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Abstract

Integrated circuit designs continue to increase in both size and complexity, making
fault simulation and testing more difficult and costly. Computer aided design tools and
hardware description languages are now commonly used to represent designs at higher
levels of abstraction. However, fault simulation and testing of digital circuits have been
historically done using fault models at the gate level or below. A design methodology is
needed for performing fault simulation throughout the design process, incorporating fault
models at higher levels of abstraction. Use of these higher level fault models has the
promise of reducing complexity, providing earlier identification of potential problems, and
improving integration of fault simulation into the overall design process.

Previous behavioral fault models lack a well defined link to the hardware which they
attempt to describe. Though some relationships to possible hardware faults are proposed,
there is no detailed analysis to justify these assertions. Approaches based on perturbing
language constructs, such as ADD to SUB, do not accurately reflect underlying hardware
faults. In order to compensate for this “big micro-operation problem,” alternate methods
such as heuristics are used to supplement test vector sets to increase the equivalent gate
level fault coverage.

This dissertation proposes a new set of fault models for VHDL behavioral descriptions
of combinational logic circuits. These fault models exploit hardware relationships that
exist in a design environment which involves synthesis of behavioral descriptions into gate
level circuits. A functional analysis technique is used to evaluate the effects of industry
standard single-stuck-line (SSL) faults on gate level implementations. The generalized
functional faults are then abstracted into the behavioral domain by examining their rela-
tionship with the higher level language construct.

Test vectors derived from the new behavioral fault models are applied to synthesized
gate level realizations of a range of circuits that include typical arithmetic and logic func-
tions. Resulting gate level fault coverage is determined via fault simulation and used as a
measure of effectiveness for the new fault models. Because the behavioral faults are
derived from a functional analysis of low level faults, they provide improved fault cover-

age over previous fault models, over a broad range of implementations.
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Chapter 1

Introduction

Integrated circuit designs continue to increase in both size and complexity. Fault sim-
ulation and testing of these designs is, thus, becoming more difficult and costly. Designers
now commonly make use of computer aided design tools and hardware description lan-
guages, such as VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware Descrip-
tion Language), to represent their designs at higher levels of abstraction. However, fault
simulation and testing of digital circuits for manufacturing faults have been historically
done using fault models at the gate level or below. Use of these lower level fault models
adds complexity and delays these efforts to later in the design cycle.

There is a need to develop a design methodology for performing fault simulation
throughout the design process, at many levels of abstraction. It is, therefore, desirable to
develop fault models at higher levels of abstraction, based on functional or behavioral
descriptions. Working with behavioral fault models will also allow fault simulation to be
performed earlier in the design scheme, without details of the gate level implementation.
In fact, depending on the source of the component, a gate Jevel description may never be
available. Thus, fault simulation and testing based on these higher level fault models have
the promise of being less complex, providing earlier identification of potential problems,
and improving integration into the overall design process.

This dissertation develops a new set of fault models for VHDL behavioral descriptions
of combinational logic circuits. The fault models exploit hardware relationships that exist
in a design environment which involves synthesis of behavioral descriptions into gate level
circuits. The focus is on relating high level language constructs to lower level hardware
faults, as opposed to perturbing the language elements as if they were simply software. A
functional analysis technique is used to evaluate the effects of industry standard single-
stuck-line (SSL) faults on gate level implementations. The generalized functional faults
are then abstracted into the behavioral domain by examining their relationship with the
higher level language construct. The resulting behavioral fault models are, thus, more

strongly linked to underlying hardware faults than those developed by previous research.



~ As part of this research, test vectors derived from the new behavioral fault models are
applied to synthesized gate level realizations of a range of circuits that include typical
arithmetic and logic functions. Resulting gate level SSL fault coverage is determined via
- fault simulation and used as a measure of effectiveness for the new fault models. Because
the behavioral faults are derived from a functional analysis of low level faults, they pro-
vide improved fault coverage over previous fault models, over a broad range of implemen-

tations.

1.1 Previous Research

Recent research efforts have attempted to develop fault models at higher levels of
abstraction, which accurately represent faults which occur at lower levels. The models of
interest in this research move up the design hierarchy, shown in Table 1-1 [10], beyond the
gate level to the register or chip level. Functional fault models are based on the input/out-
put relationship of higher level primitives which may incorporate a large number of gates.
Behavioral fault models are based on procedural descriptions of the circuits desired func-
tion. Many models reference the register transfer level which describes procedural data

flow among functional primitives.

Level of Detail Behavioral quain | Structgra} Domain
Representation - Primitives
System Performance specification Computer, disk, unit, radar
Chip Algorithm Microprocessor, RAM, ROM, UART
Register Data flow Register, ALU, COUNTER, MUX
Gate Boolean equations AND, OR, XOR, FF
Circuit Differential equations Transistor, R, L, C
Layout/silicon None Geometrical Shapes

Table 1-1 Levels of detail commonly used in design.

The majority of functional and behavioral modeling efforts can be traced to four prom-
inent researchcrs: Jacob Abraham, James Armstrong, Sumit Ghosh, and John Hayes.
Chapter 2 of this dissertation examines the models developed by groups including each of

these researchers. Modeling at many levels of abstraction is discussed by Abraham et al.



l [1][21[17][65][66], but the main focus of this research concerns the functional fault mod-
els. Armstrong and his collaborators [6][7]1[8][9][22][28]{69] have developed an ever
evolving series of functional and behavioral fault models and have implemented test gen-
eration algorithms using these models. Ghosh and Chakraborty [18][26][27] have pro-
posed a set of fault models which are based on the failure modes of the language
constructs of a generic hardware description language. Finally, Hayes et al. [29][31][32]
[33][34][63] has worked extensively on fault models for digital circuits, including descrip-
tions of functional fault models leading to a new generic class called induced faults.

The survey of the state of the art in high level fault modeling clearly indicates that
there is no widely accepted solution to the problem. Modeling techniques range from the
functional analysis employed by Abraham and Hayes, to the procedural data flow of
behavioral descriptions used by Ghosh and Armstrong. Previous behavioral fault models
lack a well defined link to the hardware which they attempt to describe. Though some
relationships to possible hardware faults are proposed, there is no detailed analysis to jus-
tify these assertions. Approaches based on perturbing language constructs, such as ADD
to SUB, do not accurately reflect underlying hardware faults. In order to compensate for
this “big micro-operation problem,” alternate methods such as heuristics are used to sup-
plement test vector sets to increase the equivalent gate level fault coverage.

Though previous research provides no clear cut solution to modeling faults at higher
levels of abstraction, valuable insights are gained by the examination of each of these tech-
niques. Certain key concepts from past efforts have immediate applicability here, notably
functional equivalence and fault dominance. Further, the behavioral fault models devel-
oped in this dissertation only affect the activation step of the test generation process.
Hence, the high level algorithms devéloped to handle the computationally intensive tasks
of fault propagation and justification still remain valid. Integration of new fault models
with an existing behavioral test generation algorithm such as the B-algorithm' [21][22] can
be of mutual benefit. Such algorithms already address problems such as reconvergent
fanout, while use of more complex fault models can eliminate the need to supplement test

vector sets via heuristics.



1.2 Behavioral Modeling

Hardware description languages can be used to model system behavior at higher levels
of abstraction than the traditional gate or circuit level. Languages like VHDL make use of
sequential statements, much like conventional programming languages, to describe the
desired behavior of a circuit. Several constructs such as if-then-else and case are normally
provided to control the order of execution of these sequential statements. Designers can,
therefore, use VHDL to develop behavioral models that can be simulated to verify their
correct functioning, prior to generating hardware. VHDL behavioral descriptions and lan-
guage constructs are detailed in Appendix C.

Modermn synthesis tools interpret the behavioral VHDL source code as a description of
an electronic circuit. Not all language constructs map directly to hardware in a synthesis
environment, therefore, a language subset is defined for use with a specific tool. General
modeling guidelines are normally provided to ensure that resulting hardware will be con-
sistent with the designer’s intent. Combining these guidelines with the VHDL subset,

higher level models can be synthesized to create optimized gate level descriptions.

1.2.1 VHDL Subset

The VHDL behavioral models used in this research describe combinational logic cir-
cuits based on the IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36].
The draft builds on the foundation laid by the European VHDL Synthesis Working
Group’s Level-O0 VHDL Synthesis Syntax and Semantics [25] and incorporates constructs
common to synthesis tools by Mentor Graphics [68] and Synopsys [64]. Details can be
found in Appendix D.

The standard represents a subset of VHDL with corresponding design guidelines
meant to ensure consistent synthesis of gate level netlists from behavioral descriptions.
The key VHDL language constructs supported for behavioral modeling are listed below:

1) if statement, case statement, loop statement (for only).

2) procedure, function.

3) constant, variable, signal.

4) all predefined VHDL operators shown in Table 1-2.



Relational operators like greater than (>) and not equal (/=) compare like types and

return a Boolean result. The concatenation operator (&) combines one-dimensional

arrays to form a new array with the contents of the right operand following the contents of

the left operand. Finally, the modulus (MOD), remainder (REM), exponentiation (**),

and absolute value (ABS) operators are only defined for integer types. Definitions for all

the VHDL operators can be found in Appendix C.

Type Operators

Logical AND OR NAND NOR XOR
. Relational = /= < <= > >=
Adding + - &
Unary (sign) + -

Multiplying * / MOD REM
Miscellaneous kK ABS  NOT

Table 1-2 Predefined VHDL operators.

Design guidelines for modeling combinational logic circuits, summarized in Figure 1-

1, are extracted from those defined by Level-0 and Synopsys. Though the guidelines for

1) Processes whic

h model pure combinational logic must contain a sensitivity

list including all the signals which are read into the process. All signals and

variables must

be assigned in all the conditional branches.

2) Integer types are automatically converted to bit vectors whose width is as

small as possible to accommodate all possible values of the type’s rénge,

either in unsigned binary for nonnegative ranges or in 2’s complement form

for ranges that include negative numbers.

3) The arithmetic

operators “+” and “-” are predefined for all integer operands.

4) Multiplying operators (“*”, “/”, mod, and rem) are predefined for all integer

types with the following restrictions:

a) The right operand shall be a computable power of 2.

b) Neither operand shall be negative.

Figure 1-1 Design guidelines.



multiplying operators may seem overly restrictive, they still provide adequate flexibility
for designing at the register transfer level and may yet be expanded in subsequent revi-
sions to the standard.

Use of this subset is meant to enhance the portability of VHDL designs across synthe-
sis tools conforming to the standard. Hence, it is used here as the basis for defining higher
level fault models which have a closer relationship to resulting synthesized hardware.

Behavioral fault models for each of these VHDL constructs are developed in Chapter 3

through Chapter 7 of this dissertation.

1.2.2 Hardware Implemenfation of VHDL Constructs

Several VHDL language constructs lend themselves directly to hardware implementa-
tion with common functional modules such as multiplexers. By examining these language
to hardware relationships, this research intends to build the foundation on which higher
level fault models can be defined, that are more closely related to their underlying gate
level counterparts. Some insights are drawn from two resources which direétly discuss the
relationship between certain VHDL constructs and the ultimate hardware.

One discussion of hardware implementation of VHDL constructs comes from Struc-
tured Logic Design with VHDL by Armstrong and Gray [10]. In a section titled “Auto-
mated Synthesis of VHDL Constructs,” they show the relationship between multiplexers
and language consfructs that involve selection, like if and case. Another insight into the
relationship between VHDL language constructs and hardWare c-omes from the VHDL
Style Guide for AutoLogic II by Mentor Graphics [68]. Again, the link is established
between the control constructs if and case and the multiplexer functional building block.
These examples reinforce the intuition that a language construct that involves selection
leads naturally to a hardware construct that implements selection, the multiplexer. Details
can be found in Appendix E.

Armstrong and Gray also discuss program loops, functions, and procedures in relation
to hardware [10]. Multiple implementations of a 4-bit édder are used for illustration.
Their discussions and examples serve as the basis for the analysis of these programming

constructs in Chapter 7 of this dissertation.



1.3 Functional Analysis

Previous research has proposed fault models for behavioral constructs based solely on
perturbing the language without a well defined link to the underlying hardware. This dis-
sertation presents new behavioral fault models based on a functional analysis of gate level
implementations. By combining VHDL synthesis information with industry standard SSL
faults, new fault models can be obtained which are more closely linked to the underlying
hardware.

A technique has been developed for abstracting SSL faults from the gate level into the
behavioral domain. First, synthesis information about hardware implementation of VHDL |
constructs is exploited to obtain a gate level basis for a functional analysis. Next, a
reduced set of functional faults, covering all SSL gate level faults, is determined with the
aid of fault reductions via functional equivalence and fault dominance [45]. Faults are
generalized from various possible implementations to form a set of functional faults not
tied to any specific realization. Most importantly, a detailed analysis of the relationship
between the generalized set of functional faults and the original VHDL description yields
a behavioral fault model for the language construct.

The new fault models developed by this research provide the well defined link to
underlying hardware faults that was lacking in previous behavioral fault models. The
functional analysis of SSL faults takes advantage of VHDL/hardware relationships that
exist in a synthesis environment. This analysis of gate level faults adapts the functional
techniques employed by Abraham [2] and Hayes [29] with two important extensions.
First, functional faults are not tied to a specific implementation, rather they are generalized
to be applicable to multiple realizations. Second, the functional faults are further
abstracted into the behavioral domain via their relationship with the original VHDL con-
struct being modeled.

Details of the functional analysis technique are presented during the development of
the control fault model in Chapter 3. Graphical techniques for examining the relationships
between functional faults are first demonstrated with relational operators in Chapter 4.
Complete functional testing of regular structures of functional building blocks is intro-

duced during the analysis of arithmetic operators in Chapter 5. Finally, interactions



among behavioral faults and VHDL constructs are explored throughout the dissertation,

but especially in Chapter 7 and Chapter 8.

1.4 Fault Injection Using WAVES

Gate level fault injection experiments were performed throughout this research using a
tool developed by DeLong et al. [24]. Test vectors are applied to structural VHDL models
using the IEEE Standard for Waveform and Vector Exchange (WAVES) [37]. SSL fault
simulations are determined using gate level equivalent fault classes according to MIL-STD
883D [52]. Test vectors are applied, one at a time, from the input WAVES file. Fault cov-
erage is then evaluated as the ratio of detected faults to total faults and can be plotted ver-
sus the test vectors as they are applied.

Fault experiments using behavioral test vectors were conducted during the develop-
ment of each group of behavioral fault models. The normal requirement for industrial
designs is that the set of test vectors provided by the designer achieve at least a 95% SSL
gate level fault coverage [27][40]{60]. In order to more fully examine the effectiveness of
the new fault models, additional examples, not presented in the individual chapters, are
provided in Appendix A. Examples have been chosen to represent é broad range of design
possibilities. Resulting gate level fault coverage was evaluated to illustrate the effective-

ness of the behavioral fault models and is summarized in Appendix B.

1.5 Comprehensive Examples

Two comprehensive example circuits are presented in Chapter 8 to demonstrate the
gate level fault coverage of the new behavioral fault models. The first is an arithmetic
logic unit (ALU) which performs selected functions on data inputs. The second example
is a single error correcting circuit used in fault tolerant applications. Other obvious exam-
ples such as a multiplexer or a magnitude comparator do not need to be investigated here
due to their detailed analysis as part of the development of the fault models for the if state-
ment and relational operators.

Application of the behavioral fault models to the comprehensive examples results in a
set of test vectors necessary to detect the behavioral faults. These test vector sets are then
applied to synthesized gate level implementations. Multiple synthesis tools and target

architectures are employed to create a variety of realizations of the behavioral descrip-




tions. AutoLogic II {68] from Mentor Graphics is used with both the autologic/default and
gen_lib/default target technologies. The Leonardo [47] synthesis tool from Exemplar
Logic is also used to map the behavioral descriptions to a Xilinx field programmable gate
array (FPGA) architecture. The resulting gate level fault coverage provides experimental

validation of the effectiveness of the behavioral fault models.

1.6 Contributions and Future Work

The main contributions of this dissertation include improved behavioral fault models
as well as the techniques for generalizing the effects of low level faults and abstracting
them into the behavioral domain. The new fault models are more closely linked to under-
lying hardware faults than those developed by previous research. Test vectors based on
these new behavioral fault models achieve complete SSL gate level fault coverage over a
broad range of implementations.

The models and techniques presented in this dissertation represent another important
step in the development of a design methodology for performing fault simulation through-
out the design process. Chapter 9 presents a brief description of directions for future
research. These include expansion of the behavioral fault models, tool development for

behavioral test generation and behavioral fault simulation, and migration of fault models

to even higher levels of abstraction.




Chapter 2

Previous Research

This chapter surveys previous research in three major areas involved in testing circuits
based on behavioral descriptions. First, a survey of the current state of the art in fault
modeling at higher levels of abstraction provides the basis from which tests for digital cir-
cuits can be developed. Recent research efforts have attempted to develop higher level
fault models, which accurately represent faults which occur at lower levels. Second, sev-
eral methods of injecting faults into higher level models are explored. Injecting faults into
a behavioral model can be accomplished by manipulating data or signal values within the
model or by actually changing or perturbing the model itself. Finally, various techniques
for generating behavioral or functional tests provide a means for evaluating the effective-
ness of high level modeling efforts. Their results can be compared to more conventional

gate level methods to provide a quantitative measure of fault coverage.

2.1 Fault Models

Fault models provide the underlying basis for the development of tests for digital cir-
cuits. The models of interest in this dissertation move up the design hierarchy beyond the
gate level to the register or chip level. Functional fault models are based on the input/out-
put relationship of higher level primitives which may incorporate a large number of gates.
. Behavioral fault models are based on procedural descriptions of the circuits desired func-
tioning. Many models reference the register transfer level which describes procedural data
flow among functional primitives.

The majority of functional and behavioral modeling efforts can be traced to four prom-
inent researchers: Jacob Abraham, John Hayes, Sumit Ghosh, and James Armstrong. As a
foundation for the development and application of more accurate behavioral fault models,
this dissertation examines the models developed by groups including each of these
researchers. Modeling at many levels of abstraction is discussed by Abraham et al. [1][2]
[17][65][66], but the main focus of this dissertation concerns the functional fault models.
Hayes et al. [29][31][32][33][34][63] has worked extensively on fault models for digital

circuits, including descriptions of functional fault models leading to a new generic class

10
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called induced faults. Ghosh and Chakraborty [18][26][27] have proposed a set of féult
models which are based on the failure modes of the language constructs of a generic hard-
ware description language. Armstrong and his collaborators [6][71[8][9]1[22][28][69] have
developed an ever evolving series of functional and behavioral fault models and, as will be

discussed later, have implemented test generation algorithms using these models.

2.1.1 Functional Faults

In “Fault and Error Models for VLSI,” [2] Abraham and Fuchs provide an extensive
review of research efforts aimed at deriving realistic models at higher levels which can
accurately represent the faults and errors at lower levels. Of primary interest here are their
descriptions of several functional fault models: general fault models for functional blocks,
models for small functional modules, and fault models for microprocessors.

Given a combinational function with N inputs, a general fault model assumes that this
function can be transformed into any other combinational function of N inputs and, there-
fore, testing it requires application of all 2N input combinations. Such exhaustive testing
| is impractical if N is large, however, testing may be manageable if the function is imple-
mented as an interconnection of subfunctions. The exhaustive general fault model could
then be used effectively to test these subfunctions.

Models for several small functional modules provide the building blocks for handling
larger functions. A key functional module found in many digital circuits is the decoder. It
can be described functionally as having N inputs and 2N outputs and, under normal opera-
tions, exactly one output line is activated corresponding to the input address. A detailed
study of all single transistor-level faults by Banerjee [12] resulted in the following func-
tional fault model for a decoder:

1) Instead of the correct line, an incorrect lin'e is activated.

2) In addition to the correct line, an incorrect line is activated.

3) No line is activated.

Though such a description is very simple, it was shown to incorporate all of the physical
shorts and opens possible in the transistor-level description. _

Further study [1] involved another important building block, the multiplexer. This

functional module has N inputs, log,N control signals, and one output. The output is
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selected to be one of the inputs as determined by the address on the control lines. Under a
fault, it can be shown that the behavior of the multiplexer module can be described in the
following functional manner:
1) A 0and a I cannot be selected on every input line.
2) When selecting some input, another input will be selected instead of, or in
addition to, the correct input.
Similar fault models exist for other building blocks of more complex functional units.
Even though microprocessors are quite complex, fairly effective functional fault mod-
els have been derived at the register transfer level. Thatte [66] visualizes a microprocessor
as a set of functions including register decoding, data transfer, data manipulation, and
instruction sequencing. A functional fault model is developed for each of these functions.
Improvements to this model made by Brahme [17] are based on the cbnceptual treatment
of instructions as consisting of rm'cro-ihstructions, which, in turn, are composed of a set of
micro-orders. The combined fault model for the microprocessor contains the fobllowing:
1) Fault Model for the Register Decoding Function:

- Fault-free
fp(R;) = R; Register i selected.
- Faulty
fp(R) =R ; Register j selected instead of Register i.
fp(R;) = ¢ No register selected.
fp(R;) = {R; R;} Registerj selected in addition to Register i.
2) Fault Model for the Data Transfer Function:
- any number of lines can be stuck at 0 or 1.
- any pair of lines i,j can be coupled.
3) Fault Model for the Data Manipulation Function:

- No specific fault model is presented. (It is assumed that the complete test set for

any given ALU can be easily determined.)
4) Fault Model for the Instruction Sequencing Function:

- Under a fault we can have one or more of the following events:
- One or more microorders can be inactive.
- Microorders which are normally inactive become active.
- A set of microinstructions is active in addition to, or instead of, the normal

microinstructions.
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This approach allows derivation of tests for a microprocessor even if the details of imple-
mentation are not known.

With this set of fault models, Abraham and his collaborators have attempted to
describe accurately the effects of faults within higher functional modules and thus make
complex systems tractable by reducing the number of primitive elements. Though largely
based on actual circuit descriptions, care has been taken to make these models as imple-
mentation independent as possible by concentrating on the functionality provided by each

module.

2.1.2 Physically-Induced Faults
In “Fault Modeling” [34], Hayes also discusses the general functional (GF) fault

model as one that allows arbitrary changes to a circuit’s truth table (combinational case) or
state table (sequential case). The maximum number of states, which can be taken to be
one in the combinational case, is assumed to remain constant when faults are present.
Detection of GF faults requires essentially exhaustive testing procedures and is thus feasi-
ble for a moderate number of input lines. Tests for GF faults in a sequential circuit are
termed checking sequences and tend to be long and difficult to compute. Such tests have,
however been applied successfully to the representation of certain types of pattern-sensi-
tive faults in RAMs [33] and to testing simple bit-sliced microprocessors [63].

In more recently published research, Hansen and Hayes [29] present a new high-level
fault model called the physically-induced fault model. If gate-level single-stuck-line (SSL)
faults are considered with this model, the authors claim that complete functional fault
detection can guarantee complete SSL fault detection. The induction concept implies
changing the abstraction level at which faults and their effects are considered from a lower
to a higher abstraction level. The physical faults of interest include SSL faults, bridging
faults, and switch-level faults. The target abstraction level is the functional level, which is
loosely defined to correspond to the register-transfer level. Just as the SSL fault model is a
“natural” gate-level fault model, the authors propose that the SSL-induced fault (SIF)
model is a natural functional-level fault model.

The 3-input majority circuit M, shown in Figure 2-1, is presented as a preliminary

example where G, P, and C represent carry-generate, carry-propagate, and carry-in respec-
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tively. There are 11 lines producing 22 SSL faults. Analyzing the faulty responses pro-
duces 14 different SIF functions which can be reduced by functional equivalence and fault

dominance to a minimal set of 6. Table 2-1 lists 6 SIF tests that detect all SSL faults.

AG] G
BG
| Z
C
P PC
A m——
) -
Figure 2-1 Three-input majority circuit M.
SIF SIF test Z C AB
A cannot propagate Propagate with A 1 110
B cannot propagate Propagate with B 1 101
M always propagates Stop propagate 0 100
M cannot generate Generate 1 011
B always generates Stop generate with B 0 010
A always generates | Stop generate with A 0 001

Table 2-1 Minimal SIF test set.

By examining different realizations of the same majority function, other independent
functional faults may be added. Additional tests could, therefore, be required to detect the
SIF “generate invalidates propagate.” However, given a full set of physical faults, a set of
functional faults can be derived, usually without too much difficulty. For example, the
work of Shen et al. [62] on inductive fault analysis can be used to supply a comprehensive
physical-fault list.

Physically-induced fault techniques have also been applied to several medium-scale
examples from the 74X-series. The tests derived for these circuits cover all SSL faults in
the standard 74X-series gate-level designs [67], a property that has been verified by com-
plete gate-level fault simulation. Furthermore, the test sets are provably minimal and are

generally smaller than those found by an efficient gate-level test generator.
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2.1.3 Behavior Faults

In “Behavior-Level Fault Simulation,” [26] Ghosh uses behavioral fault models fo rep-
resent complex failures in VLSI designs. Faulty values of variables that represent state/
timing parameters or a faulty description that is substituted for part of fhe good description
are deliberately introduced into a design that contains no faults. A severe limitation of this
method is determining how to select fault models that represent actual failures from the
large number that do not. The recommended approach urges designers to use a library of
fault models of complex devices that are based on actual failures.

In subsequent research, Ghosh and Chakraborty [18][27] propose fault models based
on the failure modes of the language constructs of a generic hardware description lan-
guage. The programming language C is used to describe hardware with assurances that its
language constructs may be extended to other hardware description languages. The fault
models presented are relatively complex and attempt to rationalize a link to actual possible
hardware faults. Some of the key components of these behavioral fault models include:

1) The states of a sequential component may be expressed through variables of
integer, Boolean or real types and may fail in one of two modes - the state is
permanently held at either V; or V, where V; and V, specify the lower and
upper extremes of the logical value System.

2) A “function call” may exhibit two failure modes where it permanently returns
V; or V,, the lower and upper extremes of the range of the function.

.3) In the “for (CC) {E;}” clause, the body (E,;} may either never be executed or
always executed regardless of the condition CC.

4) In a “switch (Id)” clause, the switch may select either the cases corresponding
to the lower or upper extremes of the switch identifier’s value system, all or
none of the specified cases.

5) The “if (X) then {E;} else {E,}” construct may fail such that E; is always exe-
cuted and Ej is never executed, E; is never executed and E, is always executed,
or E; and E, are executed when X evaluates to false and true respectively.

6) The assignment statement “X = ¥ may fail such that X remains unchanged or
assumes the lower (V;) or upper (V,) extremes of the value system, or X

assumes V; or V, depending on a probability function.
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Though relationships to possible hardware faults are proposed, there is no detailed analy-
sis to justify these assertions. A further shortcoming of these models is the restriction to
the lower (V) or upper (V,) extremes of the value system. Multiple bit signals must all be
stuck at 0 or stuck at 1 rather than allowing for only a single stuck line.

In order to evaluate the performance of the proposed behavior fault models, example
designs were fault simulated and compared with gate-level fault simulation in the presence
of stuck-at faults. The example designs included: 16-to-4 multiplexer; 4-, 8-, and 16-bit
ALUs with carry lookahead; shift register; synchronous and asynchronous counters; AMD
AM?2903 bit slice processor; and the control unit of a complex protocol formatter chip.
Between 40 and 60 randomly generated test-vector sets were used for gate-level and
behavioral fault simulation and the gate-level and behavioral fault coverages were then
compared. The researchers found a strong and consistent correlation of the gate-level and
behavioral fault coverages with no occurrence of a behavioral fauit coverage exceeding

90% while the gate-level fault coverage was less than 85%.

2.1.4 Model Perturbation
Armstrong et al. has developed a series of behavioral fault models based on the con-
cept of model perturbation [28] of designs using hardware description languages, most
recently VHDL. In “Behavioral Fault Simulation in VHDL,” [69] Ward and Armstrong
define eight behavioral fault classes:
1) Stuck-Then: represents a failure of the if-then-else construct to ever execute the
else statements.
2) Szitck-Else: represents a failure of the if-then-else construct to ever execute the
then statements. »
3) Assignment Control: represents a failure of the VHDL assignment operator to
assign a new value to a signal.
4) Dead Process: failure of the statements within a process construct to execute.
5) Dead Clause: failuré of the VHDL CASE construct to execute one of the alter-
native sequences of statements (clauses).
6) Micro-operation: failure of an operator to perform its intended function. The

operator may fail to any other operator in its class.
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7) Local Stuck-data: failure of a signal or variable to have the correct value. The

local stuck-data fault is restricted to the expression into which it is mapped.

8) Global Stuck-data: failure of a signal or variable to change value within the

device model.
These fault classes have been continually refined by subsequent research, but still they
serve as the basis for many current efforts in behavioral test pattern generation.

As a further refinement to their earlier model, Armstrong, Lam, and Ward, [9] subdi-
vide behavioral faults into two broad categories, control faults and micro-operation faults.
Control faults perturb the control points that switch between micro-operation sequences.
This fault group includes:

1) IF: stuck THEN, stuck ELSE - branching will always occur in one direction,

independent of control signal values.

2) CASE: dead clause - the selected clause does not execute.

3) Assignment fault - models the effect of a single assignment not taking place.

4) Dead Process fault.

Micro-operation faults perturb individual micro-operations to another and include:

1) AND <->OR.

2) INC <->DEC.

3) ADD <-> SUB.

Some significant problems with this modeling technique include choosing to which micro-
.operation to perturb [19] and whether any of these faults can actually occur in hardware.

As part of the development of the “B-algorithm: A Behavioral Test Generation Algo-
rithm,” [21][22] Cho and Armstrong developed a new behavioral fault model by applying
the concept of equivalent faults to the previous model. Stuck-THEN/stuck-ELSE faults
can be removed from the behavioral fault list if stuck-at faults are defined for unnamed
signals corresponding to the conditional expressions of the IF statement. .Likewise, a
micro-operation fault for a logic operator is detected by a test for a stuck-at fault on one of
its arguments. Finally, a dead-clause fault is equivalent to an assignment control fault
- under the assumption of a single behavioral fault model.

The new behavioral fault model renames stuck-at faults to behavioral stuck-at faults.

Assignment control faults are renamed behavioral stuck-open faults and micro-operation
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faults for arithmetic or relational operators are renamed micro-operation faults. The
reduced model now includes three types of faults:
1) Behavioral Stuck-at (BSA) Fault - a bit of a signal, virtual signal, a fanout stem,
or a fanout branch is permanently stuck-at logic I or 0.
2) Behavioral Stuck-open (BSO) Fault - the value of the source expression (right-
hand side) of an assignment statement is not correctly transferred to its target.
3) Micro-operation (MOP) Fault - an arithmetic or a relational operator is faulted
to another operator. For example, ADD(A,B) is perturbed to SUB(A,B) and
SUB(B,A). A summary of fault-free operators and their corresponding faulty

operators is provided in Table 2-2 .

Fault-free Operator Faulty Operator
ADD SUB, XOR
SUB ADD, XOR
BVEQ BVNEQ
BVNEQ BVEQ
BVLT BVGE
BVLE BVGT

Table 2-2 Micro-operation Faults

Again, perturbing of micro-operations raises doubts concerning the relationship to actual
hardware faults. Use of this fault model with the B-algorithm is discussed later along with

other test generation techniques.

2.1.5 Other Research

Two other recent research efforts deserve mention here for completeness. The first, by'
Riesgo and Uceda [60], attempts to define an RTL fault model which they claim is totally
oriented to model hardware faults. At the other end of the spectrum, Al Hayek and
Robach [4][5] consider behavioral faults as software faults and apply an adaptation of
mutation-based testing, originally proposed to test software programs.

In “A Fault Model for VHDL Descriptions at the Register Transfer Level,” [60] Riesgo
and Uceda present a fault model based on the VHDL level-0 synthesis subset [25]. Exam-
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ple behavioral descriptions can then be directly synthesized and results compared to the
corresponding gate-level designs. The fault model is divided into three classes, depending
on the type of object affected by the fault:

1) Faults on data: the fault model is based on “stuck-ar” faults. The affected
expression will take a constant value and the insertion will be made in a state-
ment where the object is referenced. Examples include:

- bit: stuck-at-’0’ and stuck-at-'1".

- enumerated: stuck-at-"all possible values”.

- integer: each bit of the resulting bus can be stuck-at’0’ or stuck-at-’1’.
The assumed codification is binary for positive numbers and 2’s complement
for negative numbers.

2) Faults on expressions: the fault model is based on “stuck-af” faults. The
affected expression will take a constant value. Examples include:

- if_then_else: the condition of the if statement may be stuck-at-true or
stuck-at-false.
- case_is_when: the expression which controls the case statement may be
stuck-at-"all possible values”
- for_in_loop: the index controlling the loop may change its range from the
minimum to the maximum+1 and from the minimum-1 to the maximum.

3) Faults on statements: the fault model is based on “dead” faults. The effect of
the fault is that the affected statements are not executed. Examples include:

- if_then_else: dead-then, dead-else.

- case_is_when: dead-alternative.

- for_in_loop: dead-loop.

- procedure call: dead-call.

- signal or variable assignment: dead-assignment.
Fault insertion is made on the VHDL code by adding code perturbations to the input
description. Code perturbations consist of adding, switching, or eliminating code sen-
tences, to model the circuit behavior under a fault condition.

Experiments were conducted on several VHDL descriptions which were then synthe-

sized in order to obtain a comparison with the stuck-at fault model at the logic gate level.
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| The example circuits included 8- and 16-bit ALUs, sequential multiplier, shift register, 16-
bit counter, and a reception-transmission unit. Test vectors were randomly generated, then
VHDL/RT and logic fault coverages were compared. The fault model presented did not
give a precise value of the fault coverage achieved at the lower levels, rather an estimation.
For those circuits with a large combinational part, the estimation of fault coverage was
“optimistic” and the synthesis options had an influence on the accuracy of the estimation.
Highly sequential circuits produced “pessimistic” results due to a large number of faults at
the RT level that were very difficult to detect or even undetectable. The achieved results
are claimed better than Armstrong and Ghosh due to their correlation coefficients being
larger than 90%.

In contrast to other hardware oriented approaches, Al Hayek and Robach [4] propose a
mutation-based testing strategy in which VHDL behavioral faults are considered as soft-
ware faults. The generated test set is used to validate the VHDL description, seen as a
software program, against (software) design faults as well as its hardware implementation
against hardware faults. A VHDL subset is also used, which allows high level functional
description of any combinational or sequential circuit that can be easily synthesized by
current tools.

The mutation-based fault model [5] defines a set of mutation operators for use with
VHDL behavioral descriptions. Mutation operators include:

1) AOR: Arithmetic Operator Replacement.

- replace “+” with “-”,
2) ABS: ABSolute value insertion.
3) CR: Constant Replacement
- integer: increment and decrement by 1.
- bit-vector: 1’s complement.
- Boolean: complement.
4) . CVR: Constant for Variable Replacement.
- every compatible constant.
5) LOR: Logical Operator Replacement.
- AND, OR, NAND, NOR, XOR

- replaced by each of the other operators
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6) ROR: Relational Operator Replacement.
-<, >, <=, 55, =, /=
- replaced by each of the other operators

7) NOR: No Operation Replacement.

8) VCR: Variable for Constant Replacement.
- every compatible variable.

9) UOI: Unary Operator Insertion.

- each arithmetic expression negated, incremented, and decremented by 1.
.- each logical expression complemented.
An automated test environment was built by translating VHDL to FORTRAN and using an
existing software testing system.

On a behavioral VHDL description, the test environment delivers a test set and the
associated mutation score value that represents the percentage of non-equivalent detected
mutants by the test set. In the context of design and test of hardware systems, the mutation
score is viewed as a behavioral fault coverage that measures how well the design has been
tested. On a set of high-level synthesis benchmarks (Decoder, ALU, Differential equation,
Elliptical wave filter,...), experimental results show that on combinational circuits the
obtained gate-level fault coverage is about 94% in the average against 99% for the tradi-
tional gate-level ATPGs. However, on sequential circuits the mutation-based test is

. claimed better as it yields 94% in the average of gate-level fault coverage against 85% for
the traditional ATPGs, when they are used without any user assistance.

In order to improve the performance of the mutation-based technique, the authors
chose to enhance the test set for certain complex operators such as AOR. Mutation analy-
sis does not take into account the size of the hardware implementation, because it consid-
ers addition/subtraction as a software operation and consequently generates only one test
vector. A heuristic is proposed to supplement the original test set with extra vectors to suf-
ficiently test the complex operators. This heuristic consists of generating N new test vec-
tors for each complex operator, where N is the maximum dimension of the input

parameters. The necessity to supplement the original test set simply attempts to cover up

an underlying deficiency in the mutation-based fault model.
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2.1.6 Summary

All of the modeling efforts presented here attempt to develop fault models at higher
levels of abstraction, which accurately represent faults which occur at lower levels. This
discussion has been meant to provide a survey of the current state of the art in behavioral
fault modeling. Later in this chapter, some of these fault models will serve as the basis for
several behavioral test generation algorithms. But first, some techniques for injecting

faults into behavioral models will be briefly discussed.

2.2 Fault Injection Techniques

Once a fault model has been defined, some method of injecting these faults into a
model of the digital circuit must be developed. Injecting faults into a behavioral model
can be accomplished by manipulating data or signal values within the model or by actually
changing or perturbing the model itself. An example of the signal manipulation technique
is provided by the work of DeLong, Johnson, and Profeta in “A Fault Injection Technique
for VHDL Behavioral-Level Models.” [23] Modification of behavioral models is demon-
strated by Jenn et al. in “Fault Injection into VHDL Models: The MEFISTO Tool.” [39]
Finélly, Yount and Siewiorek present an approach called hybrid fault emulation in “A

Methodology for the Rapid Injection of Transient Hardware Errors.” [71]

2.2.1 Instruction Set Architecture

In order to perform fault injection experiments early in the design cycle, DeLong,
Johnson, and Profeta [23] developed a technique to inject faults into a VHDL behavioral
model of a system. This technique is demonstrated on an instruction set architecture
(ISA) model of an embedded control system. Single or multiple bit faults are injected into
internal processor registers, any location in memory, and any range of locations in the
memory map. Signal values are corrupted by using a user-defined VHDL data type to
communicate with a bus resolution function. When two different sources are trying to
update a signal at the same time, the bus resolution function resolves the conflict and
assigns the desired value to the signal. This technique allows the designer to inject faults
on desired signals in a behavioral description with minimal changes to the existing code.

Because the functionality of the design is not changed, the same model can be used to sim-

ulate both fault-free and faulty behavior.
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2.2.2 MEFISTO

In contrast to the previous technique, the MEFISTO Tool [39] uses two other tech-
niques to inject faults into VHDL models. The first category requires modification of the
VHDL model and the second one uses the built-in commands of the simulator. Modifica-
tion of the VHDL model is accomplished through the addition of components called sabo-
teurs and mutants. A saboteur is a VHDL component that alters the value or timing
characteristics of one or several signals when activated. A mutant is a component descrip-
tion that replaces another component description. When activated, it imitates the compo-
nent’s behavior in the presence of faults. Both signal and variable manipulations can be
used for controlling, i.e., activating and deactivating, saboteurs and mutants. In this way,
the injection of faults can be controlled by built-in commands of the simulator.

The main reason for using the built-in commands of the simulator for fault injection is
that this does not require the modification of the VHDL code. However, the applicability
of these techniques depends strongly on the command languages of the simulators. The
values of either signals or variables may be manipulated by stopping and restarting the
simulation. For example, a temporary stuck at fault may be injected by application of the
following sequence of pseudo commands:

1) SimulateUntil <fault injection time>

- 2) FreezeSignal <signal name> <signal value>

3) SimulateFor <fault duration>

4) UnFreezeSignal <signal name>

5) SimulateFor <9bservation time>
For a permanent fault, steps 3 and 4 are skipped. Intermittent faults can be injected using

a more complex command sequence.

2.2.3 Hybrid Fault Emulation

Yount and Siewiorek [70][71] developed a fault injection methodology for processors
based on a register transfer level fault model. The approach, called hybrid fault emulation,
uses the actual circuit to perform fault injection. A transient fault occurs during the inter-
val T = [tj, t,J. The system is allowed to run until some time, 7 and the state of the

machine is captured. A low level model is then used over a limited interval with the cap-
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tured state. Reverse fault emulation is used to generate output and set the new state at 7; to
match the effects of the desired fault. Since fault simulations are only run over short peri-
ods of time, many more fault injection experiments can be run using the same simulator
resources. This method is, however, limited to only transient faults and applies to the eval-

uation of an actual system rather than one still in the design process.

