
AFRL-IF-RS-TR-1999-102
Final Technical Report
May 1999

CHANGES, CONSISTENCY AND
CONFIGURATION IN HETEROGENEOUS,
DISTRIBUTED SYSTEMS

Stanford University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. C392

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-102 has been reviewed and is approved for publication.

L 4-OAC^ APPROVED:
CRAIG S. ANKEN
Project Engineer

&0u&~

/kkffcL-
FOR THE DIRECTOR:

NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTB, 525 Brooks Rd, Rome, NY 13441-4114.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

CHANGES, CONSISTENCY AND CONFIGURATION IN HETEROGENEOUS,
DISTRIBUTED SYSTEMS

Jennifer Widom

Contractor: Stanford University
Contract Number: F30602-95-C-0119
Effective Date of Contract: 19 May 1995
Contract Expiration Date: 30 November 1998
Short Title of Work: Changes, Consistency and Configuration in

Heterogeneous, Distributed Systems
Period of Work Covered: May 95 - Nov 98

Principal Investigator: Jennifer Widom
Phone: (415)723-7690

AFRL Project Engineer: Craig S. Anken
Phone: (315)330-4833

Authorized for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Craig S. Anken, AFRL/IFTB, 525 Brooks Rd, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour par response, including the time for reviewing instructions, search ng e»stmgdata a ureas, gsth.ng andraajrtang e de needed"'°^^ "{™^>
the collection of information. Send comments regerding this burden estimate or any other aspect of thte collection of information, inclcdmg suggestions for f^^^^^Q^^
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Pro|ect (0704-01881, Washington, DC 20603.

1. AGENCY USE ONLY Heave blank/ 2. REPORT DATE

 May 99

3. REPORT TYPE AND DATES COVERED

 Final May 95 - Nov 98
4. TITLE AND SUBTITLE
CHANGES, CONSISTENCY AND CONFIGURATION IN HETEROGENEOUS,
DISTRIBUTED SYSTEMS

6. AUTHOR(S)

Jennifer Widom

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Sponsored Projects Office
Stanford University
Stanford, CA 94305-4125

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFTB
525 Brooks Rd
Rome, NY 13441-4114

5. FUNDING NUMBERS

C -F30602-95-C-0119
PE -62301E
PR -C392
TA -00
WU -01

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1999-102

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Craig Anken, IFTB, 315-330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words! .
The objective of the effort was to develop a unifying framework for change management and automatic change notification
suitable for diverse heterogeneous information sources, and to demonstrate that the framework can be realized in a flexible,
efficient, and scalable manner. Our results are as follows: 1) We designed and implemented a model for change
management in heterogeneous information sources. The model, called DOEM (for Delta-OEM) is based on a simple
semistructured object model called OEM developed within the companion DARPA-funded Tsimmis project. 2) We
developed sophisticated algorithms for detecting changes in semistructured data. Historical information produced by our
change detection algorithms is stored in our Lore system (Lightweight Object Repository). Lore is a DBMS suitable for
DOEM and OEM data, and was developed in part within the C3 project. 3) We designed and implemented a query
language, called Chord (for Change-Lorel), which is based on Lorel, the query language of Lore. 4) Using our DOEM
model, change detection algorithms, and Chorel query language as basic building blocks, we designed and implemented a

Query Subscription Service (QSS).

14. SUBJECT TERMS

Distributed Information, Data Integration, Data Warehousing

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

IS. NUMBER OF PAGES
44

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHSIDI0R, Oct 94

FINAL REPORT

C3: Changes, Consistency, and Configurations in Heterogeneous
Distributed Information Systems

Stanford University

Principal Investigator: Prof. Jennifer Widom

Contents

1 Project Objective 2

2 Results Summary 2

3 Web Pages and Publications 2

4 Background and Motivation 3

5 Overview of System Infrastructure and Components 4
5.1 TDIFF: Detecting Changes 5
5.2 CORE: Change Object Repository . . 5
5.3 QSS: Query Subscription Service 6
5.4 System Architecture 6

6 Demonstration Walk-Through i

7 Further Details 8
7.1 Additional Motivating Examples ■>
7.2 The Object Exchange Model 9

7.2.1 Changes in OEM' 11
7.2.2 OEM Histories 12

7.3 Representation of Changes 13
7.3.1 DOEM Representation of an OEM History 13
7.3.2 Properties of DOEM Databases 14

7.4 Querying Over Changes 15
7.4.1 Lorel Overview 15
7.4.2 Chorel 16
7.4.3 Chorel Semantics IS

7.5 Implementing DOEM and Chorel 19
7.5.1 Encoding DOEM in OEM . . 19
7.5.2 Translating Chorel to Lorel 20

7.6 A Query Subscription Service 21

1

1 Project Objective

The objective of the effort was to develop a unifying framework for change management and

automatic change notification suitable for diverse heterogeneous information sources, and to

demonstrate that the framework can be realized in a flexible, efficient, and scalable manner.

2 Results Summary

• We designed and implemented a model for change management in heterogeneous in-

formation sources. The model, called DOEM (for Delta-OEM), is based on a simple

semistructured object model called OEM developed within the companion DARPA-

funded Tsimmis project. We leveraged wrapper and mediator technology from the

Tsimmis project so that diverse information sources can encapsulate their changes in

our DOEM model.

• In order to exploit Tsimmis wrapper and mediator technology we developed sophisti-

cated algorithms for detecting changes in semistructured data. Historical information

produced by our change detection algorithms is stored in our Lore system (Lightweight

Object Repository). Lore is a DBMS suitable for DOEM and OEM data, and was

developed in part within the C3 project.

• We designed and implemented a query language, called Chorel (for Change-Lorel).

which is based on Lorel the query language of Lore. Chorel allows users to easily and

efficiently query over changes together with data.

• Using our DOEM model, change detection algorithms, and Chorel query language

as basic building blocks, we designed and implemented a Query Subscription Service

[QSS). which allows users to subscribe to changes of interest in heterogeneous, dis-

tributed information sources, and be notified automatically when the changes of inter-

est occur. QSS provides a number of useful parameters for flexibility in subscriptions.

Sections 4-6 of this report provide accessible but cursory coverage of the results of the

project. These sections include motivation and background material, an overview of the C

system architecture and its individual components, and a demonstration "walk-through".

Section 7 then provides considerable additional details, including theoretical and algorithmic

results of the effort as well as further discussion of the implementation of the C3 prototype.

3 Web Pages and Publications

The project Web page is located at the URL:

http: //www-db. Stanford. edu/c3/c3. html

A selected set of the most relevant publications partially or entirely funded by this project

is listed below. All publications also are available by navigating from the Stanford Database

Group's WWW home page: http://www-db.stanford.edu. Please note that excerpts of
publication 4 appear in Section 7 of this report.

1. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change Detection

in Hierarchically Structured Information. Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, pages 493-504, Montreal, Canada. June
1996.

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom. and J. Wiener. The Lorel Query Lan-

guage for Semistructured Data. International Journal on Digital Libraries, 1(1):68-SS.
April 1997.

3. J. McHugh. S. Abiteboul, R. Goldman, D. Quass, and J. Widom. Lore: A Database

Management System for Semistructured Data. ACM SIGMOD Record, 26(3):54-66.
September 1997.

4. S. Chawathe, S. Abiteboul, and J. Widom. Representing and Querying Changes in

Semistructured Data. Proceedings of the Fourteenth International Conference on Data
Engineering, pages 4-13, Orlando. Florida, February 1998.

4 Background and Motivation

The vast amount of information available on the World-Wide Web has sparked great interest

in the subject of storing and querying heterogeneous and semistructured data. Heterogeneous

data is characterized by a high degree of autonomy, an absence of a common data model, an

absence of standard database control facilities (such as transactions), and differing modes of

access. Heterogeneous and other Web-accessible data frequently is semistructured, meaning

that the data may be irregular or incomplete. In addition to offering access to large amounts

of heterogeneous and semistructured information, the Web allows this information to change

at any time and in any way. These rapid and often unpredictable changes to the information

create a new problem: one of detecting, representing, and querying these changes.

