
Behavioral Fault Modeling
in a

VHDL Synthesis Environment

A Dissertation

Presented to
the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy (Electrical Engineering)

by

Ronald J. Hayne

DISTRIBUTION STATEMENT A May 1999
Approved for Public Release

Distribution Unlimited

DTIC QUALITY INSPECTED"4* 19990701 057

Approved for public release; distribution is unlimited.

© Copyright by

Ronald J. Hayne

All rights reserved

May 1999

APPROVAL SHEET

This dissertation is submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy (Electrical Engineering)

m^~
Ronald J. Hayne

This dissertation has been read and approved by the Examining Committee:

Barry W. Johnsesr Disserc^on Advisor

VcJ-^o kW:

JoanneSBechta Dugan, Committee Uiair

Jojwr'C. Knight, Minor Representative

Stephen G. Wilson

ifcea R. Stan

Accepted for the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

May 1999

Abstract

Integrated circuit designs continue to increase in both size and complexity, making

fault simulation and testing more difficult and costly. Computer aided design tools and

hardware description languages are now commonly used to represent designs at higher

levels of abstraction. However, fault simulation and testing of digital circuits have been

historically done using fault models at the gate level or below. A design methodology is

needed for performing fault simulation throughout the design process, incorporating fault

models at higher levels of abstraction. Use of these higher level fault models has the

promise of reducing complexity, providing earlier identification of potential problems, and

improving integration of fault simulation into the overall design process.

Previous behavioral fault models lack a well defined link to the hardware which they

attempt to describe. Though some relationships to possible hardware faults are proposed,

there is no detailed analysis to justify these assertions. Approaches based on perturbing

language constructs, such as ADD to SUB, do not accurately reflect underlying hardware

faults. In order to compensate for this "big micro-operation problem," alternate methods

such as heuristics are used to supplement test vector sets to increase the equivalent gate

level fault coverage.

This dissertation proposes a new set of fault models for VHDL behavioral descriptions

of combinational logic circuits. These fault models exploit hardware relationships that

exist in a design environment which involves synthesis of behavioral descriptions into gate

level circuits. A functional analysis technique is used to evaluate the effects of industry

standard single-stuck-line (SSL) faults on gate level implementations. The generalized

functional faults are then abstracted into the behavioral domain by examining their rela-

tionship with the higher level language construct.

Test vectors derived from the new behavioral fault models are applied to synthesized

gate level realizations of a range of circuits that include typical arithmetic and logic func-

tions. Resulting gate level fault coverage is determined via fault simulation and used as a

measure of effectiveness for the new fault models. Because the behavioral faults are

derived from a functional analysis of low level faults, they provide improved fault cover-

age over previous fault models, over a broad range of implementations.

Acknowledgments

I would like to thank the United States Army for sponsoring my continuing education.

My advisor, Dr. Barry W. Johnson, deserves a special thanks for his encouragement and

support. His technical leadership helped shape many of the ideas embodied in this disser-

tation. Along with Dr. Johnson, I would also like to thank the other members of my advi-

sory committee, Dr. Joanne Bechta Dugan, Dr. John C. Knight, Dr. Stephen G. Wilson,

and Dr. Mircea R. Stan. Their guidance and feedback was invaluable throughout my

research. My gratitude is extended to Dr. D. Todd Smith and Todd A. DeLong for serving

as a sounding board and sanity check for many of my ideas. Thanks also to the United

States Air Force Rome Laboratory, specifically Dr. Warren H. Debany Jr. and James R

Hanna, for additional comments and perspectives. The interactions of Dr. Robert H.

Klenke, Dr. Lori M. Kaufman, Dr. James H. Aylor, and Dr. Ronald D. Williams are also

greatly appreciated.

I owe a debt of gratitude to the many individuals who have helped me throughout my

program. A special thanks is extended to the following individuals: Maximo Salinas, Carl

Elks, Dave Garrett, Michael Reynolds, Ryan Baucom, Wes Dungan, and Erik Laurila.

Thanks to the EE computer system administrators: Melissa Thrush and Diane Calleson.

Thanks also to the secretaries: Lisa Sites, Peggy McCauley, Susan Malone, and Robbie

Burton.

My family has provided endless love and support. The biggest thanks to my wife,

Marva, for always being there for me. Her encouragement and endless optimism helped

me deal with the ups and downs of the past few years. Thanks also to my sons, James and

Kyle, for trying to understand all the hours spent in the conquest of this goal. My brother,

Tomas, has also been a big source of encouragement. Our weekly outings to the gym

helped relieve the stress inherent in such an endeavor. Finally, thanks to my parents, Jim

and Audrey, for everything. They brought me up to believe that I could achieve anything I

put my mind to.

Biography

Ronald J. Hayne is a Lieutenant Colonel in the U.S. Army with over 18 years of ser-

vice in a variety of command and staff positions. He received his B.S. in 1980 from the

United Stated Military Academy at West Point and was stationed with the 25th Infantry

Division in Hawaii. He received his M.S. in Electrical Engineering in 1987 from the Uni-

versity of Arizona, followed by a teaching assignment with the Department of Electrical

Engineering and Computer Science at West Point. LTC Hayne is now a member of the

Army Acquisition Corps, responsible for the research and development of new military

systems, and has served with the Space and Strategic Defense Command and the Army

Research Laboratory. His world travels in the military have taken him to the Republic of

Korea, the Republic of the Philippines, Vienna Austria, and Kwajalein Atoll in the Repub-

lic of the Marshall Islands.

Publications

Hayne, R.J. and B.W. Johnson, "Behavioral Fault Modeling in a VHDL Synthesis

Environment," Proceedings VLSI Test Symposium, April 1999.

Kaufman, L.M., R. Gretlein, and R.J. Hayne, "A Quantitative Assessment of the

Application of Software Reliability to Reusable Code," Proceedings Reliability and

Maintainability Symposium, January 1999.

Hayne, R.J., P A. Brown, S.G. Hair and J.E. Oristian, "An Innovative Educational

Application of the VHSIC Hardware Description Language," Proceedings Frontiers in

Education Conference, July 1990.

Table of Contents

Table of Contents i

List of Figures vii

List of Tables xii

List of Acronyms and Abbreviations xvi

Chapter 1: Introduction 1
1.1 Previous Research 2
1.2 Behavioral Modeling 4

1.2.1 VHDL Subset 4
1.2.2 Hardware Implementation of VHDL Constructs 6

1.3 Functional Analysis 7
1.4 Fault Injection Using WAVES 8
1.5 Comprehensive Examples 8
1.6 Contributions and Future Work 9

Chapter 2: Previous Research 10
2.1 Fault Models 10

2.1.1 Functional Faults 11
2.1.2 Physically-Induced Faults 13
2.1.3 Behavior Faults 15
2.1.4 Model Perturbation 16
2.1.5 Other Research 18
2.1.6 Summary 22

2.2 Fault Injection Techniques 22
2.2.1 Instruction Set Architecture 22
2.2.2 MEFISTO 23
2.2.3 Hybrid Fault Emulation 23
2.2.4 Summary 24

2.3 Test Generation Techniques 24
2.3.1 S-Algorithm 25
2.3.2 B-Algorithm 25
2.3.3 Other Research 26

2.4 Conclusions 28

Chapter 3: A New Control Fault Model 30
3.1 IF-THEN-ELSE 30

3.1.1 Synthesis of a Simple Example 30
3.1.2 Functional Analysis 31
3.1.3 Alternate Implementation 33
3.1.4 Generalized Functional Fault Model 35

3.1.5 Development of a Behavioral Fault Model 35
3.1.6 Evaluation of the New Behavioral Fault Model 37
3.1.7 Comparison with Previous Behavioral Fault Models 38
3.1.8 Expansion of the Fault Model 40

3.1.8.1 Functional Analysis 41
3.1.8.2 Generalized Functional Fault Model 44
3.1.8.3 Behavioral Fault Model 45
3.1.8.4 Evaluation of the Behavioral Fault Model 46

3.1.9 Summary 47
3.2 CASE 48

3.2.1 Application of the Control Fault Model 49
3.2.2 Evaluation of the Fault Model 51
3.2.3 Comparison with Previous Behavioral Fault Models 53

3.3 Conclusions 55

Chapter 4: Relational Operators 56
4.1 Greater Than (GT) 56

4.1.1 Generalized Functional Faults 57
4.1.2 Classification of Functional Faults 58
4.1.3 Behavioral Fault Model 60
4.1.4 Adapting the Model for GE, LT, and LE 62
4.1.5 Summary 63

4.2 Threshold Detection 63
4.2.1 Greater Than Signed Threshold 63
4.2.2 A Quick Example 64

4.3 Equal (EQ) '. 66
4.3.1 Functional Faults 66
4.3.2 Behavioral Fault Model 67

4.4 Comparison with Previous Fault Models 68
4.5 Application of the New Fault Models 69

4.5.1 Faults on Relational Operators 69
4.5.2 Control Faults 71
4.5.3 Final Behavioral Test Vector Set 73

4.6 Evaluation of Behavioral Test Vectors 74
4.6.1 Gate Level Realizations 75
4.6.2 Expansion of the Data Path 77
4.6.3 Expansion of the Control Signals 79

4.7 Conclusions 80

Chapter 5: Arithmetic Operators 82
5.1 Addition 82

5.1.1 Ripple Carry Adder 83
5.1.1.1 Functional Testing 84
5.1.1.2 Scalability 86
5.1.1.3 Behavioral Fault Model 86

Ill

5.1.1.4 Evaluation of the Behavioral Test Vectors 88
5.1.1.5 Carry-in and Carry-out 89

5.1.2 Carry Look-Ahead Adder 91
5.1.2.1 Functional Testing 92
5.1.2.2 Application of the Behavioral Test Vectors 95
5.1.2.3 Scalability 95
5.1.2.4 Optimization of CLA Behavioral Faults 99

5.1.3 Summary 100
5.2 Subtraction 101

5.2.1 Direct Subtraction 101
5.2.1.1 Functional Testing 101
5.2.1.2 Application of the Behavioral Test Vectors 102

5.2.2 Subtraction Using Addition Circuitry 103
5.2.3 Summary 104

5.3 Constants as Operands 104
5.3.1 Functional Testing 105
5.3.2 Generalized Behavioral Fault Model 105

5.4 Comparison with Previous Fault Models 106
5.5 Conclusions 107

Chapter 6: Other Operators 109
6.1 Logical Operators 109

6.1.1 AND/OR 110
6.1.1.1 Functional Faults 110
6.1.1.2 Complex Expressions..... Ill
6.1.1.3 Scalability 113
6.1.1.4 Behavioral Fault Model 113
6.1.1.5 Application of the New Fault Models 114

6.1.2 XOR 118
6.1.2.1 Functional Faults 118
6.1.2.2 Optimized Test Generation 119
6.1.2.3 Evaluation of the Generalized Test Vectors 122

6.1.3 Comparison with Previous Fault Models 123
6.2 Unary Operators 124

6.2.1 Absolute Value 124
6.2.2 Negation 124
6.2.3 Generalized Functional Faults 125
6.2.4 Behavioral Fault Model 126
6.2.5 Evaluation of Behavioral Test Vectors 126

6.3 Conclusions 128

Chapter 7: Other Programming Constructs 129
7.1 Loops 129

7.1.1 A Simple Example 129
7.1.2 Comparison with Previous Fault Models 134

IV

7.2 Functions and Procedures 134
7.2.1 Example ADD4fn 135
7.2.2 Example ADD4pr 136

7.3 Conclusions 137

Chapter 8: Comprehensive Examples 138
8.1 Arithmetic Logic Unit 138

8.1.1 Example ALU4wc 138
8.1.1.1 Faults on Logical Operators 141
8.1.1.2 Faults on Arithmetic Operators 142
8.1.1.3 Control Faults 144
8.1.1.4 Final Behavioral Test Vector Set 149

8.1.2 Evaluation of the Behavioral Test Vectors 152
8.1.3 Expansion of the Data Path 154
8.1.4 Summary 155

8.2 Error Correcting Circuit 156
8.2.1 Example HAMMING4 156

8.2.1.1 Faults on XOR-only Expressions 156
8.2.1.2 Faults on Other Logical Expressions 159
8.2.1.3 Final Behavioral Test Vector Set 162

8.2.2 Evaluation of the Behavioral Test Vectors 163
8.2.3 Expansion of the Data Path 163
8.2.4 Summary 166

8.3 Conclusions 166

Chapter 9: Conclusions and Future Work 167
9.1 Research Contributions 167

9.1.1. Generalized Functional Faults 167
9.1.2 New Behavioral Fault Models 168
9.1.3 Gate Level Fault Coverage of Behavioral Test Vectors 168
9.1.4 Behavioral Test Generation 169
9.1.5 Behavioral Fault Simulation 169

9.2 Future Work 170
9.2.1 Expansion of Behavioral Fault Models 170
9.2.2 Tool Development 171
9.2.3 Higher Levels of Abstraction 171

9.3 Concluding Remarks 172

References 173

Appendix A: Additional Examples 180
A.l Array Indexing 180
A.2 Generalization of the Control Fault Model 183
A.3 Signed Comparison 185
A.4 Unsigned Threshold 188

A.5 Adder/Subtractor 189
A.5.1 Faults on Arithmetic Operators 190
A.5.2 Control Faults 190
A.5.3 Evaluation of the Behavioral Test Vectors 191
A.5.4 CLA Implementation 191

A.6 Arithmetic with Constants 193
A.6.1 Example PLUS25 194
A.6.2 Example MINUS25 195

A.7 XOR4 195
A.7.1 Parse Tree Test Vectors 196
A.7.2 Evaluation of Behavioral Test Vectors 197
A.7.3 Optimized Test Vectors 198
A.7.4 Evaluation of Optimized Test Vectors 199

Appendix B: Fault Experiment Results 200

Appendix C: VHDL Behavioral Descriptions 205
C.l Variables and Signals 205
C.2 Expressions 206
C.3 If Statement 206
C.4 Case Statement 207
C.5 Loop Statements 208
C.6 Process Statement 209
C.7 Procedures and Functions 210

Appendix D: VHDL Synthesis 211
D.l Level-0 211
D.2 Mentor Graphics 213
D.3 Synopsys 214
D.4 D3EE Draft Standard 216

Appendix E: Hardware Implementation of VHDL Constructs 218
E.l Structured Logic Design 218
E.2 Mentor Graphics 224

Appendix F: VHDL Source Code 228
F.1 CASE1 229
F.2 ARRAY4 230
F.3 SHIFT4U 231
F.4 LESS2 232
F.5 EQUAL3 233
F.6 GREATER3 234
F.7 LE5 : 236
F.8 GE23u 237
F.9 LT12u 238
F.10 GT3n 239

VI

F.ll COMPARE 240
F.12 COMPARE3 242
F.13 COMPARE4 244
F.14 COMPARE34 245
F.15 ADD4 246
F.16 ADD4wc 248
F.17 ADD8 250
F.18 SUB4 252
F.19 ADDSUB4 254
F.20 INC4 256
F.21 INC8 257
F.22 DEC4 258
F.23 ADDINC4 259
F.24 PLUS3 260
F.25 MINUS5 261
F.26 PLUS25 262
F.27 MINUS25 263
F.28 SOP1 264
F.29 SOP4 265
F.30 POS1 266
F.31 GT 267
F.32 XOR4 268
F.33 XOR5 270
F.34 ABS4 272
F.35 ABS8 273
F.36 NEG4 274
F.37 NEG8 275
F.38 ALU4wc 276
F.39 ALU8wc 278
F.40 HAMMING4 280
F.41 HAMMING8 282

List of Figures

Chapter 1

Figure 1-1 Design guidelines 5

Chapter 2

Figure 2-1 Three-input majority circuit M 14

Chapter 3

Figure 3-1 Behavioral description for example IF1 30
Figure 3-2 Synthesized hardware for example IF1 31
Figure 3-3 SOP gate level circuit for MUX21 31
Figure 3-4 Karnaugh map for MUX 33
Figure 3-5 POS gate level MUX 34
Figure 3-6 Control fault model for if-then-else 37
Figure 3-7 Behavioral description for example IF2 40
Figure 3-8 Synthesized hardware for example IF2 41
Figure 3-9 Gate level circuit for example IF2 41
Figure 3-10 Control fault model for expanded if-then-else 45
Figure 3-11 Equivalent if-then-else and case statements 49
Figure 3-12 Logical adjacencies among clauses 50
Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1 50
Figure 3-14 Synthesized Structurel for example CASE1 52
Figure 3-15 WAVES test vectors for example CASE 1 52
Figure 3-16 Synthesized Structure2 for example CASE1 53
Figure 3-17 Fault coverage for Structure2 of example CASE1 53

Chapter 4

Figure 4-1 Karnaugh map for 2-bit GT function 57
Figure 4-2 Fault classes for 2-bit GT function 59
Figure 4-3 Fault classes for 3-bit GT function 60
Figure 4-4 Fault classes for 2-bit GE function 62
Figure 4-5 Functional test vectors for signed GT threshold 64
Figure 4-6 Behavioral description for example LE5 65
Figure 4-7 Behavioral test vectors for example LE5 65
Figure 4-8 Synthesized circuit for example LE5 65
Figure 4-9 Fault classes for 3-bit EQ function 66
Figure 4-10 Behavioral description for example COMPARE 69
Figure 4-11 Synthesized Structurel for example COMPARE 75
Figure 4-12 Alternate set of behavioral test vectors for example COMPARE 76
Figure 4-13 Synthesized Structure2 for example COMPARE 76

Vll

VIII

Figure 4-14 Fault coverage for Structure2 of example COMPARE 77
Figure 4-15 Behavioral test vectors for example COMPARE4 78
Figure 4-16 Synthesized Structure for example COMPARE4 78
Figure 4-17 Behavioral test vectors for example COMPARE3 79
Figure 4-18 Synthesized Structure for example COMPARE3 80

Chapter 5

Figure 5-1 Ripple carry adder 83
Figure 5-2 Behavioral fault model for ripple carry adder 87
Figure 5-3 Behavioral description for example ADD4 88
Figure 5-4 Synthesized Circuit for example ADD4 88
Figure 5-5 NOR-only realization of example ADD4 89
Figure 5-6 Behavioral description for example ADD4wc 90
Figure 5-7 Carry look-ahead adder 92
Figure 5-8 CLA implementation of example ADD4 95
Figure 5-9 Ripple carry implementation of example ADD8 96
Figure 5-10 Fault coverage for ripple carry ADD8 96
Figure 5-11 Block diagram of modular CLA adder 98
Figure 5-12 Fault coverage for modular CLA adder 99
Figure 5-13 Behavioral description for example SUB4 102
Figure 5-14 Synthesized circuit for example SUB4 103
Figure 5-15 Subtractor implemented with full adders 103

Chapter 6

Figure 6-1 Behavioral description for example SOP1 Ill
Figure 6-2 Binary tree representing example SOP1 Ill
Figure 6-3 WAVES test vectors for example SOP4 113
Figure 6-4 Behavioral fault model for example SOP1 114
Figure 6-5 Behavioral description for example GT 114
Figure 6-6 Parse tree for example GT 115
Figure 6-7 Synthesized Structurel for example GT 117
Figure 6-8 Synthesized Structure2 for example GT 117
Figure 6-9 Fault coverage for Structure2 of example GT 118
Figure 6-10 Labeling scheme for Bossen test 119
Figure 6-11 Structure Cascadel for example XOR5 120
Figure 6-12 Structure Cascade2 for example XOR5 120
Figure 6-13 Modified Bossen test for Cascade2 121
Figure 6-14 Generalized Bossen test vectors for example XOR5 122
Figure 6-15 Structure4 for example XOR5 122
Figure 6-16 Fault coverage for Structure4 of example XOR5 123
Figure 6-17 Behavioral fault model for ABS 126
Figure 6-18 WAVES test vectors for example ABS8 126
Figure 6-19 Synthesized Structurel of example ABS8 127
Figure 6-20 Fault coverage for Structurel of example ABS8 127

IX

Figure 6-21 Synthesized circuit for example NEG8..... 128

Chapter 7

Figure 7-1 Behavioral description for example SHIFT4u 129
Figure 7-2 Expanded case statement for example SHIFT4u 130
Figure 7-3 WAVES test vectors for example SfflFT4u 133
Figure 7-4 Synthesized Structurel for example SHTFT4u 133
Figure 7-5 Fault coverage for Structurel of example SHib'l4u 134
Figure 7-6 Behavioral description for example ADD4fn 135
Figure 7-7 Functions for example ADD4fn 135
Figure 7-8 Expanded behavioral description for example ADD4fn 136
Figure 7-9 Behavioral description for example ADD4pr 136
Figure 7-10 Procedure FA for example ADD4pr 137

Chapter 8

Figure 8-1 Entity description for example ALU4wc 138
Figure 8-2 Architecture description for example ALU4wc 139
Figure 8-3 Logical adjacencies among clauses 147
Figure 8-4 WAVES test vectors for example ALU4wc 151
Figure 8-5 Synthesized Structurel for example ALU4wc 153
Figure 8-6 Fault coverage for Structurel of example ALU4wc 153
Figure 8-7 WAVES test vectors for example ALU8wc 154
Figure 8-8 Entity description for example HAMMING4 156
Figure 8-9 Architecture description for example HAMMING4 157
Figure 8-10 Structure Cascadel for 4-input XOR-only expression 157
Figure 8-11 Structure Cascade2 for 4-input XOR-only expression 157
Figure 8-12 Parse tree for expression D(l) 159
Figure 8-13 WAVES test vectors for example HAMMING4 162
Figure 8-14 Synthesized Structurel for example HAMMING4 163
Figure 8-15 Entity description for example HAMMING8 164
Figure 8-16 Architecture description for example HAMMING8 164
Figure 8-17 WAVES test vectors for example HAMMING8 165

Chapter 9

Appendix A

Figure A-l Behavioral description for example ARRAY4 180
Figure A-2 Equivalent case statement for example ARRAY4 180
Figure A-3 Logical adjacencies among clauses 181
Figure A-4 WAVES test vectors for example ARRAY4 182
Figure A-5 Synthesized circuit for example ARRAY4 182
Figure A-6 Behavioral description for example CASE2 183
Figure A-7 Behavioral description for example GREATER3 185

Figure A-8 Fault classes for 3-bit signed GT function 186
Figure A-9 WAVES test vectors for example GREATER3 186
Figure A-10 Synthesized Structurel for example GREATER3 187
Figure A-ll Synthesized Structure3 for example GREATER3 188
Figure A-12 Behavioral description for example GE23u 188
Figure A-13 Behavioral test vectors for example GE23u 189
Figure A-14 WAVES test vectors for example GE23u 189
Figure A-15 Synthesized circuit for example GE23u 189
Figure A-16 Behavioral description for example ADDSUB4 189
Figure A-17 WAVES test vectors for example ADDSUB4 190
Figure A-18 Synthesized circuit for example ADDSUB4 191
Figure A-19 CLA test vectors for example ADDSUB4 193
Figure A-20 CLA implementation of example ADDSUB4 193
Figure A-21 Behavioral test vectors for example PLUS25 194
Figure A-22 Synthesized Structurel for example PLUS25 194
Figure A-23 Parse tree for example XOR4 196
Figure A-24 WAVES test vectors for example XOR4 197
Figure A-25 Structurel for example XOR4 197
Figure A-26 Structure2 for example XOR4 198
Figure A-27 Structure3 for example XOR4 198
Figure A-28 Structure4 for example XOR4 198
Figure A-29 Structure Cascade 1 for example XOR4 199
Figure A-30 Structure Cascade2 for example XOR4 199

Appendix B

Appendix C

Appendix D

Figure D-l Process types for Level-0 213
Figure D-2 Design restrictions for Synopsys 215

Appendix E

Figure E-l VHDL constructs that map to multiplexer elements 219
Figure E-2 Hardware implementation for case statement 220
Figure E-3 Hardware implementation for if statement 221
Figure E-4 Hardware implementation for vector indexing 221
Figure E-5 VHDL description for a ripple carry adder 222
Figure E-6 Hardware implementation of ripple carry adder 222
Figure E-7 Using functions to represent combinational logic 223
Figure E-8 Code example for simple //"statement 224
Figure E-9 Code example for if-else statement 225
Figure E-10 Synthesized hardware for if-else statement 225
Figure E-l 1 Code example for case statement 226

XI

Figure E-12 Synthesized hardware for case statement 226
Figure E-13 Code example for variable index assignment 227

Appendix F

Chapter 1

List of Tables

Table 1-1
Table 1-2

Chapter 2

Table 2-1
Table 2-2

Chapter 3

Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14

Chapter 4

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14

Levels of detail commonly used in design 2
Predefined VHDL operators 5

Minimal SEF test set 14
Micro-operation Faults 18

SSL fault table for SOP MUX 32
Fault reductions 32
Reduced fault table for SOP MUX 33
Reduced fault table for POS MUX 34
Generalized functional fault model 35
SSL faults detected by behavioral test vectors 38
Stuck-data and stuck-control behavioral faults 39
Faults detected by test vector Set 1 39
Fault reductions for example IF2 42
Covering faults for external control line faults 42
Reduced functional faults for example IF2 43
Generalized functional faults for example IF2 44
Behavioral test vectors for example DF2 47
Behavioral test vectors for example CASE1 51

Reduced functional faults for SOP GT 57
Reduced functional faults for POS GT 58
Functional faults for n-bit GT 60
Behavioral faults for 2-bit GT 61
Functional faults for n-bit GE 62
Behavioral faults for 2-bit GE 63
Functional faults for n-bit EQ 67
Behavioral faults for 2-bit EQ 67
Micro-operation Faults 68
Test vectors for behavioral faults for A > B 70
Test vectors for behavioral faults for A < B 71
Test vectors for THEN-CORRUPT faults 72
Test vectors for ELSIF-CORRUPT and ELSE-CORRUPT faults 73
Final behavioral test vector set for example COMPARE 74

Xll

Chapter 5

Xlll

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20

Chapter 6

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12

Chapter 7

Table 7-1

Chapter 8

Table 8-1
Table 8-2

Truth table for full adder 83
Phase I functional tests 84
Phase II functional tests 85
Phase III functional tests 85
Functional tests for 4-bit ripple carry adder 86
Functional tests for example ADD4wc 91
Carries for 4-bit CLA adder 92
Missing carry faults 93
Extra carry faults 94
Additional behavioral test vectors for CLA adder 94
Behavioral test vectors for extra carry faults 97
Behavioral test vectors for missing carry faults 98
Optimized test vectors for missing carry faults 100
Optimized test vectors for extra carry faults 100
Truth table for full subtractor .. 101
Functional tests for 4-bit direct subtraction 102
Functional tests for adder by subtraction test vectors 104
Functional tests for 4-bit increment function 105
Functional tests for 6-bit function Z <= Y - 5 106
Micro-operation Faults 107

Functional faults for AND operation 110
Functional faults for OR operation 110
Functional test vectors for example SOP1 112
Reduced test vectors for example SOP 1 113
Behavioral test vectors for example GT 116
Reduced test vectors for example GT 117
Generalized functional faults for XOR operation 119
Bossen test vectors for Cascade 1 120
Modified Bossen test vectors for Cascade2 122
Reduced functional faults for 4-bit ABS 124
Reduced functional faults for 4-bit negation 125
Generalized functional faults for absolute value and negation 125

Behavioral faults for example SBTFT4u 131

Behavioral test vectors for OR operator 141
Behavioral test vectors for remaining Logical Functions 142

XIV

Table 8-3 Behavioral tests for 4-bit ADD with carry 143
Table 8-4 Possible test vectors for Arithmetic Functions 143
Table 8-5 Control faults for Logical Functions 145
Table 8-6 Control faults for Arithmetic Functions 146
Table 8-7 THEN-CORRUPT control faults 148
Table 8-8 ELSE-CORRUPT control faults 149
Table 8-9 Final behavioral test vectors for Logical Functions 150
Table 8-10 Final behavioral test vectors for Arithmetic Functions 151
Table 8-11 ALU fault experiment results * 155
Table 8-12 Optimized test vectors for 4-input XOR-only expression 158
Table 8-13 Optimized test vectors for expression S(l) 158
Table 8-14 Optimized test vectors for expression S(2) 158
Table 8-15 Optimized test vectors for expression S(3) 159
Table 8-16 Reduced test vector set for XOR-only expressions 159
Table 8-17 Behavioral test vectors for expression D(l) 160
Table 8-18 Reduced test vectors for expression D(l) 160
Table 8-19 Reduced test vectors for expression D(2) 161
Table 8-20 Reduced test vectors for expression D(3) 161
Table 8-21 Reduced test vectors for expression D(4) 161
Table 8-22 Test vectors for logical expressions D(l) through D(4) 162
Table 8-23 HAMMING fault experiments 166

Chapter 9

Appendix A

Table A-l Behavioral faults for example ARRAY4 181
Table A-2 Behavioral faults and corresponding test vectors for example CASE2. .184
Table A-3 Coverage for control faults 191
Table A-4 Missing carry faults for subtraction 192
Table A-5 Extra carry faults for subtraction 192
Table A-6 Functional tests for example MINUS25 195
Table A-7 Behavioral test vectors for example XOR4 196
Table A-8 Optimized test vectors for example XOR4 199

Appendix B

Table B-l Control fault experiments 200
Table B-2 Relational operator fault experiments 200
Table B-3 Arithmetic operator fault experiments 201
Table B-4 Other operator fault experiments 202
Table B-5 Comprehensive fault experiments 204

Appendix C

Table C-l Predefined VHDL operators 206

XV

Appendix D

Appendix E

Table E-l Truth table for process MUX2 220

Appendix F

List of Acronyms and Abbreviations

ABS Absolute Value

ALU Arithmetic Logic Unit

ATPG Automated Test Pattern Generation

BTG Behavioral Test Generator

CLA Carry Look-Ahead

CSIS Center for Semicustom Integrated Systems (University of Virginia)

DEC Decrement

EQ Equal

FA Full Adder

FF Flip-Flop

FPGA Field Programmable Gate Array

FS Full Subtracter

GE Greater than or Equal to

GT Greater Than

HA Half Adder

HS Half Subtracter

IEEE Institute of Electrical and Electronics Engineers

INC Increment

ISA Instruction Set Architecture

LE Less than or Equal to

LFSR Linear Feedback Shift Register

LT Less Than

MEFISTO Multi-level Error/Fault Injection Simulation Tool

MIL-STD Military-Standard

MOD Modulus

MUX Multiplexer

NE Not Equal

POS Product-of-Sums

RAM Random Access Memory

XVI

XVII

REM Remainder

ROM Read Only Memory

RTL Register Transfer Level

SIF SSL-Induced Fault

SOP Sum-of-Products

SSL Single-Stuck-Line

SUB Subtraction

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver Transmitter

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

WAVES Waveform and Vector Exchange

XOR Exclusive Or

Chapter 1

Introduction

Integrated circuit designs continue to increase in both size and complexity. Fault sim-

ulation and testing of these designs is, thus, becoming more difficult and costly. Designers

now commonly make use of computer aided design tools and hardware description lan-

guages, such as VHDL (VHSIC (Very High Speed Integrated Circuit) Hardware Descrip-

tion Language), to represent their designs at higher levels of abstraction. However, fault

simulation and testing of digital circuits for manufacturing faults have been historically

done using fault models at the gate level or below. Use of these lower level fault models

adds complexity and delays these efforts to later in the design cycle.

There is a need to develop a design methodology for performing fault simulation

throughout the design process, at many levels of abstraction. It is, therefore, desirable to

develop fault models at higher levels of abstraction, based on functional or behavioral

descriptions. Working with behavioral fault models will also allow fault simulation to be

performed earlier in the design scheme, without details of the gate level implementation.

In fact, depending on the source of the component, a gate level description may never be

available. Thus, fault simulation and testing based on these higher level fault models have

the promise of being less complex, providing earlier identification of potential problems,

and improving integration into the overall design process.

This dissertation develops a new set of fault models for VHDL behavioral descriptions

of combinational logic circuits. The fault models exploit hardware relationships that exist

in a design environment which involves synthesis of behavioral descriptions into gate level

circuits. The focus is on relating high level language constructs to lower level hardware

faults, as opposed to perturbing the language elements as if they were simply software. A

functional analysis technique is used to evaluate the effects of industry standard single-

stuck-line (SSL) faults on gate level implementations. The generalized functional faults

are then abstracted into the behavioral domain by examining their relationship with the

higher level language construct. The resulting behavioral fault models are, thus, more

strongly linked to underlying hardware faults than those developed by previous research.

As part of this research, test vectors derived from the new behavioral fault models are

applied to synthesized gate level realizations of a range of circuits that include typical

arithmetic and logic functions. Resulting gate level SSL fault coverage is determined via

fault simulation and used as a measure of effectiveness for the new fault models. Because

the behavioral faults are derived from a functional analysis of low level faults, they pro-

vide improved fault coverage over previous fault models, over a broad range of implemen-

tations.

1.1 Previous Research
Recent research efforts have attempted to develop fault models at higher levels of

abstraction, which accurately represent faults which occur at lower levels. The models of

interest in this research move up the design hierarchy, shown in Table 1-1 [10], beyond the

gate level to the register or chip level. Functional fault models are based on the input/out-

put relationship of higher level primitives which may incorporate a large number of gates.

Behavioral fault models are based on procedural descriptions of the circuits desired func-

tion. Many models reference the register transfer level which describes procedural data

flow among functional primitives.

Level of Detail
Behavioral Domain

Representation
Structural Domain

Primitives

System Performance specification Computer, disk, unit, radar

Chip Algorithm Microprocessor, RAM, ROM, UART

Register Data flow Register, ALU, COUNTER, MUX

Gate Boolean equations AND, OR, XOR, FF

Circuit Differential equations Transistor, R, L, C

Layout/silicon None Geometrical Shapes

Table 1-1 Levels of detail commonly used in design.

The majority of functional and behavioral modeling efforts can be traced to four prom-

inent researchers: Jacob Abraham, James Armstrong, Sumit Ghosh, and John Hayes.

Chapter 2 of this dissertation examines the models developed by groups including each of

these researchers. Modeling at many levels of abstraction is discussed by Abraham et al.

[1][2][17][65][66], but the main focus of this research concerns the functional fault mod-

els. Armstrong and his collaborators [6] [7] [8] [9] [22] [28] [69] have developed an ever

evolving series of functional and behavioral fault models and have implemented test gen-

eration algorithms using these models. Ghosh and Chakraborty [18][26][27] have pro-

posed a set of fault models which are based on the failure modes of the language

constructs of a generic hardware description language. Finally, Hayes et al. [29][31][32]

[33] [34][63] has worked extensively on fault models for digital circuits, including descrip-

tions of functional fault models leading to a new generic class called induced faults.

The survey of the state of the art in high level fault modeling clearly indicates that

there is no widely accepted solution to the problem. Modeling techniques range from the

functional analysis employed by Abraham and Hayes, to the procedural data flow of

behavioral descriptions used by Ghosh and Armstrong. Previous behavioral fault models

lack a well defined link to the hardware which they attempt to describe. Though some

relationships to possible hardware faults are proposed, there is no detailed analysis to jus-

tify these assertions. Approaches based on perturbing language constructs, such as ADD

to SUB, do not accurately reflect underlying hardware faults. In order to compensate for

this "big micro-operation problem," alternate methods such as heuristics are used to sup-

plement test vector sets to increase the equivalent gate level fault coverage.

Though previous research provides no clear cut solution to modeling faults at higher

levels of abstraction, valuable insights are gained by the examination of each of these tech-

niques. Certain key concepts from past efforts have immediate applicability here, notably

functional equivalence and fault dominance. Further, the behavioral fault models devel-

oped in this dissertation only affect the activation step of the test generation process.

Hence, the high level algorithms developed to handle the computationally intensive tasks

of fault propagation and justification still remain valid. Integration of new fault models

with an existing behavioral test generation algorithm such as the B-algorithm [21][22] can

be of mutual benefit. Such algorithms already address problems such as reconvergent

fanöut, while use of more complex fault models can eliminate the need to supplement test

vector sets via heuristics.

1.2 Behavioral Modeling

Hardware description languages can be used to model system behavior at higher levels

of abstraction than the traditional gate or circuit level. Languages like VHDL make use of

sequential statements, much like conventional programming languages, to describe the

desired behavior of a circuit. Several constructs such as if-then-else and case are normally

provided to control the order of execution of these sequential statements. Designers can,

therefore, use VHDL to develop behavioral models that can be simulated to verify their

correct functioning, prior to generating hardware. VHDL behavioral descriptions and lan-

guage constructs are detailed in Appendix C.

Modern synthesis tools interpret the behavioral VHDL source code as a description of

an electronic circuit. Not all language constructs map directly to hardware in a synthesis

environment, therefore, a language subset is defined for use with a specific tool. General

modeling guidelines are normally provided to ensure that resulting hardware will be con-

sistent with the designer's intent. Combining these guidelines with the VHDL subset,

higher level models can be synthesized to create optimized gate level descriptions.

1.2.1 VHDL Subset

The VHDL behavioral models used in this research describe combinational logic cir-

cuits based on the IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36].

The draft builds on the foundation laid by the European VHDL Synthesis Working

Group's Level-0 VHDL Synthesis Syntax and Semantics [25] and incorporates constructs

common to synthesis tools by Mentor Graphics [68] and Synopsys [64]. Details can be

found in Appendix D.

The standard represents a subset of VHDL with corresponding design guidelines

meant to ensure consistent synthesis of gate level netlists from behavioral descriptions.

The key VHDL language constructs supported for behavioral modeling are listed below:

1) //"statement, case statement, loop statement (for only).

2) procedure, function.

3) constant, variable, signal.

4) all predefined VHDL operators shown in Table 1-2.

Relational operators like greater than (>) and not equal (/=) compare like types and

return a Boolean result. The concatenation operator (&) combines one-dimensional

arrays to form a new array with the contents of the right operand following the contents of

the left operand. Finally, the modulus (MOD), remainder (REM), exponentiation (**),

and absolute value (ABS) operators are only defined for integer types. Definitions for all

the VHDL operators can be found in Appendix C.

Type Operators

Logical AND OR NAND NOR XOR

. Relational = /= < <= > >=

Adding + - &

Unary (sign) + -

Multiplying * / MOD REM

Miscellaneous ** ABS NOT

Table 1-2 Predefined VHDL operators.

Design guidelines for modeling combinational logic circuits, summarized in Figure 1-

1, are extracted from those defined by Level-0 and Synopsys. Though the guidelines for

1) Processes which model pure combinational logic must contain a sensitivity

list including all the signals which are read into the process. All signals and

variables must be assigned in all the conditional branches.

2) Integer types are automatically converted to bit vectors whose width is as

small as possible to accommodate all possible values of the type's range,

either in unsigned binary for nonnegative ranges or in 2's complement form

for ranges that include negative numbers.

3) The arithmetic operators "+" and "-" are predefined for all integer operands.

4) Multiplying operators ("*", "/", mod, and rem) are predefined for all integer

types with the following restrictions:

a) The right operand shall be a computable power of 2.

b) Neither operand shall be negative.

Figure 1-1 Design guidelines.

multiplying operators may seem overly restrictive, they still provide adequate flexibility

for designing at the register transfer level and may yet be expanded in subsequent revi-

sions to the standard.

Use of this subset is meant to enhance the portability of VHDL designs across synthe-

sis tools conforming to the standard. Hence, it is used here as the basis for defining higher

level fault models which have a closer relationship to resulting synthesized hardware.

Behavioral fault models for each of these VHDL constructs are developed in Chapter 3

through Chapter 7 of this dissertation.

1.2.2 Hardware Implementation of VHDL Constructs

Several VHDL language constructs lend themselves directly to hardware implementa-

tion with common functional modules such as multiplexers. By examining these language

to hardware relationships, this research intends to build the foundation on which higher

level fault models can be defined, that are more closely related to their underlying gate

level counterparts. Some insights are drawn from two resources which directly discuss the

relationship between certain VHDL constructs and the ultimate hardware.

One discussion of hardware implementation of VHDL constructs comes from Struc-

tured Logic Design with VHDL by Armstrong and Gray [10]. In a section titled "Auto-

mated Synthesis of VHDL Constructs," they show the relationship between multiplexers

and language constructs that involve selection, like if and case. Another insight into the

relationship between VHDL language constructs and hardware comes from the VHDL

Style Guide for AutoLogic II by Mentor Graphics [68]. Again, the link is established

between the control constructs if and case and the multiplexer functional building block.

These examples reinforce the intuition that a language construct that involves selection

leads naturally to a hardware construct that implements selection, the multiplexer. Details

can be found in Appendix E.

Armstrong and Gray also discuss program loops, functions, and procedures in relation

to hardware [10]. Multiple implementations of a 4-bit adder are used for illustration.

Their discussions and examples serve as the basis for the analysis of these programming

constructs in Chapter 7 of this dissertation.

1.3 Functional Analysis

Previous research has proposed fault models for behavioral constructs based solely on

perturbing the language without a well defined link to the underlying hardware. This dis-

sertation presents new behavioral fault models based on a functional analysis of gate level

implementations. By combining VHDL synthesis information with industry standard SSL

faults, new fault models can be obtained which are more closely linked to the underlying

hardware.

A technique has been developed for abstracting SSL faults from the gate level into the

behavioral domain. First, synthesis information about hardware implementation of VHDL

constructs is exploited to obtain a gate level basis for a functional analysis. Next, a

reduced set of functional faults, covering all SSL gate level faults, is determined with the

aid of fault reductions via functional equivalence and fault dominance [45]. Faults are

generalized from various possible implementations to form a set of functional faults not

tied to any specific realization. Most importantly, a detailed analysis of the relationship

between the generalized set of functional faults and the original VHDL description yields

a behavioral fault model for the language construct.

The new fault models developed by this research provide the well defined link to

underlying hardware faults that was lacking in previous behavioral fault models. The

functional analysis of SSL faults takes advantage of VHDL/hardware relationships that

exist in a synthesis environment. This analysis of gate level faults adapts the functional

techniques employed by Abraham [2] and Hayes [29] with two important extensions.

First, functional faults are not tied to a specific implementation, rather they are generalized

to be applicable to multiple realizations. Second, the functional faults are further

abstracted into the behavioral domain via their relationship with the original VHDL con-

struct being modeled.

Details of the functional analysis technique are presented during the development of

the control fault model in Chapter 3. Graphical techniques for examining the relationships

between functional faults are first demonstrated with relational operators in Chapter 4.

Complete functional testing of regular structures of functional building blocks is intro-

duced during the analysis of arithmetic operators in Chapter 5. Finally, interactions

among behavioral faults and VHDL constructs are explored throughout the dissertation,

but especially in Chapter 7 and Chapter 8.

1.4 Fault Injection Using WAVES

Gate level fault injection experiments were performed throughout this research using a

tool developed by DeLong et al. [24]. Test vectors are applied to structural VHDL models

using the IEEE Standard for Waveform and Vector Exchange (WAVES) [37]. SSL fault

simulations are determined using gate level equivalent fault classes according to MIL-STD

883D [52]. Test vectors are applied, one at a time, from the input WAVES file. Fault cov-

erage is then evaluated as the ratio of detected faults to total faults and can be plotted ver-

sus the test vectors as they are applied.

Fault experiments using behavioral test vectors were conducted during the develop-

ment of each group of behavioral fault models. The normal requirement for industrial

designs is that the set of test vectors provided by the designer achieve at least a 95% SSL

gate level fault coverage [27] [40] [60]. In order to more fully examine the effectiveness of

the new fault models, additional examples, not presented in the individual chapters, are

provided in Appendix A. Examples have been chosen to represent a broad range of design

possibilities. Resulting gate level fault coverage was evaluated to illustrate the effective-

ness of the behavioral fault models and is summarized in Appendix B.

1.5 Comprehensive Examples

Two comprehensive example circuits are presented in Chapter 8 to demonstrate the

gate level fault coverage of the new behavioral fault models. The first is an arithmetic

logic unit (ALU) which performs selected functions on data inputs. The second example

is a single error correcting circuit used in fault tolerant applications. Other obvious exam-

ples such as a multiplexer or a magnitude comparator do not need to be investigated here

due to their detailed analysis as part of the development of the fault models for the if state-

ment and relational operators.

Application of the behavioral fault models to the comprehensive examples results in a

set of test vectors necessary to detect the behavioral faults. These test vector sets are then

applied to synthesized gate level implementations. Multiple synthesis tools and target

architectures are employed to create a variety of realizations of the behavioral descrip-

tions. AutoLogic II [68] from Mentor Graphics is used with both the autologic/default and

gen_lib/default target technologies. The Leonardo [47] synthesis tool from Exemplar

Logic is also used to map the behavioral descriptions to a Xilinx field programmable gate

array (FPGA) architecture. The resulting gate level fault coverage provides experimental

validation of the effectiveness of the behavioral fault models.

1.6 Contributions and Future Work

The main contributions of this dissertation include improved behavioral fault models

as well as the techniques for generalizing the effects of low level faults and abstracting

them into the behavioral domain. The new fault models are more closely linked to under-

lying hardware faults than those developed by previous research. Test vectors based on

these new behavioral fault models achieve complete SSL gate level fault coverage over a

broad range of implementations.

The models and techniques presented in this dissertation represent another important

step in the development of a design methodology for performing fault simulation through-

out the design process. Chapter 9 presents a brief description of directions for future

research. These include expansion of the behavioral fault models, tool development for

behavioral test generation and behavioral fault simulation, and migration of fault models

to even higher levels of abstraction.

Chapter 2

Previous Research

This chapter surveys previous research in three major areas involved in testing circuits

based on behavioral descriptions. First, a survey of the current state of the art in fault

modeling at higher levels of abstraction provides the basis from which tests for digital cir-

cuits can be developed. Recent research efforts have attempted to develop higher level

fault models, which accurately represent faults which occur at lower levels. Second, sev-

eral methods of injecting faults into higher level models are explored. Injecting faults into

a behavioral model can be accomplished by manipulating data or signal values within the

model or by actually changing or perturbing the model itself. Finally, various techniques

for generating behavioral or functional tests provide a means for evaluating the effective-

ness of high level modeling efforts. Their results can be compared to more conventional

gate level methods to provide a quantitative measure of fault coverage.

2.1 Fault Models

Fault models provide the underlying basis for the development of tests for digital cir-

cuits. The models of interest in this dissertation move up the design hierarchy beyond the

gate level to the register or chip level. Functional fault models are based on the input/out-

put relationship of higher level primitives which may incorporate a large number of gates.

Behavioral fault models are based on procedural descriptions of the circuits desired func-

tioning. Many models reference the register transfer level which describes procedural data

flow among functional primitives.

The majority of functional and behavioral modeling efforts can be traced to four prom-

inent researchers: Jacob Abraham, John Hayes, Sumit Ghosh, and James Armstrong. As a

foundation for the development and application of more accurate behavioral fault models,

this dissertation examines the models developed by groups including each of these

researchers. Modeling at many levels of abstraction is discussed by Abraham et al. [1][2]

[17][65][66], but the main focus of this dissertation concerns the functional fault models.

Hayes et al. [29][31][32][33][34][63] has worked extensively on fault models for digital

circuits, including descriptions of functional fault models leading to a new generic class

10

11

called induced faults. Ghosh and Chakraborty [18] [26][27] have proposed a set of fault

models which are based on the failure modes of the language constructs of a generic hard-

ware description language. Armstrong and his collaborators [6] [7][8] [9] [22] [28][69] have

developed an ever evolving series of functional and behavioral fault models and, as will be

discussed later, have implemented test generation algorithms using these models.

