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ABSTRACT 

Empirical evidence suggests unusual or outlying observations in data sets are 

much more prevalent than one might expect; 5 to 10% on average for many industries. 

This research addresses multiple outliers in the linear regression model. Although 

reliable for a single or a few outliers, standard diagnostic techniques from an ordinary 

least squares (OLS) fit can fail to identify multiple outliers. The parameter estimates, 

diagnostic quantities and model inferences from the contaminated data set can be 

significantly different from those obtained with the clean data. The researcher requires a 

dependable method to identify and accommodate these multiple outliers. 

This research tests both direct methods from algorithms and indirect methods 

from robust regression estimators to identify multiple outliers. A comprehensive Monte 

Carlo simulation study evaluates the impact that outlier density and geometry, regressor 

variable dimension, and outlying distance have on numerous published methods. The 

performance study focuses on outlier configurations likely to be encountered in practice 

and uses a designed experiment approach. The results for each scenario provide insight 

and limitations in performance for each technique. Recommendations are given for each 

technique. 

OLS is the optimal regression estimator under a set of assumptions on the 

distribution of the error term and predictor variables. Compound robust regression 

estimators have been proposed as alternatives when some OLS assumptions fail. 

Compound estimators can accommodate multiple outliers and limit the influence of the 

observations with remote levels of predictor variables. This research proposes a new 

in 



compound estimator that is more effective for extreme observations in X-space and high- 

dimension than currently published methods. 

This research also addresses the variable selection problem for compound robust 

regression estimators. Estimating model prediction error with resampling methods 

(bootstrap and cross-validation) is the most effective approach to the variable selection 

problem in OLS. Current research suggests that the best method for variable selection is 

to select the model with the minimum value of prediction error from a modified bootstrap 

procedure. The modified procedure uses a bootstrap sample size significantly less than 

the original sample size. A selection criterion is proposed based on a low prediction error 

(not necessarily minimum) with the fewest predictor variables. The proposed criterion 

often provides superior results to the minimum prediction error criterion and does not 

require the modified bootstrap procedure to achieve good results in OLS. Monte Carlo 

simulation results suggest that the proposed criterion is also effective for compound 

estimators in contaminated samples. This research shows the viability of combining the 

two computationally intense procedures of resampling methods and compound estimation 

to achieve accurate model selection in the presence of multiple outliers. 

IV 



ACKNOWLEDGEMENTS 

I wish to thank many individuals who have made this research and degree 

possible. First, I would especially like to recognize the efforts of my committee. lam 

grateful to Dr. Douglas Montgomery for supervising this dissertation and my program of 

study. His encouragement and insight throughout the program were a continuous source 

of motivation. Dr. James Simpson's prompt and thorough review of numerous drafts has 

greatly enhanced the quality of this document. I also greatly value his judgment, 

friendship, and encouragement that he has provided prior to my entrance to the program 

through completion. I would also like to thank Dr. George Runger and Dr. J. Bert Keats 

for their helpful suggestions and contributions. 

I would like to thank my fellow Quality and Reliability Engineering students. 

Special thanks go to Steve ChambaFs infectious positive attitude, Kelly Canter's zest for 

life and Don Holcomb's endless motivation. 

I am fortunate to have been fully sponsored by the Department of Mathematical 

Sciences at the United States Air Force Academy. A heartfelt thank you goes out to 

Colonel Danny Litwhiler and my advocates on the personnel council for having faith in 

my abilities to complete this degree. We are looking forward to returning to the DFMS 

family. 

I would never have achieved this goal without Dr. Dean and Nancy Wilson. I was 

convinced in 1994 that I had reached my personal summit in education; somehow, they 



and my wife convinced me to apply for this outstanding opportunity. I truly value their 

constant support and admire their love of life. 

My parents deserve special recognition. I greatly appreciate their love and 

support throughout my life. They have provided the character and self-discipline that has 

allowed me to persevere. 

I am most grateful to my beautiful wife Shelley for believing in me and filling in 

the family voids when Daddy was being a "boxhead". My children, Chad and Chase, are 

wonderful diversions that helped me keep everything in perspective. For now, we are 

anxious to head back to the high country, but the great state Arizona has not seen the last 

of us. 

VI 



TABLE OF CONTENTS 

Page 

LIST OF TABLES  xii 

LIST OF FIGURES  xv 

Chapter Page 

1 Introduction  1 

1.1 Background and Motivation for this Research  1 

1.2 Statement of the Problem  7 

1.3 Research Objectives  9 

1.4 Scope of Research  10 

1.5 Summary and Outline of Research  11 

2 Literature Review  12 

2.1 Introduction  12 

2.2 Ordinary Least Squares Regression  12 

2.3 An Outlier in Least Squares Regression  14 
2.3.1 Detection of an Outlier in X-space  16 
2.3.2 Detection of a Residual Outlier  17 
2.3.3 Influence Measures in Least Squares Regression  18 

2.4 Detection of Multiple Outliers with Direct Methods  20 
2.4.1 Gentleman and Wilk Subsets Algorithm  21 
2.4.2 Hawkins, Bradu, and Kass Elemental Sets Algorithm  22 
2.4.3 Marasinghe Backward Selection Algorithm  22 
2.4.4 Rousseeuw and van Zomeren MVE/LMS Plot  23 
2.4.5 Paul and Fung Backward Selection Algorithm  24 
2.4.6 Hadi and Simonoff Forward Selection Algorithm  25 
2.4.7 Atkinson Stalactite Plot  27 
2.4.8 Pena and Yohai Eigenanalysis  28 
2.4.9 Swallow and Kianifard Recursive Residual Algorithm  30 

vu 



Chapter Pa8e 

2.4.10 Sebert, Montgomery, and Rollier Clustering Algorithm  32 
2.4.11 Lee and Fung Forward Selection Algorithm  34 
2.4.12 Luceno Reweighted Least Deviances Algorithm  35 

2.5 Robust Regression  36 
2.5.1 Properties of Robust Regression Estimators  36 
2.5.2 High-Breakdown Point Estimators  37 
2.5.3 M-estimators and Multi-Stage Procedures  39 
2.5.4 Leverage Measures in Robust Regression  42 

2.6 Variable Selection Procedures  49 
2.6.1 Variable Selection in Regression  50 
2.6.2 Cross-Validation Procedures  51 
2.6.3 Bootstrap Procedures  53 
2.6.4 Other Modifications to Resampling Methods 

for Variable Selection  55 
2.6.5 Variable Selection with Robust Regression  56 

2.7 Literature Review Summary  58 

3      A Comparative Analysis of Multiple Outlier Detection Procedures  60 

3.1 Introduction  60 

3.2 Multiple Outlier Detection Procedures  62 
3.2.1 Direct Procedures  63 
3.2.2 Indirect Procedures from Robust Regression Estimators  66 

3.3 Monte Carlo Simulation Performance Study Planning  69 

3.4 Performance Study Results  72 
3.4.1 Interior X-space Regression Outliers  73 
3.4.2 Exterior X-space Regression Outliers  85 
3.4.3 Interior and Exterior Outliers  95 

3.5 Procedure Summary and Recommendations  96 
3.5.1 Performance Summary of Direct Procedures  96 
3.5.2 Performance Summary of Indirect Procedures  100 
3.5.3 Summary of Results  102 

Vlll 



Chapter Page 

4 An Improved Robust Regression Compound Estimator  103 

4.1 Introduction  103 

4.2 Compound Estimators in Linear Regression  106 

4.3 Compound Estimator Example  108 

4.4 Performance Study for Measures of Leverage  110 
4.4.1 Method Description  HI 
4.4.2 Monte Carlo Simulation Leverage Study  114 
4.4.3 Summary of Performance for Measures of Leverage  128 

4.5 Compound Estimators with R&W Robust Distances as the 7t-weight 
Component •  130 

4.6 A Proposal for a New Initial Estimator  132 
4.6.1    Initial Estimators Performance Studies  134 

4.7 Proposal of New Compound Estimators  137 

4.8 Performance of the Proposed Compound Estimators  139 
4.8.1 Proposed Estimators' Area of Coverage  140 
4.8.2 Performance in Published Scenarios  142 

4.9 Summary  I46 

5 Resampling Methods for Variable Selection in Least Squares and Robust 
Regression  148 

5.1 Introduction  148 

5.2 Resampling Measures of Prediction Error  152 
5.2.1 Cross-Validation Procedures  152 
5.2.2 Bootstrap Procedures  154 
5.2.3 Other Modifications to Resampling Methods for Variable 

Selection  156 

5.3 An Alternative Criterion for Variable Selection  157 

IX 



Chapter Pa8e 

5.4 A Simulation Study  159 

5.4.1 Simulation Details  160 

5.4.2 Simulation Results  161 

5.5 Extensions to Noisy and High-Dimension Data Sets  164 
5.5.1 High-Dimension Data  164 
5.5.2 High-Dimension and Noisy Data  166 

5.6 Variable Selection in the Presence of Outliers  170 
5.6.1 Variable Selection with Robust Regression Estimators  170 
5.6.2 Modified Gunst and Mason Data  173 
5.6.3 Compound Estimator Resampling Methods for a Noisy, High- 

Dimension Data Set with Multiple Outliers  178 
5.6.4 A Designed Experiment for Resampling Methods with 

Compound Estimators  179 

5.7 Summary and Recommendations  I88 

5.7.1 Summary of Results for Least Squares Estimation  188 

5.7.2 Summary of Results for Compound Estimation  189 

6      Summary and Future Research  191 

6.1 Introduction  1"! 

6.2 Comparative Analysis of Multiple Outlier Detection Procedures  191 
6.2.1 Summary of Significant Findings  192 
6.2.2 Contributions  193 
6.2.3 Future Research  193 

6.3 An Improved Compound Estimator  194 
6.3.1 Summary of Significant Findings  195 
6.3.2 Contributions  197 
6.3.3 Future Research  197 

6.4 Resampling Methods for Variable Selection  198 
6.4.1 Summary of Significant Findings  199 
6.4.2 Contributions  200 
6.4.3 Future Research  201 



References  

Appendix 

A        S-Plus Code for Chapter 3 Studies    210 

B        S-Plus Code and Data for Chapter 4 Studies    231 

C        S-Plus Code for Chapter 5 Studies    241 

XI 



LIST OF TABLES 

Table Page 

1.1 Least squares and proposed compound estimates of regression parameters....       7 

3.1 Design matrix and results for regression outliers in interior X-Space      75 

3.2 Design matrix and results for regression outliers at centroid of X-Space      78 

3.3 Design matrix and results for regression outliers at median of X-Space      81 

3.4 Design matrix and results for high-magnitude and high density regression 
outliers in interior X-Space      84 

3.5a    Design matrix and results for high-leverage regression outliers in a 
single cloud outlying in all k regressor variables      88 

3.5b    Design matrix and results for high-leverage regression outliers in two 
clouds outlying in all k regressor variables      89 

3.6 Design matrix and results for high-leverage regression outliers when 
the response is not unusual in Y-space      92 

3.7 Design matrix and results for high-leverage regression outliers with 
large outlying distance      94 

3.8 Design matrix and results for interior and exterior X-space regression 
outliers      97 

4.1 Generating distribution for example 4.1    109 

4.2 Design matrix and results for high-leverage outliers unusual in all 
A: regressor variables    118 

4.3 Design matrix and results for high-leverage outliers unusual in one of 
k regressor variables    121 

4.4 Design matrix and results for high-leverage, high-density and high- 
magnitude outliers     123 

4.5 Design matrix and results for high-leverage outliers unusual in 3 
of 6 regressor variables    124 

Xll 



Table Pa8e 

4.6 Design matrix and results for high-leverage outliers without unusual 

response values  

4.7 Design matrix and results for high-leverage outliers in multiple point 
clouds in close proximity  127 

4.8a    Design matrix and efficiency ratios for common initial estimators  135 

4.8b    Design matrix and efficiency ratios for common initial estimators when 
R&W does not necessarily detect the leverage points  137 

4.9 Estimator performance for example 4.1  139 

4.10 Comparative Study Results for Simpson and Montgomery (1998b)  145 

5.1 Average prediction error from 100 bootstrap samples  158 

5.2 Model selection percentages for 2 active parameters for Shao (1996) data.... 162 

5.3 Model selection percentages for 3 active parameters for Shao (1996) data.... 163 

5.4 Model selection percentages for 4 active parameters for Shao (1996) data.... 163 

5.5 Model selection percentages for 5 active parameters for Shao (1996) data.... 164 

5.6 Model selection percentages for 5 out of 10 active parameters for 
Shao (1996) data •  l66 

5.7 Model selection percentages for 5 out of 10 active parameters for 
Noisy data  1°" 

5.8 Robust distances for the Gunst and Mason data  173 

5.9 Model selection percentages for 3 active parameters for Shao (1996) 
data modified with 10% outliers  175 

Xlll 



Table PaSe 

5.10 Model selection percentages for modified Shao (1996) data using the 
Simpson and Montgomery compound estimator  176 

5.11 Model selection percentages for modified Shao (1996) data with outliers 
removed by Simpson and Montgomery compound estimator  177 

5.12 Model selection percentages for 10 parameter model with outliers  179 

5.13 Values of constants for the change in prediction error criterion  183 

5.14 Design matrix and results for bootstrap methods  185 

5.15 Design matrix and results for cross-validation methods  187 

XIV 



LIST OF FIGURES 

Figure PaSe 

1.1      Breakdown of the OLS estimator in the modified pilot plant data  4 

2.1       Outlier configurations  16 

3.1      Performance study organization chart  72 

4.1      Approximate area of coverage for six compound estimators  142 

5.1      Representative screeplot of aggregate prediction error  151 

xv 



Chapter 1 

Introduction 

1.1 Background and Motivation for this Research 

The goal of the field of statistics is to transform raw data into useful information 

for decision making. By its nature, statistics is not an exact science and an approximation 

to an underlying process is often based on a sample of observations from the total 

population of interest. A common objective in statistics is to identify an appropriate 

transformation from a sample to relate a response (dependent) variable to a set of 

independent variables. Linear regression is the customary method used to 

mathematically model a response variable as a function of the regressor (independent) 

variables. Regression analysis is used in all fields of engineering, science, and 

management. Proliferation of the method continues because common software packages 

include regression options. 

The regression model for n observations and k regressor variables can be 

described in terms matrices as y = Xß +e where y is the n x 1 vector of observed 

response values and X is the observed nxp matrix of kregressor variables augmented 

with a column of ones, ß is an unknown p x 1 vector of regression coefficients and s is 

the n x 1 vector of error terms. The e vector is critical. If it is identically 0, then the 

process modeled is deterministic (e.g. F-ma). However, in practice, it is not identically 0 

and the relationship between the response and predictor variables is not exact. That is, 

given the same set of regressor variables, the response values will not necessarily be the 



same. The goal of regression analysis is to find a good estimate of the unknown 

regression coefficients ß from the observed sample. 

The usual estimator of ß comes from the method of ordinary least squares (OLS) 

discovered independently by Gauss in 1795 and Legendre in 1805. OLS minimizes the 

sum of the squared distances for all points from the actual observation to the regression 

surface. The least squares estimator is attractive because of computational simplicity, 

availability of software, and statistical optimality properties. From the Gauss-Markov 

theorem, least squares is always the best linear unbiased estimator (BLUE). BLUE 

means that among all unbiased estimators, OLS has the minimum variance. If e is 

assumed to be normally, independently distributed with mean 0 and variance cr2I, least 

squares is the uniformly minimum variance unbiased estimator. Under this assumption, 

inference procedures such as hypothesis tests, confidence intervals, and prediction 

intervals are powerful. However, if e is not normally distributed, then the OLS 

parameter estimates and inferences can be flawed. 

Violation of the NID distribution of the error term can occur when there are one 

or more outliers in the data set. An outlier is an observation that is inconsistent with the 

remainder of the data and it is not unusual to see an average of 10% outliers in data sets 

for some processes (Barnett and Lewis, 1994 and Hampel et al, 1986). Some of the 

sources of outliers are errors in data entry or measurement, the inadvertent inclusion of an 

observation from another population or a plausible event. 

To illustrate the effect on least squares regression of an outlier, consider the pilot 

plant data from Daniel and Wood (1971) where the extraction rate is thought to be a 



predictor of the acid content measured by titration. The two fits displayed in Figure 1.1 

are of the original data and a hypothetical situation where a single transcription error is 

made on an extraction rate that changes it from 37 to 370 (Rousseeuw and Leroy, 1987). 

The correct least squares fit is y = 35.5 + 0.32x where y is the expected response value of 

y conditional on the level of x. The intercept and slope estimates for the model fit with 

the outlier are distinctly different, y = 58.9 + 0.08*. Unless interest is confined to the 

region around mean level of the extraction rate, the outlier-contaminated model is poor. 

Both of the parameter estimates (intercept and slope) have changed too much from the 

true underlying relationship to be considered a meaningful description for the majority of 

the data The OLS estimates have broken down after a single anomalous observation. 

Breakdown is a critical concept for this research. Huber's (1981) operational definition is 

the smallest fraction of data contamination needed to cause an arbitrarily large change in 

the parameter estimates. 

Figure 1.1 clearly indicates that it is of interest to the regression practitioner to 

have a set of reliable tools to detect outlying observations. Fortunately, isolating a single 

or a few outliers in OLS is relatively easy with routine diagnostics (e.g. Cook's D, 

DFFITS, scaled residuals and residual graphics) supplied by most statistical analysis 

software. Multiple outliers in a sample have a similar, if not worse, effect on the least 

squares parameter estimates and inference as displayed in Figure 1.1. However, the 

standard diagnostic measures often fail to indicate anything unusual about these 



Pilot Plant Data 
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bo = 58.9 b1 = .08 
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Figure 1.1. Breakdown of the ordinary least squares (OLS) estimator 
in the modified pilot plant data (Daniel and Wood, 1971). 

observations. Also, these diagnostics can signal that clean observations are outliers. The 

former symptom of multiple outliers is known as masking and the latter is termed 

swamping. There are several methods proposed in the literature that attack the multiple 

outlier identification problem; yet, there is little guidance for the practitioner on which 

methods perform well in representative outlier scenarios. Few methods are readily 

available on standard statistical packages. 

If the multiple outliers are successfully identified, a decision has to be made on 

what to do with them. These aberrant observations could be left in the analysis. Figure 

1.1 graphically depicts the consequences of leaving an outlier in the analysis. 

Conversely, the outliers could be removed entirely from the analysis. If the outliers are 

plausible events, then these observations may be the most important ones in the sample. 



Dismissal of these outliers from the analysis could be a missed opportunity to 

characterize the process at certain operating conditions. A compromise between 

including and deleting the outliers is to downweight their influence on the regression 

surface. Robust regression estimators have been proposed as alternatives to OLS to 

downweight observations as a function of "outlyingness" in parameter estimation. 

There has been a large body of literature in recent years developing the theory and 

practice of robust regression estimators. Typically, these estimators require significant 

computational resources because of nonlinear solutions or the requirement to search 

numerous subsets of the data to satisfy a constrained objective function. Ironically, the 

first robust regression estimator pre-dates OLS by nearly a half century. The Li or least 

absolute value estimator (Boscovich, 1757) is particularly well-suited for those heavy- 

tailed distributions (e.g. double exponential) that can generate outliers. However, this 

and many other robust regression estimators are not able to accommodate multiple 

outliers. That is, they are not high-breakdown estimators and fail with only a modest 

amount of outliers. The most often used high-breakdown estimators are the Least 

Median of Squares (Rousseeuw, 1983), Least Trimmed Sum of Squares (Rousseeuw, 

1984) and 5-estimators (Rousseeuw and Yohai, 1984). The problem with these 

estimators is that they can fail if the outliers have extreme values in the regressor 

variables (high-leverage points). The ability of a robust estimator to accommodate high- 

leverage outliers is called bounded-influence. The LMS, LTS, and 5-estimators are also 

not efficient estimators. They do not fit data sets particularly well when there are no 

outliers present. Recently, a class of robust regression estimators has been proposed that 



simultaneously achieve all three properties (Simpson, et al. 1992, Coakley and 

Hettmansperger, 1993, and Simpson and Montgomery, 1998). These compound 

estimators have the potential not only to identify a wide range of multiple outlier 

configurations, but also to accommodate them in a model. Hampel (1997) recommends 

such an approach to make the robust regression and regression diagnostic fields 

complementary rather than antagonistic. 

Therefore, one method to detect multiple outliers in regression is to examine the 

final weights (between 0 and 1) that the robust regression estimator assigns each 

observation. Observations with weights close to 0 are candidates for outliers. Residual 

values from a robust fit can also be used to identify the outliers. There are also more 

direct multiple outlier detection procedures in the literature that use specially designed 

algorithms. There is little guidance and few empirical studies on which methods work 

best. 

A tacit assumption to this point is that the correct regressor variables are specified 

for the model. Most regression modeling requires selection of the subset of regressor 

variables from a larger pool thought to be related to the response. Outliers confound the 

variable selection process because a variable that truly has no effect on the response may 

appear to be significant because it is fitting the outliers. Equally troublesome, the outliers 

may mask a significant variable. As an example, consider the modified Gunst and Mason 

(1980) data set created in Section 5.6.2 that has n = 40 observations, k=4 regressor 

variables and four outliers. The OLS parameter estimates along with those from the 

proposed compound estimator in this research are displayed in Table 1.1. For this data 



set, it is known ß '= [2, 0, 0,4, 8]. Least squares has fit the outliers with the two inactive 

regressor variables Xi and x2. Note that the compound estimator is resistant to the 

outliers. 

Table 1.1. Least squares and proposed compound estimates of the 
regression parameters in the modified Gunst and Mason (1980) data 

true parameter 
least squares estimate 
compound estimate 

2.00 
1.71 
2.24 

A 
0.00 
9.85 

-0.23 

A 
0.00 
7.75 
0.61 

A 
4.00 

-2.62 
3.35 

Ä 
8.00 
10.17 
8.23 

Selection of the best subset of variables is a critical part of the regression model 

building process. Again, there are numerous methods and criteria available to the 

practitioner with many accessible in standard statistical analysis software. Recent 

developments have suggested that resampling methods are better suited for the variable 

selection problem (Breiman, 1995, Shao, 1996, and Davison and Hinkley, 1997). It is not 

known how resampling methods perform with multiple outliers in the data. 

1.2 Statement of the Problem 

This research was introduced by defining the goal of the field of statistics. 

Staudte and Sheather (1990) claim that a better description with respect to robust 

estimation may be the "battlefield of statistics" because of the controversy surrounding 

many of the proposed techniques. Most of the community does agree that there is no 

single best robust regression estimator, multiple outlier identification procedure or 



variable selection procedure. However, there are widely varying opinions as to the 

applicability of certain methods in specific scenarios. 

Hettmansperger (1998) states one of the main reasons why robust estimation is 

not used more in statistics is the "curse of abundancy" for the techniques. His point is 

that not only are there many different estimators and algorithms available, but also that 

each procedure has its own, often large, set of parameter settings and tuning constants. 

Hettmansperger also states the lack of software for robust procedures is another reason 

attributing to the scarcity of robust analysis. 

These two reasons present a challenging dichotomy to the regression user. On the 

one hand, extra effort is often required to get the appropriate software to implement 

existing robust procedures. However, once software capability is achieved, the 

practitioner is saturated with implementation options. Performance studies are needed in 

finite samples to screen many of the existing procedures and quantify where each is best 

suited. 

To this end, a comparison of multiple outlier detection procedures across a 

comprehensive set of scenarios is missing in the literature. The ideal outcome of such a 

study would be that one procedure is preferred in all scenarios. If this is not the case, 

characterization of effective areas of technique performance would be helpful guidance. 

The comparative evaluation could also suggest that some techniques could be improved 

to make them "robust" to more outlier scenarios. A similar approach has been taken by 

Simpson and Montgomery (1998c) to propose a "robust" robust regression estimator. 



There also is no shortage of options for variable selection in regression. Some 

performance studies exist and resampling methods are preferred. No work in the 

literature addresses the combined variable selection in the presence of outliers with 

compound estimators. This is understandable because compound estimation is highly 

computer intensive and resampling methods increase complexity by orders of magnitude. 

1.3 Research Objectives 

There are three primary objectives that address the research problem. 

• Characterize the performance of the leading multiple outlier detection procedures for 

the linear regression model. The goal is a comprehensive evaluation of published 

techniques that suggests where the methods are successful and where they fail. A 

successful procedure would have a high probability of identifying the outliers, a low 

probability of classifying clean observations as outliers and be easily implemented in 

analysis software. 

• Select and improve upon the most promising techniques from the comparative study 

of multiple outlier detection procedures. This phase could improve upon a direct 

multiple outlier detection algorithm, a robust regression estimator, or a combination 

both. 

• Determine the appropriateness and computational feasibility of resampling methods 

for variable selection in the presence of outliers. This phase specifically addresses 

variable selection with compound robust regression estimators using the bootstrap 

and cross-validation procedures. 
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1.4 Scope of Research 

The research focus is on the finite sample size performance of the published 

techniques and also those proposed in this research. The selection of the techniques is 

limited to those that are promising and often referenced in the literature and those that 

perform well in pilot studies. For this research, the problems of outlier identification, 

robust estimation and variable selection are limited to the linear regression model. 

Nonparametric, Bayesian, and nonlinear regression and generalized linear models are not 

considered; although, many of the concepts explored easily extend to those classes of 

models. 

Monte Carlo simulation is the primary tool to accomplish the objectives outlined 

in Section 1.3. This computer-implemented technique generates numerous data sets by 

randomly varying specific values at each iteration. For comprehensive test and 

evaluation of the methods, it is not possible to cover many of the infinite factor levels that 

characterize a data set such as the number of observations («), number of regressors (k), 

percentage of outliers, outlier location, and magnitude of outliers. Representative and 

interesting levels of these factors are selected from pilot studies and sequential analysis. 

Additionally, each individual technique has its own set of specific parameter settings. 

Either the default or most favorable settings from pilot studies are used. In most cases, 

the Monte Carlo simulation experiments are set up as factorial designs to gain the 

maximum understanding from a moderate amount of experimentation. Although many 

references suggest using thousands of Monte Carlo simulation replicates, the nature of 
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this problem does not lend itself to such luxury. In all cases, there are enough replicates 

to get a clear indication of performance. 

1.5 Summary and Outline of Research 

The goal of this research is to comprehensively and fairly evaluate the leading 

candidate multiple outlier detection procedures. These results are then used to introduce 

an improved method. Variable selection for compound estimators is then considered with 

resampling methods. 

Chapter 2 reviews the relevant literature on what has been published to date. 

Chapters 3 through Chapter 5 are essentially stand-alone documents that address each of 

the research objectives. Chapter 3 details the Monte Carlo simulation performance study 

of multiple outlier detection procedures. Chapter 4 proposes a new compound estimator 

using results from extensive performance studies on measures of leverage and high- 

breakdown estimators. Chapter 5 addresses the variable selection problem in linear and 

robust regression using resampling methods. A new variable selection criterion is 

introduced that proves effective with both least squares and compound estimators. 

Chapter 6 provides a summary of the results, the contributions, and the recommendations 

for farther research. 



Chapter 2 

Literature Review 

2.1 Introduction 

This chapter reviews the related literature for this research. Chapters 3,4 and 5 

are written as larger versions of what is to be submitted for publication. As such, each 

chapter contains its own literature review restating many of the results presented here. 

The difference is that more explanation of the key concepts and algorithms is treated in 

Chapter 2. This review begins with some background material on least squares 

regression estimation and diagnostics to identify a single outlier. The discussion expands 

to address the multiple outlier problem. A detailed presentation of direct procedures to 

identify multiple outliers is followed by a thorough discussion of the indirect 

identification procedures; namely robust regression estimators. The chapter concludes 

with a discussion of variable selection methods in linear regression. 

2.2 Ordinary Least Squares Regression 

Regression analysis models the relationship between a response variable and a set 

of predictor variables. The regression model for n observations and k regressor variables 

can be described in terms of matrices as y = Xß +e where y is the n x 1 vector of 

observed response values and X is the observed nxp matrix of A: regressor variables 

augmented with a column of ones, ß is an unknown/? x 1 vector of the regression 

coefficients and e is the n x\ vector of error terms. In practice, the regression model is 
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y = Xß + e where y is the vector of predicted response values, e is the vector of 

residuals, and ß the estimate of regression coefficient. OLS computes these parameter 

estimates, ß , by minimizing the sum of the squared residuals. Therefore, the objective is 

n 

to find those values of ß that lead to the minimum value of e'e = ^X. Nearly all 
1=1 

regression texts (e.g. Montgomery and Peck, 1992) give the fundamental derivation of 

the OLS parameter estimates as follows: 

S(ß)   =s'e =(y-Xß)'(y-Xß) 

= y'y-ß'X'y-y'Xß+ß'X'Xß 

= y'y-2ß'X'y+ß'X'Xß 

using differentiation to minimize S(ß) with respect to ß , 

as 
5ß 

= -2X'y + 2X'Xß =0 

rewriting and simplifying gives the least squares normal equations 

X'Xß = X'y 

which can be solved if X*X is of full rank for the familiar OLS relationship 

ß=  (XXr'X'y 

The vector of fitted values can be expressed as 

y=Xß = X(X'X)-,X'y = Hy 
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The matrix H is known as the hat or projection matrix. The diagonal elements of the hat 

matrix are used in many least squares diagnostics because they provide an indication of 

remoteness in X-space. 

Some useful properties of ß are that it is an unbiased estimator (E(ß ) = ß ) and 

the Gauss-Markov theorem guarantees that among all unbiased estimators of ß , the least 

squares estimate has the minimum variance, Cov(ß) = &2 (XX)-1. A common estimate 

for <T
2

 is the Mean Square Error (MSE) = e* e l(n-p). The least squares estimator of ß is 

also the maximum likelihood estimator under the assumption that the error terms are 

independent and identically distributed normal variates with mean 0 and covariance 

matrix <r2I. The usual notation for this assumption is e ~ NID(0,cr2I) and if it holds, 

then OLS is also the uniformly minimum variance unbiased estimate (UMVUE). Model 

inferences such as confidence intervals and hypothesis tests are also very powerful if the 

error terms are NID. From a statistical point of view, OLS is the optimal estimator under 

a normal error. 

The major disadvantage of OLS is performance when the error term cannot be 

assumed to be distributed normal. OLS estimates and tests rapidly lose power with 

nonnormal error terms. One of the most common violations of a normal distribution for 

the error terms is the presence of one or more outliers in the sample. 

2.3 An Outlier in Least Squares Regression 

Barnett and Lewis (1994) define an outlier as an observation that appears 

inconsistent with the remainder of the data set. Outlier identification is important in OLS 
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due not only to their impact on the OLS model, but also to provide insight into the 

process. These outlying cases may arise from a different distribution altogether from the 

bulk of the data. The distribution of the füll dataset is contaminated in this instance.   In 

contaminated datasets, it makes sense to see if there may be an alternative model form 

(e.g. lognormal as opposed to normal errors) to fit the true process. Alternatively, the 

distribution of the unusual observations may be uncontaminated but there may have been 

an external cause such as a recording or interpretation error. These two cases may 

require a different approach on how to accommodate the outlier: include it in the model, 

downweight it and include it in the model, or throw it away. 

To classify types of outliers for this research, consider the simple linear regression 

model displayed in Figure 2.1. The ellipse defines the majority of the data. Point A is an 

outlier in Y-space because its response value is significantly different from the responses 

contained in the ellipse. Point A is also a residual or regression outlier. Its expected 

response, conditional on the value of JC, differs significantly from the regression line fitted 

to the data in the ellipse. Point B is unusual in X-space. Observations that are remote in 

X-space are high-leverage points and are also referred to as exterior X-space observations 

in this research. Although Point B is remote in Y-space, it is not a residual outlier 

because its response value conforms to the regression line fit to the observations in the 

ellipse. Point B can be considered a "good outlier". Points C and D are high-leverage 

points and residual outliers. Point C is unusual in Y-space; point D is not. 
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B 

D 

Figure 2.1. Outlier configurations: Points A, B, and C are outlying in Y-space (exterior 
Y-space), Points B, C, and D are high-leverage points (exterior X-space), Points A, C, 
and D are residual outliers because they do not conform to the regression line defined by 
the clean observations in the ellipse. 

2.3.1 Detection of an Outlier in X-space 

The effect of outliers in X or XY-space is to "pull" or exert more influence on the 

model parameters estimating the regression line. These observations are influential or 

high-leverage points. When there are three or fewer regressor variables, candidate 

outlying observations in X-space can be detected by a three or two-dimensional 

scatterplot of the regressor variables. Computational measures are needed for more than 

three variables. The diagonals, hiU of the n x n hat matrix, H, provide a measure of 

remoteness in X-space. Because the sum of the hat diagonals is/?, the average of all the 

hat diagonals is p/n. Hoaglin and Welsch (1978) suggest observations with /*„ greater 

than 2 or 3p/n should be considered as potential outliers. 

A related measure for multivariate distance in X-space is the Mahalanobis 

distance and is defined for the fh observation as: 
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where x( is the p x 1 vector of regressor variables for case /, n is the mean vector of X 

and Z is thepxp sample covariance matrix. If the classical estimates of |i and L from 

the full sample are used, then it can be shown that the hat diagonal is a function of the 

Mahalanobis distance, h. = -^- + - • Observations with Dt greater than zLi-a/i) are 
"    n -1    n 

potential outliers (Rousseeuw and van Zomeren, 1990). 

2.3.2 Detection of a Residual Outlier 

An observation with a relatively large residual value is a candidate for an outlier. 

Scaling each residual, eh can often help detect outliers. Standardized residuals correct for 

the overall model variance and are calculated for each observation as di =   ,   '     . 
T]MSE 

Under the assumption of normally distributed error terms the standardized residuals can 

be compared to the percentiles of the standard normal. A possible problem with this 

approach is that the variance of the residuals depends on their location in X-space, 

Var(f,) = o?( 1 -hu).  Behnken and Draper (1972) suggest the constant variance 

studentized residual defined as r =   . . The studentized deleted residual 
jMSE(\-hu) 

replaces MSE in the previous equation with the variance estimate obtained by removal of 

the fh observation as sfn = ^"^ E~C\     "  "  . Montgomery and Peck (1992) V) n-p-l 

state that the studentized deleted residual is preferred in dealing with outliers especially 

since it follows the /-distribution. Allen (1971) states that the residual obtained by using 
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a model fitted with a sample that omits the observation is the prediction error sum of 

squares residual (PRESS). The PRESS residual is easily calculated in least squares as 

e,., = '■— and does not require n separate OLS fits. 
0-A«) 

2.3.3 Influence Measures in Least Squares Regression 

The hat diagonal and residual measures are useful diagnostic measures to quantify 

an observation's remoteness in X-space and the distance off the regression surface. 

However, they do not provide an indication of how the model parameter estimates or 

fitted values are impacted by inclusion of the potential outlier. Influence diagnostic 

measures have been developed to help in making the decision of what to do with an 

unusual observation. That is, an observation may be a high-leverage point and residual 

outlier, yet inclusion in the analysis has little effect on model parameter estimates and 

inferences. Barrett and Gray (1997) state most influence diagnostics can be decomposed 

into a measure of leverage and a measure of residual. 

Cook's Distance (Cook, 1979), A, incorporates both the remoteness in X-space 

and in residual. 

pMSE p{i-h„) 

where ß (0 is the vector of parameter estimates from the OLS fit with observation i and 

/•2is the squared studentized residual. Cook recommends that distances greater than 

Va=.5,p,n-p = 1 -0 are considered influential. 
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Belsley, Kuh, and Welsch's (1980) DFBETAS statistic considers the impact of 

leverage and residual on each of the p parameter estimates. The statistic measures how 

each parameter estimate changes if the fh observation is removed from the data set. 

Observations with DFBETAS exceeding 2 / yfn in magnitude are influential. 

DFBETAStl = ßy-ßwo 

where ß y (/) is the OLS estimate of the/1 regression coefficient from a fit without the fh 

observation and Q is the/* diagonal element of (X'X)-1. 

Belsley, Kuh and Welsch (1980) introduced DFFITS to measure the influence on 

the predicted values by omission of the fh observation. Observations exceeding 2^ pin 

in absolute value are considered influential. 

DFFITS', = y\ ~/(0 

Belsley, Kuh and Welsch (1980) define the COVRATIO statistic to measure the 

overall precision of estimation. This statistic is based on the ratio of generalized 

variances found from the determinant of the co variance matrix. 

COVMTIQ- I(X^_1MSE1-^lhjj 

Belsley, Kuh, and Welsch suggest that observations varying by more than 3p/n from 

unity may be influential. 
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The leverage, residual, and influence measures described above can effectively 

isolate an outlier and provide an indication as to how much it is affecting the model. 

Many authors recommend complementing these procedures with a plot of predicted 

versus residual values, a normal probability plot of residuals, and plots of each regressor 

versus residual values for outlier detection. Cook (1998) gives guidance on numerous 

other modern graphical procedures that can provide insight into outliers and influence in 

regression. The problem with these quantitative and graphical approaches to the outlier 

problem is that they can fail if there are multiple outliers. Kempthorne and Mendel 

(1990) discuss the inadequacies of these single row influence diagnostics when applied to 

multiple observations. 

2.4 Detection of Multiple Outliers with Direct Methods 

The reason many of the techniques in Sections 2.3.2 and 2.3.3 fail with multiple 

outliers is that they are a function of the covariance matrix. If there are too many 

outliers, then the estimate of the covariance matrix is poor and biased toward the outliers. 

The two primary symptoms from multiple outliers in regression are masking and 

swamping. Masking occurs when the true outliers are not identified. This inflates the 

estimate of error thereby affecting the power of test statistics. Swamping occurs when 

inliers are identified as outliers. One possible solution to the problem is to analyze 

subsets of the observations thought to be outliers. 

Belsley, Kuh and Welsch (1980) and Cook and Weisberg (1982) extend their 

influence diagnostic measures to accommodate subsets of observations rather than just 
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one. These authors and Sebert (1995) demonstrate that the multiple row diagnostics 

effectively assess the joint influences exerted by several outliers. Barrett and Ling (1992) 

and Barrett and Gray (1997) propose improved multiple row diagnostics that are based on 

measures of leverage, residual and the interaction between the two. The problem with all 

multiple row influence diagnostics is that the correct subset must be tested. This presents 

a significant combinatorial problem with increasing sample size. Several procedures to 

identify this outlying set have been published in the last 25 years. Hadi and Simonoff 

(1993) classify the procedures as direct or indirect. Direct procedures use a specifically 

designed algorithm to detect multiple outliers. The indirect methods use either the 

weights assigned to each observation or the residuals from a fit with a robust regression 

estimator. 

This section chronologically describes the direct methods to detect multiple 

outliers in linear regression. For the procedures that are used in the performance studies, 

there is a detailed outline of the algorithm that is significantly expanded from the short 

summary provided in chapter 3. There is a brief description of several other procedures 

for historical purposes and reference. 

2.4.1 Gentleman and Wilk Subsets Algorithm 

Gentleman and Wilk (1975) are generally credited with first addressing methods 

to detect the multiple outliers in the least squares regression model. Their Q statistic is 

based on the reduction in error sum of squares from the model including all observations 

to that of a model of size (n-j) where./ is the pre-specified maximum number of potential 
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outlying cases. This statistic is computed for all subsets of sizey and those subsets with 

large Q values are considered potential outlier sets. The method's limitations are the 

computational complexities for large n and the requirement to specify the expected 

number of outliers. Gentleman (1980) addressed the computational complexity issue by 

sequentially selecting the set of outliers based on OLS studentized residuals from the full 

sample. This procedure still suffers from masking and swamping because studentized 

residuals may not appear unusual if there are multiple outliers. 

2.4.2 Hawkins, Bradu, and Kass Elemental Sets Algorithm 

Hawkins, Bradu and Kass (1984) identify multiple outliers in regression models 

with elemental sets. Numerous random samples of size/» are formed from the original 

data set and fit with an OLS regression model. Outliers are the observations with large 

values for the summary statistics (e.g. median) on the set of residuals from all of these 

regressions. This procedure is similar to bootstrapping and suffers from computational 

complexity. Also, the OLS residuals may not be unusual for the high-leverage regression 

outliers. 

2.4.3 Marasinghe Backward Selection Algorithm 

Marasinghe (1985) proposes a multi-stage procedure that also requires 

specification of the expected maximum number of outliers. The outliers are sequentially 

removed based on the largest absolute value of the studentized residual. The test statistic 

F, is the ratio of error sum of squares from the reduced model with (n -j) observations to 
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the error sum of squares for the full sample model. If F, exceeds a critical value from the 

Bonferroni inequalities, then the current set is the outlier set; otherwise, the procedure is 

repeated using (j -1) candidate outliers. This methodology again relies on the 

studentized residual which suffers from masking and swamping; particularly if/ is 

specified too large (Fung, 1988). 

A proposed methodology by Kianifard and Swallow (1989,1990 and described 

for their 1996 update in Section 2.4.9) was compared to Marasinghe (1985) and 

modifications to Gentleman and Wilk (1975) in several outlying scenarios. The results 

were scenario dependent; however, for multiple outliers, Marasinghe's multi-stage 

procedure performed the best. Kianifard and Swallow also note the poor performance 

from misspecification of the number of outliers in Marasinghe's procedure. 

2.4.4 Rousseeuw and van Zomeren MVE/LMS Plot 

The highly-referenced Rousseeuw and van Zomeren (1990) methodology is based 

on robust regression estimators. They suggest using the minimum volume ellipsoid 

(MVE) described in Section 2.5.4 as a robust estimate of both the mean and covariance 

matrix to detect outliers in X-space. The robust distance from the Mahalanobis Distance 

using the MVE estimates of the mean and covariance matrix can be compared to the 

*p-i,o.975 distribution to conclude whether the point is influential in X-space only. The 

standardized residuals from a least median of squares fit (see Section 2.5.2) are used to 

identify residual outliers. This procedure then classifies an observation into one of four 

categories: 1) not an outlier, 2) a residual outlier only, 3) a leverage outlier, or 4) an 
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outlier in both residual and X-space. The methodology performs well on several 

challenging multiple outlier data sets where the classical distance measures fail. This 

method is available in the S-Plus software. 

This procedure, as Cook and Hawkins (1990) noted in their discussion of the 

paper, suffers from identifying too many outliers. Other authors have similar reservations 

about using the MVE (Simpson, 1995, and Woodruff and Rocke, 1994). However, there 

have been improvements to the MVE and LMS algorithms recently that increase the 

statistical and computational efficiencies of the procedures (Burns, 1992). 

2.4.5 Paul and Fung Backward Selection Algorithm 

The Paul and Fung (1991) two-phase procedure using generalized extreme 

studentized residuals (GESR) tries to rninimize the effect of overspecifyingy, the 

maximum number of outliers, in the Marasinghe (1985) method. The algorithm forms 

the set of up toy residual outliers by sequential deletion of the observation with the 

highest absolute value of the studentized residual. This residual value must exceed a 

Bonferroni critical value. A model is refit without the potential outliers and the largest 

studentized residuals are tested again. A similar procedure used in phase two is to search 

for outlying values in X-space using Cook's D. The union of these two sets would be 

declared the outliers. Hadi and Simonoff (1993) show through benchmark examples and 

simulation that this method suffers from both masking and swamping. 
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2.4.6 Hadi and Simonoff Forward Selection Algorithm 

Hadi and Simonoff (1993) consider two related procedures for the identification 

of multiple outliers in regression models. Their procedure is based on finding a "clean" 

subset of n - k + 1 observations that has the minimum residual sum of squared errors. 

The algorithm proceeds as: 

1. Determine the initial clean subset M of size h = {n + k -1)/2. 

a.   Version 1 for determining M is an adaptation of Hadi (1992,1994) and 

related to the elemental sets of Hawkins, Bradu, and Kass (1984). 

a.l Order the n observations by the magnitude of the OLS 

adjusted residuals, at = e, / -yjl-h^ . 

a.2 Form the basic subset B by selecting the k + 1 lowest values of 

the |a,|. 

a.3 Fit an OLS model to set B 

Order the scaled residuals defined by 

sri =   ■ ,re-o 
Vd-x; (X^X,)"1*,. 

Va+x^x,)-1^ 

a.4 If s, the size of the basic subset, is equal to h then go to step 2, 

else use the first s + 1 observations ordered by the scaled residual as the new basic 

subset, B. Go to step a.3. 



26 

b. Version 2 for determining the initial clean subset M is based on 

Simonoff(1991) using a single linkage clustering algorithm to detect multivariate 

outliers. 

b.l Standardize the data by dividing Z = (X : Y) by S1/2 . Note 

that the authors found the classical estimate of 2 superior to the MVE. 

b.2 Construct the single linkage clustering tree for all n 

observations. 

b.3 Order clusters from most to least extreme (the more extreme, 

the later the cluster joins) and consider cases in smaller clusters as potential 

outliers. 

b.4 Cluster until there aren-h "extreme" clusters; the remaining h 

cases are the clean data for the initial subset M. 

2. Compute the internally studentized residual or scaled prediction error, dt. 

A 

d =    yi~xiPM itzM (studentizedresidual) 

A 

d =    -^      ' "M ,i£M (scaled prediction error) 

3. Define s as the size of the current subset. If \d(S+i)\ > fy^+i;,.*-*; then all 

observations with \d,\ exceeding this critical value of the t distribution are outliers. 

Otherwise, find a new subset M by using the first s + 1 ordered observations. If s 

+1 = n, then there are no outliers to consider. 
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Hadi and Simonoff show that their methodology is successful in only two of the 

four "benchmark" example sets from the Rousseeuw and Leroy (1987) robust regression 

text. Kianifard and Swallow's (1989) procedure and Marasinghe's (1985) multi-staged 

approach fail on all four. The best procedure was the multi-staged robust regression MM 

estimator (see Section 2.5.3). Hadi and Simonoff also conduct a limited («=25, p=2 or 3) 

Monte Carlo simulation using similar outlying scenarios to Kianifard and Swallow. The 

results suggest Least Median Squares, Reweighted Least Squares and Least Trimmed 

Sum of Squares perform poorly for outliers at low-leverage due to their low efficiency. 

A high-efficiency MM estimator is sensitive to high-leverage outliers and breaks down 

after 3 observations while a lower efficiency MM estimator (70%) is better for the high- 

leverage outliers at the expense of significant swamping. These results agree with 

Simpson's (1995) simulations where the only weakness for MM estimators is the 

combination of high-leverage and low-dimension. Hadi and Simonoff conclude that their 

procedure (Version 1) is preferable to all others based on computational ease, known 

cutoff values, and overall performance. Their estimators did not breakdown nor 

excessively swamp in the presence of multiple high-leverage points. 

2.4.7 Atkinson Stalactite Plot 

Atkinson (1994) uses a computationally attractive alternative to Rousseuuw and 

van Zomeren (1990) based on the LMS residuals and MVE. Forward selection 

minimizes the probability of including an outlier in the observations in the MVE. The 

search is conducted several times at random starting points to find the "global" MVE 
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subject to no outliers. Simulation is required to scale the LMS residuals to determine 

"outlyingness". Stalactite plots conveniently show which observations exceed a critical 

cutoff value from the scaled LMS residuals as a function of subsample size. When the 

size of the subsample is equal to the number of observations, the stalactite plot displays 

the effect of masking and offers guidance in selecting appropriate subsample sizes for 

protection against masking. The procedure performs well in several of the "benchmark" 

examples, but the algorithm is outdated for LMS and MVE. 

2.4.8 Pena and Yohai Eigenanalysis 

Pena and Yohai (1995) describe a procedure to detect influential subsets in 

regression using eigenanalysis on the influence matrix. The nxn influence matrix is 

defined as the uncentered covariance of a set of vectors which represent the effect on the 

fit of the deletion of each data point. Define t, = y - y(/) = {e, /(l - h^h,, where h/ is 

the fh column of the hat matrix. If T = (ti... t„), then the influence matrix M = 

T' Tips2. The univariate Cook's Distance for each observation is on the diagonal of M. 

The algorithm is as follows: 

1. Form the influence matrix as M = EDHDE//«2 where E is the diagonal matrix 

of residuals, D is the diagonal matrix with elements (1 - h,,)', 

H = X(X'X)~1X', and s2 is the usual mean square error estimate of the 

variance. 

2. Computationally, it is better to consider a decomposition of the influence 

matrix because only a subset of the eigenvectors is of interest. Define A = 
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BA1/2 where the columns of B are the eigenvectors of (X' X)"1 and A is the 

diagonal matrix of the associated eigenvalues. If P = EDXA/(p   s), the 

eigenvectors from the non-null eigenvalues of the influence matrix M are Pv, 

where v, are the eigenvectors fromPT. 

3. Find the eigenvectors of the p non-null eigenvalues of the influence matrix. 

4. Order the components within each eigenvector^,, in ascending order to 

obtain the order statistics v,(i) < v,(2)<.. .v,(„). 

5. Search the eigenvectors for observations with large positive or large negative 

components. These sets will be considered candidates for outliers. The ratio 

a. = vi(/)/vi0.i) for/ = »,...,«- cx searches for a breakpoint for the positive 

components. Similarly, bj = vi0)/vml) for/ = 1,..., c2 finds the breakpoint for 

the negative components. The constants cx and c2 define what percentage of 

the total observations should be considered as potential outliers.   In practice, 

the authors recommend w/4 for both values to detect up to 50% outlying 

observations. It also makes sense that both of these constants should be equal 

since we do not know a priori whether the outliers will load positively or 

negatively. In fact, experimentation in identical scenarios shows the outliers 

to load inconsistently between replicates. 

6.   Search for a possible negative and positive breakpoint in the components in 

each eigenvector. For a particular eigenvector, select the first /„ such that |OJ| 

> A: then consider the observations corresponding to the/' ordered component 

up to n as candidate outliers. For the negative values on the components, 
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select the first j0 such that \bj\ >kand consider the observations corresponding 

to the largest negative ordered component up to they/ as candidate outliers. 

The key to this step is selecting k, the minimum ratio required to declare 

outliers. This parameter is highly significant in determining the tradeoff 

between high power in detecting the outliers and high false alarm rate. The 

authors recommend 2.5; however, this may lead to too many false alarms in 

small samples. 

7.   The last step evaluates the candidate outlier sets identified from step 6 by 

eliminating the observations from an OLS fit and evaluating the t tests 

(Bonferroni) for each candidate outlier and outlier sets. 

The authors' limited testing of the procedure shows it to perform well in high- 

leverage cases, especially with a low amount of contamination. The method also 

correctly identifies outliers from the challenging Hawkins, Bradu, and Kass dataset. 

2.4.9 Swallow and Kianifard Recursive Residual Algorithm 

Swallow and Kianifard (1996) address the deficiencies from their 1990 recursive 

residual methodology for multiple outliers. The improved procedure replaces classical 

estimates of variance with robust measures; the easily computed interquartile range (IR) 

and median absolute deviation from the median (MAD). The IR estimate of the standard 

deviation is the 15th percentile - 25'* percentile of the OLS or recursive residuals. The 

MAD estimate of standard deviation is median {\et - median {e,}|} using OLS or 

recursive residuals. 
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The procedure works for both OLS and recursive residuals. In practice, the 

authors claim using recursive residuals almost always leads to greater detection power. 

