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1. Executive Summary 

Bilinear Time-Frequency Analysis for Source Discrimination in 
Multisensor Array Processing 

Moeness Amin (PI) 

This report presents the results of the research work performed under the ONR 
funding, grant number N00014-98-1-0176 over the period of October 1st, 1998 to 
September 30th, 1999. The research project is titled "Bilinear Time-Frequency Analysis 
for Source Discrimination in Multisensor Array Processing." The research team members 
working on this grant at Villanova University consisted of: Professor Moeness Amin 
(Principle Investigator), Dr. Yimin Zhang (Postdoctoral Fellow), Mr. Weifeng Mu 
(Graduate Student), Mr. Govind Mandapati (Graduate Student), and Mr. Ce Zhang 
(Graduate Student). We have also collaborated with Prof. Miguel Lagunas (Spain), Dr. 
Salim Kayhan (Turkey), and Dr. Alex Gershman (Canada). We are pleased to report that 
the ONR research funding this year has produced five journal papers under review, three 
journal papers accepted, and ten conference papers, of a total of eighteen paper 
submissions. Copies of all papers are included in the appendix. 

The research efforts over 1998/1999 phase focused on nonstationary signals and 
the applications of time-frequency signal representations to multi-antenna receivers. We 
have clearly demonstrated, through analysis and simulations, the offerings of time- 
frequency distributions in solving key problems in sensor array processing, including 
direction finding, source discrimination, and blind signal recovery. Significant progress 
has been made in understanding how the time-frequency signatures of the signals 
impinging on an array of sensors can be utilized to improve array performance. 

The major contributions over the fiscal year ending September 30* 1999 are: 1) 
Regress analysis of eignestructure methods employing time-frequency distributions 
which has demonstrated their superiority over those used in conventional high resolution 
methods based on data covariance matrices, 2) Evaluating the performance of the spatial 
time-frequency distributions in low SNR and coherent signal environments, and 
introducing maximum likelihood techniques based on the sources' time-frequency 
signatures, 3) Identifying the role of time-frequency cross-terms in spatial signal 
processing, and presenting a prudent way to use those terms for enhanced performance, 
4) Providing a novel approach for incorporating the revolutionary power spectra into 
source discrimination and angle of arrival estimation, and examining their advantages 
over quadratic time-frequency distributions. We have also made significant advances in 
the solutions of the problem of suppressing nonstationary jammers in broadband signal 
environment, using both projection techniques and frequency diversity methods. In the 
following, we summarize the above key contributions, leaving the details to the appendix, 
which also includes other contributions we have made from the research funding of this 
project. 



1.1 Spatial Averaging of Time-Frequency Distribution for Source Separation 

Symmetric spatial averaging of spatial time-frequency distributions has been 
introduced. The spatial averaging of the spatial time-frequency distributions of the data 
across an antenna array removes the undesired effect of crossterms between the 
impinging signals. These terms reside along the off-diagonal entries of the source time- 
frequency distribution matrix, and consequently impede the source separation 
performance, which is based on pre-assumed diagonal matrix structure. Spatial averaging 
amounts to forming a spatial Hermitian Toeplitze matrix using the auto- and cross-time- 
frequency distributions of the data over one half of the array. This matrix is then added to 
the spatial matrix corresponding to the other half of the array. The desired effect of this 
averaging is reallocating the interaction between the source signals in the time-frequency 
domain from the off diagonal to the diagonal elements of the source TFD matrix. In this 
respect, cross-terms, due to their potential high values, are regarded as useful components 
that could be employed for improved performance. Without spatial-averaging, array 
performance is very sensitive to whether only auto-term or cross-term points or their mix 
are incorporated in the source separation procedure. With spatial averaging, this is no 
longer a concern, and as such, a major burden is using bilinear time-frequency 
distributions has been alleviated. 

1.2 Subspace Analysis of Spatial Time-Frequency Distribution Matrices 

Subspace analysis of spatial time-frequency distribution (STFD) matrices have 
been developed. It has been shown that for signals with clearly defined time-frequency 
signatures, such as FM signals, smaller estimation errors in the signal and noise 
subspaces can be achieved by using spatial time-frequency matrices over the subspace 
estimates obtained from using the data covariance matrix approach. This improvement in 
subspace estimation is the result of incorporating the time-frequency points along the 
instantaneous frequencies of the impinging signals on the array into the subspace 
estimation procedure. These points belong to autoterm regions of high power 
concentrations, and as such, when used in constructing STFDs, they provide high SNR 
matrices with improved eigen-decompositions. The advantages of STFD-based direction 
finding over traditional direction finding methods using data covariance matrices were 
demonstrated using the MUSIC algorithm. It was shown that the time-frequency MUSIC 
outperforms conventional MUSIC in the two situations of low SNR and closely spaced 
sources. Unlike conventional array processing techniques, which are nondiscriminatory, 
and must therefore spatially localize all signals incident on the array, the STFD-based 
array processing provides the flexibility of dealing with all signal arrivals, or a subset of 
them. In this respect, it does not suffer from the drawback of requiring higher number of 
sensors than sources. The ability to select fewer sources depends on the distinction of 
their time-frequency signatures from those of other source signals. The eigenstructure of 
the STFD matrix constructed from the time-frequency points that belong to the autoterm 
regions of a number of sources will only yield the signal subspace of these sources. It was 
shown that the maximum improvement in subspace estimation using STFD over data 
covariance matrices is achieved when constructing the STFD from only one source 
signal. 



1.3 Time-Frequency Maximum Likelihood Methods for Direction Finding 

We have introduced a novel time-frequency maximum likelihood (t-f ML) 
method for direction-of-arrival (DOA) estimation for non-stationary signals impinging on 
a multi-sensor array receiver. We have shown the superiority of this method over 
conventional maximum likelihood DOA estimation techniques. Time-frequency 
distributions localize the signal power in the time-frequency domain, and as such enhance 
the effective SNR, leading to improved DOA estimation. The localization of signals with 
different time-frequency signatures permits the division of the time-frequency domain 
into smaller regions; each contains smaller number of signals than those incident on the 
array. The reduction of the number of signals within different time-frequency regions not 
only reduces the required number of sensors, but also decreases the computational load in 
multi-dimensional optimizations. Compared to the recently proposed time-frequency 
MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent 
environments, without the need to perform any type of preprocessing that is subject to 
both array geometry and array aperture. 

1.4 Spatial evolutionary Spectrum for DOA Estimation and Blind Source 

Separation 

The evolutionary spectrum (ES) was introduced in the sixties by Priestly. This 
spectrum is based on the modeling of nonstationary signal as a collection of uncorrelated 
sinusoids with random time-varying amplitudes. The work in this area has lead to the 
generalization, estimation, and the linkage of ES to TFDs. For processes with restricted 
time-frequency correlation, referred to as underspread nonstationary random processes, it 
has already been shown that major definitions of time-varying spectra, such as the 
generalized Wigner-Ville spectrum and generalized evolutionary spectrum, yield 
effectively equivalent results. We have successfully combined the concepts of the 
evolutionary spectrum and array processing. The nonstationary signals received by each 
sensor of the array will be modeled as a sum of complex sinusoids with time-varying 
amplitudes. These amplitudes carry information about the direction of arrival. The time- 
varying amplitudes using linear estimators based on mean-squared error minimization are 
first estimated. These estimates are then used to generate the time-varying cross-power 
distributions between the data across the array. Proceeding similar to spatial joint- 
variable distributions, the time-varying cross-power estimates computed at high SNR 
time-frequency points are used for angle estimation. Further, we have shown that the 
spatial evolutionary spectrum can be directly used for blind source separation. Due to 
their attractive cross-terms properties, the spatial evolutionary spectrum performance for 
direction finding and signal recovery compares and potentially exceeds that of TFDs. The 
same argument applies to positive time-frequency distributions. Next year, we aim to 
develop positive spatial joint-distributions and examine the offering of positive spectra in 
angle estimations. 
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ABSTRACT 

This paper presents a novel approach based on time-frequency distributions (TFDs) for separating 
signals received by a multiple antenna array. This approach provides a significant improvement in 
performance over the recently introduced spatial time-frequency distributions, specifically for 
signals with close or highly overlapping time-frequency signatures. In this approach, symmetric 
spatial averaging of the time-frequency distributions of the sensor data is performed at multiple 
time-frequency points. This averaging restores the realness property and the diagonal structure of 
the source TFD matrix necessary for source separation. With symmetric spatial averaging, 
crossterms move from their off-diagonal positions in the source TFD matrix to become part of the 
matrix diagonal entries. It is shown that the proposed approach yields improved performance over 
the case when no spatial averaging is performed. Further, we demonstrate that, in the context of 
source separation, the spatially-averaged Wigner-Ville distribution outperforms the combined 
spatial-time-frequency averaged distributions, such as the one obtained by using the Choi- 
Williams distribution. Simulation examples involving the separation of two sources with close AM 
and FM modulations are presented. 
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I.       INTRODUCTION 

Recently, time-frequency distributions (TFD) have been employed for direction finding and 

blind source separation problems in sensor array processing [1-5]. The spatial time-frequency 

distributions (STFDs) were introduced in [1] and represented by a spatial matrix whose elements 

are the auto- and cross-time-frequency distributions of the data received at the different array 

sensors. 

The application of STFDs to separating sources with distinct time-frequency (t-f) signatures is 

presented in [2]. In this reference, it is shown that the source TFD matrix, whose elements are the 

auto- and cross-TFD of the source signals, and the sensor data STFD have the same relationship 

as the one between the source and the data correlation matrices. This relationship is defined by the 

mixing, or the array manifold matrix. The steps applied in blind source separation based on second 

order statistics (the SOBI technique) outlined in [9] could therefore be used in the time-frequency 

formulation of the problem. The spatial time-frequency distribution matrices evaluated at several 

time-frequency points are incorporated into a joint-diagonalization technique based on generalized 

Jacobi transform to estimate the mixing matrix. This matrix is then used, through pseudo matrix 

inversion, to estimate the source signals up to a multiplicative complex scalar and the order of the 

sources. The general theory of solving blind source separation problems using spatial arbitrary 

joint-variable distributions, including those of time and frequency, is given in [3]. In [4], the two 

arbitrary variables are chosen as the time-lag and frequency-lag, and the source separation was 

performed using spatial ambiguity functions. The use of STFDs as an eigenstructure-based 

approach for direction finding is given in [5], where the time-frequency MUSIC technique is 

proposed to estimate the signal and noise subspaces. 

Although blind source separations based on time-frequency distribution outperform the SOBI 

method, specifically under time-varying environments, the fundamental problem with the bilinear 

time-frequency approach is the need for the incorporation of STFD matrices computed only at 

source autoterm points. Crossterms impede performance, as they reside on the off-diagonal 



elements of the source TFD matrix, and as such, violate its diagonal structure necessary for source 

separation. Identification of autoterm regions are often difficult for a large class of multi- 

component nonstationary signals, and even if properly identified, due to the complexity of the 

impinging signal and the use of finite data records, autoterm regions cannot be entirely free from 

crossterm mainlobe or/and sidelobe contamination. 

In this paper, we overcome the drawbacks of the recently introduced approach for source 

separation based on time-frequency distributions [2]. By performing symmetric spatial averaging 

on the spatial time-frequency distribution matrices at any given time-frequency point, we set the 

off-diagonal elements of the corresponding source TFD matrix to zero. This is achieved by moving 

the crossterms from their off-diagonal positions to join the autoterms as diagonal entries of the 

source TFD matrix. In this respect, performance of the source separation technique becomes much 

less dependent on the selection of the time-frequency points at which the STFD matrices are 

computed. Moreover, due to their potential high values, specifically in the Wigner-Ville 

distribution, the presence of the crossterms along the matrix diagonal can increase the effective 

signal-to-noise ratio (SNR), and thus be used for improved performance. It is shown that the 

symmetric spatially-averaged STFDs outperforms the case where no spatial averaging is 

performed, even when only autoterm points are involved in both cases. 

Symmetric spatial averaging is a simple and well-known technique in conventional array 

processing [6]. It employs additional array sensors to reduce cross-correlation in coherent and 

correlated signal environments, and thereby permits proper angle-of-arrival (AOA) estimations 

and source separations. In this paper, we show that spatial averaging plays a key role in the 

underlying TFD-based source separation problem and its application leads to matrix 

diagonalization and crossterm mitigation. Spatial averaging gives robustness to time-frequency 

point selections and yields to improved performance over other TFD-based techniques, specifically 

for sources whose signatures are closely separated in the time-frequency domain. 

The restoration of the diagonal structure of the source TFD is only part of the problem. Source 

separation using spatially-averaged TFD evaluated at a single (t, f) point can still lead to noisy and 

non-unique results. Since the power distribution of the signals impinging on the array varies over 



the time-frequency plane, then different (t, f) points may exhibit different SNRs. The main two 

advantages of incorporating several spatially-averaged TFD matrices evaluated at different time- 

frequency points into a joint-diagonalization scheme are to avoid having degenerate eigenvalues 

and to reduce the possibility of choosing a point with high noise contamination. 

It is noted that, unlike the method in [2], the proposed approach requires the information on the 

array manifold. In this case, conventional AOA finding methods, such as the maximum likelihood 

[11] and MUSIC [12] techniques, can also be used to estimate the mixing matrix, and further to 

separate the source signals. The advantage of using source separation approaches over the 

conventional AOA finding methods for known array geometry and manifold lies in the fact that the 

proposed method is similar to ESPRIT [13], in the sense that both methods do not require angular 

search [14]. 

This paper is organized as follows. In Section II, the source separation approach based on 

spatial time-frequency distribution is briefly summarized. In Section III, we introduce the spatially 

averaged time-frequency distributions, and discuss the difference between spatial averaging and 

kernel methods in handling the crossterm problem. Simulation results demonstrating the usefulness 

of the proposed technique are given in Section IV. 

II.      SOURCE SEPARATION BASED ON SPATIAL TIME-FREQUENCY 

DISTRIBUTIONS 

A. Spatial Time-Frequency Distributions 

In many practical situations, the data vector x(t) for an JV-element array follows an 

instantaneous mixture model and is given by 

x(0 = y(0+n(0 = As(0+n(f), (1) 

where x(t)=[x0(t), ..., xNA(t)]T is the data snapshot vector at time t. The vector s(t)=[si(t), ..., 

sn(t)] contains n source signals at the same time, and n(f) is the additive noise. This model is 

commonly used in the field of narrowband array processing. The vector y{t)=\yo{t), ..., yN-i(t)f 

contains the noise-free array output. The mixing matrix A is the transfer function between the 



source signals and the data at the array sensors. We assume that the mixing matrix A has full 

column rank. 

The source signal vector s(t) is assumed to be a nonstationary multivariate process with 

Rss^^Z^+iV'co T^TU 
(2) 

where superscript H denotes the conjugate transpose of a matrix or a vector. In reference [2], it is 

assumed that Rs = diag[rn(r),..., rnn(r)], where diag[.] is the diagonal matrix formed with the 

1 T 

elements   of  its   vector   valued   argument,   and    rü(r) = lim — J]sj(t + T)s*(t)    denotes   the 

autocorrelation of Sj(t). This assumption implies that the components s,{t), \<i<n are mutually 

uncorrelated. However, in our proposed method, this assumption is no longer necessary. 

The additive noise n(t) is modeled as a stationary, temporally white, zero-mean complex 

random process independent of the source signals. For simplicity, we also require n(?) to be 

spatially white, i.e., 

E[n(t + r)nH(t)] = CT2
nS(T)l (3) 

where 5{t) is the Kronecker delta and I denotes the identity matrix. Since the signal power and 

the signal ordering are indeterminable in source separations [3], we simplify the problem by 

treating the source signals as if they have unit power. Accordingly 

R*=I and R^ = lim ^£y(0y"(0 = AA" . (4) 

The discrete-time form of Cohen's class of TFD for signal x(t) is given by [7] 
00 00 

£»('./)= Z  ^&(m,l)x(t + m+l)x*(t + m-l)e-j4'rfl (5) 
?=-oo m=-oo 

where t and / represent the time index and the frequency index, respectively. The kernel <f)(m,l) 

characterizes the TFD and is a function of both the time and lag variables. The cross-TFD of two 

signals x, {t) and xj (t) is defined by [7] 
00 CO 

DXiX.(t,f) - X  5>(m,/);c,.(f + m + l)x](t + m-l)e-J4*fl (6) 
/=—oo m=-oo 



One possible definition of spatial time-frequency distribution (STFD) is given in [2] and 

incorporates both equations (5) and (6), 
CO CO 

Dn(f,/)= £ J^<f>(m,l)x(t + m + l)xH(t + m-l)e-j4afl (7) 
/=-com=-°o 

where [D„(f,/)],.._,= £>^(f,/), for i, j=Q, ..., JV-1. It is shown in the next section that other 

forms of STFD can be more useful in the context of source separation. Under the linear data 

model of Eq. (1), and assuming noise-free environment, the STFD matrix in (7) takes the 

following simple structure 

Dxx(t,f) = ADss(t,f)A
H (8) 

where Dss(t,f) is the signal TFD matrix whose entries are the auto- and cross-TFDs of the sources. 

Eq. (8) is similar to the formula that is commonly used in conventional blind source separation and 

direction-of-arrival (DOA) estimation problems [8,9], relating the signal correlation matrix to the 

data spatial correlation matrix. If D^t,J) is a full-rank matrix, the two subspaces spanned by the 

principle eigenvectors of Dxx(t,f) and the columns of A become identical. In this case, directional 

finding techniques based on eigenstructures can be applied. If D^f, f) is diagonal, i.e., the signal 

cross-TFDs at the time-frequency point (t, f) are zeros, the mixture matrix and the signal 

waveforms can be recovered using blind source separation methods [1,2]. 

B. Source Separation based on Spatial Time-Frequency Distributions 

The source separation algorithm based on spatial time-frequency distributions is an essential 

part of the proposed method. The algorithm is given in details in reference [2] and summarized 

below. 

The first step is the whitening of the signal part y(f) of the observation. This is achieved by 

applying a whitening matrix W to y(f), i.e., mnxN matrix satisfying: 

lirn^YWy(Oy"(f)W" = WRW" = WAA" W" =1. (9) 
1    t=\ 

WA is an n x n unitary matrix U, and matrix A can be written as 

A = W#U (10) 

10 



where superscript # denotes pseudo-inverse. The whitened process z(?)=Wx(0 still obeys a linear 

model, 

z(0 = Wx(f) = W[As(0 + n(0] = Us(f) + Wn(0. (11) 

By pre- and post-multiplying the STFD matrices DM (t, f) by W, we obtain 

Dzz(f,/) = WDxx(f,/)W
w (12) 

which is, in essence, the STFD of the whitened data vector z(t). From the definitions of W and U, 

Dm<t,f) = UDm(t,f)V. (13) 

Equation (13) shows that if D^ (t,f) is diagonal, then any whitened data STFD matrix is diagonal 

in the basis of the columns of the matrix U, and the eigenvalues of DK(f,/) are the diagonal 

entries of Dffi (?,/). An estimate Ü of the unitary matrix U may be obtained as a signal subspace 

of a whitened STFD matrix evaluated at a time-frequency point corresponding to the signal 

autoterm. The source signals can then be estimated as s(t) = UWx(f), and the mixing matrix A is 

estimated by A = W#U. 

Although the unitary matrix can be obtained from a single time-frequency point, STFDs 

corresponding to different (t, f) points should be incorporated, so as to reduce the possibility of 

having degenerate eigenvalues and subsequently non-unique solutions. The joint-diagonalization 

(JD) scheme can be used to incorporate multiple time-frequency points [2]. This scheme forms K 

STFD matrices {Dn(f,.,/)) |i=l,...,K.) at a set of preferable K (t, f ) autoterm points. The 

unitary matrix Ü is then obtained as the joint diagonalizer of the set {DB (?,,/)) | i = 1,..., K). 

III.    SPATIAL AVERAGING TIME-FREQUENCY DISTRIBUTIONS 

A. Spatial Averaging Methods 

Symmetric spatial averaging method was introduced by Pillai [6] to restore the full-rank 

property of the signal covariance matrix in the presence of coherent signals. Unlike other spatial 

smoothing methods [15-18], which only restore the full rank property of the mixing matrix when 

the impinging signals are coherent, the symmetric spatial averaging method enforces the diagonal 

11 



structure of the signal correlation matrix. This diagonal matrix property is essential to perform 

source separation, as previously discussed. Here, we present the role of spatial averaging in the 

context of TFD analysis, and propose signal separation using joint diagonalization based on spatial 

averaging of spatial TFD matrices. 

The basic idea of symmetric spatial averaging is to use a symmetric subarray to obtain an 

averaged covariance matrix, or in the underlying problem, an averaged STFD matrix, with the off- 

diagonal elements set to zero. 

Without loss of generality, we consider a simple example of n=2, i.e., there are only two 

sources, si(t) and s2(t). The result is generally true for n sources and N sensors, as long as n<N. 

By ignoring the effect of noise, the received signal at the i-th array sensor (i= 0, 1, 2, ..., AM) is 

represented by 

x,(t) = xf\t) + xj2\t) = Sl (t)e~jd^ + s2(t)e-jd^ (14) 

where ©*=27isin<j)tA, (k =1,2) is the spatial radian frequency, fa is the angle-of-arrival, X is the RF 

wavelength, and dt is the distance between 0-th and i-th array sensors. The cross-TFD ofx^t) and 

Xj(t), assuming uniform linear array, is 

% C /) = £<.>,<„ (', /) + D        (t, f) + D        (t, f) + D        (t, f) 

D , (f,/) + D At,f)e-jd>^-^ 
4iJi 

-Kdj-d.)^ 

+ Z>  , (f,/) + D     (t,f)ejd<^-^ -j(di-d,)m1 
(15) 

Due to the presence of the cross-terms (second term in each bracket in (15)), the TFD matrix 

Dxx(t,f) does not provide the proper information to carry out source separations. 

The auto- and cross-TFD of the datax0(0 and *,■(*), i= 0, 1, 2, ..., AM, is 

DAt,f) = Dm(t,f) + D     (t,f) 
s.s '1J1 

ejd^ + Dm(t,f) + Dm(t,f) 
_      ,S2,52 

oidiai (16) 

where we used the sensor receiving x0(t) as the reference sensor and set J0=0. Denote 
bi = DslSl (t, f) + DVi {t, f) and bx = Ds^ (t,f) + DSSi (t, f). The values of bx and b2 are generally 

complex. If bx and b2 are real, then the Hermitian Toeplitz spatial time-frequency matrix 

12 



D„(r,/): 

Dx^(t,f)     DXoXi(t,f) Dx ,(',/) 

.(',/) (17) 

/>;*., c./> D;oXNjt,f) ..: z^,/) 

generated from the cross-TFD D    (*,/), Ö    (t,f),..., ^>VAr_, (/>/) between the data samples at 

the reference sensor and those at other sensors of the array can be expressed as [19] 

Dxx(t,f) = ADss(t,f)A
H (18) 

where A is a Vandermonde matrix, and 

Bm(t,f) = diag[bl   b2] (19) 

is the corresponding source TFD matrix. Note that Dxx(?,/) has a different structure from that of 

the STFD matrix defined in (7), and was used in reference [2] for blind source separation. Clearly, 

(18) has the same form as (8), but Dss (t,f) here is diagonal, even if the selected (tf) point 

corresponds to a crossterm. 

In the case of complex signal waveforms, the realness and the diagonal structure of Dss (t,f) 

can be restored by spatial averaging. We add N-l array sensors symmetrically about the reference 

point, as shown in Fig.l. The received signal at i-th sensor of the new set is, 

x_,(t) = x(»(t) + x™(t) = sx{t)eid^ + s2(t)eJd'^ 

The new cross-TFD of x0(f) and x,-(f) is, 

(20) 

D x.{t,f) = D     (f,/) + D     (t,f) e-jfa + D     (t,f) + D_ (t,f) ?-Jdi<»2 

The spatial averaging of (16) and (21) is given by 

D%(*.f) = t>Vl (*,/) + Dl^ (t,f)}/2 = cf»" + c2e
jd> a>2 

(21) 

(22) 

where 

c, =JDVia,/) + Re(Z)Via,/)),      c2=DS2Si(t,f) + Rc{DSiS2(t,f)). 

Since the terms in the brackets in (21) are all real, the matrix formed from the TFDs (22) 

D%\t,f)        D%(t,f)      .»   D%-l\t,f) 

D%\t,f)       Dx°\t,f)     .-   D%-*>it,f) 
D„(f,/) = 

D (N-\y (Af-2)*/ (t,f)   D£-"(t,f) i(0) 
D™(t,f) 

(23) 

13 



is Hermitian and Toeplitz. This matrix is referred to as the spatially-averaged TFD (SATFD) 

matrix. Similar to the real TFD case, in the noise-free environment, the SATFD matrix in (23) can 

be expressed as 

D„(f,/) = ADIiA" (24) 

where 

f)ss{t,f) = diag[c,    c2]. (25) 

The off-diagonal elements of the Dss(t,f) are zeros, where as the matrix diagonal entries are now 

made up of both autoterms and crossterms of the impinging source signals. By enforcing the 

diagonal structure of the source TFD matrix Dss0,/), spatial averaging of the Hermitian Toeplitz 

STFD matrices extends the validity of the TFD-based signal separation in the presence of cross- 

TFDs. 

The steps for source separation used in [2] and summarized in Section II can be applied to the 

SATFD Dn(f,/) instead of the STFD Dn(f,/). With spatial averaging, the incorporation of 

STFDs at only autoterm points into the joint-diagonalization scheme is no longer crucial to 

achieve good performance. 

B. Comparison between spatial averaging and kernel methods 

There are two sources of crossterms in the underlying source separation problem. The first type 

are the crossterms that are the results of the interactions between the components of the same 

source signal. Whether we use the STFD defined in (7) or in (17), those crossterms are not 

harmful to the blind source separation problem, since they always reside, along with the autoterms, 

on the main diagonal of the source TFD matrix. The other type of crossterms are those generated 

from the interactions between two signal components belonging to two different sources. These 

crossterms are associated with cross-TFDs of the source signals and, at any given time-frequency 

point, they constitute the off-diagonal entries of the source TFD matrices. The crossterms 

generated from the data cross-TFDs violate the basic assumption in the problem of source 

separation regarding the diagonal structure of the source TFD matrix. We must therefore select 

the t-f points that belong to autoterm regions where crossterm contributions are at minimum. 
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However, the selection of autoterm points is often difficult in the absence of a priori information 

of the source signals, specifically for low SNR or when the signals have highly overlapping time- 

frequency signatures. The later case can be encountered in radar echoes and acoustic signal 

processing. 

The use of smoothing time-frequency kernel for crossterm reduction is a candidate solution of 

the above problem. The main function of this kernel in the context of source separation is to 

prevent the selection and incorporation of crossterm points in the joint-diagonalization scheme, as 

well as to reduce the contribution of crossterms at selected autoterm points. In essence, the 

fundamental role of the t-f kernel is to make the source TFD matrices as close to a diagonal 

structure as possible. The t-f kernel can be applied to both forms of STFDs in (7) and (23). It is 

noteworthy that the smoothing kernel does not distinguish between the aforementioned two types 

of crossterms, and accordingly it reduces all entries of the source TFD matrix, including the 

diagonal elements. 

The problem with the smoothing kernel is fourfold. First, for sources with closely separated 

time-frequency signatures, the effectiveness of the smoothing kernel in reducing crossterms is 

highly impaired. Second, reduction of crossterms depends on their time-frequency locations, 

specially when fixed shape kernels are used. For example, t-f kernels satisfying the marginal 

properties are not suitable for removing the crossterms which lie on the time-lag and frequency-lag 

axes in the ambiguity domain. Third, depending on the employed t-f kernel, part or all of the 

crossterms may be displaced to mount on the selected autoterm points. The situation can make the 

source TFD matrix to further deviate from a diagonal structure, cause performance deterioration 

from the case when no smoothing is applied. We refer to this undesired property as the smoothing 

problem. Fourth, since source separation is often performed incorporating a finite number of data 

samples, the intrusion of crossterms on autoterm regions cannot be prevented or entirely removed. 

This is because the window spreads out the crossterms in the time-frequency domain so that the 

mainlobe or/and the sidelobes of the crossterms are deemed to overlap with the signal autoterms. 

We refer to this undesired property as the leakage problem in STFDs. In addition to the above 

drawbacks, the t-f kernel ignores the fact that the first type of crossterms need not be smoothed, 

as its appearance along the diagonal elements can improve the effective signal to noise ratio. 
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The spatial averaging of the STFD defined in (23) at a given (t, f) point does not smooth or 

reduce the crossterms at that point, but rather move them from their residence on the off-diagonal 

matrix entries to be part of the matrix diagonal elements. The other part represents the 

contribution of the autoterms at the same point. Therefore, not only we are able to set the off- 

diagonal elements of the source TFD matrix to zeros, but also we can improve performance by 

selecting the (tj) points of peak values, irrespective of whether these points belong to autoterm or 

crossterm regions. 

IV.    PERFORMANCE EVALUATION 

A. Performance index 

We use a slightly modified version of the performance index applied in [2] to evaluate the 

performance of the proposed source separation technique. The estimate of the source signal vector 

is computed by applying the pseudo-inverse of the estimated mixing matrix A to the received 

signal vector x(t), i.e., 

s(0 = Ä#x(0 = Ä#As(?) + Ä#n(0 (26) 

where A = W#Ü. We stress that in general, this procedure is not optimal for recovering the source 

signals based on an estimate A . For large enough sample size, matrix A should be close to the 

true one A, so that A*A well approximates the identity matrix. We normalize matrix A by 

Ae = A diagonal(A# A) (27) 

where diagonal(F) denotes the matrix formed by the diagonal elements of F. As such, the diagonal 

elements of AeA become exactly one, giving more meaning to the performance index 

'« <A*A)p, (28) 

which defines the interference-to-signal ratio (ISR). Thus, Ipq measures the ratio of the power of 

the interference of #th source signal to the power of the/rth source signal. As the measure of the 

global quality of the separation process, we also apply the global rejection level to evaluate the 

overall performance of the proposed method 
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'I', perf       £—i~pq 
q*p 

(29) 

B. Effect of crossterms between source signals 

In this section, we examine the effect of the time-frequency crossterms on source separation 

performance when spatial averaging is not applied. To simplify the problem, we assume that R^ is 

an identity matrix. When crossterms are present at the off-diagonal elements of the TFD matrix 

D.(/,/), then 

Dss (t, f) = V(t, f)G(t, f)PH {t, f) (30) 

where G(t,f) is the diagonal matrix with the eigenvalues at the diagonal elements, and P(t,f) is 

the matrix whose columns are the corresponding eigenvectors. Note that all the above matrices 

depend on the selected (t, f) point. Substituting (30) in (8), the STFD matrix of the data vector 

under noise-free conditions becomes 

B„(t,f) = ADJt,f)AH = A?(t,f)G(t,f)J>H(t,f)AH (31) 

and the STFD matrix of the whitened array signal vector is 

D„(f,/) = WADJt,f)AHWH = WAP(t,f)G(t,f)PH(t,f)AHWH (32) 

Since G(t,f) is diagonal, WAP(f,/) is unitary. If the estimated mixing matrix A is provided 

based on a single (t,f) point, then from (32), 

A = W#WAP(f, /) = AP(r, /) (33) 

which is dependent on the unitary matrix P(tf). Furthermore, 

A#A = {AP(f,/)}#A = PH(t,f) (34) 

and 

A*A = {üagonaKÄ'A^'Ä'A 

= {liagonal(Pff(r,/)))r,PHa,/) 

Pn(t,f) 

O 

p£(t,f) 
o 

p;l(t,n 

Pn(t>f)    Pn<f>f) 
PnttJ)    Pv(t>f) 

Pu(tJ)    PmitJ) 

Pmd.f) 
Pnl(t,f) 

Pnn(t,f) 
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1 P22(t,f)p2,{t,f) •■ 
Pn(t,f)pa(t,f) 1 

Pu(t,f)pln{t,f)    p-22(t,f)p2n(t,f)    •• 

P~nl(t,f)Pnl(t,f) 

Pnn(t,f)Pn2(t,f) 

1 

(35) 

where p{j (t, f) = [P(t, /)],.>y.. Accordingly, the performance index becomes 

Ipq=\Pn(t,f)pgp(t,f)\
2 

and the global rejection level is given by 

herf=z7«=sk^/)rzk^/)i2=zip«(f./)r -» 
P*9 9=1 

(36) 

(37) 
p*q 

9=1 

In general, since the absolute values of pqq(tf) are always equal to or smaller than 1, the global 

rejection level Ipetf takes a positive value. It is clear that 7^=0 only when pqq(tf)=\ holds true for 

all q. That is, P is an identity matrix, which implies that there is no off-diagonal non-zero elements 

in matrix D^,/). 

Consider the specific case of n=2. If we select a (t,f) point where the contributions of the two 

sources to the source TFD matrix are the same, i.e., DtiSi(f,f) = DVi(t,f), and since 
Dsts2 (*> f) = D*A it, f) by definition, then it is straightforward to show that \pqq (t, /)| = 1 / V2 . In 

this case, /^ is constant equal to 2. The {t,f) points having such property include all crossterms at 

which the autoterms have equal contributions. 

C. Simulation results 

In this section we demonstrate the effectiveness of the spatially-averaged time-frequency 

distributions in source separations. The whitening joint-diagonalization scheme [2] is used for 

incorporating multiple time-frequency points into the proposed spatial averaging method. In all 

simulations, two sources with the chirp signals 

sx(t) = e     2,   s2(t) = e     2 
(38) 

are used, where |i is chosen as 0.0087t. Different values of CD and a are considered. These values 

control the frequency offset and amplitude variation between the two signals and can be chosen to 
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yield closely or widely separated source signatures in the time-frequency domain. 128 data 

samples are considered, from which a time-frequency matrix of 128 x 128 is formed. The DO As of 

the two signals si(t) and s2(i) are set equal to 30° and 60°, respectively, from the broadside 

direction. Furthermore, we assume an equi-spaced 5-element linear array with the interelement 

spacing 0.5A,, where X is the wavelength. Subsequently, when the spatial averaging method is 

used, two sub-arrays are formed, each with 3 elements. 

In the first set of simulations, we choose a=0, i.e., neither signal is amplitude modulated. The 

Wigner-Ville (WV) distribution of each signal is shown in Fig.2, where 8/ (=©/2TT) is set equal to 

0.05. Fig. 3 shows the time-frequency distribution of the mixed signals at the center array sensor. 

No noise is present for this case. It is clear that the crossterms lie in the middle of the two chirps, 

and their amplitude change periodically. Fig.4(a) shows the time-frequency distributions of the 

separated signals using the technique in [2], where joint diagonalization is used without the 

utilization of the proposed spatial averaging method. Three time-frequency (t,f) points are used at 

t = 32, 64, and 96. The frequency / is chosen so that the TFD computed using the data at the 

center array sensor is the largest at each t. Peak values of the WV distribution may either 

correspond to autoterms or crossterms. In this case, out of three (t, f) points, one crossterm point 

and two autoterm peaks were selected. The obtained A*A matrix is 

A*A = 
1.00+jO.OO    0.19 + ;0.65 

-0.21 + 70.63   1.00+;0.00 

and the computed global rejection level Iperf is -0.43 dB. The result is clearly unsatisfactory, as 

the matrix A*A is far from the identity matrix and crossterms appear in the separated signals. 

Next, we force the selection of autoterm peaks by only considering the (t, f) points along the 

instantaneous frequencies of the two input signals at the same above time instants. Although no 

crossterm point is selected, yet as discussed in Section III, because of the finite data record, the 

crossterms leak into autoterm regions, causing the source TFD matrix to deviate from a diagonal 

structure. We show in Fig.4(b) the result of source separation when only the autoterm points are 

considered. The obtained A*A matrix becomes 

A?A 
1.00 + yO.OO    O.OO-7O.O6" 

-0.01-;0.01   I.OO+7O.OO 
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and the respective global rejection level Iperf is -23.96 dB. It is clear that the source separation 

performance is greatly improved. This good performance implies that the contributions of 

crossterms at the three selected autoterm points were insignificant, implying that the 

corresponding source TFD matrices in this case were close to diagonal. 

Fig.5 shows the time-frequency distributions of the separated signals at the same condition as 

Fig.4(a), except with the utilization of the proposed spatial averaging method. Spatial averaging 

entirely mitigates the effect of crossterms. It is clear that the time-frequency distributions of the 

separated signals are the same as those of the original source signals, and A*A are exactly 

identity matrices. Similar results can be obtained when all three (t,f) points are autoterms. 

Fig.6 shows the global rejection level Iperf versus the frequency difference 8/between the two 

chirps, where the input SNR is 20dB. When the proposed spatial averaging method is used, the 

global rejection level maintains low values. On the other hand, without spatial averaging, the 

global rejection levels become very high. The main reason of the large fluctuation of the /  rf 

without spatial averaging is that the influence as well as the number of crossterm points 

incorporated in the joint-diagonalization scheme varies with the frequency difference 8/ (when 8/ 

=0.1, no crossterm points were selected). Note that the crossterms of the Wigner-Ville distribution 

remain high even when the frequency difference is large. When selected, these terms put large 

values along the off-diagonal terms of the source TFD matrix, and subsequently cause 

considerable error, as evident from the figure. However, when only autoterm (t,f) points are used, 

the global rejection level decreases as 8/ increases. In this case, the matrix off-diagonal elements 

are the crossterm values at the autoterm points which become smaller for higher values of 8/. 

Next we show the effect of using time-frequency smoothing kernels for reduced interference 

terms. The Choi-Williams (CW) distribution [10] is considered with o=l. Fig.7 shows the CW 

distribution of each signal separately, whereas the CW distribution of the mixed signals at the 

center array sensor is depicted in Fig. 8. The signals are the same as the ones used in the WV 

distribution simulations with 8/=0.05. Fig.9(a) shows the CW distributions of the separated 

signals. The obtained A*A matrix is 

A*A = r L00+ J°00     °03 + ■/'0-70 

-0.05 + 70.67    1.00 + yO.OO 
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and the respective global rejection level Iperf is -0.26 dB. At this small frequency offset, effective 

smoothing of crossterms is difficult, and as a result, even with the use of time-frequency kernel, 

one crossterm (t, f) point was still selected out of the three (t, f) points. When only the autoterm 

(t,f) points are used, the A*A matrix becomes 

j # . _ |"1.00 + ;0.00   - 0.02 + 70.18 
e       [O.Ol + jO.U     1.00 + jO.OO 

and the global rejection level Iperf is reduced to -12.86 dB. The CW distributions of the separated 

signals are shown in Fig.9(b). 

Fig. 10 shows the CW distributions of the separated signals under the same condition as 

Fig.9(a), with the utilization of the spatial averaging method. Again, it is clear that the time- 

frequency distributions of both cases are the same as the source signals, and AeA are exactly an 

identity matrix. The same results can be obtained when only the autoterm {t,f) points are used. 

Fig.l 1 shows the global rejection level Iperf versus the frequency difference 8/between the two 

chirps, where the input SNR is 20dB. It is evident from this figure that the kernel method fails 

when the two signals have close time-frequency signatures. Using the proposed spatial averaging 

method outperforms the case when no spatial averaging is applied. Three important observations 

on the difference between the WV distribution and the CW distribution in the context of source 

separation are in order. First, the CW kernel effectively reduces the crossterms, particularly when 

8/is large. Accordingly, crossterms are not as large as the autoterms, and as such, it is unlikely for 

the crossterms to be selected and incorporated in the joint-diagonalization scheme. Second, when 

8/ is large enough, the global rejection level is significantly reduced for the CW distribution, even 

when spatial averaging is not applied. Third, when the spatial averaging method is used, the 

performance at small frequency offset from the CW distribution is worse than that obtained from 

the WV distribution. The reason is, source separation is perturbed by the presence of noise, and 

the performance nevertheless is sensitive to the input SNR. When comparing the WV distribution 

and the CW distribution, the noise floor relative to peak values is lower in WV distribution than 

CW for the underlying chirp signal example. 

To show the effect of the input SNR on the source separation performance, Fig. 12 and Fig. 13 

depict the global rejection level versus the input SNR, where the frequency difference is 0.01. 
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Increasing the SNR certainly improves the source separation performance when spatial averaging 

is applied. On the other hand, without spatial averaging, the source separation performance holds 

an almost constant high level. Such performance demonstrates that crossterms are more of a 

fundamental problem than noise in TFD-based source separation problems. 

In the second set of simulations, ro is set to zero in equation (38), rendering the two source 

signals identical in terms of their instantaneous frequency characteristic. However, one of the two 

source signals is amplitude modulated, caused by a nonzero positive value of a. 

Fig. 14 shows the global rejection level versus a, where the WV distribution is considered, and 

the input SNR is 20dB. It is clear that, the two signals cannot be separated without spatial 

averaging, but when applying spatial averaging, satisfactory performance of source separation can 

be achieved. For a=0.002, the proposed technique yields a global rejection level -26.72dB. 

V.      CONCLUSIONS 

Symmetric spatial averaging of spatial time-frequency distributions was introduced. The spatial 

averaging of the spatial time-frequency distributions of the data across an antenna array removes 

the undesired effect of crossterms between the impinging signals. These terms reside along the off- 

diagonal entries of the source time-frequency distribution matrix, and consequently impede the 

source separation performance, which is based on preassumed diagonal matrix structure. Spatial 

averaging amounts to forming a spatial Hermitian Toeplitze matrix using the auto- and cross-time- 

frequency distributions of the data over one half of the array. This matrix is then added to the 

spatial matrix corresponding to the other half of the array. The desired effect of this averaging is 

reallocating the interaction between the source signals in the time-frequency domain from the off- 

diagonal to the diagonal elements of the source TFD matrix. In this respect, unlike the method 

proposed in [2], cross-terms, due to their potential high values, are regarded as useful components 

that could be used for improved performance. Spatial averaging can be applied to all members of 

Cohen's class of TFDs, irrespective of the employed smoothing kernel. When using a time- 
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frequency kernel, the problem amounts to averaging in all three dimensions of time, frequency, and 

space. 

Joint-diagonalization (JD) is applied to include multiple spatially averaged time-frequency 

distributions at different time-frequency points. With cross-terms moved to the diagonal entries of 

the TFD matrix, the prime task of the source separation based on the JD scheme is to avoid 

degenerate eigenvalues which are responsible for non-uniqueness solution of the problem. 

Simulation examples were presented to illustrate the effectiveness of the new approach. The 

two performance measures used were the global rejection level and the values of the off-diagonal 

elements of the product of the mixing matrix and the Pseudo inverse of its estimate. Two sources 

and five sensors were considered. The source signals were chirp signals with the same sweeping 

frequency, but their corresponding constant frequencies and amplitudes were offset by different 

values. Both Wigner-Ville and Choi-Williams distributions were considered. It was shown that the 

spatial averaging method significantly improves the performance measures over the non-spatially 

averaging method, specifically when the two signals have close time-frequency signatures. 

Without spatial-averaging, performance is very sensitive to whether only auto-term or cross- 

term points or their mix are incorporated in the source separation procedure. With spatial 

averaging, this is no longer a concern, since both terms appear along the diagonal. It is also shown 

that the Choi-Williams distribution provides better results than the Wigner-Ville distribution when 

no spatial averaging is applied, since it lowers the likelihood of selecting crossterm points. With 

spatial averaging, the issue becomes merely SNR, and in this respect, the Wigner-Ville 

distribution, due to its high peak values, yields better performance than the Choi-Williams 

distribution. 
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I. Introduction 

While time-frequency distributions have been sought out and successfully used in the 

areas of speech, biomedicine, automotive industry, and machine monitoring, their use in 

sensor and spatial signal processing has not been properly investigated. The evaluation of 

quadratic time frequency distributions of the data snapshots across the array yields what 

we have defined as spatial time-frequency distributions (STFDs) [1], [2]. These spatial dis- 

tributions permit the application of eigenstructure subspace techniques to solving a large 

class of channel estimation and equalization, blind source separation, and high-resolution 

direction-of-arrival (DOA) estimation problems. Spatial time-frequency distribution tech- 

niques are most appropriate to handle sources of nonstationary waveforms that are lo- 

calized in the time-frequency domain, or any other domain of a different joint variable 

signal representations. In the area of blind source separation, the spatial time-frequency 

distributions allow the separation of Gaussian sources with identical spectral shape, but 

with different time frequency localization properties, i.e., different signatures in the time- 

frequency domain. For direction of arrival estimation problems, the construction of the 

signal and noise subspaces using the source time-frequency signatures improves angular 

resolution performance. 

Although the applications of the spatial time-frequency distributions to blind source 

separation and DOA problems using multiple antenna arrays in nonstationary environ- 

ments have been introduced in [1], [3], yet so far there has not been sufficient analysis 

that explains their offerings and justify their performance. The aim of this paper is to 

examine the eigenstructure of the spatial time-frequency distribution matrices and provide 

statistical analysis of their respective signal and noise subspaces. The paper shows that 

the subspaces obtained from the STFDs are robust to both noise and angular separation 

of the waveforms incident on the array. This robustness is primarily due to spreading the 

noise power while localizing the source energy in the time-frequency domain. By forming 

the STFD matrices from the points residing on the source time-frequency signatures, we 

in essence, increase the input signal to noise ratio, and hence improve subspace estimates. 

This paper is organized as follows. Section II presents the signal model and gives a 

brief review of the definition and basic properties of the spatial time-frequency distribu- 
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tions. In Section III, we consider nonstationary environments characterized by frequency- 

modulation (FM) source signals. The statistical properties of signal and noise subspace 

estimates for uncorrelated FM signals over the observation period are delineated. In Sec- 

tion IV, we derive the signal and noise subspaces using STFD matrices for the general 

class of FM signals. We demonstrate the robustness of the STFD-based subspace esti- 

mates to both noise and angular source separation compared to those obtained in Section 

III, using covariance matrices. The analytical results of Sections III and IV are used in 

Section V to examine the performance of the direction finding MUSIC technique based on 

the covariance and STFD noise subspace estimates. Numerical simulations are given in 

Section VI. 