2.1.1 Functional Faults

In "Fault and Error Models for VLSI," [2] Abraham and Fuchs provide an extensive

review of research efforts aimed at deriving realistic models at higher levels which can

accurately represent the faults and errors at lower levels. Of primary interest here are their

descriptions of several functional fault models: general fault models for functional blocks,

models for small functional modules, and fault models for microprocessors.

Given a combinational function with N inputs, a general fault model assumes that this

function can be transformed into any other combinational function of iV inputs and, there-

fore, testing it requires application of all 2N input combinations. Such exhaustive testing

is impractical if N is large, however, testing may be manageable if the function is imple-

mented as an interconnection of subfunctions. The exhaustive general fault model could

then be used effectively to test these subfunctions.

Models for several small functional modules provide the building blocks for handling

larger functions. A key functional module found in many digital circuits is the decoder. It

can be described functionally as having N inputs and 2N outputs and, under normal opera-

tions, exactly one output line is activated corresponding to the input address. A detailed

study of all single transistor-level faults by Banerjee [12] resulted in the following func-

tional fault model for a decoder:

1) Instead of the correct line, an incorrect line is activated.

2) In addition to the correct line, an incorrect line is activated.

3) No line is activated.

Though such a description is very simple, it was shown to incorporate all of the physical

shorts and opens possible in the transistor-level description.

Further study [1] involved another important building block, the multiplexer. This

functional module has N inputs, log2N control signals, and one output. The output is

12

selected to be one of the inputs as determined by the address on the control lines. Under a

fault, it can be shown that the behavior of the multiplexer module can be described in the

following functional manner:

1) A 0 and a 1 cannot be selected on every input line.

2) When selecting some input, another input will be selected instead of, or in

addition to, the correct input.

Similar fault models exist for other building blocks of more complex functional units.

Even though microprocessors are quite complex, fairly effective functional fault mod-

els have been derived at the register transfer level. Thatte [66] visualizes a microprocessor

as a set of functions including register decoding, data transfer, data manipulation, and

instruction sequencing. A functional fault model is developed for each of these functions.

Improvements to this model made by Brahme [17] are based on the conceptual treatment

of instructions as consisting of micro-instructions, which, in turn, are composed of a set of

micro-orders. The combined fault model for the microprocessor contains the following:

1) Fault Model for the Register Decoding Function:

- Fault-free

/D(/?.) = R. Register i selected.

- Faulty

/D(#.) = R Register; selected instead of Register/.

fD(Rj) = <|> No register selected.

fD(Rj) - {RpR:} Register; selected in addition to Register i.

2) Fault Model for the Data Transfer Function:

- any number of lines can be stuck at 0 or 1.

- any pair of lines i,j can be coupled.

3) Fault Model for the Data Manipulation Function:

- No specific fault model is presented. (It is assumed that the complete test set for

any given ALU can be easily determined.)

4) Fault Model for the Instruction Sequencing Function:

- Under a fault we can have one or more of the following events:

- One or more microorders can be inactive.

- Microorders which are normally inactive become active.

- A set of microinstructions is active in addition to, or instead of, the normal

microinstructions.

13

This approach allows derivation of tests for a microprocessor even if the details of imple-

mentation are not known.

With this set of fault models, Abraham and his collaborators have attempted to

describe accurately the effects of faults within higher functional modules and thus make

complex systems tractable by reducing the number of primitive elements. Though largely

based on actual circuit descriptions, care has been taken to make these models as imple-

mentation independent as possible by concentrating on the functionality provided by each

module.

2.1.2 Physically-Induced Faults

In "Fault Modeling" [34], Hayes also discusses the general functional (GF) fault

model as one that allows arbitrary changes to a circuit's truth table (combinational case) or

state table (sequential case). The maximum number of states, which can be taken to be

one in the combinational case, is assumed to remain constant when faults are present.

Detection of GF faults requires essentially exhaustive testing procedures and is thus feasi-

ble for a moderate number of input lines. Tests for GF faults in a sequential circuit are

termed checking sequences and tend to be long and difficult to compute. Such tests have,

however been applied successfully to the representation of certain types of pattern-sensi-

tive faults in RAMs [33] and to testing simple bit-sliced microprocessors [63].

In more recently published research, Hansen and Hayes [29] present a new high-level

fault model called the physically-induced fault model. If gate-level single-stuck-line (SSL)

faults are considered with this model, the authors claim that complete functional fault

detection can guarantee complete SSL fault detection. The induction concept implies

changing the abstraction level at which faults and their effects are considered from a lower

to a higher abstraction level. The physical faults of interest include SSL faults, bridging

faults, and switch-level faults. The target abstraction level is the functional level, which is

loosely defined to correspond to the register-transfer level. Just as the SSL fault model is a

"natural" gate-level fault model, the authors propose that the SSL-induced fault (SIF)

model is a natural functional-level fault model.

The 3-input majority circuit M, shown in Figure 2-1, is presented as a preliminary

example where G, P, and C represent carry-generate, carry-propagate, and carry-in respec-

14

tively. There are 11 lines producing 22 SSL faults. Analyzing the faulty responses pro-

duces 14 different SIF functions which can be reduced by functional equivalence and fault

dominance to a minimal set of 6. Table 2-1 lists 6 SIF tests that detect all SSL faults.

AG

A-

B-

BG

o>n
Figure 2-1 Three-input majority circuit M.

SIF SIF test Z CAB

A cannot propagate Propagate with A 1 1 1 0

B cannot propagate Propagate with B 1 1 0 1

M always propagates Stop propagate 0 1 0 0

M cannot generate Generate 1 0 1 1

B always generates Stop generate with B 0 0 1 0

A always generates Stop generate with A 0 0 0 1

Table 2-1 Minimal SIF test set.

By examining different realizations of the same majority function, other independent

functional faults may be added. Additional tests could, therefore, be required to detect the

SIF "generate invalidates propagate." However, given a full set of physical faults, a set of

functional faults can be derived, usually without too much difficulty. For example, the

work of Shen et al. [62] on inductive fault analysis can be used to supply a comprehensive

physical-fault list.

Physically-induced fault techniques have also been applied to several medium-scale

examples from the 74X-series. The tests derived for these circuits cover all SSL faults in

the standard 74X-series gate-level designs [67], a property that has been verified by com-

plete gate-level fault simulation. Furthermore, the test sets are provably minimal and are

generally smaller than those found by an efficient gate-level test generator.

15

2.1.3 Behavior Faults

In "Behavior-Level Fault Simulation," [26] Ghosh uses behavioral fault models to rep-

resent complex failures in VLSI designs. Faulty values of variables that represent state/

timing parameters or a faulty description that is substituted for part of the good description

are deliberately introduced into a design that contains no faults. A severe limitation of this

method is determining how to select fault models that represent actual failures from the

large number that do not. The recommended approach urges designers to use a library of

fault models of complex devices that are based on actual failures.

In subsequent research, Ghosh and Chakraborty [18] [27] propose fault models based

on the failure modes of the language constructs of a generic hardware description lan-

guage. The programming language C is used to describe hardware with assurances that its

language constructs may be extended to other hardware description languages. The fault

models presented are relatively complex and attempt to rationalize a link to actual possible

hardware faults. Some of the key components of these behavioral fault models include:

1) The states of a sequential component may be expressed through variables of

integer, Boolean or real types and may fail in one of two modes - the state is

permanently held at either V1 or V2 where V1 and V2 specify the lower and

upper extremes of the logical value system.

2) A "function call" may exhibit two failure modes where it permanently returns

V] or V2, the lower and upper extremes of the range of the function.

3) In the "for (CC) {Ej}" clause, the body {Ej} may either never be executed or

always executed regardless of the condition CC.

4) In a "switch (Id)" clause, the switch may select either the cases corresponding

to the lower or upper extremes of the switch identifier's value system, all or

none of the specified cases.

5) The "if(X) then (Ejj else {E2F construct may fail such that Ej is always exe-

cuted and E2 is never executed, Ej is never executed and E2 is always executed,

or Ej and E2 are executed when X evaluates to false and true respectively.

6) The assignment statement "X = Y' may fail such that X remains unchanged or

assumes the lower (Vj) or upper (V2) extremes of the value system, or X

assumes V} or V2 depending on a probability function.

16

Though relationships to possible hardware faults are proposed, there is no detailed analy-

sis to justify these assertions. A further shortcoming of these models is the restriction to

the lower (V7) or upper (V2) extremes of the value system. Multiple bit signals must all be

stuck at 0 or stuck at 1 rather than allowing for only a single stuck line.

In order to evaluate the performance of the proposed behavior fault models, example

designs were fault simulated and compared with gate-level fault simulation in the presence

of stuck-at faults. The example designs included: 16-to-4 multiplexer; 4-, 8-, and 16-bit

ALUs with carry lookahead; shift register; synchronous and asynchronous counters; AMD

AM2903 bit slice processor; and the control unit of a complex protocol formatter chip.

Between 40 and 60 randomly generated test-vector sets were used for gate-level and

behavioral fault simulation and the gate-level and behavioral fault coverages were then

compared. The researchers found a strong and consistent correlation of the gate-level and

behavioral fault coverages with no occurrence of a behavioral fault coverage exceeding

90% while the gate-level fault coverage was less than 85%.

2.1.4 Model Perturbation

Armstrong et al. has developed a series of behavioral fault models based on the con-

cept of model perturbation [28] of designs using hardware description languages, most

recently VHDL. In "Behavioral Fault Simulation in VHDL," [69] Ward and Armstrong

define eight behavioral fault classes:

1) Stuck-Then: represents a failure of the if-then-else construct to ever execute the

else statements.

2) Stuck-Else: represents a failure of the if-then-else construct to ever execute the

then statements.

3) Assignment Control: represents a failure of the VHDL assignment operator to

assign a new value to a signal.

4) Dead Process: failure of the statements within a process construct to execute.

5) Dead Clause: failure of the VHDL CASE construct to execute one of the alter-

native sequences of statements (clauses).

6) Micro-operation: failure of an operator to perform its intended function. The

operator may fail to any other operator in its class.

17

7) Local Stuck-data: failure of a signal or variable to have the correct value. The

local stuck-data fault is restricted to the expression into which it is mapped.

8) Global Stuck-data: failure of a signal or variable to change value within the

device model.

These fault classes have been continually refined by subsequent research, but still they

serve as the basis for many current efforts in behavioral test pattern generation.

As a further refinement to their earlier model, Armstrong, Lam, and Ward, [9] subdi-

vide behavioral faults into two broad categories, control faults and micro-operation faults.

Control faults perturb the control points that switch between micro-operation sequences.

This fault group includes:

1) IF: stuck THEN, stuck ELSE - branching will always occur in one direction,

independent of control signal values.

2) CASE: dead clause - the selected clause does not execute.

3) Assignment fault - models the effect of a single assignment not taking place.

4) Dead Process fault.

Micro-operation faults perturb individual micro-operations to another and include:

1) AND<->OR.

2) INC<->DEC.

3) ADD<->SUB.

Some significant problems with this modeling technique include choosing to which micro-

operation to perturb [19] and whether any of these faults can actually occur in hardware.

As part of the development of the "B-algorithm: A Behavioral Test Generation Algo-

rithm," [21] [22] Cho and Armstrong developed a new behavioral fault model by applying

the concept of equivalent faults to the previous model. Stuck-THEN/stuck-ELSE faults

can be removed from the behavioral fault list if stuck-at faults are defined for unnamed

signals corresponding to the conditional expressions of the IF statement. Likewise, a

micro-operation fault for a logic operator is detected by a test for a stuck-at fault on one of

its arguments. Finally, a dead-clause fault is equivalent to an assignment control fault

under the assumption of a single behavioral fault model.

The new behavioral fault model renames stuck-at faults to behavioral stuck-at faults.

Assignment control faults are renamed behavioral stuck-open faults and micro-operation

18

faults for arithmetic or relational operators are renamed micro-operation faults. The

reduced model now includes three types of faults:

1) Behavioral Stuck-at (BSA) Fault - a bit of a signal, virtual signal, a fanout stem,

or a fanout branch is permanently stuck-at logic 1 or 0.

2) Behavioral Stuck-open (BSO) Fault - the value of the source expression (right-

hand side) of an assignment statement is not correctly transferred to its target.

3) Micro-operation (MOP) Fault - an arithmetic or a relational operator is faulted

to another operator. For example, ADD(A,B) is perturbed to SUB(A,B) and

SUB(B,A). A summary of fault-free operators and their corresponding faulty

operators is provided in Table 2-2 .

Fault-free Operator Faulty Operator

ADD SUB, XOR

SUB ADD, XOR

BVEQ BVNEQ

BVNEQ BVEQ

BVLT BVGE

BVLE BVGT

Table 2-2 Micro-operation Faults

Again, perturbing of micro-operations raises doubts concerning the relationship to actual

hardware faults. Use of this fault model with the B-algorithm is discussed later along with

other test generation techniques.

2.1.5 Other Research

Two other recent research efforts deserve mention here for completeness. The first, by

Riesgo and Uceda [60], attempts to define an RTL fault model which they claim is totally

oriented to model hardware faults. At the other end of the spectrum, Al Hayek and

Robach [4][5] consider behavioral faults as software faults and apply an adaptation of

mutation-based testing, originally proposed to test software programs.

In "A Fault Model for VHDL Descriptions at the Register Transfer Level," [60] Riesgo

and Uceda present a fault model based on the VHDL level-0 synthesis subset [25]. Exam-

19

pie behavioral descriptions can then be directly synthesized and results compared to the

corresponding gate-level designs. The fault model is divided into three classes, depending

on the type of object affected by the fault:

1) Faults on data: the fault model is based on "stuck-at" faults. The affected

expression will take a constant value and the insertion will be made in a state-

ment where the object is referenced. Examples include:

- bit: stuck-at- '0' and stuck-at- '1'.

- enumerated: stuck-at- "all possible values ".

- integer: each bit of the resulting bus can be stuck-at'0' or stuck-at- '1'.

The assumed codification is binary for positive numbers and 2's complement

for negative numbers.

2) Faults on expressions: the fault model is based on "stuck-at" faults. The

affected expression will take a constant value. Examples include:

- if_then_else: the condition of the if statement may be stuck-at-true or

stuck-at-false.

- case_is_when: the expression which controls the case statement may be

stuck-at-"allpossible values"

- for_in_loop: the index controlling the loop may change its range from the

minimum to the maximum+1 and from the minimum-1 to the maximum.

3) Faults on statements: the fault model is based on "dead* faults. The effect of

the fault is that the affected statements are not executed. Examples include:

- if_then_else: dead-then, dead-else.

- case_is_when: dead-alternative.

- for_in_loop: dead-loop.

- procedure call: dead-call.

- signal or variable assignment: dead-assignment.

Fault insertion is made on the VHDL code by adding code perturbations to the input

description. Code perturbations consist of adding, switching, or eliminating code sen-

tences, to model the circuit behavior under a fault condition.

Experiments were conducted on several VHDL descriptions which were then synthe-

sized in order to obtain a comparison with the stuck-at fault model at the logic gate level.

20

The example circuits included 8- and 16-bit ALUs, sequential multiplier, shift register, 16-

bit counter, and a reception-transmission unit. Test vectors were randomly generated, then

VHDL/RT and logic fault coverages were compared. The fault model presented did not

give a precise value of the fault coverage achieved at the lower levels, rather an estimation.

For those circuits with a large combinational part, the estimation of fault coverage was

"optimistic" and the synthesis options had an influence on the accuracy of the estimation.

Highly sequential circuits produced "pessimistic" results due to a large number of faults at

the RT level that were very difficult to detect or even undetectable. The achieved results

are claimed better than Armstrong and Ghosh due to their correlation coefficients being

larger than 90%.

In contrast to other hardware oriented approaches, Al Hayek and Robach [4] propose a

mutation-based testing strategy in which VHDL behavioral faults are considered as soft-

ware faults. The generated test set is used to validate the VHDL description, seen as a

software program, against (software) design faults as well as its hardware implementation

against hardware faults. A VHDL subset is also used, which allows high level functional

description of any combinational or sequential circuit that can be easily synthesized by

current tools.

The mutation-based fault model [5] defines a set of mutation operators for use with

VHDL behavioral descriptions. Mutation operators include:

1) AOR: Arithmetic Operator Replacement.

- replace "+" with "-".

2) ABS: ABSolute value insertion.

3) CR: Constant Replacement

-integer: increment and decrement by 1.

- bit-vector: 1 's complement.

-Boolean: complement.

4). CVR: Constant for Variable Replacement.

- every compatible constant.

5) LOR: Logical Operator Replacement.

- AND, OR, NAND, NOR, XOR

- replaced by each of the other operators

21

6) ROR: Relational Operator Replacement.

- <, >, <=, >=, =, /=

- replaced by each of the other operators

7) NOR: No Operation Replacement.

8) VCR: Variable for Constant Replacement.

- every compatible variable.

9) UOI: Unary Operator Insertion.

- each arithmetic expression negated, incremented, and decremented by 1.

- each logical expression complemented.

An automated test environment was built by translating VHDL to FORTRAN and using an

existing software testing system.

On a behavioral VHDL description, the test environment delivers a test set and the

associated mutation score value that represents the percentage of non-equivalent detected

mutants by the test set. In the context of design and test of hardware systems, the mutation

score is viewed as a behavioral fault coverage that measures how well the design has been

tested. On a set of high-level synthesis benchmarks (Decoder, ALU, Differential equation,

Elliptical wave filter,...), experimental results show that on combinational circuits the

obtained gate-level fault coverage is about 94% in the average against 99% for the tradi-

tional gate-level ATPGs. However, on sequential circuits the mutation-based test is

claimed better as it yields 94% in the average of gate-level fault coverage against 85% for

the traditional ATPGs, when they are used without any user assistance.

In order to improve the performance of the mutation-based technique, the authors

chose to enhance the test set for certain complex operators such as AOR. Mutation analy-

sis does not take into account the size of the hardware implementation, because it consid-

ers addition/subtraction as a software operation and consequently generates only one test

vector. A heuristic is proposed to supplement the original test set with extra vectors to suf-

ficiently test the complex operators. This heuristic consists of generating TV new test vec-

tors for each complex operator, where N is the maximum dimension of the input

parameters. The necessity to supplement the original test set simply attempts to cover up

an underlying deficiency in the mutation-based fault model.

22

2.1.6 Summary

All of the modeling efforts presented here attempt to develop fault models at higher

levels of abstraction, which accurately represent faults which occur at lower levels. This

discussion has been meant to provide a survey of the current state of the art in behavioral

fault modeling. Later in this chapter, some of these fault models will serve as the basis for

several behavioral test generation algorithms. But first, some techniques for injecting

faults into behavioral models will be briefly discussed.

2.2 Fault Injection Techniques

Once a fault model has been defined, some method of injecting these faults into a

model of the digital circuit must be developed. Injecting faults into a behavioral model

can be accomplished by manipulating data or signal values within the model or by actually

changing or perturbing the model itself. An example of the signal manipulation technique

is provided by the work of DeLong, Johnson, and Profeta in "A Fault Injection Technique

for VHDL Behavioral-Level Models." [23] Modification of behavioral models is demon-

strated by Jenn et al. in "Fault Injection into VHDL Models: The MEFISTO Tool." [39]

Finally, Yount and Siewiorek present an approach called hybrid fault emulation in "A

Methodology for the Rapid Injection of Transient Hardware Errors." [71]

2.2.1 Instruction Set Architecture

In order to perform fault injection experiments early in the design cycle, DeLong,

Johnson, and Profeta [23] developed a technique to inject faults into a VHDL behavioral

model of a system. This technique is demonstrated on an instruction set architecture

(ISA) model of an embedded control system. Single or multiple bit faults are injected into

internal processor registers, any location in memory, and any range of locations in the

memory map. Signal values are corrupted by using a user-defined VHDL data type to

communicate with a bus resolution function. When two different sources are trying to

update a signal at the same time, the bus resolution function resolves the conflict and

assigns the desired value to the signal. This technique allows the designer to inject faults

on desired signals in a behavioral description with minimal changes to the existing code.

Because the functionality of the design is not changed, the same model can be used to sim-

ulate both fault-free and faulty behavior.

23

2.2.2 MEFISTO

In contrast to the previous technique, the MEFISTO Tool [39] uses two other tech-

niques to inject faults into VHDL models. The first category requires modification of the

VHDL model and the second one uses the built-in commands of the simulator. Modifica-

tion of the VHDL model is accomplished through the addition of components called sabo-

teurs and mutants. A saboteur is a VHDL component that alters the value or timing

characteristics of one or several signals when activated. A mutant is a component descrip-

tion that replaces another component description. When activated, it imitates the compo-

nent's behavior in the presence of faults. Both signal and variable manipulations can be

used for controlling, i.e., activating and deactivating, saboteurs and mutants. In this way,

the injection of faults can be controlled by built-in commands of the simulator.

The main reason for using the built-in commands of the simulator for fault injection is

that this does not require the modification of the VHDL code. However, the applicability

of these techniques depends strongly on the command languages of the simulators. The

values of either signals or variables may be manipulated by stopping and restarting the

simulation. For example, a temporary stuck at fault may be injected by application of the

following sequence of pseudo commands:

1) SimulateUntil <fault injection time>

2) FreezeSignal <signal name> <signal value>

3) SimulateFor <fault duration>

4) UnFreezeSignal <signal name>

5) SimulateFor <observation time>

For a permanent fault, steps 3 and 4 are skipped. Intermittent faults can be injected using

a more complex command sequence.

2.2.3 Hybrid Fault Emulation

Yount and Siewiorek [70][71] developed a fault injection methodology for processors

based on a register transfer level fault model. The approach, called hybrid fault emulation,

uses the actual circuit to perform fault injection. A transient fault occurs during the inter-

val T = [U, tk]. The system is allowed to run until some time, tj, and the state of the

machine is captured. A low level model is then used over a limited interval with the cap-

24

tured state. Reverse fault emulation is used to generate output and set the new state at tk to

match the effects of the desired fault. Since fault simulations are only run over short peri-

ods of time, many more fault injection experiments can be run using the same simulator

resources. This method is, however, limited to only transient faults and applies to the eval-

uation of an actual system rather than one still in the design process.

2.2.4 Summary

Though brief, this survey of fault injection techniques provides sufficient insight into

methods for manipulating behavioral models. Fault injection can be as simple as starting

and stopping the simulation to change desired values or as complicated as developing

mutants that imitate a component's behavior in the presence of faults. The bus resolution

function technique is simply an adaptation of the concept of a saboteur that alters the

value of a signal in the model. Test designers now have a range of fault models and injec-

tion techniques from which to develop behavioral test generation algorithms.

2.3 Test Generation Techniques

Test generation techniques at higher levels of abstraction can be based on either func-

tional or behavioral descriptions and their corresponding fault models. This dissertation

investigates research efforts which have produced automated test pattern generation

(ATPG) methods and tools to support circuit designers at or near the register transfer level.

Results of these test generators can be used to evaluate the effectiveness of the underlying

behavioral fault models. Lin and Su [49][50] developed a functional test generation algo-

rithm which uses a register transfer level fault model based on the functional fault work of

Abraham [2][17][66]. Armstrong and his collaborators [13][14][15][21][22][46][55][56]

[57][58] have produced a series of test generators based on their ever evolving behavioral

fault models. Several other researchers [20] [54] have also developed ATPG algorithms

which utilize the fault models of Ward and Armstrong [69]. Finally, Santucci and Giambi -

asi et al. [59][61] have produced a prototype model of a test pattern generator which uses a

fault model claimed equivalent to that of Ghosh and Chakraborty [18] [27]. However,

since their research focus is on optimization of the test generation algorithm, no results are

published that can help evaluate the effectiveness of their fault model.

25

Most fault-oriented techniques use some form of a three step approach to the test gen-

eration process. First, a fault must be activated at the desired location in the circuit model.

Then, the effect of the fault must be propagated to a point where it can be observed and,

hence, detected. Finally, the inputs of the model must be determined to justify the desired

signal values throughout the circuit. Variations of these techniques attempt to utilize the

information available in these higher level models to more efficiently accomplish the com-

putationally intensive tasks of fault propagation and justification.

2.3.1 S-Algorithm

The S-Algorithm [49][50] is based on a register transfer (RT) level fault model similar

to the functional fault models discussed by Abraham and Fuchs [2]. The reduced fault set

is divided into three groups for ease of fault identification:

1) Register decoding faults and operator decoding faults - regular registers and

ALU operators are "global" among RT-statements.

2) Condition faults, jump faults, and data transfer faults with constant source reg-

isters - they are "local" within an RT-statement.

3) Data transfer faults with regular source registers.

The overall test generation algorithm also includes a preprocess stage which includes par-

titioning the system under test and a postprocess stage that evaluates fault coverage.

Major parts of the heuristic test generation algorithm were implemented in IBM Pascal

and experimental results have been published for several example circuits. For a hardware

multiplier described by 16 RT-statements, the program generated 66 test patterns and

claims a 96.4% fault coverage. For the SIMPLE-CALCULATOR, 134 test patterns were

generated resulting in a 97.2% fault coverage. No comparisons are provided to evaluate

the resulting fault coverages versus a traditional gate level stuck at model.

2.3.2 B-Algorithm

Early test generation algorithms based on VHDL behavioral descriptions included "A

Heuristic Chip-Level Test Generation Algorithm" [13] and "The E-Algorithm, an Auto-

matic Test Generation Algorithm for Hardware Description Languages." [55] Both were

strongly influenced by the pioneering work of Levendel and Menon in "Test Generation

Algorithms for Computer Hardware Description Languages." [48] The fault models used

26

were evolving versions of the model published by Ward and Armstrong [69]. Reported

results on medium complexity circuits were in the range of 90% gate level fault coverage.

Further along in the evolution, the Behavioral Test Generator (BTG) [57][58] uses a

VHDL subset and the same behavioral fault model [69]. The faulted operation is first acti-

vated (fault sensitization), then the effect of the fault is propagated to the output (fault

propagation). Examples are provided for propagation through behavioral control con-

structs and propagation through data paths. Behavioral fault coverage is then evaluated as

the ratio of detected behavioral faults to the total number of behavioral faults.

BTG was tested using a set of 11 logic circuits representing a cross section of generic

types of logic. The average equivalent gate level coverage for the experiments on these

circuits was 92%. A major drawback was what they called the "big micro-operation prob-

lem." Faults can be applied to micro-operations that represent large blocks for logic. For

example ACUM <= ADD(A,B,CIN) implies a multi-bit adder. It is impossible for a single

vector to detect the majority of gate level faults in such a complex structure. O'Neill et al.,

thus, resorted to heuristics to supplement their test vector set to bring up their equivalent

gate level coverage. The necessity to add test vectors to those generated by their algorithm

points back to a fundamental deficiency in their underlying fault models.

Continuing efforts by the same research group produced the B-algorithm [21][22].

This test generation algorithm uses the reduced behavioral fault model discussed earlier in

this chapter: behavioral stuck-at faults, behavioral stuck-open faults, and micro-operation

faults. Again, a three step approach is applied to the test generation process: activation,

propagation, and justification. As with BTG, the B-algorithm cannot generate sufficient

test vectors for micro-operation faults. In order to raise their equivalent gate level cover-

age numbers to acceptable levels, an additional 4n-l test vectors are generated by a heuris-

tic test generator for each n-bit micro-operation. Even with the stated improvements and

the modified fault model, the B-algorithm still suffers from the same underlying deficien-

cies concerning the modeling of faults in complex operations.

2.3.3 Other Research

In "Analysis of the Gap Between Behavioral and Gate Level Fault Simulation," [20]

Chen and Perumal describe the details of an ATPG system for VHDL behavioral models.

27

The behavioral fault models based on Ward and Armstrong [69] are expanded and classi-

fied into six different categories:

1) Input stuck-at fault

2) Ifstuck then fault

3) If stuck else fault

4) Assignment statement fault

5) Dead clause fault

6) Local stuck data fault.

The problems associated with micro-operation faults have been avoided by eliminating

such constructs from their behavioral models.

For the simple example discussed in their paper, 34 of the 37 non redundant gate level

faults are detected by behavioral fault simulation, resulting in a fault efficiency of 92%.

The results of a more complicated example of a vending control unit are also presented. A

total of 250 test patterns are required to test for 217 faults in the synthesized gate level cir-

cuit. Detection of 189 faults results in a fault coverage of 87%. If scan design techniques

are applied to the circuit, then a fault coverage of 98% is claimed to be achieved.

The last example to be discussed is the "Behavioral Fault Simulation and ATPG Sys-

tem for VHDL." [54] For purposes of comparison, VHDL behavioral code is synthesized

to gate-level implementations and analyzed. The underlying fault models are again based

those proposed by Ward and Armstrong [69], this time including micro-operation faults.

A linear feedback shift register (LFSR) algorithm was utilized to generate the test patterns

in this research.

Nine circuits were used to evaluate the performance of the system. Actual behavioral

fault coverages ranged from 18% to 100%, with sequential descriptions, such as counters

and controllers, performing worst and combinational circuits performing best. These

results were compared to randomly generated test patterns applied to synthesized gate

level circuits. Many of the resulting gate level descriptions proved to be difficult to test

with the random test patterns and, therefore, also had low fault coverage numbers. Hence,

the authors were able to claim success based on a different figure of merit, relative detec-

tion of testable gate-level faults. Using this questionable comparison, Noh et. al. claims an

overall result of detecting around 98% of all testable gate level faults. There is dubious

28

merit in claiming that detecting only 18% of the behavioral faults in a vending machine

controller versus 19% in the synthesized gate level circuit implies a 95% success rate.

2.4 Conclusions

This survey of the state of the art in high level fault modeling and test generation

clearly indicates that there is no widely accepted solution to the problem. Modeling tech-

niques range from the functional analysis employed by Abraham and Hayes, to the proce-

dural data flow of behavioral descriptions used by Ghosh and Armstrong. Test generation

algorithms contained some functional techniques, but mainly relied on the behavioral fault

models developed by Armstrong. Examples provided a figure of merit by which to judge

their effectiveness, but few common measures could be found. When results did not meet

expectations, alternate methods, such as heuristics or testability, were invoked to improve

the statistics.

In the functional arena, Abraham has attempted to describe accurately the effects of

faults within higher functional modules and thus make complex systems tractable.

Though largely based on actual circuit descriptions, care has been taken to make these

models as implementation independent as possible. With his physically-induced fault

techniques, Hayes has been able to derive minimal test sets for several medium-scale

examples. Key to this research are the concepts of functional equivalence, fault domi-

nance, and compatible fault sets. Both of these functional methods show promise for

application to behavioral faults and hardware description languages.

For behavioral models, though Ghosh proposes relationships to possible hardware

faults, there is no detailed analysis to justify these assertions. A further shortcoming of

these models is the restriction that multiple bit signals must all be stuck at 0 or stuck at 1

rather than allowing for only a single stuck line. Similarly, the evolving set of behavioral

fault models by Armstrong and their subsequent test generation algorithms seem to move

too far away from the hardware which they attempt to describe. In order to compensate

for what they call the "big micro-operation problem," the researchers resorted to heuristics

to supplement their test vector set to increase their equivalent gate level coverage. The

necessity to add test vectors to those generated by their algorithm points back to a funda-

mental deficiency in the underlying fault models.

29

The behavioral fault models developed in this dissertation only affect the activation

step of the test generation process. Hence, the high level algorithms developed to handle

the propagation and justification steps still remain valid. Integration of new fault models

with an existing behavioral test generation algorithm can be of mutual benefit. Such

advanced test generation algorithms already address problems such as reconvergent fanout

[3h while use of more complex fault models can eliminate the need to supplement test

vector sets via heuristics.

Though previous research provides no clear cut solution to modeling faults at higher

levels of abstraction, valuable insights have been gained by the examination of each of

these techniques. Certain key concepts from past efforts have immediate applicability to

further research. Other works can also serve as benchmarks for comparison of future

results. Behavioral fault modeling remains an active research area which requires contin-

ued exploration.

Chapter 3

A New Control Fault Model

Previous research has proposed fault models for the control constructs if-then-else and

case, such as stuck-then/stuck-else and dead clause, based solely on perturbing the lan-

guage without a well defined link to the underlying hardware. This dissertation proposes a

new behavioral fault model based on a functional analysis of gate level implementations.

By combining VHDL synthesis information with industry standard single-stuck-line (SSL)

faults, a new control fault model can be obtained which is more closely linked to the

underlying hardware.

3.1 IF-THEN-ELSE
The first control construct to be modeled will be if-then-else, common to most hard-

ware description languages. In Appendix E Armstrong and Gray identify the link between

the if statement and the functional building block of a multiplexer. Likewise, Mentor

Graphics demonstrates how the selection activity of an if-then-else construct is imple-

mented in hardware as a multiplexer. These examples reinforce the underlying intuition

that a language construct that involves selection leads naturally to a hardware construct

that implements selection, the multiplexer.

3.1.1 Synthesis of a Simple Example

As a first example, an if statement is used to select one of two input signals to be

assigned to an output signal. The VHDL behavioral description is shown in Figure 3-1.

if SEL = l0' then
Z <= YO;

else
Z <= Yl;

end if;

Figure 3-1 Behavioral description for example IF1.

The VHDL code was compiled using the Mentor Graphics' Design Architect and then

synthesized using AutoLogic II. The resulting circuit shows the expected multiplexer

architecture in Figure 3-2.

30

31

Y0[>

YIO

SELO

OZ

Figure 3-2 Synthesized hardware for example IF1.

The synthesized hardware implementing example IF1 has the two inputs, YO and Yl,

connected to inputs A and B respectively of a 2-to-l multiplexer, MUX21. In subsequent

discussions, these will be referred to as the channels of the multiplexer, Channel A (CHA)

and Channel B(CHB).

3.1.2 Functional Analysis

In order to perform a functional analysis similar to the method used by Hansen and

Hayes [29] in their work on physically-induced faults, a gate level design of the multi-

plexer architecture is needed. To make the resulting models independent of any specific

implementation, several different gate level realizations will be examined and compared.

The first gate level multiplexer was obtained by expanding the functional element

MUX21 one level lower in the design hierarchy. The resulting gate level circuit is recog-

nized as a sum-of-products (SOP) implementation shown in Figure 3-3.

YOO

YIO
SEL

Figure 3-3 SOP gate level circuit for MUX21.

To analyze the gate level circuit, the effect of single-stuck-line (SSL) gate level faults

will be examined. This analysis will determine a set of functional faults which are

induced by the lower level SSL faults. Testing for these functional faults will then ensure

complete testing for the original gate level faults.

The gate level circuit contains 10 logical lines. Applying the SSL fault model where

each line can be either stuck-at-0 or stuck-at-1, there are a total of 20 gate level SSL faults

32

in the circuit. The line labeled A being stuck-at-0 and stuck-at-1 will be indicated as A-0

and A-i respectively. By activating each SSL fault individually in the gate level circuit and

evaluating the resulting output response to changing inputs, a fault table is obtained. In

Table 3-1 the fault free behavior of the circuit is shown in column Z. For simplicity, only

outputs due to a SSL fault that differ from the fault free behavior of the circuit are shown.

co
1—1

% N
o

1

<
1

<
o

1

PQ
1

ffl
o

1 u 1 u
o

1

Q
1

Q
o

i

W
o

i 1
o

i

Ü
I

Ü
o
X

1

X
o

i

CO
i

CO

©

N
1—1

N

1 0 0 0 0 1 1 1

0 0 1 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1 1 1 1 1

0 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1 1 1 1

1 1 0 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

Table 3-1 SSL fault table for SOP MUX.

Faults which cause the same faulty output can be considered functionally equivalent

[45]. Such faults can be combined in the fault table, since there is no way to distinguish

between these faults by observing the circuit's output behavior. To further reduce the

functional faults, consider the concept of dominance of one fault over another. The fault

(column) Fl is said to dominate the fault (column) F2 if Fl has a faulty output in at least

every row in which F2 has a faulty output [45]. The dominating fault (column) Fl may be

removed from the fault table, since any test which detects fault F2 will also detect fault

Fl. Fault reductions due to functional equivalence and dominance are shown in Table 3-2.

Faults Remarks Faults Remarks

A-1,E-0,H-1,S-1,Z-1 Dominate G-l C-0, D-0 Equivalent to A-0

B-l,D-l,E-l,S-0 Dominate C-l F-0 Equivalent to G-l

Z-0 Dominate B-0 F-l, G-0, H-0 Equivalent to B-0

Table 3-2 Fault reductions.

33

Only four functional faults remain after applying the indicated fault reductions. Test-

ing for this reduced set of faults will ensure complete coverage of all 20 original SSL gate

level faults. The reduced fault table and appropriate test vectors are shown in Table 3-3.

The two test vectors labeled mandatory are the only ones that cover a specific fault. For

the other faults two options are available; selecting one test vector from each group will

provide coverage for the faults in question.

Test Vector 00
I—I

>*
o

N
o

1

<
1

Ü
o

1

PQ
t u

0 0 0 0

Option 1 0 0 1 1 0

Mandatory 0 1 0 0 1

Option 1 0 1 1 1 0

1 0 0 0

Mandatory 1 0 1 0 1

Option 2 1 1 0 1 0

Option 2 1 1 1 1 0

Table 3-3 Reduced fault table for SOP MUX.

3.1.3 Alternate Implementation

In order to investigate an alternate gate level implementation of the multiplexer archi-

tecture, consider the Karnaugh map for the output function Z, shown in Figure 3-4. The

groupings of minterms (l's), indicated by the dashed lines, produce an SOP representation

consistent with the gate level circuit previously analyzed from Figure 3-3.

\SELY1
Y0\ 00 01 ii 10

0
(• 0 tt (*)

1
V

i i

i i i u
Figure 3-4 Karnaugh map for MUX.

34'

To obtain a product-of-sums (POS) implementation of the multiplexer, the maxterms

(O's) are grouped, as indicated with the solid lines. The resulting function for the output

is: Z = (SEL + YO) ■ (SEL +Y1). A gate level realization is shown in Figure 3-5.

YOO -A

Y1D—
SELO-S-

CHA D

B\
CHB ,GJ

Figure 3-5 POS gate level MUX.

A functional analysis can now be performed on the SSL gate level faults for this cir-

cuit. After appropriate reductions for functional equivalence and fault dominance, the

resulting fault table is shown in Table 3-4.

Test Vector £ N
1—I

1

<
o

1

Pi
I

o
1 u

Option 1 0 0 0 0 1

Mandatory 0 0 1 1 0

Option 1 0 1 0 0 1

0 1 1 1

Option 2 1 0 0 0 1

Option 2 1 0 1 0 1

Mandatory 1 1 0 1 0

1 1 1 1

Table 3-4 Reduced fault table for POS MUX.

It should be noted here that a NAND-NAND realization of the SOP circuit and a

NOR-NOR realization of the POS circuit produce the same reduced fault tables shown in

Table 3-3 and Table 3-4, respectively. The reduced set of functional faults only affect the

controlling inputs to the multiplexer channels, which remain unchanged due to conver-

sions to NAND-only or NOR-only circuits using DeMorgan's theorem [41].

35

3.1.4 Generalized Functional Fault Model

Comparison of the reduced fault tables for both the SOP and POS implementations of

the multiplexer can now yield a generalized functional fault model, not tied to a specific

realization. There are no contradictions among the test vectors indicated in the two fault

tables. Selection of the mandatory test vectors from each table provides complete cover-

age of the functional faults from both tables.

A generalized functional fault model is, therefore, presented in Table 3-5. The func-

tional faults have been renamed SOP_A, SOP_B, POS_A, and POS_B to indicate the ori-

gin of their mandatory test vector and the channel of the multiplexer which they corrupt.

Testing based on the indicated vectors should provide complete coverage of gate level SSL

faults for multiple multiplexer implementations.

Test Vector sä
CO

o
N

<
OH o
co

CO
O
OH

n
OH o
CO

PQ

CO
O
OH

0 0 0 0

Mandatory 0 0 1 1 0

Mandatory 0 1 0 0 1

0 1 1 1

1 0 0 0

Mandatory 1 0 1 0 1

Mandatory 1 1 0 1 0

r 1 1 1

Table 3-5 Generalized functional fault model.

3.1.5 Development of a Behavioral Fault Model

Examination of the relationship between the generalized functional fault model and

the initial behavioral description will result in a behavioral fault model for the if-then-else

construct in example IF1. This final step in the abstraction of SSL gate level faults into the

behavioral domain provides the link between lower and higher level fault models, which

has been lacking in previous research.

36

The then clause in example IF1, Z <= YO, corresponds to the upper half of the truth

table in Table 3-5. It can be seen from the fault table, that two of the functional faults,

SOP_A and POS_A, uniquely affect the then clause. The SOP fault table in Table 3-3

shows that SOP_A was derived from the SSL gate level fault G-l. Referring to the gate

level SOP circuit in Figure 3-3, it can be seen that the fault G-l causes undesired activa-

tion of Channel B, while attempting to select Channel A. The functional fault SOP_A,

therefore, causes a corruption of Channel A by ORing it with Channel B in the final stage

of the multiplexer. Behaviorally, this fault can be described as a corruption of the then

clause, resulting in the definition of the behavioral fault Clause-CORRUPT (OR), or spe-

cifically THEN-CORRUPT (OR). The faulty version of the then clause can be modeled by

ORing the right hand side of its assignment statement with the right hand side of the

assignment statement from the else clause, resulting in Z <= YO OR Yl.

The other functional fault affecting the then clause, POS_A, was derived from the SSL

gate level fault F-0, shown in Table 3-4. Referring to the gate level POS circuit in Figure

3-5, fault F-0 also causes undesired activation of Channel B, while attempting to select

Channel A. The functional fault POS_A, therefore, causes a corruption of Channel A by

ANDing it with Channel B in the final stage of the multiplexer. Behaviorally, this fault

also causes a corruption of the then clause, resulting in the definition of the behavioral

fault THEN-CORRUPT (AND). The faulty version of the then clause can be modeled by

ANDing the right hand side of its assignment statement with the right hand side of the

assignment statement from the else clause, resulting in Z <= YO AND Yl.

In a manner identical to the previous discussion, behavioral faults can be defined for

the two functional faults that affect the else clause. The functional fault SOPJB corre-

sponds to the behavioral fault ELSE-CORRUPT (OR). Finally, the functional fault POS_B

produces the behavioral fault ELSE-CORRUPT (AND).

The generalized set of four functional faults derived for example IF1, therefore, result

in the definition of four behavioral faults. These four faults form an initial behavioral fault

model for the control construct if-then-else: Each clause of an if-then-else statement can

be affected by two behavioral faults, Clause-CORRUPT (OR) and Clause-CORRUPT

(AND). The new control fault model is summarized in Figure 3-6.

37

THEN-CORRUPT (OR)
if SEL = '0' then

Z <= Y0 OR Yl;
else

Z <= Yl;
end if;

THEN-CORRUPT (AND)
if SEL = '0' then

Z <= Y0 AND Yl;
else

Z <= Yl;
end if;

ELSE-CORRUPT (OR)
if SEL = x 0' then

Z <= YO;
else

Z <= Yl OR YO;
end if;

ELSE-CORRUPT (AND)
if SEL = x0' then

Z <= YO;
else

Z <= Yl AND YO;
end if;

Figure 3-6 Control fault model for if-then-else.

The test vectors for the new behavioral faults follow directly from the functional faults

from which they were derived. The behavioral fault THEN-CORRUPT (OR) corresponds

to the functional fault SOP_A. From Figure 3-6, the test vector (SEL Yl YO) 010, causes

the then clause of the if statement to be selected. The fault free response assigns the 0

from input YO to the output Z, regardless of the value on input Yl. Under the behavioral

fault THEN-CORRUPT (OR), the then clause assigns YO OR Yl to Z, resulting in Z=l,

contrary to the fault free output. Thus, the test vector 010 constitutes a valid test for the

behavioral fault THEN-CORRUPT (OR).

The test vector for the behavioral fault THEN-CORRUPT (AND) comes from the func-

tional fault POS_A, 001. The fault free behavior again selects the then clause, resulting in

Z=l. Under the fault THEN-CORRUPT (AND), the then clause assigns Y0 AND Yl to Z,

resulting in Z=0. Similarly, the test vector for ELSE-CORRUPT (OR) is 101 and the test

vector for ELSE-CORRUPT (AND) is 110.

3.1.6 Evaluation of the New Behavioral Fault Model

In order to evaluate the effectiveness of the new behavioral fault model, it will be com-

pared to the underlying gate level faults it was meant to encompass. The four test vectors

required to detect the behavioral faults in Figure 3-6 are 001, 010,101, and 110. Apply-

ing these test vectors to the gate level circuits in Figure 3-3 (SOP) and Figure 3-5 (POS)

results in the detection of the SSL gate level faults indicated in Table 3-6. Careful exami-

nation of the results confirms that the behavioral test vectors achieve complete coverage of

SSL gate level faults in either the SOP or POS implementation of the multiplexer.

38

Behavioral fault
Test

Vector
SOP SSL Faults

Detected
POS SSL Faults

Detected

THEN-CORRUPT (OR) 010
A-l,D-l,E-0,F-0,
G-1,H-1,S-1,Z-1

A-1,C-1,D-1,
S-l.Z-1

THEN-CORRUPT (AND) 001
A-0, C-0, D-0,
E-0,S-l,Z-0

A-0,D-0,E-l,F-0,
G-0, S-LZ-0

ELSE-CORRUPT (OR) 101
B-1,C-1,D-1,E-1,

H-1,S-0,Z-1
B-1,E-0,F-1,
G-1,S-0,Z-1

ELSE-CORRUPT (AND) 110
B-0,E-l,F-l,G-0,

H-0, S-0, Z-0
B-0, C-0, D-0,
G-0, S-0, Z-0

Table 3-6 SSL faults detected by behavioral test vectors.

3.1.7 Comparison with Previous Behavioral Fault Models

As was discussed in Chapter 2 of this dissertation, most higher level fault models

address the control construct if-then-else. The common fault model proposed by previous

research is stuck-then/stuck-else. This fault model has been used by Armstrong [7][8][9]

[13][58][69], Ghosh [18][27], Riesgo [60], and Chen [20][54]. All these researchers also

use stuck-data faults on their non-control signals, so for completeness, these will be con-

sidered in combination with the control faults. Armstrong and Cho [22] also proposed the

Behavioral Stuck-at (BSA) fault, combining stuck-data and stuck-control faults by defin-

ing stuck-at faults for unnamed signals corresponding to the conditional expressions of an

if statement. All these behavioral fault models use the same fault technique, applying

stuck-at faults to the data and control inputs of the circuit.

The effectiveness of the stuck-data and stuck-control fault models will now be evalu-

ated by applying them to the behavioral description in example IF1. Possible test vector

sets will be developed and their ability to detect SSL gate level faults will be compared.

There are three data signals (Y0, Yl, Z) and one control signal (SEL) in the example.

Applying the stuck-data and stuck-control fault models implies a stuck-at-0 and stuck-at-1

fault for each signal, resulting in the eight behavioral faults shown in Table 3-7. Note that

the two control faults SEL-0 and SEL-1 are equivalent to stuck-then and stuck-else, respec-

tively.

39

Test Vector sä o
N

o
1

o
><

1 o
o

i 1 o
N

^-1
1

N

o
sä
00

Bl oo

Option 2 0 0 0 0 1 1

Options 1 & 6 0 0 1 1 0 0 0

Options 2 &6 0 1 0 0 1 1 1

Option 1 0 1 1 1 0 0

Option 4 1 0 0 0 1 1

Options 4 & 5 1 0 1 0 1 1 1

Options 3 & 5 1 1 0 1 0 0 0

Option 3 1 1 1 1 0 0

Table 3-7 Stuck-data and stuck-control behavioral faults.