The outlier detection algorithm using recursive residuals is as follows: 

1. Order the studentized residuals from an OLS fit for all n observations. 

2. Use the first p ordered observations for the basis for computing the recursive 

residual, 

3. Compute the robust estimate of scale 6. This is the MAD or IR using the 

OLS residuals divided by a correction factor. The correction factor is 

determined by finding the mean IR and MAD estimates from a simulation 

under the null hypothesis of no outliers with the same number of parameters 

and observations as the data being analyzed. 

4. Compute the test statistics |Wy / w| for each observation. 

5. Compare the test statistics to a critical value. Again, the critical value must 

come from simulating the given scenario under the hypothesis of no outliers. 

The critical values are found as the quantiles of the distribution of test 

statistics. It turns out that the critical values are virtually identical whether 

using a MAD or IR estimate of scale. These values are also very similar to 

the percentiles of the standard normal density; particularly as n gets large. 

6. If the test statistic exceeds the critical value, then classify the respective 

observation as an outlier. This is the "recursive method". The authors also 
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provide a modification that can be described as an inward procedure because 

it looks at the maximum |Wy / d| to see if the no outliers hypothesis can be 

rejected. If it is rejected, then the observation with the largest test statistic is 

declared an outlier, it is deleted and the procedure repeats itself by calculating 

the new recursive residuals. This iterates until there are no outliers detected. 

This version is extremely computer intensive and does not offer a significant 

advantage over the basic recursive method. 

Swallow and Kianifard run simulations with the same seven outlying scenarios as 

their previous work (1990) and those of Hadi and Siminoff (1993) which are limited 

because only a single regressor with n = 25 is used. The results show insensitivity to the 

IR or MAD estimate of CT, no significant swamping in any scenario by any method, 

moderately higher power in detecting outliers from recursive residuals over OLS 

studentized residuals, and the usefulness of robust estimator over OLS in masking 

scenarios. No method performs well until the outlying distance is at least 4o\ The 

authors claim of simplicity as the primary advantage to their methodology is questionable 

based on the number of simulations required for distribution properties. 

2.4.10 Sebert, Montgomery, and RoIIier Clustering Algorithm 

Sebert et al. (1998) suggest an approach for identifying a reasonable candidate 

subset of multiple outliers that avoids the complexities associated with most competing 

procedures. The methodology clusters observations from an easily formed projection of 
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the data into two independent dimensions. Specifically, Sebert et al. suggest the 

following steps: 

1. Standardize the predicted and residual values from an OLS fit. 

2. Cluster these observations using Euclidean distance and a single linkage 

clustering algorithm. 

3. Form clusters based on tree height (ch, a measure of closeness) using 

Mojena' s stopping rule (ch = h+1.25sh where h is the average height of the 

tree and sh is the sample standard deviation of heights). Note that tree height 

is a measure of cluster separation. 

4. The single largest cluster is the clean data while the remaining subsets are all 

candidates for outliers. 

5. Assess the influence of the candidate observations using multiple row 

diagnostics. 

Simulated regression data sets demonstrate the success of the methodology. The 

procedure is generally very powerful at detecting outliers and performs well on the 

classic challenging data sets. Other significant simulation results include: 

• The correct observations are identified as outliers increasingly better as 

outlying distance, number of observations, number of regressors, and percentage 

of outliers increase. The last two are counter to what most published results 

show. 
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• Performance is worst when there is one outlying group along the 

regression line and another group at the same location in X space, but with 

significantly larger residual values. 

• The number of clean observations classified as outliers (false alarms) 

decreases as the number of regressors increases. This false alarm rate increases as 

percentage of outliers and number of observations increase. 

• The null case is a limitation to the methodology. When there are no 

outliers, then approximately 20% of the observations are identified as candidates 

for outliers. 

2.4.11 Lee and Fung Forward Selection Algorithm 

Lee and Fung (1997) propose a stepwise algorithm to detect multiple outliers in 

generalized linear models (GLIMs) and nonlinear regression based on a high breakdown 

robust estimator. They determine the clean data set from the studentized residual (GLIM 

raw residual over standard error) from a robust fit and sequentially add some of the initial 

outliers back to the clean set since too many outliers are identified. Outliers are added 

back by determining the upper 5% bound on the studentized residuals via Monte Carlo 

simulation. This procedure iterates until no observations exceed the 5% upper bound. 

There were no problems encountered in the selected examples, but further simulation is 

required to accurately assess finite sample performance. 
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2.4.12 Luceno Reweighted Least Deviances Algorithm 

Luceno (1998) discusses using the weights from a reweighted least squares 

procedure to detect multiple outliers in the GLIM. The mean of the deviances (sum of 

squared deviance residuals) is replaced by a weighted mean of deviances. The weights 

are calculated with a Huber or redescending function. The parameter estimates come 

n 

from minimization of the quantity w_1 £ w,D, (//; </>; v). A is the squared deviance 

residual for the fh observation, fi is the mean (Xß in normal theory), ^ is the nuisance 

parameter (CT in normal theory models), and w, is the weight from the influence function. 

If weights from Huber's function are used, then w, = 1.5/| D}'
2
 | if | DJ'21 > 1.5 otherwise 

wt = 1.0. The procedure avoids estimating a (or the appropriate nuisance parameter) by 

assuming detection of outliers is insensitive to a within a certain range. Outliers are 

considered observations with unusually low values for the weights. Luceno suggests 

direct minimization of the objective function is computationally reasonable (when 

compared to LTS or LMS) and should be done on random subsets to avoid local 

minimums. 

The procedure successfully detects outliers in several examples from McCullagh 

and Neider (1989) and also identifies the outliers in the stackloss data set. The method 

appears to be effective at detecting leverage outliers. Performance apart from 4 examples 

is not reported. 
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2.5 Robust Regression 

Either the residual or the observation's final weight from a robust estimator can 

be used to identify multiple outliers in regression. Robust regression accommodates 

outliers by judiciously downweighting them through the selection of model and input 

parameters. We also consider robust regression estimators beyond the purpose of outlier 

identification in this research. The literature on robust regression is vast and what 

follows is only a portion that is most directly applicable to this research. 

2.5.1 Properties of Robust Regression Estimators 

The three most important properties for robust regression estimators are 

breakdown, efficiency, and bounded-influence. The concept of breakdown is the primary 

motivation for using robust regression over OLS. The breakdown point is defined as the 

smallest fraction of anomalous data that can render the estimator useless. As displayed in 

Figure 1.1, a single outlying point can significantly change the OLS estimates of ß ; the 

breakdown point is 1/w, or 0% because n can be made arbitrarily large. Robust estimators 

can have breakdown points as high as 50%. 

Another desirable property for robust estimators is efficiency. The efficiency is 

defined as the performance of the robust estimator relative to OLS under the assumption 

of no outliers; e is NID (0, <r2I). Recall that the OLS estimate will be the minimum 

variance estimate among all unbiased estimators. Typically, efficiency is expressed as 

the ratio of mean square errors. 
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The third desirable property is bounded-influence in X-space. This is the 

estimator's resistance to being "pulled" toward the extreme observations in X-space. 

Least squares is not bounded-influence and the more remote observations exert greater 

influence on the parameter estimates. 

2.5.2 High-Breakdown Point Estimators 

High-breakdown point (HBP) regression estimators have been developed to 

provide reliable estimates in the presence of a large percentage of outlying observations. 

These estimators can achieve up to a 50% breakdown point and are also know as resistant 

estimators. They are useful for outlier detection and initial estimators, but their low 

efficiency and unbounded influence deter from their use as stand-alone estimators. 

Least Median of Squares (LMS) Estimators. Rousseeuw (1984) introduced the 

high-breakdown (as much as 50%) LMS estimators. LMS is obtained by minimizing the 

hth ordered squared residual where h is defined as the integer portions of nil + (p+l)/2. 

The objective function can be expressed as min median(ef). LMS fits just over half the 
ß 

data and minimizes the residual for a single observation. The original proposal solved 

the objective function with random resampling; however, improved algorithms now exist 

(Burns, 1992 and Atkinson, 1994). The primary unattractive characteristic of LMS is an 

asymptotic efficiency of 0%. Although useful if severe contamination is suspected or 

when used in conjunction with other techniques, LMS has grown out of favor. Ryan 

(1997) argues against LMS based on an unstable algorithm (computationally intense and 

possibly different solutions using the same data) and small changes in the data result in 



38 

large changes in parameter estimates. He concludes LMS should not be used as a stand- 

alone estimator, an initial estimator or an outlier detection estimator. 

Least Trimmed Sum of Squares (UTS) Estimators.   Rousseeuw (1984,1985) 

proposed the LTS high breakdown estimator as an efficient alternative to LMS. The LTS 

estimator is formed by minimizing the h out of n ordered squared residuals from smallest 

to largest. Rousseeuw and Leroy (1987) recommend h = w(l-a) + 1 where a is the 

trimmed percentage. The objective function is min ^ (e.2 L md il is solved wim either 

random resampling (Rousseeuw and Leroy, 1987), a genetic algorithm (Burns, 1992) or 

forward search (Woodruff and Rocke, 1994). This estimator is attractive because a can 

be selected to prevent some of the poor results other 50% breakdown estimators show. 

LTS can be fairly efficient if the number of trimmed observations is close to the number 

of outliers because OLS is used to estimate parameters from the remaining h 

observations. The LTS estimator can become computationally intense as the number of 

observations increase. 

S-Estimators. Rousseeuw and Yohai (1984) develop a high breakdown estimator 

(as much as 50%) that minimizes the dispersion of the residuals. The objective function 

is min s(e, (ß ),..£„ (ß )) where e,(ß ) is the f residual for candidate ß . This objective 

n 

function is given by the solution to (n -p)~ ^p j,-*3P = K where K is a constant 
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E<t>[p] with <Ddefined as the standard normal. Rousseeuw and Yohai (1984) suggest a 

x2     x4      x6 

redescending influence function as p(x) = — - —-y + —-j if |x| ^ c otherwise 

c2 

p(x) = —. The parameter c is the tuning constant.   Tradeoffs in breakdown and 
6 

efficiency are possible based on choices for the tuning constant c and K. The usual 

choice is c = 1.548 and K = 0.1995 for 50% breakdown and about 28% asymptotic 

efficiency (Rousseeuw and Leroy, 1987). 

The final scale estimate, s, is the standard deviation of the residuals from the fit 

that minimized the dispersion of the residuals. The scale estimate is an implicitly derived 

M-estimate of scale. Ruppert (1992) suggests an improved resampling algorithm and 

concludes that S-estimators perform marginally better than LMS and LTS. 

2.5.3 Af-Estimators and Multi-Stage Procedures 

M-Estimators. M-estimators are maximum likelihood robust estimators proposed 

by Hampel (1973) that are nearly as efficient as OLS. Rather than minimize the sum of 

squared errors as the objective, the M-estimate minimizes a function p of the errors. The 

f*t M-estimate objective function is mm ^ p — = min ^ p 
(=i v     s     J 

where s is an 

estimate of scale often formed from a linear combination of the residuals. The system of 

normal equations to solve this minimization problem is found by taking partial 
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derivatives with respect to ß and setting them equal to 0, yielding ^y/ y,-*% 
s   J 

x.=0 

where y/ is the derivative ofp. 

The choice of the y/ -function is based on the preference of how much weight to 

assign outliers (see e.g. Montgomery and Peck, 1992). A monotone y-function does not 

weight large outliers as much as least squares (e.g. a 10a outlier would receive the same 

weight as a 3a outlier). A redescending y/ -function increases the weight assigned to an 

outlier until a specified distance (e.g. 3a) and then decreases the weight to 0 as the 

outlying distance gets larger. 

Newton-Raphson and Iteratively Reweighted Least Squares (IRLS) are the two 

methods to solve the M estimates nonlinear normal equations. IRLS is the most widely 

used in practice and the only one considered for this research. IRLS expresses the normal 

equations as XWXß = XWy where W is an n x n diagonal matrix of weights 

w = M-V ' ~- f \I s*. The initial vector of parameter estimates, ß 0, are typically 
'    (y.-x'ßoh 

obtained from OLS or a high-breakdown point estimator. IRLS updates these parameter 

estimates with ß t = (X'WX)"1X'Wy. The procedure continues until some convergence 

criterion is satisfied. The estimate of scale may be updated after the initial estimate. 

Generalized M-Estimators. The Generalized M-estimators (GM), proposed by 

Mallows (1975) and improved by Krasker and Welsch (1982), were developed to 

overcome the limitations of M-estimators for high-leverage observations. The GM- 
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estimator bounds the influence in X-space by weighting the M-estimate system of normal 

equations by a measure of leverage. The GM system of normal equations is 

f ..       -10 ^ 

V   **t    j 

Yn.i// ?± ^- xt = 0 where ^is a measure of remoteness in X-space. When the n- 

weights are located both inside and outside the argument of the ^-function, the GM 

objective function is Schweppe (Handsin et al., 1975). If the 7i-weights are not inside the 

argument, the GM objective function is Mallows (Mallows, 1975). In practice, the 

distinction between the two objective functions is that Mallows will downweight high- 

leverage points independently of the residual value while Schweppe will not downweight 

if the response value is in line with the regression plane. Thus, Mallows does not fully 

incorporate "good outliers" in the parameter estimates. There are several approaches to 

forming the 7i-weights that use some form of the leverage measures discussed in Section 

2.5.4. 

A numerical optimization scheme is required to solve the GM system of nonlinear 

normal equations. The two most common approaches are also Newton's method and 

IRLS as in M-estimation. The initial parameter estimates are most often from one of the 

HBP estimators in Section 2.5.2. The final parameter estimates can come from a fully 

iterated solution (GM-estimator) or only a single iteration (compound estimator). The 

single iteration method preserves the breakdown of the initial estimator (Simpson, 

Ruppert, and Carroll, 1992). 
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MM-Estimators.   Yohai (1987) and Yohai et al. (1991) introduce MM estimators 

that achieve the high-efficiency of M-estimators and are also high-breakdown. The first 

stage of the three stage procedure calculates an 5-estimate with influence function 

p(x) = liy} - 3>i*/^ + W) if \x\<c; otherwise p(x) = 1. The value of the tuning 

constant, c, is selected as 1.548. The second stage calculates the MM parameters that 

provide the minimum value of £/J ^—JruM) where p^ is the influence function 
i=i    V °"o 

used in the first stage with tuning constant 4.687 and <r0 is the estimate of scale from the 

first step (standard deviation of the residuals). The final step computes the MM estimate 

of scale as the solution to (n - p) ^p 
i=l \ S J 

= 0.5. 

The MM estimator generally performs well except in areas with high-leverage 

(Simpson and Montgomery, 1998b). S-Plus version 4.5 has included the MM estimator 

with the Yohai et al. (1991) test for bias on the robust regression menu. 

2.5.4 Leverage Measures in Robust Regression 

One objective of this research is to improve multi-staged GM and compound 

estimators. Another factor to improve, other than the HBP initial estimator, is the 7t- 

weights that measure the remoteness in X-space. Some other measures of leverage 

beyond the hat diagonals and the Mahalanobis Distance used in robust regression are the 

M-estimates of covariance, the minimum volume ellipsoid (MVE), and the minimum 

covariance determinant (MCD). 
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M-Estimates ofCovariance. Hampel (1973) first suggested M-estimates of 

covariance, but the basic paper on these estimators is attributed to Maronna (1976). 

Maronna addressed the problems of existence, uniqueness, asymptotic distribution and 

breakdown point for these estimators. We are interested in the distances in X-space for 

each observation defined by z = A(x - t)where A is an estimate of the/? xp multivariate 

scatter matrix and t the multivariate location vector. Note that (A'A)   is the estimate of 

the covariance matrix of X. From Huber (1981), the maximum likelihood estimate of A 

and t is determined by solving the simultaneous equations 

ave{w(|z|)z}   = 0 

ave({M|z|)zzT - vQz\)IP} = 0 

where u, v and w are arbitrary weight functions and ave{-} is the average taken over the 

sample. We solve these equations using the Newton algorithm and Huber weight 

functions with the associated constants and correction factors as defined in the ROBETH 

library (Marazzi, 1993). 

The following steps summarize the ROBETH library implementation of the M- 

estimates of covariance procedure to compute robust distances for the n xp matrix X with 

elements xtJ for i = 1 to n andj =ltop. 

1. Find initial estimates of A and t. i, = med {xu} and A is a diagonal matrix with 

diagonal elements a^■ = 1 /med{\ xtj - medfry} |} / 0.6745. 

2. Find the constant parameters (a, b, c, d) of the arbitrary weight functions u(z) 
(Huber's weight function), v(z), and w(z) by first specifying the expected proportion 
of outliers in the sample, s. 
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w(z) =   c?lz2     forz2<o2 

1 fora^z2^2 

tflz2     for b2<z2 

a2 = max(p - K) and Z>2 =p + K. The value for K comes from regula-falsi solution to 

i-*~*'l/S?, 
a/    \a /i 

e-^/2 rf £     ^dr + ^-^P-^ +tl\   rp-idr 

where kp denotes the surface of the unit sphere in dimension/?; k  = 2npl21 T(p 12). 

v(z) =   d for all z 

d = \lp^xl{a2)^-xl{b2))}+{%2^b2)-xU^ 

w(z) =1 for z < c 
clz       for z > c 

A Newton procedure solves for c in e~* n I Jbt + c(<D(c) - (1 - s 12) /(l - f)) = 0 

A /* 

3. Calculate      z, = A{xj -t) for / = 1 to n 

rj = £ w(\ z, \Xxv - tj) for; = 1 to/? 

s2=J,{H\zi\) + w\\zi\)\z,\/p} 

4. Compute a lower triangular matrix of improvements S = (sJk) 

s„=—-—\ait -(b -c)e -d)    j=\\op M    2(a+byM ' 

sik —atk 1      (a + b)  J 

^=0 

j>k 

j<k 

where a = n^uQ z, |) |z, \2;b= (n(p + ly^u'Q z, |) | z, |3 

c = n^v'Q z, |) | z, |; 3 = n^vfl z, |); and e = 
dp-a 

2(a+b) + p(b-c) 

A A 

5. Update the location estimate, /. = tj + hj where hj = ry /s2 from step 3. 
A A A 

6. Update the scatter matrix, A = (I - yS)A0 where A0 is the initial (or current) 
estimate of the scatter matrix and y is the step length based on the maximum value of 

7.   Check for convergence on the location and scatter matrix estimates and go to step 3 if 
improvement is still possible based on the specified tolerance values.  Otherwise 
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calculate the distances from the M-estimates of covariance with the current location 
and scatter estimates. 

Minimum Volume Ellipsoid (MVE). Rousseeuw (1985) proposes the MVE as a 

high-breakdown estimate for the mean and covariance matrix. The MVE is the smallest 

ellipsoid covering just over half of the data. The robust estimates of the mean and 

covariance matrix come from the classical calculation of these quantities only using the 

subset of observations that are contained in the MVE. The original algorithm uses 

random resampling to find the subset of observations that is covered with the smallest 

volume ellipsoid. The algorithm is: 

1. Form a random sample of size q = p + 1 from the n observations. 

2. Compute the classical mean and covariance matrix for this sample of size q. 

3. Compute the Mahalanobis distance for all h observations with the estimators 

in (2). 

4. Increase the sample to size nil + 1 by adding the nil + \-q observations with 

the least Mahalanobis distance from (3) and compute the mean and covariance 

matrix. 

5. Compute the product of the median Mahalanobis distance and the covariance 

matrix from (4). 

6. The determinant of the quantity in (5) is proportional to the volume of the 

ellipsoid covering these observations. 

7. Iterate steps 1 through 6 for the specified number of random samples to 

evaluate. 
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8. Compute the mean vector and covariance matrix for the sample that yields the 

minimum value for the quantity in 6. 

9. Correct the covariance matrix for small sample sizes (Rousseeuw and van 

Zomeren, 1991) and consistency at multivariate normal distributions with the 

.    (1 + 15 l(n-p)f 
quantity - f iLLL-. 

%p-\,0.50 

Hawkins (1993) improved the algorithm using steepest descent with random 

restarts rather than the random sampling method. Woodruff and Rocke (1993) propose a 

heuristic search optimization procedure. Currently S-Plus 4.5 uses genetic algorithms 

(Burns, 1992). 

Unfortunately, the MVE is inefficient with asymptotic efficiency of 0 (Davies, 

1992). The implementation in S-Plus goes an additional step to increase efficiency. All 

remaining observations apart from those in the MVE are added back to compute the final 

estimate of the mean and covariance matrix if their Mahalanobis distances (calculated 

with the original MVE estimates) are less than a cutoff value from the chi-square 

distribution. This significantly increases the efficiency of the estimates. An alternative 

estimator is the Minimum Covariance Determinant (MCD) that was also introduced by 

Rousseeuw (1985).  The MVE is an n'm estimator and the MCD is rim (Butler et al., 

1993). 
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Minimum Covariance Determinant (MCD). The MCD searches for the sample of 

size q < n that has the minimum value, among all samples evaluated, of the determinant 

of its covariance matrix. The estimator is most often a 50% breakdown estimator so q is 

set to the integer part of (w +p + l)/2. The algorithm has evolved from random 

resampling much like the MVE. The improvements proposed by Hawkins (1994), 

Woodruff and Rocke (1994) and the genetic algorithms (Burns, 1992) parallel those of 

the MVE. Butler et al. (1993) prove that the MCD has much better statistical properties, 

notably efficiency, than the MVE. Several other authors recommend the MCD over the 

MVE (Simpson and Chang, 1997, simulations in Rocke and Woodruff, 1994); however, 

Rocke and Woodruff (1997) do not recommend either as stand-alone procedures because 

of computational complexity in high-dimension. It is not known how the genetic 

algorithms perform as stand-alone procedures. Rocke and Woodruff (1997) recommend 

their hybrid procedure from 1996. 

Rocke and Woodruff Hybrid Procedure. Rocke and Woodruff (1996) propose a 

complex algorithm to detect outliers from multivariate normal samples large in both 

dimension and the number of observations. Their procedure combines several results 

from the literature to form a hybrid robust estimator of location and scale with attractive 

properties. This estimate is then used to compute the robust distance only for each 

observation and does not consider regression data and residuals. The estimator has up to 

a 40% breakdown point compared to the usual breakdown of 1/(1+/?) for robust 

estimators. Additionally, the estimator is affine equivariant so linear transformations on 
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the data will not affect the performance. This measure of leverage has not been used in a 

GMOT compound estimator. 

Rocke and Woodruff use a two-phase approach. The output of the first phase is 

an estimate of multivariate location and shape. The first step is to equally partition the 

data into cells to minimize computational burden. Within each cell, the observations 

from the minimum covariance determinant (MCD) using Hawkins (1993) steepest 

descent algorithm with random restarts are the starting point for the sequential point 

addition algorithm from Hadi (1992). This result is then used as a starting point for the 

translated bi-weight M-estimation of the mean and covariance matrices. Rocke and 

Woodruff (1993) use their previously published simulation results to justify using the 

constrained M-estimator over the bi-weight S-estimator. The robust covariance and 

location matrices are found by using the estimators from the cell with the minimum 

determinant of the sample covariance matrix. 

The second phase runs a simulation to determine the appropriate cutoff value to 

classify observations as outliers based on n observations in/? dimensions using clean 

multivariate normal data in the Phase I algorithm. New location and shape matrices are 

formed by those observations below the simulated cutoff value. The robust distance is 

calculated using these new location and shape matrices and compared to a %2
pA_a critical 

value to classify the observation as outlying or not. 

Their results show no problems with swamping when no outliers are present 

based on simulations with 10-40 variables and samples sizes from 50-3200.   The 

proposed hybrid estimator significantly outperformed Rousseeuw's (1985) random search 
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over elemental subsets and marginally outperformed the forward search of Hadi (1992). 

Their algorithm worked well on the smaller published "challenging" sets. Other 

significant results for their procedure include: 

• Identification of outliers is easier if the outliers lie in more than one cluster. 

• In higher dimensions, outlier detection is more difficult, more data is required, 

and the breakdown is lower. 

• Increasing sample size increases the probability of correctly identifying 

outliers. 

• For reasonable computation time, breakdown is roughly 30-40% in dimension 

10, 25-35% in dimension 20, and 20-25% in dimension 40. 

2.6 Variable Selection Procedures 

An important aspect of building a regression model is to decide which regressor 

variables should be included in the model. The ß vector is partitioned into an active 

variable set, ß, ofp - q parameters and inactive set ß 2 of q parameters to test the 

hypothesis that Ho: ß 2 = 0 

HA: ß2*0. 

Failure to reject the null hypothesis suggests there is no evidence that any of the regressor 

variables in set ß 2 have any affect on the response value. 

The goal of a variable selection procedure is to have the significant regressor 

variables included in set ß, with high probability, while simultaneously achieving a high 
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probability that the insignificant variables are contained in set ß 2. The regression model 

building strategy is an iterative process that involves selection of an active subset of the p 

parameters followed by model diagnostics to assess the fit. The objective is to find the 

best subset of the/? parameters to include in the model that leads to good prediction 

capability yet minimizes the variance of prediction. The former objective would suggest 

including all/? variables while the latter suggests using as small of a subset as possible 

because the variance of prediction always increases as regressor variables are added to a 

model. Models with fewer variables are also preferred for simplicity and ease of data 

collection. 

2.6.1 Variable Selection in Regression 

There are numerous variable selection methods available to the analyst. The 

simplest is to retain only the variables whose ratio of coefficient to standard error is 

significant. This Mest approach is not reliable as dimension increases and particularly 

when dependencies between regressor variables exist. A common alternative is the class 

of computer-intensive variable selection methods (e.g. forward, backward, stepwise, and 

best subsets regression). The selection criteria are often based on F-tests (F-to-enter and 

F-to-leave) or Mallows's (1973) Cp criterion; Cp = a~2 ^(y, -ytf -n + 2p where jys 

the predicted value and &2 is typically the MSE from the full model. Unfortunately, 

Miller (1990) demonstrates that the F tests and Mallow's Cp criterion are poor for model 
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selection as are the R2 and adjusted R2 measures. Breiman (1995) states that the 

preferred measure of performance for variable selection in regression is prediction error. 

Resampling methods are currently recommended to calculate a measure of 

prediction error for variable selection. The two most common resampling methods are 

cross-validation and bootstrapping. Cross-validation procedures partition the data into 

two disjoint sets. The model is fit with one set (the training set) and subsequently used to 

predict the responses for the observations in the second set (assessment set). Bootstrap 

procedures form many samples from the original data by resampling with replacement. 

Details of the methods and their application to the variable selection problem in 

regression are outlined below. 

2.6.2 Cross-Validation Procedures 

An intuitively appealing method to calculate a predicted response value is to use 

the parameter estimates from the fit obtained by omitting the observation. This predicted 

n 

response value is denoted by j>(l)and kcv, = «'^(v, -y(0)
2 is known as the leave-one- 

out cross-validation estimate of average prediction error for a model. Apart from the rf 

term, this quantity is the PRESS statistic in least squares. For OLS, the PRESS statistic 

- ^   e    V 
is calculated as Y —'—   where \ =x/(X'X)-'x;. Note that PRESS does not require n 

;=i \l-Kj 

separate fits while other regression estimators (e.g. robust) do require all n fits for the 

leave-one-out cross-validation estimate of prediction error. Shao (1993) proves with 
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asymptotic results and simulations that the model with the minimum PRESS statistic or 

leave-one-out cross-validation estimate of prediction error is often overfit. He 

recommends using K-fold cross-validation that leaves a subset of observations out. 

Quenouille (1949) explored the idea of leaving two observations out of the 

training set and Stone (1974) extended the method to more than two. In K-fold cross- 

validation, the training set omits approximately w/K observations from the training set 

rather than a single observation like PRESS. To predict the values for the tfh assessment 

set, Sk,a, all observations apart from those in set k are the training set, S*,,, and are used to 

estimate the model parameters. The K-fold cross-validation average prediction error is 

ACPJC = «"'^(v; - y(kJ)J where y(kJ) is the predicted response for observation i 
i=i 

belonging in assessment set Sk,a- ■ 

One approach to the K-fold cross-validation estimate of prediction error is to 

randomly select the w/K observations to form the assessment set. This process is repeated 

numerous times and the prediction errors are averaged. Breiman et al. (1984) propose a 

less computationally intense scheme that randomly partitions the data into K different 

disjoint sets. Davison and Hinkley (1997) recommend K = min (nm, 10) in practice. 

This procedure decreases the variance of prediction error over that of the leave-one-out 

cross-validation estimate but at the expense of increased bias. Surprisingly, Shao (1993) 

demonstrates that the smaller the training set (larger value of K), the better the K-fold 

estimate is for model selection. 
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To reduce the bias, Burman (1990) recommends the adjusted K-fold cross- 

validation estimate of prediction error as 

KCV,K = KV,K +V-&J ""12>/ - *(*.<))2   where A is the ratio of observations 
K 

I 
*=1 

in assessment set k to the total n and y{k () is the predicted response for the z  observation 

from the fit with training set St> *. The Breiman and Spector (1992) simulations 

demonstrate that the performance of the adjusted cross-validation prediction error 

estimate is slightly worse than the standard K-fold cross-validation prediction error for 

least squares variable selection. Shao (1993) shows that both the leave-one-out and K- 

fold cross-validation procedures have a negligible probability of selecting an 

underspecified model. The challenge is avoiding an overfit model. 

2.6.3 Bootstrap Procedures 

Bootstrap estimators in regression have received considerable attention in the 

literature since their introduction by Efron (1979). Wu (1986) provides the theoretical 

results for bootstrap methods applied to regression. Hall (1989) proves that inference in 

regression, such as confidence intervals, based on the bootstrap estimate are more 

accurate than standard inference procedures even if the error is Gaussian. 

The fundamental element of a bootstrap procedure is the bootstrap sample. For 

bootstrapping pairs in regression (Efron, 1982), the sample is formed by randomly 

sampling with replacement n times both a response and its associated vector of regressor 

variable values from the original sample. The bootstrap sample may contain an 
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observation from the original sample once, multiple times or not at all. In fact, the 

probability that an observation is included in a bootstrap sample of size n is 1 - e  = 

0.632 (Efron and Tibshirani, 1997). A regression model is then fit to the bootstrap 

sample to obtain the bootstrap parameter estimates ß \ A large number of bootstrap 

samples (B > 100) are constructed from the original sample for model inference. 

For the variable selection problem, the estimate of average prediction error for the 

bth bootstrap sample is kb = n^iy, -*fb? where y„x, are from the original sample. 

Efron (1983) provides the unbiased estimator of prediction error as 

At^-^iiy,-*»)2 *«-*i(y,-*$l)2 -^t(y, -*T>? where x>the 
i=i »=i i=i 

vector of regressor values for the f observation in the bth bootstrap sample. The overall 

B   „ 

bootstrap estimate of average prediction error is simply A^ = B 2a^btmbiased. Shao 

(1996) shows that selecting the model with the minimum ABS is inconsistent. 

Inconsistency implies that the probability the true model has the minimum bootstrap 

average prediction error does not equal 1.0 as n approaches infinity. Shao corrects this 

inconsistency for bootstrapping pairs by using substantially fewer than n observations to 

construct the bootstrap samples. This procedure does not use the bias-corrected estimate 

of prediction error. Breiman (1996), motivated by increasing the 0.632 probability that 

an observation is selected in a bootstrap sample, notes that using bootstrap samples of 

size In has little effect on the results for least squares variable selection. 
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2.6.4 Other Modifications to Resampling Methods for Variable Selection 

Breiman and Spector (1992) explore the use of cost admissibility (penalty for 

adding variables) with bootstrap and cross-validation prediction error for variable 

selection. Their empirical results indicate that this modification is only slightly beneficial 

to the variable selection process. This is an important result because most resampling 

estimates of prediction error do not account for the number of variables in the model. 

Breiman (1992) recommends the little bootstrap estimate of prediction error for 

variable selection in linear models. The prediction error for a k variable model using this 

approach is AApp(k) + 2B,(k).   The little bootstrap error, Bt (k), is the resubstitution error 

from the model selected using y* = y +e  where e is a vector of variates from NID (0, 

t2o2) with 0.6 <t < 0.8. The MSE for the full model is used as an estimate of a2. 

Breiman shows that the little bootstrap is unbiased and superior to Cp, F-to-enter, and F- 

to-leave for variable selection for fixed designs. 

Breiman (1996) suggests bagging (bootstrap aggregating) regressor variables. 

For each of the B samples formed by bootstrapping pairs, perform a forward selection to 

obtain a 1 variable model, 2 variable model,... k variable model. The nxk matrices of 

predicted values from these k models are averaged across the B bootstrap samples. The 

model with the lowest average prediction error is selected. Limited simulation results 

indicate that this procedure performs better than standard forward selection. It is unclear 

how to proceed if the same variables are not consistently selected in the B samples for a 

given dimension. 
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Davison and Hinkley (1997) describe a hybrid estimate of bootstrap prediction 

error for variable selection adapted from Efron and Tibshirani (1997). The hybrid 

estimate of prediction error weights the apparent error and the bootstrap cross-validation 

error calculated from the predicted values of those observations not included in the 

bootstrap sample. The authors' empirical evidence suggests this procedure is superior, 

although no results are published. 

2.6.5 Variable Selection with Robust Regression Estimators 

Although numerous estimators have been proposed in the last 25 years, there are 

significantly fewer results in the literature that explore variable selection procedures in 

the robust regression model. Most robust regression variable selection methods are based 

on robust versions of the general linear test that use the asymptotic covariance matrix 

(Hampel et. al, 1986). Markatou and He (1994) and Hertier and Ronchetti (1994) extend 

the Wald (similar to f-tests) and drop-in-dispersion tests (similar to F-tests) to GMand 

compound estimators. Field (1997) and Field and Welsh (1998) propose saddlepoint 

approximations of tail area probabilities for robust regression hypothesis testing as 

improvements to the asymptotic approach. The results are mixed and they recommend 

further testing in finite samples. Ronchetti and Staudte (1994) propose a robust version 

of Mallows's Cp. This method multiplies the squared residuals by the final weights from 

a robust fit to compute the residual sum of squares. Two additional quantities are also 

added to the residual sum of squares that are a function of the number of parameters and 
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the selected robust estimator. The robust Cp appears to work satisfactorily for their three 

examples, but no simulation results are reported. 

The Wald test is currently preferred (Hertier, 1997) because of its asymptotic chi- 

square distribution and the relative ease to calculate the asymptotic covariance matrix. 

Wilcox (1997) experiments (results not reported) with the Wald test using the M- 

estimator and the Coakley and Hettmansperger (1993) compound estimator. He found 

for both estimators, even with normal and homoscedastic error terms and n = 100, poor 

control over Type I error. All authors conclude that it is important to do further testing 

and evaluation to understand the strengths and weaknesses of the methods in finite 

samples. 

A common use of resampling methods in robust regression is construction of 

confidence intervals and prediction intervals with the bootstrap (Efron and Tibshirani, 

1993, DavisonandHinkley, 1997, Wilcox, 1994,1996a, 1996b, 1997). Mammen(1993) 

shows the consistency of the bootstrap for linear tests with the M estimator. 

Wilcox (1997,1998) presents an interesting approach to the variable selection 

problem in robust regression using a bootstrap resampling scheme. He uses a percentile 

bootstrap approach to find critical values for the joint confidence region of the 

Mahalanobis distance for the model parameters. The steps of the algorithm are: 

1. Obtain B bootstrap estimates of ß by bootstrapping pairs. 
2. Estimate the covariance matrix V using all B bootstrap estimates of ß . 
3. Find the Mahalanobis distance of (ß * -ß ) using V"1 for each bootstrap 

sample where ß is the bootstrap estimate of the model parameters and ß is the 
vector of parameter estimates from the original data. 

4. Sort the Mahalanobis distances and call the (l-a)B ordered distance the 
critical value. 



58 

5.  Find the test statistic by the Mahalanobis distance using V"1 of (ß - c) where c 
is a vector of constants often selected as 0 to test for significance. 

Wilcox (1998) states there is room for improvement with this method because the 

probability of a Type I error can be substantially less than nominal levels in many 

circumstances. He states that this approach does not work well with least squares; 

correction factors through simulation are required to achieve the correct coverage 

probabilities. 

Davison and Hinkley (1997) provide a brief discussion of resampling methods in 

robust regression. Their guidance on resampling methods for variable selection in robust 

regression focuses on two main points: 1) remove gross outliers from analysis because 

too many outliers could appear in the resampled data leading to inefficiency and 

breakdown and 2) most of the prediction error methods for least squares should apply to 

robust regression. They recommend that gross outliers be removed by large residuals 

from an LTS fit. 

2.7 Literature Review Summary 

This chapter has reviewed the relevant published results to the research 

objectives. Clearly, there are numerous options available for the multiple outlier 

detection problem with few comparable results available between methods. A 

comprehensive performance study is missing. Also, several options exist for the 

selection of components in multi-staged GM and compound estimators. A critical 

evaluation of these components could lead to improved performance. Lastly, the variable 
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selection problem has not been fully explored for multi-staged GM and compound 

estimators. The usefulness of variable selection resampling methods has not been 

thoroughly investigated. 



Chapter 3 

A Comparative Analysis of Multiple Outlier Detection Procedures 

3.1 Introduction 

There has been considerable interest in recent years in the detection and 

accommodation of multiple outliers in statistical modeling. This chapter uses Monte Carlo 

simulation to evaluate numerous recently published outlier techniques in the linear 

regression model. Kianifard and Swallow (1990) report a similar smaller study using a 

few earlier techniques. Other comparative analyses typically appear in journal articles 

where the authors propose a new methodology; however, these studies are often limited in 

scope and breadth of techniques. Our approach tests the latest and most respected 

multiple outlier detection procedures across a number of realistic and challenging 

regression scenarios. 

In general, Barnett and Lewis (1994) define outliers as observations that appear 

inconsistent with the remainder of the data set. For this paper, we wish to identify outliers 

in linear regression modeling. Specifically, we are concerned with observations that differ 

from the regression surfece defined by the bulk of the data. It is important to identify 

these types of outliers in regression modeling because the observations, when undetected, 

can lead to erroneous parameter estimates and inferences. Additionally, these outliers may 

be of interest themselves to provide insight into process behavior at certain operating 

conditions. 
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If only a single or few outliers exist, many standard least squares regression 

diagnostic quantities and plots will reliably identify these observations. However, these 

diagnostics have been shown to fail in the presence of multiple outliers; particularly if the 

observations are clustered in an outlying cloud. The measures may either fail to identify 

the outliers (masking), identify the clean observations as outliers (swamping), or could 

both mask and swamp observations. To overcome the limitations of the standard least 

squares diagnostics, numerous multiple outlier detection techniques have been proposed to 

identify the outlying subset of observations. 

The outlying observations can be remote in the levels of the regressor or 

explanatory variables (exterior X-space observations). These are considered high-leverage 

points because they are influential and pull the regression surface toward them We refer 

to cases that are not unusual in X-space as interior X-space observations. Observations 

can also be outlying in the response variable (Y-space) because of distant values from the 

responses of the clean cases. Further classification of outliers is possible with respect to 

the regression model. If the observations do not conform to the regression surface defined 

by the bulk of the data, then these cases are known as regression or residual outliers. We 

are concerned with two main outlier configurations likely to be encountered in practice: 1) 

observations that are interior X-space regression outliers and 2) observations that are 

exterior X-space regression outliers. We consider testing these scenarios when the 

response variable for the outliers is a Y-space outlier and when it is not. A third important 

outlier scenario occurs when the observations are remote in X-space but the response 
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values conform to the regression surface. We limit the scope of this chapter by not 

including these high-leverage "good outliers" in the study. 

Section 3.2 briefly describes the multiple outlier detection procedures used in this 

comparative study. Detailed summaries of many of these and other multiple outlier 

detection procedures can be found in Chapter 2, Hadi and Simonoff (1993), Barnett and 

Lewis (1994), and Sebert (1997). Section 3.3 describes the Monte Carlo simulation 

scenarios, factors, factor settings and the measures of performance; Section 3.4 provides 

the simulation results and analysis; and Section 3.5 summarizes the results for each 

procedure and provides recommendations. 

3.2 Multiple Outlier Detection Procedures 

The multiple outlier detection methods for linear regression selected in this study 

are either those most recently published or those most frequently cited in the literature. 

We do not consider many of the previously-published methods that have been tested and 

proven to be either ineffective or too restrictive in assumptions (e.g., specifying the exact 

number of outliers). We do not consider (but do advocate) the subjective evaluation of 

the data from various multivariate plots to identify the outliers as suggested by Atkinson 

and Riani (1997) and Cook (1998), among others. 

It is convenient to consider two broad classes of multiple outlier detection 

procedures as defined by Hadi and Simonoff (1993): direct methods and indirect methods. 

The direct methods use algorithms to isolate outliers and the indirect methods use the 

results from robust regression estimators. The description of both the direct and indirect 
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procedures below considers the standard linear model y = xß +e where y is the observed 

response vector of dimension n, the number of observations; X is the observed nxp 

matrix of regressor variables with intercept; and e is the column vector of« random errors 

assumed to have mean 0 and covariance matrix c^I. 

3.2.1 Direct Procedures 

Many of the direct procedures in the literature are based on either sequential 

deletion (backward search) of outlying observations or sequential addition (forward 

search) of clean observations. In a backward search, the entire set of observations is 

initially considered and the outliers are sequentially removed by a criterion such as the 

largest absolute value of some transformed residual. The forward search works similarly. 

A small subset of the data is selected as the initial clean basis and clean observations are 

sequentially added to this basis. Methods using forward search generally outperform 

backward search methods (Simonoff, 1991, Atkinson and Riani, 1997). We consider the 

forward search procedures from Hadi and Simonoff (1993,1997) and Swallow and 

Kianifard (1996). We also consider the direct procedure based on the eigenstructure of 

the influence matrix from Pena and Yohai (1995) and the clustering algorithm from Sebert 

et al. (1998). The general steps of these algorithms and specific issues related to this 

research are outlined below. For most of these procedures, the authors provide alternative 

algorithms and parameter settings. Our philosophy is to choose the best performing 

options determined from our pilot studies, the authors' published results or both. 
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The Hadi and Simonoff (1993) forward search algorithm.   This procedure 

initially determines a clean basis ofp + 1 observations from the smallest absolute value of 

the adjusted residual from a least squares fit, a, = e,/>/1"Ä« • This basis fa iteratively 

increased to the initial clean subset of size v = (n + p + l)/2 by using the lowest values in 

magnitude of least squares scaled residuals. Next, the absolute values of the studentized 

residual (if the observation is in the current basis, M) or the scaled prediction error (if the 

observation is not in M) are ordered and the lowest v + 1 cases become the new basis M. 

The procedure continues to add observations until the (s + \)st ordered residual measure 

exceeds t(a/2(s+i),s-k) where s is the number of observations in the current subset. 

Observations s + 1 to n are the outliers. Hadi and Simonoff (1997) improve this algorithm 

by using the robust distance measures from the Hadi (1992, 1994) forward selection 

algorithm to determine the initial clean subset of size v observations. 

The Swallow and Kianifard (1996) recursive residual forward search algorithm. 

Swallow and Kianifard suggest recursive residuals standardized by a robust estimate of 

scale as the test statistic to classify multiple outliers. The algorithm first orders the 

magnitudes of the studentized residual values from a least squares fit to form the basis ofp 

clean observations. Recursive residuals, wj, are scaled by the median absolute deviation 

from the median (MAD) estimate of scale a. The wj are defined as 

yy-*'Py-i .     ^, 
w = —: T7T» / = P + y,—,n • 

'    (l + x^X^X,,,)-1*,)172 
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The MAD is median {\e( - median {e,}|} where et is the OLS residual, not the studentized 

residual. 

The test statistic L, /at for each observation is compared to a cutoff value to 

identify the outliers. A correction factor for the MAD estimate of scale and the cutoff 

value come from simulation under the null hypothesis of no outliers. 

The Pena and Yohai (1995) influence matrix algorithm. This procedure searches 

for breakpoints in the ordered components within the eigenvectors from the influence 

matrix, M = EDHDE//W2 where E is the diagonal matrix of least squares residuals, D is 

the diagonal matrix with elements (1 - A«)"1, H, the hat matrix, = X(X'X)"1 X', and s2 is 

the usual mean square error estimate of the variance. If the ratio of components exceeds 

2.5, then consider all ordered observations after (or before if the components are negative) 

this breakpoint as the candidate outliers. 

The Sebert, et al. (1998) clustering algorithm. This approach clusters the 

standardized predicted and standardized residual values from a least squares fit. The crux 

of the algorithm is finding the single largest cluster, or the bulk of the data to classify as 

the inliers. Mojena's stopping rule forms the final clusters (single linkage, Euclidean 

distance) by splitting a cluster tree at the average of the n -1 tree cluster heights (a 

measure of cluster separation) plus 1.25 times the standard deviation of the tree cluster 

heights. 
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3.2.2 Indirect Procedures from Robust Regression Estimators 

Robust regression techniques accommodate outliers by downweighting or ignoring 

the unusual observations to ensure they are not too influential on the regression parameter 

estimates. It is possible to detect aberrant observations from either the final weights 

assigned to the observations or by the magnitude of the residuals. Our research has shown 

the residuals provide the most reliable signal to detect multiple outliers. The cutoff values 

to declare an observation an outlier from the residual value must be computed by Monte 

Carlo simulation because the distribution of robust regression residuals is not known. We 

generate 1000 clean data sets from the specified distribution with k regressor variables and 

n observations under the null hypothesis of no outliers. The cutoff value is the average of 

the two appropriate percentiles (e.g., the 2.5th and 97.5th) of the 1000 * n residuals. All 

robust regression estimators in this research have nearly symmetric distributions for the 

residuals of clean observations. 

The multiple outlier detection capability of several common robust regression 

estimators is tested in several scenarios. The common robust estimators are Least Median 

of Squares (LMS), Least Trimmed (sum of) Squares (LTS), and M-estimators. These 

three estimators are available using the internal functions of S-Plus 4.5. We also consider 

the MM estimator from Yohai (1987) and its implementation through the ROBETH S- 

Plus library (Marizzi, 1993). We use the code from Wilcox (1997) for the standard 

bounded influence generalized M-estimator and the compound estimator from Coakley 

and Hettmansperger (1993). Also tested is the Simpson and Montgomery (1998) 

compound estimator. 
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LMS estimator. Rousseeuw (1984) introduced the high-breakdown (as much as 

50%) LMS estimators. LMS is obtained by minimizing the h,h ordered squared residual 

where h is denned as the integer portions of nil + (p+l)/2. Note h is not the median of«. 

LMS fits just over half the data and minimizes the residual for a single observation. 

LTS estimator. Rousseeuw (1984,1985) proposed the high-breakdown LTS 

estimator as an efficient alternative to LMS. The LTS estimator is formed by rninimizing 

the h out of« ordered squared residuals. Rousseeuw and Leroy (1987) recommend h = 

«(1-a) + 1 where a is the trimmed percentage. This estimator is attractive because a can 

be selected to prevent some of the poor results (efficiency) that other 50% breakdown 

estimators show. 

M-estimator. Huber (1973) developed the M-estimator by minimizing a symmetric 

function of the residuals over the parameter estimates. These estimators are the maximum 

n 

likelihood solution to min £ p(et I s) where p is the residual weighting (influence) 

function, and s is the scale estimate to ensure that if the v values are multiplied by a 

constant c, then the estimated regression coefficients will also be multiplied by c. Several 

residual weighting functions are possible based on the downweighting philosophy (see 

Montgomery and Peck, 1992). 

MM estimator. The MM estimator is a high-breakdown and high-efficiency 

estimator with three stages. The initial estimate is a high-breakdown estimate using an S- 

estimate. The second stage computes an M-estimate of the errors' scale from the initial S- 
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estimate residuals. The last step is an M-estimate of the regression parameters using a 

redescending y/ function that assigns a weight of 0.0 to large residuals. 

Standard Generalized M-estimator. This estimator uses iteratively reweighted 

least squares to estimate the model parameters taking into account high-leverage points. 

The initial estimate is OLS and the estimate of scale is found by scaling the median of the 

absolute value of the OLS residuals. The hat diagonals are used as the measure of 

leverage. The GM objective function uses Schweppe weights that seek to improve 

efficiency by assigning less weight to high-leverage residuals. 

Coakley and Hettmansperger estimator. This compound estimator uses LTS as 

the initial estimate and adjusts the estimates with empirically determined weights. The 

weights given to the leverage come from the robust distances using the minimum volume 

ellipsoid (MVE) estimator. Other components include a Schweppe-type GM objective 

function, an estimate of scale from the scaled median of the LTS residuals, the Huber y/ 

function and a one-step Newton-Raphson convergence approach. 

Simpson and Montgomery estimator. This compound estimator uses an S-estimate 

for the initial estimate and also an 5-estimate of scale. The scaled Krasker- Welsch weights 

from the M-estimates of covariance provide the measures of leverage. Other components 

include a Schweppe-type GM objective function, Tukey bi-weight ^function and a one- 

step reweighted least squares convergence approach. 

A related approach to the indirect methods from the robust regression estimators is 

the Rousseeuw and van Zomeren (1990) multiple outlier detection procedure. In the 
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original proposal, observations are classified as outliers if either the LMS residual value 

exceeds 2.5 or if the Mahalanobis distance measure using the MVE estimates of the mean 

and covariance matrix exceeds a percentile from the chi-square distribution with k degrees 

of freedom. The MVE estimate of the mean is the centroid of the smallest ellipse covering 

at least half of the observations and the estimate of the covariance matrix is determined 

from these cases along with a correction factor for consistency at multivariate normal 

distributions. Rousseeuw and van Zomeren (1991) recommend using simulated cutoff 

values as an update to the procedure to guard against swamping problems. 

There are several published results that criticize this method for identifying too 

many outliers. None have used the improved genetic algorithms to compute the MVE and 

LMS estimates. These algorithms are computationally and statistically more efficient 

because more "clean" observations are used than in previous algorithms. 

3.3 Monte Carlo Simulation Performance Study Planning 

We use Monte Carlo simulation to test the performance of the multiple outlier 

detection procedures across a wide range of scenarios. The simulations generate a fixed 

percentage of clean observations and plant outliers at locations specified by the scenario 

and factor settings. The regressor variable levels for the clean observations are generated 

from a multivariate normal distribution with a mean of \ix = 7.5 and standard deviation of 

C7X = 4.0. The choice of these parameters does not affect the results of the simulations, but 

is selected to be consistent with some of the results in the literature. The response for the 
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i* clean observation is generated by y, = x'ß + s, where ß is the vector of known 

regression coefficients arbitrarily selected for the simulations to be 0 for the intercept and 

5.0 for each of the k regressor variables and s, is the random error term distributed 

N(0, a]). We select a) to be 1.00. For the planted outliers, the f regressor variable 

value for the/ observation is x,y = xifilean + 45L + s* where xidean is the average of the 

clean values for the f regressor, 8L is the magnitude of the outlying shift distance in X- 

space in standard deviation units, ox, and s*. is a random variate from a Uniform (0, 0.25). 

We use the e* term to separate multiple observations in a cloud to protect against singular 

matrices. If the f observation is a regression outlier, the response value is calculated by 

yi = x'ß + 8R where 8R is the magnitude of the outlying distance off the regression plane in 

standard deviation units, ae. 

