventional clustering, which involves a 

partitioning of objects into disjoint clusters, fuzzy clustering allows a data point x to 

have a partial degree of membership in more than one set [Ref. 14, 108, 111]. In this 

way, given a set of objects X, a fuzzy set A is defined as 

A = {(x,»A(x))\x€X}, (IV.3) 

where HA{X) G [0,1] is the degree of membership function of the data point x in the 

fuzzy set A. Given a number of data points, it is required to group (cluster) the 

data into clusters according to a given similarity measure. Let c be an integer which 

represents the number of clusters with 2 < c < n, where n is the number of data 

points. Define U a partition matrix of elements pLik (i = 1,2, ...,c, k = 1,2, ....,n) 

which represents the degree of membership of data point j in fuzzy cluster i, such 

that: 

tMk G [0,1], 1 < % < c, 1 < A; < n, (IV.4) 

0 < £ A4* < n Vi (W-6) 
k=i 

Given an integer m, define Jm as the sum of the squared errors weighted by the mth 

power of the corresponding degree of membership, i.e., 

Jm(V, v) = £ X>**r (dikf, (IV.7) 
k=l t=l 

where 

*fc = l|xfc-vi||, (rv.8) 
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and II II is an inner product induced norm, m is a real number G [l,oo) called the 

fuzzification constant (or weighting exponent), xfc is a data point, and Vj is the center 

of cluster i. The degrees of membership will be established by minimizing Jm(U,v). 

The goal of the fuzzy clustering algorithm is to determine the optimum degrees of 

membership /^ (Vi, k) and the optimum fuzzy cluster centers v* (Vi) such that the 

sum of the square errors Jm is minimum. The results of this minimization are given 

by (see [Ref. 43] and Appendix E for the derivation): 

IHk = : — V i, fc, (IV.9) 

v-%%^v<> (IV.10) 

where Equation IV.9 is valid for a fixed V (V = v1; v2, , vc), and Equation IV.10 

is valid for a fixed U. In multisensor-multitarget tracking systems, c is the number 

of targets, n is the total number of received measurements, x* is the s-dimensional 

measurement vector (k = 1,2, ....,n), and v,- is the s-dimensional predicted vector 

for target i (i = 1,2, ....,c). The fuzzy c-means clustering algorithm or the Picard 

algorithm is guaranteed to converge to a local minimum [Ref. 44, 104]. 

The fuzzification constant m plays an important role. It reduces the influence 

of the measurement noise when computing the degrees of membership (Equation IV.9) 

and the cluster centers (Equation IV.10). The weighting exponent m reduces the 

influence of a small Hik (for data that are faraway from the cluster centers) compared 

to a large yu^ (for data that are close to the cluster centers) [Ref. 83]. As m increases, 

its influence becomes stronger. For more details about the weighting exponent, see 

Windham [Ref. 107, 108]. 

D.     PROPOSED  FUZZY  LOGIC   DATA  ASSOCIATION 
APPROACH 

Suppose that n measurements are received at time index t (scan t).   The 

number of measurements (n) does not necessarily equal the number of targets (c). It is 

required to assign (associate) only one of the n measurements to each target such that 

56 



each measurement can have only one origin. In data association, two types of errors 

can occur: missed correlation and incorrect correlation. In the case of a dense target 

environment in the presence of noise and other interference, the data association 

problem is the most critical problem in tracking systems. Gating techniques cannot 

solve the problem of associating measurements with tracks when a measurement falls 

within the gates of multiple target tracks or when multiple measurements fall within 

the gates of a target track, in which case a different technique is required. Our goal is 

to associate each measurement x^ (k = 1,2,..., n) with one of c possible tracks given 

predicted values v; for each track i, i = 1,2, ....,c. The target's predicted values Vj 

can be estimated using optimal filtering techniques, such as least squares [Ref. 84], 

a-ß tracker [Ref. 124] and Kaiman filtering techniques [Ref. 7, 84, 85, 123]. The 

choice of a particular optimal filtering technique is not arbitrary but depends on the 

application and the assumed target state model. 

The proposed fuzzy logic data association approach consists of the following 

steps: 

1) Apply the FCM algorithm for a fixed V and find the partition matrix U, which 

represents the degrees of membership of all measurements to all tracks. The distance 

measures of Equation IV.8 are determined using the Euclidean norm as 

da = ^(xfc-vO'Cxfc-vO. (IV.ll) 

The association matrix U represents the assignment matrix between all observa- 

tions (measurements) and all entities (targets). Each element in the partition matrix 

ßik{i = 1,2, ...,c, k = 1,2, ...,n) represents an association measure between the pre- 

dicted value of track i and measurement k. 

2) Search for the maximum degree of membership mMkM (the closest measurement- 

to-track pair) and make the indicated assignment, i.e., associate measurement &M to 

track iu- 
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3) Remove the measurement-to-track pair identified above from the assignment ma- 

trix U and obtain the reduced matrix (this step is a virtual operation that aims to 

simplify the analysis and does not affect the values of the parameters Hik,\/i,j). 

4) Repeat rules 2 and 3 for each remaining track until c measurements are assigned 

to the c existing tracks. 

5) Obtain the final assignment of measurements to tracks. 

To explain the above approach with the help of an example, suppose that 

there are four targets under surveillance in a given scan t (c = 4) with predicted 

vectors Vi,v2,v3, and v4 and four measurements Xi,x2,x3, and X4 (n = 4). We 

assume that the correct correlation is to assign measurement i to track i, i = 1,2,3,4. 

Furthermore, assume that we apply the FCM algorithm for the given predicted 

vectors, using Equation IV.9, and the partition matrix is determined as: 

U = (IV.12) 

( .25   .55   .15   .21 ^ 

.10   .25   .05   .12 

.60   .05   .70   .27 

.05   .15   .10   .40 

where the rows represent tracks and the columns represent measurements. We have 

fciukM = A*33 = 0-70; thus measurement 3 is assigned to track 3. The reduced matrix 

is given by 

V / 

( .25   .55   .21 ^ 

Uredl — 

V 

(IV.13) 

/ 

.10   .25   .12 

.05   .15   .40 

In this case ßiMkM 
= M12 = 0.55; thus measurement 2 is assigned to track 1 and the 

reduced matrix will be 
' .10   .12 

.05   .40 
Ured2 — (IV.14) 
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For the reduced matrix we have ßiMkM = ßu = 0-40; thus measurement 4 is assigned 

to track 4. Finally the reduced matrix Uredz will have the value 0.1 (/^2i)j and mea- 

surement 1 is assigned to track 2. The final assignment of measurements to tracks is 

the following: measurement 1 is assigned to track 2 (incorrect correlation), measure- 

ment 2 is assigned to track 1 (incorrect correlation), measurement 3 is assigned to 

track 3 (correct correlation), and measurement 4 is assigned to track 4 (correct cor- 

relation). In this case we performed 2 correct correlations in a 4-target environment. 

Thus we performed 50% perfect data correlation in this example. 

E.     PERFORMANCE EVALUATION AND COMPARISON 

Singh and Bailey [Ref. 58] proposed the first fuzzy logic approach for the data 

association problem. They applied their approach to the case of a two-dimensional 

multisensor-multitarget tracking system. Their approach performed 80% with respect 

to perfect correlation for the case of two targets with position standard deviations 

(3.760, 3.571 Ft) and speed standard deviations (0.835, 0.975 Ft/s). 

Several examples are considered here to demonstrate the feasibility, simplicity, 

and efficiency of the proposed data association approach in a MS MT tracking system. 

In our simulation, the distance d^ (Equation IV.8) is calculated using the Euclidean 

norm, and the degree of membership ^ (Equation IV.9) is calculated assuming 

m = 2. It is worth noting that we don't use the FCM iterations to derive the 

partition matrix U. Instead, we determine U directly from Equation IV.9 without 

any iteration. This is because the predicted vectors Vj(z = 1,2,..., c) can be estimated 

using filtering techniques. Thus we fix V and apply Equation IV.8 and Equation IV.9 

directly to determine U. 

1.      Two-Dimensional Tracking System 

The first example considers the same example in [Ref. 58], in order to compare 

the results of the proposed approach under the same conditions. In this example, two 

targets are moving with constant acceleration, a = O.bFt/s2, and sampling inter- 

val, T = Is. For a given scan t, the target trajectories (Speeds and Positions) are 
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determined respectively as: 

Si(t)   =   S{(t-l) + aT Ft/s, (IV.15) 

Pt(t)   =   Pi(t - 1) + Si(t)T Ft, i = 1,2. (IV.16) 

At each scan, we have to associate a measurement to each target. The initial 

position and speed for target 1 are 9 Ft and 5 Ft/s respectively, and 100 Ft and 4 

Ft/s for target 2. The measurement noise is assumed to be Gaussian with standard 

deviations 3.76 and 3.571 Ft for position and 0.835 and 0.975 Ft/s for speed. The true 

and the actual target positions and speeds are fuzzified using the FCM algorithm. 

The simulation was run for ten seconds (ten measurements), and the final assignments 

of measurements to tracks are performed using the steps mentioned in Section D. 

The true target trajectories as well as the noisy measurements are shown in 

Figure 18. The fuzzification outputs are shown in Figure 19. The fuzzy output Rij 

represents the degree of membership of measurement j to be originated from target 

i. The corresponding binary decisions are shown in Figure 20. The combined binary 

correlation results are shown in Figure 21. Figure 21 shows that the binary decisions 

for R\i and R22 are ones, and zeros for R\2 and #21 (cross correlation). Thus the 

proposed approach correctly associates measurements to targets for all measurements 

and hence it achieves 100% perfect correlation (since all the cross correlations are 

zeros). The needed computations using the proposed approach are four elements 

and two comparisons. For the same example and using the method of [Ref. 58] 

the required computations are 100 IF THEN rules, defuzzification of 4 correlation 

tables, and 4 comparisons with a threshold. Furthermore, the approach of [Ref. 58] 

achieves only 80% perfect correlation in contrast to 100% perfect correlation using the 

proposed approach. The computational complexity is analyzed in details in Section 

F. 

Example 2 considers the case of six targets. The results of this example are 

taken over 10,000 Monte Carlo simulations. The initial positions and speeds of the 

targets are [(9,5), (100,4), (30,7), (65,3.5), (45,2), (75,2)]. The standard deviations 
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Figure 18. Actual and Measured Target Trajectories (Two Targets) 

of positions are 3.65, 3.70, 3.75, 3.80, 3.90, and 4.0 Ft and that of speeds are 0.85, 

0.9, 1, 1.1, 1.15, and 1.2 Ft/s. The true positions and speeds are the predicted 

values. Figure 22 depicts the true target trajectories. Figure 23 depicts the true 

target trajectories along with their sampled positions. All the position values in the 

figures are given in feet. The correlation results in terms of the degrees of membership 

are shown in Figures 24 and 25. The Y"-axis represents the degree of fuzzy correlation 

variables (R{i,i) = pa, i = 1,2,..., 6). The corresponding binary correlation values 

(hard data association) are shown in Figures 26 and 27. Figures 26 and 27 show 

that the proposed approach performs 100% (with respect to perfect correlation) for 

target 1, 100% for target 2, 100% for target 3, 90% for target 4, 90% for target 5, and 

100% for target 6. Thus, on average, the proposed approach performs 96.67% with 

respect to perfect correlation. It performs 95.3% with respect to perfect correlation 

over 10,000 Monte Carlo simulations. 

The fuzzy logic approach presented in [Ref. 58] performs 80% with respect to 

perfect correlation for two targets with approximately the same position and speed 
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Figure 27. Hard Data Association, R(i, i), i = 4,5,6 

uncertainties. To extend [Ref. 58] to the case of 6 targets; we have to (1) define 

900 IF THEN rules that represent the fuzzy knowledge base, (2) use the centroid 

method for defuzzification of 36 correlation outputs, and (3) compare 36 correlation 

outputs with a threshold to obtain the hard data association outputs. The proposed 

approach only requires computation of a 6 x 6 partition matrix and thus reduces the 

computational complexity. 

We extend example 2 to the case of eight crossing targets as shown in Fig- 

ure 28. The initial conditions (Position and Speed) of the targets are [(9,5), (100,4), 

(30,7), (65,3.5), (45,2), (75,2), (20,5.5), (90,3) Ft, Ft/sec]. The positional standard 

deviations are 3.65, 3.70, 3.80, 3.90, 4.0, 4.10, 4.20, and 4.30 Ft. The standard devi- 

ations of speeds are 0.85, 0.90, 0.92, 0.97, 1.10, 1.20, 1.30, and 1.40 Ft/s. The true 

target trajectories as well as the sampled positions are shown in Figure 29. Due to 

the similarities of the results, only the percentage of perfect correlation is presented 

here. It is found that the proposed approach performs 87.87% with respect to perfect 

correlation over 10,000 Monte Carlo simulations. 
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Figure 28. Actual Target Trajectories (Eight Targets) 

It is worth noting that to extend [Ref. 58] to the case of eight targets, the 

number of IF THEN rules increases from 900 to 1600, the number of linguistic tables 

increases from 36 to 64, and the number of comparisons with a threshold increases 

from 36 to 64. Our approach deals only with an 8 x 8 partition matrix instead of 

6x6 partition matrix thereby reducing the computational complexity in a dense tar- 

get environment. The above results enable us to conclude that this approach is much 

more efficient than the other existing fuzzy logic data association approaches. 

2.      Four-Dimensional Tracking System 

We consider a real example of moving targets in the x and y positions. The 

example considers the case of four crossing targets with measurements in x and y 

positions having noise standard deviation a. The target's motion model is assumed 

to be determined as: 

x(* + l) = Fx(t), (IV.17) 
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Figure 29. Actual and Measured Target Trajectories (Eight Targets) 

where the state transition matrix 

( 1 Ts 0 0 ^ 

0100 

00 1TS 

000 1 

(IV. 18) 

and T$ is the sampling interval.  The 4x1 state vector x(i) contains the x and y 

target positions and velocities, i.e., 

( x(t)   ^ 

vx(t) 

y(t) 
x(t) = 

Vy(t)     J 

The measurements are the x and y target positions given by 

y(t)=H(*)x(i)+w(t), 

(IV. 19) 

(IV. 20) 
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where 

( 1 000   , 
H = . (IV.21) 

The noise sequence w(t) is uncorrelated and Gaussian with zero mean and covariance 

matrix 

Vox 

Ct = Cov{w(t)) = 
'   0 a2 

(IV.22) 

where a2 is the variance of the measurement error in both x and y positions for all 

targets. In this example, we assume that x and y positions (measurements) are taken 

every 0.1 second and we process 150 samples. The cluster centers {VJ} are determined 

as the predicted target positions using the standard Kaiman filter, which is usually 

implemented in practice. The true target trajectories along with the mean sampled 

positions over 1000 Monte Carlo simulations are depicted in Figures 30 and 31 for low 

(a = 5 Ft) and high (a = 150 Ft) noise levels, respectively. The correlation results in 

terms of the percentage of perfect correlation for different values of the noise standard 

deviation o are shown in Figure 32 averaged over 1000 Monte Carlo simulations. The 

results indicate that the proposed approach achieves reasonable performance even in 

the presence of high level of measurement noise. 

F.      COMPUTATIONAL COMPLEXITY ANALYSIS 

In this research, we define the computational complexity measure in terms of 

the number of rules used for denazification. In conventional fuzzy logic techniques, 

membership functions are represented by a number of linguistic variables £ (such as 

"small," "medium,", "large,".... etc.) These membership functions map the crisp data 

into £ fuzzy sets which define £ linguistic values. We assume that each measurement 

has dimension s, which represents the number of kinematic data and attributes, 

and the number of targets is equal to the number of measurements (c = n) for 

simplicity.   The fuzzification of s input variables, each represented by £ linguistic 
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variables, requires NR number of IF THEN rules, where [Ref. 58] 

NR = (£c)s. (IV. 23) 

The outputs from the fuzzification represent the correlation between all measure- 

ments and all tracks and at each scan, we obtain n x c correlation outputs. Defuzzi- 

fication is then performed to transform the fuzzy variables into non-fuzzy variables 

(binary-decision/hard-data association). This can be done by comparing the corre- 

lation outputs with a threshold. Since the computational cost for defuzzification is 

small (n x c comparisons) when compared to that of fuzzification ((£ x c)s rules), 

the computational cost for defuzzification is not taken into consideration. Thus the 

computation complexity using conventional fuzzy logic approaches is determined ac- 

cording to Equation IV. 23. 

In the proposed approach, we compute ßik, i = 1,2,..., c, k = 1,2,..., n, using 

a number of vector inner product operations (Euclidean norm). Thus the required 

computation is to construct a partition matrix of dimension ex n. The association 
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of the measurements to the tracks using the proposed approach is based only on the 

partition matrix by choosing the corresponding assignments of the maximum degrees 

of membership as described in Section D. 

