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Abstract 

Integrated circuit designs continue to increase in both size and complexity, making 

fault simulation and testing more difficult and costly. Computer aided design tools and 

hardware description languages are now commonly used to represent designs at higher 

levels of abstraction. However, fault simulation and testing of digital circuits have been 

historically done using fault models at the gate level or below. A design methodology is 

needed for performing fault simulation throughout the design process, incorporating fault 

models at higher levels of abstraction. Use of these higher level fault models has the 

promise of reducing complexity, providing earlier identification of potential problems, and 

improving integration of fault simulation into the overall design process. 

Previous behavioral fault models lack a well defined link to the hardware which they 

attempt to describe. Though some relationships to possible hardware faults are proposed, 

there is no detailed analysis to justify these assertions. Approaches based on perturbing 

language constructs, such as ADD to SUB, do not accurately reflect underlying hardware 

faults. In order to compensate for this "big micro-operation problem," alternate methods 

such as heuristics are used to supplement test vector sets to increase the equivalent gate 

level fault coverage. 

This dissertation proposes a new set of fault models for VHDL behavioral descriptions 

of combinational logic circuits. These fault models exploit hardware relationships that 

exist in a design environment which involves synthesis of behavioral descriptions into gate 

level circuits. A functional analysis technique is used to evaluate the effects of industry 

standard single-stuck-line (SSL) faults on gate level implementations. The generalized 

functional faults are then abstracted into the behavioral domain by examining their rela- 

tionship with the higher level language construct. 

Test vectors derived from the new behavioral fault models are applied to synthesized 

gate level realizations of a range of circuits that include typical arithmetic and logic func- 

tions. Resulting gate level fault coverage is determined via fault simulation and used as a 

measure of effectiveness for the new fault models. Because the behavioral faults are 

derived from a functional analysis of low level faults, they provide improved fault cover- 

age over previous fault models, over a broad range of implementations. 
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Chapter 1 

Introduction 

Integrated circuit designs continue to increase in both size and complexity. Fault sim- 

ulation and testing of these designs is, thus, becoming more difficult and costly. Designers 

now commonly make use of computer aided design tools and hardware description lan- 

guages, such as VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware Descrip- 

tion Language), to represent their designs at higher levels of abstraction. However, fault 

simulation and testing of digital circuits for manufacturing faults have been historically 

done using fault models at the gate level or below. Use of these lower level fault models 

adds complexity and delays these efforts to later in the design cycle. 

There is a need to develop a design methodology for performing fault simulation 

throughout the design process, at many levels of abstraction. It is, therefore, desirable to 

develop fault models at higher levels of abstraction, based on functional or behavioral 

descriptions. Working with behavioral fault models will also allow fault simulation to be 

performed earlier in the design scheme, without details of the gate level implementation. 

In fact, depending on the source of the component, a gate level description may never be 

available. Thus, fault simulation and testing based on these higher level fault models have 

the promise of being less complex, providing earlier identification of potential problems, 

and improving integration into the overall design process. 

This dissertation develops a new set of fault models for VHDL behavioral descriptions 

of combinational logic circuits. The fault models exploit hardware relationships that exist 

in a design environment which involves synthesis of behavioral descriptions into gate level 

circuits. The focus is on relating high level language constructs to lower level hardware 

faults, as opposed to perturbing the language elements as if they were simply software. A 

functional analysis technique is used to evaluate the effects of industry standard single- 

stuck-line (SSL) faults on gate level implementations. The generalized functional faults 

are then abstracted into the behavioral domain by examining their relationship with the 

higher level language construct. The resulting behavioral fault models are, thus, more 

strongly linked to underlying hardware faults than those developed by previous research. 



As part of this research, test vectors derived from the new behavioral fault models are 

applied to synthesized gate level realizations of a range of circuits that include typical 

arithmetic and logic functions. Resulting gate level SSL fault coverage is determined via 

fault simulation and used as a measure of effectiveness for the new fault models. Because 

the behavioral faults are derived from a functional analysis of low level faults, they pro- 

vide improved fault coverage over previous fault models, over a broad range of implemen- 

tations. 

1.1   Previous Research 
Recent research efforts have attempted to develop fault models at higher levels of 

abstraction, which accurately represent faults which occur at lower levels. The models of 

interest in this research move up the design hierarchy, shown in Table 1-1 [10], beyond the 

gate level to the register or chip level. Functional fault models are based on the input/out- 

put relationship of higher level primitives which may incorporate a large number of gates. 

Behavioral fault models are based on procedural descriptions of the circuits desired func- 

tion. Many models reference the register transfer level which describes procedural data 

flow among functional primitives. 

Level of Detail 
Behavioral Domain 

Representation 
Structural Domain 

Primitives 

System Performance specification Computer, disk, unit, radar 

Chip Algorithm Microprocessor, RAM, ROM, UART 

Register Data flow Register, ALU, COUNTER, MUX 

Gate Boolean equations AND, OR, XOR, FF 

Circuit Differential equations Transistor, R, L, C 

Layout/silicon None Geometrical Shapes 

Table 1-1 Levels of detail commonly used in design. 

The majority of functional and behavioral modeling efforts can be traced to four prom- 

inent researchers: Jacob Abraham, James Armstrong, Sumit Ghosh, and John Hayes. 

Chapter 2 of this dissertation examines the models developed by groups including each of 

these researchers. Modeling at many levels of abstraction is discussed by Abraham et al. 



[1][2][17][65][66], but the main focus of this research concerns the functional fault mod- 

els. Armstrong and his collaborators [6] [7] [8] [9] [22] [28] [69] have developed an ever 

evolving series of functional and behavioral fault models and have implemented test gen- 

eration algorithms using these models. Ghosh and Chakraborty [18][26][27] have pro- 

posed a set of fault models which are based on the failure modes of the language 

constructs of a generic hardware description language. Finally, Hayes et al. [29][31][32] 

[33] [34][63] has worked extensively on fault models for digital circuits, including descrip- 

tions of functional fault models leading to a new generic class called induced faults. 

The survey of the state of the art in high level fault modeling clearly indicates that 

there is no widely accepted solution to the problem. Modeling techniques range from the 

functional analysis employed by Abraham and Hayes, to the procedural data flow of 

behavioral descriptions used by Ghosh and Armstrong. Previous behavioral fault models 

lack a well defined link to the hardware which they attempt to describe. Though some 

relationships to possible hardware faults are proposed, there is no detailed analysis to jus- 

tify these assertions. Approaches based on perturbing language constructs, such as ADD 

to SUB, do not accurately reflect underlying hardware faults. In order to compensate for 

this "big micro-operation problem," alternate methods such as heuristics are used to sup- 

plement test vector sets to increase the equivalent gate level fault coverage. 

Though previous research provides no clear cut solution to modeling faults at higher 

levels of abstraction, valuable insights are gained by the examination of each of these tech- 

niques. Certain key concepts from past efforts have immediate applicability here, notably 

functional equivalence and fault dominance. Further, the behavioral fault models devel- 

oped in this dissertation only affect the activation step of the test generation process. 

Hence, the high level algorithms developed to handle the computationally intensive tasks 

of fault propagation and justification still remain valid. Integration of new fault models 

with an existing behavioral test generation algorithm such as the B-algorithm [21][22] can 

be of mutual benefit. Such algorithms already address problems such as reconvergent 

fanöut, while use of more complex fault models can eliminate the need to supplement test 

vector sets via heuristics. 



1.2   Behavioral Modeling 

Hardware description languages can be used to model system behavior at higher levels 

of abstraction than the traditional gate or circuit level. Languages like VHDL make use of 

sequential statements, much like conventional programming languages, to describe the 

desired behavior of a circuit. Several constructs such as if-then-else and case are normally 

provided to control the order of execution of these sequential statements. Designers can, 

therefore, use VHDL to develop behavioral models that can be simulated to verify their 

correct functioning, prior to generating hardware. VHDL behavioral descriptions and lan- 

guage constructs are detailed in Appendix C. 

Modern synthesis tools interpret the behavioral VHDL source code as a description of 

an electronic circuit. Not all language constructs map directly to hardware in a synthesis 

environment, therefore, a language subset is defined for use with a specific tool. General 

modeling guidelines are normally provided to ensure that resulting hardware will be con- 

sistent with the designer's intent. Combining these guidelines with the VHDL subset, 

higher level models can be synthesized to create optimized gate level descriptions. 

1.2.1 VHDL Subset 

The VHDL behavioral models used in this research describe combinational logic cir- 

cuits based on the IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36]. 

The draft builds on the foundation laid by the European VHDL Synthesis Working 

Group's Level-0 VHDL Synthesis Syntax and Semantics [25] and incorporates constructs 

common to synthesis tools by Mentor Graphics [68] and Synopsys [64]. Details can be 

found in Appendix D. 

The standard represents a subset of VHDL with corresponding design guidelines 

meant to ensure consistent synthesis of gate level netlists from behavioral descriptions. 

The key VHDL language constructs supported for behavioral modeling are listed below: 

1) //"statement, case statement, loop statement (for only). 

2) procedure, function. 

3) constant, variable, signal. 

4) all predefined VHDL operators shown in Table 1-2. 



Relational operators like greater than (>) and not equal (/=) compare like types and 

return a Boolean result. The concatenation operator (&) combines one-dimensional 

arrays to form a new array with the contents of the right operand following the contents of 

the left operand. Finally, the modulus (MOD), remainder (REM), exponentiation (**), 

and absolute value (ABS) operators are only defined for integer types. Definitions for all 

the VHDL operators can be found in Appendix C. 

Type Operators 

Logical AND OR NAND     NOR XOR 

. Relational = /= <          <= >          >= 

Adding + - & 

Unary (sign) + - 

Multiplying * / MOD      REM 

Miscellaneous ** ABS NOT 

Table 1-2 Predefined VHDL operators. 

Design guidelines for modeling combinational logic circuits, summarized in Figure 1- 

1, are extracted from those defined by Level-0 and Synopsys.   Though the guidelines for 

1) Processes which model pure combinational logic must contain a sensitivity 

list including all the signals which are read into the process. All signals and 

variables must be assigned in all the conditional branches. 

2) Integer types are automatically converted to bit vectors whose width is as 

small as possible to accommodate all possible values of the type's range, 

either in unsigned binary for nonnegative ranges or in 2's complement form 

for ranges that include negative numbers. 

3) The arithmetic operators "+" and "-" are predefined for all integer operands. 

4) Multiplying operators ("*", "/", mod, and rem) are predefined for all integer 

types with the following restrictions: 

a) The right operand shall be a computable power of 2. 

b) Neither operand shall be negative. 

Figure 1-1 Design guidelines. 



multiplying operators may seem overly restrictive, they still provide adequate flexibility 

for designing at the register transfer level and may yet be expanded in subsequent revi- 

sions to the standard. 

Use of this subset is meant to enhance the portability of VHDL designs across synthe- 

sis tools conforming to the standard. Hence, it is used here as the basis for defining higher 

level fault models which have a closer relationship to resulting synthesized hardware. 

Behavioral fault models for each of these VHDL constructs are developed in Chapter 3 

through Chapter 7 of this dissertation. 

1.2.2 Hardware Implementation of VHDL Constructs 

Several VHDL language constructs lend themselves directly to hardware implementa- 

tion with common functional modules such as multiplexers. By examining these language 

to hardware relationships, this research intends to build the foundation on which higher 

level fault models can be defined, that are more closely related to their underlying gate 

level counterparts. Some insights are drawn from two resources which directly discuss the 

relationship between certain VHDL constructs and the ultimate hardware. 

One discussion of hardware implementation of VHDL constructs comes from Struc- 

tured Logic Design with VHDL by Armstrong and Gray [10]. In a section titled "Auto- 

mated Synthesis of VHDL Constructs," they show the relationship between multiplexers 

and language constructs that involve selection, like if and case. Another insight into the 

relationship between VHDL language constructs and hardware comes from the VHDL 

Style Guide for AutoLogic II by Mentor Graphics [68]. Again, the link is established 

between the control constructs if and case and the multiplexer functional building block. 

These examples reinforce the intuition that a language construct that involves selection 

leads naturally to a hardware construct that implements selection, the multiplexer. Details 

can be found in Appendix E. 

Armstrong and Gray also discuss program loops, functions, and procedures in relation 

to hardware [10]. Multiple implementations of a 4-bit adder are used for illustration. 

Their discussions and examples serve as the basis for the analysis of these programming 

constructs in Chapter 7 of this dissertation. 



1.3  Functional Analysis 

Previous research has proposed fault models for behavioral constructs based solely on 

perturbing the language without a well defined link to the underlying hardware. This dis- 

sertation presents new behavioral fault models based on a functional analysis of gate level 

implementations. By combining VHDL synthesis information with industry standard SSL 

faults, new fault models can be obtained which are more closely linked to the underlying 

hardware. 

A technique has been developed for abstracting SSL faults from the gate level into the 

behavioral domain. First, synthesis information about hardware implementation of VHDL 

constructs is exploited to obtain a gate level basis for a functional analysis. Next, a 

reduced set of functional faults, covering all SSL gate level faults, is determined with the 

aid of fault reductions via functional equivalence and fault dominance [45]. Faults are 

generalized from various possible implementations to form a set of functional faults not 

tied to any specific realization. Most importantly, a detailed analysis of the relationship 

between the generalized set of functional faults and the original VHDL description yields 

a behavioral fault model for the language construct. 

The new fault models developed by this research provide the well defined link to 

underlying hardware faults that was lacking in previous behavioral fault models. The 

functional analysis of SSL faults takes advantage of VHDL/hardware relationships that 

exist in a synthesis environment. This analysis of gate level faults adapts the functional 

techniques employed by Abraham [2] and Hayes [29] with two important extensions. 

First, functional faults are not tied to a specific implementation, rather they are generalized 

to be applicable to multiple realizations. Second, the functional faults are further 

abstracted into the behavioral domain via their relationship with the original VHDL con- 

struct being modeled. 

Details of the functional analysis technique are presented during the development of 

the control fault model in Chapter 3. Graphical techniques for examining the relationships 

between functional faults are first demonstrated with relational operators in Chapter 4. 

Complete functional testing of regular structures of functional building blocks is intro- 

duced during the analysis of arithmetic operators in Chapter 5.   Finally, interactions 



among behavioral faults and VHDL constructs are explored throughout the dissertation, 

but especially in Chapter 7 and Chapter 8. 

1.4 Fault Injection Using WAVES 

Gate level fault injection experiments were performed throughout this research using a 

tool developed by DeLong et al. [24]. Test vectors are applied to structural VHDL models 

using the IEEE Standard for Waveform and Vector Exchange (WAVES) [37]. SSL fault 

simulations are determined using gate level equivalent fault classes according to MIL-STD 

883D [52]. Test vectors are applied, one at a time, from the input WAVES file. Fault cov- 

erage is then evaluated as the ratio of detected faults to total faults and can be plotted ver- 

sus the test vectors as they are applied. 

Fault experiments using behavioral test vectors were conducted during the develop- 

ment of each group of behavioral fault models. The normal requirement for industrial 

designs is that the set of test vectors provided by the designer achieve at least a 95% SSL 

gate level fault coverage [27] [40] [60]. In order to more fully examine the effectiveness of 

the new fault models, additional examples, not presented in the individual chapters, are 

provided in Appendix A. Examples have been chosen to represent a broad range of design 

possibilities. Resulting gate level fault coverage was evaluated to illustrate the effective- 

ness of the behavioral fault models and is summarized in Appendix B. 

1.5 Comprehensive Examples 

Two comprehensive example circuits are presented in Chapter 8 to demonstrate the 

gate level fault coverage of the new behavioral fault models. The first is an arithmetic 

logic unit (ALU) which performs selected functions on data inputs. The second example 

is a single error correcting circuit used in fault tolerant applications. Other obvious exam- 

ples such as a multiplexer or a magnitude comparator do not need to be investigated here 

due to their detailed analysis as part of the development of the fault models for the if state- 

ment and relational operators. 

Application of the behavioral fault models to the comprehensive examples results in a 

set of test vectors necessary to detect the behavioral faults. These test vector sets are then 

applied to synthesized gate level implementations. Multiple synthesis tools and target 

architectures are employed to create a variety of realizations of the behavioral descrip- 



tions. AutoLogic II [68] from Mentor Graphics is used with both the autologic/default and 

gen_lib/default target technologies. The Leonardo [47] synthesis tool from Exemplar 

Logic is also used to map the behavioral descriptions to a Xilinx field programmable gate 

array (FPGA) architecture. The resulting gate level fault coverage provides experimental 

validation of the effectiveness of the behavioral fault models. 

1.6   Contributions and Future Work 

The main contributions of this dissertation include improved behavioral fault models 

as well as the techniques for generalizing the effects of low level faults and abstracting 

them into the behavioral domain. The new fault models are more closely linked to under- 

lying hardware faults than those developed by previous research. Test vectors based on 

these new behavioral fault models achieve complete SSL gate level fault coverage over a 

broad range of implementations. 

The models and techniques presented in this dissertation represent another important 

step in the development of a design methodology for performing fault simulation through- 

out the design process. Chapter 9 presents a brief description of directions for future 

research. These include expansion of the behavioral fault models, tool development for 

behavioral test generation and behavioral fault simulation, and migration of fault models 

to even higher levels of abstraction. 



Chapter 2 

Previous Research 

This chapter surveys previous research in three major areas involved in testing circuits 

based on behavioral descriptions. First, a survey of the current state of the art in fault 

modeling at higher levels of abstraction provides the basis from which tests for digital cir- 

cuits can be developed. Recent research efforts have attempted to develop higher level 

fault models, which accurately represent faults which occur at lower levels. Second, sev- 

eral methods of injecting faults into higher level models are explored. Injecting faults into 

a behavioral model can be accomplished by manipulating data or signal values within the 

model or by actually changing or perturbing the model itself. Finally, various techniques 

for generating behavioral or functional tests provide a means for evaluating the effective- 

ness of high level modeling efforts. Their results can be compared to more conventional 

gate level methods to provide a quantitative measure of fault coverage. 

2.1   Fault Models 

Fault models provide the underlying basis for the development of tests for digital cir- 

cuits. The models of interest in this dissertation move up the design hierarchy beyond the 

gate level to the register or chip level. Functional fault models are based on the input/out- 

put relationship of higher level primitives which may incorporate a large number of gates. 

Behavioral fault models are based on procedural descriptions of the circuits desired func- 

tioning. Many models reference the register transfer level which describes procedural data 

flow among functional primitives. 

The majority of functional and behavioral modeling efforts can be traced to four prom- 

inent researchers: Jacob Abraham, John Hayes, Sumit Ghosh, and James Armstrong. As a 

foundation for the development and application of more accurate behavioral fault models, 

this dissertation examines the models developed by groups including each of these 

researchers. Modeling at many levels of abstraction is discussed by Abraham et al. [1][2] 

[17][65][66], but the main focus of this dissertation concerns the functional fault models. 

Hayes et al. [29][31][32][33][34][63] has worked extensively on fault models for digital 

circuits, including descriptions of functional fault models leading to a new generic class 

10 
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called induced faults. Ghosh and Chakraborty [18] [26][27] have proposed a set of fault 

models which are based on the failure modes of the language constructs of a generic hard- 

ware description language. Armstrong and his collaborators [6] [7][8] [9] [22] [28][69] have 

developed an ever evolving series of functional and behavioral fault models and, as will be 

discussed later, have implemented test generation algorithms using these models. 

2.1.1 Functional Faults 

In "Fault and Error Models for VLSI," [2] Abraham and Fuchs provide an extensive 

review of research efforts aimed at deriving realistic models at higher levels which can 

accurately represent the faults and errors at lower levels. Of primary interest here are their 

descriptions of several functional fault models: general fault models for functional blocks, 

models for small functional modules, and fault models for microprocessors. 

Given a combinational function with N inputs, a general fault model assumes that this 

function can be transformed into any other combinational function of iV inputs and, there- 

fore, testing it requires application of all 2N input combinations. Such exhaustive testing 

is impractical if N is large, however, testing may be manageable if the function is imple- 

mented as an interconnection of subfunctions. The exhaustive general fault model could 

then be used effectively to test these subfunctions. 

Models for several small functional modules provide the building blocks for handling 

larger functions. A key functional module found in many digital circuits is the decoder. It 

can be described functionally as having N inputs and 2N outputs and, under normal opera- 

tions, exactly one output line is activated corresponding to the input address. A detailed 

study of all single transistor-level faults by Banerjee [12] resulted in the following func- 

tional fault model for a decoder: 

1) Instead of the correct line, an incorrect line is activated. 

2) In addition to the correct line, an incorrect line is activated. 

3) No line is activated. 

Though such a description is very simple, it was shown to incorporate all of the physical 

shorts and opens possible in the transistor-level description. 

Further study [1] involved another important building block, the multiplexer. This 

functional module has N inputs, log2N control signals, and one output.   The output is 
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selected to be one of the inputs as determined by the address on the control lines. Under a 

fault, it can be shown that the behavior of the multiplexer module can be described in the 

following functional manner: 

1) A 0 and a 1 cannot be selected on every input line. 

2) When selecting some input, another input will be selected instead of, or in 

addition to, the correct input. 

Similar fault models exist for other building blocks of more complex functional units. 

Even though microprocessors are quite complex, fairly effective functional fault mod- 

els have been derived at the register transfer level. Thatte [66] visualizes a microprocessor 

as a set of functions including register decoding, data transfer, data manipulation, and 

instruction sequencing. A functional fault model is developed for each of these functions. 

Improvements to this model made by Brahme [17] are based on the conceptual treatment 

of instructions as consisting of micro-instructions, which, in turn, are composed of a set of 

micro-orders. The combined fault model for the microprocessor contains the following: 

1) Fault Model for the Register Decoding Function: 

- Fault-free 

/D(/?.) = R. Register i selected. 

- Faulty 

/D(#.) = R   Register; selected instead of Register/. 

fD(Rj) = <|> No register selected. 

fD(Rj) - {RpR:}  Register; selected in addition to Register i. 

2) Fault Model for the Data Transfer Function: 

- any number of lines can be stuck at 0 or 1. 

- any pair of lines i,j can be coupled. 

3) Fault Model for the Data Manipulation Function: 

- No specific fault model is presented. (It is assumed that the complete test set for 

any given ALU can be easily determined.) 

4) Fault Model for the Instruction Sequencing Function: 

- Under a fault we can have one or more of the following events: 

- One or more microorders can be inactive. 

- Microorders which are normally inactive become active. 

- A set of microinstructions is active in addition to, or instead of, the normal 

microinstructions. 
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This approach allows derivation of tests for a microprocessor even if the details of imple- 

mentation are not known. 

With this set of fault models, Abraham and his collaborators have attempted to 

describe accurately the effects of faults within higher functional modules and thus make 

complex systems tractable by reducing the number of primitive elements. Though largely 

based on actual circuit descriptions, care has been taken to make these models as imple- 

mentation independent as possible by concentrating on the functionality provided by each 

module. 

2.1.2 Physically-Induced Faults 

In "Fault Modeling" [34], Hayes also discusses the general functional (GF) fault 

model as one that allows arbitrary changes to a circuit's truth table (combinational case) or 

state table (sequential case). The maximum number of states, which can be taken to be 

one in the combinational case, is assumed to remain constant when faults are present. 

Detection of GF faults requires essentially exhaustive testing procedures and is thus feasi- 

ble for a moderate number of input lines. Tests for GF faults in a sequential circuit are 

termed checking sequences and tend to be long and difficult to compute. Such tests have, 

however been applied successfully to the representation of certain types of pattern-sensi- 

tive faults in RAMs [33] and to testing simple bit-sliced microprocessors [63]. 

In more recently published research, Hansen and Hayes [29] present a new high-level 

fault model called the physically-induced fault model. If gate-level single-stuck-line (SSL) 

faults are considered with this model, the authors claim that complete functional fault 

detection can guarantee complete SSL fault detection. The induction concept implies 

changing the abstraction level at which faults and their effects are considered from a lower 

to a higher abstraction level. The physical faults of interest include SSL faults, bridging 

faults, and switch-level faults. The target abstraction level is the functional level, which is 

loosely defined to correspond to the register-transfer level. Just as the SSL fault model is a 

"natural" gate-level fault model, the authors propose that the SSL-induced fault (SIF) 

model is a natural functional-level fault model. 

The 3-input majority circuit M, shown in Figure 2-1, is presented as a preliminary 

example where G, P, and C represent carry-generate, carry-propagate, and carry-in respec- 
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tively. There are 11 lines producing 22 SSL faults. Analyzing the faulty responses pro- 

duces 14 different SIF functions which can be reduced by functional equivalence and fault 

dominance to a minimal set of 6. Table 2-1 lists 6 SIF tests that detect all SSL faults. 

AG 

A- 

B- 

BG 

o>n 
Figure 2-1 Three-input majority circuit M. 

SIF SIF test Z CAB 

A cannot propagate Propagate with A 1 1   1   0 

B cannot propagate Propagate with B 1 1   0   1 

M always propagates Stop propagate 0 1   0  0 

M cannot generate Generate 1 0   1   1 

B always generates Stop generate with B 0 0   1   0 

A always generates Stop generate with A 0 0  0   1 

Table 2-1 Minimal SIF test set. 

By examining different realizations of the same majority function, other independent 

functional faults may be added. Additional tests could, therefore, be required to detect the 

SIF "generate invalidates propagate." However, given a full set of physical faults, a set of 

functional faults can be derived, usually without too much difficulty. For example, the 

work of Shen et al. [62] on inductive fault analysis can be used to supply a comprehensive 

physical-fault list. 

Physically-induced fault techniques have also been applied to several medium-scale 

examples from the 74X-series. The tests derived for these circuits cover all SSL faults in 

the standard 74X-series gate-level designs [67], a property that has been verified by com- 

plete gate-level fault simulation. Furthermore, the test sets are provably minimal and are 

generally smaller than those found by an efficient gate-level test generator. 
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2.1.3 Behavior Faults 

In "Behavior-Level Fault Simulation," [26] Ghosh uses behavioral fault models to rep- 

resent complex failures in VLSI designs. Faulty values of variables that represent state/ 

timing parameters or a faulty description that is substituted for part of the good description 

are deliberately introduced into a design that contains no faults. A severe limitation of this 

method is determining how to select fault models that represent actual failures from the 

large number that do not. The recommended approach urges designers to use a library of 

fault models of complex devices that are based on actual failures. 

In subsequent research, Ghosh and Chakraborty [18] [27] propose fault models based 

on the failure modes of the language constructs of a generic hardware description lan- 

guage. The programming language C is used to describe hardware with assurances that its 

language constructs may be extended to other hardware description languages. The fault 

models presented are relatively complex and attempt to rationalize a link to actual possible 

hardware faults. Some of the key components of these behavioral fault models include: 

1) The states of a sequential component may be expressed through variables of 

integer, Boolean or real types and may fail in one of two modes - the state is 

permanently held at either V1 or V2 where V1 and V2 specify the lower and 

upper extremes of the logical value system. 

2) A "function call" may exhibit two failure modes where it permanently returns 

V] or V2, the lower and upper extremes of the range of the function. 

3) In the "for (CC) {Ej}" clause, the body {Ej} may either never be executed or 

always executed regardless of the condition CC. 

4) In a "switch (Id)" clause, the switch may select either the cases corresponding 

to the lower or upper extremes of the switch identifier's value system, all or 

none of the specified cases. 

5) The "if(X) then (Ejj else {E2F construct may fail such that Ej is always exe- 

cuted and E2 is never executed, Ej is never executed and E2 is always executed, 

or Ej and E2 are executed when X evaluates to false and true respectively. 

6) The assignment statement "X = Y' may fail such that X remains unchanged or 

assumes the lower (Vj) or upper (V2) extremes of the value system, or X 

assumes V} or V2 depending on a probability function. 
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Though relationships to possible hardware faults are proposed, there is no detailed analy- 

sis to justify these assertions. A further shortcoming of these models is the restriction to 

the lower (V7) or upper (V2) extremes of the value system. Multiple bit signals must all be 

stuck at 0 or stuck at 1 rather than allowing for only a single stuck line. 

In order to evaluate the performance of the proposed behavior fault models, example 

designs were fault simulated and compared with gate-level fault simulation in the presence 

of stuck-at faults. The example designs included: 16-to-4 multiplexer; 4-, 8-, and 16-bit 

ALUs with carry lookahead; shift register; synchronous and asynchronous counters; AMD 

AM2903 bit slice processor; and the control unit of a complex protocol formatter chip. 

Between 40 and 60 randomly generated test-vector sets were used for gate-level and 

behavioral fault simulation and the gate-level and behavioral fault coverages were then 

compared. The researchers found a strong and consistent correlation of the gate-level and 

behavioral fault coverages with no occurrence of a behavioral fault coverage exceeding 

90% while the gate-level fault coverage was less than 85%. 

2.1.4 Model Perturbation 

Armstrong et al. has developed a series of behavioral fault models based on the con- 

cept of model perturbation [28] of designs using hardware description languages, most 

recently VHDL. In "Behavioral Fault Simulation in VHDL," [69] Ward and Armstrong 

define eight behavioral fault classes: 

1) Stuck-Then: represents a failure of the if-then-else construct to ever execute the 

else statements. 

2) Stuck-Else: represents a failure of the if-then-else construct to ever execute the 

then statements. 

3) Assignment Control: represents a failure of the VHDL assignment operator to 

assign a new value to a signal. 

4) Dead Process: failure of the statements within a process construct to execute. 

5) Dead Clause: failure of the VHDL CASE construct to execute one of the alter- 

native sequences of statements (clauses). 

6) Micro-operation: failure of an operator to perform its intended function. The 

operator may fail to any other operator in its class. 
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7) Local Stuck-data: failure of a signal or variable to have the correct value. The 

local stuck-data fault is restricted to the expression into which it is mapped. 

8) Global Stuck-data: failure of a signal or variable to change value within the 

device model. 

These fault classes have been continually refined by subsequent research, but still they 

serve as the basis for many current efforts in behavioral test pattern generation. 

As a further refinement to their earlier model, Armstrong, Lam, and Ward, [9] subdi- 

vide behavioral faults into two broad categories, control faults and micro-operation faults. 

Control faults perturb the control points that switch between micro-operation sequences. 

This fault group includes: 

1) IF: stuck THEN, stuck ELSE - branching will always occur in one direction, 

independent of control signal values. 

2) CASE: dead clause - the selected clause does not execute. 

3) Assignment fault - models the effect of a single assignment not taking place. 

4) Dead Process fault. 

Micro-operation faults perturb individual micro-operations to another and include: 

1) AND<->OR. 

2) INC<->DEC. 

3) ADD<->SUB. 

Some significant problems with this modeling technique include choosing to which micro- 

operation to perturb [19] and whether any of these faults can actually occur in hardware. 

As part of the development of the "B-algorithm: A Behavioral Test Generation Algo- 

rithm," [21] [22] Cho and Armstrong developed a new behavioral fault model by applying 

the concept of equivalent faults to the previous model. Stuck-THEN/stuck-ELSE faults 

can be removed from the behavioral fault list if stuck-at faults are defined for unnamed 

signals corresponding to the conditional expressions of the IF statement. Likewise, a 

micro-operation fault for a logic operator is detected by a test for a stuck-at fault on one of 

its arguments. Finally, a dead-clause fault is equivalent to an assignment control fault 

under the assumption of a single behavioral fault model. 

The new behavioral fault model renames stuck-at faults to behavioral stuck-at faults. 

Assignment control faults are renamed behavioral stuck-open faults and micro-operation 
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faults for arithmetic or relational operators are renamed micro-operation faults.   The 

reduced model now includes three types of faults: 

1) Behavioral Stuck-at (BSA) Fault - a bit of a signal, virtual signal, a fanout stem, 

or a fanout branch is permanently stuck-at logic 1 or 0. 

2) Behavioral Stuck-open (BSO) Fault - the value of the source expression (right- 

hand side) of an assignment statement is not correctly transferred to its target. 

3) Micro-operation (MOP) Fault - an arithmetic or a relational operator is faulted 

to another operator. For example, ADD(A,B) is perturbed to SUB(A,B) and 

SUB(B,A). A summary of fault-free operators and their corresponding faulty 

operators is provided in Table 2-2 . 

Fault-free Operator Faulty Operator 

ADD SUB, XOR 

SUB ADD, XOR 

BVEQ BVNEQ 

BVNEQ BVEQ 

BVLT BVGE 

BVLE BVGT 

Table 2-2 Micro-operation Faults 

Again, perturbing of micro-operations raises doubts concerning the relationship to actual 

hardware faults. Use of this fault model with the B-algorithm is discussed later along with 

other test generation techniques. 

2.1.5 Other Research 

Two other recent research efforts deserve mention here for completeness. The first, by 

Riesgo and Uceda [60], attempts to define an RTL fault model which they claim is totally 

oriented to model hardware faults. At the other end of the spectrum, Al Hayek and 

Robach [4][5] consider behavioral faults as software faults and apply an adaptation of 

mutation-based testing, originally proposed to test software programs. 

In "A Fault Model for VHDL Descriptions at the Register Transfer Level," [60] Riesgo 

and Uceda present a fault model based on the VHDL level-0 synthesis subset [25]. Exam- 
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pie behavioral descriptions can then be directly synthesized and results compared to the 

corresponding gate-level designs. The fault model is divided into three classes, depending 

on the type of object affected by the fault: 

1) Faults on data: the fault model is based on "stuck-at" faults. The affected 

expression will take a constant value and the insertion will be made in a state- 

ment where the object is referenced. Examples include: 

- bit: stuck-at- '0' and stuck-at- '1'. 

- enumerated: stuck-at- "all possible values ". 

- integer: each bit of the resulting bus can be stuck-at'0' or stuck-at- '1'. 

The assumed codification is binary for positive numbers and 2's complement 

for negative numbers. 

2) Faults on expressions: the fault model is based on "stuck-at" faults. The 

affected expression will take a constant value. Examples include: 

- if_then_else: the condition of the if statement may be stuck-at-true or 

stuck-at-false. 

- case_is_when: the expression which controls the case statement may be 

stuck-at-"allpossible values" 

- for_in_loop: the index controlling the loop may change its range from the 

minimum to the maximum+1 and from the minimum-1 to the maximum. 

3) Faults on statements: the fault model is based on "dead* faults. The effect of 

the fault is that the affected statements are not executed. Examples include: 

- if_then_else: dead-then, dead-else. 

- case_is_when: dead-alternative. 

- for_in_loop: dead-loop. 

- procedure call: dead-call. 

- signal or variable assignment: dead-assignment. 

Fault insertion is made on the VHDL code by adding code perturbations to the input 

description. Code perturbations consist of adding, switching, or eliminating code sen- 

tences, to model the circuit behavior under a fault condition. 

Experiments were conducted on several VHDL descriptions which were then synthe- 

sized in order to obtain a comparison with the stuck-at fault model at the logic gate level. 
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The example circuits included 8- and 16-bit ALUs, sequential multiplier, shift register, 16- 

bit counter, and a reception-transmission unit. Test vectors were randomly generated, then 

VHDL/RT and logic fault coverages were compared. The fault model presented did not 

give a precise value of the fault coverage achieved at the lower levels, rather an estimation. 

For those circuits with a large combinational part, the estimation of fault coverage was 

"optimistic" and the synthesis options had an influence on the accuracy of the estimation. 

Highly sequential circuits produced "pessimistic" results due to a large number of faults at 

the RT level that were very difficult to detect or even undetectable. The achieved results 

are claimed better than Armstrong and Ghosh due to their correlation coefficients being 

larger than 90%. 

In contrast to other hardware oriented approaches, Al Hayek and Robach [4] propose a 

mutation-based testing strategy in which VHDL behavioral faults are considered as soft- 

ware faults. The generated test set is used to validate the VHDL description, seen as a 

software program, against (software) design faults as well as its hardware implementation 

against hardware faults. A VHDL subset is also used, which allows high level functional 

description of any combinational or sequential circuit that can be easily synthesized by 

current tools. 

The mutation-based fault model [5] defines a set of mutation operators for use with 

VHDL behavioral descriptions. Mutation operators include: 

1) AOR: Arithmetic Operator Replacement. 

- replace "+" with "-". 

2) ABS: ABSolute value insertion. 

3) CR: Constant Replacement 

-integer: increment and decrement by 1. 

- bit-vector: 1 's complement. 

-Boolean: complement. 

4). CVR: Constant for Variable Replacement. 

- every compatible constant. 

5) LOR: Logical Operator Replacement. 

- AND, OR, NAND, NOR, XOR 

- replaced by each of the other operators 
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6) ROR: Relational Operator Replacement. 

- <, >, <=, >=, =, /= 

- replaced by each of the other operators 

7) NOR: No Operation Replacement. 

8) VCR: Variable for Constant Replacement. 

- every compatible variable. 

9) UOI: Unary Operator Insertion. 

- each arithmetic expression negated, incremented, and decremented by 1. 

- each logical expression complemented. 

An automated test environment was built by translating VHDL to FORTRAN and using an 

existing software testing system. 

On a behavioral VHDL description, the test environment delivers a test set and the 

associated mutation score value that represents the percentage of non-equivalent detected 

mutants by the test set. In the context of design and test of hardware systems, the mutation 

score is viewed as a behavioral fault coverage that measures how well the design has been 

tested. On a set of high-level synthesis benchmarks (Decoder, ALU, Differential equation, 

Elliptical wave filter,...), experimental results show that on combinational circuits the 

obtained gate-level fault coverage is about 94% in the average against 99% for the tradi- 

tional gate-level ATPGs. However, on sequential circuits the mutation-based test is 

claimed better as it yields 94% in the average of gate-level fault coverage against 85% for 

the traditional ATPGs, when they are used without any user assistance. 

In order to improve the performance of the mutation-based technique, the authors 

chose to enhance the test set for certain complex operators such as AOR. Mutation analy- 

sis does not take into account the size of the hardware implementation, because it consid- 

ers addition/subtraction as a software operation and consequently generates only one test 

vector. A heuristic is proposed to supplement the original test set with extra vectors to suf- 

ficiently test the complex operators. This heuristic consists of generating TV new test vec- 

tors for each complex operator, where N is the maximum dimension of the input 

parameters. The necessity to supplement the original test set simply attempts to cover up 

an underlying deficiency in the mutation-based fault model. 
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2.1.6 Summary 

All of the modeling efforts presented here attempt to develop fault models at higher 

levels of abstraction, which accurately represent faults which occur at lower levels. This 

discussion has been meant to provide a survey of the current state of the art in behavioral 

fault modeling. Later in this chapter, some of these fault models will serve as the basis for 

several behavioral test generation algorithms. But first, some techniques for injecting 

faults into behavioral models will be briefly discussed. 

2.2   Fault Injection Techniques 

Once a fault model has been defined, some method of injecting these faults into a 

model of the digital circuit must be developed. Injecting faults into a behavioral model 

can be accomplished by manipulating data or signal values within the model or by actually 

changing or perturbing the model itself. An example of the signal manipulation technique 

is provided by the work of DeLong, Johnson, and Profeta in "A Fault Injection Technique 

for VHDL Behavioral-Level Models." [23] Modification of behavioral models is demon- 

strated by Jenn et al. in "Fault Injection into VHDL Models: The MEFISTO Tool." [39] 

Finally, Yount and Siewiorek present an approach called hybrid fault emulation in "A 

Methodology for the Rapid Injection of Transient Hardware Errors." [71] 

2.2.1 Instruction Set Architecture 

In order to perform fault injection experiments early in the design cycle, DeLong, 

Johnson, and Profeta [23] developed a technique to inject faults into a VHDL behavioral 

model of a system. This technique is demonstrated on an instruction set architecture 

(ISA) model of an embedded control system. Single or multiple bit faults are injected into 

internal processor registers, any location in memory, and any range of locations in the 

memory map. Signal values are corrupted by using a user-defined VHDL data type to 

communicate with a bus resolution function. When two different sources are trying to 

update a signal at the same time, the bus resolution function resolves the conflict and 

assigns the desired value to the signal. This technique allows the designer to inject faults 

on desired signals in a behavioral description with minimal changes to the existing code. 

Because the functionality of the design is not changed, the same model can be used to sim- 

ulate both fault-free and faulty behavior. 
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2.2.2 MEFISTO 

In contrast to the previous technique, the MEFISTO Tool [39] uses two other tech- 

niques to inject faults into VHDL models. The first category requires modification of the 

VHDL model and the second one uses the built-in commands of the simulator. Modifica- 

tion of the VHDL model is accomplished through the addition of components called sabo- 

teurs and mutants. A saboteur is a VHDL component that alters the value or timing 

characteristics of one or several signals when activated. A mutant is a component descrip- 

tion that replaces another component description. When activated, it imitates the compo- 

nent's behavior in the presence of faults. Both signal and variable manipulations can be 

used for controlling, i.e., activating and deactivating, saboteurs and mutants. In this way, 

the injection of faults can be controlled by built-in commands of the simulator. 

The main reason for using the built-in commands of the simulator for fault injection is 

that this does not require the modification of the VHDL code. However, the applicability 

of these techniques depends strongly on the command languages of the simulators. The 

values of either signals or variables may be manipulated by stopping and restarting the 

simulation. For example, a temporary stuck at fault may be injected by application of the 

following sequence of pseudo commands: 

1) SimulateUntil <fault injection time> 

2) FreezeSignal <signal name> <signal value> 

3) SimulateFor <fault duration> 

4) UnFreezeSignal <signal name> 

5) SimulateFor <observation time> 

For a permanent fault, steps 3 and 4 are skipped. Intermittent faults can be injected using 

a more complex command sequence. 

2.2.3 Hybrid Fault Emulation 

Yount and Siewiorek [70][71] developed a fault injection methodology for processors 

based on a register transfer level fault model. The approach, called hybrid fault emulation, 

uses the actual circuit to perform fault injection. A transient fault occurs during the inter- 

val T = [U, tk]. The system is allowed to run until some time, tj, and the state of the 

machine is captured. A low level model is then used over a limited interval with the cap- 
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tured state. Reverse fault emulation is used to generate output and set the new state at tk to 

match the effects of the desired fault. Since fault simulations are only run over short peri- 

ods of time, many more fault injection experiments can be run using the same simulator 

resources. This method is, however, limited to only transient faults and applies to the eval- 

uation of an actual system rather than one still in the design process. 