None of the test vectors in Table 3-7 are mandatory; each behavioral fault has at least

two possible tests that detect it. For completeness, all possible combinations of test vec-

tors will be examined. There are 26 = 64 possible test vector sets, but due to overlapping

coverage among test vectors, only 49 of them are unique.

First, consider the effectiveness of a test vector set of size four at detection of gate

level SSL faults. The test vectors for Set 1 are listed in Table 3-8 along with the behavioral

faults from Table 3-7 that they detect. As expected, all behavioral faults are detected.

Also indicated in Table 3-8 are the SOP circuit gate level SSL faults, from Figure 3-3 and

Table 3-1, which are detected by each of the test vectors. Examination of the gate level

fault coverage shows that the SOP SSL faults C-l, F-0, and G-l are left undetected by test

vector Set 1.

Test
Vector

Behavioral Faults
Detected

SOP Gate Level SSL Faults
Detected

Setl

000 Y0-1,Z-1 A-1,D-1,H-1,Z-1

001 Y0-0, Z-0, SEL-1 A-0, C-0, D-0, E-0, S-1.Z-0

100 Yl-l.Z-1 B-1,D-1,H-1,Z-1

110 Yl-0, Z-0, SEL-0 B-0, E-l, F-l, G-0, H-0, S-0, Z-0

Table 3-8 Faults detected by test vector Set 1.

40

Similar analysis shows that any test vector set that does not contain the test vector 101

will fail to detect the gate level fault C-l. Likewise, any test vector set that does not con-

tain the test vector 010 will fail to detect the gate level faults F-0 and G-l. Of the nine test

vector sets of size four, only four sets contain both test vectors 010 and 101. Coverage

does not improve greatly with test vector set size. Half of the 24 sets containing five test

vectors do not contain both test vectors necessary to ensure complete gate level fault cov-

erage. Even when the size of the test vector set is increased to six, there are still seven sets

out of a possible 16 that fail to detect all gate level faults.

Similar results are obtained when the previous fault models are compared to a POS

gate level circuit. A large number of possible test vector sets do not contain the test vec-

tors necessary to ensure complete gate level fault coverage. Hence, the new behavioral

fault model, based on functional analysis of control constructs, gives improved gate level

fault coverage compared to the previous stuck-thenlstuck-else fault model.

3.1.8 Expansion of the Fault Model

The previous example involved selection of one of two options, hence its implementa-

tion with a 2-to-l multiplexer. Selection from a larger set of input options must now be

examined and the effects on the behavioral fault model developed. The if-then-else. con-

struct contains an optional elsif clause to allow selection based on multiple conditions.

Multiple eta/clauses can be used to allow selection among any number of inputs.

if SEL = "00" then
Z <= Y0;

elsif SEL.= "01" then
Z <= Yl;

elsif SEL = "10" then
Z <= Y2;

elsif SEL = "11" then
Z <= Y3;

end i f;

Figure 3-7 Behavioral description for example IF2.

Example IF2, in Figure 3-7, selects one of four inputs (Y3, Y2, Yl, YO) for assignment

to a single output (Z), based on the value of two control bits (SEL). For example, the con-

trol bits SEL = "10" represent the binary encoding for 2, hence input Y2 is selected for

41

assignment to Z Note the lack of a final else clause, due to complete elaboration of values

for SEL in the if-elsif clauses. Synthesis of example IF2 by AutoLogic II results in the

expected 4-to-l multiplexer architecture shown in Figure 3-8.

YOO

YIO

Y2 0

Y3 0

SEL(O) O

SEL(l) O

OZ

Figure 3-8 Synthesized hardware for example IF2.

3.1.8.1 Functional Analysis

In order to perform a functional analysis similar to example IF1, a gate level imple-

mentation of the entity MUX41 is needed. Mentor Graphics' Design Architect was used

to provide the gate level detail shown in Figure 3-9. Note that the resulting SOP gate level

structure agrees with the functional block diagram of the 4-line-to-l-line data selector/

multiplexer found in The TTL Data Book [67].

Y0O-

YIO

Y2 0-

Y3 0

SEL(O) [3>§Q.\oH

SEL(l) O^^*^

CHA \M_

B
CHB

CHC

CHD V

-OZ

Figure 3-9 Gate level circuit for example IF2.

The gate level circuit contains 18 distinct internal lines (labeled E through V) in addi-

tion to the six inputs (A, B, C, D, SO, SI), and one output (Z) for a total of 25 logical lines.

42

Again, applying the SSL fault model where each line can be either stuck-at-0 or stuck-at-1,

there are a total of 50 gate level SSL faults in the circuit. The 26 possible input combina-

tions result in a 64 by 50 fault table which will not be reproduced here. Reductions in the

fault table due to functional equivalence and fault dominance are listed in Table 3-9.

Faults Remarks Faults Remarks

A-1,I-0,J-1,P-1 Dominate N-l K-0, L-0, M-0 Equivalent to A-0

B-1,M-1,Z-1 Dominate L-l N-0, O-0, P-0 Equivalent to B-0

C-l,V-l Dominate U-l Q-0, R-0, S-0 Equivalent to C-0

D-l, S-l Dominate R-l T-0, U-0, V-0 Equivalent to D-0

1-1, J-0, Z-0 Dominate B-0

F-0,G-l Dominate Q-l

F-l,G-0 Dominate C-0

Table 3-9 Fault reductions for example IF2.

The gate level faults of primary interest are those controlling the switching of the mul-

tiplexer channels, the inputs to the channel AND gates. Activating the external control line

fault SEL(0)-0 has the effect of simultaneously activating the faults L-l, N-0, R-l, and U-0.

Each of these gate level faults corresponds to, or is equivalent to, an undominated func-

tional fault. Testing for each of these functional faults provides complete test coverage for

the fault SEL(0)-0. Combinations of undominated faults for each of the external control

line faults are shown in Table 3-10.

Faults Covering Faults

S0-0,H-l B-0 D-0 L-l R-l

S0-1, H-0 A-0 C-0 N-l U-l

S1-0,E-1 C-0 D-0 K-l 0-1

Sl-l,E-0 A-0 B-0 Q-l T-l

Table 3-10 Covering faults for external control line faults.

The resulting reduced fault set for example IF2 contains three distinct faults for each

of the four channels of the multiplexer, for a total of 12 functional faults. The set of func-

43

tional faults is summarized in Table 3-11 along with the associated test vectors; don't care

values are indicated by an X. For ease of comparison with the remarks column, the vectors

are labeled with the multiplexer inputs (SI SO D C B A). This notation for test vectors is

equivalent to the external input combination (SEL Y3 Y2 Yl YO).

Fault Remarks
Test Vector

(SI SO DCBA)

A-0 CHA = 0 00 XXXI

B-0 CHB = 0 01 XXIX

C-0 CHC = 0 10 X1XX

D-0 CHD = 0 11 1XXX

N-l CHA = CHA OR CHB 00 XX10

Q-l CHA = CHA OR CHC 00 X1X0

L-l CHB = CHB OR CHA 01 XX01

T-l CHB = CHB OR CHD 01 1X0X

K-l CHC = CHC OR CHA 10 X0X1

U-l CHC = CHC OR CHD 10 10XX

0-1 CHD = CHD OR CHB 11 0X1X

R-l CHD = CHD OR CHC 11 01XX

Table 3-11 Reduced functional faults for example IF2.

Examination of the remarks column of Table 3-11, indicates that each channel can be

corrupted by two different sources. Each of a channel's logically adjacent neighbors can

cause a corruption, where logical adjacency means that the combination of control inputs

(SI SO) differ by only one bit. For example, Channel A is selected by control inputs 0 0

and is, therefore, logically adjacent to Channel B (01) and Channel C (10).

Further examination of the test vectors associated with any pair of corruptions shows

that, due to the don't cares, these vectors are not inconsistent with each other. It is possi-

ble to chose a single test vector which will detect both corruptions of a channel by its adja-

cent neighbors. Using the terminology of Hansen and Hayes [29], a compatible fault set is

defined as a set of functional faults that can be detected by a single test. Hence, the two

corruptions of a channel by its logically adjacent neighbors form a compatible fault set.

44

3.1.8.2 Generalized Functional Fault Model

Comparison of the reduced functional faults for the SOP 4-to-l multiplexer with a cor-

responding set of functional faults for a POS implementation yields a generalized func-

tional fault model, not tied to a specific realization. Recall from Sections 3.1.4 and 3.1.5

that the channel corruptions originating in an SOP realization produced an ORing of adja-

cent channels, while a POS circuit caused an ANDing of those channels. A generalized set

of functional faults and their corresponding test vectors are presented in Table 3-12. Note

the combination of test vectors to form compatible fault sets.

Functional Fault Remarks
Test Vector

(SI SOD CB A)

CHA-CORRUPT (by CHB)(AND) CHA = CHA AND CHB
00 X001

CHA-CORRUPT (by CHC)(AND) CHA = CHA AND CHC

CHB-CORRUPT (by CHA)(AND) CHB = CHB AND CHA
01 0X10

CHB-CORRUPT (by CHD)(AND) CHB = CHB AND CHD

CHC-CORRUPT (by CHA)(AND) CHC = CHC AND CHA
10 01X0

CHC-CORRUPT (by CHD)(AND) CHC = CHC AND CHD

CHD-CORRUPT (by CHB)(AND) CHD = CHD AND CHB
11 100X

CHD-CORRUPT (by CHC)(AND) CHD = CHD AND CHC

CHA-CORRUPT (by CHB)(OR) CHA = CHA OR CHB
00 X110

CHA-CORRUPT (by CHC)(OR) CHA = CHA OR CHC

CHB-CORRUPT (by CHA)(OR) CHB = CHB OR CHA
01 1X01

CHB-CORRUPT (by CHD)(OR) CHB = CHB OR CHD

CHC-CORRUPT (by CHA)(OR) CHC = CHC OR CHA
10 10X1

CHC-CORRUPT (by CHD)(OR) CHC = CHC OR CHD

CHD-CORRUPT (by CHB)(OR) CHD = CHD OR CHB
11 011X

CHD-CORRUPT (by CHC)(OR) CHD = CHD OR CHC

Table 3-12 Generalized functional faults for example IF2.

45

3.1.8.3 Behavioral Fault Model

Examination of the relationship between the generalized set of functional faults and

the initial behavioral description for example IF2 will result in a behavioral fault model for

the expanded if-then-else construct.

The first then clause, Z <= YO, is activated when SEL="00", corresponding to

Channel A of the multiplexer. This clause will be referred to as the 00-THEN clause.

From the functional analysis of the multiplexer in Section 3.1.8.2, Channel A was affected

by four functional faults, CHA-CORRUPT (by CHB)(AND), CHA-CORRUPT (by

CHCXAND), CHA-CORRUPT (by CHB)(OR), and CHA-CORRUPT (by CHC)(OR).

These faults can be mapped into the behavioral domain just like those from example IF1.

The functional fault CHA-CORRUPT (by CHB)(AND) represents corruption of Chan-

nel A by Channel B, which maps directly to the behavioral fault 00-THEN-CORRUPT (by

01)(AND). The faulty version of the then clause can be represented by ANDing the right

hand side of the assignment statement corresponding to Channel A with the right hand

side of the assignment statement from Channel B. The resulting faulty version of the

assignment statement for the 00-THEN clause becomes Z <= YO AND Yl. Likewise,

the corruption of Channel A by Channel C results in the definition of the behavioral fault

00-THEN-CORRUPT (by 10)(AND).

The (OR) corruptions of the 00-THEN clause are formed in a similar manner. Finally,

the remaining then clauses each have four behavioral faults, corresponding to their respec-

tive channels. A subset of the resulting 16 behavioral faults, four for each of the four

clauses/channels, is presented in Figure 3-10.

00-THEN-CORRUPT (by 01)(OR)
if SEL = "00" then

Z <= YO OR Yl;
elsif SEL = "01" then

Z <= Yl;
elsif SEL = "10" then

Z <= Y2;
elsif SEL = "11" then

Z <= Y3;
end if;

00-THEN-CORRUPT (by 10)(OR)
if SEL = "00" then

Z <= Y0 OR Y2;
elsif SEL = "01'^ then

Z <= Yl;
elsif SEL = "10" then

Z <= Y2;
elsif SEL = "11" then

Z <= Y3;
end i f;

Figure 3-10 Control fault model for expanded if-then-else.

46

01-THEN-CORRUPT (by 00)(OR)
if SEL = "00" then

Z <= YO;
elsif SEL = "01" then

Z <= Yl OR YO;
elsif SEL = "10" then

Z <= Y2;
elsif SEL = "11" then

Z <= Y3;
end if;

01-THEN-CORRUPT (by ll)(OR)
if SEL = "00" then

Z <= YO;
elsif SEL = "01" then

Z <= Yl OR Y3;
elsif SEL = "10" then

Z <= Y2;
elsif SEL = "11" then

Z <= Y3;
end if;

Figure 3-10 Control fault model for expanded if-then-else.

3.1.8.4 Evaluation of the Behavioral Fault Model

To evaluate the effectiveness of the behavioral fault model for the expanded if-then-

else construct, it will be compared to the underlying SSL gate level faults it was meant to

encompass. Test vectors will be determined for each behavioral fault and the gate level

fault coverage of these test vectors will be examined.

Testing for the first behavioral fault from Figure 3-10, 00-THEN-CORRUPT (by

01)(OR), requires activation of the first then clause with SEL= "00". The fault free behav-

ior^ <= Y0, must be compared to the faulty behavior, Z <= Y0 OR Yl. Setting Y0=0

will result in Z=0 for an uncorrupted channel. If Yl=l, then a corruption of the channel

by the adjacent channel, 01-THEN, will result in Z=l, thus detecting the fault. Since the

other two clauses do not cause any corruptions with this fault, the other inputs (Y3, Y2) can

remain don't cares. The resulting test vector (SEL Y3 Y2 Yl YO) is 00XX10. By similar

analysis, the other (OR) corruption fault for this clause, 00-THEN-CORRUPT (by

10)(OR), requires the test vector 00X1X0.

Recall that the functional faults for Channel-CORRUPT formed a compatible fault set,

one that could be detected by a single test vector. Likewise, the two Clause-CORRUPT

behavioral faults should also form a compatible fault set. The previous analysis deter-

mined that the two test vectors necessary to detect the two Clause-CORRUPT (OR) faults

for the 00-THEN clause were 00XX10 and 00X1X0. Comparison of the two test vectors

confirms that they are, in fact, compatible. Elimination of don't cares for Y2 and Yl pro-

duces a combined test vector 00X110. The behavioral faults and their corresponding test

vectors are summarized in Table 3-13.

47

Behavioral Fault
Test Vector

(SEL Y3 Y2 Yl YO)

00-THEN-CORRUPT (by 01)(AND)
00 X001

00-THEN-CORRUPT (by 10)(AND)

01-THEN-CORRUPT (by 00)(AND)
01 0X10

01-THEN-CORRUPT (by 11)(AND)

10-THEN-CORRUPT (by 00)(AND)
10 01X0

10-THEN-CORRUPT (by 11)(AND)

11-THEN-CORRUPT (by 01)(AND)
11 100X

11-THEN-CORRUPT (by 10)(AND)

00-THEN-CORRUPT (by 01)(OR)
00 X110

00-THEN-CORRUPT (by 10)(OR)

01-THEN-CORRUPT (by 00)(OR)
01 1X01

01-THEN-CORRUPT (by ll)(OR)

10-THEN-CORRUPT (by 00)(OR)
10 10X1

10-THEN-CORRUPT (by ll)(OR)

11-THEN-CORRUPT (by 01)(OR)
11 011X

11-THEN-CORRUPT (by 10)(OR)

Table 3-13 Behavioral test vectors for example IF2.

The behavioral test vectors from Table 3-13 provide complete SSL gate level fault cov-

erage for both SOP and POS implementations of example IF2. The results confirm that

the control fault model for the expanded if-then-else construct is a valid abstraction into

the behavioral domain of the original gate level SSL faults.

3.1.9 Summary

A new behavioral fault model has been developed for the control construct if-then-

else. This new control fault model specifies that each clause of an if-then-else statement

can be affected by two different types of faults, Clause-CORRUPT (OR) and Clause-

CORRUPT (AND). The actual number of Clause-CORRUPT faults depends on the size of

the model and the resulting number of logical adjacencies between clauses.

48

In the VHDL behavioral description, a Clause-CORRUPT (OR) fault is represented by

considering the effect of the corrupting clause. The right hand side of the assignment

statement for the corrupted clause is ORed with the right hand side of the assignment

statement for the corrupting clause. A test vector for this fault is determined by setting the

fault free behavior of the uncorrupted clause to '0\ The corrupting clause is then set to

'1', thus producing a conflict with the fault free behavior. Multiple Clause-CORRUPT

(OR) faults may affect the same clause, due to logical adjacencies between clauses. These

faults can form a compatible fault set and their test vectors can, therefore, be combined to

produce a single test for the corruption of that clause.

The faulty operation of a clause due to a Clause-CORRUPT (AND) fault is represented

in a similar manner. The right hand side of the assignment statement for the corrupted

clause is ANDed with the right hand side of the assignment statement for the corrupting

clause. A test vector forces the fault free behavior of the uncorrupted clause to produce an

output of 7', while the corrupting clause is set to produce an output of '0'.

Test vectors generated from these behavioral faults can be applied to gate level imple-

mentations of the behavioral descriptions. Examples have shown the ability of these test

vectors to detect underlying gate level SSL faults in synthesized circuits. Analysis has also

shown that the test vectors from this new control fault model do provide improved gate

level fault coverage over previous behavioral fault models.

3.2 CASE
The other VHDL control construct closely related to if-then-else is the case statement.

The case statement allows selection of statements to execute depending on the value of a

selection expression. Multiple when clauses can be used to allow selection among any

number of choices. All choices must be distinct and all values must be represented in the

choice lists, or the special choice others must be included as the last alternative.

The case statement is really just an alternative representation of the if-then-else con-

struct with more restrictions. Use of if-then-else versus case is usually just a matter of

programming style; any case statement can be rewritten as an equivalent if-then-else. The

example in Figure 3-11 shows two equivalent behavioral descriptions, one using an if

statement and the other using a case statement. Note that the when clauses perform the

same function for the case statement as the then clauses in the //"statement. The when oth-

49

ers clause ensures complete elaboration of choices for the case statement, just like the else

clause for the zj statement.

case SEL is
if SEL = "00" then when "00" =>

Z <= Y0; Z <= Y0;
elsif SEL = "01" then when "01" =>

Z <= Yl; Z <= Yl;
else when others =>

Z <= Y2; Z <= Y2;
end if; end case;

Figure 3-11 Equivalent if-then-else and case statements.

In Appendix E Armstrong and Gray and Mentor Graphics demonstrate the link

between the case statement and the functional building block of a multiplexer. These

examples reinforce the similarities between the control constructs if-then-else and case.

3.2.1 Application of the Control Fault Model

The simple example, CASE1, from Figure 3-11 will be used to demonstrate the appli-

cation of the new control fault model to the case construct. The fault model specifies that

each clause of an if-then-else statement, and hence of a case statement, can be affected by

two different types of faults, Clause-CORRUPT(OR) and Clause-CORRUPT (AND). The

actual number of Clause-CORRUPT faults depends on the size of the model and the

resulting number of logical adjacencies between clauses. Clause-CORRUPT faults are

now designated WHEN-CORRUPT faults, identified by the appropriate choice as well as

the corrupting clause.

In order to specify the WHEN-CORRUPT faults, the logical adjacencies between

clauses must be identified. Figure 3-12 provides a graphical representation of the logical

adjacencies between the clauses for example CASE1. The when others clause defines the

behavior for all choices not explicitly specified in previous clauses. Figure 3-12 indicates

that each clause of the case statement is adjacent to two other clauses. Hence, there are

two WHEN-CORRUPT (OR) faults and two WHEN-CORRUPT (AND) faults for each of

the three clauses in the example.

50

SEL(l)

0 1

SEL(O)

0 YO

Y2

1 Yl

Z

Figure 3-12 Logical adjacencies among clauses.

The when others clause from example CASE1 corresponds to the control input combi-

nation SEL="1X". In order to specify an adjacency between the when others clause and

another clause, the don't care must be eliminated. For example, the clause when "00"

should be logically adjacent to the clauses when "01" and when "10". Though the clause

when "10" does not explicitly exist, it is created by the designation of the don't care for

the when others clause as SEL(0)=0. The resulting adjancies and WHEN-CORRUPT

(AND) faults are shown in Figure 3-13. An additional six behavioral faults for WHEN-

CORRUPT (OR) faults are determined in a similar manner.

WHEN-00-CORRUPT (by 01 HAND)
case SEL is

when "00" =>
Z <= YO AND Yl;

when "01" =>
Z <= Yl;

when others =>
Z <= Y2;

end case;

WHEN-01-CORRUPT (by 00)(AND)
case SEL is

when "00" =>
Z <= Y0;

when "01" =>
Z <= Yl AND YO;

when others =>
Z <= Y2;

end case;

WHEN-00-CORRUPT (by 10)(AND)
case SEL is

when "00" =>
Z <= Y0 AND Y2;

when "01" =>
Z <= Yl;

when others =>
Z <= Y2;

end case;

WHEN-01-CORRUPT (by 11)(AND)
case SEL is

when "00" =>
Z <= Y0;

when "01" =>
Z <= Yl AND Y2;

when others =>
Z <= Y2;

end case;

Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1.

51

WHEN-10-CORRUPT(by 00)(AND)
case SEL is

when "00" =>
Z <= YO;

. when "01" =>
Z <= Yl;

when others =>
Z <= Y2 AND YO;

end case;

WHEN-11-CORRUPT (by 01)(AND)
case SEL is

when "00" =>
Z <= YO;

when "01" =>
Z <= Yl;

when others =>
Z <= Y2 AND Yl;

end case;

Figure 3-13 WHEN-CORRUPT (AND) faults for example CASE1.

Test vectors for the behavioral faults are derived using the methodology described in

Section 3.1.9. Recall that vectors derived from corruptions to the same channel can form a

compatible fault set with a single test. The resulting test vectors are listed in Table 3-14.

Behavioral Fault
Test Vector

(SEL Y2 Yl YO)

WHEN-00-CORRUPT (by 01)(AND)
00 001

WHEN-00-CORRUPT (by 10)(AND)

WHEN-01-CORRUPT (by 00)(AND)
01 010

WHEN-01-CORRUPT (by 11)(AND)

WHEN-10-CORRUPT (by 00)(AND) 10 1X0

WHEN-11-CORRUPT (by 01)(AND) 11 10X

WHEN-00-CORRUPT (by 01)(OR)
00 110

WHEN-00-CORRUPT (by 10)(OR)

WHEN-01-CORRUPT (by 00)(OR)
01 101

WHEN-01-CORRUPT (by ll)(OR)

WHEN-10-CORRUPT (by 00)(OR) 10 0X1

WHEN-11-CORRUPT (by 01)(OR) 11 01X

Table 3-14 Behavioral test vectors for example CASE1.

3.2.2 Evaluation of the Fault Model

The VHDL behavioral description for example CASE1 was synthesized using Mentor

Graphics' AutoLogic II. The resulting multiplexer architecture is shown in Figure 3-14.

52

YOO

YIO

SEL(0)O

Y20

SEL(1)0

OZ

Figure 3-14 Synthesized Structural for example CASE1.

Fault simulations were then performed on the gate level circuit for Structure 1 using the

behavioral test vectors shown in WAVES format in Figure 3-15.

% SEL Y2 Yl YO Z : time
% Clause-CORRUPT(AND)
00 001 1
01 010 1
10 1X0 1
11 10X 1

500 ns
500 ns
500 ns
500 ns

% Clause-CORRUPT(OR)
00 110 0
01 101 0
10 0X1 0
11 01X 0

500 ns
500 ns
500 ns
500 ns

Figure 3-15 WAVES test vectors for example CASE1.

According to MIL-STD 883D [52], Structural contains 34 unique gate level SSL

faults. Simulations are performed for each of the gate level faults and the fault is reported

as detected when the circuit's output differs from the expected output. All SSL faults were

detected by the behavioral test vectors in the multiplexer implementation of example

CASE1. The fault coverage was next evaluated for an alternate gate level realization.

AutoLogic II was again used to synthesize and then optimize the VHDL behavioral

description for example CASE1. The resulting circuit for Structure2 is shown in Figure 3-

16. Note that the circuit contains a mix of NAND, OR, and NOT gates and does not

directly relate to any of the circuits analyzed in the development of the behavioral fault

models for the control constructs if-then-else or case.

53

Oz

Figure 3-16 Synthesized Structure2 for example CASE1.

Fault simulations were performed on the gate level circuit using the behavioral test

vectors from Figure 3-15. The resulting fault coverage as a function of the input test vec-

tors is shown in Figure 3-17. Though the actual shape of the graph may vary with the

order of the application of the test vectors, the resulting fault coverage will be the same.

Fault coverage for Structure2 was 34/34 = 100%, complete SSL gate level fault coverage.

Coverage (%)

100

90 -

80 -

70 -

60 -

50

40 -

30 -

20 -

10

Number of Test Vectors

Figure 3-17 Fault coverage for Structure2 of example CASE1.

3.2.3 Comparison with Previous Behavioral Fault Models

As was discussed in Chapter 2 of this dissertation, most higher level fault models also

address the control construct case. However, contrary to if-then-else where there was a

general consensus, varying fault models are proposed for the case statement. Armstrong

[7][8][9][13][58][69] proposes the dead clause fault in which each clause in a case state-

54

ment fails to a no-operation. The dead clause fault model is also used by Chen [20][54].

Armstrong and Cho [22] later define the Behavioral Stuck-open (BSO) fault, combining

assignment control faults and dead clause faults. In a BSO fault the value of the source

expression of an assignment statement is not correctly transferred to its target.

Since Ghosh [18][27] bases his fault models on the programming language C, instead

of VHDL, the equivalent to the case statement is the switch (Id). The corresponding fault

model states that the switch may select either the cases corresponding to the lower or

upper extremes of the switch identifier's value system, all, or none of the specified cases.

Finally, Riesgo [60] proposes a fault model for case-is-when in which the expression

which controls the case statement may be stuck-at-" all possible values."

Recall that the new behavioral fault model for the case statement was based on the fact

that if-then-else and case represent similar selection activities leading to multiplexer archi-

tectures. Any case statement can be rewritten as an equivalent if-then-else, therefore, the

faults models for the equivalent statements should be the same. Only Riesgo proposes a

fault model for the case statement which is equivalent to the one proposed for if-then-else.

The equivalent stuck-control fault model is stuck-then/stuck-else, which was shown to

have deficiencies in detecting gate level faults by the analysis in Section 3.1.7.

Ghosh's fault model is based on multiple stuck-at faults on the control inputs resulting

in only the upper and lower extremes of the switch (Id) statement. Individual stuck-at

faults are not considered on control lines, causing intermediate values to be neglected.

Hence, faults developed for a switch statement, will not be consistent with those developed

for an equivalent if-then-else. Also, the hardware analogy, that the decoder for Id may fail

such that a logic 1 is always asserted at all of the output ports, would correspond to the

unlikely scenario of all the channels of the multiplexer being simultaneously stuck-on.

The dead clause and BSO faults proposed by Armstrong represent the farthest diver-

gence from those proposed for if-then-else. This occurs even though Armstrong and Gray

[10] demonstrate the similarities between if-then-else and case in their discussion of hard-

ware implementation of VHDL constructs. The faulty version of a clause is represented

by replacing the right hand side (source) of an assignment statement with the left hand

side (target). For example, an assignment statement from example CASE2, Z <= Yl,

55

would be faulted as Z <= Z. The result is inconsistent with the faults that would be

defined for an equivalent if-then-else construct.

3.3 Conclusions

A new behavioral fault model has been developed for the control constructs if-then-

else and case. The new fault model is more closely linked to underlying hardware by

combining VHDL synthesis information with the industry standard single-stuck-line (SSL)

fault model. Each clause of an if-then-else or case statement can be affected by 2 different

types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND). The actual num-

ber of Clause-CORRUPT faults depends on the size of the model and the resulting number

of logical adjacencies between clauses.

Test vectors derived from these control faults can be applied to gate level implementa-

tions of the VHDL behavioral descriptions. Examples have shown the ability of these test

vectors to detect underlying gate level SSL faults in synthesized circuits. Because the

behavioral faults were derived from a functional analysis of the selection activity of multi-

plexers, they provide complete gate level fault coverage over a broad range of implementa-

tions. Detailed analysis has shown that the test vectors from this new control fault model

do provide improved gate level fault coverage over previous behavioral fault models.

The new control fault model developed in this chapter provides two improvements

over previous behavioral fault models. First, detection of low level SSL faults is improved

by linking the selection activity of control constructs to the functional building block of a

multiplexer. Finally, the control constructs if-then-else and case have been brought

together in a single consistent fault model, where each clause can be affected by a some

number of Clause-CORRUPT'faults.

Chapter 4

Relational Operators

The only relational operator used thus far has been the "=" as part of the condition

which controlled the */statement. The inclusion of other relational operators such as ">"

and "<" implies the use of a comparator module in hardware. The comparison function

will first be analyzed, using the techniques developed for the multiplexing function, in

order to determine a generalized set of functional faults. These faults will then be

abstracted into the behavioral domain by examination of the relationship between the

functional faults and the behavior of the relational operators.

Because of similarities in their functions, the predefined VHDL relational operators

from Table 1-2 can be divided into two groups for analysis. The relation A > B (GT) is the

same as B < A (LT), hence only one of these operators needs to be analyzed. The relation

A > B (GT) is the opposite of A <= B (LE); the hardware need only differ by a single

inverter. Likewise A < B (LT) is related to A >= B (GE). Therefore, the set of generalized

functional faults developed for the GT function can be used as a basis for all of the above

relations (GT, LT, GE, LE). The same argument implies that the relation A = B (EQ) can

be analyzed to find functional faults which also apply to the function A MB (NE).

4.1 Greater Than (GT)

Several common implementations of the GT function were first analyzed to assess the

"worst case" for functional faults. Abstraction of these faults into the behavioral domain

should provide complete gate level SSL fault coverage over a broad range of possible real-

izations of the comparison functions. Gate level circuits were examined for 2-level (SOP

and POS), factored, and cascade implementations.

A comparison of functional faults indicates that the test vectors required to cover all

gate level faults in either the factored or cascade implementations are a subset of the vec-

tors for the 2-level realizations. Furthermore, a common set of test vectors provides com-

plete gate level fault coverage in either the SOP or POS circuits. Therefore, just like the

analysis of the multiplexing function, the SOP and POS implementations will again be

used to form a generalized set of functional faults for the GT function.

56

57

4.1.1 Generalized Functional Faults

The SOP and POS implementations of the 2-bit A > B function can be obtained from

the analysis of the Karnaugh map shown in Figure 4-1.

\AiAo
Bi B<\ 00 >iDo

00

01

11

^

K

^

01 11 , 10

11
\ _ :i

0

75

i 1»

\

0

GT

I1)
1—r

—r
l ;

©
0

Figure 4-1 Karnaugh map for 2-bit GT function.

The groupings of minterms are shown with dashed lines and produce the SOP function

GT = AlBl +A0B1B0 + AlA0BQ. A functional analysis of the gate level SOP circuit

produces a reduced set of functional faults shown in Table 4-1. Test vectors are shown in

base-4 for ease of magnitude comparison of A and B.

Fault
Faulty
Output

Test Vectors
(AB)

G-l 1 00

G-0 0 10

1-1 1 11

H-l 1 12

E-0 0 20,21,31

K-l 1 22

J-0 0 32

L-l 1 33

Table 4-1 Reduced functional faults for SOP GT.

58

Note that a faulty output of 0 occurs when A is in fact greater than B (e.g. 32), yet the gate

level circuit fails to give a proper indication of GT = 1. Likewise a faulty output of 1

occurs when A is not greater than B (e.g. 22).

Grouping of the maxterms in the Karnaugh map in Figure 4-1, shown with solid lines,

produces the POS function GT = (Al + A0)(Al + B~l)(Al + B~0)(A0 + i^)(Z^ + B~0). A

functional analysis of the gate level POS circuit produces the reduced set of functional

faults shown in Table 4-2.

Fault
Faulty
Output

Test Vectors

E-l 1 00

F-0 0 10

1-1 1 11

G-l 1 12

E-0 0 20,21

1-0 0 21,31

K-l 1 22

G-0 0 32

M-1 1 33

Table 4-2 Reduced functional faults for POS GT.

Examination of the two sets of functional faults indicates that the seven mandatory test

vectors are the same for both the SOP and POS circuits. Note that a single input combina-

tion (21) will detect the remaining faults in either implementation. Thus, a set of eight

generalized functional faults and test vectors is produced.

4.1.2 Classification of Functional Faults

In order to aid in the analysis and classification of the generalized set of functional

faults, an alternate representation is shown in Figure 4-2. The columns of the figure indi-

cate the base-4 value of input A, while the rows specify the value of B. The heavy line cut-

ting through the figure represents the GT function; the shaded area above the line indicates

59

A is greater than B. The diagonal just below the heavy line indicates where A and B are

equal.

A

0 1 2 3

B

0 I m

1 i m

2 ii i m

3 i

Figure 4-2 Fault classes for 2-bit GT function.

The roman numerals in Figure 4-2 indicate the location of the test vectors for the eight

functional faults derived in Section 4.1.1. Class I has been assigned to the test vectors

where A and B are equal (00, 11, 22, 33). For this class, the faulty function gives an erro-

neous TRUE for the relation A > B. The other fault that produces an erroneous TRUE (12)

has been designated as Class II. In this class, A is less than, rather than equal to, B.

Finally, Class III has been assigned to the test vectors where A is in fact greater than B (10,

21, 32), but the faulty function gives an erroneous FALSE.

Classes I and III follow easily identifiable patterns, however, Class II is still somewhat

vague. To gain additional insight into the make-up of Class II and to ensure that the initial

classification of functional faults is valid, a functional analysis was performed on a 3-bit

GT function. The resulting functional faults are classified in Figure 4-3.

As expected, the functional faults for Classes I and III follow the same patterns as the

2-bit case. The octal test vectors in Group II (12, 34, 56) provide the additional informa-

tion necessary to identify a pattern. Note that in both Classes II and III, A and B differ by

onlyi; A+l = BorA = B + l respectively (+indicates addition). By induction,

these fault classifications can now be generalized for an n-bit GT function. The resulting

functional faults and fault classes are presented in Table 4-3.

60

A

0 1 2 3 4 5 6 7

B

0 I m

1 i ni

2 ii i m

3 i m

4 n i in

5 i in

6 ii i m

7 i

Figure 4-3 Fault classes for 3-bit GT function.

Class
Faulty
Output

A vs. B
#Test

Vectors

I TRUE A = B 2n

II TRUE
A+1=B
(A odd)

2n-l. j

III FALSE A = B + 1 2n-l

Table 4-3 Functional faults for n-bit GT.

4.1.3 Behavioral Fault Model

Now that the three classes of functional faults have been identified, they can be

abstracted into the behavioral domain by examining the relationship between the faults

and the original VHDL operator (>). Appendix C gives the details of usage for relational

operators in expressions, which form the conditions for the «/statement. The expressions

yield Boolean results, which control the selection of the appropriate clause. In order to

model a fault in a relational operator, the controlling expression needs to be modified such

that it produces an erroneous result (TRUE or FALSE) corresponding to that fault.

61

First consider the four Class I faults for a 2-bit GT function. The fault-free controlling

condition can be written as:

if A > B then

Class I faults produce an erroneous TRUE when A = B, so the initial inclination would

be to simply modify the condition to read:

if (A > B) OR (A = B) then

However, this has the effect of producing a single behavioral fault which can be detected

by any one of the four required test vectors. What is needed is a distinct behavioral fault

for each test vector. Hence, the first Class I behavioral fault can be rewritten as:

if (A > B) OR ((A = B) AND (A = "00")) then

The other three Class I faults are modeled by enumeration of the appropriate values for A.

Class II faults also produce an erroneous TRUE, this time when A + 1 = B (A odd).

Hence the single Class II fault for the 2-bit GT function can be modeled as:

if (A > B) OR ((A + 1 = B) AND (A = "01")) then

Finally, Class HI faults produce an erroneous FALSE when A = B + 1. To model

these faults in the behavioral domain, the original expression can be ANDed with 0 for the

appropriate input combination. The NAND function produces the required behavior, giv-

ing the following model for the first Class III fault:

if (A > B) AND ((A = B + 1) NAND (B ■ "00")) then

The complete set of Class III faults is modeled by enumeration of the 2n -1 values for B.

Class Faulty Expression Faults

I (A > B) OR ((A = B) AND (A = "00"))

A = "00"
A = "01"
A = "10"
A = "11"

n (A > B) OR ((A + 1 - B) AND (A = "01")) A = "01"

m (A > B) AND ((A = B + 1) NAND (B = "00"))
B = "00"
B = "01"
B = "10"

Table 4-4 Behavioral faults for 2-bit GT.

62

4.1.4 Adapting the Model for GE, LT, and LE

The three fault classes and their associated behavioral fault models can be easily

adapted for the other relational operators in this group (GE, LT, LE). As an example, the

functional faults for the relation A >= B (GE) are presented in Figure 4-4. The thick line

representing the GE function now lies below the diagonal of the figure. The locations of

the Class I faults remain unchanged, however they now represent an erroneous FALSE for

the GE function. Class II faults still produce the same erroneous result as Class I faults

and the Class III faults now result in an incorrect TRUE.

A

0 l 2 3

B

0 I

1 m i n

2 in i

3 m I

Figure 4-4 Fault classes for 2-bit GE function.

The functional faults for the GE function can now be summarized in Table 4-5 and

result in the definition of the behavioral faults in Table 4-6.

Class
Faulty
Output

A vs. B
#Test

Vectors

I FALSE A = B 2n

II FALSE
A = B + 1
(Bodd)

2n-l . x

III TRUE A+1=B 2n-l

Table 4-5 Functional faults for n-bit GE.

Similar analysis produces the generalized functional faults for the LE and LT func-

tions. Since these functions differ by only a single inverter from GT and GE respectively,

the behavioral fault models follow directly by inversion of the faulty output values.

63

Class Faulty Expression Faults

I (A >= B) AND ((A = B) NAND (A = "00"))

A = "00"
A = "01"
A = "10"
A = "11"

II (A >= B) AND ((A = B + 1) NAND (B ■ "01")) B = "01"

III (A >= B) OR ((A + 1 = B) AND (A = "00"))
A = "00"
A = "01"
A = "10"

Table 4-6 Behavioral faults for 2-bit GE.

4.1.5 Summary

A set of functional and behavioral faults have been developed for the first group of

relational operators (GT, GE, LT, LE). Each operator is affected by three classes of faults.

Class I faults occur when the operands of the relation are equal. Class II faults produce

the same faulty output as Class I faults. Finally, Class HI faults produce the opposite

faulty output from Classes I and II.

4.2 Threshold Detection

In the previous analysis, both operands for the relational operators were signals/vari-

ables. When one operand is a constant, the behavior changes to that of a unary operator

or threshold detector. Treated individually, each threshold value represents a separate

function with its own set of generalized faults. The analysis presented here examines

those faults as a whole in order to identify patterns in the required test vectors.

4.2.1 Greater Than Signed Threshold

For this development, a signed comparison of a 4-bit number was chosen. The 24 = 16

threshold values provide enough data to identify patterns in the test vectors. Use of 2's

complement numbers helps demonstrate the general applicability of the functional analy-

sis techniques.

A 4-bit 2's complement number represents the integer range from -8 to +7. Each

threshold function (A > -8, A > -7,..., A > 7) was analyzed (SOP and POS) to produce a

generalized set of functional faults. A subset of these results is presented in Figure 4-5.

64

Each threshold is indicated by a heavy vertical line, while the functional test vectors are

shaded.

A>-5 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>-4 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>-3 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>-2 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>-1 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>0 -8 -7 -6 -5 -4 -3 -2 1 0 +1 +2 +3 +4.. +5 +6 +7

A>+1 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>+2 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

A>+3 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7

Figure 4-5 Functional test vectors for signed GT threshold.

From these test vectors it is possible to identify a pattern which will produce a behav-

ioral fault model for the threshold functions. Every function requires the two test vectors

bracketing the threshold. Each pattern of test vectors is then based on the binary value of

the distance the threshold function is from the center of the range of values, indicated by

the double lines. Additional test vectors are determined by moving left and right of the

initial two test vectors at step sizes starting with the location of the Is in a binary represen-

tation of the distance from center and increasing by powers of 2. The pattern is symmetri-

cal about the threshold, but truncated beyond the far side of the center line.

For example, the threshold for A > -2 requires the test vectors -2 and -1 and is one

space from the center. Therefore, the additional test vectors to the left of the threshold are

-2 -1 = -3 and -3 - 2 = -5. To the right of the threshold produces -1 + 1 = 0, with the pat-

tern truncated beyond. For a threshold of A > 4, the initial test vectors are +4 and +5.

The threshold is five spaces from center indicating step sizes of one and four. Thus, addi-

tional test vectors to the left are 4 -1 = 3 and 3 - 4 = -1. The only test vector to the right is

5 + 1 = 6, because 6 4- 4 = 12 is beyond the range of a 4-bit 2's complement number.

4.2.2 A Quick Example

A quick example will be used to demonstrate application of the behavioral fault pat-

terns for threshold functions. Example LE5 in Figure 4-6 defines the behavior of a signed

65

less than or equal to (LE) threshold function. The integer range -16 to +15 will be synthe-

sized as a 5-bit 2's complement number.

entity LE5 is
port(A: in INTEGER range -16 to +15; LE: out BIT);

end LE5;

architecture BEHAVE of LE5 is
begin

process(A)
begin

if A <= 5 then
LE <= x1';

else
LE <= '0';

end if;
end process;

end BEHAVE;

Figure 4-6 Behavioral description for example LE5.

The LE function places the threshold between +5 and +6. The threshold lies six spaces

from the center of the range of values, implying step sizes of two and four. Therefore,

additional test vectors to the left are 5 - 2 = 3 and 3 - 4 = -1. Test vectors to the right are

6 + 2 = 8 and 8 + 4 = 12. The test vector pattern is represented graphically in Figure 4-7.

A<=5 -1 0 1 2 3 4 :5 ; 6 7 8 9 10 11 12 13

Figure 4-7 Behavioral test vectors for example LE5.

Example LE5 was synthesized to the gate level circuit shown in Figure 4-8. Fault sim-

ulations using the behavioral test vectors from Figure 4-7 resulted in a SSL gate level fault

coverage of 18/18 = 100%.

i<4:0)

Ole

Figure 4-8 Synthesized circuit for example LE5.

The behavioral test vector patterns presented here are equally applicable to unsigned

threshold comparisons. For more examples using comparison functions see Appendix A.

66

4.3 Equal (EQ)

The development of functional and behavioral faults for the EQ (and NE) function(s)

follows the same process as that for GT. In addition, since EQ is often used in conjunction

with other relational operators, the function is sometimes formed by a combination of the

outputs of the other comparison modules.

4.3.1 Functional Faults

As was the case with the GT function, the patterns for the EQ function are somewhat

vague in the 2-bit case. Therefore, the functional faults and classes will be directly pre-

sented for the 3-bit case and then generalized for n-bits. A functional analysis of gate level

implementations of the EQ function yields the fault classes in Figure 4-9 (A and B shown

in octal).

A

0 1 2 3 4 5 6 7

B

0 I m III m

1 II

2 II

3

4 II

5 •

6

7 I

Figure 4-9 Fault classes for 3-bit EQ function.

Class I faults are again defined along the diagonal of the table, however, only two test

vectors are required (00 and 77). Class II faults are selected to be those below the diago-

nal, while Class HI faults are above. Both Class II and III fault sets are of size 3 (n).

The patterns apparent in the 3-bit case imply the definition of the functional faults in

Table 4-7. The test vectors for Class I faults consist of the all 0's and all i's cases. Both

67

Class II and III faults have test vectors where one operand is 0 and the other has a single 1,

hence the n possible combinations.

Class
Faulty
Output

A vs. B
#Test

Vectors

I FALSE
A = B = 0

A = B = 2n -1
2

II TRUE A = 0, Bi = 1
i = 0, l,...,n-l

n

ni TRUE
Aj = 1, B = 0

i = 0, l,...,n-l
n

Table 4-7 Functional faults for n-bit EQ.

4.3.2 Behavioral Fault Model

The functional faults developed for the EQ function can now be abstracted into the

behavioral domain, just like those for GT. For the Class I faults, the faulty output of

FALSE implies the use of an AND/NAND combination. Likewise, the Class II and III

faults employ the OR/AND structure seen in the other fault models. The resulting behav-

ioral faults for a 2-bit EQ function are presented in Table 4-8.

Class Faulty Expression Faults

I (A =.B) AND ((A = "00") NAND (B = »00"))
A,B = "00"
A,B = "11"

n (A = B) OR ((A = "00") AND (B = "01"))
B = "01"
B = "10"

III (A = B) OR ((A = "01") AND (B = "00"))
A = "01"
A = "10"

Table 4-8 Behavioral faults for 2-bit EQ.

The functional and behavioral faults developed for the EQ function can now be readily

adapted to NE. Due to the symmetry of the functions, the location of all the test vectors

remains the same. Only the reversal of the faulty outputs causes a change in the behav-

ioral fault model.

68

4.4 Comparison with Previous Fault Models

In contrast to if-then-else and case, few previous fault models address relational oper-

ators. As part of the development of the "B-algorithm: A Behavioral Test Generation

Algorithm," [21] [22] Cho and Armstrong developed a new behavioral fault model which

included relational operators as part of micro-operation faults. Such faults perturb a rela-

tional operator to another operator as indicated in Table 4-9. Recall that this fault model

suffered from what the authors called the "big micro-operation problem," where only a

single test vector is generated for a complex block of logic. In order to raise their equiva-

lent gate level coverage numbers to acceptable levels, an additional 4n-l test vectors are

generated by a heuristic test generator for each n-bit micro-operation.

Fault-free Operator Faulty Operator

BVLT BVGE

BVLE BVGT

BVEQ BVNEQ

BVNEQ BVEQ

Table 4-9 Micro-operation Faults

A similar fault model was proposed by Al Hayek and Robach [4] as part of a mutation-

based testing strategy in which VHDL behavioral faults are considered as software faults.

For Relational Operator Replacement (ROR), each operator (<, >, <=, >=, =, /=) is

replaced by each of the other relational operators. Mutation analysis does not take into

account the size of the hardware implementation, because it considers each relational

operator as a software operation and consequently generates only one test vector. In order

to improve the performance of their technique, the authors also resorted to heuristics to

generate additional test vectors for their complex operators.

The new behavioral fault models developed for relational operators are based on the

size of the hardware implementation and, therefore, eliminate the need to supplement test

vector sets. While the new fault models are definitely more complex than previous ones,

this is because they more accurately reflect the underlying complexity of the hardware

faults which they attempt to model.

69

4.5 Application of the New Fault Models

A simple example is now presented to demonstrate the application of the new fault

models developed for relational operators. A test vector set will be formed based on

behavioral faults and then applied to synthesized gate level realizations. Gate level fault

coverage of the behavioral test vectors will be used to evaluate the effectiveness of the new

behavioral fault models.