Tables IV - VII compare the required computations for different values of the 

parameters c, s, and t. In each table we fix two parameters and use the third parame- 

ter as a variable. In all cases, the computational complexity using conventional fuzzy 

logic approaches is unfeasible. The proposed approach requires fewer computations 

and is feasible in all cases. As shown in Tables V - VII, adding a target (in case of 

conventional fuzzy logic systems), for a fixed number of linguistic and input variables, 

increases the number of rules from 27,000 to 42,857 to 64,000. Adding a linguistic 

variable, for a fixed number of targets and input variables, increases the number of 

rules from 27,000 to 46,656 to 74,088. Adding an input variable, for a fixed number of 

targets and linguistic variables, increases the number of rules from 27,000 to 810,000 

to 24,300,000, which is the worst case. Based on the above observations, we remark 

that the proposed approach requires fewer computations compared to the existing 

fuzzy logic data association approaches. 
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Table IV. Comparison of the Computational Complexity, c = 2,.., 12, s = 2,1 = 5 

Fixed 
Parameters 

Variable 
Parameter 

Number of Rules 
Using Conventional Fuzzy 

Logic Systems 
(IF THEN Rules) 

Required Computations 
Using The Proposed 

Approach (Dimension of 
Partition Matrix ) 

s=2 c = 2 100 2x2 
c = 3 225 3x3 
c = 4 400 4x4 
c = 5 625 5x5 
c = 6 900 6x6 
c = 7 1225 7x7 
c = 8 1600 8x8 
c = 9 2025 9x9 

c = 10 2500 10x10 
c = 11 3025 11x11 
c = 12 3600 12 x 12 

Table V. Comparison of the Computational Complexity, c = 6,7,8, s = 3,1 = 5 

Fixed 
Parameters 

Variable 
Parameter 

Number of Rules 
Using Conventional Fuzzy 

Logic Systems 
{IF THEN Rules) 

Required Computations 
Using The Proposed 

Approach (Dimension of 
Partition Matrix ) 

s=3 
£ = 5 

c = 6 27,000 6x6 
c = 7 42,875 7x7 
c = 8 64,000 8x8 
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Table VI. Comparison of the Computational Complexity, c = 6, s = 3,1 = 5,6,7 

Fixed 
Parameters 

Variable 
Parameter 

Number of Rules 
Using Conventional Fuzzy 

Logic Systems 
{IF THEN Rules) 

Required Computations 
Using The Proposed 

Approach (Dimension of 
Partition Matrix ) 

c=6 
s=3 

e = 5 27,000 6x6 
£ = Q 46,656 7x7 
1=1 74,088 8x8 

Table VII. Comparison of the Computational Complexity, c = 6, s = 3,4,5, t = 5 

Fixed 
Parameters 

Variable 
Parameter 

Number of Rules 
Using Conventional Fuzzy 

Logic Systems 
(IF THEN Rules) 

Required Computations 
Using The Proposed 

Approach (Dimension of 
Partition Matrix ) 

c=6 
£ = 5 

s = 3 27,000 6x6 
s = 4 810,000 6x6 
s = 5 24,300,000 6x6 

The problem of data association in multisensor multitarget tracking systems 

has been considered in this chapter. A nearest-neighbor fuzzy measurement-to-track 

association approach has been proposed based on the fuzzy clustering means algo- 

rithm. The association between measurements and tracks is determined using optimal 

membership functions derived from the fuzzy clustering means algorithm for fixed pre- 

dicted vectors. The final assignment of measurements to tracks is obtained from the 

partition matrix determined based on the measurements and the tracks. Monte Carlo 

simulations demonstrated the effectiveness of the proposed approach. Performance 

is compared to perfect data association and other fuzzy association approaches. The 

results indicate that the proposed approach performs better than other methods. The 

proposed approach requires fewer computations than other fuzzy techniques. 
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V.        AN ALL-NEIGHBOR FUZZY 
MEASUREMENT-TO-TRACK ASSOCIATION 

APPROACH 

This chapter proposes a new all-neighbor fuzzy logic measurement-to-track as- 

sociation approach in distributed MSMT tracking systems. The proposed approach 

is developed based on fuzzy clustering means algorithm. The fuzzy clustering means 

algorithm determines the grade of membership of each received data point in each 

fuzzy cluster (see Chapter IV, Section C). Unlike other fuzzy logic data association 

algorithms, which assign only one observation to each track according to some as- 

sociation measure, the proposed all-neighbor fuzzy logic data association approach 

incorporates all observations within the gate of the predicted target state to update 

the state estimate using a membership weighted sum of innovations. To demonstrate 

the effectiveness of the proposed approach to perform data association in multisensor- 

multitarget environment, examples of a four-dimensional tracking system are consid- 

ered. The performance is evaluated using Monte Carlo simulations and also compared 

to that of the nearest-neighbor standard filter and perfect data association. The re- 

sults indicate that the proposed approach has better performance over a comparable 

nearest-neighbor standard filter and reasonable performance with respect to perfect 

data association. 

A.     POSSIBILITY AND PROBABILITY DISTRIBUTIONS 

Uncertainty may be represented in several forms. Probability and possibility 

theories are two different formal systems employed for representing uncertainty. Bar- 

Shalom and Fortman [Ref. 7], developed the probabilistic data association filter which 

updates the predicted target state using a probability weighted sum of innovations 

(probabilistic score). A new approach proposed here associates measurements to 

track using a possibility score. This section highlights probability and possibility as 

different ways for representing uncertainty. 
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Zadeh [Ref. 41, 111] notes that probability is concerned with a measure of 

information while possibility is concerned with the meaning of information rather 

than its measure. A detailed discussion of both theories can be found in [Ref. 41, 42, 

46, 63, 82, 83, 167, 176]. 

A fuzzy variable is associated with a possibility distribution in the same man- 

ner as a random variable is associated with a probability distribution [Ref. 41]. The 

theory of possibility is related to the theory of fuzzy sets by defining a possibility dis- 

tribution on the values that may be assigned to a variable. Let X be a set of objects, 

and v is a variable on X. The statement uv takes a value x" where x is an element 

in X, can be described by a membership function HA{X), which describes the degree 

to which the variable v takes a value x. The expression of a possibility distribution 

can be viewed as a membership function of the fuzzy set and can be handled by fuzzy 

set rules. The possibility distribution ir over X describing the possibility that a; is a 

value of v is defined to be numerically equal to the membership function /x(x) [Ref. 

176] 

7TX(S) = /*(*). (V.l) 

Thus possibility distribution and membership function both have the same mathe- 

matical expression. 

The following discussion based on an example by Zadeh [Ref. 41] and Zimmer- 

mann [Ref. 83] clearly illustrates the difference between probability and possibility. 

Consider the statement "Monterey has x foggy days in a week." A possibility distri- 

bution 7Tx(x) may be associated with X by interpreting its values as the degrees of 

possibility with which X number of days can be foggy in Monterey. The important 

aspect of possibility distribution is that it is not statistical in nature. A probabil- 

ity distribution fx{%) may be associated with X by interpreting its values as the 

probabilities that Monterey can have x foggy days. The probability values can be de- 

termined in a statistical manner by observing meteorological data for several seasons. 

Hypothetical values of nx(x) and fx(x) might be as shown in Table VIII. A high/low 

degree of possibility does not imply a high/low degree of probability. However, if an 
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Table VIII. An Example of Possibility and Probability Distributions 

V 1 2 3 4 5 6 7 

-KX{x) 1 1 1 1 0.8 0.6 0.4 

fx(x) 0.1 0.8 0.1 0 0 0 0 

event is impossible, it is also improbable. Thus, in a heuristic way, possibility is an 

upper bound for probability. 

1.      Possibility/Probability Consistency Principle 

The probability/possibility consistency principle is a heuristic observation that 

a lessening of the possibility of an event tends to lessen its probability but not vice 

versa. Zadeh [Ref. 41] establishes the possibility/probability consistence principle as 

the degree of consistency between the probability distribution fx (x) and the possi- 

bility distribution TTX(X). 

Consider that X = {xi,x2,--,xn} with corresponding possibilities nx{x) = 

(7Ti,7r2, ,7T„) and probabilities fx{x) = (pi,P2, ,Pn)- The degree of consistency 

between the probability distribution fx(x) and the possibility distribution nx{x) is 

expressed by a consistency measure [Ref. 41] 

C{-KX, fx) = TTiPi + 7T2P2 + + KnPn = J2 ^xfx, 
x£X 

(V.2) 

where C(TTX, fx) is in the range [0,1]. 

Suppose that X = {xi,X2,X3,x4,x5}, fx(x) is a probability distribution and 

7Ti(:r), -K2(X) and 7r3(a;) are three possibility distributions with values and correspond- 

ing consistency degrees as shown in Table IX. The degrees of consistency in Table IX 

show that there is no contradiction between 7Ti(rc) and fx{x). In this case we obtain 

x3, x4 and cc5 with probability equal to |, and x3, rc4 and x5 are possible results. On 
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Table IX. A Probability Distribution and Three Possibility Distributions 

Xi X2 xz X4 £5 CfaJx) 

Pfa) 0 0 l 
3 

1 
3 

1 
3 

Tl(z») 0 0 1 1 1 1 

W2(Xi) 1 1 0 0 0 0 

flsfci) 0 0 0.5 0.5 0.5 0.5 

the other hand, 7r2(a;) and fx{x) are inconsistent while C(-K3(x),fx(x)) indicates a 

degree of consistency 0.5. 

2.      Uncertainty and Fuzziness 

The probability theory deals with randomness which describes the uncertainty 

with regard to the occurrence of an object. The fuzzy set theory deals with fuzziness 

which describes ambiguity and imprecision of the meaning of an object. Random- 

ness determines the probability of occurrence of an event (it may or may not occur). 

Fuzziness determines the degree of membership that an event occurs (not whether it 

occurs) [Ref. 82]. Both randomness and fuzziness describe uncertainty numerically in 

the unit interval [0,1]. They combine sets associatively, distributively, and commuta- 

tively. The main dissimilarity between them is how both systems treat a set A and its 

complement Ac. In probability theory: Af)Ac = 0, AuAc = X, P(Af)Ac) = P(0) = 

0, and P(A U Ac) = P(X) = 1, where 0 is null event and X is a set of objects. In 

fuzzy set theory: An Ac ^ 0 , AU Ac ^ X , AUB = max(A,B), AnB = min{A, B), 

and Ä = 1 - A . 

80 



3.      Fuzzy Subsethood Theorem 

Kosko [Ref. 82] addressed the following important question: does the degree 

of membership to which an element belongs to a fuzzy set equal the probability that 

the same element belongs to the same set. Toward this direction, Kosko developed 

the fuzzy Subsethood theorem, which implies the Bayes theorem or, equivalently, 

probabilities represent a special case of fuzziness. Buede [Ref. 162] compared fuzzy 

set and Bayes approaches for target identification in a data fusion system. Buede 

showed that the results of fuzzy set theorem are inferior to those of probability. This 

result is expected since the probability approach utilizes a priori information about 

the underlying process. Buede [Ref. 162] also showed that sometimes the results of 

both approaches are similar and sometimes they are dissimilar. This depends on the 

available data and the application. 

The subsethood between two sets A and B, denoted by S(A, B), represents 

the degree to which set A belongs to set B and is given by [Ref. 82] 

Q(A  TtX     M(AnB) (v*\ 
S{AB)-    M(A)    ' (V"3) 

where 

M(A) = 5>A(ar«) (V.4) 
i 

is called the cardinality of A and /^(z;) is the degree of membership of an element 

Xi in set A. Since S(A,B) has the same form as the conditional probability, the 

subsethood theorem implies Bayes theorem [Ref. 82]. 

B.     PROPOSED ALL-NEIGHBOR FUZZY ASSOCIATION 
APPROACH 

In this section, we propose a new all-neighbor fuzzy logic association approach. 

The proposed approach associates measurements to tracks using a possibility score. 

The possibility score is determined as a degree of membership using fuzzy clustering 

means algorithm. Nearest-neighbor fuzzy data association algorithms reported in the 

literature [Ref.   11, 14, 58] consist of four steps:  1) fuzzification of crisp data into 
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fuzzy variables, 2) formation of fuzzy knowledge base containing IF-THEN rules and 

fuzzy statements, 3) development of a fuzzy inference mechanism simulating human 

decision making process to generate output fuzzy variables, and 4) defuzzification of 

fuzzy variables into crisp data. The proposed approach performs all-neighbor data 

association based on the similarity measures of data (measurements) in fuzzy clusters 

(targets). 

Suppose that there are c targets under surveillance and Nv number of valid 

observations {yi(k),y2(k), yn(&)}within the target gates received at scan k. The 

number of validated observations Nv is not necessarily equal to the number of targets 

(clusters). The motion model of each target i is assumed to be 

Xi(k + 1) = FiXi{k) + gi(k) ,i = l,2,.., c, (V.5) 

where Xj(&) is an n dimensional state vector at time instant k, Fj is an n x n state 

transition matrix, and gi(k) is a noise input sequence (plant noise). The measurement 

equation is modeled as 

yi(k) = Hi(k)xi(k)+wi(k),i = l,2,....,c, (V.6) 

where y^k) is an M dimensional measurement vector, Hj(&) is an M x n measure- 

ment matrix, and Wi(k) is a measurement noise vector. The plant noise and the 

measurement noise sequences are assumed to be uncorrelated, zero mean Gaussian 

sequences with the corresponding covariance matrices 

Q«(*) = Cov(gi(k)), (V.7) 

C,-(*) = Cao(wi(k)). (V.8) 

The weighted least squares prediction of the state vector and the corresponding 

covariance matrix for each target are obtained for the next measurement time as 

follows [Ref. 3, 7] 
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±i{k + l\k)=Fi{k)±i(k\k), (V.9) 

P,-(* + 1 | k) = Fi(k)Pi(k | *)FJ(*) + Qi(k). (V.10) 

Using the results of the fuzzy clustering means algorithm (Chapter IV, Section 

C), a cost function Jm(U, y) is denned as the sum of the squared errors weighted by 

the mth power of the corresponding degree of membership, i.e., 

Jm(v,y)=f:i:(ßij)
m(dij)

2, (v.ii) 
3=1 »=1 

(da)2 = || ys - y, ||2, (V.12) 

where || || is an inner product induced norm and m is fuzzification constant in the 

range G [l,oo). Equation V.12 represents the distance between measurement j and 

target i. For a set of predicted measurements (yi(& + 1 | k),y2(k + 1 | k), yc(^ + 

1 | k)), the degrees of membership of all observations to all tracks, {/%•}, can be 

determined such that the sum of the square errors Jm(U, y) is minimum. The results 

are obtained using the fuzzy clustering means algorithm [Ref. 43, 44] (see Chapter 

IV, Section C) as: 

IHj = 3 r- V i, j, (V. 13) 

where the distance of Equation V.12 is obtained as the Euclidean norm 

and ßij represents the degree of possibility that an observation j is originated from 

target i. The membership values are normalized such that, for a given track i, the 

contributions of all observations equal unity, i.e., 

Nv 

!>,• = 1, i = l,2,...,c. (V.15) 
3=1 
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The state estimate of target i is updated based on the new measurement 

according to [Ref. 3, 7] 

Nv 

Xi(k + l\k + l) = Xi(fc + 1 I fe) + Wi(k +1) £tojfijik + 1), i = 1,.-.,c,    (V.16) 
i=i 

where yy(fc + 1) *s tne innovation due to observation j and target i at time instant 

(k + 1), given by 

Yij(k + 1) = yj-(fe + 1) - yt(k + 1), (V.17) 

and Wi(k + 1) is the Kaiman filter gain of target i. The state update equation can 

be rewritten as: 

xt(k + 1 | k + 1) = x(* + 1 | k) + Wi{k + 1)y^fe + 1), (V.18) 

where 

y«(* + i) = E^y«(* + i) (v.i9) 

is the sum of all weighted innovations. The updated covariance matrix can be obtained 

as [Ref. 7] (see Appendix E for the derivation): 

Pi{k + 1 \ k + 1) = Pn(k + 1 \ k + 1) + Pi2{K + 1), (V.20) 

where 

Pn(Jfe + 1 | Jfe + 1) = [I - Wi(k + l)Hi{k + l)]Pi{k + 1 | k) (V.21) 

is the standard covariance update equation, and 

P^ + i^w^ + iHE,/^ 
j=i 

(V.22) 

If there is no observation within the gate of target i, the updated state estimate 

and the covariance matrix will be simply the previous ones, i.e., 

Xi(* + l|A: + l) = Xi(A: + l|fc), (V.23) 

Pi(Jfc + l|Ä; + l) = Pi(Ä; + l|fe). (V.24) 
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Noting that Equation V.12 is valid for any inner-product-induced norm metric, 

Equation V.ll can be written as 

Jm(U,y)G) = 5:S(//ii)
m(^)|5 

where square of the weighted distance is given by 

(dij)l = (yj-yi)'G{yj-yi), 

(V.25) 

(V.26) 

and G is any positive-definite matrix [Ref. 43]. It is convenient to choose G to be 

related to the covariance matrix of the measurement error such that the larger the 

measurement error the larger is the distance (the smaller is the degree of membership) 

and vice versa. Based on this observation, we choose G = C-1, where C is the 

measurement noise covariance matrix defined by Equation V.8. 

C.     SIMULATION RESULTS 

Two examples are presented to study the performance of the proposed all- 

neighbor fuzzy logic data association algorithm in MSMT tracking systems. 