2.2.4 Summary 

Though brief, this survey of fault injection techniques provides sufficient insight into 

methods for manipulating behavioral models. Fault injection can be as simple as starting 

and stopping the simulation to change desired values or as complicated as developing 

mutants that imitate a component's behavior in the presence of faults. The bus resolution 

function technique is simply an adaptation of the concept of a saboteur that alters the 

value of a signal in the model. Test designers now have a range of fault models and injec- 

tion techniques from which to develop behavioral test generation algorithms. 

2.3   Test Generation Techniques 

Test generation techniques at higher levels of abstraction can be based on either func- 

tional or behavioral descriptions and their corresponding fault models. This dissertation 

investigates research efforts which have produced automated test pattern generation 

(ATPG) methods and tools to support circuit designers at or near the register transfer level. 

Results of these test generators can be used to evaluate the effectiveness of the underlying 

behavioral fault models. Lin and Su [49][50] developed a functional test generation algo- 

rithm which uses a register transfer level fault model based on the functional fault work of 

Abraham [2][17][66]. Armstrong and his collaborators [13][14][15][21][22][46][55][56] 

[57][58] have produced a series of test generators based on their ever evolving behavioral 

fault models. Several other researchers [20] [54] have also developed ATPG algorithms 

which utilize the fault models of Ward and Armstrong [69]. Finally, Santucci and Giambi - 

asi et al. [59][61] have produced a prototype model of a test pattern generator which uses a 

fault model claimed equivalent to that of Ghosh and Chakraborty [18] [27]. However, 

since their research focus is on optimization of the test generation algorithm, no results are 

published that can help evaluate the effectiveness of their fault model. 
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Most fault-oriented techniques use some form of a three step approach to the test gen- 

eration process. First, a fault must be activated at the desired location in the circuit model. 

Then, the effect of the fault must be propagated to a point where it can be observed and, 

hence, detected. Finally, the inputs of the model must be determined to justify the desired 

signal values throughout the circuit. Variations of these techniques attempt to utilize the 

information available in these higher level models to more efficiently accomplish the com- 

putationally intensive tasks of fault propagation and justification. 

2.3.1 S-Algorithm 

The S-Algorithm [49][50] is based on a register transfer (RT) level fault model similar 

to the functional fault models discussed by Abraham and Fuchs [2]. The reduced fault set 

is divided into three groups for ease of fault identification: 

1) Register decoding faults and operator decoding faults - regular registers and 

ALU operators are "global" among RT-statements. 

2) Condition faults, jump faults, and data transfer faults with constant source reg- 

isters - they are "local" within an RT-statement. 

3) Data transfer faults with regular source registers. 

The overall test generation algorithm also includes a preprocess stage which includes par- 

titioning the system under test and a postprocess stage that evaluates fault coverage. 

Major parts of the heuristic test generation algorithm were implemented in IBM Pascal 

and experimental results have been published for several example circuits. For a hardware 

multiplier described by 16 RT-statements, the program generated 66 test patterns and 

claims a 96.4% fault coverage. For the SIMPLE-CALCULATOR, 134 test patterns were 

generated resulting in a 97.2% fault coverage. No comparisons are provided to evaluate 

the resulting fault coverages versus a traditional gate level stuck at model. 

2.3.2 B-Algorithm 

Early test generation algorithms based on VHDL behavioral descriptions included "A 

Heuristic Chip-Level Test Generation Algorithm" [13] and "The E-Algorithm, an Auto- 

matic Test Generation Algorithm for Hardware Description Languages." [55] Both were 

strongly influenced by the pioneering work of Levendel and Menon in "Test Generation 

Algorithms for Computer Hardware Description Languages." [48] The fault models used 
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were evolving versions of the model published by Ward and Armstrong [69]. Reported 

results on medium complexity circuits were in the range of 90% gate level fault coverage. 

Further along in the evolution, the Behavioral Test Generator (BTG) [57][58] uses a 

VHDL subset and the same behavioral fault model [69]. The faulted operation is first acti- 

vated (fault sensitization), then the effect of the fault is propagated to the output (fault 

propagation). Examples are provided for propagation through behavioral control con- 

structs and propagation through data paths. Behavioral fault coverage is then evaluated as 

the ratio of detected behavioral faults to the total number of behavioral faults. 

BTG was tested using a set of 11 logic circuits representing a cross section of generic 

types of logic. The average equivalent gate level coverage for the experiments on these 

circuits was 92%. A major drawback was what they called the "big micro-operation prob- 

lem." Faults can be applied to micro-operations that represent large blocks for logic. For 

example ACUM <= ADD(A,B,CIN) implies a multi-bit adder. It is impossible for a single 

vector to detect the majority of gate level faults in such a complex structure. O'Neill et al., 

thus, resorted to heuristics to supplement their test vector set to bring up their equivalent 

gate level coverage. The necessity to add test vectors to those generated by their algorithm 

points back to a fundamental deficiency in their underlying fault models. 

Continuing efforts by the same research group produced the B-algorithm [21][22]. 

This test generation algorithm uses the reduced behavioral fault model discussed earlier in 

this chapter: behavioral stuck-at faults, behavioral stuck-open faults, and micro-operation 

faults. Again, a three step approach is applied to the test generation process: activation, 

propagation, and justification. As with BTG, the B-algorithm cannot generate sufficient 

test vectors for micro-operation faults. In order to raise their equivalent gate level cover- 

age numbers to acceptable levels, an additional 4n-l test vectors are generated by a heuris- 

tic test generator for each n-bit micro-operation. Even with the stated improvements and 

the modified fault model, the B-algorithm still suffers from the same underlying deficien- 

cies concerning the modeling of faults in complex operations. 

2.3.3 Other Research 

In "Analysis of the Gap Between Behavioral and Gate Level Fault Simulation," [20] 

Chen and Perumal describe the details of an ATPG system for VHDL behavioral models. 
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The behavioral fault models based on Ward and Armstrong [69] are expanded and classi- 

fied into six different categories: 

1) Input stuck-at fault 

2) Ifstuck then fault 

3) If stuck else fault 

4) Assignment statement fault 

5) Dead clause fault 

6) Local stuck data fault. 

The problems associated with micro-operation faults have been avoided by eliminating 

such constructs from their behavioral models. 

For the simple example discussed in their paper, 34 of the 37 non redundant gate level 

faults are detected by behavioral fault simulation, resulting in a fault efficiency of 92%. 

The results of a more complicated example of a vending control unit are also presented. A 

total of 250 test patterns are required to test for 217 faults in the synthesized gate level cir- 

cuit. Detection of 189 faults results in a fault coverage of 87%. If scan design techniques 

are applied to the circuit, then a fault coverage of 98% is claimed to be achieved. 

The last example to be discussed is the "Behavioral Fault Simulation and ATPG Sys- 

tem for VHDL." [54] For purposes of comparison, VHDL behavioral code is synthesized 

to gate-level implementations and analyzed. The underlying fault models are again based 

those proposed by Ward and Armstrong [69], this time including micro-operation faults. 

A linear feedback shift register (LFSR) algorithm was utilized to generate the test patterns 

in this research. 

Nine circuits were used to evaluate the performance of the system. Actual behavioral 

fault coverages ranged from 18% to 100%, with sequential descriptions, such as counters 

and controllers, performing worst and combinational circuits performing best. These 

results were compared to randomly generated test patterns applied to synthesized gate 

level circuits. Many of the resulting gate level descriptions proved to be difficult to test 

with the random test patterns and, therefore, also had low fault coverage numbers. Hence, 

the authors were able to claim success based on a different figure of merit, relative detec- 

tion of testable gate-level faults. Using this questionable comparison, Noh et. al. claims an 

overall result of detecting around 98% of all testable gate level faults.  There is dubious 
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merit in claiming that detecting only 18% of the behavioral faults in a vending machine 

controller versus 19% in the synthesized gate level circuit implies a 95% success rate. 

2.4   Conclusions 

This survey of the state of the art in high level fault modeling and test generation 

clearly indicates that there is no widely accepted solution to the problem. Modeling tech- 

niques range from the functional analysis employed by Abraham and Hayes, to the proce- 

dural data flow of behavioral descriptions used by Ghosh and Armstrong. Test generation 

algorithms contained some functional techniques, but mainly relied on the behavioral fault 

models developed by Armstrong. Examples provided a figure of merit by which to judge 

their effectiveness, but few common measures could be found. When results did not meet 

expectations, alternate methods, such as heuristics or testability, were invoked to improve 

the statistics. 

In the functional arena, Abraham has attempted to describe accurately the effects of 

faults within higher functional modules and thus make complex systems tractable. 

Though largely based on actual circuit descriptions, care has been taken to make these 

models as implementation independent as possible. With his physically-induced fault 

techniques, Hayes has been able to derive minimal test sets for several medium-scale 

examples. Key to this research are the concepts of functional equivalence, fault domi- 

nance, and compatible fault sets. Both of these functional methods show promise for 

application to behavioral faults and hardware description languages. 

For behavioral models, though Ghosh proposes relationships to possible hardware 

faults, there is no detailed analysis to justify these assertions. A further shortcoming of 

these models is the restriction that multiple bit signals must all be stuck at 0 or stuck at 1 

rather than allowing for only a single stuck line. Similarly, the evolving set of behavioral 

fault models by Armstrong and their subsequent test generation algorithms seem to move 

too far away from the hardware which they attempt to describe. In order to compensate 

for what they call the "big micro-operation problem," the researchers resorted to heuristics 

to supplement their test vector set to increase their equivalent gate level coverage. The 

necessity to add test vectors to those generated by their algorithm points back to a funda- 

mental deficiency in the underlying fault models. 
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The behavioral fault models developed in this dissertation only affect the activation 

step of the test generation process. Hence, the high level algorithms developed to handle 

the propagation and justification steps still remain valid. Integration of new fault models 

with an existing behavioral test generation algorithm can be of mutual benefit. Such 

advanced test generation algorithms already address problems such as reconvergent fanout 

[3h while use of more complex fault models can eliminate the need to supplement test 

vector sets via heuristics. 

Though previous research provides no clear cut solution to modeling faults at higher 

levels of abstraction, valuable insights have been gained by the examination of each of 

these techniques. Certain key concepts from past efforts have immediate applicability to 

further research. Other works can also serve as benchmarks for comparison of future 

results. Behavioral fault modeling remains an active research area which requires contin- 

ued exploration. 



Chapter 3 

A New Control Fault Model 

Previous research has proposed fault models for the control constructs if-then-else and 

case, such as stuck-then/stuck-else and dead clause, based solely on perturbing the lan- 

guage without a well defined link to the underlying hardware. This dissertation proposes a 

new behavioral fault model based on a functional analysis of gate level implementations. 

By combining VHDL synthesis information with industry standard single-stuck-line (SSL) 

faults, a new control fault model can be obtained which is more closely linked to the 

underlying hardware. 

3.1   IF-THEN-ELSE 
The first control construct to be modeled will be if-then-else, common to most hard- 

ware description languages. In Appendix E Armstrong and Gray identify the link between 

the if statement and the functional building block of a multiplexer. Likewise, Mentor 

Graphics demonstrates how the selection activity of an if-then-else construct is imple- 

mented in hardware as a multiplexer. These examples reinforce the underlying intuition 

that a language construct that involves selection leads naturally to a hardware construct 

that implements selection, the multiplexer. 

3.1.1 Synthesis of a Simple Example 

As a first example, an if statement is used to select one of two input signals to be 

assigned to an output signal. The VHDL behavioral description is shown in Figure 3-1. 

if   SEL  =   l0'   then 
Z   <=  YO; 

else 
Z   <=  Yl; 

end  if; 

Figure 3-1 Behavioral description for example IF1. 

The VHDL code was compiled using the Mentor Graphics' Design Architect and then 

synthesized using AutoLogic II. The resulting circuit shows the expected multiplexer 

architecture in Figure 3-2. 

30 
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Y0[> 

YIO 

SELO 

OZ 

Figure 3-2 Synthesized hardware for example IF1. 

The synthesized hardware implementing example IF1 has the two inputs, YO and Yl, 

connected to inputs A and B respectively of a 2-to-l multiplexer, MUX21. In subsequent 

discussions, these will be referred to as the channels of the multiplexer, Channel A (CHA) 

and Channel B(CHB). 

3.1.2 Functional Analysis 

In order to perform a functional analysis similar to the method used by Hansen and 

Hayes [29] in their work on physically-induced faults, a gate level design of the multi- 

plexer architecture is needed. To make the resulting models independent of any specific 

implementation, several different gate level realizations will be examined and compared. 

The first gate level multiplexer was obtained by expanding the functional element 

MUX21 one level lower in the design hierarchy. The resulting gate level circuit is recog- 

nized as a sum-of-products (SOP) implementation shown in Figure 3-3. 

YOO 

YIO 
SEL 

Figure 3-3 SOP gate level circuit for MUX21. 

To analyze the gate level circuit, the effect of single-stuck-line (SSL) gate level faults 

will be examined. This analysis will determine a set of functional faults which are 

induced by the lower level SSL faults. Testing for these functional faults will then ensure 

complete testing for the original gate level faults. 

The gate level circuit contains 10 logical lines. Applying the SSL fault model where 

each line can be either stuck-at-0 or stuck-at-1, there are a total of 20 gate level SSL faults 
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in the circuit. The line labeled A being stuck-at-0 and stuck-at-1 will be indicated as A-0 

and A-i respectively. By activating each SSL fault individually in the gate level circuit and 

evaluating the resulting output response to changing inputs, a fault table is obtained. In 

Table 3-1 the fault free behavior of the circuit is shown in column Z. For simplicity, only 

outputs due to a SSL fault that differ from the fault free behavior of the circuit are shown. 
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1 0 0 0 1 1 1 1 

1 0 1 0 1 1 1 1 1 1 1 

1 1 0 1 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 

Table 3-1 SSL fault table for SOP MUX. 

Faults which cause the same faulty output can be considered functionally equivalent 

[45]. Such faults can be combined in the fault table, since there is no way to distinguish 

between these faults by observing the circuit's output behavior. To further reduce the 

functional faults, consider the concept of dominance of one fault over another. The fault 

(column) Fl is said to dominate the fault (column) F2 if Fl has a faulty output in at least 

every row in which F2 has a faulty output [45]. The dominating fault (column) Fl may be 

removed from the fault table, since any test which detects fault F2 will also detect fault 

Fl. Fault reductions due to functional equivalence and dominance are shown in Table 3-2. 

Faults Remarks Faults Remarks 

A-1,E-0,H-1,S-1,Z-1 Dominate G-l C-0, D-0 Equivalent to A-0 

B-l,D-l,E-l,S-0 Dominate C-l F-0 Equivalent to G-l 

Z-0 Dominate B-0 F-l, G-0, H-0 Equivalent to B-0 

Table 3-2 Fault reductions. 
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Only four functional faults remain after applying the indicated fault reductions. Test- 

ing for this reduced set of faults will ensure complete coverage of all 20 original SSL gate 

level faults. The reduced fault table and appropriate test vectors are shown in Table 3-3. 

The two test vectors labeled mandatory are the only ones that cover a specific fault. For 

the other faults two options are available; selecting one test vector from each group will 

provide coverage for the faults in question. 
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0 0 0 0 

Option 1 0 0 1 1 0 

Mandatory 0 1 0 0 1 

Option 1 0 1 1 1 0 

1 0 0 0 

Mandatory 1 0 1 0 1 

Option 2 1 1 0 1 0 

Option 2 1 1 1 1 0 

Table 3-3 Reduced fault table for SOP MUX. 

3.1.3 Alternate Implementation 

In order to investigate an alternate gate level implementation of the multiplexer archi- 

tecture, consider the Karnaugh map for the output function Z, shown in Figure 3-4. The 

groupings of minterms (l's), indicated by the dashed lines, produce an SOP representation 

consistent with the gate level circuit previously analyzed from Figure 3-3. 
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i i i u 
Figure 3-4 Karnaugh map for MUX. 
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To obtain a product-of-sums (POS) implementation of the multiplexer, the maxterms 

(O's) are grouped, as indicated with the solid lines. The resulting function for the output 

is: Z = (SEL + YO) ■ (SEL +Y1). A gate level realization is shown in Figure 3-5. 

YOO -A 

Y1D— 
SELO-S- 

CHA D 

B\ 
CHB ,GJ 

Figure 3-5 POS gate level MUX. 

A functional analysis can now be performed on the SSL gate level faults for this cir- 

cuit. After appropriate reductions for functional equivalence and fault dominance, the 

resulting fault table is shown in Table 3-4. 
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Option 1 0 0 0 0 1 

Mandatory 0 0 1 1 0 

Option 1 0 1 0 0 1 

0 1 1 1 

Option 2 1 0 0 0 1 

Option 2 1 0 1 0 1 

Mandatory 1 1 0 1 0 

1 1 1 1 

Table 3-4 Reduced fault table for POS MUX. 

It should be noted here that a NAND-NAND realization of the SOP circuit and a 

NOR-NOR realization of the POS circuit produce the same reduced fault tables shown in 

Table 3-3 and Table 3-4, respectively. The reduced set of functional faults only affect the 

controlling inputs to the multiplexer channels, which remain unchanged due to conver- 

sions to NAND-only or NOR-only circuits using DeMorgan's theorem [41]. 
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3.1.4 Generalized Functional Fault Model 

Comparison of the reduced fault tables for both the SOP and POS implementations of 

the multiplexer can now yield a generalized functional fault model, not tied to a specific 

realization. There are no contradictions among the test vectors indicated in the two fault 

tables. Selection of the mandatory test vectors from each table provides complete cover- 

age of the functional faults from both tables. 

A generalized functional fault model is, therefore, presented in Table 3-5. The func- 

tional faults have been renamed SOP_A, SOP_B, POS_A, and POS_B to indicate the ori- 

gin of their mandatory test vector and the channel of the multiplexer which they corrupt. 

Testing based on the indicated vectors should provide complete coverage of gate level SSL 

faults for multiple multiplexer implementations. 
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Mandatory 0 0 1 1 0 

Mandatory 0 1 0 0 1 

0 1 1 1 

1 0 0 0 

Mandatory 1 0 1 0 1 

Mandatory 1 1 0 1 0 

r 1 1 1 

Table 3-5 Generalized functional fault model. 

3.1.5 Development of a Behavioral Fault Model 

Examination of the relationship between the generalized functional fault model and 

the initial behavioral description will result in a behavioral fault model for the if-then-else 

construct in example IF1. This final step in the abstraction of SSL gate level faults into the 

behavioral domain provides the link between lower and higher level fault models, which 

has been lacking in previous research. 



36 

The then clause in example IF1, Z <= YO, corresponds to the upper half of the truth 

table in Table 3-5. It can be seen from the fault table, that two of the functional faults, 

SOP_A and POS_A, uniquely affect the then clause. The SOP fault table in Table 3-3 

shows that SOP_A was derived from the SSL gate level fault G-l. Referring to the gate 

level SOP circuit in Figure 3-3, it can be seen that the fault G-l causes undesired activa- 

tion of Channel B, while attempting to select Channel A. The functional fault SOP_A, 

therefore, causes a corruption of Channel A by ORing it with Channel B in the final stage 

of the multiplexer. Behaviorally, this fault can be described as a corruption of the then 

clause, resulting in the definition of the behavioral fault Clause-CORRUPT (OR), or spe- 

cifically THEN-CORRUPT (OR). The faulty version of the then clause can be modeled by 

ORing the right hand side of its assignment statement with the right hand side of the 

assignment statement from the else clause, resulting in Z  <= YO OR Yl. 

The other functional fault affecting the then clause, POS_A, was derived from the SSL 

gate level fault F-0, shown in Table 3-4. Referring to the gate level POS circuit in Figure 

3-5, fault F-0 also causes undesired activation of Channel B, while attempting to select 

Channel A. The functional fault POS_A, therefore, causes a corruption of Channel A by 

ANDing it with Channel B in the final stage of the multiplexer. Behaviorally, this fault 

also causes a corruption of the then clause, resulting in the definition of the behavioral 

fault THEN-CORRUPT (AND). The faulty version of the then clause can be modeled by 

ANDing the right hand side of its assignment statement with the right hand side of the 

assignment statement from the else clause, resulting in Z  <= YO AND Yl. 

In a manner identical to the previous discussion, behavioral faults can be defined for 

the two functional faults that affect the else clause. The functional fault SOPJB corre- 

sponds to the behavioral fault ELSE-CORRUPT (OR). Finally, the functional fault POS_B 

produces the behavioral fault ELSE-CORRUPT (AND). 

The generalized set of four functional faults derived for example IF1, therefore, result 

in the definition of four behavioral faults. These four faults form an initial behavioral fault 

model for the control construct if-then-else: Each clause of an if-then-else statement can 

be affected by two behavioral faults, Clause-CORRUPT (OR) and Clause-CORRUPT 

(AND). The new control fault model is summarized in Figure 3-6. 
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THEN-CORRUPT (OR) 
if  SEL =   '0'   then 

Z   <=  Y0   OR Yl; 
else 

Z   <=  Yl; 
end if; 

THEN-CORRUPT (AND) 
if  SEL  =   '0'   then 

Z   <=  Y0  AND Yl; 
else 

Z <= Yl; 
end if; 

ELSE-CORRUPT (OR) 
if SEL = x 0' then 

Z <= YO; 
else 

Z <= Yl OR YO; 
end if; 

ELSE-CORRUPT (AND) 
if SEL = x0' then 

Z <= YO; 
else 

Z <= Yl AND YO; 
end if; 

Figure 3-6 Control fault model for if-then-else. 

The test vectors for the new behavioral faults follow directly from the functional faults 

from which they were derived. The behavioral fault THEN-CORRUPT (OR) corresponds 

to the functional fault SOP_A. From Figure 3-6, the test vector (SEL Yl YO) 010, causes 

the then clause of the if statement to be selected. The fault free response assigns the 0 

from input YO to the output Z, regardless of the value on input Yl. Under the behavioral 

fault THEN-CORRUPT (OR), the then clause assigns YO OR Yl to Z, resulting in Z=l, 

contrary to the fault free output. Thus, the test vector 010 constitutes a valid test for the 

behavioral fault THEN-CORRUPT (OR). 

The test vector for the behavioral fault THEN-CORRUPT (AND) comes from the func- 

tional fault POS_A, 001. The fault free behavior again selects the then clause, resulting in 

Z=l. Under the fault THEN-CORRUPT (AND), the then clause assigns Y0 AND Yl to Z, 

resulting in Z=0. Similarly, the test vector for ELSE-CORRUPT (OR) is 101 and the test 

vector for ELSE-CORRUPT (AND) is 110. 

3.1.6 Evaluation of the New Behavioral Fault Model 

In order to evaluate the effectiveness of the new behavioral fault model, it will be com- 

pared to the underlying gate level faults it was meant to encompass. The four test vectors 

required to detect the behavioral faults in Figure 3-6 are 001, 010,101, and 110. Apply- 

ing these test vectors to the gate level circuits in Figure 3-3 (SOP) and Figure 3-5 (POS) 

results in the detection of the SSL gate level faults indicated in Table 3-6. Careful exami- 

nation of the results confirms that the behavioral test vectors achieve complete coverage of 

SSL gate level faults in either the SOP or POS implementation of the multiplexer. 
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Behavioral fault 
Test 

Vector 
SOP SSL Faults 

Detected 
POS SSL Faults 

Detected 

THEN-CORRUPT (OR) 010 
A-l,D-l,E-0,F-0, 
G-1,H-1,S-1,Z-1 

A-1,C-1,D-1, 
S-l.Z-1 

THEN-CORRUPT (AND) 001 
A-0, C-0, D-0, 
E-0,S-l,Z-0 

A-0,D-0,E-l,F-0, 
G-0, S-LZ-0 

ELSE-CORRUPT (OR) 101 
B-1,C-1,D-1,E-1, 

H-1,S-0,Z-1 
B-1,E-0,F-1, 
G-1,S-0,Z-1 

ELSE-CORRUPT (AND) 110 
B-0,E-l,F-l,G-0, 

H-0, S-0, Z-0 
B-0, C-0, D-0, 
G-0, S-0, Z-0 

Table 3-6 SSL faults detected by behavioral test vectors. 

3.1.7 Comparison with Previous Behavioral Fault Models 

As was discussed in Chapter 2 of this dissertation, most higher level fault models 

address the control construct if-then-else. The common fault model proposed by previous 

research is stuck-then/stuck-else. This fault model has been used by Armstrong [7][8][9] 

[13][58][69], Ghosh [18][27], Riesgo [60], and Chen [20][54]. All these researchers also 

use stuck-data faults on their non-control signals, so for completeness, these will be con- 

sidered in combination with the control faults. Armstrong and Cho [22] also proposed the 

Behavioral Stuck-at (BSA) fault, combining stuck-data and stuck-control faults by defin- 

ing stuck-at faults for unnamed signals corresponding to the conditional expressions of an 

if statement. All these behavioral fault models use the same fault technique, applying 

stuck-at faults to the data and control inputs of the circuit. 

The effectiveness of the stuck-data and stuck-control fault models will now be evalu- 

ated by applying them to the behavioral description in example IF1. Possible test vector 

sets will be developed and their ability to detect SSL gate level faults will be compared. 

There are three data signals (Y0, Yl, Z) and one control signal (SEL) in the example. 

Applying the stuck-data and stuck-control fault models implies a stuck-at-0 and stuck-at-1 

fault for each signal, resulting in the eight behavioral faults shown in Table 3-7. Note that 

the two control faults SEL-0 and SEL-1 are equivalent to stuck-then and stuck-else, respec- 

tively. 
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Options 2 &6 0 1 0 0 1 1 1 

Option 1 0 1 1 1 0 0 

Option 4 1 0 0 0 1 1 

Options 4 & 5 1 0 1 0 1 1 1 

Options 3 & 5 1 1 0 1 0 0 0 

Option 3 1 1 1 1 0 0 

Table 3-7 Stuck-data and stuck-control behavioral faults. 

None of the test vectors in Table 3-7 are mandatory; each behavioral fault has at least 

two possible tests that detect it. For completeness, all possible combinations of test vec- 

tors will be examined. There are 26 = 64 possible test vector sets, but due to overlapping 

coverage among test vectors, only 49 of them are unique. 

First, consider the effectiveness of a test vector set of size four at detection of gate 

level SSL faults. The test vectors for Set 1 are listed in Table 3-8 along with the behavioral 

faults from Table 3-7 that they detect. As expected, all behavioral faults are detected. 

Also indicated in Table 3-8 are the SOP circuit gate level SSL faults, from Figure 3-3 and 

Table 3-1, which are detected by each of the test vectors. Examination of the gate level 

fault coverage shows that the SOP SSL faults C-l, F-0, and G-l are left undetected by test 

vector Set 1. 

Test 
Vector 

Behavioral Faults 
Detected 

SOP Gate Level SSL Faults 
Detected 

Setl 

000 Y0-1,Z-1 A-1,D-1,H-1,Z-1 

001 Y0-0, Z-0, SEL-1 A-0, C-0, D-0, E-0, S-1.Z-0 

100 Yl-l.Z-1 B-1,D-1,H-1,Z-1 

110 Yl-0, Z-0, SEL-0 B-0, E-l, F-l, G-0, H-0, S-0, Z-0 

Table 3-8 Faults detected by test vector Set 1. 
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Similar analysis shows that any test vector set that does not contain the test vector 101 

will fail to detect the gate level fault C-l. Likewise, any test vector set that does not con- 

tain the test vector 010 will fail to detect the gate level faults F-0 and G-l. Of the nine test 

vector sets of size four, only four sets contain both test vectors 010 and 101. Coverage 

does not improve greatly with test vector set size. Half of the 24 sets containing five test 

vectors do not contain both test vectors necessary to ensure complete gate level fault cov- 

erage. Even when the size of the test vector set is increased to six, there are still seven sets 

out of a possible 16 that fail to detect all gate level faults. 

Similar results are obtained when the previous fault models are compared to a POS 

gate level circuit. A large number of possible test vector sets do not contain the test vec- 

tors necessary to ensure complete gate level fault coverage. Hence, the new behavioral 

fault model, based on functional analysis of control constructs, gives improved gate level 

fault coverage compared to the previous stuck-thenlstuck-else fault model. 

3.1.8 Expansion of the Fault Model 

The previous example involved selection of one of two options, hence its implementa- 

tion with a 2-to-l multiplexer. Selection from a larger set of input options must now be 

examined and the effects on the behavioral fault model developed. The if-then-else. con- 

struct contains an optional elsif clause to allow selection based on multiple conditions. 

Multiple eta/clauses can be used to allow selection among any number of inputs. 

if SEL = "00" then 
Z <= Y0; 

elsif SEL.= "01" then 
Z <= Yl; 

elsif SEL = "10" then 
Z <= Y2; 

elsif SEL = "11" then 
Z <= Y3; 

end i f; 

Figure 3-7 Behavioral description for example IF2. 

Example IF2, in Figure 3-7, selects one of four inputs (Y3, Y2, Yl, YO) for assignment 

to a single output (Z), based on the value of two control bits (SEL). For example, the con- 

trol bits SEL = "10" represent the binary encoding for 2, hence input Y2 is selected for 
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assignment to Z Note the lack of a final else clause, due to complete elaboration of values 

for SEL in the if-elsif clauses. Synthesis of example IF2 by AutoLogic II results in the 

expected 4-to-l multiplexer architecture shown in Figure 3-8. 

YOO 

YIO 

Y2 0 

Y3 0 

SEL(O) O 

SEL(l) O 

OZ 

Figure 3-8 Synthesized hardware for example IF2. 

3.1.8.1   Functional Analysis 

In order to perform a functional analysis similar to example IF1, a gate level imple- 

mentation of the entity MUX41 is needed. Mentor Graphics' Design Architect was used 

to provide the gate level detail shown in Figure 3-9. Note that the resulting SOP gate level 

structure agrees with the functional block diagram of the 4-line-to-l-line data selector/ 

multiplexer found in The TTL Data Book [67]. 

Y0O- 

YIO 

Y2 0- 

Y3 0 

SEL(O) [3>§Q.\oH 

SEL(l) O^^*^ 

CHA \M_ 

B 
CHB 

CHC 

CHD V 

-OZ 

Figure 3-9 Gate level circuit for example IF2. 

The gate level circuit contains 18 distinct internal lines (labeled E through V) in addi- 

tion to the six inputs (A, B, C, D, SO, SI), and one output (Z) for a total of 25 logical lines. 



42 

Again, applying the SSL fault model where each line can be either stuck-at-0 or stuck-at-1, 

there are a total of 50 gate level SSL faults in the circuit. The 26 possible input combina- 

tions result in a 64 by 50 fault table which will not be reproduced here. Reductions in the 

fault table due to functional equivalence and fault dominance are listed in Table 3-9. 

Faults Remarks Faults Remarks 

A-1,I-0,J-1,P-1 Dominate N-l K-0, L-0, M-0 Equivalent to A-0 

B-1,M-1,Z-1 Dominate L-l N-0, O-0, P-0 Equivalent to B-0 

C-l,V-l Dominate U-l Q-0, R-0, S-0 Equivalent to C-0 

D-l, S-l Dominate R-l T-0, U-0, V-0 Equivalent to D-0 

1-1, J-0, Z-0 Dominate B-0 

F-0,G-l Dominate Q-l 

F-l,G-0 Dominate C-0 

Table 3-9 Fault reductions for example IF2. 

The gate level faults of primary interest are those controlling the switching of the mul- 

tiplexer channels, the inputs to the channel AND gates. Activating the external control line 

fault SEL(0)-0 has the effect of simultaneously activating the faults L-l, N-0, R-l, and U-0. 

Each of these gate level faults corresponds to, or is equivalent to, an undominated func- 

tional fault. Testing for each of these functional faults provides complete test coverage for 

the fault SEL(0)-0. Combinations of undominated faults for each of the external control 

line faults are shown in Table 3-10. 

Faults Covering Faults 

S0-0,H-l B-0 D-0 L-l R-l 

S0-1, H-0 A-0 C-0 N-l U-l 

S1-0,E-1 C-0 D-0 K-l 0-1 

Sl-l,E-0 A-0 B-0 Q-l T-l 

Table 3-10 Covering faults for external control line faults. 

The resulting reduced fault set for example IF2 contains three distinct faults for each 

of the four channels of the multiplexer, for a total of 12 functional faults. The set of func- 
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tional faults is summarized in Table 3-11 along with the associated test vectors; don't care 

values are indicated by an X. For ease of comparison with the remarks column, the vectors 

are labeled with the multiplexer inputs (SI SO D C B A). This notation for test vectors is 

equivalent to the external input combination (SEL Y3 Y2 Yl YO). 

Fault Remarks 
Test Vector 

(SI SO DCBA) 

A-0 CHA = 0 00  XXXI 

B-0 CHB = 0 01  XXIX 

C-0 CHC = 0 10  X1XX 

D-0 CHD = 0 11   1XXX 

N-l CHA = CHA OR CHB 00   XX10 

Q-l CHA = CHA OR CHC 00  X1X0 

L-l CHB = CHB OR CHA 01  XX01 

T-l CHB = CHB OR CHD 01   1X0X 

K-l CHC = CHC OR CHA 10  X0X1 

U-l CHC = CHC OR CHD 10   10XX 

0-1 CHD = CHD OR CHB 11   0X1X 

R-l CHD = CHD OR CHC 11   01XX 

Table 3-11 Reduced functional faults for example IF2. 

Examination of the remarks column of Table 3-11, indicates that each channel can be 

corrupted by two different sources. Each of a channel's logically adjacent neighbors can 

cause a corruption, where logical adjacency means that the combination of control inputs 

(SI SO) differ by only one bit. For example, Channel A is selected by control inputs 0 0 

and is, therefore, logically adjacent to Channel B (01) and Channel C (10). 

Further examination of the test vectors associated with any pair of corruptions shows 

that, due to the don't cares, these vectors are not inconsistent with each other. It is possi- 

ble to chose a single test vector which will detect both corruptions of a channel by its adja- 

cent neighbors. Using the terminology of Hansen and Hayes [29], a compatible fault set is 

defined as a set of functional faults that can be detected by a single test. Hence, the two 

corruptions of a channel by its logically adjacent neighbors form a compatible fault set. 
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3.1.8.2   Generalized Functional Fault Model 

Comparison of the reduced functional faults for the SOP 4-to-l multiplexer with a cor- 

responding set of functional faults for a POS implementation yields a generalized func- 

tional fault model, not tied to a specific realization. Recall from Sections 3.1.4 and 3.1.5 

that the channel corruptions originating in an SOP realization produced an ORing of adja- 

cent channels, while a POS circuit caused an ANDing of those channels. A generalized set 

of functional faults and their corresponding test vectors are presented in Table 3-12. Note 

the combination of test vectors to form compatible fault sets. 

Functional Fault Remarks 
Test Vector 

(SI SOD CB A) 

CHA-CORRUPT (by CHB)(AND) CHA = CHA AND CHB 
00  X001 

CHA-CORRUPT (by CHC)(AND) CHA = CHA AND CHC 

CHB-CORRUPT (by CHA)(AND) CHB = CHB AND CHA 
01   0X10 

CHB-CORRUPT (by CHD)(AND) CHB = CHB AND CHD 

CHC-CORRUPT (by CHA)(AND) CHC = CHC AND CHA 
10   01X0 

CHC-CORRUPT (by CHD)(AND) CHC = CHC AND CHD 

CHD-CORRUPT (by CHB)(AND) CHD = CHD AND CHB 
11   100X 

CHD-CORRUPT (by CHC)(AND) CHD = CHD AND CHC 

CHA-CORRUPT (by CHB)(OR) CHA = CHA OR CHB 
00  X110 

CHA-CORRUPT (by CHC)(OR) CHA = CHA OR CHC 

CHB-CORRUPT (by CHA)(OR) CHB = CHB OR CHA 
01   1X01 

CHB-CORRUPT (by CHD)(OR) CHB = CHB OR CHD 

CHC-CORRUPT (by CHA)(OR) CHC = CHC OR CHA 
10   10X1 

CHC-CORRUPT (by CHD)(OR) CHC = CHC OR CHD 

CHD-CORRUPT (by CHB)(OR) CHD = CHD OR CHB 
11   011X 

CHD-CORRUPT (by CHC)(OR) CHD = CHD OR CHC 

Table 3-12 Generalized functional faults for example IF2. 
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3.1.8.3   Behavioral Fault Model 

Examination of the relationship between the generalized set of functional faults and 

the initial behavioral description for example IF2 will result in a behavioral fault model for 

the expanded if-then-else construct. 

The first then clause, Z <= YO, is activated when SEL="00", corresponding to 

Channel A of the multiplexer. This clause will be referred to as the 00-THEN clause. 

From the functional analysis of the multiplexer in Section 3.1.8.2, Channel A was affected 

by four functional faults, CHA-CORRUPT (by CHB)(AND), CHA-CORRUPT (by 

CHCXAND), CHA-CORRUPT (by CHB)(OR), and CHA-CORRUPT (by CHC)(OR). 

These faults can be mapped into the behavioral domain just like those from example IF1. 

The functional fault CHA-CORRUPT (by CHB)(AND) represents corruption of Chan- 

nel A by Channel B, which maps directly to the behavioral fault 00-THEN-CORRUPT (by 

01)(AND). The faulty version of the then clause can be represented by ANDing the right 

hand side of the assignment statement corresponding to Channel A with the right hand 

side of the assignment statement from Channel B. The resulting faulty version of the 

assignment statement for the 00-THEN clause becomes Z <= YO AND Yl. Likewise, 

the corruption of Channel A by Channel C results in the definition of the behavioral fault 

00-THEN-CORRUPT (by 10)(AND). 

The (OR) corruptions of the 00-THEN clause are formed in a similar manner. Finally, 

the remaining then clauses each have four behavioral faults, corresponding to their respec- 

tive channels. A subset of the resulting 16 behavioral faults, four for each of the four 

clauses/channels, is presented in Figure 3-10. 

00-THEN-CORRUPT (by 01)(OR) 
if  SEL  =   "00"   then 

Z <= YO OR Yl; 
elsif SEL = "01" then 

Z <= Yl; 
elsif SEL = "10" then 

Z <= Y2; 
elsif SEL = "11" then 

Z   <=  Y3; 
end if; 

00-THEN-CORRUPT (by 10)(OR) 
if   SEL  =   "00"   then 

Z <= Y0 OR Y2; 
elsif SEL = "01'^ then 

Z <= Yl; 
elsif SEL = "10" then 

Z <= Y2; 
elsif SEL = "11" then 

Z <= Y3; 
end i f; 

Figure 3-10 Control fault model for expanded if-then-else. 



46 

01-THEN-CORRUPT (by 00)(OR) 
if SEL = "00" then 

Z <= YO; 
elsif SEL = "01" then 

Z <= Yl OR YO; 
elsif SEL = "10" then 

Z <= Y2; 
elsif SEL = "11" then 

Z <= Y3; 
end if; 

01-THEN-CORRUPT (by ll)(OR) 
if SEL = "00" then 

Z <= YO; 
elsif SEL = "01" then 

Z <= Yl OR Y3; 
elsif SEL = "10" then 

Z <= Y2; 
elsif SEL = "11" then 

Z <= Y3; 
end if; 

Figure 3-10 Control fault model for expanded if-then-else. 

3.1.8.4   Evaluation of the Behavioral Fault Model 

To evaluate the effectiveness of the behavioral fault model for the expanded if-then- 

else construct, it will be compared to the underlying SSL gate level faults it was meant to 

encompass. Test vectors will be determined for each behavioral fault and the gate level 

fault coverage of these test vectors will be examined. 

Testing for the first behavioral fault from Figure 3-10, 00-THEN-CORRUPT (by 

01)(OR), requires activation of the first then clause with SEL= "00". The fault free behav- 

ior^ <= Y0, must be compared to the faulty behavior, Z <= Y0 OR Yl. Setting Y0=0 

will result in Z=0 for an uncorrupted channel. If Yl=l, then a corruption of the channel 

by the adjacent channel, 01-THEN, will result in Z=l, thus detecting the fault. Since the 

other two clauses do not cause any corruptions with this fault, the other inputs (Y3, Y2) can 

remain don't cares. The resulting test vector (SEL Y3 Y2 Yl YO) is 00XX10. By similar 

analysis, the other (OR) corruption fault for this clause, 00-THEN-CORRUPT (by 

10)(OR), requires the test vector 00X1X0. 

Recall that the functional faults for Channel-CORRUPT formed a compatible fault set, 

one that could be detected by a single test vector. Likewise, the two Clause-CORRUPT 

behavioral faults should also form a compatible fault set. The previous analysis deter- 

mined that the two test vectors necessary to detect the two Clause-CORRUPT (OR) faults 

for the 00-THEN clause were 00XX10 and 00X1X0. Comparison of the two test vectors 

confirms that they are, in fact, compatible. Elimination of don't cares for Y2 and Yl pro- 

duces a combined test vector 00X110. The behavioral faults and their corresponding test 

vectors are summarized in Table 3-13. 
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Behavioral Fault 
Test Vector 

(SEL Y3 Y2 Yl YO) 

00-THEN-CORRUPT (by 01)(AND) 
00  X001 

00-THEN-CORRUPT (by 10)(AND) 

01-THEN-CORRUPT (by 00)(AND) 
01   0X10 

01-THEN-CORRUPT (by 11)(AND) 

10-THEN-CORRUPT (by 00)(AND) 
10   01X0 

10-THEN-CORRUPT (by 11)(AND) 

11-THEN-CORRUPT (by 01)(AND) 
11   100X 

11-THEN-CORRUPT (by 10)(AND) 

00-THEN-CORRUPT (by 01)(OR) 
00  X110 

00-THEN-CORRUPT (by 10)(OR) 

01-THEN-CORRUPT (by 00)(OR) 
01   1X01 

01-THEN-CORRUPT (by ll)(OR) 

10-THEN-CORRUPT (by 00)(OR) 
10   10X1 

10-THEN-CORRUPT (by ll)(OR) 

11-THEN-CORRUPT (by 01)(OR) 
11   011X 

11-THEN-CORRUPT (by 10)(OR) 

Table 3-13 Behavioral test vectors for example IF2. 