II. Background 

A. Signal Model 

In narrowband array processing, when n signals arrive at an ra-element array, the linear 

data model 

x(*) = y(*) + n(t) = A(0)d(t) + n(t) (1) 

is commonly assumed, where the m x n spatial matrix A(0) = [a(0i)...a(0„)] represents 

the mixing matrix or the steering matrix, and a(0j) are the steering vectors. Due to 

the mixture of the signals at each sensor, the elements of the m x 1 data vector x(t) 

are multicomponent signals, whereas each source signal di(t) of the n x 1 signal vector 

d(t) is often a monocomponent signal. n(t) is an additive noise vector whose elements 

are modeled as stationary, spatially and temporally white, zero-mean complex random 

processes, independent of the source signals. That is, 

E[n(t + r)nH(t)] = a5(r)I  and  E[n(t + r)nT(t)] = 0 for any r (2) 

where 6(T) is the Kronecker delta function, I denotes the identity matrix, a is the noise 

power at each sensor, superscript H and T respectively denote conjugate transpose and 

transpose, and E(-) is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is higher than the number of 

sources, i.e., m > n.  Further, matrix A(0) is full column rank, which implies that the 
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steering vectors corresponding to n different angles of arrival are linearly independent. We 

further assume that the correlation matrix 

Rxx - E[x{t)xH(t)} (3) 

is nonsingular, and the observation period consists of N snapshots with N > m. 

Under the above assumptions, the correlation matrix is given by 

Rxx = E[x{t)xH (*)] = A(0)RddA"(0) + al, (4) 

where Rdd = E[d(t)dH(t)] is the signal correlation matrix. For notational convenience, 

we drop the argument 0 in equation (1) and simply use A instead of A(0). If 0 is an 

estimate of 0, then we also use A instead of A(0). 

Let Ai > A2 > • • • > An > An+i = A„+2 = • • • = Am = a denote the eigenvalues of RxX. 

It is assumed that A», i = 1, • • • ,n, are distinct. The unit-norm eigenvectors associated 

with Ai,...,An constitute the columns of matrix S = [si, ...,s„], and those corresponding 

to An+1,..., Am make up matrix G = [gl5..., gra_B]. Since the columns of A and S span the 

same subspace, then A^G = 0. 

In practice, RxX is unknown, and therefore should be estimated from the available data 

samples (snapshots) x(»), i = 1,2,..., N. The estimated correlation matrix is given by 

Ä*x = ^f>(z)x*(z). iV »=i 
(5) 

Let {§i,...,sn,gi,...,gTO_n} denote the unit-norm eigenvectors of Rxx, arranged in the 

descending order of the associated eigenvalues, and let S and G denote the matrices 

defined by the set of vectors {§;} and {gj, respectively. The statistical properties of 

the eigenvectors of the sample covariance matrix Rxx for signals modeled as independent 

processes with additive white noise is given in [4]. 

B. Spatial Time-Frequency Distributions 

The spatial time-frequency distributions (STFDs) based on Cohen's class of time-fre- 

quency distribution were introduced in [1] and its applications to direction finding and 

blind source separation have been discussed in [3] and [1], respectively.   In this paper, 
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we focus one key member of Cohen's class, namely the pseudo Wigner-Ville distribution 

(PWVD) [5] and its respective spatial distribution. Only the time-frequency (t-f) points 

in the autoterm regions of PWVD are considered for STFD matrix construction. In these 

regions, it is assumed that the crossterms are negligible. 

The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using a rectan- 

gular window of odd length L, is given by 

■L-l 
2 

Dxx(t,f)=    £   x(t + r)x*(t-r)e-^T, (6) 
r—L=l 

where * denotes complex conjugate.  The spatial pseudo Wigner-Ville distribution (SP- 

WVD) matrix is obtained by replacing x(t) by the data snapshot vector x(£), 

L-l 
2 

Dxx(i,/)=    £    x(t + T)xH(t-r)e-W. (7) 
T—i=l 

Substitute (1) into (7), we obtain 

Dxx(*, /)    = Dyy(t, /) + Dyn(t, /) + Dny(*, /) + Dnn(t, f) 

= Dyy(i, /) + 2Re [Dyn(t, /)] + Dnn(«, /). 
(8) 

We note that Dxx(t,/), Dyy(£,/), Dyn (£,/), Dny(£,/), and Dnn(t,/) are matrices of di- 

mension m x m, whereas the source TFD matrix T>dd(t, f) is of dimension n x n. Under 

the uncorrelated signal and noise assumption and the zero-mean noise property, the ex- 

pectation of the crossterm TFD matrices between the signal and noise vectors is zero, i.e., 

E [Dynfr /)] = E [Dny(£, /)] = 0, and it follows 

E [Dxx(£, /)]    = Dyy(£, f) + E [Donft /)] 

= ADdd(*,/)A* + £[Dan(t,/)]. 

For narrowband array signal processing applications, the mixing matrix A holds the spatial 

information and maps the auto- and cross-TFDs of the source signals into auto- and cross- 

TFDs of the data. 

Equation (9) is similar to that which has been commonly used in DOA estimation and 

blind source separation problems, relating the signal correlation matrix to the data spatial 
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correlation matrix. In the above formulation, however, the correlation matrices are re- 

placed by the spatial time-frequency distribution matrices. This implies that key problems 

in various applications of array processing, specifically those dealing with nonstationary 

signal environments, can be approached using bilinear transformations. 

It is noted that the relationship (9) holds true for every (t, /) points. In order to reduce 

the effect of noise and ensure the full column rank property of the STFD matrix, we 

consider multiple time-frequency points, instead of a single one. That is, the signal and 

noise subspaces are constructed using as many (t, /) points in the source autoterm regions 

as possible. This allows more information of the source signal time-frequency signatures 

to be included into their respective subspace formulation, and as such enhances direction 

finding and source separation performance. Joint-diagonalization [6] and time-frequency 

averaging are the two main approaches that have been used for this purpose [1], [3], [7]. 

In this paper, however, we only consider averaging over multiple time-frequency points. 

III. Subspace Analysis for FM Signals 

In this paper, we focus on frequency modulation (FM) signals, modeled as 

d(t) = [«*!(«),..., dn(t)]T = [A^W,.., Dne^W]T, (10) 

where A and ipi(t) are the fixed amplitude and time-varying phase of ith source signal. 

For each sampling time t, di(t) has an instantaneous frequency ft(t) = ^^^-- 

FM signals are often encountered in applications such as radar and sonar [11]. The 

consideration of FM signals in this paper is motivated by the fact that these signals are 

uniquely characterized by their instantaneous frequencies, and therefore, they have clear 

time-frequency signatures that can be utilized by the STFD approach. Also, FM signals 

have constant amplitudes and, subsequently, yield time-independent covariance matrices. 

This property makes them amenable to conventional array processing based on second- 

order statistics. 

To simplify the analysis, we assume that the FM signals are mutually uncorrelated over 

the observation period. That is, 

1  N 

^5>(fcK*(*0 = 0       fori^i, i,j = l,...,n. (11) 
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In this case, the signal correlation matrix in (4) is 

Rdd = diag [Df, % = 1,2,..., n] 

where diag[-] is the diagonal matrix formed with the elements of its vector valued argu- 

ments. 

From the above assumptions, we have the following Lemma. 

Lemma 1: For uncorrelated FM signals with white additive noise, 

a) The estimated errors (SJ - S;) are asymptotically (for large N) jointly Gaussian 

distributed with zero means and covariance matrices given by (see Appendix A) 

E[(ßirBi){äj-Bj)
B] 

\ + Afc — <7 a 

N k 
Lk^ti 

m—n \ 
H   ,    Y"^ Ai H sfcSfc   +  2^  7- T^gfcgfc 

fc=l   Ier - Ai) 
hi A WAi» 

* [(a,. - *)& - Sj.)
r] = -^^L^s^a - *„> A v;,. 

(12) 

(13) 
N   (A,- 

b) The orthogonal projections of {g*} onto the column space of S are asymptotically 

(for large N) jointly Gaussian distributed with zero means and covariance matrices given 

by 

E (ss'fc) (ss«g/l = £ S("-w ^ = JVU ^ (14) 

E (ss*gi) (ss*%y 0 for all i, j. (15) 

Equations (12) and (13) are similar to those of [4]. The only difference is that the term 

(AjAfc) in equations (3.8a) and (3.8b) in reference [4] is replaced by cr(A,- + Afc - a) in 

(12) and (13), due to the uncorrelation property (11). Accordingly, for high input SNR 

(Afc >• a,k = 1,2, ...,n), the estimated error of (s, — Sj) can be greatly reduced. From 

(12) and (13), each column of the signal subspace will be perfectly estimated when a = 0. 

This is in contrast with the estimation error that would result under the same noise-free 

condition, if we use the temporally-independent signal characteristics considered in [4]. 
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Equations (14) and (15) are identical to (3.9) and (3.10) derived in reference [4]. The 

reason of such identity is that, despite the difference in the eigenvectors, the signal sub- 

spaces in both cases are the same, defined by the mixing matrix A. Accordingly, the 

projection of the estimated noise subspace basis vectors on the true signal subspace for 

both FM signals and white random processes yield equal results. 

IV. Subspace Analysis for STFD Matrices 

The purpose of this section is to show that the signal and noise subspaces based on time- 

frequency distributions for nonstationary signals are more robust than those obtained from 

conventional array processing. 

A. SNR Enhancement 

The time-frequency distribution (TFD) maps one-dimensional signals in the time do- 

main into two-dimensional signals in the time-frequency domain. The TFD property of 

concentrating the input signal around its instantaneous frequency (IF), while spreading 

the noise over the entire time-frequency domain increases the effective SNR and proves 

valuable in the underlying problem. 

The zth diagonal element of TFD matrix Ddd(t, /) is given by 

L-l 
2 

Ddidi(tJ)=    E    DteM^-^-^-^fT. (16) 
' 2 

Assume that the third-order derivative of the phase is negligible over the window length 

L, then along the true time-frequency points of ith signal, f{ = ^^^, and ipi(t + r) - 

tßi(t - T) - AnfiT = 0. Accordingly, 

L-\ 
2 

Ddidi(tJi)=    E    Dl = LDl (17) 

Similarly, the noise STFD matrix Dnn(t, /) is 

L-\ 

Dnn(t,/)=    E    n(t + r)nH(t-r)e-^T. (18) 
' 2 
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Under the spatial white and temporal white assumptions, the statistical expectation of 

Dnn(t, /) is given by 

L-l 
2 

E\Dm(t,f)]=    £   E n(t + r)nH(t-r) e~^T = al. (19) 
L-l 

2 

Therefore, when we select the time-frequency points along the time-frequency signature 

or the IF of an FM signal, the SNR in model (9) is LDf/a, which has an improved factor 

L over the one associated with model (4). 

The pseudo Wigner-Ville distribution of each FM source has a constant value over the 

observation period, providing that we leave out the rising and falling power distributions 

at both ends of the data record. For convenience of analysis, we select those N — L + 1 

time-frequency points of constant distribution value for each source signal. Therefore, the 

averaged STFD over the time-frequency signatures of n0 sources, i.e., a total of n0(N — 

L + 1) time-frequency points, is given by 

1 na N-L+l 

°=n,(iV-'L+l)5   g   D~^->' <2°> 
where /g>; is the instantaneous frequency of the qih signal at the ith time sample. The 

expectation of the averaged STFD matrix is 
i na N-L+l 

D  =£M = MF3TTi)ggBP^^ (21) 

= - E \LDl*(6r)BF(er) + <7l] = -A°RSd(A°)" + <rl, 
no p=i ^o 

where Rjd and A0, respectively, represent the signal correlation matrix and the mixing 

matrix formulated by only considering n0 signals out of the total number of signal arrivals 

n. 

It is clear from (21) that the SNR improvement G = L/n0 (we assume L > n0 throughout 

this paper) is inversely proportional to the number of sources contributing matrix D. 

Therefore, from the SNR perspective, it is best to set n0 = 1, i.e., to select the sets of 

N — L + 1 (t, f) points that belong to individual signals one set at a time, and then 

separately evaluate the respective STFD matrices. 

This procedure is made possible by the fact that STFD-based direction finding is, in 

essence, a discriminatory technique in the sense that it does not require simultaneous 
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localization and extraction of all unknown signals received by the array. With STFDs, 

direction finding can be performed using STFDs of a subclass of the impinging signals with 

specific time-frequency signatures. In this respect, the proposed direction finding technique 

acts as a spatial filter, removing all other signals from consideration and, subsequently, 

saves any downstream processing that is required to separate interference and signals of 

interest. It is also important to note that with the ability to construct the STFD matrix 

from one or few signal arrivals, the well known m > n condition on source localization 

using arrays can be relaxed, i.e., we can perform direction finding or source separation 

with the number of array sensors smaller than the number of impinging signals [2]. From 

the angular resolution perspective, closely spaced sources with different time-frequency 

signatures can be resolved by constructing two separate STFDs, each corresponds to one 

source, and then proceed with subspace decomposition for each STFD matrix, followed 

by an appropriate source localization method (MUSIC, for example). The drawback of 

performing several direction finding using different STFD matrices is of course the need 

for repeated computations of eigen-decompositions and source localizations. 

In all the analysis and simulations provided herein, when considering STFDs, we only 

use those (t, f) points on the signal time-frequency signatures. In case of FM signals, we 

choose the (t, /) points along the signal IFs. 

B. Signal and Noise Subspaces Using STFDs 

The following Lemma provides the relationship between the eigen-decompositions of the 

STFD matrices and the data covariance matrices used in conventional array processing. 

Lemma 2: Let A? > \°2 > • • • > A£o > A£o+1 = A£o+2 = • • • = A^ = a denote the 

eigenvalues of R°x, which is defined from a data record of a mixture of the n0 selected 

FM signals. Denote the unit-norm eigenvectors associated with A?,..., A°o by the columns 

of S° = [s?,...,s£j , and those corresponding to A°o+1,..., A^ by the columns of G° = 

fei» ->gm-nj- We also denote X[f > A^ > • • • > A£ > A*{+1 = A£+2 = • • • = \% = & 

as the eigenvalues of D defined in (21). The unit-norm eigenvectors associated with 
A'/> •••> K{ are represented by the columns of Stf = [s\f,..., s^{] , and those corresponding 

to A^o+1,..., A^ are represented by the columns of G*' = [g*/,..., g^_„J. Then, 

a) The signal and noise subspaces of Stf and Gtf are the same as S° and G°, respectively. 
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b) The eigenvalues have the following relationship: 

i <n0 

{ a
tf = a n0 

(22) 
< % < m. 

Both parts of the above equations are direct results of (21). 

An important conclusion from Lemma 2 is that, the largest n0 eigenvalues are amplified 

using STFD analysis. Fig. 1 shows the eigenvalues X° and A** (for L = 33 and L = 129), 

where a uniform linear array of 8 sensors (m = 8) separated by half a wavelength and 

receiving signal from 2 sources (n0 = n = 2) is used.   The two signals are of equal 

power(Di — D2 = D), and their angular separation A0 is defined as 62 — 61. We choose 

0l + 62 = 0, that is, the two signals are symmetric with respect to the broadside direction. 

Denote 
_     aB{91)a{e2) 

[|a(01)||a(fc)|]1'2 

as the spatial correlation coefficient between angles 6\ and 62 where |a| is the norm of a 

vector a. The two largest eigenvalues for uncorrelated signals are given by [10] 

A?)2 = mD2 [1 ± \ß\] + a       \% = —D2 [1 ± \ß\] + a. (23) 

The amplification of the largest n0 eigenvalues improves detection of the number of the 

impinging signals on4the array, as it widens the separation between dominant and noise- 

level eigenvalues. Determination of the number of signals is key to establishing the proper 

signal and noise subspaces, and subsequently plays a fundamental role in subspace-based 

applications [13]. When the input SNR is low, or the signals are closely spaced, the number 

of signals may often be underdetermined. Fig. 2 shows, for the same signal scenario of 

Fig. 1, the threshold level of the input SNR required to determine the correct number of 

signals n = 2 according to the Akaike Information Criterion (AIC) [14] 

minN{m - n)log (^) + /3(n), (24) 

where 

-1 m Im 

h{h) A —--  £  Xh    f2(n) A       fl  Xi ]        >    M") A n(2m - h). (25) 
m      n i-n+l \i=n+l 
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It is clear from Fig. 2 that, when the STFD is applied, the SNR threshold level necessary 

for the correct determination of the number of signals is greatly reduced. 

Next we consider the signal and noise subspace estimates from a finite number of data 

samples. When we form the STFD matrix based on the true (t, f) points along the n0 FM 

signals, if we assume that their third-order derivatives are negligibly small during each 

window, we have the following Lemma. 

Lemma 3: If the third-order derivative of the phase of the FM signals is negligible over 

the time-period [t- L + l,t +L-1], then 

a) The estimated errors in the signal vectors are asymptotically (for N > L) jointly 

Gaussian distributed with zero means and covariance matrices given by 

h (x*/ - \yySk (Sk > + £ ^"^8* (g/j 
aL 

n0(N-L + l) 

A Wtf8- ■ 

Sij     (26) 

aL (Xy + xV — a) tf / tf\T, ., 
■-L + 1)     A*/-W   ^W   (1-^ÄVS- 

(27) 
n0(N-L + l)    (Xf-X?) 

b) The orthogonal projections of {gj'J onto the column space of Stf are asymptotically 

(for N > L) jointly Gaussian distributed with zero means and covariance matrices given 

by 

E (S'/(S")V) (S" [&)HkfH 

aL 
n .0(N-L + 1) 

A? 
£ (* - A?)2 W A . . A  

tJ=(N-L + 1) ■u*%, 
(28) 

£ (S" (s") V) (s" (s*)* gf )T = 0 for all i, j. (29) 

The proof of (26)-(27) is given in Appendix B, and the proof of (28)-(29) is given in 

Appendix C. 

To demonstrate the performance advantage of using STFDs, we substitute (22) into 

(26)-(28), 

46 



E ($-#)(%-*>/)" 

N-L + 1X 

^ (Ag - A?)2 Sfc (Sfc)   + ti       i° -A^)2     gfc {gk) 
k=l 

(30) 

OjJ, 

o        (Ag - <r) + (A? - <r) + fr<7 r (31) 
--JV-L + 1 (Ag-A?)» jl J   l        '«"' 

and 

N-L + l <$ij. 

(32) 

From (30)-(32), two important observations are in order. First, if the signals are both 

localizable and separable in the time-frequency domain, then the reduction of the number 

of signals from n to n0 greatly reduces the estimation error, specifically when the signals 

are closely spaced. The examples, given in the following section, show the advantages of 

using t-f MUSIC with partially selected signals. The second observation relates to SNR 

enhancements. The above equations show that error reductions using STFDs are more 

pronounced for the cases of low SNR and/or closely spaced signals. It is clear from (30)- 

(32) that, when Ag » a for all k = 1,2, ...,n0, the results are almost independent of L 

(suppose N ~^> L so that N — L + 1 ~ N), and therefore there would be no obvious 

improvement in using the STFD over conventional array processing. On the other hand, 

when some of the eigenvalues are close to a (Ag ~ a, for some k = 1,2, ...,n0), which 

is the case of weak or closely spaced signals, all the results of above three equations are 

reduced by a factor of up to G = —, respectively. This factor represents, in essence, the 

gain achieved from using STFD processing. 

V. The Time-Frequency MUSIC 

To demonstrate the robustness of the eigen-decomposition of the STFDs when used in 

practical applications, we consider in this section the recently proposed time-frequency 

MUSIC (t-f MUSIC) algorithm [6].  We first recall that the DOAs are estimated in the 
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MUSIC technique by determining the n values of 9 for which the following spatial spectrum 

is maximized [15], 

fMuiß) = [aff(ö)GGffa(ö)]  * = [a* (0) (i - SS*) a(0)j  * (33) 

The variance of those estimates in the conventional MUSIC technique, assuming white 

noise processes, is given by [4] 

E(Coi-.if =   lalWa(ft) (34) 2N       hfa) 

where u is the spatial frequency associated with DOA 9, and u is its estimate obtained 

by the conventional MUSIC. In the above equation 

U = a 
LA;=1 (<r-A*)s ,    d(9)=da(9)/diü,    h(6) = dH(9)GGHd(9).        (35) 

From the results of Lemma 1, part (b), U' = U, which implies that (34) also holds 

true when the conventional MUSIC algorithm is applied to FM signals in white noise 

environment. 

Similarly, for t-f MUSIC, when n0 signals are selected, the angles of the n0 signals are 

determined by locating the n0 peaks of the spatial spectrum defined from the n0 signals' 

respective time-frequency regions. 

fiuiß) = [a*(0)6" (G")"a(0)]-1 = [a*(0) (i- §*/ (§*/)*) a(0) (36) 

Following the same procedure in [4] and using the results of Lemmas 2 and 3, we obtain 

the variance of the DOA estimates based on t-f MUSIC, 

1 a^OU^a^) p, (~tf _   tf\2  
\?i      Ui )   ~ 2{N-L + V)       W(9i) 

where U^ is defined in (28), and 

htf(9) = dH{0)Gtf(Gtf)Hd(9) 

which is equal to h{9) if n0 = n. 

(37) 

(38) 
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VI. Simulation Results 

Consider a uniform linear array of 8 sensors separated by half a wavelength. Two 

chirp signals emitted from two sources positioned at angle 6\ and 62. The start and 

end frequencies of the chirp signal of the source at #i are usi — 0 and ue\ = IT, while 

the corresponding two frequencies for the signal of the other source at 62 are LOS2 = 7r 

and ue2 = 0, respectively. The noise used in this simulation is zero-mean, Gaussian 

distributed, and temporally white. The noise power, a, is adjusted to give the desired 

SNR = -10log(a). Fig. 3 shows the PWVD of the mixed noise-free signals for L = 129. 

Fig. 4 displays the variance of the estimated DOA 9\ versus SNR for the case (61,62) = 

(—10°, 10°). The curves in this figure show the theoretical and experimental results of the 

conventional MUSIC and t-f MUSIC (for L=33 and 129). The CRB is also shown in Fig. 4. 

Both signals are selected when performing t-f MUSIC (n0 = n = 2). We assume that the 

number of signals is correctly estimated for each case. Simulation results are averaged 

over 100 independent trials of Monte Carlo experiments. The advantages of t-f MUSIC 

in low SNR cases are evident from this figure. The experiment results deviate from the 

theoretical results for low SNR, since we only considered the lowest order of the coefficients 

of the perturbation expansion of vt- in deriving the theoretical results (see Appendix A). 

Fig 5 shows estimated spatial spectra at SNR=-20 dB based on t-f MUSIC (L = 129) 

and the conventional MUSIC. The t-f MUSIC spectral peaks are clearly resolved. 

Fig. 6 shows examples of the estimated spatial spectrum based on t-f MUSIC (L = 129) 

and the conventional MUSIC where the angle separation is small (61 = —2.5 degrees, 

62 = 2.5 degrees). The input SNR is —5 dB and the number of samples is 1024. Two t-f 

MUSIC algorithms are performed using two sets of time-frequency points, each set belongs 

to the time-frequency signature of one source (n0 = 1). It is evident that the two signals 

cannot be resolved when MUSIC is applied, whereas by applying t-f MUSIC separately 

over the two signals, the two signals are clearly separated and reasonable DOA estimation 

is achieved. It is noted that there is a small bias in the estimated result of t-f MUSIC due 

to the imperfect separation of the two signals in the time-frequency domain. 
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VII. Conclusions 

Subspace analyses of spatial time-frequency distribution (STFD) matrices have been 

presented. It has been shown that for signals with clearly defined time-frequency signa- 

tures, such as FM signals, smaller estimation errors in the signal and noise subspaces can 

be achieved by using spatial time-frequency matrices over the subspace estimates obtained 

from using the data covariance matrix approach. This improvement in subspace estimation 

is the result of incorporating the time-frequency points along the instantaneous frequencies 

of the impinging signals on the array into the subspace estimation procedure. These points 

belong to autoterm regions of high power concentrations, and as such, when used in con- 

structing STFDs, they provide high SNR matrices with improved eigen-decompositions. 

The advantages of STFD-based direction finding over traditional direction finding meth- 

ods using data covariance matrices were demonstrated using the MUSIC algorithm. It was 

shown that the time-frequency MUSIC outperforms conventional MUSIC in the two situ- 

ations of low SNR and closely spaced sources. 

Unlike conventional array processing techniques, which are nondiscriminatory, and must 

therefore spatially localize all signals incident on the array, the STFD-based array pro- 

cessing provides the flexibility of dealing with all signal arrivals, or a subset of them. In 

this respect, it does not suffer from the drawback of requiring higher number of sensors 

than sources. The ability to select fewer source sources depends on the distribution of 

their time-frequency signatures from those of other source signals. The eigenstructure of 

the STFD matrix constructed from the time-frequency points that belong to the autoterm 

regions of a number of sources will only yield the signal subspace of theses sources. It 

was shown that the maximum improvement in subspace estimation using STFD over data 

covariance matrices is achieved when constructing the STFD from only one source signal. 

Appendix A 

For notation simplicity, we denote vi} * = 1,2,..., m, as the eigenvectors of the correlation 

matrix R**, where the first n vectors form the signal subspace (s{, % = 1,2, ...,n), and the 

last m - n vectors form the noise subspace (gj, i = 1,2,..., m - n). 

To derive the covariance matrices, we follow the same procedure in [4] and [8], but note 
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the fact that the underlying signals are deterministic rather than white random processes, 

which are considered in [4] and [8]. We define Rxx in terms of a random perturbation to 

Rxx with a perturbation factor p, 0 < p < 1. Thus, 

Rxx = Rxx + (Rxx — Rxx) — Rxx + PB. (Al) 

When the source signals are FM and the noise vector forms a multivariate white Gaussian 

process, then B is a Hermitian, zero-mean random matrix whose elements are asymptoti- 

cally jointly Gaussian. Let Vj denote the unnormalized perturbed version of the eigenvector 

Vj. According to [9], 
TO      f OO ^ 

(A.2) 
TO      / OO \ 

where t$, I = 1,2,..., are the coefficients of the perturbation expansion of v; along v*. 

By keeping the term with the lowest order of p, then [8] 

hk 
vfBVi 

Afc — A,; 
k^i. (A3) 

The mean square value of t\l is given by 

E = E 
#i vfBvivfBvfe 

(A4) 
(A* - Ai)2 

To evaluate the numerator in the above equation, we consider the following general case 

E [vf Bv2vf Bv4]    = -^E [vf (R™ - R«) v2vf (R^ - Rxx) v4] 

:E 
N \    / N 

J2 vf x(tr)x"(tr)v2J I £ v3
ffx(tg)x

F(tg)v4 
\r=l {Np)2 

 r vf RxX V2 vf Rxx V4. P* (A5) 

It can be easily realized that the expected value in (A.5) is taken from a product of four 

non-zero mean Gaussian random variables. It is well known that for Gaussian random 

variable xi,x2,x3,X4 with non-zero means, 

E[xiX2X^x^}    - E[xiX2]E[x3Xi\ + Efax^Efax^ 

+E[x1x4]E[x2x3] - 2E[x1]E[x2]E[x3]E[x4\. 
(A6) 
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Using the properties of the zero-mean circular complex Gaussian noise vector and the 

deterministic source signal vector, then 

E[x(tr)]    =    y(*r), 

E 

E 

x{tr)x
H{tg) 

x(tr)x
T(tg) 

=  y(tr)y
H(tq) + ai5r,g, 

=  y(tr)y
T(tg). 

Accordingly, (A.5) can be written as 

where 

E [vf Bv2vf Bv4] 

= (^EE^[vfx(gxff(tr)v2] E [v»x(tg)x
H(tg)vA 

+Jj^ E E E [vf x(tr)vf x(^)] E [x* (*r)v2x* (tq)vA] 

+Jfijji E E ^ [vf x(ir)x
Ä(tg)v4] E [v»x(tg)x

H(tr)v2] 

-2 Jjjff E E E [vf x(*r)] E [x* (*r)v2] E [vf x(*8)] £ [x*(tg)v4] 

p- 
rvfRXxV2vfRxxv4 

N    N 

^jlEE[vN4,gv3
ffy(t,)yJJ(fr)v2] 

^(^2 EE [vfy(^)yH(t9)v4vfv2c7(5r,J 
j AT    AT 

1 ^ 
(JVj)2 ? [<Jvi,v4<7vfy(<r)yH(*r)v2] 

^E [vfy(^)yff(tr)v4<5V2!V3a] + (^ E [WA,^2] 

Kn = 
1,   i = j. 

By using the uncorrelation assumption (11), 

AT 

N 
Ey(tr)yH(tr)=A 
r=l 

AT 

üE*(tMH(U) N r=l 

(A.7) 

AH = ARddAff = Ryy, (A.8) 
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and equation (A.7) simplifies to 

E [vf Bv2vf Bv4] 

JTp   [^Vi,V4vf RyyV2 + Vx  RyyV4£V2iV3j   +  jy-^Vi.vAa,- 

T7~2   l^vl  "*"      v2   "" °\ "vi,V40v2,V3- 

V3 

Therefore, 

and 

E = E 
(Afc-A,)2 

a   (Xj + Xk-a)    ,   , . 
"2     ,   ftf I, 

NP
2
 (\-\ky 

vfBvjvfBvfc 

(Afc — AJ)(AA; — Xj) 
E[tMlY}=E 

It is shown in [13] that 

cov (vj, Vj) = cou (vi} Vj-) + o(N~2) 

By ignoring the terms of N~2, then 

0, k^i, k^ j. 

cov (VJ, Vj) ~ cou (VJ, Vj) ~ E E 4W      E täW* 
fc=l /   \ fc=l 

0" v^ Aj + Xk — a      H 

= Nh (A, - \ky VfcV* *"■■ 

Equation (12) in Section III follows by replacing v* by s* or g*. Similarly, 

= E 
m 

E 
kjti 

p2VkV%öij 

K 

COV (v;, V*) ~ COV [Vi, vf) ~ E E *?2PV*      E &W 

= ^ E E ^SK^E 
fc1=l   *2=1 

fc1?£t   fc2^j 

=P
2
EEB 

fc1=i fc2=i 

v^Bvi     vgBvj- 

(A9) 

(A10) 

(All) 

(A12) 

(Afci — Aj) (Afe2 — Xj) 

(A13) 

From (A.9), it is clear that the above equation has non-zero value only when k\ = j and 

k2 = i. Noting the fact that k\^i and k2 ^ j, (A. 13) becomes 

cov (v,v*) ?—-2E [vf Bv«vf BvJ VJVJ(1 - *„) 
(A,- - A,), 
c Aj + A,- — a      r, . 

-VjVf (1 - ^j). 
(A14) 

N (Xj - A,)2 

For the signal subspace, v» is Sj, i — 1,..., n, and (A. 14) yields (13). 
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Appendix B 

Similar to Appendix A, we let v*, * = 1,2,..., m, represent the whole eigenvectors of the 

STFD matrix D, where the first n0 vectors form the signal subspace (sf, i = 1,2, ...,n0), 

while the last m-n0 vectors form the noise subspace (g-7, * = 1,2,..., m-n0). As discussed 

in Section III, we assume that the selected time-frequency points belong to regions where 

no crossterm components are present. 

For an array mixture of FM signals, we select points from n0 signals at the time- 

frequency domain, where the pseudo Wigner-Ville distribution matrix is defined in (13). 

We define D in terms of a random perturbation to D with a perturbation factor p, 0 < 

p < 1. Thus, 

D = D + (D-D) = D+pB. (5.1) 

Matrix B is a Hermitian, zero-mean random matrix whose elements are asymptotically 

Jointly Gaussian [12]. Similar to Appendix A, we derive 

E [vf Bv2vf Bv4] = -2E [vf (D - D) v2vf (D - D) V4] 
IT _ 

(noP(N-L + l))2 

--vfDv2vfDv4. 

E 
' n0  N-L+l \    / n0  N-L+l 
£   £   vfDxx(^,/g)i)v2      £   £   v3

ffDxx(ti,/9,i)v4 
^9=1     i=l /    \q=l     i=l 

(B.2) 

Substituting (20) and (A.7) into (B.2), we obtain 

E [vf Bv2vf Bv4] 
na   N-L+l N-L+l      \i L-l 

2 

(noP(N-L + l))\1=lg2=1  ii=1     .2=1 
EE E   E    E     E  e-'Mw+w] 

L-l T _     L-l 

x {E [vf xfe + r1)x
H(iil - n)v2] £7 [v3

ffxfe + r2)x*(ti2 - r2)v4] 

vfxfe + n)vf x(ti2 + r2)] J5 [xfffe - 7i)v2x
H(*<2 - r2)v4" 

vf xfe + n)xff (ti2 - r2)v4] 5 [vf xfe + r2)x
ff {th - n)v2 

-2Ü? [vf xfo + n)] £ [x* fo - ri)v2] E [vf x^ + r2)] £ [x* fc, - r2)v4] } 

+E 

+E 

p r
vfDv2vfDv4 
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n0     n0   N-L+1N-L+1      ~2~ 

,EE £   E    £ 
L-l 

2 

i2 = l     T1=-^1T2=-V 

X 

(n0p(N - L + 1))  gi=ig2=i  il=i 

vfy(*u +n)yHfe -/r2)v4o-(5V2)V3^i_T1;ti2+T2 

+^v1,v4^1+T1>ti2-T2vfy(ti2 +r2)y
i7(til -rx)v2 

V^      e-i47r[/,1,i1Ti+/92,i2r2] 

(B.3) 

+C725, Vl,V40v2,V30tj1,ti20Tl,T2 

Under the assumption of no crossterms, q\ should be equivalent to q2 to have non-zero 

values, and in this case, <?i = q2 = q. Note that within the time-frequency region of the qth 

signal, y(t) = yq(t) A Adg(t). When the third-order derivative of the phase is negligible 

over [t — L + 1, t + L — 1] for any signal and any t, we have 

E [vf Bv2vf Bv4] 

1 n0 N-L+lN-L+1      k2L 
2 

(iVp(iV-L + l))2§  £    £  TJvJi 
Vf y(*U + T\)yH(ti2 -T2)v4^V2)v3^1-r1,ti2+r2 

+^v1,v4*til+nA1-7ivfy(t1-2 +r2)y
ff(til -ri)v2 

X 

a2L 

(BA) 

n0(N-L + l)p2 V1'V4 V2,V3 

— (AVl - a) + (AV2 - cr) + a 
n0(N -L + l)p2 In, 

-,Vl,V4uV2,V3 

v2,v3- 

Let Vj denote the unnormalized eigenvector given in a perturbation expansions by 

m    / oo 
Wj ^Vi + EE^h* (B.5) 

where %% / = 1,2,..., are the coefficients of the perturbation expansion of v* along v*, 

and keeping the term with the lowest order of p, then 

*(0 
hk 

v?Bv- 
(B.6) 
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Therefore, 

E = E 

(X? + Xlf - a) 

and 

E 

Similar to Appendix A, we follow 

vfBv^vfBvfc 

, k^i, 

M-MM-W, 
0, fc ^ i, A; / j. 

ccw (VJ, Vj)   ~ cot; (VJ, Vj) ~ E 

= E 

LV 

\ / 

E 4W 
V 

H-i 

E4W 

EK2 A*vf* *>J 
oL 

n, 
EAj   + Xk   — (J        ff 

77*7 7tf^rvkvZ6itj o(N-L + l)tl  (Af-A^)2 
/b^; 

(26) follows by properly replacing vfc by sj^ or gjj/. 

Similarly, 

cou (v*, v|) ~ cow (vj, vj) ~ E 

= p2E E^ 
&1=1     /l!2 = l 

P2 

E tgpvfc) [ g *äw 
fe=l 

vgBv«       ygBvj T' 

{Xf-^)2E [vf Bv<vf BvJ v^vf (1 - 6id) 
GL          X\' + X*f - a      „, 
 ~ J       "Vivf (1 - 6itj). n0(N-L + l) (Xf-XYr 

For the columns of signal subspace, v< becomes sf, and (B.10) becomes (27). 

Appendix C 

This appendix follows the procedure of [4]. Denote 

r = (&')* to", 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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and 7i the »the column of T. Using the results of (B.2) - (B.4), and the fact (S*')* BGtf = 

0, we have 

Subsequently 

n0(N-L + l) Al'^Ar       (C-1) 

where A^ = diag [A*/,..., A^{j. Similarly, 

uL 

n0(N -L + l) 
A'%-, (C.2) 

^[^^[(w*^((<o*ö«r) = 0, (C.3) 

and subsequently 

£ [7rtf ] = 0. (CA) 

Since S4/ (s4/)   g-7 has the same limiting distribution as that of -S4/(r - al)'1^ [8], 

then it follows 

E (&{&)*&)(&*{&)*$)* 

n0{N -L + l) 
ah 

n0(N -L + l) 

[S(A" - at)-1 A*'(A*' - aI)-'SH} 5itj (C.5) 

A*/ 

£i (*■ - tf)2 
W Oj j, 

and 

£ (S" (s") V) (s" (&')B$fy = 0 for all i, j. (C.6) 
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Fig.l      The principal eigenvalues of correlation matrix and STFD matrix. 
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Fig.2      SNR thresholds to identify two signals (m = 8). 
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Fig.4      Variance of DOA estimation vs. SNR. 
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Fig. 5      Estimated spatial spectra 

(m = 8, N = 1024,SNR= -20 dB,L = 129 for t-f MUSIC). 
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(m = 8, iV = 1024,SNR= 5 dB,L = 129 for t-f MUSIC). 
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This letter introduces the spatial ambiguity functions (SAFs) and discusses their appli- 
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I. INTRODUCTION 

The evaluation of quadratic time-frequency distributions of the data snapshots across the 

array yields spatial time-frequency distributions (STFDs), which can be used to solve a large 

class of blind source separation and high-resolution direction-of-arrival (DOA) estimation 

problems [1], [2]. STFD techniques are appropriate to handle sources of nonstationary 

waveforms that are highly localized in the time-frequency domain. 

The concept of STFD can been extended to arbitrary joint-variable domain [3], [4]. In 

this letter, the ambiguity functions are considered. Similar to STFDs, spatial ambiguity 

functions (SAFs) are descriminatory tools. The sources whose ambiguity domain signatures 

are used in constructing the SAF matrix are the only ones considered for signal separation 

and subspace estimation. 

II. ANALYSIS MODEL 

The following linear data model 

x(t) = Ad(t)+n(t) (1) 

is commonly used in narrowband array processing, where A is the mixing matrix of dimension 

mxn, x(t) = [Xl(t),..., xm(t)]T is the sensor array output vector, and d(t) = [d^t),..., dn(t)]T 

is the source signal vector. The superscript T denotes the transpose operator. n(t) is an 

additive noise vector. In direction finding problems, we require A to have a known structure. 

The SAF matrix of a signal vector x(t) is defined as 
oo 

Dxx(0, r) = I x(u + r/2)xff (u - r/2)ejeudu (2) 
— 00 

where 9 and r are the frequency-lag and the time-lag, respectively, and H denotes conjugate 

transpose. In noise-free environment, x(t) = Ad(t), then we have 

Dxx(0,T) = ADdd(0,r)Aff (3) 
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Equation (3) is similar to the formula that has been commonly used in blind source separation 

and DOA estimation problems, relating the data covariance correlation matrix to the signal 

correlation matrix [5], [6]. Here, these matrices are replaced by the data spatial ambiguity 

function and signal ambiguity function matrices, respectively. The two subspaces spanned 

by the principle eigenvectors of Dxx(0, r) and the columns of A are identical. This implies 

that array signal processing problems can be approached and solved based on the SAF. 

III. PROPERTIES OF SPATIAL AMBIGUITY FUNCTIONS 

The SAFs have the following two important offerings that distinguish them from other 

array spatial functions. 

1) The crossterms in between source signals reside on the off-diagonal entries of matrix 

T>d<i(9,T), violating its diagonal structure, which is necessary to perform blind source sepa- 

ration. In the ambiguity domain, the signal autoterms are positioned near and at the origin, 

making it easier to leave out crossterms from matrix construction. 

2) The autoterms of all narrowband signals, regardless of their frequencies and phases, 

fall on the time-lag axis (9 = 0), while those of the wideband signals fall on a different (9, r) 

region or spread over the entire ambiguity domain. Therefore, the SAF is a natural choice 

for recovering and spatially localizing narrowband sources in broadband signal platforms. 

IV. AMBIGUITY-DOMAIN MUSIC 

Similar to time-frequency MUSIC [2], the signal and noise subspaces E = [Es En] of 

the SAF matrix Dxx(0, r) can be obtained by the block joint-diagonalization of ~Dxx(9, r) 

obtained at different (9, r) points. Once the noise subspace En is estimated, the ambiguity- 

domain MUSIC (AD-MUSIC) technique estimates the DOAs by finding the n0 largest peaks 

of the localization function f((j>) = E„ a(0) 
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Consider the scenario of a four-element equi-spaced linear array, where one chirp signal 

and two sinusoidal signals are received. The data record has 128 samples. All three signals 

have the same SNR of 20 dB. The DOAs of the chirp signal and the two sinusoidal signals 

are 15, 10, and 0 degrees, respectively. While the ambiguity function of the chirp signal 

sweeps the ambiguity domain with contribution at the origin, the exact autoterm ambiguity 

function of the narrowband arrivals si(t) and s2{t) is zero for non-zero frequency-lags and 

may have non-zero values only along the vertical axis 0 = 0. 

In this simulation example, we selected 24 points on the time-lag axis, excluding the 

origin, and as such emphasizing the narrowband components. Fig. 1 shows the ambigu- 

ity function where the two vertical lines represent the crossterms between the sinusoidal 

components. Fig. 2 shows the two estimated spatial spectra, one corresponds to the con- 

ventional method and the other corresponds to the AD-MUSIC. There are two dominant 

eigenvalues for the case of the AD-MUSIC, since we have not deliberately considered the 

chirp signal through our careful selection of the ambiguity-domain points. It is clear that 

the AD-MUSIC resolves the two sinusoidal signals, while the conventional MUSIC could not 

separate the three signals. 

V. AMBIGUITY-DOMAIN SOURCE SEPARATION 

Analogous to blind source separation based on STFD [1], blind source separation based 

on SAF consists mainly of two steps. The first step is to whiten the array signal vector by 

an m x n matrix W such that (WA)(WA)" = UU* = I, i.e., WA is a unitary matrix. 

The whitening matrix W can be obtained, for example, from the covariance matrix [1]. The 

second step is to perform joint diagonalization to obtain the unitary matrix U [1], which 

is then used to provide A = W#U, where * denotes pseudo-inverse, and the source signal 

vector is recovered as s(t) = UffWx(i).   All of the above matrices are replaced by their 
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estimates when dealing with one realization. 

Assume that we have two sources and three equi-spaced sensors. One source is a sinusoid, 

whereas the other is a pulsed sinusoidal signal that extends over 8 samples. The SNR of 

both signals, defined in the total power, is 10 dB. In this example, the mixing matrix did 

not have a presumed structure and its columns were not complex exponential vectors. 

The ambiguity function of the mixed signal at the first sensor is shown in Fig. 3. In this 

specific case, we select four points along the frequency-lag axis and the time-lag axis closest 

to the origin. Then, by using the spatial ambiguity functions, we are able to recover the 

original signals from only their observed mixture. Fig. 4 shows the waveforms of the original 

and the separated signals after multiplication by the proper complex scalar. 

VI. CONCLUSIONS 

The spatial ambiguity function and its application to direction finding and blind source 

separation have been discussed. Based on the spatial ambiguity functions, we have in- 

troduced the ambiguity-domain MUSIC and the ambiguity-domain blind source separation 

techniques. 

69 



REFERENCES 

[1] A. Belouchrani and M. G. Amin, "Blind source separation based on time-frequency signal 

representation," IEEE Trans. Signal Processing, vol. 46, no. 11, pp. 2888-2898, Nov. 1998. 

[2]  , "Time-frequency MUSIC,"   IEEE Signal Processing Letters,   vol. 6, no. 5, pp. 

109-110, May 1999. 

[3] R. G. Baraniuk and L. Cohen, "On joint distributions for arbitrary variables," IEEE 

Signal Processing Letters, vol. 2, no. 1, pp. 10-12, Jan. 1995. 

[4] R. G. Baraniuk and D. L. Jones, "Unitary equivalence: a new twist on signal processing," 

IEEE Trans. Signal Processing, vol. 43, no. 10, pp. 2269-2282, Oct. 1995. 

[5] R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. 

Antenna Propagat, vol. 34, no. 1, pp. 276-280, Jan. 1986. 

[6] A. Belouchrani, K. Abed Meraim, J.-F. Cardoso, and E. Moulines, "A blind source sep- 

aration technique using second order statistics," IEEE Trans. Signal Processing, vol. 45, 

no. 2, pp. 434-444, Feb. 1997. 

70 



128 

>-        0 

0.5 

Fig. 1      The ambiguity functions of the chirp signal and two sinusoidal signals. 

AD-MUSIC 
10 

10 15 20 
<> (deg) 

10 15 20 
* (deg) 

Fig. 2      The estimated spatial spectra of AD-MUSIC and conventional MUSIC. 
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Spatial time-frequency distributions (STFDs) have been recently intro- 

duced as the natural means to deal with source signals that are localizable 

in the time-frequency domain. It has been shown that improved estimates 

of the signal and noise subspaces are achieved by constructing the sub- 

spaces from the time-frequency signatures of the signal arrivals rather than 

from the data covariance matrices, which are commonly used in conven- 

tional subspace estimation methods. This paper discusses the application 

of STFD to high-resolution direction finding. We focus on both the role and 

the effect of crossterms in angle estimation when multiple time-frequency 

points are incorporated. Simulation examples are presented to compare 

the performance of joint block-diagonalization and time-frequency averag- 

ing techniques for incorporating multiple autoterm and crossterm points in 

subspace estimation. 

Key Words: Spatial time-frequency distribution, direction finding, crossterm distribution, 

array signal processing 

1.    INTRODUCTION 

In many signal processing applications, the multidimensional signal is directly 
utilized to estimate some signal parameters, such as the number of sources and 
their directions of arrival [1, 2]. Subspace-based methods use a geometrical rela- 
tion involving the exact moments of the data. The desired signal parameters are 
extracted by solving this relation in some approximate sense, and by using sample 
moments instead of the exact ones. The commonly applied eigenstructure subspace 
methods assume stationary signals. When the frequency content of the measured 
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data is time-varying, the performance of these methods can be significantly im- 
proved by proper use of the data time-frequency characteristics. 

The evaluation of quadratic time frequency distributions of the data snapshots 
across the array yields spatial time-frequency distributions, which are most appro- 
priate to handle sources of nonstationary waveforms that are highly localized in 
the time-frequency domain [3, 4, 9]. Spreading the noise power while localizing 
the source energy in the time-frequency domain amounts to increasing the robust- 
ness of eigenstructure signal and noise subspace estimation methods with respect 
to channel and receiver noise, and hence improves resolution and signal separation 
performance. 