2.2.4 Summary

Though brief, this survey of fault injection techniques provides sufficient insight into
methods for manipulating behavioral models. Fault injection can be as simple as starting
and stopping the simulation to change desired values or as complicated as developing
mutants that imitate a component’s behavior in the presence of faults. The bus resolution
function technique is simply an adaptation of the concept of a saboteur that alters the
value of a signal in the model. Test designers now have a range of fault models and injec-

tion techniques from which to develop behavioral test generation algorithms.

2.3 Test Generation Techniques

Test generation techniques at higher levels of abstraction can be based on either func-
tional or behavioral descriptions and their corresponding fault models. This dissertation
investigates research efforts which have produced automated test pattern generation
(ATPG) methods and tools to support circuit designers at or near the register transfer level.
Results of these test generators can be used to evaluate the effectiveness of the underlying
behavioral fault models. Lin and Su [49][50] developed a functional test generation algo-
rithm which uses a register transfer level fault model based on the functional fault work of
Abraham [2][17][66]. Armstrong and his collaborators [13][14]1[15][21][22][461[55][56]
[57]1[58] have produced a series of test generators based on their ever evolving behavioral
fault models. Several other researchers [20][54] have also developed ATPG algorithms
which utilize the fault models of Ward and Armstrong [69]. Finally, Santucci and Giambi-
asi et al. [59][61] have produced a prototype model of a test pattern generator which uses a
fault model claimed equivalent to that of Ghosh and Chakraborty [18][27]. However,
~ since their research focus is on optimization of the test generation algorithm, no results are

published that can help evaluate the effectiveness of their fault model.
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Most fault-oriented techniques use some form of a three step approach to the test gen-
eration process. First, a fault must be activated at the desired location in the circuit model.
Then, the effect of the fault must be propagated to a point where it can be observed and,

~hence, detected. Finally, the inputs of the model must be determined to justify the desired
signal values throughout the circuit. Variations of these techniques attempt to utilize the
information available in these higher level models to more efficiently accomplish the com-

putationally intensive tasks of fault propagation and justification.

2.3.1 S-Algorithm

The S-Algorithm [49][50] is based on a register transfer (RT) level fault model similar
to the functional fault models discussed by Abraham and Fuchs [2]. The reduced fault set
is divided into three groups for ease of fault identification:

1) Register decoding faults and operator decoding faults - regular registers and

ALU operators are “global” among RT-statements.

2) Condition faults, jump faults, and data transfer faults with constant source reg-

isters - they are “local” within an RT-statement.

3) Data transfer faults with regular source registers.

The overall test generation algorithm also includes a preprocess stage which includes par-
titioning the system under test and a postprocess stage that evaluates fault coverage.

Major parts of the heuristic test generation algorithm were implemented in IBM Pascal
and experimental results have been published for several example circuits. For a hardware
. multiplier described by 16 RT-statements, the program generated 66 test patterns and
claims a 96.4% fault coverage. For the SIMPLE-CALCULATOR, 134 test patterns were
generated resulting in a 97.2% fault coverage. No comparisons are provided to evaluate

the resulting fault coverages versus a traditional gate level stuck at model.

2.3.2 B-Algorithm

Early test generation algorithms based on VHDL behavioral descriptions included “A
Heuristic Chip-Level Test Generation Algorithm” [13] and “The E-Algorithm, an Auto-
matic Test Generation Algorithm for Hardware Description Languages.” [55] Both were
strongly influenced by the pioneering work of Levendel and Menon in “Test Generation

Algorithms for Computer Hardware Description Languages.” [48] The fault models used
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were evolving versions of the model published by Ward and Armstrong [69]. Reported
results on medium complexity circuits were in the range of 90% gate level fault coverage.

Further along in the evolution, the Behavioral Test Generator (BTG) [57][58] uses a
VHDL subset and the same behavioral fault model [69]. The faulted operation is first acti-
vated (fault sensitization), then the effect of the fault is propagated to the output (fault
propagation). Examples are provided for propagation through behavioral control con-
structs and propagation through data paths. Behavioral fault coverage is then evaluated as
the ratio of detected behavioral faults to the total number of behavioral faults.

BTG was tested using a set of 11 logic circuits representing a cross section of generic
types of logic. The average equivalent gate level coverage for the experiments on these
circuits was 92%. A major drawback was what they called the “big micro-operation prob-
lem.” Faults can be applied to micro-operations that represent large blocks for logic. For
example ACUM <= ADD(A,B,CIN) implies a multi-bit adder. It is impossible for a single
vector to detect the majority of gate level faults in such a complex structure. O’Neill et al.,
thus, resorted to heuristics to supplement their test vector set to bring up their equivalent
gate level coverage. The necessity to add test vectors to those generated by their algorithm
points back to a fundamental deficiency in their underlying fault models.

Continuing efforts by the same research group produced the B-algorithm [21][22].
This test generation algorithm uses the reduced behavioral fault model discussed earlier in
this chapter: behavioral stuck-at faults, behavioral stuck-open faults, and micro-operation
faults. Again, a three step approach is applied to the test generation process: activation,
propagation, and justification. As with BTG, the B-algorithm cannot generate sufficient
test vectors for micro-.operation faults. In order to raise their equivalent gate level cover-
age numbers to acceptable levels, an additional 4n-1 test vectors are generated by a heuris-
tic test generator for each n-bit micro-operation. Even with the stated improvements and
the modified fault model, the B-algorithm still suffers from the same underlying deficien-

cies concerning the modeling of faults in complex operations.

2.3.3 Other Research

In “Analysis of the Gap Between Behavioral and Gate Level Fault Simulation,” [20]
Chen and Perumal describe the details of an ATPG system for VHDL behavioral models.
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The behavioral fault models based on Ward and Armstrong [69] are expanded and classi-
fied into six different categories:

1) Input stuck-at fault

2) If stuck then fault

3) If stuck else fault

4) Assignment statement fault

5) Dead clause fault

6) Local stuck data fault.

The problems associated with micro-eperation faults have been avoided by eliminating
such constructs from their behavioral models.

For the simple example discussed in their paper, 34 of the 37 non redundant gate level
faults are detected by behavioral fault simulation, resulting in a fault efficiency of 92%.
The results of a more complicated example of a vending control unit are also presented. A
total of 250 test patterns are required to test for 217 faults in the synthesized gate level cir-
cuit. Detection of 189 faults results in a fault coverage of 87%. If scan design techniques
are applied to the circuit, then a fault coverage of 98% is claimed to be achieved.

The last example to be discussed is the “Behavioral Fault Simulation and ATPG Sys-
tem for VHDL.” [54] For purposes of comparison, VTIDL behavioral code is synthesized
to gate-level implementations and analyzed. The underlying fault models are again based
those proposed by Ward and Armstrong [69], this time including micro-operation faults.
A linear feedback shift register (LFSR) algorithm was utilized to generate the test patterns
in this research.

Nine circuits were used to evaluate the performance of the system. Actual behavioral
fault coverages ranged from 18% to 100%, with sequential descriptions, such as counters
and controllers, performing worst and combinational circuits performing best. These
results were compared to randomly generated test patterns applied to synthesized gate
level circuits. Many of the resulting gate level descriptions proved to be difficult to test
with the random test patterns and, therefore, also had low fault coverage numbers. Hence,
the authors were able to claim success based on a different figure of merit, relative detec-
tion of testable gate-level faults. Using this questionable comparison, Noh et. al. claims an

overall result of detecting around 98% of all testable gate level faults. There is dubious
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merit in claiming that detecting only 18% of the behavioral faults in a vending machine

controller versus 19% in the synthesized gate level circuit implies a 95% success rate.

2.4 Conclusions

This survey of the state of the art in high level fault modeling and test generation
clearly indicates that there is no widely accepted solution to the problem. Modeling tech-
niques range from the functional analysis employed by Abraham and Hayes, to the proce-
dural data flow of behavioral descriptions used by Ghosh and Armstrong. Test generation
algorithms contained some functional techniques, but mainly relied on the behavioral fault
models developed by Armstrong. EXamples provided a figure of merit by which to judge
their effectiveness, but few common measures could be found. When results did not meet
expectations, alternate methods, such as heuristics or testability, were invoked to improve
the statistics.

In the functional arena, Abraham has attempted to describe accurately the effects of
faults within higher functional modules and thus make complex systems tractable.
* Though largely based on actual circuit descriptions, care has been taken to make these
models as implementation independent as possible. With his physically-induced fault
techniques, Hayes has been able to derive minimal test sets for several medium-scale
examples. Key to this research are the concepts of functional equivalence, fault domi-
nance, and compatible fault sets. Both of these functional methods show promise for
application to behavioral faults and hardware description languages.

For behavioral models, though Ghosh proposes relationships to possible hardware
faults, there is no detailed analysis to justify these assertions. A further shortcoming of
these models is the restriction that multiple bit signals must all be stuck at 0 or stuck at 1
rather than allowing for only a single stuck line. Similarly, the evolving set of behavioral
fault models by Armstrong and their subsequent test generation algorithms seem to move
too far away from the hardware which they attempt to describe. In order to compensate
for what they call the “big micro-operation problem,” the researchers resorted to heuristics
to supplement their test vector set to increase their equivalent gate level coverage. The
necessity to add test vectors to those generated by their algorithm points back to a funda-

mental deficiency in the underlying fault models.
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The behavioral fault models developed in this dissertation only affect the activation
step of the test generation process. - Hence, the high level algorithms de\}eloped to handle
the propagation and justification steps still remain valid. Integration of new fault models
with an existing behavioral test generation algorithm can be of mutual benefit. Such
advanced test generation algorithms already address problems such as reconvergent fanout
[3}, while use of more complex fault models can eliminate the need to supplement test
vector sets via heuristics.

Though previous research provides no clear cut solution to modeling faults at higher
levels of abstraction, valuable insights have been gained by the examination of each of
these techniques. Certain key concepts from past efforts have immediate applicability to
further research. Other works can also serve as benchmarks for comparison of future

results. Behavioral fault modeling remains an active research area which requires contin-

ued exploration.




Chapter 3
A New Control Fault Model

Previous research has proposed fault models for the control constructs if-then-else and
case, such as stuck-then/stuck-else and dead clause, based solely on perturbing the lan-
guage without a well defined link to the underlying hardware. This dissertation proposes a
new behavioral fault model based on a functional analysis of gate level implementations.
By combining VHDL synthesis information with industry standard single-stuck-line (SSL)
faults, a new control fault model can be obtained which is more closely linked to the

underlying hardware.

3.1 IF-THEN-ELSE

The first control construct to be modeled will be if-then-else, common to most hard-
ware description languages. In Appendix E Armstrong and Gray identify the link between
the if statement and the functional building block of a multiplexer. Likewise, Mentor
Graphics demonstrates how the selection activity of an if-then-else construct is imple-
mented in hardware as a multiplexer. These examples reinforce the underlying intuition
that a language construct that involves selection leads naturally to é hardware construct

that implements selection, the multiplexer.

3.1.1 Synthesis of a Simple Example

As a first example, an if statement is used to select one of two input signals to be

assigned to an output signal. The VHDL behavioral description is shown in Figure 3-1.

if SEL = ‘0’ then

7Z <= YO;
else '

Z <= Y1;
end if;

Figure 3-1 Behavioral description for example IF1.

The VHDL code was compiled using the Mentor Graphics’ Design Architect and then

synthesized using AutoLogic II. The resulting circuit shows the expected multiplexer

architecture in Figure 3-2.

30
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Figure 3-2 Synthesized hardware for example IF1.

The synthesized hardware implementing example IF1 has the two inputs, Y0 and Y/,
connected to inputs A and B respectively of a 2-to-1 multiplexer, MUX21. In subsequent
discussions, these will be referred to as the channels of the multiplexer, Channel A (CHA)

and Channel B (CHB).

3.1.2 Functional Analysis

In order to perform a functional analysis similar to the method used by Hansen and
Hayes [29] in their work on physically-induced faults, a gate level design of the multi-
plexer architecture is needed. To make the resulting models independent of any specific
implementation, several different gate level realizations will be examined and compared.

The first gate level multiplexer was obtained by expanding the functional element
MUX21 one level lower in the design hierarchy. The resulting gate level circuit is recog-

nized as a sum-of-products (SOP) implementation shown in Figure 3-3.

YO

YI[>
SEL > Eg F

Figure 3-3 SOP gate level circuit for MUX21.

To analyze the gate level circuit, the effect of single-stuck-line (SSL) gate level faults
will be examined. This analysis will determine a set of functional faults which are
induced by the lower level SSL faults. Testing for these functional faults will then ensure
complete testing for the original gate level faults.

The gate level circuit contains 10 logical lines. Applying the SSL fault model where

each line can be either stuck-at-0 or stuck-at-1, there are a total of 20 gate level SSL faults
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in the circuit. The line labeled A being stuck-at-0 and stuck-at-1 will be indicated as A-0
and A-1 respectively. By activating each SSL fault individually in the gate level circuit and
evaluating the resulting output response to changing inputs, a fault table is obtained. In
- Table 3-1 the fault free behavior of the circuit is shown in column Z. For simplicity, only

outputs due to a SSL fault that differ from the fault free behavior of the circuit are shown.
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oj1j111}]o 0 0 0
1/0({0]0 1 1 1 1
1101110 1 1 1 1 1(1 1
1{1(0}1 0 0 010 0 0 0
I1{1]1}1 0 00 0 0

Table 3-1 SSL fault table for SOP MUX.

Faults which cause the same faulty output can be considered functionally equivalent
[45]. Such faults can be combined in the fault table, since there is no way to distinguish
between these faults by observing the circuit’s output behavior. To further reduce the
functional faults, consider the concept of dominance of one fault over another. The fault
(column) F1I is said to dominate the fault (column) F2 if FI has a faulty output in at least
every row in which F2 has a faulty output [45]. The dominating fault (column) F/ may be
removed from the fault table, since any test which detects fault F2 will also detect fault

F1. Fault reductions due to functional equivalence and dominance are shown in Table 3-2.

Faults Remarks Faults Remarks
A-1, E-0, H-1, S-1, Z-1 | Dominate G-1 C-0,D-0 Equivalent to A-0
B-1,D-1, E-1, S-0 Dominate C-1 F-0 Equivalent to G-1
Z-0 Dominate B-0 F-1,G-0,H-0 Equivalent to B-0

Table 3-2 Fault reductions.
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Only four functional faults remain after applying the indiéated fault reductions. Test-
ing for this reduced set of faults will ensure complete coverage of all 20 original SSL gate
level faults. The reduced fault table and appropriate test vectors are shown in Table 3-3.
The two test vectors labeled mandatory are the only ones that cover a specific fault. For
the other faults two options are available; selecting one test vector from each group will

provide coverage for the faults in question.

Test Vector ‘;},—‘J o NI?C S Z 8
0/{0]0]0

Optionl [0f(O(1]1]0

Mandatory |0 |1(0]0 1

Optionl |0|1(1]1]0
110]0}]0

Mandatory {1 [0 |1]0 1

Option2 |1[{1]0]1 0

Option2 |1]|1{1]1 0

Table 3-3 Reduced fault table for SOP MUX.

3.1.3 Alternate Implementation

In order to investigate an alternate gate level implementation of the multiplexer archi-
tecture, consider the Karnaugh map for the output function Z, shown in Figure 3-4. The
groupings of minterms (1’s), indicated by the dashed lines, produce an SOP representation

consistent with the gate level circuit previously analyzed from Figure 3-3.

SEL Y1
YO 00 01 11 10

@)

Figure 3-4 Karnaugh map for MUX.
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To obtain a product-of-sums (POS) implementation of the multiplexer, the maxterms

(0’s) are grouped, as indicated with the solid lines. The resulting function for the output

is:Z = (SEL+7Y0)- (:ﬁ +Y1). A gate level realization is shown in Figure 3-5.
A
e 1 )ees
Yi[>
SEL -5 EN, F| CHB )S

Figure 3-5 POS gate level MUX.

A functional analysis can now be performed on the SSL gate level faults for this cir-
cuit. After appropriate reductions for functional equivalence and fault dominance, the

resulting fault table is shown in Table 3-4.

Test Vector é (i le E ;':1‘ 8
option1 |0|0|o]o]1
Mandatory {00 |1}]1 0
optionl |0|1]|0]o0]1
0f1]1]1
Option2 [1({0|0]0 1
Option2 |[1(0([1]0 1
Mandatory |1 [1[(0]1 0
111(1]1

Table 3-4 Reduced fault table for POS MUX.

It should be noted here that a NAND-NAND realization of the SOP circuit and a
NOR-NOR realization of the POS circuit produce the same reduced fault tables shown in
Table 3-3 and Table 3-4, respectivély. The reduced set of functional faults only affect the
controlling inputs to the multiplexer channels, which remain unchanged due to conver-

sions to NAND-only or NOR-only circuits using DeMorgan’s theorem [41].
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3.1.4 Generalized Functional Fault Model

Comparison of the reduced fault tables for both the SOP and POS implementations of
the multiplexer can now yield a generalized functional fault model, not tied to a specific
realization. There are no contradictions among the test vectors indicated in the two fault
tables. Selection of the mandatory test vectors from each table provides complete cover-
age of the functional faults from both tables.

A generalized functional fault model is, therefore, presented in Table 3-5. The func-
tional faults have been renamed SOP_A, SOP_B, POS_A, and POS_B to indicate the ori-
gin of their mandatory test vector and the channel of the multiplexer which they corrupt.
Testing based on the indicated vectors should provide complete coverage of gate level SSL

faults for multiple multiplexer implementations.
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Mandatory |1{1]|0]1 0
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Table 3-5 Generalized functional fault model.

3.1.5 Development of a Behavioral Fault Model

Examination of the relationship between the generalized functional fault model and
the initial behavioral description will result in a behavioral fault model for the if-then-else
construct in example IF1. This final step in the abstraction of SSL gate level faults into the
behavioral domain provides the link between lower and higher level fault models, which

has been lacking in previous research.



36

The then clause in example IF1, Z <= YO0, corresponds fo the upper half of the truth
table in Table 3-5. It can be seen from the fault table, that two of the functional faults,
SOP_A and POS_A, uniquely affect the then clause. The SOP fault table in Table 3-3
shows that SOP_A was derived from the SSL gate level fault G-1. Referring to the gate
level SOP circuit in Figure 3-3, it can be seen that the fault G-1 causes undesired activa-
tion of Channel B, while attempting to select Channel A. Thé functional fault SOP_A,
therefore, causes a corruption of Channel A by ORing it with Channel B in the final stage
of the multiplexer. Behaviorally, this fault can be described as a corruption of the then
clause, resulting in the definition of the behavioral fault Clause-CORRUPT ( OR), or spe-
cifically THEN-CORRUPT (OR). The faulty version of the then clause can be modeled by
ORing the right hand side of its assignment statement with the right hand side of the
assignment statement from the else clause, resultingin Z <= Y0 OR Y1.

The other functional fault affecting the then clause, POS_A, was derived from the SSL
gate level fault F-0, shown in Table 3-4. Referring to the gate level POS circuit in Figure
3-5, fault F-0 also causes undesired activation of Channel B, while attempting to select
Channel A. The functional fault POS_A, therefore, causes a corruption of Channel A by
ANDing it with Channel B in the final stage of the multiplexer. Behaviorally, this fault
also causes a corruption of the then clause, resulting in the definition of the behavioral
fault THEN-CORRUPT (AND). The faulty version of the then clause can be modeled by
ANDing the right hand side of its assignment statement with the right hand side of the
assignment statement from the else clause, resultingin Z <= Y0 AND Y1.

In a manner identical to the previous discussion, behavioral faults can be defined for
the two functional faults that affect the else clause. The functional fault SOP_B corre-
sponds to the behavioral fault ELSE-CORRUPT (OR). Finally, the functional fault POS_B
produces the behavioral fault ELSE-CORRUPT (AND).

The generalized set of four functional faults derived for example IF1, therefore, result
in the definition of four behavioral faults. These four faults form an initial behavioral fault
model for the control construct if-then-else: Each clause of an if-then-else statement can
be affect;d by two behavioral faults, Clause-CORRUPT (OR) and Clause-CORRUPT

(AND). The new control fault model is summarized in Figure 3-6.
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THEN-CORRUPT (OR) ELSE-CORRUPT (OR)
if SEL = ‘0’ then if SEL = ‘0’ then
Z <= Y0 OR Y1; 72 <= YO0;
else else
Z <= Y1; Z <= Y1 OR YO;
end if; end if;
THEN-CORRUPT (AND) ELSE-CORRUPT (AND)
if SEL = ‘0’ then if SEL = ‘0’ then
Z <= YO AND Y1; Z <= YO;
else else
7 <= Y1; Z <= Y1 AND YO;
end if; end if;

Figure 3-6 Control fault model for if-then-else.

The test vectors for the new behavioral faults follow directly from the functional faults
from which they were derived. The behavioral fault THEN-CORRUPT (OR) corresponds
to the functional fault SOP_A. From Figure 3-6, the test vector (SEL Y1 Y0) 010, causes
the then clause of the if statement to be selected. The fault free response assigns the 0
from input YO to the output Z, regardless of the value on input YI. Under the behavioral
fault THEN-CORRUPT (OR), the then clause assigns YO OR Y1 to Z, resulting in Z=1,
contrary to the fault free output. Thus, the test vector 010 constitutes a valid test for the
behavioral fault THEN-CORRUPT (OR).

The test vector for the behavioral fault THEN—CORRUPT (AND) comes from the func-
tional fault POS_A, 001. The fault free behavior agaih selects the then clause, resulting in
Z=1. Under the fault THEN-CORRUPT (AND), the then clause assigns YO AND Y1 to Z,
resulting in Z=0. Similarly, the test vector for ELSE-CORRUPT (OR) is 101 and the test
vector for ELSE-CORRUPT (AND) is 110.

3.1.6 Evaluation of the New Behavioral Fault Model

In order to evaluate the effectiveness of the new behavioral fault model, it will be com-
pared to the underlying gate level faults it was meant to encompass. The four test vectors
- required to detect the behavioral faults in Figure 3-6 are 001, 010, 101, and 110. Apply-
ing these test vectors to the gate level circuits in Figure 3-3 (SOP) and Figure 3-5 (POS)
results in the detection of the SSL gate level faults indicated in Table 3-6. Careful exami-
nation of the results confirms that the behavioral test vectors achieve complete coverage of

SSL gate level faults in either the SOP or POS implementation of the multiplexer.
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Behavioral fault Test SOP SSL Faults POS SSL Faults
Vector Detected Detected
mmvcomuron) | oto | STRTEG) | MCLT
THEN-CORRUPT (AND) | 001 AE-%’(S?-_(;: 1;:8, A-((); 1())(;1;:12150
ELSE-CORRUPT (OR) | 101 BIH(i IS’B:;_?L lé-_ 11 2—_%,, 1;—_ 11 :
'ELSE-CORRUPT (AND) | 110 B'(;’I_%‘, 15’_1;: 1Z _GO-O, %%,Cs-.%, l%:(()),

Table 3-6 SSL faults detected by behavioral test vectors.

3.1.7 Comparison with Previous Behavioral Fault Models

As was discussed in Chapter 2 of this dissertation, most higher level fault models
address the control construct if-then-else. The common fault model proposed by previous
research is stuck-then/stuck-else. This fault model has been used by Armstrong [7][8][9]
[13][58][69], Ghosh [18][27], Riesgo [60], and Chen [20][54]. All these researchers also
use stuck-data faults on their non-control signals, so for completeness, these will be con-
sidered in combination with the control faults. Armstrong and Cho [22] also proposed the
Behavioral Stuck-at (BSA) fault, combining stuck-data and stuck-control faults by defin-
ing stuck-at faults for unnamed signals corresponding to the conditional expressions of an
if statement. All these behavioral fault models use the same fault technique, applying
stuck-at faults to the data and control inputs of the circuit.

The effectiveness of the stuék-data and stuck-control fault models will now be evalu-
ated by applying them to the behavioral description in example IF1. Possible test vector
sets will be developed and their ability to detect SSL gate level faults will be compared.
There are three data signals (Y0, Y1, Z) and one control Signal (SEL) in the example.
Applying the stuck-data and stuck-control fault models implies a stuck-at-0 and stuck-at-1
fault for each signal, resulting in the eight behavioral faults shown in Table 3-7. Note that

the two control faults SEL-0 and SEL-1 are equivalent to stuck-then and stuck-else, respec-

tively.
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o ~ o = e
Option 2 0(0]0]0 1 1
Options 1 & 6 o(oj111}o0 0 0
Options 2 & 6 0({1(0}0 1 1 1
Option 1 oj1f{1]1j]o 0
Option 4 110{0}0 1 1
[ Options 4& 5 1{ol1]o 1] [1]1
Options 3 & 5 1{110]1 0 0 0
Option 3 1|1|1]1 0 0

Table 3-7 Stuck-data and stuck-control behavioral faults.

None of the test vectors in Table 3-7 are mandatory; each behavioral fault has at least

two possible tests that detect it. For completeness, all possible combinations of test vec-
~ tors will be examined. There are 26 = 64 possible test vector sets, but due to overlapping
coverage among test vectors, only 49 of them are unique.

First, consider the effectiveness of a test vector set of size four at detection of gate
level SSL faults. The test vectors for Set 1 are listed in Table 3-8 along with the behavioral
faults from Table 3-7 that they detect. As expected, all behavioral faults are detected.
Also indicated in Table 3-8 are the SOP circuit gate level SSL faults, from Figure 3-3 and
Table 3-1, which are detected by each of the test vectors. Examination of the gate level
fault coverage shows that the SOP SSL faults C-1, F-0, and G-I are left undetected by test

vector Set 1.

Test Behavioral Faults SOP Gate Level SSL Faults
Vector Detected : Detected
000 Y0-1,Z-1 A-1,D-1,H-1,Z-1
001 Y0-0, Z-0, SEL-1 A-0, C-0, D-0, E-0, S-1, Z-0
set 100 Yi-1,Z-1 B-1,D-1,H-1, Z-1
110 Y1-0, Z-0, SEL-0 B-0, E-1, F-1, G-0, H-0, S-0, Z-0

Table 3-8 Faults detected by test vector Set 1.
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Similar analysis shows that any test vector set that does not contain the test vector 101
will fail to detect the gate level fault C-1. Likewise, any test vector set that does not con-
tain the test vector 010 will fail to detect the gate level faults -0 and G-1. Of the nine test
vector sets of size four, only four sets contain both test vectors 010 and 101. Coverage
does not improve greatly with test vector set size. Half of the 24 sets containing five test
vectors do not contain both test vectors necessary to ensure complete gate level fault cov-
erage. Even when the size of the test vector set is increased to six, there are still seven sets
out of a possible 16 that fail to detect all gate level faults.

Similar results are obtained when the previous fault models are compared to a POS
gate level circuit. A large number of possible test vector sets do not contain the test vec-
tors necessary to ensure complete gate level fault coverage. Hence, the new behavioral
fault model, based on functional analysis of control constructs, gives improved gate level

fault coverage compared to the previous stuck-then/stuck-else fault model.

3.1.8 Expansion of the Fault Model

The previous example involved selection of one of two options, hence its implementa-
tion with a 2-to-1 multiplexer. Selection from a larger set of input options must now be
examined and the effects on the behavioral fault model developed. The if-then-else. con-
struct contains an optional elsif clause to allow selection based on multiple conditions.

Multiple elsif clauses can be used to allow selection among any number of inputs.

if SEL = “00” then

Z <= YO0;

elsif SEL = “01” then
7 <= Y1;

elsif SEL = “10” then
7 <= Y2;

elsif SEL = “11” then
7Z <= Y3;

end if;

Figure 3-7 Behavioral description for example IF2.

Example IF2, in Figure 3-7, selects one of four inputs (Y3, Y2, Y1, Y0) for assignment
to a single output (Z), based on the value of two control bits (SEL). For example, the con-

trol bits SEL = “10” represent the binary encoding for 2, hence input Y2 is selected for
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assignment to Z. Note the lack of a final else clause, due to complete elaboration of values
for SEL in the if-elsif clauses. Synthesis of example IF2 by AutoLogic II results in the

expected 4-to-1 multiplexer architecture shown in Figure 3-8.

YO [ o—
Y1 [ Oo—
Y2 [ >—
Y3[>—

SO0 _S1

SEL(0) [>——
SEL(1) >———

Figure 3-8 Synthesized hardware for example IF2.

g 0O w >
MUX41

3.1.8.1 Functional Analysis

In order to perform a functional analysis similar to example IF1, a gate level imple-
- mentation of the entity MUX41 is needed. Mentor Graphics’ Design Architect was used
to provide the gate level detail shown in Figure 3-9. Note that the resulting SOP gate level
structure agrees with the functional block diagram of the 4-line-to-1-line data selector/

multiplexer found in The TTL Data Book [67].

Yo> L M
K@‘

YI> R p
o

@ioz

20> X cHC }S

— T
Y3 > b v
HD

o e e

SEL(O)D—S—O—DGH 1"><J_

SEL(1)|:>§1_{>C,E—«.£{>C»G—

Figure 3-9 Gate level circuit for example IF2.

The gate level circuit contains 18 distinct internal lines (labeled E through V) in addi-

tion to the six inputs (A, B, C, D, S0, S1), and one output (Z) for a total of 25 logical lines.
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Again, applying the SSL fault model where each line can be either stuck-az-0 or stuck-at-1,
there are a total of 50 gate level SSL faults in the circuit. The 26 possible input combina-
tions result in a 64 by 50 fault table which will not be reproduced here. Reductions in the

fault table due to functional equivalence and fault dominance are listed in Table 3-9.

Faults Remarks Faults Remarks
A-1,1-0,J-1,P-1 Dominate N-1 K-0,L-0, M-0 Equivalent to A-0
B-1,M-1, Z-1 Dominate L-1 N-0, O-0, P-0 Equivalent to B-0
C-1, V-1 Dominate U-1 Q-0, R-0, S-0 Equivalent to C-0
D-1, S-1 Dominate R-1 T-0, U-0, V-0 Equivalent to D-0
I-1,J-0,Z-0 Dominate B-0
F-0, G-1 Dominate Q-1
F-1,G-0 Dominate C-0

Table 3-9 Fault reductions for example I1F2.

The gate level faults of primary interest are those controlling the switching of the mul-
tiplexer channels, the inputs to the channel AND gates. Activating the external control line
fault SEL(0)-0 has the effect of simultaneously activating the faults L-1, N-0, R-1, and U-0.
Each of these gate level faults corresponds to, or is equivalent to, an undominated func-
tional fault. Testing for each of these functional faults provides complete test coverage for
the fault SEL(0)-0. Combinations of undominated faults for each of the external control

line faults are shown in Table 3-10.

Faults Covering Faults
S0-0, H-1 B-0 D-0 L-1 R-1
S0-1, H-0 A0 C-0 N-1 U-1
S1-0,E-1 C-0 D-0 K-1 O-1
S1-1, E-0 A-0 B-0 Q-1 T-1

Table 3-10 Covering faults for external control line faults.

The resulting reduced fault set for example IF2 contains three distinct faults for each

of the four channels of the multiplexer, for a total of 12 functional faults. The set of func-
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tional faults is summarized in Table 3-11 along with the associated test vectors; don’t care
values are indicated by an X. For ease of comparison with the remarks column, the vectors
are labeled with the multiplexer inputs (S SO D C B A). This notation for test vectors is

equivalent to the external input combination (SEL Y3 Y2 Y1 Y0).

Fault Remarks (s ]Tg:zt Xeg(; A)
A-0 CHA=0 00 XXX1
B-0 CHB =0 01 XX1X
C-0 CHC=0 10 X1XX
D-0 CHD =0 11 1XXX
N-1 CHA =CHA OR CHB 00 XX10
Q-1 CHA = CHA OR CHC 00 X1X0
L-1 CHB = CHB OR CHA 01 xx01
T-1 CHB = CHB OR CHD 01 1XO0X
K-1 CHC = CHC OR CHA 10 X0X1
U-1 CHC = CHC OR CHD 10 10xX
O-1 CHD = CHD OR CHB 11 0X1X
R-1 CHD = CHD OR CHC 11 01XX

Table 3-11 Reduced functional faults for example IF2.

Examination of the remarks column of Table 3-11, indicates that each channel can be
corrupted by two different sources. Each of a channel’s logically adjacent neighbors can
cause a corruption, where logical adjacency means that the combination of control inputs
(51 SO) differ by only one bit. For example, Channel A is selected by control inputs 00
and is, therefore, logically adjacent to Channel B (01) and Channel C (10).

Further examination of the test vectors associated with any pair of corruptions shows
that, due to the don’t cares, these vectors are not inconsistént with each other. It is possi-
ble to chose a single test vector which will detect both corruptions of a channel by its adja-
cent neighbors. Using the terminology of Hansen and Hayes [29], a compatible fault set is-
defined as a set of functional faults that can be detected by a single test. Hence, the two

corruptions of a channel by its logically adjacent neighbors form a compatible fault set.




3.1.8.2 Generalized Functional Fault Model

Comparison of the reduced functional faults for the SOP 4-to-1 multiplexer with a cor-
responding set of functional faults for a POS implementation yields a generalized func-
tional fault model, not tied to a specific realization. Recall from Sections 3.1.4 and 3.1.5
that the channel corruptions originating in an SOP realization produced an ORing of adja-
cent channels, while a POS circuit caused an ANDing of those channels. A generalized set
of functional faults and their corresponding test vectors are presented in Table 3-12. Note

the combination of test vectors to form compatible fault sets.

Functional Fault Remarks ( S;gsg l\)leét%r A)
CHA-CORRUPT (by CHB)(AND) CHA = CHA AND CHB
CHA-CORRUPT (by CHC)(AND) CHA = CHA AND CHC 00 X001
CHB-CORRUPT (by CHA)(AND) CHB = CHB AND CHA
CHB-CORRUPT (by CHD)(AND) CHB = CHB AND CHD o1 0%
CHC-CORRUPT (by CHA)(AND) CHC = CHC AND CHA
CHC-CORRUPT (by CHD)(AND) CHC = CHC AND CHD L0 01x0
CHD-CORRUPT (by CHB)(AND) CHD = CHD AND CHB
CHD-CORRUPT (by CHC)(AND) CHD = CHD AND CHC Lo

CHA-CORRUPT (by CHB)(OR) CHA = CHA OR CHB
CHA-CORRUPT (by CHC)(OR) CHA = CHA OR CHC 00 X1
CHB-CORRUPT (by CHA)(OR) CHB = CHB OR CHA
CHB-CORRUPT (by CHD)(OR) CHB = CHB OR CHD ot 1xoL
CHC-CORRUPT (by CHA)(OR) CHC = CHC OR CHA
CHC-CORRUPT (by CHD)(OR) CHC = CHC OR CHD Lo Lo
CHD-CORRUPT (by CHB)(OR) CHD = CHD OR CHB
CHD-CORRUPT (by CHC)(OR) CHD = CHD OR CHC Lo

Table 3-12 Generalized functional faults for example IF2.
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'3.1.8.3 Behavioral Fault Model

Examination of the relationship between the generalized set of functional faults and
the initial behavioral description for example IF2 will result in a behavioral fault model for
the expanded if-then-else construct.

The first then clause, Z <= YO, is activated when SEL="00", corresponding to
Channel A of the multiplexer. This clause will be referred to as the 00-THEN clause.
From the functional analysis of the multiplexer in Section 3.1.8.2, Channel A was affected
by four functional faults, CHA-CORRUPT (by CHB)(AND), CHA-CORRUPT (by
CHC)(AND), CHA-CORRUPT (by CHB)(OR), and CHA-CORRUPT (by CHC)(OR).
These faults can be mapped into the behavioral domain just' like those from example IF1.

The functional fault CHA-CORRUPT (by CHB)(AND) represents corruption of Chan-
nel A by Channel B, which maps directly to the behavioral fault 00-THEN-CORRUPT (by
01)(AND). The faulty version of the then clause can be represented by ANDing the right
hand side of the assignment statement corresponding to Channel A with the right hand
side of the assignment statement from Channel B. The resulting faulty version of the
assignment statement for the 00-THEN clause becomes Z <= Y0 AND Y1. Likewise,
the corruption of Channel A by Channel C results in the definition of the behavioral fault
00-THEN-CORRUPT (by 10)(AND).

The (OR) corruptions of the 00-THEN clause are formed in a similar manner. Finally,
the remaining then clauses each have four behavioral faults, corresponding to their respec-
tive channels. A subset of the resulting 16 behavioral faults, four for each of the four

clauses/channels, is presented in Figure 3-10.

00-THEN-CORRUPT (by 01)(OR) 00-THEN-CORRUPT (by 10)(OR)

if SEL = “00”. then if SEL = “00” then
Z <= Y0 OR Y1; Z <= Y0 OR Y2;

elsif SEL = “01” then elsif SEL = “01” -then
Z <= Y1; Z <= Y1;

elsif SEL = *10” then elsif SEL = “10” then
7Z <= Y2; 7 <= Y2;

elsif SEL = “11” then elsif SEL = “11” then
7 <= Y3; 7 <= Y3;

end if; end if;

Figure 3-10 Control fault model for expanded if-then-else.
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01-THEN-CORRUPT (by 00)(OR)

if SEL = “00” then
7 <= YO0;

elsif SEL = “01” then
Z <= Y1 OR YO;

elsif SEL = “10” then
7 <= Y2;

elsif SEL = “11” then
7 <= Y3;

01-THEN-CORRUPT (by 11)(OR)

if SEL = “00” then
7Z <= YO0;

elsif SEL = “01” then
Z <= Y1 OR Y3;

elsif SEL = “10” then
7Z <= Y2;

elsif SEL = “11” then
7Z <= Y3;

end if; end if;

Figure 3-10 Control fault model for expanded if-then-else.
3.1.8.4 Evaluation of the Behavioral Fault Model

To evaluate the effectiveness of the behavioral fault model for the expanded if-then-
else construct, it will be compared to the underlying SSL gate level faults it was meant to
encompass. Test vectors will be determined for each behavioral fault and the gate level
fault coverage of these test vectors will be examined.

Testing for the first behavioral fault from Figure 3-10, 00-THEN-CORRUPT (by
01)(OR), requires activation of the first then clause with SEL="00". The fault free behav-
ior, Z <= YO, must be compared to the faulty behavior,Z <= YO OR ¥1. Setting Y0=0
will result in Z=0 for an uncorrupted channel. If Y1=1, then a corruption of the channel
by the adjacent channel, 0I-THEN, will result in Z=1, thus detecting the fault. Since the
other two clauses do not cause any corruptions with this fault, the other inputs (Y3, Y2) can
remain don’t cares. The resulting test vector (SEL Y3 Y2 Y1 Y0) is 00XX10. By similar
analysis, the other (OR) corruption fault for this clause, 00-THEN—CORRUPT (by
10)(OR), requires the test vector 00X1X0.

Recall that the functional faults for Channel-CORRUPT formed a compatible fault set,
one that could be detected by a single test vector. Likewise, the two Clause-CORRUPT
behavioral faults should also form a compatible fault set. The previous analysis deter-
mined that the two test vectors necessary to detect the two Clause-CORRUPT (OR) faults
for the 00-THEN clause were 00XX10 and 00X1XO0. Coniparison of the two test vectors
confirms that they are, in fact, compatible. Elimination of don’t cares for Y2 and YI pro-

duces a combined test vector 00X110. The behavioral faults and their corresponding test

vectors are summarized in Table 3-13.
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) Test Vector
Behavioral Fault (SEL Y3 Y2 Y1 Y0)
00-THEN-CORRUPT (by 01)(AND)

00 X001
00-THEN-CORRUPT (by 10)(AND)
01-THEN-CORRUPT (by 00)(AND)

: 01 0X10
"01-THEN-CORRUPT (by 11)(AND)
10-THEN-CORRUPT (by 00)(AND)

10 01X0
10-THEN-CORRUPT (by 11)(AND)
11-THEN-CORRUPT (by 01)(AND)

11 100X
11-THEN-CORRUPT (by 10)(AND)

00-THEN-CORRUPT (by 01)(OR)

00 X110
00-THEN-CORRUPT (by 10)(OR)
01-THEN-CORRUPT (by 00)(OR)

01 1X01
01-THEN-CORRUPT (by 11)(OR)
10-THEN-CORRUPT (by 00)(OR) _

10 10X1
10-THEN-CORRUPT (by 11)(OR)
11-THEN-CORRUPT (by 01)(OR)

11 011X
11-THEN-CORRUPT (by 10)(OR)

Table 3-13 Behavioral test vectors for example IF2.

