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Cbnversion Factors,
Non-SlI to Sl Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units as

follows:
Multiply By To Obtain
cubic feet 002831685 | cubic metres
Fahrenheit degrees 5/9 Celsius degrees or kelvins'
feet 0.3048 metres
inches 254 millimetres
miles (U.S. statute) 1.608347 kilometres
pound (force) inches 0.1129848 newton metres
pounds (force) per square foot 47.88026 pascals
pounds (mass) 0.45359237 kilograms
' To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula:
C = (5/9) (F - 32). To obtain kelvins (K) readings, use: K= (5/9) (F - 32) + 273.15.
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1 Introduction

Background

Concrete repair and rehabilitation commonly include removing unsound
concrete and replacing it with repair or overlay materials. No matter what repair
material is chosen, one of the key requirements of a repair system is the ability to
provide an adequate bond between the repair and existing concrete substrate that
remains intact throughout its service life. '

When a repair material is applied to a substrate, the difference in the properties
of the two materials will affect bond strength development and bond stress
distribution. This mismatch can be acute in concrete repairs where a new repair
material mixture is applied to an old concrete. Of particular relevance are
differences in shrinkage, elastic modulus, and thermal movement.

The strength and integrity of the bond, which depends upon the physical and
chemical characteristics of the phases (substrate, repair material, and possible
bonding agent) and surface preparation, must be capable of withstanding the
stresses imposed on and the processes of deterioration associated with the concrete
structures. The bond is principally considered to be due to adhesion, although
mechanical interlock also makes a contribution. Simplistically, the repair may be
considered as a three-phase composite system: substrate, repair, and bond zone.
The local properties of the repair phase and the substrate in the bond zone (vicinity
of the interface plane) are usually different from those of existing concrete and
repair material.

In situ quality assurance and studies of bond property require test methods that
can both quantify a bond-strength parameter and identify a failure mode. There
have been numerous investigations of the bond of cementitious systems, and many
of these have been concerned with the development of a suitable test.

Bond strength of repair materials has been measured both in laboratory and
field tests. A brief overview of some of the test methods for determining the bond
of repair materials to existing concrete substrate is presented.

In an evaluation of repair materials with regard to selection criteria, a number
of adhesion/bond test methods were discussed, including direct tension, pull-off,
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direct shear, flexure, and slant shear (Rizzo and Sobelman 1989). A compilation
of studies of each method was summarized by Knab (1988).

Several test methods have been proposed to evaluate bond properties and the
performance of repair materials in general. Undoubtedly, tensile bond tests are
gaining in popularity because of their relative simplicity and the ability to meet the
requirements imposed on in situ bond-strength testing. Tensile test methods can be
divided into indirect and direct techniques. The following is intended to provide a
brief overview of the tensile test method used in the present study.

The pull-off test method is one of the tensile test methods. Unlike the other
bond test methods that are used for laboratory testing, the pull-off test can be used
in the field for evaluating the bond strength between repair material and parent
concrete in a structure. The first modern development of the pull-off concept for
strength testing of in situ concrete was undertaken independently in the United
Kingdom at Queens University, Belfast (Long and Murray 1984), and in Austria,
where it was called tear-off test (Stehno and Mall 1977). This led to “Limpet” test
equipment being commercially available in the United Kingdom. Further test
equipment has since been developed in several countries, leading to a wide range
of test configurations and procedures now being available.

A number of different pull-off tests have been reviewed by CIRIA (McLeish
1993), the majority involving cutting of the repair material interface before
loading. Mathey and Knab (1991) studied the bond strength of concrete overlays
by using in situ uniaxial tensile tests (pull-off tests with partial coring). Two
types of equipment were used in the tests—a hydraulic, uniaxial tensile test
apparatus, which was a modification of the ACI 503R field-test apparatus, and a
pneumatic apparatus developed at the National Institute of Standards and
Technology. In the pull-off tests, cores were drilled through the overlay concrete
and about 13 mm past the interface. A steel disk was then glued on the top
surface of the core with a high-strength, quick-setting epoxy.

Bungey and Mandandoust (1992) studied the factors influencing pull-off tests
in uniform concrete using experiments and numerical (finite element) analyses.
For tests where partial cores were drilled, the factors investigated were the elastic
modulus of the disk, the thickness/diameter ratio of the disk, and the depth of
partial coring. It was found that disks of 50 mm in diameter and 20 mm in
thickness and greater may be expected to give comparable results, whether made
of steel or aluminum, provided that the depth of coring was at least 20 mm.

An in situ test apparatus has been used to evaluate the bond of repair materials
to concrete surfaces at an angle, including horizontal and vertical surfaces
Peterson (1990).

In a study to evaluate spall repairs (Collins and Roper 1989), epoxy mortar
repairs to damaged concrete specimens were tested by the pull-off method. The
study concluded that the critical factor governing the successful repair was the
soundness of the repair-substrate interface.
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Laboratory experiments were conducted to investigate a number of important
factors that influence the test results and their scatter, including surface
preparation of existing concrete prior to overlay, depth of coring, deicing salt
application, and resistance to freezing and thawing. Test results show that pull-off
test methods effectively assess the durability of bond between new and old
concrete (Li, Frantz, and Stephens 1997).

Tensile pull-off tests are becoming increasingly favored in site quality
control/quality assurance testing, although little standardization has yet occurred.
There is no American Society for Testing and Materials (ASTM) standard for
in situ uniaxial tensile test methods. The British Standard BS 1881: Part 207
(1992) provides guidelines for the standardization approach for these tests.
According to this Standard, the centers of adjacent test positions should be at least
two core-hole diameters apart and one diameter from the edge. The thickness of
the metal disk should not be less than 40 percent of its diameter. Six valid tests
are usually sufficient in each location. The surfaces of the metal disk and the
concrete should be carefully prepared to produce a good bond. Before surface
preparation, a core with a diameter equal to that of the disk should be cut to the
necessary depth. A loading rate of 0.05 + 0.03 MPa/s should be used. Both the
maximum load and the mode of failure (in the concrete or at the interface) should
be recorded. The coefficient of variation of a set of measured values at one
location under site conditions is likely to be about 10 percent.

The Dutch Standard (1990) deals specifically with tests, including pull-off tests
with partial coring. ' -

A European Standard is currently being drafted by CEN TC 104. In this
method, a core is drilled through the repair phase to a certain depth (up to
25.4 mm (1 in.)) within the concrete substrate. A metallic disk is glued on the
upper surface of the core by means of a suitable epoxy adhesive and then pulled
by a tension device, which increases the load until failure, allowing the tensile
bond strength to be determined.