As an example, consider a Web site offering weather information. Recent work on inte-

gration of semistructured data allows us to construct a wrapper that presents the information

at this site using a uniform graph-structured data model called OEM, and allows the data

to be queried through the wrapper. For example, we can ask "find cities in the Bay Area

that had more than half an inch of rain overnight." However, in general people are more

interested in weather trends than in past weather data. If the overnight rainfall was half an

inch yesterday but was three inches the day before, then chances are this storm is tapering

off. However, if there was half an inch yesterday but no rain the day before, this storm

may be building. So, the query we would like to ask is "find cities in which the overnight

{Tsimmis) ■' Lore)

Figure 1: Components of our change management system

rainfall has increased by half an inch over the past two days." This query requires access to
previous states of the data, a feature that is not supported by most current semistructured
and heterogeneous data management systems, nor by the Web itself. Similarly, perhaps we
would like to be notified automatically every time the overnight snowfall in the Sierras has
been at least six inches for three nights in a row. Such a "trigger" requires not only access
to previous states of the data, but also a method to detect when the trigger should fire.

In the C3 project at Stanford we have addressed the problem of change management in
heterogeneous semistructured databases with a system consisting of three main components,
supported by two other Stanford projects. See Figure 1. The TDIFF component uses tree
differencing algorithms to detect changes between snapshots of semistructured data. The
CORE component allows clients to store and query semistructured data and their changes.
CORE uses another Stanford database project, Lore, to store the data and changes. The QSS
component supports powerful and flexible subscriptions over heterogeneous data sources,
notifying subscribers of changes of interest. QSS exploits the Tsimmis project at Stanford,
which gives us the ability to wrap and integrate diverse heterogeneous sources.

Now we use our weather scenario to roughly illustrate how the components work together.
The TDIFF component is used to detect relevant changes (such as changes in rainfall measure).
CORE can store these changes and clients can query the history, including asking questions
of the form: "has the overnight rainfall changed in the past week?" Clients wishing to be
notified automatically of certain changes, such as trends in overnight snowfall, may do so
by registering a subscription with the QSS component. QSS automatically polls the source
data using Tsimmis, detects changes using TDIFF, and stores and queries these changes

appropriately using CORE.

5 Overview of System Infrastructure and Components

The supporting Tsimmis project focuses on the integration of heterogeneous data and the
use of a standard data model and query language over many different types of sources. A
Tsimmis wrapper presents the data from a source in a uniform graph-based data model called
the Object Exchange Model (OEM). Queries posed over the (virtual) OEM representation of

the source data are translated to native source-specific queries, and the results of these

queries are translated back to an OEM representation before being returned to the wrapper

client. Wrappers for a variety of data sources can be built quickly using template-based

wrapper-generators. In addition, Tsimmis allows clients to access (virtually) integrated data

from multiple heterogeneous data sources through its mediators. Wrappers and mediators

provide identical interfaces to clients.

Lore (for Lightweight Object Repository) is a database system designed to store and query

semistructured data in OEM. The Lore system offers the functionality of a traditional DBMS

including OQL-like queries, multi-user support and recovery, as well as non-traditional func-

tionality such as path expression matching and extensive type coercion. The Lorel query

language is used to query Lore data, and can be viewed as an extension to OQL.

5.1 TDIFF: Detecting Changes

The TDIFF module is used to detect changes in the heterogeneous semistructured databases

being monitored by our system. In conventional databases, detecting changes to data is

made easier by the availability of facilities such as transaction logs, triggers, etc. However.

in heterogeneous data sources, such as Web sites, such facilities often are absent. Even in

cases where these facilities are available, they may not be accessible. Therefore, in practice,

we often need to detect changes by comparing two or more snapshots of the database (or

a portion thereof) using differencing algorithms. Here, the semistructured nature of the

data causes problems, since finding and representing changes in semistructured data is much

harder than in, say, structured relational tables. We have developed algorithms to detect

changes between snapshots of tree-structured data, and the TDIFF component is an imple-

mentation of these algorithms. . Since the results of Tsimmis queries over wrapped sources

are tree-structured, TDIFF is well-suited for detecting changes in any wrapped (or mediated)
source.

5.2 CORE: Change Object Repository

While TDIFF gives us the ability to detect changes between two snapshots of a semistructured

data source, we would also like the ability to store, browse, and query this temporal data.

Existing temporal models do not support the irregularity and incompleteness of semistruc-

tured data, so we have developed the Delta-OEM (DOEM) data model. DOEM extends OEM

by allowing annotations on the nodes and edges in the graph representation of OEM. These

annotations represent the history of the node or edge, and collectively represent the com-

plete history of the database. Nodes can have create and update annotations, storing the

time of the modification and, for updates, the old and new values of the object. Edges can

have add and remove annotations, storing the time of the modification. The Chorel (Change

Lorel) query language extends the functionality of Lorel, allowing a user to query DOEM

data, accessing both historical and current data.

The CORE component is our implementation of the DOEM data model and the Chorel
query language. We have implemented them as an extension to Lore. DOEM data is encoded
as OEM data (by representing annotations as special OEM objects) and is stored in a Lore
database. Chorel queries are then translated to Lorel queries over the OEM-encoded DOEM
database. Finally, the encoded results of the Lorel query are translated back into their DOEM
representation before being returned to the user. CORE offers a graphical user interface that
allows users to issue Chorel queries and browse query results and their histories.

5.3 QSS: Query Subscription Service

A flexible system for detecting and reporting changes must offer a number of options and
parameters. For example, one can detect changes to Web sites in a number of ways. Some
Web sites offer users the option of receiving e-mail when significant changes are made. Others

may need to be polled, and the polling interval may depend on the context. For example, a
traffic site is best polled every few minutes, while a site with daily ski reports is best polled
once every morning. For sites that change infrequently, the changes may best be detected
by user request. Users may also wish to learn about changes in a number of ways. Some
users may wish to be notified whenever changes of a certain kind occur. Others may wish
to receive a daily or weekly report of changes of interest. Still others may wish to receive a
report at their explicit request only. Our QSS component ties together these diverse options
in a general-purpose subscription framework.

Each QSS subscription consists of three main components. The first component, the
polling query, is the query that is executed over the information source to gather data of
interest. We use Tsimmis queries as polling queries. The second component, the filter
query, is executed over the history of the data gathered from the source and the results are
returned to the subscriber. We use Chorel queries as the filter queries. The third component
is a frequency specification that determines when and how the polling and filter queries are

executed.

5.4 System Architecture

Figure 2 depicts the architecture of our change management system. The QSS component has
a client-server architecture, with one or more client processes (Query Subscription Clients
or QSCs) connected to the server process (QSS). Users interact with the QSC through a
graphical user interface, creating subscriptions, issuing probes, and receiving results. The
QSS component issues polling queries over information sources (via Tsimmis wrappers or
mediators) and the result of each query is stored by QSS as the current snapshot for this
query. 'This snapshot and the previous snapshot are sent to the TDIFF component, which
identifies the changes to the data and stores them within CORE. QSS issues filter queries
to the CORE database and the result of each query, if non-empty, is returned to the QSS
component. QSS then sends the changes to the appropriate QSC clients, which notify their

6

(T user J)

Subscription Notifications

Change
Notifications

TDIFF
TDIFF

GUI (TuserJ)

Snapshots Changes

Filter Query X

Query Results
CORE

Results Lorel

Information Source(s)

Chore!

DOEM

Encoded OEM

CORE
GUI

Lore

Figure 2: System Architecture

subscribers about the fresh results of their subscriptions. Users can view subscription results

using the QSC user interface. In addition to the subscription service, our change management

system offers users the ability to interact directly with TDIFF or with CORE, which is useful

for independently exploiting their functionality.

6 Demonstration Walk-Through

Our change management system is fully implemented, and a system demonstration "walk-

through1" is now provided. We will continue with our running example of a Web-based

weather site that offers information such as temperature, precipitation, weather advisories,

and road conditions for many cities. This site is updated frequently as weather conditions

change.

The first part of our demonstration shows the detection of changes in the data source by

the TDIFF component. For example, we can load two snapshots of the weather source into

TDIFF and it will tell us, e.g., whether the snowfall for an area has increased or decreased

and if so, what the old and new values are. Using the TDIFF graphical user interface, we

can browse these changes and observe that the overnight snowfall of a city has gone from 3

inches to 0 inches, probably indicating the end of a storm. Further examples of TDIFF can

be found at http://www-db.stanford.edu/c3/.