The behavioral test vectors from Table 3-13 provide complete SSL gate level fault cov-
erage for both SOP and POS implementations of example IF2. The results confirm that
the control fault model for the expanded if-then-else construct is a valid abstraction into

the behavioral domain of the original gate level SSL faults.

3.1.9 Summary

A new behavioral fault model has been developed for the control construct if-then-
else. This new control fault model specifies that each clause of an if-then-else statement
can be affected by two different types of faults, Clause-CORRUPT (OR) and Clause-
CORRUPT (AND). The actual number of Clause-CORRUPT faults depends on the size of

the model and the resulting number of logical adjacencies between clauses.
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In the VHDL behavioral description, a Clause-CORRUPT (OR) fault is represented by
considering the effect of the corrupting clause. The right hand side of the assignment
statement for the corrupted clause is ORed with the right hand side of the assignment
statement for the corrupting clause. A test vector for this fault is determined by setting the
fault free behavior of the uncorrupted clause to ‘0’. The corrupting clause is then set to
‘1’, thus producing a conflict with the fault free behavior. Multiple Clause-CORRUPT
(OR) faults may affect the same clause, due to logical adjacencies between clauses. These
faults can form a compatible fault set and their test vectors can, therefore, be combined to
produce a single test for the corruption of that clause.

The faulty operation of a clause due to a Clause-CORRUPT (AND) fault is represented
in a similar manner. The right hand side of the assignment statement for the corrupted
clause is ANDed with the right hand side of the assignment statement for the corrupting
clause. A test vector forces the fault free behavior of the uncorrupted clause to produce an
output of ‘I’, while the corrupting clause is set to produce an output of 0.

Test vectors generated from these behavioral faults can be applied to gate level imple-
mentations of the behavioral descriptions. Examples have shown the ability of these test
vectors to detect underlying gate level SSL faults in synthesized circuits. Analysis has also
shown that the test vectors from this new control fault model do provide improved gate

level fault coverage over previous behavioral fault models.

3.2 CASE

The other VHDL control construct closely related to if-then-else is the case statement.
The case statement allows selection of statements to execute depending on the value of a
selection expression. Multiple when clauses can be used to allow selection among any
number of choices. All choices must be distinct and all values must be represented in the
choice lists, or the special choice others must be included as the last alternative.

The case statement is really just an alternative representation of the if-then-else con-
struct with more restrictions. Use of if-then-else versus case is usually just a matter of
programming style; any case statement can be rewritten as an equivalent if-then-else. The
example in Figure 3-11 shows two equivalent behavioral descriptions, one using an if
statement and the other using a case statement. Note that the when clauses perform the

same function for the case statement as the then clauses in the if statement. The when oth-
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ers clause ensures complete elaboration of choices for the case statement, just like the else

clause for the if statement.

case SEL is

if SEL = “00” then when “00% =>
7 <= YO; 7 <= YO0;
elsif SEL = “01” then when “01” =>
Z <= Y1; Z <= YI1;
else when others =>
7 <= Y2; 7 <= Y2;
end if; end case;

Figure 3-11 Equivalent if-then-else and case statements.

In Appendix E Armstrong and Gray and Mentor Graphics demonstrate the link
between the case statement and the functional building block of a multiplexer. These

examples reinforce the similarities between the control constructs if-then-else and case.

3.2.1 Application of the Control Fault Model

The simple example, CASEI, from Figure 3-11 will be used to demonstrate the appli-
cation of the new control fault model to the case construct. The fault model specifies that
each clause of an if-then-else statement, and hence of a case statement, can be affected by
two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND). The
actual number of Clause-CORRUPT faults depends on the size of the model and the
resulting number of logical adjacencies between clauses. Clause-CORRUPT faults are
now designated WHEN-CORRUPT faults, identified by the appropriate choice as well as
the corrupting clause.

In order to specify the WHEN-CORRUPT faults, the logical adjacencies between
clauses must be identified. Figure 3-12 provides a graphical representation of the logical
adjacencies between the clauses for example CASE1. The when others clause defines the
behavior for all choices not explicitly specified in previous clauses. Figure 3-12 indicates
that each clause of the case statement is adjacent to two other clauses. Hence, there are
two WHEN-CORRUPT (OR) faults and two WHEN-CORRUPT (AND) faults for each of

the three clauses in the example.
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SEL(1)
0 1
01 YO
SEL(0) Y2
11 Y1
Z

Figure 3-12 Logical adjacencies among clauses.

The when others clause from example CASE] corresponds to the control input combi-
nation SEL="1X". In order to specify an adjacency between the when others clause and
another clause, the don’t care must be eliminated. For example, the clause when “00”
should be logically adjacent to the clauses when “01” and when “10”. Though the clause
when “10” does not explicitly exist, it is created by the designation of the don’t care for
the when others clause as SEL(0)=0. The resulting adjancies and WHEN-CORRUPT
(AND) faults are shown in Figure 3-13. An additional six behavioral faults for WHEN-

CORRUPT (OR) faults are determined in a similar manner.

WHEN-00-CORRUPT (by 01)(AND)
case SEL is
when “00” =>
Z <= Y0 AND Y1;
when “01” =>

7 <= Y1;
when others =>
7 <= Y2;
end case;

WHEN-01-CORRUPT (by 00)(AND)
case SEL is
when “00” =>
7Z <= YO;
when “01”" =>
Z <= Y1 AND YO;
when others =>
7 <= Y2;
end case;

WHEN-00-CORRUPT (by 10)(AND)
case SEL is
when “00” =>
Z <= Y0 AND Y2;
when “01” =>

Z <= Y1;
when others =>
7 <= Y2;
end case;

WHEN-01-CORRUPT (by 11)(AND)
case SEL is
when “00” =>
7Z <= YO;
when “01” =>
Z <= Y1 AND Y2;
when others =>
7Z <= Y2;
end case;

Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1.
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WHEN-10-CORRUPT (by 00)(AND)
case SEL is

WHEN-11-CORRUPT (by 01 (AND)
case SEL is

when *“00” => when “00” =>
7Z <= YO; Z <= YO;

. when “01” => when *“01” =>
Z <= Y1; 7Z <= Y1;

when others =>
7Z <= Y2 AND Y1;
end case;

when others =>
7 <= Y2 AND YO;
end case;

Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1.

Test vectors for the behavioral faults are derived using the methodology described in
Section 3.1.9. Recall that vectors derived from corruptions to the same channel can form a

compatible fault set with a single test. The resulting test vectors are listed in Table 3-14.

Behavioral Fault s ETZStYZe;;O;O)
WHEN-00-CORRUPT (by 01)(AND)
WHEN-00-CORRUPT (by 10)(AND) 00 00
WHEN-01-CORRUPT (by 00)(AND)
WHEN-01-CORRUPT (by 11)(AND) ot 00
WHEN-10-CORRUPT (by 00)(AND) 10 1X0
WHEN-11-CORRUPT (by 01)(AND) 11 10X

WHEN-00-CORRUPT (by 01)(OR)
WHEN-00-CORRUPT (by 10)(OR) 00 110
WHEN-01-CORRUPT (by 00)(OR)
WHEN-01-CORRUPT (by 11)(OR) oL 1ot
WHEN-10-CORRUPT (by 00)(OR) 10 0x1
WHEN-11-CORRUPT (by 01)(OR) 11 01X

Table 3-14 Behavioral test vectors for example CASE1.

3.2.2 Evaluation of the Fault Model
The VHDL behavioral description for example CASE1 was synthesized using Mentor

Graphics’ AutoLogic II. The resulting multiplexer architecture is shown in Figure 3-14.
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Figure 3-14 Synthesized Structurel for example CASEL.

Fault simulations were then performed on the gate level circuit for Structurel using the

behavioral test vectors shown in WAVES format in Figure 3-15.

% SEL Y2 Y1 YO Z : time ;
% Clause-CORRUPT (AND)

00 001 1 : 500 ns ;

01 010 1 : 500 ns ;

10 1X0 1 : 500 ns ;

11 10X 1 : 500 ns ;

% Clause-CORRUPT(OR)

00 110 0 : 500 ns ;

01 101 0 : 500 ns ;

10 0X1 0 : 500 ns ;

11 01X 0 : 500 ns ;
Figure 3-15 WAVES test vectors for example CASEL.

According to MIL-STD 883D [52], Structurel contains 34 unique gate level SSL
faults. Simulations are performed for each of the gate level faults and the fault is reported
as detected when the circuit’s output differs from the expected output. All SSL faults were
detected by the behavioral test vectors in the multiplexer implementation of example
‘CASEL. The fault coverage was next evaluated for an alternate gate level realization.

AutoLogic II was again used to synthesize and then optimize the VHDL behavioral
description for example CASEL. The resulting circuit for Structure2 is shown in Figure 3-
16. Note that the circuit contains a mix of NAND, OR, and NOT gates and does not
directly relate to any of the circuits analyzed in the development of the behavioral fault

models for the control constructs if-then-else or case.
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Figure 3-16 Synthesized Structure2 for example CASE1.

Fault simulations were performed on the gate level circuit using the behavioral test

vectors from Figure 3-15. The resulting fault coverage as a function of the input test vec-

tors is shown in Figure 3-17. Though the actual shape of the graph may vary with the

order of the application of the test vectors, the resulting fault coverage will be the same.

Fault coverage for Structure2 was 34/34 = 100%, complete SSL gate level fault coverage.

Coverage (%)

100 —

90

80

70

Number of Test Vectors

Figure 3-17 Fault coverage for Structure2 of example CASEL.

3.2.3 Comparison with Previous Behavioral Fault Models

As was discussed in Chapter 2 of this dissertation, most higher level fault models also

address the control construct case. However, contrary to if-then-else where there was a

general consensus, varying fault models are proposed for the case statement. Armstrong

[71[81[91[131[58][69] proposes the dead clause fault in which each clause in a case state-
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ment fails to a no-operation. The dead clause fault model is also used by Chen [20][54].
Armstrong and Cho [22] later define the Behavioral Stuck-open (BSO) fault, combining
assignment control faults and dead clause faults. In a BSO fault the value of the source
expression of an assignment statement is not correctly transferred to its target.

Since Ghosh [18][27] bases his fault models on the programming language C, instead
of VHDL, the equivalent to the case statement is the switch (I1d). The corresponding fault
modél states that the switch may select either the cases corresponding to the lower or
upper extremes of the swizch identifier’s value system, all, or none of the specified cases.
Finally, Riesgo [60] proposes a fault model for case-is-when in which the expression
which controls the case statement may be stuck-at- “all possible values.”

Recall that the new behavioral fault model for the case statement was based on the fact
that if-then-else and case represent similar selection activities leading to multiplexer archi-
tectures. Any case statement can be rewritten as an equivalent if-then-else, therefore, the
faults models for the equivalent statements should be the same. Only Riesgo proposes a
fault model for the case statement which is equivalent to the one proposed for if-then-else.
The equivalent stuck-control fault model is stuck-then/stuck-else, which was shown to
have deficiencies in detecting gate level faults by the analysis in Section 3.1.7.

Ghosh’s fault model is based on multiple stuck-at faults on the control inputs resulting
in only the upper and lower extremes of the switch (Id) statement. Individual stuck-at
faults are not considered on control lines, causing intermediate values to be neglected.
Hence, faults developed for a swirch statement, will not be consistent with those developed
for an equivalent if-then-else. Also, the hardware analogy, that the decoder for Id may fail
such that a logic 7 is élways asserted at all of the output ports, would correspond to the
unlikely scenario of all the channels of the multiplexer being simultaneously stuck-on.

The dead clause and BSO faults proposed by Armstrong represent the farthest diver-
gence from those proposed for if-then-else. This occurs even though Armstrong and Gray
[10] demonstrate the similarities between if-then-else and case in their discussion of hard-
ware implementation of VHDL constructs. The faulty version of a clause is represented
by replacing the right hand side (source) of an assignment statement with the left hand

side (target). For example, an assignment statement from example CASE2, z <= Y1,
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would be faulted as Z <= 2z. The result is inconsistent with the faults that would be

defined for an equivalent if-then-else construct.

3.3 Conclusions

A new behavioral fault model has been developed for the control constructs if-then-
else and case. The new fault model is more closely linked to underlying hardware by
combining VHDL synthesis information with the industry standard single-stuck-line (SSL)
fault model. Each clause of an if-then-else or case statement can be affected by 2 different
types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND). The actual num-
ber of Clause-CORRUPT faults depends on the size of the model and the resulting number
of logical adjacencies between clauses.

Test vectors derived from these control faults can be applied to gate level implementa-
tions of the VHDL behavioral descriptions. Examples have shown the ability of these test
- vectors to detect underlying gate level SSL faults in synthesized circuits. Because the
behavioral faults were derived from a functional analysis of the selection activity of multi-
plexers, they provide complete gate level fault coverage over a broad range of implementa-
tions. Detailed analysis has shown that the test vectors from this new control fault model
do provide improved gate level fault coverage over previous behavioral fault models.

The new control fault model developed in this chapter prdvides two improvements
over previous behavioral fault models. First, detection of low level SSL faults is improved
by linking the selection activity of control constructs to the functional building block of a

multiplexer.  Finally, the control constructs if-then'-else and case have been brought

together in a single consistent fault model, where each clause can be affected by a some

number of Clause-CORRUPT faults.




Chapter 4

Relational Operators

__2

The only relational operator used thus far has been the as part of the condition
which controlled the if statement. The inclusion of other relational operators such as “>”
and “<” implies the use of a comparator module in hardware. The comparison function
will first be analyzed, using the techniques developed for the multiplexing function, in
order to determine a generalized set of functional faults. These faults will then be
abstracted into the behavioral domain by examination of the relationship between the
functional faults and the behavior of the relational operators.

Because of similarities in their functions, the predefined VHDL relational operators
from Table 1-2 can be divided into two groups for analysis. The relation A > B (GT) is the
same as B < A (LT), hence only one of these operators needs to be analyzed. The relation
A > B (GT) is the opposite of A <= B (LE); the hardware need only differ by a single
. inverter. Likewise A < B (LT) is related to A >= B (GE). Therefore, the set of generalized
functional faults developed for the GT function can be used as a basis for all of the above
relations (GT, LT, GE, LE). The same argument implies that the relation A = B (EQ) can
be analyzed to find functional faults which also apply to the function A /= B (NE).

4.1 Greater Than (GT)

Several common implementations of the GT function were first analyzed to assess the
“worst case” for functional faults. Abstraction of these faults into the behavioral domain
should provide complete gate level SSL fault coverage over a broad range of possible real-
izations of the comparison functions. Gate level circuits were examined for 2-level (SOP
and POS), factored, and cascade implementations.

A comparison of functional faults indicates that the test vectors required to cover all
gate level faults in either the factored or cascade implementations are a subset of the vec-
tors for the 2-level realizations. Furthermore, a common set of test vectors provides com-
plete gate level fault coverage in either the SOP or POS circuits. Therefore, just like the
analysis of the multiplexing function, the SOP and POS implementations will again be

used to form a generalized set of functional faults for the GT function.

56
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4.1.1 Generalized Functional Faults

The SOP and POS implementations of the 2-bit A > B function can be obtained from

the analysis of the Karnaugh map shown in Figure 4-1.
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Figure 4-1 Karnaugh map for 2-bit GT function.

The groupings of minterms are shown with dashed lines and produce the SOP function
GT = AIB_1 +A0—B:1-370 + AIAOB—O. A functional analysis of the gate level SOP circuit
produces a reduced set of functional faults shown in Table 4-1. Test vectors are shown in

base-4 for ease of magnitude comparison of A and B.

Fault giltl:)tz't TeSt(XZ(;tors
G-1 1 00

G-0 0 10

I-1 1 11

H-1 1 12
E-0 0 20,21, 31
K-1 1 2'2

J-0 0 37

L-1 1 33

Table 4-1 Reduced functional faults for SOP GT.
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Note that a faulty output of 0 occurs when A is in fact greater than B (e.g. 32), yet the gate
level circuit fails to give a proper indication of GT = 1. Likewise a faulty output of I
occurs when A is not greater than B (e.g. 22).

Grouping of the maxterms in the Karnaugh map in Figure 4-1, shown with solid lines,
produces the POS function GT = (A, +Ag)(A; +B)(A, + By)(Ag+ B)(B, +By). A
functional analysis of the gate level POS circuit produces the reduced set of functional

faults shown in Table 4-2.

Fault g?lltlrl,tu}; Test Vectors
E-1 1 00

F-0 0 10

I-1 1 11

G-1 1 12

E-0 0 20,21

I-0 0 21,31
K-1 1 22

GO0 0 ' 32

M-1 1 33

Table 4-2 Reduced functional faults for POS GT.

Examination of the two sets of functional faults indicates that the seven mandatory test
vectors are the same for both the SOP and POS circuits. Note that a single input combina-
tion (21) will detect the remaining faults in either implementation. Thus, a set of eight

generalized functional faults and test vectors is produced.

4.1.2 Classification of Functional Faults

In order to aid in the analysis and classification of the generalized set of functional
faults, an alternate representation is shown in Figure 4-2. The columns of the figure indi-
cate the base-4 value of input A, while the rows specify the value of B. The heavy line cut-

ting through the figure represents the GT function; the shaded area above the line indicates
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A is greater than B. The diagonal just below the heavy line indicates where A and B are

equal.
A
o|1}2]3
0| I U
1 I JII
B .
2 oI i
3 I

Figure 4-2 Fault classes for 2-bit GT function.

The roman numerals in Figure 4-2 indicate the location of the test vectors for the eight
functional faults derived in Section 4.1.1. Class I has been assigned to the test vectors
where A and B are equal (00, 11, 22, 33). For this class, the faulty function gives an erro-
neous TRUE for the relation A > B. The other fault that produces an erroneous TRUE (12)
has been designated as Class II. In this class, A is less than, rather than equal to, B.
Finally, Class IIT has been assigned to the test vectors where A is in fact greater than B (10,
21, 32), but the faulty function gives an erroneous FALSE.

Classes I and III follow easily identifiable patterns, however, Class II is still somewhat
vague. To gain additional insight into the make-up of Class II and to ensure that the initial
ciassiﬁcation of functional faults is valid, a functional anallysis was performed on a 3-bit
GT function. The resulting functional faults are classified in Figure 4-3.

As expected, the functional faults for Classes I and III follow the same patterns as the
2-bit case. The octal test vectors in Group II (12, 34, 56) provide the additional informa-
tion necessary to identify a pattern. Note that in both Classes IT and III, A and B differ by
onlyl; A + 1 = B or A = B + 1 respectively (+ indicates addition). By induction,
these fault classifications can now be generalized for an n-bit GT function. The resulting

functional faults and fault classes are presented in Table 4-3.
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Figure 4-3 Fault classes for 3-bit GT function.
Class giltl:)tuyt Avs.B \fezte;rts
I TRUE A=B 2"
i TRUE A(X (1) d=c-1)B g
I FALSE A=B+1 2" -1

Table 4-3 Functional faults for n-bit GT.
4.1.3 Behavioral Fault Model

Now that the three classes of functional faults have been identified, they can be
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abstracted into the behavioral domain by examining the relationship between the faults

and the original VHDL operator (>). Appendix C gives the details of usage for relational

operators in expressions, which form the conditions for the if statement. The expressions

yield Boolean results, which control the selection of the appropriate clause. In order to

model a fault in a relational operator, the controlling expression needs to be modified such

that it produces an erroneous result (TRUE or FALSE) corresponding to that fault.
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First consider the four Class I faults for a 2-bit GT function. The fault-free controlling
condition can be written as:

if A > B then

Class I faults produce an erroneous TRUE when A = B, so the initial inclination would
be to simply modify the condition to read:

if (A > B) OR (A = B) then

However, this has the effect of producing a single behavioral fault which can be detected
by any one of the four required test vectors. What is needed is a distinct behavioral fault
for each test vector. Hence, the first Class I behavioral fault can be rewritten as:

if (A > B) OR ((A = B) AND (A = “00”)) then

The other three Class I faults are modeled by enumeration of the appropriate values for A.
Class II faults also produce an erroneous TRUE, this time when A + 1 = B (A odd).
Hence the single Class II fault for the 2-bit GT function can be modeled as:
if (A > B) OR ((A + 1 = B) AND (A = “01”)) then

Finally, Class I faults produce an erroneous FALSE when A = B + 1. Tomodel
these faults in the behavioral domain, the original expression can be ANDed with 0 for the
appropriate input combination. The NAND function produces the required behavior, giv-
ing the following model for the first Class III fault:

if (A > B) AND ((A = B + 1) NAND (B = “00”)) then

The complete set of Class III faults is modeled by enumeration of the 2" - 1 values for B.

Class Faulty Expression . Faults

= 00"
= 01"
= 10"
— \\11”

I (A > B) OR ((A = B) AND (A = “007))

II (A > B) OR ((A + 1 = B) AND (A = “017)) = 01"

= \\OOII
- \\Oln
- \\lOn

III (A > B) AND ((A =B + 1) NAND (B = “007))

os Bos v I I R S A
|

Table 4-4 Behavioral faults for 2-bit GT.
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4.1.4 Adapting the Model for GE, LT, and LE

The three fault classes and their associated behavioral fault models can be easily
adapted for the other relational operators in this group (GE, LT, LE). As an example, the
functional faults for the relation A >= B (GE) are presented in Figure 4-4. The thick line
representing the GE function now lies below the diagonal of the figure. The locations of
the Class I faults remain unchanged, however they now represent an erroneous FALSE for
the GE function. Class II faults still produce the same erroneous result as Class I faults

and the Class III faults now result in an incorrect TRUE.

A
o1 ]21}3
011
1 jomg 1|1
B
2 oy I
3 oy I

Figure 4-4 Fault classes for 2-bit GE function.

The functional faults for the GE function can now be summarized in Table 4-5 and

result in the definition of the behavioral faults in Table 4-6.

Faulty # Test
Class Output Avs.B Vectors
I FALSE A=B 2"
A=B+1 n-1
I FALSE (B odd) 20 -1
I TRUE A+1=B 20 -1

Table 4-5 Functional faults for n-bit GE.

Similar analysis produces the generalized functional faults for the LE and LT func-
tions. Since these functions differ by only a single inverter from GT and GE respectively,

the behavioral fault models follow directly by inversion of the faulty output values.
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Class Faulty Expression Faults

= 00"
= 01"
= 10"
-— \\11"

I (A >= B) AND ((A = B) NAND (A = “007))

IT (A >= B) AND ((A =B + 1) NAND (B = “01”)) = “01”

- \\OOII
= \\Olll
— \\lo”

I (A >= B) OR ((A + 1 = B) AND (A = “00”))

e B i
!

Table 4-6 Behavioral faults for 2-bit GE.

4.1.5 Summary

A set of functional and behavioral faults have been developed for the first group of
relational operators (G7, GE, LT, LE). Each operator is affected by three classes of faults.
Class I faults occur when the operands of the relation are equal. Class II faults produce
the same faulty output as Class I faults. Finally, Class III faults produce the opposite

faulty output from Classes I and II.

4.2 Threshold Detection

In the previous analysis, both operands for the relational operators were signals/vari-
ables. When one operand is a constant, the behavior changes to that of a unary operator
or threshold detector. Treated individually, each threshold value represents a separate
" function with its own set of generalized faults. The analysis presented here examines

those faults as a whole in order to identify patterns in the required test vectors.

4.2.1 Greater Than Signed Threshold

For this development, a signed comparison of a 4-bit number was chosen. The 24=16
threshold values provide enough data to identify patterns in the test vectors. Use of 2’s
complement numbers helps demonstrate the general applicability of the functional analy-
sis techniques.

A 4-bit 2’s complement number represents the integer range from -8 to +7. Each
threshold function (A > -8, A > -7, ..., A > 7) was analyzed (SOP and POS) to produce a

generalized set of functional faults. A subset of these results is presented in Figure 4-5.
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Each threshold is indicated by a heavy vertical line, while the functional test vectors are

shaded.

A>5)-8|-7|-6]|-5)-4|3|-=2]-1 #1 | 42 | 43 | +4 | +5 | +6 | +7

A>4 18 |-7|-6|-5|-4]-3]|-2]-1 +1 |42 | 43 | +4 | +5 | +6 | +7

A>3 | -8|-7|-6]5]|-4{-3]-2]-1 +1 [ 42 |43 | +4 | +5 | +6 | +7

A>2 | -8|-7|6]-51-4]3(-2}-1 +1 [ 42 | 43 | +4 | +5 | +6 | +7

A>-1|-81-7|-6]-5}-4]|-3}]-2]-1 +1 | +2 [ +3 | +4 | +5 | +6 | +7

A>0 |} -8|-7]-6|-5]|4]-3]-2]-1 +1 | +2 [ +3 |44 | +5 | +6 | +7

A>+1 | 8|-7|6|-5|-4]-3]-2]-1 w1 +2+3 |+ +5] 46| +7

OCjojojo]ojojoyo

A>+2 -8 -7|-6|-5]|4]|-3]-2]-1] +1 [ +2 | +3 | +4 | +5 | +6 | +7

A>+3 1 -8|-7|-6|-5]-4]-3]|-2]-1 O |+l |42 43 F+4 | +5] +6 | +7

Figure 4-5 Functional test vectors for signed GT threshold.

From these test vectors it is possible to identify a pattern which will produce a behav-
ioral fault model for the threshold functions. Every function requires the two test vectors
bracketing the threshold. Each pattern of test vectors is then based on the binary value of
the distance the threshold function is from the center of the range of values, indicated by
the double lines. Additional test vectors are determined by moving left and right of the
initial two test vectors at step sizes starting with the location of the 1s in a binary represen-
tation of the distance from center and increasing by powers of 2. The pattern is symmetri-
cal about the threshold, but truncated beyond the far side of the center line.

For example, the threshold for A > -2 requires the test vectors -2 and -1 and is one
space from the center. Therefore, the additional test vectors to the left of the threshold are
-2-1=-3and -3 - 2 =-5. To the right of the threshold produces -1 + 1 = 0, with the pat-
tern truncated beyond. For a threshold of 2 > 4, the initial test vectors are +4 and +5.
The threshold is five spaces from center indicating step sizes of one and four. Thus, addi-
tional test vectors to the left are 4 - 1 =3 and 3 - 4 =-1. The only test vector to the right is

5+ 1=6, because 6 + 4 = 12 is beyond the range of a 4-bit 2’s complement number.

4.2.2 A Quick Example

A quick example will be used to demonstrate application of the behavioral fault pat-

terns for threshold functions. Example LES in Figure 4-6 defines the behavior of a signed
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less than or equal to (LE) threshold function. The integer range -16 to +15 will be synthe-

sized as a 5-bit 2’s complement number.

entity LES is

port(A: in INTEGER range -16 to +15; LE:
end LE5;
architecture BEHAVE of LE5 is
begin
process (A)
begin
if A <= 5 then
LE <= ‘1’;
else
LE <= ‘0';
end if;
end process;
end BEHAVE;

out BIT);

Figure 4-6 Behavioral description for example LES.

The LE function places the threshold between +5 and +6. The threshold lies six spaces

from the center of the range of values, implying step sizes of two and four. Therefore,

additional test vectors to the left are 5-2 =3 and 3 - 4 = -1. Test vectors to the right are

6 +2=_8and 8 +4 = 12. The test vector pattern is represented graphically in Figure 4-7.

A<=S5

o|l1]|2 3145|671 8]9]10

-1‘

11

12 | 13

Figure 4-7 Behavioral test vectors for example LES.

Example LES was synthesized to the gate level circuit shown in Figure 4-8. Fault sim-

ulations using the behavioral test vectors from Figure 4-7 resulted in a SSL gate level fault

coverage of 18/18 = 100%.

a

(4:0)>—"
[ —

]

Figure 4-8 Synthesized circuit for example LES.

The behavioral test vector patterns presented here are equally applicable to unsigned

threshold comparisons. For more examples using comparison functions see Appendix A.
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4.3 Equal (EQ)

The development of functional and behavioral faults for the EQ (and NE) function(s)
follows the same process as that for GT. In addition, since EQ is often used in conjunction
with other relational operators, the function is sometimes formed by a combination of the

outputs of the other comparison modules.

4.3.1 Functional Faults

As was the case with the GT function, the patterns for the EQ function are somewhat
vague in the 2-bit case. Therefore, the functional faults and classes will be directly pre-
sented for the 3-bit case and then generalized for n-bits. A functional analysis of gate level

implementations of the EQ function yields the fault classes in Figure 4-9 (A and B shown

in octal).
A

0| 12|34 |5]|6]|7
O | I o} 111
1| I
211
3

B

4 1 1I
5
6
7 I

Figure 4-9 Fault classes for 3-bit EQ function.

Class I faults are again defined along the diagonal of the table, however, only two test
vectors are required (00 and 77). Class II faults are selected to be those below the diago-
nal, while Class III faults are above. Both Class IT and III fault sets are of size 3 (n).

The patterns apparent in the 3-bit case imply the definition of the functional faults in

Table 4-7. The test vectors for Class I faults consist of the all 0’s and all I’s cases. Both
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Class II and III faults have test vectors where one operand is 0 and the other has a single 1,

hence the n possible combinations.

Ciass | G Avs.B Vectors
I FALSE A‘: B 5 on N : 2
II TRUE i;)’o 3;_11 n
i TRUE "; g 11 B ?101 n

Table 4-7 Functional faults for n-bit EQ.

4.3.2 Behavioral Fault Model

The functional faults developed for the EQ function can now be abstracted into the
behavioral domain, just like those for GT. For the Class I faults, the faulty output of
" FALSE implies the use of an AND/NAND combination. Likewise, the Class II and III
faults employ the OR/AND structure seen in the other fault models. The resulting behav-

ioral faults for a 2-bit EQ function are presented in Table 4-8.

Class Faulty Expression Faults
I (A = B) AND ((A = \\OOII) NAND (B = “00,,)) A/B = “OO”
' A,B = “11"
I (A = B) OR ((A = “00”) AND (B = wo17)) B = “01”
B - \\lo"
III (A = B) OR ((A = “01”) AND (B = “007)) i i Sé

Table 4-8 Behavioral faults for 2-bit EQ.

The functional and behavioral faults developed for the EQ function can now be readily
adapted to NE. Due to the symmetry of the functions, the location of all the test vectors
remains the same. Only the reversal of the faulty outputs causes a change in the behav-

ioral fault model.
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4.4 Comparison with Previous Fault Models

In contrast to if-then-else and case, few previous fault models address relational oper-
ators. As part of the development of the “B-algorithm: A Behavioral Test Generation
Algorithm,” [21][22] Cho and Armstrong developed a new behavioral fault model which
included relational operators as part of micro-operation faults. Such faults perturb a rela-
tional operator to another operator as indicated in Table 4-9. Recall that this fault model
suffered from what the authors called the “big micro-operation problem,” where only a
single test vector is generated for a complex block of logic. In order to raise their equiva-
lent gate level coverage numbers to acceptable levels, an additional 4n-1 test vectors are

generated by a heuristic test generator for each n-bit micro-operation.

Fault-free Operator Faulty Operator
BVLT BVGE
BVLE BVGT
BVEQ BVNEQ

BVNEQ BVEQ

Table 4-9 Micro-operation Faults

A similar fault model was proposed by Al Hayek and Robach [4] as part of a mutation-
based testing strategy in which VHDL behavioral faults are considered as software faults.
For Relational Operator Replacement (ROR), each operator (<, >, <=, >=, =, /=) is
replaced by each of the other relational operators. Mutation analysis does not take into
account the size of the hardware implementation, because it considers each relational
operator as a software operation and consequently generates only one test vector. In order
to improve the performance of their technique, the authors also resorted to heuristics to
generaté additional test vectors for their complex operators.

The new behavioral fault models developed for relational operators are based on the
size of the hardware implementation and, therefore, eliminate the need to supplement test
vector sets. While the new fault models are definitely more complex than previous ones,

this is because they more accurately reflect the underlying complexity of the hardware

faults which they attempt to model.
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4.5 Application of the New Fault Models

A simple example is now presented to demonstrate the application of the new fault
models developed for relational operators. A test vector set will be formed based on
behavioral faults and then applied to synthesized gate level realizations. Gate level fault
coverage of the behavioral test vectors will be used to evaluate the effectiveness of the new
behavioral fault models.

Example COMPARE in Figure 4-10 uses two 2-bit signals (A, B) to control the selec-
tion of input signals (Y2, Y1, Y0). Based on the relative magnitudes of the control signals,
a single input signal is assigned to the output signal (Z). Test vectors can be determined

for behavioral faults on the relational operators and the control construct if-then-else.

if A > B then

7Z <= Y2;

elsif A < B then
7 <= YO0O;

else
7Z <= Y1;

end if;

Figure 4-10 Behavioral description for example COMPARE.

4.5.1 Faults on Relational Operators

The two relational operators (>, <) in example COMPARE are affected by the three
classes of behavioral faults developed earlier in this chapter. Application of each of these
fault classes to each of the relational operators will determine an appropriate set of behav-
ioral test vectors.

The first relational operator in the expression A > B controls the then clause of the
if-then-else statement. According to the new behavioral fault model, a Class I fault occurs
when the relation A > B produces an erroneous TRUE when A = B. This fault causes
the selection of the A > B clause instead of the desired A = B clause. The test vectors
necessary to detect these Class I faults are shown in Table 4-10. For ease of reference
when determining compatible fault sets, the faults have been numbered.

Next, a Class II fault for the relation A > B also produces an erroneous TRUE, when

A + 1 = B (A odd). This fault causes the selection of the A > B clause instead of the
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desired A < B clause. Test vectors for the single Class II fault are shown in the middle
of Table 4-10.

Finally, a Class III fault produces an erroneous FALSE when A = B + 1. This fault
causes the selection of clauses corresponding to A <= B instead of the desired A > B.
Note that the faulty selection of either the A < B clause orthe A = B clause results in
the elimination of don’t care values seen in previous test vectors. The Class III faults and

their corresponding test vectors are shown at the bottom of Table 4-10.

Fault Fault A B (A>B) | (A=B) | (A<B) | Fault-free

Class # Y2 Y1 YO Z
1 0 X 0

1 00 00
0 1 X 1
1 0 X 0

2 01 01
0 1 X 1

Class1
1 0 X 0
3 10 10 .

0 1 X 1
1 0 X 0

4 11 11
0 1 X 1
1 X 0 0

Class I 5 01 10
0 X 1 1
0 1 1 0

6 01 00
1 0 0 1
0 1 1 0

Class III 7 10 01
1 0 0 1
0 1 1 0

8 11 10
1 0 0 1

Table 4-10 Test vectors for behavioral faults for A > B.

A similar application of Class I, II, and III faults to the relation A < B in the elsif

clause produces the test vectors shown in Table 4-11.




71

Fault Fault A B (A>B) | (A=B) | (A<B) | Fault-free

Class # Y2 Yl YO Z
X 0 1 0

9 00 00
X 1 0 1
X 0 1 0

10 01 01
X 1 0 1

Class I

X 0 1 0

11 10 10
X 1 0 1
X 0 1 0

12 11 11
X 1 0 1
0 X 1 0

Class IT 13 10 01
1 X 0 1
, 1 1 0 0

14 00 01
0 0 1 1
1 1 0 0

Class IIT 15 01 10
0 0 1 1
1 1 0 0

16 10 11
_ 0 0 1 1

Table 4-11 Test vectors for behavioral faults for A <B.
Each behavioral fault still has two possible test vectors which will detect it. Applica-
tion of the control fault model to the if-then-else construct will provide additional guid-

ance on selection of a final set of test vectors.

4.5.2 Control Faults

As was shown in Chapter 3, the control fault model specifies that each clause of an if-
then-else statement can be affected by two different types of faults, Clause-CORRUPT
(OR) and Clause-CORRUPT (AND). Corruptions are caused by clauses which are logi-
cally adjacent to the affected clause. In the case of relational operators, it has been shown
that the “>” operator can fault to “=" (Class I) or “<” (Class II), thus causing the then
clause in example COMPARE to corrupt the either else clause or the elsif clause. By

establishing adjacency using the appropriate values for A and B, determined by faults to
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the relational operators, compatible test vectors can be formed for these Clause-COR-
RUPT faults.

First consider the corruptions to the then clause by the elsif clause. These corruptions
occur whenthe A < B expression in the elsif clause produces an erroneous indication
that A > B, corresponding to a Class II fault for A < B. Table 4-11 shows that this
Class II fault, 13, has only one combination of A and B which will produce the proper
adjacency between clauses. Using those values for A and B results in the test vectors
shown in Table 4-12 for the first two of the Clause-CORRUPT (OR) and Clause-COR-
RUPT (AND) faults for the then clause.

Fault then | else | elsif | Fault-free
Control Fault Class A B Y2 Y1 Y0 7
THEN-CORRUPT 0 X 1 0
(by ELSIF) (OR) A<B
10 01
THEN-CORRUPT | ClassII . < | o :
(by ELSIF) (AND)
THEN-CORRUPT
11 10 0 1 X 0
(by ELSE) (OR) A>B
THEN-CORRUPT | Class III o | oo | 1 0 X .
(by ELSE) (AND)

Table 4-12 Test vectors for THEN-CORRUPT faults.

The corruptions of the then clause by the else clause, correspond to the other combina-
tions from Table 4-10 and Table 4-11 where the then clause is activated, Class III faults for
A > B. Table 4-10 shows that faults 6 through 8 provide three combinations of A and B
which will produce the proper adjacency between clauses. To reduce the total number of
test vectors using compatible fault sets, the vectors for the Clause-CORRUPT (OR) and
Clause-CORRUPT (AND) faults are chosen with different values for A and B. These test
vectors form the remainder of Table 4-12.

The Clause-CORRUPT faults for the elsif and else clauses are formed in a similar
manner. For the elsif clause, the test vectors must set A < B, corresponding to Class II

faults for A > B and Class III faults for A < B. Finally, the else clause corresponds to
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A = B and the Class I faults. Test vectors for the remaining Clause-CORRUPT faults

are, therefore, shown in Table 4-13.

Fault then | else | elsif | Fault-free
Control Fault Class A B Y2 Y1 Y0 7
ELSIF-CORRUPT : - 0 0
(by THEN) OR) | A>B o | 10
ELSIF-CORRUPT | Class II o | x . .
(by THEN) (AND)
ELSIF-CORRUPT
(byELSE) OR) | A<g 10 11 | X 1 0 0
ELSIF-CORRUPT | Class III o | o1 | x 0 : .
(by ELSE) (AND)
ELSE-CORRUPT 00 o | 1| 0| x 0

(by TI{EN) (OR) A>B

B Class I
ELSE-CORRUPT 01 o1 0 1 X 1

(by THEN) (AND)
ELSE-CORRUPT
10 10 X 0 1 0
(by ELSIF) (OR) A<B
_ Class 1
ELSE-CORRUPT 1 11 X 1 0 1
(by ELSIF) (AND)

Table 4-13 Test vectors for ELSIF-CORRUPT and ELSE-CORRUPT faults.

4.5.3 Final Behavioral Test Vector Set

The behavioral faults for the relational operators can now be combined with the con-
trol faults to form compatible fault sets. Recall that Class I faults occur along the diagonal
where A = B. Notice that the don’t care values in the test vectors for faults 1 through 4
are compatible with the test vectors for faults 9 through 12. Plus, due to the symmetry of
the behavioral faults defined for relational operators, the Class II faults for the relation
A > B are a compatible subset of the Class III faults for the relation A < B. Likewise,
the Class II faults for A < B are a compatible subset of the Class III faults for A > B.