There are numerous devices available for direct tensile pull-off tests that vary
widely in sophistication and price (from less than $1,000 to $12,500). A notable
limitation of this type of test is relatively poor precision, as evidenced by relatively
large variation values associated with different types of apparatus. There is a
need for field performance data for different types of devices. }

The important issue associated with pull-off tests is the depth of the core
drilling into the existing concrete. It is suggested that the influence of the steel
dolly and reaction frame on test results depends on the depth of coring into the
substrate concrete. Ignoring the effect of drilling depth may be one of the main
causes of difficulties in reproducing and comparing test results.
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Objective and Scope

If the durability of repaired concrete structures is to be considered the main
goal of any repair project, then every effort should be made to ensure adequate
bonding between repair and existing structure. To that end, the objectives of this
study were as follows:

a. To investigate the effect of material properties and environmental conditions
on bond strength development for nine repair materials in the previous
study.

b. To evaluate three commercially available tensile pull-off testing apparatuses
for testing bond. The Germann Instruments Bond-Test kit, Proceq DYNA
Z15, and Hilti Test Meter 4 (Modified) by Structural Preservation Systems,
Inc., were evaluated by analyzing the magnitude and relative precision of the
pull-off strengths, modes of failure, and testing procedures.

c. To study the effect of the drilling depth into the substrate concrete on pull-
off test results by comparing theoretical finite element analysis of failure
zone stress distribution with measured test results and to recommend
optimum depth of core drilling into the existing substrate.
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2 Bond Testing

Materials

Tests to assess the in situ long-term adhesion between different repair materials
and the substrate concrete when epoxy bonding compound is used were carried out
on experimental repairs placed during a study to develop performance criteria for
selection of repair materials (Emmons et al. 1998). Testing was performed in
three areas located in south Florida, Illinois, and Arizona. Field studies were
performed on nine repair materials. The age of the repairs at the time of test was
about 3 years. -

The materials selected for bond studies, their generic types, and laboratory
properties as determined by Poston et al. (1998) are summarized in Table 1.

Each material was used in three experimental repair slabs at each testing site.
The bonding agent conforming to ASTM C 881 (ASTM 1995) was used to bond
the repair materials to existing concrete. The bond surface was kept dry when the
bonding agent was used.

Pull-Off Test Method and Equipment

The pull-off approach is currently gaining in popularity for testing the bond
strength of repairs to concrete when used in conjunction with partial coring. Test
equipment for this test has been developed in several countries including the
United Kingdom, the United States, Denmark, and Switzerland, leading to a wide
range of test configurations and procedures now available (McLeish 1993).

Although there are variations in the testing equipment and method of carrying
out the pull-off tests, the general procedures can be described as follows

(Figure 1):
a. Marking and preparing the test area.
b. Partial coring into the existing substrate perpendicular to the repair

surface. In some cases, partial coring is done around the attached loading
disc.

Chapter 2 Bond Testing
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Figure 1. Pull-off test principle

¢. Attaching the disc to the core, using an epoxy resin.

d.  Attaching a loading frame to the disc. A frame around the disc provides

the reaction force to the load.

e. Pulling the disc until the specimens fails.

The failure stress load and the mode of failure are recorded (Figure 2).

The following three types of testing equipment were selected and used in this

study.

Germann Instruments Bond Test

The equipment consists of four kits: preparation kit, pull machine kit, corecase
kit, and DSV kit (Figure 3).
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Figure 3. Germann Instruments testing equipment at the jobsite (Florida)

The testing with this equipment takes place as follows:

a. The tést surface is planed dry with the diamond surface planing wheel
attached to the suction plate (Figures 4 and 5). The corner knob is
removed with a grinder and the surface brushed free of all dust (Figure 6).

b. A 75-mm (3-in.) diameter and 30-mm (1.2-in.) thick steel disc is applied
with special fastsetting glue to the repair surface inside the suction plate by
means of the centering plate and pressed firmly against the surface with the
adjustable pliers (Figures 7 and 8).

c¢. The glue usually hardens in 2 to 5 min depending on ambient temperature.

d.  The corecase assembly is fitted around the disc and attached to the suction
plate. Drilling takes place to the required depth (Figures 9 and 10).

e. The bond-test hydraulic apparatus is connected to the steel disc resting
against the counterpressure frame and loaded by hand (Figure 11).
Loading takes place with a constant loading rate to rupture the drilled core
at the weakest location.

f The peak load is recorded to the nearest 0.1 kN (22.5 Ib) and transformed

to pull-off strength. The pull machine is equipped with an electronic
Microprocessor Gauge.
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Figure 5. Repair surface grinding
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According to the manufacturer, the Germann Instruments equipment allows the
automatic application of load at a steady rate of 0.02 MPa (2.9 psi) per second
with 0.2-percent accuracy. The peak value at failure is displayed, and test results
are stored in the gauge’s computer for subsequent printing with a personal
computer.

Figure 7. Application of adhesive
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Figure 9. Core drilling
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Proceq DYNA Z15 Pull-Off Tester

The apparatus is small, mobile (for use in any location), and has a mass of
3.5 kg (8 Ib). The maximum tensile force is 16 kN. The pressure gauge has direct
indication in kilonewtons and newtons per square millimetre. Scale graduations
are 0.10 kN and 0.10 N/mm®. The pressure gauge is equipped with a pointer that
comes to rest when the specimen fractures.

The standing adjustable legs of the device can be shortened or lengthened to
optimize the measurement to the test situation. This allows assurance that the
pull-off takes place at right angles. The tester has an easy-running crank drive
that allows for jerk-free increases in load. Testing with DYNA Z15 is shown in
Figure 12.

Figure 1; Testing with Praceq DY}\JA Z15

Drilling was accomplished with a Hilti core drilling machine using a 50-mm
(2-in.) internal diameter bit (Figure 13). A 50-mm (2-in.) diam, 25-mm (1-in.)
thick steel disc was secured to the surface of the core with a two-component epoxy
adhesive. A Hilti HIT C-100 adhesive cartridge with a hand dispenser was used.
The test disc was then pulled off with the DYNA pull-off tester (Figure 14).

Hilti Test Meter 4 (Modified)

The Hilti tester is a special apparatus originally designed to measure the pull-
out strength of embedded anchors. The apparatus was modified by Structural
Preservation Systems, Inc., to measure pull-off bond strengths (Figure 15).
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Figure 14. Partial-depth core (left) ready for testing with DYNA
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Figure 15. Testing with Hilti tester

The tester has a maximum tensioning force of 8.9 kN (2,000 1b), with gauge
scale graduation to 89 kN (20 Ib). The device is smali, lightweight, and mobile to
use in any location. It has an inconvenient hand-wheel drive that does not allow
for uniform load increase. It is not equipped with any devices to position it at a
right angle to the surface.

The drilling was carried out with a Hilti core drilling machine using a 50-mm
(2-in.) internal diameter bit (Figure 13).

A 50-mm (2-in.) diam, 8-mm (5/16-in.) thick steel disc was secured to the
surface of the core with a two-component epoxy adhesive. A Hilti HIT C-100
adhesive cartridge with a hand dispenser was used. The test disc was then pulled
off with the Hilti tester (Figure 16).

Pull-Off Test Results

In this test series, two 50-mm (2-in.) diam and one 75-mm (3-in.) diam partial
cores, 89 mm (3.5 in.) deep, were drilled 13 mm (0.5 in.) below the repair-
substrate interface in each experimental repair slab (Figure 17).

A complete listing of all the pull-off test data generated for nine repair
materials is shown in Appendix A (Tables Al, A2, and A3). The pull-off strength
data together with the respective mode of failure are presented for each of the three
testing sites. Each repair material was used in three experimental repair slabs at
each testing site (Figures 18-20). Pull-off strengths determined with three
different devices on each experimental repair are presented in the tables.
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Figure 16. Partial-depth core ready for testing with Hilti tester

The average test results for each material, mode of failure for each specimen,
and standard deviation and coefficient of variation (COV) between the three pull-
off tests for the same material performed by each testing device are presented in
Tables 2-10. Examples of different modes of failure are shown in Figures 21-24.

Pull-off strength data obtained with different devices on the same experimental
repairs and with the same device on individual repairs with the same material
frequently exhibited wide variations for the same application and exposure
conditions. Material No. 6 exhibited the highest average strength of 3.4 MPa
(499 psi) when tested in Florida with Germann Instruments equipment. Material
No. 9 exhibited the lowest strength of 0.4 MPa (60 psi) when tested in Florida
with Germann Instruments equipment and the Hilti tester.