In the next part of our demo, we illustrate how CORE is used to browse and query the

history of the weather site. In particular, we run TDIFF on a series of snapshots of the Web

site and load the detected changes into a CORE database. The CORE user interface allows us

to browse the complete history of the data, including updates that were made months ago.

For example, we may observe that Tahoe City went through a major heat-wave last summer,

with temperatures ranging from 90 to 100 degrees during August. In addition to browsing

the data's history, we can also pose expressive Chorel queries over the data through the CORE

user interface. For example, we can submit a query asking for "all California cities where the

overnight snowfall has decreased by at least 6 inches" to determine if a storm is subsiding

or not. This query would be expressed in Chorel as follows. (Like other database query-

languages, we expect Chorel queries to be issued primarily by client software interfacing

with user-friendly GUI tools.)

select C

from Weather.CA.city C
where exists S in C. snowfalKupd at T from OldVal to NewVal> :

(OldVal - NewVal) > 6

We can then use the CORE interface to browse the results. The interface displays the cities

and their subobjects (temperature, snowfall, etc.) in a graphical format, and we can expand

the history of any edge or node in the display (e.g., the snowfall value for each city). This

expansion shows all updates to this value, and we can determine if the decline in snowfall is

a continuing trend.
The final part of the demonstration shows how the results of the above query can be

monitored automatically using QSS. Avid skiers can create a subscription and be notified

automatically anytime there has been a good snow-storm that seems to be clearing up.

suggesting good skiing conditions. Using the QSS user interface, we create a subscription

over the weather source. The polling query retrieves all information about California cities:

select C

from Weather.CA.city C

The filter query is the Chorel query shown earlier. We set the frequencies to poll and filter

once a day. Whenever the snowfall of a city in California decreases by six inches, QSS will

notify us. When we are notified of the update, we can log into the QSS interface and see the

result of the filter query, which tells us which cities have had large snow-storms subside.

7 Further Details

In the remainder of the report we provide additional examples and more in-depth coverage

of the C3 data model, query language, and system implementation.

7.1 Additional Motivating Examples

The Palo Alto Weekly, a local newspaper, maintains a Web site providing information about

restaurants in the Bay Area. Most of the data in the restaurant guide is relatively static. But

as often happens in database applications, we are particularly interested in the dynamic part

of the data. For example, we are interested in finding out which restaurants were recently

added, which restaurants were seen as improving, degrading, etc. These changes can be

captured by a tool that we have implemented, called TDIFF. The TDIFF program takes

two versions of a web page as input, and produces as output a marked-up copy of the web

page that highlights the differences between the two versions based on their semistructured

contents. Our TDIFF system allows users to browse the marked-up web page to view the

changes, and to travel back and forth between the old and new versions of the document.

For reasonably small documents, browsing the marked-up HTML files produced by TDIFF

to view the changes of interest is a feasible option. However, as documents get larger and

changes become more prevalent and varied, one soon feels the need to use queries to directly

find changes of interest instead of simply browsing. (For example, the restaurant guide page

is currently more than 20,000 lines long, making browsing very inconvenient.) An example of

a simple change query over the restaurant data is "find all new restaurant entries." Another

example is "find all restaurants whose average entree price changed." Just as browsing

databases is often an ineffective way to retrieve information, the same holds for browsing

data representing changes. Thus, for this example, what we need is a query language that

allows queries over changes to (semistructured) HTML pages.

As another motivating example, consider a typical information library system that con-

tains book circulation information. Suppose we wish to be notified whenever any "popular"

book becomes available where, say, we define a book as popular if it has been checked out

two or more times in the past month. We could partially achieve this goal by setting a trigger

on the circulation database that notifies us whenever a book is returned. However, there are

two problems with this approach. First, many library information systems are legacy main-

frame applications on which triggers are not available. Furthermore, even in cases where the

library information systemjis implemented using a database system that supports triggers,

a user often lacks the access rights required to set triggers on the database. Second, there is

often no way to access historical circulation information, so that we cannot check whether

the book being returned was checked out two or more times recently. In this application too,

the data may be semistructured, especially if the library system merges information from

multiple sources. Thus, we again need a method to compute, represent, and query changes
in the context of semistructured data.

7.2 The Object Exchange Model

The Object Exchange Model (OEM) is a simple, flexible model for representing heterogeneous,

semistructured data. (Recall that semistructured data is data that may be irregular or

incomplete, and that does not necessarily conform to a fixed schema, e.g., HTML documents

describing restaurants.) In this subsection, we begin by briefly describing OEM. Next, we

define the basic change operations used to modify an OEM database. Finally, we introduce the

concept of an OEM history that describes a collection of basic change operations. Histories

/•"•» comment /'£,
restaurant^ p* „21 **\ ;

" " Ä - N'"jme "need info "

'Indian"

120Lytton"

moderate"

"Lytton" Ta]0 A]t0»

Figure 3: The OEM database in Examples 7.1 and 7.2

form the basis of our change representation model described in Subsection 7.3.
Intuitively, one can think of an OEM database as a graph in which nodes correspond to

objects and arcs correspond to relationships. Each arc has a label that describes the nature
of the relationship. (Note that the graph can have cycles, and that an object may be a
subobject of multiple objects via different relationships. Example 7.1 below illustrates these
points.) Nodes without outgoing arcs are called atomic objects; the rest of the nodes are
called complex objects. Atomic objects have a value of type integer, real, string, etc. An arc
(p. I, c) in the graph signifies that the object with identifier c is an /-labeled subobject (child)
of the complex object with identifier p. Each OEM database has a distinguished node called
the root of the database. The root is the implicit starting point of path expressions in the
Lorel query language (described in Subsection 7.4.1). Formally, we define an OEM database

as follows:

Definition 7.1 An OEM database is a 4-tuple O = (N,A,v,r), where JV is a set of object
identifiers; A is a set of labeled, directed arcs (p,/,c) where p,c € N and / is a string; v
is a function that maps each node n € N to a value that is an integer, string, etc., or the
reserved value C (for complex); and r is a distinguished node in N called the root of the
database. A node is a complex object if its value is C and otherwise it is an atomic object.
Only complex objects have outgoing arcs. We also require that every node be reachable from

the root using a directed path. D

Example 7.1 We will use as our running example an OEM database describing the restau-
rant guide subsection of the Palo Alto Weekly, introduced earlier. Figure 3 shows a small
portion of the data. (For this example, ignore items depicted using dashed lines.) Note
that although the restaurant entries are quite similar to each other in structure, there are
important differences that require the use of a semistructured data model such as OEM. In

10

particular, we see that the price rating for a restaurant may be either an integer (10) or a

string ("moderate"). The address may be either a simple string ("120 Lytton") or a complex

object with subobjects listing the street, city, etc. Note also that although the data has a

natural hierarchical structure, nodes may have multiple incoming arcs (e.g., node n7), and

there are cycles (e.g., the cycle formed by the arcs "parking" and "nearby-eats"). In the
sequel, we refer to this database as Guide. D

7.2.1 Changes in OEM

We now describe how an OEM database is modified. Let 0 = (N, A, v, r) be an OEM database.

The four basic change operations are the following:

Create Node: The operation creNode[n,v) creates a new object. The identifier n must be

new. i.e.. n must not occur in 0. The initial value v must be an atomic value (integer, real.

string, etc.) or the special symbol C (for complex).

Update Node: The operation updNode(n,v) changes the value of object n, where v is an

atomic value or the special symbol C. Object n must be either an atomic object or a complex

object without subobjects. (The model requires us to remove all subobjects of a complex

object n before transforming it into an atomic object.) The value v becomes the new value
of n.

Add Arc: The operation addArc(p,Lc) adds an arc labeled / from object p (the parent)

to object c (the child). Objects p and c must exist in 0, p must be complex, and the arc
{p.l.c) must not already exist in O.

Remove Arc: The operation remArc(p,Lc) removes an arc. Objects p and c must exist in

0. and 0 must contain the arc (p, /,c), which is removed.