Note that the THEN-CORRUPT (by ELSIF) and ELSIF-CORRUPT (by THEN) faults
dictate that both options of test vectors for faults 13 and 5 be chosen. For each of the other

relational operator faults, only one of the two possible test vectors is needed. For this
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example, the final set of test vectors has been chosen with a pattern of alternating fault free
values of Z =0 and Z = 1. This pattern can be easily repeated for vectors that are not
specified by control faults, as will be the case where A and B are larger than two bits.
Application of this selection pattern to each group of faults for the relational operators
results in a final behavioral test vector set containing 12 test vectors. The test vectors and
their corresponding groups are shown in Table 4-14. Note that other test vector sets of size
12 are possible. The required values of A and B are set by the Class I, II and III faults for
the relational operators, however several choices are possible for Y2, Y1, and Y0. Aslong
asbotha Z = 0 and Z = 1 option are chosen for each fault class, sufficient coverage

will be provided for the Clause-CORRUPT control faults.

Group # Fault A B (A>B) | (A=B) | (A<B) 7z
(Control Fault) #s Y2 Y1 YO

L9 00 00 1 0 1 0
I 2,10 01 01 0 1 0 1
(ELSE-CORRUPT) | 3 11 | 10 10 1 0 1 0
4,12 11 11 0 1 0 1
6 01 00 1 0 0 1
II 10 01 0 1 1 0

7,13
(THEN-CORRUPT) 10 01 1 0 0 1
8 11 10 0 1 1 0
14 00 01 0 0 1 1
I 515 01 10 1 1 0 0
(ELSIF CORRUPT) ’ 01 10 0 0 1 1
16 10 11 1 1 0 0

Table 4-14 Final behavioral test vector set for example COMPARE.

4.6 Evaluation of Behavioral Test Vectors
The test vectors derived from the behavioral faults for example COMPARE are next
applied to several synthesized gate level implementations. SSL fault coverage will be

determined and used to judge the effectiveness of the behavioral test vectors.
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4.6.1 Gate Level Realizations
The VHDL behavioral description for example COMPARE, from Figure 4-10, was

synthesized to a gate level implementation using AutoLogic II. The first structural
description was produced using minimal optimization in order to produce the most direct
realization of the circuit. The gate level circuit for Structurel is presented in Figure 4-11.
Note that the circuit contains a mix of AND, OR, NOT, NAND, and NOR gates and does
not directly relate to any of the circuits analyzed in the development of the behavioral fault

models for the relational operators.

yz=>

T DS O >
ﬁb—g_—[}r%

Figure 4-11 Synthesized Structurel for example COMPARE.
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According to MIL-STD 883D, Structurel contains 74 unique gate level SSL faults.
Fault simulations were performed using the behavioral test vectors from Table 4-14. The
behavioral test vector set detected 73 of the 74 SSL gate level faults, resulting in a fault
coverage of 98.65%. The undetected fault was on input B to NAND gate zg3 shown in
Figure 4-11. Exhaustive testing of the circuit Structurel reveals that this fault is, in fact,
undetectable by any test vector due to redundant logic produced by the synthesis tool. In
this case, an alternate measure of effectiveness can also be used to account for redundant
logic. The fault efficiency is defined as the ratio of detected faults to detectable faults. For
this example the fault efficiency is 73/73 = 100%.

An alternate test vector set was formed by reversing the orderofthe Z = 0, Z = 1
pattern in Table 4-14. Application of this alternate set of behavioral test vectors, shown in
Figure 4-12, to the circuit Structurel produced an identical fault coverage of 98.65%.
Either set of test vectors developed from the behavioral fault models, therefore, achieved a

fault efficiency of 100%.
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% AB Y2 Y1 YO Z : time ;
% Group I

0000 010 1 500 ns ;
0101 101 O 500 ns ;
1010 010 1 500 ns ;
1111 101 © 500 ns ;
Group II

0100 011 0 500 ns ;
1001 100 1 500 ns ;
1001 011 O 500 ns ;

1110 100 1 : 500 ns ;
% Group III

0001 110 0 : 500 ns ;
0110 001 1 : 500 ns ;
0110 110 0 : 500 mns ;
1011 001 1 : 500 ns ;

Figure 4-12 Alternate set of behavioral test vectors for example COMPARE.

A second gate level implementation of example COMPARE was produced by allowing
AutoLogic II to perform logic optimizations. Using these optimizations in a synthesis
environment allows a designer to remove redundancies and reduce the number of unde-

tectable faults. The resulting Structure2 is shown in Figure 4-13.
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Figure 4-13 Synthesized Structure2 for example COMPARE.
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Structure2 contains 72 unique SSL gate level faults. Fault simulations using the origi-
nal and alternate behavioral test vectors from Table 4-14 and Figtire 4-12 both result in a
fault coverage of 72/72 = 100%. The fault coverage as a function of the alternate behav-
ioral test vectors is shown in Figure 4-14.

When redundancies are not present in the gate level circuit, the test vector sets devel-

oped using the behavioral fault models achieve a gate level SSL fault coverage of 100%.
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Figure 4-14 Fault coverage for Structure2 of example COMPARE.

These results help validate the new behavioral fault models through practical application.
The effects on fault coverage due to expansion of the control signals and data path will

now be investigated.

4.6.2 Expansion of the Data Path

In the VHDL behavioral description for example COMPARE, the input signals (Y2,
Y1, Y0) and the output signal (Z) are each only a single bit wide. To demonstrate the
effects of a wider data path on the new behavioral fault models, example COMPARE4 was
created by changing the above signals to four bits wide, BIT_VECTOR(3 downto 0). For
this example, the control signals A and B remained two bits each.

The faults on the relational operators are unchanged due to the widening of the data
path. Hence, the values of the control signals A and B are the same as those given in Table
4-14. The only change to the test vectors is the widening of the 1-bit signals to four bits.
This is done by replication of the appropriate signal values, since the wider data path sim-
ply represents multiple copies of the 1-bit case implemented in parallel.

The control faults on adjacent clauses developed in Section 4.5.2 are, likewise, unaf-

fected by the widening of the data path. The only modifications necessary to the test vec-
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tors is again replication of the appropriate signal values. Hence, the behavioral test

vectors for example COMPARE4 are presented in Figure 4-15.

% AB Y2 Y1l YO0 Z : time ;

% Group I .

0000 1111 0000 1111 0000 : 500 ns ;
0101 0000 1111 0000 1111 : 500 ns ;
1010 1111 0000 1111 0000 : 500 ns ;
1111 0000 1111 0000 1111 : 500 ns ;
% Group II

0100 1111 0000 0000 1111 : 500 ns ;
1001 0000 1111 1111 0000 : 500 ns ;
1001 1111 0000 0000 1111 : 500 ns ;
1110 0000 1111 1111 0000 : 500 ns ;
% Group IIT

0001 0000 0000 12111 1111 : 500 ns ;
0110 1111 1111 0000 0000 : 500 ns ;
0110 0000 0000 1111 1111 : 500 ns ;
1011 1111 1111 0000 0000 : 500 ns ;

Figure 4-15 Behavioral test vectors for example COMPAREA4.

Example COMPARE4 was syntheSized and optimized with AutoLogic II to produce
the gate level Structure shown in Figure 4-16. Fault simulations were performed using the
test vectors derived from the behavioral fault models. The results show a fault coverage of

150/150 = 100%; all SSL gate level faults are detected.
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Figure 4-16 Synthesized Structure for example COMPAREA4.
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As was done previously, an alternate test vector set was formed for example
COMPARE4 by reversing the order of the Z = 0, z = 1 patternin Figure 4-15. Fault
simulation using these alternate behavioral test vectors again resulted in gate level fault
coverage of 100%. Though the number of unique gate level faults more than doubled, the

same number of test vectors, 12, were able to provide complete SSL fault coverage.

4.6.3 Expansion of the Control Signals

Example COMPARE was next modified by increasing the width of the control signals
A and B from two bits to three bits each. The change in size of the control signals does
affect the behavioral faults for the relational operators. Recall the number of faults on a
comparison is related to the number of bits being compared. The increase from two bits to
three bits causes the number of Group I faults from Table 4-14 to increase from 22=41t0
23 = 8. The number of Group II and Group III faults likewise increases to 2.1=7.

In contrast to the faults on relational operators, the control faults are affected only by
adjacency among clauses. Recall from Table 4-13 that the ELSIF-CORRUPT (by THEN)
faults corresponded to the A >B Class II faults. In the 2-bit case, only a single combi-
nation of A and B produced the proper adjacency, forcing the selection of both test vector
options to cover both the Clause-CORRUPT (OR) and Clause-CORRUPT (AND)'faults.
In the 3 bit case, there are now 23! - 1 = 3 different combinations of A and B that produce
the proper adjacency between clauses (see Figure 4-3). Through proper selection of test
vectors from the faults on relational operators, it is possible to provide coverage for all
control faults without replication of values for A and B. A final set of behavioral test vec-

tors for example COMPARES is, hence, presented in Figure 4-17.

% A B Y2Y1Y0 Z2 : time ;
% Group I

000 000 101 O : 500 ns ;
001 001 101 O : 500 ns ;
010 010 010 1 : 500 ns ;
011 011 010 1 : 500 ns ;
100 100 101 O 500 ns ;
101 101 101 O 500 ns ;
110 110 010 1 500 ns ;

111 111 010 1 : 500 ns ;
Figure 4-17 Behavioral test vectors for example COMPARE3.
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% Group II

001 000 011 0 : 500 ns ;
010 001 011 0 : 500 ns ;
011 010 100 1 : 500 ns ;
100 011 100 1 : 500 ns ;
101 100 011 0 : 500 ns ;
110 101 011 0 : 500 ns ;
111 110 100 1 : 500 ns ;
% Group III

000 001 110 0 : 500 ns ;
001 010 110 O : 500 ns ;
010 011 001 1 : 500 ns ;
011 100 001 1 : 500 ns ;
100 101 110 0 : 500 ns ;
101 110 110 O 500 ns ;

110 111 001 1 : 500 mns ;
Figure 4-17 Behavioral test vectors for example COMPARE3.

Example COMPARE3 was then synthesized and optimized by AutoLogic II to pro-

duce the gate level implementation shown in Figure 4-13.
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Figure 4-18 Synthesized Structure for example COMPARE3.

Fault simulations were conducted on the gate level Structure for example COMPARE3
using the derived set of behavioral test vectors. A SSL gate level fault coverage of 92/92 =
100% was achieved. As in previous examples, fault simulation with an alternate set of

behavioral test vectors again resulted in complete gate level fault coverage.

4.7 Conclusions

New behavioral fault models have been developed for the predefined VHDL relational
operators from Table 1-2. These fault models are based on a functional analysis of the
comparison functions GT and EQ. The symmetry of these comparison functions allowed

the resulting generalized functional faults to be easily adapted for all the relational opera-

tors.
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The new behavioral fault models developed for relational operators are based on the
size of the hardware implementation and, therefore, eliminate the need to supplement test
vector sets via methods such as heuristics. While the new fault models are more complex
than previous ones, this is because they more accurately reflect the underlying complexity
of the hardware faults which they attempt to model.

A simple example was presented to demonstrate the application of the new fault mod-
els. Test vector sets were formed based on behavioral faults to the relational operators
and the control construct if-then-else. These behavioral test vectors were then applied to
synthesized gate level realizations. Gate level fault coverage was used to evaluate the
effectiveness of the new behavioral fault models.

When redundancies were not present in the syﬁthesized gate level circuits, both the
primary and alternate test vector sets developed using the behavioral fault models pro-
duced a gate level SSL fault coverage of 100%. Even with undetectable faults, the behav-

ioral test vectors were able to achieve a fault efficiency of 100%.




Chapter 5

Arithmetic Operators

Like the relational operators, arithmetic operators also generate large blocks of com-
binational logic. The predefined VHDL operators ADD (+) and SUB (-) are normally
implemented by synthesis tools with standard library modules. Optimizations for speed or
chip area may modify these building blocks, however, the basic function of the arithmetic
operators remains unchanged. A fault modeling technique is proposed here based on
complete functional testing of the arithmetic building blocks. By concentrating on func-
tional testing, complete gate level SSL fault coverage should be obtained over a broad
range of hardware implementations.

Previous behavioral modeling approaches, based on perturbing language constructs
such as ADD to SUB, do not accurately reflect underlying hardware faults. In order to
compensate for this “big micro-operation problem,” alternate methods such as heuristics
were used to supplement test vector sets to increase the equivalent gate level fault cover-
age. The new modeling technique presented in this chapter increases the complexity of
the fault models for the arithmetic operators, providing a better representation of the

faults which occur in actual hardware.

5.1 Addition

The ADD operation has several basic forms which will be investigated in succession.
A two-level network would be the fastest, however, this circuit would require a large num-
ber of gates and gate inputs. It would be necessary to have 2°" NAND gates of Z2n + I
inputs and one NAND gate of 2%n inputs to add two n-bit numbers [41]. This number of
gates and inputs is quite significant for even small values of .

In contrast to this direct approach, adders are most commonly implemented by the
interconnection of smaller functional building blocks. In its simplest from, a half adder
(HA) is a multiple output combinational circuit which adds two bits to produce a sum and
a carry-out. A full adder (FA) adds two binary digits and a carry-in from a previous stage.

~ To speed up the combinational addition process, by reducing the rippling of carries

between stages, methods such as carry look-ahead (CLA) are used.

82
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5.1.1 Ripple Carry Adder

Behavioral modeling of the ADD operation has two basic forms, depending on the
presence of an overall carry-in and carry-out for the resulting adder circuit. In its simplest
form, the addition of two n-bit binary numbers can be represented as:

S <= A + B;

A 3-bit ripple carry implementation of this ADD operation is shown in Figure 5-1.

Ay By A By Ao By

A B . A B c A B

o FA, Cll<e——|{ CO FA, cIl<—— co HA,
.S S S
S5 S, So

Figure 5-1 Ripple carry adder.

The full adders (FA;) are 3-input 2-output combinational circuits, where CI and CO
represent the carry-in and carry-out respectively. A truth table for the full adder function
is presented in Table 5-1; Test # shown in octal. Similarly, the half adder (HAy) is a 2-
input 2-output circuit that can be considered a subset of the full adder function. The upper

half of Table 5-1, where CI = 0, represents the truth table for the half adder function.

Test # 5<mm8
0 0(0]0}0]|0
1 o(oj1y11|o0
2 0(1{0]1]0
3 011]|1]0]1
4 1|1ojoj1j}o0
5 110|1]0]1
6 111{0]0]1
7 111111

Table 5-1 Truth table for full adder.
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5.1.1.1 Functional Testing

A functional testing strategy is presented which will ensure complete gate level SSL
fault coverage for a broad range of ripple carry adder implementations. Because such
realizations are one-dimensional cellular logic arrays, made up of 2- and 3-input func-
tional building blocks, complete functional testing can be achieved by exhaustive testing
of each module [44].

Table 5-2 presents the Phase I functional tests proposed for the 3-bit ripple carry
adder. The left hand side of the table shows the ADD operation with the resulting sum.
Non-zero carries between stages of the adder are shown by arrows above the columns.
The right hand side of the table indicates the Test #, from Table 5-1; which is applied to
each functional module (FA, HA) by the input test vectors. For example, the first row
shows that A; and B, are O for every stage of the adder. Since the resulting carry-out for

each stage is also 0, Test 0 is applied to all modules of the adder.

Test #

+
nlw >

FA, | FA; | HAg

000
+000 0 0 0

000

000
+111 1 1 1

111

111
+000 2 2 2

111

A
111
+111
110

Table 5-2 Phase I functional tests.

Note that the last row of Table 5-2 shows that both C and C; are 1, resulting in Test 7
being applied to FA; and FA,. Since HA, only has 2 inputs, the last test from Phase I rep-

resents Test 3 for this module and concludes complete functional testing of the half adder.
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To continue the testing of the full adder modules, further vectors must be generated
which will produce the remaining input and carry combinations. Consider Test 5 and Test
6, which require opposite inputs for A and B with CI = 1. In order to start the ripple carry
process between stages, HA, must generate a CO = 1. Since Test 5 and Test 6 produce a
CO = 1, the carries are correctly propagated through the stages. Table 5-3 summarizes the

results for the Phase II functional tests.

A Test #

+B
s FA, | FA; | HAg
33

1

+111 5 5 3
000
At

+o01 | © 6 3

- 000

Table 5-3 Phase II functional tests.

Only Test 3 and Test 4 remain to complete the testing of the full adder modules. Since
Test 3 requires a CI = 0, yet produces a CO = I, no single vector can provide Test 3 inputs
to all stages. Likewise, Test 4 requires CI = I and produces CO = 0. Due to the observed
symmetry, the functional tests for Phase IIT can be formed by interleaving Test 3 and Test

4 as shown in Table 5-4."

Test #

+
nlw

FA, | FA; | HAg

A
101
+101
010

R

010
+ 010

100

Table 5-4 Phase III functional tests.
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Hence, complete functional testing of all modules of the ripple carry adder in Figure
5-1 has been achieved with eight test vectors. Next, the scalability of the functional tests

will be evaluated for larger adders.

5.1.1.2 Scalability

Because the ripple carry structure is made up entirely of cascaded HA and FA mod-
ules, the functional tests developed in Section 5.1.1.1 can be readily adapted to larger
adders. Since the functional tests are based on the complete testing of each individual
module, only eight test vectors are required regardless of the size of the inputs A and B
[44]. A 4-bit addition will be used to demonstrate the scaling of the test vectors.

Table 5-5 presents the test vectors for a 4-bit ripple carry adder. The tests for Phases I
and II are created by replication of the highest order bits of the 3-bit case. The test vectors
for Phase III are produced by continuation of the alternating patterns caused by the inter-
leaving of Test 3 and Test 4 for the FA modules. Note that both extensions of the func-

tional tests can be continued for larger values of n, still requiring only eight test vectors.

Test #
Phase | A B S FA; | FA, | FA, | HA,
0000 0000 0000 0 0 0 0
0000 1111 1111 1 1 1 1
: 1111 0000 1111 2 2 2 2
1111 1111 1110 7 7 7 3
0001 1111 0000 5 5 5 3
i 1111 0001 0000 6 6 6 3
0101 0101 1010 4 3 4 3
- 1010 1010 0100 3 4 3 0

Table 5-5 Functional tests for 4-bit ripple carry adder.

5.1.1.3 Behavioral Fault Model
Comparison of the functional test vectors with the gate level faults detected provides
some insight into the performance of the functional testing technique. For example, the

test vector A = 0000, B = 0000 covers faults which correspond to the sum and carry bits of |
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each stage producing an erroneous /. Due to the relative bit positions of the various
stages, this causes the resulting sum to be in error by either +1, +2, +4, or +8. Similar
observations reveal that the functional faults for the ripple carry adder result in an output
sum which is in error by 22 (i = 0, 1, 2, 3).

A one-to-one correspondence cannot be established between the large number of func-
tional faults which are covered by the relatively small number of eight functional test vec-
tors. Therefore, a direct mapping cannot be made to produce a simple behavioral fault
model. Rather, the approach taken here simply seeks to map the functional test vectors
into error vectors which corrupt the ADD operation for the appropriate input combina-
tions. ‘

Again consider the functional test vector A = 0000, B = 0000. Cbrruption of the
resulting sum can be achieved by producing an erroneous / in any of the bit positions. For
this fault model, the corruptions are chosen to be to the least significant bit position. The
XOR operator provides the desired corruption properties by inverting the appropriate bit
when presented with an error vector of 0001.

A behavioral fault model for the first functional test vector is therefore proposed as:

D <= (A + B) XOR “000” & (A = “0000” AND B = “0000”)

The concatenation operator (&) combines the TRUE/FALSE from the AND operator with
leading 0’s to produce the appropriate error vector. While this is not syntactically correct
VHDL due to type differences, it presents the concept of the behavioral fault model. A
complete implementation of the behavioral fault model using functions from the Mentor

Graphics std_logic_arith library is presented in Figure 5-2.

D <= (A + B) XOR zero_extend(to_stdlogic(

(A = “0000” AND B = “0000”) OR
(A = “0000” AND B = “1111”) OR
(A = “1111” AND B = “0000”) OR
(A = “1111” AND B = “1111”) OR
(A = “0001” AND B = “1111”) OR
(A = “1111” AND B = “0001”) OR
(A = “0101” AND B = “0101”) OR
(A = “1010” AND B = “10107)), 4);

Figure 5-2 Behavioral fault model for ripple carry adder.
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5.1.1.4 Evaluation of the Behavioral Test Vectors

The behavioral test vectors derived in the preceding sections will now be applied to
gate level implementations of ripple carry adders. Fault simulations will determine SSL
fault coverage and demonstrate the effectiveness of this functional testing technique.

The VHDL behavioral description for example ADD4 is shown in Figure 5-3. Exam-
ple ADD4 was synthesized with AutoLogic II to produce the ripple carry circuit shown in

Figure 5-4.

entity add4d is
port (A, B: in std_logic_vector(3 downto 0);
D: out std_logic_vector (3 downto 0));
end add4;

architecture behave of add4 is
begin
process (A, B)
begin
D <= A + B;
end process;
end behave;

Figure 5-3 Behavioral description for example ADD4.
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Figure 5-4 Synthesized circuit for example ADD4.

According to MIL-STD 883D, the synthesized circuit contains 102 unique gate level
SSL faults. Fault simulations using the behavioral test vectors derived from Table 5-5
result in a fault coverage of 102/102 = 100%.

An alternate realization of the 4-bit ripple carry adder is presented in Figure 5-5. The

NOR-only circuit, based on POS implementations of the FA and HA modules, contains
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142 unique gate level SSL faults. Fault simulatiohs using the eight behavioral test vectors

again resulted in complete gate level fault coverage.

b0 [>—1
[140)] —{>d(®

b(1)E>—T—{>=
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Figure 5-5 NOR-only realization of example ADDA4.

5.1.1.5 Carry-in and Carry-out

The more complex form of behavioral addition includes a carry-in and/or a carry-out.
Since the predefined VHDL ADD operator combines two n-bit operands to form an n-bit
result, some additional manipulation is required to deal with the extra carries. The carry-
out is produced by simply extending the ADD operation to n+1I bits and extracting the
most significant bit of the result. The carry-in can be modeled by an extra addition of a

single bit. Example ADD4wc, in Figure 5-6, demonstrates the behavioral description of a

4-bit addition with carries.
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entity adddwc is
port(A, B: in std_logic_vector(3 downto 0);
D: out std_logic_vector (3 downto 0);
CIN: in std_logic;
COUT: out std_logic);
end add4wc;

architecture behave of add4wc is

begin

process (A, B, CIN)
variable opl,op2,sum: std_logic_vector (4 downto 0);
variable carry_in : std_logic_vector(l downto 0);

begin
opl := ‘0’ & A;
op2 := ‘0’ & B;
carry_in := ‘0’ & CIN;
sum := opl + op2 + carry_in;

D <= sum(3 downto 0);
COUT <= sum(4);
end process;
end behave;

Figure 5-6 Behavioral description for example ADD4wc

Rather than treating the two (+) operators separately in example ADD4wc, a synthesis
tool will combine the operators to form a single adder. Recognition of this carry-iﬁ struc-
ture can be used to produce an appropriate behavioral fault model. Recall from the func-
tional testing strategy in Section 5.1.1.1 that the least significant stage of the adder was
only a half-adder. The only change when a carry-in is present is the conversion of this
stage to a full-adder. Minor adjustments to the test vectors will ensure complete func-

‘tional testing of this new module.

The test vectors for A and B remain the same for both Phase I and Phase III tests to the
adder. The value of the CIN is simply set to match the other carry patterns for that test.
For example, the last test for Phase I applies Test 7 to each FA, thus CIN = I. The test vec-
tors for Phase II originally set the least significant bit of A or B to I to initiate the ripple
carries through the adder. CIN now serves as the least significant input the adder and can
assume that role. The resulting functional test vectors are presented in Table 5-6.

The behavioral fault model for the add with carry operation follows the same approach

shown in Section 5.1.1.3. The functional test vectors are converted to error vectors which
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Test #
Phase A B CIN | COUT S FA; | FA, | FA; | FA)
0000 0000 0 0 0000 0 0 0 0
0000 1111 0 0 1111 1 1 1 1
: 1111 0000 0 0 1111 2 2 2 2
1111 1111 1 1 1111 7 7 7 7
0000 1111 1 1 0000 5 5 5 5
. 1111 0000 1 1 0000 6 6 6 6
0101 0101 -0 0 1010 4 3 4 3
. 1010 1010 1 1 0101 3 4 3 4

Table 5-6 Functional tests for example ADD4wc.

corrupt the resulting sum. Application of the eight behavioral test vectors derived frorh
Table 5-6, to a synthesized gate level implementation of example ADD4wc, results in the

expected complete gate level fault coverage.

5.1.2 Carry Look-Ahead Adder

Carry look-ahead (CLA) speeds up the process of combinational addition by determin-
ing carries for higher order stages of the adder without having to wait for them to ripple
through lower order stages. From the truth table for the FA, Table 5-1, it can be seen that
the carry-out is the same as the carry-in as long as one of the other inputs is a I. Also, the
carry-out is always a I independent of the carry-in when both of the other inputs are /s,
and a 0 if both are 0. Consequently, two useful functions can be defined: the carry-prop;
agate, P;, and the carry-generate, G; [41].

P
Gy

A; @ B;
A;B;

The FA equations can then be written as:

P, ® C;_;
Gi + PiCi_l

Sy
Ci

I

A CLA realization of a 3-bit adder is shown in Figure 5-7, where PG; represents prop-

agate-generate modules and SU; implements the sum functions.
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Figure 5-7 Carry look-ahead adder.

The carries for the various stages of a 4-bit adder are formed from the terms shown in

Table 5-7. The columns indicate the contributions of the various stages, which are com-

bined to produce the appropriate carry. Presence or absence of a carry-in (C_j), to the

least significant stage of the adder, determines whether or not to use the terms in the far-

thest right column.

Stage
Carry | 3 2 1 0 -1
Co Gy PoC_y
¢ G, PGy P1PoC_;
G G, P,G,; P,P,Gy P,P,P,C_;
C; | G;3 | P3G, | P3P,G; | P3PoP Gy | P3PoP1PoC

Table 5-7 Carries for 4-bit CLLA adder.

5.1.2.1 Functional Testing

Carry-propagate and carry-generate are both 2-input functions which will be com-

pletely tested by the functional test vectors developed for the ripple carry adder. The sum

(S;) is still a function of A;, B;, and C;_; and, therefore, will also be exhaustively tested by

the ripple carry test vectors. Examination of the carries from Table 5-7 indicates that any
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faults to lower order carries will dominate faults in higher order carries. Hence, testing for
all the faults in the highest order carry in a CLA adder will provide coverage for all lower
order faults.

A simple 4-bit addition will be used to evaluate the coverage of carry faults by the rip-
ple carry test vectors. Since this circuit has neither a carry-in nor a carry-out, the highest
order carry is C,, which contains three terms: G,, P,G;, and P,P;G,. Possible functional
faults include a missing carry, due to one of the terms producing an erroneous 0, and an
extra carry, due to a term producing an unwanted 1.

Missing carry faults are evaluated in Table 5-8. In order to establish test vectors, G; is
setto ] by A; = B; = I and P; is set to by A; = B;. The right hand column indicates

whether or not the indicated fault is covered by a ripple carry functional test vector.

Stage | Term Test Set-up Test Vector | Covered

X001 0001

0 |PPGy| *+X111 *1111 Yes
P,P4Gy 0000
X01X 0010

1 PG| *X11X +1111 No
P,G; 0001
X1XX 1111

2 Gy| *X1XX +1111 Yes
e 1110

Table 5-8 Missing carry faults.

The missing carry fault for stage 1 is not covered by the functional test vectors for the
ripple carry adder. Examination of larger carry look-ahead circuits reveals that only the
missing carry faults for the most and least significant stages will be covered. Hence, an
additional n - 3 test vectors will be required to provide complete fault coverage.

Extra carry faults are evaluated in Table 5-9. An erroneous I in a term can be caused
by any element in that term producing a I when it has been set to 0. Two extra carry faults
are not covered by the functional test vectors for the 4-bit ripple carry adder. All of the

erroneous generation faults (G;) are covered as well as the erroneous propagation fault for

the highest order carry-propagate (P).




Stage | Term Test Set-up Test Vector | Covered

X000 0000

+X 111 +1111 Yes
P,P41Gp 1111
X001 0001

0 P,PIGy| *X101 +1101 No
P,P,Gy 1110
X001 0001

+X011 +1011 No
P,P,Gy 1100
X 00X 0000

+X 11X +1111 Yes
P,G; 1111

1 P,G;

X01X 1010

+X 01X +1010 Yes
P,Gq 0100
X0XX 0000

2 Gy| *X 1 XX +1111 Yes
G, 1111

Table 5-9 Extra carry faults.
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The behavioral fault model for the CLA adder follows directly from the base ripple
carry fault model. Additional functional test vectors for missing carry and extra carry
faults are also mapped into error vectors which corrupt the resulting sum. The behavioral
test vectors, therefore, consist of the eight ripple carry tests supplemented by some num-
ber of CLA tests. The additional behavioral test vectors for a 4-bit CLA adder are summa-

rized in Table 5-10.

Fault Stage A B S
Missing Carry 1 0010 1111 0001
0001 1101 1110
Extra Carry 0
0001 1011 1100

Table 5-10 Additional behavioral test vectors for CLA adder.




95

5.1.2.2 Application of the Behavioral Test Vectors

Behavioral test vectors are now applied to a CLA implementation of example ADD4.
The NAND-only circuit in Figure 5-8 contains 130 unique SSL gate level faults. Fault
simulation using the original eight ripple carry test vectors from Table 5-5 produces a gate
level fault coverage of 127/130 = 97.69%. Examination of the results confirms that the
three uncovered faults are, in fact, from signals forming the highest order carry, C,.

Application of the additional CLA test vectors from Table 5-10 then achieves complete

b(9>
b(1) dd(1)
a(1)
b¢2)> d(2)
a(2)

fault coverage.

b(3d d(3)
a(3)

Figure 5-8 CLA implementation of example ADD4.

5.1.2.3 Scalability

Gate level fault coverage can now be evaluated for a larger example, ADD8. Fault
simulations using behavioral test vectors will be performed for both ripple carry and CLA
implementations. Optimizations can also be investigated when detailed knowledge of the
target technology is available.

Example ADDS8 was synthesized to a gate level circuit producing the ripple carry

implementation as shown in Figure 5-9. Fault simulations with eight behavioral test vec-
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tors, extrapolated from example ADD4, produce a SSL gate level fault coverage of 234/

234 = 100%. The fault coverage plot is shown in Figure 5-10.

=T %i %g&ﬁ%ﬂ
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Figure 5-9 Ripple carry implementation of example ADDS.
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Figure 5-10 Fault coverage for ripple carry ADDS.

Next a CLA implementation of example ADD8 will be considered. Without specific
knowledge of the details of the target technology, behavioral test vectors are first formed
on the basis of a full 8-bit CLA structure.

The highest order carry in an 8-bit CLA adder, without a carry-in or carry-out, is Cg.
Extrapolating from Table 5-7, the terms for Cg are PgPsP4P3P,P Gy, PsPsPP3P5Gy,
PgPsP4P3G,, PsPsP4G3, PsPsGy, PgGs, and Gg. According to the new behavioral fault
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model, test vectors for extra carry faults are required for all but the two most significant
stages. Each stage has a separate fault for each carry-propagate (P;) signal in that term.
Behavioral test vectors for the extra carry faults are presented in Table 5-11. Test vectors
are necessary for missing carry faults for all but the lowest and highest order terms. The

missing carry behavioral test vectors are presented in Table 5-12.

Stage Term A B S
00000001 11111101 11111110
00000001 11111011 11111100
00000001 11110111 11111000
00000001 11101111 11110000
00000001 -} 11011111 11100000
00000001 10111111 11000000
00000010 11111011 11111101
00000010 11110111 11111001
1 PcPsP,PsP,G; | 00000010 11101111 11110001
00000010 11011111 11100001
00000010 10111111 11000001
00000100 11110111 11111011
00000100 11101111 11110011
00000100 11011111 11100011
00000100 10111111 11000011
00001000 11101111 11110111
3 PcPsP4G3 | 00001000 11011111 11100111
00001000 10111111 11000111
00010000 11011111 11101111
00010000 10111111 11001111

0 | PgPsP4P3P,P,Gg

Table 5-11 Behavioral test vectors for extra carry faults.
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Stage Term A B S
1 P¢PsP,P;P,G; [ 00000010 11111111 00000001
2 P¢PsP,P;G, | 00000100 11111111 00000011
3 P¢PsP,G3 | 00001000 11111111 00000111
4 P¢PsG,4 | 00010000 11111111 00001111
5 P¢Gs | 00100000 11111111 00011111

Table 5-12 Behavioral test vectors for missing carry faults.

A common modular CLA implementation was chosen, which cascades individual 4-bit
CLA adders to form the n-bit addition. A block diagram of an 8-bit adder, therefore, has

the structure shown in Figure 5-11.

A74 Byy Az B3

A B c A B

CLA cile——{co CLA
S S
S7.4 - Sz

Figure 5-11 Block diagram of modular CLA adder.

Fault simulations were performed on a NAND-only realization of the modular CLA
adder using the combined behavioral test vectors. The original eight ripple carry test vec-
tors produce a SSL gate level fault coverage of 290/310 = 93.55%. Application of the
additional 25 carry look-ahead test vectors results in the expected complete gate level
fault coverage.

Note the relative inefficiency of the CLA test vectors versus the original eight ripple
carry vectors in the fault coverage plot in Figure 5-12. In addition, there is a large flat por-
tion of the graph, between vectors 21 to 31, where fault coverage does not improve. This
is due to the lack of specific knowledge about the modular CLA implementation. A

designer equipped with details of the functional elements used in the target technology can

optimize the behavioral test vectors.
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Figure 5-12 Fault coverage for modular CLA adder.
5.1.2.4 Optimization of CLA Behavioral Faults

Given the additional detail that adders in a certain design are implemented by cascad-
ing 4-bit CLA modules, an optimized set of behavioral test vectors can be derived. From
the block diagram of the modular CLA adder in Figure 5-11, highest order carries can be
determined for both the upper, S7_4, and lower, S3_j, CLA modules.

The highest order carry in the lower CLA adder, with a carry-out and no carry-in, is
C;. From Table 5-7, the terms for C3 are P3P,P Gy, P3P;G}, P3G, and G3. The highest
order carry in the upper CLA adder, with a carry-in and no carry-out, is Cg. Extrapolating
from Table 5-7, the terms for Cg are PgPsP,C3, PsPsGy, PsGs, and G.

According to the new behavioral fault model, test vectors are necessary for missing
carry faults for all but the lowest and highest order terms for each CLA module. The miss-
ing carry behavioral test vectors are, therefore, presented in Table 5-13. Test vectors for
extra carry faults are required for all but the two most significant stages.for each module.
Each stage has a separate fault for each carry-propagate (P;). Behavioral test vectors for
the extra carry faults are shown in Table 5-14.

Fault simulations were performed on the modular CLA adder using the optimized

behavioral test vectors from Table 5-13 and Table 5-14. A SSL gate level fault coverage of



Stage Term A B S
1 P;P,G; | 00000010 | 11111111 00000001
2 P3G, | 00000100 11111111 00000011
4 PcPsG4 | 00010000 11111111 00001111
5 PcGs | 00100000 11111111 00011111

Table 5-13 Optimized test vectors for missing carry faults.

Stage Term A B S
00000001 11111101 11111110
0 P;P,P;Gy | 00000001 11111011 11111100
00000001 11110111 11111000
00000010 11111011 11111101
1 P3P>,Gq
00000010 11110111 11111001
00001000 11101111 11110111
3 P¢PsP,C3 [ 00001000 11011111 11100111
00001000 10111111 11000111
00010000 11011111 11101111
4 P¢PsGy
00010000 10111111 11001111

Table 5-14 Optimized test vectors for extra carry faults.

100

310/310 = 100% was achieved with only 8 + 14 = 22 behavioral test vectors as opposed to

the 8 + 25 = 33 non-optimized vectors. Hence, additional knowledge about the target

architecture has allowed optimization of the behavioral test vector set while still achieving

complete gate level fault coverage.

5.1.3 Summary

A behavioral fault model for addition has been derived using a complete functional

testing technique. Both simple addition and the more complex form including a carry-in

and/or a carry-out have been considered. The functional tests can be readily extended to

n-bits, still requiring only eight behavioral test vectors. If the target hardware uses carry

look-ahead circuits, additional behavioral faults are defined.
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5.2 Subtraction

Subtraction is closely related to addition and all the techniques previously discussed in
this chapter are applicable. Also, the subtraction operation is often implemented indirectly
using adders and 2’s complement arithmetic. A ripple borrow subtractor and a 2’s com-

plement addition will be used to demonstrate extension of functional testing to the sub-

traction operation.

5.2.1 Direct Subtraction

Subtraction, like addition, can be performed by the interconnection of functional mod-
ules. Consider the subtraction operation D <= M - S. The difference (D) is formed by
the subtraction of the subtrahend (S) from the minuend (M). Like ripple carries in addi-
tion, full subtractors (FS) and half subtractors (HS) can be interconnected via borrows

between stages.

The truth table for a full subtractor is presented in Table 5-15, where BI and BO repre-
sent borrow-in and borrow-out respectively [35]. Like the half adder, the half subtractor

represents a subset of the full subtractor, where Bl = 0.

Test # EEU)Q%
0 0(0|0]0]0
1 o(oj111]1
2 0o(1j0111}0
3 0O|1({1}0]0
4 1jojoQ1]|1
5 110[1]0}1
6 111{0]0]0
7 111111

Table 5-15 Truth table for full subtractor.

5.2.1.1 Functional Testing
The functional testing strategy presented for the ripple carry adder can now be applied

to direct subtraction. Complete functional testing can be achieved by exhaustive testing of

each subtractor module.
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The functional test vectors proposed for direct subtraction are presented in Table 5-16.
The Phase I tests represent complete testing of the half subtractor (HSy) module. Phase I
continues testing of the full subtractor (FS;) modules where BI = 1. Finally, Phase III
completes testing of the full subtractor modules by interleaving the remaining tests from

Table 5-15.

Test #
Phase M S D FS; | FS, | FS; | HSy
0000 0000 0000 0 0 0 0
0000 1111 0001 5 5 5 1
! 1111 0000 1111 2 2 2 2
1111 1111 0000 3 3 3 3
0000 0001 1111 4 4 4 1
. 1110 1111 1111 7 7 7 1
0101 1010 1011 1 6 1 2
o 1010 0101 0101 6 1 6 1

Table 5-16 Functional tests for 4-bit direct subtraction.

5.2.1.2 Application of the Behavioral Test Vectors

Again, the behavioral fault model follows directly from the error vector approach pre-
sented earlier in this chapter. Behavioral test vectors are derived from the error vectors
formed by the functional tests from Table 5-16.

A 4-bit subtractor will now be used to evaluate the effectiveness of the behavioral test
vectors. The VHDL behavioral description for example SUB4 is shown in Figure 5-13.

The example subtracts B from A to produce a 4-bit difference D.

architecture behave of sub4d is

begin
process (A, B)
begin
D <= A - B;

end process;
end behave;

Figure 5-13 Behavioral description for example SUB4.
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Example SUB4 was synthesized with Autongic IT to produce the subtraction circuit
shown in Figure 5-14. Fault simulations were then performed using the behavioral test
vectors derived from Table 5-16. As expected, the behavioral test vectors achieved a SSL

gate level fault coverage of 112/112 = 100%.
2%55828:1;?@ 4
"_> /_éj_—l—r;} :% | |

Figure 5-14 Synthesized circuit for example SUB4.

Y%
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5.2.2 Subtraction Using Addition Circuitry

Subtraction can also be performed by taking the negative of the subtrahend and per-
forming an addition [35][41]. With 2’s complement arithmetic, the negation can be per-
formed by taking the logical complement of B and adding /. Thus, the subtraction
operation becomes:

A-B=A+ (-B) =A+B+1

The behavioral test vectors developed for direct subtraction can now be evaluated for

their performance on a subtractor realized with addition circuitry. A block diagram for a

4-bit subtractor implemented with full adders is presented in Figure 5-135.