The behavioral test vectors from Table 3-13 provide complete SSL gate level fault cov- 

erage for both SOP and POS implementations of example IF2. The results confirm that 

the control fault model for the expanded if-then-else construct is a valid abstraction into 

the behavioral domain of the original gate level SSL faults. 

3.1.9 Summary 

A new behavioral fault model has been developed for the control construct if-then- 

else. This new control fault model specifies that each clause of an if-then-else statement 

can be affected by two different types of faults, Clause-CORRUPT (OR) and Clause- 

CORRUPT (AND). The actual number of Clause-CORRUPT faults depends on the size of 

the model and the resulting number of logical adjacencies between clauses. 
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In the VHDL behavioral description, a Clause-CORRUPT (OR) fault is represented by 

considering the effect of the corrupting clause. The right hand side of the assignment 

statement for the corrupted clause is ORed with the right hand side of the assignment 

statement for the corrupting clause. A test vector for this fault is determined by setting the 

fault free behavior of the uncorrupted clause to '0\ The corrupting clause is then set to 

'1', thus producing a conflict with the fault free behavior. Multiple Clause-CORRUPT 

(OR) faults may affect the same clause, due to logical adjacencies between clauses. These 

faults can form a compatible fault set and their test vectors can, therefore, be combined to 

produce a single test for the corruption of that clause. 

The faulty operation of a clause due to a Clause-CORRUPT (AND) fault is represented 

in a similar manner. The right hand side of the assignment statement for the corrupted 

clause is ANDed with the right hand side of the assignment statement for the corrupting 

clause. A test vector forces the fault free behavior of the uncorrupted clause to produce an 

output of 7', while the corrupting clause is set to produce an output of '0'. 

Test vectors generated from these behavioral faults can be applied to gate level imple- 

mentations of the behavioral descriptions. Examples have shown the ability of these test 

vectors to detect underlying gate level SSL faults in synthesized circuits. Analysis has also 

shown that the test vectors from this new control fault model do provide improved gate 

level fault coverage over previous behavioral fault models. 

3.2   CASE 
The other VHDL control construct closely related to if-then-else is the case statement. 

The case statement allows selection of statements to execute depending on the value of a 

selection expression. Multiple when clauses can be used to allow selection among any 

number of choices. All choices must be distinct and all values must be represented in the 

choice lists, or the special choice others must be included as the last alternative. 

The case statement is really just an alternative representation of the if-then-else con- 

struct with more restrictions. Use of if-then-else versus case is usually just a matter of 

programming style; any case statement can be rewritten as an equivalent if-then-else. The 

example in Figure 3-11 shows two equivalent behavioral descriptions, one using an if 

statement and the other using a case statement. Note that the when clauses perform the 

same function for the case statement as the then clauses in the //"statement. The when oth- 
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ers clause ensures complete elaboration of choices for the case statement, just like the else 

clause for the zj statement. 

case SEL is 
if SEL = "00" then when "00" => 

Z <= Y0; Z <= Y0; 
elsif SEL = "01" then when "01" => 

Z <= Yl; Z <= Yl; 
else when others => 

Z <= Y2; Z <= Y2; 
end if; end case; 

Figure 3-11 Equivalent if-then-else and case statements. 

In Appendix E Armstrong and Gray and Mentor Graphics demonstrate the link 

between the case statement and the functional building block of a multiplexer. These 

examples reinforce the similarities between the control constructs if-then-else and case. 

3.2.1 Application of the Control Fault Model 

The simple example, CASE1, from Figure 3-11 will be used to demonstrate the appli- 

cation of the new control fault model to the case construct. The fault model specifies that 

each clause of an if-then-else statement, and hence of a case statement, can be affected by 

two different types of faults, Clause-CORRUPT(OR) and Clause-CORRUPT (AND). The 

actual number of Clause-CORRUPT faults depends on the size of the model and the 

resulting number of logical adjacencies between clauses. Clause-CORRUPT faults are 

now designated WHEN-CORRUPT faults, identified by the appropriate choice as well as 

the corrupting clause. 

In order to specify the WHEN-CORRUPT faults, the logical adjacencies between 

clauses must be identified. Figure 3-12 provides a graphical representation of the logical 

adjacencies between the clauses for example CASE1. The when others clause defines the 

behavior for all choices not explicitly specified in previous clauses. Figure 3-12 indicates 

that each clause of the case statement is adjacent to two other clauses. Hence, there are 

two WHEN-CORRUPT (OR) faults and two WHEN-CORRUPT (AND) faults for each of 

the three clauses in the example. 
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Figure 3-12 Logical adjacencies among clauses. 

The when others clause from example CASE1 corresponds to the control input combi- 

nation SEL="1X". In order to specify an adjacency between the when others clause and 

another clause, the don't care must be eliminated. For example, the clause when "00" 

should be logically adjacent to the clauses when "01" and when "10". Though the clause 

when "10" does not explicitly exist, it is created by the designation of the don't care for 

the when others clause as SEL(0)=0. The resulting adjancies and WHEN-CORRUPT 

(AND) faults are shown in Figure 3-13. An additional six behavioral faults for WHEN- 

CORRUPT (OR) faults are determined in a similar manner. 

WHEN-00-CORRUPT (by 01 HAND) 
case SEL  is 

when   "00"   => 
Z   <=   YO   AND  Yl; 

when   "01"   => 
Z <= Yl; 

when others => 
Z <= Y2; 

end case; 

WHEN-01-CORRUPT (by 00)(AND) 
case SEL is 

when "00" => 
Z <= Y0; 

when "01" => 
Z <= Yl AND YO; 

when others => 
Z <= Y2; 

end case; 

WHEN-00-CORRUPT (by 10)(AND) 
case SEL is 

when "00" => 
Z <= Y0 AND Y2; 

when "01" => 
Z <= Yl; 

when others => 
Z <= Y2; 

end case; 

WHEN-01-CORRUPT (by 11)(AND) 
case SEL is 

when "00" => 
Z <= Y0; 

when "01" => 
Z   <=   Yl   AND  Y2; 

when others  => 
Z   <=  Y2; 

end case; 

Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1. 
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WHEN-10-CORRUPT(by 00)(AND) 
case SEL is 

when "00" => 
Z <= YO; 

. when "01" => 
Z <= Yl; 

when others => 
Z   <=  Y2   AND YO; 

end case; 

WHEN-11-CORRUPT (by 01)(AND) 
case  SEL  is 

when   "00"   => 
Z   <=  YO; 

when  "01"   => 
Z   <=  Yl; 

when others  => 
Z   <=  Y2  AND Yl; 

end case; 

Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1. 

Test vectors for the behavioral faults are derived using the methodology described in 

Section 3.1.9. Recall that vectors derived from corruptions to the same channel can form a 

compatible fault set with a single test. The resulting test vectors are listed in Table 3-14. 

Behavioral Fault 
Test Vector 

(SEL Y2 Yl YO) 

WHEN-00-CORRUPT (by 01)(AND) 
00   001 

WHEN-00-CORRUPT (by 10)(AND) 

WHEN-01-CORRUPT (by 00)(AND) 
01   010 

WHEN-01-CORRUPT (by 11)(AND) 

WHEN-10-CORRUPT (by 00)(AND) 10   1X0 

WHEN-11-CORRUPT (by 01)(AND) 11   10X 

WHEN-00-CORRUPT (by 01)(OR) 
00   110 

WHEN-00-CORRUPT (by 10)(OR) 

WHEN-01-CORRUPT (by 00)(OR) 
01   101 

WHEN-01-CORRUPT (by ll)(OR) 

WHEN-10-CORRUPT (by 00)(OR) 10   0X1 

WHEN-11-CORRUPT (by 01)(OR) 11   01X 

Table 3-14 Behavioral test vectors for example CASE1. 

3.2.2 Evaluation of the Fault Model 

The VHDL behavioral description for example CASE1 was synthesized using Mentor 

Graphics' AutoLogic II. The resulting multiplexer architecture is shown in Figure 3-14. 
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Figure 3-14 Synthesized Structural for example CASE1. 

Fault simulations were then performed on the gate level circuit for Structure 1 using the 

behavioral test vectors shown in WAVES format in Figure 3-15. 

% SEL Y2 Yl YO Z : time 
% Clause-CORRUPT(AND) 
00 001 1 
01 010 1 
10 1X0 1 
11 10X 1 

500 ns 
500 ns 
500 ns 
500 ns 

% Clause-CORRUPT(OR) 
00 110 0 
01 101 0 
10 0X1 0 
11 01X 0 

500 ns 
500 ns 
500 ns 
500 ns 

Figure 3-15 WAVES test vectors for example CASE1. 

According to MIL-STD 883D [52], Structural contains 34 unique gate level SSL 

faults. Simulations are performed for each of the gate level faults and the fault is reported 

as detected when the circuit's output differs from the expected output. All SSL faults were 

detected by the behavioral test vectors in the multiplexer implementation of example 

CASE1. The fault coverage was next evaluated for an alternate gate level realization. 

AutoLogic II was again used to synthesize and then optimize the VHDL behavioral 

description for example CASE1. The resulting circuit for Structure2 is shown in Figure 3- 

16. Note that the circuit contains a mix of NAND, OR, and NOT gates and does not 

directly relate to any of the circuits analyzed in the development of the behavioral fault 

models for the control constructs if-then-else or case. 
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Oz 

Figure 3-16 Synthesized Structure2 for example CASE1. 

Fault simulations were performed on the gate level circuit using the behavioral test 

vectors from Figure 3-15. The resulting fault coverage as a function of the input test vec- 

tors is shown in Figure 3-17. Though the actual shape of the graph may vary with the 

order of the application of the test vectors, the resulting fault coverage will be the same. 

Fault coverage for Structure2 was 34/34 = 100%, complete SSL gate level fault coverage. 
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Figure 3-17 Fault coverage for Structure2 of example CASE1. 

3.2.3 Comparison with Previous Behavioral Fault Models 

As was discussed in Chapter 2 of this dissertation, most higher level fault models also 

address the control construct case. However, contrary to if-then-else where there was a 

general consensus, varying fault models are proposed for the case statement. Armstrong 

[7][8][9][13][58][69] proposes the dead clause fault in which each clause in a case state- 
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ment fails to a no-operation. The dead clause fault model is also used by Chen [20][54]. 

Armstrong and Cho [22] later define the Behavioral Stuck-open (BSO) fault, combining 

assignment control faults and dead clause faults. In a BSO fault the value of the source 

expression of an assignment statement is not correctly transferred to its target. 

Since Ghosh [18][27] bases his fault models on the programming language C, instead 

of VHDL, the equivalent to the case statement is the switch (Id). The corresponding fault 

model states that the switch may select either the cases corresponding to the lower or 

upper extremes of the switch identifier's value system, all, or none of the specified cases. 

Finally, Riesgo [60] proposes a fault model for case-is-when in which the expression 

which controls the case statement may be stuck-at-" all possible values." 

Recall that the new behavioral fault model for the case statement was based on the fact 

that if-then-else and case represent similar selection activities leading to multiplexer archi- 

tectures. Any case statement can be rewritten as an equivalent if-then-else, therefore, the 

faults models for the equivalent statements should be the same. Only Riesgo proposes a 

fault model for the case statement which is equivalent to the one proposed for if-then-else. 

The equivalent stuck-control fault model is stuck-then/stuck-else, which was shown to 

have deficiencies in detecting gate level faults by the analysis in Section 3.1.7. 

Ghosh's fault model is based on multiple stuck-at faults on the control inputs resulting 

in only the upper and lower extremes of the switch (Id) statement. Individual stuck-at 

faults are not considered on control lines, causing intermediate values to be neglected. 

Hence, faults developed for a switch statement, will not be consistent with those developed 

for an equivalent if-then-else. Also, the hardware analogy, that the decoder for Id may fail 

such that a logic 1 is always asserted at all of the output ports, would correspond to the 

unlikely scenario of all the channels of the multiplexer being simultaneously stuck-on. 

The dead clause and BSO faults proposed by Armstrong represent the farthest diver- 

gence from those proposed for if-then-else. This occurs even though Armstrong and Gray 

[10] demonstrate the similarities between if-then-else and case in their discussion of hard- 

ware implementation of VHDL constructs. The faulty version of a clause is represented 

by replacing the right hand side (source) of an assignment statement with the left hand 

side (target). For example, an assignment statement from example CASE2, Z   <=   Yl, 
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would be faulted as Z   <=   Z.  The result is inconsistent with the faults that would be 

defined for an equivalent if-then-else construct. 

3.3   Conclusions 

A new behavioral fault model has been developed for the control constructs if-then- 

else and case. The new fault model is more closely linked to underlying hardware by 

combining VHDL synthesis information with the industry standard single-stuck-line (SSL) 

fault model. Each clause of an if-then-else or case statement can be affected by 2 different 

types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND). The actual num- 

ber of Clause-CORRUPT faults depends on the size of the model and the resulting number 

of logical adjacencies between clauses. 

Test vectors derived from these control faults can be applied to gate level implementa- 

tions of the VHDL behavioral descriptions. Examples have shown the ability of these test 

vectors to detect underlying gate level SSL faults in synthesized circuits. Because the 

behavioral faults were derived from a functional analysis of the selection activity of multi- 

plexers, they provide complete gate level fault coverage over a broad range of implementa- 

tions. Detailed analysis has shown that the test vectors from this new control fault model 

do provide improved gate level fault coverage over previous behavioral fault models. 

The new control fault model developed in this chapter provides two improvements 

over previous behavioral fault models. First, detection of low level SSL faults is improved 

by linking the selection activity of control constructs to the functional building block of a 

multiplexer. Finally, the control constructs if-then-else and case have been brought 

together in a single consistent fault model, where each clause can be affected by a some 

number of Clause-CORRUPT'faults. 



Chapter 4 

Relational Operators 

The only relational operator used thus far has been the "=" as part of the condition 

which controlled the */statement. The inclusion of other relational operators such as ">" 

and "<" implies the use of a comparator module in hardware. The comparison function 

will first be analyzed, using the techniques developed for the multiplexing function, in 

order to determine a generalized set of functional faults. These faults will then be 

abstracted into the behavioral domain by examination of the relationship between the 

functional faults and the behavior of the relational operators. 

Because of similarities in their functions, the predefined VHDL relational operators 

from Table 1-2 can be divided into two groups for analysis. The relation A > B (GT) is the 

same as B < A (LT), hence only one of these operators needs to be analyzed. The relation 

A > B (GT) is the opposite of A <= B (LE); the hardware need only differ by a single 

inverter. Likewise A < B (LT) is related to A >= B (GE). Therefore, the set of generalized 

functional faults developed for the GT function can be used as a basis for all of the above 

relations (GT, LT, GE, LE). The same argument implies that the relation A = B (EQ) can 

be analyzed to find functional faults which also apply to the function A MB (NE). 

4.1   Greater Than (GT) 

Several common implementations of the GT function were first analyzed to assess the 

"worst case" for functional faults. Abstraction of these faults into the behavioral domain 

should provide complete gate level SSL fault coverage over a broad range of possible real- 

izations of the comparison functions. Gate level circuits were examined for 2-level (SOP 

and POS), factored, and cascade implementations. 

A comparison of functional faults indicates that the test vectors required to cover all 

gate level faults in either the factored or cascade implementations are a subset of the vec- 

tors for the 2-level realizations. Furthermore, a common set of test vectors provides com- 

plete gate level fault coverage in either the SOP or POS circuits. Therefore, just like the 

analysis of the multiplexing function, the SOP and POS implementations will again be 

used to form a generalized set of functional faults for the GT function. 

56 
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4.1.1 Generalized Functional Faults 

The SOP and POS implementations of the 2-bit A > B function can be obtained from 

the analysis of the Karnaugh map shown in Figure 4-1. 
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Figure 4-1 Karnaugh map for 2-bit GT function. 

The groupings of minterms are shown with dashed lines and produce the SOP function 

GT = AlBl +A0B1B0 + AlA0BQ. A functional analysis of the gate level SOP circuit 

produces a reduced set of functional faults shown in Table 4-1. Test vectors are shown in 

base-4 for ease of magnitude comparison of A and B. 

Fault 
Faulty 
Output 

Test Vectors 
(AB) 

G-l 1 00 

G-0 0 10 

1-1 1 11 

H-l 1 12 

E-0 0 20,21,31 

K-l 1 22 

J-0 0 32 

L-l 1 33 

Table 4-1 Reduced functional faults for SOP GT. 
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Note that a faulty output of 0 occurs when A is in fact greater than B (e.g. 32), yet the gate 

level circuit fails to give a proper indication of GT = 1. Likewise a faulty output of 1 

occurs when A is not greater than B (e.g. 22). 

Grouping of the maxterms in the Karnaugh map in Figure 4-1, shown with solid lines, 

produces the POS function GT = (Al + A0)(Al + B~l)(Al + B~0)(A0 + i^)(Z^ + B~0). A 

functional analysis of the gate level POS circuit produces the reduced set of functional 

faults shown in Table 4-2. 

Fault 
Faulty 
Output 

Test Vectors 

E-l 1 00 

F-0 0 10 

1-1 1 11 

G-l 1 12 

E-0 0 20,21 

1-0 0 21,31 

K-l 1 22 

G-0 0 32 

M-1 1 33 

Table 4-2 Reduced functional faults for POS GT. 

Examination of the two sets of functional faults indicates that the seven mandatory test 

vectors are the same for both the SOP and POS circuits. Note that a single input combina- 

tion (21) will detect the remaining faults in either implementation. Thus, a set of eight 

generalized functional faults and test vectors is produced. 

4.1.2 Classification of Functional Faults 

In order to aid in the analysis and classification of the generalized set of functional 

faults, an alternate representation is shown in Figure 4-2. The columns of the figure indi- 

cate the base-4 value of input A, while the rows specify the value of B. The heavy line cut- 

ting through the figure represents the GT function; the shaded area above the line indicates 
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A is greater than B. The diagonal just below the heavy line indicates where A and B are 

equal. 

A 

0 1 2 3 

B 

0 I m 

1 i m 

2 ii i m 

3 i 

Figure 4-2 Fault classes for 2-bit GT function. 

The roman numerals in Figure 4-2 indicate the location of the test vectors for the eight 

functional faults derived in Section 4.1.1. Class I has been assigned to the test vectors 

where A and B are equal (00, 11, 22, 33). For this class, the faulty function gives an erro- 

neous TRUE for the relation A > B. The other fault that produces an erroneous TRUE (12) 

has been designated as Class II. In this class, A is less than, rather than equal to, B. 

Finally, Class III has been assigned to the test vectors where A is in fact greater than B (10, 

21, 32), but the faulty function gives an erroneous FALSE. 

Classes I and III follow easily identifiable patterns, however, Class II is still somewhat 

vague. To gain additional insight into the make-up of Class II and to ensure that the initial 

classification of functional faults is valid, a functional analysis was performed on a 3-bit 

GT function. The resulting functional faults are classified in Figure 4-3. 

As expected, the functional faults for Classes I and III follow the same patterns as the 

2-bit case. The octal test vectors in Group II (12, 34, 56) provide the additional informa- 

tion necessary to identify a pattern. Note that in both Classes II and III, A and B differ by 

onlyi; A+l = BorA = B + l respectively (+indicates addition). By induction, 

these fault classifications can now be generalized for an n-bit GT function. The resulting 

functional faults and fault classes are presented in Table 4-3. 
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Figure 4-3 Fault classes for 3-bit GT function. 

Class 
Faulty 
Output 

A vs. B 
#Test 

Vectors 

I TRUE A = B 2n 

II TRUE 
A+1=B 
(A odd) 

2n-l. j 

III FALSE A = B + 1 2n-l 

Table 4-3 Functional faults for n-bit GT. 

4.1.3 Behavioral Fault Model 

Now that the three classes of functional faults have been identified, they can be 

abstracted into the behavioral domain by examining the relationship between the faults 

and the original VHDL operator (>). Appendix C gives the details of usage for relational 

operators in expressions, which form the conditions for the «/statement. The expressions 

yield Boolean results, which control the selection of the appropriate clause. In order to 

model a fault in a relational operator, the controlling expression needs to be modified such 

that it produces an erroneous result (TRUE or FALSE) corresponding to that fault. 



61 

First consider the four Class I faults for a 2-bit GT function. The fault-free controlling 

condition can be written as: 

if A > B then 

Class I faults produce an erroneous TRUE when A =  B, so the initial inclination would 

be to simply modify the condition to read: 

if   (A >  B)   OR   (A =  B)   then 

However, this has the effect of producing a single behavioral fault which can be detected 

by any one of the four required test vectors. What is needed is a distinct behavioral fault 

for each test vector. Hence, the first Class I behavioral fault can be rewritten as: 

if   (A  >  B)   OR   ((A =  B)   AND   (A =  "00"))   then 

The other three Class I faults are modeled by enumeration of the appropriate values for A. 

Class II faults also produce an erroneous TRUE, this time when A + 1 = B (A odd). 

Hence the single Class II fault for the 2-bit GT function can be modeled as: 

if   (A  >  B)   OR   ((A +   1   =  B)   AND   (A =   "01"))   then 

Finally, Class HI faults produce an erroneous FALSE when A = B + 1. To model 

these faults in the behavioral domain, the original expression can be ANDed with 0 for the 

appropriate input combination. The NAND function produces the required behavior, giv- 

ing the following model for the first Class III fault: 

if   (A  >  B)   AND   ((A =  B  +   1)   NAND   (B  ■   "00"))   then 

The complete set of Class III faults is modeled by enumeration of the 2n -1 values for B. 

Class Faulty Expression Faults 

I (A  >  B)   OR   ((A  =  B)   AND   (A  =   "00")) 

A =   "00" 
A =   "01" 
A  =   "10" 
A  =   "11" 

n (A  >  B)   OR   ((A  +   1   -  B)   AND   (A  =   "01")) A  =   "01" 

m (A  >  B)   AND   ((A  =  B  +   1)   NAND   (B  =   "00")) 
B   =   "00" 
B   =   "01" 
B   =   "10" 

Table 4-4 Behavioral faults for 2-bit GT. 
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4.1.4 Adapting the Model for GE, LT, and LE 

The three fault classes and their associated behavioral fault models can be easily 

adapted for the other relational operators in this group (GE, LT, LE). As an example, the 

functional faults for the relation A >= B (GE) are presented in Figure 4-4. The thick line 

representing the GE function now lies below the diagonal of the figure. The locations of 

the Class I faults remain unchanged, however they now represent an erroneous FALSE for 

the GE function. Class II faults still produce the same erroneous result as Class I faults 

and the Class III faults now result in an incorrect TRUE. 

A 

0 l 2 3 

B 

0 I 

1 m i n 

2 in i 

3 m I 

Figure 4-4 Fault classes for 2-bit GE function. 

The functional faults for the GE function can now be summarized in Table 4-5 and 

result in the definition of the behavioral faults in Table 4-6. 

Class 
Faulty 
Output 

A vs. B 
#Test 

Vectors 

I FALSE A = B 2n 

II FALSE 
A = B + 1 
(Bodd) 

2n-l . x 

III TRUE A+1=B 2n-l 

Table 4-5 Functional faults for n-bit GE. 

Similar analysis produces the generalized functional faults for the LE and LT func- 

tions. Since these functions differ by only a single inverter from GT and GE respectively, 

the behavioral fault models follow directly by inversion of the faulty output values. 
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Class Faulty Expression Faults 

I (A  >=   B)   AND   ((A  =  B)   NAND   (A  =   "00")) 

A = "00" 
A = "01" 
A = "10" 
A  =   "11" 

II (A >=  B)   AND   ((A = B  +   1)   NAND   (B  ■  "01")) B  =   "01" 

III (A  >=   B)   OR   ((A  +   1   =  B)   AND   (A  =   "00")) 
A = "00" 
A = "01" 
A  =   "10" 

Table 4-6 Behavioral faults for 2-bit GE. 

4.1.5 Summary 

A set of functional and behavioral faults have been developed for the first group of 

relational operators (GT, GE, LT, LE). Each operator is affected by three classes of faults. 

Class I faults occur when the operands of the relation are equal. Class II faults produce 

the same faulty output as Class I faults. Finally, Class HI faults produce the opposite 

faulty output from Classes I and II. 

4.2   Threshold Detection 

In the previous analysis, both operands for the relational operators were signals/vari- 

ables. When one operand is a constant, the behavior changes to that of a unary operator 

or threshold detector. Treated individually, each threshold value represents a separate 

function with its own set of generalized faults. The analysis presented here examines 

those faults as a whole in order to identify patterns in the required test vectors. 

4.2.1 Greater Than Signed Threshold 

For this development, a signed comparison of a 4-bit number was chosen. The 24 = 16 

threshold values provide enough data to identify patterns in the test vectors. Use of 2's 

complement numbers helps demonstrate the general applicability of the functional analy- 

sis techniques. 

A 4-bit 2's complement number represents the integer range from -8 to +7. Each 

threshold function (A > -8, A > -7,..., A > 7) was analyzed (SOP and POS) to produce a 

generalized set of functional faults. A subset of these results is presented in Figure 4-5. 
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Each threshold is indicated by a heavy vertical line, while the functional test vectors are 

shaded. 

A>-5 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>-4 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>-3 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>-2 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>-1 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>0 -8 -7 -6 -5 -4 -3 -2 1 0 +1 +2 +3 +4.. +5 +6 +7 

A>+1 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>+2 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

A>+3 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 

Figure 4-5 Functional test vectors for signed GT threshold. 

From these test vectors it is possible to identify a pattern which will produce a behav- 

ioral fault model for the threshold functions. Every function requires the two test vectors 

bracketing the threshold. Each pattern of test vectors is then based on the binary value of 

the distance the threshold function is from the center of the range of values, indicated by 

the double lines. Additional test vectors are determined by moving left and right of the 

initial two test vectors at step sizes starting with the location of the Is in a binary represen- 

tation of the distance from center and increasing by powers of 2. The pattern is symmetri- 

cal about the threshold, but truncated beyond the far side of the center line. 

For example, the threshold for A > -2 requires the test vectors -2 and -1 and is one 

space from the center. Therefore, the additional test vectors to the left of the threshold are 

-2 -1 = -3 and -3 - 2 = -5. To the right of the threshold produces -1 + 1 = 0, with the pat- 

tern truncated beyond. For a threshold of A > 4, the initial test vectors are +4 and +5. 

The threshold is five spaces from center indicating step sizes of one and four. Thus, addi- 

tional test vectors to the left are 4 -1 = 3 and 3 - 4 = -1. The only test vector to the right is 

5 + 1 = 6, because 6 4- 4 = 12 is beyond the range of a 4-bit 2's complement number. 

4.2.2 A Quick Example 

A quick example will be used to demonstrate application of the behavioral fault pat- 

terns for threshold functions. Example LE5 in Figure 4-6 defines the behavior of a signed 
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less than or equal to (LE) threshold function. The integer range -16 to +15 will be synthe- 

sized as a 5-bit 2's complement number. 

entity LE5 is 
port(A: in INTEGER range -16 to +15; LE: out BIT); 

end LE5; 

architecture BEHAVE of LE5 is 
begin 

process(A) 
begin 

if A <= 5 then 
LE <= x1'; 

else 
LE <= '0'; 

end if; 
end process; 

end BEHAVE; 

Figure 4-6 Behavioral description for example LE5. 

The LE function places the threshold between +5 and +6. The threshold lies six spaces 

from the center of the range of values, implying step sizes of two and four. Therefore, 

additional test vectors to the left are 5 - 2 = 3 and 3 - 4 = -1. Test vectors to the right are 

6 + 2 = 8 and 8 + 4 = 12. The test vector pattern is represented graphically in Figure 4-7. 

A<=5 -1 0 1 2 3 4 :5 ; 6 7 8 9 10 11 12 13 

Figure 4-7 Behavioral test vectors for example LE5. 

Example LE5 was synthesized to the gate level circuit shown in Figure 4-8. Fault sim- 

ulations using the behavioral test vectors from Figure 4-7 resulted in a SSL gate level fault 

coverage of 18/18 = 100%. 

i<4:0) 

Ole 

Figure 4-8 Synthesized circuit for example LE5. 

The behavioral test vector patterns presented here are equally applicable to unsigned 

threshold comparisons. For more examples using comparison functions see Appendix A. 



66 

4.3   Equal (EQ) 

The development of functional and behavioral faults for the EQ (and NE) function(s) 

follows the same process as that for GT. In addition, since EQ is often used in conjunction 

with other relational operators, the function is sometimes formed by a combination of the 

outputs of the other comparison modules. 

4.3.1 Functional Faults 

As was the case with the GT function, the patterns for the EQ function are somewhat 

vague in the 2-bit case. Therefore, the functional faults and classes will be directly pre- 

sented for the 3-bit case and then generalized for n-bits. A functional analysis of gate level 

implementations of the EQ function yields the fault classes in Figure 4-9 (A and B shown 

in octal). 

A 

0 1 2 3 4 5 6 7 

B 

0 I m III m 

1 II 

2 II 

3 

4 II 

5 • 

6 

7 I 

Figure 4-9 Fault classes for 3-bit EQ function. 

Class I faults are again defined along the diagonal of the table, however, only two test 

vectors are required (00 and 77). Class II faults are selected to be those below the diago- 

nal, while Class HI faults are above. Both Class II and III fault sets are of size 3 (n). 

The patterns apparent in the 3-bit case imply the definition of the functional faults in 

Table 4-7. The test vectors for Class I faults consist of the all 0's and all i's cases. Both 
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Class II and III faults have test vectors where one operand is 0 and the other has a single 1, 

hence the n possible combinations. 

Class 
Faulty 
Output 

A vs. B 
#Test 

Vectors 

I FALSE 
A = B = 0 

A = B = 2n -1 
2 

II TRUE A = 0, Bi = 1 
i = 0, l,...,n-l 

n 

ni TRUE 
Aj = 1, B = 0 

i = 0, l,...,n-l 
n 

Table 4-7 Functional faults for n-bit EQ. 

4.3.2 Behavioral Fault Model 

The functional faults developed for the EQ function can now be abstracted into the 

behavioral domain, just like those for GT. For the Class I faults, the faulty output of 

FALSE implies the use of an AND/NAND combination. Likewise, the Class II and III 

faults employ the OR/AND structure seen in the other fault models. The resulting behav- 

ioral faults for a 2-bit EQ function are presented in Table 4-8. 

Class Faulty Expression Faults 

I (A =.B)   AND   ((A = "00")  NAND  (B = »00")) 
A,B   =   "00" 
A,B   =   "11" 

n (A  =   B)   OR   ((A  =   "00")   AND   (B  =   "01")) 
B   =   "01" 
B   =   "10" 

III (A  =   B)   OR   ((A  =   "01")   AND   (B  =   "00")) 
A  =   "01" 
A  =   "10" 

Table 4-8 Behavioral faults for 2-bit EQ. 

The functional and behavioral faults developed for the EQ function can now be readily 

adapted to NE. Due to the symmetry of the functions, the location of all the test vectors 

remains the same. Only the reversal of the faulty outputs causes a change in the behav- 

ioral fault model. 
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4.4   Comparison with Previous Fault Models 

In contrast to if-then-else and case, few previous fault models address relational oper- 

ators. As part of the development of the "B-algorithm: A Behavioral Test Generation 

Algorithm," [21] [22] Cho and Armstrong developed a new behavioral fault model which 

included relational operators as part of micro-operation faults. Such faults perturb a rela- 

tional operator to another operator as indicated in Table 4-9. Recall that this fault model 

suffered from what the authors called the "big micro-operation problem," where only a 

single test vector is generated for a complex block of logic. In order to raise their equiva- 

lent gate level coverage numbers to acceptable levels, an additional 4n-l test vectors are 

generated by a heuristic test generator for each n-bit micro-operation. 

Fault-free Operator Faulty Operator 

BVLT BVGE 

BVLE BVGT 

BVEQ BVNEQ 

BVNEQ BVEQ 

Table 4-9 Micro-operation Faults 

A similar fault model was proposed by Al Hayek and Robach [4] as part of a mutation- 

based testing strategy in which VHDL behavioral faults are considered as software faults. 

For Relational Operator Replacement (ROR), each operator (<, >, <=, >=, =, /=) is 

replaced by each of the other relational operators. Mutation analysis does not take into 

account the size of the hardware implementation, because it considers each relational 

operator as a software operation and consequently generates only one test vector. In order 

to improve the performance of their technique, the authors also resorted to heuristics to 

generate additional test vectors for their complex operators. 

The new behavioral fault models developed for relational operators are based on the 

size of the hardware implementation and, therefore, eliminate the need to supplement test 

vector sets. While the new fault models are definitely more complex than previous ones, 

this is because they more accurately reflect the underlying complexity of the hardware 

faults which they attempt to model. 
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4.5  Application of the New Fault Models 

A simple example is now presented to demonstrate the application of the new fault 

models developed for relational operators. A test vector set will be formed based on 

behavioral faults and then applied to synthesized gate level realizations. Gate level fault 

coverage of the behavioral test vectors will be used to evaluate the effectiveness of the new 

behavioral fault models. 

Example COMPARE in Figure 4-10 uses two 2-bit signals (A, B) to control the selec- 

tion of input signals (Y2, Yl, Y0). Based on the relative magnitudes of the control signals, 

a single input signal is assigned to the output signal (Z). Test vectors can be determined 

for behavioral faults on the relational operators and the control construct if-then-else. 

if A > B then 
Z <= Y2; 

elsif A < B then 
Z <= Y0; 

else 
Z <= Yl; 

end if; 

Figure 4-10 Behavioral description for example COMPARE. 

4.5.1 Faults on Relational Operators 

The two relational operators (>, <) in example COMPARE are affected by the three 

classes of behavioral faults developed earlier in this chapter. Application of each of these 

fault classes to each of the relational operators will determine an appropriate set of behav- 

ioral test vectors. 

The first relational operator in the expression A > B controls the then clause of the 

if-then-else statement. According to the new behavioral fault model, a Class I fault occurs 

when the relation A > B produces an erroneous TRUE when A = B. This fault causes 

the selection of the A > B clause instead of the desired A = B clause. The test vectors 

necessary to detect these Class I faults are shown in Table 4-10. For ease of reference 

when determining compatible fault sets, the faults have been numbered. 

Next, a Class II fault for the relation A > B also produces an erroneous TRUE, when 

A +  1 = B (A odd). This fault causes the selection of the A > B clause instead of the 
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desired A < B clause. Test vectors for the single Class II fault are shown in the middle 

of Table 4-10. 

Finally, a Class III fault produces an erroneous FALSE when A = B + 1. This fault 

causes the selection of clauses corresponding to A <= B instead of the desired A > B. 

Note that the faulty selection of either the A < B clause or the A = B clause results in 

the elimination of don't care values seen in previous test vectors. The Class III faults and 

their corresponding test vectors are shown at the bottom of Table 4-10. 

Fault 
Class 

Fault 
# 

A B 
(A>B) 

Y2 
(A=B) 

Yl 
(A<B) 

Y0 
Fault-free 

Z 

Class I 

1 00 00 
1 0 X 0 

0 1 X 1 

2 01 01 
1 0 X 0 

0 1 X 1 

3 10 10 
1 0 X 0 

0 1 X 1 

4 11 11 
1 0 X 0 

0 1 X 1 

Class II 5 01 10 
1 X 0 0 

0 X 1 1 

Class m 

6 01 00 
0 1 1 0 

1 0 0 1 

7 10 01 
0 1 1 0 

1 0 0 1 

8 11 10 
0 1 1 0 

1 0 0 1 

Table 4-10 Test vectors for behavioral faults for A > B. 

A similar application of Class I, II, and III faults to the relation  A  <  B  in the elsif 

clause produces the test vectors shown in Table 4-11. 
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Fault 
Class 

Fault 
# 

A B 
(A>B) 

Y2 
(A=B) 

Yl 
(A<B) 

Y0 
Fault-free 

Z 

Class I 

9 00 00 
X 0 1 0 

X 1 0 1 

10 01 01 
X 0 1 0 

X 1 0 1 

11 10 10 
X 0 1 0 

X 1 0 1 

12 11 11 
X 0 1 0 

X 1 0 1 

Class II 13 10 01 
0 X 1 0 

1 X 0 1 

Class IE 

14 00 01 
1 1 0 0 

0 0 1 1 

15 01 10 
1 1 0 0 

0 0 1 1 

16 10 11 
1 1 0 0 

0 0 1 1 

Table 4-11 Test vectors for behavioral faults for A < B. 

Each behavioral fault still has two possible test vectors which will detect it. Applica- 

tion of the control fault model to the if-then-else construct will provide additional guid- 

ance on selection of a final set of test vectors. 

4.5.2 Control Faults 

As was shown in Chapter 3, the control fault model specifies that each clause of an if- 

then-else statement can be affected by two different types of faults, Clause-CORRUPT 

(OR) and Clause-CORRUPT (AND). Corruptions are caused by clauses which are logi- 

cally adjacent to the affected clause. In the case of relational operators, it has been shown 

that the ">" operator can fault to "=" (Class I) or "<" (Class II), thus causing the then 

clause in example COMPARE to corrupt the either else clause or the elsif clause. By 

establishing adjacency using the appropriate values for A and B, determined by faults to 
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the relational operators, compatible test vectors can be formed for these Clause-COR- 

RUPT faults. 

First consider the corruptions to the then clause by the elsif clause. These corruptions 

occur when the A < B expression in the elsif clause produces an erroneous indication 

that A > B, corresponding to a Class II fault for A < B. Table 4-11 shows that this 

Class II fault, 13, has only one combination of A and B which will produce the proper 

adjacency between clauses. Using those values for A and B results in the test vectors 

shown in Table 4-12 for the first two of the Clause-CORRUPT (OR) and Clause-COR- 

RUPT(AND) faults for the then clause. 

Control Fault 
Fault 
Class 

A B 
then 
Y2 

else 
Yl 

elsif 
Y0 

Fault-free 
Z 

THEN-CORRUPT 
(by ELSIF) (OR) A<B 

Class H 
10 01 

0 X 1 0 

THEN-CORRUPT 
(by ELSIF) (AND) 

1 X 0 1 

THEN-CORRUPT 
(by ELSE) (OR) A>B 

Class m 

11 10 0 1 X 0 

THEN-CORRUPT 
(by ELSE) (AND) 

01 00 1 0 X 1 

Table 4-12 Test vectors for THEN-CORRUPT faults. 

The corruptions of the then clause by the else clause, correspond to the other combina- 

tions from Table 4-10 and Table 4-11 where the then clause is activated, Class III faults for 

A > B. Table 4-10 shows that faults 6 through 8 provide three combinations of A and B 

which will produce the proper adjacency between clauses. To reduce the total number of 

test vectors using compatible fault sets, the vectors for the Clause-CORRUPT (OR) and 

Clause-CORRUPT (AND) faults are chosen with different values for A and B. These test 

vectors form the remainder of Table 4-12. 

The Clause-CORRUPT faults for the elsif and else clauses are formed in a similar 

manner. For the elsif clause, the test vectors must set A < B, corresponding to Class II 

faults for A > B and Class III faults for A < B. Finally, the else clause corresponds to 
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A  =   B   and the Class I faults. Test vectors for the remaining Clause-CORRUPT faults 

are, therefore, shown in Table 4-13. 

Control Fault 
Fault 
Class 

A B 
then 
Y2 

else 
Yl 

elsif 
Y0 

Fault-free 
Z 

ELSIF-CORRUPT 
(by THEN) (OR) A>B 

Class II 
01 10 

1 X 0 0 

ELSIF-CORRUPT 
(by THEN) (AND) 

0 X 1 1 

ELSIF-CORRUPT 
(by ELSE) (OR) A<B 

Class III 

10 11 X 1 0 0 

ELSIF-CORRUPT 
(by ELSE) (AND) 

00 01 X 0 1 1 

ELSE-CORRUPT 
(by THEN) (OR) A>B 

Class I 

00 00 1 0 X 0 

ELSE-CORRUPT 
(by THEN) (AND) 

01 01 0 1 X 1 

ELSE-CORRUPT 
(by ELSIF) (OR) A<B 

Class I 

10 10 X 0 1 0 

ELSE-CORRUPT 
(by ELSIF) (AND) 

11 11 X 1 0 1 

Table 4-13 Test vectors for ELSIF-CORRUPT and ELSE-CORRUPT faults. 

4.5.3 Final Behavioral Test Vector Set 

The behavioral faults for the relational operators can now be combined with the con- 

trol faults to form compatible fault sets. Recall that Class I faults occur along the diagonal 

where A = B. Notice that the don't care values in the test vectors for faults 1 through 4 

are compatible with the test vectors for faults 9 through 12. Plus, due to the symmetry of 

the behavioral faults defined for relational operators, the Class II faults for the relation 

A > B are a compatible subset of the Class III faults for the relation A < B. Likewise, 

the Class II faults for A < B are a compatible subset of the Class III faults for A > B. 

Note that the THEN-CORRUPT (by ELSIF) and ELSIF-CORRUPT (by THEN) faults 

dictate that both options of test vectors for faults 13 and 5 be chosen. For each of the other 

relational operator faults, only one of the two possible test vectors is needed.  For this 
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example, the final set of test vectors has been chosen with a pattern of alternating fault free 

values of Z = 0 and Z = 1. This pattern can be easily repeated for vectors that are not 

specified by control faults, as will be the case where A and B are larger than two bits. 

Application of this selection pattern to each group of faults for the relational operators 

results in a final behavioral test vector set containing 12 test vectors. The test vectors and 

their corresponding groups are shown in Table 4-14. Note that other test vector sets of size 

12 are possible. The required values of A and B are set by the Class I, II and III faults for 

the relational operators, however several choices are possible for Y2, Yl, and YO. As long 

as both a Z = 0 and Z = 1 option are chosen for each fault class, sufficient coverage 

will be provided for the Clause-CORRUPT control faults. 