In this paper, we consider the applications of spatial time-frequency distributions 
to the direction finding problem. In [4], the time-frequency MUSIC (t-f MUSIC) 
was introduced. In [9], the subspace analysis for the time-frequency distribution 
matrices is presented, and the performance of the time-frequency MUSIC is ana- 
lyzed. The time-frequency maximum likelihood (t-f ML) also has been introduced 
and analyzed [8]. However, these results were obtained under the assumption that 
only the autoterms of STFDs are considered for STFD matrix construction. The 
effect of crossterms have not been made clear. In this paper, we focus on the 
performance of the t-f MUSIC when crossterms are incorporated. 

This paper is organized as follows. Section 2 introduces the signal model, and 
gives a brief review of the definition and properties of the spatial time-frequency dis- 
tributions. In Section 3, the time-frequency MUSIC algorithm is briefly discussed. 
In Section 4, we consider the effect of crossterms to direction finding. Simula- 
tion examples are presented to examine the effect of crossterms, and a comparison 
between joint block-diagonalization and time-frequency averaging is performed. 

2.    SPATIAL TIME-FREQUENCY DISTRIBUTIONS 
2.1.    Signal Model 

In narrowband array processing, when n signals arrive at an m-element array, 
the linear data model 

x(*) = y(t) + n(i) = Ad(«) + n(i) (1) 

is commonly used, where A is the mixing matrix of dimension m x n, x(t) = 
[x1(t),...,xm(t)]T is the sensor array output vector, and d(i) = [di(t),...,dn(t)]T 

is the source signal vector. The superscript T denotes the transpose operator. 
In direction finding problems, the DOAs of the source signals 0 = [0l5 ...,9n]T 

are of interest, and the mixing matrix takes the form of A(0) = [a(0i)...a(0n)], 
where a(0,) is the ith steering vector with known structure. On the other hand, in 
blind source separation application, it is often assumed that the array manifold is 
unknown, and the mixing matrix is not finitely parameterized. n(f) is an additive 
noise vector whose elements are modeled as stationary, spatially and temporally 
white, zero-mean complex random processes, independent of the source signals. 
That is, 

E[n(t + T)nH(t)]=aS(T)I  and  E[n(t + r)nT(t)) = 0 for any r (2) 

74 



where 6(T) is the Dirac delta function, I denotes the identity matrix, a is the noise 
power at each sensor, and the superscript H denotes conjugate transpose, and E{-) 
is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is higher than the 
number of sources, i.e., m > n. Further, matrix A is full column rank, which 
implies that the steering vectors corresponding to n different angles of arrival are 
linearly independent. The correlation matrix is given by 

Rxx = E[x{t)xH (t)} = ARddAH + <rl, (3) 

where Rdd = E[d(t)dH (t)] is the signal correlation matrix. We assume that Rxx 

is nonsingular, and the observation period consists of N snapshots with N > m. 

2.2.    Concept of Spatial Time-Frequency Distribution 
The spatial time-frequency distributions (STFDs) based on Cohen's class of time- 

frequency distribution were introduced in [3]. The discrete form of Cohen's class of 
time-frequency distribution of a signal x{t) is given by [5] 

oo oo 

Dxt(t,f)=   J2     Yl  4>{m,T)x{t + m + r)x*{t + m-r)e-^fT,        (4) 
m=—oo r~—oo 

where (j>{m, T) is a kernel and the superscript * denotes complex conjugate. The 
spatial time-frequency distribution matrix is obtained by replacing x(t) by the data 
snapshot vector x(i), 

oo oo 

Dxx(*,/)=   £     £  <j>(m,T)x(t + m + T)xH(t + m-T)e-W\       (5) 
m=—oo r=—oo 

Substitute (1) into (5), we can extend Dxx to the following form 

Dxx(*, /) = Dyy(i, /) + Dynfr /) + Dny (t, f) + Dnn(t, /) (6) 

Under the uncorrelated signal and noise assumption and the zero-mean noise prop- 
erty, it is obvious that E [Dyn(t, /)] = E [Dny(i, /)] = 0, and it follows 

E[Bxx(t,f)]    =Dyy(i,/) + £[Dnn(t,/)] 
= ADdd(t, f)AH + E [Dnn(t, /)]. l ; 

Equation (7) is similar to equation (3) that has been commonly used in DOA esti- 
mation and blind source separation problems, relating the signal correlation matrix 
to the data spatial correlation matrix. In the above formulation, however, the cor- 
relation matrices are replaced by the spatial time-frequency distribution matrices. 
This implies that key problems in various applications of array processing, specif- 
ically those dealing with nonstationary signal environments, can be approached 
using bilinear transformations. 

It is noted that the relationship (7) holds true for every (i, /) point. In order to 
reduce the effect of noise and ensure the full column rank property of the STFD 
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matrix, we consider multiple time-frequency points. Joint block-diagonalization 
[6, 14] and time-frequency averaging [7, 9] are the two main approaches that have 
been used for this purpose. 

The aforementioned fact of incorporating multiple time-frequency points allows 
us to choose specific time-frequency regions, and as such perform array processing 
for a subclass of signals. For example, two sources A and B are incident on a 
multisensor array. As shown in Fig. 1, we assume that source A occupies the time- 
frequency region Ra, where source B occupies the time-frequency region Rb. The 
time-frequency signatures of the two sources overlap, but each source still has a 
time-frequency region that is not intruded over by the other source. Therefore, 
when we select (t, f) points of the region Ra f~l Rb, only signal A will be involved. 
The performance improvement is specially significant for closely spaced signals [10]. 

When n0 source signals are selected out of the n signals based on their time- 
frequency signatures, (7) becomes 

E [Dxx(i, /)] = A°D°dd(t, f)(A°)H + E [Dnn(t, /)]. (8) 

where A° and T>dd(t,f), respectively, denote the mixing matrix and the source 
signal TFD matrix defined using the selected n0 signals. 

It is important to note that with the ability to construct the STFD matrix from 
one or few signal arrivals, the well known m> n condition on source localization 
using arrays can be relaxed to m > n0. That is to say, we can perform direction 
finding or source separation with the number of array sensors smaller than the 
number of impinging signals. 

Signals with different time-frequency signatures. 
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2.3.    Properties 
We focus here on frequency modulation (FM) signals, modeled as 

d(t) = [*(*), ...,dn(t)f = [Dte**®, ...,Dne^W]T, (9) 

where D* and ipi(t) are the fixed amplitude and time-varying phase of ith source 
signal. For each sampling time t, di(t) has an instantaneous frequency (IF) fi(t) — 

2ir     dt    - 

The consideration of FM signals is motivated by their simplicity as well as the 
fact that these signals are uniquely characterized by their instantaneous frequencies, 
and therefore, they have clear time-frequency signatures that can be utilized by the 
STFD approach. 

Consider a simple case that the FM signals are mutually uncorrelated over the 
observation period, and the time-frequency signatures do not overlap, i.e., 

1   N 

-J2di(k)d*(k) = 0       for i± j, i,j = 1, ...,n. (10) 
fc=i 

then the signal correlation matrix in (3) is 

RM = diag[Dl,Dl,...,D%\ 

where diag[-] is the diagonal matrix formed with the elements of its vector valued 
arguments. 

We consider pseudo Wigner-Ville distribution (PWVD) as an example of Cohen's 
class here. The spatial pseudo Wigner-Ville distribution (SPWVD) matrix, using 
a rectangular window of odd length L, is 

L — l 

D«(*,/)=    £    x(i + r)xH(t-r)e-^^. (11) 

Assuming that the third-order derivative of the phase is negligible over the window 
length L, then along the true time-frequency points of ith signal, fa = ^ $', 
and ipi(t + T) — ipi(t — T) — 4nfiT = 0. Accordingly, the zth diagonal element of 
PWVD matrix Ddd(<, /) becomes 

Ddidi{t,fi)=    Y.    Dl = LDl (12) 

On the other hand, under the spatial white and temporal white assumptions, the 
statistical expectation of the noise STFD matrix Dnn(t, /) is 

L-l 

£[D„„(*,/)]=    J2    E[n(t + T)nH(t-r)]e'^T=aI. (13) 

Therefore, when selecting the time-frequency points along the time-frequency sig- 
nature or the IF of an FM signal, the SNR of model (7) is LDf/a, which has an 
improved factor L over the one associated with model (3). 
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The PWVD of each FM source has a constant value over the observation period, 
providing that we leave out the rising and falling power distributions at both ends 
of the data record. For convenience of analysis, we select those N - L + l time- 
frequency points of constant distribution value for each source signal. Therefore, 
the averaged STFD over the time-frequency signatures of n0 sources, i.e., a total 
of n0(N - L + 1) time-frequency points, is given by 

1 n0  N-L+l 
ß = n0(Ar-£ + i)E   £   Dx*fo,/Bl,), (14) 

' g=l     «=1 

where fqii is the instantaneous frequency of the gth signal at the ith time sample. 
The expectation of the averaged STFD matrix is 

T> = E D ±-A°R°dd(A°f + aI, (15) 

where Rdd represents the signal correlation matrix formulated by only considering 
n0 signals out of the total number of signal arrivals n. 

Let A? > \°2 > •■• > A°o  > A°o+1 = A£o+2 = ■■■ = X°m = a denote the 
eigenvalues of the correlation matrix defined from a data record of a mixture of the 
n0 selected FM signals, R°x = A°R°d(A°)ff + <rl. We also denote \\f > \\f > 

'" > ^n0 > K0+i = K0+2 = ■■■ = K£ = ati as the eigenvalues of D defined in 
(15). From (15), we have 

\tf-S — (X°i -v)+v = —A? + a     i<n0 

atf = a n0 <i <m 
(16) 

o 

where A? A A? - a. 

3.    TIME-FREQUENCY MUSIC 

When n0 signals are selected, the t-f MUSIC determines the angles of the n0 

signals by locating the n0 peaks of the spatial spectrum defined from the n0 signals' 
respective time-frequency regions [4]. 

/^W=faH(ö)Gt/(G4/)Ha(ö)l~1 

r / /    x*\       I"1 (17) 

=   a*(0Wl-S"(§")    Ja(ff) 

where Gtf and S'^ are the noise and signal subspace estimates obtained from the 
eigenstructure of matrix D. When N-L + l points for each of the n0 FM signals 
are used in the time-frequency averaging, the variance of the DOA estimates based 
on t-f MUSIC is given by [9] 

E(u>*'-J')a = ± »"W^W (18) 
V* *)       2(N-L + 1)        h*f(6i) (18) 
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where u is the spatial frequency associated to DOA 6, and w'^ is its estimate 
obtained by the t-f MUSIC. Moreover, 

U*/ = aL 

n0(N -L + l) 

a 

"°       A*' /    \H 

&J 

.k=l (Äk) 

(19) 

iV-L + 1 

and 

h*'(6) = cH(6)Gtf (Gtf)Hc(6), (20) 

with 

c(0) = da(0)/dw. (21) 

Prom (18) and (19), two important observations are in order. First, if the signals 
are both localizable and separable in the time-frequency domain, then the reduc- 
tion of the number of signals from n to n0 greatly reduces the estimation error, 
specifically when the signals are closely spaced. The second observation relates to 
SNR enhancements. The above equations show that error reductions using STFDs 
are more pronounced for the cases of low SNR and/or closely spaced signals. It is 
clear from (19) that, when X% » a for k = 1,2, ...,n0, the results are almost inde- 
pendent of L (assume N » L so that N - L + 1 ~ N), and therefore there would 
be no obvious improvement in using the STFD over conventional array processing. 
On the other hand, when some of the eigenvalues are close to a (\°k ~ a, for some 
k = 1,2, ...,n0), which is the case of weak or closely spaced signals, all the results 
of above three equations are reduced by a factor of up to G = ■£-, respectively. 
This factor represents, in essence, the gain achieved by using STFD processing. 
To numerically demonstrate the effect of the SNR enhancement, Fig. 2 shows the 
following normalized factor that is obtained using the fcth term in the summation 
(19) and its respective value in conventional MUSIC 

versus \°kjo for different gain factor G = L/n0. This is a key factor in determining 
the DOA variance of the t-f MUSIC estimates (18). It is evident from this figure 
that the effect of the gain factor becomes significant at low SNR. 

4.    EFFECT OF CROSSTERM DISTRIBUTION 
4.1.    Crossterm Distribution 

Crossterms are a byproduct of the time-frequency distribution due to its bilin- 
earity. Although different kernels have different ways of mitigating crossterms [15], 
nevertheless complete removal of crossterms are very difficult to achieve. 

There are two sources of crossterms in the underlying direction finding problems. 
The first type is due to the interactions between the components of the same source 
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Fig. 2      Normalized factor rjk vs. A~£/cr. 

signal. These crossterms, always reside, along with the autoterms, on the main di- 
agonal of the source TFD matrix. The other type of crossterms are those generated 
from the interactions between two signal components belonging to two different 
sources, These crossterms are associated with cross-TFD of the source signals and, 
at any given time-frequency point, they constitute the off-diagonal entries of the 
source TFD matrices. 

Here we consider the second type of crossterms. When crossterms are present at 
the selected time-frequency point, the source TFD takes the following general form 

Ddd(*,/) = 

Ddldl(t,f)    Ddld2(t,f) 
DdadAtJ)    Dd2d,(t,f) 

LAfn*(*,/)    Ddrid2(t,f) 

where the off-diagonal element 

AM„(*>/) 
Dd2djt,f) 

Dd„dn(t,f)l 

(22) 

oo oo 

Ddidj(t,f)=   Y,     Yl  <Km,T)di(t + m + T)d$(t + m-T)e-s**fT, 
m——oo T-—oo 

is the crossterm of source signals di(t) and dj(t) at the point (t, /). 

4.2.    Comparison to Cross-Correlation 
Here we compare the crossterms to the cross-correlation between signals in con- 

ventional array processing, whose properties are familiar. When signals are corre- 
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lated, the covariance matrix of the source signals 

R-dd = 
fid2d\       ^d2d2 

_Rdnd!   Rdnd2 

is given at the form 

Rd2dn 

■Rdndn 

(23) 

where the off-diagonal element 

Rdidj = EldiWjit)] 

represents the correlation between source signals d; and dj. Direction finding prob- 
lems can usually be solved when the signals are partially correlation, however, full 
rank property of the covariance matrix Rdd is a necessary condition. 

Comparing equations (22) and (23), it is clear that the cross-correlation terms 
and the crossterms have analogous form and similar function. However, (23) is 
the correlation matrix that is constant in stationary signal environments, whereas 
(22) is defined at a (t, /) point and its value usually varies with respect to time t 
and frequency / under both stationary and nonstationary signal conditions. When 
multiple (t, f) points are incorporated, the effect of crossterm may be reduced, since 
the crossterm usually oscillates with respect to time. In the next subsection, we 
demonstrate this property by using simulation examples. 

4.3.    Examples 
Consider a six-element linear array with half-wavelength inter-element spacing, 

and two chirp signals arrive. The start and end frequencies of the first signal d\ (t) 
are f\s = 0.1 and fu = 0.5, and those for the second signal d2(t) are /2s = 0 and 
/2e = 0.4, respectively. The SNR is 10 dB for each signal, and the DOAs of the 
two signals are 6\ = —10° and 62 = 10°, respectively. The number of samples is 
256. PWVD is used and the window length is N = 129. Fig. 3 shows the PWVD 
of the mixed signals at the first sensor. 

The expressions of the signals at the reference array element are given by 

di (t) = expD'(0.1t + 0.2t2/N)]   and   d2(t) = exp[j0.2t2/N] 

The autoterms and the crossterms are obtained as 

r L f(t) = 0.1 + OAt/N 

sin[27rL(0.1 + OAt/N - /)] Ddld1(t,f) = < 

sin[27r(0.1 + OAt/N - /)] 
otherwise 

Dd2d2(t,f) 

L f(t) = OAt/N 

sm[2nL(0At/N - /)] 1       K      '   ----- -1-'1    otherwise 
sin[27r(0.4i/iV - /)] 

( L exp[j0.27rt] f(t) = 0.05 + 0.4i/iV 

Ddld2(t,f) = < sin[27rL(0.05 + OAt/N - /)] 
sin[27r(0.05 + 0.4t/iV - /)] 

exp[j0.27ri]   otherwise 

(24) 

(25) 

(26) 

(27) 
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and 

AMI(*,/) ■D*dldt(t,f). (28) 

Specially, we consider the autorerms and the crossterms at the following two 
regions: i) autoterm regions (t,^) with f^t) = 0.1 + OAt/N and (t,f2) with 
/2(*) = OAt/N, where the autoterms are dominant; and ii) crossterm region (t,fc) 
with fe(t) = [h(t) + f2(t)]/2 = 0.05 + OAt/N, where the crossterm is dominant. 
Both the autoterm and crossterm regions have large peak values and are most likely 
to be selected. 

i) Autoterm regions. In the autoterm region of di(t), (t, /x), the autoterm of di(t) 
is constant. The autoterm of d2(t) and the crossterm between di(t) and d2(t) are 
relatively small. The source TFD matrices with this region have the form of 

Ddd(*,/1) = 
L   o 
o    o 

where o denotes a negligibly smaller value. Similar results can be obtained for the 
autoterm region of d2(t), where the source TFD matrices 

Ddd(*,/2) 
o    o 
o   L 

Since both matrices have dominant diagonal elements with constant values, incor- 
porating only autoterm points, either by joint block-diagonalization or by time- 
frequency averaging, usually provides good direction finding performance. 

ii) Crossterm regions. In this region the crossterms Ddld2 and Dd2dl are domi- 
nant. These crossterms are conjugate to each other, and the source TFD matrices 
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at this region have the following form 

D«M(tI/c) = 
o Lexp(j'0.27ri) 

L exp(-j0.2irt) o 

which is anti-diagonal. Note that unlike a correlation matrix at coherent signal 
case, which is singular, the above source TFD matrix is still full rank because of 
the absence of dominant diagonal elements (although the matrix is not necessary 
positive definite). Accordingly, the noise subspace can be properly estimated, even 
when only the crossterm points are selected. 

However, since the crossterms change with time t, taking both positive and neg- 
ative values. Summing them at different (t, f) points yields small smoothed values. 
Therefore, the time-frequency averaging may lead very degraded performance in 
some cases. On the other hand, performing joint block-diagonalization instead of 
time-frequency averaging avoids such risk. 

Fig. 4 and Fig. 5 show the estimated spatial spectra of the t-f MUSIC by using 
joint block-diagonalization and time-frequency averaging, respectively. From top to 
bottom, each figure shows the results by choosing i) autoterm regions f(t) = fi(t) 
and f(t) = f2(t), ii) crossterm region f(t) = [fi{t) + f2(t)]/2, ui) autoterm and 
crossterm regions f{t) = /i(i), f(t) = f2(t), and f(t) = [/i(t) + f2{t)}/2, and iv) 
autoterm region of the first signal, f(t) = /i(*)- 

In this case, both the joint block-diagonalization and time-frequency averaging 
resolve the signals in the second and third cases, where the crossterm points are 
included. However, the performance is degraded when using the time-frequency 
averaging methods. Table 1 shows the DOA variance of signal di (t) obtained from 
100 independent Monte-Carlo runs. It is evident that the joint block-diagonalization 
outperforms the time-frequency averaging, particularly when the crossterm region 
is involved. The fourth case in which only one of the two signals is selected has 
the best performance for both methods of joint block-diagonalization and time- 
frequency averaging. An interesting observation is that, in the second case, where 
only the crossterm region is used, the joint block-diagonalization yields second best 
performance, whereas the time-frequency averaging shows its worst performance. 

TABLE 1 

Variances of DOA estimates 

case i) case ii) case iii) case iv) 

Joint block-diagonalization 0.160 0.129 0.238 0.092 

Time-frequency averaging 0.236 0.556 0.359 0.167 

It is noted that the crossterm becomes less oscillatory as the time-frequency 
signatures of the two source signals become closer. When the signals are coherent, 
the two signals will share the same time-frequency signatures. The crossterms 
reside on top of the autoterms, and they will no longer oscillate along the crossterm 
signature. In such case, the source TFD matrices are singular at each points, 
and the t-f MUSIC cannot realize high-resolution DOA estimation. In this case, 
pre-processing methods like spatial averaging methods [12, 13] shall be used. An 
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Fig. 4      Spatial spectra estimates by using joint block-diagonalization. From top: 
i) autoterm regions f(t) = fx{t) and f(t) = f2(t), 

ii) crossterm region f(t) = [X(<) + f2(t)]/2, 
iii) autoterm and crossterm regions specified in i) and ii), and 

iv) autoterm region of the first signal, f(t) = /i(f). 

alternative way is to use the time-frequency maximum likelihood (t-f ML) method 
[8]. 

5.    CONCLUSIONS 

The performance of time-frequency MUSIC (t-f MUSIC) has been discussed when 
multiple time-frequency points are incorporated and crossterm regions are involved. 
The analysis and simulation results have shown that the crossterm regions can be 
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Fig. 5      Spatial spectra estimates by using time-frequency averaging. From top: 
i) autoterm regions f(t) = fi(t) and /(*) = J2{t), 

ii) crossterm region f(t) = [fi(t) + f2(t)]/2, 
iii) autoterm and crossterm regions specified in i) and ii), and 

iv) autoterm region of the first signal, f(t) = fi(t). 

incorporated in direction finding.   However, when the time-frequency averaging 
methods are used, the use of crossterms may degrade the performance. 
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1. INTRODUCTION 

The localization of spatial sources by passive sensor array is one of the important prob- 

lems in radar, sonar, radio-astronomy, and seismology. So far, numerous methods have 

been proposed for direction finding, most of which are based on the estimates of the data 

covariance matrix. Among these methods, the maximum likelihood (ML) technique was 

one of the first to be devised and investigated [1]. It has a superior performance com- 

pared to other methods, particularly when the input signal-to-noise ratio (SNR) is low, 

the number of data samples is small, or the sources are highly correlated [2]. Therefore, 

despite its complexity, the ML technique remains of practical interests. 

The evaluation of quadratic time-frequency distributions of the data snapshots across 

the array yields what is known as spatial time-frequency distributions (STFDs) [3], [4]. 

STFD techniques are most appropriate to handle sources of nonstationary waveforms. 

STFDs spread the noise power while localizing the energy of the impinging signals in the 

time-frequency domain. This property leads to increasing the robustness of eigenstructure 

signal and noise subspace estimates with respect to the channel and receiver noise, and 

hence improves spatial resolution performance. 

In this paper, we propose the time-frequency maximum likelihood (t-f ML) method for 

direction finding and provide the analysis that explains its performance. It is shown that 

the superior performance of the t-f ML method relative to other methods is attributed 

to the following three fundamental reasons: 1) Time-frequency distributions localize the 

signal power in the time-frequency domain, and as such enhance the effective SNR and 

improve the DOA estimation. 2) The localization of signals with different time-frequency 

signatures permits the division of the time-frequency domain into smaller regions, each 

contains fewer signals than those incident on the array. The reduction of the number of 

signals within different time-frequency regions relaxes the condition on the size of the array 

aperture as well as simplifies the multidimensional optimization estimation procedure. 

3) Compared with the previously proposed time-frequency MUSIC (t-f MUSIC), the t-f 

ML method can be applied when the signal arrivals are highly correlated, whereas the 

t-f MUSIC algorithm cannot do so without some sort of preprocessing, such as spatial 

smoothing. 
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This paper is organized as follows. In Section 2, the signal model is established, and a 

brief review of the spatial time-frequency distributions is given. In Section 3, we discuss 

the SNR enhancement based on time-frequency distributions and its effect on the signal 

and noise subspaces estimates using STFD matrices. The subspace estimates obtained 

from the STFD matrices are more robust to SNR and angular separation compared to 

those obtained from data covariance matrices. Section 4 presents the t-f ML and shows 

its performance in time-varying environments. 

2. BACKGROUND 

2.1. Signal Model 

In narrowband array processing, when n signals arrive at an m-element array, the linear 

data model 

x(t) = y(t) + n(t) = A(0)d(i) + n{t) (1) 

is commonly assumed, where the mx n spatial matrix A(0) = [a(#i)...a(0n)] represents 

the mixing matrix or the steering matrix, and a(#j) are the steering vectors. Due to 

the mixture of the signals at each sensor, the elements of the m x 1 data vector x(t) 

are multicomponent signals, whereas each source signal di(t) of the nxl signal vector 

d(t) is often a monocomponent signal. n(t) is an additive noise vector whose elements 

are modeled as stationary, spatially and temporally white, zero-mean complex random 

processes, independent of the source signals. That is, 

E[n(t + r)nH(t)] = a5(r)I and E[n(t + r)nT(t)} = 0 for any r (2) 

where 5(r) is the Kronecker delta function, I denotes the identity matrix, a is the noise 

power at each sensor, superscript H and T respectively denote conjugate transpose and 

transpose, and E(-) is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is greater than the number 

of sources, i.e., m > n, and the number of snapshots is greater than the number of array 

sensors, i.e., N > m. We also assume that matrix A is full column rank, which implies that 

the steering vectors corresponding to n different angles of arrival are linearly independent. 
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Under the above assumptions, the correlation matrix is given by 

Rxx = E[x(t)xH(t)} = A(0)RddAH(0) + al, (3) 

where Rdd = E[d(t)dH(t)] is the signal correlation matrix. For notational convenience, 

we drop the argument 0 and simply use A instead of A(0). If 0 is an estimate of 0, 

then we also use A instead of A(0). 

Let Xi> X2> ••■ > Xn> Xn+i = Xn+2 = ••■ = Xm = a denote the eigenvalues of Rxx. 

The unit-norm eigenvectors associated with Ai,...,A„ constitute the columns of matrix 

S = [si,..., sn], and those corresponding to An+i,..., Xm make up matrix G = [gu..., gm_B]. 

Since the columns of A and S span the same subspace, then AffG = 0. 

In practice, RxX is unknown, and therefore should be estimated from the available data 

samples (snapshots) x(i), i = 1,2,..., N. The estimated correlation matrix is given by 

ä*x = ^Ex(z)x*(z). (4) 

Let {§i,...,s„,gi,...,gm_n} denote the unit-norm eigenvectors of R^, arranged in the 

descending order of the associated eigenvalues, and let S and G denote the matrices 

made of the set of vectors {§,} and {gj, respectively. The statistical properties of the 

eigenvectors of the sample covariance matrix Rxx for signals modeled as independent 

processes with additive white noise is given in [6]. 

In this paper, we focus on frequency-modulated (FM) signals, modeled as 

d(i) = fa®,.... dn(t)f = [A^W,..., Dne^f, (5) 

where Dt and if>i(t) are the fixed amplitude and time-varying phase of the ith source signal. 

For each sampling time t, di(t) has an instantaneous frequency (IF) /$) = -L***(*). 

FM signals are often encountered in applications such as radar and sonar. The con- 

sideration of FM signals in this paper in motivated by the fact that these signals are 

uniquely characterized by their IFs and, therefore, they have clear time-frequency signa- 

tures that are utilized by the STFD approach. Also, FM signals have constant amplitudes 

and, subsequently, yield time-independent covariance matrices. This property makes them 

amenable to conventional array processing based on second-order statistics. 
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2.2. Spatial Time-Frequency Distributions 

The STFDs based on Cohen's class of time-frequency distribution were introduced in 

[3] and its applications to direction finding has been discussed in [4]. However, the per- 

formance of direction finding based on STFD has not been made clear yet. In this paper, 

we focus on one key member of Cohen's class, namely the pseudo Wigner-Ville distribu- 

tion (PWVD) and its respective spatial distribution. Only the time-frequency points in 

the autoterm regions of PWVD are considered for STFD matrix construction. In these 

regions, it is assumed that the crossterms are negligible. This assumption serves to sim- 

plify the analysis and does not present any condition on performance. It is noted that 

the crossterms in STFD matrices play similar role to the cross-correlation between source 

signals [5], and therefore they do not always impede the direction finding process. 

The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using a rectan- 

gular window of length L, is given by 

2 

Dxx(t,f)=    £    x(t + T)x*(t-r)e-^, (6) 

where * denotes complex conjugation. The spatial pseudo Wigner-Ville distribution (SP- 

WVD) matrix is obtained by replacing x(t) by the data snapshot vector x(t), 
L-l 

2 

D«(t,/)=    £    x(t + T)xH(t-r)e-^. (7) 

Substitute (1) into (7), we obtain 

Dxx(*, /) = Dyyft /) + Dyn(t, f) + Dny(t, /) + Dnn(t, /) (8) 

Under the assumption of uncorrelated signal and noise components and the zero-mean 

noise property, the expectation of the crossterm TFD matrices between the signal and 

noise vectors is zero, i.e., E [Dyn(t, /)] = E [Dny(t, /)] = 0, and it follows 

E pDxxft /)] - Dyyft f) + E [Bnn(t, /)] = ADddft f)AH + E [Dnn(i, /)].       (9) 

It is noted that the relationship (9) holds true for every (t, f) point. Therefore, multiple 

time-frequency points can be used to reduce the effect of noise and ensure the full column 

rank property of the STFD matrix. In this paper, the STFD matrices over multiple 

time-frequency points are averaged, as is discussed in next section. 
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3. SUBSPACE ANALYSIS FOR STFD MATRICES 

The purpose of this section is to show that the signal and noise subspaces based on time- 

frequency distributions for nonstationary signals are more robust than those obtained from 

conventional array processing. 

3.1. SNR Enhancement 

The ith diagonal element of TFD matrix Ddd(t, f) is given by 

L-l 

Aw,(*,/)=   E   &iJM**)-*wi-i*<fT. (io) 

Assume that the third-order derivative of the phase is negligible over the window length 

L, then along the true time-frequency points of ith signal, /,- = ^^^-, and ipi(t + r) - 

ipi{t - T) - A-Kfir ~ 0. Accordingly, 

L-\ 
2 

Ddidi(t,fi)=    E    D* = LDl (11) 

Similarly, the noise STFD matrix Dnn(£, /) is 

L-l 

Dnn(t,/)=    E    n{t + r)nH(t-r)e-^r. (12) 

Under the spatial white and temporal white assumptions, the statistical expectation of 

Dnn(<,/) is given by 

L-\ 
2 

£[Dnn(*,/)]=    J2    E[n(t + T)nH(t-T)]e-i**fr = aI. (13) 
' 2 

Therefore, when we select the time-frequency points along the time-frequency signature 

or the IF of the ith FM signal, the SNR in model (9) is LD?/a, which has an improved 

factor L over the one associated with model (3). 

The pseudo Wigner-Ville distribution of each FM source has a constant value over the 

observation period, providing that we leave out the rising and falling power distributions 

at both ends of the data record. For convenience of analysis, we select those N - L + 1 

time-frequency points of constant distribution value for each source signal. Therefore, the 
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averaged STFD over the time-frequency signatures of n0 signals, i.e., a total of n0(N—L+l) 

time-frequency points, is given by 

-i n0  N-L+l 

6 = Miv-L + i)g g D~««^ (14) 

where fqj is the instantaneous frequency of the qth. signal at the ith. time sample. The 

expectation of the averaged STFD matrix is 

1 n0 N-L+l 
D =B[*] = ScÄTTlTi)SS£P-^M (15) 

= r E [iO,2a(«,)aA(9J + al] = ^A°R5d(A°)" + <xl, 

where Rjd and A°, respectively, represent the signal correlation matrix and the mixing 

matrix constructed by only considering n0 signals out of the total number of signal arrivals 

n. 

3.2. Signal and Noise Subspaces Based on STFDs 

The statistical properties of the eigenstructures using the STFD matrix are provided in 

this subsection. 

Lemma 1: Let A? > A£ > • • • > A°o > \°no+l = X°no+2 = ■ ■ ■ = X°m = a denote the 

eigenvalues of Rxx, which is defined from a data record of a mixture of the n0 selected 

FM signals. Denote the unit-norm eigenvectors associated with A°,..., A°o by the columns 

of S° = [s°,...,s£j , and those corresponding to A°o+1,..., A^ by the columns of G° = 

[g°,..., g^_J. We also denote A4/ > A2' > ■ ■ ■ > A*/o > A*£+1 = A£+2 = • • ■ = A# = a« 

as the eigenvalues of D defined in (15). The unit-norm eigenvectors associated with 

A*^,..., XfJo are represented by the columns of Stf = [s*^,..., s^{] , and those corresponding 

to A^o+1,..., XH are represented by the columns of Gtf = [g[f, ...,g££_„0]. Accordingly, 

a) The signal and noise subspaces of S*/ and G*/ are the same as S° and G°, respectively. 

b) The eigenvalues have the following relationship: 

„      f — (A? - a) + a = —\° +(l-—)a        i<n0 Xf = \n0
K l       > n0  

l     \       nj (16) 

Both parts of the above equations are direct results of (15). From Lemma 1 it is clear 

that the largest n0 eigenvalues are amplified using STFD analysis. 
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Lemma 2: If the third-order derivative of the phase of the FM signals is negligible over 

the time-period [t-L + l,t +L-l], then D - D is a zero-mean, random matrix whose 

elements are asymptotically jointly Gaussian. The proof is given in Appendix A. 

Lemma 3: If the third-order derivative of the phase of the FM signals is negligible over 

the time-period [t - L + l,t + L - 1], then the orthogonal projections of {g-7} onto the 

column space of Stf are asymptotically (for N > L) jointly Gaussian distributed with 

zero means and covariance matrices given by 

E(&(&)H&)(s«(&)Hg/)H =  1 jjtfs- ■ 
(N-L + l)      °1^ 

(17) 

where 

E (s" (S")F g{') (s" (S*) V)T = 0 for all i, j, 

n0 

% 
& (a - \'iy 4'(4')" = a Y M ~ °) + *°zo (s0)H 

k    (°-K)2     k{k) . 

(18) 

(19) 

The proof is given in [10]. For comparison, we quote the results from reference [6], which 

were provided using the data covariance matrix, 

£(ss»«l)(ss"|,)' = £ 
N 

A* 

£ (' - h) rsjfcsf Si hi (20) 

E (SSff
gi) (SSffg,)T = 0 for all *, j. (21) 

where S,sfc,gfc,Afc are analogous to S°, s°k, g%, \°k, respectively, except they are defined for 

all n signals instead of only n0 signals. 

Comparing (17) and (19) with (20), two important observations are in order. First, 

if the signals are both localizable and separable in the time-frequency domain, then the 

reduction of the number of signals from n to n0 reduces the estimation error, specifically 

when the signals are closely spaced. The second observation relates to SNR enhancements. 

The above equations show that error reductions using STFDs are more pronounced for the 

cases of low SNR and/or closely spaced signals. It is clear from (17) and (19) that, when 

K > o" for all k - 1,2,..., n0, the results are almost independent of L (suppose N » L so 
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that N — L + 1 ~ N), and therefore there would be no obvious improvement in using the 

STFD over conventional array processing. On the other hand, when some eigenvalues are 

close to a (A£ ~ a, for some k = 1,2,..., n0), which is the case of weak or closely spaced 

signals, the result of (17) is reduced by a factor of up to G = ^. This factor represents 

the gain achieved using STFD processing. 

4. THE TIME-FREQUENCY MAXIMUM LIKELIHOOD METHODS 

In this section we analyze the performance of the maximum likelihood methods based 

on time-frequency distributions (t-f ML). For conventional ML methods, the joint density 

function of the sampled data vectors x(l),x(2), ...,x(iV), is given by [2] 

/(x(l),... ,x(A0) = fi ^det^P {~l WO - Ad(01* MO - Ad(0l) >       (22) 

where det[-] denotes the determinant. It follows from (22) that the log-likelihood function 

of the observations x(l), x(2), ..., x(iV), is given by 

1   N 

L = -mNlna - - £ [x(t) - Ad(i)}H [x(») - Ad(i)] 
ai=i 

(23) 

To carry out this minimization, we fix A and minimize (23) with respect to d. This yields 

the well-known solution 

d(z)=[AHA]"1Ai7x(z). (24) 

We can obtain the concentrated likelihood function as [2], [8] 

FML{®) =tr{[l- Ä(ÄFÄ)-1Äif] lU} , (25) 

where tr(A) denotes the trace of A. The ML estimate of 0 is obtained as the minimizer 

of (25). Let Ui and a>j, respectively, denote the spatial frequency and its ML estimate 

associated with #;, then the estimation error (üi — Ui) are asymptotically (for large N) 

jointly Gaussian distributed with zero means and the covariance matrix [9] 

E [fa - Ui)2] = ^ [Re(H 0 R£d)]
_1 Re [H © (RddAffUARdd)T] [Re(H 0 Rjd)]_1, 

(26) 

where 0 denotes Hadamard product. Moreover, 
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Sfesf, H Cff[l-A(Ai?A)-1AH]C)    and   C 
dA 
duj' 

(27) 

Next we consider the t-f ML method. As we discussed in the previous section, we select 

n0<n signals in the time-frequency domain. The concentrated likelihood function defined 

from the STFD matrix is similar to (25) and is obtained by replacing RxX by D (Appendix 

B), 

*&(©) = tr [i - Ä° ((Ä0)ffÄ°)_1 (A0)"] D. (28) 

Therefore, the estimation error (u\f - u\f) associated with the t-f ML method are asymp- 

totically (for N » L) jointly Gaussian distributed with zero means and the covariance 

matrix 

E (af- U '."): 

2(N-L + 1) 
Re 

a 

[Re(H° 0 -DT
dd)] 

-l 

H°0 (Ddd(A°)ffU^A°Ddd)
T| [Re^oDD]-1 

2(iV,-aL + l)[Re(H°Q^)r)]" 

(29) 
i-i 

Re H° 0 (Rdd(A°)^U^A°Rdd)
r| [Re ((H° 0 Rddf )]_1 

where \5tf is defined in (19), and 

H° = (C°)H [i - A0 ((A°)HA°)  * (A°)H 
C°,    and    C° = 

dA° 
du 

(30) 

In the case of n0 = n, then H° = H, and C° = C. 

The signal localization in the time-frequency domain enables us to select fewer signal 

arrivals. This fact is not only important in improving the estimation performance, partic- 

ularly when the signals are closely spaced, but also reduces the dimension of optimization 

problem solved by the maximum likelihood algorithm, and subsequently reduces the com- 

putational requirement. 

To demonstrate the advantages of t-f ML over the conventional ML and the time- 

frequency MUSIC (t-f MUSIC), consider a uniform linear array of 8 sensors separated by 

half a wavelength. Two FM signals arrive from (0i,02) = (-10°, 10°) with the instan- 

taneous frequencies fx(t) = 0.2 + O.lt/N + 0.2sin(27rt/JV) and f2(t) = 0.2 + 0.1t/N + 

0.2sin(27rt/AT + n/2),t = 1, ...,N. The SNR of both signals is -20 dB, and the number 
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of snapshots used in the simulation is N = 1024. We used L=129 for t-f ML. Figure 1 

shows the PWVD of the mixed noise-free signals at the reference sensor. Figure 2 shows 

(#i, 62) that yield the minimum values of the likelihood function of the t-f ML and the ML 

methods for 20 independent trials. It is evident that the t-f ML provides much improved 

DOA estimation over the conventional ML. 

In the next example, we compare the t-f ML and the t-f MUSIC for coherent sources. The 

two coherent FM signals have common instantaneous frequencies fi,2(t) = 0.2 + 0.U/N + 

0.2sm(2nt/N),t = 1,...,N, with | phase difference. The signals arrive at {61,62) = 

(—2°, 2°). The SNR of both signals is 5 dB and the number of snapshots is 1024. Again, 

we used L=129 for both t-f ML and t-f MUSIC. Figure 3 shows the PWVD of the mixed 

noise-free signals, and Figure 4 shows the contour plots of the likelihood function of the 

t-f ML and the estimated spectra of t-f MUSIC for three independent trials. It is clear 

that the t-f ML can separate the two signals whereas the t-f MUSIC cannot. 

5. CONCLUSIONS 

The time-frequency maximum likelihood (t-f ML) method has been proposed for direc- 

tion finding, which is based on the spatial time-frequency distribution (STFD) matrices. 

By taking frequency-modulated (FM) signals as example, we show that the STFD matrices 

provide more robust eigen-decomposition than covanrice matrices. The analysis and simu- 

lation results showed that the t-f ML improves over the conventional maximum likelihood 

technique for low SNR, and outperforms the t-f MUSIC in coherent signal environments. 

APPENDIX A 

Proof of Lemma 2 

From (1), (14), and (15), 

n0 N-L+l     HF" / s    „, s       ..   , 

D-D   =   J^LZTTE    E       X    y(ti + T)*H<ti-T)e-'**f*iT 
n0{N-L+l) ^    £1 

T= L-l 
2 

+   ^myE^1    E^^ + ^^rle-iH,, (A.l) 
v 0=1   1=1   1—  L—1 

2 

+   ^ITTJE/E^    ELin(ti + r)nH(ti-r)e-^f^-aI. 
T~        2 
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We first consider the first term in (A.l). Denoting % = tt - r, and noting the fact that, 

when the third-order derivative of the phase is negligible over [t - L +1, t + L - 1] for any 

signal and any t, dqfä + 2T)e~^^iT ~ d,(f.) at the time-frequency point {th fg>i), then 

n0 N—L+X     — 

E   E      E    y(U + r)nE(U-r)e-^^T 

9=1     t=l     T-_kz± 
2 

n0 N-L+l     — 
(A.2) = E   E      E    y{t'i + 2r)nH{t\)e-^^ 

9=1    t{=i    r=-£=i 
n0  N-L+l N-L+l 

^E   E   ^)a(0>*(*D =   E   Ly(t>H(td 
g=i t;=i f.=i 

Therefore, the elements of the first term in equation (A.l) are clearly asymptotically 

jointly Gaussian from the multivariate Central Limit Theorem [7]. Similar result can 

be obtained for the second term of (A.l). The elements of the third term in (A.l) are 

also jointly Gaussian from the fact that the covariance between the (p, r)th element of 

n(t + r)nH(t — r) at time ti and tk is given by 

El 

L-l 
2 (       ±± 

E    np{ti + ri)n*r (ti-Ti)-E 
n=- 
1,-1 

2 

\ 
E  Mb + ri)n;(ti - n) 

L-l 

(       ^ 
\ 

-i47T/,,jTl 

E    n*p(tk + T2)nr(tk - r2) - E       J2    n*P(h + r2)nr(tk - T2) 
Tl- L-l 

L-l L-l 
2 2 

V>=-±=i 

e-j'47T/g>i.T2 

=     E E    ^[^(*i + ri)<(ti-r1)]E[n;(*fc + r2)nr(tfc-r2)]e-J'MA.^-/^) 

L-l L-l 

+    E E    ^[^(*i + n)n;(tife+r2)]^[<(ti-r1K(tfc-r2)]e-J'M/^-/^) 

L-l L-l 
2 2 

+    E E    E[n?(ti + n)nr(tk - T2)]E[n*p(tk + r2)n*r{U - ri)]e-^(A.^-/,.^) 
r1=-^r2=-^i 

L-l L-l 

E E    (J25Ptre-jA<^ri-fq,kT2) 
n=-^r2=-±l 

-  T^ L(T26itk. 

(A.3) 
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Since the linear combination of joint-Gaussian processes is jointly Gaussian, then D — D 

is a random matrix whose elements are asymptotically jointly Gaussian. Also D — D -» 0 

as N —> oo. 

APPENDIX B 

Derivation of (28) 

The number of data samples available for the construction of the STFD matrix is TV — 

L + 1, where the selected n0 signals are included. Denote ü^ as the fcth column of D, 

and Ufc the A;th column of D. Prom Lemma 2, we know that uk is asymptotically jointly 

Gaussian, and its density function is 

1 r 1 i — r      1 1 

ftf(nk) = -det  N_L + 1&k    'exp  --(uk - uk)
H(j^—j^-jA^-1 (uk - uk)  , 

(B.l) 

where A* stands for the asymptotic covariance matrix of u^ 

A, A   lim (N-L + \)E \(uk - ufc)(Üfc - uk)
H] . (B.2) 

From the results of Lemma 2, it is clear that A* is a diagonal matrix with equal diagonal 

elements. Denoting Afc = ßl, the log-likelihood function is given by 

Ltf = -2^JV-L + ll0g/? " h{"k " Uk)H{Ük " Ufc)- (B-3) 

Maximizing Ltj is equivalent to minimizing 

hkA [Ük-uk]H[ük-uk]. (B.4) 

For different k, we may construct the following cost function 
m 

hAZh 
= k=i 

m 

= £ [ufc - uk]H [Üfc - ufc] (B.5) 
k=l 

= tr|[D-D]ff[D-D]|. 

Similar to (24), and by taking into account that we used n0 signals instead of n signals, 

the estimation of D is obtained as A0 ((A0)"!0)"1 (Ä°)ffDÄ° ((Ä0)FÄ°)_1 (A°)H, the 

minimization of equation (B.5) leads to (28). 
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Abstract 

In this paper, we combine the concepts of the evolutionary spectrum and array pro- 
cessing. We present Cross-power Evolutionary Periodogram for both direction of arrival 
estimation and blind separation of nonstationary signals. We model nonstationary sig- 
nals received by each array sensor as a sum of complex sinusoids with time-varying 
amplitudes. These amplitudes carry information about the direction of arrival which 
may also be time-varying. We first estimate the time-varying amplitudes using linear 
estimators obtained by minimizing the mean-squared error. Then, using the estimated 
time-varying amplitudes, we estimate the evolutionary cross-power distributions of the 
sensor data. Next, using cross-power estimates at time-frequency points of interest, 
we estimate the directions of arrival using one of the existing estimation methods. 
If the frequencies are known to be constant but the directions are time-varying, we 
choose the time-frequency points around the time of interest to estimate instantaneous 
source locations. If the sources are stationary, all time-frequency points of interest can 
be combined for the estimation of fixed directions. Whitening and subspace methods 
are used to find the mixing matrix and separate nonstationary signals received by the 
array. We present examples illustrating the performances of the proposed algorithms. 