If u is a basic change operation that can be applied to O, we say u is valid for 0, and

we use u(O) to denote the result of applying u to O. Note that there is no explicit object

deletion operation. In OEM, persistence is by reachability from the distinguished root node.

Thus, to delete an object it suffices to remove all arcs leading to it. A subtlety is that

sometimes we need to allow objects to be "temporarily" unreachable. In particular, when

we create a new object, it remains unreachable until we create an arc that links it to the rest

of the database. Thus, when we consider sequences of changes in Subsection 7.2.2, we want

to permit the result of atomic changes to (temporarily) contain unreachable objects. The

issue is discussed further in Subsection 7.2.2 below. Note that users will typically request

"higher-level" changes based on the Lorel update language; the basic change operations
defined here reflect the actual changes at the database level.

Example 7.2 Let us consider some modifications to the OEM database in Example 7.1.

We will use these modifications as a running example in the rest of this section. First, on

January 1st, 1997, the price rating for "Bangkok Cuisine" is changed from 10 to 20. This

modification corresponds to an updNode operation. On the same day, a new restaurant

with name "Hakata" is added (with no other data). This modification corresponds to two

11

creNode operations for the restaurant node and its subobject, and two addArc operations to
add arcs labeled "restaurant" and "name." Next, on January 5th, a subobject with value
"need info" is added to the "Hakata" restaurant object via an arc labeled "comment." This
corresponds to one creNode operation and one addArc operation. Finally, on January 8th
the parking at "Lytton lot 2" is no longer considered suitable for the restaurant "Janta."
and the corresponding arc is removed; this modification corresponds to a remArc operation.

These changes are depicted in Figure 3 using dashed lines.

7.2.2 OEM Histories

We are typically interested in collections of basic change operations, which describe successive
modifications to the database. We say that a sequence L = m, u2,... ,u„ of basic change
operations is valid for an OEM database 0 if w is valid for Oi-i for all % = 1... n, where
O0 = 0, and 0{ = tü(Oi-i), for i = l...n. We use L{0) to denote the OEM database
obtained by applying the entire sequence L to 0. Also, we say that a set U = {uu u2, • ■ • • «n}
of basic change operations is valid for an OEM database 0 if (1) for some ordering L of the
changes in U, I is a valid sequence of changes, (2) for any two such valid sequences L and V.
L(0) = L'(0), and (3) U does not contain both addArc(p,l,c) and remArc(p,l,c) for any p.
I. and c. We use U{0) to denote the OEM database obtained by applying the operations in

the set U (in any valid order) to 0.
We are now ready to define an OEM history. Assume we are given some time domain

time that is discrete and totally ordered; elements of time are called timestamps. Intuitively,
consider an OEM database to which, at some time tu a set Ux of basic change operations is
applied, then at a later time i2, another set U2 is applied, and so on. A history represents

such a sequence of sets of modifications.

Definition 7.2 An OEM history is a sequence H = (tu Ui),..., {tn, */„), where £/,- is a set of
basic change operations and f,- is a timestamp, for i - 1... n, and U < U+i for i = 1... n - 1.
We say H is valid for an OEM database 0 if, for all i = 1.. .n, Ut is valid for 0t_i, where
0o = O,andO,- = l/i(0i_i)fori = l...n. D

We now return to the requirement that all objects in an OEM database must be reachable
from the root. An OEM history can be viewed as a sequence Lu ..., Ln of sequences of atomic
changes. Within one sequence Li of changes, we relax the requirement that all objects are
reachable from the root so that we can, e.g., create a node and then create arcs leading to it.
as discussed earlier. However, immediately after each sequence L,- has been applied, nodes
that are unreachable are considered as deleted, and the remainder of the history should not
operate on these objects. To simplify presentation, we also assume that object identifiers of

deleted nodes are not reused.

Example 7.3 The history for the modifications described in Example 7.2 consists of three

sets of basic change operations. It is given by H = ((*i, f/i), (*2, ^2), (*3i ^3)), where U -

12

Uan97, t2 = 5Jan97, t3 = 8Jan97, and:

L\ = { updNode(ni,20), creNode(n2,C),

creNode(n3, "Hakata"), addArc(n4, "restaurant" ,n2),

addArc(ri2, "name",«3) }

U2 = { creNode(n5, "need info'"'')

addArc(n,2, "comment", ns) }

t/3 = { remArc(n6,"parking",n7) }.

This is a valid history for the original OEM database in Figure 3. D

7.3 Representation of Changes

In this subsection, we describe how changes to an OEM database are represented by attaching

annotations to the OEM graph, thereby turning it into a DOEM (Delta OEM) graph. Intu-

itively, annotations are tags attached to the nodes and arcs of an OEM graph that encode

the history of basic change operations on those nodes and arcs. There is a one-to-one cor-

respondence between annotations and the basic change operations. Thus, nodes and arcs

may have the following four types of annotations: (1) cre(t): the node was created at time

t. (2) upd(t,ov): the node was updated at time t; ov is the old value. (3) add(i): the arc

was added at time t. (4) rem(t): the arc was removed at time t. The set of all possible

node annotations is denoted by node-annot, and the set of all possible arc annotations is
denoted by arc-annot.

Using the above definitions of node and arc annotations, we now define a DOEM database.

In the following definition, the function //v(n) maps a node n to a set of annotations on that

node and the function /4(a) maps an arc a to a set of annotations on that arc.

Definition 7.3 A DOEM database is a triple D = (0,fN,fA), where 0 = (N.A.v.r) is an

OEM database, fN maps each node in N to a finite subset of node-annot, and fA maps
each arc in A to a finite subset of arc-annot. D

7.3.1 DOEM Representation of an OEM History

Given an OEM database 0 and a history H = (ti,Ui),...,(tn,Un) that is valid for 0, we

would like to construct the DOEM database representing O and H, denoted by D{0,H).

D(0, H) is constructed inductively as follows. We start with a DOEM database D0 that

consists of the OEM database 0 with empty sets of annotations for the nodes and the arcs of

0. Suppose Di-i is the DOEM database representing O and (<i,£/i),...,(<,-_i,£/r,-_i), for some

1 < i < n. The DOEM database £>,- is constructed by considering the basic change operations

in U{. Since the history is valid, we can assume some ordering L, of the operations in l\

(Definition 7.2). Starting with £>,_i, we process the operations in I,- in order. Whenever

the value of an object is updated, in addition to performing the update we attach an upd

13

upd
t:Uan97
ov.10

adocess

jpnce ^^ "Indian"

"Janta" 1_ "120Lynon"

"moderate"

"Lytton" "Palo Alto"

Figure 4: The DOEM database in Example 7.4.

annotation to the node. This annotation contains the timestamp U and the old value of
the object. When a new object is created or an arc added, in addition to performing the
modification, we attach a ere or add annotation with the timestamp *,-. When an existing
arc is removed, we do not actually remove the arc from the graph; instead, we simply attach

a rem annotation to the affected arc with the timestamp U.

Example 7.4 Consider the history described in Example 7.3, which transforms the OEM
database of Figure 3 as depicted there using dashed lines. The corresponding DOEM database
is shown in Figure 4. We see that the DOEM database contains several annotations, depicted
as boxes in the figure. For example, the annotations with timestamp "lJan97■, correspond
to the first set of updates. Note that the ere. add, and rem annotations contain only the
timestamp, while the upd annotation also contains the old value of the updated node (10. in
our example). Also note that the removed "parking" arc from the "Janta" restaurant object
to the "Lytton lot 2" parking object is not actually removed from the DOEM database:

instead it bears a rem annotation.

7.3.2 Properties of DOEM Databases

We now summarize the desirable properties of the DOEM representation of OEM database
histories. Given a DOEM database D, it is easy to obtain the original snapshot, 00{D), the
snapshot at time t, Ot(D), and, the current snapshot, Oc(D). It is also easy to obtain the
encoded history H(D) from a DOEM database D. We say that a DOEM database D is feasible
if there exists some OEM database 0 and valid history H such that D = D(0, H). Note that
we do not require DOEM databases to record all changes since creation, i.e., OEM database
0 need not be empty. It is relatively easy to determine if a given DOEM database D is

14

feasible. Given a feasible DOEM database D, we can show that the OEM database OQ{D) and

the history H(D) encoded by D are unique. Thus, a DOEM database faithfully captures all

the information about the history of the corresponding OEM database. Finally, as we will

see in the next subsection, it is easy and intuitive to query the history encoded in a DOEM

database.