Group # 
(Control Fault) 

Fault 
#s 

A B 
(A>B) 

Y2 
(A=B) 

Yl 
(A<B) 

Y0 
z 

I 
(ELSE-CORRUPT) 

1,9 00 00 1 0 1 0 

2,10 01 01 0 1 0 1 

3,11 10 10 1 0 1 0 

4,12 11 11 0 1 0 1 

II 
(THEN-CORRUPT) 

6 01 00 1 0 0 1 

7,13 
10 01 0 1 1 0 

10 01 1 0 0 1 

8 11 10 0 1 1 0 

III 
(ELSIF CORRUPT) 

14 00 01 0 0 1 1 

5,15 
01 10 1 1 0 0 

01 10 0 0 1 1 

16 10 11 1 1 0 0 

Table 4-14 Final behavioral test vector set for example COMPARE. 

4.6   Evaluation of Behavioral Test Vectors 

The test vectors derived from the behavioral faults for example COMPARE are next 

applied to several synthesized gate level implementations. SSL fault coverage will be 

determined and used to judge the effectiveness of the behavioral test vectors. 
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4.6.1 Gate Level Realizations 

The VHDL behavioral description for example COMPARE, from Figure 4-10, was 

synthesized to a gate level implementation using AutoLogic II. The first structural 

description was produced using minimal optimization in order to produce the most direct 

realization of the circuit. The gate level circuit for Structure 1 is presented in Figure 4-11. 

Note that the circuit contains a mix of AND, OR, NOT, NAND, and NOR gates and does 

not directly relate to any of the circuits analyzed in the development of the behavioral fault 

models for the relational operators. 

UZL 

b<1:0> 

a(1:0)O 

c>-f-D>i   f-P~p £_z_Znz3~">—' 

H> 
gOO- 

glO- 

Figure 4-11 Synthesized Structural for example COMPARE. 

According to MIL-STD 883D, Structurel contains 74 unique gate level SSL faults. 

Fault simulations were performed using the behavioral test vectors from Table 4-14. The 

behavioral test vector set detected 73 of the 74 SSL gate level faults, resulting in a fault 

coverage of 98.65%. The undetected fault was on input B to NAND gate zg3 shown in 

Figure 4-11. Exhaustive testing of the circuit Structurel reveals that this fault is, in fact, 

undetectable by any test vector due to redundant logic produced by the synthesis tool. In 

this case, an alternate measure of effectiveness can also be used to account for redundant 

logic. The fault efficiency is defined as the ratio of detected faults to detectable faults. For 

this example the fault efficiency is 73/73 = 100%. 

An alternate test vector set was formed by reversing the order of the Z = 0, Z = 1 

pattern in Table 4-14. Application of this alternate set of behavioral test vectors, shown in 

Figure 4-12, to the circuit Structurel produced an identical fault coverage of 98.65%. 

Either set of test vectors developed from the behavioral fault models, therefore, achieved a 

fault efficiency of 100%. 
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%  AB  Y2   Yl  YO   Z 
%  Group  I 

time 

0000 010 1 500 ns 
0101 101 0 500 ns 
1010 010 1 500 ns 
1111 101 0 500 ns 
Group II 
0100 011 0 500 ns 
1001 100 1 500 ns 
1001 011 0 500 ns 
1110 100 1 500 ns 
% Group III 
0001 110 0 500 ns 
0110 001 1 500 ns 
0110 110 0 500 ns 
1011 001 1 500 ns 

Figure 4-12 Alternate set of behavioral test vectors for example COMPARE. 

A second gate level implementation of example COMPARE was produced by allowing 

AutoLogic II to perform logic optimizations. Using these optimizations in a synthesis 

environment allows a designer to remove redundancies and reduce the number of unde- 

tectable faults. The resulting Structure2 is shown in Figure 4-13. 

UlO 

Figure 4-13 Synthesized Structure2 for example COMPARE. 

Structure2 contains 72 unique SSL gate level faults. Fault simulations using the origi- 

nal and alternate behavioral test vectors from Table 4-14 and Figure 4-12 both result in a 

fault coverage of 72/72 = 100%. The fault coverage as a function of the alternate behav- 

ioral test vectors is shown in Figure 4-14. 

When redundancies are not present in the gate level circuit, the test vector sets devel- 

oped using the behavioral fault models achieve a gate level SSL fault coverage of 100%. 
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Figure 4-14 Fault coverage for Structure2 of example COMPARE. 

These results help validate the new behavioral fault models through practical application. 

The effects on fault coverage due to expansion of the control signals and data path will 

now be investigated. 

4.6.2 Expansion of the Data Path 

In the VHDL behavioral description for example COMPARE, the input signals (Y2, 

Yl, Y0) and the output signal (Z) are each only a single bit wide. To demonstrate the 

effects of a wider data path on the new behavioral fault models, example COMPARE4 was 

created by changing the above signals to four bits wide, BIT_VECTOR(3 downto 0). For 

this example, the control signals A and B remained two bits each. 

The faults on the relational operators are unchanged due to the widening of the data 

path. Hence, the values of the control signals A and B are the same as those given in Table 

4-14. The only change to the test vectors is the widening of the 1-bit signals to four bits. 

This is done by replication of the appropriate signal values, since the wider data path sim- 

ply represents multiple copies of the 1-bit case implemented in parallel. 

The control faults on adjacent clauses developed in Section 4.5.2 are, likewise, unaf- 

fected by the widening of the data path. The only modifications necessary to the test vec- 
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tors is again replication of the appropriate signal values.   Hence, the behavioral test 

vectors for example COMPARE4 are presented in Figure 4-15. 

% AB  Y2   Yl 
% Group I 
0000 1111 0000 
0101 0000 1111 
1010 1111 0000 
1111 0000 1111 
% Group II 
0100 1111 0000 
1001 0000 1111 
1001 1111 0000 
1110 0000 1111 
% Group III 
0001 0000 0000 
0110 1111 1111 
0110 0000 0000 
1011 1111   1111 

Y0 time 

1111 0000 500 ns 
0000 1111 500 ns 
1111 0000 500 ns 
0000 1111 500 ns 

0000 1111 500 ns 
1111 0000 500 ns 
0000 1111 500 ns 
1111 0000 500 ns 

1111 1111 500 ns 
0000 0000 500 ns 
1111 1111 500 ns 
0000 0000 500 ns 

Figure 4-15 Behavioral test vectors for example COMPARE4. 

Example COMPARE4 was synthesized and optimized with AutoLogic II to produce 

the gate level Structure shown in Figure 4-16. Fault simulations were performed using the 

test vectors derived from the behavioral fault models. The results show a fault coverage of 

150/150 = 100%; all SSL gate level faults are detected. 

H> 
Figure 4-16 Synthesized Structure for example COMPARE4. 
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As was done previously, an alternate test vector set was formed for example 

COMPARE4 by reversing the order of the Z = 0, Z = 1 pattern in Figure 4-15. Fault 

simulation using these alternate behavioral test vectors again resulted in gate level fault 

coverage of 100%. Though the number of unique gate level faults more than doubled, the 

same number of test vectors, 12, were able to provide complete SSL fault coverage. 

4.6.3 Expansion of the Control Signals 

Example COMPARE was next modified by increasing the width of the control signals 

A and B from two bits to three bits each. The change in size of the control signals does 

affect the behavioral faults for the relational operators. Recall the number of faults on a 

comparison is related to the number of bits being compared. The increase from two bits to 

three bits causes the number of Group I faults from Table 4-14 to increase from 22 = 4 to 

23 = 8. The number of Group II and Group III faults likewise increases to 23 -1 = 7. 

In contrast to the faults on relational operators, the control faults are affected only by 

adjacency among clauses. Recall from Table 4-13 that the ELSIF-CORRUPT (by THEN) 

faults corresponded to the A > B Class II faults. In the 2-bit case, only a single combi- 

nation of A and B produced the proper adjacency, forcing the selection of both test vector 

options to cover both the Clause-CORRUPT (OR) and Clause-CORRUPT (AND)i'faults. 

In the 3 bit case, there are now 23"1 -1 = 3 different combinations of A and B that produce 

the proper adjacency between clauses (see Figure 4-3). Through proper selection of test 

vectors from the faults on relational operators, it is possible to provide coverage for all 

control faults without replication of values for A and B. A final set of behavioral test vec- 

tors for example COMPARE3 is, hence, presented in Figure 4-17. 

% A B Y2Y1Y0 Z 
% Group I 
000 000 101 0 
001 001 101 0 
010 010 010 1 
011 011 010 1 
100 100 101 0 
101 101 101 0 
110 110 010 1 
111 111 010 1 

time ; 

500 ns 
500 ns 
500 ns 
500 ns 
500 ns 
500 ns 
500 ns 
500 ns 

Figure 4-17 Behavioral test vectors for example COMPARE3. 
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% Group II 
001 000 Oil 0 500 ns 
010 001 Oil 0 500 ns 
Oil 010 100 1 500 ns 
100 Oil 100 1 500 ns 
101 100 Oil 0 500 ns 
110 101 Oil 0 500 ns 
111 110 100 1 500 ns 
% Group III 
000 001 110 0 500 ns 
001 010 110 0 500 ns 
010 Oil 001 1 500 ns 
011 100 001 1 500 ns 
100 101 110 0 500 ns 
101 110 110 0 500 ns 
110 111 001 1 500 ns 

Figure 4-17 Behavioral test vectors for example COMPARE3. 

Example COMPARE3 was then synthesized and optimized by AutoLogic II to pro- 

duce the gate level implementation shown in Figure 4-18. 

Figure 4-18 Synthesized Structure for example COMPARE3. 

Fault simulations were conducted on the gate level Structure for example COMPARE3 

using the derived set of behavioral test vectors. A SSL gate level fault coverage of 92/92 = 

100% was achieved. As in previous examples, fault simulation with an alternate set of 

behavioral test vectors again resulted in complete gate level fault coverage. 

4.7   Conclusions 
New behavioral fault models have been developed for the predefined VHDL relational 

operators from Table 1-2. These fault models are based on a functional analysis of the 

comparison functions GT and EQ. The symmetry of these comparison functions allowed 

the resulting generalized functional faults to be easily adapted for all the relational opera- 

tors. 
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The new behavioral fault models developed for relational operators are based on the 

size of the hardware implementation and, therefore, eliminate the need to supplement test 

vector sets via methods such as heuristics. While the new fault models are more complex 

than previous ones, this is because they more accurately reflect the underlying complexity 

of the hardware faults which they attempt to model. 

A simple example was presented to demonstrate the application of the new fault mod- 

els. Test vector sets were formed based on behavioral faults to the relational operators 

and the control construct if-then-else. These behavioral test vectors were then applied to 

synthesized gate level realizations. Gate level fault coverage was used to evaluate the 

effectiveness of the new behavioral fault models. 

When redundancies were not present in the synthesized gate level circuits, both the 

primary and alternate test vector sets developed using the behavioral fault models'pro- 

duced a gate level SSL fault coverage of 100%. Even with undetectable faults, the behav- 

ioral test vectors were able to achieve a. fault efficiency of 100%. 



Chapter 5 

Arithmetic Operators 

Like the relational operators, arithmetic operators also generate large blocks of com- 

binational logic. The predefined VHDL operators ADD (+) and SUB (-) are normally 

implemented by synthesis tools with standard library modules. Optimizations for speed or 

chip area may modify these building blocks, however, the basic function of the arithmetic 

operators remains unchanged. A fault modeling technique is proposed here based on 

complete functional testing of the arithmetic building blocks. By concentrating on func- 

tional testing, complete gate level SSL fault coverage should be obtained over a broad 

range of hardware implementations. 

Previous behavioral modeling approaches, based on perturbing language constructs 

such as ADD to SUB, do not accurately reflect underlying hardware faults. In order to 

compensate for this "big micro-operation problem," alternate methods such as heuristics 

were used to supplement test vector sets to increase the equivalent gate level fault cover- 

age. The new modeling technique presented in this chapter increases the complexity of 

the fault models for the arithmetic operators, providing a better representation of the 

faults which occur in actual hardware. 

5.1   Addition 

The ADD operation has several basic forms which will be investigated in succession. 

A two-level network would be the fastest, however, this circuit would require a large num- 

ber of gates and gate inputs. It would be necessary to have 22n NAND gates of 2n + 1 

inputs and one NAND gate of 22n inputs to add two n-bit numbers [41]. This number of 

gates and inputs is quite significant for even small values of n. 

In contrast to this direct approach, adders are most commonly implemented by the 

interconnection of smaller functional building blocks. In its simplest from, a half adder 

(HA) is a multiple output combinational circuit which adds two bits to produce a sum and 

a carry-out. A full adder (FA) adds two binary digits and a carry-in from a previous stage. 

To speed up the combinational addition process, by reducing the rippling of carries 

between stages, methods such as carry look-ahead (CLA) are used. 

82 
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5.1.1 Ripple Carry Adder 

Behavioral modeling of the ADD operation has two basic forms, depending on the 

presence of an overall carry-in and carry-out for the resulting adder circuit. In its simplest 

form, the addition of two n-bit binary numbers can be represented as: 

S   <=  A  +   B; 

A 3-bit ripple carry implementation of this ADD operation is shown in Figure 5-1. 

A2   B2 A,    B A0    B0 

A     B 

CO FA2 CI 
S 

T 
Figure 5-1 Ripple carry adder. 

The full adders (FAt) are 3-input 2-output combinational circuits, where CI and CO 

represent the carry-in and carry-out respectively. A truth table for the full adder function 

is presented in Table 5-1; Test # shown in octal. Similarly, the half adder (HA0) is a 2- 

input 2-output circuit that can be considered a subset of the full adder function. The upper 

half of Table 5-1, where CI = 0, represents the truth table for the half adder function. 

Test# u < PQ 00 
o u 

0 0 0 0 0 0 

1 0 0 1 1 0 

2 0 1 0 1 0 

3 0 1 1 0 1 

4 1 0 0 1 0 

5 1 0 1 0 1 

6 1 1 0 0 1 

7 1 1 1 1 1 

Table 5-1 Truth table for full adder. 
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5.1.1.1   Functional Testing 

A functional testing strategy is presented which will ensure complete gate level SSL 

fault coverage for a broad range of ripple carry adder implementations. Because such 

realizations are one-dimensional cellular logic arrays, made up of 2- and 3-input func- 

tional building blocks, complete functional testing can be achieved by exhaustive testing 

of each module [44]. 

Table 5-2 presents the Phase I functional tests proposed for the 3-bit ripple carry 

adder. The left hand side of the table shows the ADD operation with the resulting sum. 

Non-zero carries between stages of the adder are shown by arrows above the columns. 

The right hand side of the table indicates the Test #, from Table 5-1, which is applied to 

each functional module (FA, HA) by the input test vectors. For example, the first row 

shows that At and Bt are 0 for every stage of the adder. Since the resulting carry-out for 

each stage is also 0, Test 0 is applied to all modules of the adder. 

A 
+ B 
S 

Test# 

FA2 FA: HA0 

000 
+ 000 
000 

0 0 0 

000 
+ 111 

111 
1 1 1 

111 
+ 000 
111 

2 2 2 

1 1 no 
111 

.+ Ill 
110 

7 7 3 

Table 5-2 Phase I functional tests. 

Note that the last row of Table 5-2 shows that both C0 and C7 are 1, resulting in Test 7 

being applied to FAj and FA2. Since HA0 only has 2 inputs, the last test from Phase I rep- 

resents Test 3 for this module and concludes complete functional testing of the half adder. 
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To continue the testing of the full adder modules, further vectors must be generated 

which will produce the remaining input and carry combinations. Consider Test 5 and Test 

6, which require opposite inputs for A and B with CI = 1. In order to start the ripple carry 

process between stages, HA0 must generate a CO = 1. Since Test 5 and Test 6 produce a 

CO = 1, the carries are correctly propagated through the stages. Table 5-3 summarizes the 

results for the Phase II functional tests. 

A Test* 
+ B 

s" FA2 FAi HA0 

i i 

001 
+ 111 5 5 3 

000 

i i 

111 
+ 001 6 6 3 

• 000 

Table 5-3 Phase II functional tests. 

Only Test 3 and Test 4 remain to complete the testing of the full adder modules. Since 

Test 3 requires aCI=0, yet produces a CO = 1, no single vector can provide Test 3 inputs 

to all stages. Likewise, Test 4 requires CI = 1 and produces CO = 0. Due to the observed 

symmetry, the functional tests for Phase III can be formed by interleaving Test 3 and Test 

4 as shown in Table 5-4. 

A 
+ B 
S 

Test# 

FA2 FA! HA0 

i 

101 
+ 101 3 4 3 

010 

1 

010 
+ 010 4 3 0 

100 

Table 5-4 Phase III functional tests. 
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Hence, complete functional testing of all modules of the ripple carry adder in Figure 

5-1 has been achieved with eight test vectors. Next, the scalability of the functional tests 

will be evaluated for larger adders. 

5.1.1.2   Scalability 

Because the ripple carry structure is made up entirely of cascaded HA and FA mod- 

ules, the functional tests developed in Section 5.1.1.1 can be readily adapted to larger 

adders. Since the functional tests are based on the complete testing of each individual 

module, only eight test vectors are required regardless of the size of the inputs A and B 

[44]. A 4-bit addition will be used to demonstrate the scaling of the test vectors. 

Table 5-5 presents the test vectors for a 4-bit ripple carry adder. The tests for Phases I 

and II are created by replication of the highest order bits of the 3-bit case. The test vectors 

for Phase III are produced by continuation of the alternating patterns caused by the inter- 

leaving of Test 3 and Test 4 for the FA modules. Note that both extensions of the func- 

tional tests can be continued for larger values of n, still requiring only eight test vectors. 

Phase A B s 

Test# 

FA3 FA2 FAi HA0 

I 

0000 0000 0000 0 0 0 0 

0000 1111 nil 1 1 1 1 

1111 0000 im 2 2 2 2 

1111 mi 1110 7 7 7 3 

II 
0001 mi 0000 5 5 5 3 

1111 0001 0000 6 6 6 3 

m 
0101 0101 1010 4 3 4 3 

1010 1010 0100 3 4 3 0 

Table 5-5 Functional tests for 4-bit ripple carry adder. 

5.1.1.3   Behavioral Fault Model 

Comparison of the functional test vectors with the gate level faults detected provides 

some insight into the performance of the functional testing technique. For example, the 

test vector A = 0000, B = 0000 covers faults which correspond to the sum and carry bits of 
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each stage producing an erroneous 1. Due to the relative bit positions of the various 

stages, this causes the resulting sum to be in error by either +1, +2, +4, or +8. Similar 

observations reveal that the functional faults for the ripple carry adder result in an output 

sum which is in error by ±2l (i = 0, 1, 2, 3). 

A one-to-one correspondence cannot be established between the large number of func- 

tional faults which are covered by the relatively small number of eight functional test vec- 

tors. Therefore, a direct mapping cannot be made to produce a simple behavioral fault 

model. Rather, the approach taken here simply seeks to map the functional test vectors 

into error vectors which corrupt the ADD operation for the appropriate input combina- 

tions. 

Again consider the functional test vector A = 0000, B = 0000. Corruption of the 

resulting sum can be achieved by producing an erroneous 1 in any of the bit positions. For 

this fault model, the corruptions are chosen to be to the least significant bit position. The 

XOR operator provides the desired corruption properties by inverting the appropriate bit 

when presented with an error vector of 0001. 

A behavioral fault model for the first functional test vector is therefore proposed as: 

D  <=    (A  +   B)   XOR  "000"   &   (A  =   "0000"  AND  B   =   "0000") 

The concatenation operator (&) combines the TRUE/FALSE from the AND operator with 

leading 0's to produce the appropriate error vector. While this is not syntactically correct 

VHDL due to type differences, it presents the concept of the behavioral fault model. A 

complete implementation of the behavioral fault model using functions from the Mentor 

Graphics std_logic_arith library is presented in Figure 5-2. 

D <=   (A + B)   XOR zero_extend(to_stdlogic( 
(A = "0000" AND B = "0000' ') OR 
(A = "0000" AND B = "1111' ') OR 
(A = "1111" AND B = "0000' ') OR 
(A = "1111" AND B = "1111' ') OR 
(A = "0001" AND B = "1111' ') OR 
(A = "1111" AND B = "0001' ') OR 
(A = "0101" AND B = "0101' ') OR 
(A = "1010" AND B = "1010' ') >, 4); 

Figure 5-2 Behavioral fault model for ripple carry adder. 



5.1.1.4   Evaluation of the Behavioral Test Vectors 

The behavioral test vectors derived in the preceding sections will now be applied to 

gate level implementations of ripple carry adders. Fault simulations will determine SSL 

fault coverage and demonstrate the effectiveness of this functional testing technique. 

The VHDL behavioral description for example ADD4 is shown in Figure 5-3. Exam- 

ple ADD4 was synthesized with AutoLogic II to produce the ripple carry circuit shown in 

Figure 5-4. 

entity add4 is 
port(A, B: in  std_logic_vector(3 downto 0); 

D: out std_logic_vector(3 downto 0)); 
end add4; 

architecture behave of add4 is 
begin 

process(A,B) 
begin 

D <= A + B; 
end process; 

end behave; 

Figure 5-3 Behavioral description for example ADD4. 

a(3:0>O—vrj—I / 

£E>J 

Figure 5-4 Synthesized circuit for example ADD4. 

According to MIL-STD 883D, the synthesized circuit contains 102 unique gate level 

SSL faults. Fault simulations using the behavioral test vectors derived from Table 5-5 

result in a fault coverage of 102/102 = 100%. 

An alternate realization of the 4-bit ripple carry adder is presented in Figure 5-5. The 

NOR-only circuit, based on POS implementations of the FA and HA modules, contains 
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142 unique gate level SSL faults. Fault simulations using the eight behavioral test vectors 

again resulted in complete gate level fault coverage. 

b<e»c>- 

£>X> 

bCDD—[""t^0" 

o(1>D—M/** 

O^ 
Figure 5-5 NOR-only realization of example ADD4. 

5.1.1.5    Carry-in and Carry-out 

The more complex form of behavioral addition includes a carry-in and/or a carry-out. 

Since the predefined VHDL ADD operator combines two n-bit operands to form an «-bit 

result, some additional manipulation is required to deal with the extra carries. The carry- 

out is produced by simply extending the ADD operation to n+1 bits and extracting the 

most significant bit of the result. The carry-in can be modeled by an extra addition of a 

single bit. Example ADD4wc, in Figure 5-6, demonstrates the behavioral description of a 

4-bit addition with carries. 
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entity add4wc is 
port(A, B 

D 
CIN 

COUT 
end add4wc; 

in  std_logic_vector(3 downto 0); 
out std_logic_vector(3 downto 0); 
in  std_logic; 
out std_logic); 

architecture behave of add4wc is 
begin 
process (A, B, CIN). 
variable opl,op2,sum: std_logic_vector(4 downto 0); 
variable carry_in : std_logic_vector(1 downto 0); 
begin 

opl := x0' & A; 
op2 := '0' & B; 
carry_in := x0' & CIN; 
sum := opl + op2 + carry_in; 
D <= sum(3 downto 0); 
COUT <= sum(4); 

end process; 
end behave; 

Figure 5-6 Behavioral description for example ADD4wc 

Rather than treating the two (+) operators separately in example ADD4wc, a synthesis 

tool will combine the operators to form a single adder. Recognition of this carry-in struc- 

ture can be used to produce an appropriate behavioral fault model. Recall from the func- 

tional testing strategy in Section 5.1.1.1 that the least significant stage of the adder was 

only a half-adder. The only change when a carry-in is present is the conversion of this 

stage to a full-adder. Minor adjustments to the test vectors will ensure complete func- 

tional testing of this new module. 

The test vectors for A and B remain the same for both Phase I and Phase III tests to the 

adder. The value of the CIN is simply set to match the other carry patterns for that test. 

For example, the last test for Phase I applies Test 7 to each FA, thus CIN = 1. The test vec- 

tors for Phase II originally set the least significant bit of A or B to 1 to initiate the ripple 

carries through the adder. CIN now serves as the least significant input the adder and can 

assume that role. The resulting functional test vectors are presented in Table 5-6. 

The behavioral fault model for the add with carry operation follows the same approach 

shown in Section 5.1.1.3. The functional test vectors are converted to error vectors which 
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Phase A B CIN COUT s 

Test* 

FA3 FA2 FAL FA0 

I 

0000 0000 0 0 0000 0 0 0 0 

0000 mi 0 0 nil 1 1 1 1 

mi 0000 0 0 mi 2 2 2 2 

mi mi 1 1 mi 7 7 7 7 

II 
0000 mi 1 1 0000 5 5 5 5 

mi 0000 1 1 0000 6 6 6 6 

in 
0101 0101 0 0 1010 4 3 4 3 

1010 1010 1 1 0101 3 4 3 4 

Table 5-6 Functional tests for example ADD4wc. 

corrupt the resulting sum. Application of the eight behavioral test vectors derived from 

Table 5-6, to a synthesized gate level implementation of example ADD4wc, results in the 

expected complete gate level fault coverage. 

5.1.2 Carry Look-Ahead Adder 

Carry look-ahead (CIA) speeds up the process of combinational addition by determin- 

ing carries for higher order stages of the adder without having to wait for them to ripple 

through lower order stages. From the truth table for the FA, Table 5-1, it can be seen that 

the carry-out is the same as the carry-in as long as one of the other inputs is a 1. Also, the 

carry-out is always a 1 independent of the carry-in when both of the other inputs are Is, 

and a 0 if both are 0. Consequently, two useful functions can be defined: the carry-prop- 

agate, Pt, and the carry-generate, G,- [41]. 

Pi 
AiBi 

The FA equations can then be written as: 

Si   =   Pi   ©   Ci_! 
ci   =   Gi   +   PiCi-l 

A CLA realization of a 3-bit adder is shown in Figure 5-7, where PGt represents prop- 

agate-generate modules and SUt implements the sum functions. 
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Figure 5-7 Carry look-ahead adder. 

The carries for the various stages of a 4-bit adder are formed from the terms shown in 

Table 5-7. The columns indicate the contributions of the various stages, which are com- 

bined to produce the appropriate carry. Presence or absence of a carry-in (C^), to the 

least significant stage of the adder, determines whether or not to use the terms in the far- 

thest right column. 

Carry 

Stage 

3 2 1 0 -1 

Co Go P(Ai 

Ci Gi PlGo P1P0C-1 

c2 G2 P2Gi P2PlG0 
P2PlPoC-l 

c3 G3 P3G2 P3P2G1 P3P2P1G0 P3P2P1P0G1 

Table 5-7 Carries for 4-bit CLA adder. 

5.1.2.1   Functional Testing 

Carry-propagate and carry-generate are both 2-input functions which will be com- 

pletely tested by the functional test vectors developed for the ripple carry adder. The sum 

(Si) is still a function of At, Bt, and C,.; and, therefore, will also be exhaustively tested by 

the ripple carry test vectors. Examination of the carries from Table 5-7 indicates that any 
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faults to lower order carries will dominate faults in higher order carries. Hence, testing for 

all the faults in the highest order carry in a CLA adder will provide coverage for all lower 

order faults. 

A simple 4-bit addition will be used to evaluate the coverage of carry faults by the rip- 

ple carry test vectors. Since this circuit has neither a carry-in nor a carry-out, the highest 

order carry is C2, which contains three terms: G2, P2Gj, and P2P]G0. Possible functional 

faults include a missing carry, due to one of the terms producing an erroneous 0, and an 

extra carry, due to a term producing an unwanted 1. 

Missing carry faults are evaluated in Table 5-8. In order to establish test vectors, G, is 

set to 1 by A,- = Bt = 1 and Pt is set to 1 by At = B~t. The right hand column indicates 

whether or not the indicated fault is covered by a ripple carry functional test vector. 

Stage Term Test Set-up Test Vector Covered 

0 P2PlG0 

X  0   0   1 
+ X  1   1   1 

P2PiG0 

0001 
+ 1111 

0000 
Yes 

1 P2G! 
X  0   1  X 

+ X  1   1  X 
P2G1 

0010 
+1111 

0001 
No 

2 G2 

X   1   X  X 
+ X   1   X  X 

G2 

1111 
+ 1111 

1110 
Yes 

Table 5-8 Missing carry faults. 

The missing carry fault for stage 1 is not covered by the functional test vectors for the 

ripple carry adder. Examination of larger carry look-ahead circuits reveals that only the 

missing carry faults for the most and least significant stages will be covered. Hence, an 

additional n - 3 test vectors will be required to provide complete fault coverage. 

Extra carry faults are evaluated in Table 5-9. An erroneous 1 in a term can be caused 

by any element in that term producing a 1 when it has been set to 0. Two extra carry faults 

are not covered by the functional test vectors for the 4-bit ripple carry adder. All of the 

erroneous generation faults (G{) are covered as well as the erroneous propagation fault for 

the highest order carry-propagate (P2). 
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Stage Term Test Set-up Test Vector Covered 

0 P2P1G0 

X  0   0   0 
+ X  1   1   1 

l?2plG"o 

0000 
+ 1111 

1111 
Yes 

X  0   0   1 
+ X  1   0   1 

p2p"lG0 

0001 
+ 1101 

1110 
No 

X  0   0   1 
+ X  0   1   1 

P2
plGo 

0001 
+ 1011 

1100 
No 

1 P2Gi 

X  0   0  X 
+ X  1   1  X 

P2G"l 

0000 
+ 1111 

1111 
Yes 

X  0   1  X 
+ X  0   1  X 

P2Gl 

1010 
+ 1010 

0100 
Yes 

2 G2 

X   0   X X 
+ X   1   X  X 

G2 

0000 
+1111 

1111 
Yes 

Table 5-9 Extra carry faults. 

The behavioral fault model for the CLA adder follows directly from the base ripple 

carry fault model. Additional functional test vectors for missing carry and extra carry 

faults are also mapped into error vectors which corrupt the resulting sum. The behavioral 

test vectors, therefore, consist of the eight ripple carry tests supplemented by some num- 

ber of CIA tests. The additional behavioral test vectors for a 4-bit CIA adder are summa- 

rized in Table 5-10. 

Fault Stage A B s 
Missing Carry 1 0010 1111 0001 

Extra Carry 0 
0001 1101 1110 

0001 1011 1100 

Table 5-10 Additional behavioral test vectors for CLA adder. 
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5.1.2.2   Application of the Behavioral Test Vectors 

Behavioral test vectors are now applied to a CIA implementation of example ADD4. 

The NAND-only circuit in Figure 5-8 contains 130 unique SSL gate level faults. Fault 

simulation using the original eight ripple carry test vectors from Table 5-5 produces a gate 

level fault coverage of 127/130 = 97.69%. Examination of the results confirms that the 

three uncovered faults are, in fact, from signals forming the highest order carry, C2. 

Application of the additional CIA test vectors from Table 5-10 then achieves complete 

fault coverage. 

Figure 5-8 CLA implementation of example ADD4. 

5.1.2.3   Scalability 

Gate level fault coverage can now be evaluated for a larger example, ADD8. Fault 

simulations using behavioral test vectors will be performed for both ripple carry and CIA 

implementations. Optimizations can also be investigated when detailed knowledge of the 

target technology is available. 

Example ADD8 was synthesized to a gate level circuit producing the ripple carry 

implementation as shown in Figure 5-9. Fault simulations with eight behavioral test vec- 
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tors, extrapolated from example ADD4, produce a SSL gate level fault coverage of 234/ 

234 = 100%. The fault coverage plot is shown in Figure 5-10. 

Figure 5-9 Ripple carry implementation of example ADD8. 

Coverage (%) 

100 
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20 

10   - 

n—r -i—i    |    i    r 
3 4 5 

Number of Test Vectors 

Figure 5-10 Fault coverage for ripple carry ADD8. 

Next a CIA implementation of example ADD8 will be considered. Without specific 

knowledge of the details of the target technology, behavioral test vectors are first formed 

on the basis of a full 8-bit CIA structure. 

The highest order carry in an 8-bit CIA adder, without a carry-in or carry-out, is C6. 

Extrapolating from Table 5-7, the terms for C6 are P6P5P4P3P2P]G0, P6P5P4P3P2Gj, 

P6P5P4P3G2, P6P5P4G3, P6P5G4, P6G5, and G6. According to the new behavioral fault 
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model, test vectors for extra carry faults are required for all but the two most significant 

stages. Each stage has a separate fault for each carry-propagate (Pt) signal in that term. 

Behavioral test vectors for the extra carry faults are presented in Table 5-11. Test vectors 

are necessary for missing carry faults for all but the lowest and highest order terms. The 

missing carry behavioral test vectors are presented in Table 5-12. 

Stage Term A B s 

0 P6P5P4P3P2P1G0 

00000001 11111101 11111110 

00000001 11111011 11111100 

00000001 11110111 11111000 

00000001 11101111 11110000 

00000001 11011111 11100000 

00000001 10111111 11000000 

1 P6P5P4P3P2G1 

00000010 11111011 11111101 

00000010 11110111 11111001 

00000010 11101111 11110001 

00000010 11011111 11100001 

00000010 10111111 11000001 

2 P6P5P4P3G2 

00000100 11110111 11111011 

00000100 11101111 11110011 

00000100 11011111 11100011 

00000100 10111111 11000011 

3 P6P5P4G3 

00001000 11101111 11110111 

00001000 11011111 11100111 

00001000 10111111 11000111 

4 P6P5G4 

00010000 11011111 11101111 

00010000 10111111 11001111 

Table 5-11 Behavioral test vectors for extra carry faults. 



98 

Stage Term A B s 

1 P6P5P4P3P2G1 00000010 11111111 00000001 

2 P6P5P4P3G2 00000100 11111111 00000011 

3 P6P5P4G3 00001000 11111111 00000111 

4 P6P5G4 
00010000 11111111 00001111 

5 P6G5 
00100000 11111111 00011111 

Table 5-12 Behavioral test vectors for missing carry faults. 

A common modular CLA implementation was chosen, which cascades individual 4-bit 

CLA adders to form the «-bit addition. A block diagram of an 8-bit adder, therefore, has 

the structure shown in Figure 5-11. 

A7.4 B7.4 

H 
A B 
CLA Cl 

S 

T 
57-4 

A3-0 B3-0 

11 
A     B 

CO CLA 
s 

J 
>3-0 

Figure 5-11 Block diagram of modular CLA adder. 

Fault simulations were performed on a NAND-only realization of the modular CLA 

adder using the combined behavioral test vectors. The original eight ripple carry test vec- 

tors produce a SSL gate level fault coverage of 290/310 = 93.55%. Application of the 

additional 25 carry look-ahead test vectors results in the expected complete gate level 

fault coverage. 

Note the relative inefficiency of the CLA test vectors versus the original eight ripple 

carry vectors in the fault coverage plot in Figure 5-12. In addition, there is a large flat por- 

tion of the graph, between vectors 21 to 31, where fault coverage does not improve. This 

is due to the lack of specific knowledge about the modular CLA implementation. A 

designer equipped with details of the functional elements used in the target technology can 

optimize the behavioral test vectors. 



99 

Number of Test Vectors 

Figure 5-12 Fault coverage for modular CLA adder. 

5.1.2.4   Optimization of CLA Behavioral Faults 

Given the additional detail that adders in a certain design are implemented by cascad- 

ing 4-bit CLA modules, an optimized set of behavioral test vectors can be derived. From 

the block diagram of the modular CLA adder in Figure 5-11, highest order carries can be 

determined for both the upper, S7.4, and lower, S3.0, CLA modules. 

The highest order carry in the lower CLA adder, with a carry-out and no carry-in, is 

C3. From Table 5-7, the terms for C3 are P3P2P]G0, P3P2G], P3G2, and G3. The highest 

order carry in the upper CLA adder, with a carry-in and no carry-out, is C6. Extrapolating 

from Table 5-7, the terms for C6 are P6P5P4C3, P6P5G4, P6G5, and G6. 

According to the new behavioral fault model, test vectors are necessary for missing 

carry faults for all but the lowest and highest order terms for each CLA module. The miss- 

ing carry behavioral test vectors are, therefore, presented in Table 5-13. Test vectors for 

extra carry faults are required for all but the two most significant stages.for each module. 

Each stage has a separate fault for each carry-propagate (Pi). Behavioral test vectors for 

the extra carry faults are shown in Table 5-14. 

Fault simulations were performed on the modular CLA adder using the optimized 

behavioral test vectors from Table 5-13 and Table 5-14. A SSL gate level fault coverage of 
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Stage Term A B s 

1 P3P2G1 00000010 11111111 00000001 

2 P3G2 00000100 11111111 00000011 

4 P6P5G4 
00010000 11111111 00001111 

5 P6G5 00100000 11111111 00011111 

Table 5-13 Optimized test vectors for missing carry faults. 

Stage Term A B s 

0 P3P2P1G0 

00000001 11111101 11111110 

00000001 11111011 11111100 

00000001 11110111 11111000 

1 P3P2G1 
00000010 11111011 11111101 

00000010 11110111 11111001 

3 P6P5P4C3 

00001000 11101111 11110111 

00001000 11011111 11100111 

00001000 10111111 11000111 

4 P6P5G4 

00010000 11011111 11101111 

00010000 10111111 11001111 

Table 5-14 Optimized test vectors for extra carry faults. 

310/310 = 100% was achieved with only 8 + 14 = 22 behavioral test vectors as opposed to 

the 8 + 25 = 33 non-optimized vectors. Hence, additional knowledge about the target 

architecture has allowed optimization of the behavioral test vector set while still achieving 

complete gate level fault coverage. 

5.1.3 Summary 

A behavioral fault model for addition has been derived using a complete functional 

testing technique. Both simple addition and the more complex form including a carry-in 

and/or a carry-out have been considered. The functional tests can be readily extended to 

n-bits, still requiring only eight behavioral test vectors. If the target hardware uses carry 

look-ahead circuits, additional behavioral faults are defined. 
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5.2   Subtraction 
Subtraction is closely related to addition and all the techniques previously discussed in 

this chapter are applicable. Also, the subtraction operation is often implemented indirectly 

using adders and 2's complement arithmetic. A ripple borrow subtracter and a 2's com- 

plement addition will be used to demonstrate extension of functional testing to the sub- 

traction operation. 

5.2.1 Direct Subtraction 

Subtraction, like addition, can be performed by the interconnection of functional mod- 

ules. Consider the subtraction operation D <= M - S. The difference (D) is formed by 

the subtraction of the subtrahend (S) from the minuend (M). Like ripple carries in addi- 

tion, full subtractors (FS) and half subtractors (HS) can be interconnected via borrows 

between stages. 

The truth table for a full subtractor is presented in Table 5-15, where BI and BO repre- 

sent borrow-in and borrow-out respectively [35]. Like the half adder, the half subtractor 

represents a subset of the full subtractor, where BI = 0. 

Test# PQ s on Q 
o 
PQ 

0 0 0 0 0 0 

1 0 0 1 1 1 

2 0 1 0 1 0 

3 0 1 1 0 0 

4 1 0 0 1 1 

5 1 0 1 0 1 

6 1 1 0 0 0 

7 1 1 1 1 1 

Table 5-15 Truth table for full subtractor. 

5.2.1.1    Functional Testing 

The functional testing strategy presented for the ripple carry adder can now be applied 

to direct subtraction. Complete functional testing can be achieved by exhaustive testing of 

each subtractor module. 
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The functional test vectors proposed for direct subtraction are presented in Table 5-16. 

The Phase I tests represent complete testing of the halfsubtracter (HS0) module. Phase II 

continues testing of the full subtractor (FSt) modules where BI = 1. Finally, Phase III 

completes testing of the full subtractor modules by interleaving the remaining tests from 

Table 5-15. 

Phase M s D 

Test# 

FS3 FS2 FS2 HS0 

I 

0000 0000 0000 0 0 0 0 

0000 mi 0001 5 5 5 1 

mi 0000 mi 2 2 2 2 

mi mi 0000 3 3 3 3 

II 
0000 0001 mi 4 4 4 1 

1110 mi mi 7 7 7 1 

ni 
0101 1010 1011 1 6 1 2 

1010 0101 0101 6 1 6 1 

Table 5-16 Functional tests for 4-bit direct subtraction. 

5.2.1.2   Application of the Behavioral Test Vectors 

Again, the behavioral fault model follows directly from the error vector approach pre- 

sented earlier in this chapter. Behavioral test vectors are derived from the error vectors 

formed by the functional tests from Table 5-16. 

A 4-bit subtractor will now be used to evaluate the effectiveness of the behavioral test 

vectors. The VHDL behavioral description for example SUB4 is shown in Figure 5-13. 

The example subtracts B from A to produce a 4-bit difference D. 

architecture behave of sub4 is 
begin 

process(A,B) 
begin 

D <= A - B; 
end process; 

end behave; 

Figure 5-13 Behavioral description for example SUB4. 
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Example SUB4 was synthesized with AutoLogic II to produce the subtraction circuit 

shown in Figure 5-14. Fault simulations were then performed using the behavioral test 

vectors derived from Table 5-16. As expected, the behavioral test vectors achieved a SSL 

gate level fault coverage of 112/112 = 100%. 

sii;§!&=q> 

Figure 5-14 Synthesized circuit for example SUB4. 

5.2.2 Subtraction Using Addition Circuitry 

Subtraction can also be performed by taking the negative of the subtrahend and per- 

forming an addition [35][41]. With 2's complement arithmetic, the negation can be per- 

formed by taking the logical complement of B and adding 1. Thus, the subtraction 

operation becomes: 

A   -   B   =   A  +    (-B)    =   A   +   B   +   1 

The behavioral test vectors developed for direct subtraction can now be evaluated for 

their performance on a subtractor realized with addition circuitry. A block diagram for a 

4-bit subtractor implemented with full adders is presented in Figure 5-15. 