Where practical, simulation studies use factorial designs to characterize the effects 

of specific factors on the two primary measures of performance: detection capability and 

false alarm rate. The false alarm rate is the probability that a clean observation is 

swamped and the complement of detection probability is the masking probability. The 

factors considered are the dimension of the data, the percentage of outliers, the magnitude 

of unusualness in X-space, 8L, the magnitude of unusualness in residual, 8R, the number of 

multiple point clouds, and the proportion of regressor variables with extreme values. 

The factor levels are selected to develop challenging scenarios used to discriminate 

the performance of the procedures. Extensive pilot studies were run to discover the best 
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levels to not only challenge the procedures, but also to ensure that at least one of the 

candidates has detection capability for most combinations of the selected factor levels. 

The levels for dimension are either k = 2 variables with n = 40 observations or k = 6 

variables with n = 60 observations. The levels for the percentage of outliers are typically 

10% and 20%, although some studies vary these factor settings. The levels for the 

outlying distances 8L and 8R are typically between 3 and 5 standard deviation units. The 

number of clouds is selected as a factor with settings of usually 1 or 2, because the most 

difficult outlier configuration is a mean shift with a single cloud of observations that are 

clustered close to one another, yet not replicated (Rocke and Woodruff, 1996). The levels 

for the number of outlying variables are either all k variables, as commonly seen in the 

literature, one of the £ variables, or 3 of 6 variables. 

To properly and fairly compare the methods, we set their parameters such that the 

expected false alarm probability is 5% under the null hypothesis of no outliers. For 

example, the simulated cutoff value for an indirect robust regression procedure is 

calculated as the 95th percentile of the absolute value of the residuals from clean data (no 

planted outliers). 

The Monte Carlo simulations are all performed in S-Plus (the simulation and 

procedure code is shown in Appendix A) and are classified into two main categories of 

regression outliers: 1) interior X-space outliers and 2) exterior X-space outliers. Studies 

are made within each of these main categories to best evaluate the procedures across a 

wide range of possible regression scenarios. Figure 3.1 displays the appropriate section 

numbers within the chapter for the study results. 
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Figure 3.1. Organization chart for the Monte Carlo simulation studies. 
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3.4 Performance Study Results 

Each procedure's performance is evaluated on its ability to detect the planted 

outliers and avoid false alarms. Both the detection capability and false alarm rate (shown 

in parentheses in the tables) are reported for 500 replications. Common random numbers 

ensure that each procedure evaluates the same 500 sets of data. Section 3.4.1 describes 

the experiment designs, results and performance summaries for interior X-space regression 

outliers. The high-leverage (exterior X-space) regression outlier studies are in Section 

3.4.2. 
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3.4.1 Interior X-space Regression Outliers 

This set of experiments evaluates the ability of the methods to identify regression 

outliers when all regressor variable values are not unusual in X-space. That is, there are 

no high-leverage points intentionally planted in the samples. The response values for the 

interior X-space outlying observations are offset a distance 8R from the regression plane 

obtained from the clean cases. There are three studies in this section based on the 

configuration of the outliers. In the first study, the multiple outliers are randomly 

scattered in the interior of X-space. The second study considers multiple point clouds or 

clusters of outliers that are located near the centroid of X-space. The third study 

considers multiple point clouds randomly placed (different for each replication) in the 

interior of X-space. The measures of performance are the probability of detection and the 

probability that a clean observation is incorrectly classified as an outlier. The average 

value of these probabilities and the active effects from the analysis of variance are 

displayed in the last rows of the tables to provide summary information on the techniques. 

The direct procedures evaluated in these studies and the accompanying 

abbreviations for the tables of results are: 1) the Sebert et al. clustering algorithm 

(SM&R), 2) the Swallow and Kianifard (S&K) recursive residual algorithm, 3) the Pena 

and Yohai (P&Y) influence matrix algorithm, and 4) the Hadi and Simonoff sequential 

point addition algorithm. Both the original Hadi and Simonoflf algorithm (HS93) and the 

updated version (HS97) are considered. The selected indirect procedures that incorporate 

the residuals from regression estimators are OLS, LMS, LTS, Mand MM. To limit the 
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scope, residuals from compound estimators and GM-estimators are not considered for 

these studies because we are not considering high-leverage points. 

3.4.1.1 Randomly Scattered Regression Outliers in the Interior of X-Space 

This study evaluates performance when the outliers have random levels of the 

regressor variables with the same distribution as the clean observations but the response 

values are placed at a specified distance 8R off the regression plane. The response to the 

fh clean case is generated by v, = x# + si where ß is the vector of known regression 

coefficients selected for the simulations to be 0 for the intercept and 5.0 for each of the k 

regressor variables, x, is the vector of levels for the k regressor variables distributed 

multivariate normal with mean 7.5 and standard deviation 4.0 and st is the random error 

term distributed N(0, a) ) withere
2 set to 1.00. The response to the f outlying observation 

is generated by v, = x'{$ + SR where 8R is the outlying distance off the regression plane in 

standard deviation units of ae. The design in Table 3.1 considers dimension, density of 

outliers (as a percentage of the sample size), and 6R as the effects. The probability of 

correctly identifying the known outliers and also the false alarm probability in parentheses 

are the results from the Monte Carlo simulations. 

The OLS, Mand MM regression estimators' detection capability stands out in the 

resulting probabilities reported in Table 3.1. These indirect methods are the only ones 

with any power at a magnitude of 6R = 3ae and they have nearly perfect detection 

capability at 4ae and beyond. Although it has excellent detection capability, the OLS 
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method is unsatisfactory because it swamps clean observations as indicated by the high 

false alarm rate. This is attributed to a degradation in parameter estimates (that worsen as 

a function of 8R) such that the clean data are no longer fit well. The M-estimator has some 

difficulty with false alarms in high-density scenarios as expected and the MM procedure 

has a slightly lower, although still high, false alarm rate. The high-breakdown methods of 

LMS and LTS are preferred for outlying magnitudes at 4ae and beyond because of the 

competitive detection probabilities and low false alarm rates. The LMS estimator is 

slightly preferred over the LTS in low-density scenarios and the opposite is true for the 

high-density scenarios. 

For the direct methods, the Pena and Yohai method is significantly outperformed 

by all other techniques at these outlying distances. Further simulation demonstrates the 

algorithm does have much better detection capability if 6R is greater than approximately 

7ce. The Sebert et al. clustering procedure has decent detection capability, but suffers 

from a large false alarm probability in many scenarios. The false alarm rate for both Hadi 

and Simonoff versions is abnormally low and the detection capability is also low at 4ae and 

below. This presented an opportunity to increase detection capability by decreasing the 

cutoff value from the t distribution based on a Bonferroni approach. The value of a is 

increased from 0.05 to 0.20. The results in Table 3.1 do indicate a greater detection 

capability is possible without severe impact to false alarm probabilities. We note that the 

original Hadi and Simonoff version from 1993 has nearly identical performance to the 
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improved version from 1997 for a = 0.05. The 1993 version moderately outperforms the 

improved version for a = 0.20. 

3.4.1.2 Regression Outliers in Multiple Point Clouds at the Centroid of X-Space 

This study evaluates the performance of the procedures when there are multiple 

observations forming one or two clusters at the centroid of X-space that are off the 

regression plane. As usual, the response value for the f clean observation is generated by 

yt = x'ß + et where ß is the vector of known regression coefficients selected for the 

simulations to be 0 for the intercept and 5.0 for each of the k regressor variables, x, is the 

vector of levels for the k regressor variables distributed multivariate normal with mean 7.5 

and standard deviation 4.0 and ei is the random error term distributed N(0, cr]) wither^ set 

to 1.00. The response value for the fh outlying case is generated by v, = x$ + <5R where 

x(.is the vector of k regressor variables distributed Uniform (7.375, 7.625) and 8R is the 

outlying distance off the regression plane in standard deviation units. If there are two 

clouds, the response values for the outliers in the first cloud are generated as above and 

the second cloud's response values are generated by yt = x'ß - SR. The four factors for 

this experiment are dimension, outlier density, outlying distance (6R), and the number of 

clouds. The design and results are displayed in Table 3.2. For this particular study, the 

levels of 8R are close to one another because initial experimentation indicated that none of 

the procedures had detection capability below 3<re and nearly all had virtually perfect 

detection capability at 5ae and beyond. 



78 

1 
«3 os C1 

vo IZ 
"t 5 II o o 

5S 3? ? VO 00 IJ 

^0 II 
00 iT" 

$1 So Os S 
o;5 

8^ 8g °i 0 

00 ^ 

8.S ^s u C 

HJ o w o o o o •^ ^i- o o o o 0 0 O 0 O -^ 0 vj. — w 

c 

tli
er

s 
ce

. 

Ss 
o p s° *>. o ig 82 s| OS S 

o 2 5£ ^5 °8 
OS 
So 

0 iT 
0 2 
05 si Os. O o;5 

00 i« 
S3 0 
°i 0 
0 0 

Sg 
0 
e 
0 
Z 

*£ 
J o ±. o o o o o o o o 0 0 0 0 "" 0 

of 

«i     % C    S3 
O    w „ 

gr
es

si
 

ss
io

n 

1 11 §1 
o C- 

Ss -S 
8s 
-S ss 11 II l! 8^ 

ss 
0 2 
PS SI SI g» 

ss 
4> 
c 
0 
c 

Q 

A5 ffl 

9> a 

ss
) 

fo
r 

i 
th

e 
re

g 

^ 11 PS Is 8a 
s-s ss ss 

81 II 8^ 
s§ 

0 c 

ss 
8^ 
ss !•! 

0« 

ss 11 0 c 

ss si 8 So 
PS. 

a? 
c 
0 
c 

0 
m 
Q 

.0     ° 

n 
pa

re
nt

 
ia

ce
d 

8R
 

O 

o ST 

si 8$ 
Ss 

Ä öS 11 8 s. 8S 8S o „ 8§ 
Ss 

8£ 
s§ 

8g Is SI 11 11 8g 
S-S si 0 0 

s 
g 

ü Q 

<f° 

w a. 

ra
te

s 
u

d
is

 

öS 
«a 
2 Ö  *J, 

o £r 

Ö o Ö o ö o 
1.1 11 

ö o 
os 2 
OS  2 
Ö o 

82 11 
ö 0 ö 0 ö 0 0 0 

II 
0 0 

Is 
Os. O 
O O 

Osg 
O O 

£ vo 
£2 
ö 0 

00 i? 

ö 0 
U 

se
 a

la
rm

 
in

gl
e 

cl
o 

§s 2 P 5S so 3 1§ 2^ s| 2P 3£J 8g °8 Is 2 "i 
^ p Sg §5 s? 

PS . O 
O O 

"BO ffl 

ty
 a

nd
 f

al
 

pa
ce

. 
A

s C o o o o O sj. O w o o Ö o o o 0 0 0 0 O w 0 o. <i< 

u D 

3£ 
"1 o t o <"H o 

5 N 2« ad 
»0 ">8 Sg « 8 

0 c 
OS. 5 o;S °jO 

sä 
Ss 

CO 

u 
O 

D 
iS    vi </> o Ö- o _> o o- o o o ^. o o 0 0 0 ^, O sj. 0 0 CO O 

■S2 

o
n

ca
 

ro
id

o o — 
P8 88 

o o 
11 
o o 2S 

Is 
SS 

o ^ 

55 8 o o II £ s 
öS i.I 0 0 

. 0 
0 0 

^8 
O w 

2^ 
»8 
0 0 0 0 

si 
0 0 0 0 

£s 
2s 0 

ix
 w

it
h 

de
te

ct
i 

ud
s 

at
 th

e 
ce

nt
 

OS 

53 
22 S . o o o 11 2o 

öS 5S 
m s 
o o o o 

S VO 

Is Is »0 
Z- <=> 
0 0 

si 
0 0 öS 

S8 
0 0 

10 f? 

0 0 © 0 

s; vo 

§S 
Sg 
0 0 

os ir 

58 
0 0 

u s 
0 
c 

1-1 t> 
rsi <s <s ts fN <s M rsi 

gn
 m

at
r 

D
in

t c
lo

 

.2 

1 «•s 
s ° 

in 
13 
,U     M 

u  C 
*• — 
S «a 
8 u 

U v§ b e b D 
1- 

b b b 

•55   & 
CO  § o o 

^ £ £ •^ ^9 ■>? ^? 0^ ©^ ^9 ^9 ©^ >9 ^5 u 
Q © o o o o 0 0 0 0 0 0 O 

ts <N 

0 as 
r5?     U 

afe 

«« 
(S VO <s V© <s VO fS vo «S VO (S VO M VO rsi VO < "JQ 

1 
o © 

VO 
© © 

VO 
o © 

VO 
o ^1 0 

VO 
0 
VO 

0 0 
VO 

0 O 
vo 

0 O 
VO 

H 



79 

The methods are more successful at detecting these outlying observations in clouds 

at the centroid of X-space compared to similar scenarios with randomly scattered outliers 

in Section 3.4.1.1. Again, the OLS, M and MM indirect methods are superior in detection 

capability. OLS has problems with swamping if there is a single cloud for the reasons 

described in Section 3.4.1.1. However, when there are two clouds, there is no swamping 

because there is an equal and opposite "pull" on the regression surface from each cloud 

that leaves the parameter estimates essentially unchanged from those obtained with clean 

observations only. A/and MM have nearly identical detection and false alarm 

probabilities. Except for the two highlighted scenarios, the Hadi and Simonoff 1997 

updated procedure performs as well as or slightly better than the original 1993 version. 

All other methods have consistent results with Section 3.4.1.1. 

3.4.1.3 Regression Outliers in Multiple Point Clouds: Regressor Variables 

Randomly Scattered on the Interior of X-Space 

The multiple outlier clouds for this section are placed at different locations in X- 

space rather than the centroid for each replication. The location of the regressors for 

outlying observations in a single point cloud is determined by using the median of the first 

three clean observations for each variable. The regressor variables for the outlying 

observations then vary as Uniform (0, 0.25) around this median value. Outliers in a 

second cloud, if applicable, vary around the median value of the last three clean 

observations in each variable. Recall that each regressor variable for the clean 

observations is distributed N(7.5,42). We found that using the median of three 
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observations provides adequate coverage of interior X-space and that more than three 

observations tends to place the outlying observations too close to the centroid of X-space. 

The response values are found exactly as in the previous two sections with three levels of 

6R specified as the outlying magnitude. The factors for this experiment design in Table 3.3 

are dimension, contamination, number of clouds and the outlying distance 8R . 

The results in Table 3.3 indicate the findings are consistent with the first two 

studies except this scenario is more challenging. Most main effects and many two factor 

interactions are significant for detection capability except for the high breakdown 

regression estimators. The least squares estimates do not fit the outlying cloud(s) well as 

evidenced by the high probability of detection; however, they do chase these observations 

enough to swamp some clean observations. The M and MM estimators have moderately 

better detection probabilities than OLS and significantly better false alarm rates, although 

well above nominal levels in the high-dimension, high-density scenarios. The high- 

breakdown methods are not impacted with high false alarms and reliably detect the outliers 

at 4ae and beyond. Sebert et al. is no longer competitive with the other procedures 

because of a consistent high false alarm problem and decreased power. Pena and Yohai 

has slightly better performance with the increased leverage for these outlying clouds, 

although still not competitive with any other procedure. Both Hadi and Simonoff 

procedures have very low false alarm rates and further testing demonstrates substantial 

improvement in detection capability is possible if a is increased to as much as 0.30. 
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3.4.1.4 Supplemental Runs of Higher Outlying Distances and Outlier Density 

This study examines the effect of increasing the factor settings for 8R, the outlying 

distance off the regression plane, and the contamination or percentage of outliers. The 

factor level for 8R is changed from the usual challenging 3 - 5ae range to a low level of 5ae 

and a high level of 10ae. The percentage contamination is changed to 15% for the low 

level and 30% for the high level. The first two scenarios in Table 3.4 are randomly 

scattered outliers as investigated in Section 3.4.1.1. The next four scenarios have multiple 

point clouds placed at or near the centroid. The last 8 scenarios form a 24"1 fractional 

factorial with the outliers placed in clouds randomly throughout X-space similar to those 

of Section 3.4.1.3. 

These runs produce some rather different results from the preceding studies. With 

the contamination set higher, we now see more clearly that the OLS and M estimators 

break down by the astronomical false alarm rates. The MM estimator reliably detects the 

planted outliers (the one exception is the second shaded scenario). The original Hadi and 

Simonoff procedure is superior to the modified version for these scenarios. The first 

shaded scenario is different from most because of the failure of the high breakdown 

regression estimators and the discrepancy in performance between the two Hadi and 

Simonoff versions. All procedures fail in the second shaded scenario. In most instances, 

the LMS, LTS and MM estimators perform the best when accounting for the false alarm 

rates. We also note the success of the Pena and Yohai procedure for the low-density, high 

outlying distance scenarios. Surprisingly, the only active effect in this operating region for 
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detection capability from the XA fraction design is the percentage of outliers; this is true 

only for the direct procedures. 

3.4.2 Exterior X-space Regression Outliers 

This section evaluates a method's ability to detect observations outlying in X- 

space (high-leverage) and also off the regression plane (residual outliers). The same direct 

procedures are evaluated. We change the indirect methods because of known 

vulnerabilities of the M and MM estimators in high-leverage situations. The indirect 

procedures are the bounded influence generalized M-estimator (GM) and the compound 

robust regression estimators of Coakley and Hettmansperger (CE C&H) and Simpson and 

Montgomery (CE S&M). We also test the procedures from Rousseeuw and van Zomeren 

(1990,1991) that suggest the MVE robust distances to identify observations remote in X- 

space and LMS standardized residuals to find regression outliers. The original proposal 

(R&vZ chi) uses robust distance cutoff values from percentiles of the chi-square 

distribution (xifi9K ) and a rule of thumb cutoff value for the LMS standardized residuals 

(2.5). Their subsequent recommendation (R&vZ sim) uses simulated cutoff values. 

The first study, Section 3.4.2.1, has multiple point clouds at various leverage 

locations. The regressor variable values are remote in all k regressors for the planted 

outliers as is often reported in the literature. Section 3.4.2.2 is similar to the first study 

but ensures the response values for the outliers, although off the regression surface, are 

not unusual with respect to the clean responses. That is, the regression outliers are Y- 
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space inliers. We next investigate in Section 3.4.2.3 the effect if the outliers are not 

unusual in all k regressor variables and the outlying magnitude is increased. The last 

Section 3.4.2.4 evaluates the performance when there is a remote cloud in X-space of 

regression outliers and also other regression outliers in the interior of X-space. This last 

experiment looks at the possibility of the high-leverage, large-magnitude regression 

outliers masking the low-leverage smaller magnitude regression inliers. Throughout all of 

the studies, cutoff values and other internal parameters are selected for each procedure to 

ensure the expected false alarm rate is approximately 0.05 under the null hypothesis of no 

outliers. 

3.4.2.1 Regression Outliers in Clouds that are Unusual in X-space for All Regressors 

This study evaluates performance for scenarios with high-leverage multiple point 

clouds that are off the regression plane. The scenarios are similar to those used by Sebert 

et al., Hadi and Simonoff, and Kianifard and Swallow. The regressor and response values 

for the clean observations are computed as described in Section 3.4.1. The value of the i 

regressor variable for the/* planted outlier is x,y = xifilean + 8L + e\ where xiclearl is the 

average of the clean observations for the /"'regressor variable, 8L is the magnitude of the 

outlying distance in X-space in standard deviation units, ax, and e*v is a random variate 

from a Uniform (0, 0.25) distribution. In this section, all k regressor variable values for 

the outlying observations are generated as above. A multiple point cloud is placed at the 

edge of interior X-space when the leverage magnitude is at the low factor setting (6L= 
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2ax). The cloud is significantly remote in X-space for the high factor setting of leverage 

magnitude (8L = 5ox). If there are 2 clouds, the second cloud is placed at approximately 

the same location in X-space but the response value is 2ae above that of the first cloud. 

As an example, for k = 2, leverage magnitude 8L = 2ox, and residual magnitude 8R = 5ae, 

the regressor variable values for the ih outlying observation in either cloud are Xi = 7.5 + 

2(4) + e* and x2 = 7.5 + 2(4) + e\. The response value for the f outlying observation in 

the first cloud is calculated asj, = 5xu + 5x2, + 5 and the /""response value in the second 

cloud is calculated asy, = 5xu + 5x2, + 7. The factors considered for this experiment are 

dimension, outlier density, leverage (5L), outlying distance off the regression plane (8R) 

and the number of multiple point clouds. The full factorial 25 design and resulting 

measures of performance are displayed in Tables 5a (single cloud) and 5b (two clouds). A 

much more efficient 2" design was initially run but many interesting factor combinations 

were missing. 

The most notable feature from Tables 3.5a and 3.5b is the lack of detection 

capability for many of the methods now that leverage is added as a factor for 8R, = 3ae 

(the top half of both tables). These methods have not necessarily failed from one 

perspective because in most of these scenarios the outlying clouds do not breakdown the 

OLS parameters (note the moderate OLS false alarm rates). However, the practitioner 

still may want to identify these cases for reasons other than impact to estimation. The 

Sebert et al. and Rousseeuw and van Zomeren procedures do have detection power in 

these scenarios. 
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For the direct methods in all scenarios, the Sebert et al. procedure has virtually 

perfect detection capability and reasonable false alarm rates. This success is attributed to 

a favorable clustering condition for the outliers from unusually high predicted response 

values coupled with near zero standardized least squares residuals because of the leverage. 

The expected response value for the clean observations is E(y) = 5k * 7.5 and the 

expected response for the outliers is 5k * (7.5 + 45L) + .125 + 8R. We investigate the 

algorithm's performance if the predicted response values are not unusual (Y-space inliers) 

in the next section, 3.4.2.2.   The other direct methods do not fere as well. Both the Hadi 

and Simonoff and Swallow and Kianifard methods have little detection capability in almost 

all scenarios because they sequentially add an observation to the clean basis as a function 

of the smallest OLS residual. Clearly, these high-leverage outliers can have very small 

OLS residual values and are often masked. We note again the unusually low false alarm 

probabilities for both Hadi and Simonoff procedures and investigate the possibility of 

relaxing the cutoff values from the t distribution in Section 3.4.2.3.   The Pena and Yohai 

algorithm does have some moderate detection capability for these high-leverage regression 

outlier scenarios. 

The Rousseeuw and van Zomeren methods successfully detect the outlying clouds 

in exterior X-space but are troubled by high false alarm rates; particularly for the single 

cloud scenarios in Table 3.5a. The simulated cutoff values provide slightly less outlier 

detection capability but significantly lower false alarm rates than the original proposal. 

For the indirect methods with regression estimators, the generalized M-estimate 

has poor detection capability because of the breakdown of the OLS initial estimate and the 
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hat diagonal leverage component. The compound estimators have reasonable 

performance in the high residual distance scenarios in Table 3.5b, apart from the high 

dimension, high contamination scenarios. The folse alarm probability moderately exceeds 

the nominal 5% rate for both compound estimators in these scenarios. The Simpson and 

Montgomery estimator slightly outperforms the Coakley-Hettmansperger estimator. 

3.4.2.2 Regression Outliers in Clouds that are Unusual in X-Space in AU k 

Regressors but the Outlier Responses are not Unusual in Y-Space 

This study investigates the effect of changing geometry in X-space such that the 

outlying cloud will not have an unusual response value with respect to the responses for 

the clean observations. The values for the fh regressor variable for the outliers are now 

generated as xijdean + 48L + f* for i = 1, 3, 5 and xifilem - 45L + s* for i = 2,4, 6. This 

scheme effectively equalizes the expected response values for the clean and outlying cases. 

The four scenarios in Table 3.6 are randomly selected from those in Section 3.4.2.1 with 

the regressor variable values for the outliers generated as described above. 

The results in Table 3.6 for nearly all techniques are within a few percentage points 

for both detection capability and felse alarm probabilities. The 1997 Hadi and Simonoff 

procedure has significantly lower detection capability than most other procedures for the 

first scenario and significantly higher detection capability in the last scenario. In contrast 

to near perfect performance in the previous experiment, the Sebert et al. procedure fails in 
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these scenarios. Not only is detection capability low, but also the false alarm probability 

is high. 

3.4.2.3 Outliers are Unusual in X-space in a Subset of Regressor Variables and 

Larger Residual Magnitude (8R) Factor Settings 

This study investigates the power and false alarm rates for the procedures when 

the factor settings for residual magnitude are changed from 8R = 3cre for the low level and 

5cTe for the high level to 5ae and 10ce respectively. The number of clouds is set at one 

because this has proven to be the more challenging configuration for these procedures. 

The number of unusual regressor variables out of k for the outliers is introduced as a 

factor with the low level as 1 and the high level as 2 for k = 2 and 3 for k = 6. We believe 

this to be a more likely scenario to encounter in practice as opposed to finding cases that 

are outlying in all A: variables. Additionally, the regressor variables alternate in sign as 

described in Section 3.4.2.2 to guard against unusually large response values for the 

planted outliers. The experiment design in Table 3.7 is a 2"; the two-factor interactions 

are not aliased with main effects or other two-factor interactions. 

These scenarios are important to detect because of significant swamping from the 

OLS fit as evidenced by the high false alarm rates in Table 3.7. The shaded scenarios 

indicate voids where all procedures fail to detect the outlying cloud in high dimension, 

high contamination. Noteworthy results for the direct procedures across all scenarios are 
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the general failure of the Swallow and Kianifard recursive residuals procedure, the high 

false alarm rate and limited detection capability of the Sebert et al. clustering procedure, 

and the improved performance (although somewhat limited in detection capability in high- 

density scenarios) of the Pena and Yohai influence matrix procedure. The original Hadi 

and Simonoff forward selection procedure performs better than the improved version in 

low-leverage scenarios and the opposite is true for exterior X-space. Relaxing a to 0.20 

gains very little in detection capability for both versions of the Hadi and Simonoff 

procedure but carries the risk of excessive false alarms in high-dimension scenarios. 

Except for the shaded scenarios, the Rousseeuw and van Zomeren procedures 

have near perfect detection capability. Both suffer from high false alarms, although the 

simulated critical value procedure has slightly lower false alarm rates. The robust 

regression estimators have consistent results with the previous sections: 1) the failure of 

the generalized M-estimator in high-leverage scenarios, 2) the Simpson & Montgomery 

estimator slightly outperforms the Coakley & Hettmansperger estimator and 3) the 

compound estimators have difficulty with some exterior X-space scenarios. 

3.4.3 Interior and Exterior X-Space Outliers 

This study evaluates the performance of the procedures when large magnitude 

outliers in both 8L and 8R are present that could mask the lower magnitude outliers. The 

first four scenarios have a single cloud with 10% of the observations outlying at high- 

leverage (5L = 5GX) and significantly off the regression plane (5R = 10cje). Another 10% of 
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the observations are randomly scattered regression outliers at the interior of X-space at a 

magnitude of 8R = 4cre. The last four scenarios place the interior outliers in a cloud 

approximately at the centroid of X-space, 8R = 4oe. 

The original Rousseeuw and van Zomeren procedure has the best detection 

probabilities in Table 3.8 and also has false alarm rates slightly above the nominal 5% 

level. The next best performing methods are the compound estimators, also with 

moderately high false alarm probabilities. The Sebert et al. procedure is the only direct 

procedure with any significant detection capability. All procedures identify the outliers 

better if the number of outlying regressor variables is one because of the decrease in 

influence exerted from the high-leverage points. 

3.5 Procedure Summary and Recommendations 

The most interesting performance characteristics of the various procedures have 

been noted in the results for each study. This section provides a summary of those results 

by procedure and discusses the powerful and vulnerable areas of performance. 

3.5.1 Performance Summary of Direct Procedures 

Hadi and Simonoff. Both versions are powerful in all of the experiments in 

Section 3.4.1 when the regression outliers are in the interior of X-space. The most 

notable feature in these scenarios is the very low false alarm probability. This prompted an 
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increase of a = 0.05 to a = 0.20 to compute the cutoff value from the t distribution using 

the Bonferroni approach. Dramatic increases in detection probabilities from this 

enhancement are realized in our selected scenarios accompanied by false alarm 

probabilities well below the nominal 5% rate. Detection capability moderately declines in 

the high-dimension, high-density scenarios. The original 1993 version outperforms 

(especially at a = 0.20) or is equivalent to the robust 1997 version in virtually all of the 

experiments in Section 3.4.1 because an initial basis of robust distances does little when 

the outliers are not leverage points. 

Overall performance noticeably degrades for these two algorithms as leverage is 

added as a factor. This can be attributed to the loss of signal from the OLS studentized 

residuals and scaled prediction errors. Increasing a to 0.20 does not increase detection 

capability and may swamp too many clean observations in the high-leverage scenarios of 

Section 3.4.2. Also in these scenarios, indirect methods significantly outperform both 

versions of the algorithm. Detection capability is increased to reliable levels if the outlying 

distance off the regression plane (8R) is sufficiently large relative to the leverage 8L. In the 

higher leverage scenarios, the robust 1997 algorithm outperforms the original algorithm. 

Swallow and Kianifard. This algorithm, based on recursive residuals from a least 

squares fit using a robust scale estimate, reliably detects regression outliers in the interior 

of X-space at 8R = 4ae and beyond. High-dimension, high-density scenarios affect 

detection capability. The detection capability of this algorithm is also highly sensitive to 

leverage and it lags behind the other procedures for the regression outliers unusual in X- 
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space studies. Despite the lack of power in these scenarios, the false alarm rate rarely 

exceeds the nominal 5% rate anywhere. 

Pena and Yohai. Of the direct procedures, the Pena and Yohai algorithm with the 

eigenanalysis of the influence matrix may be the most versatile. Although it does not 

detect regression outliers in interior X-space until 5-7c7e, it does detect the high-leverage 

regression outliers reasonably well. Also, the procedure rarely swamps clean 

observations. The scenarios presented in this paper are challenging; however, in practice, 

the scenarios of interest may have magnitudes of the outlying distances (8L and 8R) large 

enough to effectively use this procedure. 

Sebert et ah The clustering algorithm of the least squares standardized predicted 

and residual values is often the only procedure with any detection capability at all. For 

this method to be successful, a signal has to come from one or both of these quantities. In 

the scenarios of Section 3.4.1, the signal comes from the standardized residual values only 

and the procedure is competitive here with the others in detection capability but has false 

alarms rates often 2 to 3 times the nominal level. As the outlying distance off the 

regression surface, 5R, increases the false alarm rate decreases and the detection capability 

increases. The procedure works especially well for the exterior X-space outliers in 

Section 3.4.2 if the predicted response values for the outliers are unusual with respect to 

the clean response values. The standardized least squares residuals of the outliers are 

often close to 0 in the high-leverage scenarios so the outlying clusters must form in the 

algorithm from unusual predicted values. In Section 3.4.2.2 we show that the method is 



100 

vulnerable in high-leverage scenarios if the outliers are not unusual in predicted value. If 

the assumption that the data will be unusual in at least one of the two measures is met, this 

is a very powerful, yet easily implemented algorithm. 

3.5.2 Performance Summary of Indirect Procedures 

High breakdown estimators. Both LMS and LTS detect regression outliers in the 

interior of X-space well if the outlying distance 8R is at least 4ae. Both estimators also 

have low felse alarm rates across all scenarios when 8R is at least 4ae, unlike many of the 

other regression estimators evaluated in Section 3.4.2. One notable exception is the high 

false alarms rates in the scenarios of Table 3.4 in high dimension with 30% outlier density. 

Overall, LMS detects the outliers in high dimension slightly better than LTS. Detection 

capability decreases for both estimators as the outliers become more remote in X-space. 

Although not tested separately for regression outliers remote in X-space, theory and our 

pilot studies showed LMS and LTS to have significant masking and swamping problems in 

high-leverage cases. 

The Rousseeuw and van Zomeren technique that combines the robust distances 

from the MVE with the scaled residuals from an LMS fit is one of the better performing 

techniques for exterior X-space regression outliers. Again, we prefer the simulated cutoff 

values to protect against swamping too many observations. The weak areas are limited to 

high-dimension, high-density. 

M and MM estimators. These estimators are only evaluated in the regression 

outliers in the interior of X-space of Section 3.4.1 because they are known to fail in the 



101 

high-leverage experiments of Sections 3.4.2. The results from the first three experiments 

in Section 3.4.1 indicate that the detection capability and false alarm rate of the MM 

estimator is only slightly preferred over the M estimator. For these scenarios, both 

estimators have excellent detection power but have moderate false alarm problems. The 

high outlying magnitude, high-density runs in Section 3.4.1.4 demonstrate the superiority 

of the MM estimator. Despite the comparable detection probabilities, the M-estimator 

breaks down and surfers from severe false alarm rates in these scenarios. 

GM and compound estimators. The standard generalized-M bounded-influence 

estimator is plagued by a higher false alarm rate and lower detection capability than the 

compound estimators in the exterior X-space regression outlier experiments in Section 

3.4.2. This effect is most evident in the high-density scenarios where both the OLS initial 

estimate and the hat diagonal component for leverage breakdown for this estimator. The 

compound estimators do a decent job identifying the high-leverage multiple outliers. Both 

the Simpson and Montgomery and Coakley and Hettmansperger estimators have similar 

detection capability and moderately high false alarm probabilities in many scenarios. In 

several exterior X-space scenarios, only the compound estimators and the Rousseeuw and 

van Zomeren procedure successfully detect these outliers. From Table 5a, both have little 

detection capability with moderate leverage despite relatively large residual magnitudes. 

This presents a research opportunity that will be explored in Chapter 4. 
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3.5.3 Summary of Results 

The simulation experiments in this paper validate many of expected performance 

characteristics of the multiple outlier detection methods. As a general rule, the detection 

methods perform better in lower dimension, lower outlier density, smaller outlying 

leverage distance, larger outlying residual distance, and larger number of multiple point 

clouds. However, we show scenarios where this is not the case for all methods and all 

factors. Some factors are shown to be either not significant or behave opposite to the 

general rule.   The most important findings suggest that limited studies in low dimension 

of a proposed procedure are not sufficient to speculate on its performance in higher 

dimension—especially if the percentage outliers is large. From the interior X-space 

studies of Section 3.4.1, the high-breakdown methods perform well. MM performs the 

best overall. The 1993 version of the Hadi and Simonoff algorithm can be recommended 

if the residual outlying distance is large. For the exterior X-space studies in Section 3.4.2, 

the compound estimators and the robust distance with high-breakdown estimator 

procedures perform the best. The Simpson and Montgomery estimator and the 

Rousseeuw and van Zomeren method with simulated cutoff values show the best results in 

our studies. 



Chapter 4 

An Improved Robust Regression Compound Estimator 

4.1 Introduction 

Barnett and Lewis (1994) define outliers as observations that appear inconsistent 

with the remainder of the data set. In the linear regression model, we consider three 

classes of outliers: 1) residual or regression outliers, whose response values differ 

significantly from those expected from the fit with uncontaminated data, 2) leverage 

outliers, whose regressor variable values are extreme in X-space and 3) observations that 

are both residual and leverage outliers. A single outlier in an ordinary least squares 

(OLS) regression model could be placed to alter the parameter estimates such that the fit 

to the remaining n - 1 data points is poor. Fortunately, many standard least squares 

regression diagnostic quantities and plots can reliably identify a single or a few of these 

three types of outliers. One modeling approach in the presence of outliers is to remove 

the discordant observations from the model and fit the remaining observations. Robust 

regression estimators offer an alternative between removing the outliers and including 

them in the model by weighting each observation as a function of "outlyingness". 

Numerous robust regression estimators exist. It is generally accepted that no 

single estimator optimally protects against all outlier scenarios likely to be encountered in 

practice. The properties of a good robust regression estimator are 1) high-breakdown, 2) 

efficient and 3) bounded-influence. High-breakdown estimators can fit a model to the 

bulk of the data even if a large percentage of outliers (as much as 50% for some 
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estimators) are present. Least squares has a breakdown of 0% because a single outlying 

observation can be placed in a data set that makes the parameter estimates and inferences 

for the remaining n -1 observations meaningless. An efficient estimator provides 

parameter estimates close to those from an OLS (the best linear unbiased estimator) fit in 

an uncontaminated sample with NID error terms. Bounded-influence estimators protect 

the regression surface from being pulled toward extreme observations in X-space. OLS 

estimators do not have bounded-influence and the more extreme the outlier is in X-space, 

the greater the impact it has on the parameter estimates. 

Theoretical and simulation results in the literature show that many robust 

regression estimators are vulnerable with respect to at least one of the three desirable 

properties. For example, the common high-breakdown estimators suffer from 

inefficiency and unbounded-influence while many efficient techniques are not high- 

breakdown nor bounded-influence. Multi-staged techniques have been proposed to 

combine several of the properties into a single estimator. There exist multi-staged 

compound and generalized M-estimators (GM) with all three properties that can 

accommodate data sets with all three classes of outliers. 

Compound and GM estimators downweight outlying observations by minimizing 

a function of the residuals rather than the sum of the squared residuals (OLS). Parameter 

estimates are obtained by solving a system of nonlinear normal equations. The normal 

equations incorporate a leverage measure to accommodate high-leverage points and a 

robust measure of scale. An iteration scheme to solve the normal equations requires good 

initial parameter estimates; these are often from a high-breakdown estimator. A 
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compound estimator uses only a single iteration to solve the nonlinear normal equations 

to preserve the high-breakdown property (Simpson, Ruppert and Carroll, 1992, and 

Yohai, 1997). GMestimators use a fully iterated scheme and have a breakdown of Up. 

There have been some empirical performance studies of robust regression 

estimators (Simpson and Montgomery, 1998a, 1998b, Wilcox, 1997, and Meintanis and 

Donatas, 1997). The best performing estimators with respect to breakdown, bounded- 

influence, efficiency and robustness to outlier scenarios appear to be the compound 

estimators of Coakley and Hettmansperger (1993) (C&H) and Simpson and Montgomery 

(1998a) (S&M). This chapter proposes several compound estimators with alternative 

high-breakdown initial estimators and measures of leverage and recommends a single 

method. 

Section 4.2 explains GMand compound estimators. An example in Section 4.3 

exposes some vulnerabilities in the measures of leverage and initial estimates for 

published compound estimators. Section 4.4 is an extensive Monte Carlo performance 

study of some measures of leverage. Section 4.5 incorporates the best performing 

measure of leverage from 4.4 and develops the need for a better initial estimator. Section 

4.6 tests several common and proposed initial high-breakdown estimators. We propose a 

new compound estimator in Section 4.7, conduct performance studies in Section 4.8, and 

summarize results in Section 4.9. 
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4.2 Compound Estimators in Linear Regression 

The standard linear regression model is y = Xß +e where y is the observed 

response vector of dimension n, the number of observations; X is the observed nxp 

matrix of regressor variables with intercept; ß is the vector of regression parameters, and 

E is the column vector of n random errors assumed to have mean 0 and covariance matrix 

<?l. GM-estimators were offered as improvements to their predecessor M-estimates 

(maximum likelihood) to protect against high-leverage outliers. Rather than minimize 

the sum of squared errors as the objective, the M-estimate minimizes a function p of the 

errors. The M-estimate objective is min ^ p — = min ^ p 
i=i i=l V       S       J 

where s is an 

estimate of scale often formed from a linear combination of the residuals. The system of 

normal equations to solve this minimization problem is found by taking partial 

derivatives with respect to ß and setting them equal to 0, yielding ^y/ 
i=i v    s    )' 

where y/ is the derivative of p. 

The choice of the y/ -function is based on the preference of how much weight to 

assign outliers (see e.g. Montgomery and Peck, 1992). A monotone ^-function does not 

weight large outliers as much as least squares (e.g. a IOCT outlier would receive the same 

weight as a 3a outlier). A redescending y/ -function increases the weight assigned to an 

outlier until a specified distance (e.g. 3o) and then decreases the weight to 0 as the 

outlying distance gets larger. 
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The GM-estimator bounds the influence in leverage by weighting the M-estimate 

system of normal equations by a measure of leverage. The GM system of normal 

n ( V  — \'i } 
equations is V^(^ ^ — x. = 0 where ^t is a measure of remoteness in X-space. 

1=1 V     **i      J 

When the 7i-weights are located both inside and outside the argument of the y/ -function, 

the GM objective function is Schweppe (Handsin et al, 1975). If the 7i-weights are not 

inside the argument, then the GM objective function is Mallows (Mallows, 1975). In 

practice, the distinction between the two objective functions is that Mallows will 

downweight high-leverage points independently of the residual value while Schweppe 

will not downweight if the response value conforms to the regression surface. Thus, 

Mallows does not incorporate "good outliers" in the parameter estimates. Several 

approaches to forming the it-weights use a distance measure from either the hat diagonal 

(hjt = x,(X'xr'x;), M-estimates of covariance, the minimum volume ellipsoid (MVE) or 

the minimum covariance determinant (MCD). These methods and some proposed 

methods are described in Section 4.4. 

A numerical optimization scheme is required to solve the GM system of nonlinear 

normal equations. The two most common approaches are Newton's method and 

iteratively reweighted least squares (IRLS). Both approaches require initial parameter 

estimates for ß . Most initial estimators are selected to provide decent parameter 

estimates in the presence of a large percentage (as much as 50% in some cases) of 

outliers. The popular choices for these high-breakdown initial estimates are the least 

median of squares (Rousseeuw, 1984) (LMS), least trimmed sum of squares (Rousseeuw, 
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1985) (LTS), and S-estimation (Rousseeuw and Yohai, 1984). The final parameter 

estimates from the optimization routine can come from a folly iterated solution (GM- 

estimator) or only a single iteration (compound estimator). The single iteration method 

preserves the breakdown of the initial estimator. 

Simpson and Montgomery (1998b) test several GMand compound estimators and 

find that the Simpson and Montgomery (1998a) estimator and the Coakley and 

Hettmansperger (1993) estimator have good overall performance. The S&M estimator 

uses an 5-estimate that minimizes the dispersion of the residuals for both the initial 

parameter estimates and the measure of scale. Other components are modified M- 

estimates of covariance distances to form the 7t-weights, a Schweppe GM objective 

function, a redescending Tukey V -function and a one-step reweighted least squares 

convergence criteria. The C&H estimator uses an LTS initial estimate, an LMS estimate 

of scale (the initial estimate's scaled median residual), robust distances from an MVE 

estimator for the Tt-weight component, a monotone Huber ¥ -function and solves the 

normal equations with a single iteration of a Newton algorithm. 

4.3 Compound Estimator Example 

Consider creating a regression data set of n = 60 observations and k = 6 regressor 

variables with 12 high-leverage residual outliers. The outliers are remote in X-space 

because the values for their first two of six regressors are 5 standard deviations above the 

mean of the clean regressor variable values. The response values for these outliers are 10 

standard deviations away from the regression surface defined by the fit from the clean 48 
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cases. Table 4.1 describes how the regressor and response variables are generated for 

both the clean and outlying cases. The last 12 cases in the data set (shown in Appendix 

B) are the planted outliers. 

Tabl e 4.1. Generating distributions for example 4.1. ßc = 0 and ß, = 3 for /=1 

Case xu .7=1,2 Xij ./ = 3,4, 5, 6 y Ei 

1-48 NID (7.5,40 NID (7.5,40 X. ß + E, NID (0, 1) 
49-55 27.5 + UNIF(0,l) NID (7.5,40 x, ß + 10 0 
55-60 29.5 + UNIF(0,l) NID (7.5,4Z) x,p + io 0 

to 6. 

Because there is a large percentage of high-leverage points, a GM or compound 

estimator is likely to be our best choice to accommodate the outliers. We choose the 

S&M and C&H estimators. Both estimators erroneously fit the 12 outliers (residuals near 

0) and assign weights of nearly 100% to these observations. By chasing the outliers, the 

fit for the 48 clean cases is degraded. Many clean cases (8 for S&M and 7 for C&H) now 

have large residuals that a researcher could erroneously label as outliers. The mean 

squared error (MSE) for the 48 clean cases using the S&M and C&H parameter estimates 

is more than three times the MSE obtained by a least squares fit to the clean data. Another 

problem is that the 7t-weights for these high-leverage observations are not unusual. If the 

contamination is reduced in this example to 10% from 20% or if the leverage distance is 

reduced to 2 standard deviations above the mean from 5, for example, the outlying 

observations are correctly downweighted for both S&M and C&H. 

From the performance studies in Chapter 3, the S&M and C&H estimators are 

successful across a variety of outlier scenarios, but are vulnerable (as are all techniques) 

in the high-leverage, high-density, high-dimension scenarios of this example. A possible 
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solution to the problem is to find better estimates of leverage because the 71-weights are 

not providing any indication of unusual geometry in X-space. 

4.4 A Performance Study for Measures of Leverage 

This section describes several measures of leverage from the literature that can be 

used to form rc-weights. Monte Carlo simulations using factorial designs with factors 

thought to impact performance provide a comprehensive test of each procedure across 

numerous X-space conditions. The goal is to possibly improve an existing GM or 

compound estimator by finding a technique or a combination of techniques that performs 

well in most scenarios likely to be encountered in practice. 

The standard measure of leverage in OLS is the hat diagonal element. This 

quantity is often used as a measure of "outlyingness" in X-space and is extensively used 

in influence diagnostic quantities. Remote observations in X-space may exert enough 

influence on the least squares estimates to make them quite different from those obtained 

with only the observations in the interior of X-space. Some GM estimators (e.g. Walker, 

1984) incorporate the hat diagonal measures of remoteness in X-space to accommodate 

these outlying observations. The hat diagonal measure may not provide an adequate 

leverage measure when there is even a moderate number of outliers in X-space present 

because the covariance matrix estimate is significantly influenced or "pulled" toward the 

outliers. For the data set of Example 4.1 using only the first 49 observations, the outlier 

(observation 49) has a hat diagonal value of 0.60 which exceeds the usual cutoff (3p/n) of 

0.42. However, for the full data set, the hat diagonals are not at all unusual for the 12 
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outliers because the outliers have significantly altered the covariance matrix. Therefore, 

the hat diagonal has broken down in the presence of multiple outliers and does not 

provide a reliable measure of leverage. 

High-breakdown measures of leverage have been proposed that use a robust 

measure of the mean and covariance matrix in the standard Mahalanobis distance 

computation, D? =(x, -lyS'^x, -x) where x, is the k x 1 vector of observations, x is 

the mean vector of X and S is the kx k sample covariance matrix. The robust estimates 

of the mean and covariance matrix are the classical mean and covariance estimates 

computed using a subset of the data assumed to be outlier free. The leverage methods we 

test are robust distances from the MVE, MCD, the M-estimates of covariance and the 

Rocke and Woodruff (1996) (R&W) hybrid estimator. We also investigate the Hadi 

(1992,1994) forward search algorithm and the Sebert, Montgomery and Rollier (1998) 

(SM&R) clustering algorithm that can detect multiple outliers. We also consider the 

usual hat diagonal measure that is equivalent to the Mahalanobis distance apart from a 

few constants. 

4.4.1 Method Description 

The Hadi (1992, 1994) forward search algorithm on robust distances. This 

algorithm forms the initial basis of p + 1 clean observations from the minimum robust 

distances. The robust distance measure is the Mahalanobis distance computed with the 

median vector and covariance matrix based on the median rather than the mean. The 

initial basis is sequentially increased to size h = (n+p+ l)/2 by adding the observation 
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with the least robust distance calculated from the mean vector and covariance matrix of 

the current basis. Next, the basis is sequentially increased by the case with the lowest 

robust distance using the mean vector and a corrected covariance matrix from the current 

basis. If the lowest robust distance exceeds %2
pa/„, then all observations not in the current 

basis are declared outliers. We use the author's S-Plus code. 

M-estimates of covariance. Hampel (1973) first suggested M-estimates of 

covariance, but the basic paper on these estimators is attributed to Maronna (1976). 

Maronna addressed the problems of existence, uniqueness, asymptotic distribution and 

breakdown point for these estimators. We are interested in the distances in X-space for 

each observation defined by z = A(x -t) where A is an estimate of the p xp multivariate 

scatter matrix and t the multivariate location vector. Note that (A'A)~ is the estimate of 

the covariance matrix of X. From Huber (1981), the maximum likelihood estimate of A 

and t is determined by solving the simultaneous equations 

ave{w(|z|)z}   = 0 

ave({w|z|)zzT-v(|2|)y =0 

where u, v and w are arbitrary weight functions and ave{-} is the average taken over the 

sample. We solve these equations using the Newton algorithm and Huber weight 

functions with the associated constants and correction factors as defined in the ROBETH 

library accessed by S-Plus (Marazzi, 1993). An observation is declared an outlier in X- 

space if the distance z exceeds the 95th percentile of simulated (1000 replicates) distances 

under the null hypothesis of no outliers for a specified n and/?. Chapter 2 contains a 

detailed discussion of the algorithm. 
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MVE andMCD estimators. The MVE estimate of the mean is the center of the 

smallest ellipsoid covering at least half of the observations. The estimate of the 

covariance matrix is determined from these cases along with a correction factor for 

consistency at multivariate normal distributions. The MCD is the set of just over half of 

the observations with the minimum covariance matrix determinant. Cutoff values for 

robust distances from simulation (1000 replicates) determine whether an observation is 

classified as an outlier or not. There are numerous algorithms to find the MVE and MCD 

that provide widely varying results for the same data set; we use the recently modified 

genetic algorithms internal to S-Plus 4.5 (Burns, 1992). 

The R&W (1996) hybrid procedure. Rocke and Woodruff combine several results 

in the literature in their complex two-phase algorithm to detect multiple outliers. The 

output of the first phase is an estimate of multivariate location and shape. This robust 

estimate is determined by first partitioning the data equally into cells to minimize the 

impact on computational complexity. Within each cell, the observations from the MCD 

using Hawkins (1993) steepest descent algorithm with random restarts provide the 

starting point for a sequential point addition algorithm from Hadi (1992). This result is 

then used as a starting point for the translated bi-weight M-estimation of the mean and 

covariance matrices. 

The second phase runs a simulation to determine the appropriate cutoff value to 

classify observations as outliers based on n observations in/) dimensions using clean 

multivariate normal data in the Phase I algorithm. To increase efficiency, new location 

and shape matrices are formed from the set of observations below the simulated cutoff 
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value. The robust distance is calculated using these new location and shape matrices and 

compared to a x J,i-« critical value to classify the observation as outlying or not. The 

authors provided their compiled C++ code. 

The SM&R (1998) clustering algorithm. This approach uses a single-linkage 

clustering algorithm with Euclidean distances on the standardized predicted and 

standardized residual values from a least squares fit. The algorithm finds the single 

largest cluster, or the bulk of the data, and classifies it as the clean observations. 

Mojena's stopping rule forms the final clusters by splitting a cluster tree at the average of 

the n - 1 tree cluster heights (a measure of cluster separation) plus 1.25 times the standard 

deviation of the tree cluster heights. 

4.4.2 Monte Carlo Simulation Leverage Study 

We conduct a performance study that tests the ability of the previously described 

methods to identify high-leverage observations across a variety of scenarios. The key to 

a good leverage measure is to develop an estimate of the mean vector and covariance 

matrix that is not influenced by outliers. This suggests that we do not want outlying 

observations included in the calculations of the parameter estimates and also that we want 

as many clean observations included as possible. An observation is masked if it is truly 

an outlier but the procedure does not detect it and an observation is swamped if the 

procedure identifies it as an outlier when it is a clean observation. The primary measures 

of performance are: 1) the probability that an outlying observation is detected and 2) the 

probability that a known clean observation is identified as an outlier. Note that the 



115 

masking probability is the complement of the first measure of performance and the 

swamping probability is the second measure of performance. 