1.      Simulation Example 1:   Moving Targets Without 
Acceleration 

The first example considers the case of two crossing targets without accelera- 

tion. The target's motion model is assumed to be : 

x(Hl) = Fx(t), (V.27) 

where the state transition matrix 

F 

1 Ts 0 0   \ 

0 1 0 0 

0 0 1 Z 

0 0 0 1   ) 

(V.28) 
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and Ts is the sampling interval. The state vector x(k) contains the x and y target 

positions and velocities: 

f x(k)   ^ 

vx(k) 

y(k) 

\ Vy{h) ) 

The measurements are the x and y target positions, i.e., 

x(*) = 

y(k) = H(k)x{k) + w{k), 

(V.29) 

(V.30) 

where the measurement matrix 

H = 
^ 1   0   0   0 ^ 

0   0   10 I 
(V.31) 

Measurements are affected by noise, which is modeled as zero mean Gaussian with 

standard deviation a. The noise sequence w(k) has covariance matrix 

\ 
C = Cow (w(Jfe)) = 

al   0 

0     -I) 
(V.32) 

where a^. and a^ are the variances of the measurement errors in x and y positions, 

respectively. The overall measurement error is computed as 

e = y/(xtrue -x)2 + (ytrue -y)2. (V.33) 

In this example, we assume that x and y positions are measured every 0.1 second, 

with measurement uncertainities axi=ayi= 150 meters and <JX2=&y2= 200 meters. 

The initial target states (actual trajectories) are assumed to be 

f 6000 m \ 

158.9 m/sec 

6000 m 

L 3.3 m/sec     j 

xti(0) = (V.34) 
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Xß(0) = (V.35) 

( 6000 m ^ 

158.9 m/sec 

6050 m 

, —3.3 m/sec   < 

In each scan, we receive two measurements from two targets. The proposed all- 

neighbor approach updates the state estimate of each target track using the received 

measurements. 

In the nearest-neighbor standard filter [Ref. 3, 7], the nearest observation 

that maximizes the likelihood function of the residual error associated with the selec- 

tion is used to update the target's track. Maximization of the likelihood function is 

equivalent to minimization of the following distance [Ref. 3]: 

d2 = dl + £n\Si\, (V.36) 

where the weighted sum of innovation 

dl = [yj-yi\'S-1[yj-yi], (V.37) 

and the residual covariance matrix 

Si = HPH' + C . (V.38) 

In this case, each target i is updated using the measurement that has the minimum 

distance d. ■ty 

We process 150 measurements (15 seconds of data) over a 50-run Monte Carlo 

simulation. The actual target trajectories are simulated according to Equation V.27 

given the initial target states from Equations V.34 and V.35. The measured target 

trajectories are obtained by adding noise to the true target trajectories with the 

following covariance structure (Equation V.32): 

Ci = Cov(wi(k)) = 
602   0 

0      602 
(V.39) 
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902   0 
C2 = Cov(w2(k)) = I I . (V.40) 

0      902 

The measured target trajectories (dashed lines) along with the actual target 

trajectories (solid lines) are shown in Figure 33. The estimated target tracks (solid 

curves) using the proposed approach (Equation V.18) along with the actual target 

trajectories (dashed curves) are shown in Figure 34. The overall measurement error 

for each target, evaluated using Equation V.33, is shown in Figure 35. The esti- 

mated target tracks and the overall measurement errors are evaluated based on a 

50-run Monte Carlo simulation. Figures 36- 39 show the results of tracking using 

the nearest-neighbor standard filter and perfect data association. The perfect data 

association represents the correct association between all received measurements and 

all targets and determines the lower bound of the estimation error [Ref. 3, 7]. As 

shown in Figures 34 and 36, the proposed fuzzy approach correctly tracks both tar- 

gets while the nearest-neighbor standard filter loses both targets due to the high rate 

of incorrect association (since the two targets are too close to each other). As shown 

in Figures 35, 37, and 39, the steady measurement error of the proposed approach 

is 13.7 as opposed to 29.5 and 12.9 in case of nearest-neighbor standard filter and 

perfect data association, respectively. 

The results of this example show that the proposed approach successfully 

tracks both targets and has better performance than a comparable nearest-neighbor 

standard filter and a reasonable performance with respect to perfect data association. 

2.      Simulation Example 2: Maneuvering Targets 

Here we consider three maneuvering targets. The target motion model is 

assumed to be 

x(Hl) = Fx(ft) + g(k), (V.41) 
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Figure 33. Actual and Mean Measured Target Trajectories 
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Figure 34. Actual and Mean Estimated Tracks: Fuzzy Approach 
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Figure 35. Mean Measurement Errors: Fuzzy Approach 
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Figure 36. Actual and Mean Estimated Tracks: Nearest-Neighbor Standard Filter 
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Figure 37. Mean Measurement Errors: Nearest-Neighbor Standard Filter 
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Figure 38. Actual and Mean Estimated Tracks: Perfect Data Association 
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Figure 39. Mean Measurement Errors: Perfect Data Association 

where the sequence g(k) is the plant noise with covariance Q given by Equation [Ref. 

84] 

/ it n 0   o "\ 
3        2       u        u 

Q = q2 
22   T    o 

2      "'s     u 

0        0 
J-3        J*2 

0     0 

(V.42) 

?2 is a scalar given by [Ref. 84, 85, 186] 

q=a2Ts, (V.43) 

a is the acceleration, and Ts is the sampling interval. 

The initial state estimates (x0) are obtained from the first two measurements 

by a method described by Bar-Shalom [Ref. 84]. The initial state estimate from 

two position measurements, y(l) and y(2), in Cartesian coordinates is given by [Ref. 
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84, 186] 

Xo = 

0     0     0 

A ° f ° 
0     10     0 

0  A °   f / 

y(2) \ 

I y(!) y 
(V.44) 

with corresponding initial covariance matrix 

/ 

Pn = 

1     0    0 

* o 
0 

o  \ 
0 

0 

A o 
-l 
27  / 

/ 

Ts 

0     0     0 

0   -1 

1 

\ 

* ° 
0     0 

c2 0 
0     C1 + H(F)-1Q((F)-1)'H' )      0 

(V.45) 

The target motion is initially in a straight line with constant velocity. The 

measurements are taken every 0.1 second. After generating 250 measurements (25 

seconds), the targets institute a 10 g right turn (g = 9.8 m2/sec) and hold the turn 

for 100 measurements and then return to straight line motion for an additional 250 

measurements (producing 600 measurements in all). The initial target states (actual 

trajectories) are assumed to be 

xn(0) = 

6000 m 

100 ml sec 

8000 m 

^ —170 m/sec j 

(V.46) 

xt2(0) = 

6000 m 

100 m/sec 

7950 m 

, —170 m/sec , 

(V.47) 
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xi3(0) = (V.48) 

( 6000 m ^ 

100 ml sec 

7900 m 

\ -170 ml sec j 

The measured target trajectories are the true target trajectories plus noise sequences 

given by the noise structure of Equation V.32 assuming that 

Cx = Cou(w1(A:)) 

C2 = Cov(w2(k)) = 

(V.49) 

(V.50) 

/ 
C3 = Cov(w3(k)) = (V.51) 

V 

902 0 

0 902 

The performance is evaluated based on a 100-run Monte Carlo simulation. 

The results of tracking are shown in Figures 40- 43. The actual and measured target 

trajectories are shown in Figure 40 and Figure 41, respectively . The estimated 

target tracks (solid curves) using the proposed approach (Equation V.18) along with 

the actual target trajectories (dashed curves) for target 1 are shown in Figure 42. 

The overall measurement errors for all targets are evaluated using Equation V.33 and 

are shown in Figure 43 for target 1. Similar results are obtained for targets 2 and 3. 

Table X lists the measurement errors of the proposed fuzzy approach, the nearest- 

neighbor standard filter, and perfect data association for different values of noise 

uncertainties (i.e., axi = ayi = a, i = 1,2,3). The results indicate the ability of the 

proposed algorithm to track all targets correctly. The performance of the proposed 

approach is superior to that of the nearest-neighbor standard filter in all cases. Also, 

its performance is reasonable with respect to perfect data association, which gives us 

the lower bound of the error [Ref. 3, 7].  The proposed fuzzy logic approach is not 
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Figure 40. Actual Target Trajectories 

optimal, but our objective here is to show the feasibility of using the fuzzy approach 

in all-neighbor data association techniques. 

The problem of all-neighbor data association in multisensor-multitarget track- 

ing systems has been considered in this chapter. A new all-neighbor fuzzy logic data 

association approach has been proposed. This is the first all-neighbor fuzzy data 

association approach developed for multisensor-multitarget tracking systems. The 

proposed approach incorporates all the observations within the gate of the predicted 

target state to update the state estimate using a membership-weighted sum of inno- 

vations. Performance has been evaluated by using Monte Carlo simulations for the 

cases of two crossing targets moving in straight lines and three maneuvering targets. 

It has been shown that the proposed approach has performed better than a compa- 

rable nearest-neighbor standard filter. Its performance with respect to perfect data 

association is reasonable. 
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Figure 41. Measured Target Trajectories 
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Figure 42. Actual and Mean Estimated Tracks for Target 1: Fuzzy Approach 
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Figure 43. Mean Measurement Errors for Target 1: Fuzzy Approach 

Table X. Comparison of Mean Measurement Errors 

a All-Neighbor 
Fuzzy Approach 

Nearest-Neighbor 
Standard Filter 

Perfect Data 
Association 

50 32.6 41.2 25.6 

60 44.2 51.4 39.8 

70 57.1 62.3 49.4 

80 72.7 83.5 65.9 
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VI.        FUZZY TRACK-TO-TRACK 
ASSOCIATION AND TRACK FUSION IN 

MULTISENSOR-MULTITARGET 
MULTIPLE-ATTRIBUTE ENVIRONMENT 

In a multisensor-multitarget environment, where each sensor processes its own 

observations and sends the resultant tracks to a data fusion center, the first step is to 

determine whether or not two or more tracks, coming from different sensor systems 

with different accuracies, represent the same target (track-to-track association). The 

next step is to combine the sensor tracks when it is determined that they indeed 

represent the same target (track fusion). Both problems arise when several sensors 

carry out surveillance over a common volume (overlapping sensor coverage). A survey 

of current research in this area has been presented in Chapter III. 

In this chapter, we present an efficient clustering technique to associate track 

information from different sensors. A superclustering technique, employing track 

fusion, is proposed to fuse tracks information coming from the same target. A set 

of fusion rules for track-to-track association are also presented, together with a new 

fuzzy association rule based on the concept of cross-resolution. Fuzzy track-to-track 

association and track fusion of tracks with different dimensionality estimates are also 

presented. 

The proposed approaches are compared to a number of other approaches in 

the literature in terms of perfect data association. Application of fuzzy clustering to 

track association in over-the-horizon radar is also addressed. Results based on Monte 

Carlo simulations and real data obtained from the United States Coast Guard Vessel 

Traffic Services (VTS) system are presented. The results show that the proposed 

fuzzy association approaches reduce the computational complexity and improve the 

association performance. 
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A.     PROPOSED TRACK-TO-TRACK ASSOCIATION AND 
TRACK FUSION APPROACH 

1.      Problem Formulation 

In order to simplify our explanation, we refer to the case shown in Figure 44, 

where two sensors observe three targets in an overlapping coverage scenario and report 

four tracks to the fusion center. We assume that each reported track Ri, i = 1,2,3,4, 

has two attributes, the x and y positions of the observed targets. At each scan, the 

data can be represented as a matrix as shown in Table XI, where columns represent 

tracks and rows represent attributes. The goal is to decide which tracks are similar, 

in the sense that they represent the same target, and when they are similar, it is 

required to fuse them into a single track. 

GD QD GD 

Sensor^ Sensor2 

Tracks 

R l R2           R3 ' R4 

Fusion Center 

Figure 44. Multisensor-Multitarget Environment With Two Sensors and Three Tar- 
gets in Overlapping Coverage Scenario 
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Table XL Data Matrix 

Attribute / Track 1 2 3 4 

x-Position (m) 100 200 202 300 

y-Position (m) 300 400 403 500 

With a small data matrix like the one just shown in Table XI, we can simply 

look at the data matrix and find the similar and dissimilar tracks. Two tracks that 

have about the same values, attribute for attribute, are more similar than two tracks 

that do not. But for a large data matrix, visual inspection fails us and cluster analysis 

becomes essential. Furthermore, the number of targets is not known a priori, and an 

exhaustive search is not a possibility. In fact, it is well known that the number of 

ways of grouping n tracks into c clusters is a Stirling number of the second kind [Ref. 

177] given by 
k=c 

k=0 

I 

\ 

kn. (VI.1) 

For even the relatively simple problem of sorting 25 tracks into 5 known clusters, the 

number of possibilities is the quantity 

Sg} ~ 2 x 1014, (VI.2) 

and if the number of clusters is unknown, it becomes 

£ Sj$ > 4 x 1018. (VI-3) 

The proposed track-to-track-association and track fusion approach is presented 

in the next section. 
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2.      Fuzzy Track-to-Track Association 

Let us assume, for simplicity, that we have two tracks coming from two different 

sensors 
'   attribute 1   * 

attribute 2 

R^ 

attribute na 

,* = 1,2, (VI-4) 

with corresponding resolutions 

'   Resolution of attribute 1   ' 

Resolution of attribute 2 

A,; ,« = 1,2, (VI.5) 

\ Resolution of attribute na j 

where na is the total number of attributes.  The first sensor (Si) is assumed to be 

more accurate than the second sensor (S^) i.e., 

Ax(a) < A2(o) Va=l,2,...,na (VI.6) 

The attributes may be range, bearing, and speed with corresponding resolutions. It 

is required to decide whether or not two given tracks represent the same target. 

We consider this problem as a binary hypothesis testing for two local sensors. 

The two hypotheses are: (1) the two tracks represent the same target (Hi) and (2) 

the two tracks represent different targets (H0), i-e-, 

H = 
1,   Hi   the two tracks are the same 

0,   H0   the two tracks are different. 
(VI.7) 
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The two-track attribute differences |R2 - Ri| can be compared with either the 

resolution of sensor 1 (Ai) or the resolution of sensor 2 (A2). Define the comparison 

terms as distances 
Rj-Ri ||,   if  i ^ k 

dij = < (VI.8) 
II ^ ||, if  i = j, 

where || || is an inner product induced norm.   Defining d^ as the Euclidean norm 

yields 

dn = ^ÄTÄT, (VI.9) 

d12 = V/(R2-R1)'(R2-R1), (VI.10) 

d2l = ^/(Ri-R.yCRx-Ra) = d12, (VI.ll) 

d22 = yßfa. (VI.12) 

The similarity measures between the elements of {dij}, i = 1,2, j = 1,2 can be 

determined as the optimum degrees of membership using the fuzzy clustering means 

algorithm as (see Chapter IV, Section C): 

2 
) m-1 

ßij =     (V^i)'" -     Vt,i = 1,2, (VI.13) 

where c represents the total number of tracks (c = 2 in our case). Substituting from 

Equations VI.9- VI.12 in VI.13 yields 

MU     (l/AiAO^ + a/CRx-R^'CRi-R,))^' 

„ (l/(R1-R2)'(Rl-R2))^ 
Hi2 = j —, (Vl.loj 

(1/A2A2)^T + (1/(R2 _ Rl)/ (R2 _ Rl))S=T 

„ (l/(R2-R1y(R2-R1))^ rvT1fi, 
A*21 =  ; — j (Vl.lo) 

(1/A'XAx)—i + (1/(RX - R2)' (Ri - R2))^rr 

=        (1/A2A2)^  

(1/A'2A2)^ + (1/(R2 - Rl)/ (R2 - Rl))^T 
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and they can be written in matrix form as 

U = ( m   ^  ] . (VI.18) 
\ M21   M22 

In this formulation, ßa represents the degree of membership of the resolution of sensor 

i, i = 1,2, and //y represents the degree of membership of the difference between two 

tracks R* and Rj with respect to the resolution of sensor j (the degree of similarity 

between a pair of tracks). With the diversity in the relative sensor resolutions, the 

global association decision (Dg) is always based on the least accurate sensor (sensor 

2). In this case 

1,   if  ßn > #22 
Dg = < (VI. 19) 

0,    if    fJ,n < JU22- 

The correlation between the two reports Ri and R2 can then be defined as: 

1,   if   Dg = 1 (same tracks) 
CORR{l,2) (VI.20) 

0,   if  Dg = 0 (different tracks). 

In the literature, the association decision is determined by treating all the 

tracks in a pairwise manner. However, the previous track to track fuzzy association 

approach can easily be extended to the case of nr reports obtained from more than 

two sensors observing multiple targets (see Figure 45). In this case, the association 

decision can be obtained by treating all the tracks at once or pairwise. The former 

case avoids the conflict situation when track A is associated with track B, track B is 

associated with track C, but track A is not associated with track C. 