The coefficient of variation between specimens of the same material measured
with the same device varied from a minimum of less than 3 percent for Material
No. 4 tested with the Hilti tester in Illinois to a maximum of more than 60 percent
for Material No. 1 tested with Germann Instruments equipment in Illinois.

An analysis of the modes of failure demonstrates that in the 239 tests performed
in this series, 98 failures (41 percent) occurred in the concrete substrate,
61 failures (26 percent) occurred at the repair-substrate interface, 49 failures
(20 percent) occurred in the repair material, and 31 failures (13 percent) occurred
at the steel disc-repair interface. Of the 31 failures at the steel disc-repair
interface, 22 failures occurred within the epoxy adhesive at bond strengths in
excess of 1.4 MPa (200 psi).

Chapter 2 Bond Testing
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Figure 19. Hlinois test site
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Figure 20. Arizona test site

Table 2
Pull-Off Strengths Determined with Germann Instruments Equipment (Florida)
Puli-Off Strength, psi Failure Mode
Material Repair Specimen Standard Coefficient Repair Specimen
Number A B C Average Deviation of Variation (COV) A B C

1 314 424 240 326 926 28.4 0] S |0
2 233 259 363 285 68.8 241 0] ©® |0
3 262 295 272 276 16.9 6.1 (R) R) | (R)
4 505 - 479 492 184 37 (S) - (S)
6 538 496 463 499 376 75 S S) | (8)
8 269 198 305 257 54.4 21.2 R) 0] R)
9 29 75 75 60 266 45 ) ) )]
10 259 308 327 298 351 11.8 (s) 0] (S)
11 421 379 379 393 24.2 6.2 (R) () (1)

Failure at:

() Interface between repair and substrate

(S) Substrate

(R) Repair material

(E) Disc-repair interface (epoxy)

Note: 1,000 psi = 6.885 MPa; COV = (Standard deviation/Average) x 100
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Table 3
Pull-Off Strengths Determined with Proceq DYNA Z15 Tester (Florida)
Pull-Off Strength, psi Failure Mode

Material Repair Specimen Standard Coefficient Repair Specimen

Number A B C Average Deviation of Variation (COV) A B C
1 254 281 225 253 28.0 1114 0] 0] 0]
2 295 261 331 296 35.0 11.8 (S) 0] (]
3 240 254 225 240 145 6.1 R) ®R) | R)
4 451 429 422 434 15.1 35 (S) (s) (S)
6 451 415 429 432 18.1 42 (8) () (S)
8 225 211 261 232 258 11.1 ()} ()} 0]
9 63 91 77 77 14.0 18.2 0] 0] 0]
10 274 254 274 267 115 43 S) (S) (S)
1 429 379 408 405 251 6.2 (s) o 0]

Failure at:

(1) Interface between repair and substrate

(S) Substrate

(S) Repair material

(E) Disc-repair interface (epoxy)

Note: 1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100

Table 4
Pull-Off Strengths Determined with Modified Hilti Tester 4 (Florida)
Pull-Off Strength, psi Failure Mode

Material Repair Specimen Standard Coefficient Repair Specimen

Number A B [ Average Deviation of Variation (COV) A B C
1 217 248 204 223 26 10.1 (R) R | R
2 315 306 350 324 232 72 0} (S) (S)
3 178 191 172 180 97 54 (R) (R) (R)
4 382 350 350 361 18.5 51 (S) ()} (S)
6 245 239 271 252 . 17.0 6.8 S) (S) S)
8 242 271 255 256 145 57 (R) (R) (S)
9 48 61 70 60 111 18.5 0] 0] 0]
10 248 229 271 249 210 8.4 (S) (S) (S)
11 350 309 318 326 215 6.6 o (S) (S)

Failure at:

(1) interface between repair and substrate

(S) Substrate

(T) Repair material

(E) Disc-repair interface (epoxy)

Note: 1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100

Chapter 2 Bond Testing

21



22

Table §
Pull-Off Strengths Determined with Germann Instruments Equipment (lllinois)
Pull-Off Strength, psi Failure Mode
Material Repair Specimen Standard Coefficient Repair Specimen
Number A B C Average Deviation of Variation (COV) A B C
1 198 84 343 208 129.8 623 R [ O 0}
2 483 402 398 428 48.0 11.2 (S) (S) (S)
3 237 237 295 256 335 131 R | R | R
4 473 463 399 445 405 9.1 (S) (S) (S)
6 399 230 424 351 1055 30.1 (S) (E) (S)
8 256 198 253 236 327 13.9 R | (R)
9 120 392 408 307 161.9° 528 R [(R) |
10 327 327 217 290 635 219 (S) (S) S)
11 M1 405 262 359 84.3 235 U] )] R)
Failure at:
(I) interface between repair and substrate
(S) Substrate
(R) Repair material
(E) Disk-repair interface (epoxy)
Note: 1,000 psi = 6.885 MPa; COV = (Standard deviation/Average) x 100

Table 6
Pull-Off Strengths Determined with Proceq DYNA 215 Tester (lllinois)
Pull-Off Strength, psi Failure Mode
Material Repair Specimen Standard Coefficient Repair Specimen
Number A B (o] Average Deviation of Variation (COV) A B c
1 253 58* 218 236" 24.4* 10.4* (S) 0] 0]
2 355 363 276 331 48.1 145 (S) (S) (S)
3 155 260 203 206 526 255 R) | (R) (R)
4 463 355 405 408 54.0 133 R) | (S) (S)
6 361 73* 405 383** 29.9* 7.8* (S) (S) (S)
8 361 377 340 359 18.6 52 0] (E) ()]
9 253 31 283 282 29.0 103 R | (R) (S)
10 218 290 347 285 64.6 227 (S) (S) (S)
11 435 419 384 413 26.1 6.3 RY |(RY |
Failure at:
() Interface between repair and substrate
(S) Substrate
(R) Repair material
(E) Disk-repair interface (epoxy)
Note: * Disregard No. 1B because bond strength was significantly lower than other specimens.
= Disregard No. 6B because of significantly lower strength attributed to large voids along the failure plane.
1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100
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Table 7
Pull-Off Strengths Determined with Modified Hilti Tester 4 (lllinois)

Pull-Off Strength, psi Failure Mode
Material Repair Specimen Standard Coefficient Repair Specimen
Number A B C Average Deviation of Variation (COV) A B Cc
1 204 - 185 195 134 6.9 (E) - R)
2 191 19N 172 185 11.0 59 (E) (E) | (B)
3 153 102 127 127 255 200 R | O ()
4 255 242 248 248 6.5 26 (E) S (8
6 191 166 223 193 28.6 148 () S) | (®)
8 140 159 140 146 11.0 75 RY |R) | R
9 248 197 185 210 335 15.9 (E) (E) | (R
10 255 191 255 234 370 15.8 (€) S | E
11 159 - 210 185 36.1 195 S |- S)
Failure at:

() Interface between repair and substrate

(S) Substrate

(R) Repair material

(E) Disk-repair interface (epoxy)

Note: 1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100

Table 8
Pull-Off Strengths Determined with Germann Instruments Equipment (Arizona)
Pull-Off Strength, psi Failure Mode
Material Repair Specimen Standard Coefficient: Repair Specimen
Number A B C Average Deviation of Variation (COV) A B o4
1 - 217 | 309 | 263 65.1 247 -t o
2 324 | 405 | 275 335 65.7 196 € | o
3 204 | 314 | 301 273 60.1 220 0} ® 1O
4 156 84 149 130 39.7 306 E 1o [0)
6 13 | 311 217 214 99.0 46.4 ® | |
8 282 | 334 | 275 297 322 10.9 ® e |®
9 211 272 353 279 71.2 256 M ()] R)
10 308 | 138" | 278 294 20.6* 7.0 © e | ®
1 292 334 330 319 237 73 (S) (S) (S)
Failure at:

(1) Interface between repair and substrate

(S) Substrate

(R) Repair material

(E) Disk-repair interface (epoxy)

Note: * Disregard No. 10B because bond strength was significantly lower than other specimens.
1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100 .
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Table 9
Pull-Off Strengths Determined with Proceq DYNA Z15 (Arizona)
Pull-Off Strength, psi Failure Mode

Material Repair Specimen Standard Coefficient Repair Specimen

Number A B C Average Deviation of Variation (COV) A B c
1 247 334 218 266 60.4 27 (E) O {8
2 406 363 421 397 30.1 76 (S) (S) | (8)
3 174 174 232 193 335 17.3 (1) (R) | (R)
4 261 290 377 309 60.4 195 (S) (S) | (8)
6 276 232 290 266 30.3 1.4 (S) 0 |(S)
8 261 203 253 239 314 13.2 0] o 1o
9 377 406 363 382 219 57 (S) S|
10 290 174 261 242 60.4 250 (S) (S) | (8)
1 290 290 377 319 50.2 15.7 (S) (S) | (S)

Failure at:

() Interface between repair and substrate

(S) Substrate

(R) Repair material

(E) Disk-repair interface (epoxy)

Note: 1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100

Table 10

Pull-Off Strengths Determined with Modified Hilti Tester 4 (Arizona)

Pull-Off Strength, psi Failure Mode
Material Repair Specimen Standard Coefficient Repair Specimen
Number A B C Average Deviation of Variation (COV) A B C
1 159 159 191 170 185 10.9 (E)y | (E) | (®)
2 350 | 287 | 318 318 315 9.9 ® |[®|®
3 159 | 175 | 213 182 27.7 15.2 ® l®lo
4 287 223 223 244 37.0 15.1 (E) (E) | (B)
6 178 64* 207 192* 20.2* 10.5* E 1O Jo
8 191 197 223 204 17.0 8.4 U] R) | R)
9 255 255 287 266 185 7.0 S |0 | E
10 191 210 191 197 11.0 56 S) | E)|E
11 247 247 287 260 231 8.9 S) ()| (S
Failure at:

(1) Interface between repair and substrate

(S) Substrate

(R) Repair material

(E) Disk-repair interface (epoxy)
Note: * Disregard No. 6B because bond strength was significantly lower than other specimens.
1,000 psi = 6.895 MPa; COV = (Standard deviation/Average) x 100
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Two of the materials exhibited a relatively high number of failures in the repair.
In 27 tests on Material No. 3, 21 failures (78 percent) occurred in the repair
material. All failures in the repair material occurred at stresses significantly lower
than the material’s tensile strength of 3.5 MPa (513 psi) determined in laboratory
tests. In 27 tests on Material No. 8, 13 failures (48 percent) occurred in the repair
material. These failures in the repair material occurred at stresses significantly
higher than the material’s tensile strength of 1.5 MPa (215 psi) determined in
laboratory tests.

Most of the materials exhibited a range of failure modes from full bond
(adhesive) failure to full material failure (cohesive), be it in the concrete substrate
or in the repair material. Three of the materials exhibited consistent failure modes
when tested in Florida. In each test, Material Nos. 3, 6, and 9 failed in the repair
material, concrete substrate, and the repair-substrate interface, respectively. With
the exception of one test for each material, all failures for Material Nos. 4 and 10
were within the concrete substrate.

Material No. 2 exhibited consistent failures in the concrete substrate when
tested with two types of equipment in Illinois. In contrast, all failures occurred at
the steel disc-repair interface in tests with the Hilti tester. With the exception of
two tests for each material, all failures for Material Nos. 4 and 6 were within the
concrete substrate. Material No. 3 exhibited failure within the repair material in
seven of nine Illinois tests.

Two materials exhibited the most consistent failure modes when tested in
Arizona. The failure mode for Materials Nos. 10 and 11 was within the concrete
substrate in seven of nine, and eight of nine tests, respectively.

Average pull-off strengths for the different failure modes are shown in
Table 11.

Table 11
Comparison of Pull-Off Strengths with Different Failure Modes

Average Strength, MPa (psi)
Failure at Failure in Concrete Failure in Repair
Test Site Interface Substrate Material
Florida 1.57 (228) 2.34 (339) 1.73 (251)
lllinois 2.14(310) 2.37 (344) 1.74 (253)
Arizona 1.62 (235) 2.10 (305) 1.61 (234)
Overall average 1.78 (258) 2.27 (329) 1.70 (246)

The analysis of the data presented in Table 11 indicates (a) that the overall
mean tensile pull-off strength of the concrete substrate and bond at the interface is
consistent across all test series and (b) that the overall mean failure strength of
repair material is inconsistent with the materials’ tensile strength, as tested in the
laboratory. This can be explained by the fact that pull-off tensile strength depends
not only on material properties but also on in situ fabrication techniques.
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The overall average pull-off strength for each material as an average of
strengths measured by three testing devices in Florida, Illinois, and Arizona is
presented in Tables 12-14, and the overall summary is presented in Table 15.
Since the Germann Instrument’s pull-off apparatus is assumed to be the most
precise, the bond strengths determined with DYNA Z15 and Hilti are compared
with the results of tests with the Germann Instruments apparatus.

Table 12
Average Pull-Off Strength (Florida)
_ Average Pull-Off Strength, psi Strength Ratio Average Pull-
Material Germann Germann Germann | Off Strength,
Number | Instruments | Proceq Hilti Proceq Hilti psi
1 326 253 223 1.29 1.46 267
2 285 296 324 0.96 0.88 302
3 276 240 180 1.15 1.53 232
4 492 434 361 1.14 1.36 429
6 499 432 252 1.16 1.98 394
8 257 232 256 1.11 1.00 248
9 60 7 60 0.78 1.00 66
10 298 267 249 1.42 1.20 271
1 393 405 326 0.97 1.24 375
Average 1.08 1.29

Note: 1,000 psi = 6.895 MPa.

Table 13

Average Pull-off Strength (lllinois

Average Pull-Off Strength, psi Strength Ratio

Material Germann Germann Germann | Average Pull-Off

Number | instruments | Proceq | Hilti Proceq Hilti Strength, psi
1 208 236 195 0.88 1.07 213
2 428 331 185 1.29 231 315
3 256 206 127 1.24 2.01 196
4 445 408 248 1.08 1.79 367
6 351 383 193 0.92 1.82 309
8 236 359 146 0.66 1.62 247
9 307 282 210 1.09 1.46 266
10 290 285 234 1.02 1.24 270
1" 359 413 185 0.87 1.96 319

Average 1.01 1.70
Note: 1,000 psi = 6.895 MPa.
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Table 14
Average Pull-Off Strength (Arizona)

Average Pull-Off Strength, psi Strength Ratio
Material Germann Germann Germann | Average Puli-Off
Number | |nstruments | Proceq Hilti Proceq Hilti Strength, psi
1 263 266 170 0.99 1.55 233
335 397 318 0.84 1.05 350
3 273 193 182 1.41 1.50 216
4 130 309 244 0.42 053 228
6 214 266 192 0.80 1.1 224
8 297 239 204 1.24 1.46 247
9 279 382 266 0.73 1.0 309
10 204 242 197 121 1.49 244
11 319 319 260 1.00 1.23 299
Average 0.96 1.22
Note: 1,000 psi = 6.895 MPa.
Table 15
Summary of Pull-Off Strength of Experimental Repairs
Average Pull-Off Strength MPa, psi
~ Material
Testing
Site 1 2 3 4 6 8 9 10 1"
Florida 1.85 207 1.60 2.96 272 1.71 0.46* 1.87 2.58
(267) | (302) | (232) | (429) | (394) | (248) | (66) | (271) | (379)
Illinois 1.47 217 1.35 245 213 1.70 1.83 1.86 2.20
(213) | 315) | (196) | (367) | (309) | (247) | (266) | (270) | (319)
Arizona 1.61 241 1.49 157 1.54 1.70 213 1.68 2.06
(233) | (350) | (216) | (228) (24) | (247) | (309) | (244) | (299)
Overall 164 | 222 | 148 233 213 1.70 | 199 | 1.81 228
(3 sites) (238) | (322) | (215) | (341) (308) | (247) | (288) | (262) | (331)
CoV, % 115 77 84 302 278 0.2 10.6 58 11.9

Note: * Disregard because the results are significantly different from the others.