The simulation scenarios place a cluster or two clusters of several observations at 

a specified location shifted in X-space because this geometry challenges the procedures 

(Rocke and Woodruff, 1996). The factors investigated in these studies are dimension, 

density (percentage of outlying observations), the number of standard deviations from the 

mean that the cloud is placed in X-space (5L), and the number of multiple point clouds. 

Additionally, we consider the number of regressors out of k that are unusual for the 

outlying observations as a factor because many studies only consider all k variables in 

their tests. Only the SM&R procedure requires response values. The response values 

conform to the regression surface because we do not give the SM&R procedure an unfair 

advantage. There are 500 replicates for each scenario and all simulations are performed 

in S-PIus 4.5. 

The simulation results are reported in tables that provide the probability of 

detection and the probability of false alarm (in parentheses) in each cell. We also report 

the statistically significant effects from the analysis of variance for each procedure. The 

significant main effects and two factor interactions provide guidance in the table of where 

to look for significant differences in performance. Note that the significant effects are 

valid for the region of operability defined by the factor settings and a different set of 

effects could occur if the factor settings are changed. 
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4.4.2.1 Outlying Observations Unusual in All Regressor Variables 

This factorial experiment tests the procedures' detection ability and resistance to 

swamping when the outliers are placed in a single cloud located at a distance 8L standard 

deviations from the mean for all k regressor variables. The generating distribution for the 

clean regressor variables is NOx,<7x
2 ) with //x = 7.5 and <rx = 4. The fh observation 

with outlying magnitude 8L standard deviations is placed at xv = xcieanJ + 4SL + s\ for/ = 

1 to k regressor variables where xclecmJ is the mean of the known clean observations for 

the/* regressor variable. The random component e*y, distributed Uniform (0, 0.25), 

separates the observations within the outlying cloud to avoid the possibility of singular 

X-matrices in some procedures. An observation in a second outlying cloud (if 

applicable) is placed at xtj = *cleanJ - 48 + s]. The responses for all observations are 

generated y, =ß'x, +s, where ß is the vector of known regression coefficients selected 

for the simulations to be 0 for the intercept and 5 for each of the k regressor variables and 

et is a standard normal variate. 

The 24 factorial design in Table 4.2 contains in each cell the probability of 

detection and, in parentheses, the probability of felse alarm. For completeness, there are 

four additional scenarios added to test the detection capability at higher levels of leverage 

(8L) in high-density and high-dimension scenarios because none of the procedures 

reliably detects the outliers at the original factor settings. The significant main effects 

and two-factor interactions and the average detection and felse alarm probabilities that 
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are located in the last three rows of Table 4.2 provide summary information to assess 

overall performance. 

There are three distinct categories of performance based on detection capability in 

these scenarios 1) perfect detection capability from the SM&R clustering procedure, 2) 

generally very good power from the MVE, MCD, R&W and the Hadi forward selection 

algorithm and 3) poor detection capability from the Mahalanobis distance/hat diagonal 

and M-estimates of covariance. The reason for the SM&R success is explained by the 

single-linkage clustering algorithm on the predicted and residual values. For the high- 

leverage observations in these runs, the OLS residuals are essentially zero and the 

predicted values are quite unusual with respect to the clean observations (e.g. for k = 6, 8L 

= 4, E(y) = 225 for the clean observations and E(y) = 705 for the outliers). 

The combinatorial procedures (MVE, MCD, and R&W) perform well except in 

the high-density, high-dimension runs as indicated by the shading in Table 4.2. The four 

supplemental runs indicate that the R&W estimator is superior to the MVE or MCD in 

the high-dimension, high-density scenarios; particularly when false alarm probability is 

considered. We also note from Table 4.2 that all main effects, except the number of 

clouds, and most two-factor interactions with these three active effects, are significant for 

these combinatorial estimators. 

The Hadi forward selection algorithm has less ability to correctly identify outliers 

than the combinatorial procedures. Pilot studies show power could be increased 

substantially (except in the high-dimension, high-density scenarios) if the cutoff value 

were lowered because there is a significant gap in robust distances between the clean and 
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Table 4.2. Design matrix with detection and false alarm probabilities (in 
parentheses) for high-leverage observations in multiple point clouds that have unusual 

foral k regressor variables. 
A 

n,k 
B 

dens 
C 
6i. 

D 
elds MD 

MEst 
Cov 

MVE 
Chi 

MVE 
Sim MCD R&W SM&R Hadi 

40,2 10% 3a 0.000 
(.000) 

0.955 
(.027) 

0.800 
(.026) 

0.800 
(.013) 

0.746 
(.011) 

0.933 
(.030) 

1.000 
(.086) 

0.378 
(.000) 

60,6 10% 3a 0.000 
(.000) 

0.000 
(.047) 

0.900 
(.038) 

0.830 
(.026) 

0.920 
(023) 

0.975 
(.041) 

1.000 
(.090) 

0.993 
(.000) 

40,2 20% 3a 0.000 
(.011) 

0.000 
(.031) 

0.541 
(.060) 

0.534 
(.039) 

0.647 
(.041) 

0.625 
(.028) 

1.000 
(.129) 

0.349 
(.005) 

60,6 20% 3CT 0.000 
(.000) 

0.000 
(.113) 

0.000 
(.462) 

0.000 
(.284) 

0.000 
(.508) 

0.387 
(.091) 

1.000 
(.079) 

0.000 
(.000) 

40,2 10% 4CT 0.953 
(.001) 

1.000 
(.027) 

0.960 
(.030) 

0.960 
(.016) 

0.990 
(.010) 

1.000 
(.030) 

1.000 
(.050) 

0.985 
(.000) 

60,6 10% 4a 0.000 
(.000) 

0.000 
(.052) 

1.000 
(.035) 

1.000 
(.022) 

1.000 
(.013) 

1.000 
(.039) 

1.000 
(.027) 

1.000 
(.000) 

40,2 20% 4a 0.000 
(.021) 

0.000 
(.029) 

0.892 
(051) 

0.833 
(.042) 

0.927 
(.031) 

0.977 
(.029) 

1.000 
(.092) 

0.935 
(.002) 

60,6 20% 4a 0.000 
(.000) 

0.000 
(.053) 

0.040 
(.332) 

0.020 
(.099) 

0.000 
(.340) 

0.740 
(.062) 

1.000 
(.063) 

0.000 
(.059) 

40,2 10% 3a 2 0.140 
(.032) 

0.979 
(.026) 

0.836 
(.027) 

0.761 
(.014) 

0.773 
(.009) 

0.993 
(.032) 

1.000 
(.053) 

0.265 
(.000) 

60,6 10% 3a 2 0.000 
(.000) 

0.000 
(.044) 

0.985 
(.038) 

0.980 
(.020) 

0.998 
(.012) 

1.000 
(.035) 

1.000 
(.066) 

0.938 
(.000) 

40,2 20% 3a 2 0.000 
(.037) 

0.015 
(.027) 

0.648 
(.020) 

0.595 
(.010) 

0.670 
(.007) 

0.537 
(.037) 

0.978 
(.083) 

0.258 
(.002) 

60,6 20% 3a 2 0.000 
(.000) 

0.000 
(.080) 

0.000 
(.123) 

0.000 
(.083) 

0.000 
(.251) 

0.333 
(.039) 

1.000 
(.042) 

0.000 
(.001) 

40,2 10% 4a 2 0.899 
(.032) 

0.976 
(.027) 

0.998 
(.029) 

0.997 
(.014) 

1.000 
(.009) 

1.000 
(.032) 

1.000 
(.016) 

0.956 
(.000) 

60,6 10% 4a 2 0.000 
(.000) 

0.000 
(.048) 

1.000 
(.035) 

1.000 
(.023) 

1.000 
(.013) 

1.000 
(.037) 

1.000 
(.009) 

1.000 
(.000) 

40,2 20% 4a 2 0.000 
(.024) 

0.271 
(.026) 

1.000 
(.031) 

0.931 
(.008) 

0.988 
(.006) 

0.982 
(024) 

1.000 
(.052) 

0.908 
(.002) 

60,6 20% 4a 2 0.000 
(.000) 

0.000 
0.082 

0.040 
(.122) 

0.011 
(.097) 

0.175 
(224) 

0.635 
(.085) 

1.000 
(.031) 

0.030 
(.010) 

60,6 20% 5a 1 0.000 
(.000) 

0.000 
(.110) 

0.040 
(.128) 

0.040 
(.096) 

0.015 
(.341) 

0.783 
(.073) 

1.000 
(.072) 

0.011 
(.044) 

60,6 20% 6a 1 0.000 
(.000) 

0.000 
(109) 

0.230 
(.113) 

0.230 
(.085) 

0.107 
(.310) 

0.927 
(.038) 

1.000 
(.042) 

0.000 
(.034) 

60,6 20% 5a 2 0.000 
(.000) 

0.000 
(.089) 

0.150 
(.110) 

0.150 
(.076) 

0.305 
(.195) 

0.760 
(.072) 

1.000 
(.028) 

0.061 
(.013) 

60,6 20% 6a 2 0.000 
(.000) 

0.000 
(.088) 

0.370 
(.095) 

0.370 
(.068) 

0.713 
(.089) 

0.933 
(.032) 

1.000 
(.027) 

0.080 
(.011) 

Average 0.100 
(.008) 

0.210 
(.057) 

0.572 
(.095) 

0.552 
(.057) 

0.599 
(.122) 

0.826 
(.044) 

0.999 
(.057) 

0.457 
(.009) 

Significant effects 
Detection capability 

AB, 
c, 

AB, 
AC, 
BC 

AB, 
AB 

AB, 
C, 

AB, 
AC 

AB, 
c, 

AB, 
AC 

AB, 
c, 

AB, 
AC 

AB, 
c, 

AB, 
AC, 
BC 

none AB, 
C,AB, 

AC 

Significant effects 
False alarms 

AD, 
AD 

AB AB, 
D, 

AB, 
|    BD 

AB, 
AB 

AB, 
AB 

AB, 
AB 

AB, 
CD, 
AB 

none 
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outlying observations. The distances, although unusual, do not cross the threshold to 

declare the observations outliers. We also note the virtual nonexistence of false alarms 

with the Hadi method. The M-estimates of covariance and the hat diagonals 

(Mahalanobis distance) only have power in low-dimension, low-density and high- 

magnitude. Interestingly, these procedures still do not detect outliers in high-dimension 

and/or high-density if the outlying magnitude 8L is as high as 50o\. Although these two 

procedures are not useful at detection, they generally will not swamp clean observations. 

4.4.2.2 Outlying Observations that are Unusual in Only One of A: Variables 

In many data sets, the high-leverage outliers may be unusual in only a single 

variable rather than the entire variable set as is often investigated in published data sets 

and in Section 4.4.2.1. This experiment is similar to Section 4.4.2.1 only the last k -1 

regressor variables values are generated from NID(7.5,42) for both the clean and outlying 

observations. Essentially, these are randomly scattered outliers with the cloud(s) formed 

only in a single regressor variable. Our experiments have shown for all methods there is 

a dramatic decrease in power and an increase in false alarm rate if the remaining k -1 

variables are placed approximately at the mean of 7.5 rather than allowed to randomly 

vary as NID (7.5,42) for the outlying observations. 

Pilot studies indicate that none of the procedures have any detection capability 

until 8L = 4ax; therefore, the low level for leverage magnitude is increased for this study 

from 3o\ to 4o\. The design matrix and results in Table 4.3 are supplemented with two 

additional runs at a higher magnitude 8L for the high-dimension, high-density runs. 
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The results for this section are generally consistent with those from the previous 

experiment in Section 4.4.2.1; however, the SM&R clustering algorithm performance has 

a significant decrease in detection capability and increase in false alarm rate. This can be 

attributed to the outliers' predicted response values not being as unusual as those of 

Section 4.4.2.1 because only one, rather than all, regressors is abnormally large. The 

SM&R method's detection capability is competitive with the others in low dimension, but 

has little power in high-dimension and suffers from high false alarm rates in all scenarios. 

The MVE, MCD and R&W procedures have lost significant detection capability (30% - 

50%) from the previous study in similar scenarios at the 8L = 4a factor settings for 

outlying magnitude. The R&W estimator is either at or near the top in detection 

capability for these scenarios. In contrast to the findings in Section 4.4.2.1, we note that 

the MCD and MVE estimators perform reasonably well in the high-dimension, high- 

density runs, particularly for false alarm probabilities. The combinatorial estimators 

outperform the Hadi procedure. Significant gaps still exist for the Hadi procedure 

between the outlier and inlier robust distances and also there are no false alarms. The M- 

estimates of covariance and the Mahalanobis distance again are poor performers. The 

fact that M-estimates of covariance have more power if only a single regressor variable is 

outlying rather than all k is somewhat counterintuitive. 
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Table 4.3. Design matrix with detection and false alarm probabilities (in 

A 
n,k 

B 
dens 

C 
8,. 

D 
elds MD 

MEst 
Cov 

MVE 
chi 

MVE 
sim MCD R&W SM&R Hadi 

40,2 10% 4CT 0.193 
(.021) 

0.940 
(.028) 

0.848 
(.026) 

0.773 
(.017) 

0.793 
(.010) 

0.955 
(.031) 

0.570 
(.160) 

0.241 
(.000) 

60,6 10% 4c 0.080 
(.009) 

0.273 
(.038) 

0.589 
(.030) 

0.528 
(.016) 

0.348 
(.014) 

0.606 
(.038) 

0.182 
(.150) 

0.083 
(.000) 

40,2 20% 4<T 0.000 
(.010) 

0.120 
(.021) 

0.769 
(.064) 

0.653 
(.021) 

0.685 
(.014) 

0.575 
(.028) 

0.810 
(.187) 

0.234 
(.000) 

60,6 20% 4<T 0.024 
(.006) 

0.104 
(.034) 

0.123 
(.028) 

0.095 
(.017) 

0.183 
(.010) 

0.190 
(.036) 

0.091 
(.172) 

0.000 
(.000) 

40,2 10% 5a 0.325 
(.036) 

1.000 
(.028) 

0.965 
(.030) 

0.953 
(.017) 

0.970 
(.001) 

1.000 
(.030) 

0.797 
(.129) 

0.815 
(.000) 

60,6 10% 5a 0.107 
(.012) 

0.408 
(.036) 

0.877 
(.033) 

0.835 
(.019) 

0.606 
(.010) 

0.927 
(.038) 

0.263 
(.142) 

0.068 
(.000) 

40,2 20% 5a 0.000 
(.030) 

0.255 
(.021) 

0.810 
(.042) 

0.790 
(.032) 

0.904 
(.028) 

0.833 
(.028) 

0.950 
(.171) 

0.801 
(.002) 

60,6 20% 5a 0.031 
(.008) 

0.121 
(.031) 

0.386 
(.021) 

0.288 
(017) 

0.452 
(.006) 

0.612 
(.032) 

0.135 
(.166) 

0.144 
(.000) 

40,2 10% 4a 2 0.012 
(.035) 

0.983 
(.028) 

0.843 
(.031) 

0.747 
(.015) 

0.701 
(.012) 

0.963 
(.035) 

0.785 
(.118) 

0.166 
(.000) 

60,6 10% 4a 2 0.100 
(.011) 

0.342 
(.038) 

0.570 
(.032) 

0.466 
(019) 

0.286 
(.016) 

0.565 
(.043) 

0.227 
(-144) 

0.000 
(.000) 

40,2 20% 4c 2 0.000 
(.035) 

0.375 
(.022) 

0.551 
(.033) 

0.521 
(.013) 

0.574 
(.010) 

0.382 
(.035) 

0.730 
(.177) 

0.163 
(.000) 

60,6 20% 4c 2 0.036 
(.009) 

0.141 
(.033) 

0.201 
(.025) 

0.141 
(.014) 

0.182 
(.013) 

0.195 
(.034) 

0.090 
(.172) 

0.000 
(.000) 

40,2 10% 5c 2 0.380 
(.032) 

1.000 
(.026) 

0.962 
(.021) 

0.933 
(.016) 

0.938 
(.009) 

1.000 
(.032) 

0.955 
(.080) 

0.781 
(.000) 

60,6 10% 5a 2 0.138 
(015) 

0.532 
(.037) 

0.937 
(.032) 

0.831 
(.020) 

0.567 
(.011) 

0.940 
(.040) 

0.360 
(.140) 

0.108 
(.000) 

40,2 20% 5c 2 0.000 
(.029) 

0.739 
(.022) 

1.000 
(.035) 

0.878 
(.009) 

0.930 
(.006) 

0.877 
(.029) 

0.885 
(.127) 

0.764 
(.002) 

60,6 20% 5c 2 0.043 
(Oil) 

0.157 
(.030) 

0.579 
(.021) 

0.506 
(.014) 

0.445 
(.006) 

0.626 
(.027) 

0.233 
(.160) 

0.085 
(.000) 

60,6 20% 6a 1 0.031 
(.008) 

0.130 
(.031) 

0.727 
(.023) 

0.703 
(.013) 

0.838 
(.006) 

0.939 
(.024) 

0.185 
(.182) 

0.643 
(.000) 

60,6 20% 6a 2 0.046 
(.011) 

0.168 
(.029) 

0.823 
(.023) 

0.804 
(.011) 

0.834 
(.020) 

0.829 
(.008) 

0.983 
(.027) 

0.591 
(.000) 

Avet age 0.092 
(.019) 

0.468 
(.030) 

0.688 
(.032) 

0.621 
(.017) 

0.598 
(.011) 

0.703 
(.034) 

0.504 
(.150) 

0.278 
(.000) 

Significai 
detection < 

it effects 
sapability 

B A,B, 
AB 

A,B, 
C,AB 

A,B, 
C,AB 

A,B,C A,B, 
C,AC, 

BC 

A,C, 
AB 

A,C, 
AC 

Significai 
false: 

it effects 
ilarm 

A A,B AB D, 
AD, 
BD 

none A,B B,C, D none 

4.4.2.3 High-density, High-Magnitude Outliers 

The results from the previous two studies indicate that the procedures have 

difficulty correctly identifying the outliers in the high-dimension, high-density scenarios. 

This study changes the levels for the total outlier density factor from 10% for the low 
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level and 20% for the high level to 15% and 30% respectively. The levels for the 

distance the cloud is shifted, 8L, are also changed from 3a and 4a to 5a and 10a, 

respectively. Because the number of clouds is generally not a significant factor 

contributing to the performance of these procedures, it is set to a constant value of one for 

all scenarios. The fourth factor is now the number of regressor variables out of k that 

have outlying values for the planted outliers. The low setting is one and the high setting 

is all k variables (2 or 6). The Mahalanobis distance has no power in virtually all 

scenarios; therefore, its performance is not included with the results in any further 

studies. 

The most interesting result from this study is the breakdown of the procedures at 

30% density shown in the shaded high-dimension scenarios of Table 4.4. The false alarm 

rates are abnormally large when the values are extreme in all k variables for these runs 

and also the shaded run in low dimension. The SM&R clustering procedure performance 

is consistent with previous findings; 100% detection capability if outlying in all regressor 

variables and a significant loss of power if outlying only in a single variable. Similarly, 

the M-estimates of covariance have detection power limited exclusively to low dimension 

and low-density scenarios independent of the magnitude of the outlying distance. The 

R&W hybrid estimator is typically more powerful than the MCD or MVE. Surprisingly, 

only a single factor (contamination percentage) is significant for detection capability for 

R&W and none are significant for the MCD in this operating region. 
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Table 4.4. Design matrix with detection and false alarm probabilities (in parentheses) 
for high-magnitude, high-density, high-leverage scenarios. Outliers are unusual in one or 

regressors. 
A 

n,k 
B 

dens 
C 
8,. 

D 
vars 

MEst 
Cov 

MVE 
chi 

MVE 
Sim MCD R&W SM&R Hadi 

40,2 15% 5a 0.920 
(.029) 

0.933 
(.033) 

0.915 
(.018) 

0.940 
(.009) 

0.965 
(.034) 

0.745 
(.171) 

0.835 
(.000) 

60,6 15% 5a 0.200 
(.033) 

0.751 
(.030) 

0.694 
(.017) 

0.608 
(.009) 

0.860 
(.032) 

0.191 
(.152) 

0.101 
(.000) 

40,2 30% 5a 0.058 
(.017) 

0.625 
(.016) 

0.602 
(.005) 

0.928 
(.002) 

0.633 
(.018) 

0.449 
(.273) 

0.793 
(.000) 

60,6 30% 5a 0.071 
(.039) 

0.052 
(.030) 

0.030 
(.016) 

0.358 
(.011) 

0.234 
(.038) 

0.062 
(.227) 

0.141 
(.000) 

40,2 15% 10a 1.000 
(.031) 

1.000 
(.031) 

1.000 
(016) 

1.000 
(.009) 

1.000 
(.034) 

1.000 
(.077) 

1.000 
(.000) 

60,6 15% 10a 0.293 
(.031) 

1.000 
(031) 

1.000 
(.019) 

1.000 
(.008) 

1.000 
(.032) 

0.856 
(.138) 

1.000 
(.000) 

40,2 30% 10a 0.680 
(017) 

1.000 
(.015) 

1.000 
(.003) 

1.000 
(.002) 

0.977 
(.020) 

1.000 
(183) 

0.944 
(.002) 

60,6 30% 10a 0.066 
(.035) 

0.153 
(.078) 

0.128 
(.015) 

1.000 
(.003) 

0.963 
(.022) 

0.534 
(.281) 

0.939 
(.000) 

40,2 15% 5a 2 1.000 
(.036) 

1.000 
(.029) 

1.000 
(.015) 

1.000 
(.009) 

1.000 
(.034) 

1.000 
(.054) 

1.000 
(.000) 

60,6 15% 5a 6 0.000 
(.070) 

0.840 
(.038) 

0.840 
(.022) 

0.860 
(.052) 

0.970 
(.037) 

1.000 
(.035) 

1.000 
(.000) 

40,2 30% 5a 2 0.000 
(.064) 

0.270 
(.276) 

0.270 
(.244) 

0.300 
(.302) 

0.807 
(.092) 

1.000 
(.128) 

1.000 
(.000) 

60,6 30% 5a 6 0.000 
(-143) 

0.000 
(.339) 

0.000 
(.280) 

0.000 
(.621) 

0.010 
(.260) 

1.000 
(.109) 

0.000 
(.474) 

40,2 15% 10a 2 1.000 
(.036) 

1.000 
(.034) 

1.000 
(.017) 

1.000 
(.009) 

1.000 
(.034) 

1.000 
(.034) 

1.000 
(.000) 

60,6 15% 10a 6 0.000 
(.068) 

1.000 
(.027) 

1.000 
(016) 

1.000 
(.009) 

1.000 
(.032) 

1.000 
(.028) 

1.000 
(.000) 

40,2 30% 10a 2 0.000 
(.063) 

0.930 
(.053) 

0.930 
(.040) 

0.980 
(.015) 

0.990 
(.024) 

1.000 
(.112) 

1.000 
(.000) 

60,6 30% 10a 6 0.000 
(.142) 

0.000 
(.337) 

0.000 
(281) 

0.000 
(.622) 

0.400 
(-189) 

1.000 
(.089) 

0.000 
(.453) 

Average 0.331 
(.053) 

0.660 
(.087) 

0.651 
(.064) 

0.748 
(.106) 

0.801 
(.058) 

0.802 
(131) 

0.735 
(.058) 

Significant effects 
detection capability 

AB, AB A,B,C, 
AB 

A,B,C, 
AB 

none B C, D, CD A 

Significant effects 
false alarm 

A,B,D, 
AB, AD, 

BD 

B, D, AB, 
BD 

B,D,BD B,D, 
BD 

None CD none 

4.4.2.4 Outlying Observations with Unusual Levels in 3 of 6 Variables 

This section investigates the difference in detection capability and false alarm 

rates for the procedures when the outliers have an intermediate factor setting of outlying 

in 3 of 6 regressor variables. The motivation is the discrepancy in performance when the 

outliers are unusual in all 6 variables versus outlying in only 1 of 6. There are only three 
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factors to consider in this study because the dimension is set at k = 6 and the number of 

outlying variables is set at 3. The results are shown for the foil factorial in three factors 

in Table 4.5. 

From Table 4.5, the overall detection probabilities are similar to those seen in the 

runs with all 6 variables outlying. However, the false alarm averages in the high-density 

scenarios are much lower compared to the rates when outlying in all 6 variables. The 

exception to this is the SM&R false alarm rates near 20% for many of the high-density 

scenarios. Again, the R&W hybrid algorithm slightly outperforms the MCD and MVE in 

most cases. The MVE is vulnerable in the high outlier density scenarios for the 4 and 5CT 

Table 4.5. Design matrix with detection and false alarm probabilities 
(in parentheses) for clouds that are remote in 3 of the 6 regressor variables. 

A 
Dens 

B 
8,. 

C 
elds 

MEst 
Cov 

MVE 
chi 

MVE 
Sim MCD R&W SM&R Hadi 

10% 4a 1 0.330 
(.041) 

0.990 
(.033) 

0.990 
(.018) 

0.954 
(.012) 

1.000 
(.018) 

0.998 
(.134) 

0.958 
(.000) 

20% 4a 1 0.040 
(.052) 

0.327 
(.050) 

0.245 
(.034) 

0.813 
(.028) 

0.819 
(.040) 

0.968 
(-253) 

0.920 
C.000) 

10% 5CT 1 0.517 
(.042) 

0.980 
(.033) 

0.967 
(.023) 

1.000 
(.013) 

1.000 
(.037) 

1.000 
(.055) 

0.991 
(.004) 

20% 5a 1 0.042 
(.049) 

0.597 
(.035) 

0.591 
(.022) 

0.965 
(.011) 

0.946 
(031) 

1.000 
(.220) 

0.987 
(.000) 

10% 4a 2 0.510 
(.040) 

1.000 
(.033) 

0.919 
(.023) 

0.956 
(.013) 

1.000 
(.037) 

1.000 
(.048) 

0.903 
(.000) 

20% 4a 2 0.053 
(.043) 

0.583 
(.036) 

0.550 
(.023) 

0.935 
(.006) 

0.958 
(.029) 

0.964 
(.194) 

0.853 
(.000) 

10% 5a 2 0.785 
(.041) 

0.990 
(.034) 

1.000 
(.025) 

1.000 
(.013) 

1.000 
(.037) 

1.000 
(.027) 

1.000 
(.000) 

20% 5a 2 0.054 
(.042) 

0.837 
(.033) 

0.813 
(.019) 

0.999 
(.007) 

0.990 
(.029) 

1.000 
(.056) 

1.000 
(.000) 

20% 6a 1 0.043 
(.049) 

0.793 
(.032) 

0.792 
(.018) 

0.810 
(.027) 

0.867 
(041) 

1.000 
(.076) 

0.972 
(.000) 

30% 10a 1 0.286 
(043) 

0.063 
(103) 

0.059 
(.071) 

0.870 
(.060) 

0.891 
(.039) 

0.995 
(095) 

0.237 
(.006) 

Average 0.266 
(.044) 

0.716 
(.042) 

0.693 
(.028) 

0.930 
(.019) 

0.947 
(.034) 

0.993 
(.116) 

0.882 
(.001) 

Significant effects 
Detection capability 

A A A B none B,AAB B 

Significant effects 
false alarm 

AC, AC none none None none A None 
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cases, but is competitive with the other combinatorial procedures by 6a and beyond. The 

last scenario in Table 4.5 again shows the vulnerability of the MVE and the breakdown of 

the otherwise excellent performing Hadi forward search. 

4.4.2.5 Outlying Observations Without Unusual Response Values 

This study evaluates the performance when the response value for the outlying 

observations is not a Y-space outlier. The purpose of this study is twofold. First, 

interesting results can occur when the signs of regressor variables are changed, as we do 

here, and second, to investigate the effect on the SM&R algorithm that has performed 

well with unusual predicted response values. Recall that the regressor variables for the 

clean observations are generated from a N(7.5,42) distribution. In the studies to this 

point, an observation in an outlying cloud at, for example, 5L = 4<yx in two regressor 

variables would be placed at xl = x2 = 7.5 + 4(4) + e\ = 23.5 where s] is distributed 

Uniform (0, 0.25). The expected response value would be approximately 5*23.5 + 

5*23.5 = 235. The expected response value for clean observation is significantly lower, 

5* 7.5 + 5*7.5 = 75. For the scenarios in this experiment, the outlying cloud is placed 

approximately 4ax above the mean or 23.5 for xl and 4CTX below the mean or -8.5 for x2. 

The expected response for the outliers, 5 * 23.5 + 5 * (-8.5) = 75, is now the same as that 

for the clean observations. The scenarios selected for the study in Table 4.6 are random; 

however, the results are consistent independent of the factor settings. 

The results indicate that SM&R has no power to detect outliers in X-space if the 

response variable is not unusual and the least squares residuals are driven essentially to 
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zero by the high-leverage points. The 20% false alarm rate for this method is consistent 

with the published value for the null behavior. The other methods perform slightly below 

their counterpart runs when all variables have the same sign. 

Table 4.6. Design matrix with detection and false alarm probabilities 
(in parentheses) for high-leverage points without unusual response values. 

n,k dens 8L elds Vars 
MEst 
Cov 

MVE 
Chi 

MVE 
Sim MCD R&W SM&R Hadi 

40,2 20% 4a 1 2 0.000 
(.032) 

0.977 
(.082) 

0.883 
(.026) 

0.958 
(.021) 

0.980 
(.025) 

0.005 
(199) 

0.959 
(.003) 

40,2 10% 3a, 4a 2 2 0.965 
(.029) 

0.975 
(.031) 

0.909 
(012) 

0.871 
(.009) 

0.993 
(.028) 

0.005 
(.201) 

0.405 
(.000) 

60,6 20% 3a 2 6 0.000 
(.069) 

0.893 
(.064) 

0.864 
(.027) 

0.932 
(.210) 

0.926 
(.039) 

0.000 
(.200) 

0.087 
(.014) 

60,6 20% 3a, 6a* 2 3 0.000 
(.086) 

0.775 
(.059) 

0.740 
(.029) 

0.905 
(.020) 

0.915 
(.034) 

0.000 
(199) 

0.029 
(.005) 

Average 0.241 
(.054) 

0.905 
(.059) 

0.849 
(.024) 

0.917 
(.065) 

0.954 
(032) 

0.003 
(.200) 

0.370 
(.006) 

♦This scenario has the outliers at xl=3a, x2 = 3a and x3= -6a for the first cloud and xl= 
3a, x2 = -3a and x3= 6a for the second cloud. 

4.4.2.6 Multiple Point Clouds that are in Close Proximity 

These miscellaneous scenarios test the ability to identify outlying multiple point 

clouds positioned next to each other in X-space. In Sections 4.4.2.1 through 4.4.2.4, if 

there are two multiple point clouds, one is placed at + b\ssx and the other at - 8Lax. The 

location of the point clouds for this study is specified in the outlying magnitude column 

of Table 4.7. These scenarios have been cited as challenging in the literature because the 

outlying clouds can mask the other clouds from detection. 

The overall results are mixed. The SM&R detection capability is consistent with 

earlier results: excellent detection capability if outlying in 3 of 6 or all 6 variables, poor 

detection capability if outlying in a single variable, and high false alarm rates. The 

shaded scenarios highlight that R&W outperforms or is competitive with the MVE and 



MCD. Note, in particular, the uncharacteristic high false alarm rate for the MCD 

procedure in these three shaded scenarios. 
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Table 4.7. Design matrix wit! 
(in parentheses) for multiple ] 

i detection and false alarm probabilities 
point clouds located in close proximity. 

n,k dens 8L elds vars 
M-est 
cov 

MVE 
Chi 

MVE 
sim MCD R&W SM&R Hadi 

40,2 10% 3a, 4a 2 2 0.976 
(.028) 

0.931 
(.046) 

0.883 
(.016) 

0.841 
(.012) 

0.995 
(.035) 

1.000 
(.088) 

0.608 
(.000) 

40,2 20% 3a, 4a 2 2 0.000 
(030) 

0.723 
(.058) 

0.670 
(.033) 

0.749 
(031) 

0.623 
(.032) 

0.970 
(.133) 

0.571 
(.000) 

40,2 10% 3a, 4a 2 1 0.685 
(.026) 

0.644 
(.029) 

0.526 
(.019) 

0.434 
(.013) 

0.786 
(.032) 

0.439 
(154) 

0.021 
(.000) 

40,2 20% 3a, 4a 2 1 0.131 
(.021) 

0.384 
(.021) 

0.283 
(.013) 

0.311 
(.006) 

0.171 
(.022) 

0.222 
(.219) 

0.019 
(.000) 

60,6 10% 3a, 4a 2 6 0.005 
(.053) 

0.995 
(.030) 

0.995 
(.017) 

0.987 
(.014) 

0.960 
(.040) 

1.000 
(.043) 

0.997 
(.000) 

60,6 20% 3a, 4a 2 6 0.000 
(.078) 

0.000 
(.131) 

0.000 
(.094) 

0.000 
(.328) 

0.650 
(.071) 

1.000 
(.093) 

0.090 
(.051) 

60,6 10% 3a, 4a 2 3 0.382 
(.042) 

0.965 
(031) 

0.918 
(.020) 

0.783 
(.014) 

0.956 
(.037) 

0.896 
(.144) 

0.428 
(.000) 

60,6 20% 3a, 4a 2 3 0.048 
(.053) 

0.276 
(.050) 

0.193 
(.030) 

0.563 
(.035) 

0.643 
(.044) 

0.755 
(.244) 

0.398 
(.000) 

60,6 10% 4a, 5a 2 1 0.385 
(.038) 

0.768 
(.033) 

0.622 
(017) 

0.414 
(.014) 

0.701 
(.039) 

0.182 
(.153) 

0.014 
(.000) 

60,6 20% 4a, 5a 2 1 0.123 
(.033) 

0.248 
(.029) 

0.185 
(.017) 

0.271 
(.011) 

0.202 
(.040) 

0.095 
(.173) 

0.000 
(.000) 

60,6 20% 3a, 4a, 
5a, 6a 

4 6 0.000 
0.071 

0.240 
(.122) 

0.215 
(.102) 

0.020 
(.308) 

0.753 
(.068) 

1.000 
(.196) 

0.217 
(001) 

60,6 20% 3a, 4a, 
5a, 6a 

4 3 0.056 
(.050) 

0.636 
(.043) 

0.628 
(.023) 

0.823 
(.012) 

0.807 
(.033) 

0.893 
(.239) 

0.457 
(.000) 

60,6 20% 3a, 4a, 
5a, 6a 

4 1 0.167 
(.034) 

0.326 
(.021) 

0.368 
(021) 

0.484 
(.020) 

0.283 
(:040) 

0.178 
(.164) 

0.000 
(.000) 

60,6 20% -5a,- 
4a, 

4a, 5a 

4 6 0.000 
0.073 

0.120 
(119) 

0.070 
(.098) 

0.240 
(■215) 

0.680 
(.076) 

1.000 
(.143) 

0.405 
(.004) 

60,6 20% -5a,- 
4a, 

4a, 5a 

4 3 0.058 
(.044) 

0.797 
(.053) 

0.769 
(.037) 

0.995 
(.019) 

0.980 
(041) 

0.978 
(.186) 

0.965 
(.000) 

60,6 20% -5a,- 
4a, 

4a, 5a 

4 1 0.163 
(.032) 

0.368 
(.023) 

0.277 
(.013) 

0.332 
(.005) 

0.254 
(031) 

0.235 
(.163) 

0.013 
(.000) 

60,6 20% -6a,- 
5a, 

5a, 6a 

4 1 0.184 
(.031) 

0.660 
(.109) 

0.653 
(011) 

0.682 
(.005) 

0.788 
(.027) 

0.286 
(.162) 

0.193 
(.000) 

Average 0.198 
(.043) 

0.534 
(.056) 

0.486 
(.034) 

0.525 
(.062) 

0.661 
(.042) 

0.655 
(.159) 

0.317 
(.003) 
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4.4.3 Summary of Performance for Measures of Leverage 

This section summarizes the key findings from the comparative evaluation for 

each technique. There was no need to test the Mahalanobis distance (hat diagonal) after 

the first few experiments because it has no power to detect multiple outliers in X-space 

except under some specific conditions. 

M-estimates ofcovariance. The usefulness of the Af-estimates of co variance 

distances to detect multiple outliers in X-space is limited to low-dimension, low-density 

scenarios. In high-dimension, the outlying leverage distance, 8L, can be increased 

without bound; yet, the M-estimates ofcovariance distances for the planted outliers are 

still not unusual compared to the inlier distances. False alarm probabilities are always 

below the nominal 5% rate unless in high-dimension, high-density. Overall, this method 

is only slightly preferable to the Mahalanobis distance and it is inferior to the other 

methods to identify outliers in X-space. 

Hadi. The Hadi forward selection algorithm is shown to have decent detection 

capability with very low false alarm probabilities. Although often outperformed by other 

procedures, significant improvement in detection capability is possible by lowering the 

cutoff values. The procedure does not perform well in high-dimension, high-density. 

Further experimentation shows little improvement in high-dimension, high-density 

scenarios if we modify the cutoff values. 

SM&R. The clustering algorithm of the least squares standardized predicted and 

residual values is most effective when the predicted values are unusual with respect to the 

response values for the clean observations. The procedure has higher detection 
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probabilities if the number of unusual regressors is large. The usefulness of this 

procedure as an input to the measure of leverage is limited by the large false alarm rates 

in many scenarios and the general requirement for unusual predicted response values. 

MCD. The robust distances from the MCD estimates are a dependable measure of 

leverage and useful to detect multiple outliers. The simulated cutoff values for robust 

distances from the genetic algorithm in S-Plus allow reasonable detection capability and 

limit the impact from false alarms. The MCD and MVE have similar performance. The 

MCD occasionally will significantly outperform the MVE, especially if k - 6 and the 

number of outlying regressors is 3 or more. There are several high-dimension, high- 

density scenarios where both the MVE and MCD fail to detect the outliers highlighted 

throughout Section 4.4.2. In these instances, the MCD has a much greater false alarm 

probability than the MVE or any other procedure. These are the only instances when the 

MCD procedure exceeds the nominal 5% false alarm rate. 

MVE. Robust distances based on the MVE estimate are shown to reliably detect 

high-leverage observations in most scenarios. Overall, the MVE from the genetic 

algorithm is competitive with the other combinatorial estimators (MCD and R&W), but 

can have significantly lower detection capability in high-dimension, high-density 

scenarios. The use of chi-square critical values for the robust distances has a consistently 

high false alarm rate. Therefore, a moderate decrease in detection capability from the 

simulated critical values is a worthwhile tradeoff to control false alarms. 

Rocke and Woodruff. This hybrid procedure consistently performed as well as or 

better than the MVE and MCD in both our studies and those of the authors. The one 
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exception is that the MCD has slightly better detection probabilities in low-dimension, 

high-density. R&W has superior performance to the MVE and MCD in the challenging 

high-dimension, high-density scenarios. In fact, there are only two scenarios in Section 

4.4.2.3 that the procedure foils to detect the outliers and significantly swamps clean 

observations. The results suggest that this is the preferred procedure to identify outliers 

in X-space. Of course, if the outlying observations are known to have unusual response 

values, the SM&R algorithm is recommended. 

The R&W procedure is the most versatile and often the best performer in our 

studies and we suggest its use as a measure of leverage. Rocke and Woodruff (1997) cite 

instances, most notably in high-dimension, when the MVE and MCD procedures alone 

are likely to fail where theirs will not. They also note that their procedure is much more 

computationally efficient for high-dimension and large sample size compared to the 

MCD and especially the MVE. Our experience has shown reasonable computation times 

for/? < 10, n< 100 on a modest PC (PII-350, 96 MB RAM) when implemented through a 

dynamically linked library (DLL) in S-Plus 4.5. However, the computation times for the 

MVE, MCD or M-estimates of covariance are significantly less than those of R&W. 

4.5 Compound Estimators with R&W Robust Distances as the n-weight Component 

The simulation results in the previous section indicate that the M-estimates of 

covariance used in the S&M compound estimator and the robust distances using the 

MVE estimator with x* cutoff values used in C&H are not the strongest performing 

techniques. The best performing alternative is the R&W robust distances. The R&W 
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robust distances are especially powerful in high-dimension, high density scenarios. We 

now evaluate the utility of using the R&W robust distances as the component in the rc- 

weights for the S&M and C&H estimators. 

Example 4.1 Revisited. Although the exact factor settings in Example 4.1 are not 

run in Section 4.4, the results from Table 4.6 with n = 60, k = 6, 8L = 5CTX and outlying in 

3 (rather than 2 as in our example) of the 6 variables provide an accurate indication of 

performance. The M-estimates of covariance have virtually no power to detect the 

leverage points and the MVE robust distances are only about 60% effective. However, 

the R&W robust distances detect the outliers approximately 95% of the time. The 

modified S&M estimator replaces the Af-estimates of covariance distances with the R&W 

distances. The modified C&H estimator replaces the MVE robust distances with the 

R&W robust distances. The C&H 7t-weights also use a chi-square cutoff value; we 

replace it with the R&W cutoff value supplied by the algorithm 

Unfortunately, the parameter estimates and residuals for both modified estimators 

have changed little from their original values with this leverage modification. On a 

positive note, many of the final weights for the outliers have changed to a value between 

0.0 and 0.5 as opposed to 0.99 in the original versions. Also, the 7t-weights are now 

unusual for the 12 outlying observations. 

Further experimentation with modified S&M and C&H techniques indicates there 

is no real advantage to the improved n-weights in virtually all high-leverage scenarios. 

For both the original and modified versions of these two compound estimators, we 

observe that in the high-leverage, high-dimension scenarios the final parameter estimates 
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do not change much from the initial (S or LTS) values. Therefore, if the initial estimate 

is improved, then the compound estimators may have a better chance to accommodate 

these high-leverage outliers. 

4.6 A Proposal for a New Initial Estimator 

The high-breakdown initial estimators typically used in a compound or GM 

technique do not have the bounded-influence property and thus are known to have 

difficulty (i.e. poor parameter estimates) when there are high-leverage regression outliers. 

We consider a high-breakdown "rejection plus" alternative as an initial estimator that first 

locates and then eliminates the three classes of outliers from the data set followed by 

parameter estimation from a least squares fit on the reduced data set. It is important to 

clarify that we use the füll data set for sequential stages of the compound estimation 

scheme. 

For the proposed initial estimator, high-leverage outliers are first eliminated, 

without regard to how well they fit the regression surface, if the R&W robust distance 

exceeds the algorithm's internally calculated cutoff value. The remaining observations 

should all be on the interior of X-space. From Chapter 3 and Simpson and Montgomery 

(1998b), an excellent high-breakdown, high-efficiency estimator for low-leverage outliers 

is the MM estimator (Yohai, 1987 and Yohai et al., 1991). The MM estimator has three 

stages. The initial estimate is a high-breakdown estimate using an 5-estimate. The 

second stage computes an M-estimate of the errors' scale from the initial 5-estimate 

residuals. The last step is an M-estimate of the regression parameters with a 
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redescending ^-function. If the absolute value of the standardized residuals from an 

MM estimate on the remaining interior X-space data exceeds a simulated cutoff value, 

then these observations are also removed. The simulated cutoff value is 1.91 for both 

«=60, k = 6 and n = 40, k = 2 based on the 95th percentile of the residuals (absolute 

values) from 1000 replications of uncontaminated data In practice, it is probably 

reasonable to use a rule of thumb of 2.0 to avoid the added complexity. The parameter 

estimates for the proposed initial estimator come from a least squares fit on the remaining 

observations after the two high-breakdown filters remove the leverage and residual 

outliers. Therefore, the steps of the proposed initial estimator are 1) remove high- 

leverage observations if the R&W robust distance exceeds the algorithm's internally 

calculated cutoff value, 2) from the remaining observations, remove the residual outliers 

if the MM residual exceeds the simulated cutoff value and 3) obtain parameter estimates 

with an OLS fit on the remaining data. 

This type of estimator is termed a "rejection-plus" estimator because it eliminates 

outlying observations from the data and uses an optimal estimator (OLS) on the supposed 

remaining clean data. The "rejection plus" regression estimator logic has been suggested 

in the literature with different robust regression estimators and multiple outlier detection 

algorithms (e.g. Rousseeuw, 1984, Simonoff, 1991, Hadi and Simonoff, 1993, and 

Wilcox, 1997). He and Portnoy (1992) point out that the estimate of the standard error 

may not converge to the correct value as n gets large for these procedures. The "rejection 

plus" scheme has not been proposed as an initial estimator for multi-staged techniques. 

There is less of a concern about convergence because the full data set is used in the 
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remaining stages of the GM or compound estimate. This initial estimator is appealing 

because the simulation results from Chapter 3 and Section 4.4 indicate both R&W and 

MM are powerful across a comprehensive set of scenarios, yet do not have a tendency to 

false alarm. The false alarms in this scheme impact the efficiency of the initial estimator 

because each false alarm results in the removal of a clean observation from the final 

subset used in the OLS estimate of the parameters. Another advantage for this type of 

initial estimator is that it is likely to be more efficient than the other high-breakdown 

estimators that use, in some cases, only half of the observations to estimate parameters. 

4.6.1 Initial Estimator Performance Studies 

The proposed initial estimator is tested against other high-breakdown initial 

estimators in the literature. We consider the LMS, LTS (set to achieve 30% breakdown), 

and S-estimators in addition to three variants of the proposed estimator. The first variant 

of the proposed initial estimator, PI, is the one previously described—an R&W filter of 

high-leverage points followed by an MM filter of residual outliers and then an OLS fit to 

the remaining observations. The second proposal is the P2 estimator with parameter 

estimates from the MM fit after the R&W filter rather than the OLS parameter estimates 

used in PI. The P3 estimator is the same as P2 except that an 5-estimator is used in place 

of the MM estimator. 

The performance study evaluates the effect on the initial estimators from multiple 

high-leverage and residual outliers. The factors are dimension (number of regressors), 

outlier density, leverage (outlying magnitude in X-space, 8L), residual magnitude 
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(outlying distance off the regression surface, 8R), and the number of regressor variables 

out of k that are unusual in X-space. The response, efficiency ratio, is 

MSEcieJMSEestimator where MSEdean is the MSE for the known clean observations from an 

OLS fit with only the known clean observations. MSEes,ima,0r is the MSE for the known 

clean observations from the fit using the selected estimator on the entire data set. Table 

4.8a shows the 2y' design matrix and average efficiency ratios from 50 replicates in S- 

Plus 4.5. Note that additional replication does not significantly change the values in 

Table 4.8a and does not change the key findings. 

rable 4i !a. Design L matrix and e ficienc y ratios for common initial estimators. 
A B 

density 
C 
8i. 

D 
5R 

E 
out OLS LMS LTS S PI P2 P3 

40,2 10% 5 5 2 0.689 0.732 0.785 0.803 0.966 0.984 0.861 

60,6 10% 5 5 1 0.631 0.606 0.719 0.734 0.922 0.960 0.698 

40,2 20% 5 5 1 0.445 0.624 0.633 0.618 0.956 0.976 0.827 

60,6 20% 5 5 2 0.432 0.563 0.594 0.624 0.928 0.967 0.688 

40,2 10% 10 5 1 0.729 0.720 0.765 0.762 0.958 0.981 0.809 

60,6 10% 10 5 2 0.706 0.626 0.709 0.710 0.949 0.977 0.716 

40,2 20% 10 5 2 0.503 0.739 0.790 0.795 0.960 0.975 0.796 

60,6 20% 10 5 1 0.390 0.585 0.668 0.672 0.939 0.967 0.665 

40,2 10% 5 10 1 0.403 0.787 0.870 0.872 0.959 0.981 0.809 

60,6 10% 5 10 2 0.339 0.687 0.782 0.798 0.949 0.977 0.715 

40,2 20% 5 10 2 0.204 0.737 0.870 0.825 0.960 0.975 0.796 

60,6 20% 5 10 1 0.150 0.646 0.812 0.820 0.941 0.969 0.666 

40,2 10% 10 10 2 0.514 0.749 0.792 0.806 0.966 0.984 0.861 

60,6 10% 10 10 1 0.360 0.631 0.732 0.745 0.922 0.960 0.698 

40,2 20% 10 10 1 0.198 0.655 0.648 0.643 0.963 0.982 0.833 

60,6 20% 10 10 2 0.203 0.560 0.604 0.585 0.928 0.967 0.688 

Average efficiency 0.431 0.665 0.736 0.738 0.948 0.974 0.758 

Significant Effects A,B, 
D 

AB, 
CD 

A,B,C, 
D,AE, 

CD 

A,B, 
C,D, 

AE,CD 

A,E, 
CD, BE 

A,B, 
E,AE, 

BE 

A,B, 
E,BE, 

CD 

As expected, the ability of the common initial estimators (LMS, LTS and S) to fit 

the clean data is significantly impacted in the high-leverage scenarios tested in Table 4.8. 

The LTS and S estimators consistently outperform LMS. The proposed initial estimators 
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PI and P2 have much better efficiency ratios than the existing procedures and P3. A 

surprising result is that the 5-estimator and P3 have similar results. Removing the high- 

leverage observations apparently has little effect on the ^-estimator's performance in 

these selected scenarios. From Table 4.8a, PI and P2 are the preferred alternatives. 

In all of the scenarios in Table 4.8a, the R&W estimator detected the planted 

outliers because they were extreme in X-space. We now consider the performance of the 

initial estimators when the leverage distance 8L is not as great. The R&W estimator does 

not necessarily detect and remove all of the planted observations unusual in X-space. 

Table 4.8b includes not only the 2y' design and resulting efficiency ratios, but also (in 

the last column) the proportion of outlying observations that R&W removes. Although 

there is less of a discrepancy in efficiency ratios between the first two proposed initial 

estimators and the alternatives, PI and P2 again have the best results. PI slightly 

outperforms P2 in these scenarios. 
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Table 4.8b. Design matrix and efficiency ratios for common initial estimators 
when R&W does not necessarily detect the leverage points. The last column is the 

by the R&W filter. 
A 

n, k 
B 

dens 
C 
Si. 