3.      Fuzzy Track Fusion 

Once two or more tracks have been associated to the same target, the next 

step is to combine them into a single track. This can be done either by adopting the 

superior (best) track, or by fusing the tracks into a single one. It will be shown that 

under certain conditions the fused track may yield a worse estimate than the superior 

track. In this case, track fusion is not recommended. 
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The superior track can be chosen according to the characteristics of the sensors 

in terms of sensor resolutions. If the sensors have the same resolution, the superior 

track is chosen according to the operating conditions such as the relative distance to 

the target [Ref. 75, 76, 77,131]. The smaller relative distance the more accurate is the 

sensor track estimate. In our approach, the superior track is determined automatically 

from the data on the basis of the maximum degree of membership in the diagonal 

elements of the obtained similarity matrix U (Equation VI.18). 

If we call "s" the number of tracks representing the same target i, i.e., if 

CORR^x, i) = CORR(/c2, i) = CORR(fcs, i) = 1, (VI.21) 

then the superior track is determined from the maximization 

ßksupksup = maxk{ßkk}, k = fci, fc2, , A;,, (VI.22) 

and it is assigned as 

R^ = RW (VI.23) 

This means that the superior track is determined automatically according to the 

sensor resolutions as well as the relative distance to the targets. 

In the case of track fusion, we can combine the tracks according to the corre- 

sponding degrees of membership. In this way, the fused track estimate can be defined 

as 

Rf = S|^. (VI.24) 

The proposed fuzzy track-to-track association and track fusion approach is 

shown in the block diagram of Figure 45. 

To explain the proposed track-to-track association and track fusion approach 

with the help of an example, we consider the scenario of Figure 44 given the data of 

Table XI. In this case, we have the following four tracks 

Ri 

f 100 N 

^ 300 , 

105 

(VI.25) 



R2 

R* = 

R4 — 

We assume the sensor resolutions 

Ai = 

A,= 

200 

400 

202 

403 

300 

500 

(VI.26) 

(VI.27) 

(VI. 28) 

(VI.29) 

(VI.30) 

Given these data, we obtain the distance measures using Equations VI.9- VI.12 , 

assuming m = 2, in matrix form as 

du   dn   dn   du 

D 

/ 18.0     141.4   144.9   282.8 \ 

141.4 18.0 3.6 141.4 

144.9 3.6 36.1 137.9 

282.8   141.4   137.9   36.1 

(VI.31) 
<^21     <^22    "23     "24 

<^31     <^32    <^33     d>34 

\ (ki   d42   d4s   du J       \ 282.8    141.4   13Y.y   3b.i    J 

The similarity measures as the optimum degrees of membership are obtained 

using VI.13 in matrix form as 

U 

I   ßn fi12 11x3 flu   ' 

/i2l A*22 M23 A*24 

^31 A^32 ^33 ^34 

\ ^41 ^42 A**43 p44 j 

( 0.9655 0.0006 0.0006 0.0141 

0.0157 0.0384 0.9888 0.0565 

0.0149 0.9603 0.0099 0.0595 

0.0039 0.0006 0.0007 0.8698 

\ 

(VI.32) 
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Applying the association rule of Equation VI. 19 yields the correlation matrix 

^ 0 0   0   0 ^ 

0 0   10 

0 10   0 

0 0   0   0 

CORR = 

V 

(VI.33) 

/ 

Since CORR(i, j) = 0, j = l,4,Vi ^ j, then tracks 1 and 4 represent indepen- 

dent targets. Since CORR(3,2) = CORR(2,3) = 1, then tracks 2 and 3 represent 

the same target. When it is decided that tracks 2 and 3 coming from the same target 

(since /i22 > ^33), we can adopt the superior track according to Equation VI.23 as: 

f^sup — "-2> (VI.34) 

or fuse both tracks according to Equation VI. 24 as 

R2M22 + R3/433 
Rt 

^22 + /^33 
(VI.35) 

Tracks   {R} 
degrees {//} 

itoj} association 
distances {d} {CORR} 

{ßii} ' 

{A} 

■ ■ 

Resolutions Rsup or R/ 

Figure 45. Proposed Fuzzy Track-to-Track Association and Track Fusion Approach 
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B.     NUMERICAL RESULTS 

Two examples are considered to evaluate the performance of the proposed 

clustering approach. The first example considers the case of four emitters with differ- 

ent radio frequencies {RF) and pulse repetition intervals (PRI) [Ref. 74]. Figure 46 

depicts the four basic data points (RFio,PRIio,i — 1,2,3,4) where 0 denotes the 

original values of RF and PRI in a clear environment (unknown values). The sepa- 

ration between the four data points is labeled "w". The measured RF and PRI are 

the original values plus noise. The noise in both RF and PRI directions is assumed 

to be a zero mean Gaussian noise with a common standard deviation a. Figures 47 

and 48 show the scenario assuming that only one parameter is fixed and the other 

parameter is changing randomly for small and large values of a respectively. The 

resolution of each emitter is represented as 

\ 
,i = 1,2,3,4, (VI.36) 

I     ^ CFRFi 

A,; 
3 0PRh  ) 

where oRFi = aPRIi = a. 

The objective is to determine the right number of clusters (4 emitters in our 

example). The performance is measured in terms of correctly clustering the data 

points into 4 clusters for different values of w/a. We process 100 samples, i.e., four 

hundred data points, over 1000 Monte Carlo simulations. Figure 49 compares the per- 

formance of the proposed clustering approach with the performance of the Euclidean 

clustering [Ref. 90, 177]. The percentage of correct clustering using the Euclidean 

approach varies from 57.4% to 99.2%, while it varies from 79.2% to 99.9% using the 

proposed clustering approach. The performance of the proposed clustering approach 

is always better than the performance of the Euclidean clustering for all values of 

w/a. For large a (w/a=0.25), the performance of the proposed clustering approach 

is 79.2% as opposed to 57.4% in the Euclidean case. The results show that the pro- 

posed clustering approach is much more efficient than the Euclidean clustering. In 

this example, the proposed approach achieves as much as 22% performance improve- 
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Figure 46. Initial Values of RF and PRI for Clustering Analysis 

ment as opposed to 15% in case of using the proposed fuzzy approach of Smith [Ref. 

74] in the same simulated example. 

Figures 50 and 51 show the same scenario in case of random values in both RF 

and PRI directions. In this case, the clustering problem is more complicated. Fig- 

ure 52 shows the performance in terms of the percentage of correct clustering. The 

percentage of correct clustering using the Euclidean approach varies from 35% to 

99.4%, while it varies from 64.85% to 99.8% using the proposed clustering approach. 

As shown in Figure 52, the fuzzy clustering is always superior to the Euclidean clus- 

tering. 

In the second example, we consider the case of four targets (nt = 4), moving 

in straight lines, observed by five sensors (ns = 5) in overlapping coverage scenario. 

This scenario is depicted in Figure 53, where: 1) target 1 is only detected by sensor 1 

and target 4 is only detected by sensor 5 (sensors observe only one target), 2) target 

2 is detected by sensor 2 and sensor 3, and target 4 is detected by sensor 4 and sensor 

5 (targets are detected by two sensors), 3) target 3 is detected by sensor 2, sensor 3 
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and sensor 4 (a target is detected by three sensors), and 4) sensor 2 observes target 2 

and target 3, and sensor 4 observes target 3 and target 4 (sensors detect two targets). 

The five sensors send eight reports {Rij} to the data fusion center, where Rij 

represents the report from sensor j due to observing target i. Each report represents 

the x and y positions of the targets (n0 = 2). Measurements are affected by noise 

which is modeled as Gaussian, zero mean, with a given standard deviation for each 

scan k. The noise sequence has a covariance matrix 

Cjk = Cov(w(k)) =       v , (VI.37) 

where a? represents the variance of the measurements error due to observing target 

i by sensor j. The values of noise uncertainties (in meters) are taken as an = 25, 

cr22 = 30, cr32 = 30, 023 = 40, a33 = 40, a34 = 45, a44 = 45, and a45 = 50. 

The fusion center is responsible for processing all of the reported tracks and 

fusing the redundant tracks into a single set of tracks. The actual target trajectories 

are shown in Figure 54. The displayed tracks before and after fusion are shown in 

Figure 55 and Figure 56, respectively. The proposed clustering approach successfully 

associates all the reported tracks and displays the right number of reports nr/, under 

all considered situations, where nrf represents the number of displayed tracks after 

fusion. All the redundant tracks are fused and all the superior tracks are correctly 

determined. Typical numerical results of the reported tracks (meters), sensor reso- 

lutions (meters), grades of membership, correlation matrix, and the priorities of the 

superior tracks are shown in Tables XII - XVI, for a given scan k. 

The performance of the fused track is also compared to that of the superior 

track for the scenario of target 3 in Figure 53. Target 3 is detected by three different 

sensors, sensor 2, sensor 3, and sensor 4. Three tracks, representing target 3, are 

reported to the data fusion center, which are R.32,R,33, and R,34. The data fusion 

center can either adopt the superior of the three reported tracks (Equation VI.23) or 
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Figure 53. Four Targets and Five Sensors in Overlapping Coverage Scenario 
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Table XII. Reported Tracks for a Given Scan k 

Attribute / Report Rn -R22 -R32 -R23 -R33 -R34 R44 Ä45 

x-Position 6019 6051 6001 6022 5963 5990 5906 6074 

y-Position 5993 6257 6583 6328 6577 6531 6914 6989 

Table XIII. Sensor Resolutions 

Resolution / Sensor Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 

x-Resolution 75 90 120 135 150 

y-Resolution 75 90 120 135 150 

fuse them into a global estimate. The fused track is defined from Equation VI.24 as 

R-32 ß33 + R-33 M55  + R-34 £*66 
R, (VI.38) 

M33 + M55 + /^66 

The sensor resolutions are defined in terms of the noise standard deviation for each 

sensor assuming a common standard deviation in both x and y positions, i.e., 

°*i =aVi =cri>* = 2,3,4. (VI.39) 

The performance of the superior track and the fused track are compared in terms of 

the mean measurement errors for different values of sensor resolutions. The results 

are depicted in Figures 57- 60. The results show that the performance of the fused 

track may perform worse than the performance of the superior track.  As shown in 
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Table XIV. Grades of Membership 

1 2 3 4 5 6 7 8 

1 0.7206 0.0574 0.0044 0.0374 0.0041 0.0049 0.0134 0.0138 

2 0.1147 0.3507 0.0144 0.5657 0.0127 0.0179 0.0256 0.0256 

3 0.0233 0.0380 0.0950 0.0637 0.3893 0.3790 0.0940 0.0819 

4 0.0724 0.4487 0.0234 0.1454 0.0220 0.0339 0.0328 0.0310 

5 0.0236 0.0370 0.4287 0.0659 0.0485 0.5097 0.0988 0.0752 

6 0.0279 0.0515 0.4124 0.1005 0.5037 0.0388 0.0754 0.0633 

7 0.0094 0.0090 0.0125 0.0119 0.0119 0.0092 0.3177 0.4049 

8 0.0082 0.0076 0.0092 0.0095 0.0077 0.0065 0.3424 0.3043 

Figures 57 and 58, the performance of the fused track is better than the performance 

of the superior track when the sensors have similar or comparable resolutions. As 

shown in Figure 57, the best performance of the fused track occurs when the sensors 

have the same resolutions. Figures 59 and 60 show that the performance of the fused 

track is worse than the performance of the superior track when the sensor resolutions 

vary widely. In this case, fusion of sensor tracks is not recommended and adopting 

the superior track is recommended. These results match the results of the classical 

techniques [Ref. 119, 143, 149, 150, 152, 153, 154]. 

C.     POSSIBLE FUSION RULES FOR TRACK-TO-TRACK 
ASSOCIATION 

Track-to-track association decision can be determined based either on the best 

sensor resolution or the worst sensor resolution. In the literature, either in the classical 
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Table XV. Correlation Matrix 

1 2 3 4 5 6 7 8 

1 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 

3 0 0 0 0 1 1 0 0 

4 0 1 0 0 0 0 0 0 

5 0 0 1 0 0 1 0 0 

6 0 0 1 0 1 0 0 0 

7 0 0 0 0 0 0 0 1 

8 0 0 0 0 0 0 1 0 

association techniques [Ref. 112,113,114] or in the fuzzy association techniques [Ref. 

75, 76, 77, 131], the track-to-track association is always based on the least accurate 

sensor. However, the performance of track association can be improved by utilizing 

the fusion of different association decisions based on individual sensor resolutions. 

In the case we have two sensors, i and j with different resolutions At- and Aj 

with sensor i being more accurate, i.e., 

Ai(k) < Aj(fc) VA; = l,2,...,na, (VI.40) 

Table XVI. Priorities of Superior Tracks (in Case of Same Tracks) 

1 2 7 8 4 3 5 6 
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Table XVII. Possible Association Fusion Rules Under Hypothesis Hx 

Hypothesis A ^ ADOPTi ADOPTj OR AND 

ffi 0 0 0 0 0 0 

ffi 0 1 0 1 1 0 

Hi 1 0 1 0 1 0 

i?i 1 1 1 1 1 1 

fuzzy track-to-track association based on individual sensor resolutions can be obtained 

using Equation VI. 19 as 
r 

1,   if  fiji > mi 

0,   if   ßji < iMi, 
Di = { (VI.41) 

Di (VI.42) 
1,   if   iHj > Pjj 

0,   if   nij < fijj, 

where A and Dj are the association decisions based on the resolutions Aj and Aj 

respectively. Both association decisions can be combined at the data fusion center. 

The possible fusion rules for combining the binary association decisions are ADOPT 

i, ADOPT j, OR, and AND fusion rules. The ADOPT i and ADOPT j fusion 

rules adopt the association decision based on the best or the worst sensor resolution. 

The OR fusion rule favors hypothesis Hi (decides that two tracks represent the same 

target) when either A or Dj favor hypothesis Hi. The AND fusion rule favors hy- 

pothesis Hi when both Dj and Dj favor hypothesis i?x. All possible association fusion 

rules are shown in Tables XVIII and XVII under hypothesis Hi and Ho, respectively. 
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Table XVIII. Possible Association Fusion Rules Under Hypothesis H0 

Hypothesis Di ^ ADOPTi ADOPTj OR AND 

Ho 0 0 0 0 0 0 

Ho 0 1 0 1 1 0 

Ho 1 0 1 0 1 0 

Ho 1 1 1 1 1 1 

The performance of all possible fusion rules are compared in two different 

examples. The first example considers the case of two sensors observing one target, 

as shown in Figure 61, where the true hypothesis is Hi. Each sensor track consists 

of two attributes, the x- and y- positions with common noise standard deviation 

0i,i = 1, 2. The average noise standard deviation is defined as 

<J\ 4-<72 (VI. 43) 

The sensor resolutions are adopted as three times the standard deviation. Figure 62 

shows the actual target trajectories. Figures 63 and 64 show the displayed tracks 

before and after fusion respectively in case of 20 meters noise standard deviation. 

Figure 65 compares the performance of ADOPT 1, ADOPT 2, OR and AND fusion 

rules, in terms of the percentage of perfect data association, for different values of 

I/o. The results show that the OR fusion rule is superior under hypothesis Hi. 

The second example considers the case of two closing targets observed by two 

sensors as shown in Figure 66. Each target is observed by a different sensor (the true 

hypothesis is H0). Figures 67 - 70 show the same plots of the first examples assuming 
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Figure 61. Two Sensors Observing One Target in Overlapping Coverage Scenario 

(Hi) 

20 m noise standard deviation. The results in terms of perfect data association are 

shown in Figure 70. As shown in Figure 70, the AND fusion rule is superior under 

hypothesis H0. Both examples show that the fusion of association decisions improves 

the performance of track-to-track association. 

D.     NEW ASSOCIATION RULE BASED ON THE CROSS- 
RESOLUTION 

1.      Definition of the Cross-Resolution 

As mentioned in the previous section, the OR fusion rule is superior under 

hypothesis Ht while the AND fusion rule is superior under hypothesis H0. The choice 

between them depends on the application. Since the true hypothesis is not known a 

priori, a new association rule is proposed to overcome this problem. The proposed 

association rule depends on the concept of the cross-resolution between two sensors i 

and j. The classical techniques of data association utilize the cross-covariance between 

two sensor estimates to improve the performance of track-to-track association. Given 
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two tracks Rj and R, from two different sensors i and j respectively, the cross- 

covariance is denned as 

Eij = E{(Hi — Rj)(Rj — R?)}, (VI.44) 

where R and R, are the estimates of sensor i and sensor j respectively.  Similarly, 

the cross-resolution of two sensors i and j, with resolutions A,- and Ay, is defined as 

Aij = A'iAj = A'jAi. (VI. 45) 

By inserting the definition of the cross-resolution, given by Equation VI.45, 

into Equation VI.8, we can write the correlation terms as 

dij — (VI. 46) 
y/iRj-RiyiRj-Ri),       if  i^j 

yÄ]Ä~ = yÄ]Ä~ = JA~,   if  z = j. 