7.4 Querying Over Changes

In Subsection 7.3, we have seen how the history of an OEM database is represented by the

corresponding DOEM database. In this subsection, we describe how DOEM databases are

queried. We introduce a query language called Chord for this purpose. Chorel is similar to

the Lorel language used to query OEM databases. We begin with a brief overview of Lorel.

followed by a description of the syntax and semantics of Chorel.

7.4.1 Lorel Overview

Lorel uses the familiar select-from-where syntax, and can be thought of as an extension of

OQL in two major ways. First, Lorel encourages the use of path expressions. For instance,

one can use the path expression guide.restaurant.address.street to specify the streets of all

addresses of restaurant entries in the Guide database. Second, in contrast to OQL, Lorel

has a very "forgiving" type system. When faced with the task of comparing different types.

Lorel first tries to coerce them to a common type. When such coercions fail, the comparison

simply returns false instead of raising an error. This behavior, while it may be unsuitable

for traditional databases, is exactly what a user expects when querying semistructured data.

Lorel also provides a number of syntactic conveniences such as the possibility of omitting

the from clause. We do not describe Lorel in detail here, but only present through a simple

example those features that are needed to understand Chorel.

Example 7.5 Consider again the (modified) OEM database depicted in Figure 3. To find all

restaurants that have a price rating of less than 20.5, we can use the following Lorel query:

select guide.restaurant

where guide.restaurant.price < 20.5

Note that the query expresses the price rating as a real number whereas the restaurant

entries for "Bangkok Cuisine" and "Janta" in the modified OEM database shown in Figure 3

use an integer and a string, respectively. Furthermore, the third restaurant entry does not

have a price subobject at all. Lorel successfully coerces the integer price 10 to real, and the

comparison succeeds. For the string encoding of the price ("moderate"), Lorel tries to coerce,

but fails, returning false as the result of the comparison. Finally, for the third restaurant,

the missing price subobject simply causes the comparison to return false. Thus, the result of

the above query is a singleton set containing the restaurant object for "Bangkok Cuisine."

15

Note that this is an intuitively reasonable response to the original query, despite the typing

difficulties and the missing data. D

7.4.2 Chorel

In Chorel, path expressions may contain annotation expressions, which allow us to refer
to the node and arc annotations in a DOEM database. Informally, Lorel path expressions
can be thought of as being matched to paths in the OEM database during query execution.
Analogously, the annotation expressions in Chorel path expressions can be thought of as
being matched to annotations on the corresponding paths in the DOEM database.

Example 7.6 Consider the DOEM database depicted in Figure 4. To find all newly added

restaurant entries only, we can use the following Chorel query:

select guide.<add>restaurant

The annotation expression •'/add,;" specifies that only those objects connected to the "guide"
object by a "restaurants-labeled arc having an add annotation should be retrieved. For the
database depicted in Figure 4, this Chorel query returns the restaurant object with name

"Hakata." D

Not surprisingly, we use four kinds of annotation expressions in Chorel path expressions:
node annotation expressions "ere" and "upd" and arc annotation expressions "add" and
"rem." Recall that a path expression, e.g., guide.restaurant.price, consists of a sequence of
labels. Arc annotation expressions must occur immediately before a label, whereas node
annotation expressions must occur immediately after one. (Note that since node and arc
annotations use different keywords, no confusion can arise.) Path expressions containing
node or arc annotation expressions are called annotated path expressions. For instance.
guide.iaddirestaurant.priceiupdl is a correct annotated path expression. It requires an add
annotation to be present on the arc labeled "restaurant," and an upd annotation on the
"price" node (i.e., on the node at the destination of the arc labeled "price"). For simplicity,
we do not consider path expressions that have annotation expressions attached to wildcards
or regular expressions, however generalizing to allow such annotation expressions is not

difficult.
Annotation expressions may also introduce time variables to refer to the timestamps

stored in matching annotations, and data variables to refer to the modified values in matching
upd annotations. More precisely, the syntax of annotation expressions is as follows:

\Annot [at timeV\i if Annot is in { add, rem, ere }
;upd [at timeV\ [from oldV\ [to newl^i for upd

where timeV, oldV, and newVare variables. Note that a DOEM database does not explicitly
store the new value of an updated object, however this information is available implicitly,

and can be determined easily.

16

Example 7.7 Consider the DOEM database in Figure 4. To find all restaurant entries that

were added before January 4th, 1997, we can use the following Chorel query:

select guide.<add at T>restaurant

where T < 4Jan97

The Chorel preprocessor will rewrite this query to obtain the following. (We will explain

this rewriting shortly.)

select R

from guide.<add at T>restaurant R

where T < 4Jan97

The introduced from clause will bind R to all "restaurant" objects that are connected to the

"guide" object via an arc with an add annotation, and will provide corresponding bindings

for T. More precisely, the evaluation of the from clause will yield the set of pairs (#, T) such

that there is a restaurant arc from the guide object to R that has an add annotation with

timestamp T. The where clause will filter out the (R, T) pairs for which T does not satisfy

the condition. For the DOEM database in Figure 4, this query returns the restaurant object

for "Hakata." D

Once time and data variables have been bound using annotations, they can be used just

like other variables in Lorel or OQL. This is illustrated by the following query, which uses

time and data variables in the select clause.

Example 7.8 Referring again to the DOEM database in Figure 4. suppose we want to find

the names of all restaurants whose price ratings were updated on or after January 1st. 1997

to a value greater than 15, together with the time of the update and the new price. We can

use the following query:

select N, T, NV
from guide.restaurant.price<upd at T to NV>,

guide.restaurant.name N

where T >= Uan97 and NV > 15

answer

name "Bangkok Cuisine"

new-value 20

update-time Uan97

The result of the above query is a single complex object with three components, as shown

above. The label name is chosen by Chorel. For time and data variables whose labels are not

specified by the query, Chorel chooses the default labels create-time, add-time, remove-time,

update-time, new-value, and old-value. D

17

7.4.3 Chorel Semantics

We now make the semantics of Chorel queries more precise. As is done for Lorel, the se-
mantics is described by specifying the rewriting of Chorel queries into OQL-like queries.
However, we need to introduce some additional machinery to handle the annotation expres-
sions in Chorel queries.

First, the annotation expressions in a Chorel query are transformed into a canonical form
that includes all variables. For example, "/add,;" is rewritten to "/add at Til" and "/"pd
from Xl" is rewritten to ujupd at T2 from X to NV2l," where Tl. T2, and NV2 are fresh
variables. Next, as in Lorel, we eliminate path expressions by introducing variables for the
objects "inside" the path expressions. For example, the path expression "a.b.c" in a from

clause is converted to "a.b X, X.c Y," where X and Y are new range variables.
At this stage, we have to give a semantics to range variable definitions that may include

annotation expressions (e.g., "X.iab Y," "X./add at T^iab Y') in the context of a DOEM
database. In the absence of an annotation expression, the semantics of an expression "X.lab
Y' is that for a binding ox of A', Y is bound to all objects Oy such that there is an arc
labeled lab from ox to oy in the current snapshot. Note that by this semantics, a standard
Lorel query (without annotations) over a DOEM database has exactly the semantics of the
same query asked over the current snapshot for that DOEM database. In the presence of
annotation expressions, the semantics requires the existence of the specified annotation, and
also provides bindings for the variables in the annotation expression. The bindings are also
specified by a special rewriting. As an example, the query in Example 7.8 is rewritten to:

select N, T, NV
from guide.restaurant R, R.price P, R.name N,

(T, OV, NV) in updFun(P)
where T >= Uan97 and NV > 15

Our rewriting uses the following functions, which extract the information stored in an-
notations:

creFun(node) —> {time}
updFun(node) —> {(time, old-value, new-value)}
addFun(source, label) —>■ {(time, target)}
remFun(source, label) —> {(time, target)}

The function creFun(n) returns the set of timestamps found in ere annotations on node
n. (Note that by our definition of change operations in Subsection 7.2.1, this set is either
empty or a singleton.) The function updFun(n) returns a set of triples corresponding to
the timestamp, the old value, and the new value in upd annotations on n. The function
addFun(n,l) returns a set of (t,c) pairs such that c is an /-labeled subobject of n via an arc
that has an add(t) annotation. The remFun function is analogous to addFun. Once this
rewriting has been performed, the from, where, and select clauses of the resulting query are
processed in a standard manner.