D 
5R 

E 
out OLS LMS LTS S PI P2 P3 

% 
RW 

40,2 10% 1.5 5 2 0.640 0.825 0.875 0.904 0.968 0.976 0.877 0.50 

60,6 10% 1.5 5 1 0.606 0.655 0.787 0.782 0.921 0.949 0.734 0.14 

40,2 20% 1.5 5 1 0.413 0.840 0.919 0.921 0.869 0.705 0.911 0.07 

60,6 20% 1.5 5 2 0.366 0.700 0.841 0.864 0.748 0.682 0.804 0.17 

40,2 10% 3 5 1 0.681 0.763 0.851 0.854 0.956 0.975 0.807 0.92 

60,6 10% 3 5 2 0.599 0.647 0.752 0.763 0.937 0.966 0.715 0.99 

40,2 20% 3 5 2 0.436 0.661 0.685 0.683 0.956 0.969 0.795 0.99 

60,6 20% 3 5 1 0.376 0.564 0.740 0.715 0.631 0.643 0.728 0.17 

40,2 10% 1.5 10 1 0.376 0.791 0.871 0.874 0.961 0.982 0.843 0.16 

60,6 10% 1.5 10 2 0.294 0.679 0.781 0.794 0.940 0.974 0.751 0.24 

40,2 20% 1.5 10 2 0.159 0.827 0.922 0.913 0.966 0.987 0.859 0.32 

60,6 20% 1.5 10 1 0.141 0.656 0.829 0.838 0.938 0.972 0.816 0.10 
40,2 10% 3 10 2 0.347 0.827 0.884 0.904 0.966 0.985 0.858 1.00 
60,6 10% 3 10 1 0.310 0.655 0.785 0.783 0.931 0.966 0.732 0.36 
40,2 20% 3 10 1 0.247 0.787 0.885 0.884 0.957 0.972 0.825 0.69 

60,6 20% 3 10 2 0.149 0.713 0.857 0.866 0.932 0.972 0.716 0.80 

Average effici ency 0.384 0.724 0.829 0.883 0.911 0.917 0.798 
Signific antEf fects AB, 

D 
AC 
CD 

AC, 
CD 

AC, 
CD 

AB, 
D,BD 

B,D, 
BD 

AC 

4.7 Proposal of New Compound Estimators 

The results of Sections 4.4 and 4.6 suggest components of the S&M and C&H 

compound estimators could be changed to increase the envelope of effective performance 

in high-leverage, high-dimension scenarios. Section 4.4 clearly indicates superior 

performance of the R&W robust distances over the M-estimates of covariance distances 

and moderately better performance over the MVE robust distances. Section 4.6 indicates 

that an improved high-breakdown initial estimator that can accommodate high-leverage 

outliers is possible by using PI or P2 rather than the existing LTS and S-estimators. 

Therefore, the components of the proposed compound estimator CEP1 are a PI initial 

estimate, R&W robust distances as the measure of leverage, rc-weights as the ratio of 

R&W robust distance to the median robust distance, an LMS estimate of scale using the 
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residuals from the PI initial estimate, a Tukey bi-weight ^function with tuning constant 

4.685 for 95% efficiency, and a one-step convergence from IRLS. CEP1 is similar to the 

S&M estimator except that the measure of leverage is R&W versus the Af-estimates of 

covariance distances and the initial estimate is PI versus an S-estimate. Another 

difference is the estimate of scale. S&M uses the 5-estimate of scale in part because it is 

readily available from the initial S-estimate. Rather than add even further computational 

complexity to our procedure, we use the LMS estimate of scale defined as 1.4826 * (1 + 

5/(» -pj) * median |epi| where epi is the vector of residuals from the initial fit with the PI 

estimator. The second proposed compound estimator, CEP2, is the same as CEP1 except 

that the initial estimate is from P2. 

We also consider the proposed compound estimators CEP3 and CEP4 that are the 

S&M estimator with R&W leverage measures modified by using 3 or 4 iterations, 

respectively, of IRLS to solve the normal equations. The motivation for these estimators 

comes from the improvement in final weights in the example problem. Also, He and 

Portnoy (1992) suggest that in practice a single step of a GM iteration scheme is often 

insufficient. Pilot studies showed that the parameter estimates do not change 

significantly after 2 iterations and that at least 3 are required to effectively accommodate 

the high-leverage outliers across a variety of test scenarios. Simpson and Chang (1997) 

demonstrate that several iterations still maintain the same first order large sample 

properties as the single iteration version of the compound estimator. 

Example 4.1 provides an initial performance indication of the four proposed 

compound estimators. All four estimators effectively identify and downweight the 12 
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planted outliers in this example. Their parameter estimates are similar to each other. 

These estimates are much closer to both the generating ß vector and the estimates from 

OLS fit on the known 48 clean observations. Additionally, the initial estimate for CEP1 

and CEP2 is efficient because the correct 12 outlying observations are rejected and 44 out 

of the 48 clean observations are used in the OLS computation of the initial parameter 

estimates. Table 4.9 summarizes the performance of the estimators tested for Example 

4.1. 

Table 4.9. Estimator performance for Example 4.1. Mod S&M and Mod C&H 
are the modified versions using the R&W robust distances for the measure of leverage 
with all other components the same. Unusual residual and n -weights indicate if those 
measures are significantly different for the 12 outlying cases. Swamped cases refers to 
the number of cases out of the clean 48 that have a standardized residual value exceeding 
2.5 in absolute value. 

Estimator 
MSE for 

clean cases 
Unusual 

Residual? 
Unusual 

n -weights? 
Swamped 

Cases 

OLS 2.716 No NA 7 
S&M 3.063 No No 8 
C&H 3.009 No No 7 

Mod S&M 2.969 No Yes 8 
Mod C&H 3.000 No Yes 7 

S 3.384 No NA 8 
LTS 3.267 No NA 8 

CEP1 0.891 Yes Yes 0 
CEP2 0.890 Yes Yes 0 
CEP3 0.976 Yes Yes 0 
CEP4 0.902 Yes Yes 0 

4.8 Performance of the Proposed Compound Estimators 

This section evaluates how well the proposed estimators perform beyond the 

single example discussed. Example 4.1 clearly demonstrates the ability of the four 

proposed estimators to accommodate the outliers in this high-leverage, high-dimension 
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example while the C&H and S&M estimators do not. The example does not discriminate 

the performance between these four proposed procedures. This section tests the 

compound estimators through Monte Carlo simulations to quantify the ability to 

accommodate outliers. 

4.8.1 Proposed Estimators' Area of Coverage 

The scenario for Example 4.1 that develops the need for a new compound 

estimator uses n = 60, k = 6 with 20% outliers at a leverage magnitude of 5CTX in 2 of the 

6 regressor variables and a residual magnitude 10ov The proposed estimators effectively 

downweight the observations while the other compound estimators did not. The Monte 

Carlo simulation studies in Chapter 3 and Section 4.4 indicate that the leverage and 

residual magnitudes (and their two-factor interaction) are the most important factors 

influencing the performance of the tested procedures. Figure 4.1 provides a leverage and 

residual magnitude sensitivity analysis for the compound estimators. The measure of 

performance is whether or not the estimator identifies and downweights the planted 

outliers given the level of leverage (between 6x = 0.0 and 10.0 CTX) and residual (between 

8R = 3.0 and 10.0 cre) magnitude. Fixed are the number of observations at 60, the number 

of regressors at 6, the percentage of outliers in the single multiple point cloud at 20%, and 

the number of regressors out of 6 with high-leverage points at 2. 

A method is successful in a single replicate if the average standardized residual 

value for the 12 outliers is greater than or equal to 2.5. There are 50 replications and if 

the method is successful in at least 70% of the relicates, then it is deemed successful for 



141 

that combination of leverage and residual magnitude. The actual percentage of correct 

outlier identification is shown in the Appendix B. An estimator successfully 

accommodates outliers at all combinations of leverage and residual magnitude above the 

line shown in Figure 4.1. The C&H and S&M estimators do not have any power beyond 

8L = 4ax. At 8R = 15ae the S&M procedure will downweight the 12 outliers because the 

initial 5-estimate has detected the outliers and the parameter estimates do not change 

much in the remaining stages. The 7t-weights are still not unusual. If 8L = 10o\, the 

S&M estimator accommodates the 12 outliers when 8R > 20ce for the same reason. 

Figure 4.1 displays how the proposed compound estimators increase the envelope of 

performance, particularly in 8L, over the other estimators. CEP1 and CEP2 are preferred 

over S&M, C&H, CEP3 or CEP4. Although the levels of», k, density and number of 

clouds are fixed, the simulation results from both Chapter 3 and Section 4.4 suggest 

significant increases in the envelope of performance are possible across a variety of 

factor level combinations. 
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Figure 4.1. Approximate area of coverage for the 6 compound estimators. The 
data set consists of a single outlying multiple point cloud with factor settings n = 60, k = 
6, outlier density = 20% and outlying in 2 of 6 regressor variables. The X-axis measures 
the leverage, 8L, in standard deviation units and the Y-axis measures the cloud's outlying 
distance in residual, SR, in standard deviation units. The area above the line for each 
technique indicates where the estimator is at least 70% effective in identifying the planted 
outliers. Note that there is no coverage until at least 8R = 15ae for lines S&M and C&H 
above 5L= 4 standard deviation units. 

4.8.2 Performance in Published Scenarios 

Simpson and Montgomery (1998b) conduct a performance study using Monte 

Carlo simulation in 24 outlier scenarios to evaluate several common and proposed robust 

regression procedures. The study considers four factors: 1) number of regressors and 

observations with levels k=2, «=16; k=6, n=40; and &=10, »=80; 2) outlier density with 

levels 10% and 20%; 3) outlier leverage; and 4) the presence or absence of 
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approximately 20% high-leverage observations. The regressor variables are placed in a 2 

level factorial designed experiment arrangement with levels of ± 1. There are also 

approximately 20% axial design points with levels of 0 for all but one regressor variable 

whose level is+y/k . The high-leverage observations replace Vfc with a value between 5 

and 14. Note that the design matrix does not change in the simulation replicates within 

an outlier scenario. The /* response value is generated by >>, =ß 'x,, + st where ß is the 

vector of known coefficients for the simulation, x(. is fh row of the design matrix, and 

si is NID (0,1) for the clean observations and a large constant for the planted outliers. 

The measure of performance is the mean square error of estimation defined as 

A A A 

MSEE = (ß R -ß )'(ß R -ß) where ß R is the vector of parameter estimates from the robust 

technique and ß is the vector of known model coefficients. 

The scenario descriptions and simulation results for 100 replicates of the 24 

scenarios are shown in Table 4.10. The average MSEE (AMSEE) is the average of the 

MSEE for the 100 replicates. The second to last column is the percent of the total 

observations included in the initial estimate for PI and the last column is the percent of 

total observations that PI should ideally have used in the initial estimate. PI is an 

efficient estimator in these scenarios because the ratio of the observed to the expected 

value is consistently above 95% for the 24 data sets. If PI uses significantly fewer 

observations than expected, then many false alarms have resulted. Conversely, if PI uses 

more than the expected observations, then it has included high-leverage observations or 

interior residual outliers in its parameter estimates. 
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The design matrices for the simulations had to be slightly altered from Simpson 

and Montgomery (1998b) by adding a realization of N(0, 0.12) to every level of the k 

regressors because the R&W technique and MM estimator have difficulty with singularity 

when the levels are ± 1. This modification does not change the overall results much from 

Simpson and Montgomery (1998b). Also, for the 6 different design matrices, X, used in 

the 24 outlier scenarios, all measures of leverage for the compound estimators (MVE, M- 

estimates of Covariance, and R&W) correctly assign a large distance to all high-leverage 

observations and do not assign a large distance to any low-leverage observation. 

Therefore, the measure of leverage is not a discriminating factor affecting candidate 

compound estimator performance. 

The results for the published estimators in Table 4.10 are consistent with those of 

Simpson and Montgomery (1998b, page 1044). Of the new proposals, CEP1, CEP3 and 

CEP4 perform similarly and are moderately better than CEP2. S&M still outperforms all 

other estimators in these scenarios. CEP1, CEP3 and CEP4 are competitive with S&M 

except when the 20% high-leverage points are present with another 20% outliers on the 

interior of X-space (data sets 10-12). The proposed estimators outperform S&M in the 

high-leverage outlier scenario of data set 17, otherwise the techniques have similar 

performance. Overall, the proposed estimators are strong performers with only one area 

of vulnerability (DS10). The performance of the stand-alone MM estimator in Table 4.9 

should not be overlooked. It is vulnerable only for high-leverage outliers in low 
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dimension. For this reason, CEP1, which incorporates an MM estimator, is probably the 

best alternative to protect against multiple outliers in high-dimension. Although CEP1 is 

computationally complex, a data set of «= 100 observations with k = 10 regressor 

variables requires approximately 20 seconds on a modest PC (2 seconds for S&M and 5 

seconds for C&H). The procedure could be made much more computationally efficient if 

it did not go through the S-Plus interface. 

4.9 Summary 

This chapter develops new compound estimators that greatly expand the region of 

effective performance in the presence of high-leverage outliers over existing procedures. 

A comprehensive simulation study on common measures of leverage indicates that the 

R&W procedure is the most robust across a variety of scenarios. The improved measure 

of leverage alone does not significantly improve a compound estimator's performance 

with high-leverage outliers unless several more iterations are added to the IRLS solution 

to the GM normal equations. The common high-breakdown initial estimators (LMS, LTS 

and S) are vulnerable to the high-leverage outliers and provide inferior initial estimates. 

Good initial estimates are essential because often the final estimates from a compound 

estimator do not significantly change when they should. Also, the estimate of scale for a 

compound estimator is based on the residuals from the initial estimate. 

Our approach is to provide an initial estimate based only on observations that are 

not high-leverage points or residual outliers. This provides an efficient estimator because 

50% of the observations are not removed from the sample as they are in LMS and LTS. 
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The R&W and MM filters remove a variable percentage of the data. Studies show that 

this scheme leaves approximately 95% of the clean observations in the initial estimate 

independent of outlier density or dimension Therefore, the proposed initial estimator is 

efficient, high-breakdown and bounded-influence. The next stages of a compound 

estimator can then smooth in the outliers based on the user's downweighting philosophy 

through the choice of y/ -function. 

Simulation studies indicate our proposed estimator CEP1 is competitive with the 

top performing robust regression techniques tested in published scenarios and preferred 

in high-leverage, high-dimension scenarios. CEP1 uses the R&W robust distances for the 

leverage measure, an initial estimate from OLS after the R&W and MM filters, and an 

LMS estimate of scale based on the residuals from the initial estimate. Figure 4.1 

provides an indication of the substantial improvement in performance this estimator has 

in the presence of high-leverage outliers over other robust regression techniques. 



Chapter 5 

Resampling Methods for Variable Selection in 

Least Squares and Robust Regression 

5.1 Introduction 

An important aspect of the regression model building strategy is selecting the 

appropriate subset from the candidate regressor variables. We consider the usual 

multiple regression model, y = Xß +e where X is the n x p matrix of regressor variables, 

ß thep vector of parameters and e the random error assumed to be independent and 

identically distributed (i.i.d.) with mean 0 and variance a2l. The ß vector is partitioned 

into an active variable set, ß, of p - q parameters and inactive set ß 2 of q parameters to 

test the hypothesis that 

Ho: ß2=0 
HA: ß2*0. 

Failure to reject the null hypothesis suggests there is no evidence that any of the regressor 

variables in set ß 2 have an effect on the response value. 

The goal of a variable selection procedure is to have the significant regressor 

variables included in set ß, with high probability, while simultaneously achieving a high 

probability that the insignificant variables are contained in set ß 2. The regression model 

building strategy is an iterative process that involves selection of an active subset of the p 

regressors followed by model diagnostics to assess the fit. The objective is to find the 
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best subset of the/? parameters to include in the model that leads to good prediction 

capability yet minimizes the variance of prediction. The first objective would suggest 

including all/? variables while the second suggests using as small of a subset as possible 

because the variance of prediction always increases as regressor variables are added. 

Models with fewer variables are also preferred for simplicity in interpretation and ease of 

future data collection. 

There are numerous variable selection methods available to the analyst. The 

simplest approach is to retain only the variables whose ratio of coefficient to the standard 

error is significant. This Mest approach is not reliable with increasing dimension, 

particularly when dependencies between regressor variables exist. A common alternative 

is the class of computer-intensive variable selection methods (e.g. forward, backward, 

stepwise, and best subsets regression). The selection criteria are often based on F-tests 

(F-to-enter and F-to-leave) or Mallows's (1973) Cp criterion; 

C  =\ J(y, -j>,)2 -n + 2p where j>, is the predicted value and a2 is typically the 

mean square error (MSE) from the full model. Unfortunately, Miller (1990) demonstrates 

that the F tests and Mallow's Cp criterion are poor for model selection as are the R and 

adjusted R2 measures. Breiman (1995) states that the preferred measure of performance 

for variable selection in regression is some measure of prediction error. 

The resubstitution or apparent prediction error for a regression model is defined 

n 
by &    = w-1 Y (v, - ytf . Note that this quantity differs from the usual MSE estimate 

because n is used in place ofn-p. The final prediction error (FPE) criteria (Zhang, 
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1992) accounts for the number of regressors in the model and is computed by nAApp + Ap 

where X is the penalty constant for including extra variables. When X = 2, FPE can be 

shown to be equivalent to Mallows's Cp. It has been well documented that the FPE, Cp 

and Admeasures are highly biased (Miller, 1990, Zhang, 1992, Shao, 1993, and 

Breiman, 1995, Davison and Hinkley, 1997) and not recommended for variable selection. 

Direct minimization of these measures leads to models that have too many significant 

variables; the dimension of ß, is too large. 

Several authors have proposed computationally complex resampling methods to 

address the shortcomings of the usual methods for variable selection. Common 

resampling methods are cross-validation and bootstrapping. We describe several cross- 

validation and bootstrap resampling methods to calculate prediction error in Section 5.2. 

Each of these methods suggests selecting the model with the minimum prediction error 

among the competitors. Our approach is to relax the requirement for the absolute 

minimum prediction error and select a model that has the fewest number of variables and 

a low (not necessarily minimum) prediction error. This criterion is effective with both 

cross-validation and bootstrap estimates of prediction error. It is our belief that in low 

dimension (p < 10), a reasonable strategy is to look at a screeplot (scatterplot of the 

number of parameters versus prediction error) of candidate models of increasing 

dimension. The model with the fewest parameters where the curve levels off is selected. 

For example, the screeplot in Figure 5.1 suggests that although the 7-parameter model 

has the minimum value of prediction error, little improvement is gained after five 

parameters are included in the model. In Section 5.3 we describe a simulation 
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experiment that tests several resampling prediction error methods on a published data set 

using both model selection criteria: the absolute minimum prediction error and our 

recommended strategy. The results in Section 5.4 indicate that the absolute minimum 

criterion is not required and effective model selection is possible with the proposed 

heuristic. Section 5.5 extends the simulation to higher dimension and also evaluates 

performance when the signal-to-noise ratio is not high. Section 5.6 explores the 

usefulness of the various resampling model selection schemes in the presence of outlying 

observations using a robust regression estimator. Recommendations and conclusions are 

offered in Section 5.7 

Number of Parameters 

Figure 5.1. Representative screeplot of aggregate prediction error. 
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5.2 Resampling Measures of Prediction Error 

The two classes of resampling methods currently recommended to calculate a 

measure of prediction error for variable selection are cross- validation and bootstrapping. 

Cross-validation procedures partition the data into two disjoint sets. The model is fit with 

one set (the training set) and it is subsequently used to predict the responses for the 

observations in the second set (assessment set). Bootstrap procedures form many 

samples of the original data by resampling with replacement. Details of the methods and 

their application to the variable selection problem in regression are outlined below. 

5.2.1 Cross-Validation Procedures 

An intuitively appealing method to calculate a predicted response value is to use 

the parameter estimates from the fit obtained by omitting the observation to be predicted. 

n 

This predicted response value is denoted by j>(0. Then ACK, = «"'^Cy, - j>(0)
2 is 

computed as the leave-one-out cross-validation estimate of average prediction error for a 

model. Apart from the ri1 term, this quantity is the predicted error sum of squares 

(PRESS) statistic in least squares (Allen, 1971). The PRESS statistic can be calculated as 

<   e.   * 
i=\ \\-Kj 

where \ =x,(X'X)"1x'- Note that least squares does not require n separate fits 

for PRESS. Other regression estimators (e.g. robust) do require all n fits for the leave- 

one-out cross-validation estimate of prediction error. Shao (1993) proves with 

asymptotic results and simulations that the model with the minimum PRESS statistic or 
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leave-one-out cross-validation estimate of prediction error is often overspecified. He 

recommends using K-fold cross-validation that leaves a subset of observations out. 

Quenouille (1949) explored the idea of leaving two observations out of the 

training set and Stone (1974) extended the method to more than two. In K-fold cross- 

validation, the training set omits approximately n/K observations from the training set 

rather than a single observation like PRESS. To predict the response values for the K 

assessment set, Sk,a, all observations apart from those in set k are in the training set, S*,,, 

and these are used to estimate the model parameters. The K-fold cross-validation average 

prediction error is ACVK = «"'^U ~ JW))2 where ^(*.o kthe Predicted response for 
i=i 

observation /' belonging in assessment set 5*>a. 

One approach to the K-fold cross-validation estimate of prediction error is to 

randomly select the n/K observations to form the assessment set. This process is repeated 

numerous times and the prediction errors are averaged. Breiman et al. (1984) propose a 

less computationally intense scheme that randomly partitions the data into K different 

disjoint sets. Davison and Hinkley (1997) recommend K = min (nm, 10) in practice. 

This procedure decreases the variance of prediction error over that of the leave-one-out 

cross-validation estimate but at the expense of increased bias. Surprisingly, Shao (1993) 

demonstrates that the smaller the training set, the better the K-fold estimate is for model 

selection. 

To reduce the bias, Burman (1990) recommends the adjusted K-fold cross- 

validation estimate of prediction error as 
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K 

I KCV,K = Kvx + KPP ~ t Pt\ »_,Zü'i - hJ   where^is the rati0 of observations 

.-th 
in assessment set k to the total n and y(ki0 is the predicted response for the /  observation 

from the fit with training set St, k. The Breiman and Spector (1992) simulations 

demonstrate that the performance of the adjusted cross-validation prediction error 

estimate is slightly worse than the standard biased K-fold cross-validation prediction 

error for least squares variable selection. Shao (1993) shows that both the leave-one-out 

and K-fold cross-validation procedures have a negligible probability of selecting an 

underspecified model. The challenge is avoiding an overfit model. 

5.2.2 Bootstrap Procedures 

Bootstrap estimators in regression have received considerable attention in the 

literature since their introduction by Efron (1979). Wu (1986) provides the theoretical 

results for bootstrap methods applied to regression. Hall (1989) proves that inference 

procedures in regression, such as confidence intervals, based on the bootstrap estimate 

are more accurate than standard inference procedures even if the error is Gaussian. 

The fundamental element of a bootstrap procedure is the bootstrap sample. For 

bootstrapping pairs in regression (Efron, 1982), the sample is formed by randomly 

sampling with replacement n times both a response value and its associated vector of 

regressor variable values from the original sample. The bootstrap sample may contain an 

observation from the original sample once, multiple times or not at all. In fact, the 

probability that an observation is included in a bootstrap sample of size n is 1 - e  = 
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0.632 (Efron and Tibshirani, 1997). A regression model is then fit to the bootstrap 

sample to obtain the bootstrap parameter estimates ß *. A large number of bootstrap 

samples (B > 100, Davison and Hinkley, 1997) are constructed from the original sample 

for model inference. 

For the variable selection problem, the estimate of the average prediction error for 

n 

the bth bootstrap sample is kb =n'^(yi -*ß*b)
2 where yt and x.are from the original 

(=1 

th 
sample. Efron (1983) provides the unbiased estimator of prediction error for the b 

sample as kbmbiased = n^iy, -xjJ)2 +nxf4{yi-xfb? -n^iy, -xfc)2 where 
,=i i=i <=i 

x* is the vector of regressor values for the fh observation in the b'h bootstrap sample. The 

overall unbiased bootstrap estimate of average prediction error is simply 

B   A  ... 

Aßs = IT1 ][] AA mbiased where B is the number of bootstrap samples. Shao (1996) shows 
b=\ 

that selecting the model with the minimum Agg is inconsistent. Inconsistency implies 

that the probability the true model has the minimum bootstrap average prediction error 

does not equal 1.0 as n approaches infinity. Shao corrects this inconsistency for 

bootstrapping pairs by using substantially fewer than n observations to construct the 

bootstrap samples. This procedure uses the biased estimate of prediction error. Breiman 

(1996), motivated by the 0.632 probability that an observation is selected in a bootstrap 

sample, notes that using bootstrap samples of size 2n has little effect on OLS variable 

selection. 
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5.2.3 Other Modifications to Resampling Methods for Variable Selection 

Breiman and Spector (1992) explore the use of cost admissibility (penalty for 

adding variables) with bootstrap and cross-validation prediction error for variable 

selection. Their empirical results indicate that this modification only slightly increases 

the probability of selecting the correct model. This is an important result because most 

resampling estimates of prediction error do not account for the number of variables in the 

model. 

Breiman (1992) recommends the little bootstrap estimate of prediction error for 

variable selection in linear models. The prediction error for a k variable model using this 

approach is AApp(k) + 2Bt (k).  The little bootstrap error, B, (k), is the resubstitution error 

from the model selected using y* = y +e  where e is the vector of variates from NID (0, 

t2<r2) with 0.6 <t < 0.8. The MSE for the füll model is used as an estimate of <r2. 

Breiman shows that the little bootstrap is unbiased and superior to Cp, F-to-enter, and F- 

to-leave for variable selection for fixed designs. 

Breiman (1996) suggests bagging (bootstrap aggregating) regressor variables. 

For each of the B samples formed by bootstrapping pairs, perform a forward selection to 

obtain a 1 variable model, 2 variable model,... k variable model. The nxkmatrices of 

predicted values from these k models are averaged across the B bootstrap samples. The 

model with the lowest average prediction error is selected. Limited simulation results 

indicate that this procedure performs better than standard forward selection. It is unclear 

how to proceed if the same variables are not consistently selected in the B samples for a 

given dimension. 
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Davison and Hinkley (1997) describe a hybrid estimate of bootstrap prediction 

error for variable selection adapted from Efron and Tibshirani (1997). The hybrid 

estimate of prediction error weights the apparent error and the bootstrap cross-validation 

(BCV) error. The BCV error is calculated from the predicted and observed values of 

those observations not included in the bootstrap sample. The recommended weights from 

theory and practice are 0.632 for the BCV error and (1-0.632) for the apparent error. The 

authors' empirical evidence suggests that this procedure is superior. 

5.3 An Alternative Criterion for Variable Selection 

Recent results indicate that many of the classical measures used for variable 

selection such as R2, adjusted R2, Cp, and PRESS, are highly biased and not suitable for 

variable selection. The computer selection methods of forward, backwards, and stepwise 

are based on these measures and also provide biased results. Many of the arguments 

against these procedures are derived from asymptotic properties and assume that the 

candidate model with the minimum (or maximum for R2 measures) value of the statistic 

is selected. We believe satisfactory results, and in many cases superior results, are 

possible by relaxing the requirement of selection by the minimum value of the statistic. 

Rather, one would select the model that has a low prediction error with the fewest 

variables. This procedure is a more realistic representation of what a practitioner is likely 

to do given the prediction errors from the candidate models. Obviously, there is more 

subjectivity with this criterion than simply selecting the model with the minimum 

prediction error. 
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To illustrate the methodology, the average prediction errors (ABS ) from 100 

bootstrap samples each for models with an increasing number of active variables are 

displayed in Table 5.1. The model is y = Xß +e where X is the design matrix formed 

by augmenting the four regressor variables from the Gunst and Mason (1980) data with a 

column of ones, ß is the known vector of parameters and e is the vector of NID (0,cr2I) 

error terms. This data set (shown in the S-Plus code in Appendix C) is used extensively 

in the Shao (1993 and 1996) studies and in sections 5.4 through 5.6. The column 

headings of Table 5.1 display the known generating vector ß used to calculate the 

response values. Our procedure looks at the change in prediction error going from a 

model of dimension^' to dimension./ + 1. If there is only a slight decrease, then the 

smaller dimension model is preferred. In the second column of Table 5.1, our strategy 

would correctly choose the 2-parameter model (intercept and ß3) rather than the model 

with the minimum prediction error; the 5-parameter model. Similarly, the proposed 

method would select the correct model (the shaded cells) for the other columns. 

Table 5.1. Average prediction error from 100 bootstrap samples as a function of the 
number of variables in the model. The column headings are the true model. 

p \2, 0,0,4, 01 \2, 0,0,4, 81 T2, 9, 0,4, 81 T2, 9, 6,4, 81 
1 18.51 130.03 188.90 266.01 
2 0.96 15.75 22.07 22.27 
3 1.01 0.89 3.36 9.35 
4 1.05 0.95 0.95 4.02 
5 0.95 0.96 0.93 0.96 
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In practice, the proposed criterion requires subjective judgment. For simulation 

studies, we must specify the minimum change in prediction error required to select the 

next higher dimension model. We follow the impurity logic used to split and terminate 

nodes in Classification and Regression Trees (Breiman et al, 1984). If the change in 

prediction error does not exceed a certain percentage of the prediction error for the null 

model (intercept only), then the lower dimension model is selected. For example, if our 

minimum change in prediction error criterion were 1%, then the difference in prediction 

error must be at least 0.185 between models of size./ and/ + 1 for the first column in 

Table 5.1. We are not advocating using a specific percentage as much as carefully 

inspecting the prediction errors between candidate models. The percentages are useful 

for comparative studies in simulations. 

5.4 A Simulation Study 

The simulation scenarios reported in Shao (1996) provide an ideal test bed for the 

proposed change in prediction error criterion. The regressor variables are those from the 

Gunst and Mason (1980) data set with n = 40 cases and responses generated as described 

in Section 5.3. Some of the constants in ß are 0; therefore, the objective of the study is to 

assess several resampling methods' ability to correctly identify the active set of regressor 

variables using both the minimum prediction error and the proposed change in prediction 

error criteria. Shao's objective is to demonstrate that using a much smaller bootstrap 

sample size than n leads to consistent variable selection for the minimum prediction error 

criterion while all other techniques (PRESS, Cp, and the bootstrap with full sample) have 
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considerably less capability to select the proper model. A useful outcome of our study 

would be to demonstrate that these inconsistent, yet commonly used, techniques can 

provide reliable model selection if we change the criterion. 

5.4.1 Simulation Details 

The 1000 simulation replicates generate the data sets exactly as in Shao (1996). 

That is, the Gunst and Mason set of regressor variables and the response values 

calculated by specifying the known parameters and adding a vector of standard normal 

variates to Xß . The measure of effectiveness for a procedure is the proportion of the 

1000 replicates that the correct model of known dimension./ is selected. The resampling 

estimates of prediction error used are the leave-one-out cross-validation estimate, the K- 

fold cross-validation, the adjusted K-fold cross-validation, the bias-corrected bootstrap of 

using sample size n, and the bootstrap with sample size nil. Following the Davison and 

Hinkley (1997) recommendations, the value of K is 6 and the number of bootstrap 

samples, B, is fixed at 100 per replication. The prediction errors for these 100 bootstrap 

samples are averaged and then the model selection criterion (minimum prediction error or 

change in prediction error) is applied. For the change in prediction error, we run pilot 

studies to find reasonable values for the constant defined as the percentage of null model 

prediction error. We follow Shao's suggestion that it is not practical to evaluate all ip 

possible models and also evaluate one model in each dimension. 
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5.4.2 Simulation Results 

All Simulation results are summarized in tables. The known correct model is 

shaded in the tables. The proportion of simulation replicates that the minimum prediction 

error criterion selects the model is the first entry in each cell. The proportion from the 

proposed criterion is the second entry in each cell. 

Table 5.2 displays the results for the model with the intercept and ß3 active. All five 

procedures have above a 98% chance of correctly identifying the true model with the 

proposed selection criterion. This suggests that a practitioner comparing models with the 

PRESS statistic would likely have made the correct choice upon careful examination of 

the prediction errors. Consistent with the results reported by Shao (1996), the minimum 

prediction error criterion has difficulty with overfitting for most methods. No prediction 

error method except the bootstrap half sample reliably selects the correct model under the 

minimum prediction error criterion. A surprising result is that only 50.9% of the 100,000 

bootstrap samples (100 bootstrap samples x 1000 replicates) selected the correct model 

with the minimum prediction error criteria. Yet, when prediction error is averaged over 

the 100 bootstrap samples, the correct model is selected in approximately 95% of the 

1000 replicates. 
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Table 5.2. Results for 1000 simulation replicates for model selection with 2 
active parameters in the Shao (1996) data sets. The selection percentages for the true 
model [2, 0, 0,4, 0] are shaded. The top number in each cell is the proportion of 
replications that the model was selected using the minimization of prediction error 
criterion and the bottom uses the proposed change in prediction error criterion with 
constant .025. The values in brackets are the proportion of 100,000 bootstrap 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 
Val K=6 

Bootstrap Full 
Sample («=40) 

Bootstrap Half 
Sample (w=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.001] 
0.000 [0.000] 

0.000 [0.018] 
0.000 [0.005] 

ßo,ß3 
0.687 
0.991 

0.648 
0.980 

0.633 
0.984 

0.781 [0.414] 
0.998 [0.939] 

0.948 [0.509] 
0.999 F0.847] 

ßo, ß3, ß4 0.164 
0.002 

0.188 
0.004 

0.183 
0.002 

0.122 [0.210] 
0.001 rO.014] 

0.045 [0.214] 
0.001 [0.029] 

ßo, ßl, ßs, ß4 0.080 
0.001 

0.076 
0.001 

0.084 
0.001 

0.060 [0.161] 
0.000 [0.017] 

0.005 [0.138] 
0.000 [0.045] 

ßo,ßl,ß2,ß3,ß4 0.069 
0.006 

0.088 
0.015 

0.100 
0.013 

0.037 [0.214] 
0.001 [0.029] 

0.002 [0.122] 
0.000 [0.0741 

The results in Tables 5.3 and 5.4 for the 3 and 4 active parameter models, 

respectively, further confirm the superiority of the change in prediction error criterion. 

There is virtually a 100% chance of selecting the correct model with the proposed 

criterion independent of the resampling procedure choice. Contrary to most other 

published results, the leave-one-out cross-validation estimate slightly outperforms the K- 

fold and adjusted K-fold methods for the minimum prediction error criteria. Also, the 

adjusted K-fold method is slightly worse than the K-fold which agrees with Breiman and 

Spector (1992). The results in Table 5.5 with all 5 parameters active favor the minimum 

prediction error criterion. This is not unexpected because this criterion rarely selects an 

underspecified model. 
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Table 5.3. Results for 1000 simulation replicates for model selection with 3 active 
parameters in the Shao (1996) data sets. The selection percentages for the true model 
[2, 0, 0,4, 8] are shaded. The top number in each cell is the proportion of 
replications that the model was selected using the minimmition of prediction error 
metric and the bottom uses the change in prediction error criteria with constant .025. 
The values in brackets are the proportion of 100,000 bootstrap samples that the 
model is selected. Results are accurate to approximately ±0.03. 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 
Val K=6 

Bootstrap Full 
Sample («=40) 

Bootstrap Half 
Sample («=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
0.000 [0.000] 

0.000 [0.003] 
0.000 [0.000] 

ßo,ß3 
0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.008] 
0.000 r0.0581 

0.000 [0.000] 
0.000 [0.000] 

ßo, ßs, ß4 0.728 
1.000 

0.673 
1.000 

0.671 
1.000 

0.783 [0.462] 
1.000 r0.9411 

0.959 [0.561] 
1.000 rO.979] 

ßo,ßbß3,ß4 0.180 
0.000 

0.232 
0.000 

0.227 
0.000 

0.144 [0.252] 
o.ooo ro.ooi] 

0.032 [0.236] 
0.000 [0.010] 

ßo, ßl, ß2, ß3, ß4 0.092 
0.000 

0.227 
0.000 

0.102 
0.000 

0.073 [0.278] 
0.000 fO.OOl] 

0.009 [0.200] 
o.ooo ro.oii] 

Table 5.4. Results for 1000 simulation replicates for model selection with 4 active 
parameters in the Shao (1996) data sets. The selection percentages for the true model 
[2, 9, 0,4, 8] are shaded. The top number in each cell is the fraction of replications 
that the model was selected using the minimization of prediction error criterion and 
the bottom uses the change in prediction error criterion with constant .025. The 
values in brackets are the proportion of 100,000 bootstrap samples that the model is 

ly ±0.03. 
Model 

parameters 
Cross- 

Val 
Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 

Val K= 6 
Bootstrap Full 
Sample («=40) 

Bootstrap Half 
Sample («=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
0.000 [0.000] 

0.000 [0.002] 
0.000 [0.000] 

ßo,ß3 
0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.014] 
0.000 [0.003] 

0.000 [0.000] 
0.000 [0.0001 

ßo, ß3, ß4 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.005] 
0.000 [0.019] 

0.000 [0.019] 
0.000 [0.018] 

ß0,ßl,ß3,ß4 0.805 
0.997 

0.781 
1.000 

0.772 
1.000 

0.833 [0.549] 
1.000 [0.957] 

0.958 [0.616] 
0.999 [0.911] 

ß0,ßl,ß2,ß3,ß4 0.195 
0.003 

0.219 
0.000 

0.228 
0.000 

0.167 [0.433] 
0.000 [0.0211 

0.042 [0.363] 
0.001 [0.071] 
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Table 5.5. Table 5.3. Results for 1000 simulation replicates for model selection with 
3 active parameters in the Shao (1996) data sets. The selection percentages for the 
true model [2, 9,6,4, 8] are shaded. The top number in each cell is the proportion of 
replications that the model was selected using the minimization of prediction error 
criterion and the bottom uses the change in prediction error criterion with constant 
.025. The values in brackets are the proportion of 100,000 bootstrap samples that the 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross- 

Val K=6 
Bootstrap Full 
Sample (n=40) 

Bootstrap Half 
Sample (w=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
o.ooo ro.oooi 

0.000 [0.001] 
0.000 [0.000] 

ßo,ßs 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.010] 
0.000 [0.001] 

0.000 [0.000] 
0.000 [0.000] 

ßo, ß3, ß4 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.002] 
0.000 [0.0051 

0.000 [0.002] 
0.000 [0.001] 

ßO, ßl, ß3, ß4 0.002 
0.049 

0.000 
0.041 

0.000 
0.038 

0.000 [0.027] 
0.019 [0.156] 

0.000 [0.067] 
0.020 [0.197] 

ßo, ßl, ß* ß3, ß4 0.998 
0.951 

1.000 
0.959 

1.000 
0.962 

1.000 [0.960] 
0.981 [0.838] 

1.000 [0.930] 
0.980 [0.802] 

5.5 Extensions to Noisy and High-Dimension Data Sets 

The minimum change in prediction error is the superior criterion for any 

resampling method in the data sets used in Shao (1996). The success of the procedure 

may be attributed to the low dimension of the data (4 regressor variables), the high 

signal-to-noise ratio or possibly a combination of both. We conduct some substudies in 

this section to further characterize the performance of both variable selection criteria. 

5.5.1 High-Dimension Data 

We modify the Gunst and Mason data set of regressor variables to include 5 

additional variables whose levels are generated from a NID (0,0.72) distribution. This 

approximately matches the current levels for the majority of the original 4 regressors. 
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The five additional variables have no effect on the generated response values as the 

ß' vector is now [2,9,6,4, 8,0,0,0,0,0]. The response variable is still generated as 

y = Xß +e where e is NID (0,<r2I) with a2 = 1. 

The probabilities in Table 5.6 again indicate that the change in prediction error 

criterion performs better than the minimum prediction error criterion. The minimum 

prediction error criterion overfits models except with the bootstrap resampling method 

using half samples. Note that in only 42.8% of the 100,000 bootstrap samples was the 

correct model selected under this criterion for the bootstrap half sample method. In 

contrast, the proposed criterion selects the correct model in over 80% of the bootstrap 

samples using the füll sample. The change in prediction criterion produces the following 

important findings: 1) the bootstrap using the full sample is best, 2) the leave-one-out 

cross-validation outperforms the K-fold cross-validation procedures, 3) the bias adjusted 

K-fold is slightly preferred to the ordinary K-fold estimate of prediction error, and 4) any 

resampling method has a high probability of selecting the correct model. 



Table 5.6. Results foi 
four regressors are the 

fromNID(0,0.72)and 

is shaded. The top nu 
selected using the mir 
change in prediction e 
proportion of 100,000 
to approximately +0.0 

• 1000 simulations for model selection from Shao (1996). Tl 
: Gunst and Mason data and the last five regressors are varia 

I s is NID (0, a2I). The true model, ß' = [2, 9, 6,4, 8, 0, 0, 

mber in each cell is the proportion of replicates the model w 
limization of prediction error criterion and the bottom uses t 
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ie first 
tes 

0, 0, 0], 

as 
tie 
the 
curate 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 
Val =6 

Bootstrap Full 
Sample («=40) 

Bootstrap Half 
Sample («=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
o.ooo ro.ooo] 

0.000 [0.001] 
0.000 [0.000] 

ßo,ßs 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.001] 
0.000 [0.000] 

0.000 [0.000] 
0.000 [0.000] 

ßo, ß3, ß4 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
0.000 [0.000] 

0.000 [0.002] 
0.000 [0.000] 

ßo, ßl, ß3, ß4 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
0.000 [0.000] 

0.000 [0.001] 
0.000 [0.000] 

ß0-ß4 0.666 
0.950 

0.656 
0.915 

0.637 
0.932 

0.684 [0.350] 
0.977 [0.808] 

0.892 [0.428] 
0.963 [0.539] 

ßo-ßs 0.113 
0.006 

0.175 
0.014 

0.126 
0.014 

0.116 [0.163] 
0.003 [0.022] 

0.080 [0.187] 
0.008 [0.041] 

ßo-ß6 
0.070 
0.011 

0.074 
0.018 

0.080 
0.016 

0.064 [0.119] 
0.004 [0.029] 

0.022 [0.128] 
0.006 [0.057] 

ßo-ß7 
0.065 
0.010 

0.052 
0.018 

0.055 
0.009 

0.050 [0.105] 
0.005 [0.038] 

0.006 [0.097] 
0.010 [0.082] 

ßo-ß8 
0.051 
0.016 

0.052 
0.020 

0.057 
0.018 

0.055 [0.107] 
0.011 [0.048] 

0.000 [0.079] 
0.007 [0.118] 

ßo-ß9 
0.035 
0.007 

0.041 
0.015 

0.045 
0.011 

0.031 [0.155] 
0.000 [0.0551 

0.000 [0.076] 
0.006 fO.1631 

5.5.2 High-Dimension and Noisy Data 

All of the previous correctly specified models (the shaded models in Tables 5.2 - 

5.6) are highly significant. That is, the signal-to-noise ratio is high as evidenced by the 

R2 values ranging from 0.98 and 0.995. We would typically not expect to see such high 

R2 values in practice. Also, there is a peculiarity in the Gunst and Mason data. Section 

5.6 details that there are 12 observations out of the total 40 in extreme X-space (high- 
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leverage). For these reasons, we temporarily abandon the Gunst and Mason data. This 

sub-study evaluates the performance of the resampling algorithms and the two model 

selection criteria when the signal-to-noise ratio and remoteness in X-space are not as 

extreme. 

The artificial data set generates standard normal variates for the design matrix, X, 

of dimension n = 40 observations and k = 9 regressor variables augmented with a column 

of ones. For this study, the design matrix changes for each of the 1000 replications to 

represent the X-random, as opposed to X-fixed, case for regression. Breiman and Spector 

(1992) state that significant differences exist between the two assumptions with respect to 

variable selection and the X-random designs are appropriate for most analysis. The 

response variable is generated as usual, y = Xß +e except that e is NID (0,cr2I) with a 

= 10. The known vector of parameters is the same as the previous experiment, ß '= [2, 9, 

6,4, 8, 0, 0, 0, 0, 0]. The R2 values with the new distribution of the error term and design 

matrix range between 0.65 and 0.75. This amount of noise in the data is more realistic 

for many applications. 

The minimum prediction error criterion (the values on top of each cell in Table 

5.7) have similar results to the change in prediction error criterion with constant equal to 

0.001 (middle values in each cell). Both criteria do not reliably identify the correct 

model using cross-validation or the bootstrap with the full sample size. The only 

procedure that does not consistently lead to overfit models is the bootstrap using a sample 

size of n - 20. 
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One possible solution to make these resampling procedures more reliable is to 

increase the constant from 0.001. This constant value suggests that the models of the 

next higher dimension will be selected if the change in prediction error exceeds 1/10 of 

1% of the prediction error from the null model. The middle value of each cell in Table 

5.7 indicates that we rarely select models that are underfit. Assumption of more risk of 

underfitting by increasing the value of the constant can lead to a higher probability of 

correct model selection. The last value in each cell of Table 5.7 is the proportion of 

replications that the change in prediction error criterion selects the model if the constant 

is changed to 0.03. The constant, calculated from pilot studies, is set to achieve a balance 

between underfit and overfit models. The best prescription still appears to be the 

bootstrap with the half sample size for either criterion. However, the cross-validation and 

bootstrap with the full sample are competitive if the change in prediction error criterion is 

used. 

Note that the proportions in Tables 5.6 and 5.7 for the proposed change in 

prediction error criterion are conservative for the correct (shaded) model. The 

programming logic does not adequately address the situations when there are significant 

drops in prediction error in higher dimension models but the prediction error is still 

greater than the correctly specified model. To illustrate, consider the following vector of 

average prediction errors A = [1000, 500, 100, 50,15,14,45, 60,25,30]. The correct 

model is the 5-parameter model with prediction error 15. The change in prediction error 

criterion with constant 0.03 as programmed selects the 9-parameter model because the 
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prediction error has decreased by more than 30 (0.03 * 1000). It is difficult to capture the 

subjective nature of the process; however, the logic errs to the conservative side. 

Table 5.7. Results for 1000 simulation replicates for model selection. All regressor 
variable values are generated from a standard normal distribution. The response is 
generated from the vector ß '= [2, 9, 6,4, 8, 0, 0, 0, 0, 0] with e NID (0,<r2I) and a 
= 10. The top value in each cell is the proportion of the 1000 replicates the model 
was selected using the minimization of prediction error criterion, the middle value is 
the change in prediction error criterion with constant 0.001, and the bottom value is 
the change in prediction error criterion with constant 0.03. The values in brackets 
are the proportion of 100, 

Model 
parameters 

ßo 

ßo,ß3 

ßo, ßs, ß4 

ßo, ßi, ßs, 
ß4 

ß0-ß4 

ßo-ß5 

ßo-ß6 

ßo-ß7 

ßo-ßs 

ßo-ß9 

)00 bootstrap samples that the model is selected. 
Cross- 

Val 
Lv 1 out 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.004 
0.004 
0.050 
0.024 
0.016 
0.023 
0.452 
0.636 
0.769 
0.328 
0.112 
0.032 
0.076 
0.076 
0.042 
0.040 
0.044 
0.033 
0.024 
0.048 
0.025 
0.052 
0.064 
0.026 

Cross- 
Val 

K = 6 
0.000 
0.000 
0.003 
0.000 
0.000 
0.002 
0.000 
0.000 
0.041 
0.026 
0.018 
0.039 
0.634 
0.567 
0.738 
0.128 
0.103 
0.047 
0.093 
0.110 
0.039 
0.050 
0.080 
0.040 
0.031 
0.071 
0.026 
0.038 
0.051 
0.025 

Adj 
Cross - 
Val K=6 

0.000 
0.000 
0.003 
0.000 
0.000 
0.001 
0.000 
0.000 
0.044 
0.019 
0.015 
0.031 
0.605 
0.539 
0.737 
0.134 
0.108 
0.043 
0.096 
0.113 
0.041 
0.056 
0.080 
0.040 
0.041 
0.078 
0.028 
0.049 
0.067 
0.032 

Bootstrap Full 
Sample («=40) 
0.000 [0.013] 
0.000 [0.000] 
0.000 [0.001] 
0.000 [0.003] 
0.000 [0.000] 
0.000 [0.008] 
0.001 [0.008] 
0.000 [0.001] 
0.041 [0.035] 
0.015 [0.057] 
0.010 [0.017] 
0.017 [0.057] 
0.605 [0.299] 
0.567 [0.197] 
0.753 [0.568] 
0.124 [0.148] 
0.111 [0.102] 
0.035 [0.058] 
0.092 [0.114] 
0.091 [0.129] 
0.046 [0.066] 
0.064 [0.107] 
0.082 [0.169] 
0.043 [0.070] 
0.049 [0.103] 
0.072 [0.192] 
0.032 [0.070] 
0.050 [0.193] 
0.067 [0.055] 
0.033 [0.067] 

Bootstrap Half 
Sample («=20) 
0.000 [0.039] 
0.000 [0.000] 
0.002 [0.001] 
0.000 [0.000] 
0.000 [0.000] 
0.001 [0.002] 
0.001 [0.004] 
0.001 [0.001] 
0.064 [0.030] 
0.035 [0.062] 
0.035 [0.024] 
0.042 [0.062] 
0.866 [0.406] 
0.868 [0.296] 
0.839 [0.570] 
0.070 [0.170] 
0.065 [0.136] 
0.025 [0.068] 
0.017 [0 
0.019 [0 
0.015 [0 
0.009 [0. 
0.010 [0. 
0.011 [0. 

113] 
154] 
0771 
086] 
167] 
0801 

0.002 [0. 
0.002 [0. 
0.001 [0. 

063] 
142] 
065] 

0.000 [0. 
0.000 [0 
0.000 [0 

055] 
081] 
M3]J 
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5.6 Variable Selection in the Presence of Outliers 

The complexity of variable selection significantly increases for regression models 

contaminated with outliers. Markatou et al. (1991) state that tests on least squares 

regression parameters lose power dramatically in the presence of outliers and leverage 

points. One approach to overcome the loss of power is to use a robust regression 

estimator. The previous chapters illustrate that least squares is not the estimator of choice 

in contaminated samples and that compound estimators demonstrate the best overall 

performance. This section reviews the robust regression variable selection literature for 

both analytical and resampling methods and conducts comparative evaluations of 

resampling methods with compound estimators. There are few empirical results in the 

literature that address the combined problem of compound estimation and resampling 

because both procedures are computationally complex. 

5.6.1 Variable Selection with Robust Regression Estimators 

Although numerous robust estimators have been proposed in the last 25 years, 

there are significantly fewer results in the literature that explore variable selection 

procedures in the robust regression model. Most robust regression variable selection 

methods are based on robust versions of the general linear test that use the asymptotic 

covariance matrix (Hampel et. al, 1986). Markatou and He (1994) and Hertier and 

Ronchetti (1994) extend the Wald (similar to /-tests) and drop-in-dispersion tests (similar 

to F-tests) to GM and compound estimators. Field (1997) and Field and Welsh (1998) 

propose saddlepoint approximations of tail area probabilities for robust regression 
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hypothesis testing as improvements to the asymptotic approach. The results are mixed 

and they recommend further testing in finite samples. Ronchetti and Staudte (1994) 

propose a robust version of Mallows's Cp. The method multiplies the squared residuals 

by the final weights from a robust fit to compute the residual sum of squares. Two 

additional quantities are also added to the residual sum of squares that are a function of 

the number of parameters and the selected robust estimator. The robust Cp appears to 

work satisfactorily for their three examples, but no simulation results are reported. 

The Wald test is currently preferred (Hertier, 1997) because of its asymptotic chi- 

square distribution and the relative ease to calculate the asymptotic covariance matrix. 

Wilcox (1997) experiments (results not reported) with the Wald test using the M- 

estimator and the Coakley and Hettmansperger (1993) compound estimator. For both 

estimators, he found poor control over the Type I error, even with normal error terms and 

n = 100. All authors conclude that it is important to do further testing and evaluation to 

understand the strengths and weaknesses of the methods in finite samples. 

Bootstrap methods can be used in robust regression to construct confidence 

intervals and prediction intervals (Efron and Tibshirani, 1993, Davison and Hinkley, 

1997, Wilcox, 1994,1996a, 1996b, 1997). Mammen (1993) shows the consistency of the 

bootstrap for linear tests with the M estimator. 