M; S; M, S, M, S My So
A B A B A B . A B
C
O FA; cil<e—2-{ co FA, Cle— CO FA; CIl¢——| CO FA Clt— 1
S S S S
D3 D, D, Dy

Figure 5-15 Subtractor implemented with full adders.
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Table 5-17 shows the functional tests applied to the full adders (FA;) by the subtraction
test vectors from Table 5-16. Since CIN = 1 for all vectors, Test 4 through Test 7 repre-
sents all possible tests for FA,. Hence, complete functional testing for each stage of the
adder is achieved by the behavioral test vectors for subtraction. Additional fault simula-

tion results can be found in Appendix B.

Subtraction Addition Test #
Phase | M S D A B [CIN| S |FA;|FA, | FA| | FAp
0000 | 0000 | 0000 | 0000 | 1111 | 1 |[0000| S 5 5 5
0000 | 1111 | 0001 J 0000 | 0000 | 1 [0001L] O 0 0 4
: 1111 {0000 | 1111 j 1110 {1111} 1 |1111}f 7 7 7 7
1111 | 1111 | 0000 | 1111 {0000 | 1 |0000| 6 6 6 6
0000 | 0001 | 11110000 | 1110 | 1 {1111} 1 1 1 4
i 1110 | 1111 | 1111 | 1110 | 0000 | 1 | 1111} 2 2 2 4
0101 | 1010 | 1011 j0101 {0101 | 1 |[1011] 4 3 4 7
o 1010 { 0101 { 0101 | 1010 | 1010 | 1 {0101} 3 4 3 4

Table 5-17 Functional tests for adder by subtraction test vectors.

5.2.3 Summary

A behavioral fault model for subtraction has been derived using a complete functional
testing technique. Though based on direct subtraction, the behavioral test vectors also
provide complete gate level fault coverage when implemented with adders. The functional
tests can be readily extended to n-bits, still requiring only eight behavioral test vectors.
Supplemental behavioral faults for a CLA implementation can be easily derived via the
relationships of 2’s complement arithmetic. Such an example can be found in Appendix

A.

5.3 Constants as Operands
When one operand for an arithmetic operator is a constant, the behavior changes to
that of a unary operator such as increment or decrement. Controllability is lost over the

constant’s input patterns, so the previously developed functional tests cannot be applied.
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A 4-bit increment function, Z <= Y + 1,is used here as an example. Applying the
constant 0001 to a ripple carry adder structure, the FA equations can be rewritten as:

SO = KO Si =» Ai @ Ci—l
Co = B Ci = A3Cy

Stage 0 (STy) of the resulting incrementor is a single input function, while the remaining
stages are 2-input functions that can be recognized as half adders. A functional testing

strategy, like that in Section 5.1.1.1, can now be applied.

5.3.1 Functional Testing
Complete functional testing of the unary operator increment will now be achieved by
exhaustive testing of every stage. The test vectors and resulting tests for each stage are

presented in Table 5-18.

Test #
Phase Y Z HA; | HA, | HA,; | ST
0000 0001 0 0 0 0
' 1111 0000 3 3 3 1
1110 1111 2 2 2 0
1101 1110 2 2 1 1
. 1011 1100 2 1 3 1
0111 1000 1 3 3 1

Table 5-18 Functional tests for 4-bit increment function.

As can be seen from the patterns in the test results, complete functional testing of an n-
bit increment function can be achieved with n+2 test vectors. Similar analysis on a 4-bit

decrement function, Z <= Y - 1, achieves similar results.

5.3.2 Generalized Behavioral Fault Model

By examining the functional test vector patterns for each unary operator function,
(Y+1,Y+2,.)and (Y -1,Y -2,..), a generalized behavioral fault model can be devel-
oped. In the case of positive increments, the n test vectors for the Phase II tests can be

derived by starting with a test pattern formed by the complement of the increment value.
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For example, a 5-bit implementation of Z <= Y + 3 would start with a Phase II test
vector of 11100. The starting test pattern is then rotated n-I times to produce the remain-
ing behavioral test vectors. |

For negative numbers, the starting test pattern is based on the positive representation of
the number. For example, a 6-bit impleinentation of Z <= Y - 5 would start with a
Phase II test pattern of 000101. The functional tests produced by the resulting behavioral

test vectors are summarized in Table 5-19.

Test #
Phase Y Z STs | ST4 | STz | ST, | ST, | STy
000000 111011 0 0 0 0 0 0
! 111111 111010 3 3 3 3 3 1
000101 000000 1 1 1 3 1 1
001010 | 000101 1 1 2 1 2 0
010100 | 001111 1 2 0 2 0 0
1 101000 100011 3 1 2 0 0 0
010001 001100 1 2 0 1 1 1
100010 | 011101 2 0 0 1 2 1

Table 5-19 Functional tests for 6-bit function Z <= Y - 5.

Complete functional testing, of the unary operators formed by arithmetic operators
with a constant operand, can be achieved with n+2 behavioral test vectors. The resulting
gate level fault coverage, however, depends on optimizations performed by a synthesis
tool which may affect the underlying ripple carry structure. Further application of these

new behavioral fault models can be found in the examples in Appendix A.

5.4 Comparison with Previous Fault Models

As was the case with relational operators, few previous fault models address arith-
metic operators. As part of the development of the “B-algorithm: A Behavioral Test Gen-
eration Algorithm,” [21][22] Cho and Armstrong developed a new behavioral fault model
which included arithmetic operators as part of micro-operation faults. Such faults perturb

an arithmetic operator to another operator as indicated in Table 5-20.
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Fault-free Operator | Faulty Operator

ADD SUB, XOR
SUB ADD, XOR

Table 5-20 Micro-operation Faults

Recall that this fault model suffered from what the authors called the “big micro-oper-
ation problem,” where only a single test vector is generated for a complex block of logic.
To raise their equivalent gate 1evé1 fault coverage to acceptable levels, an additional 4n-1
test vectors are generated by a heuristic test generator for each n-bit micro-operation.

A similar fault model was proposed by Al Hayek and Robach [4] as part of a mutation-
based testing strategy in which VHDL behavioral faults are considered as software faults.
For Arithmetic Operator Replacement (AOR), ADD (+) is replaced by SUB (-). Mutation
analysis does not take into account the size of the hardware implementation, because it
considers each arithmetic operator as a software operation and consequently generates
only one test vector. In order to improve the performance of their technique, the authors
also resorted to heuristics to generate additional test vectors for their complex operators.

The new behavioral fault models developed for arithmetic operators eliminate the
need to supplement test vector sets. While the new fault models are definitely more com-
plex than previous ones, this is because they more accurately reflect the underlying com-

plexity of the hardware faults which they attempt to model.

5.5 Conclusions

New behavioral fault models have been developed for the predefined VHDL arith-
metic operators ADD (+) and SUB (-). The fault models are based on complete functional
testing of arithmetic building blocks. Though optimizations may modify the building
blocks, the basic function of the arithmetic operators remains unchanged. By concentrat-
ing on functional testing, complete gate level SSL fault coverage can be obtained over a
broad range of hardware implementations.

The base fault model is derived from the ripple carry connection of full and half
adders. Because such realizations are made up of 2- and 3-input functional building

blocks, complete functional testing can be achieved by exhaustive testing of each module.
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Only eight behavioral test vectors are required for complete gate level fault coverage,
regardless of the size of the operands.

If the target hardware uses carry look-ahead circuits, additional behavioral faults are
defined. Testing for all the faults in the highest order carry in a CLA adder will provide
coverage for all lower order faults. Test vectors are added for missing carry faults and
extra carry faults for specific stages. Knowledge of the target architecture will allow opti-
mization of the test vector set while still achieving complete gate level fault coverage.

Subtraction is closely related to addition and all the techniques previously discussed
are applicable. The functional tests can be readily extended to n-bits, still requiring only
eight behavioral test vectors. Though based on direct subtraction, they also provide com-
plete functional testing when the operation is realized indirectly with adders. Additional
behavioral faults for a CLA implementation can be easily derived via the relationships of
2’s complement arithmetic.

The new behavioral fault models developed for arithmetic operators eliminate the
need to supplement test vector sets via methods such as heuristics. While the new fault
models are more complex than previous ones, this is because they more accurately reflect

the underlying complexity of the hardware faults which they attempt to model.




Chapter 6
Other Operators

The remaining VHDL operators from Table 1-2 include logical, unary, multiplying,
and miscellaneous. Logical operators provide a close link between behavioral and gate
level descriptions. Mapping SSL gate level faults into the behavioral domain is, therefore,
a fairly straight forward process. However, differences in actual gate level structures, due
to optimization and synthesis tools, must also be taken into account.

In contrast to previously discussed binary operators, unary operators affect only a sin-
gle operand. This distinction does not alter the analysis of gate level faults and their map-
ping to behavioral faults. Though classified in the miscellaneous category, the operator
ABS will be considered with this group. '

Due to power of 2 restrictions placed on multiplying operators, detailed in Figure 1-1,
implementation becomes simply a shifting of lines, rather than any additional hardware.
Since no more gates are implied by such operations, no additional gate level faults are
introduced. The same synthesis guidelines apply to the miscellaneous operator (**),

hence, no behavioral faults will be defined.

6.1 Logical Operators ,

The predefined VHDL logical operators include AND, OR, NAND, NOR, and XOR.
All these operators are binary, therefore only 2-input gate level structures are implied.
The miscellaneous operator NOT is a unary operator that does not introduce additional
SSL gate level faults, not covered by other operators. Further, the logical pairs AND/OR
and NAND/NOR differ by only a single inversion, hence detailed analysis of one group
will provide the insight necessary to develop the behavioral fault models for the entire set
of operators.

The remaining logical operator;, XOR, will be examined separately due to the unique
nature of its functional faults. Additionally, previous research on XOR structures, such as

parity trees, can provide optimizations for the behavioral tests necessary to provide com-

plete gate level fault coverage.
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6.1.1 AND/OR

The logical operators AND/OR provide a close link between behavioral and gate level
descriptions. Mapping SSL gate level faults into the behavioral domain is, therefore, a
fairly straight forward process. However, differences in actual gate level structures, due to

optimization and synthesis tools, must also be taken into account.

6.1.1.1 Functional Faults

The behavioral description of a 2-operand AND operation can be expressed as:

Z <= A AND B;

A direct gate level implementation results in a 2-input AND gate which can be analyzed
for SSL faults. A reduced set of functional faults for the AND operation is presented in

Table 6-1. The three test Véctors (AB) necessary to detect all functional faults are, there-

fore, 01, 10, and 11.

0 0

0j110 1
1{0]0 1
1{111}0

Table 6-1 Functional faults for AND operation.

A similar analysis of the OR operation produces the reduced set of functional faults

shown in Table 6-2. The required functional test vectors are 00, 01, and 10.

~[ < @
npouf on
< Al N N| N| N

0(0j0]1
oj1]1 0
1{0]1 0
1141

Table 6-2 Functional faults for OR operation.
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The functional faults for the NAND and NOR operators follow directly from the above
analysis. The functional tests for the NAND operation are the same as for the AND opera-

tion, while the tests for the NOR operation are the same as the OR.

6.1.1.2 Complex Expressions

The functional faults for a single logical operator have been determined quite easily.
However, interactions among these operators in more complex expressions must also be
addressed. Since all the logical operators are binary, these interactions can be investi-
gated with the use of a binary tree.

Consider the behavioral description of a logical expression presented in Figure 6-1.

entity SOPl is

port( A, B, C, D: in std_logic;
. Z: out std_logic );
end SOP1;

architecture behave of SOPl is
begin
process(A,B,C,D)
begin
Z <= (A AND B) OR (C AND D);
end process;
end behave;

Figure 6-1 Behavioral description for example SOP1.

The expression on the right hand side of the assignment statement can be parsed into a
binary tree shown in Figure 6-2. The nodes (1,2,3) are formed by the logical operators,

while the leaves of the tree are the signals A, B, C, and D.

2 OR

NN

3 AND

/\/\

Figure 6-2 Binary tree representing example SOP1.

According to the previous analysis, three functional faults affect each of the three log-

ical operators in the expression. For example, the first functional fault to the AND opera-
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tor at node 1 requires a test vector (AB) of 01 and produces an erroneous output of A AND
B = 1. In order for this erroneous output to be observable at the expression output Z,
appropriate values for the other signals (C,D) must be determined. This can be accom-

plished using the following set of Boolean identities:

YORO =Y
YOR1 =1
YAND 1 =Y
Y AND O = O

According to the first identity, setting the right hand operand of the OR operator at
node 2 to 0 will allow the left hand operand to propagate up'the tree unchanged. Using the
last identity, setting either operand of the AND operator, at node 3, to 0 will produce the
desired input to node 2. Applying this set of identities along with the functional faults for

the AND and OR operators produces the test vectors shown in Table 6-3.

Node Fur%isct)nal Test Requirements T?XB\SS;) r
01 A=0,B=1,(CANDD)=0 010X
1 10 A=1,B=0,(CANDD)=0 100X
11 A=1,B=1,(CANDD)=0 110X
00 (AANDB)=0,(CANDD)=0 0X0X
2 01 (AANDB)=0,(CANDD)=1 0x11
10 (AANDB)=1,(CANDD)=0 110X
01 C=0,D=1,(AANDB)=0 0x01
3 10 C=1,D=0,(AANDB)=0 0x10
11 C=1,D=1,(AANDB)=0 0X11

Table 6-3 Functional test vectors for example SOP1.

The set of functional test vectors can be reduced by combination of the don’t care val-
ues. The final test vectors for example SOP1 are presented in Table 6-4. Also listed are

the functional tests covered for each node of the parse tree.
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Test Vector Functional Tests
(ABCD) (Node [Test])

0101 1[01], 2[00], 3[01]

0X10 3[10]
0x11 2[01], 3[11]
1OOX 1[10]
110X 1[11], 2[10]

Table 6-4 Reduced test vectors for example SOP1.

6.1.1.3 Scalability

Example SOP4 was created by expanding the width of the signals A, B, C, and D to
std_logic_vector(3 downto 0). It has been previously shown that expansion of the data
path simply causes replication of the single bit case implemented in parallel. Hence, extra
test vectors are not required since the additional hardware can be tested at the same time.

The expanded test vectors for example SOP4 are shown in WAVES format in Figure 6-3.

% A B C D Z : time ;
0000 1111 0000 1111 0000 : 500 ns;
0000 XXXX 1111 0000 0000 : 500 ns;
0000 XXXX 1111 1111 1111 : 500 ns;
1111 0000 0000 XXXX 0000 : 500 ns;
1111 1111 0000 XXXX 1111 : 500 ns;

Figure 6-3 WAVES test vectors for example SOP4.

6.1.1.4 Behavioral Fault Model

As was the case with the arithmetic operators, an error vector approach is taken for
abstracting the logical operator functional faults into the behavioral domain. The XOR
operator provides the desired corruption properties by inverting the appropriate bit(s)
when presented with a non-zero error vector.

Recall from Table 6-3, the first functional fault to the AND operator at node 1 required
that A = 0, B = I, and (C AND D) = 0. This fault criteria can be directly translated to an
error vector for example SOP1 as:

Z <= (A AND B) OR (C AND D) XOR (A = ‘0’ AND B = ‘1’
AND (C AND D) = ‘0’)
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Again, as was the case for the arithmetic operators, this expression is not syntactically
correct due to VHDL type differences. A complete implementation of the behavioral fault

model for example SOP1 is presented in Figure 6-4.

Z <= (A AND B) OR (C AND D) XOR to_stdlogic(
(A ‘0’ AND B = ‘1’ AND (C AND D) ‘0’) OR
(A ‘1/ AND B = ‘0’ AND (C AND D) *0’) OR
(A = ‘1’ AND B = ‘1’ AND (C AND D) = ‘0’) OR
((A AND B) AND (C AND D) = ‘0’) OR
((A AND B) AND (C AND D) = ‘1’) OR
((A AND B) = ‘1’ AND (C AND D) = '0’) OR
(C ‘0’ AND D = ‘1’ AND (A AND B) *0’) OR
(C “1/ AND D = ‘0’ AND (A AND B) *07) OR
(C =11 AND D = ‘1’ AND (A AND B) = ‘0’));

1
-
o
~

]
-

(=]
-

Figure 6-4 Behavioral fault model for example SOP1.

6.1.1.5 Application of the New Fault Models

A simple example is now presented to demonstrate the application of the new fault
models developed for logical operators. A test vector set will be formed based on behav-
ioral faults and then applied to synthesized gate level realizations.

Example GT in Figure 6-5 uses logical operators to describe a Boolean expression for
the 2-bit greater than function, examined in detail in Chapter 4. Example GT presents two
minor differences from example SOP1. First, the inclusion of the unary operator NOT

means that the resulting parse tree will not be completely binary. This should have no

entity gt is
port (A, B: in std_logic_vector (1l downto 0);
GT: out std_logic );
end gt;

architecture behave of gt is
begin

process (A, B)

begin

GT <= (A(l) AND not B(l)) OR (A(0) AND not B(O0)
AND (A(l) OR not B(1l)));

end process;

end behave;

Figure 6-5 Behavioral description for example GT.
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effect on the test generation process since functional faults are only defined for the binary
logical operators. Second, not all of the pairings are explicitly defined for the binary log-
ical operators in example GT. Hence, the precise implementation by the synthesis tool
cannot be determined. Since the new fault models are based on a functional analysis, they
should provide complete gate level fault coverage over a broad range of realizations.

A parse tree for example GT is presented in Figure 6-6. As before, the binary nodes

are formed by the logical operators, while the leaves of the tree represent the signals.

2 OR

7\

1 AND 3 AND

N S

| /N

B 1 not 5 OR

VN

B0 A1 not

B,

Figure 6-6 Parse tree for example GT.

Application of the new behavioral fault models implies three behavioral faults for each
of the five binary logical operators. The resulting test vectors are presented in Table 6-5.
Again, the set of behavioral test vectors can be reduced by combination of the don’t care
values. The final test vectors for example GT are presented in Table 6-6. It is worth not-
ing that the behavioral test vectors derived here are consistent with the functional faults for
the 2-bit GT function presented in Figure 4-2.

Example GT was synthesized with AutoLogic II to produce the gate level Structurel
shown in Figure 6-7. Note that the groupings for the AND gates do not match the parse
tree in Figure 6-6. According to MIL-STD 883D, Structurel contains 30 unique gate level

SSL faults. Fault simulations using the behavioral test vectors from Table 6-6 resulted in

complete gate level fault coverage.
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Behavioral . Test Vector
Node Test Test Requirement (A{AgBBo)
Al =0, notBl = 1,
01 Ag AND not By AND (A; OR notB))=0 | 29%%
Al = 1, nOtBl =0,
1 10 | A, AND not By AND (A; ORnotB))=0| 0%
A;=1LnotB;=1,
= Ag AND not By AND (A; ORnotB)=0 | 0%
A{ AND not B; =0,
00 Ag AND not By AND (A, OR notB)=0 | 0%
A, AND not B, =0,
2 01 Ag AND not By AND (A; ORnotB)=1|  °0°
Al AND notBl = l,
10 Ag AND not By AND (A; ORnotB))=0 |  +00%
Ag =0, not By AND (A OR not By) = 1,
01 A, AND not B = 0 1010
Ag=1,not By AND (A; OR not By) =0,
3 10 A, AND 1ot B, = 0 01x1
Ag = 1, not By AND (A, OR not B) = 1,
1 A, AND not B, =0 1110
notBy=0,A;ORnotB; =1,
01 Ag=1,A; ANDnotB; =0 1111
‘ notB0=1, AI ORnOtB1=O,
4 10 Ag=1,A; AND notB; =0 0110
notBy=1,A; ORnotB; =1,
1 Ag=1,A; ANDnotB, =0 1110
A;=0,notB; =0,not By =1,
00 Ag=1,A; AND notB, =0 0110
A;=0,notB;=1,notBy=1,
S 01 Ag=1,A; AND not B, =0 0100
10 A;=1,n0tB;=0,not By =1, 1110

Ag=1,A; AND not B, =0

Table 6-5 Behavioral test vectors for example GT.



Test Vector Functional Tests

(A;A¢B By (Node [Test])
000X 1[01], 2[00]
0100 2[01], 5[01]
01X1 3[10]
0110 4{10], 5[00]
100X 1[11], 2[10]
1010 1[10], 3[01]
1110 3[11], 4[11], 5[10]
1111 4[01]

Table 6-6 Reduced test vectors for example GT.
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erage graph is shown in Figure 6-9.

Figure 6-7 Synthesized Structurel for éxample GT.

Example GT was next synthesized and optimized for an alternate target technology.
The resulting Structure2 is shown in Figure 6-8. Fault simulations using the same behav-

ioral test vectors achieved a SSL gate level fault coverage of 35/35 = 100%. The fault cov-
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al(1:0) >
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Figure 6-8 Synthesized Structure2 for example GT.
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Figure 6-9 Fault coverage for Structure2 of example GT.
6.1.2 XOR

The remaining logical operator, XOR, is examined here separately, due to the unique
nature of its functional faults. Additionally, previous research on XOR structures, such as
parity trees [16][53], can provide optimizations for the behavioral tests necessary to pro-

vide complete gate level fault coverage.

6.1.2.1 Functional Faults

The XOR gate has numerous logical implementations producing several different sets
of functional faults. In order to test an XOR gate whose internal structure is unknown, an
exhaustive test set, four patterns, is needed to detect all SSL faults [30]. A generalized set
of functional faults is presented in Table 6-7.

The set of generalized functional faults and the following Boolean identities allow
functional tests to be generated for the XOR operator used in complex expressions with

the other logical operators.

Y XOR 0 = Y
Y XOR Y = 0
Y XOR Y =1

Though not optimal, the functional tests ensure complete SSL fault coverage of the XOR

gates regardless of their internal structure.
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Table 6-7 Generalized functional faults for XOR operation.

6.1.2.2 Optimized Test Generation

Expressions containing only XOR operators are common for circuits such as parity
networks. Previous research has demonstrated the generation of optimum test patterns for-
such parity networks with fixed structures [16][53]. However, when working with behav-
joral descriptions, the actual gate level structure is often unknown and may ultimately be
determined by a synthesis tool. Still, modifications to the algorithms are possible to allow
for complete gate level fault coverage over a broad range of implementations.

The Bossen algorithm [16] applies an exhaustive test to each XOR gate by using the
labeling scheme shown in Figure 6-10. The test sequences are labeled R, S, and T. Each

of the sequences is the modulo-2 sum of the other two. Thatis, T=R ®S,S=T®R, and

R=S@T.
T 0101
0110 R
S 0011 jD

Figure 6-10 Labeling scheme for Bossen test.

Test generation using the Bossen algorithm will be demonstrated via a simple exam-
ple. The behavioral description for XORS is shown below:-
Z <= A XOR B XOR C XOR D XOR E

Grouping the terms from left to right produces a linear tree or cascade implementation

shown in Figure 6-11.

o
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Figure 6-11 Structure Cascadel for example XORS.

The test set is developed by first assigning one of the three sequences to the output of

the tree. Other sequences are then determined moving from right to left, ensuring that

each XOR gate is exhaustively tested. The resulting test vectors are shown in Table 6-8.

Note that the labeling sequences are not unique and the test vectors generated may not

completely test other implementations of the same expression.

Signal Label Sequence
A T 0101
B S 0011
C T 0lo01
D "R 0110
E S 0011

Test Vector
(ABCDE)

00000
10110

01011
11101

Ol Pl O

Table 6-8 Bossen test vectors for Cascadel.

If the behavioral description for XORS is instead implemented by grouping terms

from right to left, a second cascade structure is formed. Figure 6-12 shows that the label-

ing scheme from Figure 6-11 cannot be applied to this alternate implementation.

AC>
B [

S

E[>——

cr> T
DD_B_AD_WD—W
T

Figure 6-12 Structure Cascade2 for example XORS.
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In fact, no labeling will provide exhaustive testing for all XOR gates in both circuits
Cascadel and Cascade2. What is needed is a modification to the Bossen algorithm that
will take into account the most likely implementations of an XOR-only expression. Con-
sider the following groupings for example XORS5:

7Z <= (((A XOR B) XOR C) XOR D) XOR E (Cascadel)

7 <= ((A XOR B) XOR (C XOR D)) XOR E (Balancedl)
7 <= A XOR (B XOR (C XOR (D XOR E))) (Cascade2)
7 <= A XOR ((B XOR C) XOR (D XOR E)) (Balanced?)

The first and third groupings produce structures Cascadel and Cascade2 respectively,
while the second and forth groupings produce balanced trees [53]. If we consider these
structures to represent a broad range of possible implementations of the behavioral
description, a generalized Bossen algorithm can then provide complete gate level fault
coverage.

An extra restriction is added to the Bossen algorithm to account for multiple possible
structures: According to the assumed groupings for a cascade and its corresponding bal-
anced implementation (Cascade i, Balanced i), no two inputs that are grouped togethier can
be assigned the same test sequence.

Applying this modified algorithm to structure Cascade2 produces the labeling
sequences shown in Figure 6-13 and the test vectors shown in Table 6-9. Since the test
vectors developed for structure Cascadel already meet the additional restriction for the
modified Bossen algorithm, the generalized set of test vectors from Table 6-8 and Table 6-

9 will now provide exhaustive testing for all four structures of XORS.
S
A> R .
B > -
c> - T
D D__SJD_W s
R

Figure 6-13 Modified Bossen test for Cascade2.
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Signal Label Sequence rl;fggﬁggr Z
A S 0011 00000 0
B R 0110 01101 1
C T 0101 11010 1
D S 0011 10111 0
E T 0101

Table 6-9 Modified Bossen test vectors for Cascade2.

6.1.2.3 Evaluation of the Generalized Test Vectors

The generalized Bossen test vectors for example XORS5 are presented in WAVES for-
mat in Figure 6-14. Fault simulations were conducted on multiple impleméntations
including Structure4 in Figure 6-15. Complete SSL gate level fault coverage was achieved
for each realization. An example fault coverage graph for Structure4 is shown in Figure 6-
16. Note that though the behavioral test vectors are optimized compared to those gener-

ated by a parse tree, they are still generalized to apply to multiple gate level structures.

% ABCDE Z : time ;
00000 0 : 500 mns;

01011 1 500 ns;
01101 1 500 ns;
10110 1 500 ns;
10111 O 500 ns;
11010 1 500 ns;
11101 O 500 ns;

Figure 6-14 Generalized Bossen test vectors for example XORS.

al>

o o

© Qa

Figure 6-15 Structure4 for example XORS.
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Figure 6-16 Fault coverage for Structure4 of example XORS.

6.1.3 Comparison with Previous Fault Models

Behavioral fault models for logical operators are addressed by Armstrong et al., where
early models replaced one micro-operation with any other in its class [9][69], while later
studies tried to determine which perturbations produced the best fault coverage [19].
Finally, the B-algorithm eliminated micro-operation faults for logical operators by defin-
ing bit-wise stuck-at faults for any one of its arguments (a signal or an unnamed signal for
an expression) [21][22]. This method amounts to exhaustive testing of each logical oper-
ator in an expression.

In their mutation based testing strategy, Al Hayek and Robach [4] define Logical Oper-
ator Replacement (LOR) in which each logical operator is replaced by each of the other
operators. This method treats the VHDL description as software and has little relation to
actual hardware faults. Finally, other fault models [18][27][60] completely neglect logical
operators and instead rely on stuck-signals to provide fault coverage.

The new behavioral fault models developed for logical operators are based on func-
tional faults that require less than exhaustive testing for all operators except XOR. For the
special case of XOR-only expressions, a generalized Bossen algorithm is presented that
allows for optimization of test sequences. The new fault models and algorithms thus pro-

vide complete SSL gate level fault coverage for a broad range of implementations.
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6.2 Unary Operators

The unary operator for negation (-) performs a function related to the miscellaneous
operator ABS; each affects the sign of a 2’s complement number. By analyzing each oper-
ator’s functional faults in tandem with the other, a consistent behavioral fault model can

be developed. Note that no previous behavioral fault models even address these operators.

6.2.1 Absolute Value
The ABS operator computes the absolute value of a 2’s.complement number. The
operator’s functional faults will be investigated for the 4-bit case, then generalized to n-

bits. The following Boolean equations describe the 4-bit absolute value function:

Zp = Xg

Zl = X‘l ® (X3X0)

22 = X2 ® (X3X1 + X3XO)
Z3 =0

Analysis of the faulty behavior of Z = ABS X produces the reduced set of functional
faults shown in Table 6-10. The faults are generically labeled F1-F5 and are shown with
the integer value of the appropriate test vectors. Before proceeding further with the devel-
opment of a behavioral fault model, the negation operator will first be examined for com-

mon functional faults.

Functional | Test Vectors
Fault (integer)
F1 1,3,57
F2 2,3,6,7
F3 -3,-7
F4 -2,-6
F5 -4

Table 6-10 Reduced functional faults for 4-bit ABS.

6.2.2 Negation

The negation operator (-) changes the sign of a 2’s complement number. The follow-

ing Boolean equations describe the 4-bit negation function:



Zl-_—Xl@XO
Z2=X2® (X1+X0)

Z3=X3®(X2+X1+XO)
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Analysis of the faulty behavior of Z = -X produces the reduced set of functional faults

shown in Table 6-11. The faults are generically labeled F6-F10 and are shown with the

integer value of the appropriate test vectors.

Table 6-11 Reduced functional faults for 4-bit negation.

Functional Test Vectors
Fault (integer)
F6 0
F7 -3,-7, 1,5
F8 -5,-6,-7,1,2,3
F9 -2,-6,2,6
F10 4,4

6.2.3 Generalized Functional Faults

Examination of the reduced set of functional faults for the absolute value and negation

operators provides the necessary insight for developing a common fault model. A gener-

alized set of functional faults is shown in Table 6-12. The faults are covered by three tests

spanning the range of integer values (0, -7, 7) combined with a readily identifiable pattern

from the 4-bit test vectors. These patterns are easily replicated for the n-bit case.

Table 6-12 Generalized functional faults for absolute value and negation.

Functional | Test Vector Test Vector
Faults (integer) (X3X5X1Xp)
F6 0 0000
F1,F2 7 0111
F3,F7,F8 -7 1001
F4, F9 -6 1010
F5,F10 -4 1100
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6.2.4 Behavioral Fault Model

Since ABS and (-) only operate on integers, the form of their behavioral fault models
will be slightly different. One method would be to convert the resulting integer to a
bit_vector, which could then be corrupted using an error vector and the XOR operator. The
corrupted bit_vector would then have to be converted back to an integer to match the type
of the original operation.

Since the purpose of the error vector approach is to simply corrupt the result of the
operation, another operator that works directly with integers could just as easily be used.
Hence, the addition operator (+) is used here instead of the XOR to reduce the number of
type conversions necessary. An implementation of the behévioral fault model for the ABS
operator is presented in Figure 6-17. The negation operator (-) can also be corrupted

using the same method.

7 OR X =
-4);

O OR X = -7 OR

-6 OR X =

7Z <= (ABS X) + to_integer(X =

X

Figure 6-17 Behavioral fault model for ABS.

6.2.5 Evaluation of Behavioral Test Vectors

The generalized functional faults from Section 6.2.3 can be readily extrapolated for a
larger range of integer values. For examples ABS8 and NEG8, X is declared as an integer
with range from -127 to +127. Thus, a synthesis tool will generate hardware with eight
bits to represent the 2’s complement value of X. The WAVES test vectors for example

ABSS are shown in Figure 6-18.

% X Z time ;
00000000 0000000 500 ns;
01111111 1111111 500 ns;
10000001 1111111 500 ns;
10000010 1111110 500 ns;
10000100 1111100 500 ns;
10001000 1111000 500 ns;
10010000 1110000 500 ns;
10100000 1100000 500 ns;
11000000 1000000 500 ns;

Figure 6-18 WAVES test vectors for example ABSS.
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Example ABS8 was synthesized to a gate level implementation using AutoLogic IL
Structurel is shown in Figure 6-19. Fault simulations using the behavioral test vectors
produced a SSL gate level fault coverage of 132/132 = 100%. The fault coverage graph is

shown in Figure 6-20.
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Figure 6-19 Synthesized Structurel of example ABS8.
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Figure 6-20 Fault coverage for Structurel of example ABS8.

Due to the common behavioral fault model, the test vectors for example NEGS are the
same as those for ABS8. Example NEG8 was synthesized to the gate level circuit shown

in Figure 6-21. According to MIL-STD 883D, the synthesized circuit contains 114 unique
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gate level SSL faults. Fault simulations using the common behavioral test vectors also

result in complete gate level fault coverage.

—{>>2(7:0)

TS T b ol

PYYRYOYy

Figure 6-21 Synthesized circuit for example NEGS.

6.3 Conclusions

New behavioral fault models have been developed for the remaining predefined VHDL
operators. The fault models are based on a functional analysis of the logical, unary, mul-
tiplying, and miscellaneous operators. Though not necessarily optimal, the new fault
models provide complete gate level SSL fault coverage over a broad range of hardware
implementations.

The new behavioral fault models developed for the logical operators (AND, OR,
NAND, NOR, XOR) are based on functional faults that require less than exhaustive testing
for all operators except XOR. For the special case of XOR-only expressions, a generalized
Bossen algorithm is presented that allows for optimization of test sequences.

The unary operator for negation (-) performs a function related to the miscellaneous
operator ABS;, each affects the sign of a 2’é c;)mplement number. By analyzing each oper-
ator’s functional faults in tandem with the other, a consistent behavioral fault model was

developed. Note that no previous behavioral fault models even address these operators.



Chapter 7

Other Programming Constructs

VHDL also includes other constructs drawn from familiar programming languages.
Program loops, functions, and procedures are used in VHDL behavioral descriptions for
design simplicity and reuse/repetition of functional blocks. Since any description using
these constructs can be rewritten equivalently without them, no additional behavioral
faults are implied. Several design examples will be used to demonstrate the interaction

between previously defined behavioral faults and these other programming constructs.

7.1 Loops

The VHDL subset, detailed in Appendix D [36], restricts the use of the loop statement
to only the for iteration scheme. The bounds of the discrete range of the loop must be
specified directly or indirectly as static values belonging to an integer type. Hence, the

program loop can be expanded or “unrolled” to an equivalent form eliminating the loop

construct.

7.1.1 A Simple Example

Example SHIFT4u in Figure 7-1 demonstrates the use of program loops to perform
shifting operations. With control signal OP = “01”, aright shift of the unsigned signal
A is performed by the I in 0 to 2 loop. Similarly, with OP = “10”, aleft shiftis
accomplished viathe I in 3 downto 1 loop. For this example, other values for the

control signal OP pass signal A unchanged.

entity shift4u is
port (
OP: in std_logic_vector (1l downto 0);
A: in std_logic_vector (3 downto 0);
D: out std_logic_vector(3 downto 0)
);
end shiftdu;

Figure 7-1 Behavioral description for example SHIFT4u.
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architecture behave of shiftdu is
begin
process (0P, A)
variable TMP: std_logic_vector(3 downto 0);
begin
case OP is
when “01” =>
for I in 0 to 2 loop

TMP(I) := A(I+1);
end loop;
TMP(3) := ‘0';

when “10” =>
for I in 3 downto 1 loop
TMP(I) := A(I-1);
end loop;
T™P(0) := ‘0';
when others =>
T™P := A;
end case;
D <= TMP;
end process;
end behave;

Figure 7-1 Behavioral description for example SHIFT4u.

Due to the directly specified discrete range in each loop, they can be readily expanded
to a sequence of statements eliminating the loop constructs. An expanded version of the

case statement for example SHIFT4u is shown in Figure 7-2.

case OP is
when *“01”7 =>
TMP (0)
TMP (1)
TMP (2)
TMP (3)
when “10”
TMP (3)
TMP (2)
TMP (1)
TMP (0)
when others =>
TMP := A;
end case;

f bon
-

i 1
v
- P

Figure 7-2 Expanded case statement for example SHIFT4u.
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The only behavioral faults affecting the expanded example SHIFT4u are the control
faults for the case statement. The behavioral faults and resulting test vectors are shown in

Table 7-1. Combining don’t cares produces the behavioral test vectors in Figure 7-3.

. Test Vectors
Behavioral Fault Corrupted Clause (OP A)
TMP(0) := A(0) OR A(1)
WHEN-00-CORRUPT TMP (1) := A(l) OR A(2) 00 1010
(by WHEN-01)(OR) TMP(2) := A(2) OR A(3) 00 X10X
TMP(3) := A(3) OR ‘0’
TMP(0) := A(0) AND A(1l)
WHEN-00-CORRUPT TMP (1) := A(l) AND A(2) 00 0101
(by WHEN-01)(AND) TMP(2) := A(2) AND A(3) 00 101X
TMP(3) := A(3) AND ‘0’
TMP(0) := A(0) OR ‘0’
WHEN-00-CORRUPT | TMP(1) := A(l) OR A(O) 00 0101
(by WHEN-10)(OR) TMP(2) := A(2) OR A(1) 00 X01X
TMP(3) := A(3) OR A(2)
TMP(0) := A(0) AND ‘0’
WHEN-00-CORRUPT TMP (1) := A(l) AND A(O) 00 1010
(by WHEN-10)(AND) TMP(2) := A(2) AND A(1l) | 00 X101
TMP(3) := A(3) AND A(2)
TMP(0) := A(1l) OR A(0)
WHEN-01-CORRUPT TMP (1) := A(2) OR A(1l) 01 0101
(by WHEN-00)(OR) TMP(2) := A(3) OR A(2) 01 101X
TMP(3) := ‘0’ OR A(3)
TMP(0) := A(1l) AND A(O)
WHEN-01-CORRUPT TMP (1) := A(2) AND A(1) 01 1010
(by WHEN-00)(AND) TMP(2) := A(3) AND A(2) 01 X10X
TMP(3) := ‘0’ AND A(3)
TMP(0) := A(l) OR A(O0)
WHEN-01-CORRUPT | TMP(1) := A(2) OR A(1l) 01 0101
(by WHEN-11)(OR) TMP (2) := A(3) OR A(2) 01 101X
TMP(3) := ‘0’ OR A(3)
TMP(0) := A(1l) AND A(O)
WHEN-01-CORRUPT TMP(1l) := A(2) AND A(1l) 01 1010
(by WHEN-11)(AND) TMP(2) := A(3) AND A(2) | 01 X10X
TMP(3) := ‘0’ AND A(3)

Table 7-1 Behavioral faults for example SHIFT4u.
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Behavioral Fault Corrupted Clause (OP A)
TMP(0) := ‘0’ OR A(0)
WHEN-10-CORRUPT TMP (1) := A(0) OR A(1) 10 1010
(by WHEN-00)(OR) TMP(2) := A(1l) OR A(2) 10 X101
TMP (3) := A(2) OR A(3)
TMP(Q) := ‘0’ AND A(O0)
WHEN-10-CORRUPT TP (1) := A(0) AND A(1l) 10 0101
(by WHEN-00)(AND) | TMP(2) := A(1l) AND A(2) | 10 X01X
TMP(3) := A(2) AND A(3)
TP (0) := *0’ OR A(0)
WHEN-10-CORRUPT | TMP(1) := A(0) OR A(l) 10 1010
(by WHEN-11)(OR) TMP(2) := A(l) OR A(2) 10 X101
TMP(3) := A(2) OR A(3)
TMP(0) := ‘0’ AND A(0)
WHEN-10-CORRUPT TMP (1) := A(0) AND A(l) 10 0101
(by WHEN-11)(AND) TMP(2) := A(l) AND A(2) | 10 X01X
TMP(3) := A(2) AND A(3)

, TMP(0) := A(0) OR A(1l)
WHEN-11-CORRUPT | TMP(1) := A(1l) OR A(2) 11 1010
(by WHEN-01)(OR) TMP(2) := A(2) OR A(3) 11 X10X

T™P(3) := A(3) OR ‘0’ '

TMP(0) := A(O) AND A(1)
WHEN-11-CORRUPT TP (1) := A(l) AND A(2) 11 0101
(by WHEN-01)(AND) TMP (2) := A(2) AND A(3) 11 101X

TMP(3) := A(3) AND ‘0’

TMP(0) := A(0) OR ‘0’
WHEN-11-CORRUPT TMP (1) := A(l) OR A(O0) 11 o101
(by WHEN-10)(OR) TMP(2) := A(2) OR A(1) 11 X01X

TMP(3) := A(3) OR A(2)

TMP(0) := A(0) AND ‘0’
WHEN-11-CORRUPT | TMP(1) := A(l) AND A(O0) | 11 1010
(by WHEN-10)(AND) TMP(2) := A(2) AND A(1) | 11 Xlo01

TMP(3) := A(3) AND A(2)

Table 7-1 Behavioral faults for example SHIFT4u.
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30P A D : time;

00 0101 0101 : 500 ns;
00 1010 1010 : 500 ns;
01 0101 0010 : 500 ns;
01 1010 0101 : 500 ns;
10 0101 1010 : 500 ns;
10 1010 0100 : 500 ns;
11 0101 0101 : 500 ns;
11 1010 1010 : 500 ns;

Figure 7-3 WAVES test vectors for example SHIFT4u.