Example COMPARE in Figure 4-10 uses two 2-bit signals (A, B) to control the selec-

tion of input signals (Y2, Yl, Y0). Based on the relative magnitudes of the control signals,

a single input signal is assigned to the output signal (Z). Test vectors can be determined

for behavioral faults on the relational operators and the control construct if-then-else.

if A > B then
Z <= Y2;

elsif A < B then
Z <= Y0;

else
Z <= Yl;

end if;

Figure 4-10 Behavioral description for example COMPARE.

4.5.1 Faults on Relational Operators

The two relational operators (>, <) in example COMPARE are affected by the three

classes of behavioral faults developed earlier in this chapter. Application of each of these

fault classes to each of the relational operators will determine an appropriate set of behav-

ioral test vectors.

The first relational operator in the expression A > B controls the then clause of the

if-then-else statement. According to the new behavioral fault model, a Class I fault occurs

when the relation A > B produces an erroneous TRUE when A = B. This fault causes

the selection of the A > B clause instead of the desired A = B clause. The test vectors

necessary to detect these Class I faults are shown in Table 4-10. For ease of reference

when determining compatible fault sets, the faults have been numbered.

Next, a Class II fault for the relation A > B also produces an erroneous TRUE, when

A + 1 = B (A odd). This fault causes the selection of the A > B clause instead of the

70

desired A < B clause. Test vectors for the single Class II fault are shown in the middle

of Table 4-10.

Finally, a Class III fault produces an erroneous FALSE when A = B + 1. This fault

causes the selection of clauses corresponding to A <= B instead of the desired A > B.

Note that the faulty selection of either the A < B clause or the A = B clause results in

the elimination of don't care values seen in previous test vectors. The Class III faults and

their corresponding test vectors are shown at the bottom of Table 4-10.

Fault
Class

Fault

A B
(A>B)

Y2
(A=B)

Yl
(A<B)

Y0
Fault-free

Z

Class I

1 00 00
1 0 X 0

0 1 X 1

2 01 01
1 0 X 0

0 1 X 1

3 10 10
1 0 X 0

0 1 X 1

4 11 11
1 0 X 0

0 1 X 1

Class II 5 01 10
1 X 0 0

0 X 1 1

Class m

6 01 00
0 1 1 0

1 0 0 1

7 10 01
0 1 1 0

1 0 0 1

8 11 10
0 1 1 0

1 0 0 1

Table 4-10 Test vectors for behavioral faults for A > B.

A similar application of Class I, II, and III faults to the relation A < B in the elsif

clause produces the test vectors shown in Table 4-11.

71

Fault
Class

Fault

A B
(A>B)

Y2
(A=B)

Yl
(A<B)

Y0
Fault-free

Z

Class I

9 00 00
X 0 1 0

X 1 0 1

10 01 01
X 0 1 0

X 1 0 1

11 10 10
X 0 1 0

X 1 0 1

12 11 11
X 0 1 0

X 1 0 1

Class II 13 10 01
0 X 1 0

1 X 0 1

Class IE

14 00 01
1 1 0 0

0 0 1 1

15 01 10
1 1 0 0

0 0 1 1

16 10 11
1 1 0 0

0 0 1 1

Table 4-11 Test vectors for behavioral faults for A < B.

Each behavioral fault still has two possible test vectors which will detect it. Applica-

tion of the control fault model to the if-then-else construct will provide additional guid-

ance on selection of a final set of test vectors.

4.5.2 Control Faults

As was shown in Chapter 3, the control fault model specifies that each clause of an if-

then-else statement can be affected by two different types of faults, Clause-CORRUPT

(OR) and Clause-CORRUPT (AND). Corruptions are caused by clauses which are logi-

cally adjacent to the affected clause. In the case of relational operators, it has been shown

that the ">" operator can fault to "=" (Class I) or "<" (Class II), thus causing the then

clause in example COMPARE to corrupt the either else clause or the elsif clause. By

establishing adjacency using the appropriate values for A and B, determined by faults to

72

the relational operators, compatible test vectors can be formed for these Clause-COR-

RUPT faults.

First consider the corruptions to the then clause by the elsif clause. These corruptions

occur when the A < B expression in the elsif clause produces an erroneous indication

that A > B, corresponding to a Class II fault for A < B. Table 4-11 shows that this

Class II fault, 13, has only one combination of A and B which will produce the proper

adjacency between clauses. Using those values for A and B results in the test vectors

shown in Table 4-12 for the first two of the Clause-CORRUPT (OR) and Clause-COR-

RUPT(AND) faults for the then clause.

Control Fault
Fault
Class

A B
then
Y2

else
Yl

elsif
Y0

Fault-free
Z

THEN-CORRUPT
(by ELSIF) (OR) A<B

Class H
10 01

0 X 1 0

THEN-CORRUPT
(by ELSIF) (AND)

1 X 0 1

THEN-CORRUPT
(by ELSE) (OR) A>B

Class m

11 10 0 1 X 0

THEN-CORRUPT
(by ELSE) (AND)

01 00 1 0 X 1

Table 4-12 Test vectors for THEN-CORRUPT faults.

The corruptions of the then clause by the else clause, correspond to the other combina-

tions from Table 4-10 and Table 4-11 where the then clause is activated, Class III faults for

A > B. Table 4-10 shows that faults 6 through 8 provide three combinations of A and B

which will produce the proper adjacency between clauses. To reduce the total number of

test vectors using compatible fault sets, the vectors for the Clause-CORRUPT (OR) and

Clause-CORRUPT (AND) faults are chosen with different values for A and B. These test

vectors form the remainder of Table 4-12.

The Clause-CORRUPT faults for the elsif and else clauses are formed in a similar

manner. For the elsif clause, the test vectors must set A < B, corresponding to Class II

faults for A > B and Class III faults for A < B. Finally, the else clause corresponds to

73

A = B and the Class I faults. Test vectors for the remaining Clause-CORRUPT faults

are, therefore, shown in Table 4-13.

Control Fault
Fault
Class

A B
then
Y2

else
Yl

elsif
Y0

Fault-free
Z

ELSIF-CORRUPT
(by THEN) (OR) A>B

Class II
01 10

1 X 0 0

ELSIF-CORRUPT
(by THEN) (AND)

0 X 1 1

ELSIF-CORRUPT
(by ELSE) (OR) A<B

Class III

10 11 X 1 0 0

ELSIF-CORRUPT
(by ELSE) (AND)

00 01 X 0 1 1

ELSE-CORRUPT
(by THEN) (OR) A>B

Class I

00 00 1 0 X 0

ELSE-CORRUPT
(by THEN) (AND)

01 01 0 1 X 1

ELSE-CORRUPT
(by ELSIF) (OR) A<B

Class I

10 10 X 0 1 0

ELSE-CORRUPT
(by ELSIF) (AND)

11 11 X 1 0 1

Table 4-13 Test vectors for ELSIF-CORRUPT and ELSE-CORRUPT faults.

4.5.3 Final Behavioral Test Vector Set

The behavioral faults for the relational operators can now be combined with the con-

trol faults to form compatible fault sets. Recall that Class I faults occur along the diagonal

where A = B. Notice that the don't care values in the test vectors for faults 1 through 4

are compatible with the test vectors for faults 9 through 12. Plus, due to the symmetry of

the behavioral faults defined for relational operators, the Class II faults for the relation

A > B are a compatible subset of the Class III faults for the relation A < B. Likewise,

the Class II faults for A < B are a compatible subset of the Class III faults for A > B.

Note that the THEN-CORRUPT (by ELSIF) and ELSIF-CORRUPT (by THEN) faults

dictate that both options of test vectors for faults 13 and 5 be chosen. For each of the other

relational operator faults, only one of the two possible test vectors is needed. For this

74

example, the final set of test vectors has been chosen with a pattern of alternating fault free

values of Z = 0 and Z = 1. This pattern can be easily repeated for vectors that are not

specified by control faults, as will be the case where A and B are larger than two bits.

Application of this selection pattern to each group of faults for the relational operators

results in a final behavioral test vector set containing 12 test vectors. The test vectors and

their corresponding groups are shown in Table 4-14. Note that other test vector sets of size

12 are possible. The required values of A and B are set by the Class I, II and III faults for

the relational operators, however several choices are possible for Y2, Yl, and YO. As long

as both a Z = 0 and Z = 1 option are chosen for each fault class, sufficient coverage

will be provided for the Clause-CORRUPT control faults.

Group #
(Control Fault)

Fault
#s

A B
(A>B)

Y2
(A=B)

Yl
(A<B)

Y0
z

I
(ELSE-CORRUPT)

1,9 00 00 1 0 1 0

2,10 01 01 0 1 0 1

3,11 10 10 1 0 1 0

4,12 11 11 0 1 0 1

II
(THEN-CORRUPT)

6 01 00 1 0 0 1

7,13
10 01 0 1 1 0

10 01 1 0 0 1

8 11 10 0 1 1 0

III
(ELSIF CORRUPT)

14 00 01 0 0 1 1

5,15
01 10 1 1 0 0

01 10 0 0 1 1

16 10 11 1 1 0 0

Table 4-14 Final behavioral test vector set for example COMPARE.

4.6 Evaluation of Behavioral Test Vectors

The test vectors derived from the behavioral faults for example COMPARE are next

applied to several synthesized gate level implementations. SSL fault coverage will be

determined and used to judge the effectiveness of the behavioral test vectors.

75

4.6.1 Gate Level Realizations

The VHDL behavioral description for example COMPARE, from Figure 4-10, was

synthesized to a gate level implementation using AutoLogic II. The first structural

description was produced using minimal optimization in order to produce the most direct

realization of the circuit. The gate level circuit for Structure 1 is presented in Figure 4-11.

Note that the circuit contains a mix of AND, OR, NOT, NAND, and NOR gates and does

not directly relate to any of the circuits analyzed in the development of the behavioral fault

models for the relational operators.

UZL

b<1:0>

a(1:0)O

c>-f-D>i f-P~p £_z_Znz3~">—'

H>
gOO-

glO-

Figure 4-11 Synthesized Structural for example COMPARE.

According to MIL-STD 883D, Structurel contains 74 unique gate level SSL faults.

Fault simulations were performed using the behavioral test vectors from Table 4-14. The

behavioral test vector set detected 73 of the 74 SSL gate level faults, resulting in a fault

coverage of 98.65%. The undetected fault was on input B to NAND gate zg3 shown in

Figure 4-11. Exhaustive testing of the circuit Structurel reveals that this fault is, in fact,

undetectable by any test vector due to redundant logic produced by the synthesis tool. In

this case, an alternate measure of effectiveness can also be used to account for redundant

logic. The fault efficiency is defined as the ratio of detected faults to detectable faults. For

this example the fault efficiency is 73/73 = 100%.

An alternate test vector set was formed by reversing the order of the Z = 0, Z = 1

pattern in Table 4-14. Application of this alternate set of behavioral test vectors, shown in

Figure 4-12, to the circuit Structurel produced an identical fault coverage of 98.65%.

Either set of test vectors developed from the behavioral fault models, therefore, achieved a

fault efficiency of 100%.

76

% AB Y2 Yl YO Z
% Group I

time

0000 010 1 500 ns
0101 101 0 500 ns
1010 010 1 500 ns
1111 101 0 500 ns
Group II
0100 011 0 500 ns
1001 100 1 500 ns
1001 011 0 500 ns
1110 100 1 500 ns
% Group III
0001 110 0 500 ns
0110 001 1 500 ns
0110 110 0 500 ns
1011 001 1 500 ns

Figure 4-12 Alternate set of behavioral test vectors for example COMPARE.

A second gate level implementation of example COMPARE was produced by allowing

AutoLogic II to perform logic optimizations. Using these optimizations in a synthesis

environment allows a designer to remove redundancies and reduce the number of unde-

tectable faults. The resulting Structure2 is shown in Figure 4-13.

UlO

Figure 4-13 Synthesized Structure2 for example COMPARE.

Structure2 contains 72 unique SSL gate level faults. Fault simulations using the origi-

nal and alternate behavioral test vectors from Table 4-14 and Figure 4-12 both result in a

fault coverage of 72/72 = 100%. The fault coverage as a function of the alternate behav-

ioral test vectors is shown in Figure 4-14.

When redundancies are not present in the gate level circuit, the test vector sets devel-

oped using the behavioral fault models achieve a gate level SSL fault coverage of 100%.

77

Coverage (%)

100 -,

i—'—r
1 2

~i—■—r
6 7 10

Number of Test Vectors

Figure 4-14 Fault coverage for Structure2 of example COMPARE.

These results help validate the new behavioral fault models through practical application.

The effects on fault coverage due to expansion of the control signals and data path will

now be investigated.

4.6.2 Expansion of the Data Path

In the VHDL behavioral description for example COMPARE, the input signals (Y2,

Yl, Y0) and the output signal (Z) are each only a single bit wide. To demonstrate the

effects of a wider data path on the new behavioral fault models, example COMPARE4 was

created by changing the above signals to four bits wide, BIT_VECTOR(3 downto 0). For

this example, the control signals A and B remained two bits each.

The faults on the relational operators are unchanged due to the widening of the data

path. Hence, the values of the control signals A and B are the same as those given in Table

4-14. The only change to the test vectors is the widening of the 1-bit signals to four bits.

This is done by replication of the appropriate signal values, since the wider data path sim-

ply represents multiple copies of the 1-bit case implemented in parallel.

The control faults on adjacent clauses developed in Section 4.5.2 are, likewise, unaf-

fected by the widening of the data path. The only modifications necessary to the test vec-

78

tors is again replication of the appropriate signal values. Hence, the behavioral test

vectors for example COMPARE4 are presented in Figure 4-15.

% AB Y2 Yl
% Group I
0000 1111 0000
0101 0000 1111
1010 1111 0000
1111 0000 1111
% Group II
0100 1111 0000
1001 0000 1111
1001 1111 0000
1110 0000 1111
% Group III
0001 0000 0000
0110 1111 1111
0110 0000 0000
1011 1111 1111

Y0 time

1111 0000 500 ns
0000 1111 500 ns
1111 0000 500 ns
0000 1111 500 ns

0000 1111 500 ns
1111 0000 500 ns
0000 1111 500 ns
1111 0000 500 ns

1111 1111 500 ns
0000 0000 500 ns
1111 1111 500 ns
0000 0000 500 ns

Figure 4-15 Behavioral test vectors for example COMPARE4.

Example COMPARE4 was synthesized and optimized with AutoLogic II to produce

the gate level Structure shown in Figure 4-16. Fault simulations were performed using the

test vectors derived from the behavioral fault models. The results show a fault coverage of

150/150 = 100%; all SSL gate level faults are detected.

H>
Figure 4-16 Synthesized Structure for example COMPARE4.

79

As was done previously, an alternate test vector set was formed for example

COMPARE4 by reversing the order of the Z = 0, Z = 1 pattern in Figure 4-15. Fault

simulation using these alternate behavioral test vectors again resulted in gate level fault

coverage of 100%. Though the number of unique gate level faults more than doubled, the

same number of test vectors, 12, were able to provide complete SSL fault coverage.

4.6.3 Expansion of the Control Signals

Example COMPARE was next modified by increasing the width of the control signals

A and B from two bits to three bits each. The change in size of the control signals does

affect the behavioral faults for the relational operators. Recall the number of faults on a

comparison is related to the number of bits being compared. The increase from two bits to

three bits causes the number of Group I faults from Table 4-14 to increase from 22 = 4 to

23 = 8. The number of Group II and Group III faults likewise increases to 23 -1 = 7.

In contrast to the faults on relational operators, the control faults are affected only by

adjacency among clauses. Recall from Table 4-13 that the ELSIF-CORRUPT (by THEN)

faults corresponded to the A > B Class II faults. In the 2-bit case, only a single combi-

nation of A and B produced the proper adjacency, forcing the selection of both test vector

options to cover both the Clause-CORRUPT (OR) and Clause-CORRUPT (AND)i'faults.

In the 3 bit case, there are now 23"1 -1 = 3 different combinations of A and B that produce

the proper adjacency between clauses (see Figure 4-3). Through proper selection of test

vectors from the faults on relational operators, it is possible to provide coverage for all

control faults without replication of values for A and B. A final set of behavioral test vec-

tors for example COMPARE3 is, hence, presented in Figure 4-17.

% A B Y2Y1Y0 Z
% Group I
000 000 101 0
001 001 101 0
010 010 010 1
011 011 010 1
100 100 101 0
101 101 101 0
110 110 010 1
111 111 010 1

time ;

500 ns
500 ns
500 ns
500 ns
500 ns
500 ns
500 ns
500 ns

Figure 4-17 Behavioral test vectors for example COMPARE3.

80

% Group II
001 000 Oil 0 500 ns
010 001 Oil 0 500 ns
Oil 010 100 1 500 ns
100 Oil 100 1 500 ns
101 100 Oil 0 500 ns
110 101 Oil 0 500 ns
111 110 100 1 500 ns
% Group III
000 001 110 0 500 ns
001 010 110 0 500 ns
010 Oil 001 1 500 ns
011 100 001 1 500 ns
100 101 110 0 500 ns
101 110 110 0 500 ns
110 111 001 1 500 ns

Figure 4-17 Behavioral test vectors for example COMPARE3.

Example COMPARE3 was then synthesized and optimized by AutoLogic II to pro-

duce the gate level implementation shown in Figure 4-18.

Figure 4-18 Synthesized Structure for example COMPARE3.

Fault simulations were conducted on the gate level Structure for example COMPARE3

using the derived set of behavioral test vectors. A SSL gate level fault coverage of 92/92 =

100% was achieved. As in previous examples, fault simulation with an alternate set of

behavioral test vectors again resulted in complete gate level fault coverage.

4.7 Conclusions
New behavioral fault models have been developed for the predefined VHDL relational

operators from Table 1-2. These fault models are based on a functional analysis of the

comparison functions GT and EQ. The symmetry of these comparison functions allowed

the resulting generalized functional faults to be easily adapted for all the relational opera-

tors.

81

The new behavioral fault models developed for relational operators are based on the

size of the hardware implementation and, therefore, eliminate the need to supplement test

vector sets via methods such as heuristics. While the new fault models are more complex

than previous ones, this is because they more accurately reflect the underlying complexity

of the hardware faults which they attempt to model.

A simple example was presented to demonstrate the application of the new fault mod-

els. Test vector sets were formed based on behavioral faults to the relational operators

and the control construct if-then-else. These behavioral test vectors were then applied to

synthesized gate level realizations. Gate level fault coverage was used to evaluate the

effectiveness of the new behavioral fault models.

When redundancies were not present in the synthesized gate level circuits, both the

primary and alternate test vector sets developed using the behavioral fault models'pro-

duced a gate level SSL fault coverage of 100%. Even with undetectable faults, the behav-

ioral test vectors were able to achieve a. fault efficiency of 100%.

Chapter 5

Arithmetic Operators

Like the relational operators, arithmetic operators also generate large blocks of com-

binational logic. The predefined VHDL operators ADD (+) and SUB (-) are normally

implemented by synthesis tools with standard library modules. Optimizations for speed or

chip area may modify these building blocks, however, the basic function of the arithmetic

operators remains unchanged. A fault modeling technique is proposed here based on

complete functional testing of the arithmetic building blocks. By concentrating on func-

tional testing, complete gate level SSL fault coverage should be obtained over a broad

range of hardware implementations.

Previous behavioral modeling approaches, based on perturbing language constructs

such as ADD to SUB, do not accurately reflect underlying hardware faults. In order to

compensate for this "big micro-operation problem," alternate methods such as heuristics

were used to supplement test vector sets to increase the equivalent gate level fault cover-

age. The new modeling technique presented in this chapter increases the complexity of

the fault models for the arithmetic operators, providing a better representation of the

faults which occur in actual hardware.

5.1 Addition

The ADD operation has several basic forms which will be investigated in succession.

A two-level network would be the fastest, however, this circuit would require a large num-

ber of gates and gate inputs. It would be necessary to have 22n NAND gates of 2n + 1

inputs and one NAND gate of 22n inputs to add two n-bit numbers [41]. This number of

gates and inputs is quite significant for even small values of n.

In contrast to this direct approach, adders are most commonly implemented by the

interconnection of smaller functional building blocks. In its simplest from, a half adder

(HA) is a multiple output combinational circuit which adds two bits to produce a sum and

a carry-out. A full adder (FA) adds two binary digits and a carry-in from a previous stage.

To speed up the combinational addition process, by reducing the rippling of carries

between stages, methods such as carry look-ahead (CLA) are used.

82

83

5.1.1 Ripple Carry Adder

Behavioral modeling of the ADD operation has two basic forms, depending on the

presence of an overall carry-in and carry-out for the resulting adder circuit. In its simplest

form, the addition of two n-bit binary numbers can be represented as:

S <= A + B;

A 3-bit ripple carry implementation of this ADD operation is shown in Figure 5-1.

A2 B2 A, B A0 B0

A B

CO FA2 CI
S

T
Figure 5-1 Ripple carry adder.

The full adders (FAt) are 3-input 2-output combinational circuits, where CI and CO

represent the carry-in and carry-out respectively. A truth table for the full adder function

is presented in Table 5-1; Test # shown in octal. Similarly, the half adder (HA0) is a 2-

input 2-output circuit that can be considered a subset of the full adder function. The upper

half of Table 5-1, where CI = 0, represents the truth table for the half adder function.

Test# u < PQ 00
o u

0 0 0 0 0 0

1 0 0 1 1 0

2 0 1 0 1 0

3 0 1 1 0 1

4 1 0 0 1 0

5 1 0 1 0 1

6 1 1 0 0 1

7 1 1 1 1 1

Table 5-1 Truth table for full adder.

84

5.1.1.1 Functional Testing

A functional testing strategy is presented which will ensure complete gate level SSL

fault coverage for a broad range of ripple carry adder implementations. Because such

realizations are one-dimensional cellular logic arrays, made up of 2- and 3-input func-

tional building blocks, complete functional testing can be achieved by exhaustive testing

of each module [44].

Table 5-2 presents the Phase I functional tests proposed for the 3-bit ripple carry

adder. The left hand side of the table shows the ADD operation with the resulting sum.

Non-zero carries between stages of the adder are shown by arrows above the columns.

The right hand side of the table indicates the Test #, from Table 5-1, which is applied to

each functional module (FA, HA) by the input test vectors. For example, the first row

shows that At and Bt are 0 for every stage of the adder. Since the resulting carry-out for

each stage is also 0, Test 0 is applied to all modules of the adder.

A
+ B
S

Test#

FA2 FA: HA0

000
+ 000
000

0 0 0

000
+ 111

111
1 1 1

111
+ 000
111

2 2 2

1 1 no
111

.+ Ill
110

7 7 3

Table 5-2 Phase I functional tests.

Note that the last row of Table 5-2 shows that both C0 and C7 are 1, resulting in Test 7

being applied to FAj and FA2. Since HA0 only has 2 inputs, the last test from Phase I rep-

resents Test 3 for this module and concludes complete functional testing of the half adder.

85

To continue the testing of the full adder modules, further vectors must be generated

which will produce the remaining input and carry combinations. Consider Test 5 and Test

6, which require opposite inputs for A and B with CI = 1. In order to start the ripple carry

process between stages, HA0 must generate a CO = 1. Since Test 5 and Test 6 produce a

CO = 1, the carries are correctly propagated through the stages. Table 5-3 summarizes the

results for the Phase II functional tests.

A Test*
+ B

s" FA2 FAi HA0

i i

001
+ 111 5 5 3

000

i i

111
+ 001 6 6 3

• 000

Table 5-3 Phase II functional tests.

Only Test 3 and Test 4 remain to complete the testing of the full adder modules. Since

Test 3 requires aCI=0, yet produces a CO = 1, no single vector can provide Test 3 inputs

to all stages. Likewise, Test 4 requires CI = 1 and produces CO = 0. Due to the observed

symmetry, the functional tests for Phase III can be formed by interleaving Test 3 and Test

4 as shown in Table 5-4.

A
+ B
S

Test#

FA2 FA! HA0

i

101
+ 101 3 4 3

010

1

010
+ 010 4 3 0

100

Table 5-4 Phase III functional tests.

86

Hence, complete functional testing of all modules of the ripple carry adder in Figure

5-1 has been achieved with eight test vectors. Next, the scalability of the functional tests

will be evaluated for larger adders.

5.1.1.2 Scalability

Because the ripple carry structure is made up entirely of cascaded HA and FA mod-

ules, the functional tests developed in Section 5.1.1.1 can be readily adapted to larger

adders. Since the functional tests are based on the complete testing of each individual

module, only eight test vectors are required regardless of the size of the inputs A and B

[44]. A 4-bit addition will be used to demonstrate the scaling of the test vectors.

Table 5-5 presents the test vectors for a 4-bit ripple carry adder. The tests for Phases I

and II are created by replication of the highest order bits of the 3-bit case. The test vectors

for Phase III are produced by continuation of the alternating patterns caused by the inter-

leaving of Test 3 and Test 4 for the FA modules. Note that both extensions of the func-

tional tests can be continued for larger values of n, still requiring only eight test vectors.

Phase A B s

Test#

FA3 FA2 FAi HA0

I

0000 0000 0000 0 0 0 0

0000 1111 nil 1 1 1 1

1111 0000 im 2 2 2 2

1111 mi 1110 7 7 7 3

II
0001 mi 0000 5 5 5 3

1111 0001 0000 6 6 6 3

m
0101 0101 1010 4 3 4 3

1010 1010 0100 3 4 3 0

Table 5-5 Functional tests for 4-bit ripple carry adder.

5.1.1.3 Behavioral Fault Model

Comparison of the functional test vectors with the gate level faults detected provides

some insight into the performance of the functional testing technique. For example, the

test vector A = 0000, B = 0000 covers faults which correspond to the sum and carry bits of

87

each stage producing an erroneous 1. Due to the relative bit positions of the various

stages, this causes the resulting sum to be in error by either +1, +2, +4, or +8. Similar

observations reveal that the functional faults for the ripple carry adder result in an output

sum which is in error by ±2l (i = 0, 1, 2, 3).

A one-to-one correspondence cannot be established between the large number of func-

tional faults which are covered by the relatively small number of eight functional test vec-

tors. Therefore, a direct mapping cannot be made to produce a simple behavioral fault

model. Rather, the approach taken here simply seeks to map the functional test vectors

into error vectors which corrupt the ADD operation for the appropriate input combina-

tions.

Again consider the functional test vector A = 0000, B = 0000. Corruption of the

resulting sum can be achieved by producing an erroneous 1 in any of the bit positions. For

this fault model, the corruptions are chosen to be to the least significant bit position. The

XOR operator provides the desired corruption properties by inverting the appropriate bit

when presented with an error vector of 0001.

A behavioral fault model for the first functional test vector is therefore proposed as:

D <= (A + B) XOR "000" & (A = "0000" AND B = "0000")

The concatenation operator (&) combines the TRUE/FALSE from the AND operator with

leading 0's to produce the appropriate error vector. While this is not syntactically correct

VHDL due to type differences, it presents the concept of the behavioral fault model. A

complete implementation of the behavioral fault model using functions from the Mentor

Graphics std_logic_arith library is presented in Figure 5-2.

D <= (A + B) XOR zero_extend(to_stdlogic(
(A = "0000" AND B = "0000' ') OR
(A = "0000" AND B = "1111' ') OR
(A = "1111" AND B = "0000' ') OR
(A = "1111" AND B = "1111' ') OR
(A = "0001" AND B = "1111' ') OR
(A = "1111" AND B = "0001' ') OR
(A = "0101" AND B = "0101' ') OR
(A = "1010" AND B = "1010' ') >, 4);

Figure 5-2 Behavioral fault model for ripple carry adder.

5.1.1.4 Evaluation of the Behavioral Test Vectors

The behavioral test vectors derived in the preceding sections will now be applied to

gate level implementations of ripple carry adders. Fault simulations will determine SSL

fault coverage and demonstrate the effectiveness of this functional testing technique.

The VHDL behavioral description for example ADD4 is shown in Figure 5-3. Exam-

ple ADD4 was synthesized with AutoLogic II to produce the ripple carry circuit shown in

Figure 5-4.

entity add4 is
port(A, B: in std_logic_vector(3 downto 0);

D: out std_logic_vector(3 downto 0));
end add4;

architecture behave of add4 is
begin

process(A,B)
begin

D <= A + B;
end process;

end behave;

Figure 5-3 Behavioral description for example ADD4.

a(3:0>O—vrj—I /

£E>J

Figure 5-4 Synthesized circuit for example ADD4.

According to MIL-STD 883D, the synthesized circuit contains 102 unique gate level

SSL faults. Fault simulations using the behavioral test vectors derived from Table 5-5

result in a fault coverage of 102/102 = 100%.

An alternate realization of the 4-bit ripple carry adder is presented in Figure 5-5. The

NOR-only circuit, based on POS implementations of the FA and HA modules, contains

89

142 unique gate level SSL faults. Fault simulations using the eight behavioral test vectors

again resulted in complete gate level fault coverage.

b<e»c>-

£>X>

bCDD—[""t^0"

o(1>D—M/**

O^
Figure 5-5 NOR-only realization of example ADD4.

5.1.1.5 Carry-in and Carry-out

The more complex form of behavioral addition includes a carry-in and/or a carry-out.

Since the predefined VHDL ADD operator combines two n-bit operands to form an «-bit

result, some additional manipulation is required to deal with the extra carries. The carry-

out is produced by simply extending the ADD operation to n+1 bits and extracting the

most significant bit of the result. The carry-in can be modeled by an extra addition of a

single bit. Example ADD4wc, in Figure 5-6, demonstrates the behavioral description of a

4-bit addition with carries.

90

entity add4wc is
port(A, B

D
CIN

COUT
end add4wc;

in std_logic_vector(3 downto 0);
out std_logic_vector(3 downto 0);
in std_logic;
out std_logic);

architecture behave of add4wc is
begin
process (A, B, CIN).
variable opl,op2,sum: std_logic_vector(4 downto 0);
variable carry_in : std_logic_vector(1 downto 0);
begin

opl := x0' & A;
op2 := '0' & B;
carry_in := x0' & CIN;
sum := opl + op2 + carry_in;
D <= sum(3 downto 0);
COUT <= sum(4);

end process;
end behave;

Figure 5-6 Behavioral description for example ADD4wc

Rather than treating the two (+) operators separately in example ADD4wc, a synthesis

tool will combine the operators to form a single adder. Recognition of this carry-in struc-

ture can be used to produce an appropriate behavioral fault model. Recall from the func-

tional testing strategy in Section 5.1.1.1 that the least significant stage of the adder was

only a half-adder. The only change when a carry-in is present is the conversion of this

stage to a full-adder. Minor adjustments to the test vectors will ensure complete func-

tional testing of this new module.

The test vectors for A and B remain the same for both Phase I and Phase III tests to the

adder. The value of the CIN is simply set to match the other carry patterns for that test.

For example, the last test for Phase I applies Test 7 to each FA, thus CIN = 1. The test vec-

tors for Phase II originally set the least significant bit of A or B to 1 to initiate the ripple

carries through the adder. CIN now serves as the least significant input the adder and can

assume that role. The resulting functional test vectors are presented in Table 5-6.

The behavioral fault model for the add with carry operation follows the same approach

shown in Section 5.1.1.3. The functional test vectors are converted to error vectors which

91

Phase A B CIN COUT s

Test*

FA3 FA2 FAL FA0

I

0000 0000 0 0 0000 0 0 0 0

0000 mi 0 0 nil 1 1 1 1

mi 0000 0 0 mi 2 2 2 2

mi mi 1 1 mi 7 7 7 7

II
0000 mi 1 1 0000 5 5 5 5

mi 0000 1 1 0000 6 6 6 6

in
0101 0101 0 0 1010 4 3 4 3

1010 1010 1 1 0101 3 4 3 4

Table 5-6 Functional tests for example ADD4wc.

corrupt the resulting sum. Application of the eight behavioral test vectors derived from

Table 5-6, to a synthesized gate level implementation of example ADD4wc, results in the

expected complete gate level fault coverage.

5.1.2 Carry Look-Ahead Adder

Carry look-ahead (CIA) speeds up the process of combinational addition by determin-

ing carries for higher order stages of the adder without having to wait for them to ripple

through lower order stages. From the truth table for the FA, Table 5-1, it can be seen that

the carry-out is the same as the carry-in as long as one of the other inputs is a 1. Also, the

carry-out is always a 1 independent of the carry-in when both of the other inputs are Is,

and a 0 if both are 0. Consequently, two useful functions can be defined: the carry-prop-

agate, Pt, and the carry-generate, G,- [41].

Pi
AiBi

The FA equations can then be written as:

Si = Pi © Ci_!
ci = Gi + PiCi-l

A CLA realization of a 3-bit adder is shown in Figure 5-7, where PGt represents prop-

agate-generate modules and SUt implements the sum functions.

92

Figure 5-7 Carry look-ahead adder.

The carries for the various stages of a 4-bit adder are formed from the terms shown in

Table 5-7. The columns indicate the contributions of the various stages, which are com-

bined to produce the appropriate carry. Presence or absence of a carry-in (C^), to the

least significant stage of the adder, determines whether or not to use the terms in the far-

thest right column.

Carry

Stage

3 2 1 0 -1

Co Go P(Ai

Ci Gi PlGo P1P0C-1

c2 G2 P2Gi P2PlG0
P2PlPoC-l

c3 G3 P3G2 P3P2G1 P3P2P1G0 P3P2P1P0G1

Table 5-7 Carries for 4-bit CLA adder.

5.1.2.1 Functional Testing

Carry-propagate and carry-generate are both 2-input functions which will be com-

pletely tested by the functional test vectors developed for the ripple carry adder. The sum

(Si) is still a function of At, Bt, and C,.; and, therefore, will also be exhaustively tested by

the ripple carry test vectors. Examination of the carries from Table 5-7 indicates that any

93

faults to lower order carries will dominate faults in higher order carries. Hence, testing for

all the faults in the highest order carry in a CLA adder will provide coverage for all lower

order faults.

A simple 4-bit addition will be used to evaluate the coverage of carry faults by the rip-

ple carry test vectors. Since this circuit has neither a carry-in nor a carry-out, the highest

order carry is C2, which contains three terms: G2, P2Gj, and P2P]G0. Possible functional

faults include a missing carry, due to one of the terms producing an erroneous 0, and an

extra carry, due to a term producing an unwanted 1.

Missing carry faults are evaluated in Table 5-8. In order to establish test vectors, G, is

set to 1 by A,- = Bt = 1 and Pt is set to 1 by At = B~t. The right hand column indicates

whether or not the indicated fault is covered by a ripple carry functional test vector.

Stage Term Test Set-up Test Vector Covered

0 P2PlG0

X 0 0 1
+ X 1 1 1

P2PiG0

0001
+ 1111

0000
Yes

1 P2G!
X 0 1 X

+ X 1 1 X
P2G1

0010
+1111

0001
No

2 G2

X 1 X X
+ X 1 X X

G2

1111
+ 1111

1110
Yes

Table 5-8 Missing carry faults.

The missing carry fault for stage 1 is not covered by the functional test vectors for the

ripple carry adder. Examination of larger carry look-ahead circuits reveals that only the

missing carry faults for the most and least significant stages will be covered. Hence, an

additional n - 3 test vectors will be required to provide complete fault coverage.

Extra carry faults are evaluated in Table 5-9. An erroneous 1 in a term can be caused

by any element in that term producing a 1 when it has been set to 0. Two extra carry faults

are not covered by the functional test vectors for the 4-bit ripple carry adder. All of the

erroneous generation faults (G{) are covered as well as the erroneous propagation fault for

the highest order carry-propagate (P2).

94

Stage Term Test Set-up Test Vector Covered

0 P2P1G0

X 0 0 0
+ X 1 1 1

l?2plG"o

0000
+ 1111

1111
Yes

X 0 0 1
+ X 1 0 1

p2p"lG0

0001
+ 1101

1110
No

X 0 0 1
+ X 0 1 1

P2
plGo

0001
+ 1011

1100
No

1 P2Gi

X 0 0 X
+ X 1 1 X

P2G"l

0000
+ 1111

1111
Yes

X 0 1 X
+ X 0 1 X

P2Gl

1010
+ 1010

0100
Yes

2 G2

X 0 X X
+ X 1 X X

G2

0000
+1111

1111
Yes

Table 5-9 Extra carry faults.

The behavioral fault model for the CLA adder follows directly from the base ripple

carry fault model. Additional functional test vectors for missing carry and extra carry

faults are also mapped into error vectors which corrupt the resulting sum. The behavioral

test vectors, therefore, consist of the eight ripple carry tests supplemented by some num-

ber of CIA tests. The additional behavioral test vectors for a 4-bit CIA adder are summa-

rized in Table 5-10.

Fault Stage A B s
Missing Carry 1 0010 1111 0001

Extra Carry 0
0001 1101 1110

0001 1011 1100

Table 5-10 Additional behavioral test vectors for CLA adder.

95

5.1.2.2 Application of the Behavioral Test Vectors

Behavioral test vectors are now applied to a CIA implementation of example ADD4.

The NAND-only circuit in Figure 5-8 contains 130 unique SSL gate level faults. Fault

simulation using the original eight ripple carry test vectors from Table 5-5 produces a gate

level fault coverage of 127/130 = 97.69%. Examination of the results confirms that the

three uncovered faults are, in fact, from signals forming the highest order carry, C2.

Application of the additional CIA test vectors from Table 5-10 then achieves complete

fault coverage.

Figure 5-8 CLA implementation of example ADD4.

5.1.2.3 Scalability

Gate level fault coverage can now be evaluated for a larger example, ADD8. Fault

simulations using behavioral test vectors will be performed for both ripple carry and CIA

implementations. Optimizations can also be investigated when detailed knowledge of the

target technology is available.

Example ADD8 was synthesized to a gate level circuit producing the ripple carry

implementation as shown in Figure 5-9. Fault simulations with eight behavioral test vec-

96

tors, extrapolated from example ADD4, produce a SSL gate level fault coverage of 234/

234 = 100%. The fault coverage plot is shown in Figure 5-10.

Figure 5-9 Ripple carry implementation of example ADD8.

Coverage (%)

100

80

70

60

50 -

40

30 -

20

10 -

n—r -i—i | i r
3 4 5

Number of Test Vectors

Figure 5-10 Fault coverage for ripple carry ADD8.

Next a CIA implementation of example ADD8 will be considered. Without specific

knowledge of the details of the target technology, behavioral test vectors are first formed

on the basis of a full 8-bit CIA structure.

The highest order carry in an 8-bit CIA adder, without a carry-in or carry-out, is C6.

Extrapolating from Table 5-7, the terms for C6 are P6P5P4P3P2P]G0, P6P5P4P3P2Gj,

P6P5P4P3G2, P6P5P4G3, P6P5G4, P6G5, and G6. According to the new behavioral fault

97

model, test vectors for extra carry faults are required for all but the two most significant

stages. Each stage has a separate fault for each carry-propagate (Pt) signal in that term.

Behavioral test vectors for the extra carry faults are presented in Table 5-11. Test vectors

are necessary for missing carry faults for all but the lowest and highest order terms. The

missing carry behavioral test vectors are presented in Table 5-12.

Stage Term A B s

0 P6P5P4P3P2P1G0

00000001 11111101 11111110

00000001 11111011 11111100

00000001 11110111 11111000

00000001 11101111 11110000

00000001 11011111 11100000

00000001 10111111 11000000

1 P6P5P4P3P2G1

00000010 11111011 11111101

00000010 11110111 11111001

00000010 11101111 11110001

00000010 11011111 11100001

00000010 10111111 11000001

2 P6P5P4P3G2

00000100 11110111 11111011

00000100 11101111 11110011

00000100 11011111 11100011

00000100 10111111 11000011

3 P6P5P4G3

00001000 11101111 11110111

00001000 11011111 11100111

00001000 10111111 11000111

4 P6P5G4

00010000 11011111 11101111

00010000 10111111 11001111

Table 5-11 Behavioral test vectors for extra carry faults.

98

Stage Term A B s

1 P6P5P4P3P2G1 00000010 11111111 00000001

2 P6P5P4P3G2 00000100 11111111 00000011

3 P6P5P4G3 00001000 11111111 00000111

4 P6P5G4
00010000 11111111 00001111

5 P6G5
00100000 11111111 00011111

Table 5-12 Behavioral test vectors for missing carry faults.

A common modular CLA implementation was chosen, which cascades individual 4-bit

CLA adders to form the «-bit addition. A block diagram of an 8-bit adder, therefore, has

the structure shown in Figure 5-11.

A7.4 B7.4

H
A B
CLA Cl

S

T
57-4

A3-0 B3-0

11
A B

CO CLA
s

J
>3-0

Figure 5-11 Block diagram of modular CLA adder.

Fault simulations were performed on a NAND-only realization of the modular CLA

adder using the combined behavioral test vectors. The original eight ripple carry test vec-

tors produce a SSL gate level fault coverage of 290/310 = 93.55%. Application of the

additional 25 carry look-ahead test vectors results in the expected complete gate level

fault coverage.

Note the relative inefficiency of the CLA test vectors versus the original eight ripple

carry vectors in the fault coverage plot in Figure 5-12. In addition, there is a large flat por-

tion of the graph, between vectors 21 to 31, where fault coverage does not improve. This

is due to the lack of specific knowledge about the modular CLA implementation. A

designer equipped with details of the functional elements used in the target technology can

optimize the behavioral test vectors.

99

Number of Test Vectors

Figure 5-12 Fault coverage for modular CLA adder.

5.1.2.4 Optimization of CLA Behavioral Faults

Given the additional detail that adders in a certain design are implemented by cascad-

ing 4-bit CLA modules, an optimized set of behavioral test vectors can be derived. From

the block diagram of the modular CLA adder in Figure 5-11, highest order carries can be

determined for both the upper, S7.4, and lower, S3.0, CLA modules.

The highest order carry in the lower CLA adder, with a carry-out and no carry-in, is

C3. From Table 5-7, the terms for C3 are P3P2P]G0, P3P2G], P3G2, and G3. The highest

order carry in the upper CLA adder, with a carry-in and no carry-out, is C6. Extrapolating

from Table 5-7, the terms for C6 are P6P5P4C3, P6P5G4, P6G5, and G6.

According to the new behavioral fault model, test vectors are necessary for missing

carry faults for all but the lowest and highest order terms for each CLA module. The miss-

ing carry behavioral test vectors are, therefore, presented in Table 5-13. Test vectors for

extra carry faults are required for all but the two most significant stages.for each module.

Each stage has a separate fault for each carry-propagate (Pi). Behavioral test vectors for

the extra carry faults are shown in Table 5-14.

Fault simulations were performed on the modular CLA adder using the optimized

behavioral test vectors from Table 5-13 and Table 5-14. A SSL gate level fault coverage of

100

Stage Term A B s

1 P3P2G1 00000010 11111111 00000001

2 P3G2 00000100 11111111 00000011

4 P6P5G4
00010000 11111111 00001111

5 P6G5 00100000 11111111 00011111

Table 5-13 Optimized test vectors for missing carry faults.

Stage Term A B s

0 P3P2P1G0

00000001 11111101 11111110

00000001 11111011 11111100

00000001 11110111 11111000

1 P3P2G1
00000010 11111011 11111101

00000010 11110111 11111001

3 P6P5P4C3

00001000 11101111 11110111

00001000 11011111 11100111

00001000 10111111 11000111

4 P6P5G4

00010000 11011111 11101111

00010000 10111111 11001111

Table 5-14 Optimized test vectors for extra carry faults.

310/310 = 100% was achieved with only 8 + 14 = 22 behavioral test vectors as opposed to

the 8 + 25 = 33 non-optimized vectors. Hence, additional knowledge about the target

architecture has allowed optimization of the behavioral test vector set while still achieving

complete gate level fault coverage.

5.1.3 Summary

A behavioral fault model for addition has been derived using a complete functional

testing technique. Both simple addition and the more complex form including a carry-in

and/or a carry-out have been considered. The functional tests can be readily extended to

n-bits, still requiring only eight behavioral test vectors. If the target hardware uses carry

look-ahead circuits, additional behavioral faults are defined.

101

5.2 Subtraction
Subtraction is closely related to addition and all the techniques previously discussed in

this chapter are applicable. Also, the subtraction operation is often implemented indirectly

using adders and 2's complement arithmetic. A ripple borrow subtracter and a 2's com-

plement addition will be used to demonstrate extension of functional testing to the sub-

traction operation.

5.2.1 Direct Subtraction

Subtraction, like addition, can be performed by the interconnection of functional mod-

ules. Consider the subtraction operation D <= M - S. The difference (D) is formed by

the subtraction of the subtrahend (S) from the minuend (M). Like ripple carries in addi-

tion, full subtractors (FS) and half subtractors (HS) can be interconnected via borrows

between stages.

The truth table for a full subtractor is presented in Table 5-15, where BI and BO repre-

sent borrow-in and borrow-out respectively [35]. Like the half adder, the half subtractor

represents a subset of the full subtractor, where BI = 0.

Test# PQ s on Q
o
PQ

0 0 0 0 0 0

1 0 0 1 1 1

2 0 1 0 1 0

3 0 1 1 0 0

4 1 0 0 1 1

5 1 0 1 0 1

6 1 1 0 0 0

7 1 1 1 1 1

Table 5-15 Truth table for full subtractor.

5.2.1.1 Functional Testing

The functional testing strategy presented for the ripple carry adder can now be applied

to direct subtraction. Complete functional testing can be achieved by exhaustive testing of

each subtractor module.

102

The functional test vectors proposed for direct subtraction are presented in Table 5-16.

The Phase I tests represent complete testing of the halfsubtracter (HS0) module. Phase II

continues testing of the full subtractor (FSt) modules where BI = 1. Finally, Phase III

completes testing of the full subtractor modules by interleaving the remaining tests from

Table 5-15.

Phase M s D

Test#

FS3 FS2 FS2 HS0

I

0000 0000 0000 0 0 0 0

0000 mi 0001 5 5 5 1

mi 0000 mi 2 2 2 2

mi mi 0000 3 3 3 3

II
0000 0001 mi 4 4 4 1

1110 mi mi 7 7 7 1

ni
0101 1010 1011 1 6 1 2

1010 0101 0101 6 1 6 1

Table 5-16 Functional tests for 4-bit direct subtraction.

5.2.1.2 Application of the Behavioral Test Vectors

Again, the behavioral fault model follows directly from the error vector approach pre-

sented earlier in this chapter. Behavioral test vectors are derived from the error vectors

formed by the functional tests from Table 5-16.

A 4-bit subtractor will now be used to evaluate the effectiveness of the behavioral test

vectors. The VHDL behavioral description for example SUB4 is shown in Figure 5-13.

The example subtracts B from A to produce a 4-bit difference D.

architecture behave of sub4 is
begin

process(A,B)
begin

D <= A - B;
end process;

end behave;

Figure 5-13 Behavioral description for example SUB4.

103

Example SUB4 was synthesized with AutoLogic II to produce the subtraction circuit

shown in Figure 5-14. Fault simulations were then performed using the behavioral test

vectors derived from Table 5-16. As expected, the behavioral test vectors achieved a SSL

gate level fault coverage of 112/112 = 100%.

sii;§!&=q>

Figure 5-14 Synthesized circuit for example SUB4.

5.2.2 Subtraction Using Addition Circuitry

Subtraction can also be performed by taking the negative of the subtrahend and per-

forming an addition [35][41]. With 2's complement arithmetic, the negation can be per-

formed by taking the logical complement of B and adding 1. Thus, the subtraction

operation becomes:

A - B = A + (-B) = A + B + 1

The behavioral test vectors developed for direct subtraction can now be evaluated for

their performance on a subtractor realized with addition circuitry. A block diagram for a

4-bit subtractor implemented with full adders is presented in Figure 5-15.