18

Above, we have illustrated how variables introduced in the from clause are interpreted.

Variables may be introduced in the where clause as well. They are treated by introducing

existential quantification in the where clause, extending the treatment of such variables in

Lorel. Consider the following example:

Example 7.9 Consider again the DOEM database of Figure 4. Suppose we want the names

of restaurants to which a "moderate" price subobject was added since January 1st, 1997.

We can write the following Chorel query:

select N

from guide.restaurant R, R.name N

where R.<add at T>price = "moderate" and T >= Uan97

The variable T is introduced in the where clause. Therefore, the rewritten where clause is:

where exists (T, P) in addFun(R,"price") :

(P = '"moderate" and T >= Uan97)

7.5 Implementing DOEM and Chorel

In this subsection, we describe how we implement DOEM databases and Chorel queries.

We encode DOEM databases as OEM databases, and we implement Chorel by translating

Chorel queries to equivalent Lorel queries over the OEM encoding of the DOEM database. In

addition to being more modular than a direct implementation approach that builds a Chorel

database engine from scratch, this approach can also be adapted easily to other graph-based

data models.

7.5.1 Encoding DOEM in OEM

Let D be a DOEM database. We encode D as an OEM database OD defined as follows. For

each object o in D, there is a corresponding object d in OD- An atomic object is encoded

as a complex object so that we can record its history. Special labels used by the encoding

start with the special character "&" to distinguish them from standard labels occuring in

O. The encoding object d has the following subobjects, listed by their labels.

• icval: If o is atomic with current value u, there is a "&vai"-labeled arc from d to an

atomic object with value v. If o is complex, there is a "&vaf'-labeled arc from d to

itself. (This extra edge simplifies the translation of Chorel queries to equivalent Lorel

queries over the encoding.)

• kcre: If o has a create annotation cre(t), then d has a "&cre"-labeled atomic subobject

with value t.

19

• &:upd: For each update annotation upd(t,ov) attached to o, d has an "«feupcT-labeled
complex subobject with the following structure: a "&time"-labeled subobject with
value t, an "&ov"-labeled subobject with the value before the update (of), and a
"cL-nv"-labeled subobject with the value after the update.

• /: If the current snapshot for D contains an arc (o,/,jo), then Op contains an arc
labeled / from d to the object p' that encodes p.

• M-history: If D contains an arc (o,/,p), then OD contains an arc [d,M-histor\\dt)
where o't is a complex object that contains the history of the / arcs from o to p. The
object dt has the following structure: (1) Sztarget: There is an arc (oj, &:target, p').

wherep' is the object encoding p. (2) Siadd, krem: For each annotation add(t) (rem(t))
attached to (o,/,p), there is an "kadd"-labeled (respectively, "&rem"-labeled) atomic

subobject with value t.

It can be shown that all the information in a DOEM database D is fully represented in D's
OEM encoding using the above scheme.

7.5.2 Translating Chorel to Lorel

Given the above encoding of a DOEM database as an OEM database, we now describe how a
Chorel query over a (conceptual) DOEM database is translated into an equivalent Lorel query
over an OEM encoding of the DOEM database. The following example intuitively presents
the basis of the translation scheme.

Example 7.10 Consider the Chorel query in Example 7.9. In Subsection 7.4.3, we con-
sidered the OQL-like rewriting of this query. We now complete this rewriting by using the
information encoded in the &-arcs to yield the following Lorel query over the OEM encoding
of the DOEM database in Figure 4:

select N
from guide.restaurant R, R.name N
where exists H in R.&price-history :

exists P in H.&target :
exists T in H.&add : T >= Uan97 and

P.&val = "moderate"

Note that we simulate the range specification add Fun (R, "price") using the "&"-prefixed
subobjects. Further, we use P.&val to access the actual price value (and not the complex
object packaging it with its history). □

Note that the previous query returns a set of DOEM objects that represent restaurant
names. That is, it returns not only the names of the restaurants, but also the history of
these names, if they changed. Returning the DOEM object enables a user interface to access
both the value and the history of an object. We have implemented a DOEM database system,
called CORE, based on the above ideas.

20

7.6 A Query Subscription Service

Earlier we mentioned an important application of change management: being able to notify
"subscribers" of changes in (semistructured) information sources of interest to them. In this
subsection, we describe the design and implementation of such an application, called a Query

Subscription Service (QSS), using DOEM and Chorel.
An ordinary query is evaluated over the current state of the database, the results passed

to the client and then discarded. An example of an ordinary query is "find all restaurants
with Lytton in their address." In contrast, a subscription query is a query that repeatedly
scans the database for new results based on some given criteria and returns the changes of
interest. An example of a subscription query is "every week, notify me of all new restaurants
with Lytton in their address." Below, we describe how subscription queries are specified and

implemented in our system.
Supporting subscription queries introduces the following challenges. First, as discussed

earlier, many information sources that we are interested in (e.g.. library information sys-
tems, Web sites, etc.) are autonomous and typical database approaches based on triggering
mechanisms are not usable. Second, these information sources typically do not keep track of
historical information in a format that is accessible to the outside user. Thus, a subscription
service based on changes must monitor and keep track of the changes on its own. and often
must do so based only on sequences of snapshots of the database states.

Briefly, our approach to constructing a query subscription service over semistructured,
possibly legacy information sources is as follows: We access the information sources using
Tsimmis wrappers or mediators, which present a uniform OEM view of one or more data
sources. We obtain snapshots of relevant portions of the data, and use differencing techniques
to infer changes based on these snapshots. Finally, we use DOEM to represent the changes,
and Chorel to specify the changes of interest. We describe our approach in more detail next.

A subscription consists of three main components. The first component is a frequency
specification f that specifies how often QSS should check the information source for data
and changes of interest. Examples of frequency specifications are "every Friday at 5:00pm*'
and "every 10 minutes." The frequency specification implies a sequence of time instants
(tfi,<2i*3i •'■ •)■> which we call polling times. These times are the times when we obtain a new
snapshot of the data. (In the actual system we also consider two other modes: one in which
the snapshots are obtained following explicit user requests, and the other in which snapshots
are obtained as a result of a trigger on the source database firing, if the source provides
such a triggering mechanism. To simplify the presentation, we will not consider these modes
further here.

The second component of a subscription is a Lorel query Q/, which we call the polling
query. QSS sends the polling (Lorel) query to the wrapper or mediator at the polling times
(*i,*2,*3, •••) to obtain results (Ry, ß2, i?3,...). An example polling query is the following.
(In Lorel, "#" is a special character that matches any sequence of zero or more labels in a
path, and the operator like performs string matching.)

21

define polling query LyttonRestaurants as

select guide.restaurant

where guide.restaurant .address.« like '"/.Lyttony,"

Let #o be the empty OEM database, and let /?, be the result of the polling query on

the source at time t{ for i = 1,2,— Each i?, (a Tsimmis query result) is a tree-structured

OEM database. Using differencing techniques, QSS obtains a history H = (ti, L'i), [t2, U2)

corresponding to the sequence of OEM databases (RQ. Rt, R2,...). That is, €:,-(/?,-_l) = Rt

for all i > 0. Then, QSS constructs a DOEM database D(Ro,H) corresponding to this history

H and the initial snapshot Ro, as described in Subsection 7.3. Thus, intuitively, in the

first timestep the results of the polling query are all "created." Thereafter, each subsequent

timestep annotates the DOEM database with the changes to the result of the polling query

since the previous timestep. We identify the DOEM database corresponding to a polling query

using the name of the polling query. Thus the name of the DOEM database corresponding

to the above polling query is "LyttonRestaurants."1

The third component of a subscription is a Chorel query Qc, called the filter query, over

the above DOEM database. In Qc, we can use a special time variable "i/0/" to refer to the

current polling time4. Similarly, we can use *t[-l]" "t[-2].v etc., to refer to the past polling

times tk-i, tk-2, etc., respectively. (If the current polling time is tk, we define t[-i] to be tk-i

if i < k, and negative infinity otherwise.) The filter query describes the data and changes of

interest to the user. An example of an filter query is the following:

define filter query NewOnLytton as

select LyttonRestaurants.restaurant<cre at T>
where T > t[-l]

Given our definition of the DOEM database "LyttonRestaurants" this query indicates that

the user should be notifed of new restaurants that have Lytton in their address since the

last polling time. At each time instant tk (k > 0) specified by the frequency specification,

QSS evaluates Qc over the DOEM database D(RQ, Hk). where Hk = (ti,Ui),.... (tk, Uk). and
returns the results to the user.