Permission to publish this abstract separately is granted 

December 23, 1998 
t Corresponding author. 
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1    Introduction 

In many signal processing applications, such as radar, sonar, biomedical engineering and 

communications, direction of arrival (DOA) estimation and recovery of source signals are 

important problems. In general, these problems involve several signals and a multisensor 

array receiver. Each sensor receives a mixture of source signals. In the DOA estimation 

problem, the goal is the estimation of the source locations by processing the data received 

by the array sensors. The common presumption is that the signals are emitted from point 

sources placed in the farfield[6]. Further, the array manifold is assumed to be known. In the 

blind signal separation problem, the array parameters are generally unknown. Performance 

is often independent of inaccuracies in the array manifold as well as sensor displacement. A 

general overview and references on blind equalization can be found in recent review articles 

[16] and [18]. A special case is the instantaneous mixture of signals. A solution using 

second order statistics and applying joint diagonalization to a set of covariance matrices was 

presented in [1]. 

Recently, spatial time-frequency distributions as a generalization of bilinear have been 

introduced time-frequency distributions to a vector signal and used for effective direction 

finding and separation of nonstationary signals[3, 15, 2]. Although bilinear time-frequency 

distributions (TFDs) have several attractive localization properties[5], they either suffer from 

cross-terms or do not guarantee positivity of the spectral estimates. Alternatively, the evo- 

lutionary periodogram (EP) was proposed as an estimator of the Wold-Cramer evolutionary 

spectrum [8].  The EP has many desirable properties and it was shown to outperform the 
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spectrogram and some other bilinear distributions in estimating the spectrum of nonstation- 

ary signals. Further, the EP is computationally simple and can be efficiently implemented. 

In this paper, we combine the concepts of the evolutionary spectrum and array processing 

for problems involving nonstationary signals. We generalize the EP to form the cross-power 

evolutionary periodogram (CEP) for DOA estimation and blind signal separation. 

The nonstationary signal received by each sensor of the array is modeled as a sum of 

complex sinusoids with time-varying complex amplitudes. These amplitudes carry infor- 

mation about the directions of arrival, which may be time-varying. We first estimate the 

time-varying amplitudes using linear estimators obtained via minimum mean-squared error 

criteria. These estimates are then used for the estimation of the time-varying cross-power 

distributions of the data across the array. Next, using the time-varying cross-power estimates 

at selected time-frequency samples, we estimate the DO As of the signals impinging on the 

array using one of the existing estimation methods[6]. If the directions are time-varying, we 

confine the selected time-frequency points to be around the time-of interest at which the 

source direction is to be estimated. Evaluating at different times, we obtain the directions as 

a function of time. If the sources are stationary, then all time-frequency points of high power 

concentration can be incorporated into the estimation of the source directions. In the blind 

source separation problem, the proposed spatial evolutionary spectrum is used along with 

whitening technique and subspace methods to estimate the mixing matrix and separate the 

source signals. Whether it is a stationary or moving source, the use of only time-frequency 

points of high signal to noise ratio is bound to yield improved performance. The incorpora- 

tion of multiple points along the time-frequency signature can be performed through either 
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averaging or joint diagonalization schemes[15],[l],[3]. 

The paper is organized as follows. In the next section, we briefly review the evolutionary 

spectrum. In Section 3, we provide the fundamental equations of spatio-temporal signal 

representation. In Section 4, we present the spatial evolutionary spectrum. An estimator for 

the cross-power evolutionary spectrum, the cross-power evolutionary periodogram, is pro- 

posed in Section 5. In Section 6, we propose estimators for the spatio-temporal evolutionary 

spectrum. The blind source separation using the spatial evolutionary spectrum is addressed 

in Section 7. Finally, in Section 8, we present examples illustrating the performances of the 

proposed methods. 

2    Evolutionary Spectrum 

A zero mean stationary random process, v[n], may be represented as 

v[n] = j' ejwndZ{u) (1) 

where Z(u) is an incrementally orthogonal process, i.e. 

E{dZ(u)dZ*(u0)} = ^-S{u)duS{u - u0) (2) 

where 5Q is the Kronecker delta function and ()* denotes complex conjugation. Throughout 

the paper, the integral limits are from —IT to IT. If the process is white with unit variance, 

then S(u>) = 1. 

If the unit variance process {v[n]} passes through a time-varying channel with impulse 

response h[n,m], then the channel output is 

z[rc] = 5^Mn,m]u[ra]. (3) 
m 
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Substituting (1) into (3), the nonstationary process {x[nj} may be represented as 

x[n]= f H{n,u;)ejwndZ(u) (4) 

where H(n,u) is the generalized transfer function evaluated on the unit circle, 

H{n,uj)=^2h[n,m}e-j^n-m\ (5) 
m 

Thus the nonstationary process {x[n]} is a continuous sum of sinusoids with time-varying 

complex amplitudes. The instantaneous power at time n is 

E{\x[n]\*} = ±-j\H(n,u)?du>. (6) 

Therefore, the (oscillatory) evolutionary spectrum may be defined as [9],[12]: 

S(n,u)=\H(n,u:)\\ (7) 

Note that H(n,u) is slowly varying with time, so that it belongs to the class of oscillatory 

functions[12, 8]. The cross-power evolutionary spectrum of two processes, {x[n]} and {y[n]}, 

can be obtained as[13] 

Sxy(n,u>) = Hx(n,Lü)H*(n,to). (8) 

3    Spatio-temporal Processes 

Consider a uniform linear array of L sensors. In analogy with (1), the field at the /th sensor 

can be expressed as [4] 

vi[n] = j J ej(™-laUZ{u,a) (9) 
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where a = 27Tjsin(0), A is the array inter-element spacing, 6 is the direction of arrival, 

and A is the carrier wavelength. Z(u, a) is an incrementally orthogonal process in both the 

temporal frequency u and spatial frequency a. That is, 

E{dZ(u},a)dZ*{u0,a0)} = — S{u,a)duda8(u - cv0,a - a0). (10) 

The cross-power between the data received at sensors / and m can be written as 

EMnyjn)}   =   ^IJS(u,a)e^m-^duda 

=   _! f S(oj,m-l)duj (11) 

where S(u, m — I) represents the result of the Fourier transform with respect to a. In a 

single point source scenario, 

S(u>,a) = S{u)8{a-.a0) (12) 

and 

E{vi[n]v*Jn}} = ^m~1^ j S{u>)du. (13) 

Note that the cross-power spectrum (11) carries information about the directions of arrival 

of all signals impinging on the array. 

4    Spatial Evolutionary Spectrum 

Assume that the propagation channel has the time-varying impulse response h[n,m]. Then, 

the sensor data takes the form 

xi[n] = ^2h[n,m]vi[m]. (14) 
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From (9) and (14) 

xt[n]   =    f f H(n,u)ej(n"-laUZ(uj,a) 

=   f H(n,ujynwdZ(u,l) (15) 

where H(n,u) is the generalized transfer function defined in (5). Here, we assume that the 

phase of H(n,u>) does not change with time. dZ(u, I) represents the outcome of the Fourier 

transform with respect to the spatial frequency a. 

The cross-power at time n can be written as 

E{x,[n]x*m[n}}   =   i- f j \ H(n,u) |2 S(u,a)ej^-l^diüda 

=    —J\H(n,u;)\2 S(u, m - l)du (16) 

where S(u, m — I) in this case contains the result of the Fourier transfrom with respect to 

a. For a single point source at a = a0, 

E{v,[nym[n]} = i-^-0-.y | H(n,u,) |2 S(u)du. (17) 

Again, the evolutionary cross-power spectrum carries information about the directions of 

arrival. Note that if the directions are also time-varying or the channel depends on both the 

temporal and spatial frequencies, then we can write the following general representation 

xi[n]   =    f [ H(n,u,a)ej(™-laUZ(uj,a) 

=   j H(n,u,l)ejn"dZ{Lo,l). (18) 

The cross-power is 

E{xi[n]x*Jn]}   =   -^ j j' S{n,u,a)Sm-l*dwda 

=    2~" / Si>m(n,u)du> (19) 
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where Siym(n,u) is the result of the Fourier transform and embeds both the temporal and the 

spatial spectra. The above equation is a general representation. It includes special common 

cases such as stationary source of temporal spectrum, stationary source with nonstationary 

temporal spectrum, moving source with stationary temporal spectrum and finally moving 

source with nonstationary temporal spectrum. For a single moving point source at a = a0[n], 

the cross-power is 

E{vi{n]v*Jn}} = i-^-O-W j S(n,u)du. (20) 

5    Estimation of Cross-Power Spectrum 

Consider the signals {z/[n]}, 1 < I < L, 0 < n < N - I, where L is the number of sensors 

and N is the number of the data snapshots over the observation interval, 

xi[n]= f H(n,u,l)ejn"dZ(u,l): (21) 

Now, consider the data at the /th sensor and frequency w0, 

x,,Uo[n] = H(n, u, l)dZ(u0, l)j"°n, 1<1<L (22) 

which is a complex sinusoid modulated by a time-varying complex amplitude. The cross- 

power at time n and frequency u0 between the data at sensors / and m is 

E{xl>lAjo[n]x*mWo[n}} = H(n,u0,l)H*(n,u0,m)-^ = S[,m(n,uj0)^-. (23) 
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5.1    Model at a Frequency u0 

In this section, we follow the approach of [8]. For a frequency of interest w0, xi[n], 1 < / < L, 

can be modeled as 

xi[n]   =   xliUlo[n] + yl<Wo[n] (24) 

where Ai(n, UJ0) is the time-varying complex amplitude and t//)U,0[n] is a zero-mean term which 

includes the components at frequencies different from u0. From (23), we have 

E{Ai{n,u0)A^(n,uj0)} = S,,m(n,w0)-^. (25) 

Hence, if we estimate the complex amplitudes, At(n,w), 1 < / < L, we can, then, estimate 

the cross-power evolutionary spectrum which, in turn, may be used for the estimation of the 

directions of arrival. 

Consider the sensor data xi[n], and assume that {Ai(n,u0)} varies slowly with time so 

that they can be represented as an expansion of orthonormal functions {/?,'["]}> i.e. 

Af-l 

Mn,u0) = ^ ß*[n]ai(u0) = b[n]Ha(u;0) (26) 
»=o 

where 

a(w0) = [flo(wo), o-iM, • • •, aM-i(<^0)]T (27) 

is a vector of expansion coefficients and 

b[n] = \ß0[n],ß1[n],---,ßM.1[n]]T. (28) 

The notations ()T and ()H stand for the transpose and the Hermitian transpose, respectively. 
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We can express xi[n] over the observation interval in the following vector form: 

x, = F(L,0)a,(w0) + y,(u;0) (29) 

where F(u;0) is an iV x M matrix with entries 

Fn+i,,-+i = /?*MejW\0 < n < tf - 1,0 < * < M - 1 (30) 

and 

x,   =   [*i[0],x,[l],.--,*,i^-l]]T (31) 

y>0) = b^o[0],j/,,Wo[i],---,y/,wo[iV-i]]T. 

In the following, we will drop the dependence on the constant frequency u0. 

5.2    Estimation of Ai(n,cu0) 

There are two approaches one could follow to estimate {Ai(n,uj0)}. These time-varying 

complex amplitudes could be either estimated for each sensor separately using only the 

data available from that particular sensor or they may be estimated together using the 

data available from all sensors. Here, we assume that signals at all sensors have similar 

characteristics. We can write the data snapshots in a matrix form as: 

X = FA + Y (32) 

where 

X   =   [X0,XI,~',XL-I\ 

A   =   [&0,&I,-'-,SL-I\- (33) 
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Note that in the above matrix notation, the snapshots are row vectors and the sensor de- 

pendency is across the matrix columns. We use the same minimum mean-squared error 

estimator for all sensor data. Consider the vector of amplitudes at time n 

a[n] = h[n]HA (34) 

and the following linear estimator 

a[n] = w[n]HX (35) 

where 

w[n]   =   [w0[n],w1[n],---,wN-1[n]]T. (36) 

w[n] is the vector of time-varying weights. Substituting (32) into (35), we obtain 

a[n] = w[n]HFA + w[n]HY. (37) 

If the estimator is unbiased then it should produce the correct time-varying amplitudes from 

the first term. Therefore, we provide the following constraint for an unbiased estimator 

w[n]"FA = b[n]HA (38) 

which is satisfied by the following condition 

w[n]"F = h[nf. (39) 

To obtain the estimator weights, we minimize the following total mean-squared error (MSE) 

over all sensors subject to the above constraint 

MSE   =   ^£{(a[n] - a[n])(a[n] - %])"} 
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=   -w[n]HE{YYH}w[n] 

=    \^[n]HRYYw[n] (40) 

where Ryy = E{YYH}. Since Y is a function of the frequency u>0 and is not known a priori, 

we make the assumption that RYY = I • This allows the estimator to work in the same way 

at every frequency [8]. In this case, 

MSE=^w[n]Hw[n]. (41) 

Incorporating the constraint (39), we seek to minimize the following cost function 

c[n] = lw[n]Hw[n] - (w[n]HF - b[n]H)\ (42) 

where A is an M X 1 vector of Lagrange multipliers. By setting the derivatives with respect 

to the unknown parameters to zero, we get the optimum weights as [8] 

wopi[n] = Fb[n] (43) 

and the mean-squared error as 

MSE = b[n]"b[n]. (44) 

The mean-squared error is a function of only the expansion functions. Therefore, it is time- 

dependent and frequency independent. Moreover, for specific orthonormal functions, such 

as the complex exponentials, the MSE is also constant over time. The estimates of the 

time-varying amplitudes are obtained by substituting (43) into (35), 

i[n] = b[n]HFX. (45) 
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5.3    Cross-power evolutionary spectrum estimation 

Since {Ai(n,u0)} provide the estimates of the time varying amplitudes at frequency u0, 

then by varying u0 over all frequencies, we obtain the amplitudes over all frequencies in 

—n < w < 7T. The cross-power evolutionary spectral estimator can be obtained from (25) as 

$xx{n,u)   =   E{i[n]Hi[n}} 

=   E{XHFHb[n}b[n]HFX} 

=   (b[n]HF)®/B®r(FHb[n]) (46) 

where <g> indicates the block Kronecker product, with subscripts r and / denoting right and 

left operations, respectively. In the above equation, R is an (LN) x (LN) matrix, with 

N x N block element at location (/,m) is R(/,m) = T&XlXm = E{xtx%}. We can write the 

cross-spectrum between two sensors / and m as: 

&,.»(",«) = (Hn]HFH)RXl,xJFHb[n]). (47) 

If we drop the expectation operator in the estimation, we will obtain the cross-power 

evolutionary periodogram (CEP); an extension of the evolutionary periodogram (EP), 

Sxx(n, u) = (b[n]"F) ®, R ®r (F
Hb[n\) (48) 

where R(/,m) = x,x^. Since the EP is a fast estimator and it has good performance[8], the 

ECP will also be a fast estimator with similar performance. 

Note that although data alignment is important in multichannel spectral estimation[ll, 

7], it is this difference that we try to exploit for the DOA estimation. 
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6    Spatio-Temporal Evolutionary Spectrum Estimation 

Once we have the cross-power at time n and frequency w, we can apply one of the existing 

spectral estimation methods to estimate the spatio-temporal evolutionary spectrum. The 

peak locations in the spatio-temporal evolutionary spectrum represent the direction of arrival 

(DOA). Below, we present three estimators using the conventional method, a high resolution 

method, and a superresolution method. 

The Conventional method: In this method, the cross-power matrix is directly involved. 

The spatial evolutionary spectrum can be written as : 

Sxx(n,u,a) = eHSxx(n,"h (49) 

where 

e=[l,eJ'V--,ei(Z,_1)a]T- (50) 

Minimum-variance distortionless response (MVDR): In this method, the inverse of 

the cross-power matrix is involved. Other nonlinear functions are also possible [10]. We can 

write the spatial evolutionary spectrum as : 

§„(n,u;>a) = [fiffS;*(nJu;)fi]-t. (51) 

Note that for k = 1, the above equation reduces to the minimum variance spectral estimator[4]. 

Multiple Signal Classification (MUSIC)[14]: This is an eigenstructure subspace method 

that uses the orthogonality between the signal space and the noise space. The cross-power 
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matrix can be decomposed as 

Sxx(n,") = VAVH (52) 

where the eigenvalues and corresponding eigenvectors are 

A   =   dia,g(\1,...,\K,\K+1,...,\L),\1 < ••• < AL, 

U   =   [Ui,-",UÄ-,uA.+1,---,uL]. (53) 

For high signal to noise ratios (SNRs), the eigenvalues will be grouped into two sets, one 

corresponds to the signal components ({A;}, i - l,...,K) and the other, closer to zero, 

corresponds to the noise components ({AJ, i = K + 1,...,L). Using the property that 

the respective signal and noise eigenvectors are orthogonal, the directions of arrival can be 

obtained from the peaks of the spatio-temporal evolutionary spectrum: 

t(w°) = am'ii"»,p- (54) 

Other spectral estimation methods may also be used for the estimation of spatial-spectrum 

[6]. 

7    Blind Signal Separation 

Consider the case in which the signal received at each sensor is equal to a weighted sum of 

K signals and additive zero-mean thermal noise with variance <j2. The noise is assumed to 

be both spatially and temporally white and uncorrelated with the signals. The narrowband 

data model is given by 

x[n] = Cs[n] + w[n] (55) 
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where C is an L x K instantaneous mixing matrix. Substituting (55) into (46), we can show 

that (see appendix) 

Un,u>) = QSss(n^)CH + <r2b[n}Hb[n)l (56) 

Note that Sxx(n,uj) is an L x L matrix, whereas Sss(n,uj) is of size K x K. If the signals 

{sfc[n]} are uncorrelated, hence the cross-power matrix is diagonal, Sss(n,u) = A, then we 

obtain 

§xs{n,u>)   =   CACH + <72b[n}Hb[n]l (57) 

The first term on the right hand side is of rank K and the second term is of rank L. The 

eigendecomposition of Sxx{n,u) provides the K signal eigenvalues (pi[n] + <r2b//[n]b[n], • • •, 

pA'[n] + cr2bH[n]b[n]), where pk are proportional to the powers of signals Sk[n] and the (L — K) 

noise eigenvalues (cr2bH[n]b[n],-• •, cr2bH [n]b[n]), and the corresponding eigenvectors. We 

proceed to whiten the signal part of (56) through a whitening matrix W [17]. The linear 

equation (55) becomes 

z[n]   =   Wx[n] 

=   WCs[n] + Ww[n] 

=   Us[n] + Ww[n] (58) 

where U is a unitary matrix. In the absence of noise, the cross-power distribution matrix 

using the transformed mixture (58) is 

Sz2(n,u,) =WCSss(n,u)CHWH = USS>^)U" (59) 
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The unitary matrix U can be obtained by joint diagonalizing a set of cross-power distribution 

matrices evaluated at different time-frequency points [1],[3]. Once U is found, the mixing 

matrix and the source signals can be estimated as 

c = w#u 

s[n]   =   UHWx[n] (60) 

where W# is the pseudo inverse of the whitening matrix. 

8    Experimental Results 

In this section, we present simulation examples to illustrate the performance of the proposed 

spatial evolutionary spectrum approach for direction finding and blind source separation. 

Before presenting the examples, we point out an issue regarding the implementation. 

Since the cross-power matrices are estimated at a number of selected time-frequency points, 

it is possible that we only cover one of the sources. Although we employ samples pertaining 

to the of signal time-frequency signatures, the noise may well effect the performances of the 

proposed methods. In order to increase overall robustness of the proposed methods and 

include all signal arrivals, we can follow two approaches. The first approach is the averaging 

of all the matrices so that all signal components are included in the final cross-power matrix, 

and also the SNR is increased further[15]. In the second approach, the cross-power matrices 

are diagonalized jointly[1]. 

In the first example, we consider two complex frequency shift keying (FSK) signals with 

frequencies (0.125,0.25) for the first signal and (0.25,0.375) for the second signal.  The fre- 
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quency 0.25 is used by the signals alternately. The length of the observation period is 

N = 256. The signals arrive at a six-sensor array with c*i = 10 and a2 = -10 degrees. 

Figure 1 shows the spatial spectrum at SNR = -lOdB for the CEP-MUSIC and the MUSIC. 

In this example, we use ordered Hadamard functions with M = 4. Eight cross-power dis- 

tribution matrices are averaged. Figure 1 shows the result of 200 realizations. We observe 

that the CEP-MUSIC is able to depict two source locations well but the MUSIC has only 

one peak. 

In the second example, we use the same FSK signals of the previous example except with 

N = 128 for the purpose of signal separation. The signals are shown in Figure 2. We mix 

the signals with the following matrix 

C 
1.0 0.5 1 
0.6 1.0 
0.4 0.8 

(61) 

Figure 3 shows the EP and the bilinear TFD with Choi-Williams kernel of the mixed signal at 

sensor 1. We apply three different blind source separation methods, namely, the CEP-blind 

source separation (CEP-BLIS) method described in the previous section, the spatial bilinear 

TFD based blind source separation method (TFS-BLIS)[3], and the SOBI (second order blind 

identification) method of [1]. Figure 4 shows the error between Signal 1 and the separated 

Signal 1 using all three methods when there is no noise. Notice that the scale of the error 

signal using the CEP-BLIS is different. Figure 5 shows the mean rejection level defined as 

Iperf = J2i?m E{\ (C Q)k,i I2} [1] at different SNRs. We use joint diagonalization with eight 

matrices in all three methods. The figure shows the result of 200 realizations. We observe 

that, for this example, the performance of the CEP-BLIS continues to improve as SNR 
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increases whereas the performances of the SOBI and the TFS-BLIS methods insignificantly 

change after a threshold around 25dB. 

In the final example, we consider a single source of a complex sinusoid at normalized 

frequency / = 0.25, with N = 128 snapshots. The distance between the source and multiple 

antenna array remains constant, but the source displacement is such that a changes linearly 

from -20 to 20 degrees. We use a two-sensor array and apply the CEP-MUSIC by averaging 

five matrices around the time of interest n, i.e., we obtain the cross-power matrix by averaging 

matrices for time-frequency points (n - 5,0.25), (n - 3,0.25), (n, 0.25), (n + 3,0.25), (n + 

5,0.25). We use nine complex exponentials as expansion functions. Figure 6 shows the 

estimates at times n = 10,50 and 100. We observe that the estimator can follow the source 

quite well. 

9    Conclusions 

In this paper we combined evolutionary spectrum with spatio-temporal processing for esti- 

mation of DOA and blind signal separation. We modeled the nonstationary signals received 

at the different sensors as sum of complex sinusoids with time-varying complex amplitudes. 

The estimates of these amplitudes are used for the estimation of cross-power evolutionary 

spectrum, specifically, the cross-power evolutionary periodogram. Then, the cross-power 

evolutionary periodogram matrices at time and frequency samples of interest are combined 

and used in the MUSIC algorithm to obtain the spatial evolutionary spectrum. We also 

used the cross-power evolutionary periodogram matrices for blind signal separation. We 

presented examples illustrating that the proposed methods outperform some existing meth- 
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ods, namely, the standard MUSIC algorithm for DOA estimation, the SOBI, and the bilinear 

time-frequency distribution based algorithms for blind signal separation. 

Appendix 

Consider x[n] = Cs[n] + w[n]. Now we rewrite a[n] as a column vector 

a[n]   =   C((b[n]wF)®;[sf,---,sf]H) + (b[nrF)®,[wf,...,w^ 

a>]   =   [wf,---,wf]®r(Fffb[n])+([sf,--.,sf]®r(Fwb[n]))Cw. (62) 

Then, we can write the cross-power as 

Sxx(n,u)    =   £{a[n]aff[n]} 

=   C [(b[n]KFH) ®, Rss ®r (F
Hb[n])] CH + a2b[n)Hb[n]l 

=   CSss(n,u)CH + a2b[nfb[n}l (63) 

where we used the property that FFH = I. 
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SNR=-1CdB, NumSensors=6 
I J„ .        I 1      I r 

-loo      -80      -eo 

Figure 1: Spatial spectrum for two FSK signals at c^ = —10 and a2 = 10 degrees. 
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Figure 2: The FSK signals used for the blind source separation. 
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40 60 80 
TIME(SAMPLES) 

Bilinear TFD 

40 60 80 
TIME(SAMPLES) 

100 120 

100 120 

Figure 3: The EP and the bilinear TFD of the mixed signal at Sensor 1. 
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Figure 4: The errors between Signal 1 and the separated Signal 1 using (a) the CEP-BLIS, 
(b) the TFS-BLIS and (c) the SOBI. 
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ABSTRACT 

This paper presents a novel approach based on time-frequency 
distributions (TFDs) for separating signals received by a 
multiple antenna array. This approach provides a significant 
improvement in performance over the recently introduced 
spatial time-frequency distributions, specifically for signals 
with close time-frequency signatures. In this approach, spatial 
averaging of the time-frequency distributions of the sensor data 
is performed to eliminate the interactions of the sources signals 
in the time-frequency domain, and as such restore the realness 
property and the diagonal structure of the source TFDs, which 
are necessary for source separation. It is shown that the 
proposed approach yields improved performance over both 
cases of no spatial averaging and averaging using time- 
frequency smoothing kernels. 

1. INTRODUCTION 
In this paper, we introduce a new technique for source 
separation based on time-frequency distribution methods. The 
sources have different time-frequency signatures and 
instantaneously mixed at the array sensors. The number of 
sensors is assumed to be equal to or greater than twice the 
number of sources. The time-frequency distributions (TFDs) of 
the data across the array are computed and used to construct 
spatial time-frequency distribution matrices (STFDs). By 
forcing the hermition Toeplitz structure of the STFDs and 
perform spatial symmetric averaging over two parts of the array, 
we achieve significant improvement of source separation over 
the case where no spatial averaging is performed. 

Recently, time-frequency distributions have been applied to 
direction finding and blind source separation problems in array 
processing. The spatial time-frequency distributions are 
introduced in [1] and represented by a spatial matrix whose 
elements are the time-frequency distributions of the data across 
the multi-sensor array. The successful application of STFDs to 
separating sources with identical spectra, but different time- 
frequency signatures, is shown in [2]. In this application, STFD 
matrices computed at different t-f points are incorporated into a 
joint-diagnalization technique based on generalized Jacobi 
transform to estimate the mixing, or array manifold, matrix. 
This matrix is then used to estimate the sources' signals up to a 
multiplicative complex scalar and the order of the sources. The 
general theory of solving blind source seperation problems using 
spatial arbitrary joint variable distributions, including those of 
time and frequency, is given in [3].   In [4], the two arbitrary 

This work is supported by ONR under Grant #N00014-98-l-0176. 

variables are chosen as the time-lag and frequency-lag, and the 
source separation was performed using spatial ambiguity 
functions. The use of STFDs as an eigenstructure-based 
approach for direction finding is given in [5], where the Time- 
Frequency MUSIC technique is proposed to estimate the signal 
and noise subspaces. 

The importance of joint-diagonalization (JD) in the STFD 
context is that the diagonal structure, the distinct eigenvalues, 
and the full rank properties of the signal TFD matrix, necessary 
for source separation, can be easily violated when operating 
with a single t-f point. The cross time-frequency distributions of 
the source signals yield non-zero complex values at the off- 
diagonal elements, rendering the estimation of the mixing 
matrix difficult, or even impossible. Also, the noise contribution 
to all matrix elements at low SNR cannot be ignored. As the 
interactions of the source signals vary over the time-frequency 
plane, the incorporation of several STFD matrices at different t-f 
points into JD enhances diagonalization and leads to a 
successful separation of signal arrivals. It is noted that the 
primary motivation of using smoothing kernels and resorting to 
other variables than time and frequency, specifically the 
ambiguity-domain variables, is to allow the selection of joint- 
variable points where the interactions of the source signals are 
insignificant. 

The fundamental role of the proposed technique of symmetric 
spatial averaging of STFDs is the effective elimination of the 
signals' intermodulations. It effectively restores the diagonal 
structure and realness property of the signal TFD matrix. 
Symmetric spatial averaging is a simple, well-known technique 
in conventional array processing [6]. It uses additional array 
sensors to reduce cross-correlation in coherent and correlated 
signal environments, and thereby permits proper angle-of-arrival 
estimations and source separations. It is shown that adopting 
this technique in the underlying TFD-based source separation 
JD problem gives robustness to t-f point selections and leads to 
improved performance over other TFD-based techniques, 
specifically for sources whose time-frequency signatures are not 
very distinct. 

2. SPATIAL TIME-FREQUENCY 
DISTRIBUTIONS 

The data vector for JV-element array is given by 

x(f) = y(0+n(0 = As(r)+n(r). (i) 

In vector forms, x(t)=[xo(t), ..., xN.\(t)]r is a noisy instantaneous 
linear mixture of the source signals s(f)=[si(r), ..'., sn(t)f and 
n(f) is the additive noise. The mixing matrix A is the transfer 
function between the sources and the array sensors. 
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The discrete-time form of Cohen's class of TFD for signal 
x(f) is given by [7] 

DJt,f) = £ J<f)(m,/);t(f + m + l)x'(t + m-l)e-'i"f' (2) 

where t and/represent the time index and the frequency index, 
respectively. The kernel #m, Z) characterizes the TFD and is a 
function of both the time and lag variables. The cross-TFD of 
two signals x, (f) and xj (t) is defined by 

DVj(t, f) = £ |>(m,l)xf(t +m + l)x)(t + m-l)e->*">       (3) 

The spatial time-frequency distribution (STFD) incorporates 
both equations (2) and (3), and is defined in [2] by, 

Da(t, f) = £ £«>(m, /) ® x(f + m + l)xH (r + m - l)e ■P'fi (4) 

where [D.,0,/)],,,= D^/r,/), for i, j=0 N-l, ® denotes 

the Hadamard product, and [<IX.m,lj\iJ=fiJ(m,l) is the time- 

frequency kernel associated with the pair of the sensor data x,-(t) 
and xj(t). Under the linear data model of Eq. (1) and assuming 
noise-free environment, the STFD matrix takes the following 
simple structure 

D„(t,/) = AD„(/,/)A" (5) 

where Dss(tf) is the signal TFD matrix whose entries are the 
auto- and cross-TFDs of the sources. Eq. (5) is similar to that 
commonly used in conventional blind source separation and 
direction-of-arrival (DOA) estimation problems [8,9], relating 
the signal correlation matrix to the data spatial correlation 
matrix. If Vss(tJ) is a full-rank matrix, the two subspaces 
spanned by the principle eigenvectors of D*x(tJ) and the 
columns of A become identical. In this case, directional finding 
techniques based on eigenstructures can be applied. If Dss(tJ) is 
diagonal, i.e., the signal cross-TFDs at the time-frequency point 
(tj) are zeros, the mixture matrix and the signal waveform can 
be recovered using blind source separation methods [1,2]. In 
these methods, in order to avoid potential problems associated 
with using a single STFD, STFDs at different (tj) points are 
incorporated into a joint-diagonalization scheme. Although JD 
of the STFDs is effective in most cases, signals with close time- 
frequency signatures are still difficult to separate. As shown 
below, spatial averaging can be used to facilitate signal 
separation. 

3. SPATIAL AVERAGING TIME- 
FREQUENCY DISTRIBUTIONS 

Symmetric spatial averaging method was proposed by Pillai 
[6] to restore the full-rank property of the signal covariance 
matrix in the presence of coherent signals. In this section, we 
extend the spatial averaging method to TFD analysis, and 
propose the signal separation method by joint diagonalization 
(JD) based on spatial averaging TFDs. 

Without loss of generality, we consider M=2, i.e., only two 
sources, si(t) and sz(t). The result can be easily extended to 

multiple sources. By ignoring the effect of noise, the received 
signal at i-th array sensor is represented as 

JC, (0 = *<" (0 + x\2) (f) = s, (0e"/*°1 + *2 (f )e"-w'"1 (6) 

where Qir=2xsm§)fk (k =1,2) is the spatial radian frequency, X is 
the RF wavelength, and d\ is the distance between 0-th and i-th 
array sensors. We assume the array is equi-spaced linear array. 
The cross-TFD of jc,-(f) and x,(f) is 

Jj    Xj Xj 
)(r,/)+D,2),2>(f,/)+D,1),21(t,/) 

(7) 
J(d,-d j)o2 

= \D    (t,f) + D    {t,f)e-mai-°'Ae'M'i>^ 

+ \D    (t,f) + D    (t,f)eid^-"A 
L      J2J2 *1J2 J 

Since the cross-terms (second term in each bracket in (7)) are 
generally complex, it is clear that the TFD matrix Dxx(f/) will 
not provide proper phase information for recovering the DOA of 
the arrived signals when cross-terms are present. However, such 
phase information can be restored by using spatial averaging 
methods. The spatial averaging of TFD allows the signal 
separation even when the TFDs of multiple signals have very 
similar shapes and are highly overlapping. 

Let the number of array sensors be 2AM with the array center 
is the zeroth sensor, as shown in Fig.l. The TFD of xdt) and 
xi(t), i= 0,1,2 N-l, is 

(8) 
D    (t,f) + D    (f,/)l*"+t)    (tJ)+D    (t,f)\ 

L   j,s, I2J, J I   i2J2 I,J2 J 

jdjOj 

where we note rfo=0. Similarly, the TFD of xo(f) and x,-(f) is 

(9) 

The spatial averaging of (8) and (9) is given by 

D^(t,f) = \pKK (f,/) + D^, (t,f)}/2 = bt «*"" +b2e'^   (10) 

where 

b,=D   (r,/) + Reb   (/,/)) 

b2=D   (r,/)+Re(D    («./)) 
*2*2 *     J1J2 ' 

Since the terms in the brackets are all real, the TFD in (10) 
correctly represents the phase information caused by the 
propagation delay between array sensors, even when the cross- 
terms are complex. The matrix formed from the TFDs (10) 

D=</./) = 

D^\t,f)    5™a,/) D<™it,f) 

D«\t,f) 

(ID 
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is hermitian and Toeplitz. It is referred to as the spatial 
averaging TFD (SATFD) matrix. In the noise-free environment, 
the SATFD matrix can be expressed as 

DD(/)/) = AD„AH (12) 

where 

D„a,/) = diag[fe1   fc2] (13) 

are the equivalent TFD of the signal vectors. Note that D„(f,/) 

no longer expresses the actual TFD. Clearly, (12) has the same 

format as (5), and D„(f,/) here is diagonal even when the 

cross-terms of the TFD of the signals are present. Therefore, the 
spatial averaging method will ensure the validity of the TFD- 
based signal separation in the presence of cross-TFD. 

4. SIMULATION RESULTS 
Equi-spaced 5-element linear array is used for simulation with 
the interelement spacing 0.5X. When spatial averaging method 
is used, two sub-arrays are formed, each with 3 elements. Two 
sources of chirp signals 

5,(0 = e    2,j2(/) = e    2 (14) 

are used, where n and to are chosen to be 0.008% and 0.027c, 
respectively. The DOAs of the two signals are assumed 30° and 
60° from the broadside direction. No noise is considered here. 

Fig.2(a) shows the Wigner-Ville distribution of each source 
signal, and Fig.2(b) shows the respective distributions after 
signal separation. It is clear that the array fails to separate s\(t) 
and S2(t). 

In the TFD-based signal separation method, applied in Fig. 2, 
three points (t,f) are used for joint diagonalization at t = 32, 64, 
and 96. The frequency/is chosen so that the TFD at the first 
array sensor is the largest for a given t. 

To show the effect of using a smoothing kernel, similar 
simulation is performed with the Choi-Williams kernel [10] 
with a= 0.1. The result is shown in Fig.3. A rectangular 
window with 31 samples in both time and frequency scale is 
used. Since the two signals are closely spaced in the t-f domain, 
the cross-terms reduction furnished by the Choi-Williams kernel 
is limited, and again the array fails to separate the two signals. 

Fig.4 shows the separated signals under the same conditions 
when the proposed spatial averaging method is applied. The 
signals are perfectly separated, except for their order. 

5. CONCLUSIONS 
Symmetric averaging of spatial time-frequency distributions has 
been introduced. The averaging improves the performance of 
source separation using joint-diagonalization techniques. It 
amounts to forming a spatial hermition Toeplitze matrix using 
the time-frequency distributions of the data across one half of 
the array. This matrix is then added to the spatial matrix 
corresponding to the other half of the array. The effect of this 
averaging is to remove interaction between the source signals in 
the time-frequency domain. Joint digonalization (JD) using a 

generalization of Jacobi transform is then applied to estimate the 
mixing matrix. By reducing the interaction of the source signals, 
the JD algorithm yields improved performance over the case 
when no averaging is performed. The paper presented an 
example of separating two chirps signals whose time-frequency 
signatures are slightly different. The proposed approach has 
successfully separated the two signatures, while other non- 
averaging methods fail. 
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,"rm (b)TFD of the separated signals 
(a) TFD of the sources 

Fig.2 TFD of the sources and the separated signals using Wigner-Ville distribution 

(a) TFD of the sources (b) TFD of the separated signals 

Fig.3 TFD of the sources and the separated signals using Choi-Williams distribution 

(a) Wigner-Ville distribution (b) Choi-Williams distribution 

Fig.4 Separated signals with spatial averaging 
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ABSTRACT 

This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) 
estimation for non-stationary signals, and compares this method with conventional maximum likelihood DOA 
estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and 
as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different 
t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals 
than those incident on the array. The reduction of the number of signals within different time-frequency regions 
not only reduces the required number of sensors, but also decreases the computational load in multi-dimensional 
optimizations. Compared to the recently proposed time-frequency MUSIC (t-f MUSIC), the proposed t-f ML 
method can be applied in coherent environments, without the need to perform any type of preprocessing that is 
subject to both array geometry and array aperture. 

Keywords: Time-frequency, DOA estimation, maximum likelihood, spatial time-frequency distribution, array 
processing. 

1. INTRODUCTION 

The localization of spatial sources by passive sensor array is one of the important problems in radar, sonar, 
radio-astronomy, and seismology. So far, numerous methods have been proposed for direction finding, most of 
which are based on the estimates of the data covariance matrix. Among these methods, the maximum likelihood 
(ML) technique was one of the first to be devised and investigated 1. The ML method has a superior performance 
compared to other methods, particularly when the input signal-to-noise ratio (SNR) is low, the number of data 
samples is small, or the sources are highly correlated 2. Therefore, despite its complexity, ML remains of practical 
interests. 

The evaluation of quadratic time-frequency distributions of the data snapshots across the array yields what is 
known as spatial time-frequency distributions (STFDs) 3- 4. STFD techniques are most appropriate to handle 
sources of nonstationary waveforms that are highly localized in the time-frequency domain. Spatial time-frequency 
distributions spread the noise power while localizing the energy of the impinging signals in the time-frequency do- 
main. This property leads to increasing the robustness of eigenstructure signal and noise subspace estimates with 
respect to channel and receiver noise, and hence improves spatial resolution and signal separation performance. 

Although the approach of applying the spatial time-frequency distributions to the direction-of-arrival (DOA) 
estimation has been introduced in 4, the performance of direction finding methods based on STFDs has not been 
made clear yet. In this paper, we propose the time-frequency maximum likelihood (t-f ML) method for direction 
finding and provide the analysis that explains its performance. It is shown that the superior performance of the t-f 
ML method relative to other methods is attributed to: 1) Time-frequency distributions localize the signal power 
in the time-frequency domain, and as such enhance the effective SNR and improve the DOA estimation. 2) The 
localization of signals with different time-frequency signatures permits the division of the time-frequency domain 
into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number 
of signals within different time-frequency regions relaxes the condition on the array aperture and also simplifies 
multidimensional optimization estimation procedure. 3) Compared with the previously proposed time-frequency 
MUSIC (t-f MUSIC), the t-f ML method can be applied when the signal arrivals are coherent, whereas the t-f 
MUSIC cannot do so without some sort of preprocessing, such as spatial smoothing. 

This paper is organized as follows. In Section 2, the signal model is established, and a brief review of the spatial 
time-frequency distributions is given. In Section 3, we discuss the SNR enhancement based on time-frequency 
distributions and its effect on the signal and noise subspaces estimates using STFD matrices. The results from 

* Correspondence: E-mail: moenessiBece.vill.edu; Phone: (610) 519 - 7305; Fax: (610) 519 - 4436. 
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STFD matrices show more robustness to SNR and angular separation compared to the results obtained from data 
covariance matrices. Section 4 presents the t-f ML and discuss its performance. 

2. BACKGROUND 

2.1. Signal Model 

In narrowband array processing, when n signals arrive at an m-element array, the linear data model 

x(t) = y(t) + n(t) = A(e)d(t) + n(t) (1) 

is commonly assumed, where the m x n spatial matrix A(0) = [a(0i)...a(0n)] represents the mixing matrix or 
the steering matrix, and a(0j) are the steering vectors. Due to the mixture of the signals at each sensor, the 
elements of the raxl data vector x(t) are multicomponent signals, whereas each source signal di(t) of the n x 1 
signal vector d(i) is often a monocomponent signal. n(t) is an additive noise vector whose elements are modeled 
as stationary, spatially and temporally white, zero-mean complex random processes, independent of the source 
signals. That is, 

E[n(t + T)nH(t)]=aS(T)I and E[n(t + r)nT(t)] = 0 for any r (2) 

where 6(T) is the Kronecker delta function, I denotes the identity matrix, a is the noise power at each sensor, 
superscript H and T respectively denote conjugate transpose and transpose, and E{-) is the statistical expectation 
operator. 

In equation (1), it is assumed that the number of sensors is larger than the number of sources, i.e., m > n. 
Further, matrix A is full column rank, which implies that the steering vectors corresponding to n different angles 
of arrival are linearly independent. We further assume that the correlation matrix 

Rxx = E[x(t)xH (t)] (3) 

is nonsingular, and the observation period consists of N snapshots with N > m. 
Under the above assumptions, the correlation matrix is given by 

nxx = E[x(t)xH(t)} = A(@)HddA
H(&) + aI, (4) 

where Rdd = E[d(t)dH(*)] is the signal correlation matrix. For notational convenience, we drop the argument 
0 in equation (1) and simply use A instead of A(0). If 0 is an estimate of 0, then we also use A instead of 
A(0). 

Let Ai > A2 > • • • > An > A„+i = An+2 = • ■ • = Am = a denote the eigenvalues of Rxx. It is assumed that Aj, 
i = 1, • • •, n, are distinct. The unit-norm eigenvectors associated with Ai,..., An constitute the columns of matrix 
S = [si,...,sn], and those corresponding to An+i,...,Am make up matrix G = [gi,...,gm-n]- Since the columns 
of A and S span the same subspace, then AHG = 0. 

In practice, Rxx is unknown, and therefore should be estimated from the available data samples (snapshots) 
x(i), i = 1,2,..., N. The estimated correlation matrix is given by 

Rxx = ^X>(i)x"(i). (5) 
t=i 

Let {§!, ...,sn,gi, ...,gm_n} denote the unit-norm eigenvectors of Rxx, arranged in the descending order of the 
associated eigenvalues, and let S and G denote the matrices made of the set of vectors {§;} and {g,}, respec- 
tively. The statistical properties of the eigenvectors of the sample covariance matrix Rxx for signals modeled as 
independent processes with additive white noise is given in 6. 

In this paper, we focus on frequency-modulated (FM) signals, modeled as 

d(t) = [*(*), ".,4»(*)]T = [D1e^
1«,...,Dne^"«]T, (6) 

where D{ and tpi(t) are the amplitude and phase of ith source signal.  For each sampling time t, di(t) has an 

instantaneous frequency fi(t) = ^   ^ '. 
FM signals are often encountered in applications such as radar and sonar. The consideration of FM signals in 

this paper in motivated by the fact that these signals are uniquely characterized by their instantaneous frequencies, 
and therefore, they have clear time-frequency signatures that are utilized by the STFD approach. Also, FM signals 
have constant amplitudes and, subsequently, yield time-independent covariance matrices. This property makes 
them amenable to conventional array processing based on second-order statistics. 
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2.2. Spatial Time-Frequency Distributions 

The spatial time-frequency distributions (STFDs) based on Cohen's class of time-frequency distribution were 
introduced in 3 and its applications to direction finding has been discussed in 4. In this paper, we focus one 
key member of Cohen's class, namely the pseudo Wigner-Ville distribution (PWVD) and its respective spatial 
distribution. Only the time-frequency points in the autoterm regions of PWVD are considered for STFD matrix 
construction. In these regions, it is assumed that the crossterms are negligible. This assumption serves to simplify 
the analysis and does not form a necessary condition on performance. It is noted that the crossterms in STFD 
matrices play similar role to the cross-correlation between source signals 5, and therefore they do not always 
impede the direction finding process. 

The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using a rectangular window of length L, 
is given by 

L-l 

Dxx(t,f) =    J2    x{t + T)x*{t-r)e-^lT, (7) 

where * denotes complex conjugation. The spatial pseudo Wigner-Ville distribution (SPWVD) matrix is obtained 
by replacing x{t) by the data snapshot vector x(r), 

1,-1 

Dxx(*,/)=    ]T    x(r + r)xH(i-r)e-^^. (8) 
r=-&fi 

Substitute (1) into (8), we obtain 

Dxx(r,/)    = Dyy(r,/)+Dyn(r,/)+Dny(r,/) + Dnn(r,/) 
= Dyy (t, f) + 2Re [Dyn(f, /)] + Dnn(r, /). (9) 

We note that Dxx(i, /), Dyy(t, /), Dyn(i, /), Dny(r, /), and Dnn(t, /) are matrices of dimension mxm, whereas 
the source TFD matrix Ddd(t,/) is of dimension n x n. Under the uncorrelated signal and noise assumption 
and the zero-mean noise property, the expectation of the crossterm TFD matrices between the signal and noise 
vectors is zero, i.e., E [Dyn(i, /)] = E [Dny(r, /)] = 0, and it follows 

E [Dxx(r, /)] = Dyy(i, f) + E [Dnn(t, /)] = ADdd(i, f)AH + E [Dnn(t, /)]. (10) 

For narrowband array signal processing applications, the mixing matrix A holds the spatial information and maps 
the auto- and cross-TFDs of the source signals into auto- and cross-TFDs of the data. 

Equation (10) is similar to that which has been commonly used in DOA estimation and blind source separation 
problems, relating the signal correlation matrix to the data spatial correlation matrix. In the above formulation, 
however, the correlation matrices are replaced by the spatial time-frequency distribution matrices. This implies 
that key problems in various applications of array processing, specifically those dealing with nonstationary signal 
environments, can be approached using bilinear transformations. 

It is noted that the relationship (10) holds true for every (r, /) points. In order to reduce the effect of noise and 
ensure the full column rank property of the STFD matrix, we consider multiple time-frequency points. This allows 
more information of the source signal t-f signatures to be included into their respective subspace formulation, and 
is similar to incorporating several snapshots in conventional array processing to perform direction finding and 
source separation. Joint-diagonalization 7 and time-frequency averaging are the two main approaches that have 
been used for this purpose 3> 4> 8. In this paper, however, we only consider averaging over multiple time-frequency 
points. 