Wilcox (1997, 1998) presents an interesting approach to the variable selection 

problem in robust regression by using a bootstrap resampling scheme. He uses a 

percentile bootstrap approach to find critical values for the joint confidence region on the 

Mahalanobis distance for the model parameters. The steps of the algorithm are: 
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1. Obtain B bootstrap estimates of ß by bootstrapping pairs. 
2. Estimate the covariance matrix V using all B bootstrap estimates of ß . 
3. Find the Mahalanobis distance of (ß * -ß ) using V"1 for each bootstrap 

A 

sample where ß * is the bootstrap estimate of the model parameters and ß is the 
vector of parameter estimates from the original data. 

4. Sort the Mahalanobis distances and call the (1 -a)B ordered distance the 
critical value. 

5. Find the test statistic by the Mahalanobis distance using V"1 of(ß -c) where c 
is a vector of constants often selected as 0 to test for significance. 

Wilcox (1998) states that there is room for improvement with this method because 

the probability of a Type I error can be substantially less than nominal levels in many 

circumstances. He cautions that this approach does not work well with least squares; 

correction factors through simulation are required to achieve the correct coverage 

probabilities. Our experiments with compound estimators indicate that the algorithm is a 

dependable diagnostic to test if at least one of the variables is active; however, the test 

statistics are not useful to differentiate between competing models. 

Davison and Hinkley (1997) provide a brief discussion of resampling methods in 

robust regression. Their guidance on resampling methods for variable selection in robust 

regression focuses on two main points: 1) remove gross outliers from the analysis 

because too many outliers could appear in the resampled data leading to inefficiency and 

breakdown and 2) most of the prediction error methods for least squares should apply to 

robust regression. Outliers are removed by residuals from an LTS fit. 

Thus, there is relatively little guidance for variable selection using cross- 

validation or bootstrap estimates of prediction error in robust regression. The next 

section revisits and modifies the Gunst and Mason data to contain residual outliers. We 
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compare the same resampling methods and criteria as in Section 5.5, except that we use a 

compound estimator rather than least squares. 

5.6.2 Modified Gunst and Mason Data 

The Gunst and Mason data used in the previous sections have several 

observations that are extreme in X-space. The hat diagonals indicate that only 4 of the 40 

observations (2, 8,15, and 39) are remote in X-space using the usual 3p/n criteria 

(Hoaglin and Welsch, 1978). However, the Rocke and Woodruff (1996) robust distances 

(see Chapter 4) in Table 5.8 conclude that the 12 shaded observations are remote in X- 

space. These high-leverage points could also explain the large R2 values seen in Section 

5.4. In practice, the response values of these extreme points in X-space may not follow 

the regression surface as well as in the previous experiments. We plant four residual 

outliers by adding 10.0 to the response values of the high-leverage observations 8,15,28, 

and 39. The data set now contains 10% residual outliers at a distance of 10o\ The 

simulations are run exactly as described in Section 5.4 and ß' = [2, 0, 0,4, 8]. 

Table 5.8. Rocke and Woodruff (1996) robust distances for the Gunst and Mason (1980) 
data. The observations with shaded robust distance cells are considered remote in X- 
space because t iey exceed the cu toffv£ ilueo no. 
obs RD obs RD obs RD obs RD obs RD obs RD obs RD obs RD 

i 11 6 3 11 6 16 2 21 5 26 8 31 24 36 7 

2 777 7 77 12 7 17 6 22 1 27 2 32 3 37 1 

3 1 8 426 13 4 18 1 23 1 28 191 33 41 38 3 

4 28 9 9 14 1 19 6 24 3 29 3 34 101 39 79 

5 2 10 2 15 132 20 2 25 8 30 3 35 115 40 1 
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The probabilities in Table 5.9 indicate that no resampling technique using any 

criterion successfully selects the correct three-parameter model. The two inactive 

variables are now significant in model selection because the least squares estimator has 

used them to fit the outliers. This example illustrates the important linkage between 

outlier identification and variable selection in model building. The planted outliers are 

masked; they do not have unusual residual values. Note, also from Table 5.9, that the 

minimum prediction error criterion most often selects the 5 parameter model while the 

change in prediction error criterion selects the 4 parameter model. The least squares 

estimator has failed; outliers are masked and insignificant variables now appear to be 

significant. 

A logical choice for this data set contaminated with high-leverage points and 

residual outliers is a compound estimator. Resampling estimates of prediction error with 

compound estimators could potentially pose some problems. For example, the estimator 

could breakdown because, by chance, a bootstrap sample may contain too many of the 

planted outliers. Breakdown means that the parameter estimates are no longer valid for 

the bulk of the data (see Chapter 2). Also, if the compound estimator successfully 

downweights the outliers, the resulting prediction error may not necessarily be low 

relative to the other models. This is explained by the existence of two sources of error 

contributing to overall prediction error. One source of error is the lack of a good fit due 

to model misspecification. The other source is that the estimator works and assigns large 

residual values to the outliers which inflates the overall prediction error. 



Table 5.9. Results for 1000 simulations for model selection from Shao (199 
using least squares parameter estimates. Observations 8,15,28, and 39 are ma< 
residual outliers. The true model [2, 0, 0,4, 8] is shaded. The top number in ea 
cell is the fraction of time the model was selected using the minimization of 
prediction error metric and the bottom uses the change in purity metric with coi 
0.025. The values in brackets for the bootstrap are the ratios out of 100,000 
bootstrap samples that the model is selected. 
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6) 
ie 
ich 

istant 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 
Val K=6 

Bootstrap Full 
Sample (w=40) 

Bootstrap Half 
Sample («=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.001] 
0.000 [0.000] 

0.000 [0.013] 
0.000 [0.000] 

ßo,ß3 
0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.020] 
0.000 [0.072L 

0.000 [0.000] 
0.000 [0.000] 

ßo, ß3, ß4 0.000 
0.024 

0.000 
0.000 

0.000 
0.000 

0.000 [0.037] 
0.335 [0.3021 

0.000 [0.110] 
0.269 10.5181 

ßO, ßl, ß3, ß4 0.797 
0.976 

0.055 
1.000 

0.037 
1.000 

0.116 [0.275] 
0.665 [0.398] 

0.215 [0.304] 
0.727 [0.303] 

ßo, ßl, ß2, ß3, ß4 0.203 
0.000 

0.945 
0.000 

0.963 
0.000 

0.884 [0.667] 
0.000 r0.227] 

0.785 [0.572] 
0.004 [0.179] 

The values in Table 5.10 are the proportion of 100 replicates that the model was 

selected if the Simpson and Montgomery (1998a) compound estimator replaces least 

squares. The change in prediction error criterion (constant = 0.025) reliably identifies the 

correct model for all resampling methods with a slight edge given to the bootstrap full 

sample. The minimum prediction error criterion is not useful except for the bootstrap. 

Note that the minimum prediction error criterion performs poorly with the full sample 

bootstrap. 
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Table 5.10. Results for 100 simulations for model selection from Shao (1996) using 
the Simpson and Montgomery compound estimator. Observations 8,15,28, and 39 are 
made residual outliers and the estimator is Simpson and Montgomery. The true model [2, 
0, 0,4, 8] is shaded. The top number in each cell is the fraction of time the model was 
selected using the minimization of prediction error metric and the bottom number uses 
the change in purity metric with constant 0.025. The values in brackets for the bootstrap 
are the ratios out of 100,000 bootstrap samples that the model is selected.  

Model 
parameters 

ßo 

ßo,ß3 

ßo,ß3,ß4 

ßo, ßl, ß3, ß4 

ßo, ßt, ß2, ß3, ß4 

Cross- 
Val 

Lv 1 out 
0.000 
0.000 
0.000 
0.000 
0.450 
0.980 
0.290 
0.000 
0.260 
0.020 

Cross- 
Val 

K = 6 
0.000 
0.000 
0.000 
0.000 
0.490 
0.940 
0.290 
0.020 
0.260 
0.040 

Adj 
Cross- 

Val K=6 
0.000 
0.000 
0.000 
0.000 
0.480 
0.930 
0.250 
0.010 
0.270 
0.060 

Bootstrap Full 
Sample (»=40) 
0.000 [0.001] 
0.000 [0.000] 
0.000 [0.113] 
0.000 [0.163] 
0.000 [0.067] 
0.990 r0.4491 
0.410 [0.242] 
0.010 [0.237] 
0.590 [0.578] 
0.000 [0.151] 

Bootstrap Half 
Sample («=20) 
0.000 [0.023] 
0.000 [0.001] 
0.000 [0.007] 
0.000 [0.006] 
0.930 [0.429] 
0.980 fO.6851 
0.070 [0.283] 
0.010 [0.120] 
0.000 [0.258] 
0.010 fo.189] 

As an alternative to resampling with a computationally inefficient compound 

estimator, we consider the Davison and Hinkley (1997) recommendation to first remove 

large residual observations from a robust fit. Their choice of estimators, LTS, is high- 

breakdown but is not a bounded-influence estimator. Therefore, outliers will likely be 

removed from the sample only if they are not high-leverage points. 

For the modified Gunst and Mason data, we first remove the observations with 

standardized residuals exceeding a value of 2.5 from a fit with the high-breakdown, high- 

efficiency, and bounded-influence Simpson and Montgomery compound estimator. 

Subsequently, resampling methods estimate the least squares prediction error for variable 

selection. The Simpson and Montgomery filter removes the outlying observations at the 

beginning of every one of the 100 replications. From Table 5.11, this scheme 
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successfully identifies the correct model with high probability for the proposed change in 

prediction error criterion. The minirnum prediction error criterion has a high probability 

of correct model selection only for the bootstrap half sample. 

Table 5.11. Results for 100 simulations for model selection from Shao (1996) 
using the Simpson and Montgomery compound estimator to remove outliers 
followed by least squares estimates. Observations 8, 15,28, and 39 are made 
residual outliers and the estimator is Simpson and Montgomery. The true model [2, 
0, 0,4, 8] is shaded. The top number in each cell is the proportion of 100 replicates 
that the model was selected using the minimization of prediction error criterion and 
the bottom number is the proportion with the change in prediction error criterion with 
constant 0.025. The values in brackets are the proportion of 10,000 bootstrap 
samples that the model is selected. 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 
Val K=6 

Bootstrap Full 
Sample («=40) 

Bootstrap Half 
Sample (w=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.000] 
0.000 [0.000] 

0.000 [0.014] 
0.000 [0.001] 

ßo,ß3 
0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.002] 
0.000 [0.087] 

0.000 [0.002] 
0.000 [0.0061 

ßo,ß3,ß4 0.670 
0.950 

0.580 
0.950 

0.580 
0.950 

0.720 [0.447] 
0.990 [0.868] 

0.910 [0.535] 
0.960 [0.685] 

ßo, ßl, ß3, ß4 0.110 
0.010 

0.170 
0.010 

0.180 
0.010 

0.110 [0.213] 
0.010 [0.013] 

0.040 [0.225] 
0.010 [0.1201 

ßo, ßl, ß2, ß3, ß4 0.220 
0.040 

0.050 
0.040 

0.240 
0.040 

0.170 [0.337] 
0.000 [0.033] 

0.050 [0.224] 
0.030 [0.189] 

The fit for the clean 36 observations has an R2 of approximately 0.99, much like 

the scenarios of Section 5.4. If the random error added to the response variable is 

generated from variates of NID(0, 52) instead of NID(0, 1), then the Simpson and 

Montgomery compound estimator (and all other robust regression estimators) tails to 

provide meaningful parameter estimates. The parameter estimates vary widely between 

the simulation replicates and significantly within the bootstrap samples. None of the 

resampling methods or criteria reliably identify the specified model. 
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5.6.3 Compound Estimator Resampling Methods for a Noisy, High-Dimension Data 

Set with Multiple Outliers 

To investigate the performance of the resampling methods in the presence of 

outliers and noisy data, we generate an artificial data set. The response is generated from 

y = Xß +e where X is a 40 JC 9 matrix of standard normal variates augmented with a 

column of ones, the known vector of parameters ß 'is [2, 9, 6,4, 8,0,0,0,0,0] and e is 

NID(0,<r2I) with CT = 5. The last five observations are IOCT residual outliers and the last 

three observations are also IOCT outliers in X-space for variables x3 through X6. 

In contrast to all previous findings for the minimum prediction error criterion, the 

bootstrap half sample results in Table 5.12 do not improve upon those from the full 

sample. The change in prediction error criterion is successful for all methods except the 

bootstrap half sample. The minimum prediction error criterion does not perform well 

with cross-validation. 
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Table 5.12. Results for 50 simulation replicates for model selection with the Simpson 
and Montgomery estimator. All regressor variable values are generated from a standard 
normal distribution. The response is generated from the vector [2, 9, 6,4, 8, 0, 0, 0, 0, 0] 

and e NID (0,cr2I) with a = 5. The last five observations are 10a residual outliers and 

the last three observations are also 10a outliers in X-space for variables X3 through X6. 
The top number in each cell is the proportion of 50 replicates that the model was selected 
using the minimization of prediction error criterion and the bottom number is the change 
in prediction error criterion with constant 0.01. The values in brackets are the ratios out 
of 5,000 bootstrap samples that the model is selected. Results are accurate to 
approximately ± 0.06. 

Model 
parameters 

Cross- 
Val 

Lv 1 out 

Cross- 
Val 

K = 6 

Adj 
Cross - 
Val K=6 

Bootstrap Full 
Sample («=40) 

Bootstrap Half 
Sample («=20) 

ßo 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.004] 
0.000 ro.ooi] 

0.000 [0.037] 
0.000 [0.000] 

ßo,ß3 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.016] 
0.000 [0.008] 

0.000 [0.000] 
0.000 [0.004] 

ßo, ß3, ß4 0.000 
0.000 

0.000 
0.000 

0.000 
0.020 

0.000 [0.022] 
0.000 [0.009] 

0.000 [0.000] 
0.000 [0.003] 

ßo, ßl, ß3, ß4 0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 [0.035] 
0.000 [0.031] 

0.060 [0.029] 
0.000 [0.016] 

ß0"ß4 0.540 
0.820 

0.360 
0.820 

0.420 
0.840 

0.780 [0.340] 
0.900 [0.549] 

0.720 [0.418] 
0.560 [0.382] 

ßo-ßs 0.180 
0.060 

0.380 
0.020 

0.300 
0.020 

0.180 [0.215] 
0.040 r0.061] 

0.220 [0.219] 
0.100 [0.068] 

ßo-ß6 0.040 
0.020 

0.100 
0.060 

0.100 
0.040 

0.020 [0.138] 
0.000 [0.0731 

0.000 [0.111] 
0.060 [0.112] 

ßo-ß7 0.100 
0.040 

0.060 
0.040 

0.040 
0.020 

0.020 [0.091] 
0.060 [0.1011 

0.000 [0.082] 
0.220 [0.1871 

ßo-ßs 0.060 
0.000 

0.000 
0.020 

0.000 
0.020 

0.000 [0.078] 
0.000 [0.091] 

0.000 [0.056] 
0.040 [0.131] 

ßo-ß9 0.080 
0.060 

0.100 
0.040 

0.140 
0.040 

0.000 [0.062] 
0.000 [0.076] 

0.000 [0.048] 
0.020 [0.098] 

5.6.4   A Designed Experiment for Resampling Methods with Compound 

Estimators 

Based on the modified Gunst and Mason data and the artificial data set in Section 

5.6.3, it appears as if resampling methods are appropriate for variable selection when 

outliers are present. To gain a better understanding of resampling methods' performance 
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for the variable selection problem with multiple outliers, we run a designed experiment 

using Monte Carlo simulation. The experiment varies characteristics of not only the data 

set, but also of the resampling method to quantify the expected performance of the 

various techniques. We use the Simpson and Montgomery compound estimator for all 

simulations. Note that we are not removing the outliers from analysis first as 

recommended by Davison and Hinkley (1997) and explored in Table 5.11. 

5.6.4.1 Planning the Simulation Experiment 

All data sets consist of« = 40 observations and;? = 5 parameters. The response 

vector is generated as y = Xß +e where X is the design matrix of i.i.d. random variates 

from the standard normal distribution, ß 'is the vector of known parameters [2,4, 8, 0, 0], 

and 6 is the vector of random error variates from a N(0, er^I) distribution. For the last 

four observations, a value of 8 is added to each regressor variable value to create high- 

leverage points. Residual outliers are created for the last four or eight observations 

(depending on the factor setting) by adding S to the expected response value. 

Factors for the Experiment. From the previous results, pilot studies, and 

knowledge of compound estimators, the following factors are included: 

•   Percentage of outliers contaminating the sample. This could be an important 

factor because resampling methods could form samples with too many outliers 

that cause the estimator to break down. Also, prediction error is higher with 

more outliers. The outlier density levels are 10% and 20%. 
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Outlying distance, 5. This measures how many standard deviations to make 

the outliers; both in leverage and residual. Larger values could lead to greater 

prediction error. The levels are 5 standard deviations and 10 standard 

deviations. 

Signal-to-noise ratio, measured through <ye. Section 5.5 demonstrates that 

this is a critical factor in determining the success of a procedure. The 

probability of correctly selecting the model is directly proportional to the 

signal-to-noise ratio. The levels for ae are 1 and 5 which corresponds to 

approximate R2 values of 0.98 and 0.80 respectively for an OLS fit on the 

uncontaminated portion of the data. 

Bootstrap sample size. Shao (1996) demonstrates that this is the single most 

important factor to correctly identify the active model parameters. Sections 

5.4 and 5.5 also indicate the half sample size is preferred. However, there 

may not be an appreciable difference for contaminated data sets (see Table 

5.12). The levels again are the full sample (n = 40) and the half sample (n = 

20). 

Number of bootstraps per replication. Up to this point, we have followed 

Davison and Hinkley's (1997) recommendation to use 100 bootstrap samples 

as an absolute minimum. Breiman and Spector (1992) and Breiman (1996) do 

not exceed 50 bootstrap samples and conclude for some applications that as 

few as 5 may suffice. Clearly, fewer bootstraps than 100 would be preferred 
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when resampling with a compound estimator. The levels in the experiment 

are B - 25 and 100 bootstrap samples. 

•    Size of assessment set in cross-validation. This factor replaces the previous 

two bootstrap-specific factors in the cross-validation runs. The purpose of this 

factor is to determine if there is a significant difference between K-Fold and 

leave-one-out cross-validation procedures. The levels are 6 (K-Fold) and 1 

(leave-one-out). 

Experimental Design and Response. All five factors for the bootstrap have only 

two levels; therefore, an attractive screening design for this experiment is a 2y' design. 

This design can estimate the main effects and the two-factor interactions free from 

aliasing. The cross-validation design is a full factorial 24. The response value again is 

the proportion of replicates in which the various parameter models are selected. We also 

investigate the usefulness of weighting the squared residuals by the final weights from 

the Simpson and Montgomery estimator. The motivation for this additional response 

comes from Ronchetti and Staudte's (1994) robust Cp criterion and from pilot 

experiments that showed a significant amount of the prediction error could be attributed 

to the large residuals of the planted outliers. 

Pilot studies are necessary to select an appropriate value for the constant for the 

change in prediction error criterion. The three factors that affect the choice of the 

constant are the outlying distance, signal-to-noise ratio and weighting of the residuals. 

Table 5.13 gives the values for the constants used in the simulations. 
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Table 5.13. Values of constants used in simulations 
for the change in prediction error criterion. 

6 oe 

Constant for 
unwtd 

Constant for 
weighted 

5 1 0.0250 0.0250 
10 1 0.0250 0.0100 
5 5 0.0050 0.0010 
10 5 0.0025 0.0005 

5.6.4.2 Simulation Results 

Bootstrap Methods.    The most striking aspect of the probabilities in Table 5.14 

is the contrast between the left half and the right half of the table. This corresponds to the 

difference between prediction errors computed with the unweighted versus weighted 

residuals. Weighting the residuals leads to nearly perfect selection of the correct model 

using the change in prediction error criterion independent of any other factor setting. 

Conversely, this weighting scheme almost always incorrectly selects the largest model if 

the minimum prediction error criterion is used. This suggests some modifications could 

be made to the prediction error calculation under a weighting scheme if the minimum 

prediction error criterion is used. The modified calculation could account for the number 

of model parameters; similar to the robust Cp. 

If the residuals are not weighted (the left half of Table 5.14), the most important 

factor under either selection criterion is the amount of noise used to generate the response 

values.   The correct model is selected with virtual certainty if the signal-to-noise ratio is 

high (ae = 1) under the change in prediction error criterion. In fact, this is the only 
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significant factor from the ANOVA (R2 = 0.85) for unweighted residuals with the change 

in prediction error criterion. For the unweighted residuals with minimum prediction error 

criterion, the significant effects from ANOVA (R2 = 0.87) are the signal-to-noise, the 

bootstrap sample size, and the number of bootstrap samples. Better model selection 

occurs with smaller bootstrap sample sizes, larger bootstrap samples and, surprisingly, 

lower signal-to-noise (ae = 5). The change in prediction error criterion significantly 

outperforms the minimum prediction error criterion with unweighted residuals in high 

signal-to-noise scenarios and is moderately outperformed in the low signal-to-noise 

scenarios. 
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Table 5.14. 25~ldesign and results for bootstrap methods using compound estimators. 

The top values in each cell are the proportion of times that the model is selected out of 50 
replications using the minimum prediction error criterion. The bottom values are the 

% out S °, 
Boot 
Size 
n-m 

Num 
Boot Boot 

ßo-ßi 

Boot 
ß0-ß2 

Boot 

ßo-ßs 

Boot 
ß<rß4 

Boot 
wt 

ßo-ßi 

Boot 
wt 

ßo-ß2 

Boot 
wt 

ßo-ß3 

Boot 
wt 

ß0-ß4 

10 5 1 20 100 0.000 
0.000 

0.740 
0.980 

0.260 
0.000 

0.000 
0.020 

0.000 
0.000 

0.000 
1.000 

0.000 
0.000 

1.000 
0.000 

20 5 1 20 25 0.000 
0.000 

0.680 
0.960 

0.260 
0.020 

0.060 
0.020 

0.000 
0.000 

0.000 
1.000 

0.020 
0.000 

0.980 
0.000 

10 10 1 20 25 0.000 
0.000 

0.540 
0.960 

0.400 
0.040 

0.060 
0.000 

0.000 
0.000 

0.000 
1.000 

0.000 
0.000 

0.000 
0.000 

20 10 1 20 100 0.000 
0.000 

0.740 
0.940 

0.240 
0.000 

0.020 
0.060 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

0.000 
0.000 

10 5 5 20 25 0.000 
0.000 

0.760 
0.600 

0.180 
0.120 

0.060 
0.280 

0.000 
0.000 

0.000 
1.000 

0.000 
0.000 

1.000 
0.000 

20 5 5 20 100 0.000 
0.000 

0.880 
0.780 

0.080 
0.100 

0.040 
0.120 

0.000 
0.000 

0.000 
0.940 

0.000 
0.040 

1.000 
0.020 

10 10 5 20 100 0.000 
0.000 

0.820 
0.720 

0.140 
0.120 

0.040 
0.160 

0.000 
0.000 

0.000 
0.100 

0.000 
0.000 

1.000 
0.000 

20 10 5 20 25 0.000 
0.000 

0.740 
0.620 

0.220 
0.160 

0.040 
0.220 

0.000 
0.000 

0.180 
0.960 

0.100 
0.000 

0.720 
0.040 

10 5 1 40 25 0.000 
0.000 

0.440 
1.000 

0.340 
0.000 

0.220 
0.000 

0.000 
0.000 

0.000 
1.000 

0.020 
0.000 

0.980 
0.000 

20 5 1 40 100 0.000 
0.000 

0.620 
1.000 

0.320 
0.000 

0.060 
0.000 

0.000 
0.000 

0.000 
1.000 

0.000 
0.000 

1.000 
0.000 

10 10 1 40 100 0.000 
0.000 

0.460 
1.000 

0.380 
0.000 

0.160 
0.000 

0.000 
0.000 

0.000 
1.000 

0.000 
0.000 

1.000 
0.000 

20 10 1 40 25 0.000 
0.000 

0.320 
1.000 

0.320 
0.000 

0.360 
0.000 

0.000 
0.000 

0.020 
1.000 

0.180 
0.000 

0.800 
0.000 

10 5 5 40 100 0.000 
0.000 

0.680 
0.720 

0.280 
0.200 

0.040 
0.080 

0.000 
0.000 

0.000 
1.000 

0.000 
0.000 

1.000 
0.000 

20 5 5 40 25 0.000 
0.000 

0.620 
0.680 

0.300 
0.220 

0.080 
0.100 

0.000 
0.000 

0.040 
0.920 

0.100 
0.040 

0.860 
0.040 

10 10 5 40 25 0.000 
0.000 

0.620 
0.440 

0.320 
0.300 

0.060 
0.260 

0.000 
0.000 

0.000 
1.000 

0.020 
0.000 

0.980 
0.000 

20 10 5 40 100 0.000 
0.000 

0.700 
0.660 

0.280 
0.240 

0.020 
0.100 

0.000 
0.000 

0.020 
1.000 

0.040 
0.000 

0.940 
0.000 
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Cross-Validation Methods. The difference between using weighted and unweighted 

residuals is not as distinct with cross-validation methods as it is for the bootstrap. The 

minimum prediction error criterion using weighted residuals no longer selects exclusively 

the largest parameter model. It selects the correct model, independent of factor settings, 

between 40 and 50% of the time. The change in prediction error criterion with weighted 

residuals selects the correct model with very high probability if the signal-to-noise ratio is 

high; otherwise, it has about a 70% correct selection rate in lower signal-to-noise 

scenarios. Signal-to-noise ratio is the only significant variable from ANOVA (R = 0.85) 

for the change in prediction criterion using weighted residuals. 

If the residuals are not weighted, then the minimum prediction error criterion is 

still not effective; correct model selection probabilities are between 0.2 and 0.5. All four 

factors are significant for this criterion from ANOVA (R2 = 0.90). Signal-to-noise ratio 

has the largest effect. The outlier magnitude and signal-to-noise ratio and their two- 

factor interaction are the significant factors (R2 = 0.95) for the change in prediction error 

criterion with unweighted residuals. Performance of this criterion is similar to the 

weighted residuals case: near perfect model selection if the signal-to-noise ratio is high 

and about 70% otherwise (although considerably more variance between factor settings). 

Clearly, the best method across all scenarios is the change in prediction error 

criterion applied to weighted prediction error from the bootstrap procedure. If the change 

in prediction error criterion is used with unweighted residuals, then cross-validation gives 

slightly better results than bootstrap procedures. For the minimum prediction error 

criterion, cross-validation is not recommended. The best results are from the bootstrap 
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half sample. There does not seem to be much difference between K-Fold and leave-one- 

out cross-validation procedures for either criterion. 

Table 5.15. 24 design and results for cross-validation methods using compound 
estimators. The top values in each cell are the proportion of times that the model is 
selected out of 50 replications using the minimum prediction error criterion. The bottom 
va uesare thechi angein prediction error cnte ria. 

% out S 0-e 

Size 
of 

Slca 

CV 
ßo-ßi 

CV 
ßo-ß2 

CV 
ßo-ßs 

CV 
ßo-ß4 

CV 
wt 

ßo-ßi 

CV 
wt 

ßo-ß2 

CV 
wt 

ßo-ßs 

CV 
Wt 

ß<rß4 

10 5 1 0.000 
0.000 

0.280 
1.000 

0.360 
0.000 

0.360 
0.000 

0.000 
0.000 

0.440 
1.000 

0.320 
0.000 

0.240 
0.000 

20 5 1 0.000 
0.000 

0.320 
1.000 

0.320 
0.000 

0.360 
0.000 

0.000 
0.000 

0.420 
1.000 

0.200 
0.000 

0.380 
0.000 

10 10 l 0.000 
0.000 

0.200 
1.000 

0.440 
0.000 

0.360 
0.000 

0.000 
0.220 

0.440 
0.780 

0.320 
0.000 

0.240 
0.000 

20 10 1 0.000 
0.000 

0.280 
1.000 

0.300 
0.000 

0.420 
0.000 

0.000 
0.100 

0.440 
0.900 

0.240 
1.000 

0.320 
0.000 

10 5 5 0.000 
0.000 

0.400 
0.800 

0.360 
0.100 

0.240 
0.100 

0.020 
0.020 

0.420 
0.760 

0.340 
0.160 

0.220 
0.060 

20 5 5 0.000 
0.000 

0.520 
0.860 

0.200 
0.040 

0.280 
0.100 

0.000 
0.000 

0.460 
0.760 

0.240 
0.100 

0.300 
0.140 

10 10 5 0.000 
0.020 

0.340 
0.540 

0.320 
0.240 

0.240 
0.200 

0.020 
0.000 

0.480 
0.640 

0.200 
0.200 

0.300 
0.160 

20 10 5 0.000 
0.040 

0.480 
0.640 

0.240 
0.160 

0.280 
0.160 

0.040 
0.000 

0.460 
0.700 

0.240 
0.100 

0.260 
0.120 

10 5 1 6 0.000 
0.000 

0.280 
1.000 

0.320 
0.000 

0.400 
0.000 

0.000 
0.000 

0.480 
1.000 

0.280 
0.000 

0.240 
0.000 

20 5 1 6 0.000 
0.000 

0.420 
1.000 

0.220 
0.000 

0.360 
0.000 

0.000 
0.000 

0.480 
1.000 

0.140 
0.000 

0.380 
0.000 

10 10 1 6 0.000 
0.000 

0.260 
1.000 

0.320 
0.000 

0.420 
0.000 

0.000 
0.000 

0.380 
1.000 

0.420 
0.000 

0.200 
0.000 

20 10 1 6 0.000 
0.000 

0.320 
1.000 

0.260 
0.000 

0.420 
0.000 

0.000 
0.000 

0.420 
1.000 

0.220 
0.000 

0.360 
0.000 

10 5 5 6 0.000 
0.000 

0.520 
0.700 

0.240 
0.180 

0.240 
0.120 

0.060 
0.040 

0.420 
0.680 

0.260 
0.140 

0.260 
0.140 

20 5 5 6 0.000 
0.000 

0.540 
0.780 

0.180 
0.120 

0.280 
0.100 

0.020 
0.020 

0.460 
0.700 

0.220 
0.100 

0.300 
0.180 

10 10 5 6 0.000 
0.000 

0.500 
0.620 

0.280 
0.220 

0.220 
0.160 

0.040 
0.000 

0.480 
0.700 

0.260 
0.180 

0.220 
0.120 

20 10 5 6 0.000 
0.020 

0.440 
0.600 

0.300 
0.240 

0.260 
0.140 

0.000 
0.000 

0.460 
0.680 

0.220 
0.160 

0.320 
0.160 
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5.7 Summary 

This chapter proposes criterion for model selection as an alternative to the strict 

minimization of prediction error. A criterion that selects the model that has the fewest 

variables and low prediction error is often a better choice. To implement and test this 

procedure, an operational version is introduced that increases the dimension of the model 

until the change in prediction error is less than a specified percentage of total prediction 

error in the intercept only model. Extensive Monte Carlo simulation suggests this 

criterion often outperforms the minimum prediction error criterion in both contaminated 

and uncontaminated samples. The criterion is tested using prediction error estimates 

from the leave-one-out cross-validation, K-Fold cross-validation, adjusted K-Fold cross- 

validation, the bias adjusted bootstrap, and the bootstrap half sample procedures. 

5.7.1 Summary of Results for Least Squares Estimation 

• For the Shao (1996) scenarios, the proposed criterion has nearly a 100% 

correct model selection rate for all resampling procedures because the signal- 

to-noise is very high (R2 = 0.99) and there are only 4 regressor variables. 

Only the bootstrap half sample method is consistently above 80% using the 

minimum prediction error criterion. 

• If the Shao (1996) data set is extended to 9 regressor variables, then the 

proposed criterion exceeds a 91% correct selection rate for all five resampling 

methods. The minimum change in prediction error selection rate is below 

70% for all procedures except the bootstrap half sample (89%). 
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• If the signal-to-noise ratio is decreased (R2 = 0.70) in the 9 regressor variable 

model, then the proposed criterion correct selection rate is approximately 75% 

for all methods except the bootstrap half sample (84%). The minimum 

prediction error criterion selection rate is below 63% for all methods except 

the bootstrap half sample (87%). This shows that methods other than the 

bootstrap half sample are competitive when the proposed criterion is used. 

5.7.2 Summary of Results for Compound Estimation 

• If 10% residual outliers are planted in the Gunst and Mason data set (already 

contaminated with high-leverage values), then all methods and criteria fail to 

identify the correct model with least squares. If the least squares estimator is 

replaced with the Simpson & Montgomery compound estimator, then the 

proposed criterion selects the correct model over 93% of the time for all 

resampling methods. The minimum prediction error criterion has below a 

50% correct selection rate except for the bootstrap half sample procedure 

(93%). 

• If the number of regressors increases to 9 in the modified Gunst and Mason 

data and the signal-to-noise ratio decreases (R2 = 0.80), then the proposed 

criterion selects the correct model over 80% of the time for cross-validation 

and 90% for the bootstrap. The minimum change in prediction error is below 

80% for the bootstrap and below 55% for cross-validation. Most importantly, 

the bootstrap half sample is worse than the full sample. 
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A designed experiment investigating the effect of outlier density, outlier 

magnitude, signal-to-noise ratio, and sample sizes for the resampling methods 

demonstrates that the proposed criterion is preferable or comparable to the 

minimum prediction error criterion. If the residuals are weighted by the final 

weights from the compound estimator, the correct model is almost always 

selected with the proposed criterion for the bootstrap methods. However, in 

the same scenarios, the minimum prediction error criterion always overfits 

using weighted residuals. For unweighted residuals, the proposed criterion is 

often preferred and always competitive for all scenarios. 



Chapter 6 

Summary, Contributions, and Future Research 

6.1 Introduction 

This research uses extensive Monte Carlo simulation to evaluate several aspects 

of the multiple outlier problem in regression. Chapter 1 demonstrates the impact that 

multiple outliers can have on a regression model, the failure of standard OLS diagnostic 

measures to detect the outliers, and the trouble outliers can cause to the variable selection 

process. The stated objectives of this research are to comprehensively test the leading 

multiple outlier detection procedures, improve existing methods that identify and 

accommodate outliers and investigate the usefulness of resampling methods for variable 

selection in regression models with multiple outliers. These three objectives are 

addressed in Chapters 3-5 respectively. This chapter provides a summary of the major 

findings for each objective, the original contribution, and recommendations for future 

research. 

6.2 Comparative Analysis of Multiple Outlier Detection Procedures 

The objective is to conduct a comprehensive performance study of numerous 

multiple outlier detection methods proposed in the literature. The methods are tested in 

realistic and challenging regression scenarios to establish the candidates' strengths and 

weaknesses. 
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6.2.1 Summary of Significant Findings 

The single most important factor affecting the performance of all methods is the 

leverage of the outlying observations. The significant results are reported for high- 

leverage (exterior X-space) and low-leverage (interior X-space) outliers. Many 

procedures have not previously been tested with high-leverage outliers. 

Low-leverage outliers. All of the selected methods (except Pena and Yohai) 

perform well for low-leverage outliers once the outlying distance exceeds 5a of the 

regression surface. OLS generally detects the outliers, but suffers from significant false 

alarms as the magnitude of the outlying distance increases. The indirect procedures 

dominate the direct methods with one notable exception. The Sebert et al. clustering 

methodology is in many cases the best method; however, the false alarm rate can be high 

and some scenarios defeat the method. Overall, the high-breakdown point (HBP) 

estimators are recommended; in particular, the MM estimator. For all procedures, the 

factor with the greatest impact, apart from leverage, is outlying distance followed by 

outlier density and dimension, respectively. 

High-leverage outliers. The HBP estimators that are successful in the low 

leverage scenarios perform poorly if the outliers are also remote in X-space. Most direct 

procedures lose a significant amount of detection capability with the high-leverage points 

because the algorithms rely on a least squares residuals. The compound robust regression 

estimators are generally preferred to the direct algorithms. The Simpson & Montgomery 

compound estimator has the best overall performance. Also, the Rousseeuw and van 

Zomeren method using simulated cutoff values is powerful. This suggests that the newer 
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MVE and LMS algorithms are not plagued as much by the criticisms of the random 

sampling schemes. For all methods, the most significant factors affecting performance 

are the leverage and the residual magnitude and their two-factor interaction. 

6.2.2 Contributions 

Several multiple outlier detection procedures have been proposed in recent years. 

All demonstrate good results in the authors' limited studies that are often restricted to 

"classic data sets" or low-dimension, low-leverage examples. There has not been a 

comprehensive evaluation of procedures since 1990. Every method tested in this 

research has been proposed since 1990. The contributions are: 

• A direct comparison of the current multiple outlier detection methods. 

• Sensitivity analysis of all procedures to outlier magnitude, density, leverage, 

and configuration in X-space. 

• The recommendation that robust regression estimators are in most cases 

superior to the direct methods. It may be of little use to integrate one of the 

specialized direct methods into a suite of regression analysis tools. Robust 

regression capability is all that is required. 

6.2.3 Future Research 

Monte Carlo simulation is the method used to evaluate performance in the 

selected outlier scenarios. These scenarios are limited to mean shift outliers and typically 

multiple point clouds. Performance studies with other approaches to data generation 
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would be useful to further test the procedures. The results from this research could be 

used to screen the multiple outlier detection methods and alternative outlier scenarios 

could be run (e.g. Breiman and Spector, 1992, Rocke and Woodruff, 1996, Wilcox, 

1996a). 

The research in Chapter 3 shows that in general the robust regression estimators 

outperform the direct methods. As such, Chapter 4 explored ways to improve the 

compound estimators. It is likely that some of the direct methods could be improved by 

integrating a robust estimator into the process. For example, most direct methods suffer 

significant loss in power for the high-leverage scenarios. This often can be traced back to 

the method depending on some form of the least squares residual driving the algorithm. 

Two recent multiple outlier detection methods (Lee and Fung, 1997, and Luceno, 

1998) address the generalized linear model (GLIM). There are no results in the literature 

that compare detection methods for the GLIM. Furthermore, many of the concepts for 

the direct identification methods and robust estimators from this research could be 

applied to the GLIM. Improved methods could be proposed for the GLIM. 

6.3 An Improved Compound Estimator 

The second research objective is to use the results from the performance study in 

Chapter 3 and improve upon an existing technique. The mechanics of compound 

estimators are evaluated more closely because of their favorable performance with high- 

leverage outliers in the comparative analysis. The leading compound estimators have 

vulnerability in high-dimension, high-leverage and high-density scenarios. Two 
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characteristics of the compound estimators are noted in these scenarios that require closer 

scrutiny. The 7t-weights are not unusual for the high-leverage outliers and the final 

parameter estimates do not differ significantly from the initial estimates. 

6.3.1 Summary of Significant Findings 

Performance study on measures of leverage. This Monte Carlo simulation study 

compares the Mahalanobis distance (hat diagonal), MVE, MCD, Hadi sequential point 

addition algorithm, Sebert et al. clustering methodology, M-estimates of covariance, and 

Rocke and Woodruff hybrid algorithm to identify remote observations in X-space. 

Mahalanobis distance breaks down in nearly all tested scenarios and the M-estimates of 

Covariance performs only slightly better. The Hadi algorithm can be tuned for excellent 

performance except in high-dimension. The MVE and MCD have comparable 

performance to one another; the MCD demonstrates slightly better results overall. The 

Sebert et al. method performs well, but can be vulnerable when the predicted response 

values are not Y-space outliers. Overall, the Rocke and Woodruff method demonstrates 

the best results for detection capability and resistance to false alarms. 

A new measure of leverage in published compound estimators. Incorporation of 

the Rocke and Woodruff robust distances in the Coakley and Hettmansperger and 

Simpson and Montgomery compound estimators does not improve the performance in the 

vulnerable scenarios. The final weights are slightly unusual for the outliers if the new 

leverage measure is used. However, if the number of iterations of IRLS is increased to 3 
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or 4, then the outliers are properly assigned large residual values and the regression 

surface is not pulled toward the outliers. 

Initial estimator study. In many high-leverage scenarios, the high-breakdown 

estimator provides poor estimates in the first stage of a compound estimator. High- 

breakdown point estimators do not have bounded-influence. An initial estimator is 

proposed that removes only the high-leverage and the high-residual observations from the 

sample, rather than 50% of the observations as the common high-breakdown estimators 

often do. High-leverage points are removed from the sample if the Rocke and Woodruff 

robust distance values exceed the cutoff value. Next, the residual outliers are removed if 

the standardized residual from an MM fit exceeds approximately 2.0. Lastly, an OLS fit 

on the remaining observations provides the parameter estimates. This is an efficient, 

high-breakdown, and bounded-influence initial estimator. Testing indicates that this 

estimator is highly successful not only in the high-density, high-dimension and high- 

leverage scenarios, but also all other outlier configurations. 

Proposed compound estimator. The proposed compound estimator uses the new 

initial estimator and also the improved Rocke and Woodruff robust distances for the n- 

weight component. It significantly expands the effective region of operability for 

compound estimation with respect to outlying distance in both leverage and residual. 

Also, the estimator performs well in a published comparative analysis of robust 

regression estimators (Simpson and Montgomery, 1998b) where the leverage distances 

are not as challenging. 
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6.3.2 Contributions 

• A comprehensive performance study for measures of leverage. 

Published results are limited to certain estimators and specific scenarios. 

There are no results on the performance of the MVE and MCD with the 

increased efficiency algorithms; Simpson and Chang (1997) call for such 

a study. 

• An efficient, bounded-influence, and high-breakdown initial estimator. 

All initial estimators are high-breakdown only and may not provide 

useful parameter estimates in high-leverage scenarios. A good initial 

estimate is essential to a compound estimator because the final 

parameters may not change much and the final scale estimate is often 

based on the initial estimator's residuals. 

• An improved compound estimator. The proposed estimator expands the 

area of coverage in high-dimension. Hampel (1997) states that a major 

gap in robust statistics is the lack of results and available tools for high- 

dimension. 

6.3.3 Future Research 

The proposed initial and compound estimator could be used as indirect methods 

for multiple outlier detection. Pilot studies show that these methods detect the planted 

outliers in the scenarios of Chapter 3 where all other methods fail. Additional finite 

sample performance studies are needed; especially in high-dimension. An improved plot 
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to the Rousseeuw and van Zomeren robust distances from the MVE and standardized 

LMS residuals is possible by replacing these measures with the Rocke and Woodruff 

robust distances and the proposed compound estimator's standardized residuals. Possibly 

some clustering of these components akin to Sebert et al. could be useful for outlier 

identification. 

A more critical evaluation of the components of the compound estimators could 

be beneficial. Specifically, some studies can be done on the best way to form the %- 

weights from the Rocke and Woodruff robust distances. Also, this research did not 

consider the impact of changing the ^function and estimates of scale. Another 

opportunity for improvement is to follow the Simpson and Chang (1997) 

recommendation to use a Hill-Ryan GM objective function rather than Schweppe or 

Mallows. 

6.4 Resampling Methods for Variable Selection 

The last research objective is to determine the appropriateness of resampling 

methods for variable selection in the presence of multiple outliers. Resampling methods 

with cross-validation and bootstrap estimates of model prediction error are currently the 

preferred approach to variable selection in OLS. Their major drawback is that they are 

computationally intense. Robust regression estimators are also computationally intense. 

With computational power increasing at dramatic rates, it will not be long before using 

resampling methods with robust regression is a viable approach for the practitioner. This 

research explored combining these two classes of procedures. 



199 

6.4.1 Summary of Significant Findings 

An alternative variable selection criterion for OLS. All of the proposed 

regression variable selection procedures with resampling methods suggest that the best 

model is the one with the minimum prediction error. This research proposes a more 

realistic criterion that selects the model with the fewest parameters and a low (not 

necessarily minimum) prediction error. The scenarios in Shao (1996) are rerun using the 

proposed criterion. The results indicate that the proposed criterion is superior to the 

minimum prediction error criterion. Therefore, a bootstrap procedure using bootstrap 

sample sizes of less than Y2 the original sample is not the only method to select the 

appropriate size model. The proposed procedure also works well for cross-validation 

procedures and the bootstrap using the foil sample. This conclusion is still valid if the 

dimension of the problem increases or if the R2 value is lowered from 0.995 (in all of 

Shao's scenarios) to a more realistic value of 0.70. 

Resampling methods with compound estimators. Resampling methods are 

appropriate for compound estimators. The compound estimators identify the correct 

model most of the time. Results are better with the proposed selection criterion rather 

than selection by minimum prediction error. A designed experiment tests the effects of 

outlier density, outlier magnitude, signal-to-noise ratio and resampling method sample 

sizes. The proposed criterion mostly outperforms or is competitive with the minimum 

prediction criterion. The signal-to-noise ratio is the most important factor for all 

methods. 
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A large portion of the prediction error can be attributed to the large residual 

values of the outliers. An estimate of prediction error is proposed that weights each 

observation's squared prediction error by the final weight from a compound estimator. 

The results are dramatically different from the unweighted estimate of prediction error. 

There is virtual assurance of selecting the correct model with the proposed criterion and 

virtual assurance of selecting the largest parameter model with the minimum prediction 

error criterion. These conclusions hold independent of outlier density, outlier magnitude, 

or signal-to-noise ratio. 

6.4.2 Contributions 

• An improved variable selection criterion for bootstrap and cross-validation 

estimates of prediction error in OLS regression. 

• Reliable variable selection is possible in OLS with cross-validation and 

bootstrap methods if the proposed criterion is used. 

• The proposed criterion and resampling methods are recommended for variable 

selection with compound estimators. 

• A weighted estimate of prediction error combined with the proposed criterion 

is highly effective for variable selection. This method is also robust across a 

variety of outlier scenarios. 
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6.4.3 Future Research 

This research has demonstrated that resampling methods are appropriate for the 

variable selection problem in robust regression. A finite sample performance study that 

compares analytical variable selection procedures from the asymptotic estimates of the 

covariance matrix to the resampling methods would be useful. Additionally, there are 

other bootstrap methods proposed that may provide better results. One promising method 

is the wild bootstrap (Mammen, 1992) that is appropriate for regression models with 

heteroschedastic errors. 

The proposed change in prediction error criterion for variable selection could be 

improved. This criterion only captures some of the subjectivity in selecting a model and 

is overly conservative. Improvements are possible by using some measure other than 

percentage of null model prediction error. A goal programming approach is possible. An 

opportunity exists to refine the weighted estimate of prediction error. Enhancements to 

the Ronchetti and Staudte's (1994) robust Cp for resampling could also be considered. 
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MAKEDATA 
# This script file contains the data generators for the experiments. 
# All clean observations are multivariate normal with mean 7.5 and a 
# standard deviation of 4.0.  These constants are not important to the 
# performance of the procedures.  Some procedures require a column of 
# ones for the constant term (Hadi and Simonoff, Swallow and Kiamfard); 
# this is handled internally by the procedures. 
# For multiple point clouds, the regressor levels are perturbed slightly 
# by uniform(0,0.25) to keep them from being a single point mass. 
# The responses are generated by multiplying 5.0 by the level of each 
# predictor value and adding N(0,1) noise and the shift if the cases 
# are regression outliers. 