Example SHIFT4u from Figure 7-1 was synthesized to the gate level Structurel shown
in Figure 7-4. Fault simulations were performed using the behavioral test vectors from
Figure 7-3. The resulting SSL gate level fault coverage of 90/90 = 100% is shown in Fig-
ure 7-5. An alternate synthesis tool and target architecture was next used to produce
Structure? for example SHIFT4u. Fault simulations using the behavioral test vectors from

Figure 7-3 resulted in a SSL gate level fault coverage of 112/112 = 100%.

a(3:0) >

op(1:0)D—r—l>°"

—{ > d(3:0)

Figure 7-4 Synthesized Structurel for example SHIFT4u.
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Coverage (%)
100 —
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80 —

70 —

60 —

50 —

40

30 —

20 —

Number of Test Vectors

Figure 7-5 Fault coverage for Structurel of example SHIFT4u.

7.1.2 Comparison with Previous Fault Models

The only previous behavioral fault model to address the loop construct was that pro-
posed by Riesgo and Uceda [60]. As part of faults on expressions, the for_in_loop con-
struct was faulted by the index controlling the loop changing its range from the minimum
to the maximum+1 and from the minimum-1 to the maximum. As can be seen from exam-
ple SHIFT4u, such faults would produce signals that do not even exist in the synthesized
hardware, A(-1) and A(3). Thus, their proposed fault model is more a software mutation,
than hardware oriented as they claim.

The restrictions placed on the lbop construct by the VHDL synthesis subset imply that
all such loops can be readily expanded. Since this expansion or “unrolling” eliminates the
loops from the behavioral description, no additional behavioral faults are introduced. The

next section will show that the behavior of functions and procedures is much the same.

7.2 Functions and Procedures

Much like program loops, functions and procedures are used mainly as a convenience
for ease of programming. In general, any VHDL code written with functions and proce-
dures can be mapped to the same hardware as equivalent code without functions or proce-

dures [10]. Since the VHDL behavioral descriptions can be expanded to eliminate these
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programming constructs, no additional behavioral faults are introduced by the use of func-

tions or procedures.

7.2.1 Example ADD4fn
Example ADD4fn in Figure 7-6 describes a 4-bit ripple carry adder using functions to

perform the sum and carry operations. The functions FA_S and FA_C are shown in Figure

7-7.

process (A, B, CIN)
variable CARRY: std_logic_vector (4 downto 0);
variable SUM : std_logic_vector (3 downto 0);
begin
CARRY (0) := CIN;
for I in 0 to 3 loop
SUM(I) := FA_S(A(I), B(I), CARRY(I));
CARRY (I+1l) := FA_C(A(I), B(I), CARRY (I));
end loop;
S <= SUM;
COUT <= CARRY (4);
end process;

Figure 7-6 Behavioral description for example ADD4fn.

function FA_S (AIN, BIN, CIN: std_logic) return
std_logic is

begin
return AIN xor BIN xor CIN;

end FA_S;

function FA_C (AIN, BIN, CIN: std_logic) return
std_logic is
begin
return (AIN and BIN) or (AIN and CIN) or
(BIN and CIN) ;
end FA_C;

Figure 7-7 Functions for example ADD4fn.

The loop and function programming constructs can be eliminated from the behavioral
description by expanding the loop and replacing the function call with its returned expres-
sion. The results of this expansion and substitution are shown in Figure 7-8. Since the

VHDL behavioral descriptions in Figure 7-6 and Figure 7-8 synthesize to the same gate
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level structures, no additional behavioral faults have been introduced by the use of func-

tions.
begin

CARRY (0) = CIN;

SUM(0) := A(0) xor B(0) xor CARRY(0);

CARRY (1) := (A(0) and B(0)) or (A(0) and CARRY(0)) or
(B{0) and CARRY(0));

SUM(1) := A(l) xor B(l) xor CARRY(1l);

CARRY (2) := (A(l1) and B(1)) or (A(l) and CARRY (1)) or
(B(1l) and CARRY(1l));

SUM(2) := A(2) xor B(2) xor CARRY(2);

CARRY (3) := (A(2) and B(2)) or (A(2) and CARRY(2)) or
(B(2) and CARRY(2));

SUM(3) := A(3) xor B(3) xor CARRY(3); ‘

CARRY (4) := (A(3) and B(3)) or (A(3) and CARRY(3)) or

- (B(3) and CARRY(3));
S <= SUM;

COUT <= CARRY (4);
end process;

Figure 7-8 Expanded behavioral description for example ADD4fn.

7.2.2 Example ADD4pr

The 4-bit ripple carry adder can be equivalently written using a procedure as shown in

Figure 7-9. The procedure FA is shown in Figure 7-10.

process (A,B,CIN)
variable CARRY: std_logic_vector (4 downto 0);
variable SUM : std_logic_vector (3 downto 0);
begin
CARRY (0Q) := CIN;
for I in 0 to 3 loop
FA(A(I), B(I), CARRY(I), SUM(I), CARRY (I+1));
end loop;
S <= SUM;
COUT <= CARRY (4);
end process;

Figure 7-9 Behavioral description for example ADD4pr.
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procedure FA (AIN, BIN, CIN: in std_logic;
SOUT, COUT: out std_logic) is

begin
SOUT := AIN xor BIN xor CIN;
COUT := (AIN and BIN) or (AIN and CIN) or

(BIN and CIN);
end FA;

Figure 7-10 Procedure FA for example ADD4pr.
Since the VHDL behavioral description ADD4pr in Figure 7-9 synthesizes to the same

gate level structures as the examples in Figure 7-6 and Figure 7-8, no additional behavioral

faults have been introduced by the use of procedures.

7.3 Conclusions

VHDL includes other constructs drawn from familiar programming languages. Pro-
- gram loops, functions, and procedures are used in VHDL behavioral descriptions for
design simplicity and reuse/repetition of functional blocks. Since any description using
these constructs can be rewritten equivalently without them, no additional behavioral
faults are implied. Several design examples were used to demonstrate the interaction

between previously defined behavioral faults and these other programming constructs.



Chapter 8

Comprehensive Examples

Two comprehensive examples have been chosen to demonstrate the gate level fault
coverage of the new behavioral fault models. The first is an arithmetic logic unit (ALU)
which performs selected functions on data inputs. The second example is a single error
correcting circuit used in fault tolerant applications. Other obvious combinational logic
examples such as a multiplexer or a magnitude comparator do not need to be investigated
here due to their detailed analysis as part of the development of the fault models for the if
statement and relational operators.

Application of the behavioral fault models to each of the corhprehensive examples
results in a set of test vectors necessary to detect the behavioral faults. These test vector
sets are then applied to synthesized gate level implementations of the behavioral descrip-
tions. Resulting gate level fault coverage is evaluated to determine the effectiveness of the

behavioral fault models.

8.1 Arithmetic Logic Unit
The ALU design for this example was created using the LogicLib generator from the
Mentor Graphics design tools. The type was selected as an ALU2901 which performs

eight arithmetic and logic functions. Data widths of 4- and 8-bits will be evaluated.

8.1.1 Example ALU4wc

The generator parameters and the resulting entity description for a 4-bit ALU with

both carry-in and carry-out are shown in Figure 8-1. The architecture description for

-- Written by LL_to_VHDL at Mon Jun 8 12:23:29 1998
-- Parameterized Generator Specification to VHDL Code
-- LogicLib generator called: ARITHMETIC

-~ Passed Parameters are:

-— type = ALU2901

-- W=4

- carryin = YES

-= carryout = YES

Figure 8-1 Entity description for example ALU4wc.
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library IEEE, ARITHMETIC;
use IEEE.std _logic_1164.all;
use ARITHMETIC.std_logic_arith.all;
-- aludwc Entity Description
entity aludwc is

port (

)

OP: in std_logic_vector (2 downto 0);
A: in std_logic_vector (3 downto 0);

B: in std_logic_vector (3 downto 0);

CIN: in std_logic;

COUT: out std_logic;

D: out std_logic_vector (3 downto 0)

end aludwc;

Figure 8-1 Entity description for example ALU4wc.

example ALU4wc is shown in Figure 8-2. In the first section, variables are declared and

initialized consistent with arithmetic operations involving a carry-in and a carry-out.

Next, two case statements determine the appropriate operation to be performed. Lastly,

the outputs are assigned based on whether the operation performed was arithmetic or

logic.

architecture behave of aludwc is

begin

ARITHMETIC_Process: process(A,B,CIN, OP)
variable operandl: std_logic_vector (4 downto 0);
variable operand2: std_logic_vector (4 downto 0);
variable a_ext: std_logic_vector (4 downto 0);
variable b_ext: std_logic_vector (4 downto 0);

variable not_a_ext: std_logic_vector (4 downto 0)
variable not_b_ext: std_logic_vector (4 downto 0)
variable carry_ext: std_logic_vector(l downto 0);
variable logic_out: std_logic_vector(3 downto 0)
variable arith_out: std logic_vector (4 downto 0)

begin

-- zero extend inputs to include carry bit
a_ext := ‘0’ & A;

b_ext := ‘0’ & B;

not_a_ext := ‘0’ & not A;

not_b_ ext ‘0’ & not B;

carry_ext := ‘0’ & CIN;

Figure 8-2 Architecture description for example ALU4wc.



140

-- ALU2901

case OP 1is
when “011” =>

logic_out := A or B;
when “1007 =>

logic_out := A and B;
when “101" =>

logic_out := (not A) and B;
when “1107 =>

logic_out := A xor B;
when “1117 =>

logic_out := not (A xor B);
when others =>

logic_out := (OTHERS => ‘X');

end case;

case OP is
-- Arithmetic operations
when “000" =>

operandl := a_ext;
operand2 := b_ext;
when “001” =>
operandl := not_a_ext;
operand2 := b_ext;
when “010” =>
operandl := a_ext;
operand2 := not_b_ext;
when others =>
operandl := (OTHERS => ‘X’);
operand2 := (OTHERS => ‘X’);
end case;
arith_out := operandl + operand2 + carry_ext;

Figure 8-2 Architecture description for example ALU4wc.
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-- assign output
if (OP(2) = ‘1’ or (OP(l) = ‘1’ and OP(0) = ‘1'}))
then
D <= logic_out;
couT <= ‘X’;
else
D <= arith_out(3 downto 0);
COUT <= arith_out(4);
end if;

end process ARITHMETIC_Process;
end behave;

Figure 8-2 Architecture description for example ALU4wc.

8.1.1.1 Faults on Logical Operators

Within the Logical Fun'ctions case statement, the variable logic_out is determined by
combining the signals A, B using the logical operators AND, OR, and XOR. For the first
logical expression, when OP = 011:

logic_out := A OR B;

From the behavioral fault models for logical operators, the three test vectors (AB) neces-
sary for an OR operator are 00, 01, and 10. Since all signals are in fact four bits wide,

these tests expand to produce the behavioral test vectors shown in Table 8-1.

Expression OP A B logic_out
0000 0000 0000
AORB 011 0000 1111 1111
1111 0000 1111

Table 8-1 Behavioral test vectors for OR operator.

The behavioral test vectors for the remaining Logical Functions are determined in a
similar manner. The logical operator AND also requires three tests: 01, 10 and 71. Next,
the XOR operator requires a complete set of four test vectors: 00, 01, 10, and 11. Like the
OR operation, these vectors also expand to four bits for each operator. The resulting

behavioral test vectors are shown in Table 8-2.
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Expression OP A B logic_out
0000 1111 0000
A AND B 100 1111 0000 0000
1111 | 1111 1111
1111 1111 0000
(not A)ANDB | 101 0000 0000 0000
0000 1111 1111
0000 0000 0000
0000 1111 1111
AXORB 110
1111 0000 1111
1111 1111 0000
0000 0000 1111
0000 1111 0000
not (AXORB) | 111
1111 0000 0000
1111 1111 1111

Table 8-2 Behavioral test vectors for remaining Logical Functions.

8.1.1.2 Faults on Arithmetic Operators
The ADD with carry operation performed in the Arithmetic Functions section deter-
mines the variable arith_out as follows:

arith _out := operandl + operand2 + carry_ext;

Assuming a simple ripple carry implementation, the behavioral test vectors for the 4-bit
addition come directly from Table 5-6 and are shown here in Table 8-3.

Due to the case statement for Arithmetic Functions, there are three different ways to
form operandl and operand2. The resulting possible test vectors are shown in Table 8-4.
Only one input combination is required for each Test #, though using all possibilities
would not be incorrect, just redundant. As with previous examples, the control faults can

provide the necessary insight for selecting a reduced set of behavioral test vectors.



Phase | Test# | operandl operand2 | carry_ext | arith_out
1 0000 0000 0 0 0000
2 0000 1111 0 01111
: 3 1111 0000 0 01111
4 1111 1111 1 11111
5 0000 1111 1 1 0000
. 6 1111 0000 1 1 0000
7 0101 0101 0 01010
- 8 1010 1010 1 10101
Table 8-3 Behavioral tests for 4-bit ADD with carry.
0] Phase | Test# A B CIN arith_out
1 0000 0000 0 00000
2 0000 1111 0 01111
: 3 1111 0000 0 01111
4 1111 1111 1 11111
000
5 0000 1111 1 1 0000
. 6 1111 0000 1 1 0000
7 0101 0101 0 01010
- 8 1010 1010 1 10101
1 1111 0000 0 0 0000
2 1111 1111 0 01111
! 3 0000 0000 0 01111
4 0000 1111 1 11111
001
5 1111 1111 1 1 0000
. 6 0000 0000 1 1 0000
7 1010 0101 0 01010
HI 8 0101 1010 1 10101

Table 8-4 Possible test vectors for Arithmetic Functions.
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OP Phase | Test# A B CIN | arith_out
1 0000 1111 0 0 0000
2 0000 0000 0 01111
: 3 1111 1111 0 01111
4 1111 0000 1 11111
010
5 0000 0000 1 1 0000
. 6 1111 1111 1 1 0000
7 0101 1010 0 01010
- 8 1010 0101 1 10101

Table 8-4 Possible test vectors for Arithmetic Functions.

8.1.1.3 Control Faults

The control fault model states that each clause of an if or case statement is corrupted
by other clauses that are logically adjacent. For the Logical Functions case statement,
the first clause, WHEN-011, can be corrupted by either WHEN-00I or WHEN-010. Both
of these cases fall under the others clause and, hence, cause no corruption due to the don’t
care values. The third possible corruption is caused by the WHEN-111 clause. For exam-
ple, the control fault WHEN-011 CORRUPT (by WHEN-111)(OR) produces the corrupted
clause shown below.

logic_out := (A OR B) OR (not (A XOR B));

Test vector generation rules specify that (A OR B) be set to 0, while (not (A XOR B)) is set
to 1. Checking the previously determined test vectors for logical operators from Table 8-
1 and Table 8-2, the test vector with A = 0000 and B = 0000 meets these requirements and,
hence, covers this control fault.

The control faults for all the Logical Functions are shown in Table 8-5. The faults are
grouped according to the corrupted clauses. Each corrupting clause includes both an OR-
fault and an AND-fault. The test generation rules provide requirements that produce the

appropriate test vector.
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Corrupted | Corrupting Fault Test Test Vector
Clause Clause Requirement (OPAB)
001 NONE
010 NONE
011 AORB=0
OR not (A XOR B) = 1 011 0000 0000
111
AORB=1
AND not (A XOR B) = 0 011 0000 11112
000 NONE
AANDB=0
OR (not A) AND B = 1 100 0000 1111
101 5
AANDB=1
100 AND (not A) AND B = 0 100 1111 1111
AANDB=0
OR AXORB =1 100 0000 1111
110
AANDB=1
AND AXORB=0 100 1111 1111
001 NONE
(not AYANDB =0
OR AANDB =1 101 1111 1111
10 (not A) ANDB =1
not =
101 AND AANDB =0 101 0000 1111
(not A)ANDB =0
OR not (A XOR B) = 1 101 1111 1111
111
(not A)ANDB=1
AND not (A XOR B) = 0 101 0000 1111
010 NONE
AXORB=0
110 OR AANDB =1 110 1111 1111
100 XOR B
A =1 ~
AND AAND B =0 110 0000 1111

Table 8-5 Control faults for Logical Functions.
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Corrupted | Corrupting Fault Test Test Vector
Clause Clause Requirement (OP A B)
AXORB=0
OR not (A XOR B) = 1 110 0000 0000
110 111
AXORB=1

AND not (A XOR B) =0 110 1111 0000
not (AXORB)=0

OR AORB=1 111 0000 1111

011 AXO0

not (AXORB)=1

AND AORB =0 111 0000 0000
not (AXORB)=0

OR (not A) AND B = 1 111 0000 1111

111 101

not (A XOR B)=1

AND (not A) AND B =0 111 1111 1111
not (A XORB)=0 :

OR AXORB =1 111 1111 0000

110 A %o

not (AXORB)=1

AND AXORB =0 111 0000 0000

Table 8-5 Control faults for Logical Functions.

The control faults for the Arithmetic Functions are formed in the same manner. The

resulting faults and their test vectors are shown in Table 8-6.

Corrupted | Corrupting Fault Test Test Vector
Clause Clause Requirement (OPAB)
OR a_ext=0 000 0000 XXXX
not_a_ext=1
001
AND a_ext=1 000 1111 XXXX
not_a_ext=0
000 OR b_ext=0 000 XXXX 0000
not_ b ext=1
010
AND b_ext=0 000 XXXX 1111
-not_b_ext=1
100 NONE

Table 8-6 Control faults for Arithmetic Functions.
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Corrupted | Corrupting Fault Test Test Vector
Clause Clause Requirement (OPAB)
OR motaext=0 | 551 1711 xxxx
a_ext=1
000
001 AND | "OREESL 001 0000 xxxx
011 NONE
101 NONE
OR mot bext=0 | 15 xxxx 1111
b_ext=1
- 000
010 AND “Olt;z;fx:tgl 010 XXXX 0000
011 NONE
110 NONE

Table 8-6 Control faults for Arithmetic Functions.

The final control faults affect the if statement that assigns the outputs. The then and

else clauses determine whether the function performed was logic or arithmetic, respec-

tively. The logical adjacencies among the clauses are illustrated in Figure 8;3; logic func-

tions corresponding to the then clause are shaded. For example, the logic function for OP

= 011 can be corrupted by the arithmetic functions with OP = 001 and OP = 010.

OP(1) OP(0)
00 01 11 10
0] 000 | 001 | 011 | 010
OP(2) _ ,
1| 100 | 101 | 111 | 110
OP

Figure 8-3 Logical adjacencies among clauses.

THEN-CORRUPT faults cause logic functions to be corrupted by arithmetic functions.
As an example, the control fault 100-CORRUPT (by 000)(OR) produces the following cor-

rupted assignment statements:
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D <= logic_out OR arith_out(3 downto 0);

COUT <= ‘X’ OR arith_out(4);
Candidate test vectors for OP = 100 with corresponding values for logic_out are found in
Table 8-2. Corrupting values of arith_out(3 downto 0) for OP = 000 can be found in Table
8-4. Comparing these values shows that an appropriate test vector is formed by A = 0000
and B = 1111 with CIN = 0. Note that a logic operation would normally leave CIN as a
don’t care, however, corruption by an arithmetic operation requires specification of this

value. THEN-CORRUPT faults and their resulting test vectors are shown in Table 8-7.

Corrupted | Corrupting Fault Test Test Vector
Clause Clause ' Requirement (OP A B CIN)
OR logic_out=0 | 1, 4500 0000 0
arith_out=1
001 :
AND | logicout=1 1 0.0 1999 0000 0
arith_out=0
011 :
OR logic_out=0 | 11 45500 0000 0
arith out=1
010 -
AND | logicout=1 1 5.1 4600 1111 0
arith_out=0
OR logic_out=0 | 1,4 5000 1111 0
arith_out=1
100 000
AND | logicout=1 | 100 0101 0101 0
arith out=0 | 100 1010 1010 1
OR logic out=0 | 11 1997 1711 0
arith_out=1
101 001
ANp | losicout=1 | 101 1010 0101 0
arith out=0 | 101 0101 1010 1
OR logic_out=0 | 1,4 5400 0000 0
arith_out=1
110 010 .
AND | logicout=1 1., 45600 1111 0
arith out=0

Table 8-7 THEN-CORRUPT control faults.

ELSE-CORRUPT faults are formed in a similar manner resulting in corruption of an

arithmetic function by a logic function. ELSE-CORRUPT faults are shown in Table 8-8.
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Corrupted | Corrupting Fault Test Test Vector
Clause Clause Requirement (OP A B CIN)
OR arith_out=0 000 0101 0101 O©
logic_out=1 000 1010 1010 1
000 100
AND arith_out=1 000 0101 0101 O
logic_out =0 000 1010 1010 1
or | mthout=0 1 ;0 1191 0000 0
logic_out =1
011 -
AND | 2nithout=1 1 40, 4600 0000 0
logic_out =0
001
OR arith_out=0 001 1010 0101 O
101 logic__out=l 001 0101 1010 1
AND arith_out=1 001 1010 0101 O
logic_out =0 001 0101 1010 1
OR arith out=0 | o, 1997 1731 1
logic_out=1
011 .
AND | ithout=1 1 4.5 4500 0000 0
logic_out =0
010 :
OR arith out=0 1 114 4500 1111 0
logic_out =1
110 -
AND | dithout=1 115 5500 0000 0
logic_out =0

8.1.1.4 Final Behavioral Test Vector Set

Table 8-8 ELSE-CORRUPT control faults.

Combining the control faults for Logical Functions from Table 8-5 and the THEN-

CORRUPT control faults from Table 8-7 with the tests for Logical Functions from Table

8-1 and Table 8-2 will produce a final set of behavioral test vectors for OP = 011 through

OP = 111. Further optimization is possible by noting that the two test vectors required for
the control fault 100-CORRUPT (by 000)(AND) provide coverage forthe A = 1, B =1
fault to the AND operator for OP = 100. A similar optimization applies to the control fault

101-CORRUPT (by 001)(AND). The resulting behavioral test vectors and covered control

faults are shown in Table 8-9.
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Test Vector

Expression (OP A B CIN) Control Faults
011 by 001 (OR), 011 by 010 (OR),
011 0000 0000 O 011 by 111 (OR)
AORB

011 0000 1111 0 | 011 by 010 (AND), 011 by 111 (AND)
011 1111 0000 O 011 by 001 (AND)

100 by 000 (OR), 100 by 101 (OR),
100 by 110 (OR)

100 0000 1111 O

A AND B 100 1111 0000 X

100 0101 0101 0 | 100 by 000 (AND), 100 by 101 (AND),
100 1010 1010 100 by 110 (AND)

101 by 001 (OR), 101 by 100 (OR),
101 by 111 (OR)

'._\

101 1111 1111 O

(not A)ANDB | 101 0000 0000 X
101 1010 0101 0 | 101 by 001 (AND), 101 by 100 (AND),
101 0101 1010 1 101 by 111 (AND)
110 0000 0000 O 110 by 010 (OR), 110 by 111 (OR)
110 0000 1111 0 110 by 010 (AND), 110 by 100 (AND)
A XOR B
110 1111 0000 X 110 by 111 (AND)
110 1111 1111 X 110 by 100 (OR)
111 0000 0000 X | 111byO011 (AND), 111 by 110 (AND)
111 0000 1111 X 111 by 011 (OR), 111 by 101 (OR)
not (A XOR B)
111 1111 0000 X 111 by 110 (OR)
111 1111 1111 X 111 by 101 (AND)

Table 8-9 Final behavioral test vectors for Logical Functions.

Likewise, the control faults for Arithmetic Functions from Table 8-6 and the ELSE-
CORRUPT control faults from Table 8-8 are combined with the possible test vectors for
Arithmetic Functions from Table 8-4. The only behavioral tests, for the 4-bit ADD with
carry, not specified by control faults are Test 5 and Test 6. Test vectors to cover this Phase
were selected from OP = 010 simply to balance the number of test vectors in each group.

The resulting behavioral test vectors and covered control faults are shown in Table 8-10.
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Test Vector
Phase | Test # (OP A B CIN) Control Faults

000 0000 0000 O | 090 by 001 (OR), 000 by 010 (OR)
001 1111 0000 0 | 001 by 000 (OR), 001 by 011 (OR)

010 by 000 (OR), 010 by 011 (OR), -
010 by 110 (OR)

010 by 000 (AND), 010 by 011 (AND),
010 by 110 (AND)

010 0000 1111 O

2 010 0000 0000 O

3 | 001 0000 0000 O | 001 by 000 (AND), 001 by 011 (AND)
4 | 000 1111 1111 1 | 000 by 001 (AND), 000 by 010 (AND)
. 5 | 010 0000 0000 1
6 | 010 1111 1111 1
7 | 000 0101 0101 0
000 by 100 (OR), 000 by 100 (AND)
8 | 000 1010 1010 1
I
7 0

001 1010 0101

001 by 101 (OR), 000 by 101 (AND)

8 001 0101 1010 1

Table 8-10 Final behavioral test vectors for Arithmetic Functions.

Hence, a final set of 31 test vectors has been formed by application of the new behav-
ioral fault models. The behavioral test vectors and resulting outputs are presented in

WAVES format in Figure 8-4.

% OP A B CIN COUT D : time;
000 0000 0000 O O 0000 : 500 ns;

000 1111 1111 1 1 1111 : 500 mns;
000 0101 0101 O O 1010 : 500 ns;
000 1010 1010 1 1 0101 : 500 ns;
%

001 1111 0000 0 O 0000 : 500 ns;
001 0000 0000 0 O 1111 : 500 ns;
001 1010 0101 0 O 1010 : 500 ns;
001 0101 1010 1 1 0101 : 500 ns;

%

Figure 8-4 WAVES test vectors for example ALU4wc.
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016 0000
010 0000
010 0000
010 1111

011 0000
011 0000
011 1111
100 0000
100 1111
100 0101
100 1010

101 1111
101 0000
101 1010
101 0101

110 0000
110 0000
110 1111
110 1111

111 0000
111 0000
111 1111
111 1111

1111
0000
0000
1111

0000
1111
0000

1111
0000
0101
1010

1111

0000

0101
1010

0000

1111,

0000
1111

0000
1111
0000
1111

Il Bl

P oMo
P X

M X oo

oMM

PR OO

Lo i

PP MM

bR I i

0000
1111
0000
0000

0000
1111
1111

0000
0000
0101
1010

0000
0000
0101
1010

0000
1111
1111
0000

1111
0000
0000
1111

500
500
500
500

500
500
500

500
500
500
500

500
500
500
500

500
500
500
500

500
500
500
500

ns;
ns;
ns;
ns;

ns;
ns;
ns;

ns;
ns;
ns;
ns;

ns;
s,
ns;
ns;

ns;
ns;
ns;
ns;

ns;
ns;
ns;
ns;

Figure 8-4 WAVES test vectors for example ALU4wc.

8.1.2 Evaluation of the Behavioral Test Vectors

Example ALU4wc was first synthesized to gate level Structurel using AutoLogic II.

The resulting optimized implementation contains 59 gates shown in Figure 8-5. Accord-

ing to MIL-STD 883D, Structurel of example ALU4wc contains 284 unique SSL gate

level faults. Fault simulations using the behavioral test vectors from Figure 8-4 resulted in

complete gate level fault coverage shown in Figure 8-6.

An alternate target technology was next used to synthesize gate level Structure2. The

resulting optimized circuit contains 78 gates and 312 unique SSL faults. Fault simulations

using the behavioral test vectors from Figure 8-4 again resulted in complete gate level

fault coverage.
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Figure 8-5 Synthesized Structurel for example ALU4wc.
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Figure 8-6 Fault coverage for Structurel of example ALU4wc.

Lastly, an alternate synthesis tool, Leonardo, was used to map the VHDL behavioral
description to a Xilinx FPGA architecture. Fault simulations using the behavioral test
vectors achieved a SSL gate level fault coverage of 398/398 = 100%. The behavioral fault
models have been applied to multiple implementations using various target architectures
and synthesis tools. The range of examples demonstrates the flexibility of the approach

and provides experimental validation of the effectiveness of the new fault models.
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8.1.3 Expansion of the Data Path

The data path for the arithmetic logic unit was next expanded to eight bits wide to cre-
ate example ALU8wc. The only difference in the resulting behavioral deséription is the
width of the corresponding variables and signals. Since the width of the control signal OP
remained constant, no new control faults were introduced.

The behavioral test vectors for example ALU8wc, therefore, follow directly from those
derived for example ALU4wc. The only change is the expansion of the data signals A, B,

and D to eight bits wide. The resulting test vectors are presented in Figure 8-7. Note that

the WAVES file still contains only 31 test vectors.

% OP A B CIN COUT D : time;

000 00000000 00000000 O O 00000000 500 ns;
000 111121111 111121111 1 1 11111111 500 ns;
000 01010101 01010101 0 0 10101010 500 ns;
000 10101010 10101010 1 1 01010101 500 ns;
%

001 11111111 00000000 O O 00000000 500 ns;
001 00000000 00000000 O 0 11111111 500 ns;
001 10101010 01010101 0 O 10101010 500 ns;
001 01010101 10101010 1 1 01010101 500 ns;
%

010 00000000 11111111 0 O 00000000 500 ns;
010 00000000 00000000 O O 11111111 500 ns;
010 00000000 00000000 1 1 00000000 500 ns;
010 11112111 11111111 1 1 00000000 500 ns;
%

011 00000000 00000000 0 X 00000000 500 ns;
011 00000000 11111111 O X 11111111 500 ns;
011 11111111 00000000 O X 11111111 500 ns;
%

100 00000000 11111111 O X 00000000 500 ns;
100 11111111 00000000 X X 00000000 500 ns;
100 01010101 01010101 0 X 01010101 500 ns;
100 10101010 10101010 1 X 10101010 500 ns;
%

101 11113111 11111111 0 X 00000000 500 ns;
101 00000000 00000000 X X 00000000 500 ns;
101 10101010 01010101 0 X 01010101 500 ns;
101 01010101 10101010 1 X 10101010 500 ns;

Figure 8-7 WAVES test vectors for example ALU8wc.
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110 00000000 00000000 0 X 00000000 500 ns;
110 00000000 11111111 0 X 11111111 500 ns;
110 11111111 00000000 X X 11111111 500 ns;
110 11111111 11111111 X X 00000000 500 ns;
%

111 00000000 00000000 X X 11111111 500 ns;
111 00000000 11111111 X X 00000000 500 ns;
111 11111111 00000000 X X 00000000 500 ns;
111 111112111 11111111 X X 11111111 500 ns;

Figure 8-7 WAVES test vectors for example ALU8wc.

Example ALU8wc was next synthesized using AutoLogic II to produce Structurel
containing 130 gates. Fault simulations using the behavioral test vectors from Figure 8-7
resulted in a SSL gate level fault coverage of 542/542 = 100%. Lastly, Leonardo was used
to synthesize example ALUSWC to gate level Structure2. Fault simulations using the

behavioral test vectors again achieved complete gate level fault coverage.

8.1.4 Summary

The new behavioral fault models, developed in this dissertation, have been applied to
the comprehensive examples ALU4wc and ALU8wc. From these faults, behavioral test
vectors have been derived for the 4-bit case, then readily expanded for the 8-bit example.
The resulting complete SSL gate level fault coverage for multiple implementations is sum-
marized in Table 8-11. Again, the range of examples demonstrates the flexibility of the

approach and provides experimental validation of the effectiveness of the new fault mod-

els.
Example Implementation SSL Behavioral Fault
P P Faults | Test Vectors | Coverage

Structurel 284 31 100%

ALU4wc Structure2 312 31 100%
Structure3 398 31 100%
Structurel 546 31 100%

ALU8wc
Structure? 758 31 100%

Table 8-11 ALU fault experiment results.
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8.2 Error Correcting Circuit

The second comprehensive example is a combinational circuit capable of correcting
single-bit errors in data words. The error correction capability is achieved by the use of
multiple overlapping parity bits forming a Hamming code. If x is the number of informa-
tion bits, then the number of parity bits, p, is equal to the smallest integer value of p that
satisfies 27 > x + p + 1 [41]. Hence, four data bits (X) would require three parity bits (P)
to create example HAMMING4. Likewise, eight data bits require four parity bits for
example HAMMINGS.

8.2.1 Example HAMMING4
The entity description for example HAMMING4 is shown in Figure 8-8. This module

assumes the existence of another circuit which generates the parity bits (P) from the data
bits (X). The data/parity combination X, P is then subject to corruption prior to processing
by example HAMMING4. The error correcting circuit takes the input data and parity bits

and performs single bit error correction to produce the output data bits (D).

entity hamming4 is
port (
X: in std_logic_vector(l to 4);
P: in std_logic_vector(l to 3);
D: out std_logic_vector(l to 4)
)

end hamming4;

Figure 8-8 Entity description for example HAMMINGA4.

The architecture description for example HAMMING4, shown in Figure 8-9, contains
two parts. In the first section, the data bits and parity bits are combined using XOR trees
to generate check bits forming a syndrome (S). Detection of a single-bit error produces a 1
on one or more bits of the syndrome. Next, the overall value of the syndrome bits deter-

mines which, if any, data bit needs corrected.

8.2.1.1 Faults on XOR-only Expressions
Behavioral faults on the expressions for the syndrome (S) are all on XOR operators.
Hence, optimized test vectors can be generated based on the modified Bossen algorithm

developed in Section 6.1.2.2.
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architecture behave of hamming4 is
begin
process (X, P)

variable S : std_logic_vector(l to 3);

begin
S(1) := X(1) XOR X(2) XOR X(4) XOR P(1);
S(2) := X(1) XOR X(3) XOR X(4) XOR P(2);
S(3) := X(2) XOR X(3) XOR X(4) XOR P(3);
D(1) <= X(1) XOR (S(1l) AND S(2) AND not S(3));
D(2) <= X(2) XOR (S(1) AND not S(2) AND S(3));
D(3) <= X(3) XOR (not S(1) AND S(2) AND S(3));

D(4) <= X(4) XOR (S(1) AND S(2) AND S(3));
end process;
end behave;

Figure 8-9 Architecture description for example HAMMINGA.

A generic 4-input XOR-only expression is shown below:

Z <= A XOR B XOR C XOR D

. Applying the modified Bossen algorithm results in the labelling shown in Figure 8-10 and

Figure 8-11. Note that this example represents a special case where it is possible to find
identical test sequences for structures Cascadel and Cascade2. The resulting optimized

test vectors for a generic 4-input XOR-only expression are shown in Table 8-12.

A Sj>R ]
B> RD_,—;
c>—2 T

Figure 8-11 Structure Cascade? for 4-input XOR-only expression.




Signal Label Sequence T?:B\gg;) r Z
A S 0011 0000 0
B R 0110 0111 1
C R 0110 1110 1
D T 0101 1001 0
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Table 8-12 Optimized test vectors for 4-input XOR-only expression.

Mapping the generalized case onto the first XOR-only expression relates A to X(1), B
to X(2), C to X(4), D to P(1), and Z to S(I). The resulting behavioral test vectors are
shown in Table 8-13. Mapping the generalized case onto expressions S(2) and S(3) pro-
duces the test vectors shown in Table 8-14 and Table 8-15, respectively. Don’t care values
can be eliminated for the three XOR-only expressions, resulting in a reduced set of behav-

ioral test vectors shown in Table 8-16.

ABCD Z X P S
(X;XX4P1) (Sy) (X1 X5X3Xy) (P1P,P3) (51S5S53)
0000 0 00X0 0XX 0XX
0111 1 01X1 1XX 1XX
1110 1 11X1 0xXX 1IXX
1001 0 10X0 1XX 0xXx
Table 8-13 Optimized test vectors for expression S(1).
ABCD A X P s
(X1 X3X4Pp) (S2) (X1 X5X35X4) (P,P,P5) (515,53)
0000 0 0X00 X0X X0X
0111 1 0X11 X1X X1X
1110 1 1X11 X0X X1X
1001 0 1X00 X1iX X0X

Table 8-14 Optimized test vectors for expression S(2).



ABCD Z X | S
(XoX3X4P3) (S3) (X1 X,X3Xy) (P1P,P3) (S155S3)
0000 0 X000 XX0 XX0
0111 1 X011 XX1 XX1
1110 1 X111 XX0 XX1
1001 0 X100 XX1 XX0

Table 8-15 Optimized test vectors for expression S(3).

X1 X2 X3X4 P1PyP; S15,53
0000 000 000
0011 101 001
0100 101 000
0111 110 111
1000 110 000
1111 000 111

Table 8-16 Reduced test vector set for XOR-only expressions.

8.2.1.2 Faults on Other Logical Expressions
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Behavioral faults for the remaining expressions are all on logical operators. Test vec-

tors can be generated using the parse tree method developed in Section 6.1.1.2. A parse

tree for expression D(1) is shown in Figure 8-12. The binary nodes (1,2,3) are formed by

the logical operators.

1 XOR
7N\
X, 2 AND
7N\
S, 3 AND
N
Sy not
|
S3

Figure 8-12 Parse tree for expression D(1).
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Application of the new behavioral fault models implies four faults for the XOR opera-
ror and three faults for each of the AND operators. The resulting behavioral test vectors
are presented in Table 8-17. Eliminating don’t care values results in the reduced set of
behavioral test vectors for expression D(I) shown in Table 8-18. Application of similar
parse trees to the remaining logical expressions produces the reduced test vectors in Table

8-19 through Table 8-21.

Node Bel?gfsitc)ral Test Requirements (?fts\llgztso:)
00 X;=0,(S; AND S, AND not S3) =0 0 0XX
01 X;=0,(S; AND S, AND not S3) =1 0 110
! 10 X;=1,(S; AND S, AND not S3) =0 1 0xX
11 X;=1,(S; AND S, AND not S3) =1 1 110
01 $;=0,(SANDnotS3)=1,X,=0 0 010
2 10 S;=1,(S, ANDnot S3) =0, X; =0 0 10X
11 S;=1,(SANDnot S3)=1,X;=0 0 110
01 S5=0,n0tS3=1,8;=1,X,=0 0 100
3 10 S;=1,n0tS3=0,5,=1,X;,=0 0 110
11 S,=1LnotS3=1,5,=1,X;=0 0 111
Table 8-17 Behavioral test vectors for expression D(1).
s, | sissy | e
0XXX 010 1[001], 2[01]
0XXX 100 2[10], 3[01]
0XXX 110 1[01], 2[11], 3[10]
0XXX 111 3[11]
1XXX 0XX 1[10]
1XXX 110 1[11]

Table 8-18 Reduced test vectors for expression D(1).



Functional Tests

X1 XpX3Xq | S15253 (Node [Test])
X0XX 001 1[00], 2[01]
X0XX 100 - 3[10]
XO0XX 101 | 1[01],2[11], 3[11]
XO0XX 111 2[10], 3[01]
X1XX 0XX 1[10]
X1XX 101 1[11]

Table 8-19 Reduced test vectors for expression D(2).

Functional Tests

X1XoX3Xy | 515553 (Node [Test])
XX0X 001 2[10], 3[01]
XX0X 010 3[10]
XX0X 011 1[01}], 2[11], 3[11]}
XX0X 111 1[00], 2[01]
XX1X 011 1{11]
XX1X 1XX 1[10]

Table 8-20 Reduced test vectors for expression D(3).

Functional Tests

X1 XoX3Xs | 515253 | (Node [Test])
XXXO 011 1[00], 2{01]
XXXO 101 20101, 3{01]
XXXO 110 | 3010]
XXXO 111 | 1[01], 211], 3(11]
XXX1 0XX 1(10]
XXX1 111 1[11]

Table 8-21 Reduced test vectors for expression D(4).

through D(4) produces the reduced set of behavioral test vectors shown in Table 8-22.
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Eliminating don’t care values by combining test vectors for logical expressions D(1)



Table 8-22 Test vectors for logical expressions D(1) through D(4).
8.2.1.3 Final Behavioral Test Vector Set

X1XX3Xy | $15,53
1001 001
0101 010
1100 011
1110 011
001X 100
X010 101
X110 101
0X10 110
1X10 110
0000 111
0001 111
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The reduced set of behavioral test vectors for the XOR-only expressions, Table 8-16,

can now be combined with the behavioral test vectors for the other logical expressions,

Table 8-22. Unspecified don’t care values are arbitrarily set to 0. The resulting test vec-

tors were sorted and are presented in WAVES format in Figure 8-13.