Example 7.11 Consider again the changes to the Guide data described in Example 7.2.

Suppose we are interested in being notified every night of new restaurants created in the

Guide database since the previous night. We issue the subscription S = (f,Qi,Qc): where

the frequency specification / is "every night at 11:30pm," and the polling query Qi and filter

query Qc are Restaurants and NewRestaurants (respectively) as defined below:

define polling query Restaurants as

select guide.restaurant

define filter query NewRestaurants as

select Restaurants.restaurant<cre at T>

where T > t[-l]

22

Suppose we create this subscription S on December 30th, 1996, at 10:00am. The polling

times given by our frequency specification are ti = 30Dec96. t2 = 31Dec96, £3 = Man97,

and so on (all at 11:30pm). At polling time t\, QSS sends the polling query Qi to the Guide

OEM database, to obtain the result JRI consisting of the two original restaurant objects in

Figure 3. Since Ro is the empty OEM database by definition, both restaurant objects will

have a ere annotation in the DOEM database built by QSS. These annotations all have

a timestamp ti, while the variable t[-l] in the query Qc has value negative infinity at t\.

Therefore, evaluating the filter query Qc on this DOEM database returns the two restaurant

objects as the initial results to the user.

At polling time t2. the Guide database is unchanged, so the result R2 of the polling query

is identical to R\. Consequently, no changes are made to the DOEM database maintained by

QSS. Note also that at time t2, t[-l] = £1, so that the create annotations on the restaurant

objects in the DOEM database no longer satisfy the predicate T > t[-l] in the where clause

of Qc. Therefore, the result of Qc is empty, and the user does not receive any notification.

Before polling time t3, the Guide database is modified by the addition of a new restaurant

object, with name "Hakata," as described in Example 7.2. Therefore, at £3, the result R3 of

the polling query contains the new restaurant object in addition to the two old restaurant

objects. The new restaurant object is detected by the differencing algorithm. Accordingly,

the DOEM database maintained by QSS now includes the new restaurant object, with a create

annotation cre(t3) on it. Note also that at this time, t[-l] = t2. so that this create annotation

satisfies the predicate in the where clause of Qc. Therefore the result of the query Qc over

the modified DOEM database contains the new restaurant object "Hakata," and the user is

notified of this result. D

«U.S. GOVERNMENT PHINTING OFFICE: 1999-610-130-81136

23

DISTRIBUTION LIST

addresses number
of copies

CRAIG S. ANKEN 5
AFRL/IFTB
525 BROOKS ROAD
ROME NY 13441-4505

PROF. JENNIFER WIQOM
COMPUTER SCIENCE DEPT.
STANFORD UNIVERSITY
PALO ALTO CA 94305

AFRL/IFOIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: OTIC-OCC
DEFENSF TECHNICAL INFO CENTER
3725 JOHN J. KINGMAN ROAD, STE 0944
FT. BELVOIR, VA 22060-6218

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX ORIVE
ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER
IIT RESEARCH INSTITUTE
201 MILL ST.
ROME, NY 13440

AFIT ACADEMIC LIBRARY
AFIT/LDR, 2950 P.STREET
AREA 5, 8L0G 642
WRIGHT-PATTERSON AFB OH 45433-7765

AFRL/HESC-TOC
2698 G STREET, BLDG 190
WRIGHT-PATTERSON AF8 OH 45433-7604

DL-1

ATTN: SHOC IM PL
US ARMY SPACE £ MISSILE DSF CMD
P.O. SOX 150Q
HUNTSVILLE AL 35807-3801

1

COMMANDER« CODE 4TL000D
TECHNICAL LIBRARY, NAWC-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

1

COR, US ARMY AVIATION £ MISSILE CMO
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-03-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

2

REPORT LIBRARY
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

1

ATTN: D»80RAH HART
AVIATION BRANCH SVC 122.10
FQSlOAi RM 931
800 INDEPENDENCE AVE, SW
WASHINGTON DC 20591

1

AFIWC/MSY
102 HALL BLVD, STE 315
SAN ANTONIO TX 78243-7016

1

ATTN: KAROLA M. YOURISON
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE
PITTSBURGH PA 15213

1

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VS0SACLIBRARY-3LDG 1103)
5 WRIGHT DRIVE
HANSCOM AFB MA 01731-3004

1

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION
202 BURLINGTON RD
BEDFORD MA 01730

1

OL-2

OUSD(P)/DTSA/DUTD
ATTN: PATRICK G. SULLIVAN,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

JR.

SOFTWARE ENGR'G INST TECH LIBRARY
ATTN: MR DENNIS SMITH
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213-3390

USC-ISI
ATTN: OR ROSERT M. BALIER
4676 ADMIRALTY WAY
MARINA DEL REY CA 90292-6695

KESTREL INSTITUTE
ATTN: DR COROELL GREEN
1801 PAGE MILL ROAD
PALO ALTO CA 94304

ROCHESTER INSTITUTE OF TECHNOLOGY
ATTN: PROF J. A. LASKY
1 LQMS MEMORIAL DRIVE
P.O. SOX 9887
ROCHESTER NY 14613-5700

AFIT/ENG
ATTN:TOM HARTRUM
WPAF3 OH 45433-6583

THE MITRE CORPORATION
ATTN: MR EDWARD H. SENSLEY
BURLINGTON RD/MAIL STOP A350
BEDFORD MA 01730

UNIV OF ILLINOIS, URBANA-CHAMPAIGN
ATTN: ANDREW CHIEN
OEPT OF COMPUTER SCIENCES
1304 W. SPRINGFIELO/240 DIGITAL LAB
URBANA IL 61301

HONEYWELL, INC.
ATTN: MR BERT HARRIS
FEDERAL SYSTEMS
7900 WESTPARK DRIVE
MCLEAN VA 22102

OL-3

SOFTWARE ENGINEERING INSTITUTE
ATTN: MR WILLIAM E. HEFLEY
CARNEGIE-MELLON UNIVERSITY
SEI 2218
PITTSBURGH PA 15213-38990

UNIVERSITY OP SOUTHERN CALIFORNIA
ATTN: OR. YIGAL ARENS
INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY/SUITE 1001
MARINA DEL REY CA 90292-6695

COLUMBIA UNIV/DEPT COMPUTER SCIENCE
ATTN: DR GAIL E. KAISER
450 COMPUTER SCIENCE SLOG
500 WEST 120TH STREET
NEW YORK NY 10027