3. SUBSPACE ANALYSIS FOR STFD MATRICES 

The purpose of this section is to show that the signal and noise subspaces based on time-frequency distributions 
for nonstationary signals are more robust than those obtained from conventional array processing. 
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3.1. SNR Enhancement 
The time-frequency distribution (TFD) maps one-dimensional signals in the time domain into two-dimensional 

signals in the time-frequency domain. The TFD property of concentrating the input signal around its intantaneous 
frequency (IF), while spreading the noise over the entire time-frequency domain increases the effective SNR and 
proves valuable in the underlying problem. 

The ith diagonal element of TFD matrix Ddd(t, /) is given by 

L-l 
2 

Ddidi(t,f)=    E    A?e't,M'+r)_,Mf~T)W4,r/T- (n) 
T— J— 

Assume that the third-order derivative of the phase is negligible over the window length L, then along the true 
time-frequency points of ith signal, ft = ^r^^-, and V«(* + r) - tpi(t - r) - infr ~ 0. Accordingly, 

L-l 

Ddidi(t,f)=    £    Dl=LDl (12) 
T=    ~ 

Similarly, the noise STFD matrix Dnn(*, /) is 

L-l 

D„„(*,/)=    E    n{t + r)nH{t-r)e-^f\ (13) 
T= — 

Under the spatial white and temporal white assumptions, the statistical expectation of Dnn(i, /) is given by 

1,-1 

E[T>nn(t,f)}=    E    E[n(t + T)nH(t-r)]e-^=aI. (14) 

Therefore, when we select the time-frequency points along the time-frequency signature or the IF of an FM signal, 
the SNR in model (10) is LDf/a, which has an improved factor L over the one associated with model (4). 

The pseudo Wigner-Ville distribution of each FM source has a constant value over the observation period, 
providing that we leave out the rising and falling power distributions at both ends of the data record. For 
convenience of analysis, we select those N — L + 1 time-frequency points of constant distribution value for each 
source signal. Therefore, the averaged STFD over the time-frequency signatures of n0 signals, i.e., a total of 
n0(N — L + 1) time-frequency points, is given by 

1 n„ N-L+l 

° = „,(JV_L+1)E E °«»(w,,), a« 
v ' 9=1      i=l 

where fq>i is the instantaneous frequency of the 9th signal at the ith time sample. The expectation of the averaged 
STFD matrix is 

- n0  N-L+l 

V 'g=l     ,=1 (16) 

L 
- V [Lß2a(0p)a"(0P) + al] = -A°Rdd(A°)H + al, 
n0 *—.' n0 p=i 

where Rdd and A0, respectively, represent the signal correlation matrix and the mixing matrix constructed by 
only considering n0 signals out of the total number of signal arrivals n. 

It is clear from (16) that, when n0 signals are selected, the SNR improvement becomes G = L/n0 (we assume 
L > n0 throughout this paper).  Therefore, from the SNR perspective, it is better to select (t,f) points that 
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belong to individual signals, and to separately evaluate the respective STFD matrices. Accordingly, STFD-based 
direction finding is, in essence, a discriminatory technique in the sense that it does not require simultaneous 
localization and extraction of all unknown signals received by the array. With STFDs, direction finding can 
be performed using STFDs of a subclass of the impinging signals with specific time-frequency signatures. In 
this respect, the proposed direction finding technique acts as a spatial filter, removing all other signals from 
consideration and, subsequently, saves any downstream processing that is required to separate interference and 
signals of interest. It is also important to note that with the ability to construct the STFD matrix from one or 
few signal arrivals, the well known m> n condition on source localization using arrays can be relaxed, i.e., we 
can perform direction finding or source separation with the number of array sensors smaller than the number of 
impinging signals 9. From the angular resolution perspective, closely spaced sources with different time-frequency 
signatures can be resolved by constructing two separate STFDs, each corresponds to one source, and then proceed 
with subspace decomposition for each STFD matrix, followed by a appropriate source localization method (ML, 
for example). The drawback of performing several direction finding using different STFD matrices is clearly the 
need for repeated computations of eigendecompositions and source localizations. 

3.2. Signal and Noise Subspaces Based on STFDs 

The statistical properties of the eigenstructures using the STFD matrix are provided in this subsection. 

Lemma 1: Let A? > A£ > • • • > A°o > A£o+1 = A°o+2 = • • • = \°m = a denote the eigenvalues of R£x, which 
is defined from a data record of a mixture of the n0 selected FM signals. Denote the unit-norm eigenvectors 
associated with AJ,..., A°o by the columns of S° = [sj,..., s°J , and those corresponding to A° +1,..., \°m by the 

columns of G° = [gf, ...,g^_nJ. We also denote A4/ > Af/ > • • • > A«n'o > A*/o+1 = A^+2 = •"■ = A& = a" as 

the eigenvalues of D defined in (16). The unit-norm eigenvectors associated with \[f,..., Af/o are represented by 
the columns of Stf = [s'/,...,sf/J , and those corresponding to Af/+1,...,A^ are represented by the columns of 
Gtf = [g[f,..., g£_nJ. Accordingly, 

a) The signal and noise subspaces of Stf and Gtf are the same as S° and G°, respectively. 
b) The eigenvalues have the following relationship: 

x*/      / — {K - a) + o = — X1+(l-L\(J        i<n Xi   = \ no n0 V       rioj ~ (17) 
\<Jtf = (T n0<i<m. 

Both parts of the above equations are direct results of (16). 

A very important conclusion from Lemma 1 is that, the largest n0 eigenvalues are amplified using STFD 
analysis. The amplification of the largest n0 eigenvalues improves detection of the number of impinging signals 
on the array, as it widens the separation between dominant and noise-level eigenvalues. This property allows us 
to determine the appropriate number of signals when SNR is low, or the signals are closely spaced. 

Next we consider the signal and noise subspace estimates from a finite number of data samples. The STFD 
matrix is constructed from the true (t, f) points along the n0 FM signals. We have the following Lemmas. 

Lemma 2: If the third-order derivative of the phase of the FM signals is negligible over the time-period 
[t - L + l,t + L - 1], then D - D is a zero-mean, random matrix whose elements are asymptotically jointly 
Gaussian. 

Proof: From (1), (15), and (16), we have 

n„ N-L+l     ^f1 

D-D     =      no{N-L+l}  E      E E      yfe + TV^-Tje-*"/..- 
9=1     i=l      T-    I—l 

n„  N-L+l     ^ 
+    no(N-L+i} E     E        E     nfc + TVfe-rJe-*".."- (18) 

' ~ 2 

n„  N-L+l     -HT
1 

+    no{N-L+i) E     E        E     n(ti + r)nff(ti-r)e-^A."--ffI. 
' ?=1      i=l       r-     t—1 

' ~ 2 
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We first consider the first term in (18). Denoting t'{ = U - r, and noting the fact that, when the third-order 
derivative of the phase is negligible over [t-L + l,t+L-l] for any signal and any t, dq{t'i + 2T)e-:>i*f'>-iT ~ <*,(*<) 
at the time-frequency point (ii,/9,t)i

tnen 

n0 N-L+l     V1 

E   E      E    y(ti + T)nH{ti-T)e-»"'<-'r 

q=l     i=l     T=_k=X 
.,    »    .      L-I n„  N-L+l     -5- 

= E   E       E    y(ti + 2r)nÄ(t;)e-^«-'1- 
4=1 t;=i T=-iji 
n„ jV-L+1 N-L+l 

(19) 

t'=i 

Therefore, the elements of the first term in equation (18) are clearly asymptotically jointly Gaussian from the 
multivariate Central Limit Theorem 10. Similar result can be obtained for the second term of (18). The elements 
of the third term in (18) are also jointly Gaussian from the fact that the covariance between the (p, r)th element 
of n(4 + r)nH(t - r) at time U and tk is given by 

E { 
L-l 
~5~ 

i—jiirfq.iTl 

-j4nfq,kT2 

^2    np(ti + Ti)n*(U - n) - E I     Y^    np{U + Ti)n*{U-n) 

i /     i^i > 

^2    n*p(h + T2)nT(tk - n) - E\     J2    np(*A + Vt)nr(tk - r2) 

L-l L-l 

=     E E     EM*i + TiKtti - n)]E[n;(tk + r2)nr(tk - T2)]e-iW^-f*.»^ 

L-l L-l 

 L-l _ _     L-l Tl — 5— T2 — 5— 
L-l L-l 

L-l L-l 

-     ^2 E     ff%,re-i4,r(/'-<T1-/«-*Ta) 

(20) 

_     L-l        _     L-l 

Since the linear combination of joint-Gaussian processes is jointly Gaussian, then D — D is a random matrix 
whose elements are asymptotically jointly Gaussian. It is clear that D-D->0asiV->oo. 

Lemma 3: If the third-order derivative of the phase of the FM signals is negligible over the time-period 
[t- L + l,t + L-l], then the orthogonal projections of j g*/ \ onto the column space of Stf are asymptotically 
(for N > L) jointly Gaussian distributed with zero means and covariance matrices given by 

E(s*f(stff^f)(stf(stf)Hiy)H 

ah 
n0(N -L + l) £<»-v/)'"* (■?) 

H 
Su A 

= (N-L + l) v
tfhi, 

(21) 
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Eftf (S")*${') (s" {SVftf/y = 0 for all i, j. (22) 

The proof is given in Appendix A. 

To clearly demonstrate the performance gain in using STFDs, we substitute (17) into (21), 

E (S*/ (8*ff&) (s" (&)*$')* = w^ri 2_,     (ff - A°)2     s* (s*j 

jfe=i 

JI,J- (23) 

For comparison, we quote the results from reference 6, which were provided using the data covariance matrix, 

£;(ss^)(ss^.)H = ^ 
fo(*-**)2 

Sfcsf SU (24) 

£ (SS*a) {SS* ejf = 0 for all i, j. (25) 

where S,sfc)gfc) Afc are analogous to S°,s£,g£,A£, respectively, except they are defined for all n signals instead of 
only n0 signals. 

Comparing (23) with (24), two important observations are in order. First, if the signals are both localizable 
and separable in the time-frequency domain, then the reduction of the number of signals from n to n0 greatly 
reduces the estimation error, specifically when the signals are closely spaced. The examples, given in the following 
section, show the advantages of using t-f ML with partially selected signals. The second observation relates to 
SNR enhancements. The above equations show that error reductions using STFDs are more pronounced for the 
cases of low SNR and/or closely spaced signals. It is clear from (23) that, when X°k » a for all Jb = l,2,...,n0, 
the results are almost independent of L (suppose N » L so that N - L + 1 ~ N), and therefore there would be 
no obvious improvement in using the STFD over conventional array processing. On the other hand, when some 
eigenvalues are close to a (A£ ~ a, for some k = 1,2, ...,n0), which is the case of weak or closely spaced signals, 
the result of (23) is reduced by a factor of up to G = £. This factor represents the gain achieved from using 
STFD processing. 

4. THE TIME-FREQUENCY MAXIMUM LIKELIHOOD METHODS 

In this section we analyze the performance of the maximum likelihood methods based on time-frequency distri- 
butions (t-f ML). For conventional ML methods, the joint density function of the sampled data x(l), x(2),..., x(N), 
is given by 2 

N 1 /   1 \ 
/(x(l),... ,x(iV)) = ff ^^exp \-- [x(i) - Ad(i)}H [x(i) - Ad«)]j , (26) 

where det[-] denotes the determinant.  It follows from (26) that the log-likelihood function of the observations 
x(1).x(2), • • • ,x(iV), is given by 

1  N 

L = -mNlna - - £ [XW ~ Ad(^f [x(0 ~ Ad(i)]. (27) 
i=i 

To carry out this minimization, we fix A and minimize (27) with respect to d. This yields the well-known solution 

d(i)=[AHA]~1AHx(i). (28) 

We can obtain the concentrated likelihood function as 2' n 

FML{6) = *r { [i - Ä(ÄHÄ)-1Ä^] Rxx} , (29) 

where trA denotes the trace of A. The ML estimate of 6 is obtained as the minimizer of (29), and the estimation 
error (w, -Wj) associated with the ML method are asymptotically (for large N) jointly Gaussian distributed with 
zero means and the following covariance matrix 12 
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E fa - Uif = ^ [Re(H © Rjd)]   * Re [H © (RddAHUARdd)T] [Re(H 0 R&,)]   1, (30) 

where 0 denotes Hadamard product. Moreover, 

U = E(^£j2s^    H = C^[l-A(AffA)-1A^]C,    and   C = ^. (31) 

Next we consider the t-f ML method. As we discussed in the previous section, for t-f ML we select n0 < n 
signals in the time-frequency domain. The concentrated likelihood function defined from the STFD matrix is 
similar to (29) and is obtained by replacing Rxx by D (Appendix B), 

I-Ä0((Ä0)HÄo)_1(Äo)H ?tf 
*%L{4>) = » D, (32) 

Therefore, the estimation error (d^ - u\s) associated with the t-f ML method are asymptotically (for N » L) 
jointly Gaussian distributed with zero means and the following matrix 

= 2M-L + 1) [Re(H° ° D^d)]   ' Re [H° ° (DddAHU^ADdd)T] [Re(H° © D^)]  * (33) 

[Re (H° © (Rdd)T)]_1 Re [H° © (RddA"U<>ARdd)T] [Re ((H° © Rdd)T)]_1, 
2(N-L + 1) 

where U'^ is defined in (21), and 

r _i i dA° 
H° = (C°)H [I - A° ((A°)HA°)     (A°)H\C°,    and   C° = —. (34) 

In the case of n0 = n, then H° = H, and C° = C. 
The signal localization in the time-frequency domain enables us to select fewer signal arrivals. This fact is not 

only important in improving the estimation performance, particularly when the signals are closely spaced, it also 
reduces the dimension of optimization required by the maximum likelihood algorithm, as such the computations 
can be greatly reduced. 

To demonstrate the advantages of t-f ML over conventional ML and time-frequency MUSIC (t-f MUSIC), 
consider a uniform linear array of 8 sensors separated by half a wavelength. Two chirp signals arrive from 
(61,62) = (—10°, 10°), where the start and end frequencies of the signal from 6\ are 0 and 7r, whereas the start 
and end frequencies of the signal from 62 are TT and 0, respectively. The SNR of both signals is -20 dB. Fig. 1 
shows the contour plots of the likelihood function of the t-f ML and ML for three independent trials, where the 
dots show the positions of minimum of cost function. L=129 is used for t-f ML. It is evident that the t-f ML 
resolvs DOAs, whereas the ML fails. 

Fig. 2 compares the t-f ML and t-f MUSIC for coherent signal arrivals. Two coherent chirp signals have 
their common start and end frequencies fs = 0 and fe = 0.5 and a f phase difference. The signals arrive at 
(#1,02) = (-2°, 2°). The SNR of both signals is 5dB. L=129 is used for t-f ML and t-f MUSIC. It is clear that 
the t-f ML can separate the two signals where as the t-f MUSIC cannot. 

5. CONCLUSIONS 

The subspace analysis of spatial time-frequency distribution (STFD) matrices has been presented. We have 
shown that for signals that are localizable in the time-frequency domain, such as frequency modulated (FM) sig- 
nals, the signal-to-noise ratio (SNR) can be enhanced by utilizing time-frequency distributions, and subsequently 
improve the robustness of the signal and noise subspaces. Such improvement is particularly evident when some 
of the largest signal eigenvalues are close to the noise power. In this situation, the conventional array processing 
methods may encounter difficulty in establishing the proper signal and noise subspace. 

The subspace analysis of STFD matrices has motivated the introduction of t-f ML methods for direction finding. 
The analysis and simulation results showed that the t-f ML improves over conventional maximum likelihood 
techniques for low SNR, and outperforms the t-f MUSIC in coherent signal environments. 
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APPENDIX A 

For complex Gaussian random variable ii,a;2,a;3,:E4 with non-zero means, 

E[xix2X3i4] = E[xiX2]E[x3Zi] + £[xix3]E[z2a;4] + £[x!X4]£[x2x3] - 2E[x1]E{x2]E[xz]E[xi}. (Al) 

and for zero-mean circular complex Gaussian noise vector and deterministic source signal vector, 

E[x(tr)} = y(tr), 

E [x(tr)x
H(tq)] = y(tr)y

H(tq) + aI6r<q, 

E[x(tr)x
T(tq)]=y(tr)y

T(tq), 

For an array mixture of FM signals, we select points from n0 signals at the time-frequency domain, where the 
pseudo Wigner-Ville distribution matrix is defined in (8). We define D in terms of a random perturbation to D 
with a perturbation factor p, 0 < p C 1. Thus, 

D = D + (D-D) = D+pB (A2) 

From Lemma 2, B is a Hermitian, zero-mean random matrix with elements that are asymptotically jointly 
Gaussian. Using (A.2) and (8), we have 

E [vf Bv2vf Bv4] 

= ^E [vf (Ö - D) V2V3
H
 (D - D) V4] 

" ( n„  N-L+l \     / n„  N-L+l \ 

E     E     VfDxx(*i,/?,i)v2 E     E     V3ffDxx(*i,/,,i)v4 " (noP(N-L + l))2 

 2VfDv2vfDv4 

E 

n„   N-L+l N-L+l      V1 i/2 1 n.      n0   i\—L,+i i\—l,+l       —5— l;/4 

l«0p^     L + i))   ,1=lft=1   il=1     fa=1   Ti=_i?ir2=_L/2+1 

JE [vf x(iil + n^fe - n)v2] £ [vf x(i<a + T2)x
H(ti2 - r2)v4] 

+JE [vf x(th + n)vf x(tia + r2)] E [x* (i4l - r1)v2x
/f (tia - r2)v4■ 

+£ [vf x(t(l + n)x"(fia - r2)v4] E [vf x(*ia + r2)x'ff(iil - Tl)v2] 

-2E [vf x(t4l + n)] £ [x* (til - Tl)v2] E [vf x(ii2 + r2)] E [xH(th - r2)v4] } 

—^vfDv2vfDv4 

(A3) 

no     n„   N-L+l N-L+l L-l 
2 

(n     ' +1))»EE E   E   E    E «-'-['«•-.-'—] 
' 1 2       '2 2 

vfy(*ii +n)yH(^2 -T2)v4o-<5V2,va(j(il_ri,tia+ra 

+o-(5Vl,V45tii+ri)ti2_T2vf y(tia +r2)y
fl'(iil - n)v2 + <72öVliVi8V2,V36til,ti26T1,T2 

Under the assumption of no crossterms, qx should be equivalent to q2 to have non-zero values, and in this case 
9i =92 = q- Note that within the time-frequency region of gth signal, y(i) = yq(t) A Ad„(i). When the 
third-order derivative of the phase is negligible over [t - L + 1, t + L - 1] for any signal and any t, we have 
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E [vf Bv2vf Bv4] 
n0 N-L+1N-L+1 L/2 

E E   E   E     E 
vfy(*ii +n)yH(th + Ti)v4<r<5V2,V2<Sta_.ri,ii2+T2 

+^v1,v4^Vl+r1,til-r1vfy(ii2 +r2)y
/f(iil -n)v2 

a2L 

(A4) 

+ 
n0(N -L + l)p2 

aL 

n0{N - L + l)p» 

n0(AT - L + l)p2 

övi,V4Öv2,V3 

— (AVl - a) + (AV2 - a) + cr ÖV1,V4ÖV2,V3 

[(At^+A^-a^vx.v^.v, 

Denote T = (Stf)H t)Gtf, and 7, the z'the column of T. Use the results of (A.3) - (A.4) and the fact that 

(S(/)HDG(/ = 0, we have 

ibnn^liW'^iW**) aL 

Subsequently 

E[1^]^E[(^)-bS'l'){{%'/)"t,s") 

where A4/ = diag Ix*/,..., Af£ . Similarly, 

n0(AT - L + 1) 

n0(iV - L + 1) 

Af   Öt,qöi,j- 

Atf6ij. 

and subsequently 
^[7i7f]=0. 

Since Sv (Se/)ff g^ has the same limiting distribution as that of -S'^(r - CTI)
_1

7J 
6, then it follows that 

(A5) 

(A6) 

(A.7) 

(A.8) 

,H 

aL [S(A" - criy'A'fiA« - aiy'S11] 8id 
n0(N -L + l) 

aL 

(A.9) 
n«        ->tf 

£ „*/ (4') 
H 

^,i 

and 

E (S'f {SVfg1/) (S« {Stf)Hg<f)T = 0 for all i, j. (A10) 

APPENDIX B 

The number of data samples available for the construction of the STFD matrix is N — L +1, where the selected 
n0 signals are included. Denote u* as the fcth column of D, and u^ the fcth column of D. From Lemma 2, we 
know that ü* is asymptotically jointly Gaussian, and its density function is 

/t/(üfc) = -det 
N-L + l 

exp --(ufc-ufc)
H(jV_j.+1Afc)  '(Ük-Uk) (B.l) 
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where A* stands for the asymptotic covariance matrix of u* 

A* £= $?JN ~L + 1)E [("k ~ u*)(ü* - «ft)"] • (B.2) 

Prom the results of Lemma 2, it is clear that A* is a diagonal matrix with equal elements. Denoting A = ßl, 
the log-likelihood function is given by 

Ltf = -^N-l + ll0gß - 2^(Ü* - "*>"<** - u*>' (ß"3) 
1 1_log/3-i 

Maximizing Ltf is equivalent to minimizing 

■\H r- ft* A [fit - u*]   [üfc - ufc]. (JB.5) 

For different A;, we may construct the following cost function 

m 
h A £Äk 

— *=i 

= S ["* ~ Ufc]H [fi* ~ u*l (B.5) 

= *r J[D-D]
H
[D-D] j. 

Similar to (28), and by taking into account that we used n0 signals instead of n signals, the estimation of D 

is obtained as Ä° ((Ä°)"Ä°)     (Ä°)"DÄ° ((Ä°)"Ä°)_1 (Ä°)H, the minimization of equation (B.4) leads to 
(32). 
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t-fML 

Fig. 1 Contour plots of t-f ML and ML likelihoof functions. 

t-fML 

-30 
6(deg) 

Fig. 2 Contour plots of t-f ML likelihood function 
and spatial spectra of t-f MUSIC. 
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ABSTRACT 

In this paper, we combine the concepts of the evolutionary spectrum and array processing. We present Cross-power 
Evolutionary Periodogram for direction of arrival estimation and blind separation of nonstationary signals. We 
model nonstationary signals received by each sensor in the array as a sum of complex sinusoids with time-varying 
amplitudes. These amplitudes carry information about the direction of arrival which may also be time-varying. We 
first estimate the time-varying amplitudes, then use them for the estimation of evolutionary cross-power distributions 
of the sensor data. Next, using cross-power estimates at time and frequency samples of interest, we estimate the 
directions of arrival using one of the existing estimation methods. If the directions are time-varying, we choose 
time-frequency points around the time of interest for estimation of directions. Evaluating at different times, we 
obtain the directions as a function of time. If the sources are stationary, then we can use all time-frequency points 
of interest for the estimation of fixed directions. We also use whitening and subspace methods to find the mixing 
matrix and separate the signals received by the array. We present examples illustrating the performances of the 
proposed algorithms. 

Keywords: Array processing, evolutionary spectrum, direction of arrival, blind source separation 

1. INTRODUCTION 

In many signal processing applications, such as radar, sonar, biomedical engineering and communications, direction 
of arrival (DOA) estimation and recovery of source signals are important problems. In general, these problems 
involve several signals and a multisensor array receiver. Each sensor receives a mixture of source signals. In the 
DOA estimation problem, the goal is the estimation of the source locations by processing the data received by the 
array sensors. The common presumption is that the signals are emitted from point sources placed in the farfield.1 

Further, the array manifold is assumed to be known. In the blind signal separation problem, the array parameters 
are generally unknown. Performance is often independent of inaccuracies in the array manifold as well as sensor 
displacement. Thus, the problem is separation of signals using received signals with the help of structural a priori 
information. A special case is the instantaneous mixture of signals. A solution using second order statistics and 
applying joint diagonalization to a set of covariance matrices was presented.4 Recently, spatial time-frequency 
distributions have been introduced for direction finding and separation of nonstationary signals.5-7 

In this paper, we combine the concepts of the evolutionary spectrum and array processing for problems involving 
nonstationary signals. We generalize the evolutionary periodogram (EP), an estimator of the evolutionary spectrum,9 

to form the cross-power evolutionary periodogram (CEP) for DOA estimation and blind signal separation. The CEP 
has the same desirable peoperties as the EP. 

The nonstationary signal received by each sensor of the array is modeled as a sum of complex sinusoids with 
time-varying complex amplitudes. These amplitudes carry information about the directions of arrival, which may be 
time-varying. We first estimate the time-varying amplitudes using linear estimators obtained via minimum mean- 
squared error criteria. These estimates are then used for the estimation of the time-varying cross-power distributions 
of the data across the array. Next, using the time-varying cross-power estimates at selected time-frequency samples, 
we estimate the DOAs of the signals impinging on the array using one of the existing estimation methods.1 If 
the directions are time-varying, we confine the selected time-frequency points to be around the time-of interest at 
which the source direction is to be estimated. Evaluating at different times, we obtain the directions as a function 

'Correspondence: Email: kayhan@ee.hun.edu.tr 
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of time. If the sources are stationary, then all time-frequency points of high power concentration can be used for the 
estimation of source directions. In the blind source separation problem, the proposed spatial evolutionary spectrum 
is used along with whitening and subspace methods to estimate the mixing matrix and separate the source signals. 
Whether it is a stationary or moving source, the use of only time-frequency points with high signal to noise ratio 
yields improved performance. The incorporation of the desirable time-frequency points can be performed through 
either averaging or joint diagonalization schemes,6 ,4.5 

2. EVOLUTINARY SPECTRUM 

A zero mean stationary random process, v[n], may be represented as 

v[n]= fe>wndZ(U) (1) 

where Z(u) is an incrementally orthogonal process, i.e. 

E{dZ(u)dZ*(u0)} = ^-S(u)du6(u - u0) (2) 

where 6() is the Kronecker delta function and ()* denotes complex conjugation. Throughout the paper, the integral 
limits are from —r to TT. If the process is white with unit variance, then S(ui) = 1. 

If the unit variance white process {u[n]} passes through a time-varying channel with impulse response h[n,m], 
then the channel output is 

x[n] = Yj h[n, m]v[m]. (3) 
m 

Substituting (1) into (3), the nonstationary process {#[«]} may be represented as 

x[n]= f H(n, wywndZ{w) (4) 

where H{n,u) is the generalized transfer function evaluated on the unit circle, 

H(n, u) = J2 %> m}e-^n-m\ (5) 
m 

Thus the nonstationary process {#[n]} is a continuous sum of sinusoids with time-varying complex amplitudes. The 
power at time n is: 

E{\x[n]\*}=±J\H{n,w)\*<L,. (6) 

Therefore, the (oscillatory) evolutionary spectrum maybe denned as,1011: 

S(n,W)=|#(n,W)|2. (7) 

Note that H(n,u) is slowly varying with time, so that it belongs to the class of oscillatory functions.11,9 The 
cross-power evolutionary spectrum of two processes, {z[n]} and {2/[n]}, can be obtained as12 

Sxy(n,w) = Hx(n,u)H*(n,w). (8) 

3. SPATIO-TEMPORAL PROCESSES 

Consider a uniform linear array of L sensors. In analogy with (1), the field at the /th sensor can be expressed as13 

v}[n] =  I f ej(-n"-,aUz(w,a) (9) 

where a = 27Tysin(0), A is the array inter-element spacing, 9 is the direction of arrival, and A is the carrier 
wavelength. Z(w, a) is an incrementally orthogonal process in both the temporal frequency w and spatial frequency 
a. That is, 

E{dZ(w, a)dZ*'{u0, a0)} = — S(w, a)duida8(w —u0,a — a0). (10) 
Z7T 
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The cross-power between the data received at sensors / and m can be written as 

Eiv,[n]v*m[n]}    =    ±-j J S(w,a)e^m-'^du)da 

=    2^j S(u,m-l)du (11) 

where S(w, m - /) represents the result of the Fourier transform with respect to a. In a single point source scenario 

S(w,a) = S(w)6(a-a0) (12) 

and 

E{v,[n]v*m[n]} = ^m~1^' J S(u)du. (13) 

Note that the cross-power spectrum (11) carries information about the directions of arrival of all signals impinging 
on the array. 

4. SPATIAL EVOLUTIONARY SPECTRUM 
ie time-varying impulse response h[n,m]. 

xi[n] = ^h[n,m]vi[m]. (14) 

Assume that the propagation channel has the time-varying impulse response h[n,m). Then the sensor data takes 
the form 

Then, from (9) and (14) 

ar,[n]    =     f f H(n,u1)e
j^nu'-'aUz(u!a) 

=    j H{n,wy™dZ{u,l) (15) 

where H(n,u) is the generalized transfer function defined in (5). Here, we assume that the phase of H{ntw) does 
not change with time. dZ{u,l) represents outcome of the Fourier transform with respect to the spatial frequency a. 

The cross-power at time n can be written as 

E{x,[n]x*m[n]}    =    -L J J \ H(n,w) |2 S(uj,a)e^m-'^duJda 

=    ■^j\H{n,w)\'iS{w,m-l)du> (16) 

where S(u, m-l) contains the result of the Fourier transfrom with respect to a. For a single point source at a = a0, 

E{vi[n]v'm[n]} = ^m~'^ J \ H(n,u,) |2 S{U)du. (17) 

Again, the evolutionary cross-power spectrum carries information about the directions of arrival. Note that if the 
directions are also time-varying or the channel depends on both the temporal and spatial frequencies, then we can 
write the following general representation 

x,[n]    =     f jH{n,u>,a)ett™-la)dZ{u,a) 

=   JH(n,üj,iyn»dZ(üj,l). (18) 

The cross-power is 

E{x,[n]x*m[n]}    =    -L / JS(n>w,a)e^m-'^du;da 

^ / St,m(n,u)du (19) 
2 
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where Sjim(n,w) is the result of the Fourier transform and it contains information about both the temporal and the 
spatial spectrum. The above equation is a general representation. It includes special cases such as stationary source 
and temporal spectrum, stationary source and nonstationary temporal spectrum, moving source with stationary 
temporal spectrum and finally moving source with nonstationary temporal spectrum. For a single moving point 
source at a — a0[n], the cross-power is 

E{vi[nym[n]} = i-e''(m-')a°M J S(n,u)duj. (20) 

5. ESTIMATION OF CROSS-POWER SPECTRUM 

Consider the signals {a?i[n]}, l</<£,0<n<iV — 1, where L is the number of sensors and N is the number of 
the data snapshots over the observation interval, 

Xl[n}= j H(n,u,iynudZ{uj,l). (21) 

Now, consider the data at the /th sensor and frequency u0, 

x,tUo[n} = H(n,w,I)dZ(u>0,iy
u°n,l<l<L (22) 

which is a complex sinusoid modulated by a time-varying complex amplitude. The cross-power at time n and 
frequency u>0 between the data at sensors / and m is 

£{^,«.W^,UJ«]} = ^(n,Wo,/)^(R,U5lm)^ = S,,m(n,Wo)^. (23) 

5.1. Model at a Frequency u0 

In this section, we follow the approach of.9   For a frequency of interest u0, xi[n], 1 <1<L, can be modeled as 

xi[n]    =    xiiWo[n] + yiiWo[n] (24) 

=    Mn,w0)eju°n + yliU.[n] 

where Ai(n,u0) is the time-varying complex amplitude and yi,Uo[n] is a zero-mean term which includes the compo- 
nents at frequencies different from u0. From (23), we have 

E{A,(n,U0)A*m(n,u;o)} = 5,,m(n,Wo)^. (25) 
lit 

Hence, if we estimate the complex amplitudes, Ai(n,u>), 1 < / < L, we can, then, estimate the cross-power evolu- 
tionary spectrum which can, in turn, be used for the estimation of the directions of arrival. 

Consider the sensor data xi[n], assume that {At(n,w0)} varies slowly with time so that they can be represented 
as an expansion of orthonormal functions {/?»["]}) i.e. 

M-l 

i4,(n>w0)=2^[n]ai(w0) = b[n]ffa(wo) (26) 
t=0 

where 
a(w0) = [a0(u0), ai(w0),..., aAj_i(w0)]T (27) 

is a vector of expansion coefficients and 

b[n] = \ß0[n],ßi[n],---,ßM-1[n]]T. (28) 

The notations ()T and QH stand for the transpose and the Hermitian transpose, respectively. 

We can express arj[n] over the observation interval in the following vector form: 

x, = F(o;0)a;(Wo) + y/(Wo) (29) 
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where F(w0) is an N x M matrix with entries 

?n+i,i+i=ß;in}eiw°n,0<n<N-l,0<i<M-l (30) 

and 

x,    =    [x,[0},xl[l],...,xl[N-l}}T (31) 

y,K)   =■ [m,uAQ],m,»M---,yi,UoW-i]}T. 

In the following, we will drop the dependence on the constant frequency w0. 

5.2. Estimation of Ai(n,u0) 

There are two approaches one could follow to estimate {Ai(n,u0)}. These time-varying complex amplitudes could 
be either estimated for each sensor separately using only the data available from that particular sensor or they may 
be estimated together using the data available from all sensors. Here, we assume that signals at all sensors have 
similar characteristics. We can write the data at all sensors in a matrix form as: 

X = FA + Y (32) 

where 

A    =    [a0,a1,---,ai_1]. (33) 

Note that in the above matrix notation, the snapshots are row vectors and the sensor dependency is across the 
matrix columns. We use the same minimum mean-squared error estimator for all sensor data. Consider the vector 
of amplitudes at time n 

a[n] = b[n]HA (34) 

and the following linear estimator 
a[n] = w[n]HX (35) 

where 

w[n]    =    [w0[n],w1[n],---,wN„i[n]]T. (36) 

w[n] is the vector of time-varying weights. Substituting (32) into (35), we get 

a[n] = w[n]ff FA + w[n]HY. (37) 

If the estimator is unbiased then it should produce the correct time-varying amplitude from the first term. Therefore, 
we get the following constraint for an unbiased estimator 

w[n]"FA = b[n]"A (38) 

which is satisfied by the following condition 
w[n]"F = b[n]H. (39) 

To obtain the estimator weights, we minimize the following total mean-squared error (MSE) over all sensors subject 
to the above constraint 

MSE    =    ^E{(s[n]-s[n])(s,[n]-i[n])H} 

=    ^[nfE{YYH}w[n] 

=    ^M^i-^M (40) 
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where Eyy = E{YYH}- Since Y is a function of the frequency w0 and is not known a priori, we make the assumption 
that B-YY = I • This way the estimator works the same way at every frequency.9   In this case, 

MSE=^w[n]ffw[n]. (41) 

Incorporating the constraint (39), we seek to minimize the following cost function 

c[n] = ^w[n]"w[n] - (w[n]HF - b[nf)X (42) 

where A is an M x 1 vector of Lagrange multipliers. By setting the derivatives with respect to the unknown 
parameters to zero, we get the optimum weights as9 

VopM = FbH (43) 

and the mean-squared error as 
MSE = b[n]ffb[n]. (44) 

The mean-squared error is a function of only the expansion functions. Therefore, it is time-dependent and frequency 
independent. However, for specific orthonormal functions, such as the complex exponentials, the MSE is also constant 
over time. The estimates of the time-varying amplitudes are obtained by substituting (43) into (35), 

a[n] = b[n]ffFX. (45) 

5.3. Cross-power Evolutionary Spectrum Estimation 

Since {Äi(n, u0)} provide estimates of the time varying amplitudes at frequency u0, by varying w0 over all frequencies, 
we obtain the amplitudes over all frequencies in -TT < w < ir. Then, the cross-power evolutionary spectral estimator 
can be obtained from (25) as 

Sxx(n,w)    =    E{k[n]Hk[n]} 

=   E{XHFHb[n]b[n]HFX} 

=    (b[n]HF)®, &®r(FHb[n]) (46) 

where ® indicates the block Kronecker product, with subscripts r and / denoting right and left operations, re- 
spectively. In the above equation, R is an (LN) x (LN) matrix, with N x N block element at location (/, m) is 
R(/, m) = RX x    = ^{xjx^}. We can write the cross-spectrum between two sensors / and m as: 

&,«m(n,a,) = (b[nfFH)%XltXjF
Hb[n\). (47) 

If we drop the expectation operator in the estimation, we will get the cross-power evolutionary periodogram 
(CEP), extension of the evolutionary periodogram (EP), 

Sxx(n, w) = (b[n]"F) ®, R ®r (F
Hb[n]) (48) 

where R(/, m) = x;x^. Since the EP is a fast estimator and it has good performance,9 the ECP will also be a fast 
estimator with similar performance. 

Note that although data alignment is important in multichannel spectral estimation,14,15   it is this difference 
that we try to exploit for the DOA estimation. 

6. SPATIO-TEMPORAL EVOLUTIONARY SPECTRUM ESTIMATION 

Once we have the cross-power at time n and frequency u, we can apply one of the existing spectral estimation 
methods1 to estimate the spatio-temporal evolutionary spectrum. The peaks of the spatio-temporal evolutionary 
spectrum show the direction of arrival (DOA). One of these methods is the multiple signal classification(MUSIC).17 
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This is an eigenstructure subspace method that uses the orthogonality between the signal space and the noise space. 
The cross-power matrix can be decomposed as 

.S„(n,w) = UAU" (49) 

where the eigenvalues and corresponding eigenvectors are 

A   =   diag(Xl,...,XK,XK+l,...,XL),X1<---<XL, 

U   =    [ul!---,ux,uif+1)---,uL]. (50) 

For high signal to noise ratios (SNRs), the eigenvalues will be grouped into two sets, one corresponds to the 
signal components ({A,-}, i = 1,...,K) and the other, closer to zero, corresponds to the noise components ({A,}, 
i = K + 1,...,L). Using the property that the respective signal and noise eigenvectors are orthogonal, the directions 
of arrival can be obtained from the peaks of the spatio-temporal evolutionary spectrum: 

S„(n,«,o)=—j  ■ (51) 

7. BLIND SIGNAL SEPARATION 

Consider the case in which the signal received at each sensor is equal to a weighted sum of K signals and additive 
zero-mean thermal noise with variance a2. The noise is assumed to be both spatially and temporally white and 
uncorrelated with the signals. The narrowband data model is given by 

x[n] = Qs[n] + w[n] (52) 

where C is an L x K instantaneous mixing matrix. Substituting (52) into (46), we can show that (see appendix) 

Sxx(n,u>) = CSs,(n,u})C
H + a2b[n]Hb[n]l (53) 

Note that Sxx(n,w) is an L x L matrix, whereas 3„(n,w) is of size K x K. If the signals {sk[n]} are uncorrelated, 
hence the cross-power matrix is diagonal, Sss(n,u) = A, then we obtain 

Sxx(n,u>)    =    CACH + a2b[n]Hb[n]l (54) 

The first term on the right hand side is of rank K and the second term is of rank L. The eigendecomposition of 
Sxx(n,u) provides the K signal eigenvalues (pi[n] + (r2bH[n}b[n], ■ ■ •, pK[n] + a2bH[nlb[n]), where pk are proportional 
to the powers of signals sk[n] and the (L-K) noise eigenvalues (a2bH[n]b[n], ■■■, (T2bk~[n]b[n\), and the corresponding 
eigenvectors. We proceed to whiten the signal part of (53) through a whitening matrix W.18 The linear equation 
(52) becomes 

z[n]    =    Wx[n] 

=    WCsH + Ww[n] 

=    Us[n] + Ww[n] (55) 

where U is a unitary matrix. In the absence of noise, the cross-power distribution matrix using the transformed 
mixture (55) is 

BzAn,oj) = WCSS3(n,oJ)C
HWH = VSss(n^)VH. (56) 

The unitary matrix U can be obtained by joint diagonalizing a set of cross-power distribution matrices evaluated at 
different time-frequency points,4.5   Once U is found, the mixing matrix and the source signals can be estimated as 

c = w#u 
g[n]    =    VHWx[n] (57) 

where W# is the pseudo inverse of the whitening matrix. 
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8. EXPERIMENTAL RESULTS 

In this section, we present simulation examples to illustrate the performance of the proposed spatial evolutionary 
spectrum approach for direction finding and blind source separation. 

Before presenting the examples, we point out an issue regarding the implementation. Since the cross-power 
matrices are estimated for a number of selected time-frequency points, some of them may contain information about 
only one of the sources. We try to take samples from the regions of signal time-frequency signatures. However, the 
noise in these regions effects the performances of the proposed methods. In order to increase overall robustness of 
the proposed methods, we can follow two approaches. The first approach is the averaging of all the matrices so that 
all signal components are included in the final cross-power matrix, and also the SNR is increased further.6 In the 
second approach, the cross-power matrices are diagonalized jointly.4 

In the first example, we consider two complex frequency shift keying (FSK) signals with frequencies (0.125,0.25) 
for the first signal and (0.25,0.375) for the second signal. The frequency 0.25 is used by the signals alternately. The 
length of the observation period is JV = 256. The signals arrive at a six-sensor array with a\ = 10 and a2 = -10 
degrees. Figure 1 shows the spatial spectrum at SNR = -lOdB for the CEP-MUSIC and the MUSIC. In this example, 
we use ordered Hadamard functions with M = 4. Eight cross-power distribution matrices are averaged. Figure 1 
shows the result of 200 realizations. We observe that the CEP-MUSIC is able to indicate two source locations well 
but the MUSIC has only one peak. 

In the second example, we use the same FSK signals of the previous example except with N = 128 for the 
purpose of signal separation. The signals are shown in Figure 2. We mix the signals with the following matrix 

c = 
1.0 0.5 
0.6 1.0 
0.4 0.8 

(58) 

We apply three different blind source separation methods, namely, the CEP-blind source separation (CEP-BLIS) 
method described in the previous section, the spatial TFD (with Choi-Williams kernel) based blind source separation 
method (TFS-BLIS),5   and the SOBI (second order blind identification) method of.4    Figure 3 shows the mean 

rejection level defined as Iperj = £,^m E{\ (C C)*,i |2}4 at different SNRs. We use joint diagonalization with eight 
matrices in all three methods. The figure shows the result of 200 realizations. We observe that, for this example, 
the performance of the CEP-BLIS continues to improve as SNR increases whereas the performances of the SOBI 
and the TFS-BLIS methods insignificantly change after a threshold around 25dB. 

In the final example, we consider a single source of a complex sinusoid at normalized frequency / = 0.25, with 
N = 128 snapshots. The distance between the source and multiple antenna array remains constant, but the source 
displacement is such that a changes linearly from -20 to 20 degrees. We use a two-sensor array and apply the CEP- 
MUSIC by averaging five matrices around the time of interest n. We use nine complex exponentials as expansion 
functions. Figure 4 shows the estimates under no noise case at times n = 10,50 and 100. We observe that the 
estimator can follow the source quite well. 

9. CONCLUSION 

In this paper we combined evolutionary spectrum with spatio-temporal processing for estimation of DOA and blind 
signal separation. We modeled the nonstationary signals received at sensors as sum of complex sinusoids with 
time-varying complex amplitudes. The estimates of these amplitudes are used for the estimation of cross-power 
evolutionary spectrum, specifically, the cross-power evolutionary periodogram. Then, the cross-power evolutionary 
periodogram matrices at time and frequency samples of interest are combined and used in the MUSIC algorithm 
to obtain the spatial evolutionary spectrum. We also used the cross-power evolutionary periodogram matrices for 
blind signal separation. We presented examples illustrating that the proposed methods outperform some existing 
methods, i.e., the MUSIC for DOA estimation and the SOBI and the bilinear time-frequency distribution based 
algorithms for blind signal separation. 
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APPENDIX 

Consider x[n] — Cs[n] + w[n]. Now we rewrite a[n] as a column vector 

a[n]    =    C((b[n]HF)^[^,...,4f) + (b[nfF)®,[^,---,^}H 

a>]    =    [wf,...1wf]®r(Fffb[n])+([sf)---,sg]®r(Fffb[n]))Cff. (59) 

Then, we can write the cross-power as 

S„(n,w)    =    £{a[n]a"[n]} 

=    C [(b[n]*E*) O; B„ ®r (F
ffb[n])] C* + cr2b[nfb[n]l 

=    CS.^n.wJC^ + or'bM^bMl' (60) 

where we used the property that FFff = I. 
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Figure 1. Spatial spectrum for two FSK signals at a\ = —10 and &2 = 10 degrees. 
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Figure 2. The FSK signals used for the blind source separation. 
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Spatial time-frequency distributions (STFDs) have been recently shown 
to be a powerful tool for solving direction finding and blind source separa- 
tion problems for multi-sensor array receivers. These spatial distributions 
are the natural means to deal with source signals that are localizable in 
the time-frequency domain. This paper examines the eigenstructure of the 
spatial time-frequency distribution matrices. It is shown that improved es- 
timates of the signal and noise subspaces are achieved by constructing the 
subspaces from the time-frequency signatures of the signal arrivals rather 
than from the data covariance matrices. This improvement is more evident 
in low signal-to-noise ratio (SNR) environment and in the cases of closely 
spaced sources. The paper considers the MUSIC technique to demonstrate 
the advantages of STFDs and uses it as grounds for comparison between 
time-frequency and conventional subspace estimates. 

Key Words:  time-frequency analysis; subspace analysis; time-frequency MUSIC; spatial 
time-frequency distributions; array signal processing 

1.    INTRODUCTION 

Although the applications of the spatial time-frequency distributions to blind 
source separation and DOA problems using multiple antenna arrays in nonsta- 
tionary environments have been introduced in [1,2], yet so far there has not been 
sufficient analysis that explains their offerings and justifies their performance. The 
aim of this paper is to examine the eigenstructure of the spatial time-frequency 
distribution matrices and provide statistical analysis of their respective signal and 
noise subspaces. The paper shows that the subspaces obtained from the STFDs are 
robust to both noise and angular separation of the waveforms incident on the array. 
This robustness is primarily due to spreading the noise power while localizing the 
source energy in the time-frequency domain. By forming the STFD matrices from 

This work was supported by ONR under Grant #N00014-98-l-0176. 
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the points residing on the source time-frequency signatures, we in essence, increase 
the input signal to noise ratio, and hence improve subspace estimates. 