% X
0000
0000
0001
0010
0010
0010
0011
0100
0101
0110
0111

P
000
111
000
101
110
111
101
101

000

011
110

D
0000
0001
0000
1010
0110
0010
0011
0100
0101
0010
0110

time;

500
500
500
500
500
500
500
500
500
500
500

ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

Figure 8-13 WAVES test vectors for example HAMMING4.
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1000 110 1000 : 500 ns;
1001 000 1001 : 500 ns;
1010 011 0010 : 500 ns;
1100 000 1110 : 500 ns;
1110 011 1100 : 500 ns;
1111 000 1110 : 500 ns;

Figure 8-13 WAVES test vectors for example HAMMINGA4.

8.2.2 Evaluation of the Behavioral Test Vectors

Example HAMMING4 was first synthesized to gate level Structurel using AutoLogic
II. The resulting optimized implementation contains 21 gates shown in Figure 8-14.
According to MIL-STD 883D, Structurel of example HAMMING4 contains 114 unique
SSL gate level faults. Fault simulations using the behavioral test vectors from Figure 8-13

resulted in complete gate level fault coverage.

LR | S

_DTD_ 4114

(0>
1>

Figure 8-14 Synthesized Structurel for example HAMMING4.

An alternate target technology was next used to synthesize gate level Structure2. The
resulting optimized circuit contains 19 gates and 116 unique SSL faults. Fault simulations
uéing the behavioral test vectors from Figure 8-13 again reéulted in complete gate level
fault coverage. Lastly, Leonardo was used to map the VHDL behavioral description to a
Xilinx FPGA architecture. Fault simulations using the behavioral test vectors achieved a

SSL gate level coverage of 226/226 = 100%.

8.2.3 Expansion of the Data Path

The data path for the error correcting circuit was next expanded to eight bits wide to
create example HAMMINGS. As previously stated, four parity bits are now required to
provide single-bit error correction capability. The entity description is shown in Figure 8-

15. The architecture description for example HAMMINGS is shown in Figure §-16. Note

the additional syndrome expression due to the 4th parity bit.
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entity hamming8 is
port
X: in std_logic_vector(l to 8);
P: in std_logic_vector(l to 4);
D: out std_logic_vector(l to 8)
)
end hamming8;

Figure 8-15 Entity description for example HAMMINGS.

architecture behave of hamming8 is
begin
process (X, P)
variable S : std_logic_vector(l to 4);

begln

S(1) = X(1) XOR X(2) XOR X(4) XOR X(5) XOR X(7)
XOR P(1);

S(2) = X(1) XOR X(3) XOR X(4) XOR X(6) XOR X(7)
XOR P(2);

S(3) := X(2) XOR X(3) XOR X(4) XOR X(8) XOR P(3);

S(4) := X(5) XOR X(6) XOR X(7) XOR X(8) XOR P(4);

D(1) <= X(1) XOR (S(1l) AND S(2) AND not S(3)
AND not S(4));

D(2) <= X(2) XOR (S(1) AND not S(2) AND S(3)
AND not S(4)); '

D(3) <= X(3) XOR (not S(1) AND S(2) AND S(3)
AND not S(4));
D(4) <= X(4) XOR (S(1) AND S(2) AND S(3)
AND not S(4));
D(5) <= X(5) XOR (S(1) AND not S(2) AND not S(3)
AND S(4));
D(6) <= X(6) XOR (not S(1) AND S(2) AND not S(3)
AND S(4));
D(7) <= X(7) XOR (S(1) AND S(2) AND not S(3)
e AND S(4)):
D(8) <= X(8) XOR (
AND S(4));
end process;
end behave;

not S(1) AND not S(2) AND S(3)

7

Figure 8-16 Architecture description for example HAMMINGS.

None of the test vectors for example HAMMING4 can be readily expanded for use
with example HAMMINGS8. However, deriving the behavioral test vectors follows the

same process that was used in Section 8.2.1.1 and Section 8.2.1.2. Generalized Bossen
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test vectors can be found for the XOR-only expressions and parse trees can be used for the
remaining logical expressions. The resulting 10 + 23 = 33 test vectors are shown in

WAVES format in Figure 8-17.

% X P D : time;

00000000 0000 00000000 : 500 ns;
01101111 0000 01111111 : 500 ns;
01110010 0010 01110000 : 500 ns;
10011101 1100 10011101 : 500 ns;
11101110 1101 01101110 : 500 mns;
11110010 1110 11110000 : 500 ns;
00100101 0011 00100100 : 500 ns;
00110110 0011 00110111 : 500 ns;
01011011 0000 01011010 : 500 ns;

01011011 0011 01011011 : 500 ns;
%

©

11010010 0100 11010010 : 500 ns;
10011010 0100 10011010 : 500 ns;
11011010 1111 11011011 : 500 ns;
11011011 1100 11011010 : 500 ns;
01011010 0100 01011010 : 500 ns;
11011000 0100 11011100 : 500 ns;
11011100 0001 11011000 : 500 ns;
11001010 0100 11101010 : 500 ns;
11101010 0010 11001010 : 500 ns;
11011010 1011 11011010 : 500 ns;
00100101 1000 00100101 : 500 ns;
00100101 1001 00101101 : 500 ns;
00101101 0000 00100101 : 500 ns;
00100101 1010 01100101 : 500 ns;
01100101 0000 00100101 : 500 ns;
00100100 1000 00100100 : 500 ns;
00100101 1100 10100101 : 500 ns;
10100101 0000 00100101 : 500 ns;
00100001 1000 00100011 : 500 ns;
00100011 0101 00100001 : 500 ns;
00000101 1000 00010101 : 500 ns;
00010101 0110 00000101 : 500 ns;
00100101 1111 00100101 : 500 ns;

Figure 8-17 WAVES test vectors for example HAMMINGS.

Example HAMMINGS was next synthesized using AutoLogic II to produce Structurel

containing 36 gates. Fault simulations using the behavioral test vectors from Figure 8-17
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resulted in a SSL gate level fault coverage of 226/226 = 100%. Lastly, Leonardo was used
to synthesize example HAMMINGS to gate level Structure2. Fault simulations using the

behavioral test vectors again achieved complete gate level fault coverage.

8.2.4 Summary

The new behavioral fault models, developed in this dissertation, have been applied to
the comprehensive examples HAMMING4 and HAMMINGS. From these faults, behav-
ioral test vectors were derived for both the 4-bit and 8-bit cases. The resulting complete

SSL gate level fault coverage for multiple implementations is summarized in Table 8-23.

E 1 Implementation SSL Behavioral Fault
xampie mpiementati | Faults | Test Vectors | Coverage

Structurel 114 17 100%
HAMMING4 Structure2 116 17 100%
Structure3 226 17 100%
Structurel 226 33 100%

HAMMINGS
Structure2 446 33 100%

Table 8-23 HAMMING fault experiments.

8.3 Conclusions

Two comprehensive examples were chosen to demonstrate the gate level fault cover-
age of the new behavioral fault models. The ALU involved the interaction of control faults
with both arithmetic and logical operator faults. The single error correcting circuit,
HAMMING, used both XOR-only and mixed logical operator expressions. Application of.
the new fault models to the comprehensive examples resulted in sets of test vectors neces-
sary to detect the behavioral faults. These test vectors were then applied to synthesized
gate level implementations of the behavioral descriptions. The resulting complete SSL
gate level fault coverage provides experimental validation of the effectiveness of the

behavioral fault models.



Chapter 9

Conclusions and Future Work

This chapter summarizes the research contributions of this dissertation and outlines

directions for future work. Some concluding remarks are also provided.

9.1 Research Contributions

The main contributions of this dissertation include improved behavioral fault models
as well as the techniques for generalizing the effects of low level faults and abstracting
them into the behavioral domain. The new fault models are more closely linked to under-
lying hardware faults than those developed by previous research. Test vectors based on
these new behavioral fault models achieve complete SSL gate level fault coverage over a

broad range of implementations.

9.1.1 Generalized Functional Faults

A functional analysis technique has been developed for generalizing the effects of
industry standard single-stuck-line (SSL) faults on gate level circuits. The key is determin-
ing sets of functional faults which are not tied to a specific realization. What is desired is
a general set of faults which provide coverage for functional faults from multiple imple-
mentations. _

For regular structures, such as cellular logic arrays and parity trees, complete func-
* tional testing is achieved by exhaustive testing of each functional building block. For
other functions, faults are generalized from sum-of-products (SOP) and product-of-sums
(POS) implementations to obtain a set of functional faults not tied a specific realization.
As was the case with physically-induced faults [29], a unique fault produced by a particu-
lar realization can be .rcadily added to the set of functional faults. »

This dissertation has used the SSL fault model as the basis for its higher level fault
models. The generalization and abstraction techniques developed here are not dependent
on this choice of a low level fault model. Other low level fault models which complement

or improve on the SSL fault model can also be readily applied.
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9.1.2 New Behavioral Fault Models

New béhavioral fault models have been developed, which are more closely linked to
underlying hardware faults than previous fault models. The effects of the generalized sets
of functional faults are abstracted into the behavioral domain by establishing a relationship
between the higher level language construct and the lower level faults it should encom-
pass.

The fault modeling technique used throughout this dissertation is that of external cor-
ruption of the original VHDL constructs, rather than replacement/mutation of operators.
Where possible, specific faults have been defined, such as the Clause-CORRUPT control
faults. When a direct mapping of functional faults cannot be made to produce a simple
behavioral fault model, an error vector approach has ‘been applied. The functional test
vectors are mapped into error vectors which then corrupt the results of the VHDL opera-
tion for the appropriate input combinations.

While the new fault models are definitely more complex than previous ones, this is
because they more accurately reflect the underlying complexity of the hardware faults
which they attempt to model. The increased complexity of the fault models eliminates the
need to supplement behavioral test vector sets via heuristics in order to improve gate level

fault coverage.

9.1.3 Gate Level Fault Coverage of Behavioral Test Vectors

Application of the behavioral fault models to examples throughout this dissertation
resulted in sets of test vectors necessary to detect the behavioral faults. Fault experiments
were then performed using the behavioral test vectors and synthesized gate level imple-
mentations. Multiple synthesis tools and target architectures were employed to create a
broad range of realizations of the behavioral descriptions. Resulting gate level fault cover-
age was evaluated to illustrate the effectiveness of the behavioral fault models and is sum-
marized in Appendix B.

Two comprehensive examples were chosen to demonstrate the gate level fault cover-
age of the new behavioral fault models. The ALU involved the interaction of control faults
with both arithmetic and logical operator faults. The single error correcting circuit,

HAMMING, used both XOR-only and mixed logical operator expressions. Application of
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the new fault models to the comprehensive examples resulted in sets of test vectors neces-
sary to detect the behavioral faults. These test vectors were then applied to synthesized
gate level implementations of the behavioral descriptions. The resulting complete SSL
gate level fault coverage provides experimental validation of the effectiveness of the

behavioral fault models.

9.1.4 Behavioral Test Generation

The base fault model for arithmetic operators is derived from the ripple carry connec-
tion of 2- and 3-input functional building blocks. Behavioral test generation rules, pre-
sented in this dissertation, demonstrate that only eight test vectors are required for
complete gate level fault coverage, regardless of the size of the operands. For logical
operators, behavioral test generation rules were developed for the special case of XOR-
only expressions. A generalized Bossen algorithm is presented that allows for optimiza-
tion of test sequences while allowing for multiple possible realizations.

Most fault-oriented techniques use some form of a three step approach to the test gen-
eration process. First, a fault must be activated at the desired location in the circuit model.
Then, the effect of the fault must be propagated to a point where it can be observed and,
hence, detected. Finally, the inputs of the model must be determined to justify the desired
signal values throughout the circuit. Variations of these techniques attempt to utilize the
information available in higher level models to more efficiently accomplish the computa-
tionally intensive tasks of fault propagation and justification.

The behavioral fault models developed in this dissertation only affect the activation
step of the test generation process. Hence, the high level algorithms developed to handle
the propagation and justification steps still remain valid. Integration of the new behavioral
fault models with a behavioral test generation algorithm such as the B-algorithm [21][22]
can be of mutual benefit. Such advanced test generation algorithms already address prob-
lems such as reconvergent fanout, while use of more complex fault models can eliminate

the need to supplement test vector sets via heuristics.

9.1.5 Behavioral Fault Simulation

The new behavioral fault models developed in this dissertation can now be integrated

with fault injection techniques such as those developed by DeLong et al. [23][24] to allow
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fault simulation at higher levels of abstraction. Because the fault models were developed
using an external corruption or error vector approach, modifications to the original VHDL
behavioral description need only be made once. Individual faults in the compiled VHDL
fault simulation model can then be activated by external manipulation of the corrupting
signals/error vectors.

The ability to fault simulate VHDL behavioral models rather than more detailed gate
level ones will allow better management of ever increasing design complexity. Working
with behavioral fault models will also allow fault simulation to be performed earlier in the
design scheme, without details of the gate level implementation. In fact, depending on the
source of the component, a gate level description may never be available. »Thus, these new
behavioral fault models facilitate better integration of fault simulation into the overall

design process.

9.2 Future Work

The models and techniques presented in this dissertation represent another important
step in the development of a design methodology for performing fault simulation through-
out the design process. The following sections present a brief description of directions for

future research.

9.2.1 Expansion of Behavioral Fault Models

The fault models developed in this dissertation address combinational logic circuits
based on the IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36].
These behavioral models need to be expanded to include sequential components. The
draft standard includes a set of representative design examples whose intent is to specify
certain prevalent modeling styles resulting in basic hardware elements like flip-flops,
latches, etc. The specification of processes and resulting inferenced logic are detailed in
Appendix D. '

This dissertation has used the SSL fault model as the basis for its higher level fault
models. The generalization and abstraction techniques developed here are not dependent
on this choice of a low level fault model. Other low level fault models which complement
or improve on the SSL fault model can also be readily applied. Additional fault effects

may be abstracted into the behavioral domain, thus improving the overall behavioral fault
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models. Fault coverage metrics would have to be adjusted accordingly to effectively rep-

resent the low level fault coverage of the improved behavioral fault models.

9.2.2 Tool Development

As previously stated, the behavioral fault models developed in this dissertation can
now be integrated into higher level test generation algorithms. The resulting behavioral
test generation tool would allow designers to develop test vector sets based on VHDL
behavioral descriptions. These behavioral test vector sets could then be used to fault sim-
ulate a component at the gate level or even used to test components for which a gate level
description is not available.

The new behavioral fault models developed in this dissertation can also be combined
with fault injection techniques to allow fault simulation at higher levels of abstraction. A
VHDL behavioral fault simulation tool would allow fault experiments to be performed
earlier in the design scheme, without details of the gate level implementation. Both
behavioral test generation and behavioral fault simulation tools will aid in complexity

management and better integrate fault simulation into the overall design process.

9.2.3 Higher Levels of Abstraction

The VHDL descriptions and subsequent fault models in this dissertation cross from the
structural into the behavioral domain and move up the design hierarchy from the gate to
the register level as defined in Table 1-1. A logical extension to this work is the continua-
_ tion to higher levels of abstraction such as the chip or system level. The further migration
of fault models would clearly support the ultimate goal of developing a design methodol-
ogy for performing fault simulation throughout the design process. |

The design tools used in this dissertation involved synthesis of behavioral data flow
descriptions into structural gate level circuits. Moving higher up the design hierarchy next
involves algorithmic synthesis tools which translate chip level algorithms into data flow
descriptions. Understanding this synthesis process is key to further abstraction of the
behavioral fault models.

Ultimately the level of abstraction is reached where the VHDL description in that of a

combined hardware/software system. Fault models need to be developed at this system
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level so fault simulation and test generation can be integrated into the hardware/software

codesign process.

9.3 Concluding Remarks

To cope with the ever increasing complexity of digital circuits, engineers can now
work at higher levels of abstraction by taking advantage of computer aided design pack-
ages and hardware description languages. Sophisticated synthesis tools provide a design
environment which allows the use of higher level VHDL behavioral models. The details
of the gate level implementation are safely hidden, shielding the designer from additional
complexity. The fault models and abstraction techniques developed in this dissertation
represent another important step in integrating fault simulation and testing into such a
VHDL synthesis environment.

Expansion of these new behavioral fault models and development of associated com-
puter-aided tools, will allow better management of design complexity. Fault simulation
and testing of digital circuits can be moved away from the traditional gate level to join
‘other design aspects at higher levels of abstraction. The end result will be a design meth-

odology which includes performing fault simulation throughout the entire desi gn process.
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Appendix A
Additional Examples

In order to more fully examine the effectiveness of the new behavioral fault models,
additional examples are provided here. Examples have been chosen to represent a broad
range of design possibilities. Multiple synthesis options are employed to ensure the exam-

ples are as general as possible.

A.1 Array Indexing
As shown in Appendix E, indexing an array such as a bit_vector also implies a multi-
plexer architecture. Consider the VHDL behavioral description for example ARRAY4

shown in Figure A-1.

entity ARRAY4 is
port(Y: in BIT_VECTOR(3 downto 0);
I: in INTEGER range 3 downto 0O;
Z: out BIT);
end ARRAY4;

architecture BEHAVE of ARRAY4 is
begin
process (Y, I)
begin
Z <= Y(I);
end process;
end BEHAVE;

Figure A-1 Behavioral description for example ARRAY4.

The assignment statement Z <= Y(I) can be equivalently written as a case state-

ment, as shown in Figure A-2.

case I is .
when 0 => Z <= Y(0);
when 1 => Z <= Y(1);
when 2 => 2 <= Y(2);
when 3 => Z <= Y (3);

end case;

Figure A-2 Equivalent case statement for example ARRAY4.
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. This selection activity implies the applicability of the control fault model developed in
Chapter 3. According to the model, each selection (clause or index value) can be affected
by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND).
According to a binary encoding for , specified by the synthesis subset, Figure A-3 shows

the resulting logical adjacencies for this example.

I(1)
0 1
0]Y0O)|Y(2
1(0)
1 1Y) | Y3
Z

Figure A-3 Logical adjacencies among clauses.
Thus, applying the control fault model to example ARRAY4 in Figure A-1, results in

the behavioral faults shown in Table A-1.

Behavioral Fault Corrupted Selection Tes(tl\gt;;: tor
Y(0)-CORRUPT (by Y(1))(OR) | 2z <= Y(0) OR ¥(1) 0 XX10
Y(0)-CORRUPT (by Y(1)(AND) | z <= Y(0) AND ¥(1) | 0 XXO01
Y(0)-CORRUPT (by Y(2))(OR) 7 <= Y(0) OR Y¥Y(2) 0 X1XO0
Y(0)-CORRUPT (by Y(2))(AND) | Z <= Y(0) AND ¥(2) | 0 XO0X1
Y(1)-CORRUPT (by Y(0))(OR) | Zz <= Y(1) OR ¥(0) 1 xx01
Y(1)-CORRUPT (by Y(0))(AND) | Z <= Y (1) AND ¥(0) | 1 XX10
Y(1)-CORRUPT (by Y(3))OR) | Z <= Y(1) OR ¥(3) 1 1x0X
Y(1)-CORRUPT (by Y(3))(AND) { 2 <= Y(1) AND ¥(3) | 1 OX1X
Y(2)-CORRUPT (by Y(O))(OR) | 2 <= Y(2) OR Y¥Y(0) | 2 XO0X1
Y(2)-CORRUPT (by Y(0))(AND) | z <= Y(2) AND Y(0) | 2 X1X0
Y(2)-CORRUPT (by Y(3))(OR) | Z <= Y(2) OR Y¥(3) 2 10xXX
Y(2)-CORRUPT (by Y(3))(AND) | z <= Y(2) AND Y(3) | 2 01XX

Table A-1 Behavioral faults for example ARRAY4.
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Behavioral Fault

Corrupted Selection

Test Vector

ayj
Y(3)-CORRUPT (by Y(1))(OR) Z <= Y(3) OR Y(1) 3 0X1X
Y(3)-CORRUPT (by Y(1))(AND) | Z <= Y(3) AND Y(1) | 3 1XO0X
Y(3)-CORRUPT (by Y(2))(OR) Z <= Y(3) OR Y(2) 3 01XX
Y(3)-CORRUPT (by Y(2))(AND) | z <= Y(3) AND Y(2) | 3 10XX

Table A-1 Behavioral faults for example ARRAY4.

Combining don’t care values produces the behavioral test vectors shown in WAVES

format in Figure A-4.

$Y I Z : time;

X110 00 0 : 500 ns;
X001 00 1 : 500 ns;
1X01 01. 0 : 500 ns;
0X10 01 1 : 500 ns;
10X1 10 0 : 500 ns;
01X0 10 1 : 500 ns;
011X 11 0 : 500 ns;
100X 11 1 : 500 ns;

Figure A-4 WAVES test vectors for example ARRAY4.

Example ARRAY4 was synthesized to the gate level circuit shown in Figure A-5.

Fault simulations were performed using the behavioral test vectors derived from the con-

trol fault model resulting in a SSL gate level fault coverage of 44/44 = 100%.

i(1:0) >

>
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s

y(3:0) >

ubuu

Figure A-5 Synthesized circuit for example ARRAY4.
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A.2 Generalization of the Control Fault Model

Previous examples have used explicit values of control signals to determine selection
in if-then-else and case statements. When working in the behavioral domain, the specific
combination of control inputs may not matter, hence, an enumerated type may be used.
The assignment of control signal values to the elements of the enumerated type can be left
to the design tools and, thus, delayed to later in the design cycle. The new control fault
model can be easily generalized to allow for use of enumerated types.

Example CASE2, in Figure A-6, uses an enumerated type to control the selection of

assignments for a case statement.

case SEL is
when J =>

Z <= YO0;
when K =>

Z <= Y1;
when L =>

Z <= Y2;
when M =>

Z <= Y3;

end case;

Figure A-6 Behavioral description for example CASE2.

Due to the independence of the input signals in this example, the synthesis tool pro-
duces the standard implementation of the case statement as a 4-to-1 multiplexer. Each of
the four inputs (Y3, Y2, Y1, Y0) can be assigned to any of the four multiplexer inputs (A, B,
C, D), depending on the designation of control bits for the enumerated type SEL. There
are, therefore, 4! = 24 pbssible permutations of the eventual synthesized circuit.

The control fault model can still be applied to the generalized case statement in exam-
ple CASE2, without consideration of the eventual designation of the control bits for the
enumerated type SEL. According to the fault model, each clause of a case statement is
affested by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT
(A]\}D). The only difference with this example is the determination of logical adjacencies
between clauses.

Since no assignment of control values has yet been made for the enumerated type SEL,

actual determination of adjacencies among clauses cannot be made. It must, therefore, be
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assumed that each clause has the possibility of being adjacent to, and hence corrupted by,
any other clause. This assumption implies that each of the four clauses in this example is
affected by three WHEN-CORRUPT (OR) faults and three WHEN-CORRUPT (AND)
faults. For example, the (OR) corruption of the when K clause results in three behavioral
faults: WHEN-K-CORRUPT (by J)(OR), WHEN-K-CORRUPT (by L)(OR), and WHEN-K-
CORRUPT (by M)(OR). Application of the control fault model to the generalized case
statement from example CASE2, therefore, results in a total of 24 behavioral fauits.
Though the application of the control fault model to the generalized case statement has
resulted in the definition of eight additional behavioral faults, recall also the concept of
compatible fault sets. The group of faults that corrupt a single channel can form a compat-
ible fault set and their test vectors can, therefore, be combined. For example, the three
WHEN-CORRUPT (OR) faults that affect clause K lead to the derivation of the following
test vectors (SEL Y3 Y2 Y1 Y0): KXX01, KX10X, and K1X0X. Though in the actual cir-
cuit, only two of the other clauses will be adjacent to clause K, the three test vectors are
still compatible, forming the test vector K1101. Comparison of this test vector with the
corresponding one derived forthe Z <= Y1 clause for example IF2, (SEL Y3 Y2 Y1 Y0)
011X01, shows that the only difference is the elimination of an additional don’t care.
Alternate assignment of control signals for K simply alter the adjacencies between clauses
and result in the elimination of a different don’t care. A list of WHEN-CORRUPT (OR)
behavioral faults and their corresponding test vectors is given in Table A-2. A similar list

can be easily derived for the 12 WHEN-CORRUPT (AND) faults.

. Test Vector
Behavioral Fault (SEL Y3 Y2 Y1 Y0)

WHEN-J-CORRUPT (by K)(OR)
WHEN-J-CORRUPT (by L)(OR) J 1110
WHEN-J-CORRUPT (by M)(OR)
WHEN-K-CORRUPT (by J)(OR)
WHEN-K-CORRUPT (by L)(OR) K 1101
WHEN-K-CORRUPT (by M)(OR)

Table A-2 Behavioral faults and corresponding test vectors for example CASE2.




185

Behavioral Fault (s Ege;; \I/%c;)]r Y0)
WHEN-L-CORRUPT (by J)(OR)
WHEN-L-CORRUPT (by K)(OR) L 1011
WHEN-L-CORRUPT (by M)(OR)
WHEN-M-CORRUPT (by J)(OR)
WHEN-M-CORRUPT (by K)(OR) M 0111
WHEN-M-CORRUPT (by L)(OR)

Table A-2 Behavioral faults and corresponding test vectors for example CASE2.

The control fault model has now been generalized to handle enumerated types and the
delay of assignment of control signal values. The only change to the model was the inclu-
sion of additional Clause-CORRUPT faults due to the assumption that, in the general case,
each clause may be adjacent to any other clause. The additional behavioral faults did not,

necessarily, result in any additional test vectors due to the concept of compatible fault sets.

A.3 Signed Comparison

Example GREATERS3 is presented here to demonstrate the application of the behav-
joral fault models for relational operators to signed as well as unsigned comparisons. As
can be seen in Figure A-7, example GREATER3 compares two integers with ranges of -4

to +3. These control signals will be synthesized as 3-bit 2’s complement numbers.

entity GREATER3 is
port (A,B: in INTEGER range -4 to +3; GT: out BIT);
end GREATER3; '
architecture BEHAVE of GREATER3 is
begin
process (A, B)
begin
if A > B then
GT <= ‘1';
else
GT <= ‘0';
end if;
end process;
end BEHAVE;

Figure A-7 Behavioral description for example GREATER3.
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Applying the behavioral faults for unsigned relational opefators from Chapter 4 gives

the fault classifications for a signed GT function shown in Figure A-8.

A

-4 ‘ 32| -1 1 3
411 J-HI
-3 I |11
-2 o| 1l
-1 I

B

0 II I
1 1
2 I I
3 I

Figure A-8 Fault classes for 3-bit signed GT function.

Encoding the test vectors as 3-bit 2’s complement numbers results in the WAVES file

shown in Figure A-9.

$ A B GT :
% Class

100
101
110
111
000
001
010
011

100
101
110
111
000
001
010
011

$ Class
101 110 O
111 000 O
001 010 O

= OO OO OO OOH

I

time;

500
500
500
500
500
500
500
500

: 500

500
500

ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

ns;
ns;
ns;

Figure A-9 WAVES test vectors for example GREATER3.
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% Class III

101 100 1 : 500 ns;
110 101 1 : 500 ns;
111 110 1 : 500 ns;
000 111 1 : 500 ns;
001 000 1 : 500 ns;
010 001 1 : 500 ns;

011 010 1 : 500 ns;
Figure A-9 WAVES test vectors for example GREATER3.

Example GREATER3 was synthesized and optimized to gate level Structurel, shown
in Figure A-10, using AutoLogic II. In order to add even more diversity to the problem, an

alternate design library from that used for example COMPARE was chosen.

}_

a(2:0) Lr_‘>c — /.__Dc r@

b(2:0)

iy

Figure A-10 Synthesized Structurel for example GREATER3.

According to MIL-STD 883D, Structurel contains 50 unique SSL gate level faults.
Fault simulations using the behavioral test vectors from Figure A-9 resulted in complete
gate level fault coverage.

Next, an alternate synthesis tool, Leonardo, was used to map the VHDL behavioral
description to a Xilinx FPGA architecture. Fault simulations using the behavioral test
vectors achieved a SSL gate level fault coverage of 48/48 = 100%.

Lastly, the signed comparison was implemented using arithmetic operations. Evalua-
tion of the greater than function can also be performed by subtracting the two operands
and examining the sign of the result. For example GREATER3, the most significant bit of
the operation B - A forms the output GT. The resulting synthesized and optimized circuit
for Structure3 is shown in Figure A-11.

Comparison of the test vectors from Figure A-9 with the truth table for a full-subtrac-

tor from Table 5-15 indicates that the behavioral test vectors will provide complete func-
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Figure A-11 Synthesized Structure3 for example GREATER3.

tional testing for the subtractor modules used to synthesize Structure3. Fault simulations

confirm the complete gate level fault coverage of 41/41 = 100%.

A.4 Unsigned Threshold
Example GE23u is an unsigned threshold comparison using a greater than or equal to
(GE) operator. As shown in Figure A-12, A is an integer with range 0 to 31, which will be

synthesized to a 5-bit unsigned number.

entity GE23u is
port(A: in INTEGER range 0 to 31;
GE: out BIT):;
end GE23u;
architecture BEHAVE of GE23u is
begin
process (A)
begin
if A >= 23 then
GE <= '1’;
else
GE <= '0';
end if;
end process;
end BEHAVE;

Figure A-12 Behavioral description for example GE23u.

The GE function places the threshold between 22 and 23. According to the behavioral
fault model for threshold operators, developed in Chapter 4, the threshold lies seven
spaces from the center of the range of values, implying step sizes of one. two, and four.
Test vectors to the left of the threshold are 22 - 1 =21,21-2=19, and 19 - 4 = 15. Test
vectors to the right are 23 + 1 = 24, 24 + 2 = 26, and 26 + 4 = 30. The behavioral test vec-
tors are shown graphically in Figure A-13 and as a WAVES file in Figure A-14.



A>=23 115 16

17

18 | 19

20

21

22

23

24

25

26

27

28

29

30

Figure A-13 Behavioral test vectors for example GE23u.
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%$ A GE :

01111
10001
10101
10110
10111
11000
11010
11110

PP RFPPOOOO

time;

500

: 500

500
500
500
500
500
500

ns;
ns;
ns;
ns;
ns;
ns;
ns;
ns;

Figure A-14 WAVES test vectors for example GE23u.

Example GE23u was synthesized to the gate level circuit shown in Figure A-15. Fault

simulations using the behavioral test vectors from Figure A-14 resulted in a SSL gate level

fault coverage of 24/24 = 100%.

a(4:0)

]

3

(]
2
1
‘]

Figure A-15 Synthesized circuit for example GE23u.

A.5 Adder/Subtractor
Figure A-16 gives the VHDL behavioral description for a 4-bit adder/subtractor cir-

cuit, ADDSUB4. The two inputs (A,B) are combined to produce a 4-bit output (D). The

operation to be performed is selected by the control signal (OP): OP = ‘0’ selects addi-

tion, while OP = ‘I’ selects subtraction.

if op = ‘0’

D <= A + B;
else

D <= A - B;
end if;

then

Figure A-16 Behavioral description for example ADDSUBA4.
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A.5.1 Faults on Arithmetic Operators
Assuming a simple ripple carry implementation, the behavioral test vectors for the 4-
bit addition and 4-bit subtraction can be determined directly from the fault models. The

resulting WAVES file is presented in Figure A-17.

%$ OP A B D : time;

% ADD

0 0000 0000 0000 : 500 ns;
0 0000 1111 1111 : 500 ns;
0 1111 0000 1111 : 500 ns;
0 1111 1111 1110 : 500 ns;
0 0001 1111 0000 : 500 ns;
0 1111 0001 0000 : 500 ns;
0 0101 0101 1010 : 500 ns;
0 1010 1010 0100 : 500 ns;
% SUB .

1 0000 0000 0000 : 500 ns;
1 0000 1111 0001 : 500 mns;
1 1111 0000 1111 : 500 ns;
1 1111 1111 0000 : 500 ns;
1 0000 0001 1111 : 500 ns;
1 1110 1111 1111 : 500 mns;
1 0101 1010 1011 : 500 ns;
1 1010 0101 0101 : 500 mns;

Figure A-17 WAVES test vectors for example ADDSUB4.

A.5.2 Control Faults
" The control fault model specifies that each clause of an if-then-else statement can be
affected by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT
(AND). The behavioral test vectors for the arithmetic operators must be evaluated to
ensure that adequate coverage is provided for these control faults.
For example, the first control fault, THEN-CORRUPT (OR), results in the corrupted
version of the then clause:

D <= (A + B) OR (A - B)

To test for this fault, the uncorrupted version of the clause (A + B) needs to be set to 0,
while the corrupting clause (A - B) is set to 1. The Phase II test vector A = 1111, B = 000!
results in A + B'= 0000, while A - B = 1110. Since no combination of A,B will produce
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complementary values for Dy, this test vector should provide sufficient coverage for this
control fault. Other control faults and their covering test vectors are summarized in Table
A-3. Note that no additional test vectors are required to provide coverage for all control

faults.

Control Fault OP A B A+B | A-B
THEN-CORRUPT (OR) 0 1111 | 0001 § 0000 | 1110
THEN-CORRUPT (AND) 0 0000 | 1111 1111 | 0001
ELSE-CORRUPT (OR) 1 1111 | 1111 1110 | 0000
ELSE-CORRUPT (AND) 1 0000 | 0001 | 0001 | 1111

Table A-3 Coverage for control faults.

A.5.3 Evaluation of the Behavioral Test Vectors
Example ADDSUB4 was synthesized to the gate level circuit in Figure A-18. Fault
simulation using the behavioral test vectors from Figure A-17 results in complete gate

level fault coverage of 124/124 = 100%.

TR e

Figure A-18 Synthesized circuit for example ADDSUB4.

A.5.4 CLA Implementation

If the target technology includes CLA circuits, additional test vectors are required to
cover the behavioral faults. The vectors for the addition operation are those derived in
Chapter 5 and summarized in Table 5-10. Behavioral test vectors for the subtraction oper-
ation can be derived using 2’s complement arithmetic.

The highest order carry in a 4-bit subtractor implemented with a CLA adder is C,.
From Table 5-7, the terms for C,, including a carry-in, are PoP;PyC_;, PoP;Gg, PG/, and
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G,. Behavioral test vectors for missing carry and extra carry faults can be derived for the
subtraction operation by converting the corresponding addition to subtraction.

According to the new behavioral fault model, test vectors are necessary for missing
carry faults for all but the lowest and highest order terms. Missing carry behavioral faults
are presented in Table A-4. The left hand side of the table gives the test vector for addi-

tion, while the right hand side shows the conversion to subtraction.

Addition Subtraction

Stage Term A B |[CIN| S M S D

0 P,P,Gy | 0001 | 1111 1 | 0001 } 0001 | 0000 | 0001
1 P,G; | 0010 | 1111 1 | 0010 | 0010 | 0000 | 0010

Table A-4 Missing carry faults for subtraction.

Test vectors for extra carry faults are required for all but the two most significant
stages. Behavioral test vectors for the extra carry faults are presented in Table A-5. The

" CLA test vectors for example ADDSUB4 are, therefore, presented in Figure A-19.

Addition . Subtraction

Stage Term A B |[CIN| S M S D

0000 { 1110 | 1 | 1111} 0000 {0001 | 1111
-1 P,P,P,C_; [ 0000 | 1101 | 1 | 1110|0000 ( 0010 | 1110
0000 { 1011 | 1 | 1100 | 0000 | 0100 | 1100
0001 | 1101 | 1 | 1111 J0001 | 0010 | 1111
0001 | 1011 | 1 | 1101 ] 0001 | 0100 | 1101

0 P,P,G,

Table A-5 Extra carry faults for subtraction.

A CLA implementation of example ADDSUB4 is presented in Figure A-20 [41]. Fault
simulations were performed using the ripple carry test vectors from Figure A-17, plus the
CLA test vectors from Figure A-19. The ripple carry vectors alone produced a SSL gate
level fault coverage of 203/209 = 97.13%. The remaining faults were then detected by the

CLA test vectors, resulting in complete gate level fault coverage.



- 193

OP A B
"ADD CLA
0001 0011
0001 0101
0010 0110
SUB CLA
0001 0000
0010 0000
0000 0001
0000 0010
0000 0100
0001 0010
0001 0100

X OO O P o°

I e

D

0100
0110
1000

0001
0010

1111 :

1110
1100
1111
1101

time;

500
500
500

500
500
500
500
500
500
500

ns;
ns;
ns;

ns;
ns;
ns;
ns;
ns;
ns;
ns;

Figure A-19 CLA test vectors for example ADDSUBA4.
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Figure A-20 CLA implementation of example ADDSUBA4.

A.6 Arithmetic with Constants

The behavioral test vector patterns developed in Chapter 5 will now be applied to two

larger examples to demonstrate the effect of synthesis optimizations on gate level fault

coverage. First, example PLUS25 adds the constant 25 to an 8-bit number. Next, example

. MINUS25 combines the subtraction operator with the same constant. Alternately, this

example can be viewed as addition using the constant -25.
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A.6.1 Example PLUS2S

Example PLUS25 implements the arithmetic operation z <= Y + 25. SignalsY
and Z are declared with ranges from -128 to +127, hence they will be synthesized as 8-bit
2’s complement numbers. The binary representation for +25 is 00011001, thus the Phase

11 test patterns are formed starting with the vector 11100110. The resulting behavioral test

vectors are shown in Figure A-21.

%Y Z : time;

00000000 00011001 500 ns;
11111111 00011000 500 ns;
%

11100110 11111111 500 ns;
11001101 11100110 500 ns;
10011011 10110100 500 ns;
00110111 01010000 500 ns;
01101110 10000111 500 ns;
11011100 11110101 500 ns;
10111001 11010010 500 ns;
01110011 10001100 500 ns;

Figure A-21 Behavioral test vectors for example PLUS25.

Example PLUS25 was synthesized and optimized to the gate level Structurel shown in
Figure A-22. Note that the optimization process has altered the original ripple carry struc-

ture of the 8-bit adder.

w(7:0)[>— I

——{ > 2(7:0)

=

LN
BB

Figure A-22 Synthesized Structurel for example PLUS2S.

Fault simulations using the behavioral test vectors from Figure A-21 resulted in a SSL

gate level fault coverage of 114/115 = 99.13%. The functional testing approach is still
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able to achieve near complete fault coverage. An alternate synthesis tool and target archi-
tecture was next used to produce Structure2 for example PLUS25. Fault simulations using
the behavioral test vectors from Figure A-21 resulted in a SSL gate level fault coverage of

190/190 = 100%.

A.6.2 Example MINUS25

Example MINUS25 performs the arithmetic operation Z <= Y - 25. Again, the
binary representation for +25 is 00011001, resulting in the behavioral test vectors and

associated functional tests shown in Table A-6.

Test #
Phase Y v4 ST, | ST¢ | STs | ST, | ST; | ST, | ST,
00000000 | 11100111 f 0 | O | 0 0 0 0 0
! 11111111 | 11100120 f 3 | 3 | 3 3 3 3 | 3
00011001 | 00000000 | 1 1 1 3 3 1 1
00110010 | 00011001 | 1 1 2 2 1 1 2
01100100 | 01001011 | 1 3 | 2 0 1 2 0
11001000 | 10101111 | 3 | 2 0 0 2 0 0
. 10010001 | 01111000 f 2 | © 0 2 | 1 1 1
00100011 | 00001010 §{ 1 1 2 | 0 1 1 3
01000110 | 00101101 | 1 2 [ 0|0 1 3 2
1 3 2 | 0

10001100 | 01110011 2. 1 0 0
Table A-6 Functional tests for example MINUS2S.

Example MINUS25 was synthesized and optimized using the same process as
Structure] for example PLUS25. Fault simulations using the behavioral test vectors from

Table A-6 again resulted in a SSL gate level fault coverage of 114/115 = 99.13%.