M0 S0

T
Dn

Figure 5-15 Subtractor implemented with full adders.

104

Table 5-17 shows the functional tests applied to the full adders (FAj) by the subtraction

test vectors from Table 5-16. Since CIN = 1 for all vectors, Test 4 through Test 7 repre-

sents all possible tests for FA0. Hence, complete functional testing for each stage of the

adder is achieved by the behavioral test vectors for subtraction. Additional fault simula-

tion results can be found in Appendix B.

Phase

Subtraction Addition Test*

M s D A B CIN s FA3 FA2 FAi FA0

I

0000 0000 0000 0000 1111 0000 5 5 5 5

0000 mi 0001 0000 0000 0001 0 0 0 4

1111 0000 mi 1111 mi nil 7 7 7 7

1111 mi 0000 1111 0000 0000 6 6 6 6

n
0000 0001 mi 0000 1110 mi 1 1 1 4

1110 mi mi 1110 0000 mi 2 2 2 4

in
0101 1010 1011 0101 0101 1011 4 3 4 7

1010 0101 0101 1010 1010 0101 3 4 3 4

Table 5-17 Functional tests for adder by subtraction test vectors.

5.2.3 Summary

A behavioral fault model for subtraction has been derived using a complete functional

testing technique. Though based on direct subtraction, the behavioral test vectors also

provide complete gate level fault coverage when implemented with adders. The functional

tests can be readily extended to n-bits, still requiring only eight behavioral test vectors.

Supplemental behavioral faults for a CIA implementation can be easily derived via the

relationships of 2's complement arithmetic. Such an example can be found in Appendix

A.

5.3 Constants as Operands
When one operand for an arithmetic operator is a constant, the behavior changes to

that of a unary operator such as increment or decrement. Controllability is lost over the

constant's input patterns, so the previously developed functional tests cannot be applied.

105

A 4-bit increment function, Z <= Y + 1, is used here as an example. Applying the

constant 0001 to a ripple carry adder structure, the FA equations can be rewritten as:

S0 = A0

C0 = A0

Si = A± 0 Ci.!
Ci = AiCi.!

Stage 0 (ST0) of the resulting incrementor is a single input function, while the remaining

stages are 2-input functions that can be recognized as half adders. A functional testing

strategy, like that in Section 5.1.1.1, can now be applied.

5.3.1 Functional Testing

Complete functional testing of the unary operator increment will now be achieved by

exhaustive testing of every stage. The test vectors and resulting tests for each stage are

presented in Table 5-18.

Phase Y z

Test#

HA3 HA2 HAL ST0

I
0000 0001 0 0 0 0

1111 0000 3 3 3 1

II

1110 mi 2 2 2 0

1101 1110 2 2 1 1

1011 1100 2 1 3 1

0111 1000 1 3 3 1

Table 5-18 Functional tests for 4-bit increment function.

As can be seen from the patterns in the test results, complete functional testing of an n-

bit increment function can be achieved with n+2 test vectors. Similar analysis on a 4-bit

decrement function, Z <= Y - 1, achieves similar results.

5.3.2 Generalized Behavioral Fault Model

By examining the functional test vector patterns for each unary operator function,

(Y + 1, Y + 2,...) and (Y - 1, Y - 2,...), a generalized behavioral fault model can be devel-

oped. In the case of positive increments, the n test vectors for the Phase II tests can be

derived by starting with a test pattern formed by the complement of the increment value.

106

For example, a 5-bit implementation of Z <= Y + 3 would start with a Phase II test

vector of 11100. The starting test pattern is then rotated n-1 times to produce the remain-

ing behavioral test vectors.

For negative numbers, the starting test pattern is based on the positive representation of

the number. For example, a 6-bit implementation of Z <= Y - 5 would start with a

Phase II test pattern of 000101. The functional tests produced by the resulting behavioral

test vectors are summarized in Table 5-19.

Phase Y z

Test#

ST5 ST4 ST3 ST2 STt ST0

I
000000 111011 0 0 0 0 0 0

nun 111010 3 3 3 3 3 1

n

000101 000000 1 1 1 3 1 1

001010 000101 1 1 2 1 2 0

010100 001111 1 2 0 2 0 0

101000 100011 3 1 2 0 0 0

010001 001100 1 2 0 1 1 1

100010 011101 2 0 0 1 2 1

Table 5-19 Functional tests for 6-bit function Z <= Y - 5.

Complete functional testing, of the unary operators formed by arithmetic operators

with a constant operand, can be achieved with n+2 behavioral test vectors. The resulting

gate level fault coverage, however, depends on optimizations performed by a synthesis

tool which may affect the underlying ripple carry structure. Further application of these

new behavioral fault models can be found in the examples in Appendix A.

5.4 Comparison with Previous Fault Models
As was the case with relational operators, few previous fault models address arith-

metic operators. As part of the development of the "B-algorithm: A Behavioral Test Gen-

eration Algorithm," [21] [22] Cho and Armstrong developed a new behavioral fault model

which included arithmetic operators as part of micro-operation faults. Such faults perturb

an arithmetic operator to another operator as indicated in Table 5-20.

107

Fault-free Operator Faulty Operator

ADD SUB, XOR

SUB ADD, XOR

Table 5-20 Micro-operation Faults

Recall that this fault model suffered from what the authors called the "big micro-oper-

ation problem," where only a single test vector is generated for a complex block of logic.

To raise their equivalent gate level fault coverage to acceptable levels, an additional 4n-l

test vectors are generated by a heuristic test generator for each n-bit micro-operation.

A similar fault model was proposed by Al Hayek and Robach [4] as part of a mutation-

based testing strategy in which VHDL behavioral faults are considered as software faults.

For Arithmetic Operator Replacement (AOR), ADD (+) is replaced by SUB (-). Mutation

analysis does not take into account the size of the hardware implementation, because it

considers each arithmetic operator as a software operation and consequently generates

only one test vector. In order to improve the performance of their technique, the authors

also resorted to heuristics to generate additional test vectors for their complex operators.

The new behavioral fault models developed for arithmetic operators eliminate the

need to supplement test vector sets. While the new fault models are definitely more com-

plex than previous ones, this is because they more accurately reflect the underlying com-

plexity of the hardware faults which they attempt to model.

5.5 Conclusions
New behavioral fault models have been developed for the predefined VHDL arith-

metic operators ADD (+) and SUB (-). The fault models are based on complete functional

testing of arithmetic building blocks. Though optimizations may modify the building

blocks, the basic function of the arithmetic operators remains unchanged. By concentrat-

ing on functional testing, complete gate level SSL fault coverage can be obtained over a

broad range of hardware implementations.

The base fault model is derived from the ripple carry connection of full and half

adders. Because such realizations are made up of 2- and 3-input functional building

blocks, complete functional testing can be achieved by exhaustive testing of each module.

108

Only eight behavioral test vectors are required for complete gate level fault coverage,

regardless of the size of the operands.

If the target hardware uses carry look-ahead circuits, additional behavioral faults are

defined. Testing for all the faults in the highest order carry in a CIA adder will provide

coverage for all lower order faults. Test vectors are added for missing carry faults and

extra carry faults for specific stages. Knowledge of the target architecture will allow opti-

mization of the test vector set while still achieving complete gate level fault coverage.

Subtraction is closely related to addition and all the techniques previously discussed

are applicable. The functional tests can be readily extended to «-bits, still requiring only

eight behavioral test vectors. Though based on direct subtraction, they also provide com-

plete functional testing when the operation is realized indirectly with adders. Additional

behavioral faults for a CIA implementation can be easily derived via the relationships of

2's complement arithmetic.

The new behavioral fault models developed for arithmetic operators eliminate the

need to supplement test vector sets via methods such as heuristics. While the new fault

models are more complex than previous ones, this is because they more accurately reflect

the underlying complexity of the hardware faults which they attempt to model.

Chapter 6

Other Operators

The remaining VHDL operators from Table 1-2 include logical, unary, multiplying,

and miscellaneous. Logical operators provide a close link between behavioral and gate

level descriptions. Mapping SSL gate level faults into the behavioral domain is, therefore,

a fairly straight forward process. However, differences in actual gate level structures, due

to optimization and synthesis tools, must also be taken into account.

In contrast to previously discussed binary operators, unary operators affect only a sin-

gle operand. This distinction does not alter the analysis of gate level faults and their map-

ping to behavioral faults. Though classified in the miscellaneous category, the operator

ABS will be considered with this group.

Due to power of 2 restrictions placed on multiplying operators, detailed in Figure 1-1,

implementation becomes simply a shifting of lines, rather than any additional hardware.

Since no more gates are implied by such operations, no additional gate level faults are

introduced. The same synthesis guidelines apply to the miscellaneous operator (**),

hence, no behavioral faults will be defined.

6.1 Logical Operators

The predefined VHDL logical operators include AND, OR, NAND, NOR, and XOR.

All these operators are binary, therefore only 2-input gate level structures are implied.

The miscellaneous operator NOT is a unary operator that does not introduce additional

SSL gate level faults, not covered by other operators. Further, the logical pairs AND/OR

and NAND/NOR differ by only a single inversion, hence detailed analysis of one group

will provide the insight necessary to develop the behavioral fault models for the entire set

of operators.

The remaining logical operator, XOR, will be examined separately due to the unique

nature of its functional faults. Additionally, previous research on XOR structures, such as

parity trees, can provide optimizations for the behavioral tests necessary to provide com-

plete gate level fault coverage.

109

110

6.1.1 AND/OR

The logical operators AND/OR provide a close link between behavioral and gate level

descriptions. Mapping SSL gate level faults into the behavioral domain is, therefore, a

fairly straight forward process. However, differences in actual gate level structures, due to

optimization and synthesis tools, must also be taken into account.

6.1.1.1 Functional Faults

The behavioral description of a 2-operandAND operation can be expressed as:

Z <= A AND B;

A direct gate level implementation results in a 2-input AND gate which can be analyzed

for SSL faults. A reduced set of functional faults for the AND operation is presented in

Table 6-1. The three test vectors (AB) necessary to detect all functional faults are, there-

fore, 01,10, and 11.

< PQ N

o
II
N

<
II
N

PQ
II
N

0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Table 6-1 Functional faults for AND operation.

A similar analysis of the OR operation produces the reduced set of functional faults

shown in Table 6-2. The required functional test vectors are 00, 01, and 10.

< PQ N
II
N

<
II
N

PQ
II
N

0 0 0 1

0 1 1 0

1 0 1 0

1 1 1

Table 6-2 Functional faults for OR operation.

Ill

The functional faults for the NAND and NOR operators follow directly from the above

analysis. The functional tests for the NAND operation are the same as for the AND opera-

tion, while the tests for the NOR operation are the same as the OR.

6.1.1.2 Complex Expressions

The functional faults for a single logical operator have been determined quite easily.

However, interactions among these operators in more complex expressions must also be

addressed. Since all the logical operators are binary, these interactions can be investi-

gated with the use of a binary tree.

Consider the behavioral description of a logical expression presented in Figure 6-1.

entity SOPl is
port(A, B, C, D: in std_logic;

. Z: out std_logic);
end SOPl;

architecture behave of SOPl is
begin

process(A,B,C,D)
begin

Z <= (A AND B) OR (C AND D);
end process;

end behave;

Figure 6-1 Behavioral description for example SOPl.

The expression on the right hand side of the assignment statement can be parsed into a

binary tree shown in Figure 6-2. The nodes (1,2,3) are formed by the logical operators,

while the leaves of the tree are the signals A, B, C, and D.

2 OR

/ \
1 AND 3 AND

/ \ /
A B C D

Figure 6-2 Binary tree representing example SOPl.

According to the previous analysis, three functional faults affect each of the three log-

ical operators in the expression. For example, the first functional fault to the AND opera-

112

tor at node 1 requires a test vector (AB) of 01 and produces an erroneous output of A AND

B = 1. In order for this erroneous output to be observable at the expression output Z,

appropriate values for the other signals (C,D) must be determined. This can be accom-

plished using the following set of Boolean identities:

Y OR 0 = Y
Y OR 1 = 1

Y AND 1 = Y
Y AND 0=0

According to the first identity, setting the right hand operand of the OR operator at

node 2 to 0 will allow the left hand operand to propagate up the tree unchanged. Using the

last identity, setting either operand of the AND operator, at node 3, to 0 will produce the

desired input to node 2. Applying this set of identities along with the functional faults for

the AND and OR operators produces the test vectors shown in Table 6-3.

Node
Functional

Test
Test Requirements

Test Vector
(ABCD)

1

01 A = 0, B = 1, (C AND D) = 0 010X

10 A=1,B = 0,(CANDD) = 0 100X

11 A = 1, B = 1, (C AND D) = 0 110X

2

00 (A AND B) = 0, (C AND D) = 0 oxox

01 (A AND B) = 0, (C AND D) = 1 0X11

10 (A AND B) = 1, (C AND D) = 0 110X

3

01 C = 0,D=1, (AANDB) = 0 0X01

10 C=1,D = 0,(AANDB) = 0 0X10

11 C=1,D=1,(AANDB) = 0 0X11

Table 6-3 Functional test vectors for example SOP1.

The set of functional test vectors can be reduced by combination of the don't care val-

ues. The final test vectors for example SOP1 are presented in Table 6-4. Also listed are

the functional tests covered for each node of the parse tree.

113

Test Vector
(ABCD)

Functional Tests
(Node [Test])

0101 1[01],2[00],3[01]

0X10 3[10]

0X11 2[01],3[11]

100X 1[10]

110X 1[11],2[10]

Table 6-4 Reduced test vectors for example SOP1.

6.1.1.3 Scalability

Example SOP4 was created by expanding the width of the signals A, B, C, and D to

std_logic_vector(3 downto 0). It has been previously shown that expansion of the data

path simply causes replication of the single bit case implemented in parallel. Hence, extra

test vectors are not required since the additional hardware can be tested at the same time.

The expanded test vectors for example SOP4 are shown in WAVES format in Figure 6-3.

% A B C D Z
0000 1111 0000 1111 0000
0000 XXXX 1111 0000 0000
0000 XXXX 1111 1111 1111
1111 0000 0000 XXXX 0000
1111 1111 0000 XXXX 1111

time ;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure 6-3 WAVES test vectors for example SOP4.

6.1.1.4 Behavioral Fault Model

As was the case with the arithmetic operators, an error vector approach is taken for

abstracting the logical operator functional faults into the behavioral domain. The XOR

operator provides the desired corruption properties by inverting the appropriate bit(s)

when presented with a non-zero error vector.

Recall from Table 6-3, the first functional fault to the AND operator at node 1 required

that A = 0, B = 1, and (C AND D) = 0. This fault criteria can be directly translated to an

error vector for example SOP1 as:

Z <= (A AND B) OR (C AND D) XOR (A = '0' AND B = '1'
AND (C AND D) = *0')

114

Again, as was the case for the arithmetic operators, this expression is not syntactically

correct due to VHDL type differences. A complete implementation of the behavioral fault

model for example SOP1 is presented in Figure 6-4.

Z <= (A AND B) OR (C AND D) XOR to_stdlogic(
(A = y0' AND B = *1' AND (C AND D) = *0') OR
(A = »1' AND B = *0' AND (C AND D) = *0') OR
(A = »1' AND B = *1' AND (C AND D) = >0') OR
((A AND B) = *0' AND (C AND D) = *0') OR
((A AND B) = *0' AND (C AND D) = »1') OR
((A AND B) = »1' AND (C AND D) = *0') OR
(C = x0' AND D = '1' AND (A AND B) = *0') OR
(C = *1' AND D = x0' AND (A AND B) = x0') OR
(C = »1' AND D = »1' AND (A AND B) = *0'))i

Figure 6-4 Behavioral fault model for example SOP1.

6.1.1.5 Application of the New Fault Models

A simple example is now presented to demonstrate the application of the new fault

models developed for logical operators. A test vector set will be formed based on behav-

ioral faults and then applied to synthesized gate level realizations.

Example GT in Figure 6-5 uses logical operators to describe a Boolean expression for

the 2-bit greater than function, examined in detail in Chapter 4. Example GT presents two

minor differences from example SOP1. First, the inclusion of the unary operator NOT

means that the resulting parse tree will not be completely binary. This should have no

entity gt is
port(A, B: in std_logic_vector(1 downto 0);

GT: out std_logic);
end gt;

architecture behave of gt is
begin

process(A,B)
begin

GT <= (A(l) AND not B(l)) OR (A(0) AND not B(0)
AND (A(l) OR not B(l)));

end process;
end behave;

Figure 6-5 Behavioral description for example GT.

115

effect on the test generation process since functional faults are only defined for the binary

logical operators. Second, not all of the pairings are explicitly defined for the binary log-

ical operators in example GT. Hence, the precise implementation by the synthesis tool

cannot be determined. Since the new fault models are based on a functional analysis, they

should provide complete gate level fault coverage over a broad range of realizations.

A parse tree for example GT is presented in Figure 6-6. As before, the binary nodes

are formed by the logical operators, while the leaves of the tree represent the signals.

2 OR

/ \
1 AND 3 AND

/ \ / \
At not A0 4 AND

I / \
Bi not 5 OR

I / \
B0 A{ not

B,

Figure 6-6 Parse tree for example GT.

Application of the new behavioral fault models implies three behavioral faults for each

of the five binary logical operators. The resulting test vectors are presented in Table 6-5.

Again, the set of behavioral test vectors can be reduced by combination of the don't care

values. The final test vectors for example GT are presented in Table 6-6. It is worth not-

ing that the behavioral test vectors derived here are consistent with the functional faults for

the 2-bit GT function presented in Figure 4-2.

Example GT was synthesized with AutoLogic II to produce the gate level Structure 1

shown in Figure 6-7. Note that the groupings for the AND gates do not match the parse

tree in Figure 6-6. According to MIL-STD 883D, Structurel contains 30 unique gate level

SSL faults. Fault simulations using the behavioral test vectors from Table 6-6 resulted in

complete gate level fault coverage.

116

Node
Behavioral

Test
Test Requirement

Test Vector
(A1A0B1B0)

1

01
A! = 0, notB^l,

A0 AND not B0 AND (AL OR not B^ = 0
ooox

10
A^^notB^O,

A0 AND not B0 AND (Ai OR not B^ = 0
101X

11
At = ^notBj = 1,

A0 AND not B0 AND (A! OR not B^ = 0
100X

2

00
A{ ANDnotB!=0,

A0 AND not B0 AND (Ax OR not B {) = 0
ooxx

01
At ANDnotB^O,

A0 AND not B0 AND (At OR not B ^ = 1
0100

10
Ai ANDnotB^l,

A0 AND not B0 AND (At OR not B:) = 0
100X

3

01
A0 = 0, not B0 AND (AY OR not Bx) = 1,

Ai ANDnotB! = 0
1010

10
A0 = 1, not B0 AND (Al OR not B^ = 0,

Aj ANDnotB! = 0
01X1

11
A0 = 1, not B0 AND (Ax OR not B:) = 1,

At ANDnotB^O
1110

4

01
not B0 = 0, AL OR not B2 = 1,

A0=1,A1 ANDnotB1 = 0
1111

10
not B0 = 1, Al OR not B: = 0,

A0=l,A1ANDnotB1 = 0
0110

11
notB0=l,A1ORnotB1 = l,

A0=1,A1 ANDnotB^O
1110

5

00
Aj = 0, not BL = 0, not B0 = 1,
Ao=l,A! ANDnotB^O

0110

01
Ai = 0, not Bt = 1, not B0 = 1,

A0=1,A1 ANDnotB^O
0100

10
A1 = l,notB1 = 0, notB0 = 1,

A0=1,A! ANDnotB^O
1110

Table 6-5 Behavioral test vectors for example GT.

117

Test Vector
(AiAoBiBo)

Functional Tests
(Node [Test])

ooox 1[01], 2[00]

OlOO 2[01],5[01]

01X1 3[10]

0110 4[10], 5[00]

100X 1[11],2[10]

1010 1[10],3[01]

1110 3[11],4[11],5[10]

1111 4[01]

Table 6-6 Reduced test vectors for example GT.

a(1:0)O

b(1:0)O-

1S~

-Ogt

Figure 6-7 Synthesized Structurel for example GT.

Example GT was next synthesized and optimized for an alternate target technology.

The resulting Structure2 is shown in Figure 6-8. Fault simulations using the same behav-

ioral test vectors achieved a SSL gate level fault coverage of 35/35 = 100%. The fault cov-

erage graph is shown in Figure 6-9.

b(1:Q)0-

a(1:0)O-
H> s~

o
O

-Ogt

Figure 6-8 Synthesized Structure2 for example GT.

118

Coverage (%)

100

90 -

80 -

70 -

60

50

40 -

30 -

20 -

10 -

0 -> T
2

Number of Test Vectors

Figure 6-9 Fault coverage for Structure2 of example GT.

6.1.2 XOR

The remaining logical operator, XOR, is examined here separately, due to the unique

nature of its functional faults. Additionally, previous research on XOR structures, such as

parity trees [16][53], can provide optimizations for the behavioral tests necessary to pro-

vide complete gate level fault coverage.

6.1.2.1 Functional Faults

The XOR gate has numerous logical implementations producing several different sets

of functional faults. In order to test an XOR gate whose internal structure is unknown, an

exhaustive test set, four patterns, is needed to detect all SSL faults [30]. A generalized set

of functional faults is presented in Table 6-7.

The set of generalized functional faults and the following Boolean identities allow

functional tests to be generated for the XOR operator used in complex expressions with

the other logical operators.

Y XOR 0 = Y
Y XOR Y = 0
Y XOR Y = 1

Though not optimal, the functional tests ensure complete SSL fault coverage of the XOR

gates regardless of their internal structure.

119

m
1« PQ

< |
CQ
pi

z < < o
< < W <
ii n n II

< « N N N N N

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Table 6-7 Generalized functional faults for XOR operation.

6.1.2.2 Optimized Test Generation

Expressions containing only XOR operators are common for circuits such as parity

networks. Previous research has demonstrated the generation of optimum test patterns for

such parity networks with fixed structures [16][53]. However, when working with behav-

ioral descriptions, the actual gate level structure is often unknown and may ultimately be

determined by a synthesis tool. Still, modifications to the algorithms are possible to allow

for complete gate level fault coverage over a broad range of implementations.

The Bossen algorithm [16] applies an exhaustive test to each XOR gate by using the

labeling scheme shown in Figure 6-10. The test sequences are labeled R, S, and T Each

of the sequences is the modulo-2 sum of the other two. That is, T = R © S, S = T © R, and

R = S © T.

oioi—^\ ^\
V- 0110 R

ooii —jj ^y

Figure 6-10 Labeling scheme for Bossen test.

Test generation using the Bossen algorithm will be demonstrated via a simple exam-

ple. The behavioral description for XOR5 is shown below:

Z <= A XOR B XOR C XOR D XOR E

Grouping the terms from left to right produces a linear tree or cascade implementation

shown in Figure 6-11.

120

B£>

CO

DO

EO

Figure 6-11 Structure Cascadel for example X0R5.

The test set is developed by first assigning one of the three sequences to the output of

the tree. Other sequences are then determined moving from right to left, ensuring that

each XOR gate is exhaustively tested. The resulting test vectors are shown in Table 6-8.

Note that the labeling sequences are not unique and the test vectors generated may not

completely test other implementations of the same expression.

Signal Label Sequence

A T 0101

B S 0011

C T 0101

D R 0110

E S 0011

Test Vector
(ABCDE)

z

00000 0

10110 1

01011 1

11101 0

Table 6-8 Bossen test vectors for Cascadel.

If the behavioral description for XOR5 is instead implemented by grouping terms

from right to left, a second cascade structure is formed. Figure 6-12 shows that the label-

ing scheme from Figure 6-11 cannot be applied to this alternate implementation.

AO-

BO-

CO-
DO-
EO- S>?^

Oz

Figure 6-12 Structure Cascade2 for example XOR5.

121

In fact, no labeling will provide exhaustive testing for all XOR gates in both circuits

Cascade 1 and Cascade2. What is needed is a modification to the Bossen algorithm that

will take into account the most likely implementations of an XOR-on\y expression. Con-

sider the following groupings for example XOR5:

Z <= (((A XOR B) XOR C) XOR D) XOR E (Cascadel)

Z <= ((A XOR B) XOR (C XOR D)) XOR E (Balancedl)

Z <= A XOR (B XOR (C XOR (D XOR E))) (Cascade2)

Z <= A XOR ((B XOR C) XOR (D XOR E)) (Balanced2)

The first and third groupings produce structures Cascadel and Cascade2 respectively,

while the second and forth groupings produce balanced trees [53]. If we consider these

structures to represent a broad range of possible implementations of the behavioral

description, a generalized Bossen algorithm can then provide complete gate level fault

coverage.

An extra restriction is added to the Bossen algorithm to account for multiple possible

structures: According to the assumed groupings for a cascade and its corresponding bal-

anced implementation (Cascade i, Balanced i), no two inputs that are grouped together can

be assigned the same test sequence.

Applying this modified algorithm to structure Cascade2 produces the labeling

sequences shown in Figure 6-13 and the test vectors shown in Table 6-9. Since the test

vectors developed for structure Cascadel already meet the additional restriction for the

modified Bossen algorithm, the generalized set of test vectors from Table 6-8 and Table 6-

9 will now provide exhaustive testing for all four structures of XOR5.

Figure 6-13 Modified Bossen test for Cascade2.

122

Signal Label Sequence

A S 0011

B R 0110

C T 0101

D S 0011

E T 0101

Test Vector
(ABCDE)

z

00000 0

01101 1

11010 1

10111 0

Table 6-9 Modified Bossen test vectors for Cascade2.

6.1.2.3 Evaluation of the Generalized Test Vectors

The generalized Bossen test vectors for example XOR5 are presented in WAVES for-

mat in Figure 6-14. Fault simulations were conducted on multiple implementations

including Structure4 in Figure 6-15. Complete SSL gate level fault coverage was achieved

for each realization. An example fault coverage graph for Structure4 is shown in Figure 6-

16. Note that though the behavioral test vectors are optimized compared to those gener-

ated by a parse tree, they are still generalized to apply to multiple gate level structures.

% ABCDE Z : time ;
00000 0
01011 1
01101 1
10110 1
10111 0
11010 1
11101 0

500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure 6-14 Generalized Bossen test vectors for example XOR5.

aO

Figure 6-15 Structure4 for example XOR5.

123

Coverage (%)

100 -,

90

80 -

70 -

60

50 -

40 -

30

20 -

10

0

Number of Test Vectors

Figure 6-16 Fault coverage for Structure4 of example XOR5.

6.1.3 Comparison with Previous Fault Models

Behavioral fault models for logical operators are addressed by Armstrong et al., where

early models replaced one micro-operation with any other in its class [9] [69], while later

studies tried to determine which perturbations produced the best fault coverage [19].

Finally, the B-algorithm eliminated micro-operation faults for logical operators by defin-

ing bit-wise stuck-at faults for any one of its arguments (a signal or an unnamed signal for

an expression) [21] [22]. This method amounts to exhaustive testing of each logical oper-

ator in an expression.

In their mutation based testing strategy, Al Hayek and Robach [4] define Logical Oper-

ator Replacement (LOR) in which each logical operator is replaced by each of the other

operators. This method treats the VHDL description as software and has little relation to

actual hardware faults. Finally, other fault models [18][27][60] completely neglect logical

operators and instead rely on stuck-signals to provide fault coverage.

The new behavioral fault models developed for logical operators are based on func-

tional faults that require less than exhaustive testing for all operators except XOR. For the

special case of XOR-only expressions, a generalized Bossen algorithm is presented that

allows for optimization of test sequences. The new fault models and algorithms thus pro-

vide complete SSL gate level fault coverage for a broad range of implementations.

124

6.2 Unary Operators
The unary operator for negation (-) performs a function related to the miscellaneous

operator ABS; each affects the sign of a 2's complement number. By analyzing each oper-

ator's functional faults in tandem with the other, a consistent behavioral fault model can

be developed. Note that no previous behavioral fault models even address these operators.

6.2.1 Absolute Value

The ABS operator computes the absolute value of a 2's. complement number. The

operator's functional faults will be investigated for the 4-bit case, then generalized to n-

bits. The following Boolean equations describe the 4-bit absolute value function:

z0 = x0
z1 = x± 0 (X3X0)
z2 - x2
Z3 = 0

(X3X! + X3X0)

Analysis of the faulty behavior of Z = ABS X produces the reduced set of functional

faults shown in Table 6-10. The faults are genetically labeled F1-F5 and are shown with

the integer value of the appropriate test vectors. Before proceeding further with the devel-

opment of a behavioral fault model, the negation operator will first be examined for com-

mon functional faults.

Functional
Fault

Test Vectors
(integer)

Fl 1,3,5,7

F2 2,3,6,7

F3 -3,-7

F4 -2,-6

F5 -4

Table 6-10 Reduced functional faults for 4-bit ABS.

6.2.2 Negation

The negation operator (-) changes the sign of a 2's complement number. The follow-

ing Boolean equations describe the 4-bit negation function:

125

Z0 = X 0
Z-L = X1 @ X0

Z2 = X2 © {X1 + X0)
Z3 = X3 © (X2 + X-L + X0)

Analysis of the faulty behavior of Z = -X produces the reduced set of functional faults

shown in Table 6-11. The faults are generically labeled F6-F10 and are shown with the

integer value of the appropriate test vectors.

Functional
Fault

Test Vectors
(integer)

F6 0

F7 -3,-7,1,5

F8 -5, -6, -7, 1, 2, 3

F9 -2, -6, 2, 6

F10 -4,4

Table 6-11 Reduced functional faults for 4-bit negation.

6.2.3 Generalized Functional Faults

Examination of the reduced set of functional faults for the absolute value and negation

operators provides the necessary insight for developing a common fault model. A gener-

alized set of functional faults is shown in Table 6-12. The faults are covered by three tests

spanning the range of integer values (0, -7,7) combined with a readily identifiable pattern

from the 4-bit test vectors. These patterns are easily replicated for the n-bit case.

Functional
Faults

Test Vector
(integer)

Test Vector
(X3X2X1X0)

F6 0 0000

F1,F2 7 0111

F3, F7, F8 -7 1001

F4,F9 -6 1010

F5, F10 -4 1100

Table 6-12 Generalized functional faults for absolute value and negation.

126

6.2.4 Behavioral Fault Model

Since ABS and (-) only operate on integers, the form of their behavioral fault models

will be slightly different. One method would be to convert the resulting integer to a

bit_vector, which could then be corrupted using an error vector and the XOR operator. The

corrupted bit_vector would then have to be converted back to an integer to match the type

of the original operation.

Since the purpose of the error vector approach is to simply corrupt the result of the

operation, another operator that works directly with integers could just as easily be used.

Hence, the addition operator (+) is used here instead of the XOR to reduce the number of

type conversions necessary. An implementation of the behavioral fault model for the ABS

operator is presented in Figure 6-17. The negation operator (-) can also be corrupted

using the same method.

Z <= (ABS X) + to_integer(X = 0 OR X = 7 OR X = -7 OR
X = -6 OR X = -4);

Figure 6-17 Behavioral fault model for ABS.

6.2.5 Evaluation of Behavioral Test Vectors

The generalized functional faults from Section 6.2.3 can be readily extrapolated for a

larger range of integer values. For examples ABS8 and NEG8, X is declared as an integer

with range from -127 to +127. Thus, a synthesis tool will generate hardware with eight

bits to represent the 2's complement value of X. The WAVES test vectors for example

ABS8 are shown in Figure 6-18.

% X z
00000000 0000000
01111111 1111111
10000001 1111111
10000010 1111110
10000100 1111100
10001000 1111000
10010000 1110000
10100000 1100000
11000000 1000000

time ;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure 6-18 WAVES test vectors for example ABS8.

127

Example ABS8 was synthesized to a gate level implementation using AutoLogic II.

Structure 1 is shown in Figure 6-19. Fault simulations using the behavioral test vectors

produced a SSL gate level fault coverage of 132/132 = 100%. The fault coverage graph is

shown in Figure 6-20.

x(7:G)0

Figure 6-19 Synthesized Structurel of example ABS8.

Coverage (%)

100 -,

90 -

80 -

70 -

60 -

50 -

40 -

30 -

20 -

10 -

Number of Test Vectors

Figure 6-20 Fault coverage for Structurel of example ABS8.

Due to the common behavioral fault model, the test vectors for example NEG8 are the

same as those for ABS8. Example NEG8 was synthesized to the gate level circuit shown

in Figure 6-21. According to MIL-STD 883D, the synthesized circuit contains 114 unique

128

gate level SSL faults. Fault simulations using the common behavioral test vectors also

result in complete gate level fault coverage.

*7:',D-££>-
I>T^>1 Ü> ^CHfCh

r^> x>-
-Oz(7:0>

Figure 6-21 Synthesized circuit for example NEG8.

6.3 Conclusions

New behavioral fault models have been developed for the remaining predefined VHDL

operators. The fault models are based on a functional analysis of the logical, unary, mul-

tiplying, and miscellaneous operators. Though not necessarily optimal, the new fault

models provide complete gate level SSL fault coverage over a broad range of hardware

implementations.

The new behavioral fault models developed for the logical operators (AND, OR,

NAND, NOR, XOR) are based on functional faults that require less than exhaustive testing

for all operators except XOR. For the special case of XOR-only expressions, a generalized

Bossen algorithm is presented that allows for optimization of test sequences.

The unary operator for negation (-) performs a function related to the miscellaneous

operator ABS; each affects the sign of a 2's complement number. By analyzing each oper-

ator's functional faults in tandem with the other, a consistent behavioral fault model was

developed. Note that no previous behavioral fault models even address these operators.

Chapter 7

Other Programming Constructs

VHDL also includes other constructs drawn from familiar programming languages.

Program loops, functions, and procedures are used in VHDL behavioral descriptions for

design simplicity and reuse/repetition of functional blocks. Since any description using

these constructs can be rewritten equivalently without them, no additional behavioral

faults are implied. Several design examples will be used to demonstrate the interaction

between previously defined behavioral faults and these other programming constructs.

7.1 Loops

The VHDL subset, detailed in Appendix D [36], restricts the use of the loop statement

to only the for iteration scheme. The bounds of the discrete range of the loop must be

specified directly or indirectly as static values belonging to an integer type. Hence, the

program loop can be expanded or "unrolled" to an equivalent form eliminating the loop

construct.

7.1.1 A Simple Example

Example SHIFT4u in Figure 7-1 demonstrates the use of program loops to perform

shifting operations. With control signal OP = "01", a right shift of the unsigned signal

A is performed by the I in 0 to 2 loop. Similarly, with OP = "10", a left shift is

accomplished via the I in 3 down to 1 loop. For this example, other values for the

control signal OP pass signal A unchanged.

entity shift4u is
port (

OP: in std_logic_vector(1 downto 0);
A: in std_logic_vector(3 downto 0);
D: out std_logic_vector(3 downto 0)

);
end shift4u;

Figure 7-1 Behavioral description for example SHIFT4u.

129

130

architecture behave of shift4u is
begin

process(OP,A)
variable TMP: std_logic_vector(3 downto 0]

begin
case OP is
when "01" =>

for I in 0 to 2 loop
TMP(I) := A(I+1);

end loop;
TMP(3) := v 0';

when "10" =>
for I in 3 downto 1 loop

TMP(I) := A(I-l);
end loop;
TMP(0) := x 0';

when others =>
TMP := A;

end case
D <= TMP

end process;
end behave;

Figure 7-1 Behavioral description for example SHIFT4u.

Due to the directly specified discrete range in each loop, they can be readily expanded

to a sequence of statements eliminating the loop constructs. An expanded version of the

case statement for example SHIFT4u is shown in Figure 7-2.

case OP is
when "01" =>

TMP(O) := A(l
TMP(l) := A(2
TMP(2) := A(3
TMP(3) := '0'

when "10" =>
TMP(3) := A(2
TMP(2) := A(l
TMP(l) := A(0
TMP(0) := '0'

when others =>
TMP := A;

end case;

Figure 7-2 Expanded case statement for example SHIFT4u.

131

The only behavioral faults affecting the expanded example SHEFT4u are the control

faults for the case statement. The behavioral faults and resulting test vectors are shown in

Table 7-1. Combining don't cares produces the behavioral test vectors in Figure 7-3.

Behavioral Fault Corrupted Clause
Test Vectors

(OP A)

WHEN-00-CORRUPT
(by WHEN-01)(OR)

TMP(O) := A(0) OR A(l)
TMP(l) := A(l) OR A(2)
TMP(2) := A(2) OR A(3)
TMP(3) := A(3) OR »0'

00 1010
00 X10X

WHEN-00-CORRUPT
(by WHEN-01)(AND)

TMP(O) := A(0) AND A(l)
TMP(l) := A(l) AND A(2)
TMP(2) := A(2) AND A(3)
TMP(3) := A(3) AND xO'

00 0101
00 101X

WHEN-00-CORRUPT
(by WHEN-10)(OR)

TMP(O) := A(0) OR '0'
TMP(l) := A(l) OR A(0)
TMP(2) := A(2) OR A(l)
TMP(3) := A(3) OR A(2)

00 0101
00 X01X

WHEN-00-CORRUPT
(by WHEN-10)(AND)

TMP(O) := A(0) AND *0'
TMP(l) : = A(l) AND A(0)
TMP(2) := A(2) AND A(l)
TMP(3) := A(3) AND A(2)

00 1010
00 X101

WHEN-01-CORRUPT
(by WHEN-00XOR)

TMP(O) := A(l) OR A(0)
TMP(l) := A(2) OR A(l)
TMP(2) := A(3) OR A(2)
TMP(3) := '0' OR A(3)

01 0101
01 101X

WHEN-01-CORRUPT
(by WHEN-OOXAND)

TMP(O) := A(l) AND A(0)
TMP(l) := A(2) AND A(l)
TMP(2) := A(3) AND A(2)
TMP(3) := x0' AND A(3)

01 1010
01 X10X

WHEN-01 -CORRUPT
(byWHEN-ll)(OR)

TMP(O) := A(l) OR A(0)
TMP(l) := A(2) OR A(l)
TMP(2) := A(3) OR A(2)
TMP(3) := *0' OR A(3)

01 0101
01 101X

WHEN-01-CORRUPT
(byWHEN-ll)(AND)

TMP(O) := A(l) AND A(0)
TMP(l) := A(2) AND A(l)
TMP(2) := A(3) AND A(2)
TMP(3) := '0' AND A(3)

01 1010
01 X10X

Table 7-1 Behavioral faults for example SHIFT4u.

132

Behavioral Fault Corrupted Clause
Test Vectors

(OP A)

WHEN-10-CORRUPT
(by WHEN-00)(OR)

TMP(O) := x0' OR A(O)
TMP(l) := A(0) OR A(l)
TMP(2) := A(l) OR A(2)
TMP(3) := A(2) OR A(3)

10 1010
10 X101

WHEN-10-CORRUPT
(by WHEN-00)(AND)

TMP(O) := '0' AND A(O)
TMP(l) := A(0) AND A(l)
TMP(2) := A(l) AND A(2)
TMP(3) := A(2) AND A(3)

10 0101
10 X01X

WHEN-10-CORRUPT
(byWHEN-ll)(OR)

TMP(O) := 40' OR A(O)
TMP(l) := A(0) OR A(l)
TMP(2) := A(l) OR A(2)
TMP(3) := A(2) OR A(3)

10 1010
10 X101

WHEN-10-CORRUPT
(byWHEN-ll)(AND)

TMP(O) := '0' AND A(O)
TMP(l) := A(0) AND A(l)
TMP(2) := A(l) AND A(2)
TMP(3) := A(2) AND A(3)

10 0101
10 X01X

WHEN-11-CORRUPT
(by WHEN-01)(OR)

TMP(O) := A(0) OR A(l)
TMP(l) := A(l) OR A(2)
TMP(2) := A(2) OR A(3)
TMP(3) := A(3) OR *0'

11 1010
11 X10X

WHEN-11-CORRUPT
(by WHEN-01)(AND)

TMP(O) := A(0) AND A(l)
TMP(l) := A(l) AND A(2)
TMP(2) := A(2) AND A(3)
TMP(3) := A(3) AND *0'

11 0101
11 101X

WHEN-11-CORRUPT
(by WHEN-10)(OR)

TMP(O) := A(0) OR *0'
TMP(l) := A(l) OR A(0)
TMP(2) := A(2) OR A(l)
TMP(3) := A(3) OR A(2)

11 0101
11 X01X

WHEN-11-CORRUPT
(byWHEN-lOXAND)

TMP(O) := A(0) AND '0'
TMP(l) := A(l) AND A(0)
TMP(2) := A(2) AND A(l)
TMP(3) := A(3) AND A(2)

11 1010
11 X101

Table 7-1 Behavioral faults for example SHIFT4u.

133

%0P A D time;
00 0101 0101 500 ns;
00 1010 1010 500 ns;
01 0101 0010 500 ns;
01 1010 0101 500 ns;
10 0101 1010 500 ns;
10 1010 0100 500 ns;
11 0101 0101 500 ns;
11 1010 1010 500 ns;

Figure 7-3 WAVES test vectors for example SHIFT4u.

Example SHIFT4u from Figure 7-1 was synthesized to the gate level Structure 1 shown

in Figure 7-4. Fault simulations were performed using the behavioral test vectors from

Figure 7-3. The resulting SSL gate level fault coverage of 90/90 = 100% is shown in Fig-

ure 7-5. An alternate synthesis tool and target architecture was next used to produce

Structure2 for example SHIFT4u. Fault simulations using the behavioral test vectors from

Figure 7-3 resulted in a SSL gate level fault coverage of 112/112 = 100%.

a(3:Q)0

op(1:0)

^d(3:0)

Figure 7-4 Synthesized Structurel for example SHIFT4u.

134

Coverage (%)

100 -i

90 -

80 -

70

60 -

50

40 -

30

20

10

0

Number of Test Vectors

Figure 7-5 Fault coverage for Structurel of example SHIFT4u.

7.1.2 Comparison with Previous Fault Models

The only previous behavioral fault model to address the loop construct was that pro-

posed by Riesgo and Uceda [60]. As part of faults on expressions, the for_in_loop con-

struct was faulted by the index controlling the loop changing its range from the minimum

to the maximum+1 and from the minimum-1 to the maximum. As can be seen from exam-

ple SHIFT4u, such faults would produce signals that do not even exist in the synthesized

hardware, A(-l) and A(3). Thus, their proposed fault model is more a software mutation,

than hardware oriented as they claim.

The restrictions placed on the loop construct by the VHDL synthesis subset imply that

all such loops can be readily expanded. Since this expansion or "unrolling" eliminates the

loops from the behavioral description, no additional behavioral faults are introduced. The

next section will show that the behavior of functions and procedures is much the same.

7.2 Functions and Procedures

Much like program loops, functions and procedures are used mainly as a convenience

for ease of programming. In general, any VHDL code written with functions and proce-

dures can be mapped to the same hardware as equivalent code without functions or proce-

dures [10]. Since the VHDL behavioral descriptions can be expanded to eliminate these

135

programming constructs, no additional behavioral faults are introduced by the use of func-

tions or procedures.

7.2.1 Example ADD4fn

Example ADD4fn in Figure 7-6 describes a 4-bit ripple carry adder using functions to

perform the sum and carry operations. The functions FA_S and FA_C are shown in Figure

7-7.

process(A,B,CIN)
variable CARRY: std_logic_vector(4 downto 0);
variable SUM : std_logic_vector(3 downto 0) ;

begin
CARRY(0) := CIN;
for I in 0 to 3 loop

SUM(I) :=FA_S(A(I), B(I), CARRY(I));
CARRY(I+1) :=FA_C(A(I), B(I), CARRY(I));

end loop;
S <= SUM;
COUT <= CARRY(4);

end process;

Figure 7-6 Behavioral description for example ADD4fn.

function FA_S (AIN, BIN, CIN: std_logic) return
std_logic is

begin
return AIN xor BIN xor CIN;

end FA_S;

function FA_C (AIN, BIN, CIN: std_logic) return
std_logic is

begin
return (AIN and BIN) or (AIN and CIN) or

(BIN and CIN) ;
end FA_C;

Figure 7-7 Functions for example ADD4fn.

The loop and function programming constructs can be eliminated from the behavioral

description by expanding the loop and replacing the function call with its returned expres-

sion. The results of this expansion and substitution are shown in Figure 7-8. Since the

VHDL behavioral descriptions in Figure 7-6 and Figure 7-8 synthesize to the same gate

136

level structures, no additional behavioral faults have been introduced by the use of func-

tions.

begin
CARRY(0) := CIN;
SUM(0) := A(0) xor B(0) xor CARRY(0);
CARRY (1) := (A(0) andB(O)) or (A(0) andCARRY(O)) or

(B(0) and CARRY(0));
SUM(l) := A(l) xor B(l) xor CARRY(l);
CARRY(2) := (A(l) andB(l)) or (A(l) andCARRY(l)) or

(B(l) and CARRY(1));
SUM(2) := A(2) xor B(2) xor CARRY(2);
CARRY(3) := (A(2) andB(2)) or (A(2) andCARRY(2)) or

(B(2) and CARRY(2));
SUM(3) := A(3) xor B(3) xor CARRY(3);
CARRY (4) := (A(3) andB(3)) or (A(3) and CARRY (3)) or

(B(3) and CARRY(3));
S <= SUM;
COUT <= CARRY(4);

end process;

Figure 7-8 Expanded behavioral description for example ADD4fn.

7.2.2 Example ADD4pr

The 4-bit ripple carry adder can be equivalently written using a procedure as shown in

Figure 7-9. The procedure FA is shown in Figure 7-10.

process(A,B,CIN)
variable CARRY: std_logic_vector (4 downto OK-
variable SUM : std_logic_vector(3 downto 0);

begin
CARRY(0) := CIN;
for I in 0 to 3 loop

FA(A(I), B(I), CARRY(I), SUM(I), CARRY(I+1));
end loop;
S <= SUM;
COUT <= CARRY(4);

end process;

Figure 7-9 Behavioral description for example ADD4pr.

137

procedure FA (AIN, BIN, CIN: in std_logic;
SOUT, COUT: out std_logic) is

begin
SOUT := AIN xor BIN xor CIN;
COUT := (AIN and BIN) or (AIN and CIN) or

(BIN and CIN);
end FA;

Figure 7-10 Procedure FA for example ADD4pr.

Since the VHDL behavioral description ADD4pr in Figure 7-9 synthesizes to the same

gate level structures as the examples in Figure 7-6 and Figure 7-8, no additional behavioral

faults have been introduced by the use of procedures.

7.3 Conclusions
VHDL includes other constructs drawn from familiar programming languages'. Pro-

gram loops, functions, and procedures are used in VHDL behavioral descriptions for

design simplicity and reuse/repetition of functional blocks. Since any description using

these constructs can be rewritten equivalently without them, no additional behavioral

faults are implied. Several design examples were used to demonstrate the interaction

between previously defined behavioral faults and these other programming constructs.

Chapter 8

Comprehensive Examples

Two comprehensive examples have been chosen to demonstrate the gate level fault

coverage of the new behavioral fault models. The first is an arithmetic logic unit (ALU)

which performs selected functions on data inputs. The second example is a single error

correcting circuit used in fault tolerant applications. Other obvious combinational logic

examples such as a multiplexer or a magnitude comparator do not need to be investigated

here due to their detailed analysis as part of the development of the fault models for the if

statement and relational operators.