AFIT/ENG
ATTN: DR GARY 8. LAMONT
SCHOOL OF ENGINEERING
DEPT ELECTRICAL & COMPUTER ENGRG
WPAFB OH 45433-6533

NSA/OFC OF RESEARCH
ATTN: MS MARY ANNE OVERMAN
9800 SAVAGE ROAD
FT GEORGE G. MEADS MO 20755-6000

AT&T BELL LABORATORIES
ATTN: MR PETER G. SELFRIDGE
ROOM 3C-441
6 00 MOUNTAIN AVE
MUPRAY HILL NJ 07974

ODYSSEY RESEARCH ASSOCIATES, INC.
ATTN: MS MAUREEN STILLMAN
301A HARRIS 8. DATES DRIVE
ITHACA NY 14850-1313

TEXAS INSTRUMENTS INCORPORATED
ATTN: DR DAVID L. WELLS
P.O. BOX 655474, MS 238
DALLAS TX 75265

KESTREL DEVELOPMENT CORPORATION
ATTN: DR RICHARD JULLIG
3260 HILLVIEW AVENUE
PALO ALTO CA 94304

DL-4

OARPA/ITO
ATTN: OR KIRSTIE BELLMAN
3701 N FAIRFAX DRIVE
ARLINGTON VA 22203-1714

NASA/JOHNSON SPACE CENTER
ATTN: CHRIS CULBERT
MAIL CODE PT4
HOUSTON TX 77058

STERLING IMO INC.
KSC OPERATIONS
ATTN: MARK MAGINN
BEECHES TECHNICAL CAMPUS/RT 26 N.
ROME NY 13440

HUGHES SPACE t COMMUNICATIONS
ATTN: GERRY SARKSOALE
P. 0. BOX 92919
SLOG Rll MS M352
LOS ANGELES, Cft 90009-2919

SCHLUM8ERGER LABORATORY FOR
COMPUTER SCIENCE

ATTN: OR. GUILLERMO ARANGO
3311 NORTH FM620
AUSTIN, TX 78720

DECISION SYSTEMS DEPARTMENT
ATTN: PROF MALT SCACCHI
SCHOOL OF BUSINESS
UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CA 90089-1421

SOUTHWEST RESEARCH INSTITUTE
ATTN: BRUCE REYNOLDS
6220 CULE8RA ROAD
SAN ANTONIO, TX 78228-0510

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY

ATTN: CHRIS DA8R0WSKI
ROOM A266, BLDG 225
GAITHS3URG MD 20899

EXPERT SYSTEMS LABORATORY
ATTN: STEVEN H. SCHWARTZ
NYNEX SCIENCE £ TECHNOLOGY
500 WESTCHESTER AVENUE
WHITE PLAINS NY 20604

DL-5

NAVAL TRAINING SYSTEMS CENTER
ATTN: ROBERT 8REAUX/CODE 252
12350 RESEARCH PARKWAY
ORLANDO FL 32326-3224

OR JOHN SALASIN
DARPA/ITO
3701 NORTH FAIRFAX DRIVi
ARLINGTON VA 22203-1714

OR BARRY 80EHM
DIR, USC CENTER FOR SW ENGINEERING
COMPUTER SCIENCE DEPT
UNIV OF SOUTHERN CALIFORNIA
LOS ANGELES CA 90089-0781

DR STEVE CROSS
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

DR MARK MAYBURY
MITRE CORPORATION
ADVANCED INFO SYS TECH; G041
8URLINT0N ROAD, M/S K-329
BEDFORD MA 01730

ISX
ATTN: MR. SCOTT FOUSE
4353 PARK TERRACE ORIVE
WESTLAKE VILLAGEtCA 91361

MR GARY EDWARDS
ISX
433 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

OR ED WALKER
3SN SYSTEMS & TECH CORPORATION
10 MOULTON STREET
CAMBRIDGE MA 02238

LEE ERMAN
CIMFLEX TEKNOWLEDGE
1310 EM8ACADER0 ROAD
P.O. BOX 10119
PALO ALTO CA 94303

DL-6

OR. DAVE SUNNING
OARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DAN WELD
UNIVERSITY OF WASHINGTON
DEPART OF COMPUTER SCIENCE
BOX 352350
SEATTLE, WA 93195-2350

£ ENGIN

STEPHEN SODERLAND
UNIVERSITY OF WASHINGTON
DEPT OF COMPUTER SCIENCE &
30X 352350
SEATTLE, WA 93195-2350

ENGIN

DR. MICHAEL PITTARELLI
COMPUTER SCIENCE DEPART
SUNY INST OF TECH AT UTICA/RÖME
P.O. SOX 3050
UTICA, NY 13504-3050

CAPRARO TECHNOLOGIES, INC
ATTN: GERARD CAPRARO
311 TURNER ST.
UTICA, NY 13501

USC/ISI
ATTN: BOS MCSREGOR
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292

SRI INTERNATIONAL
ATTN: ENRIQUE RUSPINI
333 RAVENSWOOD AVE
MENLO PARK, CA 94025

DARTMOUTH COLLEGE
ATTN: DANIELA RUS
DEPT OF COMPUTER SCIENCE
11 ROPE FERRY ROAD
HANOVER, NH 03755-3510

UNIVERSITY OF FLORIDA
ATTN: ERIC HANSON
CISE DEPT 456 CSE
GAINESVILLE, FL 32611-6120

DL-7

CARNEGIE -MELLON UNIVERSITY
ATTN: TQM MITCHELL
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3890

CARNEGIE MELLON UNIVERSITY
ATTN: MARK CRAVEN
COMPUTER SCIENCE DEPARTMENT
PITTSBURGH, PA 15213-3890

UNIVERSITY OF ROCHESTER
ATTN: JAMES ALLEN
DEPARTMENT OF COMPUTER SCIENCE
ROCHESTER, NY 14627

TEXTWISE, LLC
ATTN: LIZ LIDDY
2-121 CENTER FOR SCIENCE €, TECH
SYRACUSE, NY 13244

WRIGHT STATE UNIVERSITY
ATTN: DR. BRUCE 8ERRA
DEPART OF COMPUTER SCIENCE
DAYTON, OHIO 45435-0001

UNIVERSITY OF FLORIDA
ATTN: SHARMA CHAKRAVARTHY
COMPUTER & INFOR SCIENCE DEPART
GAINESVILLE, FL 32622-6125

KESTREL INSTITUTE
ATTN: DAVID ESPINOSA
3260 HILLVIEW AVENUE
PALO ALTO, CA 94304

USC/INFORMATION SCIENCE INSTITUTE
ATTN: DR. CARL KESSELMAN
11474 ADMIRALTY WAY, SUITE 1001
MARINA DEL REY, CA 90292

MASSACHUSETTS INSTITUTE OF TECH
ATTN: DR. MICHAELS SIEGEL
SLOAN SCHOOL
77 MASSACHUSETTS AVENUE
CAMBRIDGE, MA 02139

DL-8

USC/INFGRMATIQN SCIENCE INSTITUTE
ATTN: DR. WILLIAM SWARTHOUT
11474 AOMXRALTY WAY, SUITE 1001
MARINA DEL RSY, CA 90292

STANFORD UNIVERSITY
ATTN: OR. GIO WIEOERHOLD
857 SIERRA STREET
STANFORD
SANTA CLARA COUNTY, CA 94305-4125

NCCOSC RDTE DIV 044208
ATTN: LEAH WONG
53245 PATTERSON ROAD
SAN DIEGO, CA 92152-7151

SPAWAR SYSTEM CENTER
ATTN: LES ANDERSON
271 CATALINA BLVD, CODE 413
SAN DIEGO CA 92151

GEORGE MASON UNIVERSITY
ATTN: SUSHIL JAJODIA
ISSE DEPT
FAIRFAX, VA 22030-4444

OIRNSA
ATTN: MICHAEL R. WARE
OOD, NSA/CSS CR23)
FT. GEORGE 6* MEADE MD 20755-6000

DR. JIM RICHARDSON
3660 TECHNOLOGY DRIVE
MINNEAPOLIS, nU 5541S

LOUISIANA STATE UNIVERSITY
COMPUTER SCIENCE OEPT
ATTN: DR. PETER CHEN
257 COATES HALL
3ATON ROUGE, LA 70803

INSTITUTE OF TECH DEPT OF COMP SCI
ATTN: DR. JAIDEEP SRIVASTAVA
4-192 EE/CS
200 UNION ST SE
MINNEAPOLIS, MN 55455

DL-9

GTE/8BN
ATTN: MAURICE M. MCNEIL
9655 GRANITE RIDGE DRIVE
SUITE 245
SAN DIEGO, CA 92123

UNIVERSITY OF FLORIDA
ATTN: DR. SHARMA CHAKRAVARTHY
E470 CSE BUILDING
GAINESVILLE, FL 32611-6125

AFRL/IPT
525 BROOKS ROAD
ROME, NY 13441-4505

AFRL/IFTM
525 BROOKS ROAD
ROME, NY 13441-4505

DL-10

MISSION
OF

ÄFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