The effect of the environment on the pull-off strength of experimental repairs is

presented in Figure 25.

The analysis of the test results indicates that exposure conditions did not affect
the failure mode, nor did the exposure conditions affect the pull-off strength which
is to be expected, because the majority of failures occurred in the concrete

substrate.

As can be seen from the overall analysis of pull-off tensile strength results, the
test data were highly variable; however, the average pull-off strength data
presented in Table 15 shows that trends in consistency can be discussed with

confidence.
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The average pull-off strengths for all test sites ranged from 1.5 to 2.3 MPa
(215 to 341 psi) with an overall average strength of 2.0 MPa (284 psi). Four
materials (Nos. 2, 4, 6, 11) exhibited an average tensile bond strength in excess of
2.1 MPa (300 psi).

Polymer-modified cementitious materials had an average pull-off strength of
1.8 MPa (260 psi) compared with 2.1 MPa (304 psi) for cementitious repair
materials. One possible explanation for the stronger bond of cementitious
materials is to assume that the surfaces of the substrate concrete and cementitious
repair material in contact with it were strengthened by penetration of epoxy into

_ the pores of the substrate and into the fresh repair material. This penetration

would strengthen both materials along their interface. In contrast, the polymer-
modified repair materials probably did not allow the epoxy to penetrate into its
pore system to the same degree. Another possible factor is that compaction
problems existed when dealing with some of the polymer-modified cementitious
materials.

It is generally agreed that the magnitude and rate of strength gain in concrete
and other cementitious materials usually do not apply to the interface bond
strength; high strength in the repair material does not necessarily indicate a high
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bond strength. However, results of this study indicate that there was a general
correlation between higher compressive and flexural strengths, as determined in
the laboratory, and increased pull-off strengths in field tests (Figure 26). In
contrast, the overall trend was for decreased pull-off strengths with increased
tensile strength. Excluding one material (No. 3), there was a significant
correlation between the results of laboratory tensile tests and field pull-off tests

(Figure 27).

Results of the tensile pull-off tests should be viewed as an indication of the
relative bond strength between the various repair materials and the substrate
concrete. Obviously, the occurrence of mixed failure modes instead of
100 percent bond failures makes the determination of the true bond strength
impossible. In the case of mixed failure modes, an overall average of the test
results tends to underestimate the actual bond strength of the repair system.
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Figure 26. Correlation between results of laboratory strength tests and field pull-off tests
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3 Relative Performance
of Three Testing Devices

In addition to developing data on the bond properties for nine repair materials,
the scope of the study required the determination of which testing equipment
produced the most reliable, most consistent results-as well as which equipment is
the most practical for in situ use. Since one of the specified tasks in this study
was to recommend a reliable and easy-to-use field device for determining pull-off
strength as part of the quality assurance program, the individual devices—
Germann Instruments (GI) Bond Test, Proceq DYNA Z15, and Hilti Tester 4
(Modified)—were compared against each other on the same repair materials used
for the experimental repair field slabs. Data consistency, ease of use, and other
details on each test device are discussed in this chapter.

The analysis of the COV of three repair specimens for each repair material
presented in Tables 16-18 shows that it varies: for the GI from 3.7 to
62.3 percent, for Proceq from 3.5 to 25.5 percent, and for Hilti from 2.6 to
20.0 percent. The smallest COV between specimens of the same material as
measured by the Hilti device can be explained by the assumption that the Hilti
tester was not sensitive to differences in the pull-off strength. It should be noted
that it was considered inappropriate to use the standard deviation to analyze the
precision because of the large differences in the averages and standard deviations
of the different test equipment for a given repair material. It was considered to be
more appropriate to use COV as a measure of relative precision, because COV is
a measure of precision adjusted for the magnitude of average.

The average pull-off strength for the repair materials as measured by each
testing device in Florida, Illinois, and Arizona is presented in Figures 28-30. The
summary of the performance analysis for each testing device is presented in
Table 19 and Figure 31.

The Germann Instruments (GI) testing equipment is considered to be the most
reliable of the three devices investigated because of its higher overall average
failure pull-off stress and better relative precision (Table 19). It is believed that
the higher average failure stress is the result of less eccentricity being introduced
by this apparatus as compared with other test apparatus. The better relative
precision (lowest overall average COV) is attributed to the controlled loading rate.
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Table 16
Summary of Pull-Off Test Data (Florida)

Average Pull-Off Strength, MPa (psi) Standard Deviation, MPa (psi) Coefficient of Variation, %
Germann Hilti Germann Hilti Germann Proceq |Hilti
Instruments | Proceq Tester 4 instruments | Proceq Tester 4 Instruments |DYNA |Tester4
Material | Bond-Test DYNA Z15 | (Modified) |Bond-Test DYNA Z15 {Modified) |Bond-Test Z15 {Modified)
1 2.25 (326) 1.74 (253) |1.54(223) | 0.64(92.6) 0.19 (28.0) |0.16(22.6) 284 111 10.1
2 1.97 (285) 2.04(296) |223(324) | 0.47(68.8) 0.24 (35.0) |0.16(23.2) 241 11.8 7.2
3 1.90 (276) 1.65(240) {1.24(180) | 0.12(16.9) 0.10(145) | 0.07(9.7) 6.1 6.1 54
4 3.39 (492) 2.99 (434) |249(361) | 0.13(18.9) 0.10(15.1) }10.13(18.5) 37 35 5.1
6 3.44 (499) 2.98(432) |1.74(252) | 0.26(37.6) 0.12(18.1) 10.12(17.0) 75 42 6.8
8 177(257) |1.60(232) |1.77(256) | 0.38(54.4) | 0.18(25.8) |0.10(14.5) 21.2 111 57
9 0.41 (60) 0.53 (77) 0.41 (60) 0.18 (26.6) 0.10(14.0) |0.08 (11.1) 445 18.2 185
10 2.05 (298) 1.84(267) |1.72(249) | 0.24(35.1) 0.08 (11.5) |0.14(21.0) 11.8 43 8.4
11 2.71 (393) 2.79(405) |2.25(326) | 0.17(24.2) 0.17(25.1) |0.15(21.5) 6.2 6.2 6.6
Average 0.29 (41.6) 0.14(20.8) {0.12(17.7) 17.1 85 8.2
Table 17

Summary of Pull-Off Test Data (lllinois)

Average Pull-Off Strength, MPa (psi) Standard Deviation, MPa (psi) Coefficient of Variation, %
Germann Hilti Germann Proceq Hilti Germann Proceq | Hilti
instruments | Proceq Tester4 | Instruments | DYNA Tester 4 Instruments | DYNA | Tester4