M0   S0 

T 
Dn 

Figure 5-15 Subtractor implemented with full adders. 
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Table 5-17 shows the functional tests applied to the full adders (FAj) by the subtraction 

test vectors from Table 5-16. Since CIN = 1 for all vectors, Test 4 through Test 7 repre- 

sents all possible tests for FA0. Hence, complete functional testing for each stage of the 

adder is achieved by the behavioral test vectors for subtraction. Additional fault simula- 

tion results can be found in Appendix B. 

Phase 

Subtraction Addition Test* 

M s D A B CIN s FA3 FA2 FAi FA0 

I 

0000 0000 0000 0000 1111 0000 5 5 5 5 

0000 mi 0001 0000 0000 0001 0 0 0 4 

1111 0000 mi 1111 mi nil 7 7 7 7 

1111 mi 0000 1111 0000 0000 6 6 6 6 

n 
0000 0001 mi 0000 1110 mi 1 1 1 4 

1110 mi mi 1110 0000 mi 2 2 2 4 

in 
0101 1010 1011 0101 0101 1011 4 3 4 7 

1010 0101 0101 1010 1010 0101 3 4 3 4 

Table 5-17 Functional tests for adder by subtraction test vectors. 

5.2.3 Summary 

A behavioral fault model for subtraction has been derived using a complete functional 

testing technique. Though based on direct subtraction, the behavioral test vectors also 

provide complete gate level fault coverage when implemented with adders. The functional 

tests can be readily extended to n-bits, still requiring only eight behavioral test vectors. 

Supplemental behavioral faults for a CIA implementation can be easily derived via the 

relationships of 2's complement arithmetic. Such an example can be found in Appendix 

A. 

5.3   Constants as Operands 
When one operand for an arithmetic operator is a constant, the behavior changes to 

that of a unary operator such as increment or decrement. Controllability is lost over the 

constant's input patterns, so the previously developed functional tests cannot be applied. 
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A 4-bit increment function, Z <= Y +  1, is used here as an example. Applying the 

constant 0001 to a ripple carry adder structure, the FA equations can be rewritten as: 

S0   =  A0 

C0   =  A0 

Si   =   A±   0  Ci.! 
Ci   =   AiCi.! 

Stage 0 (ST0) of the resulting incrementor is a single input function, while the remaining 

stages are 2-input functions that can be recognized as half adders. A functional testing 

strategy, like that in Section 5.1.1.1, can now be applied. 

5.3.1 Functional Testing 

Complete functional testing of the unary operator increment will now be achieved by 

exhaustive testing of every stage. The test vectors and resulting tests for each stage are 

presented in Table 5-18. 

Phase Y z 

Test# 

HA3 HA2 HAL ST0 

I 
0000 0001 0 0 0 0 

1111 0000 3 3 3 1 

II 

1110 mi 2 2 2 0 

1101 1110 2 2 1 1 

1011 1100 2 1 3 1 

0111 1000 1 3 3 1 

Table 5-18 Functional tests for 4-bit increment function. 

As can be seen from the patterns in the test results, complete functional testing of an n- 

bit increment function can be achieved with n+2 test vectors. Similar analysis on a 4-bit 

decrement function,  Z  <= Y -  1, achieves similar results. 

5.3.2 Generalized Behavioral Fault Model 

By examining the functional test vector patterns for each unary operator function, 

(Y + 1, Y + 2,...) and (Y - 1, Y - 2,...), a generalized behavioral fault model can be devel- 

oped. In the case of positive increments, the n test vectors for the Phase II tests can be 

derived by starting with a test pattern formed by the complement of the increment value. 
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For example, a 5-bit implementation of Z <= Y + 3 would start with a Phase II test 

vector of 11100. The starting test pattern is then rotated n-1 times to produce the remain- 

ing behavioral test vectors. 

For negative numbers, the starting test pattern is based on the positive representation of 

the number. For example, a 6-bit implementation of Z <= Y - 5 would start with a 

Phase II test pattern of 000101. The functional tests produced by the resulting behavioral 

test vectors are summarized in Table 5-19. 

Phase Y z 

Test# 

ST5 ST4 ST3 ST2 STt ST0 

I 
000000 111011 0 0 0 0 0 0 

nun 111010 3 3 3 3 3 1 

n 

000101 000000 1 1 1 3 1 1 

001010 000101 1 1 2 1 2 0 

010100 001111 1 2 0 2 0 0 

101000 100011 3 1 2 0 0 0 

010001 001100 1 2 0 1 1 1 

100010 011101 2 0 0 1 2 1 

Table 5-19 Functional tests for 6-bit function Z <= Y - 5. 

Complete functional testing, of the unary operators formed by arithmetic operators 

with a constant operand, can be achieved with n+2 behavioral test vectors. The resulting 

gate level fault coverage, however, depends on optimizations performed by a synthesis 

tool which may affect the underlying ripple carry structure. Further application of these 

new behavioral fault models can be found in the examples in Appendix A. 

5.4   Comparison with Previous Fault Models 
As was the case with relational operators, few previous fault models address arith- 

metic operators. As part of the development of the "B-algorithm: A Behavioral Test Gen- 

eration Algorithm," [21] [22] Cho and Armstrong developed a new behavioral fault model 

which included arithmetic operators as part of micro-operation faults. Such faults perturb 

an arithmetic operator to another operator as indicated in Table 5-20. 
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Fault-free Operator Faulty Operator 

ADD SUB, XOR 

SUB ADD, XOR 

Table 5-20 Micro-operation Faults 

Recall that this fault model suffered from what the authors called the "big micro-oper- 

ation problem," where only a single test vector is generated for a complex block of logic. 

To raise their equivalent gate level fault coverage to acceptable levels, an additional 4n-l 

test vectors are generated by a heuristic test generator for each n-bit micro-operation. 

A similar fault model was proposed by Al Hayek and Robach [4] as part of a mutation- 

based testing strategy in which VHDL behavioral faults are considered as software faults. 

For Arithmetic Operator Replacement (AOR), ADD (+) is replaced by SUB (-). Mutation 

analysis does not take into account the size of the hardware implementation, because it 

considers each arithmetic operator as a software operation and consequently generates 

only one test vector. In order to improve the performance of their technique, the authors 

also resorted to heuristics to generate additional test vectors for their complex operators. 

The new behavioral fault models developed for arithmetic operators eliminate the 

need to supplement test vector sets. While the new fault models are definitely more com- 

plex than previous ones, this is because they more accurately reflect the underlying com- 

plexity of the hardware faults which they attempt to model. 

5.5   Conclusions 
New behavioral fault models have been developed for the predefined VHDL arith- 

metic operators ADD (+) and SUB (-). The fault models are based on complete functional 

testing of arithmetic building blocks. Though optimizations may modify the building 

blocks, the basic function of the arithmetic operators remains unchanged. By concentrat- 

ing on functional testing, complete gate level SSL fault coverage can be obtained over a 

broad range of hardware implementations. 

The base fault model is derived from the ripple carry connection of full and half 

adders. Because such realizations are made up of 2- and 3-input functional building 

blocks, complete functional testing can be achieved by exhaustive testing of each module. 
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Only eight behavioral test vectors are required for complete gate level fault coverage, 

regardless of the size of the operands. 

If the target hardware uses carry look-ahead circuits, additional behavioral faults are 

defined. Testing for all the faults in the highest order carry in a CIA adder will provide 

coverage for all lower order faults. Test vectors are added for missing carry faults and 

extra carry faults for specific stages. Knowledge of the target architecture will allow opti- 

mization of the test vector set while still achieving complete gate level fault coverage. 

Subtraction is closely related to addition and all the techniques previously discussed 

are applicable. The functional tests can be readily extended to «-bits, still requiring only 

eight behavioral test vectors. Though based on direct subtraction, they also provide com- 

plete functional testing when the operation is realized indirectly with adders. Additional 

behavioral faults for a CIA implementation can be easily derived via the relationships of 

2's complement arithmetic. 

The new behavioral fault models developed for arithmetic operators eliminate the 

need to supplement test vector sets via methods such as heuristics. While the new fault 

models are more complex than previous ones, this is because they more accurately reflect 

the underlying complexity of the hardware faults which they attempt to model. 



Chapter 6 

Other Operators 

The remaining VHDL operators from Table 1-2 include logical, unary, multiplying, 

and miscellaneous. Logical operators provide a close link between behavioral and gate 

level descriptions. Mapping SSL gate level faults into the behavioral domain is, therefore, 

a fairly straight forward process. However, differences in actual gate level structures, due 

to optimization and synthesis tools, must also be taken into account. 

In contrast to previously discussed binary operators, unary operators affect only a sin- 

gle operand. This distinction does not alter the analysis of gate level faults and their map- 

ping to behavioral faults. Though classified in the miscellaneous category, the operator 

ABS will be considered with this group. 

Due to power of 2 restrictions placed on multiplying operators, detailed in Figure 1-1, 

implementation becomes simply a shifting of lines, rather than any additional hardware. 

Since no more gates are implied by such operations, no additional gate level faults are 

introduced. The same synthesis guidelines apply to the miscellaneous operator (**), 

hence, no behavioral faults will be defined. 

6.1   Logical Operators 

The predefined VHDL logical operators include AND, OR, NAND, NOR, and XOR. 

All these operators are binary, therefore only 2-input gate level structures are implied. 

The miscellaneous operator NOT is a unary operator that does not introduce additional 

SSL gate level faults, not covered by other operators. Further, the logical pairs AND/OR 

and NAND/NOR differ by only a single inversion, hence detailed analysis of one group 

will provide the insight necessary to develop the behavioral fault models for the entire set 

of operators. 

The remaining logical operator, XOR, will be examined separately due to the unique 

nature of its functional faults. Additionally, previous research on XOR structures, such as 

parity trees, can provide optimizations for the behavioral tests necessary to provide com- 

plete gate level fault coverage. 

109 
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6.1.1 AND/OR 

The logical operators AND/OR provide a close link between behavioral and gate level 

descriptions. Mapping SSL gate level faults into the behavioral domain is, therefore, a 

fairly straight forward process. However, differences in actual gate level structures, due to 

optimization and synthesis tools, must also be taken into account. 

6.1.1.1   Functional Faults 

The behavioral description of a 2-operandAND operation can be expressed as: 

Z   <=  A AND  B; 

A direct gate level implementation results in a 2-input AND gate which can be analyzed 

for SSL faults. A reduced set of functional faults for the AND operation is presented in 

Table 6-1. The three test vectors (AB) necessary to detect all functional faults are, there- 

fore, 01,10, and 11. 

< PQ N 

o 
II 
N 

< 
II 
N 

PQ 
II 
N 

0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

Table 6-1 Functional faults for AND operation. 

A similar analysis of the OR operation produces the reduced set of functional faults 

shown in Table 6-2. The required functional test vectors are 00, 01, and 10. 

< PQ N 
II 
N 

< 
II 
N 

PQ 
II 
N 

0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 1 

Table 6-2 Functional faults for OR operation. 
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The functional faults for the NAND and NOR operators follow directly from the above 

analysis. The functional tests for the NAND operation are the same as for the AND opera- 

tion, while the tests for the NOR operation are the same as the OR. 

6.1.1.2   Complex Expressions 

The functional faults for a single logical operator have been determined quite easily. 

However, interactions among these operators in more complex expressions must also be 

addressed. Since all the logical operators are binary, these interactions can be investi- 

gated with the use of a binary tree. 

Consider the behavioral description of a logical expression presented in Figure 6-1. 

entity SOPl is 
port( A, B, C, D: in std_logic; 

. Z: out std_logic ); 
end SOPl; 

architecture behave of SOPl is 
begin 

process(A,B,C,D) 
begin 

Z <= (A AND B) OR (C AND D); 
end process; 

end behave; 

Figure 6-1 Behavioral description for example SOPl. 

The expression on the right hand side of the assignment statement can be parsed into a 

binary tree shown in Figure 6-2. The nodes (1,2,3) are formed by the logical operators, 

while the leaves of the tree are the signals A, B, C, and D. 

2 OR 

/   \ 
1 AND 3 AND 

/ \   / 
A B     C D 

Figure 6-2 Binary tree representing example SOPl. 

According to the previous analysis, three functional faults affect each of the three log- 

ical operators in the expression. For example, the first functional fault to the AND opera- 
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tor at node 1 requires a test vector (AB) of 01 and produces an erroneous output of A AND 

B = 1. In order for this erroneous output to be observable at the expression output Z, 

appropriate values for the other signals (C,D) must be determined. This can be accom- 

plished using the following set of Boolean identities: 

Y OR  0   =  Y 
Y OR  1   =   1 

Y AND   1   =  Y 
Y AND   0=0 

According to the first identity, setting the right hand operand of the OR operator at 

node 2 to 0 will allow the left hand operand to propagate up the tree unchanged. Using the 

last identity, setting either operand of the AND operator, at node 3, to 0 will produce the 

desired input to node 2. Applying this set of identities along with the functional faults for 

the AND and OR operators produces the test vectors shown in Table 6-3. 

Node 
Functional 

Test 
Test Requirements 

Test Vector 
(ABCD) 

1 

01 A = 0, B = 1, (C AND D) = 0 010X 

10 A=1,B = 0,(CANDD) = 0 100X 

11 A = 1, B = 1, (C AND D) = 0 110X 

2 

00 (A AND B) = 0, (C AND D) = 0 oxox 

01 (A AND B) = 0, (C AND D) = 1 0X11 

10 (A AND B) = 1, (C AND D) = 0 110X 

3 

01 C = 0,D=1, (AANDB) = 0 0X01 

10 C=1,D = 0,(AANDB) = 0 0X10 

11 C=1,D=1,(AANDB) = 0 0X11 

Table 6-3 Functional test vectors for example SOP1. 

The set of functional test vectors can be reduced by combination of the don't care val- 

ues. The final test vectors for example SOP1 are presented in Table 6-4. Also listed are 

the functional tests covered for each node of the parse tree. 
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Test Vector 
(ABCD) 

Functional Tests 
(Node [Test]) 

0101 1[01],2[00],3[01] 

0X10 3[10] 

0X11 2[01],3[11] 

100X 1[10] 

110X 1[11],2[10] 

Table 6-4 Reduced test vectors for example SOP1. 

6.1.1.3   Scalability 

Example SOP4 was created by expanding the width of the signals A, B, C, and D to 

std_logic_vector(3 downto 0). It has been previously shown that expansion of the data 

path simply causes replication of the single bit case implemented in parallel. Hence, extra 

test vectors are not required since the additional hardware can be tested at the same time. 

The expanded test vectors for example SOP4 are shown in WAVES format in Figure 6-3. 

% A B C D Z 
0000 1111 0000 1111 0000 
0000 XXXX 1111 0000 0000 
0000 XXXX 1111 1111 1111 
1111 0000 0000 XXXX 0000 
1111 1111 0000 XXXX 1111 

time ; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 6-3 WAVES test vectors for example SOP4. 

6.1.1.4   Behavioral Fault Model 

As was the case with the arithmetic operators, an error vector approach is taken for 

abstracting the logical operator functional faults into the behavioral domain. The XOR 

operator provides the desired corruption properties by inverting the appropriate bit(s) 

when presented with a non-zero error vector. 

Recall from Table 6-3, the first functional fault to the AND operator at node 1 required 

that A = 0, B = 1, and (C AND D) = 0. This fault criteria can be directly translated to an 

error vector for example SOP1 as: 

Z <= (A AND B) OR (C AND D) XOR (A = '0' AND B = '1' 
AND (C AND D) = *0') 
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Again, as was the case for the arithmetic operators, this expression is not syntactically 

correct due to VHDL type differences. A complete implementation of the behavioral fault 

model for example SOP1 is presented in Figure 6-4. 

Z <= (A AND B) OR (C AND D) XOR to_stdlogic( 
(A = y0'   AND B = *1' AND (C AND D) = *0') OR 
(A = »1' AND B = *0' AND (C AND D) = *0') OR 
(A = »1' AND B = *1' AND (C AND D) = >0') OR 
((A AND B) = *0' AND (C AND D) = *0') OR 
((A AND B) = *0' AND (C AND D) = »1') OR 
((A AND B) = »1' AND (C AND D) = *0') OR 
(C = x0' AND D = '1' AND (A AND B) = *0') OR 
(C = *1' AND D = x0' AND (A AND B) = x0') OR 
(C = »1' AND D = »1' AND (A AND B) = *0'))i 

Figure 6-4 Behavioral fault model for example SOP1. 

6.1.1.5   Application of the New Fault Models 

A simple example is now presented to demonstrate the application of the new fault 

models developed for logical operators. A test vector set will be formed based on behav- 

ioral faults and then applied to synthesized gate level realizations. 

Example GT in Figure 6-5 uses logical operators to describe a Boolean expression for 

the 2-bit greater than function, examined in detail in Chapter 4. Example GT presents two 

minor differences from example SOP1. First, the inclusion of the unary operator NOT 

means that the resulting parse tree will not be completely binary.  This should have no 

entity gt is 
port(A, B: in std_logic_vector(1 downto 0); 

GT: out std_logic ); 
end gt; 

architecture behave of gt is 
begin 

process(A,B) 
begin 

GT <= (A(l) AND not B(l)) OR (A(0) AND not B(0) 
AND (A(l) OR not B(l))); 

end process; 
end behave; 

Figure 6-5 Behavioral description for example GT. 
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effect on the test generation process since functional faults are only defined for the binary 

logical operators. Second, not all of the pairings are explicitly defined for the binary log- 

ical operators in example GT. Hence, the precise implementation by the synthesis tool 

cannot be determined. Since the new fault models are based on a functional analysis, they 

should provide complete gate level fault coverage over a broad range of realizations. 

A parse tree for example GT is presented in Figure 6-6. As before, the binary nodes 

are formed by the logical operators, while the leaves of the tree represent the signals. 

2 OR 

/   \ 
1 AND 3 AND 

/ \   / \ 
At not    A0        4 AND 

I / \ 
Bi not 5 OR 

I    / \ 
B0     A{ not 

B, 

Figure 6-6 Parse tree for example GT. 

Application of the new behavioral fault models implies three behavioral faults for each 

of the five binary logical operators. The resulting test vectors are presented in Table 6-5. 

Again, the set of behavioral test vectors can be reduced by combination of the don't care 

values. The final test vectors for example GT are presented in Table 6-6. It is worth not- 

ing that the behavioral test vectors derived here are consistent with the functional faults for 

the 2-bit GT function presented in Figure 4-2. 

Example GT was synthesized with AutoLogic II to produce the gate level Structure 1 

shown in Figure 6-7. Note that the groupings for the AND gates do not match the parse 

tree in Figure 6-6. According to MIL-STD 883D, Structurel contains 30 unique gate level 

SSL faults. Fault simulations using the behavioral test vectors from Table 6-6 resulted in 

complete gate level fault coverage. 
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Node 
Behavioral 

Test 
Test Requirement 

Test Vector 
(A1A0B1B0) 

1 

01 
A! = 0, notB^l, 

A0 AND not B0 AND (AL OR not B^ = 0 
ooox 

10 
A^^notB^O, 

A0 AND not B0 AND (Ai OR not B^ = 0 
101X 

11 
At = ^notBj = 1, 

A0 AND not B0 AND (A! OR not B^ = 0 
100X 

2 

00 
A{ ANDnotB!=0, 

A0 AND not B0 AND (Ax OR not B {) = 0 
ooxx 

01 
At ANDnotB^O, 

A0 AND not B0 AND (At OR not B ^ = 1 
0100 

10 
Ai ANDnotB^l, 

A0 AND not B0 AND (At OR not B:) = 0 
100X 

3 

01 
A0 = 0, not B0 AND (AY OR not Bx) = 1, 

Ai ANDnotB! = 0 
1010 

10 
A0 = 1, not B0 AND (Al OR not B^ = 0, 

Aj ANDnotB! = 0 
01X1 

11 
A0 = 1, not B0 AND (Ax OR not B:) = 1, 

At ANDnotB^O 
1110 

4 

01 
not B0 = 0, AL OR not B2 = 1, 

A0=1,A1 ANDnotB1 = 0 
1111 

10 
not B0 = 1, Al OR not B: = 0, 

A0=l,A1ANDnotB1 = 0 
0110 

11 
notB0=l,A1ORnotB1 = l, 

A0=1,A1 ANDnotB^O 
1110 

5 

00 
Aj = 0, not BL = 0, not B0 = 1, 
Ao=l,A! ANDnotB^O 

0110 

01 
Ai = 0, not Bt = 1, not B0 = 1, 

A0=1,A1 ANDnotB^O 
0100 

10 
A1 = l,notB1 = 0, notB0 = 1, 

A0=1,A! ANDnotB^O 
1110 

Table 6-5 Behavioral test vectors for example GT. 
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Test Vector 
(AiAoBiBo) 

Functional Tests 
(Node [Test]) 

ooox 1[01], 2[00] 

OlOO 2[01],5[01] 

01X1 3[10] 

0110 4[10], 5[00] 

100X 1[11],2[10] 

1010 1[10],3[01] 

1110 3[11],4[11],5[10] 

1111 4[01] 

Table 6-6 Reduced test vectors for example GT. 

a(1:0)O 

b(1:0)O- 

1S~ 

-Ogt 

Figure 6-7 Synthesized Structurel for example GT. 

Example GT was next synthesized and optimized for an alternate target technology. 

The resulting Structure2 is shown in Figure 6-8. Fault simulations using the same behav- 

ioral test vectors achieved a SSL gate level fault coverage of 35/35 = 100%. The fault cov- 

erage graph is shown in Figure 6-9. 

b(1:Q)0- 

a(1:0)O- 
H> s~ 

o 
O 

-Ogt 

Figure 6-8 Synthesized Structure2 for example GT. 
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Figure 6-9 Fault coverage for Structure2 of example GT. 

6.1.2 XOR 

The remaining logical operator, XOR, is examined here separately, due to the unique 

nature of its functional faults. Additionally, previous research on XOR structures, such as 

parity trees [16][53], can provide optimizations for the behavioral tests necessary to pro- 

vide complete gate level fault coverage. 

6.1.2.1   Functional Faults 

The XOR gate has numerous logical implementations producing several different sets 

of functional faults. In order to test an XOR gate whose internal structure is unknown, an 

exhaustive test set, four patterns, is needed to detect all SSL faults [30]. A generalized set 

of functional faults is presented in Table 6-7. 

The set of generalized functional faults and the following Boolean identities allow 

functional tests to be generated for the XOR operator used in complex expressions with 

the other logical operators. 

Y XOR  0   =  Y 
Y XOR Y  =   0 
Y XOR Y  =   1 

Though not optimal, the functional tests ensure complete SSL fault coverage of the XOR 

gates regardless of their internal structure. 
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0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 0 1 

Table 6-7 Generalized functional faults for XOR operation. 

6.1.2.2   Optimized Test Generation 

Expressions containing only XOR operators are common for circuits such as parity 

networks. Previous research has demonstrated the generation of optimum test patterns for 

such parity networks with fixed structures [16][53]. However, when working with behav- 

ioral descriptions, the actual gate level structure is often unknown and may ultimately be 

determined by a synthesis tool. Still, modifications to the algorithms are possible to allow 

for complete gate level fault coverage over a broad range of implementations. 

The Bossen algorithm [16] applies an exhaustive test to each XOR gate by using the 

labeling scheme shown in Figure 6-10. The test sequences are labeled R, S, and T Each 

of the sequences is the modulo-2 sum of the other two. That is, T = R © S, S = T © R, and 

R = S © T. 

oioi—^\    ^\ 
V- 0110 R 

ooii —jj ^y 

Figure 6-10 Labeling scheme for Bossen test. 

Test generation using the Bossen algorithm will be demonstrated via a simple exam- 

ple. The behavioral description for XOR5 is shown below: 

Z   <=  A XOR B  XOR C  XOR D  XOR  E 

Grouping the terms from left to right produces a linear tree or cascade implementation 

shown in Figure 6-11. 
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B£> 

CO 

DO 

EO 

Figure 6-11 Structure Cascadel for example X0R5. 

The test set is developed by first assigning one of the three sequences to the output of 

the tree. Other sequences are then determined moving from right to left, ensuring that 

each XOR gate is exhaustively tested. The resulting test vectors are shown in Table 6-8. 

Note that the labeling sequences are not unique and the test vectors generated may not 

completely test other implementations of the same expression. 

Signal Label Sequence 

A T 0101 

B S 0011 

C T 0101 

D R 0110 

E S 0011 

Test Vector 
(ABCDE) 

z 

00000 0 

10110 1 

01011 1 

11101 0 

Table 6-8 Bossen test vectors for Cascadel. 

If the behavioral description for XOR5 is instead implemented by grouping terms 

from right to left, a second cascade structure is formed. Figure 6-12 shows that the label- 

ing scheme from Figure 6-11 cannot be applied to this alternate implementation. 

AO- 

BO- 

CO- 
DO- 
EO- S>?^ 

Oz 

Figure 6-12 Structure Cascade2 for example XOR5. 
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In fact, no labeling will provide exhaustive testing for all XOR gates in both circuits 

Cascade 1 and Cascade2. What is needed is a modification to the Bossen algorithm that 

will take into account the most likely implementations of an XOR-on\y expression. Con- 

sider the following groupings for example XOR5: 

Z   <=    (((A XOR  B)   XOR  C)   XOR D)   XOR  E (Cascadel) 

Z   <=    ( (A XOR B)   XOR   (C  XOR D) )   XOR  E (Balancedl) 

Z   <=  A XOR   (B  XOR   (C  XOR   (D  XOR  E) ) ) (Cascade2) 

Z  <= A XOR   ( (B XOR C)   XOR   (D XOR E) ) (Balanced2) 

The first and third groupings produce structures Cascadel and Cascade2 respectively, 

while the second and forth groupings produce balanced trees [53]. If we consider these 

structures to represent a broad range of possible implementations of the behavioral 

description, a generalized Bossen algorithm can then provide complete gate level fault 

coverage. 

An extra restriction is added to the Bossen algorithm to account for multiple possible 

structures: According to the assumed groupings for a cascade and its corresponding bal- 

anced implementation (Cascade i, Balanced i), no two inputs that are grouped together can 

be assigned the same test sequence. 

Applying this modified algorithm to structure Cascade2 produces the labeling 

sequences shown in Figure 6-13 and the test vectors shown in Table 6-9. Since the test 

vectors developed for structure Cascadel already meet the additional restriction for the 

modified Bossen algorithm, the generalized set of test vectors from Table 6-8 and Table 6- 

9 will now provide exhaustive testing for all four structures of XOR5. 

Figure 6-13 Modified Bossen test for Cascade2. 
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Signal Label Sequence 

A S 0011 

B R 0110 

C T 0101 

D S 0011 

E T 0101 

Test Vector 
(ABCDE) 

z 

00000 0 

01101 1 

11010 1 

10111 0 

Table 6-9 Modified Bossen test vectors for Cascade2. 

6.1.2.3   Evaluation of the Generalized Test Vectors 

The generalized Bossen test vectors for example XOR5 are presented in WAVES for- 

mat in Figure 6-14. Fault simulations were conducted on multiple implementations 

including Structure4 in Figure 6-15. Complete SSL gate level fault coverage was achieved 

for each realization. An example fault coverage graph for Structure4 is shown in Figure 6- 

16. Note that though the behavioral test vectors are optimized compared to those gener- 

ated by a parse tree, they are still generalized to apply to multiple gate level structures. 

%  ABCDE   Z   :   time   ; 
00000 0 
01011 1 
01101 1 
10110 1 
10111 0 
11010 1 
11101 0 

500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 6-14 Generalized Bossen test vectors for example XOR5. 

aO 

Figure 6-15 Structure4 for example XOR5. 
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Figure 6-16 Fault coverage for Structure4 of example XOR5. 

6.1.3 Comparison with Previous Fault Models 

Behavioral fault models for logical operators are addressed by Armstrong et al., where 

early models replaced one micro-operation with any other in its class [9] [69], while later 

studies tried to determine which perturbations produced the best fault coverage [19]. 

Finally, the B-algorithm eliminated micro-operation faults for logical operators by defin- 

ing bit-wise stuck-at faults for any one of its arguments (a signal or an unnamed signal for 

an expression) [21] [22]. This method amounts to exhaustive testing of each logical oper- 

ator in an expression. 

In their mutation based testing strategy, Al Hayek and Robach [4] define Logical Oper- 

ator Replacement (LOR) in which each logical operator is replaced by each of the other 

operators. This method treats the VHDL description as software and has little relation to 

actual hardware faults. Finally, other fault models [18][27][60] completely neglect logical 

operators and instead rely on stuck-signals to provide fault coverage. 

The new behavioral fault models developed for logical operators are based on func- 

tional faults that require less than exhaustive testing for all operators except XOR. For the 

special case of XOR-only expressions, a generalized Bossen algorithm is presented that 

allows for optimization of test sequences. The new fault models and algorithms thus pro- 

vide complete SSL gate level fault coverage for a broad range of implementations. 
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6.2  Unary Operators 
The unary operator for negation (-) performs a function related to the miscellaneous 

operator ABS; each affects the sign of a 2's complement number. By analyzing each oper- 

ator's functional faults in tandem with the other, a consistent behavioral fault model can 

be developed. Note that no previous behavioral fault models even address these operators. 

6.2.1 Absolute Value 

The ABS operator computes the absolute value of a 2's. complement number. The 

operator's functional faults will be investigated for the 4-bit case, then generalized to n- 

bits. The following Boolean equations describe the 4-bit absolute value function: 

z0 = x0 
z1 = x± 0   (X3X0) 
z2 - x2 
Z3   =   0 

(X3X!   +   X3X0) 

Analysis of the faulty behavior of Z = ABS X produces the reduced set of functional 

faults shown in Table 6-10. The faults are genetically labeled F1-F5 and are shown with 

the integer value of the appropriate test vectors. Before proceeding further with the devel- 

opment of a behavioral fault model, the negation operator will first be examined for com- 

mon functional faults. 

Functional 
Fault 

Test Vectors 
(integer) 

Fl 1,3,5,7 

F2 2,3,6,7 

F3 -3,-7 

F4 -2,-6 

F5 -4 

Table 6-10 Reduced functional faults for 4-bit ABS. 

6.2.2 Negation 

The negation operator (-) changes the sign of a 2's complement number. The follow- 

ing Boolean equations describe the 4-bit negation function: 
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Z0   =   X 0 
Z-L   =   X1   @  X0 

Z2   =   X2   ©    {X1   +  X0) 
Z3   =   X3   ©    (X2   +   X-L   +   X0) 

Analysis of the faulty behavior of Z = -X produces the reduced set of functional faults 

shown in Table 6-11. The faults are generically labeled F6-F10 and are shown with the 

integer value of the appropriate test vectors. 

Functional 
Fault 

Test Vectors 
(integer) 

F6 0 

F7 -3,-7,1,5 

F8 -5, -6, -7, 1, 2, 3 

F9 -2, -6, 2, 6 

F10 -4,4 

Table 6-11 Reduced functional faults for 4-bit negation. 

6.2.3 Generalized Functional Faults 

Examination of the reduced set of functional faults for the absolute value and negation 

operators provides the necessary insight for developing a common fault model. A gener- 

alized set of functional faults is shown in Table 6-12. The faults are covered by three tests 

spanning the range of integer values (0, -7,7) combined with a readily identifiable pattern 

from the 4-bit test vectors. These patterns are easily replicated for the n-bit case. 

Functional 
Faults 

Test Vector 
(integer) 

Test Vector 
(X3X2X1X0) 

F6 0 0000 

F1,F2 7 0111 

F3, F7, F8 -7 1001 

F4,F9 -6 1010 

F5, F10 -4 1100 

Table 6-12 Generalized functional faults for absolute value and negation. 
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6.2.4 Behavioral Fault Model 

Since ABS and (-) only operate on integers, the form of their behavioral fault models 

will be slightly different. One method would be to convert the resulting integer to a 

bit_vector, which could then be corrupted using an error vector and the XOR operator. The 

corrupted bit_vector would then have to be converted back to an integer to match the type 

of the original operation. 

Since the purpose of the error vector approach is to simply corrupt the result of the 

operation, another operator that works directly with integers could just as easily be used. 

Hence, the addition operator (+) is used here instead of the XOR to reduce the number of 

type conversions necessary. An implementation of the behavioral fault model for the ABS 

operator is presented in Figure 6-17. The negation operator (-) can also be corrupted 

using the same method. 

Z  <=   (ABS X)   + to_integer(X =  0 OR X =  7 OR X =  -7 OR 
X  =   -6   OR X  =   -4); 

Figure 6-17 Behavioral fault model for ABS. 

6.2.5 Evaluation of Behavioral Test Vectors 

The generalized functional faults from Section 6.2.3 can be readily extrapolated for a 

larger range of integer values. For examples ABS8 and NEG8, X is declared as an integer 

with range from -127 to +127. Thus, a synthesis tool will generate hardware with eight 

bits to represent the 2's complement value of X. The WAVES test vectors for example 

ABS8 are shown in Figure 6-18. 

% X z 
00000000 0000000 
01111111 1111111 
10000001 1111111 
10000010 1111110 
10000100 1111100 
10001000 1111000 
10010000 1110000 
10100000 1100000 
11000000 1000000 

time ; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 6-18 WAVES test vectors for example ABS8. 
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Example ABS8 was synthesized to a gate level implementation using AutoLogic II. 

Structure 1 is shown in Figure 6-19. Fault simulations using the behavioral test vectors 

produced a SSL gate level fault coverage of 132/132 = 100%. The fault coverage graph is 

shown in Figure 6-20. 

x(7:G)0 

Figure 6-19 Synthesized Structurel of example ABS8. 
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Figure 6-20 Fault coverage for Structurel of example ABS8. 

Due to the common behavioral fault model, the test vectors for example NEG8 are the 

same as those for ABS8. Example NEG8 was synthesized to the gate level circuit shown 

in Figure 6-21. According to MIL-STD 883D, the synthesized circuit contains 114 unique 
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gate level SSL faults.   Fault simulations using the common behavioral test vectors also 

result in complete gate level fault coverage. 

*7:',D-££>- 
I>T^>1 Ü> ^CHfCh 

r^> x>- 
-Oz(7:0> 

Figure 6-21 Synthesized circuit for example NEG8. 

6.3   Conclusions 

New behavioral fault models have been developed for the remaining predefined VHDL 

operators. The fault models are based on a functional analysis of the logical, unary, mul- 

tiplying, and miscellaneous operators. Though not necessarily optimal, the new fault 

models provide complete gate level SSL fault coverage over a broad range of hardware 

implementations. 

The new behavioral fault models developed for the logical operators (AND, OR, 

NAND, NOR, XOR) are based on functional faults that require less than exhaustive testing 

for all operators except XOR. For the special case of XOR-only expressions, a generalized 

Bossen algorithm is presented that allows for optimization of test sequences. 

The unary operator for negation (-) performs a function related to the miscellaneous 

operator ABS; each affects the sign of a 2's complement number. By analyzing each oper- 

ator's functional faults in tandem with the other, a consistent behavioral fault model was 

developed. Note that no previous behavioral fault models even address these operators. 



Chapter 7 

Other Programming Constructs 

VHDL also includes other constructs drawn from familiar programming languages. 

Program loops, functions, and procedures are used in VHDL behavioral descriptions for 

design simplicity and reuse/repetition of functional blocks. Since any description using 

these constructs can be rewritten equivalently without them, no additional behavioral 

faults are implied. Several design examples will be used to demonstrate the interaction 

between previously defined behavioral faults and these other programming constructs. 

7.1   Loops 

The VHDL subset, detailed in Appendix D [36], restricts the use of the loop statement 

to only the for iteration scheme. The bounds of the discrete range of the loop must be 

specified directly or indirectly as static values belonging to an integer type. Hence, the 

program loop can be expanded or "unrolled" to an equivalent form eliminating the loop 

construct. 

7.1.1 A Simple Example 

Example SHIFT4u in Figure 7-1 demonstrates the use of program loops to perform 

shifting operations. With control signal OP = "01", a right shift of the unsigned signal 

A is performed by the I in 0 to 2 loop. Similarly, with OP = "10", a left shift is 

accomplished via the I in 3 down to 1 loop. For this example, other values for the 

control signal OP pass signal A unchanged. 

entity shift4u is 
port ( 

OP: in std_logic_vector(1 downto 0); 
A: in std_logic_vector(3 downto 0); 
D: out std_logic_vector(3 downto 0) 

); 
end shift4u; 

Figure 7-1 Behavioral description for example SHIFT4u. 

129 
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architecture behave of shift4u is 
begin 

process(OP,A) 
variable TMP: std_logic_vector(3 downto 0] 

begin 
case OP is 
when "01" => 

for I in 0 to 2 loop 
TMP(I) := A(I+1); 

end loop; 
TMP(3) := v 0'; 

when "10" => 
for I in 3 downto 1 loop 

TMP(I) := A(I-l); 
end loop; 
TMP(0) := x 0'; 

when others => 
TMP := A; 

end case 
D <= TMP 

end process; 
end behave; 

Figure 7-1 Behavioral description for example SHIFT4u. 

Due to the directly specified discrete range in each loop, they can be readily expanded 

to a sequence of statements eliminating the loop constructs. An expanded version of the 

case statement for example SHIFT4u is shown in Figure 7-2. 

case OP is 
when "01" => 

TMP(O) := A(l 
TMP(l) := A(2 
TMP(2) := A(3 
TMP(3) := '0' 

when "10" => 
TMP(3) := A(2 
TMP(2) := A(l 
TMP(l) := A(0 
TMP(0) := '0' 

when others => 
TMP := A; 

end case; 

Figure 7-2 Expanded case statement for example SHIFT4u. 
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The only behavioral faults affecting the expanded example SHEFT4u are the control 

faults for the case statement. The behavioral faults and resulting test vectors are shown in 

Table 7-1. Combining don't cares produces the behavioral test vectors in Figure 7-3. 

Behavioral Fault Corrupted Clause 
Test Vectors 

(OP A) 

WHEN-00-CORRUPT 
(by WHEN-01)(OR) 

TMP(O)    :=  A(0)   OR A(l) 
TMP(l)    :=  A(l)   OR A(2) 
TMP(2)    :=  A(2)   OR A(3) 
TMP(3)    :=  A(3)   OR   »0' 

00   1010 
00  X10X 

WHEN-00-CORRUPT 
(by WHEN-01)(AND) 

TMP(O)    :=  A(0)   AND A(l) 
TMP(l)    :=  A(l)   AND A(2) 
TMP(2)    :=  A(2)   AND A(3) 
TMP(3)    :=  A(3)   AND   xO' 

00   0101 
00   101X 

WHEN-00-CORRUPT 
(by WHEN-10)(OR) 

TMP(O)    :=  A(0)   OR   '0' 
TMP(l)    :=  A(l)   OR A(0) 
TMP(2)    :=  A(2)   OR A(l) 
TMP(3)    :=  A(3)   OR A(2) 

00   0101 
00  X01X 

WHEN-00-CORRUPT 
(by WHEN-10)(AND) 

TMP(O)    :=  A(0)   AND   *0' 
TMP(l)    : =  A(l)   AND A(0) 
TMP(2)    :=  A(2)   AND A(l) 
TMP(3)    := A(3)   AND A(2) 

00   1010 
00  X101 

WHEN-01-CORRUPT 
(by WHEN-00XOR) 

TMP(O)    :=  A(l)   OR A(0) 
TMP(l)    :=  A(2)   OR A(l) 
TMP(2)    :=  A(3)   OR A(2) 
TMP(3)    :=   '0'      OR A(3) 

01   0101 
01   101X 

WHEN-01-CORRUPT 
(by WHEN-OOXAND) 

TMP(O)    :=  A(l)   AND A(0) 
TMP(l)    :=  A(2)   AND A(l) 
TMP(2)    :=  A(3)   AND A(2) 
TMP(3)    :=   x0'      AND A(3) 

01   1010 
01  X10X 

WHEN-01 -CORRUPT 
(byWHEN-ll)(OR) 

TMP(O)    :=  A(l)   OR A(0) 
TMP(l)    :=  A(2)   OR A(l) 
TMP(2)    :=  A(3)   OR A(2) 
TMP(3)    :=   *0'      OR A(3) 

01   0101 
01   101X 

WHEN-01-CORRUPT 
(byWHEN-ll)(AND) 

TMP(O)    :=   A(l)   AND A(0) 
TMP(l)    :=  A(2)   AND A(l) 
TMP(2)    :=  A(3)   AND A(2) 
TMP(3)    :=   '0'      AND A(3) 

01   1010 
01  X10X 

Table 7-1 Behavioral faults for example SHIFT4u. 
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Behavioral Fault Corrupted Clause 
Test Vectors 

(OP A) 

WHEN-10-CORRUPT 
(by WHEN-00)(OR) 

TMP(O)    :=   x0'      OR A(O) 
TMP(l)    :=  A(0)   OR A(l) 
TMP(2)    :=  A(l)   OR A(2) 
TMP(3)    :=  A(2)   OR A(3) 

10   1010 
10  X101 

WHEN-10-CORRUPT 
(by WHEN-00)(AND) 

TMP(O)    :=   '0'      AND A(O) 
TMP(l)    :=  A(0)   AND A(l) 
TMP(2)    :=  A(l)   AND A(2) 
TMP(3)    :=  A(2)   AND A(3) 

10   0101 
10  X01X 

WHEN-10-CORRUPT 
(byWHEN-ll)(OR) 

TMP(O)    :=   40'      OR A(O) 
TMP(l)    :=  A(0)   OR A(l) 
TMP(2)    :=  A(l)   OR A(2) 
TMP(3)    :=  A(2)   OR A(3) 

10   1010 
10  X101 

WHEN-10-CORRUPT 
(byWHEN-ll)(AND) 

TMP(O)    :=   '0'      AND A(O) 
TMP(l)    :=  A(0)   AND A(l) 
TMP(2)    :=  A(l)   AND A(2) 
TMP(3)    :=  A(2)   AND A(3) 

10   0101 
10  X01X 

WHEN-11-CORRUPT 
(by WHEN-01)(OR) 

TMP(O)    :=  A(0)   OR A(l) 
TMP(l)    :=  A(l)   OR A(2) 
TMP(2)    :=  A(2)   OR A(3) 
TMP(3)    :=  A(3)   OR   *0' 

11  1010 
11   X10X 

WHEN-11-CORRUPT 
(by WHEN-01)(AND) 

TMP(O)    :=   A(0)   AND A(l) 
TMP(l)    :=  A(l)   AND A(2) 
TMP(2)    :=  A(2)   AND A(3) 
TMP(3)    :=  A(3)   AND   *0' 

11   0101 
11   101X 

WHEN-11-CORRUPT 
(by WHEN-10)(OR) 

TMP(O)    := A(0)   OR   *0' 
TMP(l)    :=  A(l)   OR A(0) 
TMP(2)    :=  A(2)   OR A(l) 
TMP(3)    :=  A(3)   OR A(2) 

11   0101 
11  X01X 

WHEN-11-CORRUPT 
(byWHEN-lOXAND) 

TMP(O)    :=  A(0)   AND   '0' 
TMP(l)    :=  A(l)   AND A(0) 
TMP(2)    :=  A(2)   AND A(l) 
TMP(3)    := A(3)   AND A(2) 

11   1010 
11  X101 

Table 7-1 Behavioral faults for example SHIFT4u. 
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%0P  A D time; 
00 0101 0101 500 ns; 
00 1010 1010 500 ns; 
01 0101 0010 500 ns; 
01 1010 0101 500 ns; 
10 0101 1010 500 ns; 
10 1010 0100 500 ns; 
11 0101 0101 500 ns; 
11 1010 1010 500 ns; 

Figure 7-3 WAVES test vectors for example SHIFT4u. 