# The subroutine gendata generates the data set with up to two clouds. 
# outl is the number of outliers in the first cloud, outshftl is the 
# number of standard deviations to shift the data in X-space, yshiftl 
# is the number of standard deviations to shift the response, n is the 
# number of observations, k is the number of regressors and x is the 
# number of regressors that are outlying out of the k. 
# This gendata lets clouds be outlying in fewer than p variables.  The 
# ones not outlying are random.  This is not what gendata2/6 do- they 
# put the other variables at the mean of 7.5.  That configuration is 
# significantly more difficult to detect. 

gendata<-function(outl,out2,outshftl,outshft2,yshiftl,yshift2,n,k,x) 
{ 

{ 
outs<-outl+out2 # the total planted outliers 
first<-n-outs+l # observation number of first planted outlier 
last<-n-outs    # observation number of the last clean case 
kmx<-k-x 
shiftl<-7.5 + outshftl*4  # place cloud 1 at this location 
shift2<-7.5 + outshft2*4  # place cloud 2 at this location 

# one<-rep(l-,n) # some procedures need an intercept 
jin<-matrix(rnorm(last*k,7.5,4.0),ncol=k) # predictors for clean cases 
yin<-apply(5*jin,l,sum) + matrix(rnorm(last),ncol=l) 
yin<-matrix(yin,ncol=l)      # clean response values 
if (k == x) # if outlying in all variables 

jl<-matrix(shiftl+runif(outl*k,0.0, 0.25) , ncol=k) # cloud 1 x values 
j2<-matrix(shift2+runif(out2*k,0.0,0.25),ncol=k) # cloud 2 x values 
} 

else 

joutl<-matrix(shiftl+runif(outl*x,0.0,0.25),ncol=x) 
# outlying subset in cloud 

jinl<-matrix(rnorm(outl*kmx,7.5,4.0),ncol=kmx) # inlying vars in cloud 
j K-cbind (j out 1, j inl) 
jout2<-matrix(shift2+runif(out2*x,0.0,0.25),ncol=x) 
jin2<-matrix(rnorm(out2*kmx,7.5,4),ncol = kmx) 
j 2<-cbind(j out2,j in2) 
} #endelse 

x<-rbind(jin,jl,j2) # the x values 
# x<-cbind(one,x) # if you need the intercept 

x<-as.matrix(x) 
yl<-apply(5*jl,l,sum)+ yshiftl # responses for the first cloud 
yl<-matrix(yl,ncol=l) 
y2<-apply(5*j2,l,sum)+yshift2 # responses for the second cloud 
y2<-matrix(y2,ncol=l) 
yorbind (yin, yl, y2) 
y<-matrix(y,ncol=l) 
} 
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return(x,y) 
} 

# This gendata is for n=40, k=2 and places outliers at a specific place for 
# each of the two variables e.g. 2 sigiaa for xl and -2 sigma for x2 
# lor up to two clouds.  This is used to keep the responses for the 
# outliers from being y space outliers. 

gendata2<-function(outl,0ut2,outshftllroutshftl2,outshft21,outShft22,yshiftl 

,yshift2,n,k,x) 

{ 

outs<-outl+out2 # the total planted outliers 
first<-n-outs+l 
last<-n-outs 
shiftll<-7.5 + outshftll*4 
shiftl2<-7.5 + outshftl2*4 
shift21<-7.5 + outshft21*4 
shift22<-7.5 + outshft22*4 

# one<-rep(l,n) 
jin<-matrix(rnorm(last*2,7.5,4.0),ncol=2) 
yin<-apply(5*jin,l,sum) + matrix(rnorm(last),ncol-l) 
yin<-matrix(yin,ncol=l) 
joutll<-matrix(shiftll+runif(outl,0.0,0.25),ncol=l 
joutl2<-matrix(shiftl2+runif(outl,0.0,0.25),ncol=l) 
jl<-cbind(joutll,joutl2) 
jout2K-matrix(shift21+runif (out2, 0.0, 0.25), ncol=l) 
jout22<-matrix(shift22+runif(out2,0.0,0.25),ncol=l) 
j2<-cbind(jout21,jout22) 
x<-rbind(jin,jl,j2) # the x values 

# x<-cbind(one,x) # intercept 
x<-as.matrix(x) 
yl<-apply(5*jl,l,sum)+ yshiftl 
yl<-matrix(yl,ncol=l) 
y2<-apply(5*j2,l,sum)+yshift2 
y2<-matrix(y2,ncol=l) 
y<-rbind(yin,yl,y2) 
y<-matrix(y,ncol=l) 
} 
return(x,y) 

} 

# The function gendata6 does the same as gendata2 except for k - 6 variables. 
I The specific level for each of the 6 variables can be set m each cloud. 

gendata6<-function(outl,out2,outshftil,outshftl2,outshft13,outshftl4, 

outshftl5,outshftl6,outshft21,outshft22,outshft23,outshft24,outshft25, 
outshft26,yshiftl,yshift2,n,k,x) 

{ 

outs<-outl+out2 # the total planted outliers 
first<-n-outs+l 
last<-n-outs 
shiftll<-7.5 + outshftll*4 
shiftl2<-7.5 + outshftl2*4 
shiftl3<-7.5 + outshftl3*4 
shiftl4<-7.5 + outshftl4*4 
shiftl5<-7.5 + outshftl5*4 
shiftl6<-7.5 + outshftl6*4 
shift21<-7.5 + outshft21*4 
shift22<-7.5 + outshft22*4 
shift23<-7.5 + outshft23*4 
shift24<-7.5 + outshft24*4 
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shift25<-7.5 + outshft25*4 
shift26<-7.5 + outshft26*4 

# one<-rep(l,n) 
jin<-matrix(rnorm(last*6,7.5,4.0),ncol=6) 
yin<-apply(5*jin,l,sum) + matrix(rnorm(last),ncol=l) 
yin<-matrix{yin,ncol=l) 
joutll<-matrix(shiftll+runif(outl,0.0,0.25),ncol=l) 
joutl2<-matrix(shiftl2+runif(outl,0.0,0.25),ncol=l) 
joutl3<-matrix(shiftl3+runif(outl,0.0,0.25),ncol=l) 
joutl4<-matrix(shiftl4+runif(outl,0.0,0.25),ncol=l) 
joutl5<-matrix(shiftl5+runif(outl,0.0,0.25), ncol=l) 
joutl6<-matrix(shiftl6+runif(outl,0.0,0.25),ncol=l) 
jl<-cbind(joutll,joutl2,joutl3,joutl4,joutl5,joutl6) 
jout2K-matrix(shift21+runif(out2, 0.0, 0.25),ncol=l) 
jout22<-matrix(shift22+runif(out2,0.0,0.25),ncol=l) 
jout23<-matrix(shift23+runif(out2,0.0,0.25),ncol=l) 
jout24<-matrix(shift24+runif(out2,0.0,0.25),ncol=l) 
jout25<-matrix(shift25+runif(out2,0.0,0.25), ncol=l) 
jout26<-matrix(shift26+runif(out2,0.0,0.25),ncol=l) 
j2<-cbind(jout21,jout22,jout23,jout24,jout25,jout26) 
x<-rbind(jin,jl,j2) # the x values 

# x<-cbind(one,x) 
x<-as.matrix(x) 
yl<-apply(5*jl,l,sum)+ yshiftl 
yl<-matrix(yl,ncol=l) 
y2<-apply(5*j2,l,sum)+yshift2 
y2<-matrix(y2,ncol=l) 
y<-rbind(yin,yl,y2) 
y<-matrix(y,ncol=l) 
} 
return(x,y) 

} 
# 
# This data generation function generates a single outlying cloud at 
# a random location in the interior of X space found by using the median 
# of the last three clean observations in each variable.  The parameters 
# outshftl,outshft2, yshift2 and x are not used. 
§ 
gendatamedK-function(outl,out2,outshftl,outshft2,yshiftl,yshift2,n,k,x) 

{ 
{ 
outs<-outl+out2 
last<-n-outs 
first<-n-outs+l 
lastm2<-last-2 
xin<-matrix(rnorm(last*k,7.5,4.0),ncol=k) 
xmed<-apply(xin[lastm2:last,],2,median) 
temp<-matrix(rnorm(outs*k,0,.05),ncol=k) 
xmedm<-xmed+temp 
xmedm<-matrix(xmedm,ncol=k,byrow=T) 
x<-rbind(xin,xmedm) 
yin<-apply(5*xin,l,sum) + matrix(rnorm(last),ncol=l) 
yout<-apply(5*xmedm,1,sum)+ matrix(rnorm(outs)+yshiftl,ncol=l) 
y<-rbind(yin,yout) 
} 
return(x,y,xmed) 

) 

# The function gendatamed2 does the same thing as gendatamedl except for 2 
# clouds.  The second cloud is located at the median of the first three 
# clean observations 
# 
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gendatamed2<-function(outl,out2,outshftl,outshft2,yshiftl,yshift2,n,k, x) 

{ 
{ 
outs<-outl+out2 
last<-n-outs 
first<-n-outs+l 
lastm2<-last-2 

# one<-rep(l,n) 
xin<-matrix(rnorm(last*k,7.5,4.0),ncol=k) 
xmedl<-apply(xin[lastm2:last,3,2,median) 
temp<-matrix(rnorm(outl*k,0,.05),ncol=k) 
xmedmK-xmedl+temp 
xmedmK-matrix(xmedml,ncol=k,byrow=T) 
xmed2<-apply(xin[l:3,],2,median) 
temp<-matrix(rnorm(out2*k,0,.05),ncol=k) 
xmedm2<-xmed2+temp 
xmedm2<-matrix(xmedm2,ncol=k,byrow=T) 
x<-rbind(xin,xmedml,xmedm2) 

# x<-cbind(one,x) 
yin<-apply(5*xin,l,sum) + matrix(morm(last) ,ncol-l) 
youtl<-apply(5*xmedml,l,sum)+matrix(rnorm(outl)+yshiftl,ncol-l 
yout2<-apply(5*xmedm2,1,sum)+matrix(rnorm(out2)+yshift2,ncol-l) 
y<-rbind(yin,youtl,yout2) 
} 
return(x, y, xmedl,xmed2) 

} 

# This function genrand generates regression outliers randomly 
# in x-space.  The parameters outshftl, outshft2, and yshft2 are 
# not used.  These outliers are not in multiple point clouds. 

genrand<-function(outl,out2,outshftl,outshft2,yshiftl,yshift2, n,k,x) 

{ 
{ 
outs<-outl+out2 
first<-n-outs+l 
last<-n-outs 
one<-rep(l,n) 
x<-matrix(rnorm(k*n,7.5,4.0),ncol=k) 
yin<-apply(5*x[l:last,],l,sum) + matrix(rnorm(last),ncol=l) 
yin<-matrix(yin,ncol=l) 

# x<-cbind(one,x) 
x<-as.matrix(x) 
yout<-apply(5*x[first:n,],l,sum)+ yshiftl 
yout<-as.matrix(yout,ncol=l) 
y<-rbind(yin,yout) 
y<-matrix(y,ncol=l) 
} 
return(x,y) 

} 

# The function genmix generates low leverage regression outliers (first 
# outliers specified) at random locations in X-space and a cloud 
# of high leverage regression outliers (second outliers specified). 
# The outliers may be unusual in any number of variables in the cloud. 
# The parameter outshftl is not used since the first set of outliers are 
# random. 

genmix<-function(outl,out2,outshftl,outshft2,yshiftl,yshift2,n,k,x) 

{ 
{ 
outs<-outl+out2 
kmx<-k-x 
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first<-n-outs+l 
laston-outs 
firststop<-n-out2 
second<-firststop+l 
shiftl<-7.5  +  outshftl*4 
shift2<-7.5  +  outshft2*4 

# one<-rep(l,n) 
xin<-matrix(rnorm(k*firststop,7.5,4.0),ncol=k) 
if (k!=x){ 

xcloudout<-matrix(shift2+runif(out2*x,0.0,0.25),ncol=x) 
xcloudin<-matrix(rnorm(kmx*out2,7.5,4.0), ncol=kmx) 
xcloud<-as.matrix(cbind(xcloudout,xcloudin)) 

} 
else     { 

xcloud<-matrix(shift2+runif(out2*k,0.0,0.25),ncol=k) 

} 
x<-rbind(xin,xcloud) 
x<-as.matrix(x) 

# x<-as.matrix(cbind(one,x)) 
yin<-apply(5*x[l:last,],1,sum) + matrix(rnorm(last),ncol=l) 
yin<-matrix(yin,ncol=l) 
youtl<-as.matrix(apply(5*x[first:firststop,],1,sum)+ yshiftl,ncol=l) 
yout2<-as.matrix(apply(5*x[second:n,],l,sum)+ yshift2,ncol=l) 
y<-as.matrix(rbind(yin,youtl,yout2),ncol=l) 

} 
return(x,y) 

} 
# 
# The function gendata4 generates 4 multiple point clouds that may 
# be outlying in a subset of the k variables.  All outlying variables 
# must be at the same level like in "gendata". 

gendata4<-function(outl,out2,out3,out4,outshftl,outshft2,outshft3, 
outshft4,yshiftl,yshift2,yshift3,yshift4,n,k,x) 

{ 
< 
outs<-outl+out2+out3+out4 # the total planted outliers 
f irston-outs+1 
last<-n-outs 
kmx<-k-x 
shiftl<-7.5 + outshft1*4 
shift2<-7.5 + outshft2*4 
shift3<-7.5 + outshft3*4 
shift4<-7.5 + outshft4*4 

# one<-rep(l,n) 
j in<-matrix(rnorm(last*k,7.5,4.0),ncol=k) 
yin<-apply(5*jin,l,sum) + matrix(rnorm(last),ncol=l) 
yin<-matrix(yin,ncol=l) 
if (k == x) 

{ 
j K-matrix(shiftl+runif(outl*k,0.0,0.25),ncol=k) 
j 2<-matrix(shift2+runif(out2*k,0.0,0.25),ncol=k) 
j 3<-matrix(shift3+runif(out3*k,0.0,0.25),ncol=k) 
j 4<-matrix(shift4+runif(out4 *k,0.0,0.25),ncol=k) 
} # end if 

else 
{ 
joutK-matrix (shiftl+runif (outl*x, 0.0,0.25), ncol=x) 
jinl<-matrix(rnorm(outl*kmx,7.5,4.0),ncol=kmx) 
j K-cbind (j out 1, j inl) 
jout2<-matrix(shift2+runif(out2*x,0.0,0.25),ncol=x) 
jin2<-matrix(rnorm(out2*kmx,7.5,4),ncol =  kmx) 
j 2<-cbind(j out2,j in2) 
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} 

jout3<-matrix(shift3+runif(out3*x,0.0,0.25),ncol=x) 
jin3omatrix(rnorm(out3*kmx,7.5,4.0),ncol=kmx) 
j 3<-cbind(j out3,j in3) 
jout4<-matrix(shift4+runif(out4*x,0.0,0.25),ncol=x) 
jin4<-matrix(rnorm(out4*kmx,7.5,4),ncol = kmx) 
j 4 <-cbind(j out4,j in4) 
} #endelse 

x<-rbind(jin,jl,j2,j3,j4) # the x values 
x<-cbind(one,x) 
x<-as.matrix(x) 
yl<-apply(5*jl,l,sum)+ yshiftl 
yl<-matrix(yl,ncol=l) 
y2<-apply(5*j2,l,sum)+yshift2 
y2<-matrix(y2,ncol=l) 
y3<-apply(5*j3,l,sum)+ yshift3 
y3<-matrix(y3,ncol=l) 
y4<-apply(5*j4,l,sum)+yshift4 
y4<-matrix(y4,ncol=l) 
y<-rbind(yin,yl,y2,y3,y4) 
y<-matrix(y, ncol=l) 
} 
return(x,y) 

j<-gendata(3,3,4,5,5,5,60,6,3) 

j 

SEBERT 
# This S-Plus code implements the Sebert et al. (1998) procedure 
# to identify multiple outliers in datasets.  This code is significantly 
# different from that in Sebert (1996) in order to take advantage of 
# some recent developments in the language and use standard structures 
# across the outlier detection procedures. 
§ 
# The subroutine resids.func returns the scaled predicted and residual values 
# from OLS regression. 
# 
resids.func<-function(x,y) 
{ 

{ 
e<-lsfit(x,y)$residuals 
yhat<-y-e 
data<-cbind(yhat,e) 
scaledata<-scale(data) 

} 
return(scaledata,e) 
} 
§ 
# The subroutine claster does a single linkage cluster analysis on the scaled 
# predicted and residual values.  The purpose is to identify the clean group 
# of observations and declare all others as candidate outliers.  The clusters 
# are separated by cutting the tree on Mojenas' distance. 

# 
claster.func<-function(data) 
{ 

h2<-hclust(dist(data,metric="euclidean"),method="connected") 
maxheight<-h2$height[length(h2$height)] 
meanheight<-mean(h2$height) 
stdheights<-sqrt(var(h2$height)) 
mojenas<-meanheight+1.25*stdheights 

# In practice this never occurs, but just in case Mojenas height is 
# greater than the maxheight, cut the tree at maxheight. 
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if(maxheight<=moj enas) 
clustergroups<-cutree(h2,h=maxheight-.01) 

else if(maxheight>mojenas) 
{clustergroups<-cutree(h2,h=moj enas)} 

# Of all the groups formed, the group number of the median observation should 
# be that of the clean subset. 

cleanid<-median(clustergroups) 
outlieroifelse (clustergroups==cleanid, 0,1) 

} 
return(clustergroups, outlier) 

} 
# 
# The prog.sim subroutine simulates the procedure for N replications. 
# This determines the percent of outliers detected and average false 
# alarm rate.  The set.seed(i) is required to have common random 
# numbers between the different procedures so the exact same data sets 
# are used to compare the methods. 

prog.sim<-function(N,outl,out2,shiftxl, shiftx2, shiftyl, shifty2,n ,k,x) 
{ 

{ 
outs<-outl+out2 # total outliers 
first<-n-outs+l # first planted outlying obs # 
last<-n-outs   # last clean obs # 
plant<-0 
falseoO 
i<-l 
while(i<=N){ 

set.seed(i) 
cat("iteration ",i," ") 

# Choose any data generating function from makedata.SSC.  Note changes may 
# be required in the prog.sim arguments depending on the selected data set. 

data<-gendata(outl,out2,shiftxl,shiftx2,shiftyl,shifty2,n,k,x) 
# generate predicted and residual values. 

predres<-resids.func(data$x, data$y) 
detect.outs<-claster.func(predres$scaledata) 

# determine number of planted outliers detected in this run and add to 
# sum from all previous runs. 

plant<-plant + sum(detect.outs$outlier[first:n]) 
# determine false alarms for this run and add to sum of previous runs 

false<-false + sum(detect.outs$outlier[l:last]) 
i<-i+l 

# from the experiment, the total probability a planted outlier is detected 
# (pp) and the probability a clean observation is classified an outlier. 

pp<-plant/(N*outs) 
po<-false/(N*last) 
} 
return(data,pp,po) 

} 
Aj<-prog.sim(5,6,6,2,2,5, 5, 60, 6, 3) 
Aj 

SWALLOW and KIANIFARD 
# This S-PLÜS program implements the Swallow and Kianifard multiple outlier 
# detection procedure in Biometrics, 52, pp. 545-556.  It uses MAD and 
# interquartile range as robust estimates of scale.  Outward stepping 
# recursive residuals used to determine outlier status. 
# ^ 
# The function sk.madir computes the mean absolute deviation (MAD) and 
# interquartile range (IR) for a clean simulated set of data. 
# It is called in sk.corfact to find correction factors. 
# S-PLUS MAD uses the constant 1.4 consistency in Normal Distribution 
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# 
sk.madir<-function(n,k) 
{ 

{ 
obs<-n*k 
x<-matrix(rnorm(obs,7.5,4),nrow=n,ncol=k) 
yhat<-NULL 
res<-NULL 
temp<-NULL 
y<-apply(5*x,l,sum) + matrix(rnorm(n),ncol=l) 
olsfit<-lsfit(x,y) 
res<-olsfit$resid 
medresq<-quantile(res, 0.50) 
temp<-abs(res-medresq) 
madev<-quantile(temp,0.50) 
ir<-quantile(res,.75)-quantile(res,.25) 

} 
return(x,y,ir,madev) 
} 
# 
# Function sk.corfact determines the correction factor for the MAD and IR 
# estimates of scale. This generates Table 1 on page 548.  The MAD 
# correction factors are very close to published values, the IR factors 
# differ (e.g. for n=25, 1.2541 vs published 1.369 and for 
# n = 50, 1.2899 vs 1.363).  For n=60, k=6 use 1.2436 for IR and 0.629 
# for MAD.  For n = 40 and k = 2 use 1.2711 for IR and 0.6452 for MAD 
# 
sk.corfact<-function(N, n, k) 
{ 

{ 
iqv<-NULL 
madv<-NULL 

# N is the number of simulations (5000) and we create a vector of IR and 
# MAD scale estimates.  The mean of these vectors is the correction factor, 

for (i in 1:N) 
{ 
datosk.madir (n, k) 
iqv[i]<-dat$ir 
madv[i]<-dat$madev 

> 
corfir<-mean(iqv) 
corfmad<-mean(madv) 

} 
return(corfir,corfmad) 
} 
# 
# This function sk.initial returns the initial clean set of ordered 
# observations by externally studentized residual. 
# 
sk. initiaK-function (x, y) 

{ 
{ 
x<-as.matrix(x) 
y<-as.matrix(y) 
id<-NULL 
vecone<-NULL 
nonrow(x) 
koncol (x) 
z<-matrix(0,n,k+3) 
vecone<-rep(l,n)   # vector of Is 
id<-l:n # vector identifying observation num 

# We do not have first column of Is in X 
olsfit<-lsfit(x,y,intercept=TRUE) 
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infK-ls.diag(olsfit)  # gives access to hat diagonals 
studres<-abs(infl$stud.res) #note this is internally studentized 
temp<-cbind(x,y,studres,id) 
z<-temp[order(temp[,k+2]),] 
z<-as.matrix(cbind(1,z)) 

# this is the matrix of x,y sorted by |studentized residuall.  Note Z has 
# an initial column of l's. 

return(z,temp) # will not run if only return one value, temp not used 

# Function sk.recursive returns the recursive residuals.  This is not 
# the most efficient code since an updating formula as in Kianifard 
# and Swallow, 1990 could be used. 
# 
sk.recursive<-function(z) 
{ 

{ 
z<-as.matrix(z) 
k<-ncol(z)-3    # here k = p 
n<-nrow(z) 
nml<-n-l 
kpl<-k+l 
kp2<-k+2 
corfact<-if(k==7) 0.629 else 0.645 
w<-NULL 
temp<-NULL 
recurres<-NULL 
tswir<-NULL 
tswmad<-NULL 
scaledres<-NULL 

# The i loop goes over the i observations and sequentially adds a clean obs 
for (i in kpl:nml){ 

cleanrows<-i 
# partition our ordered z matrix into clean subset 

cleanx<-z[1:cleanrows,1:k] 
cleany<-z[1:cleanrows,k+1] 
cleanx<-as.matrix(cleanx) 
cleany<-as.matrix(cleany) 
cpl<-cleanrows+l 

# do least squares fit on the clean subset 
olsfit<-lsfit(cleanx,cleany,intercept=FALSE) 
inf K-ls. diag (olsf it) 

# we will use the clean covariance matrix (unsealed by sigma) to determine 
# unsealed prediction error for the potential outliers 

varcov<-infl$cov.unsealed 
varcov<-as.matrix(varcov) 

# This computes equation 3.2 for the recursive residual 
fitted<-sum(olsfit$coef[l:k]*z[cpl, l:k] ) 
num<-(z[cpl,k+1]-fitted) 

denom<-sqrt(1+(z[cpl,1:k)%*%varcov%*%z[cpl,1:k])) 
w[cpl]<-num/denom 

}#end i 
recurres<-w[kp2:n] 

# The following computes the test statistics for each observation by using 
# the absolute value of the recursive residual divided by the robust estimate 
# of scale (IR-sigmair or MAD-sigmamad) 
# sigmair<-(quantile(recurres,.75)-quantile(recurres, .25))/1.369 

medresq<-quantile(recurres,0.50) 
temp<-abs(recurres-medresq) 
madev<-quantile(temp,0.50) 
sigmamad<-madev/corfact 

# tswir<-abs(recurres/sigmair) 
tswmadoabs (recurres/sigmamad) 
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# This set of code tests the distribution of the OLS residuals from the 
# same set of generated data. 

usualols<-lsfit(z[,1:k],z[,k+1],intercept=FALSE) 
usualinfK-ls.diag(usualols) 
scaledres<-abs(usualols$resid/usualinfl$std.dev) 

return(tswir,tswmad,scaledres,corfact) 
} 

# The function sk.studtized returns the test statistics for the studentized 
# residuals rather than the recursive residuals. 
# 
sk.studtized<-function(z) 
{ 

{ 
z<-as.matrix(z) 
n<-nrow(z) 
k<-ncol(z)-3 # here, k = p 
vecone<-NULL 
temp<-NULL 
tsstudir<-NULL 
tsstudmad<-NULL 
vecone<-rep(l,n) 
usualols<-lsfit(z[,1:k],z[,k+1],intercept=FALSE) 
usualinfK-ls.diag(usualols) 
res<-usualols$resid 
sigmair<-(quantile(res,.75)-quantile(res, .25))/1.369 
medresq<-quantile(res,0.50) 
temp<-abs(res-medresq) 
madevoquantile (temp, 0.50) 
sigmamad<-madev/0.639 

# studentized resid = ei/sigmahat(1-hii)*.5 
tsstudir<-res/(sigmair*(sqrt(vecone-usualinfl$hat))) 
tsstudmad<-res/(sigmamad*(sqrt(vecone-usualinfl$hat))) 
} 
return(tsstudmad,tsstudir) 

} 
# 
# The function sk.critval finds the critical values for the test statistics 
# from simulation.  The procedure is 1. generate clean data (e.g. mv normal) 
# for n=40, 60 etc observations.  2.  find the recursive residuals and the 
# studentized residuals.  3.  find estimates of sigma from IR and MAD— if 
# using recursive residuals then IR and MAD are on recursive residuals but 
# for studentized residuals, then use IR and MAD on OLS residuals.  4. 
# Do this 5000 times so have 5000 x 25 matrix of test statistics. 
# 5.  Find quantiles-note for recursive residual quantiles use 1 sided 
# but use 2 sided for studentized (e.g. for alpha=.05, use 97.5 quantile 
# for Ri and 95 quantile for wi).  This generates table 2  page 550.  MAD 
# has consistent results with table 2.  IR with Studentized residuals 
# deviates most from table 2. 
# For n = 40, k = 2, 95% is 2.0835, 97.5% is 2.4597 and 99% is 2.8688 
# For n = 60, k = 6, 95% is 2.053, 97.5% is 2.380 and 99% is 2.797 
# 
sk.critval<-function(N,n,k) 
{ 

{ 
obs<-n*k 
numrr<-n-k-l #number of recursive residuals =n-p-l 
tswir<-matrix(0,nrow=N,ncol=numrr) 
tswmad<-matrix(0,nrow=N,ncol=numrr) 
tssiromatrix (0, nrow=N, ncol=n) 
tssmad<-matrix(0,nrow=N,ncol=n) 
usual<-matrix(0,nrow=N,ncol=n) 
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for (i in 1:N) 
{ 

cat("iteration ",i," ") 
x<-matrix(rnorm(obs,7.5,4),nrow=n,ncol=k) 
y<-5*apply(x,l,sum)+rnorm(nrow(x),0,1) 
oaks<-initial.ar(x,y) 
oaksw<-recursive(oaks$z) 
tswir[i,]<-oaksw$tswir 
tswmad[i,]<-oaksw$tswmad 
oakss<-studtized(oaks$z) 
tssir[i,]<-oakss$tsstudir 
tssmad[i,]<-oakss$tsstudmad 
usual[i,]<-oaksw$scaledres 
) # end i 

return(tswir,tswmad,tssir,tssmad,usual) 

To get the critical value, take the appropriate quantile of the large 
matrix of residuals returned. 
j<-sk.critval(5000, 60, 6) 

#  critval.mad<-quantile(j $tswmad,0.975) 

# 
sk. 
{ 

Function sk.ps is the program simulation to determine the detection 
and false alarm probabilities.  N is the number of replications the rest 
of the parameters are to generate the data (no col of l's needed). 
Of the four possibilities, we consider only the recursive residuals 
(not studentized) and using the MAD estimate (not IR) of scale. 

ps<-function(N,outl,out2,xshiftl,xshift2,yshiftl,yshift2,n,k,x) 

{ 
teststats<-NULL 
ppl<-NULL 
id<-NULL 
plantdet<-NULL 
pplant<-0.0 
pfalse<-0.0 
outs<-outl+out2 
first<-n-outs+l 
last<-n-outs 
kp3<-k+3 
critval<-if(k==6) 
for (i in 1:N) 

{ 
cat("iteration 

data<-gendata(outl,out2,xshiftl,xshift2,yshiftl,yshift2,n,k,x) 
sortdata<-sk.initial(data$x,data$y) # ordered by studentized resid 
teststats<-sk.recursive(sortdata$z) # finds recursive residuals 
ppl<-ifelse(teststats$tswmad > critval,1.0,0.0) #exceeds crit val 
idcol<-ncol(sortdata$z) # observation number location 
id<-sortdata$z[kp3:n,idcol]        # respective observation vector 
plantdet<-ifelse(ppl==0.0 ,0,ifelse(id>last,1,0)) # if detect planted 

outlier then =1 else =0 
false<-ifelse(ppl==0.0,0,ifelse(id>last,0,l)) # here we've exceeded 

the critical value but it is not a planted outlier 
pplant<-pplant+sum(plantdet)       # counter for planted outliers 
pfalse<-pfalse+sum(false) # counter for false alarms 

# total outliers 
# the id of the first planted outlier 
# the id of the last clean observation 
# determine how large to make initial subset 

2.380 else 2.460 

\i. ') 

} 
pp<-pplant/(N*outs) 
po<-pfalse/(N*(n-outs)) 
} 

# probability of detecting planted outlier 
# probability of false alarm 
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return(data,pp,po,critval) 
} 
j<-sk.ps(500,6,6,5,5,10,10,60,6,3) 

j 

PENA AND YOHAI 
# This program implements the procedure from Pena and Yohai, JRSS (B) 
# , 1995 to detect influential subsets in regression.  The crux of 
# the procedure evaluates the eigenstructure of the influence matrix. 
# The function inflmatrix creates the influence matrix M and outputs the 
# eigenvectors of this matrix.  The computational version given in the 
# equation in section 4 is used as we assume n»p 

# 
inflmatrix<-function(x, y) 
< 

{ 
x<-as.matrix(x) 
y<-as.matrix(y) 
n<-nrow(x) 
p<-ncol(x) 
res<-matrix(0,nrow=n, ncol=l) 
hat<-NULL 
vecone<-rep(l,n) 
olsfit<-lsfit(x,y,intercept=FALSE) 
infK-ls.diag(olsfit) 
res<-olsfit$resid 
E<-diag(res,nrow=n,ncol=n)# make diagonal matrix of residuals 
E<-as.matrix(E) 
hat<-l/(vecone-infl$hat)  # make diagonal matrix of hii 
D<-diag(hat,nrow=n,ncol=n) 
D<-as.matrix(D) 
temp<-eigen(infl$cov.unsealed) # eigenvectors of (x'x)A-l 

# note that the eigenvectors differ often signficantly 
# if we compute (x'x)A-l directly (not from ls.diag) unless 
# we specify "digits" to be sufficiently large. 

B<-temp$vectors 
B<-as.matrix(B) 
L<-diag(sqrt(temp$values),nrow=p,ncol=p) 
L<-as.matrix(L) 
A<-B %*% L 
A<-as.matrix(A) 
EDXA<-E %*% D %*% x %*% A 
scaleit<-l.00000000/(sqrt(p)*infl$std.dev) 
P<-scaleit*EDXA 
PtPeig<-eigen(t(P)%*%P) 
Meigvect<-P %*% PtPeig$vectors 
} 
return(Meigvect,p) 

} 
# 
# The function AUTOID attaches the observation number associated with the 
# eigenvector. It also sorts the eigenvector and finds conditions for 
# outliers. Input is the eigenvectors from the influence matrix and 
# the critical distance k to declare the outlying set. 
# 
autoidof unction (M, k) 
{ 

{ 
M<-as.matrix(M) 
n<-nrow(M) 
p<-ncol(M) 

# cl and c2 are the constants used for breakdown adjustment 
cl<-floor(n/4) 
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c2<-floor(n/4) 
# there really is no reason to have both cl and c2 since we 
# have no way of knowing if the eigenvector will have negative 
# or positive values for the outliers. 

id<-seq(n) 
ev<-array(0,dim=c(p,n,2)) # initialize the sorted eigenvector 
outa<-array(0,dim=c(p,cl,2)) # initialize the array for a values of 4.1.b 

# "outa" values go with the positive scores 
outb<-array(0,dim=c(p,c2,2)) # initialize the array for b values in 4.1.b 
a<-matrix(0,nrow<-cl,ncol<-p) # initialize the the values for a 
ida<-matrix(0,nrow<-cl,ncol<-p) # matrix has the observation id for a 
values 
idb<-matrix(0,nrow<-c2,ncol<-p) #  idb and b are outb 
b<-matrix(0,nrow<-c2,ncol<-p) 
temp<-matrix(0,ncol=2,nrow=n) 
seta<-matrix(0,ncol=cl,nrow=p) 

# this is the set of outlying observations from the "a" vector, 
setbomatrix (0, ncol=cl, nrow=p) 
for (i in l:p) 

{ 
temp<-cbind(M[,i],id) 
ev[i,,]<-temp[order(temp[,l]),] # now eigenvectors are ordered 
for (j in l:c2) 

# we need to protect against the situation when the value is very close to 0 
# such as .00027 when we divide so we don't get false alarms for the wrong 
# reason.  ev[3,l,2] means third eigenvector, first row, obs id; for the 3rd 
# dimension if use 1, that is the score.  We assign low scores the median 
# value taking into account if it is the positive or negative score. 

medMOmedian (abs (M) ) 
if (abs(ev[i, (j+1) ,1] )< medM) ev[i, (j+1) , 1] <—medM 
b[j,i]<-ev[i,j,l]/ev[i,(j+l),l] 
idb[j,i]<-ev[i, j,2] 
idx<-j+(3*c2) 
if(abs(ev[i,(idx-l),l])< medM) ev[i,(idx-1),l]<-medM 
a[j,i]<-ev[i,idx,l]/ev[i,(idx-1) ,1] 
ida[j,i]<-ev[i,idx,2] 
} # end j 

outati,,]<-cbind(a[,i],ida[,i]) 
outb[i,,]<-cbind(b[,i],idb[,i]) 
} # end i 

# Now we form the set of observations which are outliers.  There are p 
# eigenvectors but we only use cl of the scores.  The constant k is key here. 
# It measures how large of a difference between two scores has to be before 
# declaring the set outlying.  Simulations show a value of 2.5 is perhaps too 
# small based on the number of false alarms.  The authors suggest step 2 
# (t tests) will correct the false alarm problems. 

for (i in l:p) 
{ 
for (j in l:cl) 

if (outa[i,j,l]>k) # if ratio of scores for positive scores > k 
{ 
idx<-j 
while (idx<=cl) 

# take all observations from the breakpoint up to n as outliers. 
{ 
seta[i, idx]<-outa[i,idx,2] 
idx<-idx+l 
} # endwhile 

} # end if 
if (outb[i,j,l]>k) # ratio of scores for negative scores 

{ 
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idxoj 
while(idx>0) 

# take all observations from the breakpoint back to 1 (the most neg) 
{ 
setb[i,idx]<-outb[i,idx,2] 
idx<-idx-l 
}#endwhile 

} # endif 
}#end j 

}#end i 
} 

return(outa,seta,outb,setb) 
} 

# This function simulates the procedure N times for the n observations each 
# run.  An N x n matrix called obs is used to compute the proportion of 
# correctly identified observations since it is known the outliers were 
# planted as the last few cases. 
# 
# This is for genrand, gendata, gendatamed2,gendatamedl 
prog.sim<-function(N,outl,out2,xshiftl,xshift2,yshiftl,yshift2, n, k, x) 
# This is for gendata2 
#prog.sim<-function(N,outl,out2,xsll,xsl2,xs21,xs22,yshiftl,yshift2,n,k,x) 
# This is for gendata6 
# prog.sinK- 

function(N,outl,0ut2,xsll,xsl2,xsl3,xsl4,xsl5,xsl6,xs21,xs22,xs23,xs24,xs25 
,xs26,yshiftl,yshift2,n,k,x) 

{ 
{ 
out<-outl+out2 
firstout<-n-out+l 
lastclean<-n-out 
p<-k+l 
cl<-floor(n/4) 
obs<-matrix(0,nrow=N,ncol=n) 
for (i in 1:N) 

{ 
cat ("iteration ",i," ",n," ") 
set.seed(i) 

# This generates data from gendatamedl,2, genrand or gendata 
a<-gendata(outl,out2,xshiftl,xshift2,yshiftl,yshift2,n,k,x) 

# This generates data from gendatbig2 
# a<-gendatbig2(outl,out2,xsll,xsl2,xs21,xs22,yshiftl,yshift2,n,k,x) 
# This generates data from gendatbig6 
# a<- 

gendatbig6(outl,out2,xsll,xsl2,xsl3,xsl4,xsl5,xsl6,xs21,xs22,xs23,xs24,xs25 
,xs26,yshiftl,yshift2,n, k, x) 

a$x<-cbind(1,a$x) 
b<-inflmatrix(a$x,a$y) 
c<-autoid(b$Meigvect,2.5) 

# The following code looks at the observations declared outliers from both 
# set A and set B.  If the observation appears in either set, the obs matrix 
# is assigned a value of 1.  This avoids the double counting an observation 
# that may appear as an outlier from two separate eigenvectors.  This obs 
# matrix can then be used to compute any statistic of interest from the 
# simulation. 

for   (j   in  l:p) 
{ 
for   (1  in l:cl) 

{ 
if   (c$seta[j,l]>0) 

{ 
temp<-c$outa[j , 1, 2] 
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obs[i,temp]<-l 
}   #  end if 

if   (c$setb[j,l]>0) 
{ 
temp<-c$outb[j , 1, 2] 
obs[i,temp]<-l 
} # end if 

} #end 1 
} #end j 

}  # end i 
avg<-apply(obs,2,mean) 

# pp is the percentage of outliers correctly identified while pp is the 
# probability of swamping clean observations. 

# 
pp<-mean(avg[firstout:n]) 
po<-mean(avg[l:lastclean]) 

} 
return(a,pp,po) 

} 
j<-prog.sim(5,4,4,5,5, 5, 5, 40, 2, 2) 

j 

ROUSSEEUW and VAN ZOMEREN 
# This code incorporates the Rousseeuw and van Zomeren (1990) procedure with 
# both rule of thumb/chi square and simulated critical cut off values. 
# The subroutine critvals computes the simulated critical cutoff values 
# for the scaled residuals from the LMS fit.  We generate 
# lots of N * n clean residuals and find the appropriate percentiles. 
# For n = 40, k = 2 use 3.61 for 98.75% or 3.01 for 97.5% 
# for LMS.  Use the same for n = 60, k = 6 for LMS.  For n = 40, k = 2 use 
# 3.38 for 98.75% and 2.87 for 97.5% and for n = 60 k = 6 use 4.11 
# for 98.75% and 3.51 for 97.5% for LTS. 
# 
critvals<-function(N,n,k) 

{ 
{ 
resmat<-matrix(0,nrow=N,ncol=n) 
for (i in 1:N) 

{ 
set.seed(i) 
cat("iteration ", i, " ") 
datapts<-n*k 

# generate clean x matrix for a run multivariate normal(7.5, 4A2) 
x<-matrix(rnorm(datapts,7.5,4) ,ncol=k) 
y<-apply(5*x,l,sum) 
y<-matrix(y,ncol=l)+matrix(rnorm(n),ncol=l) 

# a<-lmsreg(x,y) 
a<-ltsreg(x,y) 
stdresi<-a$residuals/a$scale 
resmat[i,]<-stdresi 
} 

q95<-quantile(resmat,0.95) 
q975<-quantile(resmat,0.975) 
q9875<-quantile(resmat,0.9875) 
q05<-quantile(resmat,0.05) 
q025<-quantile(resmat,0.025) 
q0125<-quantile(resmat,0.0125) 
} 

return(q95,q975,q9875,q05,q025,q0125) 

} 
# b4<-critvals(50,60,6) 
# b4 
# 
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# The subroutine robdist computes the robust distances with MVE estimator 

# 
robdist<-function(x) 
< 

{ 
x<-as.matrix(x) 
n<-nrow(x) 
p<-ncol(x) 
transpx<-t(x) 
varcov<-var(x) 
mn<-apply(x,2,mean) 
md<-mahalanobis(x,mn,varcov) 

# This section computes the minimum volume ellipsoid robust distances 
v<-cov.mve(x) 
dmve<-mahalanobis(x,v$center,v$cov) 

} 
return(dmve,md) 

} 
# 
# The subroutine reglms computes the least median of squares regression 
# residuals and returns two n vectors: 1) chkrot is 1 if the observation 
# residual value exceeds the rule of thumb cutoff else it is 0, 
# 2) chksim is 1 if the residual exceeds the simulated cutoff value, 0 o.w. 

# 
reglms<-function(x, y) 
{ 

{ 
j<-lmsreg(x,y) 

# Need scaled residuals 
stdresi<-abs(j$residuals/j$scale) 
chkrot<-ifelse(stdresi>2.5,1,0) 
chksim<-ifelse(stdresi>3.61,1,0) 

} 
return(chkrot,chksim,stdresi) 

} 
| 
# The subroutine prog.sim determines the probability the planted outliers 
# are detected and the false alarm probability for various outlier scenarios 

prog.sim<-function(N,outl,out2,outshftl,outshft2,yshiftl,yshift2,n,k,x,iter) 

{ 
< 
outs<-outl+out2 # the total planted outliers 
first<-n-outs+l # first observation that is a planted outlier 
last<-n-outs   # last clean observation 

# initialize values 
summves<-0  # total detected with simulated R&vZ 
summvefs<-0 # total R&vZ false alarms 
summver<-0  # total detected with original R&vZ 
summvefr<-0 # total false alarms for original R&vZ 

# critical values for the MVE procedure differ with parameters 
chicrit<-if(k==2)7.3984 else 14.45 
mvesimcrit<-if(k==2)9.3225 else 17.935 

# generate data sets 
for (i in 1:N){ 

cat("you're on iteration ",i,"  ") 
set.seed(i) 
data<-gendata(outl,out2,outshftl,outshft2,yshiftl,yshift2,n,k,x) 
rdist<-robdist(data$x,iter) 

# 
# The MVE procedure.  Note the simulated critical value is 
# 17.935 for the 97.5% if n = 60 and p = 6 variables.  For n = 40 and 
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# p = 2, then we use the simulated value as 9.9225.  Rousseeuw and 
# and Zomeren recommend using Chi Square with p degrees of freedom. 
# For our case that would be p = 2 degrees of freedom so the 
# For LMS, the recommendation is 2.5 and the simulated value is 3.61 
# (98.75th) to control total experimentwise error to 5% 

# 
resout<-reglms(data$x,data$y) 
mvems<-ifelse(rdist$dmve>mvesimcrit,1,0) 
resdiss<-ifelse(mvems+resout$chksim>0,1,0) 
mveouts<-sum(resdiss[first:n] ) 
summves<-summves + mveouts 
mvefalses<-sum(resdiss[l:last]) 
summvefs<-summvefs + mvefalses 

# Rule of thumb critical values from Chi Square are 7.3984 for p - 2 
# and 14.45 for p = 6.  These are the critical values for robust 
# distances based on alpha = 0.025. 

mvemroifelse (rdist$dmve>chicrit,1,0) 
resdisr<-ifelse(mvemr+resout$chkrot>0,1,0) 
mveoutr<-sum(resdisr[first:n]) 
summverosummver + mveoutr 
mvefalser<-sum(resdisr[l:last]) 
summvefr<-summvefr + mvefalser 

}  tend for , 
# Statistics for all the runs, pp is proportion of planted outliers detected 
# po is the probability clean observations are classified as outliers 

ppmves<-summves/(N*outs) 
pomves<-summvefs/(N*(n-outs)) 
ppmver<-summver/(N*outs) 
pomver<-summvefr/(N*(n-outs)) 
} 

return(data,ppmves,pomves,ppmver,pomver) 
} 
j<-prog.sim(5,6,6,5,5,9,9,60,6,3,1000) 

j 

REGRESSION ESTIMATORS 
# This program finds outliers using the rediduals regression 
# estimators.  The first step is finding the critical cutoff 
# value to determine if the observation is an outlier.  Next, 
# the observations are classified for the run and tallied over 
# the number of replications. 
# make sure you load robeth library >library(robeth) 
# The subroutine critval calculates the quantiles of clean data for 
# various n and k.  These are the avg of 2.5th and 97.5th quantiles 
# For M, use 1.85 for both n = 60, k = 6 and n = 40, k = 2 
# For LTS use 3.56 for n = 60 and k = 6 and 2.87 for n = 40, k = 2 
# For LMS use 3.01 for both sample sizes. 
# For MM use 1.90 for both 
# For Simpson, use 1.981 for both 
# For BM and OLS(Walker GM), use 1.960 for both 
# For CH (Coakley Hettmansperger), use 2.084 for both 

# 
critvaK-function (N, n, k) 
{ 

{ 
valuesomatrix (0, nrow=N, ncol=n) 
obs<-n*k 
for (i in 1:N) 

{ 
cat("iteration ",i," ") 
set.seed(i) 
x<-matrix(rnorm(obs,7.5,4),ncol=k) 
y<-apply(5*x,l,sum) + matrix(rnorm(n),ncol=l) 



228 

#  put in whatever regression estimator you want the quantiles for 
#  in the next line,  chreg, ltsreg, lmsreg, lsfit, myhbhe (MM), rreg (M) 

a<-bmreg(x,y) 
values[i,]<-a$residuals 
} # end for 

q95<-quantile(values,0.95) 
q975<-quantile(values,0.975) 

# use 98.75 in Rousseeuw and van Zomeron type applications 
# to keep experimentwise error to a total 5% 

q9875<-quantile(values, 0.9875) 
q99<-quantile(values, 0.99) 
q05<-quantile(values, 0.05) 
qOK-quantile (values, 0.01) 
q0125<-quantile(values, 0.0125) 
q025<-quantile(values, 0.025) 

return(q95,q975,q9875,q99,q05,q025,q0125,qOl) 

} 
#b<-critval(1000,60,6) 
#b 
# 
# The function prog.sim generates the datasets and determines the 
# probability the residuals detect the outliers and the false alarm 
# probability. 
prog.sim<-function(N,outl,out2,xsl,xs2,yshiftl,yshift2,n,k,x) 

{ 
{ 
outs<-outl+out2 
first<-n-outs+l 
last<-n-outs 
sumfalseols<-0 
sumdetectols<-0 r 
sumfalsebm<-0 
sumdetectbm<-0 
sumfalsech<-0 
sumdetectch<-0 
sumfalsejs<-0 
sumdetectjs<-0 
sumdetectlms<-0 
sumfalselms<-0 
sumdetectlts<-0 
sumfalselts<-0 
sumfalsemm<-0 
sumdetectmm<-0 
sumdetectm<-0 
sumfalsem<-0 

# only the critical value of LTS estimator depends on dimension 
cvlts<-if(n==60) 3.56 else 2.87 
for(i in 1:N) 

{ 
set.seed(i) 
cat("iteration ",i, "  ") 
data<-gendata(outl,out2,xsl,xs2,yshiftl,yshift2,n,k,x) 
a<-bmreg(data$x,data$y) 
b<-chreg(data$x,data$y) 
c<-lmsreg(data$x,data$y) 
d<-myhbhe(data$x,data$y) 
e<-lsfit(data$x,data$y) 
f<-bij s5sa(data$x,data$y) 
g<-rreg(data$x,data$y) 
h<-ltsreg(data$x,data$y) 

# Bounded influence estimator (Walker) 
outliersbm<-ifelse(abs(a$residuals)>1.96,1, 0) 
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falsebm<-sum(outliersbm[l:last]) 
sumfalsebm<-sumfalsebm+falsebm 
detectbm<-sum(outliersbm[first:n]) 
sumdetectbitK-sumdetectbm+detectbm 

CH- Coakley Hettmansperger compound estimator 
outliersch<-ifelse(abs(b$residuals)>2.084,1,0) 
falsech<-sum(outliersch[l:last]) 
sumfalsech<-sumfalsech+falsech 
detectch<-sum(outliersch[first:n]) 
sumdetectch<-sumdetectch+detectch 

# OLS 

# LTS 

outliersols<-ifelse(abs(e$residuals)>1.96,1,0) 
falseols<-sum(outliersols[l:last]) 
sumfalseols<-sumfalseols+falseols 
detectols<-sum(outliersols[first:n] ) 
sumdetectols<-sumdetectols+detectols 

outlierslts<-ifelse(abs(h$residuals)>cvlts, 1,0) 
falselts<-sum(outlierslts[l:last]) 
sumfalselts<-sumfalselts+falselts 
detectlts<-sum(outlierslts[first:n]) 
sumdetectlts<-sumdetectlts+detectlts 

# 
# LMS 

outlierslms<-ifelse(abs(c$residuals)>3.01,1, 0) 
falselms<-sum(outlierslms[l:last]) 
sumfalselms<-sumfalselms+falselms 
detectlms<-sum(outlierslms[first:n]) 
sumdetectlms<-sumdetectlms+detectlms 

Simpson and Montgomery estimator 
outliersjs<-ifelse(abs(f$residuals)>1.981,1,0) 
falsejs<-sum(outliersjs[l:last]) 
sumfalsejs<-sumfalsej s+falsej s 
detectjs<-sum(outliersjs[firstin]) 
sumdetectj s<-sumdetectj s+detectj s 

#  M 

#  MM 

outliersm<-ifelse(abs(g$residuals)>1.85,1,0) 
falsem<-sum(outliersm[l:last]) 
sumfalseirK-sumfalsem+falsem 
detectm<-sum(outliersm[first:n]) 
sumdetectitK-sumdetectm+detectm 

outliersmm<-ifelse(abs(d$rsl)>1.90,1,0) 
falsemm<-sum(outliersmm[l:last]) 
sumfalsemm<-sumfalsemm+falsemm 
detectmm<-sum(outliersmm[first:n]) 
sumdetectmm<-sumdetectmm+detectmm 
} tend for 

} 
ppbm<-sumdetectbm/(N*outs) 
pobnK-sumfalsebm/(N*last) 
ppch<-sumdetectch/(N*outs) 
poch<-sumfalsech/(N*last) 
ppols<-sumdetectols/(N*outs) 
pools<-sumfalseols/(N*last) 
pplts<-sumdetectlts/(N*outs) 
polts<-sumfalselts/(N*last) 
pplms<-sumdetectlms/(N*outs) 
polms<-sumfalselms/(N*last) 
ppj s<-sumdetectj s/(N*outs) 
pojs<-sumfalsejs/(N*last) 
ppm<-sumdetectm/(N*outs) 
pom<-sumfalsem/(N*last) 
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ppmitK-sumdetectmm/ (N*outs) 
pomirK-sumfalsemm/(N*last) 
return(data,ppbm,pobm,ppch,poch,ppols,pools,pplts,polts,pplms,polms,pp:s,po 

j s,ppm,pom,ppmm,pomm) 
} 
j<-prog.sim(500,3,3,5,5,5,5,4 0,2,2) 
j 



Appendix B 

S-Plus Code and Data for Chapter 4 Studies 
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# LEVERAGE STUDY 
# The leverage study evaluates several robust distance measures,  ine 
# MVE and MCD estimates of mean and covariance matrix are available internal 
# to S-Plus with the command cov.mve, cov.mcd.  Also built in is the 
# function mahalanobis which can calcute the robust distances if the mean 
# and covariance matrix are supplied.  Distances for M-estimates of 
# covariance are available from the ROBETH library and the Simpson and 
# Montgomery compound estimator code in Ch 5 shows how to do that.  The 
# code for Hadi (1992, 1994)is not shown, but is available from his web 
# site.  The code to implement the C++ version of R&W is shown below. 

# ROCKE AND WOODRUFF PROCEDURE 

# The robust distances from Rocke and Woodruff (1996) is written in C++. 
# A callable S+ routine can be formed by creating a dynamic data 
# link in a C++ compiler.  This is not a trivial process.  The dll 
# is called "multoutlier.dll" and is accessed via 
# >dll.load("c:\\mydir\\multoutlier.dll","MultOut","cdecl") 

The function multo actually calls the C++ code.  The input 
values are the data set x and the number of variables p.  The next 
5 values in the function are output from the dll. mn and cov are the 
robust mean and covariance matrix estimates, dist is the n vector of 
robust distances, rej is the simulated critical cutoff value and 
status is an internal report for algorithm function. Note initial 
values must be input during a function call. 