Material | Bond-Test [DYNA 215 | (Modified) | Bond-Test {Z15 (Modified) | Bond-Test | Z15 (Modified)
1 1.43 (208) 1.63(236) | 1.34(195) | 0.89(129.8) | 0.17(24.4) | 0.09 (13.4) 623 104 6.9
2 2.95 (428) 228(331) |1.27(185) | 0.33(48.0) | 0.33(48.1) | 0.08(11.0) 11.2 145 59
3 1.76 (256) 1.42(206) | 0.88(127) | 0.23(33.5) | 0.36(52.6) | 0.18(25.5) 131 255 20.0
4 3.07 (445) 2.81(408) | 1.71(248) | 0.28(405) | 0.37(54.0) | 0.04 (6.5) 9.1 13.3 26
6 2.42 (351) 2.64(383) | 1.33(193) | 0.73(105.5) | 0.21 (29.9) | 0.20 (28.6) 30.1 78 148
8 1.63 (236) 2.48(359) | 1.01(146) | 0.23(327) | 0.13(18.6) | 0.08 (11.0) 13.8 52 75
9 2.11 (307) 1.95(282) |1.45(210) | 1.12(161.9) | 0.20(29.0) | 0.23(33.7) 528 103 15.9

10 2.00 (280) 1.96(285) | 1.61(234) | 0.44(63.5 | 0.45(64.6) | 0.26(37.0) 218 27 15.8
11 2.48 (359) 2.85(413) | 1.27(185) | 0.58(84.3) | 0.18(26.1) | 0.25(36.1) 235 6.3 1985
Average 054 (77.7) | 0.27 (38.6) | 0.16 (22.5) 26.4 129 121
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Table 18
Summary of Pull-Off Test Data (Arizona)

Average Pull-Off Strength, MPa {psi)

Standard Deviation, MPa (psi)

Coefficient of Variation, %

Germann Proceq Hilti Germann Proceq Hilti Germann Proceq | Hilti
| Instruments | DYNA Tester 4 instruments | DYNA Tester 4 instruments | DYNA Tester 4
Material | Bond-Test Z15 (Modified) | Bond-Test Z15 (Modified) | Bond-Test Z15 (Modified)
1 1.81 (263) 1.83(266) | 1.17 (170) 0.45 (65.1) 0.42(60.4) | 0.13(18.5) 247 27 10.9
2 2.31 (335) 2.74(397) | 2.19(318) 0.45 (65.7) 0.21 (30.1) | 0.22(31.5) 19.6 76 9.9
3 1.88 (273) 1.33(193) | 1.25(182) 0.42 (60.1) 0.23(33.5) | 0.19(27.7) 220 173 15.2
4 0.90 (130) 2.13(309) | 1.68 (244) 0.27 (38.7) 0.42(60.4) | 0.26 (37.0) 30.6 195 15.1
6 1.48 (214) 1.83(266) | 1.32(192) 0.68 (99.0) 0.21 (30.3) | 0.14(20.2) 46.4 114 105
8 2.05 (297) 1.65(239) | 1.41(204) 0.22 (322 0.22(31.4) | 0.12(17.0) 109 13.2 84
9 1.92 (279) 2.63(382) | 1.83(266) 0.48 (71.2) 0.16(21.9) | 0.15(18.5) 256 57 7.0
10 2.03 (294) 1.67(242) | 1.36(197) 0.64 (20.6) 0.42(60.4) | 0.07 (11.0) 7.0 25.0 56
11 2.20 (319) 2.20 (319) | 1.79 (260) 0.16 (23.7) 0.35(50.2) | 0.15(23.1) 73 16.7 8.9
Average 0.37 (53.0) 0.29 (42.1) | 0.16 (22.7) 21.6 15.3 10.2
4 ~
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Figure 28. Effect of apparatus on pull-off strength of experimental repairs in Florida
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Figure 29. Effect of apparatus on pull-off strength of experimental repairs in lllinois
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Figure 30. Effect of apparatus on pull-off strength of experimental repairs in Arizona

38

Chapter 3 Relative Performance of the Three Testing Devices



39

"S18110 3y} uey} Jamol Ajuesyjubis ale s)nsai ayj asnesaq piebaisiq ..
‘001 X (aBeiaay/uojjelrap piepuels) = (AOD) UORBUEA JO JUSIOYJ80D
"BdN 6689 = Isd 000'L 810N
(14 82T 9l Lig 14 oze abelaAy j[eIoAO
Z s | ooz | s8L | 9z2e |. ¥ 6/€ | 61 | €W | sov ol lSe | 6l€ | 656 | €6E 1}
rA 2z | 161 | veT | evT 8 so9z | eve | s8T | 2192 ! v6z | v62 | 062 | 862 ol
L1 8eZ | 992 | 012 | w09 1z 2ec | T8 | 28T | well L €6 | 6.2 | L0€ | «09 6
Z 0z | voz | oyl | 9sT 9z LiT § 68 | 65 | TeT 4} g9z | 262 | 9ez | LSt 8
9l ziz | 264 | €6l | 2sz 124 09c | 99z | €8¢ | 2Zev ov sse | vz | 1se | esp 9
€2 ez | vve | svz | 1oe L} pec | 60 | 8oy | vev L 89y | »0EL | StP | Z6b 1%
6l €9l | 281 | Z21 | o81 1 €1z | e61 | 902 | ove ¥ 69z | €22 | 9sz | 9.2 €
62 g/z | sie | s81 | veze Sl ive | 268 | 1€ | 962 1z 6ve | sec | sz | s82 rA
14 961 | 021 | s6l | €22 9 zsc | 99z | 9ez | €5z 74 98z | €9z | soz | 9z¢ I m
%‘ANOD |BAy | Zv | B L) %‘AN03 | Bay | zv | W 4 %‘NO0D | Bavy | zv k| g’ *oN ..m
leuae o
isd ‘yibuans jo-lind 1sd ‘yibuans yo-find 1sd ‘ybuans Jo-iind Jedoy m
(rayipowy) ¥ 193s0L BItH §1Z YNAQ badoid JS3L puog SUIWNLSU| UUBULBD m
agiaaq 131 JO-lind m
$991A9(] Buljsa] aauy] 10j SanNjeA UOJBLEA JO JUSIDNS0D puk Yibuasg abelaay jo Aewwung m
=4
61 ®|qel m
=
@
.
2
5
@
o
[y ]
]
8
(3]




B German Instruments Bond-Test
7es Proceq Dyna 215 1 500
W Hilti Tester 4 (Modified)
3|
- 400
> : 3 H £
£ a2 g 5 »3 <)
g 4 & i b 300 §
g 2 i : il £
& : Ny
& 1 ; E
Q U3 Q
& 4200 &
-
4 100
3 4 6 8 9 10 11

MATERIAL

Figure 31. Average of pull-off strengths of experimental repairs tested by different apparatuses at three
testing sites

Because the GI test results are relatively more precise and consistent, these test
results are used as standards against which the other devices are compared
(strength ratios in Tables 12-14).

The pull-off test results summarized in Table 19 show that the overall average
COV for the GI equipment was 14 percent. Excluding Material No. 6, the
maximum COV was 22 percent and the overall average was 10.5 percent. In
comparison, the overall average COV for the Proceq and Hilti equipment was
16 and 20 percent, respectively. The maximum COV for the Proceq and Hilti
equipment was 26 and 29 percent, respectively. The analysis of COV values
indicates that the results obtained with all three testing devices can be described as
variable and very variable.