Application of the behavioral fault models to each of the comprehensive examples

results in a set of test vectors necessary to detect the behavioral faults. These test vector

sets are then applied to synthesized gate level implementations of the behavioral descrip-

tions. Resulting gate level fault coverage is evaluated to determine the effectiveness of the

behavioral fault models.

8.1 Arithmetic Logic Unit
The ALU design for this example was created using the LogicLib generator from the

Mentor Graphics design tools. The type was selected as an ALU2901 which performs

eight arithmetic and logic functions. Data widths of 4- and 8-bits will be evaluated.

8.1.1 Example ALU4wc

The generator parameters and the resulting entity description for a 4-bit ALU with

both carry-in and carry-out are shown in Figure 8-1. The architecture description for

-- Written by LL_to_VHDL at Mon Jun 8 12:23:29 1998
-- Parameterized Generator Specification to VHDL Code
-- LogicLib generator called: ARITHMETIC
-- Passed Parameters are:

type = ALU2901
W = 4
carryin = YES
carryout = YES

Figure 8-1 Entity description for example ALU4wc.

138

139

library IEEE, ARITHMETIC;
use IEEE.std_logic_1164.all;
use ARITHMETIC.std_logic_arith.all;
-- alu4wc Entity Description
entity alu4wc is

port (
OP: in std_logic_vector(2 downto 0);
A: in std_logic_vector(3 downto 0);
B: in std_logic_vector(3 downto 0);
CIN: in std_logic;
COUT: out std_logic;
D: out std_logic_vector(3 downto 0)

);
end alu4wc;

Figure 8-1 Entity description for example ALU4wc.

example ALU4wc is shown in Figure 8-2. In the first section, variables are declared and

initialized consistent with arithmetic operations involving a carry-in and a carry-out.

Next, two case statements determine the appropriate operation to be performed. Lastly,

the outputs are assigned based on whether the operation performed was arithmetic or

logic.

architecture behave of alu4wc is
begin

ARITHMETIC_Process: process(A,B,CIN,OP)
variable operandl: std_logic_vector(4 downto 0);
variable operand2: std_logic_vector(4 downto 0);
variable a_ext: std_logic_vector(4 downto 0);
variable b_ext: std_logic_vector(4 downto 0) ;
variable not_a_ext: std_logic_vector(4 downto 0)
variable not_b_ext: std_logic_vector(4 downto 0)
variable carry_ext: std_logic_vector(1 downto 0)
variable logic_out: std_logic_vector(3 downto 0)
variable arith_out: std_logic_vector(4 downto 0)

begin
-- zero extend inputs to include carry bit
a_ext := '0' & A;
b_ext := '0' & B;
not_a_ext := '0' & not A;
not_b_ext := '0' & not B;
carry_ext := x 0' & CIN

Figure 8-2 Architecture description for example ALU4wc.

140

-- ALU2901

-- Logical Functions --

case OP is
when "Oil" =>

logic_out := A or B;
when "100" =>

logic_out := A and B;
when "101" =>

logic_out := (not A) and B;
when "110" =>

logic_out := A xor B;
when "111" =>

logic_out := not (A xor B);
when others =>

logic_out := (OTHERS => 'X');
end case;

-- Arithmetic Functions --

case OP is
-- Arithmetic operations
when "000" =>

operandl := a_ext;
operand2 := b_ext;

when "001" =>
operandl := not_a_ext;
operand2 := b_ext;

when "010" =>
operandl := a_ext;
operand2 := not_b_ext;

when others =>
operandl := (OTHERS => XX');
operand2 := (OTHERS => (X');

end case;

arith_out := operandl + operand2 + carry_ext;

Figure 8-2 Architecture description for example ALU4wc.

141

— assign output
if (0P(2) = xl' or (0P(1) = 41'
then

D <= logic_out;
COUT <= VX';

else
D <= arith_out(3 downto 0);
COUT <= arith_out(4);

end if;

end process ARITHMETIC_Process;
end behave;

and OP(0) = x1'))

Figure 8-2 Architecture description for example ALU4wc.

8.1.1.1 Faults on Logical Operators

Within the Logical Functions case statement, the variable logic_out is determined by

combining the signals A, B using the logical operators AND, OR, and XOR. For the first

logical expression, when OP = 011:

logic_out := A OR B;

From the behavioral fault models for logical operators, the three test vectors (AB) neces-

sary for an OR operator are 00, 01, and 10. Since all signals are in fact four bits wide,

these tests expand to produce the behavioral test vectors shown in Table 8-1.

Expression OP A B logic_out

A ORB Oil

0000 0000 0000

0000 1111 1111

1111 0000 1111

Table 8-1 Behavioral test vectors for OR operator.

The behavioral test vectors for the remaining Logical Functions are determined in a

similar manner. The logical operator AND also requires three tests: 01,10 and 11. Next,

the XOR operator requires a complete set of four test vectors: 00, 01, 10, and 11. Like the

OR operation, these vectors also expand to four bits for each operator. The resulting

behavioral test vectors are shown in Table 8-2.

142

Expression OP A B logic_out

AANDB 100

0000 mi 0000

mi 0000 0000

mi mi mi

(not A) AND B 101

mi mi 0000

0000 0000 0000

0000 mi mi

AXORB 110

0000 0000 0000

0000 mi mi

nil 0000 mi

nil mi 0000

not (A XOR B) 111

0000 0000 mi

0000 mi 0000

nil 0000 0000

nil mi mi

Table 8-2 Behavioral test vectors for remaining Logical Functions.

8.1.1.2 Faults on Arithmetic Operators

The ADD with carry operation performed in the Arithmetic Functions section deter-

mines the variable arith_out as follows:

arith_out := operandl + operand2 + carry_ext;

Assuming a simple ripple carry implementation, the behavioral test vectors for the 4-bit

addition come directly from Table 5-6 and are shown here in Table 8-3.

Due to the case statement for Arithmetic Functions, there are three different ways to

form operandl and operandl. The resulting possible test vectors are shown in Table 8-4.

Only one input combination is required for each Test #, though using all possibilities

would not be incorrect, just redundant. As with previous examples, the control faults can

provide the necessary insight for selecting a reduced set of behavioral test vectors.

143

Phase Test* operand 1 operand2 carry_ext arith_out

I

1 0000 0000 0 0 0000

2 0000 1111 0 01111

3 1111 0000 0 01111

4 1111 1111 1 1 1111

II
5 0000 1111 1 10000

6 1111 0000 1 10000

HI
7 0101 0101 0 0 1010

8 1010 1010 ' 1 10101

Table 8-3 Behavioral tests for 4-bit ADD with carry.

OP Phase Test# A B CIN arith_out

000

I

1 0000 0000 0 0 0000

2 0000 mi 0 01111

3 1111 0000 0 01111

4 1111 mi 1 i mi

II
5 0000 mi 1 10000

6 1111 0000 1 10000

HI
7 0101 0101 0 0 1010

8 1010 1010 1 10101

001

I

1 mi 0000 0 0 0000

2 mi mi 0 01111

3 0000 0000 0 01111

4 0000 nil 1 i mi

II
5 mi nil 1 10000

6 0000 0000 1 10000

III
7 1010 0101 0 0 1010

8 0101 1010 1 10101

Table 8-4 Possible test vectors for Arithmetic Functions.

144

OP Phase Test* A B CIN arith_out

010

I

1 0000 1111 0 0 0000

2 0000 0000 0 01111

3 1111 1111 0 01111

4 1111 0000 1 i mi

II
5 0000 0000 1 10000

6 1111 mi 1 10000

III
7 0101 1010 0 0 1010

8 1010 0101 1 10101

Table 8-4 Possible test vectors for Arithmetic Functions.

8.1.1.3 Control Faults

The control fault model states that each clause of an if or case statement is corrupted

by other clauses that are logically adjacent. For the Logical Functions case statement,

the first clause, WHEN-011, can be corrupted by either WHEN-001 or WHEN-010. Both

of these cases fall under the others clause and, hence, cause no corruption due to the don't

care values. The third possible corruption is caused by the WHEN-111 clause. For exam-

ple, the control fault WHEN-011 CORRUPT (by WHEN-111)(OR) produces the corrupted

clause shown below.

logic_out := (A OR B) OR (not (A XOR B));

Test vector generation rules specify that (A OR B) be set to 0, while (not (A XOR B)) is set

to 1. Checking the previously determined test vectors for logical operators from Table 8-

1 and Table 8-2, the test vector with A = 0000 and B = 0000 meets these requirements and,

hence, covers this control fault.

The control faults for all the Logical Functions are shown in Table 8-5. The faults are

grouped according to the corrupted clauses. Each corrupting clause includes both an OR-

fault and an AND-fault. The test generation rules provide requirements that produce the

appropriate test vector.

145

Comapted
Clause

Corrupting
Clause

Fault
Test

Requirement
Test Vector
(OP AB)

Oil

001 NONE

010 NONE

111

OR
A OR B = 0

not (A XOR B) = 1
011 0000 0000

AND
A OR B = 1

not (A XOR B) = 0
011 0000 1111

100

000 NONE

101

OR
A AND B = 0

(not A) AND B = 1
100 0000 1111

AND
A AND B = 1

(not A) AND B = 0
100 1111 1111

110

OR
A AND B = 0
A XOR B = 1

100 0000 1111

AND
A AND B = 1
A XOR B = 0

100 1111 1111

101

001 NONE

100

OR
(not A) AND B = 0

A AND B = 1
101 1111 1111

AND
(notA)ANDB = l

A AND B = 0
101 0000 1111

111

OR
(not A) AND B = 0
not (A XOR B) = 1

101 1111 1111

AND
(not A) AND B = 1
not (A XOR B) = 0

101 0000 1111

110

010 NONE

100

OR
A XOR B = 0
A AND B = 1

110 1111 1111

AND
A XOR B = 1
A AND B = 0

110 0000 1111

Table 8-5 Control faults for Logical Functions.

146

Corrupted
Clause

Corrupting
Clause

Fault
Test

Requirement
Test Vector
(OP AB)

110 111

OR
A XOR B = 0

not (A XOR B) = 1
110 0000 0000

AND
A XOR B = 1

not (A XOR B) = 0
110 1111 0000

111

Oil

OR
not (A XOR B) = 0

A OR B = 1
111 0000 1111

AND
not (A XOR B) = 1

A OR B = 0
111 0000 0000

101

OR
not (A XOR B) = 0
(not A) AND B = 1

111 0000 1111

AND
not (A XOR B) = 1
(not A) AND B = 0

111 1111 1111

110

OR
not (A XOR B) = 0

A XOR B = 1
111 1111 0000

AND
not (A XOR B) = 1

A XOR B = 0
111 0000 0000

Table 8-5 Control faults for Logical Functions.

The control faults for the Arithmetic Functions are formed in the same manner. The

resulting faults and their test vectors are shown in Table 8-6.

Corrupted
Clause

Corrupting
Clause

Fault
Test

Requirement
Test Vector
(OP AB)

000

001

OR
a_ext = 0

not_a_ext = 1
000 0000 xxxx

AND
a_ext = 1

not_a_ext = 0
000 1111 xxxx

010

OR
b_ext = 0

not_b_ext = 1
000 XXXX 0000

AND
b_ext = 0

not_b_ext = 1
000 XXXX 1111

100 NONE

Table 8-6 Control faults for Arithmetic Functions.

147

Corrupted
Clause

Corrupting
Clause

Fault
Test

Requirement
Test Vector
(OP AB)

001

000

OR
not_a_ext = 0

a_ext = 1
001 1111 xxxx

AND
not_a_ext = 1

a_ext = 0
001 0000 xxxx

Oil NONE

101 NONE

010

000

OR
not_b_ext = 0

b_ext = 1
010 XXXX 1111

AND
not_b_ext = 1

b_ext = 0
010 XXXX 0000

Oil NONE

110 NONE

Table 8-6 Control faults for Arithmetic Functions.

The final control faults affect the if statement that assigns the outputs. The then and

else clauses determine whether the function performed was logic or arithmetic, respec-

tively. The logical adjacencies among the clauses are illustrated in Figure 8-3; logic func-

tions corresponding to the then clause are shaded. For example, the logic function for OP

= 011 can be corrupted by the arithmetic functions with OP = 001 and OP = 010.

OP(l) OP(0)

00 01 11 10

OP(2)

0 000 001 011 010

1 100 101 111 110

OP

Figure 8-3 Logical adjacencies among clauses.

THEN-CORRUPT faults cause logic functions to be corrupted by arithmetic functions.

As an example, the control fault 100-CORRUPT (by 000)(OR) produces the following cor-

rupted assignment statements:

148

D <= logic_out OR arith_out(3 downto 0);
COUT <= VX' OR arith_out(4);

Candidate test vectors for OP = 100 with corresponding values for logic_out are found in

Table 8-2. Corrupting values of arith_out(3 downto 0) for OP = 000 can be found in Table

8-4. Comparing these values shows that an appropriate test vector is formed by A = 0000

and B = 1111 with CIN = 0. Note that a logic operation would normally leave CIN as a

don't care, however, corruption by an arithmetic operation requires specification of this

value. THEN-CORRUPT faults and their resulting test vectors are shown in Table 8-7.

Corrupted
Clause

Corrupting
Clause

Fault.
Test

Requirement
Test Vector

(OPAB CIN)

Oil

001

OR
logic_out = 0
arith_out = 1

011 0000 0000. 0

AND
logic_out = 1
arith_out = 0

011 1111 0000 0

010

OR
logic_out = 0
arith_out = 1

011 0000 0000 0

AND
logic_out = 1
arith_out = 0

011 0000 1111 0

100 000

OR
logic_out = 0
arith_out = 1

100 0000 1111 0

AND
logic_out = 1
arith_out = 0

100 0101 0101 0
100 1010 1010 1

101 001

OR
logic_out = 0
arith_out = 1

101 1111 1111 0

AND
logic_out = 1
arith_out = 0

101 1010 0101 0
101 0101 1010 1

110 010

OR
logic_out = 0
arith_out = 1

110 0000 0000 0

AND
logic_out = 1
arith_out = 0

110 0000 1111 0

Table 8-7 THEN-CORRUPT control faults.

ELSE-CORRUPT faults are formed in a similar manner resulting in corruption of an

arithmetic function by a logic function. ELSE-CORRUPT faults are shown in Table 8-8.

149

Corrupted
Clause

Corrupting
Clause

Fault
Test

Requirement
Test Vector

(OPABCIN)

000 100

OR
arith_out = 0
logic_out = 1

000 0101 0101 0
000 1010 1010 1

AND
arith_out = 1
logic_out = 0

000 0101 0101 0
000 1010 1010 1

001

Oil

OR
arith_out = 0
logic_out = 1

001 1111 0000 0

AND
arith_out = 1
logic_out = 0

001 0000 0000 0

101

OR
arith_out = 0
logic_out = 1

001 1010 0101 0
001 0101 1010 1

AND
arith_out = 1
logic_out = 0

001 1010 0101 0
001 0101 1010 1

010

Oil

OR
arith_out = 0
logic_out = 1

010 1111 1111 1

AND
arith_out = 1
logic_out = 0

010 0000 0000 0

110

OR
arith_out = 0
logic_out = 1

010 0000 1111 0

AND
arith_out = 1
logic_out = 0

010 0000 0000 0

Table 8-8 ELSE-CORRUPT control faults.

8.1.1.4 Final Behavioral Test Vector Set

Combining the control faults for Logical Functions from Table 8-5 and the THEN-

CORRUPT control faults from Table 8-7 with the tests for Logical Functions from Table

8-1 and Table 8-2 will produce a final set of behavioral test vectors for OP = 011 through

OP = 111. Further optimization is possible by noting that the two test vectors required for

the control fault 100-CORRUPT (by 000)(AND) provide coverage for the A = 1, B = 1

fault to the AND operator for OP = 100. A similar optimization applies to the control fault

101-CORRUPT (by 001)(AND). The resulting behavioral test vectors and covered control

faults are shown in Table 8-9.

150

Expression
Test Vector

(OPABCIN)
Control Faults

A ORB

Oil 0000 0000 0
011 by 001 (OR), 011 by 010 (OR),

011 by 111 (OR)

Oil 0000 1111 0 011 by 010 (AND), Oil by 111 (AND)

Oil 1111 0000 0 011 by 001 (AND)

AANDB

100 0000 1111 0
100 by 000 (OR), 100 by 101 (OR),

100 by 110 (OR)

100 1111 0000 X

100
100

0101
1010

0101 0
1010 1

100 by 000 (AND), 100 by 101 (AND),
100 by 110 (AND)

(not A) AND B

101 1111 1111 0
101 by 001 (OR), 101 by 100 (OR),

101 by 111 (OR)

101 0000 0000 X

101
101

1010
0101

0101 0
1010 1

101 by 001 (AND), 101 by 100 (AND),
101 by 111 (AND)

AXORB

110 0000 0000 0 110 by 010 (OR), 110 by 111 (OR)

110 0000 1111 0 110 by 010 (AND), 110 by 100 (AND)

110 1111 0000 X HObylll(AND)

110 1111 1111 X 110 by 100 (OR)

not(AXORB)

111 0000 0000 X 111 by Oil (AND), 111 by 110 (AND)

111 0000 1111 X 111 by Oil (OR), 111 by 101 (OR)

111 1111 0000 X 111 by 110 (OR)

111 1111 1111 X 111 by 101 (AND)

Table 8-9 Final behavioral test vectors for Logical Functions.

Likewise, the control faults for Arithmetic Functions from Table 8-6 and the ELSE-

CORRUPT control faults from Table 8-8 are combined with the possible test vectors for

Arithmetic Functions from Table 8-4. The only behavioral tests, for the 4-bit ADD with

carry, not specified by control faults are Test 5 and Test 6. Test vectors to cover this Phase

were selected from OP = 010 simply to balance the number of test vectors in each group.

The resulting behavioral test vectors and covered control faults are shown in Table 8-10.

151

Phase Test#
Test Vector

(OPABCIN)
Control Faults

I

1

000 0000 0000 0 000 by 001 (OR), 000 by 010 (OR)

001 1111 0000 0 001 by 000 (OR), 001 by 011 (OR)

010 0000 1111 0
010 by 000 (OR), 010 by 011 (OR),

010 by 110 (OR)

2 010 0000 0000 0
010 by 000 (AND), 010 by 011 (AND),

010 by 110 (AND)

3 001 0000 0000 0 001 by 000 (AND), 001 by 011 (AND)

4 000 1111 1111 1 000 by 001 (AND), 000 by 010 (AND)

II
5 010 0000 0000 1

6 010 1111 1111 1

HI

7 000 0101 0101 0
000 by 100 (OR), 000 by 100 (AND)

8 000 1010 1010 1

7 001 1010 0101 0
001 by 101 (OR), 000 by 101 (AND)

8 001 0101 1010 1

Table 8-10 Final behavioral test vectors for Arithmetic Functions.

Hence, a final set of 31 test vectors has been formed by application of the new behav-

ioral fault models. The behavioral test vectors and resulting outputs are presented in

WAVES format in Figure 8-4.

% OP A B
000 0000
000 1111
000 0101
000 1010
%
001 1111
001 0000
001 1010
001 0101

CIN COUT D : time;
0000 0 0 0000
1111 1 1 1111
0101 0 0 1010
1010 1 1 0101

0000 0 0 0000
0000 0 0 1111
0101 0 0 1010
1010 1 1 0101

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

Figure 8-4 WAVES test vectors for example ALU4wc.

152

010 0000 1111 0 0 0000
010 0000 0000 .0 0 1111
010 0000 0000 1 1 0000
010 1111 1111 1 1 0000
%
Oil 0000 0000 0 X 0000
Oil 0000 1111 0 X 1111
Oil 1111 0000 0 X 1111
%
100 0000 1111 0 X 0000
100 1111 0000 X X 0000
100 0101 0101 0 X 0101
100 1010 1010 1 X 1010
%
101 1111 1111 0 X 0000
101 0000 0000 X X 0000
101 1010 0101 0 X 0101
101 0101 1010 1 X 1010
%
110 0000 0000 0 X 0000
110 0000 1111.0 X 1111
110 1111 0000 X X 1111
110 1111 1111 X X 0000
%
111 0000 0000 X X 1111
111 0000 1111 X X 0000
111 1111 0000 X X 0000
111 1111 1111 X X 1111

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

Figure 8-4 WAVES test vectors for example ALU4wc.

8.1.2 Evaluation of the Behavioral Test Vectors

Example ALU4wc was first synthesized to gate level Structural using AutoLogic II.

The resulting optimized implementation contains 59 gates shown in Figure 8-5. Accord-

ing to MIL-STD 883D, Structure 1 of example ALU4wc contains 284 unique SSL gate

level faults. Fault simulations using the behavioral test vectors from Figure 8-4 resulted in

complete gate level fault coverage shown in Figure 8-6.

An alternate target technology was next used to synthesize gate level Structure2. The

resulting optimized circuit contains 78 gates and 312 unique SSL faults. Fault simulations

using the behavioral test vectors from Figure 8-4 again resulted in complete gate level

fault coverage.

153

Figure 8-5 Synthesized Structurel for example ALU4wc.

Coverage (%)

100

90

80

70 -

60 -

50

40 -

30 -

20 -

10

I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I ' I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Number of Test Vectors

Figure 8-6 Fault coverage for Structurel of example ALU4wc.

Lastly, an alternate synthesis tool, Leonardo, was used to map the VHDL behavioral

description to a Xilinx FPGA architecture. Fault simulations using the behavioral test

vectors achieved a SSL gate level fault coverage of 398/398 = 100%. The behavioral fault

models have been applied to multiple implementations using various target architectures

and synthesis tools. The range of examples demonstrates the flexibility of the approach

and provides experimental validation of the effectiveness of the new fault models.

154

8.1.3 Expansion of the Data Path

The data path for the arithmetic logic unit was next expanded to eight bits wide to cre-

ate example ALU8wc. The only difference in the resulting behavioral description is the

width of the corresponding variables and signals. Since the width of the control signal OP

remained constant, no new control faults were introduced.

The behavioral test vectors for example ALU8wc, therefore, follow directly from those

derived for example ALU4wc. The only change is the expansion of the data signals A, B,

and D to eight bits wide. The resulting test vectors are presented in Figure 8-7. Note that

the WAVES file still contains only 31 test vectors.

% OP A B CIN COUT D : time;
000 00000000 00000000 0 0 00000000
000 11111111 11111111 1 1 11111111
000 01010101 01010101 0 0 10101010
000 10101010 10101010 1 1 01010101

001 11111111
001 00000000
001 10101010
001 01010101
%
010 00000000
010 00000000
010 00000000
010 11111111

00000000 0 0 00000000
00000000 0 0 11111111
01010101 0 0 10101010
10101010 1 1 01010101

11111111 0 0 00000000
00000000 0 0 11111111
00000000 1 1 00000000
11111111 1 1 00000000

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

011 00000000
011 00000000
011 11111111
%
100 00000000
100 11111111
100 01010101
100 10101010

00000000 0 X 00000000
11111111 0 X 11111111
00000000 0 X 11111111

11111111 0 X 00000000
00000000 X X 00000000
01010101 0 X 01010101
10101010 1 X 10101010

500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

101 11111111
101 00000000
101 10101010
101 01010101

11111111 0 X 00000000
00000000 X X 00000000
01010101 0 X 01010101
10101010 1 X 10101010

500 ns;
500 ns;
500 ns;
500 ns;

Figure 8-7 WAVES test vectors for example ALU8wc.

155

110 00000000 00000000 0 X 00000000
110 00000000 11111111 0 X 11111111
110 11111111 00000000 X X 11111111
110 11111111 11111111 X X 00000000
%
111 00000000 00000000 X X 11111111
111 00000000 11111111 X X 00000000
111 11111111 00000000 X X 00000000
111 11111111 11111111 X X 11111111

500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;

Figure 8-7 WAVES test vectors for example ALU8wc.

Example ALU8wc was next synthesized using AutoLogic II to produce Structure 1

containing 130 gates. Fault simulations using the behavioral test vectors from Figure 8-7

resulted in a SSL gate level fault coverage of 542/542 = 100%. Lastly, Leonardo was used

to synthesize example ALU8wc to gate level Structure2. Fault simulations using the

behavioral test vectors again achieved complete gate level fault coverage.

8.1.4 Summary

The new behavioral fault models, developed in this dissertation, have been applied to

the comprehensive examples ALU4wc and ALU8wc. From these faults, behavioral test

vectors have been derived for the 4-bit case, then readily expanded for the 8-bit example.

The resulting complete SSL gate level fault coverage for multiple implementations is sum-

marized in Table 8-11. Again, the range of examples demonstrates the flexibility of the

approach and provides experimental validation of the effectiveness of the new fault mod-

els.

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

ALU4wc

Structure 1 284 31 100%

Structure2 312 31 100%

Structure3 398 31 100%

ALU8wc
Structure 1 546 31 100%

Structure2 758 31 100%

Table 8-11 ALU fault experiment results.

156

8.2 Error Correcting Circuit
The second comprehensive example is a combinational circuit capable of correcting

single-bit errors in data words. The error correction capability is achieved by the use of

multiple overlapping parity bits forming a Hamming code. If x is the number of informa-

tion bits, then the number of parity bits, p, is equal to the smallest integer value of p that

satisfies 2P > x + p + 1 [41]. Hence, four data bits (X) would require three parity bits (P)

to create example HAMMING4. Likewise, eight data bits require four parity bits for

example HAMMNG8.

8.2.1 Example HAMMING4

The entity description for example HAMMING4 is shown in Figure 8-8. This module

assumes the existence of another circuit which generates the parity bits (P) from the data

bits (X). The data/parity combination X,P is then subject to corruption prior to processing

by example HAMMING4. The error correcting circuit takes the input data and parity bits

and performs single bit error correction to produce the output data bits (D).

entity hamming4 is
port (

X in std_logic_vector(1 to 4);
P
D

);
end hamming4;

in std_logic_vector(1 to 3);
out std_logic_vector(1 to 4)

Figure 8-8 Entity description for example HAMMING4.

The architecture description for example HAMMING4, shown in Figure 8-9, contains

two parts. In the first section, the data bits and parity bits are combined using XOR trees

to generate check bits forming a syndrome (S). Detection of a single-bit error produces a 1

on one or more bits of the syndrome. Next, the overall value of the syndrome'bits deter-

mines which, if any, data bit needs corrected.

8.2.1.1 Faults on XOR-only Expressions

Behavioral faults on the expressions for the syndrome (S) are all on XOR operators.

Hence, optimized test vectors can be generated based on the modified Bossen algorithm

developed in Section 6.1.2.2.

■ 157

architecture behave of hannming4 is

begin
process(X,P)

variable S : std_logic_vector(1 to 3);
begin

S(l)
S(2)
S(3)

= X(l) XOR X(2) XOR X(4) XOR P(l);
= X(l) XOR X(3) XOR X(4) XOR P(2);
= X(2) XOR X(3) XOR X(4) XOR P(3);

D(l) <= X(l) XOR (S(l) AND S(2) AND not S(3)
D(2) <= X(2) XOR (S(l) AND not S(2) AND S(3)
D(3) <= X(3) XOR (not S(l) AND S(2) AND S(3)
D(4) <= X(4) XOR (S(l) AND S(2) AND S(3));

end process;
end behave;

Figure 8-9 Architecture description for example HAMMING4.

A generic 4-input XOR-only expression is shown below:

Z <= A XOR B XOR C XOR D

Applying the modified Bossen algorithm results in the labelling shown in Figure 8-10 and

Figure 8-11. Note that this example represents a special case where it is possible to find

identical test sequences for structures Cascade 1 and Cascade2. The resulting optimized

test vectors for a generic 4-input XOR-only expression are shown in Table 8-12.

Figure 8-10 Structure Cascadel for 4-input XOR-only expression.

Figure 8-11 Structure Cascade2 for 4-input XOR-only expression.

158

Signal Label Sequence

A S 0011

B R 0110

C R 0110

D T 0101

Test Vector
(ABCD)

z

0000 0

0111 1

1110 1

1001 0

Table 8-12 Optimized test vectors for 4-input XOR-only expression.

Mapping the generalized case onto the first XOR-only expression relates A to X(l), B

to X(2), C to X(4), D to P(l), and Z to S(l). The resulting behavioral test vectors are

shown in Table 8-13. Mapping the generalized case onto expressions S(2) and S(3) pro-

duces the test vectors shown in Table 8-14 and Table 8-15, respectively. Don't care values

can be eliminated for the three XOR-only expressions, resulting in a reduced set of behav-

ioral test vectors shown in Table 8-16.

ABCD
(X1X2X4P1)

z
(Si)

X
(X1X2X3X4)

p

(P1P2P3)

s
(S1S2S3)

0000 0 00X0 oxx oxx

0111 1 01X1 1XX 1XX

1110 1 11X1 OXX 1XX

1001 0 10X0 1XX oxx

Table 8-13 Optimized test vectors for expression S(l).

ABCD
(X1X3X4P2)

z
(S2)

X
(X1X2X3X4)

p

(P1P2P3)

S
(S1S2S3)

0000 0 0X00 xox xox

0111 1 0X11 XIX XIX

1110 1 1X11 xox XIX

1001 0 1X00 XIX xox

Table 8-14 Optimized test vectors for expression S(2).

159

ABCD
(X2X3X4P3)

z
(S3)

X
(XiX2X3X4)

p

(P1P2P3)

s
(S1S2S3)

0000 0 xooo xxo xxo

Olli 1 X011 XXI XXI

1110 1 Xlll xxo XXI

1001 0 X100 XXI xxo

Table 8-15 Optimized test vectors for expression S(3).

X1X2X3X4 P1P2P3 SiS2S3

0000 000 000

0011 101 001

0100 101 000

Olli 110 111

1000 110 000

1111 000 111

Table 8-16 Reduced test vector set for XOR-only expressions.

8.2.1.2 Faults on Other Logical Expressions

Behavioral faults for the remaining expressions are all on logical operators. Test vec-

tors can be generated using the parse tree method developed in Section 6.1.1.2. A parse

tree for expression D(l) is shown in Figure 8-12. The binary nodes (1,2,3) are formed by

the logical operators.

1XOR

/ \
X] 2 AND

/ \
Sj 3 AND

not

Figure 8-12 Parse tree for expression D(l).

160

Application of the new behavioral fault models implies four faults for the XOR opera-

tor and three faults for each of the AND operators. The resulting behavioral test vectors

are presented in Table 8-17. Eliminating don't care values results in the reduced set of

behavioral test vectors for expression D(l) shown in Table 8-18. Application of similar

parse trees to the remaining logical expressions produces the reduced test vectors in Table

8-19 through Table 8-21.

Node
Behavioral

Test
Test Requirements

Test Vector
(Xj SjS2S3)

1

00 Xl = 0, (Si AND S2 AND not S3) = 0 0 OXX

01 Xi = 0, (S2 AND S2 AND not S3) = 1 0 110

10 X: = 1, (Sj AND S2 AND not S3) = 0 1 OXX

11 X! = 1, (Sj AND S2 AND not S3) = 1 1 110

2

01 S! = 0, (S2 AND not S3) = 1, X! = 0 0 010

10 Sx = 1, (S2 AND not S3) = 0, Xj = 0 0 10X

11 S} = 1, (S2 AND not S3) = 1, X: = 0 0 110

3

01 S2 = 0,notS3 = l,S1 = l,Xi = 0 0 100

10 S2=l,notS3 = 0,S1 = l,X1=0 0 110

11 S2=l,notS3=l,S1 = l,X1 = 0 0 111

Table 8-17 Behavioral test vectors for expression D(l).

XjX2X3X4 SiS2S3
Functional Tests

(Node [Test])

OXXX 010 1[00],2[01]

oxxx 100 2[10],3[01]

oxxx 110 1[01],2[11J,3[10]

oxxx 111 3[11]

1XXX OXX 1[10]

1XXX 110 1[11]

Table 8-18 Reduced test vectors for expression D(l).

161

X1X2X3X4 S1S2S3
Functional Tests

(Node [Test])

xoxx 001 1[00],2[01]

xoxx 100 3[10]

xoxx 101 1[01],2[11],3[11]

xoxx 111 2[10],3[01]

X1XX oxx 1[10]

X1XX 101 1[11]

Table 8-19 Reduced test vectors for expression D(2).

X1X2X3X4 s1s2s3
Functional Tests

(Node [Test])

xxox 001 2[10],3[01]

xxox 010 3[10]

xxox Oil 1[01],2[11],3[11]

xxox 111 1[00],2[01]

XXIX Oil 1[H]

XXIX 1XX 1[10]

Table 8-20 Reduced test vectors for expression D(3).

X1X2X3X4 S1S2S3
Functional Tests

(Node [Test])

xxxo Oil 1[00],2[01]

xxxo 101 2[10],3[01]

xxxo 110 3[10]

xxxo 111 1[01],2[11],3[11]

XXXI OXX 1[10]

XXXI 111 1[11]

Table 8-21 Reduced test vectors for expression D(4).

Eliminating don't care values by combining test vectors for logical expressions D(l)

through D(4) produces the reduced set of behavioral test vectors shown in Table 8-22.

162

X1X2X3X4 s1s2s3

1001 001

0101 010

1100 Oil

1110 Oil

001X 100

XOIO 101

X110 101

0X10 110

1X10 110

0000 111

0001 111

Table 8-22 Test vectors for logical expressions D(l) through D(4).

8.2.1.3 Final Behavioral Test Vector Set

The reduced set of behavioral test vectors for the XOR-on\y expressions, Table 8-16,

can now be combined with the behavioral test vectors for the other logical expressions,

Table 8-22. Unspecified don't care values are arbitrarily set to 0. The resulting test vec-

tors were sorted and are presented in WAVES format in Figure 8-13.

% X
0000
0000
0001
0010
0010
0010
0011
0100
0101
0110
0111

P D
000 0000
111 0001
000 0000
101 1010
110 0110
111 0010
101 0011
101 0100
000 0101
011 0010
110 0110

time;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure 8-13 WAVES test vectors for example HAMMING4.

163

1000 110 1000
1001 000 1001
1010 Oil 0010
1100 000 1110
1110 Oil 1100
1111 000 1110

500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure 8-13 WAVES test vectors for example HAMMING4.

8.2.2 Evaluation of the Behavioral Test Vectors

Example HAMMING4 was first synthesized to gate level Structure 1 using AutoLogic

II. The resulting optimized implementation contains 21 gates shown in Figure 8-14.

According to MEL-STD 883D, Structurel of example HAMMING4 contains 114 unique

SSL gate level faults. Fault simulations using the behavioral test vectors from Figure 8-13

resulted in complete gate level fault coverage.

«I31B= \}$> d>
^0-^>
t^O-tO

rto
Ft>-=0-

o

£0
^£>-^

l-£^^>-

-o- IJ>-k£>J
Figure 8-14 Synthesized Structurel for example HAMMING4.

An alternate target technology was next used to synthesize gate level Structure2. The

resulting optimized circuit contains 19 gates and 116 unique SSL faults. Fault simulations

using the behavioral test vectors from Figure 8-13 again resulted in complete gate level

fault coverage. Lastly, Leonardo was used to map the VHDL behavioral description to a

Xilinx FPGA architecture. Fault simulations using the behavioral test vectors achieved a

SSL gate level coverage of 226/226 = 100%.

8.2.3 Expansion of the Data Path

The data path for the error correcting circuit was next expanded to eight bits wide to

create example HAMMING8. As previously stated, four parity bits are now required to

provide single-bit error correction capability. The entity description is shown in Figure 8-

15. The architecture description for example HAMMING8 is shown in Figure 8-16. Note

the additional syndrome expression due to the 4th parity bit.

164

entity hamming8 is
port (

X: in std_logic_vector(1 to 8);
P: in std_logic_vector(1 to 4);
D: out std_logic_vector(1 to 8)

);
end hamming8;

Figure 8-15 Entity description for example HAMMING8.

architecture behave of haniming8 is
begin

process(X,P)
variable S : std_logic_vector(1 to 4);

begin
S(l) := X(l) XOR X(2) XOR X(4) XOR X(5) XOR X(7)

XOR P(1);
S(2) := X(l) XOR X(3) XOR X(4) XOR X(6) XOR X(7)

XOR P(2);
S(3) := X(2) XOR X(3) XOR X(4) XOR X(8) XOR P(3);
S(4) := X(5) XOR X(6) XOR X(7) XOR X(8) XOR P(4);

D(l) <= X(l) XOR (S(l) AND S(2) AND not S(3)
AND not S (4)) ;

D(2) <= X(2) XOR (S(l) AND not S(2) AND S(3)
AND not S(4));

D(3) <= X(3) XOR (not S(l) AND S(2) AND S(3)
AND not S(4));

D(4) <= X(4) XOR (S(l) AND S(2) AND S(3)
AND not S(4));

D(5) <= X(5) XOR (S(l) AND not S(2) AND not S(3)
AND S (4)) ;

D(6) <= X(6) XOR (not S(l) AND S(2) AND not S(3)
AND S(4));

D(7) <= X(7) XOR (S(l) AND S(2) AND not S(3)
AND S(4));

D(8) <= X(8) XOR (not S(l) AND not S(2) AND S(3)
AND S(4));

end process;
end behave;

Figure 8-16 Architecture description for example HAMMING8.

None of the test vectors for example HAMMING4 can be readily expanded for use

with example HAMMING8. However, deriving the behavioral test vectors follows the

same process that was used in Section 8.2.1.1 and Section 8.2.1.2. Generalized Bossen

165

test vectors can be found for the XOR-on\y expressions and parse trees can be used for the

remaining logical expressions. The resulting 10 + 23 = 33 test vectors are shown in

WAVES format in Figure 8-17.

% X p D : time;

00000000 0000 00000000 : 500 ns;
01101111 0000 01111111 : 500 ns;
01110010 0010 01110000 : 500 ns;
10011101 1100 10011101 : 500 ns;
11101110 1101 01101110 : 500 ns;
11110010 1110 11110000 : 500 ns;
00100101 0011 00100100 : 500 ns;
00110110 0011 00110111 : 500 ns;
01011011 0000 01011010 : 500 ns;
01011011
Q.

0011 01011011 : 500 ns;

11010010 0100 11010010 500 ns;
10011010 0100 10011010 . 500 ns;
11011010 1111 11011011 . 500 ns;
11011011 1100 11011010 500 ns;
01011010 0100 01011010 500 ns;
11011000 0100 11011100 500 ns;
11011100 0001 11011000 500 ns ;
11001010 0100 11101010 500 ns;
11101010 0010 11001010 500 ns;
11011010 1011 11011010 500 ns;
00100101 1000 00100101 500 ns;
00100101 1001 00101101 500 ns;
00101101 0000 00100101 500 ns;
00100101 1010 01100101 500 ns;
01100101 0000 00100101 500 ns;
00100100 1000 00100100 500 ns;
00100101 1100 10100101 500 ns;
10100101 0000 00100101 500 ns;
00100001 1000 00100011 500 ns;
00100011 0101 00100001 500 ns;
00000101 1000 00010101 500 ns;
00010101 0110 00000101 500 ns;
00100101 1111 00100101 500 ns;

Figure 8-17 WAVES test vectors for example HAMMING8.

Example HAMMING8 was next synthesized using AutoLogic II to produce Structure 1

containing 36 gates. Fault simulations using the behavioral test vectors from Figure 8-17

166

resulted in a SSL gate level fault coverage of 226/226 = 100%. Lastly, Leonardo was used

to synthesize example HAMMING8 to gate level Structure2. Fault simulations using the

behavioral test vectors again achieved complete gate level fault coverage.

8.2.4 Summary

The new behavioral fault models, developed in this dissertation, have been applied to

the comprehensive examples HAMMING4 and HAMMING8. From these faults, behav-

ioral test vectors were derived for both the 4-bit and 8-bit cases. The resulting complete

SSL gate level fault coverage for multiple implementations is summarized in Table 8-23.

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

HAMMING4

Structure 1 114 17 100%

Structure2 116 17 100%

Structure3 226 17 100%

HAMMING8
Structure 1 226 33 100%

Structure2 446 33 100%

Table 8-23 HAMMING fault experiments.

8.3 Conclusions
Two comprehensive examples were chosen to demonstrate the gate level fault cover-

age of the new behavioral fault models. The ALU involved the interaction of control faults

with both arithmetic and logical operator faults. The single error correcting circuit,

HAMMING, used both XOR-on\y and mixed logical operator expressions. Application of

the new fault models to the comprehensive examples resulted in sets of test vectors neces-

sary to detect the behavioral faults. These test vectors were then applied to synthesized

gate level implementations of the behavioral descriptions. The resulting complete SSL

gate level fault coverage provides experimental validation of the effectiveness of the

behavioral fault models.

Chapter 9

Conclusions and Future Work

This chapter summarizes the research contributions of this dissertation and outlines

directions for future work. Some concluding remarks are also provided.

9.1 Research Contributions

The main contributions of this dissertation include improved behavioral fault models

as well as the techniques for generalizing the effects of low level faults and abstracting

them into the behavioral domain. The new fault models are more closely linked to under-

lying hardware faults than those developed by previous research. Test vectors based on

these new behavioral fault models achieve complete SSL gate level fault coverage over a

broad range of implementations.

9.1.1 Generalized Functional Faults

A functional analysis technique has been developed for generalizing the effects of

industry standard single-stuck-line (SSL) faults on gate level circuits. The key is determin-

ing sets of functional faults which are not tied to a specific realization. What is desired is

a general set of faults which provide coverage for functional faults from multiple imple-

mentations.

For regular structures, such as cellular logic arrays and parity trees, complete func-

tional testing is achieved by exhaustive testing of each functional building block. For

other functions, faults are generalized from sum-of-products (SOP) and product-of-sums

(POS) implementations to obtain a set of functional faults not tied a specific realization.

As was the case with physically-induced faults [29], a unique fault produced by a particu-

lar realization can be readily added to the set of functional faults.

This dissertation has used the SSL fault model as the basis for its higher level fault

models. The generalization and abstraction techniques developed here are not dependent

on this choice of a low level fault model. Other low level fault models which complement

or improve on the SSL fault model can also be readily applied.

167

168

9.1.2 New Behavioral Fault Models

New behavioral fault models have been developed, which are more closely linked to

underlying hardware faults than previous fault models. The effects of the generalized sets

of functional faults are abstracted into the behavioral domain by establishing a relationship

between the higher level language construct and the lower level faults it should encom-

pass.

The fault modeling technique used throughout this dissertation is that of external cor-

ruption of the original VHDL constructs, rather than replacement/mutation of operators.

Where possible, specific faults have been defined, such as the Clause-CORRUPT control

faults. When a direct mapping of functional faults cannot be made to produce a simple

behavioral fault model, an error vector approach has been applied. The functional test

vectors are mapped into error vectors which then corrupt the results of the VHDL opera-

tion for the appropriate input combinations.

While the new fault models are definitely more complex than previous ones, this is

because they more accurately reflect the underlying complexity of the hardware faults

which they attempt to model. The increased complexity of the fault models eliminates the

need to supplement behavioral test vector sets via heuristics in order to improve gate level

fault coverage.

9.1.3 Gate Level Fault Coverage of Behavioral Test Vectors

Application of the behavioral fault models to examples throughout this dissertation

resulted in sets of test vectors necessary to detect the behavioral faults. Fault experiments

were then performed using the behavioral test vectors and synthesized gate level imple-

mentations. Multiple synthesis tools and target architectures were employed to create a

broad range of realizations of the behavioral descriptions. Resulting gate level fault cover-

age was evaluated to illustrate the effectiveness of the behavioral fault models and is sum-

marized in Appendix B.

Two comprehensive examples were chosen to demonstrate the gate level fault cover-

age of the new behavioral fault models. The ALU involved the interaction of control faults

with both arithmetic and logical operator faults. The single error correcting circuit,

HAMMING, used both XOR-on\y and mixed logical operator expressions. Application of

169

the new fault models to the comprehensive examples resulted in sets of test vectors neces-

sary to detect the behavioral faults. These test vectors were then applied to synthesized

gate level implementations of the behavioral descriptions. The resulting complete SSL

gate level fault coverage provides experimental validation of the effectiveness of the

behavioral fault models.

9.1.4 Behavioral Test Generation

The base fault model for arithmetic operators is derived from the ripple carry connec-

tion of 2- and 3-input functional building blocks. Behavioral test generation rules, pre-

sented in this dissertation, demonstrate that only eight test vectors are required for

complete gate level fault coverage, regardless of the size of the operands. For logical

operators, behavioral test generation rules were developed for the special case of XOR-

only expressions. A generalized Bossen algorithm is presented that allows for optimiza-

tion of test sequences while allowing for multiple possible realizations.

Most fault-oriented techniques use some form of a three step approach to the test gen-

eration process. First, a fault must be activated at the desired location in the circuit model.

Then, the effect of the fault must be propagated to a point where it can be observed and,

hence, detected. Finally, the inputs of the model must be determined to justify the desired

signal values throughout the circuit. Variations of these techniques attempt to utilize the

information available in higher level models to more efficiently accomplish the computa-

tionally intensive tasks of fault propagation and justification.

The behavioral fault models developed in this dissertation only affect the activation

step of the test generation process. Hence, the high level algorithms developed to handle

the propagation and justification steps still remain valid. Integration of the new behavioral

fault models with a behavioral test generation algorithm such as the B-algorithm [21][22]

can be of mutual benefit. Such advanced test generation algorithms already address prob-

lems such as reconvergent fanout, while use of more complex fault models can eliminate

the need to supplement test vector sets via heuristics.

9.1.5 Behavioral Fault Simulation

The new behavioral fault models developed in this dissertation can now be integrated

with fault injection techniques such as those developed by DeLong et al. [23][24] to allow

170

fault simulation at higher levels of abstraction. Because the fault models were developed

using an external corruption or error vector approach, modifications to the original VHDL

behavioral description need only be made once. Individual faults in the compiled VHDL

fault simulation model can then be activated by external manipulation of the corrupting

signals/error vectors.

The ability to fault simulate VHDL behavioral models rather than more detailed gate

level ones will allow better management of ever increasing design complexity. Working

with behavioral fault models will also allow fault simulation to be performed earlier in the

design scheme, without details of the gate level implementation. In fact, depending on the

source of the component, a gate level description may never be available. Thus, these new

behavioral fault models facilitate better integration of fault simulation into the overall

design process.

9.2 Future Work
The models and techniques presented in this dissertation represent another important

step in the development of a design methodology for performing fault simulation through-

out the design process. The following sections present a brief description of directions for

future research.

9.2.1 Expansion of Behavioral Fault Models

The fault models developed in this dissertation address combinational logic circuits

based on the IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36].

These behavioral models need to be expanded to include sequential components. The

draft standard includes a set of representative design examples whose intent is to specify

certain prevalent modeling styles resulting in basic hardware elements like flip-flops,

latches, etc. The specification of processes and resulting inferenced logic are detailed in

Appendix D.

This dissertation has used the SSL fault model as the basis for its higher level fault

models. The generalization and abstraction techniques developed here are not dependent

on this choice of a low level fault model. Other low level fault models which complement

or improve on the SSL fault model can also be readily applied. Additional fault effects

may be abstracted into the behavioral domain, thus improving the overall behavioral fault

171

models. Fault coverage metrics would have to be adjusted accordingly to effectively rep-

resent the low level fault coverage of the improved behavioral fault models.