# 
multo<-function(x, p, mn, cov, dist, re], status) 

{ 
.C("MultOut", 

as.double(x), 
as.double(p), 
as.double(mn), 
as.double(cov), 
as.double(dist), 
as.double(rej), 
as.integer(status)) 

} 
# 
# The function rocky gets the R&W robust distances and cutoff values. 
# The robust distances from MVE, MCD and the Mahalanobis distance can 
# also be calculated (Ch 4 leverage study) if desired. 
rocky<-function(x, iter) 
{ 

{ 
x <- as.matrix(x) 
n <- nrow(x) 
p <- ncol(x) 

# This section computes the Mahalanobis distance 
transpx <- t(x) 

# varcov <- var(x) 
# mn <- apply(x, 2, mean) 
# md <- mahalanobis(x, mn, varcov) 
# This section computes the minimum volume ellipsoid robust distances 
# v<-cov.mve(x) 
# dmve<-mahalanobis(x,v$center,v$cov) 
# This section computes the minimum covariance determinant robust distances 
# cd<-cov.mcd(x) 
# dmcd<-mahalanobis(x,cd$center,cd$cov) 
# The initialize variables for the Rocke and Woodruff algorithm 

status <- 0  # returns an error code if encountered like singular data 
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rejdis <- 3 # if the robust distance is beyond this, then an outlier 
dist <- rep(0, n)  #  initial robust distance vector 

# These are the inputs to the Rocke and Woodruff procedure,  p is number of 
# variables, n is the number of observations, iter specifies how many 
# iterations are used for the smooth estimators (Tukey Biweight M-estimate) 
# The authors recommend nA2 iterations and this is a sensitive parameter. 
# the next two O's use the default values for the seed and lamba multiplier 
# 0.05 is used as the alpha value for the cutoff value 
# the last two O's are used for the simulation tolerance and trace options 

parms <- c(p, n, iter, 0, 0, 0.05, 0, 0) 
j <- multo(transpx, parms, mn, varcov, dist, rejdis, status) 
distance <- as.numeric(j[[5]])  # the 5th output is the robust distance 
reject <- as.numeric(j[[6]]) # the sixth is the cutoff value 

# add md, dmve, and dmcd to the return list if desired 
return(distance, reject) 

} 
# INITIAL ESTIMATOR STUDY 
# This is the proposed initial estimator in Chapter 4 PI that uses a 
# high breakdown R&W filter to clear high leverage observations 
# followed by a high breakdown MM estimate to remove the outliers on 
# interior X-space.  The coefficients are estimated with OLS on the 
# observations that remain. 
# 
PK-f unction (x, y, iterat=1500) 
{ 

{ 
x<-as.matrix(x) 
p<-ncol(x) 

# upon entry find the unusual observations in X-space with 
# Rocke and Woodruff procedure 

rwdist<-rocky(x,iterat) 
good<-ifelse(rwdist$distance<rwdist$reject, 1,0) 
goodx<-x[good==l,] 
goodxint<-cbind(l,x[good==l,]) 
goody<-y[good==l] 

# MM estimator from ROBETH library on low leverage observations 
mm<-myhbhe(goodxint,goody) 

# MM estimator internal to SPLUS (many problems with datasets 
# in Chapter 4) 
# mm<-lmRobMM(goody~goodx,efficiency=.90) 
# The simulated critical value for 2 tailed 95% is 1.90 for both 
# n=60, k = 6 and n = 40, k = 2. 

cleanx<-goodx[abs(mm$rsl)<1.90, ] 
cleany<-goody[abs(mm$rsl)<1.90] 
initestolsf it (cleanx, cleany) 

# find out how many observations were used in the OLS fit. 
percentobs<-length(initest$residuals)/length(y) 

# how many observations removed for high leverage. 
pctobsx<-length(goody)/length(y) 
predval<-initest$coef%*%t(xint) 
resids<-y-t(predval) 
medres<- median(abs(resids)) 

# median of absolute residuals 
scale <- 1.4826 * (1 + (5/(length(y) - p - 1))) * medres 

# 1ms scale estimate 

list(robdist=rwdist$distance,reject=rwdist$reject,coef=initest$coef,pctobsx=pc 
tobsx,percentobs=percentobs,scale=scale,residuals=resids) 

# The function P2 is the initial estimate formed by clearing high leverage 
# points with Rocke and Woodruff, followed by an MM estimate on the 
# remaining observations 
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P2<-function(x,y,iterat=1500) 
{ 

{ 
x<-as.matrix(x) 
p<-ncol(x) 

# Rocke and Woodruff procedure clears high leverage observations 
rwdist<-rocky(x, iterat) 
good<-ifelse(rwdist$distance<rwdist$reject,1,0) 
goodx<-x[good==l,] 
goodxint<-cbind(l,x[good==l,]) 
goody<-y[good==l] 

# MM estimator from ROBETH 
mm<-myhbhe(goodxint,goody) 

# Internal Splus MM estimator (had trouble with data sets in Ch 4) 
# mm<-lmRobMM(goody~goodx,efficiency=.90) 

percentobs<-length(goody)/length(y) 
xinto-cbind (1, x) 
predval<-mm$thetal %*%t(xint) 
resids<-y-t(predval) 
medres<-median(abs(resids)) 

# median of absolute residuals 
scale <- 1.4826 * (1 + (5/(length(y) - p - 1))) * medres 

# 1ms scale 

list(robdist=rwdist$distance,reject=rwdist$reject,coef=mm$coef,percentobs=perc 
entobs,scale=scale,residuals=resids) 

# For the P3 initial estimator, substitute the function "sest(x,y)" for 
# "myhbhe(x,y)" in P2 and "coef" instead of "thetal" 
# 
# This is the S estimate function using the ROBETH library. 
sest<-function(x,y){ 

{ 
# need column of ones 
x<-as.matrix(x) 
x<-cbind(l,x) 
y<-as.matrix(y) 
np<-ncol(x) 
nppl<-np+l 
dfvalsO 
dfrpar(x,'S') 
ribetu(y) 
zr<-hysest(x,y,nppl,iopt=l,intch=l,iseed=5431) 
coef<-zr$theta[l:np] 
smin<-zr$smin 
rs<-zr$rs 
nrep<-zr$nrep 
cov<-zr$cov 
ierr<-zr$ierr 
dfcomn(ipsi=4,xk=l.5477) 
S.w<-Psi(rs/smin)/(rs/smin) #weights 

list(coef=coef,resid=rs,nrep=nrep,smin=smin,cov=cov,ierr=ierr,w=S.w) 

# The following is the code for the proposed compound estimator CEP1.  The 
# initial estimate is PI (OLS estimate after R&W and MM filter).  For CEP2 
# just use P2 instead of PI in the init argument.  LMS measure of scale 
# and pi weights from the R&W robust distances are used in both estimators. 
# The other components follow that of the Simpson and Montgomery estimator. 
# Do not include column of Is in for x matrix. 
CEPK-f unction (x, y, w = rep(l, nrow(x)), int = TRUE, init = Pl(x,y), 

method = wt.bibisquare, wx, iter = 1, 
ace = 50 * .Machine$single.eps*0.5, test.vec = "resid") 
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coefin <-coef <- init$coef 
x <- as.matrix(cbindd, x)) 

if(!missing(wx)) { 
if(length(wx) != nrow(x)) 

stop("Length of wx must equal number of observations ) 
if(any(wx < 0)) 

stop("Negative wx value") 
w <- w * wx 

} 
if(ncol(x) != length(coef)) . 

stop("Must have same number of initial values as coefficients ) 
resid <- init$residuals 

# Determine the tuning constant based on the suggestion of Marazzi and 
# Joss (1993) 

tc_4.685 
xwt_as.matrix(x) 

# Scale the distances such that the median distance is unity and all others 
# are a ratio of the R&W distance to the median R&W distance 

rockwood.dis<-init$robdis/median(init$robdis) 
pi<-l/rockwood.dis 

# LMS-estimator scale estimate 
scale <- init$scale 

# IRLS step 
for(iiter in lriter) { 

epis_c(resid/(scale*pi)) 
# In case the residuals go to zero, keeps the weight = 1 (vs undefined) 

if(any(resid ==0)) { 
for (i in 1:length(y)) { 

if (residfi] — 0) 
w[i] <- 1 r 

else 
w[i] <- method(epis[i],tc) 

them to 0.9999 and write them to a file 

if(Imissing(wx)) 
w <- w * wx 

temp <- lsfit(x, y, w, int = FALSE) 
coef <- temp$coef 
resid <- temp$residuals 

} 
if(!missing(wx)) { 

tmp <- (wx != 0) 
w[tmp] <- w[tmp]/wx[tmp] 

list(coef = coef, initialest = coefin, init.pct=init$percentobs,residuals = 
resid, scale = scale, tc = tc, distances = rockwood.dis, 

piweight = pi, erroverpis = epis, w = w, int = int) 

# The proposed estimators CEP3 and CEP4 use the Simpson and Montgomery shell 
# and integrate the R&W distances into the code.  CEP4 is the same code 
&   ©XCGPt itG3T—4 . 
CEP3<- function(x, y, robdis=rocky (x, 1500), w = repd, nrow(x)), int = TRUE, 

init = sest(x,y), method = wt.bibisquare, wx, iter = 3, ace = 50 * 
.Machine$single.epsÄ0.5, test.vec = "resid") 

} 
} 
else 

# Tukey biweight 
w <- method(epis, tc) 

# if any weights are missing set 
# if(any(is.na(w))) 
# break 
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{ 
# rockdis<-rocky(x,2000) 

rockdism<-robdis$distance/median(robdis$distance) 

if(int) { 
coef <- init$coef 
coefin <- coef 

x <- cbindd, x) 
} 
©lS€ { 

init <- sest(x,y,int=FALSE) 
coefin <- coef <- init$coef 

x <- as.matrix(x) 

} 
if(!missing(wx)) { 

if(length(wx) != nrow(x)) , 
stop("Length of wx must equal number of observations ) 

if(any(wx < 0)) 
stop("Negative wx value") 

w <- w * wx 
} 
if(ncol(x) != length(coef)) . 

stop("Must have same number of initial values as coefficients j 
resid <- y - x %*% coef , . 

# Determine the tuning constant based on the suggestion of Marazzi and 
# Joss (1993) 

tc_4.685 
if (int==F)   xwt_as.matrix(cbind(l,x)) 

else 
xwt_as.matrix(x) 

# Robeth pi weights using the scatter matrix 
dfrpar(xwt, "Kra-Wel") 
# Weights 
z     <- wimedv(xwt) 
z     <- wynalg(xwt, z$a); nitw <- z$nit 

# Scale the distances such that the median distance is unity and all others 
# are a ratio of the actual distance to the median distance 
# If any of the design points are at the design center (z$dist=0) 

if(any(z$dist <= 1)) { 
for (i in 1:length(y))  { 

if (z$dist[i] <= 1)  z$dist[i] <- 1 
} 

> 
z$distm <- z$dist/median(z$dist) 
pi<-l/rockdism 

# pi   <- l/z$distm 
# S-estimator scale estimate 

scale <- init$smin 
for(iiter in lriter) { 

if(scale == 0) { 
convi <- 0 
method.exit <- TRUE 
status <- "could not compute scale of residuals" 

} 
else { 

epis_c(resid/(scale*pi)) 
# In case the residuals go to zero, keeps the weight = 1 (vs undefined) 

if(any(resid == 0)) { 
for (i in l:length(y)) { 

if (resid[ij — 0) 
w[i] <- 1 

else 
w[i] <- method(epis[i],tc) 

} 
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} 
else 

w <- method(epis,tc) 
# if any weights are missing set them to 0.9999 and write them to a file 
# if(any(is.na(w))) 
# break 
# 

if([missing(wx)) 
w <- w * wx 

temp <- lsfit(x, y, w, int = FALSE) 
coef <- temp$coef 
resid <- temp$residuals 

} 
} 
if(Imissing(wx)) { 

tmp <- (wx != 0) 
w[tmp] <- w[tmp]/wx[tmp] 

list(coef = coef, initialest = coefin, residuals = resid, scale = scale, tc 
= tc, distances = rockdism, 

piweight = pi, erroverpis = epis, w = w, int = int) 

} 
wt.bibisquare_ 
# bounded influence WEIGHT FUNCTION where w(t) = psi (t) / t  and 
# t = e / pi*s The Bisquare psi function 
# user supplied tuning constant 
function(u, tc=4.685) 
{ 

U <- abs(u/tc) 
si <- u*(l - (u/tc)A2)A2 
si[U > 1] <- 0 
w <- si/u 
w 

} 



238 

Dat a for example 4.1. The last 12 observations are the outliers. 
Obs    XI X2 X3 X4 X5 X6 y 
1 5.3823301 9.614453 3.7734586 2.521202 6.4050258 7.3501984 104. 32255 

2 7.6399143 2.761681 6.1712453 10.984803 5.6254019 12.9707766 137. 11706 

3 13.0370290 11.331870 9.4999389 7.167426 6.7438372 3.7328693 155. 51306 

4 10.7727443 8.287176 9.1914531 11.028556 8.9037412 5.5707952 161. 92864 

5 2.7299034 -1.738653 3.3689351 7.553015 5.7227006 9.6624944 83. 52686 

6 10.4810030 2.690387 22.4556538 13.196081 5.7760354 3.3430037 172. 90492 

7 6.8460480 5.545758 7.5374386 7.799578 9.5848066 9.3440537 139. 17059 

8 8.6021905 -1.574534 11.9032765 3.324497 10.4984211 10.5185110 128. 91487 

9 4.4957646 3.790461 0.3168387 5.724236 0.6394165 10.8383479 78. 02622 

10 10.4108857 4.461523 7.5206740 4.838975 13.1717577 10.1787169 152. 02609 

11 3.1328522 8.138250 2.9910044 6.240829 8.4822331 6.4009793 106. 45168 

12 9.4262638 7.357037 3.8303179 7.417321 12.2748921 7.8987294 144. 52452 

13 12.8340702 7.881631 4.5699923 8.136197 7.9018917 7.6343578 145. 19953 

14 10.1217210 1.611387 5.7285887 5.484543 4.5462922 2.4431619 89. 67091 

15 8.9949684 6.869055 6.6792119 2.068845 9.8762037 3.9012816 114. 03957 

16 12.2033635 10.081425 4.2619827 10.952933 0.2118726 10.0866595 142. 99390 

17 12.1672918 1.413197 4.2331657 13.452437 3.5444161 6.9164573 124. 84412 

18 -0.4786179 1.525314 9.6412884 4.616496 13.4350978 13.1610760 127. 09250 

19 14.6193903 9.283246 6.6081707 9.794120 8.4357788 2.1251370 151. 81062 

20 10.6389691 5.949906 12.7882345 15.382925 5.1049394 8.8794022 175. 27584 

21 11.2357283 5.370224 6.5255288 8.013817 6.0347466 7.9635401 134. 30437 

22 10.7607252 11.602980 16.5012272 6.577516 6.1512523 4.4999197 168. 84336 

23 10.1715367 9.667104 9.0716426 4.011757 8.7646003 1.2395447 130 11057 

24 5.7416098 11.669826 5.3067366 7.778743 3.3951572 12.5589753 139 58273 

25 5.4380052 12.543017 3.7095641 3.875349 2.3731280 2.3656449 91 13215 

26 6.7779650 6.755774 12.9642941 11.490602 4.3153579 10.6817471 160 91060 

27 13.9724213 8.935317 6.9040932 7.952625 16.5185430 8.9170345 189 07445 

28 6.9133736 9.966795 12.4596465 15.719241 6.0990198 9.7320189 181 27074 

29 6.4451249 10.713168 10.1851605 8.677254 5.6937397 6.0968341 143 43590 

30 4.4175348 3.451324 2.5703336 6.685750 9.4718800 3.7627264 91 61120 

31 11.1833606 2.740354 3.3807407 1.463547 7.8313128 3.1243734 88 75565 

32 9.5206835 11.347720 13.5530517 7.391091 8.4444563 6.3873713 169 54299 

33 9.2972117 2.755905 5.7720189 8.710240 14.0915529 6.1806423 140 .38910 

34 8.0820229 10.581643 2.2820935 6.751160 10.8112616 4.6771552 130 .98061 

35 6.6545338 5.953882 11.7974144 1.632838 12.4576491 4.2776184 127 .09196 

36 9.7789906 4.450119 8.0398496 7.723112 2.1111587 6.4538818 112 .99237 

37 3.7122426 8.483071 9.6422982 10.898808 0.4416167 7.4082651 123 .70719 

38 2.9175638 9.570676 8.6705725 5.872688 6.6981518 6.9191682 120 .60296 

39 7.1712089 8.301989 9.2621336 7.337809 6.0533967 7.6988907 136 .22295 

40 7.9885509 7.922253 4.3438396 11.867781 11.9704074 6.5147955 150 .71991 

41 10.7296348 3.940886 9.6727416 4.490182 2.4137826 5.0522809 109 .20729 

42 3.3579211 11.545688 15.5056035 10.811871 15.8786297 18.3340809 225 .63244 

43 6.9905263 5.888745 6.3327476 12.437475 1.0124723 13.4010089 137 .23044 

44 4.2694368 7.624350 11.4710680 2.795954 8.1789689 7.4919210 126 .20630 

45 4.2436118 8.247273 7.9382609 10.072959 8.3573557 5.0815099 131 .69331 

46 13.3403445 6.637980 7.3312521 7.299546 9.7278347 5.5564581 147 .82376 

47 7.4250368 -3.658136 7.2793227 7.416180 7.8721623 0.1856133 79 .36270 

48 10.3821435 6.405248 7.2371363 7.276544 -2.8245757 6.8317375 105 .12162 

49 27.6440714 27.668316 10.5576269 2.885532 10.5387302 1.3897659 252 .05213 

50 27.5673301 27.656082 10.7283546 7.581958 9.8268777 6.8145485 280 .52545 

51 27.5595650 27.502891 12.5874381 4.058082 1.9078757 2.8545462 239 .41120 

52 27.7100060 27.537986 8.6447890 9.936585 1.0224269 -3.3482467 224 .51064 

53 27.6890687 27.648046 4.0823853 6.285512 6.5082089 6.5091707 246 .16718 

54 27.6885707 27.649998 8.8239860 2.580198 4.1724778 5.0386919 237 .86177 

55 29.6444015 29.607418 10.7805351 2.198492 6.7131428 7.5417817 269 .95731 

56 29.6764561 29.740360 8.9489976 15.255337 9.8877447 -0.3237614 290 .05540 

57 29.6907864 29.606927 4.5866859 3.414381 6.3052529 8.3756654 256 .43910 

58 29.5212998 29.631905 1.6110610 2.583814 9.9902880 9.9422569 260 .34187 

59 29.6534562 29.579621 9.7561766 5.063578 11.6280968 8.6546168 293 .50664 

60 29.6933737 29.513834 6.5407833 4.360302 5.9092306 12.7901649 276 .92307 
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Monte Carlo simulation data for Figure 4.1 showing the area of coverage for the various compound 
estimators. Each cell gives the proportion of times out of 50 replicates that the procedure assigned a 
standardized residual value of 2.5 or greater. 

8L 8R C&H S&M 
CE 

P1P2 
CE 
P3 

CE 
P4 

0 3 0.70 0.24 0.12 0.10 0.10 

0 4 0.98 1.00 0.94 0.92 0.92 

0 >5 1.00 1.00 1.00 1.00 1.00 

3 0.12 0.00 0.00 0.00 0.00 
4 0.74 0.06 0.16 0.02 0.02 

5 0.98 0.92 0.44 0.58 0.44 

6 1.00 1.00 0.82 0.88 0.80 

7 1.00 1.00 1.00 1.00 0.96 

2 4 0.04 0.08 0.00 0.00 0.00 

2 5 0.16 0.36 0.04 0.04 0.02 

2 6 0.38 0.72 0.20 0.38 0.28 

2 7 0.72 0.74 0.56 0.62 0.48 

2 8 0.84 0.88 0.70 0.84 0.76 

2 9 0.90 0.92 0.98 0.98 0.92 

3 5 0.00 0.08 0.14 0.04 0.10 

3 6 0.14 0.14 0.28 0.14 0.18 

3 7 0.18 0.24 0.18 0.22 0.14 

3 8 0.50 0.44 0.56 0.46 0.54 

3 9 0.50 0.74 0.74 0.72 0.70 

3 10 0.50 0.84 0.82 0.84 0.80 

4 3 0.00 0.00 0.50 0.02 0.12 

4 4 0.00 0.00 0.78 0.10 0.24 

4 5 0.00 0.00 0.80 0.08 0.42 

4 6 0.00 0.04 0.80 0.30 0.60 

4 7 0.00 0.02 0.80 0.34 0.72 
4 8 0.00 0.14 0.78 0.50 0.76 
4 9 0.00 0.16 0.84 0.56 0.76 
4 10 0.00 0.38 0.96 0.82 0.98 
5 3 0.00 0.00 0.56 0.04 0.22 
5 4 0.00 0.00 0.74 0.08 0.34 

5 5 0.00 0.00 0.96 0.22 0.68 

5 6 0.00 0.00 1.00 0.36 0.82 

5 7 0.00 0.02 0.96 0.52 0.86 
5 8 0.00 0.00 0.96 0.70 0.92 
5 9 0.00 0.10 0.96 0.72 0.80 
6 3 0.00 0.00 0.07 0.06 0.40 
6 4 0.00 0.00 0.84 0.28 0.56 
6 5 0.00 0.00 0.92 0.32 0.58 
6 6 0.00 0.00 1.00 0.48 0.84 
6 7 0.00 0.00 1.00 0.70 0.94 
6 8 0.00 0.00 1.00 0.84 1   0.96 
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Data for Figure 4.1 (cont) 
7 3 0.00 0.00 0.62 0.12 0.32 

7 4 0.00 0.00 0.80 0.26 0.54 

7 5 0.00 0.00 0.84 0.30 0.36 

7 6 0.00 0.00 0.96 0.44 0.72 

7 7 0.00 0.00 0.98 0.68 0.88 

7 8 0.00 0.00 1.00 0.86 1.00 

* 3 0.00 0.00 0.54 0.28 0.40 

8 4 0.00 0.00 0.84 0.30 0.56 

8 5 0.00 0.00 0.84 0.44 0.64 

8 6 0.00 0.00 0.94 0.58 0.78 

8 7 0.00 0.00 1.00 0.66 0.86 

8 8 0.00 0.00 1.00 0.86 1.00 

9 3 0.00 0.00 0.54 0.22 0.40 

9 4 0.00 0.00 0.84 0.46 0.56 

9 5 0.00 0.00 0.84 0.40 0.70 

9 6 0.00 0.00 0.94 0.66 0.86 

9 7 0.00 0.00 1.00 0.78 0.92 

9 8 0.00 0.00 1.00 0.86 0.96 

10 3 0.00 0.00 0.68 0.36 0.54 

10 4 0.00 0.00 0.76 0.50 0.62 

10 5 0.00 0.00 0.86 0.54 0.70 

10 6 0.00 0.00 0.90 0.64 0.76 

10 7 0.00 0.00 0.98 0.82 0.92 

10 » 0.00 1   0.00 0.96 0.82 0.96 



Appendix C 

S-Plus Code for Chapter 5 Studies 
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# The function bijs5 is the abbreviated version of the Simpson and 
# Montgomery (1998)estimator.  It provides only coefficient estimates, 
# residuals and final weights for computational considerations. 
bijs5<-function (x, y, w - repd, nrow(x)), int = TRUE, init = fastsest (x, y), 

method = wt.bibisquare, wx, iter = 1, 
ace = 50 * .Machine$single.eps"0.5, test.vec = "resid") 
{ 

{ 
coef <- init$coef 
x <- cbind(l, x) # w <- w * wx 
resid <- y - x %*% coef  # Determine the tuning constant based on 

the suggestion of Marazzi and Joss (1993) 
tc <- 4.685 
xwt <- as.matrix(x)  # Robeth pi weights using the scatter matrix 
dfrpar(xwt, "Kra-Wel")    # Weights 
z <- wimedv(xwt) 
z <- wynalg(xwt, z$a) 
nitw <- z$nit    # Scale the distances such that the medxan distance 

is unity and all others are a ratio of the 
# actual distance to the median distance 

z$distm <- z$dist/median(z$dist) 
pi <- l/z$distm  # S-estimator scale estimate 
scale <- init$smin 
epis <- c(resid/(scale * pi)) 
w <- method(epis, tc) 
temp <- lsfit(x, y, w, int = FALSE) 
coef <- temp$coef 
resid <- temp$residuals 
if (!missing(wx)) { 

tmp <- (wx != 0) 
w[tmp] <- w[tmp]/wx[tmp] 

} 

list(coef = coef, residuals = resid, weight=w) 

# The function fastsest is the initial S estimator for the abbreviated 
# version of the Simpson and Montgomery compound estimator. 
fastsest<-function(x, y) 
{ 

{ 
# need column of ones 

x <- as.matrix(x) 
x <- cbind(l, x) 
y <- as.matrix(y) 
np <- ncol(x) 
nppl <- np + 1 
dfvalsO 
dfrpar(x, "S") 
ribetu(y) 
zr <- hysest(x, y, nppl, iopt = 1, intch = 1, iseed = 5431) 
coef <- zr$theta[l:np] 
smin <- zr$smin 
rs <- zr$rs 
nrep <- zr$nrep 
cov <- zr$cov 
ierr <- zr$ierr 
dfcomn(ipsi =4, xk = 1.5477) 
S.w <- Psi(rs/smin)/(rs/smin) #weights 

} 
list(coef = coef, smin = smin) 

# The function gendatagm generates the Gunst and Mason (1980) data set 
# used in the Shao (1993, 1996) studies.  The regressor levels are 
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# always the Gunst and Mason data while the responses are generated 
# from the known beta vector + N(0,sigma) as in Shao. The input parameters 
# are seedy for the random number seed and sigma to control the signal-to 
# noise ratio.  Shao uses sigma = 1.0. 
gendatagm<-function(seedy,sigma) 
{ 

var2 <- c(0.36, 1.2, 0.06, 0.16, 0.01, 0.02, 0.56, 0.98, 0.32, 0.01, 
0.15, 0.24, 0.11, 0.08, 0.61, 0.03, 0.06, 0.02, 0.04, 0, 

0.09, 0.02, 0.02, 0.05, 0.11, 0.18, 0.04, 0.85, 0.17, 0.08, 0.38, 
0.11, 0.39, 0.43, 0.57, 0.13, 0.04, 0.13, 0.2, 0.07) 

var3 <- c(0.53, 2.52, 0.09, 0.41, 0.02, 0.07, 0.62, 1.06, 0.2, 0, 
0.25, 0.28, 0.35, 0.13, 0.85, 0.03, 0.11, 0.08, 0.24, 0.02, 

0.18, 0.16, 0.11, 0.24, 0.39, 0.11, 0.09, 1.33, 0.32, 0.12, 0.18, 
0.13, 0.38, 0.46, 1.16, 0.03, 0.05, 0.18, 0.95, 0.06 

var4 <- c(1.06, 5.74, 0.27, 0.83, 0.07, 0.07, 2.12, 2.89, 0.76, 0.07, 
0.5, 0.59, 0.4, 0.28, 0.49, 0.23, 0.5, 0.25, 0.08, 0.04, 

0.59, 0.24, 0.21, 0.43, 0.29, 0.43, 0.23, 2.7, 0.66, 0.49, 0.49, 
0.18, 0.99, 1.47, 1.82, 0.08, 0.14, 0.28, 0.41, 0.18) 

var5 <- c(0.5326, 3.6183, 0.2594, 1.0346, 0.0381, 0.344, 1.4459, 
4.0182, 0.46, 0.154, 0.6516, 0.0611, 0.1922, 0.0931, 0.0538, 

0.0199, 0.0419, 0.1093, 0.0328, 0.0797, 0.1855, 0.1572, 0.0998, 
0.2804, 0.2879, 0.681, 0.3242, 2.6013, 0.4469, 0.2436, 

0.44, 0.3351, 1.3979, 2.0138, 1.9356, 0.105, 0.2207, 0.018, 
0.1017, 0.0962) 

# The following line augments the design matrix with 5 noise variables 
# if desired 
# noise<-matrix(rnorm(200),nrow=40) 
# x <- matrix(cbindd, var4, var5, var2, var3,noise), ncol = 10) 
# Otherwise, the original data... 

x <- matrix (cbindd, var4, var5, var2, var3) , ncol = 5) 
# beta is the known generating vector.  Note the order of the variables 
# is changed to reflect Shao. 

beta <- matrix(c(2, 4, 8, 0, 0), ncol = 1) 
set.seed(seedy) 
error <- matrix(rnorm(40, 0, sigma), ncol = 1) 
y <- x %*% beta + error 
x <- x[, -1] 

} 
return(x, y) 

} 
# The function gendatagmc generates the modified Gunst and Mason data 
# used in Chapter 5 with 10% outliers planted.  The example in Chapter 
# 1 uses 129 as seedy.  The variable sigma determines how much noise 
# is added and if it is >= 5, no estimator works. 
gendatagmc<-function(seedy, sigma) 
{ 

{ 
j <- gendatagm(seedy, sigma) 
beta <- matrix (c (2, 4, 8, 0, 0), ncol = 1) 
j$x <- cbindd, j$x) 

# Plant outliers a distance of 10 sigma away 
j$y[8] <- j$x[8,  ] %*% beta + 10*sigma 
j$y[15] <- j$x[15, 
j$y[28] <- j$x[28, 
j$y[39] <- j$x[39, 
y <- j$y 
x <- j$x[, -1] 

} 
return(x, y) 

} 
# The function gendatanormc generates N(0,1) regressors and calculates 

] %*% beta + 10*sigma 
] %*% beta + 10*sigma 
] %*% beta + 10*sigma 
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# the response by multiplying by beta and adding N(0,sigma) noise. 
# The last 5 of 40 observations are outliers.  The last 3 are also high 
# leverage. The inputs are the seed, sigma (amount of noise added to 
# response), dis (residual and leverage magnitude for the outliers) 
# out (number of outliers) 
gendatanormcofunction(seedy, out, dis, sigma) 

{ 

first<-40-out+l #find the first observation to make an outlier 
set.seed(seedy) 
x <- matrix(rnorm(160), nrow = 40) 

beta <- matrix(c(2, 4, 8, 0, 0), ncol = 1) 
x <- cbindd, x) 
x[37:40, 2:5] <- x[37:40, 2:5] + dis 
y <- x %*% beta + rnorm(40, 0, sigma) 
y[first:40] <- y[first:40] + dis 
x <- x[, -1] 

} 
return(x, y) 

# auxiliary function matmin finds the element of a vector that is the minimum 
# and assigns it a value of 1 while all others are 0. 
matmin<-function(x) 
{ 

minx <- min(x) 
minvec <- ifelse(x == minx, 1, 0) 
return(minvec) 

# auxiliary function matmax finds the maximum element in a vector 
matmax<-function(x) 
{ 

maxx <- max(x) 
maxvec <- ifelse(x == maxx, 1, 0) 
return(maxvec) 

} 
# auxiliary function sstman finds the total sums of squares/n 
sstman<-function(isub, y) 

sst <- sum((y[isub] - mean(yfisub]))"2)/length(y[isub]) 
return(sst) 

# auxiliary function costcol finds the prediction error for a model. 
# vector y is the original data and vector x is the predicted. 
costcol<-function(x, y) 
{ 

x <- matrix(x, ncol = 1) 
y <- matrix(y, ncol = 1) 
j <- sum((y - x)A2)/length(y) 
return(j) 

# The function regbootl performs regression using x[isub] to predict yfisub] 
# isub is a vector of length n, 
# a bootstrap sample from the sequence of integers 
# 1, 2, 3, ..., n 
# 
# This function is used by other functions when computing 
# bootstrap estimates,  x is regressors (without intercept), regfun is 
# the regression estimator (lsfit, bijs5), m tells how large the bootstrap 
# sample should be (full sample use m=0).  The matrix of coefficients 
# from the B bootstrap samples and the bootstrap prediction error for each 
# bootstrap sample (for the bias correction) are returned. 
# Also returns the weighted estimate of prediction error if use a robust 
# estimator, if use lsfit, then comment out the last wtderr<- line. 
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regbootl<-function(isub, x, y, regfun, m) 
{ 

{ 
wtderr<-NULL 
nmm <- nrow(x) - m 
xmat <- matrix(x[isub,  ], nrow = nmm, ncol(x)) 
regboot <- regfun(xmat, yfisub]) 
coefficients <- matrix(regboot$coef, ncol = 1) 
xmat <- cbind(l, xmat) 

# bspe finds the prediction error for this bootstrap sample using 
# the bootstrap response values.  This is needed for the unbiased estimate. 

bspe <- sum((regboot$residuals)A2)/length(ytisub]) 
# wtderr weights the prediction error with the compound estimators final 
# weights. ,.,_•,, wtderr<-sum(((regboot$residuals)A2)*regboot$weight)/length(y[isub]) 

list(coef = coefficients, booterr = bspe, wtderr=wtderr) 

# The function willbs executes the bootstrap and returns the average 
# prediction error if m != 0 or the bias corrected prediction error 
# if m = 0.  Note that x does not have a column of Is. 
willbs<-function(x, y, data, regfun = bijs5, nboot = 100, m) 
{ 

< 
x <- as.matrix(x) 
p <- ncol(x) + 1 
y <- matrix(y, ncol = 1) 
bvec <- apply(data, 1, regbootl, x, y, regfun, m) 

# bvec is the p+1 by nboot matrix. The first row 
# contains the bootstrap intercepts, the second row 
# contains the bootstrap values for first predictor, etc. 

bootpe <- NULL 
bootwtderr<-NULL 
coef <- matrix(0, ncol = nboot, nrow = p) 

# this piece of inefficient code extracts the coefs and bootstrap 
# resubstitution error for each bootstrap sample. 

for(i in 1:nboot) { 
coeft, i] <- bvec[[i]]$coef 
bootpe[i] <- bvec[[i]]$booterr 
bootwtderr[i]<-bvec[[i]]$wtderr 

# The n by nboot matrix of predicted values using the bootstrap coefficients 
# contained in the matrix coef and the real x's 

pred <- cbindd, x) %*% coef 
# avg prediction error vector of length nboot if use the 
# bootstrap predictions and the observed y's 

apevec <- apply(pred, 2, costcol, y) 
# contains the vector of average prediction error 
# If use m = 0 (full bootstrap sample size) then need the unbiased estimate 
# of prediction error.  resub is the usual resubstitution error using only 
# original data. 

resub <- sum((y - cbindd, x) %*% bijs5(x, y)$coef)A2)/length(y) 
apevec.unbias <- (apevec - bootpe) + resub 
apevec.wtd<-bootwtderr 

} 
return(apevec, apevec.unbias,apevec.wtd) 

# The function win.pure takes a vector of prediction errors and returns the 
# dimension of the best model.  It is not necessarily the model with the 
# lowest prediction error.  Input the constant (const) for minimum change 
# in prediction error required before going to the next higher dimension. 
win.pure<-function(prederr,const=.025) 
i 
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# Find the critical value for minimum change in prediction error from the 

!    5?Är TS rfsrS.rlfthe^fSpurity criteria fcr spiitti», 

# "^"»"""«y'^'cour^prederrtl] . Determine the change in i»p»ritie. 
delta <- matrix(0, nrow = 1, ncol - 5) 

# change ncol in above line for 10 variable models 
# delta[1,1] is made very large to offset the vector by 1 to account for 

# the intercept. 
delta[1, 1] <- 100000 
delta [1, 2] <- prederrfl] - prederr[2] 
delta[1, 3] <- prederr[2] - prederr[3] 
delta[1, 4] <- prederr[3] - prederr[4] 
deltatl, 5] <- prederr[4] - prederr[5] 

# deltatl, 6] <- prederr[5] - prederr[6] 
# deltatl, 7] <- prederr[6] - prederr[7] 
# deltatl, 8] <- prederr[7] - prederr[8] 
# deltatl, 9] <- prederr[8] - prederr[9] 
# deltatl, 10] <- prederr[9] - prederr[10] 

# the pure vector determines if the variable should be added 
pure <- ifelse(delta < min.purity, 1, 0) 

# create an index of to choose the j-parameter model 
j <- rep(1:5, 1) 

# the best model is the last time the change in impurity is > crit val 
winner <- max(j[pure ==0]) 

# additional check if the change in prediction 
# error occurs for high dim models then make sure it is lower than 
# prediction error for the true 5 variable model.  This really should 
# be done several times. 
# if(prederrtwinner] >prederr[5]) { 
# pure[winner] <- 1 
# winner <- max(j[pure == 0]) 

# } 
return(winner) 

# shaosimgmn executes the entire bootstrap simulation by inputting the number 
# of replications(iter), the number of outliers in the sample (out), the 
# magnitude of the outliers (dis), the noise in the sample, NID (0,sigma) 
# the number of observations to remove from the full sample for the bootstrap 
# sample (m), and a seed. 

shaosimgmr<-function(iter, out,dis,sigma,m,nboot, seedy) 

{ 

# initialize the values of the matrices that store the number of times 
# each model is selected 

cumpct.shao <- matrix(0, nrow = 1, ncol = 5) 
cumpct.jw <- matrix(0, nrow = 1, ncol = 5) 
cumwin.shao <- matrix(0, nrow = 1, ncol = 5) 
cumwin.jw <- matrix(0, nrow = 1, ncol = 5) 
cumpct.shaowt <- matrix(0, nrow = 1, ncol = 5) 
cumpct.jwwt <- matrix(0, nrow = 1, ncol = 5) 
cumwin.shaowt <- matrix(0, nrow = 1, ncol = 5) 
cumwin.jwwt <- matrix(0, nrow = 1, ncol =5) 

# Replications 
for(i in l:iter) { 
cat("iter ", i," ") 

seeder <- seedy + i 
j <- gendatanormc(seeder, out,dis, sigma) 

# data is the bootstrap resample matrix for all nboot samples. 
p <- ncol(j$x) + 1 
nmm <- length (j$y) '- m 
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# 
# 
# 
# 
# 
# 
# 
# 
# 

data <- matrix(sample(length(j$y), size = nmm * nboot, 
replace = T), nrow = nboot) 

wbsl calculates the nboot prediction errors for a 1 variable model 
wbsl <- willbs(j$x[, 1], j$y, data, nboot = nboot, m = m) 

<- willbs(j$x[, 1:2], j$y, 
<- willbs(j$x[, 1:3], 

wbs2 
wbs3 
wbs4 
wbs5 
wbs6 
wbs7 

j$y» 
j$y» <- willbs(j$x[, 1:4], 

<- willbs(j$x[, 1:5], j$y, data, 
<- willbs(j$x[, 1:6], j$y, 
<- willbs(j$x[, 1:7], j$y, 

wbs8 <- willbs(j$x[, 1:8], j$y, 
wbs9 <- willbs(j$x[, 1:9], j$y, 

data, nboot = nboot, m = m) 
data, nboot = nboot, m = m) 
data, nboot = nboot, 

nboot, nboot 
data, nboot = nboot, 
data, nboot = nboot, 

nboot = nboot, 
nboot = nboot, 

data, 
data. 

m 
m 
m 
m 
m 
m 

m) 
m) 
m) 
m) 
m) 
m) 

Now that we have the contending models avg pred error for all nboot fits 
put them in a 5 by nboot matrix to find out the lowest prediction error of 
the 5 contenders in each of the nboot trials.  We first find the model with 
no predictors as the total sum of squares. 

SST <- matrix(apply(data, 1, sstman, j$y), nrow = 1) 
Use the unbiased prediction error if m = 0 (bootstrap sample size = n) 

if(m != 0){ 
For the outlier study (tab 5.13), we do not want to use the bias 
correction for the full sample so we'll bypass it since m will never = 3. 

if(m != 3){ 
j <- matrix(rbind(SST, wbsl$apevec, wbs2$apevec, 

wbs3$apevec, wbs4$apevec), nrow = 5) 
jwt <- matrix(rbind(SST, wbsl$apevec.wtd, 

wbs2$apevec.wtd, wbs3$apevec.wtd, wbs4$apevec.wtd), nrow = 5)} 
else j <- matrix(rbind(SST, wbsl$apevec.unbias, wbs2$ 

apevec.unbias, wbs3$apevec.unbias, wbs4$apevec.unbias, wbs5$apevec.unbias, 
wbs6$apevec.unbias, wbs7$apevec.unbias, wbs8$apevec.unbias, 
wbs9$apevec.unbias), nrow = 10) 

wbsl <- NULL 
wbs2 <- NULL 
wbs3 <- NULL 
wbs4 <- NULL 
wbs5 
wbs6 
wbs7 

NULL 
NULL 
NULL 

wbs8 <- NULL 
wbs9 <- NULL 

pct.shao finds the selection percentage of the nboot samples using 
the minimum prediction error criteria. 

pct.shao <- apply(apply(j, 2, matmin), 1, sum) 
pct.shaowt <- apply(apply(jwt, 2, matmin), 1, sum) 

cumpct.shao tallies this percentage over the iter iterations 
cumpct.shao <- cumpct.shao + pet.shao 
cumpct.shaowt <- cumpct.shaowt + pct.shaowt 

win.shao selects the model with the lowest average prediction error 
across the nboot samples. 

win.shao <- matmin(apply(j, 1, mean)) 
win.shaowt <- matmin(apply(jwt, 1, mean)) 

cumwin.shao tallies the winners up across the iter iterations 
cumwin.shao <- cumwin.shao + win.shao 
cumwin.shaowt <- cumwin.shaowt + win.shaowt 

pct.jw is the percentage of times the model is selected in the 
nboot samples in purity metric rather than absolute minimum aggregate 
prediciton error. 

jw <- apply(j, 2, win.pure,const=.005) 
jwwt <- apply(jwt, 2, win.pure,const=.001) 
pct.jw <- c(sum(ifelse(jw == 1, 1, 0)), sum(ifelse(jw == 

2, 1, 0)), sum(ifelse(jw == 3, 1, 0)), sum( 
ifelse(jw == 4, 1, 0)), sum(ifelse(jw == 5, 1, 
0))) 
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pct.jwwt <- c(sum(ifelse(jwwt == 1, 1, 0)), 
sum(ifelse(jwwt ==2, 1, 0)), sum(ifelse(jwwt — 3, 1, 0)), sum(ifelse<jwwt — 
4, 1, 0)), sum (ifelse(jwwt == 5, 1,0))) 

curopct.jw <- cumpct.jw + pct.jw 
cumpct.jwwt <- cumpct.jwwt + pct.jwwt 

# win jw finds the best model based on the average of prediction error 
# from the nboot samples with the minimum change in prediction error metric. 

win.jw <- win.pure(apply(j, 1, mean),const=.005) 
idx <- rep(0, 5) 
idxtwin.jw] <- 1 
cumwin.jw <- cumwin.jw + idx   # clear the arrays 
win.jwwt <- win.pure(apply(jwt, 1, mean),const=.001) 
idx <- rep(0, 5) 
idx[win.jwwt] <- 1 
cumwin.jwwt <- cumwin.jwwt + idx 
j<-NULL 
jwt<-NULL 

} 

return(cumpct.shao, cumwin.shao, cumpct.jw, cumwin.jw, cumpct.shaowt, 
cumwin.shaowt, cumpct.jwwt, cumwin.jwwt, j, jwt) 

# The function cvpress calculates the leave-one-out estimate of 
# prediction error by performing n regressions.  It also provides the 
# weighted avg prediction error. 
cvpress<-function(x, y, method =. bijs5) 
{ 

{ 
set.seed(129) 
x <- as.matrix(x) 
n <- nrow(x) 
y <- as.matrix(y, ncol =1) 
xint ■<- matrix(cbind(l, x), nrow = n) 
cvpred <- matrix(0,nrow=n,ncol=l) 
prederr<-matrix(0,nrow=n,ncol=l) 

# loop through all n observations and leave one out each time 
for(i in l:n) { 

cvreg <- method(x[ - i,  ], y[ - i]) 
predvals <- xint %*% cvreg$coef 
cvpred[i] <- predvals[i] 

} 
prederr<-((y-cvpred)A2) 
CV <- mean(prederr) 

# create diagonal matrix of weights from robust estimator 
regomethod (x, y) 
wt<-diag(reg$weight,ncol=n) 

# find weighted avg prediction error 
CVwt <- mean((wt%*%prederr)) 

} 
return(CV, CVwt) 

# The function cvlsim is the full simulation for the leave-one-out estimate 
# of prediction error.  Input the number of replicates (iter),the number of 
# of outliers (out), the magnitude of the outliers (dis), the noise to 
# generate the response N(0,sigma) and the seed so results can be duplicated 
# and the same datasets are used except factors altered.  If other data sets 
# are used like Gunst and Mason, you don't need all those parameters. 
# estimator is the regression estimator that must have at least $coef and 
# $weight for weighted avg prediction error. Note that dis is delta*sigma in 
# table 5.14, so 5delta and 5sigma means dis=25 for simulation. 
cvlsim<-function(iter, out, dis, sigma,seedy,estimator) 
{ 

{ 
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cumwin.shao <- matrix(0, mow = 1, ncol = 5) 
cumwin.jw <- matrix(0, nrow = 1, ncol = 5) 
cumwin.shaowt <- matrix(0, nrow = 1, ncol =5) 
cumwin.jwwt <- matrix(0, nrow = 1, ncol = 5) 
for(i in l:iter) { 

catCiter ", i, " ") 
seeder <- seedy + i 
j<- gendatanormc(seeder, out,dis,sigma) 

# The following code removes the outliers if the standardized residuals 
# are larger than 2.5 for a fit with Simpson and Montgomery estimator. 
# smreg <- bijs5sa(j$x, j$y) 
# absres <- abs(smreg$residuals/smreg$scale) 
# j$x <- j$x[absres < 2.5,  ] 
# j$y <_ j$y[absres < 2.5] 
# Find SST ,      , . ,. > 

cvO <- sum((j$y - mean(j$y))A2)/length tu$y) 
# Get cross-validation estimates of prediction error for 1 var model 

cvl <- cvpress(j$x[, 1], j$y,method=estimator) 
cv2 <- cvpress(j$x[, 1:2], j$y,method=estimator) 
cv3 <- cvpress(j$x[, 1:3], j$y,method=estimator) 
cv4 <- cvpress(j$x[, 1:4], j$y,method=estimator) 

# cv5 <- cvpress(j$x[, 1:5], j$y,method=estimator) 
# cv6 <- cvpress(j$x[, 1:6], j$y,method=estimator) 
# cv7 <- cvpress(j$x[, 1:7], j$y,method=estimator) 
# cv8 <- cvpress(j$x[, 1:8], j$y,method=estimator) 
# cv9 <- cvpress(j$x[, 1:9], j$y,method=estimator) 
# Now we have the 5 contending models with 2 measures of cross validation 
# prediction error for each alternative. 

cv <- matrix(c(cvO, cvl$CV, cv2$CV, cv3$CV, cv4$CV),nrow = 1) 
cvwt <- matrix(c(cv0, cvl$CVwt, cv2$CVwt, cv3$CVwt, 

cv4$CVwt),nrow = 1) 
# The matrix win.shao has a 1 entry for minimum prediction error 
# otherwise it is 0. 

win.shao <- ifelsefcv == min(cv), 1, 0) 
cumwin.shao <- cumwin.shao + win.shao 
win.shaowt <- ifelse(cvwt == min(cvwt), 1, 0) 
cumwin.shaowt <- cumwin.shaowt + win.shaowt 

# win.jw finds the model that meets the change in prediction error criteria. 
win.jw <- win.pure(cv,const=.0025) 
win.jwwt <- win.pure(cvwt,const=.0005) 
idx <- rep(0, 5) 
idx[win.jw] <- 1 
idxwt <- rep(0, 5) 
idxwt[win.jwwt]<-l 
cumwin.jw <- cumwin.jw + idx 
cumwin.jwwt <- cumwin.jwwt + idxwt 

} 

return(cv, cumwin.shao, cumwin.jw,cvwt,cumwin.shaowt,cumwin.jwwt) 

# The function crossvald computes the K-fold and adjusted K-fold estimates 
# of prediction error.  It also returns the weighted estimates if a robust 
# estimator is used. 
crossvald<-function(x, y, method = bijs5, cvmse = function(y, yhat) 
mean((y - yhat)A2), K = 6) 
{ 

{ 
set.seed(129) 
x <- as.matrix(x) 
n <- nrow(x) 
out <- NULL 
f <- ceiling(n/K) 

# Sample without replacement from a vector [1, 2, 3,..K, 1, 2,..K...] 
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# (there are f repetitions of 1, 2, ...K] to identify which assessment group 
# the observation belongs.  The sample size is n.  The assesment sample 
# sizes should be close to one another because we resample without 
# replacement. 

s <- sample(rep(1:K, f), n) 
y <- as.matrix(y, ncol = 1) 
regress <- method(x, y) # find predicted values for the model 
predvals <- y - regress$residuals 

# Overall resubstitution error is corr.  This is the initial value 
# required to compute the bias correction factor. 

corr <- cvmse(y, predvals) 
CV <- 0 
CVwt<-NULL 
xint <- matrix(cbindd, x), nrow = n) 

# For each assessment set S.as compute predicted values 
pe<-matrix(0,ncol=l,nrow=n) 
for(i in 1:K) { 

# Select observations with index i for the assessment set 
S.as <- c(l:n)[(s == i)] 

# The training set is all the observations to remain 
S.tr <- c(l:n)[(s != i)] 

# Perform regression with the current training set 
cvreg <- method(x[S.tr,  ], y[S.tr]) 
predvals <- xint %*% cvreg$coef 

# The proportion of the data in the ith assessment set 
p.alpha <- length(S.as)/n 
pe [S.as]<-(y[S.as]-predvals[S.as])A2 
pred.err <- cvmse(y[S.as], predvals[S.as]) 
CV <- CV + p.alpha * pred.err 
corr <- corr - p.alpha * cvmse(y, predvals) 
CV.C <- CV + corr 

} 
# calculate the weigted avg prediction error for uncorrected bootstrap 

wt<-diag(regress$weight,ncol=n) 
CVwt<-mean(wt%*%pe) 

} 
return(CV, corr, CV.C, cvreg$coef,CVwt) 

# cvksim performs the simulations for K-fold cross validation.  It is set up 
# to output the K-fold prediction error and the weighted K-fold.  It 
# must be modified to do least squares by commenting out the 2 lines in 
# crossvald for wt and CVwt and change CVwt to CV.C in cvksim as directed. 
# It is set up for a 5 variable model, change ncol= to number of variables 
# desired and add the quantities to assignments in "cv". 
cvksim<-function(iter, out, dis, sigma,seedy,estimator) 

{ 
{ 

cumwin.shao <- matrix(0, nrow = 2, ncol = 5) 
cumwin.jw <- matrix(0, nrow = 2, ncol = 5) 
for(i in l:iter) { 

cat ("iter ", i, ** ") 
seeder <- seedy + i 
set.seed(seeder) 
j <- gendatanormc(seeder, out,dis,sigma) 

# code to remove outliers first with Simpson and Montgomery estimator 
# smreg <- bijs5sa(j$x, j$y) 
# absres <- abs(smreg$residuals/smreg$scale) 
# j$x <- j$x[absres < 2.5,  ] 
# j$y <_ j$y[absres < 2.5] 

nn <- length(j$y) 
cvO <- sum((j$y - meantj$y))A2)/length(j$y) 

# Get cross-validation estimates of prediction error for 1 var model 
cvl <- crossvald(j$x[, 1], j$y, K = 6) 
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# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

2 variable model 
cv2 <- 
cv3 <- 
cv4 <- 
cv5 <- 
cv6 <- 
cv7 <- 
cv8 <- 
cv9 < 

Now we have the 5 

crossvald(j$x[, 1:2], 
crossvald(j$x[, 1:3], 
crossvald(j$x[, 1:4], 
crossvald(j$x[, 1:5], 
crossvald(j$x[, 1:6], 
crossvald(j$x[, 1:7], 
crossvald(j$x[, 1:8], 
crossvald(j$x[, 1:9], 

j$y, method=estimator, 
j$y, method=estimator, 
j$y, method=estimator, 
j$y, method=estimator, 
j$y, method=estimator, 
j$y, method=estimator, 
j$y, method=estimator, 
j$y, method=estimator, 

K = 6) 
K = 6) 
K = 6) 
K = 6) 
K = 6) 
K = 6) 
K = 6) 
K = 6) 

contending models with 4 measures of cross val error 
for each one.  Put them in a 4 by 5 matrix to find out the best model 
under the criterion.  Note that this run is set up to evaluate the K-fold 
and the weighted K-fold.  Simply replace cv*$CVwt with cv*$CV.C to get 
the bias corrected versions.  To evaluate more than 5 variables remove 
the comments from cv# above and add those variables to "cv" matrix. 

cv <- matrix(rbind(c(cvO, cvl$CV, cv2$CV, cv3$CV, cv4$ 
CV), c(cvO, cvl$CVwt, cv2$CVwt, cv3$CVwt, cv4$CVwt)), nrow = 2) 

The matrix winners has a 1 entry if the prediction error is lowest 
0 otherwise. 

win.shao <- t(apply(cv, 1, matmin)) 
cumwin.shao <- cumwin.shao + win.shao 
winidx.jw <-apply(cv,1,win.pure,const=0.0025) 
cv.jw <- rep(0, 5) 
cv.jw[winidx.jw[l]]   <-  1 
cvadj.jw <-  rep(0,   5) 
cvadj.jw[winidx.jw[2]] <- 1 
win.jw <- matrix(rbind(cv.jw, cvadj.jw), nrow = 2) 
cumwin.jw <- cumwin.jw + win.jw 

} 
} 

return(cumwin.shao, cumwin.jw, cv) 
} 
# The following are example implementing the code 
date () 
run3cvl<-cvlsim(50,4,10,1,130,bijs5) 
run3cvl 
run5bs2<-shaosimgmr(25,8,25,5,20,25,155) 
run5bs2 
run8cvk0025<-cvksim(50,8,50,5,130,bijs5) 
run8cvk0025 
date() 