On the basis of these definitions, the optimum degrees of membership are then 

calculated as: 

(1/A12)^ 
A*n = 

(1/A12)— + (1/(R! - R2)' (R1 - R2))^T 
(VI.47) 
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(l/fRx-RayCRx-R*))^ 
A*12 (1/A21)^ + (1/(R2 _ Rl)' (R2 _ Rx))^ 

(l/(R2-Rxy(R2-Ri))^ 

(1/A12)^T + (l/(Rl _ R2)> (Rx - R2))T^r 

(1/A21)T^ + (i/(R2 _ nxy (R2 _ R^)^ 

and the similarity matrix becomes 

A«21 = 

M22 

U 
'   Mil    A*12 

(VI.48) 

(VI.49) 

(VI.50) 

(VL51) 
^ ß2\     ^22 j 

where /in = /i22 = \ICR represents the degree of membership of the cross Resolution, 

and /j,i2 = /i2i = ßcc represents the degree of membership of the cross-correlation 

between the two tracks. In this case, the similarity matrix is symmetric and there is 

only one association decision defined as 

1 (same tracks),        if  \icc > ßCR . , 

0 (different tracks),   if  \icc < A*Cß5 

where Dg is the global association decision. 

Dg=< 
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2.      Performance Evaluation and Comparison With Other 
Association Techniques 

We compare the performance of the proposed association rule (based on the 

cross-resolution) for the two scenarios of the examples of Figures 61 and 66.   The 

performance is determined in terms of the percentage of perfect correlation and is 

compared to that of the gating techniques, the test statistic, the test statistic using 

the cross covariance matrix (see Chapter III for the details), ADOPT 1 fusion rule, 

ADOPT 2 fusion rule, Fuzzy OR fusion rule, and Fuzzy AND fusion rule.   The 

distance measures of Equation VI. 8 are determined as 

dij = y/iRj-Riyc-^Rj-Ri), (VI.53) 

where C is defined by Equation VI.37. 

The results are shown in Figures 71- 74 and Tables XIX and XX. As shown in 

Figures 71 and 73, the performance of the cross-resolution association rule is better 

than the performance of ADOPT 1 and ADOPT 2 fusion rules and has a comparable 

performance with respect to the OR and the AND fusion rules.  As shown in Fig- 
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Figure 71. Percentage of Perfect Correlation Under Hi 

ures 72 and 74, as the difference between sensor resolutions increases the performance 

of the cross-resolution association rule degrades and the fusion of association deci- 

sions is not recommended. Tables XIX and XX compare the performance of different 

association techniques for different values of noise uncertainties under hypothesis Ho 

and Hx respectively. The results show that the fuzzy OR and AND fusion rules 

perform better than the gating and the test statistic techniques. The performance 

of the cross-resolution degrades considerably when the sensors have very different 

uncertainties. 

E.     TRACK-TO-TRACK ASSOCIATION AND TRACK FU- 
SION OF DIFFERENT DIMENSIONALITY ESTIMATES 

In the previous section, we considered track-to-track association and track 

fusion when different tracks have the same number of attributes. Also, we assumed 

that the most accurate sensor has better performance for all individual attributes. 

When this is not the case, the proposed fuzzy clustering approach can easily be 
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Table XIX. Comparison of Classical and Fuzzy Techniques Under Hypothesis Hi 

Sensors 
Uncertainties 

Gating 
Tech. 

Test 
Stat. 

Cross 
Cov. 

Cross 
Res. 

Fuzzy 
OR 

axi = 30, (Xyi = 40, ax2 = 70, ay2 = 90 96.5 % 98% 99.1 % 98.5% 99% 

axi = 30, Oy\ = 40, ax2 = 90, ay2 = 130 92% 97% 98.5 % 97.5% 98.5 % 

axl = 30, ayl = 40, ax2 = 190, ay2 = 220 86% 92% 97.5 % 96.5 % 97.5 % 

an = 30, ayl = 40, ax2 = 300, a^ = 400 73% 90% 93% 89% 93% 
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Table XX. Comparison of Classical and Fuzzy Techniques Under Hypothesis HQ 

Sensors 
Uncertainties 

Gating 
Tech. 

Test 
Stat. 

Cross 
Cov. 

Cross 
Res. 

Fuzzy 
AND 

<7xl = 30, oy\ — 40, ox2 = 70, ay2 = 90 60% 99.5 % 99.6 % 96.5 % 99.5 % 

axi = 30, (Tyi = 40, ox2 = 90, ay2 = 130 55% 96% 99.2% 95% 99% 

oxl = 30, ayl = 40, ax2 = 190, ay2 = 220 48% 91% 98% 89% 98% 

c^i = 30, Oy\ = 40,0-3,2 = 300, ay2 = 400 35% 87% 93% 63% 93% 

utilized as explained below. 

Consider a number of reports nr from different sensors ns, with number of 

attributes na„,n = 1,2, ...,nÄ, not necessarily the same, i.e., 

n0i 7^ na. for sensors i and j, (VI.54) 

where na. and nai are the number of attributes of sensors i and j respectively. Sensor 

i may have a better estimate for an attribute a%, while it may have a worse estimate 

for attribute a2, i.e., 

Ai(ai) < A^aO, 

Ai(a2) > &j(a2). 

(VI.55) 

The problem is to develop a fuzzy track-to-track association and track fusion 

algorithm for the previous case in an unsupervised mode of operation. We also want 

to determine the dominant track, when two or more tracks represent the same target. 

The dominant track is defined as the track that has the most accurate estimates among 
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all the individual sensor attribute estimates.   We define two modes of operation: 

sequential and parallel clustering. 

1.      Sequential Clustering 

In case of sequential clustering, the tracks are clustered and fused sequentially 

as shown in Figure 75. Given two tracks i and j having the same attribute a, we 

determine the distance measure as 

dij(a) 
|R,(a)-R,(a)|    if   i^j 

Aj(a) if   i = j. 

The similarity matrix is obtained using Equation VI. 13 as 

(VI.56) 

W) - r   2   .   x    j_, , (VI.57) 

which can be written in a matrix form 

' Hii{a)   Hij{a) 
U(a) = (VI.58) 

V 
The association decision rule is the same decision rule of Equation VI.19. When it is 

decided the two tracks are the same, the dominant track is determined as follows 

Rdom(a) = Ri{a) if ßü(a) > //^(a), (VI.59) 

R-dom(a) = Rj(a) if fluid) < ßjj{a), 

i.e., 

fWa) =Rn(a), (VI.60) 

where 

n = argmax{ßii(a)). (VI.61) 

2.      Parallel Clustering 

In case of parallel clustering, all tracks are clustered and fused at the same time 

as shown in Figure 76. In this case, the association decision and the dominant track 
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are obtained using Equations VI.19 and VI.60, respectively, taking into consideration 

all the similarity measures of VI.13 at the same time for a given attribute. 

The sequential and parallel clustering are equivalent in terms of the perfor- 

mance of the correct data association and the performance of the dominant track. 

However, the parallel clustering is faster than the sequential clustering since it re- 

quires the computation of s2 elements for each attribute a, as opposed to 2s(s — 1) 

elements in case of sequential clustering, where s is the number of tracks that repre- 

sent the same target. The number of comparisons, for a given attribute, is the same 

for both clustering and is equal to s — 1. 

The performance of the dominant track is compared to that of the individual 

sensor performance for the example of Figure 61. We assume that sensor 1 has a 

better accuracy in rr-position while sensor 2 has a better accuracy in y-position. The 

sensor uncertainties are assumed to be 

<7Xl=90m, (VI.62) 

ayi = 150 m, 

<7X2 = 170 m, 

ay2 = 80 m. 

The sensor resolutions are assumed to be 

A, = 3 [  °Xi  j,i = l,2. (VI.63) 

We assume that the x and y positions are taken every 0.1 second. We processed 

200 measurements (20 seconds of data) over 1000 Monte Carlo simulations, and the 

performance of the dominant track bas been evaluated in terms of the mean square 

error, defined as 

e = y/e* + e2, = ^(xtrue - x)2 + (ytrUe - y)2 ■ (VI.64) 

The mean square error of the dominant track is also compared to that of the indi- 

vidual sensor mean square errors. The results, shown in Figure 77, indicate that the 
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Figure 75. Sequential Clustering 

dominant track yields a better estimate than the individual sensor itself. The re- 

sults also show the efficiency of the proposed clustering approach in terms of correct 

association and performance of the dominant track. 

Ri,Ai 

R-DOM? ApoM 

Figure 76. Parallel Clustering 
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F.     APPLICATION OF FUZZY CLUSTERING TO TRACK 
ASSOCIATION IN OVER-THE-HORIZON RADAR 

Over The Horizon Radar (OTHR) provides surveillance of the air space and 

ocean, and it has been adopted by many countries such as Australia [Ref. 121, 132], 

where it has been used successfully for remote sensing of air space and sea conditions 

and detecting and tracking remote targets. The OTHR uses the ionosphere layers 

in the sky as a reflection medium for the high frequency signals. The problem is 

that multiple ionosphere layers cause several tracks per target to be observed at the 

receiver. For example, with two ionosphere layers each target produces up to four 

tracks, as illustrated in Figures 78 and 79 which show the four possible reflection 

paths. This problem, which is called the multiple tracks common source (MTCS) 

problem, causes a degradation in the performance of target tracking and identification. 

An association approach is essentially needed to merge the MTCS tracks into unique 

set of tracks that represent the true number of targets. 

There are many approaches in the literatures to associate MTCS [Ref. 12,121, 
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122, 132]. The classical technique requires hypothesizing the states of the ionosphere 

conditions, including the number of ionosphere layers and the height for each layer 

and testing each hypothesized track against observed tracks [Ref. 178]. This solution 

is computationally expensive. Furthermore, it assumes stationarity of the ionosphere 

layers which might not be realistic, since the ionosphere layers tend to change rapidly 

due to many phenomena related to wind, season, and sun. The neural networks are 

also used to solve this problem [Ref. 12, 132]. Neural networks requires training 

of such approaches with a very large set of tracks representing the OTHR tracking 

system. 

The proposed fuzzy clustering approach (Section A) can be used to associate 

the MTCS tracks which belong to the same target. To demonstrate the feasibility of 

the proposed approach to solve MTCS problem, it is applied to an example of two 

OTHRs detecting one target in a two ionosphere layer environment. The same target 

is tracked simultaneously by the two OTHRs. The detected tracks are reported to a 

data fusion center and they are shown in Figure 80. The data fusion center receives 

eight tracks representing four reflections for each OTHR. Each track consists of 

bearing (9) and range (r) information of the observed target, i.e. 

R,= ,t = l,2,...8. (VI.65) 

The sensor uncertainties are represented by the covariance matrix 

Ci 

where O\A and of- represent the variances of the measurements errors of bearing 

and range information respectively. The reflections from the ionosphere layers cause 

additional errors in bearing and range measurements. These errors are assumed to be 

normally distributed with zero mean and variances agg and <r^ in bearing and range 

respectively. The sensors and layers variances are assumed to be ag = 0.5 Radians, 

0> = 50 km, a$e = 0.6 Radians, and are = 90 km. The eight tracks received before 
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Figure 78. An Over-the-Horizon Radar System Detecting One Target in Two Iono- 
sphere Layers Environment 

fusion are shown in Figures 80, while the fused tracks are shown in Figure 81. In 

the case of one simulated target, the proposed approach seems to yield satisfactory 

results. Testing with real data and multiple targets need to be performed to validate 

the effectiveness of the proposed algorithm. 

G.     APPLICATIONS TO REAL DATA OBTAINED FROM 
THE UNITED STATES COAST GUARD VESSEL TRAF- 
FIC SERVICES SYSTEM 

A real example of a MS MT environment, in overlapping coverage scenario, is 

the United States Coast Guard (USCG) Vessel Traffic Services (VTS) system, where 

the targets are vessels in the harbors and waterways in the continental USA and 

the sensors include radar tracks, Global Position System GPS tracks, and Standard 

Routes SR tracks, as shown in Figure 82. The GPS tracks are sent automatically 

through radio links from the vessels. The SR tracks are computer generated tracks, 

which are used by the operator when the observed vessel has a non reporting status 

due to a failure. The SR tracks are based on the last reported information of the vessel 
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Figure 79. An Example of Multiple Tracks Common Source (four tracks are displayed) 
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Figure 80. Displayed Tracks Before Fusion 

140 



X10 

0.66 0.72 0.74 
Bearinq (Radians) 

Figure 81. Displayed Tracks After Fusion 

(position, bearing, ...etc). A detailed description of the VTS system and different 

types of sensors can be found in [Ref. 75, 76, 77, 131]. 

All sensor types report information (attributes) about the observed vessels, to a 

data fusion center called track data base manager (Tdbm). The Tdbm is responsible 

for processing all the reported information to eliminate the redundant tracks. For 

each scan, the reported information are vessel name, time of report, tracking status 

(sensor type, e.g. radar, GPS, SR), track I.D. (track number), sensor track number 

(e.g. radar track number or sensor track number), course (in degrees), speed (in 

knots), latitude (in degrees and minutes), longitude (in degrees and minutes), vessel 

size (length of vessel), and track quality. A more in depth description of the different 

information reported to the Tdbm can be found in [Ref. 75, 77]. 

The proposed track-to-track association and track fusion approach is applied to 

real data collected from U.S. Coast Guard VTS Puget Sound and VTS San Francisco 

(see [Ref. 181] for more details). The results show that the proposed approach 

successfully fused the reported tracks and selected the superior tracks in all considered 
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Figure 82. Overview of the VTS System 

scenarios. Here, we present the results in the following scenarios: 

Scenario 1: Two radars observe a single vessel in an overlapping coverage 

scenario. The tracks are identified by ID numbers 830 and 831. The superior track 

is track 831. 

Scenario 2: Two radars observe a single vessel in an overlapping coverage 

scenario (ID numbers 806 and 807). The superior track is track 807. 

Scenario 3: Two radars observe a single vessel (ID numbers 750 and 751, 

track 751 is the superior track) along with a third radar that observes a different 

vessel (track 757). Initially, track 751 is the superior track. When track 751 is 

terminated, track 750 is adopted. 

Scenario 4: Two radars (ID numbers 772 and 774) and GPS track (ID 

number 773) observe a single vessel. The priority of the superior tracks is track 773, 

track 772, then track 774. Initially, the superclustering algorithm adopts track 773 as 

the superior track. When track 773 is terminated, the superiority is handed to track 

772. Finally, track 774 is adopted. 
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The track-to-track association of scenarios 1 and 2 processes longitude and 

latitude information while latitude, longitude, and course information are processed 

for scenarios 3 and 4. The results are plotted in Figures 83- 90 in terms of the dis- 

played tracks before and after fusion. In all scenarios, the fuzzy clustering algorithm 

successfully fused the redundant tracks and displayed the superior tracks. The results 

show the efficiency of the proposed fuzzy clustering approach to associate and fuse 

tracks obtained from different sensors in real and practical examples. 

In summary, track-to-track association and track fusion in multisensor-multitarget 

multiple-attribute environment with overlapping sensor coverage have been consid- 

ered in this chapter. A fuzzy clustering technique employing track-to-track associa- 

tion and a fuzzy superclustering technique employing track fusion have been proposed. 

The performances of the proposed algorithms have been evaluated using computer 

simulations and marine traffic data obtained from the United States Coast Guard 

Vessel Traffic Services System. 

Overall, the proposed techniques performed satisfactory under all simulated 

and real scenarios. We observed that the performance of the fused track may be worse 

than the performance of the superior track alone. In general, track fusion would yield 

the best estimate when the sensors have the same resolutions; however, when the 

sensor resolutions vary widely, it is better to adopt the superior track rather than 

fusing the tracks. 

The proposed fuzzy track-to-track association and track fusion approach has 

several advantages. The membership functions are generated from the data using the 

fuzzy clustering means algorithm, and they are not fixed a priori. As a consequence, 

the values of the degrees of membership change according to the positions of the 

targets relative to the sensors. Also, the proposed approach can treat all the reported 

tracks at once, thus avoiding conflicting track-to-track associations. The proposed 

approach assigns only one degree of membership to each attribute vector rather than 

one degree of membership to each individual attribute. This reduces the sensitivity 

of the association decision to individual attribute fluctuations, reduces the number 
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of rules by a factor of na, where na is the total number of attributes, and has the 

advantage of the soft decision over the hard-decision (see Figure 91). The superior 

track is determined automatically in an unsupervised mode based on the values of 

the sensor resolutions as well as the observed measurements. 
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Figure 83. Displayed Tracks Before Fusion for Scenario 1 
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Figure 84. Displayed Tracks After Fusion for Scenario 1 
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Figure 85. Displayed Tracks Before Fusion for Scenario 2 
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Figure 86. Displayed Tracks After Fusion for Scenario 2 
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Figure 87. Displayed Tracks Before Fusion for Scenario 3 
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Figure 88. Displayed Tracks After Fusion for Scenario 3 
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Figure 89. Displayed Tracks Before Fusion for Scenario 4 
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Figure 90. Displayed Tracks After Fusion for Scenario 4 
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VII.        IMPROVEMENT OF DATA 
ASSOCIATION VIA DETECTION USING 

MULTIPLE-SENSOR 

The primary function of sensor fusion is the detection of targets. Given the 

existence of targets, the next function is the estimation of parameters of the detected 

targets followed by their association to the existing targets. Intuitively, the higher the 

detection probability the higher is the correct data association. If a target is falsely 

detected, the performance of data association is ruined [Ref. 22]. The problem 

of decision fusion in distributed sensor systems is considered in this chapter [Ref. 