Example SHIFT4u from Figure 7-1 was synthesized to the gate level Structure 1 shown 

in Figure 7-4. Fault simulations were performed using the behavioral test vectors from 

Figure 7-3. The resulting SSL gate level fault coverage of 90/90 = 100% is shown in Fig- 

ure 7-5. An alternate synthesis tool and target architecture was next used to produce 

Structure2 for example SHIFT4u. Fault simulations using the behavioral test vectors from 

Figure 7-3 resulted in a SSL gate level fault coverage of 112/112 = 100%. 

a(3:Q)0 

op(1:0) 

^d(3:0) 

Figure 7-4 Synthesized Structurel for example SHIFT4u. 
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Figure 7-5 Fault coverage for Structurel of example SHIFT4u. 

7.1.2 Comparison with Previous Fault Models 

The only previous behavioral fault model to address the loop construct was that pro- 

posed by Riesgo and Uceda [60]. As part of faults on expressions, the for_in_loop con- 

struct was faulted by the index controlling the loop changing its range from the minimum 

to the maximum+1 and from the minimum-1 to the maximum. As can be seen from exam- 

ple SHIFT4u, such faults would produce signals that do not even exist in the synthesized 

hardware, A(-l) and A(3). Thus, their proposed fault model is more a software mutation, 

than hardware oriented as they claim. 

The restrictions placed on the loop construct by the VHDL synthesis subset imply that 

all such loops can be readily expanded. Since this expansion or "unrolling" eliminates the 

loops from the behavioral description, no additional behavioral faults are introduced. The 

next section will show that the behavior of functions and procedures is much the same. 

7.2   Functions and Procedures 

Much like program loops, functions and procedures are used mainly as a convenience 

for ease of programming. In general, any VHDL code written with functions and proce- 

dures can be mapped to the same hardware as equivalent code without functions or proce- 

dures [10].  Since the VHDL behavioral descriptions can be expanded to eliminate these 
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programming constructs, no additional behavioral faults are introduced by the use of func- 

tions or procedures. 

7.2.1 Example ADD4fn 

Example ADD4fn in Figure 7-6 describes a 4-bit ripple carry adder using functions to 

perform the sum and carry operations. The functions FA_S and FA_C are shown in Figure 

7-7. 

process(A,B,CIN) 
variable CARRY: std_logic_vector(4 downto 0); 
variable SUM : std_logic_vector(3 downto 0) ; 

begin 
CARRY(0) := CIN; 
for I in 0 to 3 loop 

SUM(I) :=FA_S(A(I), B(I), CARRY(I)); 
CARRY(I+1) :=FA_C(A(I), B(I), CARRY(I)); 

end loop; 
S <= SUM; 
COUT <= CARRY(4); 

end process; 

Figure 7-6 Behavioral description for example ADD4fn. 

function FA_S (AIN, BIN, CIN: std_logic) return 
std_logic is 

begin 
return AIN xor BIN xor CIN; 

end FA_S; 

function FA_C (AIN, BIN, CIN: std_logic) return 
std_logic is 

begin 
return (AIN and BIN) or (AIN and CIN) or 

(BIN and CIN) ; 
end FA_C; 

Figure 7-7 Functions for example ADD4fn. 

The loop and function programming constructs can be eliminated from the behavioral 

description by expanding the loop and replacing the function call with its returned expres- 

sion. The results of this expansion and substitution are shown in Figure 7-8. Since the 

VHDL behavioral descriptions in Figure 7-6 and Figure 7-8 synthesize to the same gate 
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level structures, no additional behavioral faults have been introduced by the use of func- 

tions. 

begin 
CARRY(0) := CIN; 
SUM(0) := A(0) xor B(0) xor CARRY(0); 
CARRY (1) := (A(0) andB(O)) or (A(0) andCARRY(O)) or 

(B(0) and CARRY(0)); 
SUM(l) := A(l) xor B(l) xor CARRY(l); 
CARRY(2) := (A(l) andB(l)) or (A(l) andCARRY(l)) or 

(B(l) and CARRY(1)); 
SUM(2) := A(2) xor B(2) xor CARRY(2); 
CARRY(3) := (A(2) andB(2)) or (A(2) andCARRY(2)) or 

(B(2) and CARRY(2)); 
SUM(3) := A(3) xor B(3) xor CARRY(3); 
CARRY (4) := (A(3) andB(3)) or (A(3) and CARRY (3)) or 

(B(3) and CARRY(3)); 
S <= SUM; 
COUT <= CARRY(4); 

end process; 

Figure 7-8 Expanded behavioral description for example ADD4fn. 

7.2.2 Example ADD4pr 

The 4-bit ripple carry adder can be equivalently written using a procedure as shown in 

Figure 7-9. The procedure FA is shown in Figure 7-10. 

process(A,B,CIN) 
variable CARRY: std_logic_vector (4 downto OK- 
variable SUM : std_logic_vector(3 downto 0); 

begin 
CARRY(0) := CIN; 
for I in 0 to 3 loop 

FA(A(I), B(I), CARRY(I), SUM(I), CARRY(I+1)); 
end loop; 
S <= SUM; 
COUT <= CARRY(4); 

end process; 

Figure 7-9 Behavioral description for example ADD4pr. 
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procedure FA (AIN, BIN, CIN: in std_logic; 
SOUT, COUT: out std_logic) is 

begin 
SOUT := AIN xor BIN xor CIN; 
COUT := (AIN and BIN) or (AIN and CIN) or 

(BIN and CIN); 
end FA; 

Figure 7-10 Procedure FA for example ADD4pr. 

Since the VHDL behavioral description ADD4pr in Figure 7-9 synthesizes to the same 

gate level structures as the examples in Figure 7-6 and Figure 7-8, no additional behavioral 

faults have been introduced by the use of procedures. 

7.3   Conclusions 
VHDL includes other constructs drawn from familiar programming languages'. Pro- 

gram loops, functions, and procedures are used in VHDL behavioral descriptions for 

design simplicity and reuse/repetition of functional blocks. Since any description using 

these constructs can be rewritten equivalently without them, no additional behavioral 

faults are implied. Several design examples were used to demonstrate the interaction 

between previously defined behavioral faults and these other programming constructs. 



Chapter 8 

Comprehensive Examples 

Two comprehensive examples have been chosen to demonstrate the gate level fault 

coverage of the new behavioral fault models. The first is an arithmetic logic unit (ALU) 

which performs selected functions on data inputs. The second example is a single error 

correcting circuit used in fault tolerant applications. Other obvious combinational logic 

examples such as a multiplexer or a magnitude comparator do not need to be investigated 

here due to their detailed analysis as part of the development of the fault models for the if 

statement and relational operators. 

Application of the behavioral fault models to each of the comprehensive examples 

results in a set of test vectors necessary to detect the behavioral faults. These test vector 

sets are then applied to synthesized gate level implementations of the behavioral descrip- 

tions. Resulting gate level fault coverage is evaluated to determine the effectiveness of the 

behavioral fault models. 

8.1   Arithmetic Logic Unit 
The ALU design for this example was created using the LogicLib generator from the 

Mentor Graphics design tools. The type was selected as an ALU2901 which performs 

eight arithmetic and logic functions. Data widths of 4- and 8-bits will be evaluated. 

8.1.1 Example ALU4wc 

The generator parameters and the resulting entity description for a 4-bit ALU with 

both carry-in and carry-out are shown in Figure 8-1.   The architecture description for 

-- Written by LL_to_VHDL at Mon Jun  8 12:23:29 1998 
-- Parameterized Generator Specification to VHDL Code 
-- LogicLib generator called: ARITHMETIC 
-- Passed Parameters are: 

type = ALU2901 
W = 4 
carryin = YES 
carryout = YES 

Figure 8-1 Entity description for example ALU4wc. 

138 
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library IEEE, ARITHMETIC; 
use IEEE.std_logic_1164.all; 
use ARITHMETIC.std_logic_arith.all; 
-- alu4wc Entity Description 
entity alu4wc is 

port ( 
OP: in std_logic_vector(2 downto 0); 
A: in std_logic_vector(3 downto 0); 
B: in std_logic_vector(3 downto 0); 
CIN: in std_logic; 
COUT: out std_logic; 
D: out std_logic_vector(3 downto 0) 

); 
end alu4wc; 

Figure 8-1 Entity description for example ALU4wc. 

example ALU4wc is shown in Figure 8-2. In the first section, variables are declared and 

initialized consistent with arithmetic operations involving a carry-in and a carry-out. 

Next, two case statements determine the appropriate operation to be performed. Lastly, 

the outputs are assigned based on whether the operation performed was arithmetic or 

logic. 

architecture behave of alu4wc is 
begin 

ARITHMETIC_Process: process(A,B,CIN,OP) 
variable operandl: std_logic_vector(4 downto 0); 
variable operand2: std_logic_vector(4 downto 0); 
variable a_ext: std_logic_vector(4 downto 0); 
variable b_ext: std_logic_vector(4 downto 0) ; 
variable not_a_ext: std_logic_vector(4 downto 0) 
variable not_b_ext: std_logic_vector(4 downto 0) 
variable carry_ext: std_logic_vector(1 downto 0) 
variable logic_out: std_logic_vector(3 downto 0) 
variable arith_out: std_logic_vector(4 downto 0) 

begin 
-- zero extend inputs to include carry bit 
a_ext := '0' & A; 
b_ext := '0' & B; 
not_a_ext := '0' & not A; 
not_b_ext := '0' & not B; 
carry_ext := x 0' & CIN 

Figure 8-2 Architecture description for example ALU4wc. 
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-- ALU2901 

-- Logical Functions -- 

case OP is 
when "Oil" => 

logic_out := A or B; 
when "100" => 

logic_out := A and B; 
when "101" => 

logic_out := (not A) and B; 
when "110" => 

logic_out := A xor B; 
when "111" => 

logic_out := not (A xor B); 
when others => 

logic_out := (OTHERS => 'X'); 
end case; 

-- Arithmetic Functions -- 

case OP is 
-- Arithmetic operations 
when "000" => 

operandl := a_ext; 
operand2 := b_ext; 

when "001" => 
operandl := not_a_ext; 
operand2 := b_ext; 

when "010" => 
operandl := a_ext; 
operand2 := not_b_ext; 

when others => 
operandl := (OTHERS => XX'); 
operand2 := (OTHERS => (X'); 

end case; 

arith_out := operandl + operand2 + carry_ext; 

Figure 8-2 Architecture description for example ALU4wc. 
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— assign output 
if (0P(2) = xl' or (0P(1) = 41' 
then 

D <= logic_out; 
COUT <= VX'; 

else 
D <= arith_out(3 downto 0); 
COUT <= arith_out(4); 

end if; 

end process ARITHMETIC_Process; 
end behave; 

and OP(0)   =   x1') ) 

Figure 8-2 Architecture description for example ALU4wc. 

8.1.1.1   Faults on Logical Operators 

Within the Logical Functions case statement, the variable logic_out is determined by 

combining the signals A, B using the logical operators AND, OR, and XOR. For the first 

logical expression, when OP = 011: 

logic_out   :=  A OR B; 

From the behavioral fault models for logical operators, the three test vectors (AB) neces- 

sary for an OR operator are 00, 01, and 10. Since all signals are in fact four bits wide, 

these tests expand to produce the behavioral test vectors shown in Table 8-1. 

Expression OP A B logic_out 

A ORB Oil 

0000 0000 0000 

0000 1111 1111 

1111 0000 1111 

Table 8-1 Behavioral test vectors for OR operator. 

The behavioral test vectors for the remaining Logical Functions are determined in a 

similar manner. The logical operator AND also requires three tests: 01,10 and 11. Next, 

the XOR operator requires a complete set of four test vectors: 00, 01, 10, and 11. Like the 

OR operation, these vectors also expand to four bits for each operator. The resulting 

behavioral test vectors are shown in Table 8-2. 
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Expression OP A B logic_out 

AANDB 100 

0000 mi 0000 

mi 0000 0000 

mi mi mi 

(not A) AND B 101 

mi mi 0000 

0000 0000 0000 

0000 mi mi 

AXORB 110 

0000 0000 0000 

0000 mi mi 

nil 0000 mi 

nil mi 0000 

not (A XOR B) 111 

0000 0000 mi 

0000 mi 0000 

nil 0000 0000 

nil mi mi 

Table 8-2 Behavioral test vectors for remaining Logical Functions. 

8.1.1.2   Faults on Arithmetic Operators 

The ADD with carry operation performed in the Arithmetic Functions section deter- 

mines the variable arith_out as follows: 

arith_out := operandl + operand2 + carry_ext; 

Assuming a simple ripple carry implementation, the behavioral test vectors for the 4-bit 

addition come directly from Table 5-6 and are shown here in Table 8-3. 

Due to the case statement for Arithmetic Functions, there are three different ways to 

form operandl and operandl. The resulting possible test vectors are shown in Table 8-4. 

Only one input combination is required for each Test #, though using all possibilities 

would not be incorrect, just redundant. As with previous examples, the control faults can 

provide the necessary insight for selecting a reduced set of behavioral test vectors. 
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Phase Test* operand 1 operand2 carry_ext arith_out 

I 

1 0000 0000 0 0 0000 

2 0000 1111 0 01111 

3 1111 0000 0 01111 

4 1111 1111 1 1 1111 

II 
5 0000 1111 1 10000 

6 1111 0000 1 10000 

HI 
7 0101 0101 0 0 1010 

8 1010 1010 '   1 10101 

Table 8-3 Behavioral tests for 4-bit ADD with carry. 

OP Phase Test# A B CIN arith_out 

000 

I 

1 0000 0000 0 0 0000 

2 0000 mi 0 01111 

3 1111 0000 0 01111 

4 1111 mi 1 i mi 

II 
5 0000 mi 1 10000 

6 1111 0000 1 10000 

HI 
7 0101 0101 0 0 1010 

8 1010 1010 1 10101 

001 

I 

1 mi 0000 0 0 0000 

2 mi mi 0 01111 

3 0000 0000 0 01111 

4 0000 nil 1 i mi 

II 
5 mi nil 1 10000 

6 0000 0000 1 10000 

III 
7 1010 0101 0 0 1010 

8 0101 1010 1 10101 

Table 8-4 Possible test vectors for Arithmetic Functions. 
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OP Phase Test* A B CIN arith_out 

010 

I 

1 0000 1111 0 0 0000 

2 0000 0000 0 01111 

3 1111 1111 0 01111 

4 1111 0000 1 i mi 

II 
5 0000 0000 1 10000 

6 1111 mi 1 10000 

III 
7 0101 1010 0 0 1010 

8 1010 0101 1 10101 

Table 8-4 Possible test vectors for Arithmetic Functions. 

8.1.1.3   Control Faults 

The control fault model states that each clause of an if or case statement is corrupted 

by other clauses that are logically adjacent. For the Logical Functions case statement, 

the first clause, WHEN-011, can be corrupted by either WHEN-001 or WHEN-010. Both 

of these cases fall under the others clause and, hence, cause no corruption due to the don't 

care values. The third possible corruption is caused by the WHEN-111 clause. For exam- 

ple, the control fault WHEN-011 CORRUPT (by WHEN-111 )(OR) produces the corrupted 

clause shown below. 

logic_out   :=   (A OR B)   OR   (not   (A XOR B)); 

Test vector generation rules specify that (A OR B) be set to 0, while (not (A XOR B)) is set 

to 1. Checking the previously determined test vectors for logical operators from Table 8- 

1 and Table 8-2, the test vector with A = 0000 and B = 0000 meets these requirements and, 

hence, covers this control fault. 

The control faults for all the Logical Functions are shown in Table 8-5. The faults are 

grouped according to the corrupted clauses. Each corrupting clause includes both an OR- 

fault and an AND-fault. The test generation rules provide requirements that produce the 

appropriate test vector. 
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Comapted 
Clause 

Corrupting 
Clause 

Fault 
Test 

Requirement 
Test Vector 
(OP AB) 

Oil 

001 NONE 

010 NONE 

111 

OR 
A OR B = 0 

not (A XOR B) = 1 
011   0000   0000 

AND 
A OR B = 1 

not (A XOR B) = 0 
011   0000   1111 

100 

000 NONE 

101 

OR 
A AND B = 0 

(not A) AND B = 1 
100   0000   1111 

AND 
A AND B = 1 

(not A) AND B = 0 
100   1111   1111 

110 

OR 
A AND B = 0 
A XOR B = 1 

100   0000   1111 

AND 
A AND B = 1 
A XOR B = 0 

100   1111   1111 

101 

001 NONE 

100 

OR 
(not A) AND B = 0 

A AND B = 1 
101   1111   1111 

AND 
(notA)ANDB = l 

A AND B = 0 
101   0000   1111 

111 

OR 
(not A) AND B = 0 
not (A XOR B) = 1 

101   1111   1111 

AND 
(not A) AND B = 1 
not (A XOR B) = 0 

101   0000   1111 

110 

010 NONE 

100 

OR 
A XOR B = 0 
A AND B = 1 

110   1111   1111 

AND 
A XOR B = 1 
A AND B = 0 

110   0000   1111 

Table 8-5 Control faults for Logical Functions. 
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Corrupted 
Clause 

Corrupting 
Clause 

Fault 
Test 

Requirement 
Test Vector 
(OP AB) 

110 111 

OR 
A XOR B = 0 

not (A XOR B) = 1 
110   0000   0000 

AND 
A XOR B = 1 

not (A XOR B) = 0 
110   1111   0000 

111 

Oil 

OR 
not (A XOR B) = 0 

A OR B = 1 
111   0000   1111 

AND 
not (A XOR B) = 1 

A OR B = 0 
111   0000   0000 

101 

OR 
not (A XOR B) = 0 
(not A) AND B = 1 

111   0000   1111 

AND 
not (A XOR B) = 1 
(not A) AND B = 0 

111 1111 1111 

110 

OR 
not (A XOR B) = 0 

A XOR B = 1 
111   1111 0000 

AND 
not (A XOR B) = 1 

A XOR B = 0 
111   0000   0000 

Table 8-5 Control faults for Logical Functions. 

The control faults for the Arithmetic Functions are formed in the same manner. The 

resulting faults and their test vectors are shown in Table 8-6. 

Corrupted 
Clause 

Corrupting 
Clause 

Fault 
Test 

Requirement 
Test Vector 
(OP AB) 

000 

001 

OR 
a_ext = 0 

not_a_ext = 1 
000  0000 xxxx 

AND 
a_ext = 1 

not_a_ext = 0 
000  1111 xxxx 

010 

OR 
b_ext = 0 

not_b_ext = 1 
000  XXXX  0000 

AND 
b_ext = 0 

not_b_ext = 1 
000   XXXX  1111 

100 NONE 

Table 8-6 Control faults for Arithmetic Functions. 
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Corrupted 
Clause 

Corrupting 
Clause 

Fault 
Test 

Requirement 
Test Vector 
(OP AB) 

001 

000 

OR 
not_a_ext = 0 

a_ext = 1 
001  1111 xxxx 

AND 
not_a_ext = 1 

a_ext = 0 
001  0000 xxxx 

Oil NONE 

101 NONE 

010 

000 

OR 
not_b_ext = 0 

b_ext = 1 
010  XXXX  1111 

AND 
not_b_ext = 1 

b_ext = 0 
010  XXXX  0000 

Oil NONE 

110 NONE 

Table 8-6 Control faults for Arithmetic Functions. 

The final control faults affect the if statement that assigns the outputs. The then and 

else clauses determine whether the function performed was logic or arithmetic, respec- 

tively. The logical adjacencies among the clauses are illustrated in Figure 8-3; logic func- 

tions corresponding to the then clause are shaded. For example, the logic function for OP 

= 011 can be corrupted by the arithmetic functions with OP = 001 and OP = 010. 

OP(l) OP(0) 

00 01 11 10 

OP(2) 

0 000 001 011 010 

1 100 101 111 110 

OP 

Figure 8-3 Logical adjacencies among clauses. 

THEN-CORRUPT faults cause logic functions to be corrupted by arithmetic functions. 

As an example, the control fault 100-CORRUPT (by 000)(OR) produces the following cor- 

rupted assignment statements: 
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D <=  logic_out OR arith_out(3  downto  0); 
COUT <=   VX'   OR arith_out(4); 

Candidate test vectors for OP = 100 with corresponding values for logic_out are found in 

Table 8-2. Corrupting values of arith_out(3 downto 0) for OP = 000 can be found in Table 

8-4. Comparing these values shows that an appropriate test vector is formed by A = 0000 

and B = 1111 with CIN = 0. Note that a logic operation would normally leave CIN as a 

don't care, however, corruption by an arithmetic operation requires specification of this 

value. THEN-CORRUPT faults and their resulting test vectors are shown in Table 8-7. 

Corrupted 
Clause 

Corrupting 
Clause 

Fault. 
Test 

Requirement 
Test Vector 

(OPAB CIN) 

Oil 

001 

OR 
logic_out = 0 
arith_out = 1 

011   0000   0000. 0 

AND 
logic_out = 1 
arith_out = 0 

011   1111   0000   0 

010 

OR 
logic_out = 0 
arith_out = 1 

011   0000   0000   0 

AND 
logic_out = 1 
arith_out = 0 

011   0000   1111   0 

100 000 

OR 
logic_out = 0 
arith_out = 1 

100   0000   1111   0 

AND 
logic_out = 1 
arith_out = 0 

100   0101   0101   0 
100   1010   1010   1 

101 001 

OR 
logic_out = 0 
arith_out = 1 

101   1111   1111   0 

AND 
logic_out = 1 
arith_out = 0 

101   1010   0101   0 
101   0101  1010   1 

110 010 

OR 
logic_out = 0 
arith_out = 1 

110   0000   0000   0 

AND 
logic_out = 1 
arith_out = 0 

110   0000   1111   0 

Table 8-7 THEN-CORRUPT control faults. 

ELSE-CORRUPT faults are formed in a similar manner resulting in corruption of an 

arithmetic function by a logic function. ELSE-CORRUPT faults are shown in Table 8-8. 
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Corrupted 
Clause 

Corrupting 
Clause 

Fault 
Test 

Requirement 
Test Vector 

(OPABCIN) 

000 100 

OR 
arith_out = 0 
logic_out = 1 

000   0101   0101   0 
000   1010   1010   1 

AND 
arith_out = 1 
logic_out = 0 

000   0101   0101   0 
000   1010   1010   1 

001 

Oil 

OR 
arith_out = 0 
logic_out = 1 

001   1111   0000   0 

AND 
arith_out = 1 
logic_out = 0 

001   0000   0000   0 

101 

OR 
arith_out = 0 
logic_out = 1 

001   1010   0101   0 
001   0101   1010   1 

AND 
arith_out = 1 
logic_out = 0 

001   1010   0101   0 
001   0101   1010   1 

010 

Oil 

OR 
arith_out = 0 
logic_out = 1 

010   1111   1111   1 

AND 
arith_out = 1 
logic_out = 0 

010   0000   0000   0 

110 

OR 
arith_out = 0 
logic_out = 1 

010   0000   1111 0 

AND 
arith_out = 1 
logic_out = 0 

010   0000   0000   0 

Table 8-8 ELSE-CORRUPT control faults. 

8.1.1.4   Final Behavioral Test Vector Set 

Combining the control faults for Logical Functions from Table 8-5 and the THEN- 

CORRUPT control faults from Table 8-7 with the tests for Logical Functions from Table 

8-1 and Table 8-2 will produce a final set of behavioral test vectors for OP = 011 through 

OP = 111. Further optimization is possible by noting that the two test vectors required for 

the control fault 100-CORRUPT (by 000)(AND) provide coverage for the A = 1, B = 1 

fault to the AND operator for OP = 100. A similar optimization applies to the control fault 

101-CORRUPT (by 001)(AND). The resulting behavioral test vectors and covered control 

faults are shown in Table 8-9. 



150 

Expression 
Test Vector 

(OPABCIN) 
Control Faults 

A ORB 

Oil 0000 0000   0 
011 by 001 (OR), 011 by 010 (OR), 

011 by 111 (OR) 

Oil 0000 1111   0 011 by 010 (AND), Oil by 111 (AND) 

Oil 1111 0000   0 011 by 001 (AND) 

AANDB 

100 0000 1111   0 
100 by 000 (OR), 100 by 101 (OR), 

100 by 110 (OR) 

100 1111 0000  X 

100 
100 

0101 
1010 

0101   0 
1010   1 

100 by 000 (AND), 100 by 101 (AND), 
100 by 110 (AND) 

(not A) AND B 

101 1111 1111   0 
101 by 001 (OR), 101 by 100 (OR), 

101 by 111 (OR) 

101 0000 0000  X 

101 
101 

1010 
0101 

0101   0 
1010   1 

101 by 001 (AND), 101 by 100 (AND), 
101 by 111 (AND) 

AXORB 

110 0000 0000   0 110 by 010 (OR), 110 by 111 (OR) 

110 0000 1111   0 110 by 010 (AND), 110 by 100 (AND) 

110 1111 0000  X HObylll(AND) 

110 1111 1111  X 110 by 100 (OR) 

not(AXORB) 

111 0000 0000  X 111 by Oil (AND), 111 by 110 (AND) 

111 0000 1111   X 111 by Oil (OR), 111 by 101 (OR) 

111 1111 0000  X 111 by 110 (OR) 

111 1111 1111  X 111 by 101 (AND) 

Table 8-9 Final behavioral test vectors for Logical Functions. 

Likewise, the control faults for Arithmetic Functions from Table 8-6 and the ELSE- 

CORRUPT control faults from Table 8-8 are combined with the possible test vectors for 

Arithmetic Functions from Table 8-4. The only behavioral tests, for the 4-bit ADD with 

carry, not specified by control faults are Test 5 and Test 6. Test vectors to cover this Phase 

were selected from OP = 010 simply to balance the number of test vectors in each group. 

The resulting behavioral test vectors and covered control faults are shown in Table 8-10. 
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Phase Test# 
Test Vector 

(OPABCIN) 
Control Faults 

I 

1 

000 0000 0000   0 000 by 001 (OR), 000 by 010 (OR) 

001 1111 0000   0 001 by 000 (OR), 001 by 011 (OR) 

010 0000 1111   0 
010 by 000 (OR), 010 by 011 (OR), 

010 by 110 (OR) 

2 010 0000 0000   0 
010 by 000 (AND), 010 by 011 (AND), 

010 by 110 (AND) 

3 001 0000 0000   0 001 by 000 (AND), 001 by 011 (AND) 

4 000 1111 1111 1 000 by 001 (AND), 000 by 010 (AND) 

II 
5 010 0000 0000   1 

6 010 1111 1111 1 

HI 

7 000 0101 0101   0 
000 by 100 (OR), 000 by 100 (AND) 

8 000 1010 1010   1 

7 001 1010 0101   0 
001 by 101 (OR), 000 by 101 (AND) 

8 001 0101 1010   1 

Table 8-10 Final behavioral test vectors for Arithmetic Functions. 

Hence, a final set of 31 test vectors has been formed by application of the new behav- 

ioral fault models. The behavioral test vectors and resulting outputs are presented in 

WAVES format in Figure 8-4. 

% OP A B 
000 0000 
000 1111 
000 0101 
000 1010 
% 
001 1111 
001 0000 
001 1010 
001 0101 

CIN COUT D : time; 
0000 0 0 0000 
1111 1 1 1111 
0101 0 0 1010 
1010 1 1 0101 

0000 0 0 0000 
0000 0 0 1111 
0101 0 0 1010 
1010 1 1 0101 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 8-4 WAVES test vectors for example ALU4wc. 
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010 0000 1111 0 0 0000 
010 0000 0000 .0 0 1111 
010 0000 0000 1 1 0000 
010 1111 1111 1 1 0000 
% 
Oil 0000 0000 0 X 0000 
Oil 0000 1111 0 X 1111 
Oil 1111 0000 0 X 1111 
% 
100 0000 1111 0 X 0000 
100 1111 0000 X X 0000 
100 0101 0101 0 X 0101 
100 1010 1010 1 X 1010 
% 
101 1111 1111 0 X 0000 
101 0000 0000 X X 0000 
101 1010 0101 0 X 0101 
101 0101 1010 1 X 1010 
% 
110 0000 0000 0 X 0000 
110 0000 1111.0 X 1111 
110 1111 0000 X X 1111 
110 1111 1111 X X 0000 
% 
111 0000 0000 X X 1111 
111 0000 1111 X X 0000 
111 1111 0000 X X 0000 
111 1111 1111 X X 1111 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 8-4 WAVES test vectors for example ALU4wc. 

8.1.2 Evaluation of the Behavioral Test Vectors 

Example ALU4wc was first synthesized to gate level Structural using AutoLogic II. 

The resulting optimized implementation contains 59 gates shown in Figure 8-5. Accord- 

ing to MIL-STD 883D, Structure 1 of example ALU4wc contains 284 unique SSL gate 

level faults. Fault simulations using the behavioral test vectors from Figure 8-4 resulted in 

complete gate level fault coverage shown in Figure 8-6. 

An alternate target technology was next used to synthesize gate level Structure2. The 

resulting optimized circuit contains 78 gates and 312 unique SSL faults. Fault simulations 

using the behavioral test vectors from Figure 8-4 again resulted in complete gate level 

fault coverage. 
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Figure 8-5 Synthesized Structurel for example ALU4wc. 
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Figure 8-6 Fault coverage for Structurel of example ALU4wc. 

Lastly, an alternate synthesis tool, Leonardo, was used to map the VHDL behavioral 

description to a Xilinx FPGA architecture. Fault simulations using the behavioral test 

vectors achieved a SSL gate level fault coverage of 398/398 = 100%. The behavioral fault 

models have been applied to multiple implementations using various target architectures 

and synthesis tools. The range of examples demonstrates the flexibility of the approach 

and provides experimental validation of the effectiveness of the new fault models. 
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8.1.3 Expansion of the Data Path 

The data path for the arithmetic logic unit was next expanded to eight bits wide to cre- 

ate example ALU8wc. The only difference in the resulting behavioral description is the 

width of the corresponding variables and signals. Since the width of the control signal OP 

remained constant, no new control faults were introduced. 

The behavioral test vectors for example ALU8wc, therefore, follow directly from those 

derived for example ALU4wc. The only change is the expansion of the data signals A, B, 

and D to eight bits wide. The resulting test vectors are presented in Figure 8-7. Note that 

the WAVES file still contains only 31 test vectors. 

% OP A B CIN COUT D : time; 
000 00000000 00000000 0 0 00000000 
000 11111111 11111111 1 1 11111111 
000 01010101 01010101 0 0 10101010 
000 10101010 10101010 1 1 01010101 

001 11111111 
001 00000000 
001 10101010 
001 01010101 
% 
010 00000000 
010 00000000 
010 00000000 
010 11111111 

00000000 0 0 00000000 
00000000 0 0 11111111 
01010101 0 0 10101010 
10101010 1 1 01010101 

11111111 0 0 00000000 
00000000 0 0 11111111 
00000000 1 1 00000000 
11111111 1 1 00000000 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

011 00000000 
011 00000000 
011 11111111 
% 
100 00000000 
100 11111111 
100 01010101 
100 10101010 

00000000 0 X 00000000 
11111111 0 X 11111111 
00000000 0 X 11111111 

11111111 0 X 00000000 
00000000 X X 00000000 
01010101 0 X 01010101 
10101010 1 X 10101010 

500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

101 11111111 
101 00000000 
101 10101010 
101 01010101 

11111111 0 X 00000000 
00000000 X X 00000000 
01010101 0 X 01010101 
10101010 1 X 10101010 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 8-7 WAVES test vectors for example ALU8wc. 
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110 00000000 00000000 0 X 00000000 
110 00000000 11111111 0 X 11111111 
110 11111111 00000000 X X 11111111 
110 11111111 11111111 X X 00000000 
% 
111 00000000 00000000 X X 11111111 
111 00000000 11111111 X X 00000000 
111 11111111 00000000 X X 00000000 
111 11111111 11111111 X X 11111111 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 8-7 WAVES test vectors for example ALU8wc. 

Example ALU8wc was next synthesized using AutoLogic II to produce Structure 1 

containing 130 gates. Fault simulations using the behavioral test vectors from Figure 8-7 

resulted in a SSL gate level fault coverage of 542/542 = 100%. Lastly, Leonardo was used 

to synthesize example ALU8wc to gate level Structure2. Fault simulations using the 

behavioral test vectors again achieved complete gate level fault coverage. 

8.1.4 Summary 

The new behavioral fault models, developed in this dissertation, have been applied to 

the comprehensive examples ALU4wc and ALU8wc. From these faults, behavioral test 

vectors have been derived for the 4-bit case, then readily expanded for the 8-bit example. 

The resulting complete SSL gate level fault coverage for multiple implementations is sum- 

marized in Table 8-11. Again, the range of examples demonstrates the flexibility of the 

approach and provides experimental validation of the effectiveness of the new fault mod- 

els. 

Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

ALU4wc 

Structure 1 284 31 100% 

Structure2 312 31 100% 

Structure3 398 31 100% 

ALU8wc 
Structure 1 546 31 100% 

Structure2 758 31 100% 

Table 8-11 ALU fault experiment results. 
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8.2   Error Correcting Circuit 
The second comprehensive example is a combinational circuit capable of correcting 

single-bit errors in data words. The error correction capability is achieved by the use of 

multiple overlapping parity bits forming a Hamming code. If x is the number of informa- 

tion bits, then the number of parity bits, p, is equal to the smallest integer value of p that 

satisfies 2P > x + p + 1 [41]. Hence, four data bits (X) would require three parity bits (P) 

to create example HAMMING4. Likewise, eight data bits require four parity bits for 

example HAMMNG8. 

8.2.1 Example HAMMING4 

The entity description for example HAMMING4 is shown in Figure 8-8. This module 

assumes the existence of another circuit which generates the parity bits (P) from the data 

bits (X). The data/parity combination X,P is then subject to corruption prior to processing 

by example HAMMING4. The error correcting circuit takes the input data and parity bits 

and performs single bit error correction to produce the output data bits (D). 

entity hamming4  is 
port ( 

X in std_logic_vector(1 to 4); 
P 
D 

); 
end hamming4; 

in std_logic_vector(1 to 3); 
out std_logic_vector(1 to 4) 

Figure 8-8 Entity description for example HAMMING4. 

The architecture description for example HAMMING4, shown in Figure 8-9, contains 

two parts. In the first section, the data bits and parity bits are combined using XOR trees 

to generate check bits forming a syndrome (S). Detection of a single-bit error produces a 1 

on one or more bits of the syndrome. Next, the overall value of the syndrome'bits deter- 

mines which, if any, data bit needs corrected. 

8.2.1.1   Faults on XOR-only Expressions 

Behavioral faults on the expressions for the syndrome (S) are all on XOR operators. 

Hence, optimized test vectors can be generated based on the modified Bossen algorithm 

developed in Section 6.1.2.2. 
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architecture behave of hannming4 is 

begin 
process(X,P) 

variable S : std_logic_vector(1 to 3); 
begin 

S(l) 
S(2) 
S(3) 

= X(l) XOR X(2) XOR X(4) XOR P(l); 
= X(l) XOR X(3) XOR X(4) XOR P(2); 
= X(2) XOR X(3) XOR X(4) XOR P(3); 

D(l) <= X(l) XOR (S(l) AND S(2) AND not S(3) 
D(2) <= X(2) XOR (S(l) AND not S(2) AND S(3) 
D(3) <= X(3) XOR (not S(l) AND S(2) AND S(3) 
D(4) <= X(4) XOR (S(l) AND S(2) AND S(3)); 

end process; 
end behave; 

Figure 8-9 Architecture description for example HAMMING4. 

A generic 4-input XOR-only expression is shown below: 

Z   <=  A XOR B  XOR  C  XOR D 

Applying the modified Bossen algorithm results in the labelling shown in Figure 8-10 and 

Figure 8-11. Note that this example represents a special case where it is possible to find 

identical test sequences for structures Cascade 1 and Cascade2. The resulting optimized 

test vectors for a generic 4-input XOR-only expression are shown in Table 8-12. 

Figure 8-10 Structure Cascadel for 4-input XOR-only expression. 

Figure 8-11 Structure Cascade2 for 4-input XOR-only expression. 
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Signal Label Sequence 

A S 0011 

B R 0110 

C R 0110 

D T 0101 

Test Vector 
(ABCD) 

z 

0000 0 

0111 1 

1110 1 

1001 0 

Table 8-12 Optimized test vectors for 4-input XOR-only expression. 

Mapping the generalized case onto the first XOR-only expression relates A to X(l), B 

to X(2), C to X(4), D to P(l), and Z to S(l). The resulting behavioral test vectors are 

shown in Table 8-13. Mapping the generalized case onto expressions S(2) and S(3) pro- 

duces the test vectors shown in Table 8-14 and Table 8-15, respectively. Don't care values 

can be eliminated for the three XOR-only expressions, resulting in a reduced set of behav- 

ioral test vectors shown in Table 8-16. 

ABCD 
(X1X2X4P1) 

z 
(Si) 

X 
(X1X2X3X4) 

p 

(P1P2P3) 

s 
(S1S2S3) 

0000 0 00X0 oxx oxx 

0111 1 01X1 1XX 1XX 

1110 1 11X1 OXX 1XX 

1001 0 10X0 1XX oxx 

Table 8-13 Optimized test vectors for expression S(l). 

ABCD 
(X1X3X4P2) 

z 
(S2) 

X 
(X1X2X3X4) 

p 

(P1P2P3) 

S 
(S1S2S3) 

0000 0 0X00 xox xox 

0111 1 0X11 XIX XIX 

1110 1 1X11 xox XIX 

1001 0 1X00 XIX xox 

Table 8-14 Optimized test vectors for expression S(2). 
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ABCD 
(X2X3X4P3) 

z 
(S3) 

X 
(XiX2X3X4) 

p 

(P1P2P3) 

s 
(S1S2S3) 

0000 0 xooo xxo xxo 

Olli 1 X011 XXI XXI 

1110 1 Xlll xxo XXI 

1001 0 X100 XXI xxo 

Table 8-15 Optimized test vectors for expression S(3). 

X1X2X3X4 P1P2P3 SiS2S3 

0000 000 000 

0011 101 001 

0100 101 000 

Olli 110 111 

1000 110 000 

1111 000 111 

Table 8-16 Reduced test vector set for XOR-only expressions. 

8.2.1.2   Faults on Other Logical Expressions 

Behavioral faults for the remaining expressions are all on logical operators. Test vec- 

tors can be generated using the parse tree method developed in Section 6.1.1.2. A parse 

tree for expression D(l) is shown in Figure 8-12. The binary nodes (1,2,3) are formed by 

the logical operators. 

1XOR 

/   \ 
X] 2 AND 

/ \ 
Sj 3 AND 

not 

Figure 8-12 Parse tree for expression D(l). 
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Application of the new behavioral fault models implies four faults for the XOR opera- 

tor and three faults for each of the AND operators. The resulting behavioral test vectors 

are presented in Table 8-17. Eliminating don't care values results in the reduced set of 

behavioral test vectors for expression D(l) shown in Table 8-18. Application of similar 

parse trees to the remaining logical expressions produces the reduced test vectors in Table 

8-19 through Table 8-21. 

Node 
Behavioral 

Test 
Test Requirements 

Test Vector 
(Xj SjS2S3) 

1 

00 Xl = 0, (Si AND S2 AND not S3) = 0 0  OXX 

01 Xi = 0, (S2 AND S2 AND not S3) = 1 0  110 

10 X: = 1, (Sj AND S2 AND not S3) = 0 1  OXX 

11 X! = 1, (Sj AND S2 AND not S3) = 1 1  110 

2 

01 S! = 0, (S2 AND not S3) = 1, X! = 0 0  010 

10 Sx = 1, (S2 AND not S3) = 0, Xj = 0 0   10X 

11 S} = 1, (S2 AND not S3) = 1, X: = 0 0   110 

3 

01 S2 = 0,notS3 = l,S1 = l,Xi = 0 0   100 

10 S2=l,notS3 = 0,S1 = l,X1=0 0   110 

11 S2=l,notS3=l,S1 = l,X1 = 0 0   111 

Table 8-17 Behavioral test vectors for expression D(l). 