This paper is organized as follows. Section 2 presents the signal model and gives 
a brief review of the definition and basic properties of the spatial time-frequency 
distributions. In Section 3, we consider nonstationary environment characterized 
by frequency-modulated (FM) source signals, and show the potential improvement 
in direction-of-arrival (DOA) estimation using STFDs. Section 4 examines the 
performance of the direction finding MUSIC technique based on the covariance and 
STFD noise subspace estimates. 

2.    BACKGROUND 
2.1.    Signal Model 

In narrowband array processing, when n signals arrive at an m-element array, 
the linear data model 

*(*) = y(«) + n(t) = A(8)d(0 + n(i) (1) 

is commonly assumed, where the mxn spatial matrix A(0) = [a(0i)...a(0n)] 
represents the mixing matrix or the steering matrix, and a(0j) are the steering 
vectors. Due to the mixture of the signals at each sensor, the elements of the m x 1 
data vector x(t) are multicomponent signals, whereas each source signals di(t) of 
the n x 1 signal vector d(i) are often a monocomponent signal. n(t) is an additive 
noise vector whose elements are modeled as stationary, spatially and temporally 
white, zero-mean complex random processes, independent of the source signals. 
That is, 

E[n(t + r)nH(t)] = aS(T)I  and E[n(t + r)nT (t)] = 0  for any r (2) 

where S(r) is the Kronecker delta function, I denotes the identity matrix, a is 
the noise power at each sensor, superscript H and T respectively denote conjugate 
transpose and transpose, and E(-) is the statistical expectation operator. 

In equation (1), it is assumed that the number of sensors is larger than the 
number of sources, i.e., m > n. Further, matrix A is full column rank, which 
implies that the steering vectors corresponding to n different angles of arrival are 
linearly independent. We further assume that the correlation matrix 

Rxx = E[x(t)xH(t)} (3) 

is nonsingular, and the observation period consists of N snapshots with N > m. 
Under the above assumptions, the correlation matrix is given by 

Rxx = E[x(t)xH(t)] = A(0)RddA"(0) + aI, (4) 

where Rdd = E[d(t)dH(t)] is the signal correlation matrix. For notational con- 
venience, we drop the argument 0 in equation (1) and simply use A instead of 
A(0). 

2.2.    Spatial Time-Frequency Distributions 
The spatial time-frequency distributions (STFDs) based on Cohen's class of time- 

frequency distribution were introduced in [1] and its applications to direction find- 
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ing and blind source separation have been discussed in [2] and [1], respectively. In 
this paper, we focus one key member of Cohen's class, namely the pseudo Wigner- 
Ville distribution (PWVD) and its respective spatial distribution. Only the time- 
frequency (t-f) points in the autoterm regions of PWVD are considered for STFD 
matrix construction. In these regions, it is assumed that the crossterms are negli- 
gible. The discrete form of pseudo Wigner-Ville distribution of a signal x(t), using 
a rectangular window of odd length L, is given by 

2 

Dxx(t,f)=    £    x(t + T)x'(t-T)e-**"r, (5) 

where * denotes complex conjugation. The spatial pseudo Wigner-Ville distribution 
(SPWVD) matrix is obtained by replacing x(t) by the data snapshot vector x(i), 

2 

Dxx(t,/)=    £    x(t + T)xH(t-r)e-^. (6) 

Substitute (1) into (6), we obtain 

Dxx(t,f) = Dyy(t,f) + 2Re[Byn(t,f)) + Bnn(t,f). (7) 

We note that Dxx(i, /), Dyy(i, /), Dyn(i, /), Dny(t, /), and Dnn(i, /) are matrices 
of dimension m y. m, whereas the source TFD matrix Ddd(*,/) is of dimension 
n x n. Under the uncorrelated signal and noise assumption and the zero-mean 
noise property, the expectation of the crossterm TFD matrices between the signal 
and noise vectors is zero, i.e., E\Dyn(t,f)\ = E[Dny(t,f)] = 0, and it follows 

E [Dxx(i, /)] = Dyy(f, /) + E [Dnn(£, /)] = ADdd(i, f)AH + E [Dnn(t, /)]. (8) 

For narrowband array signal processing applications, the mixing matrix A holds 
the spatial information and maps the auto- and cross-TFDs of the source signals 
into auto- and cross-TFDs of the data. 

It is noted that relationship (8) holds true for every (t, f) points. In order to 
reduce the effect of noise and ensure the full column rank property of the STFD 
matrix, we consider multiple time-frequency points. This allows more information 
of the source signal t-f signatures to be included into their respective subspace 
formulation. Joint-diagonalization [3] and time-frequency averaging are the two 
main approaches that have been used for this purpose [1, 2, 4]. In this paper, we 
only consider averaging over multiple time-frequency points. 

3.    SUBSPACE ANALYSIS FOR FM SIGNALS 

In this paper, we focus on frequency modulation (FM) signals, modeled as 

d(t) = [d1(t),...,dn(t)f = [Ae^W,...,Dne^W]T, (9) 
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where £>* and Vi(*) are the amplitude and phase of ith source signal. For each 
sampling time t, di(t) has an instantaneous frequency fi(t) = ^^^L. To simplify 
the analysis, we assume that the FM signals are mutually uncorrelated over the 
observation period. That is, 

1  N 

-5>(fc)d;(fc) = 0       for i ? j, i,j = 1, ...,n. 
k=i 

(10) 

In this case, the signal correlation matrix in (4) is 

Rdd = diag [£>?, i = 1,2, ...,n] 

where diag[-] is the diagonal matrix formed with the elements of its vector valued 
arguments. The ith diagonal element of TFD matrix Bdd(t,f) in (8) is given by 

DdMt,f)=    £    Öfefil"^^-*«-^-»"*. (11) 
T— 2 

Assuming that the third-order derivative of the phase is negligible over the window 
length L, then ft = ^^p-, and tpi(t + r) - ^(t - r) - 4vrftr = 0. Accordingly, 

Ddidi(t,f)=    E    D* = LDl-' (12) 

Similarly, the noise STFD matrix Dnn(i, /) is 

Dnn(i,/)=    J2    n(t + T)nH(t-T)e-WT. (13) 

Under the assumption of temporally and spatially white noise, the statistical ex- 
pectation of T>nn(t, f) is given by 

L-l 

E [Dnn(i, /)] =    J2    E N* + r)n"(t ~ r)] e-ji*fr = &l. (14) 

Therefore, when we select the time-frequency points along the t-f signature or the 
IF of an FM signal, the SNR in model (8) is LDf/cr, which has an improved factor 
L over the one associated with model (4). 

The pseudo Wigner-Ville distribution of each FM source has a constant value 
over the observation period, providing that we leave out the rising and falling 
power distributions at both ends of the data record. For convenience of analysis, 
we select those N - L + 1 t-f points of constant distribution value for each source 
signal. Therefore, the averaged STFD over the time-frequency signatures of n0 

signals, i.e., n0(N -L + l) t-f points, is given by 

, n„  N-L+l 

t> = n0(N-L + l)^   £   D«(*«,/<r.<), W 
V ' 9=1      i=l 
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where /,,,- is the instantaneous frequency of the gth signal at the ith. time sample. 
The expectation of the averaged STFD matrix is 

D = E [Ö] = ^ ]T [LD2
pa(ep)a

H(ep) + al] = £-A°Rdd(A°)H + &1,  (16) 
Vi 

where Kdd and A°, respectively, represent the signal correlation matrix and the 
mixing matrix constructed by only considering n0 signals out of the total number 

of signal arrivals n. 
It is clear from (16) that, when n0 signals are selected, the SNR improvement 

becomes G = L/n0 (we assume L > n0 throughout this paper). Therefore, from 
the SNR perspective, it is better to select (t, f) points that belong to individual 
signals, and to separately evaluate the respective STFD matrices. Accordingly, 
STFD-based direction finding is, in essence, a discriminatory technique in the sense 
that it does not require simultaneous localization and extraction of all unknown 
signals received by the array. With STFDs, direction finding can be performed 
using STFDs of a subclass of the impinging signals with specific time-frequency 
signatures. In this respect, the proposed direction finding technique acts as a 
spatial filter, removing all other signals from consideration and, subsequently, saves 
any downstream processing that is required to separate interference and signals 
of interest. It is also important to note that with the ability to construct the 
STFD matrix from one or few signal arrivals, the well known m > n condition 
on source localization using arrays can be relaxed, i.e., we can perform direction 
finding or source separation with the number of array sensors smaller than the 
number of impinging signals [5]. From the angular resolution perspective, closed 
spaced sources with different t-f signatures can be resolved by constructing two 
separate STFDs, each corresponds to one source, and then proceed with subspace 
decomposition for each STFD matrix separately, followed by a appropriate source 
localization method (MUSIC, for example). The drawback of performing several 
direction finding using different STFD matrices is clearly the need for repeated 
computations of eigen decompositions and source localizations. 

4.    SIMULATIONS 

The t-f MUSIC is introduced in [2], where the angles of arrival are estimated by 
locating the highest peaks of the spectrum provided by using the noise subspace of 
the STFD matrix, rather the covariance matrix, which is the case in conventional 
MUSIC. 

The following example compares the performance of conventional and t-f MUSIC. 
Consider a uniform linear array of 8 sensors separated by half a wavelength. Two 
chirp signals emitted from two sources positioned at angle 6\ and 62. The start 
and end frequencies of the chirp signal of the source at 9\ are uisi = 0 and wei = ir, 
while the corresponding two frequencies for the signal of the other source at #2 are 
us2 = it and tJe2 = 0, respectively. The noise used in this simulation is zero-mean, 
Gaussian distributed, and temporally white. The noise power, a, is adjusted to 
give the desired SNR = -10log(<r). 
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Fig. 1 displays the variance of the estimated DOA §i versus SNR fro the case 
{6i,82) = (-10°, 10°). The curves in this figure show the theoretical and experi- 
mental results of the conventional MUSIC and t-f MUSIC (for L=33 and 129). The 
CRB is also shown in Fig. 1. Both impinging signals are selected when performing 
t-f MUSIC (n0 = n = 2). We assume that the number of signals is correctly esti- 
mated for each case. Simulation results are averaged over 100 independent trials 
of Monte Carlo experiments. The advantages of t-f MUSIC in low SNR cases are 
evident from this figure. 

5.    CONCLUSIONS 
The advantages of STFD-based direction finding over traditional direction finding 

methods using data covariance matrices were demonstrated using the MUSIC algo- 
rithm. The t-f MUSIC technique outperforms the conventional MUSIC technique 
in the two situations of low SNR and closely spaced sources. Detailed performance 
analysis of DOA-based STFD is given in reference [6]. 
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Summary: This paper discusses the application of the 
new concept of spatial time-frequency distribution 
(STFD), and more generally the spatial arbitrary joint- 
variable distribution (SJVD), to key array signal 
processing problems including blind source separations 
and high resolution direction finding of narrowband and 
broadband sources with stationary and nonstationary 
temporal characteristics. The STFD can be formulated 
based on the widely used class of time-frequency 
distributions, namely Cohen's class, or it can be devised 
by incorporating other classes of quadratic distributions, 
such as the Hyperbolic class and the Affine class. The 
paper delineates the fundamental offerings of STFDs, 
presents three examples of array signal processing using 
the localization properties of time-frequency 
distributions of the impinging signals, and shows how 
spatial averaging can be combined with time-frequency 
averaging for improved performance. 

I. INTRODUCTION 

In many signal processing applications, the 
multidimensional signal is directly utilized to estimate 
some signal parameters, such as the number of sources 
and their directions of arrival. Subspace-based methods 
use a geometrical relation involving the exact moments 
of the data. The desired signal parameters are extracted 
by solving this relation in some approximate sense, and 
using sample moments instead of the exact ones. The 
commonly applied eigenstructure subspace methods 
assume stationary signals. Although, when the frequency 
content of the measured data is time-varying, these 
methods can still be used, yet their performance can be 
significantly improved by proper use of the information 
on the data time-frequency characteristics. In general, 
conventional blind source separation and direction 
finding techniques based on second and higher order 
statistics are not well structured to exploit the non- 
overlapping properties of the signal arrivals in the time- 
frequency domain. These properties can, for example, be 
employed to achieve spatial nulling and removal of 
undesired sources without resorting to beamspace 
processing and decreasing the available number of 
degrees of freedom. 

The evaluation of quadratic time frequency distributions 
of the data snapshots across the array yields spatial time- 

frequency distributions, which permit the application of 
eigenstructure subspace techniques to solving a large 
class of channel estimation and equalization, blind 
source separation, and high resolution direction of arrival 
estimation problems. Spatial time-frequency distribution 
techniques are most appropriate to handle sources of 
nonstationary waveforms that are highly localized in the 
time-frequency domain. In the area of blind source 
separation, the spatial time-frequency distributions allow 
the separation of Gaussian sources with identical spectral 
shape, but with different time-frequency localization 
properties, i.e., different signatures in the time-frequency 
domain. For signal separation and direction of arrival 
estimation problems, spreading the noise power while 
localizing the source energy in the time-frequency 
domain amounts to increasing the robustness of 
eigenstructure signal and noise subspace estimation 
methods with respect to channel and receiver noise, and 
hence improves resolution and signal separation 
performance. 

In this paper, we consider the applications of time- 
frequency distributions to the two important areas of 
direction finding and blind source separation using 
multiple antenna arrays. While time-frequency 
distributions have been sought out and successfully used 
in the areas of speech, biomedicine, automotive industry, 
and machine monitoring, their applications to sensor and 
spatial signal processing have not been properly 
investigated. The time-frequency distribution in all its 
bilinear and higher order forms represents a powerful 
tool for superresolution angle of arrival estimation and 
recovery of the signals which have been mixed across 
the array, specifically those of nonstationary temporal 
characteristics. The proper utilization of the time- 
frequency signatures and the power localization 
properties of the desired and jammer signals over time 
and frequency, or any appropriate joint-variables, 
increases the effective signal to noise ratio and casts 
time-frequency distributions as an important and 
essential part of array processing. For different jamming 
environments and a large class of signals, time- 
frequency based direction finding and blind source 
separation methods offer performance that is beyond the 
capabilities of traditional techniques based on second or 
higher order statistics. 
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2. SPATIAL CONSIDERATION OF TFDS 

Time-frequency distributions have been shown to be a 
powerful tool in nonstationary signal analysis [1,2,3]. So 
far, most of the work on this subject has focused on 
temporal signal processing without much attention given 
to the spatial variable. The spatial dimension, properly 
incorporated into time-frequency signal representations, 
allows an effective angle-of-arrival estimation and 
separation of nonstationary signals impinging on the 
antenna array. 

To present the spatial time-frequency distribution, we 
first recall that Cohen's class of time-frequency 
distribution (TFD) of a signal x(t) is given by [1] 

*>„(',/) = 

f f </>{t-u,T)x{u+Tl2)x'(u-Tl2)e-j2*TdudT 
J-00 J-00 

(1) 

where t and / define the time index and the frequency 
index, respectively. The kernel tp{t,r) is a function of 

the time and lag variables. The cross-TFD of two signals 
*,(r) and x2(t) is defined by 

DVl <*,/) = 

f f" ${t - u, T)JC, (M + r / 2)x* (u - T 12)e-j2^Tdudr 
J—CO J—CO 

(2) 

Expressions (1) and (2) are now used to define the 
following data spatial time-frequency distribution 
(STFD), 

D„(r,/) = 

f f 4>{t-u,T)X(U +T/2)X"(K -T/2)e-J2^TdudT 
J—CO J—CO 

(3) 

where [D„(r, /)]„ = DXXj (t, /), for 1,7 = 1,2 n, and 

the superscript "H" denotes the complex conjugate 
transpose of a matrix or a vector. 

In several applications such as semiconductor 
manufacturing process, narrowband array processing, 
and image reconstruction, the following linear data 
model is assumed, 

x(f) = As(0 + n(0 (4) 

where the m x n spatial matrix A may be a mixing matrix 
or a steering matrix, depending on the application under 
consideration. The elements of the m x 1 vector x(t), 
which represents the measured or sensor data, are 
multicomponent signals, while the elements of the n x 1 
vector s(t) are often monocomponent signals. n(t) is an 
additive noise, which is zero mean, white and Gaussian 
distributed process. 

Due to the linear data model, the STFD takes the 
following structure 

BJt,f) = ADJt,f)AH 
(5) 
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where Dss(t,f) is the source TFD matrix of s(t), and 

the noise is neglected as a first step. We note that 
®xx(t)f) is a matrix of dimension m x m, whereas 

D„( f>f) is of dimension nxn. For narrowband array 
signal processing applications, A holds the spatial 
information and maps the auto- and cross-TFDs of the 
source signals into auto- and cross-TFDs of the data. 

Expression (5) is similar to that which has been 
commonly used in blind source separation and direction 
of arrival (DOA) estimation problems, relating the signal 
correlation matrix to the data spatial correlation matrix 
[4,5,6]. Here, these correlation matrices are replaced by 
the source and spatial time-frequency distribution 
matrices. This means that we can solve these problems 
in various applications using a new formulation which is 
more tuned to nonstationary signal environments. 

The two subspaces spanned by the principle eigenvectors 
of D„(7,/> and the columns of A are identical. Since 

the off-diagonal elements are cross-terms of T)ss(t,f) , 

then this matrix is diagonal for all (t-f) points which 
correspond only to the signal autoterms. In practice, to 
simplify the selection of such points of true high power 
localization, we apply the smoothing kernel ^(f,r) that 
may significantly decrease the contribution of the cross- 
terms in the t-f plane. 

The new concept of the spatial time frequency 
distribution discussed above opens a new area of 
research in the field of nonstationary signal processing 
and allows time-frequency and bilinear distributions to 
play an important role in sensor signal processing. 

3. FUNDAMENTAL OFFERINGS OF STFDS 

There are five key advantages of array processing using 
time-frequency distributions which have not yet been 
properly presented and fully utilized. In order to clearly 
explain these advantages, we use the diagram in Fig.l. 
Two sources A and B are incident on a multisensor 
array. Source A occupies the time-frequency region Ra, 

whereas source B occupies the time-frequency region 
Rb. The time-frequency signatures of the two sources 
overlap, but each source still has a time-frequency region 
that is not intruded over by the other source. We will 
assume that the background noise is white. 

1) Equation (5) can be easily derived for any arbitrary 
joint-variables. Time and frequency are indeed the two 
most commonly used and physically understood 
parameters. However, by replacing the spatial time- 
frequency distributions by spatial arbitrary joint-variable 
distributions, one can relate the sensor joint-variable 
distributions to the sources joint-variable distributions 
through the same mixing matrix A. As shown below, 
there are situations where it is preferable to consider 
other domains such as the ambiguity domain, where the 
locations of the signals and their cross-terms are guided 
by properties and mechanisms different than those 
associated with the time-frequency domain. 



t 

Fig.l Signals with different time-frequency signatures 

2) Equation (5) is valid for all time-frequency points. 
The main question is whether one time-frequency point 
suffices for adequate direction finding and source 
separation, and how sensitive the performance is to a 
random choice of a t-f point? Further, if several t-f 
points are used, then how to choose and combine these 
points for improved performance, and whether the 
method of combining should differ depending on the 
task in hand? Direction finding techniques require 
Vs,(t>f) to be full rank, preferably diagonal. Some 
blind source separation techniques demand the diagonal 
structure of the same matrix without degenerate 
eigenvalues. These properties along with high SNR 
requirements may be difficult to achieve using a single 
time-frequency point. We have identified two different 
methods to integrate several t-f points into equation (5). 
One method is based on a simple averaging performed 
over parts or the entire time-frequency regions of the 
signals of interest. The second method incorporates 
desirable time-frequency points into joint 
diagonalization or joint block diagonalization schemes. 
To illustrate both methods, we use in Section 4 the 
former scheme for direction finding whereas the second 
scheme is employed in Section 5 for blind source 
separation. Both methods aim to fully utilize the points 
of maximum power concentration and avoid the time- 
frequency region of significant noise contamination. 

3) The time-frequency distribution of the white noise is 
distributed all over the time-frequency domain, whereas 
the TFDs of the source and jammer waveforms are likely 
to be confined to much smaller regions. Referring to 
Fig.l, the noise is spread over both Ra and Rb as well 

as the complement region Rc.    If the time-frequency 

points (tj) used in either the averaging or joint 
diagonalization approaches belong the noise only region 
Rc, then no information of the incident waveforms is 
used and, as such, no reasonable source localization and 
signal separation outcomes can be obtained. Accordingly 
the performance is expected to be worse than 
conventional approaches. On the other hand, if all points 
(tj) in Fig.l are used, and the employed TFD satisfies 
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the marginal constraints such as the Wigner distribution, 
then it is easily shown that only the average power is 
considered. As a result, the problem simplifies to the 
second order covariance based matrix approach, 
traditionally used in high resolution angle of arrival 
estimation. This is an important property, as it casts the 
conventional techniques as special cases of the proposed 
framework based on time-frequency analysis. Finally, if 
we confine the (tj) points to Ra and Rb, then only the 

noise part in these regions is included. The result of 
leaving out the points (tf) which are not part of the 
time-frequency signatures of the signal arrivals is 
enhancing the input SNR to the source localization and 
signal separation techniques. 

4) By only selecting (tj) points which belong to the t-f 
signature of one source, then this source will be the only 
one considered by equation (5). This is, in essence, 
equivalent to implicitly performing spatial filtering to 
remove other sources from consideration. It is important 
to note that such removal does not come at the expense 
of reduction of the number of degrees of freedom, as it is 
the case in beamspace processing, but the problem 
remains a sensor space processing with the original 
number of degrees of freedom remains intact. This 
represents a key contribution of TFDs to the direction 
finding and angle estimation area. An antenna array can 
be used to localize a number of sources equal or even 
greater than its number of sensors. The fundamental 
condition is that there must be time-frequency regions 
over which the respective time-frequency signatures of 
the sources do not overlap. In principle, the lower limit 
on the size of such regions is a single time-frequency 
point. Referring to Fig.l and considering the case of two 
sensors, if all t-f points incorporated in direction finding 
belong to region   Ra   and not  Rb, then the signal 
subspace defined by equation (5) is one-dimensional. In 
effect, by excluding source B, a one-dimensional noise 
subspace is established. This allows us to proceed with 
noise-subspace based high resolution techniques for 
localization of source A. Within the proposed 
framework, one can localize one source at a time or a set 
of selected sources, depending on the array size, 
overlapping and distinct time-frequency regions, and the 
dimension of the noise subspace necessary to achieve the 
required resolution performance. The same concepts and 
advantages of t-f point selection discussed above for 
direction finding can be applied to blind source 
separations. 

5) The a priori knowledge of some temporal 
characteristics or the nature of time-varying frequency 
contents of the sources may permit direct selection of the 
t-f regions used in equation (5). In general, if we choose 
a joint-variable domain, where a class of signals 
collapses to a specific known joint-variable region, then 
one can perform direction finding and source separation 
for only this specific class. For instance, it is known that 
in the ambiguity domain all fixed frequency sinusoidal 
signals map to the vertical axis, no matter what their 
amplitudes, frequencies, and phases are. By only 
incorporating the points on the vertical axis, which 



represents the time-lag variable, we have, in fact, 
focussed on separating and localizing narrowband 
components in the presence of broadband signals or 
jammers. 

4. THE JOINT-VARIABLE MUSIC (JV 
MUSIC) 

The joint-variable MUSIC is a new array signal 
processing method which is based on joint-variable 
signal representations. This method computes the spatial 
joint-variable distributions to solve the problem of the 
direction of arrival (DOA) estimation. In this approach, 
we average the spatial joint-variable matrices over 
several joint-variable points for the purpose of noise and 
crossterm reduction. 

Let the spatial joint-variable distribution define all 
spatial distributions for which the respective source and 
sensor bilinear distributions are related by matrix A, as 
in equation (5). By performing the singular value 
decomposition (SVD) [7] of the spatial joint-variable 
matrix Dxx(a, ß), we obtain 

D„ra,/?; = [EiEB]D[E1E.r (6) 

where D  is a diagonal matrix.  Es   and En, which 

respectively span the signal subspace and the noise 
subspace, are fixed and independent of the joint-variable 
point (a,ß). The columns of Es span the signal 
subspace, which is also spanned by the columns of 
matrix A. A simple way to estimate Es and E„ is to 

perform the SVD on a single matrix Dxxf a, ß). But one 
time-frequency point may carry insufficient SNR or be 
highly contaminated by crossterms. To avoid this 
problem, we propose to perform averaging over several 
(a, ß) points, exploiting the joint structure of the spatial 

matrices. If averaging is performed over the joint- 
variable region O., (a;, ßt) e Q., then the SVD applied to 

the averaged spatial joint-variable matrix leads to 

Dxx(a,ß) = £Dxxfa;,ß) = [Es E„]D[Es En]"  (7) 

In the presence of noise, the MUSIC algorithm is applied 

to the perturbed noise subspace matrix En. The joint- 

variable MUSIC (JV-MUSIC) algorithm estimates the 
DOAs by finding the N largest peaks of the localization 
function 

f(ß) E„"a(0) (8) 

where a(#) is the steering vector. The value of TV is 

determined by the number of sources captured in the 
region Q.. If the joint-variable distribution satisfies the 
marginal constraints, then averaging over the entire 
domain will lead to the total power, yielding the 
conventional MUSIC. In the following, we present two 
simple cases of the joint-variable MUSIC, namely, the 

Time-Frequency MUSIC and the Ambiguity-Domain 
MUSIC. 

4.1. Time-Frequency MUSIC (TF MUSIC) 

The purpose of this example is to show that the TF 
MUSIC based on joint diagonalization gives good angle 
estimation performance for various time-frequency 
kernels. The performance of the classical MUSIC [4] is 
compared to that of the proposed TF-MUSIC using: i) 
the Wigner kernel ii) the Choi-Williams kernel [1], and 
iii) the Born-Jordan kernel [1]. Consider a uniform 
linear array of 4 sensors separated by half a wavelength 
and receiving signals from 2 sources. The source signal 
arriving at 0, = 10 degrees and 02 = -10 degrees, 

respectively, are of unit variance. The signal is 
composed of a chirp signal whose start and end 
frequencies   are   <y,    =   0.1771   and   co2   =  0.67n, 

respectively. The noise used in this simulation is zero- 
mean, Gaussian distributed, and temporally white. The 

noise power or a2   is adjusted to give the desired 

SM? = 101og10(o-"2).        Fifty       STFD       matrices 

corresponding to (tj) autoterm points are averaged. The 
variance of the estimated DOAs is computed over 100 
independent trials. Figure 2 displays the variance of the 

estimated DOA 6X versus SNR for 500 samples. The 
solid line presents the classical MUSIC algorithm. The 
dashed line, the dash-dot line and the dotted line 
correspond to the TF-MUSIC using Choi-Williams 
kernel, Born-Jordan kernel and Wigner kernel, 
respectively. According to this plot, the convetional 
MUSIC and TF-MUSIC based on the above three 
kernels give similar results. The offerings and 
advantages of the TF MUSIC in direction finding for 
different classes of nonstationary signals require 
extensive analysis and simulations, which are not 
presented in this paper. 
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Fig.2 Variance of 0, vs. SNR 

4.2. Ambiguity-Domain MUSIC (AD MUSIC) 

Consider the scenario of a four-element equi-spaced 
linear array, where one chirp signal and two sinusoidal 
signals are received. All three signals have the same 



power of 20 dB, whereas the noise power is assumed to 
be 0 dB. The angles of arrival of the chirp signal and the 
sinusoidal signals are 15,10, and 0 degrees, respectively. 
The joint-variables are now the frequency-lag and the 
time-lag (a,/?) = (0,r). While the ambiguity function 

of the chirp signal sweeps the ambiguity domain with 
contribution at the origin, the exact autoterm ambiguity 
function A(ß,r) of the narrowband arrivals sx(t) and 

s2 (r) is zero for non-zero frequency-lags and may have 

non-zero values only along the vertical axis 0=0. This 
function is given by 

A(6,T) = C(si(T) + s2(T))öm (9) 

where C is a constant which depends on the signal 
power, and ö(ß) is the Kronecker delta function. In this 

simulation example, we selected 14 points on the time- 
lag axis, excluding the origin, and as such emphasizing 
the narrowband components. The data record has 128 
samples and the ambiguity function is computed by 
taking 128-by-128 FFT of the Wigner distribution. 
Figure 3 shows the ambiguity-domain where the two 
vertical lines represent the crossterms between the 
sinusoidal components. Fig. 4 shows two MUSIC 
spectra, one corresponds to the conventional method and 
the other corresponds to the ambiguity-domain (AD) 
MUSIC. There are two dominant eigenvalues for the 
case of the AD MUSIC, since we have not deliberately 
considered the chirp signal through our careful selection 
of the ambiguity-domain points. It is clear that the AD 
MUSIC resolves the two sinusoidal signals, while the 
conventional  MUSIC  could  not  separate  the  three 

signals. Next, in order to show that non-careful point 
selections may prove unwise as well as to illustrate the 
ineffectiveness of working with joint-variable regions 
with no signal power, we average over the region Q 
indicated in the Fig. 3, where the incoming signals have 
very weak presence. The result is shown in Fig. 5. It is 
evident from this figure that because of the lack of 
information in this region, the AD MUSIC fails to 
localize any of the three signals. 

AMBIGUITY DOMAIN 

20 40 60 80 
Frequency-lag 

100        120 

Fig. 3 Ambiguity domain of one chirp and two 

sinusoidal signals (Q: A region used to estimate the 
AD MUSIC spectrum in Fig. 5) 
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Fig.4  AD MUSIC and conventional MUSIC spectra 
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Fig.5  AD MUSIC spectrum 
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5. THE JOINT-VARIABLE BLIND SOURCE 
SEPARATION 

Let W denote n x m matrix such that 

(WA)(WA)W = UU" = I, i.e., WA is an n x n unitary 

matrix (This matrix is referred to as a whitening matrix, 
since it whitens the signal part of the observations). Pre- 
and post-multiplying the spatial joint-variable 
distribution matrices Dxx(a,/?) by W, we obtain the 
whitened spatial matrix 

Dxx(a,y3) = WDxx(a,yS)W' (10) 

From equations (5) and (10), we may express Dxx(a,ß) 
as 

bxx(a,ß) = VDss(a,ß)V" (11) 

Since matrix U is unitary and DS5(a,ß) is diagonal, 
expression (11) shows that any whitened data spatial JV 
distribution (SJVD)-matrix is diagonal in the basis of the 
columns of the matrix U (the eigenvalues of Dxx(a,/?) 

being the diagonal entries of Dss(a, ß)). 

If, for the (a,-,/?,) point, the diagonal elements of 

Da(aj,ßi) are all distinct, the unitary matrix U may be 

'uniquely' (i.e. up to permutation and phase shifts) 
retrieved by computing the eigendecomposition of 

Dxx(a,y5). However, when the a-ß domain signatures 

of the different signals are not highly overlapping or 
frequently intersecting, which is likely to be the case, the 
selected (a,-,/?;) point often corresponds to a single 

signal auto-term, rendering matrix Dss (ör;,/?,.) 

deficient. That is, only one diagonal element of 
Dss («,,#) is different from zero. It follows that the 

determination of the matrix U from the 
eigendecomposition of a single whitened data SJVD- 
matrix is no longer 'unique' in the sense defined above. 
The situation is more favorable when considering 
simultaneous    diagonalization    of   a   combined    set 
{D]K(aI.,/?j)li = l, ,p] of p matrices. This amounts to 

incorporating  several   (or,,/?,)   points  in  the  source 

separation problem. It is noteworthy that two source 
signals with identical (a,,#) signatures can not be 

separated even with the inclusion of all information in 
the a-/?plane. 

The joint diagonalization (JD) [8,9] can be explained by 
first noting that the problem of the diagonalization of a 
single n x n normal matrix M is equivalent to the 
minimization of the criterion [7] 

def 
C(M,V)=-£   | v/Mv, I2 

(12) 

over the set of unitary matrices V = [v,,...,vj . Hence, 

the joint diagonalization of a set {Mk I k = l.jfc} of K 

arbitrary n\n matrices is defined as the minimization of 
the following JD criterion: 

def 
C(V) =-XC(M4,V) = _£, V/M,v,. I2 

(13) 

under the same unitary constraint. An efficient joint 
approximate diagonalization algorithm exists in [8] and 
it is a generalization of the Jacobi technique [7] for the 
exact diagonalization of a single normal matrix. 

Equations (10) - (13) constitute the blind source 
separation approach based on joint-variable distributions 
which is summarized by the following steps: 

• Determine the whitening matrix W from the 
eigendecomposition of an estimate of the covariance 
matrix of the data, 

• Determine the unitary matrix Ü by minimizing the 
joint approximate diagonalization criterion for a specific 

set of whitened JVD matrices {Dxx (or. ,ß.)\i = \ ,p], 

• Obtain an estimate of the mixture matrix A as 

A = W#U, where the superscript # denotes the Pseudo- 
inverse, and an estimate of the source signals s(/)  as 

s(f)=U"Wx(0. 

In Figure 6, we show an example of the application of 
the proposed spatial joint-variable distributions to the 
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blind source separation problem. In this case, the two 
variables are time and frequency [10]. A three-element 
equi-spaced linear array is considered. Two chirp signals 
arrive from far-field at -10 and 10 degrees. The number 
of data samples used to compute the STFD is 128. The 
number of t-f points employed in the joint- 
diagonalization isp=128, with equal number of points on 
each signature. In this example, the mixing matrix A is 
chosen to be 

A = 
1 

0.8549 + 0.5189/ 
0.4615 + 0.8871« 

1 
0.8549-0.5189/ 
0.4615-0.8871/ 

Fig.6(b) shows the time-frequency distributions of two 
linear mixtures of the original chirp signals depicted in 
Fig.6(a), corresponding to the data at the first and the 
second sensors. Using the spatial time frequency 
distributions, we are able to recover the original signals 
from their observed mixture, as shown in Fig.6(c). 
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Fig.6 Blind source separation based on spatial time-frequency distribution 
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6. SPATIAL AVERAGING TIME- 
FREQUENCY DISTRIBUTIONS 

Symmetric spatial averaging method was proposed by 
Pillai [6] to restore the full-rank property of the signal 
covariance matrix in the presence of coherent signals. 
Unlike other spatial smoothing methods [11,12], which 
only restore the full rank property of the mixing matrix 
when the impinging signals are coherent, the symmetric 
spatial averaging method decorrelates the signal arrival 
in the sense that it imposes a diagonal structure on the 
signal correlation matrix. This property is essential to 
source separation methods, as previously discussed. Here 
we extend the spatial averaging method to TFD analysis, 
and propose the signal separation method by joint 
diagonalization (JD) based on spatial averaging TFDs. 

The basic idea of symmetric spatial averaging is to use a 
symmetric subarray to obtain an averaged covariance 
matrix, or in the underlying problem, an averaged STFD 
matrix, with a diagonal structure. 

To simplify the notation, we use the same model of two 
signal arrivals, s^t) and s2(t). The result is generally true 
for n sources and N sensors as long as n<N. The cross- 
TFD of the data*0(r) and *,(f), i= 0, 1, 2 AM, is 

(14) 

where we used ^,=0. Denote bx=Dss (t,f) + Dss(t,f) 

and bx = DSiSi(t, f) + DSSi (t, f) ■ The values of b, and b2are 

generally complex. We add N-l array sensors sym- 
metrically about the reference point, as shown in Fig.7. 
Thus, we have the new cross-TFD of x0(t) and x„(t), 

= [t>   (/,/) +D   (*,/)]*"*■* 

The matrix 

D.   (t,f) + D   (t,f) -]df»2 

(15) 
The spatial averaging of (14) and (15) is given by 

(16) 
where 

b2 = Dv(t,f)+Rc[DsJt,f)j 

#(\-N) #(2-A0        #(-1)    #0     #1 #(N-2)   #(JV-1) 

T TTT-TT 
V Y ' V Y ' 

Additional N-l sensors Original N sensors 

Fig.7 Array configuration for spatial averaging 

D» ('./) = 

Or0*«./)   D^(f,f) 

(17) 

is Hermitian and Toeplitz. It is referred to as the 
spatially- averaged TFD (SATFD) matrix. In the noise- 
free environment, the SATFD matrix can be expressed 
as 

where 

D„(r,/) = ADöA* 

DB(f,/) = diag[fc,   b2] 

(18) 

(19) 

is the equivalent TFD matrix of the source signals. Note 

that the diagonal terms in Dss(r,/) are real and made up 

of both autoterms and crossterms. Clearly, (18) has the 

same format as (5), but Dss(r,/) here is diagonal even 

with the presence of TFD crossterms. As such, 
symmetric spatial averaging ensures the validity of the 
TFD-based signal separation in the presence of cross- 
TFD. The procedure for source separation using 
spatially-averaged STFD at several (tf) points is the 
same as the steps outlined in Section 5. 

The effectiveness of the spatially-averaged time- 
frequency distribution in source separation is 
demonstrated by the following examples. The joint 
diagonalization is used for incorporating multiple time- 
frequency points into the proposed spatial averaging 
method. In all simulations, there are two sources with 
chirp signals 

*i(0 = «    2 s2(t) = e 
-Jfl —-jmt 

where u. is chosen as 0.0087t. Different values of to are 
considered. 128 data samples are used, from which a 
time-frequency matrix of 128 x 128 is formed. The 
DOAs of the two signals sx{t) and s2(t) are set equal to 
30° and 60°, respectively, from the broadside direction. 
Furthermore, we assume an equi-spaced 5-element linear 
array with the interelement spacing 0.5X, where X is the 
wavelength. Subsequently, when spatial averaging 
method is used, two sub-arrays are formed, each with 3 
elements. 

The Wigner-Ville (WV) distribution of each signal is 
shown in Fig.8, where 8/ (=co/27t) is set equal to 0.05. 
Fig.9 shows the mixed time-frequency distribution at the 
center array sensor. No noise is present for this case. It is 
clear that crossterms lie in the middle of the two chirps, 
and their amplitudes change periodically. Fig. 10(a) 
shows the WV distributions of the separated signals, 
where joint diagonalization is used without the 
utilization of the proposed spatial averaging method. 
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Three time-frequency (t,f) points are used at f = 32, 64, 
and 96. The frequency/is chosen so that the TFD at the 
center array sensor is the largest at each value of t. Peak 
values of the WV distribution may either correspond to 
autoterm or crossterm. In this case, out of three (t, f) 
points, one crossterm point is selected. The obtained 
Ä'A matrix is 

A#A: 0.46+./0.46   0.82-j0.44 
0.54-j0.46   0.17 + ./0.44 

and the computed global rejection level /     is -1.8 dB. 

This level is defined as 

p"f -Zh (20) 

where/   = id(Ä*A)   I   measures the ratio of the power 

of the interference of #th source to the power of the pth 
source signal. The above result is unsatisfactory, as the 
matrix A#A is far from diagonal and the crossterms 
clearly appear at the separated signals. 

Next, we force the selection of autoterm points along the 
instantaneous frequency of the two input signals. 
Although no crossterm point is selected, yet because of 
the finite data record, the crossterms leak into autoterm 
regions and cause different degrees of contamination. 
We show in Fig. 10(b) the result of source separation 
when only the autoterm points are used. The obtained 
A#A matrix becomes 

A#A = l.OO+j'0.01   0.00-./0.06 
0.00-yO.Ol   1.00+;0.06 

and the computed global rejection level /      is -23.9 

dB. It is clear that the source separation performance is 
greatly improved. This implies that crossterm 
contribution at the selected (t, f) points were 
insignificant. 

Fig. 11 (a) and Fig. 11(b) show the time-frequency 
distributions of the separated signals under the same 
conditions as in Fig. 10(a) and Fig. 10(b), respectively, 
except with the utilization of the spatial averaging 
method. The spatial averaging entirely mitigates the 
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effect of crossterm. 

It is clear that the time-frequency distributions of the 
separated signals in both cases are the same as those of 

the original source signals, and A*A are exactly identity 
matrices. 

and therefore when selected they cause tremendous 
error, as evident in the figure. When only autoterm (t, f) 
points are used, the global rejection level decreases as 8/ 
increases. In this case, the crossterm contribution at the 
autoterm points becomes smaller for higher values of 8/. 
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Fig. 11 TFD of the separated signals 
with spatial averaging 

Fig. 12 shows the global rejection level /      versus the 
perf 

frequency difference 8/ between the two chirps, where 
the input SNR is 20dB. When the proposed spatial 
averaging method is applied, the global rejection level 
keeps very low value, irrespective of whether some or all 
of the (t,f) points correspond to autoterms. On the other 
hand, without spatial averaging, the results show very 
high global rejection levels. The main reason of large 
variation of the /      without using the spatial averaging 

method is that the number as well as the influence of 
crossterm points selected is dependent on the frequency 
difference 8/ (when 8/ =0.1, no crossterm points are 
chosen). Note that crossterms of the WV distribution 
remain high even when the frequency difference is large, 
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Fig. 12 Global rejection level versus, frequency 
difference (input SNR=20 dB, o: without spatial 
averaging, A: with spatial averaging, 0: without spatial 
averaging using autoterm points, V: with spatial 
averaging using autoterm points) 

7. CONCLUSIONS 

The main objectives of this paper were twofold: 1) 
demonstrating that high resolution subspace-based 
methods can be performed by involving no longer the 
exact moments but rather the auto- and cross- time- 
frequency distributions of the data received by the 
multisensor array; 2) developing blind source separation 
methods based on the difference in the time-frequency 
localization properties of the signal arrivals and provide 
a generalization to arbitrary joint variables. Also, the 
paper presented, in general terms, the key offerings and 
advantages of utilizing the power localization properties 
of the signals incident on an antenna array to improve 
array performance. There are still important issues in the 
above two applications of time-frequency distributions 
remain to be explored and resolved. Among these issues 
are performance dependence on noise level, smoothing 
kernels, spatial smoothing and subarray averaging, non- 
localizable source signals, correlated and coherent 
sources, and spatial distributed sources due to local 
scattering. 

Symmetric spatial averaging of spatial time-frequency 
distributions has also been introduced. The spatial 
averaging of the spatial time-frequency distributions of 
the data across an antenna array removes cross-terms in 
between the impinging signals. These terms reside along 
the off-diagonal entries of the source time-frequency 
distribution matrix, and consequently impede the source 
separation performance, which is based on the matrix 
diagonal structure. Spatial averaging amounts to forming 



a spatial Hermition Toeplitze matrix using the time- 
frequency distributions of the data across one half of the 
array. This matrix is then added to the spatial matrix 
corresponding to the other half of the array. The desired 
effect of this averaging is moving the interaction 
between the source signals in the time-frequency domain 
from the off-diagonal locations to the diagonal elements 
of the TFD matrix [13,14]. In this respect, unlike the 
method proposed in [10], cross-terms, due to their high 
potential values, are regarded as useful components that 
could be properly used for improved performance. 
Spatial averaging can be applied to all members of 
Cohen's class of TFDs, irrespective of the employed 
smoothing kernel. When using a time-frequency kernel, 
the problem amounts to averaging in all three 
dimensions of time, frequency, and space. 

Two source separation schemes incorporating the 
spatially averaged time-frequency distributions can be 
applied [14]. The first scheme is the same as the one 
introduced in reference [10], where joint diagonalization 
is applied to several spatially averaged TFD matrices 
corresponding to multiple time-frequency points. In the 
second scheme, the spatially- averaged TFD matrices 
evaluated at different t-f points are averaged and the 
result is then diagonalized and used for estimating the 
source signals. Both schemes are based on converting 
the problem into unitary mixture through whitening the 
original mixture. The source signals are then provided 
from the estimated unitary matrix through Pseudo matrix 
inversion. With cross-terms moved to the diagonal 
entries of the TFD matrix, the prime task of either source 
separation scheme is to avoid degenerate eigenvalues 
which are responsible for non-uniqueness solution of the 
problem. 

Simulations examples were presented to illustrate the 
effectiveness of the new approach based on joint 
diagonalization. The two performance measures used 
were the global rejection level and the values of the off- 
diagonal elements of the product of the mixing matrix 
and the Pseudo inverse of its estimate. Two sources and 
five sensors were considered. The source signal were 
chirp signals with the same sweeping frequency, but 
their constant frequencies were offset by different 
values. The Wigner-Ville distribution was considered. It 
was shown that the spatial averaging method 
significantly improves the performance measures over 
the non-spatially averaging method, specifically when 
the two signals have close time-frequency signatures. 
Without spatial-averaging, performance is very sensitive 
to whether the auto-term or cross-term points, or their 
mix, are incorporated in the source separation procedure. 
With spatial averaging, this is no longer a concern, since 
both terms become diagonal entries of the TFD matrix. 
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Abstract 
The problem of direction finding of waveforms incident 

on a multi-sensor array is of importance in many areas, 
including wireless communications. The MUSIC and max- 
imum likelihood techniques have been widely and success- 
fully applied to solve this problem. This paper examines the 
performance of a hybrid technique that combines the 
MUSIC algorithm and subband signal decompositions. It 
is shown that, for narrowband and polynomial phase sig- 
nals, the subband decomposition increases the input sig- 
nal-to-noise ratio, and thus yields improved performance 
over the conventional MUSIC technique. This improvement 
is more pronounced for high noise power levels. 

I. Introduction 
The problem of direction finding of waveforms incident 

on a multi-sensor array has drawn much attention during 
the past two decades [1]. Among various methods, the 
MUSIC [2] and maximum likelihood (ML) [3] techniques 
have been the front candidates to solve this problem. The 
eigenstructure-based approach underlying the MUSIC 
technique permits high resolution direction finding of mul- 
tiple signals to be realized by a single spatial search instead 
of multi-dimensional costly optimization scheme, which is 
required for the ML method. Several papers have been 
written analyzing the performance of the MUSIC algo- 
rithm, including [4,5]. One fundamental drawback of the 
MUSIC technique, however, is that when the noise level is 
high, the signal and noise subspaces may be significantly 
corrupted, leading to highly biased and unstable estimates 
of the angles-of-arrival (AOAs) of the impinging wave- 
forms[l]. 

In this paper, we propose a subband MUSIC approach 
to overcome the above drawback and improve the localiza- 
tion performance of the traditional MUSIC technique 
under high noise levels. Both narrowband signals and non- 
stationary polynomial phase signals are considered. The 
proposed method is a hybrid technique that combines both 
the MUSIC algorithm and subband signal processing. In 
the presence of narrowband or polynomial phase signals, 
the new method increases the input signal-to-noise ratio 

This work is supported by ONR Grant no. N00014-98-1-0176 

(SNR) by discarding the noise-only frequency samples 
computed over successive overlapping and disjoint data 
blocks. The effect of enhancing the SNR on performance is 
more pronounced for weak signals than signals with high 
SNR. It is shown that for high noise power conditions, the 
increase in SNR due to subband decompositions results in 
an improved MUSIC algorithm. 