The analysis based on pull-off strength and COV of repairs with nine materials
as tested by the three devices demonstrated the following:

a. The results obtained with the Germann Instruments test equipment are
judged to be comparable with the Proceq device because of the following:
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(1) The average pull-off strengths were not substantially different from a
practical viewpoint. Overall for the three test sites, the pull-off
strengths obtained with the GI equipment averaged only 1.02 times
higher than strengths obtained with the Proceq equipment (Tables 12-
14). With three exceptions (Material No. 8 in Illinois, and Material
Nos. 3 and 4 in Arizona), the strength ratios were within the range of
0.73 t0 1.29.

(2) Overall, the average COV was essentially the same for the GI and
Proceq equipment, 14 and 16 percent, respectively. Thus the
precision (or absence of precision) of the two devices can be
considered comparable.

b.  The results obtained with the Hilti tester are judged to be incomparable
with the GI equipment because the average pull-off strengths were
substantially different.

(1) Overall for the three test sites, the pull-off strengths obtained with the
GI equipment averaged 1.40 times higher than strengths obtained with
the Hilti equipment (Tables 12-14). With only two exceptions
(Material No. 2 in Florida and Material No. 4 in Arizona), average
pull-off strengths obtained with the GI equipment were equal to or
higher than strengths obtained with the Hilti equipment with a
maximum ratio of 2.31.

(2) The COV for the Hilti equipment ranged from 12 to 29 percent with
an overall average of 20 percent. In comparison, the overall average
COV for the GI equipment was 14 percent. Excluding Material
No. 6, the maximum COV for the GI equipment was 22 percent and
the overall average was 10.5 percent. Based on these substantial
differences, the precision of these two devices is considered to be
incomparable.

Controlling the eccentricity of the applied load in a core pull-off test is one of
the critical factors affecting the test results. Load eccentricity depends on the
normality of the drilling relative to the substrate and accuracy of positioning the
metal disc on top of the core. Load eccentricity leads to a very substantial
increase in maximum stress at the core periphery. The study demonstrated that
only Germann Instrument equipment allows for properly controlled normality of
the drilling to the repair surface and positioning of the steel disc. However, the
difficulty still lies in keeping the core’s substrate-repair interface perpendicular to
the tensile force.

The rate of loading is another critical factor in pull-off testing affecting test
results. Higher rates generally result in higher failure loads. The Germann
Instruments pull-off tester has an automatically controlled steady load application
rate of 0.02 MPa per second, which compares with 0.05 £ 0.01 MPa per second
recommended by the European standard.
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No information has been found on the rate of loading for the Proceq testing
device. The generally good correlation between Proceq and Germann Instruments
would indicate that Proceq also has a steady rate of similar magnitude. The Hilti
tester has no capacity for controlling load application, and the results are, to a
large degree, dependent on the operator. Also, it was difficult to accurately
determine the ultimate applied load because of the small size of the gauge and
absence of any needle indicator for maximum load. Site testing clearly
demonstrated certain difficulties of conducting properly controlled tests with the
Hilti tester.

Another issue concerning the different testers is their ease of in situ use. It
should be concluded that ease of use, as a parameter for comparing the different
bond test equipment, is a relative term since none of the equipment and procedures
involved are particularly easy to use. However, the Proceq and Hilti equipment
were much easier to use compared with that of Germann Instruments.

Germann Instruments Bond-Test equipment consists of four cases with
different kits consisting of a variety of features, which makes it very questionable
as to the practicality of its day-to-day use in the field. The high cost of the
equipment is another issue that limits its use by contractors for quality control
purposes. However, it has unquestionable advantages when used by a specialized
testing agency and operated by a specialized technician.

Chapter 3 Relative Performance of the Three Testing Devices



4 Influence of Partial Core
Depth on Results of Pull-Off
Bond Strength |

The pull-off test method, when used to test the bond strength between repair
material and substrate concrete, is subject to several important practical aspects
that can significantly influence the accuracy of the test results. These factors
include stiffness of the metal disc used for testing, rate of load increase, modulus
of elasticity of repair material and substrate concrete, and drilling depth of the
partial core into the substrate concrete. Theoretical studies and field experimental
tests were conducted to examine the influence of the depth of partial core drilling
into the substrate on the results of the pull-off tests and to develop recommenda-
tions to increase the accuracy and consistency of testing. Three repair materials
(No. 2, 6, and 10) were selected for this part of the testing program.

Field Experimental Program

For this test series, the only variable for each repair system was the depth of the
core drilling below the bond line. Germann Instruments Bond-Test equipment was
used for drilling and testing. Three experimental repairs were used for each
material, and three 75-mm (3-in.) diam partial depth cores were drilled below the
bond interface in each specimen: 13 mm (0.5 in.), 25 mm (1 in.), and 38 mm
(1.05 in.) into the substrate concrete.

The experimental determination of pull-off strengths was conducted on field
repairs located in Phoenix, AZ. The ultimate tensile stresses and mode of failure
are summarized in Table 20. Partially cored pull-off strength values were
correlated against theoretical values.

Theoretical Studies

The theoretical analysis was based on the idealized assumption of a linear
isotropic solid model. The 27 partial cores tested were modeled in finite elements
using STAAD III Software. All specimens were modeled in a two-dimensional,
6.35-mm (0.25-in.) thick slice along the specimen (Figure 32). The model consists

Chapter 4 Influence of Partial Core on Results of Pull-off Bond Strength
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of 1,125 joints and 1,028 elements. The differences in partial coring depth
(d) were modeled by adding or removing elements.

The values for modulus of elasticity of the repair materials given in Table 21
were obtained from the results of laboratory tests reported by Poston et al. (1998).
The moduli of elasticity of the concrete in the substrate and steel disc are also
presented in Table 21. The properties of the adhesive have not been included in
the model because of the small adhesive thickness and negligible influence on the
stress distribution.

Table 21
Materials Moduli of Elasticity Used in Analysis
Modulus of Elasticity
Material
No. MPa psi
2 22x10° 32x10°
6 36.5x10° 53x10°
10 29x10° 42x10°
Concrete Substrate 25x10° 365x10°
Stee! Disc 200x 10° 29 x 10°

The applied tensile load was assumed to be a concentrated axial force at the top
of the steel disc. The magnitude of the force used in each model was that recorded
at failure in experimental field testing. Figures 33-41 represent the stress
distributions within the specimens of the experimental repairs based on the finite-
element analysis. The stress contours shown in these figures demonstrate the
nonuniformity of stresses across the bottom sections of the partial cores.

Typical stress distribution across the core is summarized in Figure 42.

Based on finite-element analysis, an example of stress distribution within the -
different zones of the core in experimental repair 2C is shown in Figure 43. The
example shows that the magnitude of the maximum stress concentration in the
vicinity of the core bottom is 2.2 times higher than the result of the pull-off
strength at failure—1.9 MPa (275 psi).

Results of the theoretical analysis demonstrates that the shallow depth of core
drilling below the bond line puts the bond interface close to the zone of maximum
stress concentrations at the bottom of the core, which corresponds to lower failure
loads. In the pull-off bond test, deeper drilling into the substrate reduced stress
concentrations at the bond interface and increased the measured bond strength.

The results of experimental tests of pull-off bond strength (adhesive failure
mode at the interface) are shown in Table 22. This table includes only the test
results corresponding to mode of failures at the repair-substrate interface or within
2 mm (1/16-in.) from it. Linear interpolation of these results is shown in
Figure 44.