1, 50, 52, 193, 195, 183]. Distributed sensors send their decisions to a fusion center 

that combines all the received decisions from the various sensors into a final global 

decision [Ref. 51, 53]. Two major approaches for combining the sensor information are 

analyzed here, and optimum fusion rules for distributed sensor decisions are discussed. 

Also, a fuzzy decision approach for data fusion in multisensor distributed detection 

systems is proposed. Simulation examples with Gaussian and exponential distributed 

observations are considered. 

A.     DECISION FUSION IN MULTIPLE SENSORS DIS- 
TRIBUTED DETECTION SYSTEMS 

The problem of multiple sensors surveillance has attracted the attention of 

several investigators [Ref. 50]. This interest has been sparked by the requirement of 

military surveillance systems to be more reliable and immune to electronic attack by 

using multiple sensors rather than single sensor systems. The goal of such multiple 

sensor systems is to improve system detection performance. This can be achieved by 

integrating the information obtained from the various sensors. There are two major 

approaches for combining the information obtained from multiple-sensor distributed 

detection systems. The first approach is the centralized detection system, where all 

sensor observations are transmitted to a central processor to derive a global decision. 

151 



This requires transmission of sensor observations without delay, which requires a large 

communication bandwidth. The second approach is the decentralized detection with 

fusion, where signal processing is distributed among the sensors and a fusion center. 

The sensors are allowed to derive local decisions; then the fusion center is responsible 

for combining these local decisions from the various sensors into a global decision. The 

decentralized approach is appropriate when there are constraints on the amount of 

information that can be sent to the data fusion center. However, in the absence of this 

limitation, the best strategy is to transmit individual sensor observations to a central 

decision processor. Because of such considerations as communication bandwidth and 

the problem of flooding the fusion processor with more information than it can handle, 

the centralized detection systems are not usually implemented in practice. Despite 

the possible performance loss due to local processing, the decentralized approach has 

the important practical advantage of requiring low bandwidth data links between the 

sensors and the fusion processor. 

1.      Centralized Detection Systems 

In this approach, all sensor observations are transmitted to a central proces- 

sor in order to derive a global decision «0 [Ref. 50]. This approach is depicted in 

Figure 92 for two sensors and one target. No local decisions are made by the sen- 

sors.   Under each hypothesis, the sensor observations have known joint probability 

densities f{y1,y2, ,yJ#o) and f{yx,y2, ,y„|#i), where yt-, «=l,2,...,n, are 

random vectors representing the sensor observations.   The crux of the centralized 

hypothesis testing problem is to derive a decision strategy of the form: 

w0 = < 
0, Hn   is declared to have been detected 

(VII.l) 
1, Hi   is declared to have been detected, 

where UQ depends on the observations yi,y2, —,yn- According to Neyman-Pearson 

criterion, it is required to find a decision strategy expressed as a density function 

/(uo|yi,y25 jy»J> which maximizes the global detection probability for a desired 
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[Sensor 1 (Detector 1)) 

Sensor Observation y^S 

Sensor 2 (Detector 2) j 

Sensor Observation y2 

Fusion Center 

Global Decision UQ 

Figure 92. Centralized Detection System 

global false alarm probability, where 

PF==P{uQ = 1\Ho}y (VII.2) 

pD = P{u0 = l\Hl}. (VII.3) 

It is well known that the solution of the centralized problem is given by a 

likelihood ratio test [Ref. 50]: 

' 0   if  L(yl5 ,yj < A0 

i if L(yi, ,y«) > Ao, 
wo (VII.4) 

where 

^(yi> ,yj = 
/(yi. >yJ#i) (vn.5) 
/(yi. .ynl^o)' 

and the global decision is a hard-decision u0 —> {0,1}, where UQ = i, for j = 0,1, 

is interpreted as choosing Hj and the threshold A0 is determined according to the 

desired global false alarm probability. 

2.      Decentralized Detection Systems With Fusion 

We now consider the structure of the decentralized detection system with 

fusion. This approach reduces the required channel capacity for two reasons: a report 
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of a decision is a shorter message than a sensor observation, and most sensor decisions 

need not be reported at all since they do not correspond to a detection. In this 

approach, n number of sensors receive and process the observations {y{} to generate 

n local decisions {w;}, where U{ = 1 indicates target present and «; = 0 indicates 

target absent [Ref. 47]- [Ref. 53]. These local decisions are combined into a global 

decision UQ determining the presence or the absence of a target (see Figure 93). 

The objective is to determine the optimum sensor and fusion center architectures 

based on the Neyman-Pearson criterion, which requires finding an optimal fusion 

rule that maximizes the global detection probability for a desired global false alarm 

probability. The usual fusion rule is implemented as fc-out of-n majority-rule voting. 

This means that the fusion center adopts hypothesis Hx (presence of a target) as the 

true hypothesis when at least k sensors favor that hypothesis. Two special cases are 

AND fusion rule, corresponding to setting k = n, and OR fusion rule, corresponding 

to A; = 1. 

The optimum data fusion architecture given n sensors is developed in [Ref. 

51]- [Ref. 53]. The individual decisions are weighted according to the detection and 

false alarm probabilities of each sensor {pfvpdi). The optimum data fusion structure 

is given by 

' 0   if  IXdciUi) < A0 
w0 = S 

where 

(VII.6) 
1   if  E?=i(ciO>A0, 

^EigzM (VII.7) 

and the threshold A0 is determined from the desired pF. 

B.     OPTIMUM FUSION RULES FOR COMBINING SEN- 
SOR DECISIONS 
The AND combiner has been analyzed by Kovattana [Ref.  47] for the case 

of two sensors, and the global performance has been obtained assuming that the 

observations are conditionally independent under hypothesis H0 and Hi. The AND 
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Figure 93. Decentralized Detection System With Fusion 

and the OR combiners were later compared by Fefjar [Ref. 53] for the cases of two 

and three sensors. Fefjar showed that OR fusion rule is always superior to AND 

fusion rule. Stearns [Ref. 49] showed that depending on the choice of the global false 

alarm probability, either AND or OR combining can be better. Stearns [Ref. 49] 

claimed that the AND and the OR global performances must be intersected, AND 

is superior to OR at low false-alarm probabilities, and OR is superior to AND at 

high false-alarm probabilities (assuming Gaussian distributed observations). It will 

be shown that, depending on the operating point on the global receiver operating 

characteristic (ROC) and the parameters of the probability distributions under each 

hypothesis, either AND or OR is preferable. 

1.      Optimal Data Fusion Using Two Non-Identical Sen- 
sors Based on Neyman-Pearson Criterion 

Consider any two sensors with receiver operating characteristics, p^ = gipfr) 

and pd.2 = h(pf2). To derive the optimum threshold setting for each sensor, we assume 

that the sensor's decisions are conditionally independent under hypothesis H0 and Hx. 

In the case of AND fusion rule, the global false alarm and detection probabilities are 
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given by [Ref. 65, 73]: 

PF = PfiPf„, (VII.8) 

PD=Pd,Pd2- (VII.9) 

Equation VII.9 can be rewritten as: 

PD = g(ph)h(pf2). (VII.10) 

Substituting for pj2 from Equation VII.8, we obtain 

PDM = g(pfl) h(?Z-), (Vil.il) 
Ph 

where the dependence PD(PF) is called the global ROC of the distributed detection 

system. Clearly, from Equation VII.8, p/: > pF, and Equation VII.10 will be 

SUP ( VP   \ 
PD(PF) =PF <ph<\ UpfMj^)) ■ (VII-12) 

In the case of OR fusion rule, we have 

PF=P/1+P/2(1-P/1), (VII.13) 

which yields 

VH = Jj^pf (VII.14) 

From Equation VII.13, p^ < pF, and the optimum global receiver operating charac- 

teristic using an OR combiner is 

o < PT< PF \g{ph) + M^P^) - ^P/JM^
1
^)) • (VII.15) 

2.      Optimal Data Fusion Using Identical Sensors 

If the two sensors have identical receiver operating characteristics, i.e., 

9(ph) = h(pf2), (VII.16) 

then symmetry can be invoked to yield the following results [Ref. 64] 

AND: pD(pF) = g2(^pT), (VII.17) 

OR:   PD(PF) = 2g(l-^T=p-F-)-g'i(l-y/T=p-?). (VII.18) 
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The extension of the two non-identical sensors case to the case of three or 

more non-identical sensors is complicated. However, the special case of n-identical 

sensors is straightforward. The pp and the PD for an n-sensor case are given by [Ref. 

51]- [Ref. 53]: 

PF = E^(l -Pf)n~\ (VII.19) 

n 

p* = £tfri(i-**)"-*> (VII.20) 
i=k 

where cf is the binomial coefficient. For k=l, the optimum fusion rule reduces to an 

OR fusion rule, while for k = n it becomes an AND fusion rule. For a specified value 

of global false alarm probability, there is an optimum integer k that maximizes the 

global detection probability. This is called k-out of-n fusion rule [Ref. 53, 73]. This 

means that if k or more sensors decide hypothesis Hi, then the global decision will 

be Hi, i.e., 

0   if  E?-i Ui<k / 
u0 = \ (VII.21) 

, 1   if  E!LiUi>*, 

where Ui, i = 1,2, ...,n, are the individual sensor decisions, and UQ is the global 

decision of the fusion center. 

3.      Performance Optimization Examples 

Stearns [Ref. 49] considered the case of combining two identical sensors with 

Gaussian distributed observations. His claim about the intersection of the AND and 

the OR combiners and the superiority of the AND at low false alarm probabilities 

and the OR at high false alarm probabilities is valid for the particular example which 

he had considered. In general, this is not true. 

Here, we assume that the sensor observations are scalar quantities and expo- 

nentially distributed. The probability density functions under hypotheses H0 and Hi 

are then given by 

f(Vi\H0)   = 
exp(-yi),   Vi > 0, i = 1,2, ...,n 

(VII.22) 
0, otherwise, 
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/(Vilffi) (VII. 23) 
diexpi-ciiyi),   j/,->0,i = l,2,...,n 

0, otherwise. 

Notice that the observations are independent when conditioned on H. The Likelihood 

ratio of the detectors is given by [Ref. 73, 194]: 

j,   s.     f(Vi\Hi)     atexpi-aiVi)   . 
f(yi\H0)        exp(-yi) 

The decision rules of the detectors are given by: 

0   if  L(v) = fMHl) < A- 

(VII.24) 

Ui = < 

1   ^  W = Ä>Ai, 
(VII.25) 

/(lfc|#o 

which reduces to 

Ui = < 

Ui 

(VII. 26) 

(VII. 27) 

0   if  Vi < ^ln{%) 

k i if Vi > iir^(^), «t < i, 

/0   if  2/i>TilM|) 

k 1   if  J/* < li:Mi)> a* > 1, 

where At- is the threshold of sensor i. The corresponding false alarm and detection 

probabilities are given by [Ref. 65, 73, 193]: 

Pf, 

Pd., Oi < 1, 

Pft   =   1- 
'AA«* 

(VII. 28) 

(VII. 29) 

(VII.30) 

, <n > 1. (VII.31) 

Hence the receiver operating characteristics of the detectors can be written as: 

cu 

-->- fr 

p* = PA 
= ^(^/i)' a* <x> 

Pdi   =   l-(l-pfi)
ai=h(pfi),   Oi>l 

(VII.32) 

(VII.33) 

Figure 94 compares the receiver operating characteristics of the OR and the 

AND combiners as well as the individual sensor receiver operating characteristic for 
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two non-identical sensors with ax = 0.4 and o2 = 2.5. The global performance 

improvement of the OR and the AND fusion rules over the individual sensor receiver 

operating characteristics is obvious. Figure 94 shows an intersection of the OR and the 

AND receiver operating characteristics. In this figure, the AND combiner is superior 

to OR at low global false alarm probability and the OR combiner is superior to AND 

at high global false alarm probability. The choice between them is determined by the 

specified global false alarm probability. 

Figure 94. Comparison of ROCs of Two Different Sensors, al=0.4, a2=2.5. 
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Figure 95. Comparison of ROCs of Two Identical Sensors, Coefficient a = 0.2 

A comparison of the OR and the AND combiners for the case of two identical 

sensors with exponentially distributed observations for different values of coefficient 

a are shown in Figures 95 - 98. Figures 95 and 97 consider the case when a < 1 while 

Figures 96 and 98 consider the case when a > 1. It is clear that when a < 1, the OR 

combiner is superior for all values of false alarm probabilities while when a > 1, the 

AND combiner is superior for all values of false alarm probabilities. It is also clear 

that there is no intersection of the OR and the AND receiver operating characteristics 

in these figures. 

Figures 99 -102 compare the global ROCs of the k - out of - n fusion rules for 

different values of a for the case of n-identical sensors. Figures 99 and 101 show the 

results for three and five identical sensors, respectively (o < 1). Figures 100 and 102 

show the case of a > 1. Figures 99-102 lead to the same conclusions as in Figures 95 

-98 

From Figures 95 - 102, it is clear that the optimum fusion rule depends only 

on the coefficient of the probability distributions a. It is also clear that depending on 
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Figure 96. Comparison of ROCs of Two Identical Sensors, Coefficient a = 4 

Figure 97. Comparison of ROCs of Two Identical Sensors, Coefficient o = 0.08 
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Figure 98. Comparison of ROCs of Two Identical Sensors, Coefficient a = 8.5 
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Figure 99. Comparison of ROCs of Three Identical Sensors, Coefficient a = 0.25 
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Figure 100. Comparison of ROCs of Three Identical Sensors, Coefficient a = 3.5 

d=.3 
_! I I I I I I i_ 

0 0.1 0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9 1 
PF 

Figure 101. Comparison of ROCs of Five Identical Sensors, Coefficient o = 0.3 
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Figure 102. Comparison of ROCs of Five Identical Sensors, Coefficient a = 4.5 

the coefficient a, either the AND or the OR combiner can be superior for all values 

of global false alarm probabilities. Furthermore, it is clear that the ROCs of the OR 

and the AND combiners may not be intersected at all. From the above results, we 

remark that (1) the AND combiner is not always superior at low pFs, (2) the OR 

combiner is not always superior at high pFs, (3) the choice between the AND and 

the OR combiners depends on the desired values of global false alarm probabilities 

as well as the coefficient of the probability distributions (a in our examples), and (4) 

the ROCs of the OR and the AND combiners may not be intersected at all. 

C.     SOFT DECISION FUSION VERSUS HARD-DECISION 
FUSION 

Distributed detection systems employ several sensors to observe a common 

volume of surveillance and report local decisions about the existence or nonexistence 

of a target.   The local decisions are reported to a data fusion processor, which is 

responsible for fusing the received decisions into a global decision.   This approach 
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is called a hard-decision approach. The alternative approach is soft decision, where 

each sensor reports a measure of uncertainty or confidence value for each hypothesis 

to the data fusion processor. The soft decision approach has the advantage of better 

performance over a comparable hard-decision approach [Ref. 1, 53]. 

The hard-decision approach does not provide any information to the fusion 

processor for signals below the decision threshold (see Figure 104). Thus the in- 

formation at lower signal levels is lost, and there is no integration of data in this 

case. In contrast, the soft decision approach allows the sensors to report a measure 

of uncertainty or confidence value for each hypothesis, at any sensor signal level. The 

data fusion processor can thus integrate these values over a wide range of signal lev- 

els. The soft decision approach is shown to reduce the performance loss between the 

centralized and the decentralized approaches [Ref. 1]. 

Several studies have been reported on the fusion of hard and soft sensor de- 

cisions. Tenney and Sandeil [Ref. 50] made the pioneering effort in extending the 

Bayesian decision theory to the case of multisensor distributed detection systems. 

Chair et al. [Ref. 51] derived the optimum data fusion structure that minimizes 

the overall probability of error. Thomopoulos et al [Ref. 53] derived the optimum 

fusion rule for the fusion of hard and semisoft decisions using Neyman Pearson cri- 

terion. Waltz [Ref. 1] showed that the soft-decision has provided time and range 

improvements over a comparable hard-decision system. ElAyadi and Ashraf Mam- 

douh [Ref. 73] developed an algorithm for global optimization of a non-identical dis- 

tributed detection system using Neyman-Pearson strategy. Al-Bassiouni [Ref. 183] 

considered the problem of detection using quantized discrete sensor observations. Tao 

and Sethi [Ref. 60] derived an optimal multiple level decision fusion strategy. Ashraf 

Mamdouh [Ref. 193] discussed the performance loss between the centralized and 

the decentralized approaches and showed that the performance loss of the decentral- 

ized approach increases as either the number of sensors or the signal to noise ratio 

increases. 

A soft decision approach based on fuzzy logic techniques is proposed in this 
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section. The proposed fuzzy decision approach does not require prior statistical knowl- 

edge of the sensing process [Ref. 1, 2, 53]. In this section, the optimum fusion rule 

using the proposed soft decision approach is derived based on Neyman-Pearson crite- 

rion. The performance of the proposed approach is evaluated and compared to that of 

the hard-decision approach using an example of five identical distributed sensors with 

Gaussian distributed observations under hypothesis H0 and H\. The proposed ap- 

proach provides detection probability improvement over a comparable hard-decision 

system; thus, it reduces the performance loss between the centralized and the decen- 

tralized (hard-decision) approaches. 