II. Problem formulation 
Assume n plane waves incident on an array of m sensors 

where n<m. The variance of the MUSIC AOA estimation 

error of the ith incident waveform, varMU(co,), is given in 
[4] as 

var MU (CO,.)  = 

2N • /z(co,.) 
Li=l (a

2 -XJ 
I      ", N        I2 
\a  (CD,-)«* (1) 

where N, a , and a(co) are, respectively, the total number 
of data samples, the noise level, and the steering vector. In 
equation (1), Xk (k=l, 2,..., n) and sk denote the largest n 

eigenvalues of the data covariance matrix and the corre- 
sponding eigenvectors, co,. = Tt«/n(9,.) defines the fth spa- 

tial frequency of the respective AOA 8,- whose estimate is 

denoted as CO,-. The function /i(co,) is given by 

A((u,.) = d"((oi)GGHd((üi) (2) 
where d((ü)=da((ü)/d(ü is the derivative of the steering 
vector relative to the spatial frequency, and G is the matrix 
consisting of the noise-only eigenvectors gk. 

In the case of uncorrelated signals, equation (1) simpli- 
fies to [4] 

var MU (CO,)  = 
1 

2N ■ SNR,.    A(co,.) 1 + 
KAHA )"']„■• 

SNR; (3) 

where SNR,- represents the SNR of the ith source and A is 
the array steering matrix. 

From (3), it is clear that low SNRs result in high error 
variances of the AOA estimates, and subsequently degrade 
the performance of the MUSIC technique. 
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III. Improved SNR via subband 
decomposition 

Let 

x(k) = s(k) + n(k)        0<k<N-l       (4) 

where s(k) is the sampled version of the signal waveform 
and n(k) is an additive white noise sequence with variance 

a2. The input SNR is typically defined in the time-domain 
as 

unchanged. 

N-l 

SNR = 
E(\s(k)\ ) 

E(\n(k)\2) 

jSl,w|S 

* = o (5) 

If the signal is transformed into a new domain using 
orthogonal transforms, one can still define the signal-to- 
noise ratio using expression (5). In this case, k denotes the 
transform bin number, and s(k) becomes the transformed 
signal[6]. It should be noted that in the case of discrete 
Fourier transform (DFT), the white noise power uniformly 
extends over all frequency bins. 

Equation (5) evaluates the SNR over the entire trans- 
form domain. If the SNR is to be computed over one or 
specific transform bins, then the numerator in (5) should be 

taken over only the bins of interest, and a becomes the 
total noise captured in the transform bins considered in this 
summation. Therefore, if the signal occupies much nar- 
rower bandwidth than that of the noise, the SNR can be 
improved, if it is evaluated over the signal bandwidth, 
instead of the entire Nyquist interval. The greater differ- 
ence between the signal and noise bandwidth, the more sig- 
nificant the SNR improvement becomes. 

Consider a sinusoidal signal corrupted by white noise 
with SNR=0dB, where the signal length #=512 (Fig. 1-a). 
An N-point discrete Fourier transform (DFT) is applied to 
the signal, and the frequency band with the greatest power 
is selected. The signal power is concentrated in one trans- 
form bin, whereas the noise power is uniformly distributed 
over the whole spectrum (Fig. 1-b). It is straightforward to 
show that, at the input sinusoidal frequency, the transform 
domain SNR is N times the SNR defined in the time- 
domain through equation (5). It is noted, however, that in 
this case, the number of samples of interest decreases from 
Win the time-domain to only 1 in the transform (frequency) 
domain. Generally, if the signal occupies one subband out 
of K subbands, then by only considering the signal sub- 
band, the SNR improves by K, while the number of inde- 

pendent samples decreases to N/K. That implies that, the 
product of SNR and the number of samples remains 

SO       100      150      200      250      300      350      400      450      500 
frequency 

Fig. 1 Sinusoid signal corrupted by noise (SNR=OdB) 

(a) Time-domain     (b) Frequency-domain 

IV. Subband MUSIC 
Equation (3) shows that, the dependence of varMU(co,) 

on SNR is such that: 
(1) For low SNR, i.e., the noise level is relatively high, 

van 
JV-SNR 2  * 

(2) For high SNR, varMU(a>) W-SNR,.* 
That is, as SNR increases, the relationship between the 
error variance of the AOA estimate and SNR changes from 
square inverse proportionality to just an inverse proportion- 
ality. 

. The proposed subband MUSIC technique is described 
as follows: 

(1) Divide the input signal into separate blocks, each 
of length AT. 

(2) Apply üf-point FFT to each block, and select the 
subband with the maximum power. This results in 
a new sequence of length N/K The SNR of the 
new sequence is K times the original one. 

(3) Apply the high resolution eigenstructure-based 
MUSIC technique to the new sequence. 

To further demonstrate how the subband MUSIC works, 
we consider the case of an m-sensor array with only one 
arrival signal, i.e., «=1. To simplify notation, the subscript 
/ is omitted hereafter. For AT-subband MUSIC, equation (3) 
can be written as 

var. MU (CD) 
1 1 

;[i 
l 

2JV-SNR   hm-      m.K.SNR 

h((£>)is obtained using equation (2) with 

a(co) = ^ eJ<» _ eJ('"-D<al 

] (6) 

(7) 
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«a» = *m = j\0 
dm Lu j<* (m-l)e 

j(m -l)£ol 

G = /--j;a((0)a"(a>) 

(8) 

(9) 
Substituting (7-9) into (2), and after some mathematical 
manipulation, we obtain 

A«D) = "("«+|)("-1) (10) 

which implies that h((0 ) is a constant and does not change 

with the spatial frequency Co. Therefore, for fixed values 

of N and SNR, varMU(co) is proportional to the factor 

1 c = 1 + Two observations are now in 
m-K-SNR 

order: 

(1) For high SNR, c ~ 1, independent of K. This 
indicates that no improvement in performance is 
expected via subband processing. 

(2) When SNR is sufficiently low, o>l for K=\ and 

c~\ as K —» co. Therefore, the proposed sub- 
band MUSIC technique will be able to consider- 
ably reduce the value of varMU(co). 

From a windowing perspective, partitioning the data 
record of length N into separate blocks is equivalent to 
applying non-overlapping data windows(NOW). However, 
subband MUSIC technique can also be implemented using 
a moving window(MW), whereby the data window is 
shifted by only one snapshot each time. The moving win- 
dow subband MUSIC method is more appropriate for non- 
stationary signals whose frequencies change with time. 

The NOW subband MUSIC method can be modified to 
include more frequency bins instead of only one bin. This 
modification is important in time-varying environment as it 
provides additional information of the non-stationary sig- 
nal. However, such modification is not necessary for MW 
technique, since it is possible to effectively track the 
changes of the signal frequency characteristics with time 
through the continuous time displacement of the data win- 
dow. 

V. Simulation 
Three simulation examples are presented below to illus- 

trate the effectiveness of the proposed subband MUSIC 
technique. 
(1) Sinusoid signal 

In the first example, both NOW and MW methods are 
used to implement subband MUSIC. Only one frequency 
bin is considered. In this example, we use a four-sensor 
array which receives a sinusoid signal of SNR=-15dB 
arriving at AOA= 10° from the broadside. N and K are set 
equal to 2048 and 256, respectively.  The results of AOA 

estimation based on the classical MUSIC and the subband 
MUSIC incorporating both the moving window and the 
non-overlapping window are shown in Fig. 2. From the 
plots in Fig. 2, it is evident that at low SNR, the fluctua- 
tions of AOA estimate using classical MUSIC is more 
severe than those from the subband MUSIC technique, 
whereas there is no obvious differences between the per- 
formance of the two subband MUSIC methods based on 
the NOW and MW approaches. 

g 

O   ■■        1-bin NOW 
- *- -        1-binMW , 
- Ä classical MUSH '. 

■   <L...;.A 

0 5 10 15 SO 25 30 35 40 45 50 
simulation # 

Fig. 2 Estimation of 1-bin NOW, MW subband MUSIC 
and classical MUSIC using a stationary signal 

(2) Relationship with input SNR 
The second simulation example is to examine the rela- 

tionship between varMU(cb) and SNR that further illus- 
trates the results in the first simulation example. In this 
example, we change SNR from-30dB to 10 dB and con- 
sider different values of K=l, 16, 256. All other parame- 
ters are the same as those used in the previous example. 
For each SNR, the angle of the peak value of the MUSIC 
spectrum is found and the square of the difference between 
this angle and the exact one is computed and averaged over 
50 different trials to get an empirical value of varMU(co). 
The results are plotted in Fig. 3, with the x-axis represent- 
ing SNR in dB, and the y-axis representing varMU(co). 

The dashed lines are the empirical values, whereas the 
solid lines represent the corresponding theoretical curves. 

SNR(dB) 

Fig. 3 Variance of estimation error vs SNR 

It is clear from Fig. 3 that the improvement of the sub- 
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band MUSIC over the classical MUSIC becomes more 
pronounced at lower SNR. Also noted that the smaller 
SNR, the greater difference is between the theoretical and 
experiment curves. One fundamental reason for such dis- 
crepancy is that the high-power noise may corrupt the 
eigenvalues to the extent that the eigenvector correspond- 
ing to the maximum eigenvalue is no longer the closest 
basis to the signal vector. Another reason is that the theo- 
retical result given by equation (1) is based on Taylor series 
expansion, and as co - CO gets larger, varMU(co) would not 
follow the curve, as higher expansion terms are no longer 
negligible. When SNR increases, the subband and the clas- 
sical direction-finding methods tend to converge to the 
same values. So, using subband techniques in high SNR 
environment does not improve performance. 
(3) Polynomial-phase signal 

In the third simulation, a slowly varying chirp signal 
defined by equation (11) is used as the incident signal. 

,-2ÄV + 0.8*1 
*(*) = e    y J (11) 

This is a non-stationary case. All other parameters are the 
same as in previous simulations. Fig. 4 shows the AOA 
estimates obtained using the above three MUSIC methods. 
In this figure, the MW subband MUSIC yields the smallest 
AOA estimation fluctuation. The NOW subband MUSIC 
and classical MUSIC follow. The difference between the 
MW and the NOW subband MUSIC methods lies in the 
fact that the former can track the frequency-changing sig- 
nal, yet the NOW method partially loses the information 
between the adjacent non-overlapping windows. 

mation provided by additional subbands is insignificant. 

simulation # 

Fig. 4 Estimation of 3-bin NOW, MW subband MUSIC 
and classical MUSIC using non-stationary signal 

Using the same data but including three dominant fre- 
quency bins in both NOW and MW subband MUSIC meth- 
ods yields different set of curves, as shown in Fig. 5. 

The variances calculated from Fig. 4 and Fig. 5 are 
listed in Table 1. Repeated simulations show that for a 
chirp signal, considering the signals over multiple-sub- 
bands at any given window position may improve the per- 
formance of the NOW method because it could offer more 
information on the desired signal. In the MW scenario, 
however, this improvement is limited.  This means infor- 

s 
I 

—e         3-btnNOW 
- «-  -        3-btn MW 
■ Ä- • classical MUSK 1 

A  | ;  M 

Fig. 5 Estimation of 3- bin NOW, MW subband MUSIC 
and classical MUSIC using non-stationary signal 

Table 1: variance from Fig. 4 and Fig. 5 

NOW MW 
classical 
MUSIC 

1-bin 0.1034 0.0575 0.1209 

3-bin 0.0677 0.0497 0.1209 

VI. Conclusion 
We have proposed a subband-MUSIC-based direction 

finding technique which combines subband signal process- 
ing with the conventional MUSIC technique. Subband 
methods improve the SNR when the bandwidth of the sig- 
nal is narrower than that of the noise. From both analysis 
and simulations, we have demonstrated that at low SNR, 
the subband MUSIC technique using both moving window 
(MW) and non-overlapping window (NOW) methods 
offers better performance than classical MUSIC. For non- 
stationary signals, it is shown that using moving windows 
yields smaller variance than using non-overlapping win- 
dows. However, the performance of NOW method could 
be improved by utilizing more subband components 
instead of only one. 
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Abstract 

We introduce the beamspace time-frequency (t-f) MUSIC 
as a hybrid scheme which combines the advantages of 
beamspace processing and time-frequency distributions 
for high resolution directional finding of signals with time- 
varying characteristics. The proposed beamspace t-f 
MUSIC performs high resolution angle-of-arrival 
estimation using the time-frequency signatures of the 
outputs of the beams, rather than the sensor data, as 
previously proposed. Two beamspace t-f MUSIC 
techniques are presented, one is based on joint block- 
diagonalization of multiple t-f points whereas the other is 
based on averaging over t-f regions prior to subspace 
estimation. Both techniques utilize the power distribution 
of the signal arrivals within different beams over both time 
and frequency. 

1. Introduction 

The evaluation of quadratic time frequency distributions 
of the data snap shots across the array yields, what is 
referred to as, the spatial time-frequency distributions 
(STFDs)[l]. The STFD permits the application of 
eigenstructure subspace techniques to solve a large class of 
channel estimation and equalization, blind source 
separation, and high resolution direction of arrival 
estimation problems. Spatial time-frequency distribution 
techniques are most appropriate to handle sources of 
nonstationary waveforms that are highly localized in the 
time-frequency domain, or any other domain of a different 
joint variable signal representations. 

The time-frequency MUSIC was introduced in [2] to 
utilize the time-frequency signatures into the signal and 
noise subspace estimation. In this respect, the t-f MUSIC 
is an eigenstructure method for direction finding involving 
no longer the exact statistical moments but rather the auto- 
and cross- time-frequency distributions of the data 
received by the multisensor array. Several t-f points 
corresponding to true power concentration of the different 

This work is supported by ONR Grant no. N00014-98-1-0176. 

source signals are incorporated into a joint diagonalization 
scheme that yields the unitary matrix whose columns are 
the orthonormal basis vectors for the signal and noise 
subspaces. The block-diagonalization technique 
fundamentally aims at performing one search of spectral 
peaks to estimate the angles of arrival of all sources. As 
such, the t-f points selected should include auto-terms 
from the signatures of all signals incident on the array. A 
different method for direction finding using spatial time- 
frequency distributions is introduced in [3]. In this 
method, averaging over high power concentration regions 
is performed and the result is used in place of the 
covariance matrix in the traditional MUSIC technique to 
obtain the noise subspace. This time-frequency averaging 
method may also be employed to resolve one signal at a 
time. This requires averaging to be performed over the t-f 
regions where signals do not overlap, and the method must 
then be used repeatedly until all signals are resolved. With 
increased dimension of noise subspace, performance is 
likely to improve at the expense of performing several 
projections and single peak searches in multiple spectra. 

In this paper, we extend both of the above methods to 
beamspace processing [4, 5]. Beamspace time-frequency 
MUSIC can be used in different applications including an 
airborne array mounted on aircraft with propellers. The 
propeller scatters represent signals which are highly 
correlated with direct path signal arrivals. Such strong 
correlation causes degradation in performance of direction 
finding using sensor data. Since the propeller coordinate 
positions are known, beamspace processing may be used 
to eliminate contribution of the scatterers to subspace 
estimation. 

2. Analysis Model 

2.1 Time-frequency MUSIC 

Consider an array with N sensors and P sources. The 
signal vector at the array sensors is given by 

x(r) = y(O + n(f) = A(0j)s(O + n(f) (1) 

where s(f)=[$,(f), s2(t), ..., sP(t)]T is the signal vector and 

®«=[0,A>->0/.]r   is   tne   vector   of angles-of-arrival 
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(AOAs) which are assumed unknown but constant over 
the observation period. a(0) represents the array steering 
vector at AOA 9, and  A(0.) = [a(0, ),a(02),..., 3(0, )]r. 

n(0 is the additive noise vector. 
The discrete-time form of Cohen's class of spatial time- 

frequency distribution (STFD) matrix of the signal vector 
x(r) is defined as [1] 

and 

«n D„(r,/) = X£a>(m,/)®x(r+m+Z)x''(f+m-/)e-;4 

(2) 

where m and/represent the time index and the frequency 
index, respectively. <8> denotes the Hadamard product, and 
[<D(m,/)]u=0lW(/n,/) is the time-frequency kernel 

associated with the pair of the sensor data x,(r) and xj (f). 
Under the linear data model of eq. (1), the STFD matrix 

takes the following simple structure 
D«(f,/)= Dyy(t,f)+ Dyn(f,/)+ Dny(f,/)+ Dnn(f,/)   (3) 

where 

D„(f-/) = XXa> (.m,l)<S>y(t + m + l)yH\t + m-l)e-ia"" ,(4) 
/.—in.— 

*>„ (f, /) = £ X O (m, Z) ® y(f+m + Z)n" (f + m - Z)e-''4*", (5) 
;»— rn- 

and 

D.(l,/)= E E0 (m,l)®n((+m+/)n"([+™-/)«-''"" . (6) 

We note that 
Dyy(f,/)=A(©s)Dss(f!/)A

w(0s) (7) 

where 

•>.('■/)= 11° (m,0®s((+ffl+;)s"(( + w-/K/,'/l   (8) 

is the signal TFD matrix whose entries are the auto- and 
cross-TFDs of the sources. 

Two different approaches have been proposed to use the 
spatial time-frequency distribution over different (f,/) 
points. The first approach relies on joint block- 
diagonalization [2], while the second is based on 
integrating the time-frequency distribution over high 
power concentration regions [3]. The two approaches are 
summarized below. 

Let G denote the integrated STFD matrix D(//) over the 
time-frequency region ß, i.e., 

G = lJD(.t,f)dtdf (9) 

where   jj    indicates  the integral  over the t-f region Q. 

Accordingly, we can define the following two matrices 
which, respectively, correspond to the sensors and the 
sources, 

G„=jjQDJt,f)dtdf. (11) 

We denote the number of sources which fully or in part 
occupy energetically the region Q as Pa. In this case, the 
dimension of Gss is Pa x Pn. Proper selection of the t-f 
region Cl with high signal concentration enhances the 
signal-to-noise ratio (SNR), leading to improved 
performance. It is noted that the condition for AOA 
estimation using the noise subspace of the Pa sources is 
Pn<N. Therefore, in principle, an N element array can 
separate more than N sources if we perform the t-f MUSIC 
technique over different noise subspaces, each corresponds 
to a region Q containing no more than (N-l) sources. From 
(3), 

GxX=  Gyy+  Gy„+  G„y+  G„„. (12) 

We assume that the noise and signal are uncorrelated in 
the region Gl. If this region is sufficiently large, then 
Gyn=0 and Gny=0. We also assume that the noise is white 
and Gaussian, so that Gnn=a2I, where a2 is the average 
noise power within £1, and I is the identity matrix. From 
(7) and (12), we obtain 

Gxx = Gyy + Gnn =A(0S) GM A"(0S) + a2! (13) 

Eq. (13) is similar to that commonly used in conventional 
AOA estimation problems [6], relating the signal 
covariance matrix to the data spatial covariance matrix. If 
Gss(f,/) is a full-rank matrix, the two subspaces spanned 
by the principle eigenvectors of Gxx(t,f) and the columns 
of A(0S) become identical. In this case, directional finding 
techniques based on eigenstructures, like MUSIC, can be 
applied. 

The eigen-decomposition of Gxx leads to 

G^tUsUJAlUsU,/, (14) 

where the columns of Us are the Pa eigenvectors which 
span the signal subspace, and those of Un are the N- 
PQ eigenvectors which span the noise subspace. Since the 
subspace spanned by Us is identical to that spanned by 
A(0S), then 

Aw(0s)Un=O. (15) 

Thus, the AOA of the signal is found by the time- 
frequency MUSIC, which maximizes the localization 
function (spatial spectrum) 

P(Ö)=Ü>(Ö) (16) 

G^JlD„(t,f)dtdf.. (10) 

where Un spans the noise subspace of the estimated Gn 

matrix. 

Another time-frequency MUSIC method is based on the 
joint block-diagonalization of the combined set of 
Dxx('*./*). (tk,fk) <z D. for k =1, 2, ..., K. The joint block- 
diagonalization is achieved by the maximization under 
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unitary transform of the following criterion, 

C(U) -iik». 
*=i >J=I 

('*>/>, (17) 

over the set of unitary matrices U=[ui, u2, ..., uN]. An 
efficient algorithm for solving (17) is presented in [1]. 
Once the signal and the noise subspace are estimated, (15) 
and (16) can be applied. The AOAs of the sources are 
estimated by finding the Pn largest peaks of the 
localization function given by (16). 

2.2 Beamspace time-frequency MUSIC 

Although time-frequency MUSIC is effective for the 
AOA estimation of non-stationary source signals, the 
performance may degrade when some of the sources are 
highly correlated. This problem becomes even more 
difficult when the coherent sources are spatially 
distributed. For example, the scatters from the aircraft 
body and the propellers are spatial distributed sources and 
highly correlated with the line-of-sight signal, and it is 
difficult to separate them in the time-frequency domain. 
Reducing the signal coherence by using spatial smoothing 
methods [6] is difficult to apply due to insufficient number 
of sensors. 

Here we propose the beamspace time-frequency 
MUSIC method to overcome the difficulties encountered 
by decorrelation filters when dealing with the spatially 
distributed coherent scatters. The proposed method 
combines the advantages of the beamspace MUSIC [4, 5] 
and time-frequency MUSIC [2, 3]. The proposed 
beamspace time-frequency MUSIC method, in essence, 
removes the undesired signals by utilizing the a priori 
partial spatial information about the signals, multipaths, 
and interferers, as well as their respective signatures in the 
time-frequency domain. Spatial filtering approach makes 
use of the conventional bandpass filters (BPF) to filter out 
the unwanted scatters in spatial frequency domain. It 
improves the AOA estimates of direct signals by 
suppressing instead of decoupling their coherent 
counterparts. 

To model the coherent environment, we add Q local 
scatterers, which may be spatially distributed, to the 
scenario discussed above. Thus, the data vector at the 
array sensors will be 

x« = y(f) + n(f) = s(0 A(6>,) + £ Ja((9)s, (t, 6: yr, )d6 + n(t) (18) 
i»l G, 

where s{(t,6 ;y() (i=l, 2, ..., Q) are the scatterers with the 

spatial bandwidth 0., and xpi are vectors containing the 

parameters which determine the characteristics of the 
spatial distribution. 

To mitigate the effect of the scattering, the proposed 
beamspace time-frequency MUSIC method performs 
spatial filtering to filter out the local scattering before 
AOA estimation. When it is known that the desire signal 

lies within a specific sector, the data can be processed in a 
manner that retains information from that sector, but 
eliminates all arrivals from other sectors via beamspace 
MUSIC [4,5]. It is noted that the proposed beamspace 
MUSIC is applicable even when the scatters have high 
signal coherence with the other sources [4]. 

Let C be an N x J (J<N) dimensional beamformer 
matrix with orthogonal columns. Matrix C transforms an 
element-space observation vector a(0) into a beamspace 
vector b(0). The signal vector in the beamspace is 

xb(t) = Cx(t). (19) 

From (18) and (19), the beamspace output is 
xi(0 = yt (0+MO 

= s(OC9A(0,) + ]T JCa(0)s,. (t, 6: ¥i )d6 + nb (f) (20) 

'-' e. 

The second term is the residual scatters which should be 
removed. n„(r) = C"n(t) is the noise vector at the 

beamspace domain. Note that the noise over the spatial 
stopband is filtered out so that the overall input SNR is 
improved. 

The primary objective of a beamformer design is to 
make the array gain g(0) satisfy [7] 

bw(g)b(g)_aff(g)CC//a(g)     ^    6eQ- g{0) = 
a"(0)a(<9) a"(0)a(0) 0   0e0 stop 

(21) 
where  G^DG,   is the spatial passband including all 

possible signal AOA, and 0„tJ,a0,u02u...u0!, is the 

combined stopband spatial sector. When g(8)=0 is 
satisfied for 6 e Qmp, the spatially distributed local 

scattering  are  removed  and,   in  turn,   xb(t)   becomes 
interference-free. Therefore, when (21) holds, (20) 
becomes 

*» (0 = y»(0 + nt (0 = s(t)C"A(Os) + n„ (r) (22) 
Similar to the element-space time-frequency MUSIC, 

we define the STFD of the beamspace array output as 

D„.„ C/) = iioW)®xl(t+m + /)x; (r + m - l)e-»"" . 

(23) 
For the time-frequency MUSIC using averaging technique, 
the integrated STFD matrix is 

G^^SJV^itJWdf. (24) 
Clearly, we have 

(25) D,n('./) = C"Dn((,/)C 
and 

Gi]XX = Gh,yy + Gh,nn =C"A(0s)GS5A
w(0s)C + o^C. 

The eigen-decomposition of GA,XX leads to 
(26) 

(27) 
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where UitS is made up of the Pa eigenvectors which span 
the signal subspace, and the columns of UA„ is the J- 
Pa eigenvectors, which span the noise subspace. For 
beamspace time-frequency MUSIC, J>Pa should be 
satisfied to separate the sources. 

Since the subspace spanned by V^ is identical to that 
spanned by C WA(0S), we get 

Aw(0s)CUi,„=O. (28) 

Thus, in beamspace time-frequency MUSIC, the AOA of 
the signal is found by maximizing the localization function 

W = 77 
b"(0)b(0) (29) 
U^CaW 

where Üin spans the noise subspace of estimated Gt„ . 

For the other time-frequency MUSIC method, the joint 
block-diagonalization is achieved by the minimization of 
the unitary transform of 

K    Pa 

Ct(U) = Xl|<Dt.„('*./*)«*,[ (30) 
*=i i.y=i 

Again, the AOAs are estimated by finding the Pn largest 
peaks of the localization function given by (29). 

3. Computer Simulation 

To confirm the effectiveness of the beamspace time- 
frequency MUSIC, we consider the scenario of an airborne 
radar system. An echo signal arrives from a target and gets 
scattered by the propellers. The signal from the target is 
generally a chirp signal. To simply the simulation, the 
propellers are considered as point scatterers and the 
scattered signals are considered to have the same 
waveform of that from the target. Fig. 1 shows the Choi- 
Williams time-frequency distribution of the chirp signal 
s(t)=exp(-j{i ?I2), where r=[0,l] and ^271. 256 points are 
used for both the time and frequency scale. For the t-f 
MUSIC methods, the 256 points along the chirp are 
chosen over the auto-term t-f region. 

A 6-element equi-spaced linear array is considered 
where the interelement spacing is half wavelength. For 
beamspace array processing, the minimum bias multiple 
taper [8, 9] is used, and the selected beam bins are shown 
in Fig.2. Only the angular range [0, n] is considered here. 
The spatial stopband is considered to be 0 > 50 degrees 
and 0<-5O degrees. It is seen that the beamformer 
attenuates more than 10 dB at the direction of propellers. 

Fig.3 shows the element-space results for two types of t- 
f MUSIC, as well as the traditional MUSIC. One target is 
assumed with AOA of 10 degrees. Two scattering signals, 
whose strength are assumed to be -lOdB with respect to 
the direct signal from the target, are from 6=-60 degrees 
and 9=60 degrees. The ratio of the direct signal power and 
the noise power is 10 dB. It is seen that, due to the 

presence of the scatters, the estimation of the AOA of the 
target is generally bad. Meanwhile, it is noted that the t-f 
MUSIC based on joint block-diagonalization provides 
stable spatial spectrum. 

Fig.4 shows the results when beamspace array is used 
for the same scenario. The estimation of the AOA is 
greatly improved after the beamspace processing. Again 
the results show the t-f MUSIC with joint block- 
diagonalization gives the best performance, while the 
traditional MUSIC is the worst. 

4. Conclusion 

The beamspace time-frequency (t-f) MUSIC was 
proposed as a hybrid scheme which combines the 
advantages of beamspace processing and time-frequency 
distributions for high resolution directional finding of 
signals with time-varying characteristics. Two t-f 
beamspace MUSIC techniques have been presented, one is 
based on joint block-diagonalization of multiple t-f points, 
whereas the other is based on averaging over t-f regions 
prior to subspace estimation. Our results show that, the 
beamspace processing is effective to remove coherent 
scatterers, and time-frequency MUSIC methods provide 
improved performance over traditional MUSIC. 
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Abstract 

A new nonstationary interference excision technique in 
direct sequence spread spectrum (DSSS) communication 
is introduced. This technique is based on the notion that 
both the additive noise and the DSSS signal cover the entire 
time-frequency(t-f) domain, whereas the jammer occupies a 
small t-f region. A projection filter is constructed using the 
jammer underlying t-f signature or its expected occupancy 
region in the t-f domain. The filter output is either directly 
despreaded or first subtracted from the input data and then 
despreaded by the PN sequence, depending on whether the 
filter passes or removes the jammer signal. We derive the 
SNR of the DSSS receiver implementing the projection fil- 
ters and discuss its relation to existing excision methods 
based on instantaneous frequency information. 

1. Introduction 

One of the fundamental application of the direct se- 
quencers) spread spectrum (SS) communications is that 
of interference mitigation. Frequently signal processing 
techniques are used in conjunction with the DS/SS receiver 
to augment the processing gain, permitting greater interfer- 
ence protection without an increase in the bandwidth.The 
recent development of the bilinear time-frequency distribu- 
tions (TFD's) for improved signal power localization in the 
time-frequency plane has motivated several new approaches 
for the nonstationary interference excision in the DSSS sys- 
tems. Utilization of the jammer instantaneous frequency 
(IF), as obtained via TFD's, to design an open loop adap- 
tive notch filter in the time domain, has been thoroughly 
discussed in [1,2]. However, this technique has three draw- 
backs. First, it becomes difficult to remove more than one 
jammer component at any time instant. Second, this method 
creates a significant amount of self noise (induced corre- 
lation) that in some cases reduces the performance of the 

•Supportedby the ONR Grant no.N00014-98-0176 

spread spectrum receiver. Third, the open loop adaptive 
filter is only effective in removing jammer signals charac- 
terized by their instantaneous frequency, i.e., polynomial 
phase signals. 

An alternate approach to broadband interference exci- 
sion in DS/SS systems has been presented in [3]. This 
technique uses the TFD to depict a locally narrowband 
(FM, hopped, chirp, etc.,) jammer over time and frequency. 
Time-varying filtering is then achieved by masking the re- 
gions of high power concentration in the t-f domain, fol- 
lowed by a least-squares synthesis technique to recover the 
interference signal. The constructed jammer waveform is 
then subtracted from the incoming data to remove the in- 
terference component in the time domain. However, since 
this excision method is based on masking and approxima- 
tion of Wigner distribution, the performance is potentially 
poor due to the effect of high nonlinear filtering as well as 
the quadratic nature of the Wigner distribution. 

Motivated by the work on time-frequency filtering [4] 
to overcome the drawbacks of the least-squares synthesis 
method, we propose in this paper a new approach for non- 
stationary interference excision in DSSS communications 
using projection filtering techniques. The proposed exci- 
sion approach is depicted in Fig.l. The projection filter 
may be constructed from the jammer IF information, as in 
the case of the polynomial phase signals, or from the t-f re- 
gion which captures most or all of the jammer power. In the 
former, the jammer subspace is one dimensional, whereas 
in the latter, the dimension is defined by the instantaneous 
bandwidth and can be obtained using subspace construction 
techniques [4]. These techniques are applicable to any size 
and shape of the t-f region. The t-f region can be chosen 
such that the corresponding linear subspace gives accurate 
description of different jammer signals which are likely to 
be received. Often, a threshold must be imposed on the 
eigenvalues, which are defined by the t-f region R. A low 
threshold increases subspace dimensionality, but allows bet- 
ter representation of the jammer signal. 

It is interesting to note that the above two approaches 
can be cast from a subspace projection filtering perspec- 
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Figure 1. Projection Filtering Approach Figure 2. Vectorial Representation 

tive. In the three-coefficient notch filter technique, we are 
in essence projecting the data, three samples at a time, 
onto the orthogonal subspace of the jammer. Within this 
two-dimensional subspace, we search for the symmetric 
vector corresponding to a zero-phase filter, as depicted in 
Fig.2. In the synthesis approach, we attempt to construct a 
two dimensional subspace representation of the jammer sig- 
nal through synthesizing the even-indexed and odd-indexed 
parts of its waveform. These two parts represent indepen- 
dent vectors and span a two-dimensional subspace. The 
phase matching procedure that follows to align the synthe- 
sized waveform with the received one [5] can be viewed as 
the projection of the input data vector onto the two dimen- 
sional jammer subspace. 

The a priori-knowledge of the constant modulus prop- 
erty of the jammer renders the least squares synthesis tech- 
nique unnecessary. With a good IF estimator in place, the 
one-dimensional jammer subspace can be directly and eas- 
ily constructed from from the jammer's instantaneous fre- 
quency. Removing a polynomial phase or constant modulus 
interference via projection filter may, therefore, be carried 
out using successive projections, as in the case of the time- 
varying notch filter approach, or through a single projection 
incorporating the jammer instantaneous frequency over the 
time-period of interest. In DSSS communications, this pe- 
riod is the symbol width. We note that there is a difference 
in computations and receiver performance between using a 
single projection at the end of the bit period vs. consecu- 
tive projections in smaller dimensions along the bit period. 
This difference increases with the spread spectrum signal 
bandwidth 

2. Projection Filtering Approach 

Let x denote the input data vector over one bit period.The 
data vector consists of the SS signal vector s, the jammer 
vector j, and the noise vector n, 

s+j-fn. (1) 

All the vectors in the above equation are of length L, which 
is the number of chips per symbol. Let the jammer ap- 
proximately occupy the q-dimensional subspace Sj, where 
q < L. Define matrix U whose columns are the orthonor- 
mal basis vectors that span the subspace Sj orthogonal to 
Sj. The L x L projection matrix V onto the subspace S? is 
given by 

V = UUff (2) 

The resultant vector obtained by projecting the data vector 
x onto Sj represents the projection filter output, 

=    Vx 

=    V[s+j + n] = so+jo + n0 (3) 

If the jammer lies in Sj, then j0 = 0, and full interference 
excision is achieved. The decision variable,*/, at the receiver 
is the inner product < xo,s >, i.e., 

V xfs (4) 

which is the sum of three different terms y\ ,j/2 and yz, due 
to the SS, the jammer, and the noise components of the input 
data, repectively 

V = Vi + 2/2 + 2/3 (5) 
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where 

2/1    =    s   V   s 

2/2     =    J    v    s 

y3    =    n   V   s 

The receiver signal-to-noise ratio(SNR) is given by [5] 

SNR=^ (6) 
var(y) 

The mean of the decision variable y, 

E[y] = E[yi] + E[y2] + E[y3] (7) 

where E[] is the expectation operator and 

E[yi]   =E[sHV»S] = E EE'i«»1 
»    J 

(8) 

= £5>;«£[*j«.-] = X>'" = irace(V) 
»     1 

The second and the third terms in equation (5) are zeros 
since both the jammer and the noise are uncorrelated with 
the PN sequence. With full jammer excision, the second 
moment of y is given by 

E[\y\2]   =   E[\yi + y3\2} ^ 
=    £[|yi|2 + |2/3|2+2/iy3 + 2/iJ/3] 

The cross-correlation term 

E[yiy3)   =   E 
_ i    j    fc    ' 

= ££££te£[*r^H 
i      j      k       I 

E[ylyz) = 0 

£ £ £ £n* v*k Sk SJ' 
VjiTli 

i      j      k      I 

(10) 

= 0 

(11) 

(12) 

= ££££^£[^;*] 

= £X>^+££^'-EM2 

» J > i 

= iiviii+E£^-£^i2   (13) 

where ||V||2 is the Frobenius Norm. It is straightforward to 
show that ||V||1 = trace(V) = (L - q). Accordingly, 

var{Vl)    =    (L-g) + (i-g)2-£K.-|2-(L-9)2 

i 

=  (i-<?)-£KI2 <14) 

» 

The second term in (14) is the sum of the squares of the 
diagonal elements of the projection matrix. This term is 
approximately equal to (L - 2) for L » 1. From equations 
(6) - (14), the receiver SNR for L » 1 can be expressed as 

L-q 
SNRo « —j- (15) 

Similarly 

Consider 

E[\y3?]   =   E 

= ££££to£Ks*sH 
i      j      k       I 

=    cr2trace(V) 

where a2 is the noise power. The second moment of 2/1 is 

given by 

3. Time Frequency Subspace Filtering 

3.1. Polynomial Phase Jammers 

For a constant modulus or a polynomial phase jammer 

j[n] = Ae^(n\n= 1,2,..., L (16) 

where A is a complex factor. The instantaneous frequency 
of the jammer can be obtained using several methods, in- 
cluding time-frequency distributions [6]. The jammer sub- 
space is one dimensional with the basis vector, 

(17) c = c,- 

where a = 4-e^^. In this case, q = 1, and the receiver 

SNR becomes 

L-l 
SNRo (18) 

It should be noted that if the preprocessing of jammer exci 
sion is disabled, then we obtain the well known formula 

L 
SNRo p2 + <r2 

(19) 

E[\yi E ££££«^.-< 
i j k 1 

where p2 is the average jammer power. Comparing equa- 
tions (18) and (19), the projection filter allows total jam- 
mer removal at the cost of reducing the processing gain by 
1. Further, the interference excision using projection filters 
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yields a receiver SNR, that is independent of the jammer IF, 
as evident from (18). 

It is noteworthy that the notch excision filter approach 
introduced in [1] yields the receiver SNR 

SNR, 
1 + 2<T2 

(20) 

which is approximately half of the processing gain offered 
by the proposed projection filter approach. 

For a sum of q polynomial phase jammers, jk[n], k = 
1,2,..., q, the corresponding jammer vectors, 

«* = w w 
=    jk[n] = Ake^

n\   k = l,2,...,q 

span the subspace S]. The orthonormal basis vectors of S] 
can be obtained by performing the SVD of the matrix 

c=[Cl|c2...|c9] (22) 

and retaining the q singular vectors corresponding to the q 
non-zero singular values. According to equation (15) the 
receiver SNR reduces linearly with q. In this case, notch 
excision filter approach fails to excise multiple jammers due 
to insufficient number of degrees of freedom, and is clearly 
inferior compared to the projection filtering approach. 

3.2. General Classe of Jammer Signals 

For any other type of jammers, the subspaces S? and 
S? can be constructed from the time-frequency region R, 
shown in Fig.3. The subspace S] fills out the jammer t-f 

Time 

Figure 4. Jammer signal 

region R energitically, but has little or no energy outside 
R. The t-f filter corresponding to Fig. 1(a) is the orthogonal 
projection operator on the t-f subspace S], whereas the t-f 
filter corresponding to Fig. 1(b) is the orthogonal projection 
operator on the t-f subspace S], occupying the complement 
region R. The preference between the two filters depends 
on the relative dimensions of their corresponding subspaces 
and the shape of R. Optimum design of the t-f subspaces 
using the two criteria of maximum concentration (MC) and 
minimum localization error (MLE) are detailed in [4]. It is 
noted that the priori knowledge that the jammer is a poly- 
nomail signal simplifies subspace construction to that de- 
scribed in section 3.1. 

4. Example 

In this example, we show the difference in distortion to 
the PN sequence incurred by using the projection filter ap- 
proach vs. the notch filter approach for polynomial phase 
jammers in spread spectrum DSSS communications. A 64- 
chip PN sequence is generated and added to a chirp jammer, 
which is shown in Fig.4. 

Using the jammer IF, the projection filter is constructed 
and used to project both the jammer and the PN sequence 
onto S? . The jammer is totally removed. The filter out- 
put fo/the PN sequence is shown in Fig.5. It is clear that 
there is a negligible difference between the input and out- 
put of the filter. This result is expected as the PN sequence 
distributes its power uniformly over the basis vectors of the 
64-dimensional space. The removal of the sequence con- 
tribution along one of these vectors leads to insignificant 
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Figure 5. Input PN sequence,"«)" and the con- 
structed signal,"*" using Projection filter 

40 50 60 70 

Figure 6. Input PN sequence,"o" and the con- 
structed signal,"*" using notch filter 

changes to the sequence temporal characteristics specifi- 
cally for L » 1. In Fig.6, we show the result for the 
three-coefficient zero-phase excision filter, where there is 
a clear distortion to the PN sequence caused by the filter 

wide notch. 

5. Conclusions 

We have presented a new approach for nonstationary 
interference excision in spread spectrum communications. 
This approach is based on the use of projection filers to re- 
move the jammer, or at least a major portion of its power. 
We have distinguished between two classes of jammer sig- 
nals; those of polynomial phase characteristics and oth- 
ers with both amplitude and frequency modulations.   A 
polynomial phase jammer occupies a one-dimensional sub- 
space, which is easily constructed using its instantaneous 
frequency estimate. The subspaces of other types of jam- 
mers may be constructed from their time-frequency regions 
using optimum design of t-f subspaces discussed in [4] . It 
is shown that jammer excision using projection filters only 
causes a reduction of the spreading gain by the dimension oi 
the jammer subspace, which is one for the polynomial phase 
case The main advantages of the proposed excision method 
over the notch filter approach is the ability to handle multi- 
ple jammers, jammers with arbitrary t-f charactersitics, and 
significant improvement of the receiver perfromance. 

[2] 
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ABSTRACT 

This paper discusses the application of the new concept of spatial time-frequency distribution (STFD), and more generally 
the spatial arbitrary joint-variable distribution (SJVD), to key array signal processing problems including blind source 
separations and high resolution direction finding of narrowband and broadband sources with stationary and nonstationary 
temporal characteristics. The STFD can be formulated based on the widely used class of time-frequency distributions, namely 
Cohen's class, or it can be devised by incorporating other classes of quadratic distributions, such as the Hyperbolic class and 
the Affine class. The paper delineates the fundamental offerings of STFDs, presents three examples of array signal 
processing using the localization properties of time-frequency distributions of the impinging signals, and summarizes recent 
contributions in this area. 

I. INTRODUCTION 

In many signal processing applications, the multidimensional signal is directly utilized to estimate some signal parameters, 
such as the number of sources and their directions of arrival. Subspace-based methods use a geometrical relation involving 
the exact moments of the data. The desired signal parameters are extracted by solving this relation in some approximate 
sense, and using sample moments instead of the exact ones. The commonly applied eigenstructure subspace methods assume 
stationary signals. Although, when the frequency content of the measured data is time-varying, these methods can still be 
used, yet the proper use of the information on the data time-frequency characteristics can significantly improve their 
performance. In general, conventional blind source separation and direction finding techniques based on second and higher 
order statistics are not structured to exploit the non-overlapping properties of the signal arrivals in the time-frequency 
domain. These properties can, for example, be employed to achieve spatial nulling and removal of undesired sources without 
resorting to beämspace processing and decreasing the available number of degrees of freedom. 

The evaluation of quadratic time frequency distributions of the data snapshots across the array yields spatial time-frequency 
distributions, which permit the application of eigenstructure subspace techniques to solving a large class of channel 
estimation and equalization, blind source separation, and high resolution direction of arrival estimation problems. Spatial 
time-frequency distribution techniques are most appropriate to handle sources of nonstationary waveforms that are highly 
localized in the time-frequency domain. In the area of blind source separation, the spatial time-frequency distributions allow 
the separation of Gaussian sources with identical spectral shape, but with different time-frequency localization properties, 
i.e., different signatures in the time-frequency domain. For signal separation and direction of arrival estimation problems,' 
spreading the noise power while localizing the source energy in the time-frequency domain amounts to increasing the 
robustness of eigenstructure signal and noise subspace estimation methods with respect to channel and receiver noise, and 
hence improves resolution and signal separation performance. 

In this paper, we consider the applications of time-frequency distributions to the two areas of direction finding and blind 
source separation using multiple antenna arrays. While time-frequency distributions have been sought out and successfully 
used in the areas of speech, biomedicine, automotive industry, and machine monitoring, their applications to sensor and 
spatial signal processing have not been properly investigated. The time-frequency distribution in all its bilinear and higher 
order forms represents a powerful tool for superresolution angle of arrival estimation and recovery of the signals which have 
been mixed across the array, specifically those of nonstationary temporal characteristics. The proper utilization of the time- 
frequency signatures and the power localization properties of the desired and jammer signals over time and frequency, or any 
appropriate joint-variables, increases the effective signal to noise ratio and casts time-frequency distributions as an important 
and essential part of array processing. For different jamming environments and a large class of signals, time-frequency based 
direction finding and blind source separation methods offer performance that is beyond the capabilities of traditional 
techniques based on second or higher order statistics. 
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2. SPATIAL CONSIDERATION OF TEDS 

Time-frequency distributions have been shown to be a powerful tool in nonstationary signal analysis " . So far, most of 
the work on this subject has focused on temporal signal processing without much attention given to the spatial variable. The 
spatial dimension, properly incorporated into time-frequency signal representations, allows an effective angle estimation, 
separation and synthesis of nonstationary signals to be performed. 

To present the spatial time-frequency distribution, we first recall that Cohen's class of time-frequency distribution (TFD) of a 
signal x(t) is given by 

D„(t, f) = r f </>(! - M, T)X(U+r / 2)x\u -T I 2)e'mtdudr (1) 
J—00 J—00 

where t and/define the time index and the frequency index, respectively. The kernel ^(f,r) is a function of the time and lag 

variables. The cross-TFD of two signals x^t) and x2(t) is defined by 

Dxx ('./) = f r ^t-u,T)xl(u+T/2)x2\u-r/2)e-JWTdudT (2) 
1' 2 J—ao J—co 

Expressions (1) and (2) are now used to define the following data spatial time-frequency distribution (STFD), 

D~(>>/) = j^fj(t-u,r)x(u + r/2)\"(u-T/2)e-J2¥rdudr (3) 

where [Dn(r, /)],y = Dxx (f, /), for i, j = 1,2 n, and the superscript "H" denotes the complex conjugate transpose of a 

matrix or a vector. 

In several applications such as semiconductor manufacturing process, narrowband array processing, and image 
reconstruction, the following linear data model is assumed, 

x(f) = As<7) + n(r) (4) 

where the m x n spatial matrix A may be a mixing matrix or a steering matrix, depending on the application under 
consideration. The elements of the m x 1 vector x(t), which represents the measured or sensor data, are multicomponent 
signals, while the elements of the n x 1 vector s(t) are often monocomponent signals. n(t) is an additive noise, which is zero 
mean, white and Gaussian distributed process. 