A.7 XOR4
Using the behavioral fault models developed in Chapter 6, test vectors can be devel-
oped for example XOR4 shown below.
Z <= A XOR B XOR C XOR D
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First, the parse tree method from Section 6.1.1.2 will identify the test vectors necessary for
exhaustive testing of each XOR operator. Next, the modified Bossen algorithm from Sec-

tion 6.1.2.2 will produce an optimized set of test vectors for the given expression.

A.7.1 Parse Tree Test Vectors

A parse tree for example XOR4 is shown in Figure A-23. The nodes (1,2.3) are
formed by the XOR operators, while the leaves of the tree are the signals A, B, C, and D.

1 XOR

A/ Z\XOR
B/ }XOR
N

Figure A-23 Parse tree for example XOR4.

According to the generalized set of functional faults from Section 6.1.2.1, an exhaus-
tive set of four tests is necessary for each XOR operator. Applying these tests to the parse

tree from Figure A-23 produces the behavioral test vectors shown in Table A-T7.

Node Bel?gfsif)ral Test Requirements T?ZtB\gg;) r
00 A=0,BXORCXORD=0 0000
01 A=0,BXORCXORD=1 0100

! 10 A=1,BXORCXORD=0 1000
11 A=1,BXORCXORD=1 1100
00 B=0,CXORD=0,A=0 0000
01 B=0,CXORD=1,A=0 0010
? 10 B=1,CXORD=0,A=0 0100
11 B=1,CXORD=1,A=0 0110

Table A-7 Behavioral test vectors for example XOR4.
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Node Be}};levsifral Test Requirements T?XBVCeg;) r
00 C=0,D=0,B=0,A=0 0000
01 C=0,D=1,B=0,A=0 0001
3 10 C=1,D=0,B=0,A=0 0010
11 C=1,D=1,B=0,A=0 0011

Table A-7 Behavioral test vectors for example XOR4.

Eliminating redundant test vectors produces the WAVES file shown in Figure A-24.

% ABCD Z : time ;
0000 0 : 500 ns;

0001 1 : 500 ns;
0010 1 : 500 ns;
0011 0 : 500 ns;
0100 1 : 500 ns;
0110 0 : 500 ns;
1000 1 : 500 ns;
1100 0 : 500 ns;

Figure A-24 WAVES test vectors for example XOR4.

A.7.2 Evaluation of Behavioral Test Vectors

Example XOR4 was synthesized into multiple gate level realizations to evaluate the
behavioral test vectors. Varying structures, synthesis tools, and design libraries were
employed to produce a broad range of implementations.

Structurel of example XOR4 is shown in Figure A-25. Fault simulations using the

behavioral test vectors from Figure A-24 result in a SSL fault coverage of 24/24 = 100%.

a

b

c[> 7

dl> 7

Figure A-25 Structurel for example XOR4.
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Structure 2 for example XOR4 is shown in Figure A-26. Fault simulations with the

behavioral test vectors also produce a SSL gate level fault coverage of 24/24 = 100%.

= \ :

o O oo

Figure A-26 Structure2 for example XOR4.

An alternate synthesis tool and target architecture were used to produce Structure3 for
example XOR4, shown in Figure A-27. Fault simulations using the same behavioral test

vectors from Figure A-24 result in a SSL gate level fault coverage of 54/54 = 100%.

al[>—
b=

s

Figure A-27 Structure3 for example XOR4.

Lastly, Structure4 for example XOR4 is presented in Figure A-28. Again, fault simu-

lations using the behavioral test vectors result in complete gate level fault coverage.

g o

[e]

a

Figure A-28 Structured for example XOR4.

A.7.3 Optimized Test Vectors
Applying the modified Bossen algorithm to example XOR4 results in the labelling

shown in Figure A-29 and Figure A-30. Note, the 4-bit example represents a special case

where it is possible to find identical test sequences for structures Cascadel and Cascade2.
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Figure A-30 Structure Cascade2 for example XORA4.

The resulting optimized test vectors are shown in Table A-8.

Signal |- Label Sequence T?:BVCCS;) r Z
A S 0011 0000 0
B R 0110 0111 1
C R 0110 1110 1
D T 0101 1001 0

Table A-8 Optimized test vectors for example XOR4.

A.7.4 Evaluation of Optimized Test Vectors

Fault simulations were conducted using the optimized behavioral test vectors from
Table A-8 and Structures1-4 for example XOR4. For all four implementations of example

XOR4, complete gate level fault coverage was achieved using either test vector set.
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Fault Experiment Results

Example Implementation SSL Behavioral Fault
P P Faults | Test Vectors | Coverage
Structurel 34 8 100%
CASE1
Structure2 34 8 100%
Structurel 44 8 100%
ARRAY4
Structure2 44 8 100%
Structurel 90 8 100%
SHIFT4u
Structure? 112 8 100%
Table B-1 Control fault experiments.
Example Implementation SSL Behavioral Fault
P P Faults | Test Vectors | Coverage
Structurel 29 8 100%
LESS2
Structure? 30 8 100%
Structurel 31 8 100%
EQUAL3
Structure2 31 8 100%
Structurel 50 18 100%
GREATER3 Structure2 48 18 100%
Structure3 41 18 100%
Structurel 18 6 100%
LES :
Structure2 20 6 100%
Structurel 24 8 100%
GE23u
Structure2 22 8 100%
LT12u Structure 14 4 100%
GT3n Structure 17 5 100%

Table B-2 Relational operator fault experiments.
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Example Implementation SSL Behavioral Fault
P P Faults | Test Vectors | Coverage
. 12 98.65%
Structurel 74
12 98.65%
COMPARE
12 100%
Structure2 72
12 100%
22 97.94%
Structurel 97
22 97.94%
COMPARE3
22 100%
Structure2 92
22 100%
12 100%
COMPARE4 Structure 150
12 100%
22 100%
COMPARE34 Structure 178
22 100%
Table B-2 Relational operator fault experiments.
Example Implementation SSL | Behavioral Fault
P P Faults | Test Vectors | Coverage
Structurel 102 8 100%
8 97.69%
ADD4 Structure2 130
11 100%
Structure3 142 8 100%
Structurel 138 8 100%
. 8 88.30%
ADD4wc Structure2 188
20 100%
Structure3 194 8 100%

Table B-3 Arithmetic operator fault experiments.
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Example Implementation SSL Behavioral Fault
p p Faults | Test Vectors { Coverage
Structurel 234 8 100%
8 93.55%
ADDS8
Structure2 310 33 100%
22 100%
Structurel 112 8 100%
SUB4 8 94.90%
Structure2 157
15 100%
Structurel 124 16 100%
ADDSUB4
Structure2 209 26 100%
Structurel 50 6 100%
INC4
Structure2 80 6 100%
INCS8 Structure 114 10 100%
DEC4 Structure 51 6 100%
ADDINC4 Structure 108 14 100%
PLUS3 Structure 68 7 100%
MINUSS Structure 85 8 100%
Structurel 115 10 99.13%
PLUS25
Structure2 190 10 100%
MINUS25 Structure - . 115 10 99.13%
Table B-3 Arithmetic operator fault experiments.
Example Implementation SSL Behavioral Fault
P P Faults | Test Vectors | Coverage
Structurel 18 5 100%
SOP1
Structure2 18 5 100%
Structurel 72 5 100%
SOP4
Structure2 72 5 100%

Table B-4 Other operator fault experiments.



Example Implementation SSL | Behavioral Fault
p p Faults | Test Vectors | Coverage
Structurel 18 5 100%
POS1
Structure2 18 5 100%
Structurel 30 8 100%
GT Structure2 35 8 100%
Structure3 29 8 100%
8 100%
Structurel 24
4 100%
8 100%
Structure?2 24
4 100%
XOR4
8 100%
Structure3 54
4 100%
8 100%
Structure4 44
4 100%
Structurel 30 7 100%
Structure2 30 7 100%
XORS5
Structure3 58 7 100%
Structure4 58 7 100%
Structurel 44 5 100%
ABS4
Structure2 44 5 100%
Structurel 132 9 100%
ABSS8
Structure? 126 9 100%
Structurel 49 5 100%
NEG4
Structure2 50 5 100%
Structurel 114 9 100%
NEGS
Structure? 204 9 99.02%

Table B-4 Other operator fault experiments.
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Example Implementation SSL Behavioral Fault
P P Faults | Test Vectors | Coverage
Structurel 284 31 100%
ALU4wc Structure2 312 31 100%
Structure3 398 31 100%
Structurel 546 31 100%
ALUS8wc
Structure2 758 31 100%
Structurel 114 17 100%
HAMMING4 Structure2 116 17 100%
Structure3 226 17 100%
Structurel 226 33 100%
HAMMINGS
Structure2 446 33 100%

Table B-5 Comprehensive fault experiments.
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Appendix C
VHDL Behavioral Descriptions

VHDL can be used to model the function performed by a module at a level of abstrac-
tion above the gate level. Such a description is called a functional or behavioral descrip-
tion. The VHDL Cookbook [11] and the IEEE Standard VHDL Language Reference
Manual [38] serve as two key resources for designing hardware using behavioral descrip-
tions. VHDL allows description of behavior in the form of a sequence of familiar pro-
gramming language constructs. Behavioral descriptions use variables and signals along
with their corresponding assignment statements to model the desired functionality of the
ultimate hardware. Expressions perform arithmetic or logical computations by applying
an operator to one or more operands. Constructs used to control the selection and
sequencing of instructions include if, case, and loop statements. Concurrency of execu-
tion in hardware is modeled using a process statement. Like other programming lan-

guages, VHDL provides subprogram facilities in the form of procedures and functions.

C.1 Variables and Signals

An object is a named item in a VHDL description which has a value of a specified
type. A variable is an object whose value may be changed at any time during the simula-
tion of the circuit. It is local to a process or subprogram and has a single current value. A
- signal is an object with a value that is changed only at scheduled times. Signals represent
electrical quantities that can be used to transmit information and are normally used to con-
nect submodules in a design. Each objeci has a corresponding assignment statement.

As in other programming languages, a variable is given a new value using an assign-
ment statement. In the simplest case, the target of the assignment is an object name and
the value of the expression is given to the named object. Variable assignments occur
immediately when the assignment statement is executed and are local to a process or sub-
program. A signal assignment schedules a transaction to a signal. The target must repre-
sent a signal or be an aggregate of signals. Scheduled transactions are executed as
simulation time progresses. Signals are global in a process or subprogram and are the

only means of communication between processes.
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C.2 Expressions
An expression is a formula that defines the computation of a value. The type of an
expression depends only upon the types of its operands and on the operators applied. The

predefined VHDL bperators are listed in Table C-1.

Type Operators
Logical AND OR NAND NOR XOR
Relational = /= < <= > >=
Adding + - &

Unary (sign) + -
Multiplying * / MOD REM
Miscellaneous *k ABS NOT
Table C-1 Predefined VHDL operators.

Relational operators must have both operands of the same type and yield Boolean
.results. The equality operators (= and /=) can have operands of any type. The remaining
operators must have operands which are scalar types or one-dimensional arrays of dis-
crete types. '

The sign operators (+ and -) and the addition (+) and subtraction (-) operators have
their usual meaning on numeric operands. The concatenation operator (&) operates on
one-dimensional arrays to form a new array with the contents of the right operand follow-
ing the contents of the left operand. It can also concatenate a single new element to an
array or two individual elements to form an array.

The multiplication (*) and division (/) operators work on integer and floating point
types. The modulus’ (MOD) and remainder (REM) operators only work on integer types.
The absolute value (ABS) operator works on any numeric type. Finally, the exponentia-
tion (**) operator can have an integer or floating point left operand, but must have an inte-

ger right operand.

C.3 If Statement
The if statement allows selection of statements to execute depending on one or more

conditions. The syntax is:
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if_statement ::=

if condition then
sequence_of_statements

{ elsif condition then
sequence_of_statements }

[ else
sequence_of_statements ]

end if;

The conditions are expressions resulting in Boolean values. The conditions are evalu-
ated successively until one is found that yields the value true. In that case the correspond-
ing statement list is executed. Otherwise, if the else clause is present, its statement list is

executed.

C.4 Case Statement

The case statement allows selection of statements to execute depending on the value of

a selection expression. The syntax is:

case_statement ::=
case expression is
case_statement_alternative
{ case_statement_alternative }
end case;

case_statement_alternative ::=
when choices =>
sequence_of_statements

choices ::= choice { | choice }

choice ::=
simple_expression
| discrete_range
| element_simple_name
| others
The selection expression must result in either a discrete type, or a one-dimensional
array of characters. The alternative whose choice list includes the value of the expression
is selected and the statement list executed. Note that all the choices must be distinct, that

is, no value may be duplicated. Furthermore, all values must be represented in the choice
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list_s, or the special choice others must be included as the last alternative. If no choice list
includes the value of the expression, the others alternative is selected.
Some examples of case statements [11]:

case opcode is

when X”00” => perform_add;

when X”01” => perform_subtract;

when others => signal_illegal_opcode;
end case;

case element_color is
when red =>
statements for red;
when green | blue =>
statements for green or blue
when orange to turquoise =>
statements for these colors;
end case;

C.5 Loop Statements

VHDL has a basic loop statement, which can be augmented to form the usual while
and for loops seen in other programming languages. The while iteration scheme allows a
test condition to be evaluated before each iteration. The iteration only proceeds if the test
evaluates to true. If the test is false, the loop statement terminates. An example [11]:

while index < length loop
index := index + 1;
end loop;

The for iteration scheme allows a specified number of iterations. The loop parameter
specification declares an object which takes on successive values from the given range for
each iteration of the loop. Within the statements enclosed in the loop, the object is treated
as a constant, and so may not be assigned to. An example [11]:

for item in 1 to last_item loop
table(item) := 0;
end loop;

There are two additional statements which can be used inside a loop to modify the

basic pattern of iteration. The next statement terminates execution of the current iteration
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and starts the subsequent iteration. The exif statement terminates execution of the current
iteration and terminates the loop. The syntax of these statements is:

next_statement ::= next [ loop_label ][ when condition ];

exit_statement ::= exit [ loop_label ][ when condition §;
If the loop label is omitted, the statement applies to the inner-most enclosing loop, other-
wise it applies to the named loop. If the when clause is present but the condition is false,

the iteration continues normaily.

C.6 Process Statement

The primary unit of behavioral description in VHDL is the process. A process is a
sequential body of code which can be activated in response to changes in state specified by
a sensitivity list or a wair statement. When more than one process is activated at the same
time, they execute concurrently.

An example of a process statement with a sensitivity list [1 1]:

process (reset, clock)
variable state : bit := false;
begin
if reset then
state := false;
elsif clock = true then
state := not state;
end if;
g <= state after prop_delay;
-- implicit wait on reset, clock
end process; ’

During the initialization phase of simulation, the process is activated and assigns the initial
value of state to the signal q. It then suspends at the implicit waiz statement indicated in
the comment. When either reset or clock change value, the process is resumed and execu-
tion repeats from the beginning.

Processes, like all other concurrent statements, read and write signals and interface
port values to communicate with the rest of the architecture. They are unique in that they
behave like concurrent statements to the rest of the design, but they are internally sequen-
tial. In addition, only processes define variables to hold intermediate values in a sequence

of computations.



210

C.7 Procedures and Functions

Subprégrams, like processes, use sequential statements to define algorithms that com-
pute values. Unlike processes, however, they cannot directly read or write signals from
the rest of the architecture. All communication is performed through the subprogram’s
interface; each subprogram call has its own set of interface signals.

The two types of subprograms are functions and procedures. A function returns a sin-
gle value directly. A procedure returns zero or more values through its interface. Subpro-
grams may perform repeated calculations, often in different parts of an architecture. The
syntax is:

subprogram_specification ::=
procedure designator [(parameter_list)] |
function designator [ (parameter_list)] return type

By using these programming language constructs, designers can use VHDL to develop
behavioral level models that can be simulated to verify their correct functioning, prior to

generating hardware.



Appendix D
VHDL Synthesis

Automated design tools are available which allow the designer to synthesize and opti-
mize circuit descriptions expressed through hardware description languages such as
VHDL. In order to ensure proper and consistent synthesis of VHDL language constructs
to hardware, such tools include guidelines which describe both the syntax and semantics
of the subset of the entire VHDL language which they support. The VHDL Synthesis
Interoperability Working Group (SIWG) was established to develop a public domain
VHDL Synthesis Interoperability Standard which, if used by designers, will allow VHDL
synthesis models to be portable across synthesis vendors that support this standard. Their
synthesis domain is register transfer level (RTL) logic synthesis which corresponds to the
functional/behavioral descriptions modeled in this and previous research.

A draft IEEE standard [36] has been developed which encompasses recommendations
drawn from several key sources, including Cadence [43], Mentor Graphics [68], and Syn-
opsys [64]. The foundation for the synthesis standard was laid by the European VHDL
Synthesis Working Group’s Level-0 VHDL Synthesis Syntax and Semantics [25]. Beyond
the baseline Level-0, the draft proposes standardization Level 1 containing constructs that
are currently supported by many synthesis tools. The standard also attempts to describe
VHDL constructs as:

1) Supported: RTL synthesis will map the construct to hardware.

2) Ignored: RTL synthesis will ignore the construct. Encountering the construct
will not cause sjynthesis to fail, but synthesis results may not match simulation
results.

3) Not supported: RTL synthesis does not support the construct.

A synthesis tool is defined as any system, process, or tool that interprets register transfer
level VHDL source code as a description of an electronic circuit in accordance with the

terms of this standard and derives a gate level netlist description of that circuit.

D.1 Level-0
The Level-0 VHDL Synthesis Syntax and Semantics [25] represents a first step towards

a standard for VHDL allowing its use in other hardware related tasks like formal verifica-
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iion, fault simulation, test generation, etc. which currently can not be performed in a stan-
dard way. The intention behind the definition of Level-0 was to overcome numerous
problems currently associated with high level synthesis. The Level-0 syntax and seman-
tics constitute a standard subset of VHDL for synthesis applications which will allow
description portability between tools as well as design reusability.

Level-0 represents the minimum syntactical and semantical requirements to any syn-
thesis tool in the market. Of the 217 syntax elements described in Appendix A of the
VHDL Language Reference Manual [38]:

- 106 syntax elements are fully supported.

- 53 syntax elements are supported with restrictions.

- 56 syntax elements are not allowed.

- 2 syntax elements are ignored. _

Despite the current limitations imposed by the state of the art in commercial synthesis
technology, the Level-0 synthesis syntax and semantics allows the description of digital
systems as an interconnection of combinational and sequential blocks and, therefore,
allows the description of any digital system at the RT level (i.e. algorithmic finite state
machines). As a consequence, any synchronous VHDL description in any proprietary
VHDL subset can be translated to the Level-0 synthesis syntax and semantics maintaining
all the relevant information about the functionality of the design. This portable description
will be accepted by any other synthesis tool giving functional equivalent results.

_ In addition to the support of specific language constructs, Level-0 also defines certain
synthesis semantics and usage guidelines. Probably the most important of these design
guidelines are those for processes, which serve as the basis for behavioral descriptions.
Processes must have a set of special characteristics, which can be summarized in four dif-
ferent kinds of procésses shown in Figure D-1.

Other restrictions imposed by Level-0 include the limited set of operatoi's allowed.
The operators: abs, “**”, “/”, mod, and rem are not supported. The multiplying operator
“*” is supported, only if both operands are constants or the second operand is a power of
two. Additionally, floating point operands are not allowed and the only type of loops

allowed are for loops.



1) Processes which contain a sensitivity list including all the signals which are
read into the process and in which all signals and variables are assigned in
all the conditional branches. This kind of process models pure combina-
tional logic.

2) Processes which contain a sensitivity list including all the signals that are
read into the process and whose variables are assigned in all the conditional
branches of the process. This kind of process can model a mixture of pure
combinational logic and asynchronous latches. Latches are inferred when
signals are not assigned in a conditional branch.

3) Processes which have, as their first statement, a wait statement in the form:

wait until clock = value and clock’event;
This kind of process models a Moore synchronous sequential machine.

4) Processes which have a sensitivity list including the clock signal and option-
ally an asynchronous reser signal and an if statement controlled by the event
and edge of the clock signal. Thus, this kind of process has the following
syntax:

process (clk_name, reset_name)
process_declarative_part
begin
if (reset_name = value) then
{ signal_assignment_statement }
elsif (clk_name = value and clk_name’'event) then
{ signal_assignment_statement }
end if;
end process;

Figure D-1 Process types for Level-0.

D.2 Mentor Graphics

The VHDL Style Guide for AutoLogic II [68] describes how to write synthesizable
VHDL for the Mentor Graphics AutoLogic II synthesis environment. The guidelines
encompass language restrictions, style issues, modeling methods, and design methods.
Section 1 of the manual summarizes the subset of VHDL language supported for synthe-
sis. All of the language elements previously discussed in Appendix C of this dissertation

are supported by AutoLogic II. In addition to the predefined VHDL operators listed in
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Table C-1, shift operators from VHDL 1993 are also supported. These include: shift left/
right arithmetic (sla/sra), shift left/right logical (slV/stl), and rotate left/right (rol/ror).

AutoLogic II also supports the Mentor Graphics’ std_logic_arith package, defined in
the Mentor Graphics’ ARITHMETIC library. This package includes functions that allow
signed and unsigned math to be performed using the STD_LOGIC and
STD_LOGIC_VECTOR types. The functions provide for binary and unary arithmetic
operations beyond the numeric operands predefined by VHDL. The package also defines
the SIGNED and UNSIGNED types that are used directly with arithmetic and relational
shifts, comparison, logical, and type conversion functions. Relational operators are sup-
plemented by the comparison functions: equal (eq), not equal (ne), less than (Ir), greater
than (g?), greater than or equal to (ge), and less than or equal to (le).

The remainder of the manual presents the VHDL constructs and modeling styles nec-
essary to synthesize varying types of hardware. A generous set of examples provides the

designer with a virtual cookbook on how to design specific circuits. Section 2 presents

- constructs and style issues describing hardware functionality implemented with a combi-

natorial architecture. Topics include signal assignments and sequential statements with
special emphasis given to the control constructs if and case. Section 3 discusses how
AutoLogic II recognizes clocked sections of descriptions and defines edge sensitive and
level sensitive latch inferencing. The guidelines for combinational and sequential pro-
cesses agree with those discussed in Figure D-1 as part of the Level-0 synthesis semantics.

Section 4 of the manual introduces the use of predefined operators and functions, data
types, and procedures used in describing hardware with VHDL. Descriptions and exam-
ples give details for use of the predefined modeling environment, as well as specifics on
the types of hardware to be synthesized. Finally, Section 5 presents the guidelines for
developing and synthesizing synchronous state machine descriptions. Numerous exam-

ples describe multiple modeling styles for both Mealy and Moore class state machines.

D.3 Synopsys

Input to the VHDL Synthesis Interoperability Working Group was provided by Synop-
sys in the form of a Standard for Synthesizing from VHDL Language at the Register
Transfer Level [64], which now takes the form of an unapproved IEEE Standards Draft.
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This standard describes the use of a synthesis tool to translate high-level VHDL descrip-
tions to gate-level netlists. The purpose of the standard is to define how a synthesis tool
shall behave when synthesizing from VHDL at the register transfer level. Clauses 3
through 7 describe the language constructs, data types, expressions, sequential statements,
and concurrent statements used for writing VHDL design descriptions. The standard is
really just a language reference manual, with examples, for the subset of VHDL that is
applicable to synthesis.

Many VHDL constructs, although useful for simulation and other stages in the design
process, are not relevant to synthesis. Because these constructs cannot be synthesized,
they are not supported by the synthesis tool. Clause 8 provides a list of all VHDL con-
structs with the level of support for each. A construct may be fully supported, ignored, or
unsupported. Ignored means that the construct is allowed in the VHDL source, but is
ignored by the synthesis tool. Unsupported means that the construct is not allowed in the
VHDL source and that the synthesis tool flags it as an error.

Some of the key design restrictions imposed by the synthesis tool are summarized in

Figure D-2. Though these restrictions give very specific guidance to the designer regard-

1) Integer types are automatically converted to bit vectors whose width is as
small as possible to accommodate all possible values of the type’s range,
either in unsigned binary for nonnegative ranges or in 2’s complement form
for ranges that include negative numbers.

2) Floating-point types, such as REAL, are unsuﬁported.

3) The arithmetic operators “+” and “-” are predefined for all integer operands.
For adders more than four bits wide, a synthetic library component is used.

4) Multiplying operators (“*”, “/”, mod, and rem) are predefined for all integer
types with the following restrictions:

a) “*” (Integer multiplication) - No restrictions. A multiplication
operator is implemented as a synthetic library cell.
b) “/” (Integer division) - The right operand shall be a power of 2.

Neither operand shall be negative. Implemented as a bit shift.

Figure D-2 Design restrictions for Synopsys
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5) Some forms of the if statement may be used to test for signal edges and,
therefore, imply synchronous logic. This usage causes the synthesis tool to
infer registers or latches.

6) Synthesized hardware is sensitive to all signals read by a process. To guar-
antee that a VHDL simulator distinguishes the same results as the synthe-
sized hardware, a process sensitivity list shall contain all signals whose

changes require resimulation of that process.

Figure D-2 Design restrictions for Synopsys

ing use of the language, the details of the implementation by the synthesis tool are hidden.
This lack of synthesis information makes the Synopsys tool less useful than Mentor
Graphics’ tool for exploring the relationship of language constructs with resulting hard-

ware for the development of higher level fault models.

D.4 IEEE Draft Standard

The resulting IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36]
builds on Level-0 and incorporates constructs common to synthesis tools by Mentor
Graphics and Synopsys. The draft standard represents é subset of VHDL with correspond-
ing design guidelines meant to ensure consistent synthesis of gate level netlists from
behavioral descriptions.

As with the other synthesis environments discussed in this dissertation, a syntax subset
’ of VHDL is defined. The key language constructs supported for behavioral modeling are
listed below:

1) if statement, case statement, loop statement.

2) procedure, function.

3) constant, variable, signal.

4) all predefined VHDL operators shown in Table C-1.
Design restrictions are consistent with those discussed for Synopsys in Figure D-2. The
only iteration scheme supported for the loop statement is for.

The draft standard also contains a set of representative design examples whose intent
is to specify certain prevalent modeling styles resulting in basic hardware elements like

flip-flops, latches, etc. The specification of processes and resulting inferenced logic are
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consistent with the description of combinational and sequential logic for Level-0 shown in
Figure D-1.

Use of this subset is meant enhance the portability of VHDL designs across synthesis
tools conforming to the standard. It should also minimize the potential of functional sim-
ulation mismatches between models before they are synthesized and models after they are
synthesized. It, therefore, should also serve as the basis for defining higher level fault

models which have a closer relationship to resulting synthesized hardware.



Appendix E
Hardware Implementation of VHDL Constructs

Several VHDL language constructs lend themselves directly to hardware implementa-
tion with common functional modules such as multiplexers. By examining these language
to hardware relationships, this thesis intends to build the foundation on which higher level
fault models can be defined, that are more closely related to their underlying gate level
counterparts. The necessary insights will be drawn from two resources which directly dis-
cuss the relationship between certain VHDL constructs and the ultimate hardware.

One discussion of hardware implementation of VHDL constructs comes from Struc-
tured Logic Design with VHDL by Armstrong and Gray [10]. In a section titled “Auto-
mated Synthesis of VHDL Constructs,” they demonstrate the relationship between
multiplexers and language constructs that involve selection, like if and case. Another
insight into the relationship between VHDL language constructs and hardware comes
from'the VHDL Style Guide for AutoLogic II by Mentor Graphics [68]. Again, the link is
established between the control constructs if and case and the multiplexer functional

building block.

E.1 Structured Logic Design

As part of their discussion of algorithmic synthesis, Armstrong and Gray present the
concept of automatic translation of a representative sample of VHDL constructs into hard-
ware. They concentrate on translations that are application independent, rather than ones
from specified programming styles into restricted sets of hardware.

The first discussion involves constructs that involve selection of a specific element
from a specified set. The case statement implies selection of one case from a specified set
of cases. The if..then...else statement implies selection of the highest priority condition
that is true from a prioritized list of conditions. Also, one element of a vector may be
selected by specifying an index value. All of these statements involve selection and, there-
fore, exhibit the functionality of a multiplexer. Figure E-1 shows several examples of

VHDL constructs that can be mapped to multiplexer elements [10].

218



- 219

package TYPES is

attribute ENCODING: STRING;

type ENUM is (A, B, C, D);

attribute ENCODING of ENUM: type is “00 01 10 11~
end types;

use work.TYPES.all;
entity MUX is
port (X, Y: in BIT;
VECT: in BIT_VECTOR(3 downto 0);
CHOICE: in ENUM;
INDEX: in INGETER range 3 downto O0;
zl, 22, Z3: out BIT);

end MUX;

architecture MUX_CONSTRUCTS of MUX is
begin

MUX1: process (CHOICE, X, Y)

begin
case CHOICE is
when A => Z1 <= X;
when B => 21 <= Y;
when C => Z1 <= not X;
when D => Z1 <= not Y;
end case;
end process MUX1;

MUX2: process (X, Y, VECT)
begin
if X = *1’ then
72 <= VECT(3);
elsif Y = *1’ then
z2 <= VECT(2);
else
72 <= VECT(1l) and VECT(O0);
end if;
end process MUX2;

MUX3: process (VECT, INDEX)
begin
73 <= VECT(INDEX) ;
end process MUX3;
end MUX_CONSTRUCTS;

Figure E-1 VHDL constructs that map to multiplexer elements.
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" Process MUX1 in Figure E-1 is an example of a case statement that can be imple-
mented with a multiplexer element. The case statement selects a function of inputs X and
Y to assign to output Z7 based on the value of enumerative data type CHOICE. In package
TYPES an attribute ENCODING of type STRING is declared which directs the automated
design tool to assign binary codes to elements of the type ENUM. With this information,
the tool translates the process MUX1 into the hardware circuit shown in Figure E-2. For

example, when CHOICE=(00), Z1=X as implied by the VHDL source code.

CHOICE

'

0 Select

MUX |—» Z1

Figure E-2 Hardware implementation for case statement.

The VHDL construct if...then...else also involves selection among several alternative
actions. Therefore, multiplexer elements can be used o implement this construct. Process
MUX2 in Figure E-1 shows an example that involves inputs X, ¥, and VECT. By scanning
the if..then...else clause, the automatic design tool can produce the truth table shown in
Table E-1. Notice that the first if clause that is true selects the action to be performed. Itis
possible that more than one if clause is true. For example, if X=Y=1, then two of the if
clauses are true. However, in this case, Z2 is assigned the value VECT{(3) because the

clause (if X="1") takes precedence over the clause (if Y="1").

Y - Z2

X
0 0 VECT(1) and VECT(0)
0

1 VECT(2)
1 0 VECT(3)
1 1 VECT(3)

Table E-1 Truth table for process MUX2.
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Table E-1 directly implies the multiplexer implementation in Figure E-3, where signals
X and Y are connected to the address inputs of the multiplexer and the data inputs for each

XY combination are specified by the table entries.

VECT(0)—
VECT(1)— 0

VECT(2)—p{ 1
VECTR)y—P{ 2
VECT(3)—={ 3

— l— X
o [a— =<

:

Figure E-3 Hardware implementation for if statement.

Finally, if VECT is a vector and INDEX is an integer, then an assignment of the form
Z3 <= VECT (INDEX)
is also a selection activity. In this case, one of the elements of VECT, as specified by
INDEX, is being assigned to Z3. This type of statement also maps directly to a multiplexer
device. Process MUX3 in Figure E-1 shows an example of this type of selection activity.
In the absence of an attribute specifying a coding other than binary for INDEX, the exam-

ple leads directly to the circuit in Figure E-4.
1

MUux —®» 73

1 INDEX 0
0

VECT(0) —»t 0
VECT(1) —mt 1
VECT(2) —m=i 2
VECT(3) —p»t 3

Figure E-4 Hardware implementation for vector indexing.

Next, program loops are discussed and illustrated through a classic ripple carry adder
¢ircuit. Figure E-5 shows the VHDL code for a 4-bit adder circuit implemented as a con-

nection of full adders (FA). It is assumed that the process in architecture LOOP_ADDER



222

is embedded in a larger system that is not shown. The loop architecture maps directly to

the iterative combinational logic network shown in Figure E-6.

entity ADD4 is
port (A,B: in BIT_VECTOR(3 downto 0); CIN: in BIT;
S: out BIT VECTOR(3 downto 0); COUT: out BIT);
end ADD4;

architecture LOOP_ADDER of ADD4 is
begin
process (A, B, CIN)
variable CARRY: BIT _VECTOR (4 downto 0) := “00000";
variable SUM: BIT_VECTOR(3 downto 0);

begin

CARRY (0) := CIN;

for I in 0 to 3 loop
SUM(I) := A(I) xor B(I) xor CARRY(I);
CARRY (I+1) := (A(I) and B(I)) or (A(I) and

CARRY (I)) or (B(I) and CARRY(I));
end loop;
S <= SUM;

COUT <= CARRY (4);
end process;
end LOOP_ADDER;

Figure E-5 VHDL description for a ripple carry adder.

AQ() BQ3) AQ2) BQ2) A BQ) A(0) B(O)
A B A B A B A B

COUT -«—|{CO FA Cll@—CO FA Cll«@—CO FA Cl}¢—CO FA Cltt— CIN

S s S S
S@3) S©2) S(1) S(0)

Figure E-6 Hardware implementation of ripple carry adder.

Lastly, Armstrong and Gray also illustrate possible mappings of functions and proce-
dures to hardware. Figure E-7 shows VHDL code for architecture FUNCTION_ADDER
of entity ADD4. In the example, the logic equations for a full adder (FA) are implemented

by function declarations. There are separate declarations for each output of the FA: sum

(FA_S) and carry (FA_C).
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architecture FUNCTION_ADDER of ADD4 is
function FA_S (AIN, BIN, CIN: BIT) return BIT is

begin
return AIN xor BIN xor CIN;
end FA_S;
function FA_C (AIN, BIN, CIN: BIT) return BIT is
begin

return (AIN and BIN) or (AIN and CIN) or
(BIN and CIN);

end FA_C;
begin
process (A, B, CIN)
variable CARRY: BIT _VECTOR(4 downto 0) := “00000";
variable SUM: BIT_VECTOR(3 downto 0) := “0000”;
begin
CARRY (0) := CIN;
for I in 0 to 3 loop
SUM(I) := FA_S(A(I), B(I), CARRY(I));
CARRY (I+1) := FA_C(A(I), B(I), CARRY(I));
end loop;
S <= SUM;

COUT <= CARRY (4);
end process;
end FUNCTION_ADDER;

Figure E-7 Using functions to represent combinational logic.

Inside the program loop, the assignments to SUM(I) and to CARRY(I+1) are replaced by
function calls. Since only the notation has changed, not the basic operation of the algo-
rithm, it is clear that the architecture FUNCTION_ADDER can be mapped to the same
hardware as architecturq LOOP_ADDER. The general conclusion is that functions should
be mapped to combinational logic circuits.

Similarly, procedures are used mainly as a convenience for ease of programming and
could be used to replace the full adder in the previoﬁs example. In general, any VHDL
code that uses procedures can be mapped to the same hardware as equivalent code without
procedures. The main difference between procedures and functions is that functions

always map to combinational logic, whereas procedures may map to sequential logic.
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E.2 Mentor Graphics

The VHDL Style Guide for AutoLogic II [68] not only describes how to write synthe-
sizable VHDL, but also gives details on how specific language constructs are implemented
in the ultimate hardware. Examples are provided for concurrent signal assignment state-
ments, if statements, case statements, and variable index assignments.

A concurrent signal assignment always results in combinational logic. This signal
assignment specifies that a target signal is to receive some waveform. The waveform can
either be a static value or some defined behavior. An example of a static assignment is:

D <= A;
This statement implies that signal D gets signal A and is therefore hard-wired to A. The
waveform assigned to the target signal can also define some behavior. This behavior may
be a simple logical expression or a complex expression that includes a Sfunction or proce-
dure call. An example of a simple logical expression is:

D <= A AND B;
Assuming D, A, and B are all bits and ports, this description synthesizes into an AND gate.

The simple if statement does not contain enough information to synthesize a combina-
torial network. For example, what happens if the condition evaluates to a boolean false
value as described in Figure E-8. The output signal D receives input signal B when A is a
‘J’. This implies that if signal A is not a ‘1’ then signal D must retain its old value. The
description is then synthesized to a level-sensitive or transparent latch enabled by signal A

whose output is signal D.

architecture RTL of IF_TEST is
begin
process (A,B)
begin
if (A = *1’) then
D <= B;
end if;
end process;
end RTL;

Figure E-8 Code example for simple if statement.

In order to synthesize a combinatorial network using an if statement, the if statement

must explicitly define the behavior for all possible evaluations of the condition. In Figure



E—8 this means that the if statement must define what signal D is to receive when signal A
isnot ‘I’ Figuré E-9 shows how the addition of an else clause completes the definition of
the behavior of an if statement. In this description a simple 2-to-1 multiplexer is modeled
using an if statement with an else clause. The synthesized and optimized result is shown

in Figure E-10.

entity MUX21 is
port (A, B, C : in std_logic;
D : out std_logic);
end MUX21;

architecture RTL of MUX21 is
begin
process (A, B, C)
begin
if (A = *1’) then
D <= B; :
else
D <= C;
end if;
end process;
end RTL;

Figure E-9 Code example for if-else statement.

>

» MUX21
N
' o

B >——

w

¢ >—

i

Figure E-10 Synthesized hardware for if-else statement.

The case statement controls the execution of one or more sequential statements based
on the value of an expression. VHDL requires all possible values for a selector must be
described in a case statement. This can be done by ha‘ving as many when clauses as selec-
tor choices or by use of a when others clause. The case statement implies a multiplexing
architecture. For example, consider the description in Figure E-11. The selector for the
case statement is SEL. Since SEL is two bits wide, there are 2 possible selector values for

synthesis purposes. The when others clause accounts for other values not specified with a
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when clause. The gate level design is implemented by a 4-by-1 multiplexer architecture as

shown in Figure E-12.

entity MUX4 is
port (DATA_IN : in std_logic_vector (3 downto 0);
SEL : in std_logic_vector (1 downto 0);
DATA_OUT : out std_logic);

end MUX4;
architecture RTL of MUX4 is
begin
process (SEL, DATA_IN)
begin

case SEL is
when “00” => DATA_OUT <= DATA_IN(O);
when “01” => DATA_OUT <= DATA_IN(1l);
when “10” => DATA_OUT <= DATA_IN(2);
when others => DATA_OUT <= DATA_IN(3);

end case;

end process;
end RTL;

Figure E-11 Code example for case statement.

DATA_IN(0) > A
DATA_IN(1) > B 3
¥ Z |——> DATA_OUT

DATA_IN(2) (> c s
DATA_IN(3 D

_ING) > S0 sI

SEL(0) [>——

SEL(l) (>——

Figure E-12 Synthesized hardware for case statement.

AutoLogic II also supports indexed assignments using variables. In the following
example INDEX is used as a variable index to the vector DATA_IN. An alternate architec-
ture RTL2 can be used to describe the behavior of the entity MUX4 in Figure E-11. A

function, to_integer, is assumed available to convert a 2-bit bit_vector to its integer repre-

sentation.
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architecture RTL2 of MUX4 is
begin
process (SEL, DATA_IN)
variable INDEX : integer;
begin
INDEX := to_integer(SEL) ;
DATA_OUT <= DATA_IN(INDEX) ;
end process;
end RTL2;

Figure E-13 Code example for variable index assignment.

The signal assignment statement
DATA_OUT <= DATA_IN(INDEX) ;

is equivalent to the case statement in Figure E-11 and results in the same multiplexer

architecture in Figure E-12.



Appendix F
VHDL Source Code

This appendix contains the VHDL source code for the examples used throughout this
dissertation. The examples are grouped according to the tables of fault experiment results
found in Appendix B. The behavioral description is first included as example.vhd, fol-
lowed by the behavioral test vectors in WAVES format, example_vectors.txt. Lastly, one
or more structural descriptions are outlined for gate level implementations. The VHDL
structural descriptions are numbered for multiple realizations as example_structurel.vhd

and example_structure2.vhd.
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