9.2.2 Tool Development

As previously stated, the behavioral fault models developed in this dissertation can

now be integrated into higher level test generation algorithms. The resulting behavioral

test generation tool would allow designers to develop test vector sets based on VHDL

behavioral descriptions. These behavioral test vector sets could then be used to fault sim-

ulate a component at the gate level or even used to test components for which a gate level

description is not available.

The new behavioral fault models developed in this dissertation can also be combined

with fault injection techniques to allow fault simulation at higher levels of abstraction. A

VHDL behavioral fault simulation tool would allow fault experiments to be performed

earlier in the design scheme, without details of the gate level implementation. Both

behavioral test generation and behavioral fault simulation tools will aid in complexity

management and better integrate fault simulation into the overall design process.

9.2.3 Higher Levels of Abstraction

The VHDL descriptions and subsequent fault models in this dissertation cross from the

structural into the behavioral domain and move up the design hierarchy from the gate to

the register level as defined in Table 1-1. A logical extension to this work is the continua-

tion to higher levels of abstraction such as the chip or system level. The further migration

of fault models would clearly support the ultimate goal of developing a design methodol-

ogy for performing fault simulation throughout the design process.

The design tools used in this dissertation involved synthesis of behavioral data flow

descriptions into structural gate level circuits. Moving higher up the design hierarchy next

involves algorithmic synthesis tools which translate chip level algorithms into data flow

descriptions. Understanding this synthesis process is key to further abstraction of the

behavioral fault models.

Ultimately the level of abstraction is reached where the VHDL description in that of a

combined hardware/software system. Fault models need to be developed at this system

172

level so fault simulation and test generation can be integrated into the hardware/software

codesign process.

9.3 Concluding Remarks
To cope with the ever increasing complexity of digital circuits, engineers can now

work at higher levels of abstraction by taking advantage of computer aided design pack-

ages and hardware description languages. Sophisticated synthesis tools provide a design

environment which allows the use of higher level VHDL behavioral models. The details

of the gate level implementation are safely hidden, shielding the designer from additional

complexity. The fault models and abstraction techniques developed in this dissertation

represent another important step in integrating fault simulation and testing into such a

VHDL synthesis environment.

Expansion of these new behavioral fault models and development of associated com-

puter-aided tools, will allow better management of design complexity. Fault simulation

and testing of digital circuits can be moved away from the traditional gate level to join

other design aspects at higher levels of abstraction. The end result will be a design meth-

odology which includes performing fault simulation throughout the entire design process.

References

[I] Abraham, J.A. and V.K. Agarwal, "Test Generation for Digital Systems," Fault-

Tolerant Computing: Theory and Techniques, D. K. Pradhan, ed., Prentice-Hall,

Englewood Cliffs, NJ, 1985.

[2] Abraham, J.A. and K. Fuchs, "Fault and Error Models for VLSI," Proceedings of

the IEEE, Vol. 74, No. 5, May 1986, pp. 639-654.

[3] Abramovici, M., M.A. Breuer, and A.D. Friedman, Digital Systems Testing and

Testable Design, Computer Science Press, Woodland Hills, CA, 1990.

[4] Al Hayek, G. and C. Robach, "On the Adequacy of Deriving Hardware Test Data

from the Behavioral Specification," Proceedings EUROMICRO 96, 22nd Euro-

micro Conference, September 1996, pp. 337-342.

[5] Al Hayek, G. and C. Robach, A Mutation-based Test for VHDL Descriptions,

technical report, LSR-IMAG, 1995.

[6] Armstrong, J.R., "Chip Level Modeling of LSI Devices," IEEE Transactions on

Computer-Aided Design, Vol. CAD-3, No. 4, October 1984, pp. 288-297.

[7] Armstrong, J.R., "Chip Level Modeling with HDL's," IEEE Design & Test of

Computers, Vol. 5, No. 1, February 1988, pp. 8-18.

[8] Armstrong, J.R., Chip Level Modeling with VHDL, Prentice Hall, Englewood

Cliffs, NJ, August 1989.

[9] Armstrong, J.R., F.S. Lam, and PC. Ward, "Test Generation and Fault Simulation

for Behavioral Models," Performance and Fault Modeling with VHDL, J.M.

Schoen, ed., Prentice Hall, Englewood Cliffs, NJ, 1992, pp. 240-303.

[10] Armstrong, J.R. and F.G. Gray, Structured Logic Design with VHDL, Prentice Hall,

Englewood Cliffs, NJ, 1993.

[II] Ashenden, P.J., The VHDL Cookbook, technical report, Department of Computer

Science, University of Adelaide, South Australia, 1990.

173

174

[12] Banerjee, P., A Model for Simulating Physical Failures in MOS VLSI Circuits,

Technical Report CSG-13, Coordinated Science Laboratory, University of Illinois

at Urbana-Champaign, 1985.

[13] Barclay, D.S. and J.R. Armstrong, "A Heuristic Chip-level Test Generation

Algorithm," Proceedings 23rd Design Automation Conference, June 1986, pp. 257-

262.

[14] Barclay, D.S., An Automatic Test Generation Method for Chip-Level Circuit

Descriptions, master's thesis, Virginia Polytechnic Institute and State University,

Department of Electrical Engineering, Blacksburg, VA, January 1987.

[15] Baweja, G., Gate Level Coverage of A Behavioral Test Generator, master's thesis,

Virginia Polytechnic Institute and State University, Department of Electrical

Engineering, Blacksburg, VA, March 1993.

[16] Bossen, D.C., D.L. Ostapko, and A.M. Patel, "Optimum Test Patterns for Parity

Networks," Proceedings AFIPS Fall Joint Computer Conference, Vol. 37,

November 1970, pp. 33-38.

[17] Brahme, D. and J.A. Abraham, "Functional Testing of Microprocessors," IEEE

Transactions on Computers, Vol C-33, June 1984, pp. 475-485.

[18] Chakraborty, T. and S. Ghosh, "On Behavior Fault Modeling for Combinational

Digital Designs," Proceedings International Test Conference, September 1988, pp.

593-600.

[19] Chao, C.H. and EG. Gray, "Micro-Operation Perturbations in Chip Level Fault

Modeling," Proceedings 25th Design Automation Conference, 1988, pp. 579-582.

[20] Chen, C.-I.H. and S. Perumal, "Analysis of the Gap between Behavioral and Gate-

Level Fault Simulation," Proceedings Sixth Annual IEEE International ASIC

Conference and Exhibit, September 1993, pp. 144-147.

[21] Cho, C.H., A Formal Model for Behavioral Test Generation, doctoral dissertation,

Virginia Polytechnic Institute and State University, Department of Electrical

Engineering, Blacksburg, VA, February 1994.

175

[22] Cho, C.H. and J.R. Armstrong, "B-algorithm: A Behavioral Test Generation

Algorithm," Proceedings International Test Conference, 1994, pp. 968-979.

[23] DeLong, T.A., B.W. Johnson, and J.A. Profeta, III, "A Fault Injection Technique for

VHDL Behavioral-Level Models," IEEE Design & Test of Computers, Vol. 13, No.

4, Winter 1996, pp. 24-33.

[24] DeLong, T.A., D.T Smith, B.W. Johnson, and J.R Hanna, "Simulator Independent

Fault Simulation Using WAVES," Proceedings Fall '96 VIUF Conference, October

1996, pp. 129-138.

[25] ESIP, Level-0 VHDL Synthesis Syntax and Semantics, technical report,

Microelectronics Group, University of Cantabria, December 1995.

[26] Ghosh, S. "Behavior-Level Fault Simulation," IEEE Design & Test of Computers,

June 1988, pp. 31-42.

[27] Ghosh, S. and T.J. Chakraborty, "On Behavior Fault Modeling for Digital Designs,"

Journal of Electronic Testing, Vol. 2, Kluwer Academic Publishers, 1991.

[28] Gupta, A.K. and J.R. Armstrong, "Functional Fault Modeling and Simulation for

VLSI Devices," Proceedings 22nd Design Automation Conference, 1985, pp. 720-

726.

[29] Hansen, M.C. and J.P. Hayes, "High-Level Test Generation using Physically-

Induced Faults," Proceedings VLSI Test Symposium, May 1995, pp. 20-28.

[30] Hayes, J.R, "On the Realization of Boolean Functions Requiring a Minimal or

Near-minimal Number of Tests," IEEE Transactions on Computers, Vol. C-20,

December 1971, pp. 1506-1513.

[31] Hayes, J.R, "Modeling Faults in Digital Logic Circuits," Rational Fault Analysis,

R. Saeks and S. R. Liberty, eds., Marcel Dekker, New York, NY, 1977, pp. 78-95.

[32] Hayes, J.R, "A Fault Simulation Methodology for VLSI," Proceedings 19th Design

Automation Conference, June 1982, pp. 393-399.

176

[33] Hayes, J.P., "Fault Modeling for Digital MOS Integrated Circuits, "IEEE

Transactions on Computer-Aided Design, Vol. CAD-3, No. 3, July 1984, pp. 200-

207.

[34] Hayes, J.P., "Fault Modeling," IEEE Design & Test, Vol. 2, No. 2, April 1985, pp.

37-44.

[35] Herzog, J.H., Design and Organization of Computing Structures, Franklin, Beedle

& Associates, Wilsonville, OR, 1996.

[36] IEEE P1076.6/D1.12, Draft Standard for VHDL Register Transfer Level Synthesis,

VHDL Synthesis Interoperability Working Group, IEEE, Piscataway, NJ, March

1998.

[37] IEEE Std 1029.1-1991, IEEE Standard for Waveform and Vector Exchange

(WAVES), IEEE, New York, NY, 1991.

[38] IEEE Std 1076-1987, IEEE Standard VHDL Language Reference Manual, IEEE,

New York, NY, 1988.

[39] Jenn, E., J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, "Fault Injection into

VHDL Models: The MEFISTO Tool," Proceedings 24th International Symposium

on Fault-Tolerant Computing, June 1994, pp. 66-75.

[40] Johnson, B.W., D.T. Smith, and T.A. DeLong, A Survey of Fault Simulation, Fault

Grading, and Test Pattern Generation Techniques with an Emphasis on the

Feasibility of VHDL Based Fault Simulation, University of Virginia, Center for

Semicustom Integrated Systems, Department of Electrical Engineering,

Charlottesville, VA, Report to Rome Laboratory/PKRZ, May 1996.

[41] Johnson, E.L. and M.A. Karim, Digital Design, A Pragmatic Approach, PWS

Engineering, Boston, MA, 1987.

[42] Johnson, W., "Behavioral-Level Test Development," Proceedings of the 16th

Annual Design Automation Conference, 1979, pp. 171-179.

[43] Kalia, A., Cadence VHDL Synthesizable Subset, technical report, VHDL Synthesis

Interoperability Working Group, August 1996.

177

[44] Kautz, W.H., "Testing for Faults in Cellular Logic Arrays," Proceedings 8th Annual
Symposium Switching, Automata Theory, 1967, pp. 161-174.

[45] Kohavi, Z., Switching and Finite Automata Theory, McGraw-Hill, New York, NY,

1978.

[46] Lam, F.S., Test Generation for Behavioral Models with Reconvergent Fanouts and

Feedback, master's thesis, Virginia Polytechnic Institute and State University,

Department of Electrical Engineering, Blacksburg, VA, September 1989.

[47] Leonardo Synthesis and Technology Guide, Release 4.0, Exemplar Logic, Inc.,

Alameda, CA, 1996.

[48] Levendel, Y.H. and P.R. Menon, "Test Generation Algorithms for Computer

Hardware Description Languages," IEEE Transactions on Computers, Vol. C-31,

pp. 577-589, July 1982.

[49] Lin, T, Functional Test Generation of Digital LSWLSI Systems Using Machine

Symbolic Execution Technique, doctoral dissertation, SUNY-Binghamton,

Computer Science Department, Binghamton, NY, 1985.

[50] Lin, T. and S.Y.H. Su, "The S-Algorithm: A Promising Solution for Systematic

Functional Test Generation," IEEE Transactions on Computer-Aided Design, Vol.

CAD-4, July 1985, pp. 250-263.

' [51] McCluskey, E.J., Logic Design Principles with Emphasis on Testable Semi-custom

Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1986.

[52] MIL-STD-883D, Test Methods and Procedures for Microelectronics, Method

5012.1, November 1991.

[53] Mourad, S. and E.J. McCluskey, "Testability of Parity Checkers," IEEE

Transactions on Industrial Electronics, Vol. 36, No. 2, May 1989, pp. 254-262.

[54] Noh, T.H., C.-I.H. Chen, and S.M. Chung, "Behavioral Fault Simulation and ATPG

System for VHDL," Proceedings Seventh Annual IEEE International ASIC

Conference and Exhibit, 1994, pp. 412-416.

178

[55] Norrod, F.E., The E-Algorithm, an Automatic Test Generation Algorithm for

Hardware Description Languages, master's thesis, Virginia Polytechnic Institute

and State University, Department of Electrical Engineering, Blacksburg, VA,

February 1988.

[56] Norrod, EE., "An Automatic Test Generation Algorithm for Hardware Description

Languages," Proceedings 26th ACM/IEEE Design Automation Conference, June

1989, pp. 429-434.

[57] O'Neill, M.D., An Improved Chip-Level Test Generation Algorithm, master's

thesis, Virginia Polytechnic Institute and State University, Department of Electrical

Engineering, Blacksburg, VA, January 1988.

[58] O'Neill, M.D., D.D. Jani, C.H. Cho, and J.R. Armstrong, "BTG: A Behavioral Test

Generator," Proceedings of the IFIP WG 10.2 Ninth International Symposium on

Computer Hardware Description Languages and their Applications, June 1989, pp.

347-361.

[59] Pia, V, J.-F. Santucci, and N. Giambiasi, "On the Modeling and Testing of VHDL

Behavioral Descriptions of Sequential Circuits," Proceedings European Design

Automation Conference, September 1993, pp. 440-445.

[60] Riesgo, T. and J. Uceda, "A Fault Model for VHDL Descriptions at the Register

Transfer Level," European Design Automation Conference, September 1996, pp.

462-467.

[61] Santucci, J.F., A.L. Courbis, and N. Giambiasi, "Behavioral Testing of Digital

Circuits," Journal of Microelectronic Systems Integration, Vol. 1, No. 1, 1993, pp.

55-77.

[62] Shen, J.P., W. Maly, and F.J. Ferguson, "Inductive Fault Analysis of MOS Integrated

Circuits," IEEE Design & Test, Vol. 2, December 1985, pp. 13-26.

[63] Sridhar, T. and J.P. Hayes, "A Functional Approach to Testing Bit-Sliced

Microprocessors," IEEE Transactions on Computers, Vol. C-30, No. 8, August

1981, pp. 563-571.

179

[64] Standard for Synthesizing from VHDL Language at the Register Transfer Level,

Syriopsys, Mountain View, CA, October 1996.

[65] Thatte, S.M. and J.A. Abraham, "A Methodology for Functional Level Testing of

Microprocessors," Proceedings 8th International Conference on Fault-Tolerant

Computing, June 1978, pp. 90-95.

[66] Thatte, S.M. and J.A. Abraham, "Test Generation for Microprocessors," IEEE

Transactions on Computers, Vol. C-29, No. 6, June 1980, pp. 429-441.

[67] The TTL Data Book, 2nd Ed., Texas Instruments, Inc., Dallas, TX, 1976.

[68] VHDL Style Guide for AutoLogic II, Mentor Graphics Corporation, Wilsonville,

OR, 1995.

[69] Ward, P.C. and J.R. Armstrong, "Behavioral Fault Simulation in VHDL,"

Proceedings 27th Design Automation Conference, June 1990, pp. 587-593.

[70] Yount, C.R., The Automatic Generation of Instruction-Level Error Manifestations

of Hardware Faults: A New Fault-Injection Model, doctoral dissertation, Carnegie

Mellon University, Pittsburgh, PA, May 1993.

[71] Yount, C.R. and D.P. Siewiorek, "A Methodology for the Rapid Injection of

Transient Hardware Errors," IEEE Transactions on Computers, Vol. 45, No. 8,

August 1996, pp. 881-891.

Appendix A

Additional Examples

In order to more fully examine the effectiveness of the new behavioral fault models,

additional examples are provided here. Examples have been chosen to represent a broad

range of design possibilities. Multiple synthesis options are employed to ensure the exam-

ples are as general as possible.

A.l Array Indexing
As shown in Appendix E, indexing an array such as a bit_vector also implies a multi-

plexer architecture. Consider the VHDL behavioral description for example ARRAY4

shown in Figure A-l.

entity ARRAY4 is
port(Y

I
Z

in BIT_VECTOR(3 downto 0);
in INTEGER range 3 downto 0;
out BIT);

end ARRAY4;

architecture BEHAVE of ARRAY4 is
begin

process(Y,I)
begin

Z <= Y(I);
end process;

end BEHAVE;

Figure A-l Behavioral description for example ARRAY4.

The assignment statement Z <= Y (I) can be equivalently written as a case state-

ment, as shown in Figure A-2.

case I is
when 0 => Z <= Y(0)
when 1 => Z <= Y(l)
when 2 => Z <= Y(2)
when 3 => Z <= Y(3)

end case;

Figure A-2 Equivalent case statement for example ARRAY4.

180

181

This selection activity implies the applicability of the control fault model developed in

Chapter 3. According to the model, each selection (clause or index value) can be affected

by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT (AND).

According to a binary encoding for 7, specified by the synthesis subset, Figure A-3 shows

the resulting logical adjacencies for this example.

1(1)

0 1

1(0)

0 Y(0) Y(2)

1 Y(l) Y(3)

z
Figure A-3 Logical adjacencies among clauses.

Thus, applying the control fault model to example ARRAY4 in Figure A-l, results in

the behavioral faults shown in Table A-l.

Behavioral Fault Corrupted Selection
Test Vector

(IY)

Y(0)-CORRUPT (by Y(l))(OR) Z <= Y(0) OR Y(l) 0 XX10

Y(0)-CORRUPT (by Y(1))(AND) Z <= Y(0) AND Y(l) 0 XX01

Y(0)-CORRUPT (by Y(2))(OR) Z <= Y(0) OR Y(2) 0 X1X0

Y(0)-CORRUPT (by Y(2))(AND) Z <= Y(0) AND Y(2) 0 X0X1

Y(l)-CORRUPT (by Y(0))(OR) Z <= Yd) OR Y(0) 1 XX01

Y(l)-CORRUPT (by Y(0))(AND) Z <= Y(l) AND Y(0) 1 XX10

Y(l)-CORRUPT (by Y(3))(OR) Z <= Yd) OR Y(3) 1 1X0X

Y(l)-CORRUPT (by Y(3))(AND) Z <= Y(l) AND Y(3) 1 0X1X

Y(2)-CORRUPT (by Y(0))(OR) Z <= Y(2) OR Y(0) 2 X0X1

Y(2)-CORRUPT (by Y(0))(AND) Z <= Y(2) AND Y(0) 2 X1X0

Y(2)-CORRUPT (by Y(3))(OR) Z <= Y(2) OR Y(3) 2 10XX

Y(2)-CORRUPT (by Y(3))(AND) Z <= Y(2) AND Y(3) 2 01XX

Table A-l Behavioral faults for example ARRAY4.

182

Behavioral Fault Corrupted Selection
Test Vector

(IY)

Y(3)-CORRUPT (by Y(l))(OR) Z <= Y(3) OR Y(l) 3 0X1X

Y(3)-CORRUPT (by Y(1))(AND) Z <= Y(3) AND Y(l) 3 1X0X

Y(3)-CORRUPT (by Y(2))(OR) Z <= Y(3) OR Y(2) 3 01XX

Y(3)-CORRUPT (by Y(2))(AND) Z <= Y(3) AND Y(2) 3 10XX

Table A-l Behavioral faults for example ARRAY4.

Combining don't care values produces the behavioral test vectors shown in WAVES

format in Figure A-4.

% Y I Z
X110 00 0
X001 00 1
1X01 01 0
0X10 01 1
10X1 10 0
01X0 10 1
011X 11 0
100X 11 1

time;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure A-4 WAVES test vectors for example ARRAY4.

Example ARRAY4 was synthesized to the gate level circuit shown in Figure A-5.

Fault simulations were performed using the behavioral test vectors derived from the con-

trol fault model resulting in a SSL gate level fault coverage of 44/44 = 100%.

i(1:0)O

y(3:0)O

Oz

Figure A-5 Synthesized circuit for example ARRAY4.

183

A.2 Generalization of the Control Fault Model

Previous examples have used explicit values of control signals to determine selection

in if-then-else and case statements. When working in the behavioral domain, the specific

combination of control inputs may not matter, hence, an enumerated type may be used.

The assignment of control signal values to the elements of the enumerated type can be left

to the design tools and, thus, delayed to later in the design cycle. The new control fault

model can be easily generalized to allow for use of enumerated types.

Example CASE2, in Figure A-6, uses an enumerated type to control the selection of

assignments for a case statement.

case SEL is
when J =>

Z <= YO;
when K =>

Z <= Yl;
when L =>

Z <= Y2;
when M =>

Z <= Y3;
end case;

Figure A-6 Behavioral description for example CASE2.

Due to the independence of the input signals in this example, the synthesis tool pro-

duces the standard implementation of the case statement as a 4-to-l multiplexer. Each of

the four inputs (Y3, Y2, Yl, YO) can be assigned to any of the four multiplexer inputs (A, B,

C, D), depending on the designation of control bits for the enumerated type SEL. There

are, therefore, 4! = 24 possible permutations of the eventual synthesized circuit.

The control fault model can still be applied to the generalized case statement in exam-

ple CASE2, without consideration of the eventual designation of the control bits for the

enumerated type SEL. According to the fault model, each clause of a case statement is

affected by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT

(AND). The only difference with this example is the determination of logical adjacencies

between clauses.

Since no assignment of control values has yet been made for the enumerated type SEL,

actual determination of adjacencies among clauses cannot be made. It must, therefore, be

184

assumed that each clause has the possibility of being adjacent to, and hence corrupted by,

any other clause. This assumption implies that each of the four clauses in this example is

affected by three WHEN-CORRUPT (OR) faults and three WHEN-CORRUPT (AND)

faults. For example, the (OR) corruption of the when K clause results in three behavioral

faults: WHEN-K-CORRUPT (by J)(OR), WHEN-K-CORRUPT (by L)(OR), and WHEN-K-

CORRUPT (by M)(OR). Application of the control fault model to the generalized case

statement from example CASE2, therefore, results in a total of 24 behavioral faults.

Though the application of the control fault model to the generalized case statement has

resulted in the definition of eight additional behavioral faults, recall also the concept of

compatible fault sets. The group of faults that corrupt a single channel can form a compat-

ible fault set and their test vectors can, therefore, be combined. For example, the three

WHEN-CORRUPT (OR) faults that affect clause K lead to the derivation of the following

test vectors (SEL Y3 Y2 Yl YO): KXX01, KX10X, and K1X0X. Though in the actual cir-

cuit, only two of the other clauses will be adjacent to clause K, the three test vectors are

still compatible, forming the test vector K1101. Comparison of this test vector with the

corresponding one derived for the Z <= Yl clause for example IF2, (SEL Y3 Y2 Yl YO)

011X01, shows that the only difference is the elimination of an additional don't care.

Alternate assignment of control signals for K simply alter the adjacencies between clauses

and result in the elimination of a different don't care. A list of WHEN-CORRUPT (OR)

behavioral faults and their corresponding test vectors is given in Table A-2. A similar list

can be easily derived for the 12 WHEN-CORRUPT (AND) faults.

Behavioral Fault Test Vector
(SEL Y3 Y2 Yl YO)

WHEN-J-CORRUPT (by K)(OR)

J 1110 WHEN-J-CORRUPT (by L)(OR)

WHEN-J-CORRUPT (by M)(OR)

WHEN-K-CORRUPT (by J)(OR)

K 1101 WHEN-K-CORRUPT (by L)(OR)

WHEN-K-CORRUPT (by M)(OR)

Table A-2 Behavioral faults and corresponding test vectors for example CASE2.

185

Behavioral Fault
Test Vector

(SEL Y3 Y2 Yl YO)

WHEN-L-CORRUPT (by J)(OR)

L 1011 WHEN-L-CORRUPT (by K)(OR)

WHEN-L-CORRUPT (by M)(OR)

WHEN-M-CORRUPT (by J)(OR)

M 0111 WHEN-M-CORRUPT (by K)(OR)

WHEN-M-CORRUPT (by L)(OR)

Table A-2 Behavioral faults and corresponding test vectors for example CASE2.

The control fault model has now been generalized to handle enumerated types and the

delay of assignment of control signal values. The only change to the model was the inclu-

sion of additional Clause-CORRUPTfaults due to the assumption that, in the general case,

each clause may be adjacent to any other clause. The additional behavioral faults did not,

necessarily, result in any additional test vectors due to the concept of compatible fault sets.

A.3 Signed Comparison
Example GREATER3 is presented here to demonstrate the application of the behav-

ioral fault models for relational operators to signed as well as unsigned comparisons. As

can be seen in Figure A-7, example GREATER3 compares two integers with ranges of -4

to +3. These control signals will be synthesized as 3-bit 2's complement numbers.

entity GREATER3 is
port(A,B: in INTEGER range -4 to +3; GT: out BIT);

end GREATER3;
architecture BEHAVE of GREATER3 is
begin

process(A,B)
begin

if A > B then
GT <= x 1' ;

else
GT <= x 0';

end if;
end process;

end BEHAVE;

Figure A-7 Behavioral description for example GREATER3.

186

Applying the behavioral faults for unsigned relational operators from Chapter 4 gives

the fault classifications for a signed GT function shown in Figure A-8.

A

-4 -3 -2 -l 0 l 2 3

B

-4 I m

-3 i m

-2 n i ni

-1 i m

0 ii i m

1 i in

2 ii i m

3 i

Figure A-8 Fault classes for 3-bit signed GT function.

Encoding the test vectors as 3-bit 2's complement numbers results in the WAVES file

shown in Figure A-9.

% A B GT time;
% Class I
100 100 0 500 ns;
101 101 0 500 ns;
110 110 0 500 ns;
111 111 0 500 ns;
000 000 0 500 ns;
001 001 0 500 ns;
010 010 0 500 ns;
011 011 0 500 ns;

% Class II
101 110 0 500 ns;
111 000 0 • 500 ns;
001 010 0 : 500 ns;

Figure A-9 WAVES test vectors for example GREATER3.

187

% Class III
101 100 1
110 101 1
111 110 1
000 111 1
001 000 1
010 001 1
Oil 010 1

500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure A-9 WAVES test vectors for example GREATER3.

Example GREATER3 was synthesized and optimized to gate level Structure 1, shown

in Figure A-10, using AutoLogic II. In order to add even more diversity to the problem, an

alternate design library from that used for example COMPARE was chosen.

aC2:0)O-

H>
b(2:0)O

* q>
-0-

*■-{>

-J>
\A

4> ^3-^=0 -Ogt

Figure A-10 Synthesized Structurel for example GREATER3.

According to MIL-STD 883D, Structurel contains 50 unique SSL gate level faults.

Fault simulations using the behavioral test vectors from Figure A-9 resulted in complete

gate level fault coverage.

Next, an alternate synthesis tool, Leonardo, was used to map the VHDL behavioral

description to a Xilinx FPGA architecture. Fault simulations using the behavioral test

vectors achieved a SSL gate level fault coverage of 48/48 = 100%.

Lastly, the signed comparison was implemented using arithmetic operations. Evalua-

tion of the greater than function can also be performed by subtracting the two operands

and examining the sign of the result. For example GREATER3, the most significant bit of

the operation B - A forms the output GT. The resulting synthesized and optimized circuit

for Structure3 is shown in Figure A-ll.

Comparison of the test vectors from Figure A-9 with the truth table for a full-subtrac-

tor from Table 5-15 indicates that the behavioral test vectors will provide complete func-

188

b(2:0)O

8(2:0)O

£E>i

Oi> -Ot

Figure A-ll Synthesized Structure3 for example GREATER3.

tional testing for the subtracter modules used to synthesize Structure3. Fault simulations

confirm the complete gate level fault coverage of 41/41 = 100%.

A.4 Unsigned Threshold
Example GE23u is an unsigned threshold comparison using a greater than or equal to

(GE) operator. As shown in Figure A-12, A is an integer with range 0 to 31, which will be

synthesized to a 5-bit unsigned number.

entity GE23u is
port(A: in INTEGER range 0 to 31;

GE: out BIT);
end GE23u;
architecture BEHAVE of GE23u is
begin

process(A)
begin

if A >= 23 then
GE <= * 1';

else
GE <= * 0';

end if;
end process;

end BEHAVE;

Figure A-12 Behavioral description for example GE23u.

The GE function places the threshold between 22 and 23. According to the behavioral

fault model for threshold operators, developed in Chapter 4, the threshold lies seven

spaces from the center of the range of values, implying step sizes of one. two, and four.

Test vectors to the left of the threshold are 22 - 1 = 21, 21 - 2 = 19, and 19 - 4 = 15. Test

vectors to the right are 23 + 1 = 24,24 + 2 = 26, and 26 + 4 = 30. The behavioral test vec-

tors are shown graphically in Figure A-13 and as a WAVES file in Figure A-14.

189

A>=23 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure A-13 Behavioral test vectors for example GE23u.

% A GE time;
01111 0 500 ns;
10001 0 500 ns;
10101 0 500 ns;
10110 0 500 ns;

10111 1 500 ns;
11000 1 500 ns;
11010 1 500 ns;
11110 1 500 ns;

Figure A-14 WAVES test vectors for example GE23u.

Example GE23u was synthesized to the gate level circuit shown in Figure A-15. Fault

simulations using the behavioral test vectors from Figure A-14 resulted in a SSL gate level

fault coverage of 24/24 = 100%.

aM:0)

Dae

Figure A-15 Synthesized circuit for example GE23u.

A.5 Adder/Subtractor
Figure A-16 gives the VHDL behavioral description for a 4-bit adder/subtractor cir-

cuit, ADDSUB4. The two inputs (A,B) are combined to produce a 4-bit output (D). The

operation to be performed is selected by the control signal (OP): OP - '0' selects addi-

tion, while OP = T selects subtraction.

if OP = '0' then
D <= A + B;

else
D <= A - B;

end if;

Figure A-16 Behavioral description for example ADDSUB4.

190

A.5.1 Faults on Arithmetic Operators

Assuming a simple ripple carry implementation, the behavioral test vectors for the 4-

bit addition and 4-bit subtraction can be determined directly from the fault models. The

resulting WAVES file is presented in Figure A-17.

OP A B
% ADD
0 0000
0 0000
0 1111
0 1111
0 0001
0 1111
0 0101
0 1010
% SUB

0000
0000
1111
1111
0000
1110
0101
1010

0000
1111
0000
1111
1111
0001
0101
1010

0000
1111
0000
1111
0001
1111
1010
0101

0000
1111
1111
1110
0000
0000
1010
0100

0000
0001
1111
0000
1111
1111
1011
0101

time;

500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure A-17 WAVES test vectors for example ADDSUB4.

A.5.2 Control Faults

The control fault model specifies that each clause of an if-then-else statement can be

affected by two different types of faults, Clause-CORRUPT (OR) and Clause-CORRUPT

(AND). The behavioral test vectors for the arithmetic operators must be evaluated to

ensure that adequate coverage is provided for these control faults.

For example, the first control fault, THEN-CORRUPT (OR), results in the corrupted

version of the then clause:

D <= (A + B) OR (A - B)

To test for this fault, the uncorrupted version of the clause (A + B) needs to be set to 0,

while the corrupting clause (A - B) is set to 1. The Phase II test vector A = 1111, B = 0001

results in A + B = 0000, while A - B = 1110. Since no combination of A,B will produce

191

complementary values for D0, this test vector should provide sufficient coverage for this

control fault. Other control faults and their covering test vectors are summarized in Table

A-3. Note that no additional test vectors are required to provide coverage for all control

faults.

Control Fault OP A B A + B A-B

THEN-CORRUPT (OR) 0 1111 0001 0000 1110

THEN-CORRUPT (AND) 0 0000 mi mi 0001

ELSE-CORRUPT (OR) 1 mi mi 1110 0000

ELSE-CORRUPT (AND) 1 0000 0001 0001 mi

Table A-3 Coverage for control faults.

A.5.3 Evaluation of the Behavioral Test Vectors

Example ADDSUB4 was synthesized to the gate level circuit in Figure A-18. Fault

simulation using the behavioral test vectors from Figure A-17 results in complete gate

level fault coverage of 124/124 = 100%.

Figure A-18 Synthesized circuit for example ADDSUB4.

A.5.4 CLA Implementation

If the target technology includes CLA circuits, additional test vectors are required to

cover the behavioral faults. The vectors for the addition operation are those derived in

Chapter 5 and summarized in Table 5-10. Behavioral test vectors for the subtraction oper-

ation can be derived using 2's complement arithmetic.

The highest order carry in a 4-bit subtractor implemented with a CLA adder is C2.

From Table 5-7, the terms for C2, including a carry-in, are P2PJP0C_J, P2P]G0, p2Gb and

192

G2. Behavioral test vectors for missing carry and extra carry faults can be derived for the

subtraction operation by converting the corresponding addition to subtraction.

According to the new behavioral fault model, test vectors are necessary for missing

carry faults for all but the lowest and highest order terms. Missing carry behavioral faults

are presented in Table A-4. The left hand side of the table gives the test vector for addi-

tion, while the right hand side shows the conversion to subtraction.

Stage Term

Addition Subtraction

A B CIN S M s D

0 P2PiG0
0001 1111 1 0001 0001 0000 0001

1 P2Gi 0010 1111 1 0010 0010 0000 0010

Table A-4 Missing carry faults for subtraction.

Test vectors for extra carry faults are required for all but the two most significant

stages. Behavioral test vectors for the extra carry faults are presented in Table A-5. The

CIA test vectors for example ADDSUB4 are, therefore, presented in Figure A-19.

Stage Term

Addition Subtraction

A B CIN S M S D

-1 P2P1P0C-1

0000 1110 1111 0000 0001 mi

0000 1101 1110 0000 0010 1110

0000 1011 1100 0000 0100 1100

0 P2PiGo
0001 1101 1111 0001 0010 mi

0001 1011 1101 0001 0100 1101

table A-5 Extra carry faults for subtraction.

A CIA implementation of example ADDSUB4 is presented in Figure A-20 [41]. Fault

simulations were performed using the ripple carry test vectors from Figure A-17, plus the

CIA test vectors from Figure A-19. The ripple carry vectors alone produced a SSL gate

level fault coverage of 203/209 = 97.13%. The remaining faults were then detected by the

CIA test vectors, resulting in complete gate level fault coverage.

193

% OP A B D
%' ADD CLA
0 0001 0011 0100
0 0001 0101 0110
0 0010 0110 1000
% SUB CLA
1 0001 0000 0001
1 0010 0000 0010
1 0000 0001 1111
1 0000 0010 1110
1 0000 0100 1100
1 0001 0010 1111
1 0001 0100 1101

time;

500 ns;
500 ns;
500 ns;

500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;
500 ns;

Figure A-19 CLA test vectors for example ADDSUB4.

Figure A-20 CLA implementation of example ADDSUB4.

A.6 Arithmetic with Constants
The behavioral test vector patterns developed in Chapter 5 will now be applied to two

larger examples to demonstrate the effect of synthesis optimizations on gate level fault

coverage. First, example PLUS25 adds the constant 25 to an 8-bit number. Next, example

MINUS25 combines the subtraction operator with the same constant. Alternately, this

example can be viewed as addition using the constant -25.

194

A.6.1 Example PLUS25

Example PLUS25 implements the arithmetic operation Z <= Y + 25. Signals Y

and Z are declared with ranges from -128 to +127, hence they will be synthesized as 8-bit

2's complement numbers. The binary representation for +25 is 00011001, thus the Phase

II test patterns are formed starting with the vector 11100110. The resulting behavioral test

vectors are shown in Figure A-21.

% Y Z : time;
00000000 00011001 : 500 ns;
11111111 00011000 : 500 ns;
%
11100110 11111111 : 500 ns;
11001101 11100110 : 500 ns;
10011011 10110100 : 500 ns;
00110111 01010000 : 500 ns;
01101110 10000111 : 500 ns;
11011100 11110101 : 500 ns;
10111001 11010010 : 500 ns;
01110011 10001100 : 500 ns;

Figure A-21 Behavioral test vectors for example PLUS25.

Example PLUS25 was synthesized and optimized to the gate level Structure 1 shown in

Figure A-22. Note that the optimization process has altered the original ripple carry struc-

ture of the 8-bit adder.

g(7:B)D>- it>
-O-f

^z^^>-
^r^^E>^

Figure A-22 Synthesized Structural for example PLUS25.

Fault simulations using the behavioral test vectors from Figure A-21 resulted in a SSL

gate level fault coverage of 114/115 = 99.13%. The functional testing approach is still

195

able to achieve near complete fault coverage. An alternate synthesis tool and target archi-

tecture was next used to produce Structure2 for example PLUS25. Fault simulations using

the behavioral test vectors from Figure A-21 resulted in a SSL gate level fault coverage of

190/190 = 100%.

A.6.2 Example MINUS25

Example MINUS25 performs the arithmetic operation Z <= Y - 25. Again, the

binary representation for +25 is 00011001, resulting in the behavioral test vectors and

associated functional tests shown in Table A-6.

Phase Y z

Test#

ST7 ST6 ST5 ST4 ST3 ST2 ST!

I
00000000 11100111 0 0 0 0 0 0 0

11111111 11100110 3 3 3 3 3 3 3

II

00011001 00000000 1 1 1 3 3 1 1

00110010 00011001 1 1 2 2 1 1 2

01100100 01001011 1 3 2 0 1 2 0

11001000 10101111 3 2 0 0 2 0 0

10010001 01111000 2 0 0 2 1 1 1

00100011 00001010 1 1 2 0 1 1 3

01000110 00101101 1 2 0 0 1 3 2

10001100 01110011 2 . 0 0 1 3 2 0

Table A-6 Functional tests for example MINUS25.

Example MINUS25 was synthesized and optimized using the same process as

Structure 1 for example PLUS25. Fault simulations using the behavioral test vectors from

Table A-6 again resulted in a SSL gate level fault coverage of 114/115 = 99.13%.

A.7 XOR4
Using the behavioral fault models developed in Chapter 6, test vectors can be devel-

oped for example XOR4 shown below.

Z <= A XOR B XOR C XOR D

196

First, the parse tree method from Section 6.1.1.2 will identify the test vectors necessary for

exhaustive testing of each XOR operator. Next, the modified Bossen algorithm from Sec-

tion 6.1.2.2 will produce an optimized set of test vectors for the given expression.

A.7.1 Parse Tree Test Vectors

A parse tree for example XOR4 is shown in Figure A-23. The nodes (1,2,3) are

formed by the XOR operators, while the leaves of the tree are the signals A, B, C, and D.

1 XOR

/ \
A 2 XOR

/ \
B 3 XOR

/ \
C D

Figure A-23 Parse tree for example XOR4.

According to the generalized set of functional faults from Section 6.1.2.1, an exhaus-

tive set of four tests is necessary for each XOR operator. Applying these tests to the parse

tree from Figure A-23 produces the behavioral test vectors shown in Table A-7.

Node
Behavioral

Test
Test Requirements

Test Vector
(ABCD)

1

00 A = 0, B XOR C XOR D = 0 0000

01 A = 0, B XOR C XOR D = 1 0100

10 A=1,BXORCXORD = 0 1000

11 A = l,BXORCXORD=l 1100

2

00 B = 0, C XOR D = 0, A = 0 0000

01 B = 0,CXORD=1,A = 0 0010

10 B = 1,CXORD = 0,A = 0 0100

11 B = 1,CXORD=1,A = 0 0110

Table A-7 Behavioral test vectors for example XOR4.

197

Node
Behavioral

Test
Test Requirements

Test Vector
(ABCD)

3

00 C = 0,D = 0,B = 0,A = 0 0000

01 C = 0,D = 1,B = 0,A = 0 0001

10 C = 1,D = 0,B = 0,A = 0 0010

11 C=1,D = 1,B = 0,A = 0 0011

Table A-7 Behavioral test vectors for example XOR4.

Eliminating redundant test vectors produces the WAVES file shown in Figure A-24.

% ABCD Z : time ;
0000 0 500 ns;
0001 1 500 ns;
0010 1 500 ns;
0011 0 500 ns;
0100 1 500 ns;
0110 0 500 ns;
1000 1 500 ns;
1100 0 500 ns;

Figure A-24 WAVES test vectors for example XOR4.

A.7.2 Evaluation of Behavioral Test Vectors

Example XOR4 was synthesized into multiple gate level realizations to evaluate the

behavioral test vectors. Varying structures, synthesis tools, and design libraries were

employed to produce a broad range of implementations.

Structure 1 of example XOR4 is shown in Figure A-25. Fault simulations using the

behavioral test vectors from Figure A-24 result in a SSL fault coverage of 24/24 = 100%.

aO \
bO /
O

dO
-Oz

Figure A-25 Structurel for example XOR4.

198

Structure 2 for example X0R4 is shown in Figure A-26. Fault simulations with the

behavioral test vectors also produce a SSL gate level fault coverage of 24/24 = 100%.

Oz

cO tf
dO /

Figure A-26 Structure2 for example XOR4.

An alternate synthesis tool and target architecture were used to produce Structure3 for

example XOR4, shown in Figure A-27. Fault simulations using the same behavioral test

vectors from Figure A-24 result in a SSL gate level fault coverage of 54/54 = 100%.

Figure A-27 Structure3 for example XOR4.

Lastly, Structure4 for example XOR4 is presented in Figure A-28. Again, fault simu-

lations using the behavioral test vectors result in complete gate level fault coverage.

Figure A-28 Structure4 for example XOR4.

A.7.3 Optimized Test Vectors

Applying the modified Bossen algorithm to example XOR4 results in the labelling

shown in Figure A-29 and Figure A-30. Note, the 4-bit example represents a special case

where it is possible to find identical test sequences for structures Cascadel and Cascade2.

199

Figure A-29 Structure Cascadel for example XOR4.

Figure A-30 Structure Cascade2 for example XOR4.

The resulting optimized test vectors are shown in Table A-8.

Signal Label Sequence

A S 0011

B R 0110

C R 0110

D T 0101

Test Vector
(ABCD)

z

0000 0

0111 1

1110 1

1001 0

Table A-8 Optimized test vectors for example XOR4.

A.7.4 Evaluation of Optimized Test Vectors

Fault simulations were conducted using the optimized behavioral test vectors from

Table A-8 and Structures 1-4 for example XOR4. For all four implementations of example

XOR4, complete gate level fault coverage was achieved using either test vector set.

Appendix B

Fault Experiment Results

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

CASE1
Structure 1 34 8 100%

Structure2 34 8 100%

ARRAY4
Structure 1 44 8 100%

Structure2 44 8 100%

SHIFT4U
Structure 1 90 8 100%

Structure2 112 8 100%

Table B-l Control fault experiments.

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

LESS2
Structure 1 29 8 100%

Structure2 30 8 100%

EQUAL3
Structure 1 31 8 100%

Structure2 31 8 100%

GREATER3

Structure 1 50 18 100%

Structure2 48 18 100%

Structure3 41 18 100%

LE5
Structure 1 18 6 100%

Structure2 20 6 100%

GE23u
Structure 1 24 8 100%

Structure2 22 8 100%

LT12u Structure 14 4 100%

GT3n Structure 17 5 100%

Table B-2 Relational operator fault experiments.

200

201

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

COMPARE

Structure 1 74
12 98.65%

12 98.65%

Structure2 72
12 100%

12 100%

COMPARE3

Structure 1 97
22 97.94%

22 97.94%

Structure2 92
22 100%

22 100%

COMPARE4 Structure 150
12 100%

12 100%

COMPARE34 Structure 178
22 100%

22 100%

Table B-2 Relational operator fault experiments.

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

ADD4

Structure 1 102 8 100%

Structure2 130
8 97.69%

11 100%

Structure3 142 8 100%

ADD4WC

Structure 1 138 8 100%

Structure2 188
8 88.30%

20 100%

Structure3 194 8 100%

Table B-3 Arithmetic operator fault experiments.

202

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

ADD8

Structure 1 234 8 100%

Structure2 310

8 93.55%

33 100%

22 100%

SUB4

Structure 1 112 8 100%

Structure2 157
8 94.90%

15 100%

ADDSUB4
Structure 1 124 16 100%

Structure2 209 26 100%

INC4
Structure 1 50 6 100%

Structure2 80 6 100%

INC8 Structure 114 10 100%

DEC4 Structure 51 6 100%

ADDINC4 Structure 108 14 100%

PLUS3 Structure 68 7 100%

MINUS5 Structure 85 8 100%

PLUS25
Structure 1 115 10 99.13%

Structure2 190 10 100%

MINUS25 Structure •. 115 10 99.13%

Table B-3 Arithmetic operator fault experiments.

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

SOP1
Structure 1 18 5 100%

Structure2 18 5 100%

SOP4
Structure 1 72 5 100%

Structure2 72 5 100%

Table B-4 Other operator fault experiments.

203

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

POS1
Structure 1 18 5 100%

Structure2 18 5 100%

GT

Structure 1 30 8 100%

Structure2 35 8 100%

Structure3 29 8 100%

XOR4

Structure 1 24
8 100%

4 100%

Structure2 24
8 100%

4 100%

Structure3 54
8 100%

4 100%

Structure4 44
8 100%

4 100%

XOR5

Structure 1 30 7 100%

Structure2 30 7 100%

Structure3 58 7 100%

Structure4 58 7 100%

ABS4
Structure 1 44 5 100%

Structure2 44 5 100%

ABS8
Structure 1 132 9 100%

Structure2 126 9 100%

NEG4
Structure 1 49 5 100%

Structure2 50 5 100%

NEG8
Structure 1 114 9 100%

Structure2 204 9 99.02%

Table B-4 Other operator fault experiments.

204

Example Implementation
SSL

Faults
Behavioral

Test Vectors
Fault

Coverage

ALU4wc

Structure 1 284 31 100%

Structure2 312 31 100%

Structure3 398 31 100%

ALU8wc
Structure 1 546 31 100%

Structure2 758 31 100%

HAMMING4

Structure 1 114 17 100%

Structure2 116 17 100%

Structure3 226 17 100%

HAMMING8
Structure 1 226 33 100%

Structure2 446 33 100%

Table B-5 Comprehensive fault experiments.

Appendix C

VHDL Behavioral Descriptions

VHDL can be used to model the function performed by a module at a level of abstrac-

tion above the gate level. Such a description is called a functional or behavioral descrip-

tion. The VHDL Cookbook [11] and the IEEE Standard VHDL Language Reference

Manual [38] serve as two key resources for designing hardware using behavioral descrip-

tions. VHDL allows description of behavior in the form of a sequence of familiar pro-

gramming language constructs. Behavioral descriptions use variables and signals along

with their corresponding assignment statements to model the desired functionality of the

ultimate hardware. Expressions perform arithmetic or logical computations by applying

an operator to one or more operands. Constructs used to control the selection and

sequencing of instructions include if, case, and loop statements. Concurrency of execu-

tion in hardware is modeled using a process statement. Like other programming lan-

guages, VHDL provides subprogram facilities in the form of procedures and functions.

C.l Variables and Signals
An object is a named item in a VHDL description which has a value of a specified

type. A variable is an object whose value may be changed at any time during the simula-

tion of the circuit. It is local to a process or subprogram and has a single current value. A

signal is an object with a value that is changed only at scheduled times. Signals represent

electrical quantities that can be used to transmit information and are normally used to con-

nect submodules in a design. Each object has a corresponding assignment statement.