1.      Proposed Fuzzy Logic Decision Approach 

We consider n detectors with statistically independent observations yh i = 

1, ....,n. The hard-decision rules of the individual detectors are given by [Ref. 52, 65, 

73] 

„, = f 0   if  *<*> ~m<*> (VII.34) 
1   if   L(v-) = /(y*|Hl) > A- i = 1 2        n J.    ii    J^\yl) — f(y.\H0) — A*> *       i> ^> ••"' " ' 

where L(y{) is the Likelihood ratio of the ith sensor, /(y^Hj) is the conditional 

probability density function of the ith sensor observation given hypotheses Hj,j = 0,1, 

and A; is the ith detector threshold. Each sensor then derives a soft decision ^ by 

defining a fuzzy set Ai in Y as a set of ordered pairs: 

Ai = {(y,tiAi(y))\y € Y},i = l,2,..,n, (VII.35) 

where ßAi(y) is the grade of membership of y in Ai which maps Y to the interval 

[0,1]. If (J,Ai{y) is greater than 0.5, the sensor will favor hypotheses Hi, and the 

corresponding hard-decision will be Ui = 1. If ßAi(y) is less than 0.5, the sensor is 

more likely to favor hypotheses HQ, and the corresponding hard-decision is Uj = 0. 

Thus the relation between the hard-decision U{ and the soft decision fa is given by 

Ui = < 
1   if  fa > 0.5 

(VII.36) 
1   if  fa < 0.5. 
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In many cases, it is desirable to express the membership in terms of a function 

with adjustable parameters. Here we propose two heuristics to achieve this objec- 

tive: as the difference between the Likelihood function and the threshold increases, 

the corresponding membership grade of the decision increases and vise versa; if the 

Likelihood function is equal to the threshold, a suitable membership value is 0.5. Ac- 

cording to these heuristics, the desired membership function can be defined as [Ref. 

38]: 

0 if  x < a 

^(ar;o,A,7) 
2[s=&]2 if  a<x<\ 

L7-«J -    - (VII.37) 
l-2[*=J]a   if  A<z<7 

1 if  x > 7 , 

where x represents the likelihood ratio, A represents the sensor threshold, and the 

actual values of 7 and a depend on the expected signal range under hypothesis HQ 

and Hi. The resulting membership function is plotted in Figure 105 assuming a = 

3, A = 6, and 7 = 9. 

Let u = («1,^2, ,un) be a vector of the hard-decisions.   The Likelihood 

function of the sensor decisions is given by 

L(u) = ZM|4 = ff^ '""ff) (VII.38) 

Assuming that the observations are independent, we can write 

i(u) = ™ = nZW£l. (VII.39) 

Equivalently, we can write 

f(u\Hi) = ]Jf(ui = MHi)Ef(ui = 0|ffi), (VII.40) 
s+ s- 

f{n\H0) = II /(«* = ll^o) II /(«* = ll^o),     . (VII.41) 
s+ s- 

where S+ is the set of all i such that Wj = 1 or \xi > 0.5, S— is the set of all i such 

that Ui = 0 or //* < 0.5, and 

f(Ui = l\Hi)=   f(iM>Q.5\Hi)=   p*, (VII.42) 
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f(ui = 0\Hx)=   /(/zi<0.5|F1)=   1-p«, 

f(Ui = l\H0)=   /(//,-> 0.5|J70) =   pfi1 

f{ui = 0\H0)=   f(iM<0.5\H0)=   l-pfi, 

(VII.43) 

(VII.44) 

(VII.45) 

and pft and Pdt are the false alarm and the detection probabilities of the ith sensor, 

respectively. The corresponding log likelihood ratio test is 

%(L(u)) = X>S—+ £^y 
s+     Pfi     s- 

Therefore, the data fusion rule can be expressed as 

Pdi  , v^,    1-P* 
Pfi 

(VII. 46) 

w0 = < (VII.47) 
0   if  E?=1 bißt < logXo 

^ 1   if  Ei=i kßi > logXo, 

where logXo is determined according to the desired false alarm probability, and the 

optimum coefficients b{,i = 1,2,..., n, are given by 

log£      if  Mi > 0.5 

^ log^-   if   /if<0.5. 
(VII.48) 

2.      Performance Evaluation of the Proposed Approach 

The sensor observations are assumed to be scalar quantities. By considering 

n-identical sensors with Gaussian distributed observations, we have 

f{yi\H1)=   -fee-to-i)V\   Si>0, 

f(yi\H0)=      ^e^)2/2,      i = l,2,...,n, (VII.49) 

where Si is the mean value under hypothesis H\. Consequently, Neyman-Pearson test, 

utilizing all of the received observations {?/;} in a centralized detection system, has 

the form [Ref. 65] 

' 0   if  E"=i?/i<Ao 

1   if  E?=i2/i>A0. 
u0= < (VII.50) 
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To achieve the desired global false alarm probability, a threshold of 

\0 = v^r1(PF), (VII.51) 

is needed, where the complimentary error function 

m = -L=l~e=£dz. (VII.52) 

The corresponding global detection probability is given by 

The decision rules of the sensors for the decentralized detection systems are given 

by [Ref. 65] 

Uj = (o ^ m = S} < A, 
I1   if  LM = ^^>^ 

The corresponding false alarm and detection probabilities are 

Pfi =      <£(A*) i 

pdi=   <t>(\-Si), (VII.55) 

where A; is the ith detector threshold and is determined according to the sensor false 

alarm probabilities [Ref. 53, 65, 73, 194]. The signal to noise ratio (SNR) at each 

sensor is evaluated as 

m.^.-yM,i = i„. cm») 
Var{yi\H0} 

3.      Simulation 
Equation VII. 37 is considered to determine the membership values in the sim- 

ulation. The parameter A = (a + ry)/2 is the crossover point. The values of a and 7 

are chosen to be 3cr points of the Gaussian distribution, i.e., 

a = A- 3a, (VII.57) 

7 = A + 3a, (VII.58) 
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where a is the standard deviation of the noise under hypothesis H0. 

Membership values in the interval [0,1] are divided into Nq number of quan- 

tization levels of uniform step size e. If the value of the membership grade /i falls 

within the jth quantization interval, then the quantized value of \i is taken to be the 

midpoint of that interval. The step size e is -%/-. 

The transfer characteristic of the quantizer used to generate the quantized 

membership grade ßq is shown in Figure 103. The quantized steps are given by 

H. 'i = {J~T~)e> for-? = 1'2' >Nr (VII.59) 

ßq 
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The ROC plots in Figure 106 compare the global performance of the cen- 

tralized, the decentralized, and the soft (fuzzy) decision schemes for Nq = 16 and 

five identical sensors with Gaussian distributed observations having a signal to noise 

ratio of 0 dB. Figure 106 also shows the individual sensor ROC. The performance 

improvement of data fusion systems (centralized, decentralized, or soft decision) over 

the individual sensor ROC is obvious. The performance loss due to the decentralized 

approach compared to the centralized approach is also illustrated. It is clear that 

the proposed fuzzy decision approach with Nq = 16 has better performance than the 

hard-decision approach. Thus the fuzzy decision approach reduces the performance 

loss between the centralized and the decentralized approaches. Figure 107 depicts the 

ROC plots of the proposed soft decision approach for different quantization levels. 

As shown in Figure 107, the performance of the soft decision approach is improved as 

the number of quantization levels increases. This result is expected since the soft de- 

cision approach utilizes more information from the underlying process as the number 

of quantization levels increases. Thus the performance trade-off among centralized, 

decentralized, and soft decision approaches can be quantified in terms of the commu- 

nication bandwidth required for transmitting sensor information to the fusion center. 

It is worth noting that low data transmission rates lead to low cost, immunity to 

jamming, and longer communication range. 

Optimum fusion rules for multiple sensor distributed detection systems have 

been considered in this chapter. For the case of exponentially distributed observations, 

the optimal fusion rule is based on the value of the coefficient of the probability 

distribution (a). For a < 1, the OR fusion rule is found to be optimal whereas the 

AND fusion rule is optimal for a > 1. The choice between them depends on the desired 

global false alarm probability as well as the parameters of the probability distributions 

under both hypotheses. Furthermore, the global receiver operating characteristics 

of the OR and the AND combiners may or may not intersect depending on the 

coefficients of the probability distribution function. 

A fuzzy decision approach for multisensor distributed detection systems has 
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Figure 104. Plot of Hard-Decision Versus Likelihood Ratio 

been proposed. The proposed soft decision approach provides an improvement in the 

detection probability over a comparable hard-decision approach. Using simulation 

results, it has been shown that the proposed fuzzy decision approach reduces the per- 

formance loss between the centralized and the decentralized approaches. This result 

is important, since it characterizes the performance trade-off between the centralized, 

decentralized, and soft decision approaches. 
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Figure 105. Plot of Membership Function Versus Likelihood Ratio 
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VIII.        CONCLUSIONS 

A.     SUMMARY OF WORK 
In multisensor data fusion, data from multiple sensor systems are combined 

to improve performance and reliability of target detection and tracking. This topic 

has received considerable attention in the past few years in both military and civilian 

applications. 

The research presented in this dissertation has focused on the use of fuzzy 

techniques to solve the problems of measurement-to-track association, track-to-track- 

association, track fusion, and decision fusion in distributed multisensor-multitarget 

(MSMT) environments with overlapping sensor coverage. Four major contributions 

to the field of multisensor data fusion have been made in this dissertation as listed 

below. 

(1) A technique for nearest-neighbor fuzzy measurement-to-track association 

has been proposed. This approach is based on the fuzzy clustering means algorithm 

and is suitable for sensors having different types of attributes. Unlike other fuzzy 

measurement-to-track association approaches reported in the literature [Ref. 58], 

which use membership functions based on heuristic rules, the proposed approach 

determines the membership functions directly from the data, which are easy to im- 

plement and reasonably robust. The main advantages of the proposed approach are 

simplicity and scalability in the sense that it can be extended to large number of tar- 

gets without performance degradation. Monte Carlo simulations have been conducted 

to evaluate and compare the performance of the proposed approach with other fuzzy 

approaches [Ref. 58]. In terms of performance and computational complexity, the 

results compare favorably to other approaches. For example, the approach of Singh 

and Bailey [Ref. 58] performed 80% perfect correlation for the case of two crossing 

targets with certain noise levels while the proposed approach performed 100% for the 

same example. Furthermore, using the conventional fuzzy association techniques, the 

required computations to associate six observations to six targets, assuming three 
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attributes and five linguistic variables, is of the order of 2 x 107 IF THEN rules while 

the proposed approach requires the computation of a similarity matrix of dimension 

6 x 6 to solve the same problem. The results enable us to conclude that the proposed 

approach performs better and requires fewer computations than the existing fuzzy 

measurements-to-track association techniques. 

(2) A new all-neighbor fuzzy data association approach has been developed. 

Based on extensive literature search, this is the first all-neighbor fuzzy measurement- 

to-track association approach reported in the literature. Unlike other fuzzy data asso- 

ciation techniques which assign only one observation to each existing track according 

to a suitable similarity measure, the proposed approach incorporates all observations 

to update the state estimate of an existing track. The membership functions are com- 

puted on the basis of the innovations. Monte Carlo simulations have been conducted 

on tracking problems with four attributes, and the performance has been compared 

to that of the nearest-neighbor standard filter. The results showed the effectiveness of 

the proposed all-neighbor association approach and the feasibility of using fuzzy logic 

techniques in all-neighbor association. The results are preliminary but encouraging. 

(3) A novel fuzzy clustering approach, employing track-to-track association, 

and a fuzzy superclustering approach, employing track fusion, in multisensor-multitarget 

multiple-attribute environment with overlapping sensor coverage has been proposed. 

Unlike fuzzy track-to-track association techniques in which the membership functions 

are chosen heuristically, data adaptive membership functions are generated using the 

fuzzy clustering means algorithm in the proposed approach. 

Global association decisions based on the fusion of different association rules 

have been proposed. A new fuzzy track-to-track association rule based on the concept 

of the cross-resolution has also been proposed. Fuzzy track-to-track association and 

track of different dimensionality estimates have been addressed. Different track-to- 

track association techniques, including classical techniques, are compared in terms of 

association accuracy. Application of the proposed fuzzy approach in over-the-horizon 

radar is also presented. Computer simulations together with applications to marine 
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traffic data obtained from the United States Coast Guard Vessel Traffic Services 

System demonstrate the effectiveness of the proposed approach. In some cases, it 

has been shown that the fused track may be less accurate than the most accurate 

track. This is the case when the sensor accuracies vary widely. Another advantage 

of the proposed track-to-track association approach is that, by assigning a degree of 

membership to each attribute, it reduces the computational complexity by a factor 

of na, where na is the total number of attributes. It also reduces the sensitivity of 

the fuzzy association decision to individual attribute fluctuations. When the sensor 

accuracies vary widely, the superior track is determined automatically on the basis of 

sensor resolutions and the estimated tracks. The proposed clustering technique can 

treat the tracks either pairwise or all at once in order to reduce the conflict situations. 

(4) Optimum fusion rules for combining sensor decisions in multiple-sensor 

distributed detection systems have been investigated. For the case of exponentially 

distributed observations, depending on the operating point on the global receiver op- 

erating characteristic and on the parameter of the exponential distribution, it has 

been shown that the suitable fusion rule is an AND or an OR combiner for a low 

or a high global false alarm probability, respectively. Furthermore, receiver operat- 

ing characteristics of the AND and the OR combiners may not intersect at all. A 

fuzzy (soft) decision approach for multisensor distributed detection systems has been 

proposed. The proposed approach does not require prior statistical knowledge of the 

sensing process. An optimum fusion rule using the proposed fuzzy decision approach 

is derived based on the Neyman-Pearson criterion, which maximizes the global detec- 

tion probability for a given global false alarm probability. Monte Carlo simulations 

were conducted to compare the performance of centralized, decentralized, and the 

proposed soft decision approaches. It has been shown that the proposed approach 

yields an improved detection probability over a comparable hard-decision system, 

thus reducing the performance loss between the centralized and the decentralized 

approaches. This result characterizes performance trade-off between the centralized, 

decentralized, and soft decision approaches in terms of the detection performance and 
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the communication bandwidth requirements. 

B.     SUGGESTIONS FOR FUTURE RESEARCH 

For future research and extensions of the work undertaken in this dissertation, 

the following suggestions are made. 

Software implementation of track-to-track association and track fusion algo- 

rithms to associate and fuse tracks in real time for practical distributed multisensor- 

multitarget environments, such as distributed multisensor multi-vessel scenarios in 

the harbors and waterways, distrubuted multisensor multi-vehicle scenarios in the 

battlefield and distributed multisensor multi-aircraft scenarios in the space, may be 

considered. 

Development of fuzzy techniques for measurement-to-measurement association 

for track initiation, track confirmation, and track deletion is an important extension. 

A track is initiated when an observation is not assigned to any of the existing tracks. 

A track is confirmed when successive observations are associated to the same initiated 

track. A track is deleted based on consecutive misses of observations. 

Development of fuzzy clustering and superclustering techniques to solve the 

problems of track-to-track association and track fusion in case of multisensor-multitarget 

environment with clutter environment is of interest. The relation between the mem- 

bership functions and the clutter models should also be addressed. 

The problem of identity fusion, which is the last function of Level 1 processing 

in the data fusion model, needs to be addressed. Identity fusion seeks to fuse iden- 

tity information about the observed targets. Identity fusion requires classification of 

targets (e.g., the type of aircraft). 

Techniques for optimal assignment of observations to tracks for the proposed 

data association approach presented in Chapter IV need to be developed. The pro- 

posed approach in Chapter IV, assigns observations into tracks in a sequential nearest- 

neighbor association. However, the performance of the proposed approach can be 

further improved by choosing an assignment between observations and tracks that 
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maximizes the sum of the degrees of membership. 