XjX2X3X4 SiS2S3 
Functional Tests 

(Node [Test]) 

OXXX 010 1[00],2[01] 

oxxx 100 2[10],3[01] 

oxxx 110 1[01],2[11J,3[10] 

oxxx 111 3[11] 

1XXX OXX 1[10] 

1XXX 110 1[11] 

Table 8-18 Reduced test vectors for expression D(l). 
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X1X2X3X4 S1S2S3 
Functional Tests 

(Node [Test]) 

xoxx 001 1[00],2[01] 

xoxx 100 3[10] 

xoxx 101 1[01],2[11],3[11] 

xoxx 111 2[10],3[01] 

X1XX oxx 1[10] 

X1XX 101 1[11] 

Table 8-19 Reduced test vectors for expression D(2). 

X1X2X3X4 s1s2s3 
Functional Tests 

(Node [Test]) 

xxox 001 2[10],3[01] 

xxox 010 3[10] 

xxox Oil 1[01],2[11],3[11] 

xxox 111 1[00],2[01] 

XXIX Oil 1[H] 

XXIX 1XX 1[10] 

Table 8-20 Reduced test vectors for expression D(3). 

X1X2X3X4 S1S2S3 
Functional Tests 

(Node [Test]) 

xxxo Oil 1[00],2[01] 

xxxo 101 2[10],3[01] 

xxxo 110 3[10] 

xxxo 111 1[01],2[11],3[11] 

XXXI OXX 1[10] 

XXXI 111 1[11] 

Table 8-21 Reduced test vectors for expression D(4). 

Eliminating don't care values by combining test vectors for logical expressions D(l) 

through D(4) produces the reduced set of behavioral test vectors shown in Table 8-22. 
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X1X2X3X4 s1s2s3 

1001 001 

0101 010 

1100 Oil 

1110 Oil 

001X 100 

XOIO 101 

X110 101 

0X10 110 

1X10 110 

0000 111 

0001 111 

Table 8-22 Test vectors for logical expressions D(l) through D(4). 

8.2.1.3   Final Behavioral Test Vector Set 

The reduced set of behavioral test vectors for the XOR-on\y expressions, Table 8-16, 

can now be combined with the behavioral test vectors for the other logical expressions, 

Table 8-22. Unspecified don't care values are arbitrarily set to 0. The resulting test vec- 

tors were sorted and are presented in WAVES format in Figure 8-13. 

% X 
0000 
0000 
0001 
0010 
0010 
0010 
0011 
0100 
0101 
0110 
0111 

P   D 
000 0000 
111 0001 
000 0000 
101 1010 
110 0110 
111 0010 
101 0011 
101 0100 
000 0101 
011 0010 
110 0110 

time; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 8-13 WAVES test vectors for example HAMMING4. 
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1000 110 1000 
1001 000 1001 
1010 Oil 0010 
1100 000 1110 
1110 Oil 1100 
1111 000 1110 

500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure 8-13 WAVES test vectors for example HAMMING4. 

8.2.2 Evaluation of the Behavioral Test Vectors 

Example HAMMING4 was first synthesized to gate level Structure 1 using AutoLogic 

II. The resulting optimized implementation contains 21 gates shown in Figure 8-14. 

According to MEL-STD 883D, Structurel of example HAMMING4 contains 114 unique 

SSL gate level faults. Fault simulations using the behavioral test vectors from Figure 8-13 

resulted in complete gate level fault coverage. 

«I31B= \}$> d> 
^0-^> 
t^O-tO 

rto 
Ft>-=0- 

o 

£0 
^£>-^ 

l-£^^>- 

-o- IJ>-k£>J 
Figure 8-14 Synthesized Structurel for example HAMMING4. 

An alternate target technology was next used to synthesize gate level Structure2. The 

resulting optimized circuit contains 19 gates and 116 unique SSL faults. Fault simulations 

using the behavioral test vectors from Figure 8-13 again resulted in complete gate level 

fault coverage. Lastly, Leonardo was used to map the VHDL behavioral description to a 

Xilinx FPGA architecture. Fault simulations using the behavioral test vectors achieved a 

SSL gate level coverage of 226/226 = 100%. 

8.2.3 Expansion of the Data Path 

The data path for the error correcting circuit was next expanded to eight bits wide to 

create example HAMMING8. As previously stated, four parity bits are now required to 

provide single-bit error correction capability. The entity description is shown in Figure 8- 

15. The architecture description for example HAMMING8 is shown in Figure 8-16. Note 

the additional syndrome expression due to the 4th parity bit. 
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entity hamming8 is 
port ( 

X: in std_logic_vector(1 to 8); 
P: in std_logic_vector(1 to 4); 
D: out std_logic_vector(1 to 8) 

); 
end hamming8; 

Figure 8-15 Entity description for example HAMMING8. 

architecture behave of haniming8  is 
begin 

process(X,P) 
variable S : std_logic_vector(1 to 4); 

begin 
S(l) := X(l) XOR X(2) XOR X(4) XOR X(5) XOR X(7) 

XOR P(1); 
S(2) := X(l) XOR X(3) XOR X(4) XOR X(6) XOR X(7) 

XOR P(2); 
S(3) := X(2) XOR X(3) XOR X(4) XOR X(8) XOR P(3); 
S(4) := X(5) XOR X(6) XOR X(7) XOR X(8) XOR P(4); 

D(l) <= X(l) XOR (S(l) AND S(2) AND not S(3) 
AND not S (4) ) ; 

D(2) <= X(2) XOR (S(l) AND not S(2) AND S(3) 
AND not S(4)); 

D(3) <= X(3) XOR (not S(l) AND S(2) AND S(3) 
AND not S(4)); 

D(4) <= X(4) XOR (S(l) AND S(2) AND S(3) 
AND not S(4)); 

D(5) <= X(5) XOR (S(l) AND not S(2) AND not S(3) 
AND S (4) ) ; 

D(6) <= X(6) XOR (not S(l) AND S(2) AND not S(3) 
AND S(4)); 

D(7) <= X(7) XOR (S(l) AND S(2) AND not S(3) 
AND S(4)); 

D(8) <= X(8) XOR (not S(l) AND not S(2) AND S(3) 
AND S(4)); 

end process; 
end behave; 

Figure 8-16 Architecture description for example HAMMING8. 

None of the test vectors for example HAMMING4 can be readily expanded for use 

with example HAMMING8. However, deriving the behavioral test vectors follows the 

same process that was used in Section 8.2.1.1 and Section 8.2.1.2.  Generalized Bossen 
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test vectors can be found for the XOR-on\y expressions and parse trees can be used for the 

remaining logical expressions. The resulting 10 + 23 = 33 test vectors are shown in 

WAVES format in Figure 8-17. 

% X p D : time; 

00000000 0000 00000000 : 500 ns; 
01101111 0000 01111111 : 500 ns; 
01110010 0010 01110000 : 500 ns; 
10011101 1100 10011101 : 500 ns; 
11101110 1101 01101110 : 500 ns; 
11110010 1110 11110000 : 500 ns; 
00100101 0011 00100100 : 500 ns; 
00110110 0011 00110111 : 500 ns; 
01011011 0000 01011010 : 500 ns; 
01011011 
Q. 

0011 01011011 : 500 ns; 

11010010 0100 11010010 500 ns; 
10011010 0100 10011010 . 500 ns; 
11011010 1111 11011011 . 500 ns; 
11011011 1100 11011010 500 ns; 
01011010 0100 01011010 500 ns; 
11011000 0100 11011100 500 ns; 
11011100 0001 11011000 500 ns ; 
11001010 0100 11101010 500 ns; 
11101010 0010 11001010 500 ns; 
11011010 1011 11011010 500 ns; 
00100101 1000 00100101 500 ns; 
00100101 1001 00101101 500 ns; 
00101101 0000 00100101 500 ns; 
00100101 1010 01100101 500 ns; 
01100101 0000 00100101 500 ns; 
00100100 1000 00100100 500 ns; 
00100101 1100 10100101 500 ns; 
10100101 0000 00100101 500 ns; 
00100001 1000 00100011 500 ns; 
00100011 0101 00100001 500 ns; 
00000101 1000 00010101 500 ns; 
00010101 0110 00000101 500 ns; 
00100101 1111 00100101 500 ns; 

Figure 8-17 WAVES test vectors for example HAMMING8. 

Example HAMMING8 was next synthesized using AutoLogic II to produce Structure 1 

containing 36 gates. Fault simulations using the behavioral test vectors from Figure 8-17 
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resulted in a SSL gate level fault coverage of 226/226 = 100%. Lastly, Leonardo was used 

to synthesize example HAMMING8 to gate level Structure2. Fault simulations using the 

behavioral test vectors again achieved complete gate level fault coverage. 

8.2.4 Summary 

The new behavioral fault models, developed in this dissertation, have been applied to 

the comprehensive examples HAMMING4 and HAMMING8. From these faults, behav- 

ioral test vectors were derived for both the 4-bit and 8-bit cases. The resulting complete 

SSL gate level fault coverage for multiple implementations is summarized in Table 8-23. 

Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

HAMMING4 

Structure 1 114 17 100% 

Structure2 116 17 100% 

Structure3 226 17 100% 

HAMMING8 
Structure 1 226 33 100% 

Structure2 446 33 100% 

Table 8-23 HAMMING fault experiments. 

8.3   Conclusions 
Two comprehensive examples were chosen to demonstrate the gate level fault cover- 

age of the new behavioral fault models. The ALU involved the interaction of control faults 

with both arithmetic and logical operator faults. The single error correcting circuit, 

HAMMING, used both XOR-on\y and mixed logical operator expressions. Application of 

the new fault models to the comprehensive examples resulted in sets of test vectors neces- 

sary to detect the behavioral faults. These test vectors were then applied to synthesized 

gate level implementations of the behavioral descriptions. The resulting complete SSL 

gate level fault coverage provides experimental validation of the effectiveness of the 

behavioral fault models. 
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Conclusions and Future Work 

This chapter summarizes the research contributions of this dissertation and outlines 

directions for future work. Some concluding remarks are also provided. 

9.1   Research Contributions 

The main contributions of this dissertation include improved behavioral fault models 

as well as the techniques for generalizing the effects of low level faults and abstracting 

them into the behavioral domain. The new fault models are more closely linked to under- 

lying hardware faults than those developed by previous research. Test vectors based on 

these new behavioral fault models achieve complete SSL gate level fault coverage over a 

broad range of implementations. 

9.1.1 Generalized Functional Faults 

A functional analysis technique has been developed for generalizing the effects of 

industry standard single-stuck-line (SSL) faults on gate level circuits. The key is determin- 

ing sets of functional faults which are not tied to a specific realization. What is desired is 

a general set of faults which provide coverage for functional faults from multiple imple- 

mentations. 

For regular structures, such as cellular logic arrays and parity trees, complete func- 

tional testing is achieved by exhaustive testing of each functional building block. For 

other functions, faults are generalized from sum-of-products (SOP) and product-of-sums 

(POS) implementations to obtain a set of functional faults not tied a specific realization. 

As was the case with physically-induced faults [29], a unique fault produced by a particu- 

lar realization can be readily added to the set of functional faults. 

This dissertation has used the SSL fault model as the basis for its higher level fault 

models. The generalization and abstraction techniques developed here are not dependent 

on this choice of a low level fault model. Other low level fault models which complement 

or improve on the SSL fault model can also be readily applied. 

167 
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9.1.2 New Behavioral Fault Models 

New behavioral fault models have been developed, which are more closely linked to 

underlying hardware faults than previous fault models. The effects of the generalized sets 

of functional faults are abstracted into the behavioral domain by establishing a relationship 

between the higher level language construct and the lower level faults it should encom- 

pass. 

The fault modeling technique used throughout this dissertation is that of external cor- 

ruption of the original VHDL constructs, rather than replacement/mutation of operators. 

Where possible, specific faults have been defined, such as the Clause-CORRUPT control 

faults. When a direct mapping of functional faults cannot be made to produce a simple 

behavioral fault model, an error vector approach has been applied. The functional test 

vectors are mapped into error vectors which then corrupt the results of the VHDL opera- 

tion for the appropriate input combinations. 

While the new fault models are definitely more complex than previous ones, this is 

because they more accurately reflect the underlying complexity of the hardware faults 

which they attempt to model. The increased complexity of the fault models eliminates the 

need to supplement behavioral test vector sets via heuristics in order to improve gate level 

fault coverage. 

9.1.3 Gate Level Fault Coverage of Behavioral Test Vectors 

Application of the behavioral fault models to examples throughout this dissertation 

resulted in sets of test vectors necessary to detect the behavioral faults. Fault experiments 

were then performed using the behavioral test vectors and synthesized gate level imple- 

mentations. Multiple synthesis tools and target architectures were employed to create a 

broad range of realizations of the behavioral descriptions. Resulting gate level fault cover- 

age was evaluated to illustrate the effectiveness of the behavioral fault models and is sum- 

marized in Appendix B. 

Two comprehensive examples were chosen to demonstrate the gate level fault cover- 

age of the new behavioral fault models. The ALU involved the interaction of control faults 

with both arithmetic and logical operator faults. The single error correcting circuit, 

HAMMING, used both XOR-on\y and mixed logical operator expressions. Application of 
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the new fault models to the comprehensive examples resulted in sets of test vectors neces- 

sary to detect the behavioral faults. These test vectors were then applied to synthesized 

gate level implementations of the behavioral descriptions. The resulting complete SSL 

gate level fault coverage provides experimental validation of the effectiveness of the 

behavioral fault models. 

9.1.4 Behavioral Test Generation 

The base fault model for arithmetic operators is derived from the ripple carry connec- 

tion of 2- and 3-input functional building blocks. Behavioral test generation rules, pre- 

sented in this dissertation, demonstrate that only eight test vectors are required for 

complete gate level fault coverage, regardless of the size of the operands. For logical 

operators, behavioral test generation rules were developed for the special case of XOR- 

only expressions. A generalized Bossen algorithm is presented that allows for optimiza- 

tion of test sequences while allowing for multiple possible realizations. 

Most fault-oriented techniques use some form of a three step approach to the test gen- 

eration process. First, a fault must be activated at the desired location in the circuit model. 

Then, the effect of the fault must be propagated to a point where it can be observed and, 

hence, detected. Finally, the inputs of the model must be determined to justify the desired 

signal values throughout the circuit. Variations of these techniques attempt to utilize the 

information available in higher level models to more efficiently accomplish the computa- 

tionally intensive tasks of fault propagation and justification. 

The behavioral fault models developed in this dissertation only affect the activation 

step of the test generation process. Hence, the high level algorithms developed to handle 

the propagation and justification steps still remain valid. Integration of the new behavioral 

fault models with a behavioral test generation algorithm such as the B-algorithm [21][22] 

can be of mutual benefit. Such advanced test generation algorithms already address prob- 

lems such as reconvergent fanout, while use of more complex fault models can eliminate 

the need to supplement test vector sets via heuristics. 

9.1.5 Behavioral Fault Simulation 

The new behavioral fault models developed in this dissertation can now be integrated 

with fault injection techniques such as those developed by DeLong et al. [23][24] to allow 
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fault simulation at higher levels of abstraction. Because the fault models were developed 

using an external corruption or error vector approach, modifications to the original VHDL 

behavioral description need only be made once. Individual faults in the compiled VHDL 

fault simulation model can then be activated by external manipulation of the corrupting 

signals/error vectors. 

The ability to fault simulate VHDL behavioral models rather than more detailed gate 

level ones will allow better management of ever increasing design complexity. Working 

with behavioral fault models will also allow fault simulation to be performed earlier in the 

design scheme, without details of the gate level implementation. In fact, depending on the 

source of the component, a gate level description may never be available. Thus, these new 

behavioral fault models facilitate better integration of fault simulation into the overall 

design process. 

9.2   Future Work 
The models and techniques presented in this dissertation represent another important 

step in the development of a design methodology for performing fault simulation through- 

out the design process. The following sections present a brief description of directions for 

future research. 

9.2.1 Expansion of Behavioral Fault Models 

The fault models developed in this dissertation address combinational logic circuits 

based on the IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36]. 

These behavioral models need to be expanded to include sequential components. The 

draft standard includes a set of representative design examples whose intent is to specify 

certain prevalent modeling styles resulting in basic hardware elements like flip-flops, 

latches, etc. The specification of processes and resulting inferenced logic are detailed in 

Appendix D. 

This dissertation has used the SSL fault model as the basis for its higher level fault 

models. The generalization and abstraction techniques developed here are not dependent 

on this choice of a low level fault model. Other low level fault models which complement 

or improve on the SSL fault model can also be readily applied. Additional fault effects 

may be abstracted into the behavioral domain, thus improving the overall behavioral fault 



171 

models. Fault coverage metrics would have to be adjusted accordingly to effectively rep- 

resent the low level fault coverage of the improved behavioral fault models. 

9.2.2 Tool Development 

As previously stated, the behavioral fault models developed in this dissertation can 

now be integrated into higher level test generation algorithms. The resulting behavioral 

test generation tool would allow designers to develop test vector sets based on VHDL 

behavioral descriptions. These behavioral test vector sets could then be used to fault sim- 

ulate a component at the gate level or even used to test components for which a gate level 

description is not available. 

The new behavioral fault models developed in this dissertation can also be combined 

with fault injection techniques to allow fault simulation at higher levels of abstraction. A 

VHDL behavioral fault simulation tool would allow fault experiments to be performed 

earlier in the design scheme, without details of the gate level implementation. Both 

behavioral test generation and behavioral fault simulation tools will aid in complexity 

management and better integrate fault simulation into the overall design process. 

9.2.3 Higher Levels of Abstraction 

The VHDL descriptions and subsequent fault models in this dissertation cross from the 

structural into the behavioral domain and move up the design hierarchy from the gate to 

the register level as defined in Table 1-1. A logical extension to this work is the continua- 

tion to higher levels of abstraction such as the chip or system level. The further migration 

of fault models would clearly support the ultimate goal of developing a design methodol- 

ogy for performing fault simulation throughout the design process. 

The design tools used in this dissertation involved synthesis of behavioral data flow 

descriptions into structural gate level circuits. Moving higher up the design hierarchy next 

involves algorithmic synthesis tools which translate chip level algorithms into data flow 

descriptions. Understanding this synthesis process is key to further abstraction of the 

behavioral fault models. 

Ultimately the level of abstraction is reached where the VHDL description in that of a 

combined hardware/software system. Fault models need to be developed at this system 
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level so fault simulation and test generation can be integrated into the hardware/software 

codesign process. 

9.3   Concluding Remarks 
To cope with the ever increasing complexity of digital circuits, engineers can now 

work at higher levels of abstraction by taking advantage of computer aided design pack- 

ages and hardware description languages. Sophisticated synthesis tools provide a design 

environment which allows the use of higher level VHDL behavioral models. The details 

of the gate level implementation are safely hidden, shielding the designer from additional 

complexity. The fault models and abstraction techniques developed in this dissertation 

represent another important step in integrating fault simulation and testing into such a 

VHDL synthesis environment. 

Expansion of these new behavioral fault models and development of associated com- 

puter-aided tools, will allow better management of design complexity. Fault simulation 

and testing of digital circuits can be moved away from the traditional gate level to join 

other design aspects at higher levels of abstraction. The end result will be a design meth- 

odology which includes performing fault simulation throughout the entire design process. 
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Appendix A 

Additional Examples 

In order to more fully examine the effectiveness of the new behavioral fault models, 

additional examples are provided here. Examples have been chosen to represent a broad 

range of design possibilities. Multiple synthesis options are employed to ensure the exam- 

ples are as general as possible. 

A.l Array Indexing 
As shown in Appendix E, indexing an array such as a bit_vector also implies a multi- 

plexer architecture. Consider the VHDL behavioral description for example ARRAY4 

shown in Figure A-l. 

entity ARRAY4 is 
port(Y 

I 
Z 

in BIT_VECTOR(3 downto 0); 
in INTEGER range 3 downto 0; 
out BIT); 

end ARRAY4; 

architecture BEHAVE of ARRAY4 is 
begin 

process(Y,I) 
begin 

Z <= Y(I); 
end process; 

end BEHAVE; 

Figure A-l Behavioral description for example ARRAY4. 

The assignment statement Z  <= Y (I)   can be equivalently written as a case state- 

ment, as shown in Figure A-2. 

case  I  is 
when 0 => Z <= Y(0) 
when 1 => Z <= Y(l) 
when 2 => Z <= Y(2) 
when 3 => Z <= Y(3) 

end case; 

Figure A-2 Equivalent case statement for example ARRAY4. 
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This selection activity implies the applicability of the control fault model developed in 

Chapter 3. According to the model, each selection (clause or index value) can be affected 

by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND). 

According to a binary encoding for 7, specified by the synthesis subset, Figure A-3 shows 

the resulting logical adjacencies for this example. 

1(1) 

0 1 

1(0) 

0 Y(0) Y(2) 

1 Y(l) Y(3) 

z 
Figure A-3 Logical adjacencies among clauses. 

Thus, applying the control fault model to example ARRAY4 in Figure A-l, results in 

the behavioral faults shown in Table A-l. 

Behavioral Fault Corrupted Selection 
Test Vector 

(IY) 

Y(0)-CORRUPT (by Y(l))(OR) Z   <=  Y(0)   OR Y(l) 0  XX10 

Y(0)-CORRUPT (by Y(1))(AND) Z   <=  Y(0)   AND Y(l) 0  XX01 

Y(0)-CORRUPT (by Y(2))(OR) Z   <=  Y(0)   OR Y(2) 0  X1X0 

Y(0)-CORRUPT (by Y(2))(AND) Z   <=  Y(0)   AND Y(2) 0  X0X1 

Y(l)-CORRUPT (by Y(0))(OR) Z   <=  Yd)   OR Y(0) 1   XX01 

Y(l)-CORRUPT (by Y(0))(AND) Z   <=  Y(l)   AND Y(0) 1  XX10 

Y( l)-CORRUPT (by Y(3))(OR) Z   <=  Yd)   OR Y(3) 1   1X0X 

Y(l)-CORRUPT (by Y(3))(AND) Z   <=  Y(l)   AND Y(3) 1   0X1X 

Y(2)-CORRUPT (by Y(0))(OR) Z   <=  Y(2)   OR Y(0) 2   X0X1 

Y(2)-CORRUPT (by Y(0))(AND) Z   <=  Y(2)   AND Y(0) 2   X1X0 

Y(2)-CORRUPT (by Y(3))(OR) Z   <=  Y(2)   OR Y(3) 2   10XX 

Y(2)-CORRUPT (by Y(3))(AND) Z   <=  Y(2)   AND Y(3) 2   01XX 

Table A-l Behavioral faults for example ARRAY4. 
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Behavioral Fault Corrupted Selection 
Test Vector 

(IY) 

Y(3)-CORRUPT (by Y(l))(OR) Z  <=  Y(3)   OR Y(l) 3   0X1X 

Y(3)-CORRUPT (by Y(1))(AND) Z   <=  Y(3)   AND Y(l) 3   1X0X 

Y(3)-CORRUPT (by Y(2))(OR) Z   <=  Y(3)   OR Y(2) 3   01XX 

Y(3)-CORRUPT (by Y(2))(AND) Z   <=  Y(3)   AND Y(2) 3   10XX 

Table A-l Behavioral faults for example ARRAY4. 

Combining don't care values produces the behavioral test vectors shown in WAVES 

format in Figure A-4. 

% Y I Z 
X110 00 0 
X001 00 1 
1X01 01 0 
0X10 01 1 
10X1 10 0 
01X0 10 1 
011X 11 0 
100X 11 1 

time; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure A-4 WAVES test vectors for example ARRAY4. 

Example ARRAY4 was synthesized to the gate level circuit shown in Figure A-5. 

Fault simulations were performed using the behavioral test vectors derived from the con- 

trol fault model resulting in a SSL gate level fault coverage of 44/44 = 100%. 

i(1:0)O 

y(3:0)O 

Oz 

Figure A-5 Synthesized circuit for example ARRAY4. 
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A.2 Generalization of the Control Fault Model 

Previous examples have used explicit values of control signals to determine selection 

in if-then-else and case statements. When working in the behavioral domain, the specific 

combination of control inputs may not matter, hence, an enumerated type may be used. 

The assignment of control signal values to the elements of the enumerated type can be left 

to the design tools and, thus, delayed to later in the design cycle. The new control fault 

model can be easily generalized to allow for use of enumerated types. 

Example CASE2, in Figure A-6, uses an enumerated type to control the selection of 

assignments for a case statement. 

case SEL is 
when J => 

Z <= YO; 
when K => 

Z <= Yl; 
when L => 

Z <= Y2; 
when M => 

Z <= Y3; 
end case; 

Figure A-6 Behavioral description for example CASE2. 

Due to the independence of the input signals in this example, the synthesis tool pro- 

duces the standard implementation of the case statement as a 4-to-l multiplexer. Each of 

the four inputs (Y3, Y2, Yl, YO) can be assigned to any of the four multiplexer inputs (A, B, 

C, D), depending on the designation of control bits for the enumerated type SEL. There 

are, therefore, 4! = 24 possible permutations of the eventual synthesized circuit. 

The control fault model can still be applied to the generalized case statement in exam- 

ple CASE2, without consideration of the eventual designation of the control bits for the 

enumerated type SEL. According to the fault model, each clause of a case statement is 

affected by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT 

(AND). The only difference with this example is the determination of logical adjacencies 

between clauses. 

Since no assignment of control values has yet been made for the enumerated type SEL, 

actual determination of adjacencies among clauses cannot be made. It must, therefore, be 
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assumed that each clause has the possibility of being adjacent to, and hence corrupted by, 

any other clause. This assumption implies that each of the four clauses in this example is 

affected by three WHEN-CORRUPT (OR) faults and three WHEN-CORRUPT (AND) 

faults. For example, the (OR) corruption of the when K clause results in three behavioral 

faults: WHEN-K-CORRUPT (by J)(OR), WHEN-K-CORRUPT (by L)(OR), and WHEN-K- 

CORRUPT (by M)(OR). Application of the control fault model to the generalized case 

statement from example CASE2, therefore, results in a total of 24 behavioral faults. 

Though the application of the control fault model to the generalized case statement has 

resulted in the definition of eight additional behavioral faults, recall also the concept of 

compatible fault sets. The group of faults that corrupt a single channel can form a compat- 

ible fault set and their test vectors can, therefore, be combined. For example, the three 

WHEN-CORRUPT (OR) faults that affect clause K lead to the derivation of the following 

test vectors (SEL Y3 Y2 Yl YO): KXX01, KX10X, and K1X0X. Though in the actual cir- 

cuit, only two of the other clauses will be adjacent to clause K, the three test vectors are 

still compatible, forming the test vector K1101. Comparison of this test vector with the 

corresponding one derived for the Z <= Yl clause for example IF2, (SEL Y3 Y2 Yl YO) 

011X01, shows that the only difference is the elimination of an additional don't care. 

Alternate assignment of control signals for K simply alter the adjacencies between clauses 

and result in the elimination of a different don't care. A list of WHEN-CORRUPT (OR) 

behavioral faults and their corresponding test vectors is given in Table A-2. A similar list 

can be easily derived for the 12 WHEN-CORRUPT (AND) faults. 

Behavioral Fault Test Vector 
(SEL Y3 Y2 Yl YO) 

WHEN-J-CORRUPT (by K)(OR) 

J  1110 WHEN-J-CORRUPT (by L)(OR) 

WHEN-J-CORRUPT (by M)(OR) 

WHEN-K-CORRUPT (by J)(OR) 

K  1101 WHEN-K-CORRUPT (by L)(OR) 

WHEN-K-CORRUPT (by M)(OR) 

Table A-2 Behavioral faults and corresponding test vectors for example CASE2. 
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Behavioral Fault 
Test Vector 

(SEL Y3 Y2 Yl YO) 

WHEN-L-CORRUPT (by J)(OR) 

L   1011 WHEN-L-CORRUPT (by K)(OR) 

WHEN-L-CORRUPT (by M)(OR) 

WHEN-M-CORRUPT (by J)(OR) 

M  0111 WHEN-M-CORRUPT (by K)(OR) 

WHEN-M-CORRUPT (by L)(OR) 

Table A-2 Behavioral faults and corresponding test vectors for example CASE2. 

The control fault model has now been generalized to handle enumerated types and the 

delay of assignment of control signal values. The only change to the model was the inclu- 

sion of additional Clause-CORRUPTfaults due to the assumption that, in the general case, 

each clause may be adjacent to any other clause. The additional behavioral faults did not, 

necessarily, result in any additional test vectors due to the concept of compatible fault sets. 

A.3 Signed Comparison 
Example GREATER3 is presented here to demonstrate the application of the behav- 

ioral fault models for relational operators to signed as well as unsigned comparisons. As 

can be seen in Figure A-7, example GREATER3 compares two integers with ranges of -4 

to +3. These control signals will be synthesized as 3-bit 2's complement numbers. 

entity GREATER3 is 
port(A,B: in INTEGER range -4 to +3; GT: out BIT); 

end GREATER3; 
architecture BEHAVE of GREATER3 is 
begin 

process(A,B) 
begin 

if A > B then 
GT <= x 1' ; 

else 
GT <= x 0'; 

end if; 
end process; 

end BEHAVE; 

Figure A-7 Behavioral description for example GREATER3. 
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Applying the behavioral faults for unsigned relational operators from Chapter 4 gives 

the fault classifications for a signed GT function shown in Figure A-8. 

A 

-4 -3 -2 -l 0 l 2 3 

B 

-4 I m 

-3 i m 

-2 n i ni 

-1 i m 

0 ii i m 

1 i in 

2 ii i m 

3 i 

Figure A-8 Fault classes for 3-bit signed GT function. 

Encoding the test vectors as 3-bit 2's complement numbers results in the WAVES file 

shown in Figure A-9. 

% A B  GT time; 
% Class I 
100 100 0 500 ns; 
101 101 0 500 ns; 
110 110 0 500 ns; 
111 111 0 500 ns; 
000 000 0 500 ns; 
001 001 0 500 ns; 
010 010 0 500 ns; 
011 011 0 500 ns; 

% Class II 
101 110 0 500 ns; 
111 000 0 • 500 ns; 
001 010 0 : 500 ns; 

Figure A-9 WAVES test vectors for example GREATER3. 
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% Class III 
101 100 1 
110 101 1 
111 110 1 
000 111 1 
001 000 1 
010 001 1 
Oil 010 1 

500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure A-9 WAVES test vectors for example GREATER3. 

Example GREATER3 was synthesized and optimized to gate level Structure 1, shown 

in Figure A-10, using AutoLogic II. In order to add even more diversity to the problem, an 

alternate design library from that used for example COMPARE was chosen. 

aC2:0)O- 

H> 
b(2:0)O 

* q> 
-0- 

*■-{> 

-J> 
\A 

4> ^3-^=0 -Ogt 

Figure A-10 Synthesized Structurel for example GREATER3. 

According to MIL-STD 883D, Structurel contains 50 unique SSL gate level faults. 

Fault simulations using the behavioral test vectors from Figure A-9 resulted in complete 

gate level fault coverage. 

Next, an alternate synthesis tool, Leonardo, was used to map the VHDL behavioral 

description to a Xilinx FPGA architecture. Fault simulations using the behavioral test 

vectors achieved a SSL gate level fault coverage of 48/48 = 100%. 

Lastly, the signed comparison was implemented using arithmetic operations. Evalua- 

tion of the greater than function can also be performed by subtracting the two operands 

and examining the sign of the result. For example GREATER3, the most significant bit of 

the operation B - A forms the output GT. The resulting synthesized and optimized circuit 

for Structure3 is shown in Figure A-ll. 

Comparison of the test vectors from Figure A-9 with the truth table for a full-subtrac- 

tor from Table 5-15 indicates that the behavioral test vectors will provide complete func- 
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b(2:0)O 

8(2:0)O 

£E>i 
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Figure A-ll Synthesized Structure3 for example GREATER3. 

tional testing for the subtracter modules used to synthesize Structure3. Fault simulations 

confirm the complete gate level fault coverage of 41/41 = 100%. 

A.4 Unsigned Threshold 
Example GE23u is an unsigned threshold comparison using a greater than or equal to 

(GE) operator. As shown in Figure A-12, A is an integer with range 0 to 31, which will be 

synthesized to a 5-bit unsigned number. 

entity GE23u is 
port(A: in INTEGER range 0 to 31; 

GE: out BIT); 
end GE23u; 
architecture BEHAVE of GE23u is 
begin 

process(A) 
begin 

if A >= 23 then 
GE <= * 1'; 

else 
GE <= * 0'; 

end if; 
end process; 

end BEHAVE; 

Figure A-12 Behavioral description for example GE23u. 

The GE function places the threshold between 22 and 23. According to the behavioral 

fault model for threshold operators, developed in Chapter 4, the threshold lies seven 

spaces from the center of the range of values, implying step sizes of one. two, and four. 

Test vectors to the left of the threshold are 22 - 1 = 21, 21 - 2 = 19, and 19 - 4 = 15. Test 

vectors to the right are 23 + 1 = 24,24 + 2 = 26, and 26 + 4 = 30. The behavioral test vec- 

tors are shown graphically in Figure A-13 and as a WAVES file in Figure A-14. 
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A>=23 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Figure A-13 Behavioral test vectors for example GE23u. 

%  A     GE time; 
01111 0 500  ns; 
10001 0 500  ns; 
10101 0 500 ns; 
10110 0 500  ns; 

10111 1 500  ns; 
11000 1 500  ns; 
11010 1 500  ns; 
11110 1 500  ns; 

Figure A-14 WAVES test vectors for example GE23u. 

Example GE23u was synthesized to the gate level circuit shown in Figure A-15. Fault 

simulations using the behavioral test vectors from Figure A-14 resulted in a SSL gate level 

fault coverage of 24/24 = 100%. 

aM:0) 

Dae 

Figure A-15 Synthesized circuit for example GE23u. 

A.5 Adder/Subtractor 
Figure A-16 gives the VHDL behavioral description for a 4-bit adder/subtractor cir- 

cuit, ADDSUB4. The two inputs (A,B) are combined to produce a 4-bit output (D). The 

operation to be performed is selected by the control signal (OP): OP - '0' selects addi- 

tion, while OP = T selects subtraction. 

if OP = '0' then 
D <= A + B; 

else 
D <= A - B; 

end if; 

Figure A-16 Behavioral description for example ADDSUB4. 
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A.5.1 Faults on Arithmetic Operators 

Assuming a simple ripple carry implementation, the behavioral test vectors for the 4- 

bit addition and 4-bit subtraction can be determined directly from the fault models. The 

resulting WAVES file is presented in Figure A-17. 

OP A     B 
% ADD 
0 0000 
0 0000 
0 1111 
0 1111 
0 0001 
0 1111 
0 0101 
0 1010 
% SUB 

0000 
0000 
1111 
1111 
0000 
1110 
0101 
1010 

0000 
1111 
0000 
1111 
1111 
0001 
0101 
1010 

0000 
1111 
0000 
1111 
0001 
1111 
1010 
0101 

0000 
1111 
1111 
1110 
0000 
0000 
1010 
0100 

0000 
0001 
1111 
0000 
1111 
1111 
1011 
0101 

time; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure A-17 WAVES test vectors for example ADDSUB4. 

A.5.2 Control Faults 

The control fault model specifies that each clause of an if-then-else statement can be 

affected by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT 

(AND). The behavioral test vectors for the arithmetic operators must be evaluated to 

ensure that adequate coverage is provided for these control faults. 

For example, the first control fault, THEN-CORRUPT (OR), results in the corrupted 

version of the then clause: 

D  <=    (A  +   B)   OR   (A  -  B) 

To test for this fault, the uncorrupted version of the clause (A + B) needs to be set to 0, 

while the corrupting clause (A - B) is set to 1. The Phase II test vector A = 1111, B = 0001 

results in A + B = 0000, while A - B = 1110. Since no combination of A,B will produce 
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complementary values for D0, this test vector should provide sufficient coverage for this 

control fault. Other control faults and their covering test vectors are summarized in Table 

A-3. Note that no additional test vectors are required to provide coverage for all control 

faults. 

Control Fault OP A B A + B A-B 

THEN-CORRUPT (OR) 0 1111 0001 0000 1110 

THEN-CORRUPT (AND) 0 0000 mi mi 0001 

ELSE-CORRUPT (OR) 1 mi mi 1110 0000 

ELSE-CORRUPT (AND) 1 0000 0001 0001 mi 

Table A-3 Coverage for control faults. 

A.5.3 Evaluation of the Behavioral Test Vectors 

Example ADDSUB4 was synthesized to the gate level circuit in Figure A-18. Fault 

simulation using the behavioral test vectors from Figure A-17 results in complete gate 

level fault coverage of 124/124 = 100%. 

Figure A-18 Synthesized circuit for example ADDSUB4. 

A.5.4 CLA Implementation 

If the target technology includes CLA circuits, additional test vectors are required to 

cover the behavioral faults. The vectors for the addition operation are those derived in 

Chapter 5 and summarized in Table 5-10. Behavioral test vectors for the subtraction oper- 

ation can be derived using 2's complement arithmetic. 

The highest order carry in a 4-bit subtractor implemented with a CLA adder is C2. 

From Table 5-7, the terms for C2, including a carry-in, are P2PJP0C_J, P2P]G0, p2Gb and 
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G2. Behavioral test vectors for missing carry and extra carry faults can be derived for the 

subtraction operation by converting the corresponding addition to subtraction. 

According to the new behavioral fault model, test vectors are necessary for missing 

carry faults for all but the lowest and highest order terms. Missing carry behavioral faults 

are presented in Table A-4. The left hand side of the table gives the test vector for addi- 

tion, while the right hand side shows the conversion to subtraction. 

Stage Term 

Addition Subtraction 

A B CIN S M s D 

0 P2PiG0 
0001 1111 1 0001 0001 0000 0001 

1 P2Gi 0010 1111 1 0010 0010 0000 0010 

Table A-4 Missing carry faults for subtraction. 

Test vectors for extra carry faults are required for all but the two most significant 

stages. Behavioral test vectors for the extra carry faults are presented in Table A-5. The 

CIA test vectors for example ADDSUB4 are, therefore, presented in Figure A-19. 

Stage Term 

Addition Subtraction 

A B CIN S M S D 

-1 P2P1P0C-1 

0000 1110 1111 0000 0001 mi 

0000 1101 1110 0000 0010 1110 

0000 1011 1100 0000 0100 1100 

0 P2PiGo 
0001 1101 1111 0001 0010 mi 

0001 1011 1101 0001 0100 1101 

table A-5 Extra carry faults for subtraction. 

A CIA implementation of example ADDSUB4 is presented in Figure A-20 [41]. Fault 

simulations were performed using the ripple carry test vectors from Figure A-17, plus the 

CIA test vectors from Figure A-19. The ripple carry vectors alone produced a SSL gate 

level fault coverage of 203/209 = 97.13%. The remaining faults were then detected by the 

CIA test vectors, resulting in complete gate level fault coverage. 
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% OP A  B    D 
%' ADD CLA 
0 0001 0011 0100 
0 0001 0101 0110 
0 0010 0110 1000 
% SUB CLA 
1 0001 0000 0001 
1 0010 0000 0010 
1 0000 0001 1111 
1 0000 0010 1110 
1 0000 0100 1100 
1 0001 0010 1111 
1 0001 0100 1101 

time; 

500 ns; 
500 ns; 
500 ns; 

500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 
500 ns; 

Figure A-19 CLA test vectors for example ADDSUB4. 

Figure A-20 CLA implementation of example ADDSUB4. 

A.6 Arithmetic with Constants 
The behavioral test vector patterns developed in Chapter 5 will now be applied to two 

larger examples to demonstrate the effect of synthesis optimizations on gate level fault 

coverage. First, example PLUS25 adds the constant 25 to an 8-bit number. Next, example 

MINUS25 combines the subtraction operator with the same constant. Alternately, this 

example can be viewed as addition using the constant -25. 
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A.6.1 Example PLUS25 

Example PLUS25 implements the arithmetic operation Z <= Y + 25. Signals Y 

and Z are declared with ranges from -128 to +127, hence they will be synthesized as 8-bit 

2's complement numbers. The binary representation for +25 is 00011001, thus the Phase 

II test patterns are formed starting with the vector 11100110. The resulting behavioral test 

vectors are shown in Figure A-21. 

% Y  Z  : time; 
00000000 00011001 : 500 ns; 
11111111 00011000 : 500 ns; 
% 
11100110 11111111 : 500 ns; 
11001101 11100110 : 500 ns; 
10011011 10110100 : 500 ns; 
00110111 01010000 : 500 ns; 
01101110 10000111 : 500 ns; 
11011100 11110101 : 500 ns; 
10111001 11010010 : 500 ns; 
01110011 10001100 : 500 ns; 

Figure A-21 Behavioral test vectors for example PLUS25. 

Example PLUS25 was synthesized and optimized to the gate level Structure 1 shown in 

Figure A-22. Note that the optimization process has altered the original ripple carry struc- 

ture of the 8-bit adder. 

g(7:B)D>- it> 
-O-f 

^z^^>- 
^r^^E>^ 

Figure A-22 Synthesized Structural for example PLUS25. 

Fault simulations using the behavioral test vectors from Figure A-21 resulted in a SSL 

gate level fault coverage of 114/115 = 99.13%.  The functional testing approach is still 
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able to achieve near complete fault coverage. An alternate synthesis tool and target archi- 

tecture was next used to produce Structure2 for example PLUS25. Fault simulations using 

the behavioral test vectors from Figure A-21 resulted in a SSL gate level fault coverage of 

190/190 = 100%. 

A.6.2 Example MINUS25 

Example MINUS25 performs the arithmetic operation Z <= Y - 25. Again, the 

binary representation for +25 is 00011001, resulting in the behavioral test vectors and 

associated functional tests shown in Table A-6. 

Phase Y z 

Test# 

ST7 ST6 ST5 ST4 ST3 ST2 ST! 