Due to the linear data model, the STFD takes the following structure 

»Jt,f ) = AT)Jt,f)A" (5) 

where Dss(t,f) is the STFD of s(t), and the noise is neglected as a first step. We note that D^fr,/) is a matrix of 
dimension mxm, whereas Dss( t, f) is of dimension n x n. For narrowband array signal processing applications, A holds the 
spatial information and maps the auto- and cross-TFDs of the source signals into auto- and cross-TFDs of the data. 

Expression (5) is similar to that which has been commonly used in blind source separation and direction of arrival (DOA) 
67 8 9 estimation problems, relating the signal correlation matrix to the data spatial correlation matrix " '. Here, these correlation 

matrices are replaced by spatial time-frequency distribution matrices. This means that we can solve these problems in 
various applications using a new formulation which is more tuned to nonstationary signal environments. 

The two subspaces spanned by the principle eigenvectors of Dxx(r,/ ) and the columns of A are identical. Since the off- 
diagonal elements are cross-terms of Dss(t,f) , then this matrix is diagonal for all (t-f) points which correspond only to the 
signal autoterms. In practice, to simplify the selection of such points of true high power localization, we apply the smoothing 
kernel <j>{t,T) that may significantly decrease the contribution of the cross-terms in the t-f plane. 

The new concept of the spatial time frequency distribution discussed above opens a new area of research in the field of 
nonstationary signal processing and bring time-frequency and bilinear distributions to play an important role in sensor signal 
processing. 
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3. FUNDAMENTAL OFFERINGS OF STFDS 

There are five key advantages of array processing using time-frequency distributions which have not yet been presented and 
fully utilized. In order to clearly explain these advantages, we use the diagram in Fig.l. Two sources A and B are incident on 
a multisensor array. Source A occupies the time-frequency region Ra, whereas source B occupies the time-frequency region 
Rb . The time-frequency signatures of the two sources overlap, but each source still has a time-frequency region that is not 
intruded over by the other source. We will assume that the background noise is white. 

1) Equation (5) can be easily derived for any arbitrary joint-variables. Time and frequency are indeed the two most 
commonly used and physically understood parameters. However, by replacing the spatial time-frequency distributions by 
spatial arbitrary joint-variable distributions, one can relate the sensor joint-variable distributions to the sources joint-variable 
distributions through the same mixing matrix A. As shown below, there are situations where it is preferable to consider other 
domains such as the ambiguity domain, where the locations of the signals and their cross-terms are guided by properties and 
mechanisms different than those associated with the time-frequency domain. 

2) Equation (5) is valid for all time-frequency points. The main question is whether one time-frequency point suffices for 
adequate direction finding and source separation, and how sensitive the performance is to a random choice of a t-f point? 
Further, if several t-f points are used, then how to choose and combine these points for improved performance, and whether 
the method of combining should differ depending on the task in hand? Direction finding techniques require DJt, /) to be 
full rank, preferably diagonal. Some blind source separation techniques demand the diagonal structure of the same matrix 
without degenerate eigenvalues. These properties along with high SNR requirements may be difficult to achieve using a 
single time-frequency point. We have identified two different methods to integrate several t-f points into equation (5). One 
method is based on a simple averaging performed over parts or the entire time-frequency regions of the signals of interest. 
The second method incorporates desirable time-frequency points into joint diagonalization or joint block diagonalization 
schemes. To illustrate both methods, we use in Section 4 the former scheme for direction finding whereas the second scheme 
is employed in Section 5 for blind source separation. Both methods aim to fully utilize the points of maximum power 
concentration and avoid the time-frequency region of significant noise contamination. 

3) The time-frequency distribution of the white noise is distributed all over the time-frequency domain, whereas the TFDs of 
the source and jammer waveforms are likely to be confined to much smaller regions. Referring to Fig.l, the noise is spread 
over both Ra and Rb as well as the complement region Rc. If the time-frequency points (tj) used in either the averaging or 
joint diagonalization approaches belong the noise only region Rc, then no information of the incident waveforms is used 
and, as such, no reasonable source localization and signal separation outcomes can be obtained. Accordingly the performance 
is expected to be worse than conventional approaches. On the other hand, if all points (tj) in Fig.l are used, and the 
employed TFD satisfies the marginal constraints such as the Wigner distribution, then it is easily shown that only the average 
power is considered. As a result, the problem simplifies to the second order covariance based matrix approach, traditionally 
used in high resolution angle of arrival estimation. This is an important property, as it casts the conventional techniques as 
special cases of the proposed framework based on time-frequency analysis. Finally, if we confine the (tj) points to Ra and 
Rb, then only the noise part in these regions is included. The result of leaving out the points (tj) which are not part of the 
time-frequency signatures of the signal arrivals is enhancing the input SNR to the source localization and signal separation 
techniques. 

4) By only selecting (tj) points which belong to the t-f signature of one source, then this source will be the only one 
considered by equation (5). This is, in essence, equivalent to implicitly performing spatial filtering to remove other sources 
from consideration. It is important to note that such removal does not come at the expense of reduction of the number of 
degrees of freedom, as it is the case in beamspace processing, but the problem remains a sensor space processing with the 
original number of degrees of freedom remains intact. This represents a key contribution of TFDs to the direction finding and 
angle estimation area. An antenna array can be used to localize a number of sources equal or even greater than its number of 
sensors. The fundamental condition is that there must be time-frequency regions over which the respective time-frequency 
signatures of the sources do not overlap. In principle, the lower limit on the size of such regions is a single time-frequency 
point. Referring to Fig.l and considering the case of two sensors, if all t-f points incorporated in direction finding belong to 
region Ra and not Rb, then the signal subspace defined by equation (5) is one-dimensional. In effect, by excluding source B, 
a one-dimensional noise subspace is established. This allows us to proceed with noise-subspace based high resolution 
techniques for localization of source A. Within the proposed framework, one can localize one source at a time or a set of 
selected sources, depending on the array size, overlapping and distinct time-frequency regions, and the dimension of the 
noise subspace necessary to achieve the required resolution performance. The same concepts and advantages of t-f point 
selection discussed above for direction finding can be applied to blind source separations. 
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5) The a priori knowledge of some temporal characteristics or the nature of time-varying frequency contents of the sources 
may permit direct selection of the t-f regions used in equation (5). In general, if we choose a joint-variable domain, where a 
class of signals collapses to a specific known joint-variable region, then one can perform direction finding and source 
separation for only this specific class. For instance, it is known that in the ambiguity domain all fixed frequency sinusoidal 
signals map to the vertical axis, no matter what their amplitudes, frequencies, and phases are. By only incorporating the 
points on the vertical axis, which represents the time-lag variable, we have, in fact, focussed on separating and localizing 
narrowband components in the presence of broadband signals or jammers. 

Fig.l Signals with different time-frequency signature 

4. THE JOINT-VARIABLE MUSIC (JV MUSIC) 

The joint-variable MUSIC is a new array signal processing method which is based on joint-variable signal representations. 
This method computes the spatial joint-variable distributions to solve the problem of the direction of arrival (DOA) 
estimation. In this approach, we average the spatial joint-variable matrices over several joint-variable points for the purpose 
of noise and crossterm reduction. 

Let the spatial joint-variable distribution define all spatial distributions for which the respective source and sensor bilinear 
distributions are related by matrix A, as in equation (5). By performing the singular value decomposition (SVD) of the 
spatial joint-variable matrix Dxxf a, ß), we obtain 

D„fa,/?; = [E.E.]D[E.E.]1' (6) 

where D is a diagonal matrix. Es and En , which respectively span the signal subspace and the noise subspace, are fixed 

and independent of the joint-variable point (a, ß). The columns of Es span the signal subspace, which is also spanned by 

the columns of matrix A. A simple way to estimate Es and En is to perform the SVD on a single matrix D^cCyß). But 
one time-frequency point may carry insufficient SNR or be highly contaminated by crossterms. To avoid this problem, we 
propose to perform averaging over several points, exploiting the joint structure of the spatial matrices. If averaging is 
performed over the joint-variable region Q, (a,,ß;) e Q, then the SVD applied to the averaged spatial joint-variable matrix 

leads to 

D»(a,;0; = XDx*r«,,Ä) = [EsEn]D[EsEnr (7) 

In the presence of noise, the MUSIC algorithm is applied to the perturbed noise subspace matrix En. The joint-variable 

MUSIC (JV-MUSIC) algorithm estimates the DOAs by finding the N largest peaks of the localization function 
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f(ß)= En"a(0) 
(8) 

where a(0) is the steering vector. The value of N is determined by the number of sources captured in the region O. If the 

joint-variable distribution satisfies the marginal constraints, then averaging over the entire domain will lead to the total 
power, yielding the conventional MUSIC. In the following, we present two simple cases of the joint-variable MUSIC 
namely, the Time-Frequency MUSIC and the Ambiguity-Domain MUSIC. 

4.1. Time-Frequency MUSIC (TF MUSIC) 

The purpose of this example is to show that the TF MUSIC based on joint diagonalization gives good angle estimation 
performance for various kernels. The performance of the classical MUSIC 6 is compared to that of the proposed TF-MUSIC 
using: i) the Wigner kernel ii) the Choi-Williams kernel', and iii) the Born-Jordan kernel '. Consider a uniform linear array 
of 4 sensors separated by half a wavelength and receiving signals from 2 sources. The source signal arrives at 6X = 10 

degrees and of unit variance. The signal is composed of a chirp signal whose start and end frequencies are a, = 0.17* and 

w2 = 0.6771, respectively. The noise used in this simulation is zero-mean, Gaussian distributed, and temporally white. The 

noise power or a2 is adjusted to give the desired SNR = 101og10(Or-2). Fifty STFD matrices corresponding to (tj) autoterm 

points are averaged. The variance of the estimated DOAs is computed over 100 independent trials. Figure 2 displays the 

variance of the estimated DOA 0, versus SNR for 500 samples. The solid line presents the classical MUSIC algorithm. The 

dashed line the dash-dot line and the dotted line correspond to the TF-MUSIC using Choi-Williams kernel, Bom-Jordan 
kerne and Wigner kernel, respectively. According to this plot, the convetional MUSIC and TF-MUSIC based on the above 
three kernels give similar results. The offerings and advantages of the TF MUSIC in direction finding for different classes of 
nonstationary signals require extensive analysis and simulations, which are not presented in this paper 

Fig.2 Variance of 6X vs. SNR 

4.2. Ambiguity-Domain MUSIC (AD MUSIC) 

Consider the scenario of a four-element equi-spaced linear array, where one chirp signal and two sinusoidal signals are 
received All three signals have the same power of 20 dB, whereas the noise power is assumed to be 0 dB The angles of 
arrival of the chirp signal and the sinusoidal signals are 15, 10, and 0 degrees, respectively. The joint-variables are now the 
frequency-lag and the time-lag («,/?) = (0,r). While the ambiguity fiinction of the chirp signal sweeps the ambiguity 

domain with contribution at the origin, the autoterm ambiguity function A(6,r) of the narrowband arrivals Sl(t) and j,(r) 

is zero for non-zero frequency-lags and may have non-zero values only along the vertical axis. This function is given by ' 

A(6,T) = C(S1(.T) + S2(T))S(0) 
(9) 
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where C is a constant which depends on the signal power, and 5{6) is the Kronecker delta function. In this simulation 

example, we selected 14 points on the time-lag axis, excluding the origin, and as such emphasizing the narrowband 
components. The data record has 128 samples and the ambiguity function is computed by taking 128-by-128 FFT of the 
Wigner distribution. Figure 3 shows the ambiguity-domain where the two vertical lines represent the crossterms between the 
sinusoidal components. Fig. 4 shows two MUSIC spectra, one corresponds to the conventional method and the other 
corresponds to the ambiguity-domain (AD) MUSIC. There are two dominant eigenvalues for the case of the AD MUSIC, 
since we have not deliberately considered the chirp signal through our careful selection of the ambiguity-domain points. It is 
clear that the AD MUSIC resolves the two sinusoidal signals, while the conventional MUSIC could not separate the three 
signals. Next, in order to show that non-careful point selections may prove unwise as well as to illustrate the ineffectiveness 
of working with joint-variable regions with no signal power, we average over the region Ci indicated in the Fig. 3, where the 
incoming signals have very weak presence. The result is shown in Fig. 5. It is evident from this figure that because of the lack 
of information in this region, the AD MUSIC fails to localize any of the three signals. 

AMBIGUITY DOMAIN 

40 60 80 
Frequency-lag 

Fig.3 Ambiguity domain of one chirp and two sinusoidal signals 

(Cl: A region used to estimate the AD MUSIC spectrum in Fig. 5) 

AD MUSIC 

-5 0 5 
Angle-of-arrival in degree 

Fig.4 AD MUSIC and conventional MUSIC spectrum estimation 
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Fig.5 AD MUSIC spectrum estimation 

5. THE JOINT-VARIABLE BLIND SOURCE SEPARATION 

Let Wdenotenxmmatrix such that (WA)(WA)" = UU" = I, i.e., WA is an n x n unitary matrix (This matrix is referred 
to as a whitening matrix, since it whitens the signal part of the observations). Pre- and post-multiplying the spatial joint- 
variable distribution matrices DM(a,^) by W, we obtain the whitened spatial matrix 

bxx(a,ß) = WDxx(a,ß)VfH (10) 

From equations (5) and (10), we may express Dxx(a,^) as 

bxx(a,ß) = VDss(a,ß)VH (11) 

Since matrix U is unitary and Dss(a,ß) is diagonal, expression (11) shows that any whitened data spatial JV distribution 

(SJVD)-matrix is diagonal in the basis of the columns of the matrix U (the eigenvalues of Dxx(a,ß) being the diagonal 
entries of Dss(a,/?)). 

If, for the («,,#) point, the diagonal elements of Dss («,,#) are all distinct, the missing unitary matrix U may be 

'uniquely' (i.e. up to permutation and phase shifts) retrieved by computing the eigendecomposition of Ü^ccß). However, 
when the a-ß domain signatures of the different signals are not highly overlapping or frequently intersecting, which is likely 
to be the case, the selected («,-,#) point often corresponds to a single signal auto-term, rendering matrix D (a,.,/?,.) 

deficient. That is, only one diagonal element of Dss(«,,/?,) is different from zero. It follows that the determination of the 
matrix U from the eigendecomposition of a single whitened data SJVD-matrix is no longer 'unique' in the sense defined 
above.   The   situation   is   more   favorable   when   considering   simultaneous   diagonalization   of  a   combined   set 
{D„(«/»A)I' = 1 >P} of p matrices. This amounts to incorporating several (a,.,/?,-)  points in the source separation 
problem. It is noteworthy that two source signals with identical («,.,#) signatures can not be separated even with the 
inclusion of all information in the a-ß plane. 

The joint diagonalization (JD) "'12 can be explained by first noting that the problem of the diagonalization of a single n x n 
normal matrix M is equivalent to the minimization of the criterion 10 

*/ 
C(M,V)=-£   Iv/Mv,. I2 

(12) 

over the set of unitary matrices V = [v,,...,vj . Hence, the joint diagonalization of a set {Mk I k = 1.1} of AT arbitrary n x n 
matrices is defined as the minimization of the following JD criterion: 

def aej 

C(V)=-£C(M,,V) = -]>>,. M,v,l2 
(13) 
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under the same unitary constraint. An efficient joint approximate diagonalization algorithm exists in and it is a 
generalization of the Jacobi technique    for the exact diagonalization of a single normal matrix. 

Equations (10)-(13) constitute the blind source separation approach based on joint-variable distributions which is summarized 
by the following steps: 

• Determine the whitening matrix W from the eigendecomposition of an estimate of the covariance matrix of the data, 

• Determine the unitary matrix Ü by minimizing the joint approximate diagonalization criterion for a specific set of whitened 

JVDmatrices {DM(a,,/?,)Ii = 1 ,p}, 

• Obtain an estimate of the mixture matrix A as Ä=W*Ü, where the superscript # denotes the Pseudo-inverse, and an 

estimate of the source signals s(0 as s(r)=UwWx(0. 

In Figure 6, we show an example of the application of the proposed spatial joint-variable distributions to the blind source 
separation problem. In this case, the two variables are time and frequency . A three-element equi-spaced linear array is 
considered. Two chirp signals arrive from far-field at -10 and 10 degrees. The number of data samples used to compute the 
STFD is 128. The number of t-f points employed in the joint-diagonalization is p=\2S, with equal number of points on each 
signature. In this example, the mixing matrix A is chosen to be 

A = 
1 1 

0.8549 + 0.5189/   0.8549-0.5189/ 
0.4615 + 0.8871/   0.4615 -0.8871/ 

Fig.6(b) shows the time-frequency distributions of two linear mixtures of the original chirp signals depicted in Fig.6(a), 
corresponding to the data at the first and the second sensors. Using the spatial time frequency distributions, we are able to 
recover the original signals from their observed mixture, as shown in Fig.6(c). 

TFD of the first source signal TFD of the second source signal 

20      40      60      80     100    120 20      40      60      80     100    120 
Time Time 

(a) TFD of the source signals 

TFD of the first mixed signal TFD of the second mixed signal 

20     40     60     80    100   120 
Time 

20     40     60     80    100   120 
Time 

(b) TFD of the mixed signals 
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TFD of the first separated signal 

20     40     60     80    100   120 
Time 

TFD of the second separated signal 

20     40     60     80     100   120 
Time 

(c) TFD of the separated signals 

Fig.6 Blind source separation based on spatial time-frequency distribution 

6. CONCLUSIONS 

The main objectives of this paper were twofold: 1) demonstrating that high resolution subspace-based methods can be 
performed by involving no longer the exact moments but rather the auto- and cross- time-frequency distributions of the data 
received by the multisensor array; 2) developing blind source separation methods based on the difference in the time- 
frequency localization properties of the signal arrivals and provide a generalization to arbitrary joint variables. Also, the 
paper presented, in general terms, the key offerings and advantages of utilizing the power localization properties of the 
signals incident on an antenna array to improve array performance. There are still important issues in the above two 
applications of time-frequency distributions remain to be explored and resolved. Among these issues are performance 
dependence on noise level, smoothing kernels, spatial smoothing and subarray averaging, non-localizable source signals 
correlated and coherent sources, and spatial distributed sources due to local scattering. 
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ABSTRACT 

Frequency Diversity Spread Spectrum (FDSS) systems have been evolved as a valuable alternative to 
traditional direct sequence and frequency hopping systems to combat partial band jamming. In FDSS system, the 
communication frequency band is partitioned into N disjoint subbands on which N replicas of the signal are 
simultaneously transmitted. The objective is not to erase the signal replicas hit by the jammer, but rather erase the 
jammer from the replicas. This work describes the use of beamforming to process the spatial diversity for optimum 
symbol by symbol detection. The procedure is adaptive and suitable for time varying environments. The beamformer 
corresponding to each frequency diversity component is updated using a gradient algorithm. This algorithm incorporates 
automatic gain control and is derived based on the fact that the desired signal is present in every frequency component. 
The optimum detector for FDSS is described and shown to be fully compatible with spatial processing techniques 

Keywords: Adaptive array processing, Frequency diversity spread spectrum communications, Partial jamming. 

1. INTRODUCTION 

Frequency Diversity Spread Spectrum (FDSS) has been evolved as a valid alternative to strict direct sequence 
spread spectrum (DSSS) and frequency hopping spread spectrum (FHSS) methods for secure communications. FDSS 
can be considered as a specific transmission system of the group of the so-called multicarrier code division multiple 
access (CDMA) systems. 

Reported recently, FDSS has been shown to be superior to the classical alternatives, namely DSSS and FHSS, 
for combating partial time jamming 1'2'3'4. The main advantages of frequency diversity spread spectrum are based on the 
repetition of the desired signal along all frequency diversity branches. Since the jammer cannot extend its bandwidth, yet 
preserving significant levels of interference density power, then several diversity components in the FDSS system, where 
the desired signal remains unjammed, may be used to provide optimum and suboptimum receivers with simple real-time 
implementation s. 

The basic architecture of the transmitter is shown in Figure 1. From this scheme, one can distinguish three 
stages, which represent the different procedures applied to spread the spectrum of the basic information signal. This 
general scheme, which is discussed in 3, describes in details the information framing in FDSS systems. The sequence 
{an} contains the information symbols with signaling period equal to T0. The information symbols are passed to a 
channel encoder which introduces the first spreading. For every information symbol, N sequences of coded symbols are 
generated at a rate equal to T0. In order to permit symbol by symbol detection, we assume a pure repetition code. This 
implies that the information symbol is repeated in the N paths. 

The second stage of spreading is formed by the N chip signal Cj(t). At this stage, the spreading ratio depends on 
the number of chip symbols per coded symbol. Without loss of generality, we will assume that a single chip symbol y, is 
used for every coded symbol interval. In other words, no spreading of the signal bandwidth is generated at this stage. The 
chip symbol induces decorrelation among potential interferers or jamming signals contaminating different frequency 
replicas. This decorrelation is shown to be an essential part of the demodulation process. 

* Correspondence: Email moeness @ece. vill.edu; Telephone: 610 519 7305; Fax: 610 519 4436 
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The third stage is designated for generating the frequency diversity of the transmitted signal, as every branch 
contains a passband filter whose frequency response is disjoint with those of other filters. This non-overlapping 
frequency band property is a key feature that defines the difference between FDSS and OFDM systems. The 
orthogonality between the diversity components is a result of non-overlapping filters rather than using other linear 
orthogonal transformations like DFT. The filters are implemented by a polyphase network and the difference with 
OFDM traduces in the fact that, for a partial band jammer, some frequency bands can be considered entirely jammer- 
free. The presence of the desired signal free of jamming in several bands allows two important features of frequency 
diversity spread spectrum system, namely sub-optimum receiver and blind spatial processing. 

Cl(t) 

{ai} 
c 
h a n n e 
1 
e n c o 
d e r 

-*©—> Filter #1 

CNI (0 

Filter #N 

Transmitted 
signal 

Figure 1. General scheme for FDSS transmitter. 

There are several techniques devised in the literature to suppress narrowband interference or instantaneously 
narrowband jamming signals in broadband signal platforms. These techniques may implement adaptive filtering, linear 
transform-domain, and bilinear distribution methods. For detailed information on a variety of interference excision 
techniques, the reader should consult the articles by Milstein,5, Poor and Rusch 6, and Laster and Reed 7, and Amin and 
Akansu . These interference rejection and signal enhancement techniques do not find clear applications in frequency 
diversity schemes, as the jammer and the desired signal must have distinct frequency characteristics or time-frequency 
signatures over the frequency band of interest, an assumption that is not satisfied by the transmitter in Fig. 1. 

This work describes the adaptive design of the optimum beamforming sets for FDSS in the presence of partial 
band jamming. The adaptive algorithm array coefficients forms the proper beamforming and for every diversity branch, 
achieving optimum receiver performance under different jamming conditions, without significant degradation of the 
desired signal. This includes the case of severe shadowing, when the jammer aperture signature coincides with that of the 
desired signal. The proposed adaptive algorithm provides a valuable alternative to the block design described by the 
same authors in reference 9. The structure of the paper is as follows. Section 2 provides a brief summary of the work in 
references ■ concerning the optimum receiver for FDSS systems. Section 3 briefly discusses optimum spatial processing 
for the frequency diversity spread spectrum receiver detailed in 9. It also includes the relationship between the above 
receiver and that implementing the cross-SCORE algorithm introduced in 10. Section 4 presents the adaptive algorithm, 
which basically uses chip symbol modulation, without requiring adequate labeling of the received signal in every branch! 
Finally, section 5 provides a computer simulation example showing the performance of the FDSS uniform linear array 
receiver implementing the proposed adaptive algorithm. 

2. OPTIMUM RECEIVER FOR FDSS SYSTEMS 

^    After the chip demodulation, and matched filtering and sampling at the symbol rate, the decision variable A for 
the i  symbol encompasses the signals ym,j in all frequency bands m =1,2,.. .,N, and is given by 

A, =2 y.A (i) 
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The factor Fm accounts for the contribution of front-end noise N0,m as well as the jammer's or interference's contribution 
J0 m to the overall energy in the m* frequency band. Note that if the bandwidth of each frequency band is made equal to 
the minimum bandwidth of the jammer, then the jammer within any frequency band appears as a wideband signal with 
uniform strength (see figure 2). With this assumption, Fm takes the following expression 

f r (J 
F = 

1/ 
\> 

1 + 

1 
KN.J 

for hit bands 

otherwise 
(2) 

Since it is typical that the front-end noise does not change from one band to another, it is assumed that N0 in (2) remains 
constant for all bands l<m<N. Further, without loss of generality, it is also assumed that the jammer strength is fixed 
over all contaminated bands (J0,m=Jo for m=l,2,.. .,N). 

The optimal detection of the transmitted alphabet a; maximizes Re(a;.Aj), where Re(.) denotes real part. The 
respective symbol error probability is given by 1,2 

P=Q 
2ff 

P (3) 

where Es is the symbol energy and ß is a loss factor established by the presence of the jammer. This loss factor depends 
on the relative strength of the jammer with respect to the front-end noise. It is also a function of the fraction r\ of the 
frequency bands hit by the jammer signal. If the jammer power is spread over all frequency replicas, then rpl, whereas 
the condition r|=0 implies a jammer free communication channel. The loss factor is given 

ß 
v-N 

1 + - 
V.   V 

N +a-n) (4) 

The above expression is testimonial to the superiority of FDSS over its counterparts; direct sequence spread spectrum 
and frequency hopping spread spectrum systems 1'2,4 under partial band jamming conditions. It is noteworthy that, unlike 
the optimum receiver given by equations (3,4), the sub-optimum receiver identifies the jammer replicas and then erases, 
them and as such, losing valuable desired signal energy. Accordingly, the corresponding loss factor for suboptimum 
receivers is ß=(l-r|), and the respective bit-error probability increases to 

Pe =Q^Eb(l-rj)/N^ (5) 

The aim of spatial processing, in essence, is to reduce, as much as possible, the factor rj using potential 
differences between the spatial signatures of the desired signal and the jammer signal. In 9, a complete description of a 
block processing algorithm is reported, together with the control variable that take into account the jammer spatial 
shadowing of the desired source in the detection process. 

jammer 

frequency 

Freehands: 1,2,5,6,8 
Hit bands: 3,4,7 

Figure 2. Signal and interference spectrum, N = 8, rj = 3/8, signal bandwidth = F 
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This work provides an adaptive algorithm that achieves block processing performance, but yet it is more 
suitable for rapidly time varying environments. The basic idea is to explore the two key advantages the receiver of the 
FDSS transmission system. These are: 1) the presence of the desired signal in all the frequency diversity components as a 
result of using a pure repetition code, 2) the uncorrelation of the jammer signals over different frequency bands, due to 
chip modulation. Note that the latter represents an added value to chip modulation, otherwise it becomes necessary to 
identify, at the receiver, the frequency bands that are hit by the jammer and those that are jammer free. 

Finally, it is worthwhile mentioning that even though the FDSS system admits suboptimum receiver 
implementation as discussed above, which is independent of the jammer strength ', the use of spatial diversity and 
beamforming in FDSS systems guarantees optimum receiver performance at all times 9. 

3. OPTIMUM SPATIAL DIVERSITY FDSS RECEIVER 

In order to describe the proposed algorithm we define Xf,„ and Xh,n as the data snapshots received by the multi- 
sensor array receiver corresponding to any pair of the frequency replicas used by the FDSS system, and subindex n 
indicates time. The aperture is an array of Nq antennas. It is assumed that the snapshots are provided after chip 
demodulation, and as such, the jammer is uncorrelated between frequency bands f and h. The main goal is to exploit the 
redundancy of the desired signal present in the snapshots, corresponding to the two bands f and h, to provide adequate 
reference signal r(n). This signal is then used in the design of the digital beamformers for all other frequency bands in the 
diversity scheme. 

Let us assume that the beamformer coefficients at time n for the respective frequency bands f and h are given by 
the vectors Wfn and Wh,n ,and the corresponding signal outputs are denoted by yfn and yh,n. Since the jammer does not 
contribute to the data Xf,„ in the free band and it is also uncorrelated with respect to the data Xh,n in the hit bands, a 
suitable procedure to allow yf,n to represent the desired reference signal r(n) is to minimize the mean square error (MSE) 
cost function defined as 

Z = E[\yfn-yh,n (6-a) 
where 

?,.. =w*.2£,..  and yh,„=w[nXhn (6-b) 
We stress the fact that although the minimization (6) is cast in terms of free and hit bands, any pair of signal frequency 
replicas can be used. The subscript T, identifying the transmitted symbol, is dropped in the sequel for simplicity. In 
order to avoid trivial solutions in achieving the above objective which traduce in simultaneous nulling of the desired 
signal and the jammer waveform, a constraint needs to be set throughout the minimization procedure. As pointed out in 9, 
one possible constraint is to enforce a pre-selected value § for the cross-correlation between the two output signals which 
also serves as an automatic gain control for the desired signal, 

<fi = 2Re(E[yfnyl]) (7) 

Denoting the array autocovariance matrices and cross-covariance matrix of the data in the two frequency channels as 

*, =E[X,,X",,l * =E[Xh,Xll  Pft =E[X/nX_l] (8) 

The minimization problem can then be posed as: 
Minimize t = w"R w, +w"R w -w"P   w-w"P   w /<y> 

—'=/—'    —*=*—*    —f=,.h—h    —*=/,*—/ {y) 

Constrained to    w" P   wh +w" P   w  =d> 

Forming the Lagrangian and setting the partial derivatives with respect to the weight vectors equal to zero, the optimal 
spatial combiners are obtained as: 

BWr^ + WP^Plw, (10-a) 

wh =(1 + A)R'P   w (10"b) 
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where X is the Lagrange multiplier. Since \ is minimum for minimum X, the optimum combiner for the jammer free band 
is the eigenvector of (10-a) associated with the minimum eigenvalue. After Wf is found, the combiner for the hit band is 

„„.,..  U.w    ..~...w      „        =/*   —/ 

The above optimum solution holds a great resemblance to the one obtained using the cross spectral self- 
coherence restoral (SCORE) algorithm derived in reference 10. In the SCORE algorithm, it is assumed that the desired 
signal is spectrally self coherent at frequency separation y if the correlation between the desired signal s(t) and s(t) 
frequency-shifted by y is nonzero for some time-lag x. In the underlying frequency diversity spread spectrum problem, 
the frequency shift represents the offset in the carrier frequency between two replicas of the signal frequency band, and 
the lag variable x takes a zero value. That is, both parameters for the spectral coherence are known apriori and defined by 
the transmitter. In 10, however, the quadratic cost function minimization (5-a) is replaced by the maximization of the 
strength of the cross-correlation coefficient p(Wf, Wj,) between the outputs of two beamformers ytn and yh,n 

_ w.P   wh ni. 
0(W    W) = -'-t*-*  (11) 

[wfRwf][wHRwh] 

Maximizing p with respect to wj, and Wf is interpreted in 10 as restoration of the spectral self-coherence to both 
beamformer yf?n and yM. From the Cauchy-Schwarz Inequality, the optimum Wf for a fixed WJ, is given by 

K7 ccR-;pfJtw„ <12> 
Similarly, wj, is optimized for fixed Wf by 

w 
Substituting (13 ) in (11), the cross-correlation takes the form 

x    w"f[P   R-P"]wh 
(14) 

P\wf,wh) = ——  
[wfRfWf] 

Which is maximized by setting Wf equal to the dominant eigenvector corresponding to the maximum eigenvalue v of 

vR w=[PR'P"]w, (15) 

This is exactly the solution given in (10-a), where v,^ corresponds to 1/(1 +A,min)
2. 

4. AN ADAPTIVE BEAMFORMING ALGORITHM FOR FDSS 

The proposed adaptive scheme is blind in the sense that the knowledge of polarization and direction-of-arrival 
dependent antenna gains, cross-sensor phase mismatches, and near-field multipath and mutual coupling effects on the 
array is not required. The adaptive algorithm is based in the instantaneous gradient of the Lagrangian. In consequence, 
the updating terms are obtained from the partial derivatives with respect the beamformer coefficients. The parameter X„ 
stands for the Lagrange multiplier corresponding to the cross-correlation constraint. Since the constraint serves as an 
automatic gain control, it can be used in the dynamic control requirements for the design of the baseband processor. 

The constrained cost function is given by, 

I =\yf, ~ y,.f - W. -i)2Re(y,x) (i6) 

= k..-y,.r-(A.-iM. 
The corresponding weight vector updates are given in (17), where ^ and |ihn are the step-size parameters corresponding 
to the frequency bands fand h, respectively, 

vv,.„+, =wf„ -n.Xfh',* -Ky'J 
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Figure 3. Adaptive Scheme for spatial diversity FDSS receiver 

The step size parameters are selected according to the normalized version of the least mean square (LMS) algorithm, 

CCJ a. 

where the denominators represent the instantaneous power of the corresponding snapshots, 

(18) 

Q,,=K.12L,, ;ß,.=2L.,2L., (i9) 

The bounds for convergence of the missadjusment parameter a will be provided hereafter. In order to determine the 
value of the Lagrange multiplier, we need to define the instantaneous power of the output signal, as indicated below, 

K \y> (20) 
Since we adopted the instantaneous gradient updates, it seems adequate to force the updated weights to satisfy the 
constraint value of (j>„. Using this criteria and assuming that the previous two sets of weights satisfy the same constraint, 
we obtain the following equation which provides the value of the multiplier, 

Xjb.a + 2A. (P,„ + Phn )(1 - a) + ß (a - 2) = 0 (21) 

A suitable approximation of the multiplier can be obtained by observing that the value of the parameter a is small 
compared to one. This often the case in practice, where a controls the missadjusment noise of the algorithm. Typical 
values of a are smaller than 0.05. Using this property, the Lagrange multiplier is approximately given by 

X = 
(P,+PJ 

(22) 

This expression provides valuable insights to the role of the parameter Xn in the proposed adaptive algorithm for 
the multi-sensor FDSS receiver. Note that the constraint, at the steady state will be equal to twice the value Pfn. In 
consequence, ((>„ serves as an automatic control gain, as previously announced. Once the constraint is set to the desired 
power level of the reference, the Lagrange multiplier measures the difference between Pfn and PM. This parameter will 
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be very much different from one at the start-up of the algorithm and increases, as time goes on, until it reaches 
approximately a unit value upon convergence. In summary, the algorithm weights the outputs of the beamformers to 
produce the proper error correction to the beamformers updates. Furthermore, assuming the steady state condition with 
Xa close to one, and substituting the updated weights in the instantaneous MSE, then the relationship between the iterated 
error and the original (without updates) sets the convergence bounds for parameter a, 

£"' ={\-2a)4n > 0<a<0.5 (23) 

Table 1 summarizes the adaptive algorithm. 

Set 4>=1 andß>0.8 

LGetXfj.andXh.n 
2. Compute beamformer outputs ytn and yh,n (see (6)) 
3. Update powers with forgetting factor ß 

Qf,„=ß.Qf,n-l+(l-ß).Xf,nH.Xf,„ 
Qh,„=ß.CA,„-l+(l-ß).2knHXh,„ 
Pf,n=ß.Pf,n-l+(l-ß)-yf,n*-yf,n 
Ph.n=ß.Ph.n-l+q-ß)-yh.n'-yh.n 
4. Compute step-sizes (see (18)) 

5. Compute parameter Xg (see (21)) 
6. Update weights (see (17)) 
7. Use yfn as time reference for the rest of the FDSS bands (m=l,2,..,N and m ^ h) 

Table 1 

The key difference between the proposed algorithm and the Maxmin algorithm lies in the signal and the jammer 
frequency bands simultaneously used in the adaptive algorithm to enhance the signal to interference-plus noise ratio in 
the band of the interest. This difference is a product of using two different transmitters, namely frequency hopping and 
frequency diversity. We note that the adaptive scheme shown in Table 1 is simpler than that introduced for the frequency 
hopping systems in n. 

5. SIMULATION 

The simulation example used to demonstrate the performance of the algorithm was formed by a uniform linear 
array (ULA) array of 5 sensors. The FDSS system was formed using seven diversity branches, where the desired signal 
was included with SNR equal to 0 dB per branch, BPSK modulated. The repetition code was applied in the channel 
encoder and one chip symbol per branch was used in the second stage of the FDSS modulator. The jammer was included 
in three non-successive diversity components (bands 2, 3 and 6). The SNR of the jammer was set equal to 10 dB. The 
parameter a, controlling the misadjusment, was given the value 0.01, and the smoothing parameter ß was set for a 
memory factor of 10 snapshots. The direction of arrivals (DOAs) of the desired and the jammer signals were 10 degrees 
and 15 degrees from the broadside, respectively. 

1 w ̂yv^J v^ *\>\A ̂ y »T/V*VJ 

100 200 300 400 500 600 

Figure 4. Learning curve of the adaptive algorithm 
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Figure 4 depicts the details of the learning curve associated with the proposed adaptive technique highlighted in 
table 1. Proper convergence of the algorithm is evident with a steady state reached after 80 snapshots. 

The algorithm was evaluated for three different jamming percentage r\, ranging from 42.85% up to 85.71% and 
the results showed insignificant changes in both convergence rate and missadjusment. 

CONCLUSIONS 

An adaptive scheme for multi-sensor reviver operating on frequency diversity spread spectrum signals is 
presented. The jammer is present over some of the signal frequency replicas and is treated in each contaminated replica 
as a broadband signal. The adaptive algorithm implements the optimum spatial diversity receiver for FDSS 
communication signals, and allows the use of the desired signal in the jammed frequency bands to improve the 
probability of error. The proposed adaptive algorithm incorporates the data snap shots from two frequency bands and 
strives to generate upon convergence, a desired signal that can be used to eliminate the jammer in other hit bands. It is 
shown that the adaptive spatial diversity FDSS receiver can be simply implemented using a modest number of 
computations. 
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Time-Frequency MUSIC 
Adel Belouchrani, Associate Member, IEEE, and Moeness G. Amin, Senior Member, IEEE 

Abstract— A new method for the estimation of the signal 
subspace and noise subspace based on time-frequency signal 
representations is introduced. The proposed approach consists 
of the joint block-diagonalization (JBD) of a set of spatial time- 
frequency distribution matrices. Once the signal and noise sub- 
spaces are estimated, any subspace based approach, including the 
multiple signal classification (MUSIC) algorithm, can be applied 
for direction of arrival (DOA) estimation. Performance of the 
proposed time-frequency MUSIC (TF-MUSIC) for an impinging 
chirp signal using three different kernels is numerically evaluated. 

I. INTRODUCTION 

IN THIS letter, we introduce a new subspace-based method 
with a geometrical relation not involving the exact moments 

of the data, as is commonly the case [l]-[3], but rather the data 
spatial time-frequency distribution. The spatial time-frequency 
distribution (STFD) is a generalization of the time-frequency 
distribution to a vector signal. In a previous contribution [4], 
we have successfully used the notion of STFD to solve the 
problem of blind source separation for nonstationary signals. 
In this letter, we apply this new tool to solve the problem of 
direction of arrival (DOA) estimation. 

H. SPATIAL TIME-FREUQENCY DISTRIBUTIONS 

Consider an array of M sensors receiving waveforms of N 
sources (M> N). The data snapshot, representing the sensor 
output vector x{t), is assumed to obey the following model: 

x{t) = A(6)s(t)+n(t) (1) 

where n(t) is an additive noise, 9T = [0I,02,---,0JV], and 
A(9) = [a(6i),a(82),■ ■ -,a(9N)}T. The signal vector at time 
t is s(9) = [si(£),---,sjv(*)]T, with the superscript "T" 
denoting the transpose operator, and a(9k) is the transfer 
vector between Sk{t) and x(t). The parameter vector 9 defines 
the DOA's. 

The STFD matrix is denned [4] by 
oo CO 

Dxx(t,f)= J2  £ 
£z=—oo m=—oo 

• <t>{m, t)x(t + m + £)x(t + m- £)e-
4jnfe 

(2) 

where m and / represent the time index and the frequency 
index, respectively. The kernel (j>(m, (.) characterizes the TFD 
and is a function of both the time and the lag variables 

Manuscript received March 16, 1998. This work was supported by the 
Office of Naval Research under Grant N0014-98-1-0176. The associate editor 
coordinating the review of this manuscript and approving it for publication 
was Prof. D. L. Jones. 

The authors are with the Department of Electrical and Computer En- 
gineering, Villanova University, Villanova, PA 19085 USA (e-mail: moe- 
ness@ece.vill.edu). 

Publisher Item Identifier S 1070-9908(99)03110-7. 

(m, t). Under the linear data model of (1) and assuming noise- 
free environment, the spatial time-frequency matrix takes the 
following simple structure: 

Dxx(t,f) = ADss(t,f)A
l (3) 

where Dss(t, f) is the signal TFD matrix whose entries are the 
auto and cross-TFD's of the sources, and the superscript "H" 
denotes matrix transpose conjugation. We note that Dxx(t, f) 
is a matrix of dimension M x M, whereas Dss(t,f) is of 
N x N dimension. Expression (3) is similar to that which 
has been commonly used in blind source separation and DOA 
estimation problems, relating the signal correlation matrix to 
the data spatial correlation matrix. The two subspaces spanned 
by the principle eigenvectors of Dxx(t, f) and the columns of 
A are, therefore, identical. Since the off-diagonal elements are 
cross-terms of Dss(t,f), then this matrix is diagonal for all 
(t-f) points that correspond to a true power concentration, i.e., 
the signal autoterms. In the sequel, we consider the t-f points 
that satisfy this property. 

in. SUBSPACE ESTIMATION 

By performing the SVD of the steering matrix, we obtain 

A(9) = [Ea   En][D   0}VH. (4) 

Incorporating the above equation in (3), it is easily shown that 

Dxx(t,f) = [E3   En]D(t,f)[E.   Ü?„]J (5) 

where D(t, f) is a block-diagonal matrix given by D(t, f) = 
diagl-DV*'D„(t, f)VD 0]. Since Ea and En, which span the 
signal subspace and the noise subspace, respectively, are fixed 
and independent of the time-frequency point (t-f), relation (5) 
reveals that any matrix Dxx(t, f) is block-diagonalized by the 
unitary transform E = [EsEn]. 

A simple way to estimate Es and En is to perform the 
SVD on a single matrix Dxx(t, /). But indeterminacies arise 
in the case where Dsa(t, f) is singular. To avoid this problem, 
we propose to perform a joint block-diagonalization (JBD) of 
the combined set of {Dxx(tk, fk)/k = l---K}by exploiting 
the joint structure (5) of the STFD matrices. This joint block- 
diagonalization is achieved by the maximization under unitary 
transform of the following criterion [5]: 

K 

cm EE KJD«(*,/)«,-! (6) 

over the set of unitary matrices U = [ux,--- ,Um]. In [5], 
an efficient algorithm for solving (6) is presented. Once the 
signal and the noise subspaces are estimated, one can use 
any subspace-based technique to estimate the DOA's. Herein, 
the MUSIC algorithm [9] is applied to the noise subspace 
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matrix En, estimated from (6). The time-frequency MUSIC 
(TF-MUSIC) algorithm estimates the DOA's by finding the N 

largest peaks of the localization function f(0) = \En a(6)\ -2 

IV. CONDITIONS ON TIME-FREQUENCY KERNELS 

It is clear from (6) that from a perspective of the JBD 
technique, attractive time-frequency distributions are those that 
allow the formation of nonsihgular diagonal matrices Da3(t, f) 
at the prospective time-frequency points. This property should 
be viewed in light of the following observations. 

1) Since the off-diagonal elements of Daa{t, f) in the key 
equation (5) should be zeros, distributions that mount 
the cross-terms on the top of autoterms may not be so 
desired in the context of the underlying application. 

2) Time-frequency distributions that spread cross-terms 
over the entire time-frequency plane [7] should, using 
the same argument, lead to improved performance over 
those distributions which localize the cross-terms in the 
auto-term regions. 

3) Time-frequency distributions that reduce, but still local- 
ize the cross-terms away from the auto-term regions, 
appear to be most applicable to the diagonal matrix 
requirements [8]. 

4) The time-frequency signature of the sources, although 
remain distinct, should intersect as often as possible, 
producing a large number of candidate points. 

V. NUMERICAL SIMULATIONS 

The purpose of this example is to show that the TF-MUSIC 
based on joint diagonalization gives good angle estimation 
performance for various time-frequency kernels. The perfor- 
mance of the conventional MUSIC [9] is compared to that 
of the proposed TF-MUSIC using 1) the Wigner kernel, 2) 
the Choi-Williams kernel [10], and 3) the Born-Jordan kernel 
[1]. Consider a uniform linear array of four sensors separated 
by half a wavelength'. The impinging signal is a chirp of 
unit variance arriving at 6i = 10 degrees. The chirp's signal 
start and end frequencies are wi = 0.17s- and w2 = 0.67TT, 

respectively. The noise used in this simulation is zero-mean, 
Gaussian distributed, and temporally white. The noise power 
or ex2 is adjusted to give the desired SNR= 101og10(CT~2). 
Fifty STFD matrices are considered. The variance in dB of 
the estimated DOA's are computed over 500 independent 
trials. Fig. 1 displays the variance of the estimated DOA #i 
versus SNR for 100 samples. The solid line presents the 
conventional MUSIC algorithm. The dashed line, the dash-dot 
line, and the dotted line correspond to the TF-MUSIC using the 
Choi-Williams kernel, the Bom-Jordan kernel, and the Wigner 
kernel, respectively. According to this plot, the conventional 
MUSIC and TF-MUSIC based on the above three kernels give 
similar results over the specified range of SNR in Fig. 1. 

VI. CONCLUSIONS 

A new DOA estimation approach using time-frequency 
distributions (STFD) is introduced. The new approach is 
based on the joint block-diagonalization of a set of spatial 
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Fig. 1.   Variance of estimated DOA versus SNR. 

time-frequency distribution matrices. The TFD matrices of 
the data and the sources appear in place of the covariance 
matrices commonly used under stationary environment. We 
have focused on the time-frequency distributions of Cohen's 
class, however, one can use other bilinear time-frequency 
signal representations [10], [11]. 

For the purpose of introducing this new technique, we 
have provided one simulation example. The offerings of the 
TF-MUSIC to direction finding will become evident upon 
examining it performance under low SNR's and by conduct- 
ing extensive analysis of both its structural and statistical 
properties. 
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