Detailed analysis of the effect of the fuzzification constant, m, of the fuzzy 

clustering means algorithm on track-to-track association and track fusion for different 

sensor accuracies in different scenarios and applications is an important problem. This 

analysis must be carried out for each individual attribute. 
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APPENDIX A. REVIEW OF KALMAN FILTER 
EQUATIONS 

The Kaiman filter is a recursive least squares estimator in discrete time dy- 

namic systems [Ref. 78, 84]. The target motion model is assumed to be 

x(fc + 1) = F x(fc) + G(fc) u(fc) + g(k), (A.l) 

where x(fc) is an n dimensional state vector at time instant k, F is a state transition 

matrix, G(fc) is a constant matrix sequence, u(fc) is a deterministic input, and g(fc) 

is a noise input sequence (plant noise). The measurement equation is modeled as 

y(fc) = H(fc)x(AO+w(*), (A.2) 

where y(k) is an M dimensional measurement vector, H(fc) is an M x n measurement 

matrix, and w(fc) is a measurement noise sequence. The plant noise and the measure- 

ment noise sequences are assumed to be uncorrelated zero mean Gaussian sequences 

with the following covariance structure 

Q(fc) = Cov(g(k)), (A.3) 

C(Jfe) = Cov(w(k)) (A.4) 

The state vector x is the quantity to be estimated such that the estimation mean- 

squared error is minimum. The estimation error vector is defined as 

e(fc) = E{[x(k) - *(k)][x(*) - *(*)]'}, (A.5) 

where x is an estimate of x. The weighted least squares estimate and the covariance 

matrix are predicted at the next measurement time as follows 

±(k + 1 | k) = F(Jfe)x(Jfe | Jfe) + G(Jfe)u(fc), (A.6) 

P(Jfe + 1 | k) = F(k)P{k | k)F'{k) + Qfe. (A.7) 
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The estimate and the covariance matrix are then updated based on the new measure- 

ment: 

x(Jfc + l|fc + l)=x(fc + l \k) + K{k + l)y{k + l), (A-8) 

P(Jfe + 1 | k + 1) = [I - K{k + l)H(fc + l)]P(fc + 1 | k), (A.9) 

where the Kaiman filter gain K(k) and the innovation (the residual error) y(fc + 1) 

are given by 

K(fc + 1) = P(fc +1 | k)H(k + l)'[H(fc + l)P(fe +1 | k)H{k + 1)' + Cfc+i]"1, (A.10) 

y(K + 1) = y(K + 1) - H(fc + l)x(Ä + 1 | k). (A.ll) 

The covariance matrix of the residual error is given by 

S(fe + 1) = H(Jfc + l)P(fc + 1 | k)H(k + 1)' + Cifc+i. (A.12) 
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APPENDIX B. DERIVATION OF THE 
COVARIANCE UPDATE EQUATION IN THE 

PROBABILISTIC DATA ASSOCIATION FILTER 

Let us denote the set of valid observations within the gate of a given target as 

y(k) = {yi(k)},i = l,2,...,nv, (B.l) 

where nv is the total number of validated observations, and the set of measurements 

are denoted as 

yk = {y(j)},j = l,2,...,k, (B.2) 

where k represents the index of the time interval. The state estimate is assumed to 

be Gaussian distributed, i.e., 

P{x(fc) | y*-1} = N[x(k); x(fc \k-l),P(k\k- 1)]. (B.3) 

We define the event that an observation is originated from the target at time k by 

9i(k), i = 1,2,...., nv and the event that none of the observations at time k is originated 

from the target by 6o(k) with probabilities [Ref. 7, 32, 35] 

ßiik) = P{et(k) | yfc},* = 0,1, ,nv. (B.4) 

According to the previous assumptions, all these events are mutually exclusive and 

exhaustive, i.e., 

Eä(*) = 1- (B.5) 

The state update equation of the probabilistic data association filter is 

x(k | k) = ±{k | k - 1) + W(fc)y(fc)> (B-6) 

where 

m=y(k)-f(k\k-l), (B.7) 
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is the combined innovation, given by 
nv 

y(k) = j:ßi(k)(yi(k)-yj(k\k-i)), (B.8) 
i=0 

where fj(k) is the predicted measurement of target j at time instant k. The covariance 

matrix of the state update equation is given by 

P(ifc|Jfe)   =   E{{x(k)-x(k\k)][x(k)-±(k\k)]'\Yk} 

=   f>{[x(*0 -*(* | *)][x(fc) -x(* | *)]' | ei(k),Yk}ßi(k) 
i=0 

=   P1 + P2 + P3 + P4- (B.9) 

The first term in Equation B.9 is 

Px   =   Y,E{x(k)x!(k)\6i(k),Yk}ßi{k) 
t=0 

= £[£{*«(* I k)*i(k I*) + P*(* I *)]Ä-(*), (B.io) 
1=0 

where 

Pt(k | k) = £{[x(fc) - *«(* | *)][x(*) - *(* I A:)]' | e{(k),Yk}. (B.ll) 

The conditional covariances are 

P0(k \k)   =   P(k\k-1) (B.12) 

Pi(k\k)   =   [I-W(k)H(k)]P{k\k-l),i = l,2,...,nv. (B.13) 

From Equations B.10 - B.13, we can write 
nv 

Px = ßo(k)P(k | k - 1) + [1 - ß0(k))P(k | *) + £Ä(fc)*i(A: I *)*J(* I *)•    (B-14) 
i=0 

The second term in Equation B.9 is 

P2   =   -±{k\k)YjE[x!{k)\ei{k),Yk]ßi{k) 
i=0 

=   -x(k | k)±'(k | it). (B.15) 

The third term, P3, is 

P3 = P'2. (B.16) 
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The last term, P4, is 

P4   =   ±{k\k)y!{k\k)YJßi{k) 
i=0 

=  x(k\k)±'(k\k) = -P2- (B.17) 

Substituting Equations B.10 and B.15 - B.17 into B.9 yields 

P(Jfe I k) = ßo{k)P(k I k - 1) + [1 - ßQ(k)]P(k I k) + P(fc), (B.18) 

where 
nv 

P(jfe) = £&(*)**(* I k%(k I fc) - ±i{k I *)*;(* I k). (B.19) 

Prom Equations III.16 - III.18, and B.19, P(k) can be rewritten as 

P(k) = w(fc)E A(*)y<(*)y{(*) - y«(*)y$(*)]W(*), (B.20) 
i=0 

where 

y*(*) = y<(*)-*i(*l*-i) (B-21) 

is the innovation due to observation i and target j at time instant k. 
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APPENDIX C. DERIVATION OF TRACK 
FUSION RELATIONSHIPS 

For simplicity, we assume that we have two scalar estimates, xx and x2, such 

that their fused estimate is 

xf = xi + a(x2 - £i), (C.l) 

where o is a weighting factor. The weighting factor is chosen such that the expected 

mean square error on the fused estimate is minimum [Ref. 3, 115]. The error of the 

fused estimate is defined as 

eXf = eXl + a(eX2 - eXl). (C.2) 

The variance of the error is then given by 

a\ = E{e2
Xf} = a\ + 2aE{eXleX2} - 2aa\ + a2 a], (C.3) 

where 

*? = £{£}, (°-4) 

4 - E{e2
X2h (C5) 

a2 = E{(eXleX2)
2} = a2 + a2 - 2E{eXleX2}. (C.6) 

The cross-correlation between the two estimate errors is defined as 

E{eXleX2} = P12. (C.7) 

Substituting Equations C.4 - C.7 into Equation C.3 yields 

o\ = (1 - 2a + a2) a2 + a2a\ + 2(o - a2)Pl2. (C.8) 

The optimum value of o in a mean square sense is obtained by setting 

M = o, (C.9) 
da 
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or 
.2    .    r,„J2 -2(1 - a)a\ + 2aa\ + 2(1 - 2a)Pl2 = 0. (CIO) 

The optimum value of a is then given by 

G=     2 2 „2       op    • (C-n) 

Substituting Equation C.ll into Equation C.l, the fused estimate will be 

*/ = *1 +     2 I?J Pop    (*2-*l). (C12) 
CTX + C72 — Z/12 

In the case of zero cross-correlation between the two estimates, i.e. Pi2 = 0, the fused 

estimate reduces to 

<A    , x     a|x! + o\x2 
xf = xi + -^TTM ~ *0 =    „2,^2    • (C-13) 

The result of Equation C.l3 can be easily derived for state vector estimates Xi and 

x2. In this case, all variances are replaced by covariances and the weighting factor 

a is replaced by a weighting matrix A. By replacing of by Pi, of by P2, 2Pi2 by 

P12 + P'x2, the resulting weighting matrix is 

A = [Px - P12][Pi + P2 - Pi2 - P[2}-1. (C.14) 

From Equations C.8 and C.ll, the error variance can be written as 

1 of + cr| - 2/^x2 

In the case of zero correlation, the resulting error variance is 

a*/= ai" oTT^I - oTT^f (c-16) 

For state vectors, the fused estimate and the error covariance with dependent esti- 

mation errors will be 

Xf = xx + (Pi - P12)(Pi + P2 - P12 - P'x,)-1^ - xi), (C.17) 

P = Pi - (Pi - Pi2)(Pi + P2 - Pi2 - PiaJ-^Pi - Pia)'. (C.18) 

In the case of zero cross correlation, the results are 

Xf = P2(Px + P,)-1*! + P!(Pi + P,)-1^, (C.19) 

P = P1(P1 + P2)-1P2. (C.20) 
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APPENDIX D. FUZZY SETS DEFINITIONS 
AND OPERATIONS 

1.      BASIC FUZZY SET DEFINITIONS 
In fuzzy sets theory, an object x can belong to a set A with a certain degree of 

membership. Let X be a set of objects, called the universe, with elements {x}. For 

a subset A of X, define a function 

HA(X) - (D.l) 
1,   if and only if  x € A 

0,   if and only if  x £ A 

If the function is allowed to take values in the real interval [0,1], A is called 

a fuzzy set, and IMA(X) is the grade of membership of x in A. The closer the value of 

the degree of membership to 1, the more the element x belongs to the fuzzy set A. 

The fuzzy set A is completely characterized by the set of ordered pairs 

A = {(xtfiA{x)) \x £ X}, (D.2) 

where AM (a;) is the degree of membership of the element x in the fuzzy set A. The 

determination of the membership function HA(X) to which input data belong to the 

fuzzy set A is called fuzzification. In many cases, it is convenient to express the 

membership function of a fuzzy subset of the real line in terms of a standard function. 

The standard functions have parameters which can be adjusted to describe a specified 

membership function. An example of a standard membership function is the sigmoid 

function defined as [Ref. 39]: 

AU (s; a, A 7) = ' 

0 

2[^]2 

if  x < a 

if  a < x < ß 

l-2[^]2   if  /?<*<7 

1 if  x > 7 , 

(D.3) 
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where a, ß, 7 are parameters of the membership function. 

When X is a finite set of n elements {arx, ,xn}, the fuzzy set A is expressed 

as 

A = /JLA(XI)/XI + VA(X2)/X2 +  + VA(Xn)/Xn, (D.4) 

or simply 

A = J2»A(xi)/xi. (D.5) 

When X is not finite, A is expressed as 

A=[IMA(X)/X, (D.6) 

where fx denotes the union of fuzzy degrees over the universe X. 

2.      BASIC FUZZY OPERATIONS 

For two fuzzy sets A and B, the following fuzzy set operations are defined [Ref. 

81]- [Ref. 83]: Two fuzzy sets A and B are said to be equal if 

1*A(X) = ßB{x) Vx e X. (D.7) 

The union of two fuzzy sets A and B is expressed as 

HAUB(X) = max(iJA(x), HB(X)), (
D

-
8

) 

where ^AUB(X) is the membership of Al)B. The intersection of two fuzzy sets A and 

B is expressed as 

PAT\B{X) = min(pA(x),tiB{x)), (D-9) 

where ßAnß{x) is the membership of A n B. 

The complement of a fuzzy set A, denoted by Ä, is defined by the membership 

function //^(x), where 
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ßÄ(x) = 1 - ixA{x) Vz e X. (D.10) 

A fuzzy set A is said to be included in B, i.e., A C B, iff 

M*) < M*) Vrc € X. (D.ll) 

The normalization of a fuzzy set, 7VOJ?M(^4), is defined by a membership 

function ^NORM(A)(^), where 

VNORM(A){X) = f    f u Va; € X (D.12) 

The dilation of a fuzzy set, DIL(A), is defined by a membership function 

VDIL{A){X), where 

to(A)W = M°-5VxeX (D.13) 

3.      FUZZY RULES 
Fuzzy rules deal with linguistic variables, for example, LOW, MEDIUM, HIGH, 

etc. The fuzzy rules and linguistic variables are usually represented in linguistic fuzzy 

tables. The linguistic variables are represented by their membership functions. The 

fuzzy rules depend on heuristic rules and have the following general form: 

IF (Features),       then (Class); 

or 

IF (Conditions),    then (Conclusions); 

The heuristic rules are based on common sense and not on mathematical for- 

mulations. For example, assume that there are three class of radar, namely, Radari, 

Radar2 and Radar3, identified by their pulse widths (PW) 
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PWi = 2 //sec 

PW2 = 6 /isec 

FW3 = 10   /isec . 

A possible heuristic rule to identify the three classes is: 

IF PW < 4, then Radar 1 

IF 4 < PW < 8,    then Radar 2. 

IF 8 < PW, then Radar 3 

4.      DEFUZZIFICATION METHODS 

Defuzzification process represents the opposite of fuzzification. It is a process 

of calculating a numerical value for a fuzzy variable, i.e., transformation (defuzzifica- 

tion) of fuzzy variables into non-fuzzy variables (crisp data). Defuzzification methods 

are based on heuristic rules. Two methods for defuzzification are widely used in fuzzy 

systems: 

a.      Maximum Membership Defuzzification 

This method chooses the action that corresponds to the maximum degree of 

membership, i.e., chooses the element xmax that has maximal degree of membership 

in the output fuzzy set A: 

f*A{Xmax) = mOXi<j<k   ßA{Xj)- (D-14) 

If there is more than one value with maximal degree, then the mean of these values is 

used. In this case, the method is called the mean of maxima method. The disadvan- 

tage of this simple defuzzification method is that it ignores the information in much 

of the membership function. 
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b.      Fuzzy Centroid Defuzzification 

This method chooses the center of gravity or the center of the area of the 

membership. The center of gravity is computed as the fuzzy centroid Ä defined as 

T        Zjj=l Kit1 A\xi) fr) -. r\ 
A = &,«,(*) ' (     ' 

Unlike the maximum membership defuzzification method, the fuzzy centroid 

defuzzification method uses all the information in the membership function. 
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APPENDIX E. DERIVATION OF FUZZY 
CLUSTERING MEANS ALGORITHM 

Let Jm : Mfc x R
cp -¥ R+ be the objective function [Ref. 43] 

fe=i *=i 

where 

U € Mfc (E.2) 

is a fuzzy c-partition of X, MfC is a fuzzy set, and 

v = (v1>v2j ,ve)€Ä* (E.3) 

where v, G R? is the cluster center, c is the number of clusters, Rp is a real p 

dimensional vector space, and R+ is the real interval (0, co]. The distance d is defined 

as any inner product induced norm on Rp, given by 

(d*)2=ll**-v*||2, (E.4) 

where m is a real number € [1, oo) and is called the weighting exponent, and xfc is a 

data point. Each distance between a cluster point xfc and a fuzzy cluster center Vj is 

weighted by the mth power of the corresponding membership. The goal of the fuzzy 

clustering algorithm is to determine the optimum degrees of membership ßik (Vi, k) 

and the optimum fuzzy cluster centers Vj (Vi) such that the objective function Jm is 

minimum [Ref. 43]. 

First, let v be fixed. Defining gm(V) = Jm(U, v), we have 

n     c 
minVeufc {9rn(V)} = minXJ(.Mfc{Y/Y,(»ik)m{dik)2}. (E.5) 

fc=l i=l 

By assuming that the columns of U are independent, Equation E.6 can be written as 

minVeMfc {ft»(U)} = i>*nUgM,e {E(/^)m(**)2}]- (E-6) 
fe=l i=l 
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It is required to minimize each term gmk, defined as 

9mk^k) = J2^ik)m{dik)\ (E.7) 
t=i 

under the constraint 

X>* = 1. (E.8) 

Thus each gmk has its Lagrangian 

Fk(X,uk) = J2(ßikr(dik)2 - X(£ntk - 1). (E.9) 
i=l t=l 

Setting the gradient with respect to A and /J, equal to zero yields 

F)Fu c 

■ör(A,u*) = (Ewb-i) = o, (E-io) 
dx »=1 

f^(A,u*) = [m{ßst)
m-\dstf - A] = 0 (E.ll) 

from which we can solve for 

m{dsty 

Using Equation E.ll, we obtain 

X>;t = £4)^4]^ = A^{D4-]^} = 1- (E.13) 
j=i j=i m ajt m j=i ajt 

Thus, 

(A)7^TJ = 1 _ (E.14) 

From Equations E.13 and E.14, we have 

V« = {l/E[l/(dit)2]1/(ra-1)}[l/Kt)T/(m"1). (E.15) 

which yields the optimal membership values 

^ ~ EL((i,WM)- (E-16) 
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Second, let U be fixed. By setting /im(v) = jm(U, v), we have 

Mv) = £ £(^)m(^)2 = £ £(^)m < x* " vif xfe - v, >, (E.17) 
fc=l t=l fc=l *=1 

where < .,. > is the norm-inducing inner product. Minimization of hm is uncon- 

strained over If*. For all unit vectors w € #c, the directional derivatives /I^(VJ;W) 

is set to be equal 0, i.e., 

h'J-vnw) = £(/**)m^(< xfc - v, - tw,xk -Vi-tw >)\t=o = 0, (E.18) 

i.e., 

Thus, 

*=i dt 

-2[E(m)m < xfc - Vi, w >] = 0 =< E(^)m(xfe - v«), w > Vw. (E.19) 

E(to)m(x.-vi) = 0, (E.20) 
fc=i 

which yields the optimal cluster centers 

v      ElUte*)"** Vi (E.21) 
ELi(w*)m 
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