I 
00000000 11100111 0 0 0 0 0 0 0 

11111111 11100110 3 3 3 3 3 3 3 

II 

00011001 00000000 1 1 1 3 3 1 1 

00110010 00011001 1 1 2 2 1 1 2 

01100100 01001011 1 3 2 0 1 2 0 

11001000 10101111 3 2 0 0 2 0 0 

10010001 01111000 2 0 0 2 1 1 1 

00100011 00001010 1 1 2 0 1 1 3 

01000110 00101101 1 2 0 0 1 3 2 

10001100 01110011 2 . 0 0 1 3 2 0 

Table A-6 Functional tests for example MINUS25. 

Example MINUS25 was synthesized and optimized using the same process as 

Structure 1 for example PLUS25. Fault simulations using the behavioral test vectors from 

Table A-6 again resulted in a SSL gate level fault coverage of 114/115 = 99.13%. 

A.7 XOR4 
Using the behavioral fault models developed in Chapter 6, test vectors can be devel- 

oped for example XOR4 shown below. 

Z   <=  A XOR B  XOR  C  XOR D 
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First, the parse tree method from Section 6.1.1.2 will identify the test vectors necessary for 

exhaustive testing of each XOR operator. Next, the modified Bossen algorithm from Sec- 

tion 6.1.2.2 will produce an optimized set of test vectors for the given expression. 

A.7.1 Parse Tree Test Vectors 

A parse tree for example XOR4 is shown in Figure A-23.   The nodes (1,2,3) are 

formed by the XOR operators, while the leaves of the tree are the signals A, B, C, and D. 

1 XOR 

/   \ 
A 2 XOR 

/ \ 
B 3 XOR 

/ \ 
C D 

Figure A-23 Parse tree for example XOR4. 

According to the generalized set of functional faults from Section 6.1.2.1, an exhaus- 

tive set of four tests is necessary for each XOR operator. Applying these tests to the parse 

tree from Figure A-23 produces the behavioral test vectors shown in Table A-7. 

Node 
Behavioral 

Test 
Test Requirements 

Test Vector 
(ABCD) 

1 

00 A = 0, B XOR C XOR D = 0 0000 

01 A = 0, B XOR C XOR D = 1 0100 

10 A=1,BXORCXORD = 0 1000 

11 A = l,BXORCXORD=l 1100 

2 

00 B = 0, C XOR D = 0, A = 0 0000 

01 B = 0,CXORD=1,A = 0 0010 

10 B = 1,CXORD = 0,A = 0 0100 

11 B = 1,CXORD=1,A = 0 0110 

Table A-7 Behavioral test vectors for example XOR4. 
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Node 
Behavioral 

Test 
Test Requirements 

Test Vector 
(ABCD) 

3 

00 C = 0,D = 0,B = 0,A = 0 0000 

01 C = 0,D = 1,B = 0,A = 0 0001 

10 C = 1,D = 0,B = 0,A = 0 0010 

11 C=1,D = 1,B = 0,A = 0 0011 

Table A-7 Behavioral test vectors for example XOR4. 

Eliminating redundant test vectors produces the WAVES file shown in Figure A-24. 

%  ABCD  Z   :   time   ; 
0000   0 500  ns; 
0001   1 500  ns; 
0010   1 500  ns; 
0011   0 500  ns; 
0100   1 500  ns; 
0110   0 500  ns; 
1000  1 500  ns; 
1100   0 500  ns; 

Figure A-24 WAVES test vectors for example XOR4. 

A.7.2 Evaluation of Behavioral Test Vectors 

Example XOR4 was synthesized into multiple gate level realizations to evaluate the 

behavioral test vectors. Varying structures, synthesis tools, and design libraries were 

employed to produce a broad range of implementations. 

Structure 1 of example XOR4 is shown in Figure A-25. Fault simulations using the 

behavioral test vectors from Figure A-24 result in a SSL fault coverage of 24/24 = 100%. 

aO \ 
bO / 
O 

dO 
-Oz 

Figure A-25 Structurel for example XOR4. 
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Structure 2 for example X0R4 is shown in Figure A-26. Fault simulations with the 

behavioral test vectors also produce a SSL gate level fault coverage of 24/24 = 100%. 

Oz 

cO tf 
dO / 

Figure A-26 Structure2 for example XOR4. 

An alternate synthesis tool and target architecture were used to produce Structure3 for 

example XOR4, shown in Figure A-27. Fault simulations using the same behavioral test 

vectors from Figure A-24 result in a SSL gate level fault coverage of 54/54 = 100%. 

Figure A-27 Structure3 for example XOR4. 

Lastly, Structure4 for example XOR4 is presented in Figure A-28. Again, fault simu- 

lations using the behavioral test vectors result in complete gate level fault coverage. 

Figure A-28 Structure4 for example XOR4. 

A.7.3 Optimized Test Vectors 

Applying the modified Bossen algorithm to example XOR4 results in the labelling 

shown in Figure A-29 and Figure A-30. Note, the 4-bit example represents a special case 

where it is possible to find identical test sequences for structures Cascadel and Cascade2. 
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Figure A-29 Structure Cascadel for example XOR4. 

Figure A-30 Structure Cascade2 for example XOR4. 

The resulting optimized test vectors are shown in Table A-8. 

Signal Label Sequence 

A S 0011 

B R 0110 

C R 0110 

D T 0101 

Test Vector 
(ABCD) 

z 

0000 0 

0111 1 

1110 1 

1001 0 

Table A-8 Optimized test vectors for example XOR4. 

A.7.4 Evaluation of Optimized Test Vectors 

Fault simulations were conducted using the optimized behavioral test vectors from 

Table A-8 and Structures 1-4 for example XOR4. For all four implementations of example 

XOR4, complete gate level fault coverage was achieved using either test vector set. 
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Fault Experiment Results 

Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

CASE1 
Structure 1 34 8 100% 

Structure2 34 8 100% 

ARRAY4 
Structure 1 44 8 100% 

Structure2 44 8 100% 

SHIFT4U 
Structure 1 90 8 100% 

Structure2 112 8 100% 

Table B-l Control fault experiments. 

Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

LESS2 
Structure 1 29 8 100% 

Structure2 30 8 100% 

EQUAL3 
Structure 1 31 8 100% 

Structure2 31 8 100% 

GREATER3 

Structure 1 50 18 100% 

Structure2 48 18 100% 

Structure3 41 18 100% 

LE5 
Structure 1 18 6 100% 

Structure2 20 6 100% 

GE23u 
Structure 1 24 8 100% 

Structure2 22 8 100% 

LT12u Structure 14 4 100% 

GT3n Structure 17 5 100% 

Table B-2 Relational operator fault experiments. 
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Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

COMPARE 

Structure 1 74 
12 98.65% 

12 98.65% 

Structure2 72 
12 100% 

12 100% 

COMPARE3 

Structure 1 97 
22 97.94% 

22 97.94% 

Structure2 92 
22 100% 

22 100% 

COMPARE4 Structure 150 
12 100% 

12 100% 

COMPARE34 Structure 178 
22 100% 

22 100% 

Table B-2 Relational operator fault experiments. 

Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

ADD4 

Structure 1 102 8 100% 

Structure2 130 
8 97.69% 

11 100% 

Structure3 142 8 100% 

ADD4WC 

Structure 1 138 8 100% 

Structure2 188 
8 88.30% 

20 100% 

Structure3 194 8 100% 

Table B-3 Arithmetic operator fault experiments. 
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Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

ADD8 

Structure 1 234 8 100% 

Structure2 310 

8 93.55% 

33 100% 

22 100% 

SUB4 

Structure 1 112 8 100% 

Structure2 157 
8 94.90% 

15 100% 

ADDSUB4 
Structure 1 124 16 100% 

Structure2 209 26 100% 

INC4 
Structure 1 50 6 100% 

Structure2 80 6 100% 

INC8 Structure 114 10 100% 

DEC4 Structure 51 6 100% 

ADDINC4 Structure 108 14 100% 

PLUS3 Structure 68 7 100% 

MINUS5 Structure 85 8 100% 

PLUS25 
Structure 1 115 10 99.13% 

Structure2 190 10 100% 

MINUS25 Structure •. 115 10 99.13% 

Table B-3 Arithmetic operator fault experiments. 

Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

SOP1 
Structure 1 18 5 100% 

Structure2 18 5 100% 

SOP4 
Structure 1 72 5 100% 

Structure2 72 5 100% 

Table B-4 Other operator fault experiments. 
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Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

POS1 
Structure 1 18 5 100% 

Structure2 18 5 100% 

GT 

Structure 1 30 8 100% 

Structure2 35 8 100% 

Structure3 29 8 100% 

XOR4 

Structure 1 24 
8 100% 

4 100% 

Structure2 24 
8 100% 

4 100% 

Structure3 54 
8 100% 

4 100% 

Structure4 44 
8 100% 

4 100% 

XOR5 

Structure 1 30 7 100% 

Structure2 30 7 100% 

Structure3 58 7 100% 

Structure4 58 7 100% 

ABS4 
Structure 1 44 5 100% 

Structure2 44 5 100% 

ABS8 
Structure 1 132 9 100% 

Structure2 126 9 100% 

NEG4 
Structure 1 49 5 100% 

Structure2 50 5 100% 

NEG8 
Structure 1 114 9 100% 

Structure2 204 9 99.02% 

Table B-4 Other operator fault experiments. 
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Example Implementation 
SSL 

Faults 
Behavioral 

Test Vectors 
Fault 

Coverage 

ALU4wc 

Structure 1 284 31 100% 

Structure2 312 31 100% 

Structure3 398 31 100% 

ALU8wc 
Structure 1 546 31 100% 

Structure2 758 31 100% 

HAMMING4 

Structure 1 114 17 100% 

Structure2 116 17 100% 

Structure3 226 17 100% 

HAMMING8 
Structure 1 226 33 100% 

Structure2 446 33 100% 

Table B-5 Comprehensive fault experiments. 
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VHDL Behavioral Descriptions 

VHDL can be used to model the function performed by a module at a level of abstrac- 

tion above the gate level. Such a description is called a functional or behavioral descrip- 

tion. The VHDL Cookbook [11] and the IEEE Standard VHDL Language Reference 

Manual [38] serve as two key resources for designing hardware using behavioral descrip- 

tions. VHDL allows description of behavior in the form of a sequence of familiar pro- 

gramming language constructs. Behavioral descriptions use variables and signals along 

with their corresponding assignment statements to model the desired functionality of the 

ultimate hardware. Expressions perform arithmetic or logical computations by applying 

an operator to one or more operands. Constructs used to control the selection and 

sequencing of instructions include if, case, and loop statements. Concurrency of execu- 

tion in hardware is modeled using a process statement. Like other programming lan- 

guages, VHDL provides subprogram facilities in the form of procedures and functions. 

C.l Variables and Signals 
An object is a named item in a VHDL description which has a value of a specified 

type. A variable is an object whose value may be changed at any time during the simula- 

tion of the circuit. It is local to a process or subprogram and has a single current value. A 

signal is an object with a value that is changed only at scheduled times. Signals represent 

electrical quantities that can be used to transmit information and are normally used to con- 

nect submodules in a design. Each object has a corresponding assignment statement. 

As in other programming languages, a variable is given a new value using an assign- 

ment statement. In the simplest case, the target of the assignment is an object name and 

the value of the expression is given to the named object. Variable assignments occur 

immediately when the assignment statement is executed and are local to a. process or sub- 

program. A signal assignment schedules a transaction to a signal. The target must repre- 

sent a signal or be an aggregate of signals. Scheduled transactions are executed as 

simulation time progresses. Signals are global in a process or subprogram and are the 

only means of communication between processes. 
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C.2 Expressions 
An expression is a formula that defines the computation of a value. The type of an 

expression depends only upon the types of its operands and on the operators applied. The 

predefined VHDL operators are listed in Table C-l. 

Type 

Logical 

Relational 

Adding 

Unary (sign) 

Multiplying 

Miscellaneous 

Operators 

AND OR      NAND     NOR      XOR 

/= <= >= 

& 

/ MOD      REM 

** ABS       NOT 

Table C-l Predefined VHDL operators. 

Relational operators must have both operands of the same type and yield Boolean 

results. The equality operators (= and/=) can have operands of any type. The remaining 

operators must have operands which are scalar types or one-dimensional arrays of dis- 

crete types. 

The sign operators (+ and -) and the addition (+) and subtraction (-) operators have 

their usual meaning on numeric operands. The concatenation operator (&) operates on 

one-dimensional arrays to form a new array with the contents of the right operand follow- 

ing the contents of the left operand. It can also concatenate a single new element to an 

array or two individual elements to form an array. 

The multiplication (*) and division (/) operators work on integer and floating point 

types. The modulus (MOD) and remainder (REM) operators only work on integer types. 

The absolute value (ABS) operator works on any numeric type. Finally, the exponentia- 

tion (**) operator can have an integer or floating point left operand, but must have an inte- 

ger right operand. 

C.3 If Statement 
The if statement allows selection of statements to execute depending on one or more 

conditions. The syntax is: 
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if_statement ::= 
if condition then 

sequence_of_statements 
{ elsif condition then 

sequence_of_statements } 
[ else 

sequence_of_statements ] 
end if; 

The conditions are expressions resulting in Boolean values. The conditions are evalu- 

ated successively until one is found that yields the value true. In that case the correspond- 

ing statement list is executed. Otherwise, if the else clause is present, its statement list is 

executed. 

C.4 Case Statement 
The case statement allows selection of statements to execute depending on the value of 

a selection expression. The syntax is: 

case_statement ::= 
case expression is 

case_statement_alternative 
{ case_statement_alternative } 

end case; 

case_statement_alternative ::= 
when choices => 

sequence_of_statements 

choices ::= choice { | choice } 

choice ::= 
simp1e_expression 

| discrete_range 
j element_simple_name 
| others 

The selection expression must result in either a discrete type, or a one-dimensional 

array of characters. The alternative whose choice list includes the value of the expression 

is selected and the statement list executed. Note that all the choices must be distinct, that 

is, no value may be duplicated. Furthermore, all values must be represented in the choice 
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lists, or the special choice others must be included as the last alternative. If no choice list 

includes the value of the expression, the others alternative is selected. 

Some examples of case statements [11]: 

case opcode is 
when X"00" => perform_add; 
when X"01" => perform_subtract; 
when others => signal_illegal_opcode; 

end case; 

case element_color is 
when red => 

statements for red; 
when green | blue => 

statements for green or blue 
when orange to turquoise => 

statements for these colors; 
end case; 

C.5 Loop Statements 
VHDL has a basic loop statement, which can be augmented to form the usual while 

and for loops seen in other programming languages. The while iteration scheme allows a 

test condition to be evaluated before each iteration. The iteration only proceeds if the test 

evaluates to true. If the test is false, the loop statement terminates. An example [11]: 

while index < length loop 
index := index + 1; 

end loop; 

The for iteration scheme allows a specified number of iterations. The loop parameter 

specification declares an object which takes on successive values from the given range for 

each iteration of the loop. Within the statements enclosed in the loop, the object is treated 

as a constant, and so may not be assigned to. An example [11]: 

for item in 1 to last_itern loop 
table(item) := 0; 

end loop; 

There are two additional statements which can be used inside a loop to modify the 

basic pattern of iteration. The next statement terminates execution of the current iteration 
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and starts the subsequent iteration. The exit statement terminates execution of the current 

iteration and terminates the loop. The syntax of these statements is: 

next_statement : := next [ loop_label ] [ when condition ] ; 

exit_statement : := exit [ loop_label ] [ when condition ] ; 

If the loop label is omitted, the statement applies to the inner-most enclosing loop, other- 

wise it applies to the named loop. If the when clause is present but the condition is false, 

the iteration continues normally. 

C.6 Process Statement 
The primary unit of behavioral description in VHDL is the process. A process is a 

sequential body of code which can be activated in response to changes in state specified by 

a sensitivity list or a wait statement. When more than one process is activated at the same 

time, they execute concurrently. 

An example of a process statement with a sensitivity list [11]: 

process (reset, clock) 
variable state : bit := false; 

begin 
if reset then 

state := false; 
elsif clock = true then 

state := not state; 
end if; 
q <= state after prop_delay; 
-- implicit wait on reset, clock 

end process; 

During the initialization phase of simulation, the process is activated and assigns the initial 

value of state to the signal q. It then suspends at the implicit wait statement indicated in 

the comment. When either reset or clock change value, the process is resumed and execu- 

tion repeats from the beginning. 

Processes, like all other concurrent statements, read and write signals and interface 

port values to communicate with the rest of the architecture. They are unique in that they 

behave like concurrent statements to the rest of the design, but they are internally sequen- 

tial. In addition, only processes define variables to hold intermediate values in a sequence 

of computations. 
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C.7 Procedures and Functions 

Subprograms, like processes, use sequential statements to define algorithms that com- 

pute values. Unlike processes, however, they cannot directly read or write signals from 

the rest of the architecture. All communication is performed through the subprogram's 

interface; each subprogram call has its own set of interface signals. 

The two types of subprograms are functions and procedures. A function returns a sin- 

gle value directly. A procedure returns zero or more values through its interface. Subpro- 

grams may perform repeated calculations, often in different parts of an architecture. The 

syntax is: 

subprogram_specification ::= 
procedure designator [(parameter_list)] | 
function designator [(parameter_list)] return type 

By using these programming language constructs, designers can use VHDL to develop 

behavioral level models that can be simulated to verify their correct functioning, prior to 

generating hardware. 



Appendix D 

VHDL Synthesis 

Automated design tools are available which allow the designer to synthesize and opti- 

mize circuit descriptions expressed through hardware description languages such as 

VHDL. In order to ensure proper and consistent synthesis of VHDL language constructs 

to hardware, such tools include guidelines which describe both the syntax and semantics 

of the subset of the entire VHDL language which they support. The VHDL Synthesis 

Interoperability Working Group (SIWG) was established to develop a public domain 

VHDL Synthesis Interoperability Standard which, if used by designers, will allow VHDL 

synthesis models to be portable across synthesis vendors that support this standard. Their 

synthesis domain is register transfer level (RTL) logic synthesis which corresponds to the 

functional/behavioral descriptions modeled in this and previous research. 

A draft IEEE standard [36] has been developed which encompasses recommendations 

drawn from several key sources, including Cadence [43], Mentor Graphics [68], and Syn- 

opsys [64]. The foundation for the synthesis standard was laid by the European VHDL 

Synthesis Working Group's Level-0 VHDL Synthesis Syntax and Semantics [25]. Beyond 

the baseline Level-0, the draft proposes standardization Level 1 containing constructs that 

are currently supported by many synthesis tools. The standard also attempts to describe 

VHDL constructs as: 

1) Supported: RTL synthesis will map the construct to hardware. 

2) Ignored: RTL synthesis will ignore the construct. Encountering the construct 

will not cause synthesis to fail, but synthesis results may not match simulation 

results. 

3) Not supported: RTL synthesis does not support the construct. 

A synthesis tool is defined as any system, process, or tool that interprets register transfer 

level VHDL source code as a description of an electronic circuit in accordance with the 

terms of this standard and derives a gate level netlist description of that circuit. 

D.l Level-0 
The Level-0 VHDL Synthesis Syntax and Semantics [25] represents a first step towards 

a standard for VHDL allowing its use in other hardware related tasks like formal verifica- 
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tion, fault simulation, test generation, etc. which currently can not be performed in a stan- 

dard way. The intention behind the definition of Level-0 was to overcome numerous 

problems currently associated with high level synthesis. The Level-0 syntax and seman- 

tics constitute a standard subset of VHDL for synthesis applications which will allow 

description portability between tools as well as design reusability. 

Level-0 represents the minimum syntactical and semantical requirements to any syn- 

thesis tool in the market. Of the 217 syntax elements described in Appendix A of the 

VHDL Language Reference Manual [38]: 

-106 syntax elements are fully supported. 

- 53 syntax elements are supported with restrictions. 

- 56 syntax elements are not allowed. 

- 2 syntax elements are ignored. 

Despite the current limitations imposed by the state of the art in commercial synthesis 

technology, the Level-0 synthesis syntax and semantics allows the description of digital 

systems as an interconnection of combinational and sequential blocks and, therefore, 

allows the description of any digital system at the RT level (i.e. algorithmic finite state 

machines). As a consequence, any synchronous VHDL description in any proprietary 

VHDL subset can be translated to the Level-0 synthesis syntax and semantics maintaining 

all the relevant information about the functionality of the design. This portable description 

will be accepted by any other synthesis tool giving functional equivalent results. 

In addition to the support of specific language constructs, Level-0 also defines certain 

synthesis semantics and usage guidelines. Probably the most important of these design 

guidelines are those for processes, which serve as the basis for behavioral descriptions. 

Processes must have a set of special characteristics, which can be summarized in four dif- 

ferent kinds of processes shown in Figure D-l. 

Other restrictions imposed by Level-0 include the limited set of operators allowed. 

The operators: abs, "**", "/", mod, and rem are not supported. The multiplying operator 

"*" is supported, only if both operands are constants or the second operand is a power of 

two. Additionally, floating point operands are not allowed and the only type of loops 

allowed are for loops. 



213 

1) Processes which contain a sensitivity list including all the signals which are 

read into the process and in which all signals and variables are assigned in 

all the conditional branches. This kind of process models pure combina- 

tional logic. 

2) Processes which contain a sensitivity list including all the signals that are 

read into the process and whose variables are assigned in all the conditional 

branches of the process. This kind of process can model a mixture of pure 

combinational logic and asynchronous latches. Latches are inferred when 

signals are not assigned in a conditional branch. 

3) Processes which have, as their first statement, a wait statement in the form: 

wait until  clock = value and clock'event; 

This kind of process models a Moore synchronous sequential machine. 

4) Processes which have a sensitivity list including the clock signal and option- 

ally an asynchronous reset signal and an if statement controlled by the event 

and edge of the clock signal. Thus, this kind of process has the following 

syntax: 

proces s (cl Jc_name, res e t_name) 
process_declarative_part 

begin 
if (reset_name = value) then 

{ signal_assignment_statement } 
elsif (clJc_name = value and clk_name'event) then 

{ signal_assignment_statement } 
end if; 

end process; 

Figure D-l Process types for Level-0. 

D.2 Mentor Graphics 
The VHDL Style Guide for AutoLogic II [68] describes how to write synthesizable 

VHDL for the Mentor Graphics AutoLogic II synthesis environment. The guidelines 

encompass language restrictions, style issues, modeling methods, and design methods. 

Section 1 of the manual summarizes the subset of VHDL language supported for synthe- 

sis. All of the language elements previously discussed in Appendix C of this dissertation 

are supported by AutoLogic II.  In addition to the predefined VHDL operators listed in 
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Table C-l, shift operators from VHDL 1993 are also supported. These include: shift left/ 

right arithmetic (sla/sra), shift left/right logical (sll/srl), and rotate left/right (rol/ror). 

AutoLogic II also supports the Mentor Graphics' std_logic_arith package, defined in 

the Mentor Graphics' ARITHMETIC library. This package includes functions that allow 

signed and unsigned math to be performed using the STD_LOGIC and 

STD_LOGIC_VECTOR types. The functions provide for binary and unary arithmetic 

operations beyond the numeric operands predefined by VHDL. The package also defines 

the SIGNED and UNSIGNED types that are used directly with arithmetic and relational 

shifts, comparison, logical, and type conversion functions. Relational operators are sup- 

plemented by the comparison functions: equal (eq), not equal (ne), less than {It), greater 

than (gt), greater than or equal to (ge), and less than or equal to (le). 

The remainder of the manual presents the VHDL constructs and modeling styles nec- 

essary to synthesize varying types of hardware. A generous set of examples provides the 

designer with a virtual cookbook on how to design specific circuits. Section 2 presents 

constructs and style issues describing hardware functionality implemented with a combi- 

natorial architecture. Topics include signal assignments and sequential statements with 

special emphasis given to the control constructs if and case. Section 3 discusses how 

AutoLogic II recognizes clocked sections of descriptions and defines edge sensitive and 

level sensitive latch inferencing. The guidelines for combinational and sequential pro- 

cesses agree with those discussed in Figure D-l as part of the Level-0 synthesis semantics. 

Section 4 of the manual introduces the use of predefined operators and functions, data 

types, and procedures used in describing hardware with VHDL. Descriptions and exam- 

ples give details for use of the predefined modeling environment, as well as specifics on 

the types of hardware to be synthesized. Finally, Section 5 presents the guidelines for 

developing and synthesizing synchronous state machine descriptions. Numerous exam- 

ples describe multiple modeling styles for both Mealy and Moore class state machines. 

D.3 Synopsys 
Input to the VHDL Synthesis Interoperability Working Group was provided by Synop- 

sys in the form of a Standard for Synthesizing from VHDL Language at the Register 

Transfer Level [64], which now takes the form of an unapproved IEEE Standards Draft. 



215 

This standard describes the use of a synthesis tool to translate high-level VHDL descrip- 

tions to gate-level netlists. The purpose of the standard is to define how a synthesis tool 

shall behave when synthesizing from VHDL at the register transfer level. Clauses 3 

through 7 describe the language constructs, data types, expressions, sequential statements, 

and concurrent statements used for writing VHDL design descriptions. The standard is 

really just a language reference manual, with examples, for the subset of VHDL that is 

applicable to synthesis. 

Many VHDL constructs, although useful for simulation and other stages in the design 

process, are not relevant to synthesis. Because these constructs cannot be synthesized, 

they are not supported by the synthesis tool. Clause 8 provides a list of all VHDL con- 

structs with the level of support for each. A construct may be fully supported, ignored, or 

unsupported. Ignored means that the construct is allowed in the VHDL source, but is 

ignored by the synthesis tool. Unsupported means that the construct is not allowed in the 

VHDL source and that the synthesis tool flags it as an error. 

Some of the key design restrictions imposed by the synthesis tool are summarized in 

Figure D-2. Though these restrictions give very specific guidance to the designer regard- 

1) Integer types are automatically converted to bit vectors whose width is as 

small as possible to accommodate all possible values of the type's range, 

either in unsigned binary for nonnegative ranges or in 2's complement form 

for ranges that include negative numbers. 

2) Floating-point types, such as REAL, are unsupported. 

3) The arithmetic operators "+" and "-" are predefined for all integer operands. 

For adders more than four bits wide, a synthetic library component is used. 

4) Multiplying operators ("*", "/", mod, and rem) are predefined for all integer 

types with the following restrictions: 

a) "*" (Integer multiplication) - No restrictions. A multiplication 

operator is implemented as a synthetic library cell, 

b)"/" (Integer division) - The right operand shall be a power of 2. 

Neither operand shall be negative. Implemented as a bit shift. 

Figure D-2 Design restrictions for Synopsys 
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5) Some forms of the if statement may be used to test for signal edges and, 

therefore, imply synchronous logic. This usage causes the synthesis tool to 

infer registers or latches. 

6) Synthesized hardware is sensitive to all signals read by a process. To guar- 

antee that a VHDL simulator distinguishes the same results as the synthe- 

sized hardware, a process sensitivity list shall contain all signals whose 

changes require resimulation of that process. 

Figure D-2 Design restrictions for Synopsys 

ing use of the language, the details of the implementation by the synthesis tool are hidden. 

This lack of synthesis information makes the Synopsys tool less useful than Mentor 

Graphics' tool for exploring the relationship of language constructs with resulting hard- 

ware for the development of higher level fault models. 

D.4 IEEE Draft Standard 

The resulting IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36] 

builds on Level-0 and incorporates constructs common to synthesis tools by Mentor 

Graphics and Synopsys. The draft standard represents a subset of VHDL with correspond- 

ing design guidelines meant to ensure consistent synthesis of gate level netlists from 

behavioral descriptions. 

As with the other synthesis environments discussed in this dissertation, a syntax subset 

of VHDL is defined. The key language constructs supported for behavioral modeling are 

listed below: 

1) if statement, case statement, loop statement. 

2) procedure, function. 

3) constant, variable, signal. 

4) all predefined VHDL operators shown in Table C-l. 

Design restrictions are consistent with those discussed for Synopsys in Figure D-2. The 

only iteration scheme supported for the loop statement is for. 

The draft standard also contains a set of representative design examples whose intent 

is to specify certain prevalent modeling styles resulting in basic hardware elements like 

flip-flops, latches, etc.  The specification of processes and resulting inferenced logic are 
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consistent with the description of combinational and sequential logic for Level-0 shown in 

Figure D-l. 

Use of this subset is meant enhance the portability of VHDL designs across synthesis 

tools conforming to the standard. It should also minimize the potential of functional sim- 

ulation mismatches between models before they are synthesized and models after they are 

synthesized. It, therefore, should also serve as the basis for defining higher level fault 

models which have a closer relationship to resulting synthesized hardware. 
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Hardware Implementation of VHDL Constructs 

Several VHDL language constructs lend themselves directly to hardware implementa- 

tion with common functional modules such as multiplexers. By examining these language 

to hardware relationships, this thesis intends to build the foundation on which higher level 

fault models can be defined, that are more closely related to their underlying gate level 

counterparts. The necessary insights will be drawn from two resources which directly dis- 

cuss the relationship between certain VHDL constructs and the ultimate hardware. 

One discussion of hardware implementation of VHDL constructs comes from Struc- 

tured Logic Design with VHDL by Armstrong and Gray [10]. In a section titled "Auto- 

mated Synthesis of VHDL Constructs," they demonstrate the relationship between 

multiplexers and language constructs that involve selection, like if and case. Another 

insight into the relationship between VHDL language constructs and hardware comes 

from the VHDL Style Guide for AutoLogic II by Mentor Graphics [68]. Again, the link is 

established between the control constructs if and case and the multiplexer functional 

building block. 

E.l Structured Logic Design 
As part of their discussion of algorithmic synthesis, Armstrong and Gray present the 

concept of automatic translation of a representative sample of VHDL constructs into hard- 

ware. They concentrate on translations that are application independent, rather than ones 

from specified programming styles into restricted sets of hardware. 

The first discussion involves constructs that involve selection of a specific element 

from a specified set. The case statement implies selection of one case from a specified set 

of cases. The if...then...else statement implies selection of the highest priority condition 

that is true from a prioritized list of conditions. Also, one element of a vector may be 

selected by specifying an index value. All of these statements involve selection and, there- 

fore, exhibit the functionality of a multiplexer. Figure E-l shows several examples of 

VHDL constructs that can be mapped to multiplexer elements [10]. 
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package TYPES is 
attribute ENCODING:  STRING; 
type ENUM is (A, B, C, D) ; 
attribute ENCODING of ENUM: 

end types; 
type is "00 01 10 11" 

use work.TYPES.all; 
entity MUX is 

port (X, Y: in BIT; 
VECT: in BIT_VECTOR(3 downto 0); 
CHOICE: in ENUM; 
INDEX: in INGETER range 3 downto 0; 
Zl, Z2, Z3: out BIT); 

end MUX; 

architecture MUX_CONSTRUCTS of MUX is 
begin 
MUX1: process (CHOICE, X, Y) 

begin 
case CHOICE is 

when A => Zl <= X; 
when B => Zl <= Y; 
when C => Zl <= not X; 
when D => Zl <= not Y; 

end case; 
end process MUXl; 

MUX2: process (X, Y, VECT) 
begin 

if X = '1' then 
Z2 <= VECT(3); 

elsif Y = '1' then 
Z2 <= VECT(2); 

else 
Z2 <= VECT(1) and VECT(0); 

end if; 
end process MUX2; 

MUX3: process (VECT, INDEX) 
begin 

Z3 <= VECT(INDEX); 
end process MUX3; 

end MUX_CONSTRUCTS; 

Figure E-l VHDL constructs that map to multiplexer elements. 
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Process MUX1 in Figure E-l is an example of a case statement that can be imple- 

mented with a multiplexer element. The case statement selects a function of inputs X and 

F to assign to output Zl based on the value of enumerative data type CHOICE. In package 

TYPES an attribute ENCODING of type STRING is declared which directs the automated 

design tool to assign binary codes to elements of the type ENUM. With this information, 

the tool translates the process MUX1 into the hardware circuit shown in Figure E-2. For 

example, when CHOICE=(00), Zl =X as implied by the VHDL source code. 

CHOICE 

Zl 

Figure E-2 Hardware implementation for case statement. 

The VHDL construct if...then...else also involves selection among several alternative 

actions. Therefore, multiplexer elements can be used to implement this construct. Process 

MUX2 in Figure E-l shows an example that involves inputs X, Y, and VECT. By scanning 

the if...then...else clause, the automatic design tool can produce the truth table shown in 

Table E-l. Notice that the first //"clause that is true selects the action to be performed. It is 

possible that more than one //"clause is true. For example, if X=Y=1, then two of the if 

clauses are true. However, in this case, Z2 is assigned the value VECT(3) because the 

clause (ifX= '1') takes precedence over the clause {ifY= '1'). 

X Y Z2 

0 0 VECT(l)andVECT(0) 

0 1 VECT(2) 

1 0 VECT(3) 

1 1 VECT(3) 

Table E-l Truth table for process MUX2. 
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Table E-l directly implies the multiplexer implementation in Figure E-3, where signals 

X and Y are connected to the address inputs of the multiplexer and the data inputs for each 

XY combination are specified by the table entries. 

X  Y 

VECT(O) 

VECT(l)- 

VECT(3> 

VECT(3> 

Figure E-3 Hardware implementation for if statement. 

Finally, if VECT is a vector and INDEX is an integer, then an assignment of the form 

Z3 <= VECT(INDEX) 

is also a selection activity. In this case, one of the elements of VECT, as specified by 

INDEX, is being assigned to Z3. This type of statement also maps directly to a multiplexer 

device. Process MUX3 in Figure E-l shows an example of this type of selection activity. 

In the absence of an attribute specifying a coding other than binary for INDEX, the exam- 

ple leads directly to the circuit in Figure E-4. 

INDEX_1 INDEXJ) 

Figure E-4 Hardware implementation for vector indexing. 

Next, program loops are discussed and illustrated through a classic ripple carry adder 

circuit. Figure E-5 shows the VHDL code for a 4-bit adder circuit implemented as a con- 

nection of full adders (FA). It is assumed that the process in architecture LOOP_ADDER 
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is embedded in a larger system that is not shown. The loop architecture maps directly to 

the iterative combinational logic network shown in Figure E-6. 

entity ADD4 is 
port (A,B: in BIT_VECTOR(3 downto 0); CIN: in BIT; 

S: out BIT_VECTOR(3 downto 0); COUT: out BIT); 

end ADD4; 

architecture LOOP_ADDER of ADD4 is 
begin 

process (A, B, CIN) 
variable CARRY: BIT_VECTOR(4 downto 0) := "00000"; 
variable SUM: BIT_VECTOR(3 downto 0); 

begin 
CARRY(0) := CIN; 
for I in 0 to 3 loop 

SUM(I) := A(I) xor B(I) xor CARRY(I); 
CARRY(I+1) := (A(I) andB(D) or (A(I) and 

CARRY(I)) or (B(I) and CARRY(I)); 
end loop; 
S <= SUM; 
COUT <= CARRY(4); 

end process; 
end LOOP_ADDER; 

Figure E-5 VHDL description for a ripple carry adder. 

COUT 

A(3) B(3) 
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Figure E-6 Hardware implementation of ripple carry adder. 

Lastly, Armstrong and Gray also illustrate possible mappings of functions and proce- 

dures to hardware. Figure E-7 shows VHDL code for architecture FUNCTION_ADDER 

of entity ADD4. In the example, the logic equations for a full adder (FA) are implemented 

by function declarations. There are separate declarations for each output of the FA: sum 

(FA_S) and carry (FA_Q. 
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architecture FUNCTION_ADDER of ADD4 is 
function FA_S (AIN, BIN, CIN: BIT) return BIT is 
begin 

return AIN xor BIN xor CIN; 
end FA_S; 
function FA_C (AIN, BIN, CIN: BIT) return BIT is 
begin 

return (AIN and BIN) or (AIN and CIN) or 
(BIN and CIN); 

end FA_C; 

begin 
process (A, B, CIN) 

variable CARRY: BIT_VECT0R(4 downto 0) := "00000"; 
variable SUM: BIT_VECTOR(3 downto 0) := "0000"; 

begin 
CARRY(0) := CIN; 
for I in 0 to 3 loop 

SUM(I) :=FA_S(A(I), B(I), CARRY(I)); 
CARRY(I+1) :=FA_C(A(I), B(I), CARRY(I)); 

end loop; 
S <= SUM; 
COUT <= CARRY(4); 

end process; 
end FUNCTION_ADDER; 

Figure E-7 Using functions to represent combinational logic. 

Inside the program loop, the assignments to SUM(I) and to CARRY(I+1) are replaced by 

function calls. Since only the notation has changed, not the basic operation of the algo- 

rithm, it is clear that the architecture FUNCTION_ADDER can be mapped to the same 

hardware as architecture LOOP_ADDER. The general conclusion is that functions should 

be mapped to combinational logic circuits. 

Similarly, procedures are used mainly as a convenience for ease of programming and 

could be used to replace the full adder in the previous example. In general, any VHDL 

code that uses procedures can be mapped to the same hardware as equivalent code without 

procedures. The main difference between procedures and functions is that functions 

always map to combinational logic, whereas procedures may map to sequential logic. 
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E.2 Mentor Graphics 
The VHDL Style Guide for AutoLogic 11 [68] not only describes how to write synthe- 

sizable VHDL, but also gives details on how specific language constructs are implemented 

in the ultimate hardware. Examples are provided for concurrent signal assignment state- 

ments, if statements, case statements, and variable index assignments. 

A concurrent signal assignment always results in combinational logic. This signal 

assignment specifies that a target signal is to receive some waveform. The waveform can 

either be a static value or some defined behavior. An example of a static assignment is: 

D  <=  A; 

This statement implies that signal D gets signal A and is therefore hard-wired to A. The 

waveform assigned to the target signal can also define some behavior. This behavior may 

be a simple logical expression or a complex expression that includes a function ox proce- 

dure call. An example of a simple logical expression is: 

D  <=  A AND  B; 

Assuming D, A, and B are all bits and ports, this description synthesizes into an AND gate. 

The simple if statement does not contain enough information to synthesize a combina- 

torial network. For example, what happens if the condition evaluates to a boolean false 

value as described in Figure E-8. The output signal D receives input signal B when A is a 

'1'. This implies that if signal A is not a '1' then signal D must retain its old value. The 

description is then synthesized to a level-sensitive or transparent latch enabled by signal A 

whose output is signal D. 

architecture RTL of IF_TEST is 
begin 

process (A,B) 
begin 

if (A = '1') then 
D  <=  B; 

end if; 
end process; 

end RTL; 

Figure E-8 Code example for simple (/"statement. 

In order to synthesize a combinatorial network using an if statement, the if statement 

must explicitly define the behavior for all possible evaluations of the condition. In Figure 
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E-8 this means that the if statement must define what signal D is to receive when signal A 

is not 7'. Figure E-9 shows how the addition of an else clause completes the definition of 

the behavior of an if statement. In this description a simple 2-to-l multiplexer is modeled 

using an if statement with an else clause. The synthesized and optimized result is shown 

in Figure E-10. 

entity MUX21 is 
port (A, B, C : in std_logic; 

D : out std_logic); 
end MUX21; 

architecture RTL of MUX21 is 
begin 

process (A, B, C) 
begin 

if (A = '1') then 
D <= B; 

else 
D <= C; 

end if; 
end process; 

end RTL; 

Figure E-9 Code example for if-else statement. 

BO 

CO 

AO 

OD 

Figure E-10 Synthesized hardware for if-else statement. 

The case statement controls the execution of one or more sequential statements based 

on the value of an expression. VHDL requires all possible values for a selector must be 

described in a case statement. This can be done by having as many when clauses as selec- 

tor choices or by use of a when others clause. The case statement implies a multiplexing 

architecture. For example, consider the description in Figure E-ll. The selector for the 

case statement is SEL. Since SEL is two bits wide, there are 2 possible selector values for 

synthesis purposes. The when others clause accounts for other values not specified with a 
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when clause. The gate level design is implemented by a 4-by-l multiplexer architecture as 

shown in Figure E-12. 

entity MUX4 is 
port (DATA_IN : in std_logic_vector(3 downto 0); 

SEL : in std_logic_vector(1 downto 0); 
DATA_OUT : out std_logic); 

end MUX4; 

architecture RTL of MUX4 is 
begin 

process (SEL, DATA_IN) 
begin 

case SEL is 
when "00" => DATA_OUT <= DATA_IN(0); 
when "01" => DATA_OUT <= DATA_IN(1); 
when "10" => DATA_OUT <= DATA_IN(2); 
when others => DATA_OUT <= DATA_IN(3); 

end case; 
end process; 

end RTL; 

Figure E-ll Code example for case statement. 

DATAJN(O) O 

DATA_IN(1) O 

DATA_IN(2) C> 

DATA_IN(3) O 

SEL(0) O 

SEL(l) O 

O DATA_OUT 

Figure E-12 Synthesized hardware for case statement. 

AutoLogic II also supports indexed assignments using variables. In the following 

example INDEX is used as a variable index to the vector DATAJN. An alternate architec- 

ture RTL2 can be used to describe the behavior of the entity MUX4 in Figure E-ll. A 

function, tojnteger, is assumed available to convert a 2-bit bit_vector to its integer repre- 

sentation. 



227 

architecture RTL2 of MUX4 is 
begin 

process (SEL, DATA_IN) 
variable INDEX : integer; 

begin 
INDEX := to_integer(SEL); 
DATA_OUT <= DATA_IN(INDEX); 

end process; 
end RTL2; 

Figure E-13 Code example for variable index assignment. 

The signal assignment statement 

DATA_OUT  <=  DATA_IN(INDEX); 

is equivalent to the case statement in Figure E-ll and results in the same multiplexer 

architecture in Figure E-12. 



Appendix F 

VHDL Source Code 

This appendix contains the VHDL source code for the examples used throughout this 

dissertation. The examples are grouped according to the tables of fault experiment results 

found in Appendix B. The behavioral description is first included as examplcvhd, fol- 

lowed by the behavioral test vectors in WAVES format, example_vectors.txt. Lastly, one 

or more structural descriptions are outlined for gate level implementations. The VHDL 

structural descriptions are numbered for multiple realizations as example_structurel.vhd 

and example_structure2.vhd. 
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