Chaper 4 Influence of Partial Core on Results of Pull-Off Bond Strength
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Table 22
Bond Strength Results (Adhesive Failure)
Bond Strength, MPa (psi)
Material Repair Core Drilling Depth Below Bond Line, mm (in.)
Number Specimen 13 (0.5) 25 (1.0) 37 (1.5)
2 B - 1.65 (236.8) 1.47 (212.2)
c 1.92 (275.4)
6 A 0.80 (113.2) 1.77 (262.8)
c 217 (311.4)
10 B 0.96 (135.6)
c 1.84 (278.4) 2.23 (321.0)

The linear interpolation of the bond strength test results presented in Figure 44,
despite the limited amount of real bond failures, confirms the conclusions of the
theoretical analysis that shallow core drilling depths into the substrate give rise to
significant stress concentrations and underestimate the real bond strength.
Although these theoretical analyses relate to only 10 bond failure cases (37 percent
of the total amount of pull-off strength tests in this series), they suggest trends that
have been confirming the conclusions in other studies (Austin, Robins, and Pan
1995).

Shallow drilling of partial cores into the concrete substrate, when evaluating
bond strength in repair systems by the pull-off method, is usually caused by poor
workmanship onsite, unawareness of drilling depth effects, ignorance to the issues
in specifications, and quality control guidelines. The effect of this may be one of
the causes of shortcomings in reproducibility and comparability of pull-off bond
test results.

Based on the results of the experiments and theoretical analysis, the suggested
core depth below the repair-substrate interface shall be a minimum of 25 mm
(1 in.) or one-half of the core diameter, whichever is larger.

Chaper 4 Influence of Partial Core on Resuits of Pull-Off Bond Strength
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5 Summary and Conclusions

A field study was conducted to (a) investigate the effect of material properties
and environmental conditions on bond strength development for nine repair
materials used in experimental repairs; (b) investigate the effect of drilling depth
into the substrate concrete on pull-off test results by comparing theoretical finite
element analyses of failure stress and location with measured test results and to
recommend the optimum depth of core drilling into the existing substrate; and
(c) evaluate three commercially available tensile pull-off testing apparatuses for
bond testing.

A total of 257 partial-depth cores in 77 experimental repairs were tested in
Florida, Illinois, and Arizona in order to examine the effect of material properties
and environmental conditions on bond between repair and concrete substrate.
Three testing devices were used to determine the bond strengths for each of the
experimental repairs. In addition, the testing devices themselves were compared
for consistency of data and ease of use in an effort to identify a reliable and
practical device for use in the field.

The conclusions from this field study are as follows:

a. In general, the results obtained from the pull-off tests can be described as
variable or very variable.

Although the materials tested exhibited a wide range of pull-off strengths,
all materials exhibited average strengths in excess of 1.5 MPa (215 psi).
There was a clear pattern of preferential failure in the substrate concrete
that indicates that the base concrete was generally the weakest link in the
tested repair systems.

b. Because of the mixed failure modes, most of the pull-off test results do not
provide a value for the tensile bond strength; they provide relative data in
this context.

c. Inmost practical applications, pull-off testing is conducted to determine if
the bond strength between repair and concrete substrate meets the specified
criteria. In such applications, it is generally desirable for failure to not
occur at the repair-substrate interface (adhesive failure). Failure within the
repair material or substrate concrete (cohesive failures) or partial failures
such as interface-repair or interface-substrate (adhesive/cohesive failure)

Chapter 5 Summary and Conclusions



are acceptable providing the bond stress is equal to or greater than the
specified bond stress. If failure occurs at the steel disc-repair interface,
then the pull-off strength result represents a minimum bond strength, and
the test should be repeated if the strength is not acceptable.

Variations in exposure conditions did not appear to have a significant
effect on the failure modes or bond strengths of the repair materials.
Adequate curing procedures provided may have significantly contributed to
minimizing environmental effects on bond strength development.

Again, no obvious explanation exists regarding the fact that no correlation
was found between tensile strength, shrinkage, modulus of elasticity, and
thermal expansion properties of the repair materials measured in the
laboratory and their tensile bond strength to the concrete substrate. At the
same time, surprisingly there was some correlation between compressive
and flexural strengths determined in the laboratory and field pull-off
strengths.

The study demonstrated that two of the three pull-off test devices,
Germann Instruments Bond-Test and Proceq DYNA Z15, can be used to
evaluate the tensile bond strength of repairs, to accept or reject an
installation, and to gain information on the possible weakening or
deterioration of the repair-substrate bond with time.

Results of the present study indicate that the critical requirements for puli-
off test apparatuses are as follows:

(1) Gradually increasing load must be applied at a specified rate of
loading.

(2) Load must be applied at a right angle to the repair surface under test.
(3) The pull-off failure stress attained should be accurately recorded.

(4) The apparatus should be self-contained and portable for field site
tests.

Depth of the partial core drilling into the substrate may significantly affect
the results of the pull-off tests. The findings of the present study
emphasize the importance of standardization of the core depth beyond the
repair-substrate interface for pull-off bond test. The depth of core drilling
below the interface should be a minimum of 25 mm (1-in.) or one-half of
the core diameter, whichever is larger.

Differences in the theoretical finite element analysis and observed field
behavior may be attributed to at least four effects: the presence of flaws in
the system, stress relief caused by strain relief, the probability that the
weakest zone does not correspond with the area of highest stress, and
relative sensitivity of the testing device to the rate of loading and deviation
from the normal angle to the surface.

Chapter 5 Summary and Conclusions
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‘What has been learned from this study regarding the effect of various
factors on the repair-substrate bond strength from the study that has been
described? Aside from the influence of the combination of properties of
the repair material and substrate concrete, depth of partial core drilling into
the substrate, and the precision of the testing equipment, one of the most
significant influences is the workmanship during the repair application,
which often completely overshadows all other variables.

Chapter 5 Summary and Conclusions



6 Recommendations

The tensile pull-off test is recommended as the best available test method for
monitoring bond strengths in the field, although the results of this test do not
necessarily indicate precise tensile bond values. However, the procedures and
equipment for conducting tensile pull-off bond tests on concrete repairs and
overlays should be standardized. In the absence of standardization, it is strongly
recommended that the particular test equipment and configuration are clearly
specified when setting minimum acceptable values of the pull-off strength for use
in a particular repair or overlay project. The pull-off equipment must be such that
the direction of tensile force is at right angles to the surface in order to achieve
uniaxial tension. The equipment must be capable of steadily increasing the load
without jerking at an approximate rate range of 0.02 to 0.05 N/mm’ (3 to 7 psi)
per second. The pull-off equipment must be capable of recording the failure stress
to the nearest 0.1 N/mm? (15 psi). The depth of core drilling below the repair-
substrate interface should be to a minimum of 25 mm (1-in.) or one-half the core
diameter, whichever is larger. The steel disc must be attached centrally to the
partial core surface. When failure occurs at the interface between the repair
surface and the steel disc, the failure stress shall be considered as a minimum bond
strength value. If this minimum value does not satisfy the required bond strength,
then the test should be repeated. Additional theoretical analyses, such as finite
element analysis, which take into account differences in properties of a repair
material and base concrete such as strengths, stiffness, and volume changes,
should be performed to provide additional information on stress distribution and
failure modes. Pull-off test equipment for determining the in situ tensile bond
strength of repairs on surfaces other than horizontal should be identified and
evaluated. The effect of the core drilling technique and type of equipment on pull-
off test results should be investigated. In addition to the uniaxial pull-off tensile
bond test method studied in this report, the relative merits of other bond test
methods such as direct shear and torsion test methods should be evaluated.

Chapter 6 Recommendations
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