As in other programming languages, a variable is given a new value using an assign-

ment statement. In the simplest case, the target of the assignment is an object name and

the value of the expression is given to the named object. Variable assignments occur

immediately when the assignment statement is executed and are local to a. process or sub-

program. A signal assignment schedules a transaction to a signal. The target must repre-

sent a signal or be an aggregate of signals. Scheduled transactions are executed as

simulation time progresses. Signals are global in a process or subprogram and are the

only means of communication between processes.

205

206

C.2 Expressions
An expression is a formula that defines the computation of a value. The type of an

expression depends only upon the types of its operands and on the operators applied. The

predefined VHDL operators are listed in Table C-l.

Type

Logical

Relational

Adding

Unary (sign)

Multiplying

Miscellaneous

Operators

AND OR NAND NOR XOR

/= <= >=

&

/ MOD REM

** ABS NOT

Table C-l Predefined VHDL operators.

Relational operators must have both operands of the same type and yield Boolean

results. The equality operators (= and/=) can have operands of any type. The remaining

operators must have operands which are scalar types or one-dimensional arrays of dis-

crete types.

The sign operators (+ and -) and the addition (+) and subtraction (-) operators have

their usual meaning on numeric operands. The concatenation operator (&) operates on

one-dimensional arrays to form a new array with the contents of the right operand follow-

ing the contents of the left operand. It can also concatenate a single new element to an

array or two individual elements to form an array.

The multiplication (*) and division (/) operators work on integer and floating point

types. The modulus (MOD) and remainder (REM) operators only work on integer types.

The absolute value (ABS) operator works on any numeric type. Finally, the exponentia-

tion (**) operator can have an integer or floating point left operand, but must have an inte-

ger right operand.

C.3 If Statement
The if statement allows selection of statements to execute depending on one or more

conditions. The syntax is:

207

if_statement ::=
if condition then

sequence_of_statements
{ elsif condition then

sequence_of_statements }
[else

sequence_of_statements]
end if;

The conditions are expressions resulting in Boolean values. The conditions are evalu-

ated successively until one is found that yields the value true. In that case the correspond-

ing statement list is executed. Otherwise, if the else clause is present, its statement list is

executed.

C.4 Case Statement
The case statement allows selection of statements to execute depending on the value of

a selection expression. The syntax is:

case_statement ::=
case expression is

case_statement_alternative
{ case_statement_alternative }

end case;

case_statement_alternative ::=
when choices =>

sequence_of_statements

choices ::= choice { | choice }

choice ::=
simp1e_expression

| discrete_range
j element_simple_name
| others

The selection expression must result in either a discrete type, or a one-dimensional

array of characters. The alternative whose choice list includes the value of the expression

is selected and the statement list executed. Note that all the choices must be distinct, that

is, no value may be duplicated. Furthermore, all values must be represented in the choice

208

lists, or the special choice others must be included as the last alternative. If no choice list

includes the value of the expression, the others alternative is selected.

Some examples of case statements [11]:

case opcode is
when X"00" => perform_add;
when X"01" => perform_subtract;
when others => signal_illegal_opcode;

end case;

case element_color is
when red =>

statements for red;
when green | blue =>

statements for green or blue
when orange to turquoise =>

statements for these colors;
end case;

C.5 Loop Statements
VHDL has a basic loop statement, which can be augmented to form the usual while

and for loops seen in other programming languages. The while iteration scheme allows a

test condition to be evaluated before each iteration. The iteration only proceeds if the test

evaluates to true. If the test is false, the loop statement terminates. An example [11]:

while index < length loop
index := index + 1;

end loop;

The for iteration scheme allows a specified number of iterations. The loop parameter

specification declares an object which takes on successive values from the given range for

each iteration of the loop. Within the statements enclosed in the loop, the object is treated

as a constant, and so may not be assigned to. An example [11]:

for item in 1 to last_itern loop
table(item) := 0;

end loop;

There are two additional statements which can be used inside a loop to modify the

basic pattern of iteration. The next statement terminates execution of the current iteration

209

and starts the subsequent iteration. The exit statement terminates execution of the current

iteration and terminates the loop. The syntax of these statements is:

next_statement : := next [loop_label] [when condition] ;

exit_statement : := exit [loop_label] [when condition] ;

If the loop label is omitted, the statement applies to the inner-most enclosing loop, other-

wise it applies to the named loop. If the when clause is present but the condition is false,

the iteration continues normally.

C.6 Process Statement
The primary unit of behavioral description in VHDL is the process. A process is a

sequential body of code which can be activated in response to changes in state specified by

a sensitivity list or a wait statement. When more than one process is activated at the same

time, they execute concurrently.

An example of a process statement with a sensitivity list [11]:

process (reset, clock)
variable state : bit := false;

begin
if reset then

state := false;
elsif clock = true then

state := not state;
end if;
q <= state after prop_delay;
-- implicit wait on reset, clock

end process;

During the initialization phase of simulation, the process is activated and assigns the initial

value of state to the signal q. It then suspends at the implicit wait statement indicated in

the comment. When either reset or clock change value, the process is resumed and execu-

tion repeats from the beginning.

Processes, like all other concurrent statements, read and write signals and interface

port values to communicate with the rest of the architecture. They are unique in that they

behave like concurrent statements to the rest of the design, but they are internally sequen-

tial. In addition, only processes define variables to hold intermediate values in a sequence

of computations.

210

C.7 Procedures and Functions

Subprograms, like processes, use sequential statements to define algorithms that com-

pute values. Unlike processes, however, they cannot directly read or write signals from

the rest of the architecture. All communication is performed through the subprogram's

interface; each subprogram call has its own set of interface signals.

The two types of subprograms are functions and procedures. A function returns a sin-

gle value directly. A procedure returns zero or more values through its interface. Subpro-

grams may perform repeated calculations, often in different parts of an architecture. The

syntax is:

subprogram_specification ::=
procedure designator [(parameter_list)] |
function designator [(parameter_list)] return type

By using these programming language constructs, designers can use VHDL to develop

behavioral level models that can be simulated to verify their correct functioning, prior to

generating hardware.

Appendix D

VHDL Synthesis

Automated design tools are available which allow the designer to synthesize and opti-

mize circuit descriptions expressed through hardware description languages such as

VHDL. In order to ensure proper and consistent synthesis of VHDL language constructs

to hardware, such tools include guidelines which describe both the syntax and semantics

of the subset of the entire VHDL language which they support. The VHDL Synthesis

Interoperability Working Group (SIWG) was established to develop a public domain

VHDL Synthesis Interoperability Standard which, if used by designers, will allow VHDL

synthesis models to be portable across synthesis vendors that support this standard. Their

synthesis domain is register transfer level (RTL) logic synthesis which corresponds to the

functional/behavioral descriptions modeled in this and previous research.

A draft IEEE standard [36] has been developed which encompasses recommendations

drawn from several key sources, including Cadence [43], Mentor Graphics [68], and Syn-

opsys [64]. The foundation for the synthesis standard was laid by the European VHDL

Synthesis Working Group's Level-0 VHDL Synthesis Syntax and Semantics [25]. Beyond

the baseline Level-0, the draft proposes standardization Level 1 containing constructs that

are currently supported by many synthesis tools. The standard also attempts to describe

VHDL constructs as:

1) Supported: RTL synthesis will map the construct to hardware.

2) Ignored: RTL synthesis will ignore the construct. Encountering the construct

will not cause synthesis to fail, but synthesis results may not match simulation

results.

3) Not supported: RTL synthesis does not support the construct.

A synthesis tool is defined as any system, process, or tool that interprets register transfer

level VHDL source code as a description of an electronic circuit in accordance with the

terms of this standard and derives a gate level netlist description of that circuit.

D.l Level-0
The Level-0 VHDL Synthesis Syntax and Semantics [25] represents a first step towards

a standard for VHDL allowing its use in other hardware related tasks like formal verifica-

211

212

tion, fault simulation, test generation, etc. which currently can not be performed in a stan-

dard way. The intention behind the definition of Level-0 was to overcome numerous

problems currently associated with high level synthesis. The Level-0 syntax and seman-

tics constitute a standard subset of VHDL for synthesis applications which will allow

description portability between tools as well as design reusability.

Level-0 represents the minimum syntactical and semantical requirements to any syn-

thesis tool in the market. Of the 217 syntax elements described in Appendix A of the

VHDL Language Reference Manual [38]:

-106 syntax elements are fully supported.

- 53 syntax elements are supported with restrictions.

- 56 syntax elements are not allowed.

- 2 syntax elements are ignored.

Despite the current limitations imposed by the state of the art in commercial synthesis

technology, the Level-0 synthesis syntax and semantics allows the description of digital

systems as an interconnection of combinational and sequential blocks and, therefore,

allows the description of any digital system at the RT level (i.e. algorithmic finite state

machines). As a consequence, any synchronous VHDL description in any proprietary

VHDL subset can be translated to the Level-0 synthesis syntax and semantics maintaining

all the relevant information about the functionality of the design. This portable description

will be accepted by any other synthesis tool giving functional equivalent results.

In addition to the support of specific language constructs, Level-0 also defines certain

synthesis semantics and usage guidelines. Probably the most important of these design

guidelines are those for processes, which serve as the basis for behavioral descriptions.

Processes must have a set of special characteristics, which can be summarized in four dif-

ferent kinds of processes shown in Figure D-l.

Other restrictions imposed by Level-0 include the limited set of operators allowed.

The operators: abs, "**", "/", mod, and rem are not supported. The multiplying operator

"*" is supported, only if both operands are constants or the second operand is a power of

two. Additionally, floating point operands are not allowed and the only type of loops

allowed are for loops.

213

1) Processes which contain a sensitivity list including all the signals which are

read into the process and in which all signals and variables are assigned in

all the conditional branches. This kind of process models pure combina-

tional logic.

2) Processes which contain a sensitivity list including all the signals that are

read into the process and whose variables are assigned in all the conditional

branches of the process. This kind of process can model a mixture of pure

combinational logic and asynchronous latches. Latches are inferred when

signals are not assigned in a conditional branch.

3) Processes which have, as their first statement, a wait statement in the form:

wait until clock = value and clock'event;

This kind of process models a Moore synchronous sequential machine.

4) Processes which have a sensitivity list including the clock signal and option-

ally an asynchronous reset signal and an if statement controlled by the event

and edge of the clock signal. Thus, this kind of process has the following

syntax:

proces s (cl Jc_name, res e t_name)
process_declarative_part

begin
if (reset_name = value) then

{ signal_assignment_statement }
elsif (clJc_name = value and clk_name'event) then

{ signal_assignment_statement }
end if;

end process;

Figure D-l Process types for Level-0.

D.2 Mentor Graphics
The VHDL Style Guide for AutoLogic II [68] describes how to write synthesizable

VHDL for the Mentor Graphics AutoLogic II synthesis environment. The guidelines

encompass language restrictions, style issues, modeling methods, and design methods.

Section 1 of the manual summarizes the subset of VHDL language supported for synthe-

sis. All of the language elements previously discussed in Appendix C of this dissertation

are supported by AutoLogic II. In addition to the predefined VHDL operators listed in

214

Table C-l, shift operators from VHDL 1993 are also supported. These include: shift left/

right arithmetic (sla/sra), shift left/right logical (sll/srl), and rotate left/right (rol/ror).

AutoLogic II also supports the Mentor Graphics' std_logic_arith package, defined in

the Mentor Graphics' ARITHMETIC library. This package includes functions that allow

signed and unsigned math to be performed using the STD_LOGIC and

STD_LOGIC_VECTOR types. The functions provide for binary and unary arithmetic

operations beyond the numeric operands predefined by VHDL. The package also defines

the SIGNED and UNSIGNED types that are used directly with arithmetic and relational

shifts, comparison, logical, and type conversion functions. Relational operators are sup-

plemented by the comparison functions: equal (eq), not equal (ne), less than {It), greater

than (gt), greater than or equal to (ge), and less than or equal to (le).

The remainder of the manual presents the VHDL constructs and modeling styles nec-

essary to synthesize varying types of hardware. A generous set of examples provides the

designer with a virtual cookbook on how to design specific circuits. Section 2 presents

constructs and style issues describing hardware functionality implemented with a combi-

natorial architecture. Topics include signal assignments and sequential statements with

special emphasis given to the control constructs if and case. Section 3 discusses how

AutoLogic II recognizes clocked sections of descriptions and defines edge sensitive and

level sensitive latch inferencing. The guidelines for combinational and sequential pro-

cesses agree with those discussed in Figure D-l as part of the Level-0 synthesis semantics.

Section 4 of the manual introduces the use of predefined operators and functions, data

types, and procedures used in describing hardware with VHDL. Descriptions and exam-

ples give details for use of the predefined modeling environment, as well as specifics on

the types of hardware to be synthesized. Finally, Section 5 presents the guidelines for

developing and synthesizing synchronous state machine descriptions. Numerous exam-

ples describe multiple modeling styles for both Mealy and Moore class state machines.

D.3 Synopsys
Input to the VHDL Synthesis Interoperability Working Group was provided by Synop-

sys in the form of a Standard for Synthesizing from VHDL Language at the Register

Transfer Level [64], which now takes the form of an unapproved IEEE Standards Draft.

215

This standard describes the use of a synthesis tool to translate high-level VHDL descrip-

tions to gate-level netlists. The purpose of the standard is to define how a synthesis tool

shall behave when synthesizing from VHDL at the register transfer level. Clauses 3

through 7 describe the language constructs, data types, expressions, sequential statements,

and concurrent statements used for writing VHDL design descriptions. The standard is

really just a language reference manual, with examples, for the subset of VHDL that is

applicable to synthesis.

Many VHDL constructs, although useful for simulation and other stages in the design

process, are not relevant to synthesis. Because these constructs cannot be synthesized,

they are not supported by the synthesis tool. Clause 8 provides a list of all VHDL con-

structs with the level of support for each. A construct may be fully supported, ignored, or

unsupported. Ignored means that the construct is allowed in the VHDL source, but is

ignored by the synthesis tool. Unsupported means that the construct is not allowed in the

VHDL source and that the synthesis tool flags it as an error.

Some of the key design restrictions imposed by the synthesis tool are summarized in

Figure D-2. Though these restrictions give very specific guidance to the designer regard-

1) Integer types are automatically converted to bit vectors whose width is as

small as possible to accommodate all possible values of the type's range,

either in unsigned binary for nonnegative ranges or in 2's complement form

for ranges that include negative numbers.

2) Floating-point types, such as REAL, are unsupported.

3) The arithmetic operators "+" and "-" are predefined for all integer operands.

For adders more than four bits wide, a synthetic library component is used.

4) Multiplying operators ("*", "/", mod, and rem) are predefined for all integer

types with the following restrictions:

a) "*" (Integer multiplication) - No restrictions. A multiplication

operator is implemented as a synthetic library cell,

b)"/" (Integer division) - The right operand shall be a power of 2.

Neither operand shall be negative. Implemented as a bit shift.

Figure D-2 Design restrictions for Synopsys

216

5) Some forms of the if statement may be used to test for signal edges and,

therefore, imply synchronous logic. This usage causes the synthesis tool to

infer registers or latches.

6) Synthesized hardware is sensitive to all signals read by a process. To guar-

antee that a VHDL simulator distinguishes the same results as the synthe-

sized hardware, a process sensitivity list shall contain all signals whose

changes require resimulation of that process.

Figure D-2 Design restrictions for Synopsys

ing use of the language, the details of the implementation by the synthesis tool are hidden.

This lack of synthesis information makes the Synopsys tool less useful than Mentor

Graphics' tool for exploring the relationship of language constructs with resulting hard-

ware for the development of higher level fault models.

D.4 IEEE Draft Standard

The resulting IEEE Draft Standard for VHDL Register Transfer Level Synthesis [36]

builds on Level-0 and incorporates constructs common to synthesis tools by Mentor

Graphics and Synopsys. The draft standard represents a subset of VHDL with correspond-

ing design guidelines meant to ensure consistent synthesis of gate level netlists from

behavioral descriptions.

As with the other synthesis environments discussed in this dissertation, a syntax subset

of VHDL is defined. The key language constructs supported for behavioral modeling are

listed below:

1) if statement, case statement, loop statement.

2) procedure, function.

3) constant, variable, signal.

4) all predefined VHDL operators shown in Table C-l.

Design restrictions are consistent with those discussed for Synopsys in Figure D-2. The

only iteration scheme supported for the loop statement is for.

The draft standard also contains a set of representative design examples whose intent

is to specify certain prevalent modeling styles resulting in basic hardware elements like

flip-flops, latches, etc. The specification of processes and resulting inferenced logic are

217

consistent with the description of combinational and sequential logic for Level-0 shown in

Figure D-l.

Use of this subset is meant enhance the portability of VHDL designs across synthesis

tools conforming to the standard. It should also minimize the potential of functional sim-

ulation mismatches between models before they are synthesized and models after they are

synthesized. It, therefore, should also serve as the basis for defining higher level fault

models which have a closer relationship to resulting synthesized hardware.

Appendix E

Hardware Implementation of VHDL Constructs

Several VHDL language constructs lend themselves directly to hardware implementa-

tion with common functional modules such as multiplexers. By examining these language

to hardware relationships, this thesis intends to build the foundation on which higher level

fault models can be defined, that are more closely related to their underlying gate level

counterparts. The necessary insights will be drawn from two resources which directly dis-

cuss the relationship between certain VHDL constructs and the ultimate hardware.

One discussion of hardware implementation of VHDL constructs comes from Struc-

tured Logic Design with VHDL by Armstrong and Gray [10]. In a section titled "Auto-

mated Synthesis of VHDL Constructs," they demonstrate the relationship between

multiplexers and language constructs that involve selection, like if and case. Another

insight into the relationship between VHDL language constructs and hardware comes

from the VHDL Style Guide for AutoLogic II by Mentor Graphics [68]. Again, the link is

established between the control constructs if and case and the multiplexer functional

building block.

E.l Structured Logic Design
As part of their discussion of algorithmic synthesis, Armstrong and Gray present the

concept of automatic translation of a representative sample of VHDL constructs into hard-

ware. They concentrate on translations that are application independent, rather than ones

from specified programming styles into restricted sets of hardware.

The first discussion involves constructs that involve selection of a specific element

from a specified set. The case statement implies selection of one case from a specified set

of cases. The if...then...else statement implies selection of the highest priority condition

that is true from a prioritized list of conditions. Also, one element of a vector may be

selected by specifying an index value. All of these statements involve selection and, there-

fore, exhibit the functionality of a multiplexer. Figure E-l shows several examples of

VHDL constructs that can be mapped to multiplexer elements [10].

218

219

package TYPES is
attribute ENCODING: STRING;
type ENUM is (A, B, C, D) ;
attribute ENCODING of ENUM:

end types;
type is "00 01 10 11"

use work.TYPES.all;
entity MUX is

port (X, Y: in BIT;
VECT: in BIT_VECTOR(3 downto 0);
CHOICE: in ENUM;
INDEX: in INGETER range 3 downto 0;
Zl, Z2, Z3: out BIT);

end MUX;

architecture MUX_CONSTRUCTS of MUX is
begin
MUX1: process (CHOICE, X, Y)

begin
case CHOICE is

when A => Zl <= X;
when B => Zl <= Y;
when C => Zl <= not X;
when D => Zl <= not Y;

end case;
end process MUXl;

MUX2: process (X, Y, VECT)
begin

if X = '1' then
Z2 <= VECT(3);

elsif Y = '1' then
Z2 <= VECT(2);

else
Z2 <= VECT(1) and VECT(0);

end if;
end process MUX2;

MUX3: process (VECT, INDEX)
begin

Z3 <= VECT(INDEX);
end process MUX3;

end MUX_CONSTRUCTS;

Figure E-l VHDL constructs that map to multiplexer elements.

220

Process MUX1 in Figure E-l is an example of a case statement that can be imple-

mented with a multiplexer element. The case statement selects a function of inputs X and

F to assign to output Zl based on the value of enumerative data type CHOICE. In package

TYPES an attribute ENCODING of type STRING is declared which directs the automated

design tool to assign binary codes to elements of the type ENUM. With this information,

the tool translates the process MUX1 into the hardware circuit shown in Figure E-2. For

example, when CHOICE=(00), Zl =X as implied by the VHDL source code.

CHOICE

Zl

Figure E-2 Hardware implementation for case statement.

The VHDL construct if...then...else also involves selection among several alternative

actions. Therefore, multiplexer elements can be used to implement this construct. Process

MUX2 in Figure E-l shows an example that involves inputs X, Y, and VECT. By scanning

the if...then...else clause, the automatic design tool can produce the truth table shown in

Table E-l. Notice that the first //"clause that is true selects the action to be performed. It is

possible that more than one //"clause is true. For example, if X=Y=1, then two of the if

clauses are true. However, in this case, Z2 is assigned the value VECT(3) because the

clause (ifX= '1') takes precedence over the clause {ifY= '1').

X Y Z2

0 0 VECT(l)andVECT(0)

0 1 VECT(2)

1 0 VECT(3)

1 1 VECT(3)

Table E-l Truth table for process MUX2.

221

Table E-l directly implies the multiplexer implementation in Figure E-3, where signals

X and Y are connected to the address inputs of the multiplexer and the data inputs for each

XY combination are specified by the table entries.

X Y

VECT(O)

VECT(l)-

VECT(3>

VECT(3>

Figure E-3 Hardware implementation for if statement.

Finally, if VECT is a vector and INDEX is an integer, then an assignment of the form

Z3 <= VECT(INDEX)

is also a selection activity. In this case, one of the elements of VECT, as specified by

INDEX, is being assigned to Z3. This type of statement also maps directly to a multiplexer

device. Process MUX3 in Figure E-l shows an example of this type of selection activity.

In the absence of an attribute specifying a coding other than binary for INDEX, the exam-

ple leads directly to the circuit in Figure E-4.

INDEX_1 INDEXJ)

Figure E-4 Hardware implementation for vector indexing.

Next, program loops are discussed and illustrated through a classic ripple carry adder

circuit. Figure E-5 shows the VHDL code for a 4-bit adder circuit implemented as a con-

nection of full adders (FA). It is assumed that the process in architecture LOOP_ADDER

222

is embedded in a larger system that is not shown. The loop architecture maps directly to

the iterative combinational logic network shown in Figure E-6.

entity ADD4 is
port (A,B: in BIT_VECTOR(3 downto 0); CIN: in BIT;

S: out BIT_VECTOR(3 downto 0); COUT: out BIT);

end ADD4;

architecture LOOP_ADDER of ADD4 is
begin

process (A, B, CIN)
variable CARRY: BIT_VECTOR(4 downto 0) := "00000";
variable SUM: BIT_VECTOR(3 downto 0);

begin
CARRY(0) := CIN;
for I in 0 to 3 loop

SUM(I) := A(I) xor B(I) xor CARRY(I);
CARRY(I+1) := (A(I) andB(D) or (A(I) and

CARRY(I)) or (B(I) and CARRY(I));
end loop;
S <= SUM;
COUT <= CARRY(4);

end process;
end LOOP_ADDER;

Figure E-5 VHDL description for a ripple carry adder.

COUT

A(3) B(3)

u
A(2) B(2) A(l) B(l)

A B
CO FA CI

S

T
S(3)

i_L _U
A B

CO FA CI
S ~r

S(2)

A B
CO FA CI

S

T
S(l)

A(0) B(0)

A B
CO FA CI

S

T
S(0)

CIN

Figure E-6 Hardware implementation of ripple carry adder.

Lastly, Armstrong and Gray also illustrate possible mappings of functions and proce-

dures to hardware. Figure E-7 shows VHDL code for architecture FUNCTION_ADDER

of entity ADD4. In the example, the logic equations for a full adder (FA) are implemented

by function declarations. There are separate declarations for each output of the FA: sum

(FA_S) and carry (FA_Q.

223

architecture FUNCTION_ADDER of ADD4 is
function FA_S (AIN, BIN, CIN: BIT) return BIT is
begin

return AIN xor BIN xor CIN;
end FA_S;
function FA_C (AIN, BIN, CIN: BIT) return BIT is
begin

return (AIN and BIN) or (AIN and CIN) or
(BIN and CIN);

end FA_C;

begin
process (A, B, CIN)

variable CARRY: BIT_VECT0R(4 downto 0) := "00000";
variable SUM: BIT_VECTOR(3 downto 0) := "0000";

begin
CARRY(0) := CIN;
for I in 0 to 3 loop

SUM(I) :=FA_S(A(I), B(I), CARRY(I));
CARRY(I+1) :=FA_C(A(I), B(I), CARRY(I));

end loop;
S <= SUM;
COUT <= CARRY(4);

end process;
end FUNCTION_ADDER;

Figure E-7 Using functions to represent combinational logic.

Inside the program loop, the assignments to SUM(I) and to CARRY(I+1) are replaced by

function calls. Since only the notation has changed, not the basic operation of the algo-

rithm, it is clear that the architecture FUNCTION_ADDER can be mapped to the same

hardware as architecture LOOP_ADDER. The general conclusion is that functions should

be mapped to combinational logic circuits.

Similarly, procedures are used mainly as a convenience for ease of programming and

could be used to replace the full adder in the previous example. In general, any VHDL

code that uses procedures can be mapped to the same hardware as equivalent code without

procedures. The main difference between procedures and functions is that functions

always map to combinational logic, whereas procedures may map to sequential logic.

224

E.2 Mentor Graphics
The VHDL Style Guide for AutoLogic 11 [68] not only describes how to write synthe-

sizable VHDL, but also gives details on how specific language constructs are implemented

in the ultimate hardware. Examples are provided for concurrent signal assignment state-

ments, if statements, case statements, and variable index assignments.

A concurrent signal assignment always results in combinational logic. This signal

assignment specifies that a target signal is to receive some waveform. The waveform can

either be a static value or some defined behavior. An example of a static assignment is:

D <= A;

This statement implies that signal D gets signal A and is therefore hard-wired to A. The

waveform assigned to the target signal can also define some behavior. This behavior may

be a simple logical expression or a complex expression that includes a function ox proce-

dure call. An example of a simple logical expression is:

D <= A AND B;

Assuming D, A, and B are all bits and ports, this description synthesizes into an AND gate.

The simple if statement does not contain enough information to synthesize a combina-

torial network. For example, what happens if the condition evaluates to a boolean false

value as described in Figure E-8. The output signal D receives input signal B when A is a

'1'. This implies that if signal A is not a '1' then signal D must retain its old value. The

description is then synthesized to a level-sensitive or transparent latch enabled by signal A

whose output is signal D.

architecture RTL of IF_TEST is
begin

process (A,B)
begin

if (A = '1') then
D <= B;

end if;
end process;

end RTL;

Figure E-8 Code example for simple (/"statement.

In order to synthesize a combinatorial network using an if statement, the if statement

must explicitly define the behavior for all possible evaluations of the condition. In Figure

225

E-8 this means that the if statement must define what signal D is to receive when signal A

is not 7'. Figure E-9 shows how the addition of an else clause completes the definition of

the behavior of an if statement. In this description a simple 2-to-l multiplexer is modeled

using an if statement with an else clause. The synthesized and optimized result is shown

in Figure E-10.

entity MUX21 is
port (A, B, C : in std_logic;

D : out std_logic);
end MUX21;

architecture RTL of MUX21 is
begin

process (A, B, C)
begin

if (A = '1') then
D <= B;

else
D <= C;

end if;
end process;

end RTL;

Figure E-9 Code example for if-else statement.

BO

CO

AO

OD

Figure E-10 Synthesized hardware for if-else statement.

The case statement controls the execution of one or more sequential statements based

on the value of an expression. VHDL requires all possible values for a selector must be

described in a case statement. This can be done by having as many when clauses as selec-

tor choices or by use of a when others clause. The case statement implies a multiplexing

architecture. For example, consider the description in Figure E-ll. The selector for the

case statement is SEL. Since SEL is two bits wide, there are 2 possible selector values for

synthesis purposes. The when others clause accounts for other values not specified with a

226

when clause. The gate level design is implemented by a 4-by-l multiplexer architecture as

shown in Figure E-12.

entity MUX4 is
port (DATA_IN : in std_logic_vector(3 downto 0);

SEL : in std_logic_vector(1 downto 0);
DATA_OUT : out std_logic);

end MUX4;

architecture RTL of MUX4 is
begin

process (SEL, DATA_IN)
begin

case SEL is
when "00" => DATA_OUT <= DATA_IN(0);
when "01" => DATA_OUT <= DATA_IN(1);
when "10" => DATA_OUT <= DATA_IN(2);
when others => DATA_OUT <= DATA_IN(3);

end case;
end process;

end RTL;

Figure E-ll Code example for case statement.

DATAJN(O) O

DATA_IN(1) O

DATA_IN(2) C>

DATA_IN(3) O

SEL(0) O

SEL(l) O

O DATA_OUT

Figure E-12 Synthesized hardware for case statement.

AutoLogic II also supports indexed assignments using variables. In the following

example INDEX is used as a variable index to the vector DATAJN. An alternate architec-

ture RTL2 can be used to describe the behavior of the entity MUX4 in Figure E-ll. A

function, tojnteger, is assumed available to convert a 2-bit bit_vector to its integer repre-

sentation.

227

architecture RTL2 of MUX4 is
begin

process (SEL, DATA_IN)
variable INDEX : integer;

begin
INDEX := to_integer(SEL);
DATA_OUT <= DATA_IN(INDEX);

end process;
end RTL2;

Figure E-13 Code example for variable index assignment.

The signal assignment statement

DATA_OUT <= DATA_IN(INDEX);

is equivalent to the case statement in Figure E-ll and results in the same multiplexer

architecture in Figure E-12.

Appendix F

VHDL Source Code

This appendix contains the VHDL source code for the examples used throughout this

dissertation. The examples are grouped according to the tables of fault experiment results

found in Appendix B. The behavioral description is first included as examplcvhd, fol-

lowed by the behavioral test vectors in WAVES format, example_vectors.txt. Lastly, one

or more structural descriptions are outlined for gate level implementations. The VHDL

structural descriptions are numbered for multiple realizations as example_structurel.vhd

and example_structure2.vhd.

228

CASE1 229

SI

01 U
"»* 0
<* 4J
M a

us aj
* i •n O
H.C in IN

E ai

-ß nj

M in

o \o
* VJ

3H

-H 4-) I"
AJ ß

In UA

111 c ** In •fi «
K B 00 •VÖ

:K o\ OS
iH AJ

rH O c
ai u m 0> tf
n — in E •

«n

3 AJ
*J ß
u 5

U>
Ä 0>
•I-IAJ

.0 H-H
01 "^ U
fa > 0) 3

•HJOP

"TJ ai
..(Du

AJ e«
Ü t 0

h m a>
o * w °-, ü «

• (I) M
' W k

BJ O
U 3

•OTJ M
a> a» »w «
AJ AJ E
m to a> <o
M h U U
a> a> ^ o
ö c 3 o
a» ai o u
o o w o.

*: o
S^!

U>CIZHB
H M O H rt
H 3 H rt J n

|AJ H K U-O

•H 3 K J O «
0>M << O I
OAlJUhAl
i-t WUQ 2 ß

0) JiTJ a> O J g ß
01 k AJ k rtOO
Q)0«3WSft&

•H 3 • AJ ft O £ E
O U * H O 0

M U 01 AJ
(0 (Ö -H -H
U U X
.Q J3 0> U

i-H iH 3 (Ü

3 fa

*v. O
AJ

W ß
■v

M E
O
AJ V)
c ■H
0) V\
E U -» ̂ .
tn >

-H VD
W .ß

*n
•s. U >
in
£ h

0
HjT,

F>
A

u
u

•H
AJ

s

(U
AJ

ß

■a

JC
o

i U

3.0)

U V
OS

J3 U
-nM

fl) t-t •■
.„OH

" tj (fl J^ u
S «H ^ £ a> .*
•> tn u

I HJ O
i CJ 3

13 »Ü H
11 diw •■
AJ AJ E
(0 « d) m
U U U h
0) 0) u 0>
ß ß 3 O
at ai o ^
O O tt ft

I I I I

> > fitNfnC3
ß ß (0 M ^ H

-H -H ß O O fe

AJ AJ AJ AJ AJ O
ß ß ß ß C U
m <D m it o
ß ß ß ß ß a
o o o o o a

lltlli 0 0 0 0 0 2
O U U U O H •-

•o .=

K r-t 11 o u
3 u •o • • H ? II n in

.- k -
u
V

"tntntnm—wwtnw
H&HCßßß^Cßßß

^H > M >4 w >* [fl ■ O - t-l 0) CN ,. ►l oDOOOODoooo "i

«3
«H 3

-H >4 O V
K
es
u

Kininminaiintninin
jH O p V 0) w ■J ■ ti • no» 0) to

m 0) •-
u

< n
u

W ß ß ß fflUU a u u < JH (SI H AJ w 0> N 11 N <U N

•ö aS
04 01 «H rH IH I-I UOOOO

>.AJ
tfi dl 01 ß W 3 3 3

3HOO« SOHHK
0)*O OQ rJ J IflOHXO HJHOXJH ro

*M »■« AJ a
ß

•0
ß

u cn axj 01 TJ ^ WO CJ
OHOH OrHOH b u, li (0 J0 a> UM *>#OOriHdPOOHH

n > (U 3

■nOIiJ
ja w <o
o m VJ

J u «!

nj oi d
M U k
0» VJ O)
ß 3 O
at o u
u w ft

** ■H U U U U
vo Ol'H -rt -H -H
H O Ol 0) O) Ol

fc rH
TH O O O 0

S u
|r-t ^H.-t -H

•O 1 t 1 1
AJ TJ 'O *0 T)

0 Dl tn AJ AJ AJ AJ
EH o tn ^ W M W M
< .H-H W ß
B 1 H •H ß ß ß AJ
W T) H J •H -H -rH 3

AJ 0) 0
W m w £H

rH
< 01 u o — OJ O iH (N

U OJ >i VJ
<-H AJ 1 0
ft -H 1 a

ARRAY4 230

■y > Bio
Jjj3
E-ri

•H QJ
in B
U 0

ID a\
u o*
u t-t
IB

** w

(0 ••
->. to
X m
M ••
O VD
»H

' JJ
U ö

•H 0 1^
^ ß *d

It
0)43

■^ at
<■ tu

43 o 03
Ü u CO ^-D
W~ ON U 0)

Ch OS

a» >i
TH JJ

c M

M <fl ^" a» -*
3 M ^f E • to
JJ M *-*N -rt
u rt
3 '
M * JJ JJ
W-rl

H
W i

-H in
u •

S co
O 2

•a T-4
U m

>>
rt
u
u

H O
W H
Ü1 EH

J3 ■ JJ o\ « to < < > <n C
M *

M 43 at J 2 w H
-o JJ J*W O Z J £H

r4 9 V-i M •■-(< O W H O ä §
V JJ O 3 --. M 2 EH H ^ ?
t* U„ « i-i > ai 3 •^ M O < E-«

at M Cfi <
O EH

_g a). >, «£ E 5 \o H W
■" en m

■8
A OQ H U EH < g

3 •* J (N P
JJ cc a *o > (N o
U < W C C M H

to 2
u ■H 1 M nj5 X H

S
t. U N ss M^>

U IsH-
^ --4 «I 0) M O 1 2

W Z M

i * i. c £ •• DJJWE-tJJJJJJO g§3
CJ fe *J

a
.. | nj 0 43 E
JJ ^" M 0
ri :* U TJ Tt M

H

oti"*o
W O 2 C C ß U

a ai a» at
at j g ß c ß w

fli <rt m QJ niaj .. at U JJ M < O O 0 0 2 O O 3
■n M"-
_Q M J*

JJ JJ e
« rt at m

OJ
-rl

0 M
3 ■ 2§£!i&3

Ü H O O 0 O S3

O Ct M
JJ

CQ o <d u M MUM at ß 1 I w

^ 0 01 0) M Ol >i>i0iatuouuvH H 1 1
3 c C 3 O M M ot JJ O) TJ

•> M

ai <U O U it id -H -rt I I i at ß

1 UOUQi M u
42 43 at

Ail l ß at

I M 13 I i I -rj ■rt (A M
tb [it OJ i i \ I •H H 3 id

— w
— H m
H ~- at

- X u
>* o •*
■— II MU
to a v a>
to-rt <
O ON *0 ffi

M *. U V ß w
rt! -rt ß o ja at a

■oooift *g
c u at ß
at m jq a)

u
V

i
mwtowiowintfl
BBBBBCBB

— oooooooo ajoooooooo Emi/iinininininin

u

i
u
eg

%
Y

I

Z
:

t
X
l
l
O

00

0

X
O
O
l

00

1

1
X
0
1

01

0

0X
10

01

1

10
X1

10

0

01
X0

10

1

0
1
1
X

11

0

L
O
O
X

11

1 u

EC

1 JJ o\

id H
a.

■^ EH
^ to
>.o-

M
(0
u a

ra ■■
E
0

o u>
S H

u *■"

«-('S «

JJ
^ [14

00 ^-0 <* u at
Jj o\ 0 3

trt JJ
C

ß CO

43 at
-o JJ
U-*

> at :*
vn H J
jC o n

43 SS
M \>

ai <d at

o m ^
" .. at

S >i at
* « C5

a *w -■
*J E
rd 0) H
MUM
at M oi
ß 3 o
at o u
O to Ot

i i i

J-S
to

ü u -
oj at — > >

l lo
U U-rt

•rt -rt 0>
O) Ot O

•o *Ö JJ
JJ JJ ui

i at TJ >i J ß ß 3
at JJ rt -rt -H o —

* at w u £H TT
:-rt • n rt >i
: at <d o — rt
2>.0t 0(JJ.rt>,NVj
j K 01 >i M U
i «; -rt JJ i o rt
] 2 -rt i a

co w JJ *o
H CO ß ß
J P 0) 01

JJ >
0JÄ
R ■n

H
to ^* -rt
10 P:
U 0

■^ 43 >
at
tl

M m
at M
E at
n JJ

43 e

5 ° ■Sü

■ >,

u u
3 h

sv
M JJ
JJ-rt

" » a«
■^ o M <u
■fi tH n s i

«c at ^p ■• ■
tn >iß :

•• HO O 4

id o\
M o>

M in
M •■
O <J3
3H

Ot 43
-■. Ot

> at 3

J3 0 O

-r, k ^ JJ JJ
43 HÜ id
o rt l-l M
j ^ O 0)
g* 3 ß
B >,> at
5 « EO

rt at «
MUM
Ol M Ol
ß 3 O
01 O M
C5 CO CU

Jiffl
0) M JJ
HOW

•rA 3 •
at

>i >iOt
u u at rt ffl -rt
M M

43 43 Ot
■H-M Ui
HH3

. id w
2

i«w o
: o to H

2 EH

JJ K U
U U < U

Ot M CJ I
O JJ CO EH

.-H. w O 2
U

Ol J 2
M < O
320.
JJC3 S
U H O
at to o

SHIFT4u 231

JJ O JJ

$%%
0 30
•0 OTJ

0 W O
ii OP
(J JJ U
V u <u

"is".
U U

ot-n 01
o 00
HOH

JJ «Ü JJ

B AJ
•H fi 3 •*

-H O 3

X n
w 0
0 4J
3 ß

££
•0 M
0>-H g1

PQ-- rH

^ > c1

OJ3 °1 a M ='
E ai
* s »w r-
-HÄ

J2 <*
in rH

^ (1)
> 0 3H

■0 M
4-> a«

ji c*

RT! X*n

*s 0 <£>
• C 3rH

,03»

P* PI K t

>CßMMO E
BQflMOH S

■H ß ß O X fc c

JJ JJ 4J JJ JJ O E
d c CJ c c u ;
a> it a> in at t
c c c c c w s
00000s c

U U U U U H •*
B>

s
u
g

s

T1 HI
a) 6
** wt
BJ

w
U u *»*
JJ >
ß «J
U fa •r-i

-H at
[fl E

0) u

8±>

a

S-o ■
u » «
? >• ' U ij
JJ-H "
W JJ r

" ß c

^ m JJ

■" in -H

3 JJ

SSI
I ,0*0

3 E*
** w
JJ cu

■^ at

■nJJ

f-1 > 0) 3
kf> h J

•0Ä n u
at 43 S s M

c >i
0 JJ.

T1T1
O at >w
4-> JJ
m (tl 01
u U M

b rn
a c 3 0
0) at u
CD C 10 0.

« at z
HUO
r-t 3 H

|JJ B
U O rf
.* 3 e2
01 n -<
O JJ kJ
H inu

.... I w
0) ÜT1 01 G
0> U JJ n
Q) O W 3 W

•H 3 • JJ ft
Ü u >

> >i at at EH
M M at JJ
ro nJ-H-H i
M V4 J3 1
Ä J3 a> u
•H-H tn u
HH3I0

JJ t^
n a»

4J o JJ
C JJ B
3 6S

JJ H — M
—-H 0 M 0

JJ 0 JJ
U JJ U

u • 0 > OJ >
H ■"d' -H 1 > 1
E-< «3 Oi u u
W TH 0

S I 1
Ol*H O

"O EH UV rIOH

3 A H-rl4J to l-i 1 > Pd Ol M •H •0 ITJ
JJ »0 JJ

H s HU 3 « JJ tn

fe 2 W T3 E-« JJ
10

C J->
>u •HÖ3

W3

uns
w • 5

W EH
X!

•H 0

— ä - ■•
4JO < O

M w ei >i M
« H «; Jj

-rt Q.
f^ n ja ai a; JJ

fa fa •H tn in
H33 01

a c — o, ■• Ü — a- u

?s ■ -HHO » -H H 0 at

•HOHttHl»)HHfi.HO«
a o>

0- UEH"004 MEH^OD,
— J3 OBO ß X ß 0 BSC

011-1 ai EH at >H 01 £H QJ
W-.H at A j- A
at w c tn 3 S 3
0 (0 H (0

c 0 > Dt O

ött JJ

o

J a

o o
o o

- in in

00000c
00000c
in in in in in 1

& tn
X m
EH O

Of -
O 0)
O >

3

fa

4J t-t O
O rH

•>HO
O r-i

O
iH O

rt; o i-i
rH O

OlOH

O i-i o O «H c
rH O rH O O T
O H O r-l rH (
O O H O O t

HOHOH(
O r-t O rH O T
r-l O H O r-i t
O t-t O H O T

3

fa

•H (N
Si (N
W -

■x. vo
X m
v< ••
0 \o
»H

M at
o s
JJ
ß
at -fl1

E •

3 > v 3
U3 E J

:J- 00

A,-H 01 Ot *w ■■
.SJ.J3 JJ J-» E
o tn « us at Jo

■y •• w u u ^
; 3 D m n &
J^> C ß 3 O
S JJ at 01 0 u
2; »w o u w a

at
> at

a I*
ca a

LESS2 232

CJ u

01 >

U-n
M eft

•r> O

§ o

3.5

Äl
JJ rj
u B
0 in
U V
iJrl

3 c

•H .
£ IQ

«■ND '
r- to i

.. -H tO '
uXV
U IH
ID D ••

■nBN
J3 w to
o <u to

X >

W tN
QJ CN

i-H ••
"-* VJ
X in
n ■•
0 us
3«H
•v

£m
T1
0) JJ

"» [t.
01
^Tl
H tt
03
XJ
C
0) -<j
e ■

X o>

Öl M-H
3 "- U
< > ffi ?

o -nja X

m o
< 3

•0*0 ^

JJ JJ G
m « u 3
n u u *J
0J 0) U Öl
ß fi 3 O
O 0) O ^ o o w a

i i

rt! O W
5

U3 0) H
HUE-"
H S <
l*i K

U U rf
•HdJ
take
OJJU

iH W D

ÖJÄSTJ 0) J
0) U JJ U <
v o to s a

-H 3 • JJ U
ID U H

>, >, ID o> w
M h 0> JJ
(0 m -H -H i
h ^ ja i
J3Ä a u
-H -H tO H
HHSfl

M *3
0*0
3 0)

TS D) 0) B JJ iH O

r< £ > O to W
H-HC pa , m to

to
in
tn

- | -H cu ii n - a>
«S ID «O fN 0) V V v >w u r»

w I < H ID H M W sc J -H • W - <N iJ u tn JT3 a>
W-H <W H

OJ-C B >, 0> —W0) 0) Ol-rt QJ
M 0) >i4J W AJ () 0) a a

»■H « -H JJ Li J -1-4 OJJ. «s
Tf rt ja <D iJ a-o u oi a "9 Tt

Eb fc -ri in a c u oj
H 3 0) O «.Q Of fa

o o
o o
in tn

o o
o o
in in in H in t

H

nine
. f-t c
< u c

IOOUI
to

* o 1-* n
■> H r-4 iH

u
4 O i-t O Of
) r-t H dP W dP O C

4 H H

4 O r-l
HOHOHH

>
43 Of
-o V

31 lJ -H
3 "^ M
c > a> s

«) g ^J
3ÄOÖ

Ü • T3 TJ U
0> (N ID 0J *H ••
•n tn JJ JJ E
J3 in ro «j at S
o a» u u u h
, H 0) <D H Gl

5 " Ö C 3 O
= IN OJ tu o u § tn o o w cu

o o
4J 4J -
u u —
ai a*
> > u

I l-H
u u O)

o w &* A

- I w
I) TJ (N J I
) JJ 10 T
D tn to H
H ■ 0) K
(UHO-

4 <D Cu 4J (
i <D > H
C -H JJ r O
2 -H i a
a m jj
H w c
a £3 oi

Ai in
u ••
O »J3
3H

a> ja
-» (D

**» *0
M at
OS

J « in
1 > H

C JG O Q
O-nÄ B

Oi at o
0) Ü

pa ■• oj axw .. 01 n
W oi jJ jJ E at o
to w ra to a» fl •H 3
ID w u u U h
H <D 01 (U U 01 >. >i

u u
(N -^ 01 o> o u re m
w J«: o ü w a ^ u
to ^ jaxi
OJ O I i i i •H -r4
-i 3 i i i I rH r-4

EQUAL3 233

4J >

Q*JS

V 0 OS
>Ä

ÜE,

■n U
M (0

u ••
0 «J

£ C

3H

fl-
•0

iP1
«* tb

Ä n
U Z. oo ■^'0
w. a\ U 0)
-M < OS

I

n f
< 2
^ S
W 5

fc U«

H c
- ((*i -^
(DT) .J
mu<« -
0) W tD {0 m

-H • O * J
<D W »< < >, (U ~£

n <y >ijj o
rd -ri AJ u a
U -HO

•H W Ö ß
H 3 V 0>

I &

Ü

< -rt O

2
o o
o a
in m

o o o
o o o
in in in

o o o
o o o
m in i/i

0) Dt-rl
4J u 0

.C-H n
u & a
u a)
10 X)

e w
0 CQ

dP dP

HHHMOOOHOOO

OH W H O O WOOO
OH mono mooo
OH ItOOrl (OOOO

H H
OHCJOOOCJHO©
Or-I OpO OHO
OHdPOOOdPOOH

-o
f 2 " > <B

u 3 g
b
S

>* C
U JJ O a •H 2
L.
w. W

— C
f> .. « 0

« U H *D
s QJ (0 <u

u 0 «> »

9^ «1

I 0> i

fj

m
to.

GREATER3 234

U U
o o
JJ JJ
u u
> > V

I l-H
U U Ol

-H -rt O
tn DI<H
o o t
r-i H"0

I l-u
TJ *0 n
JJ JJ

O. 4J (0 jQ Di

O HI
3 Ü

rn u

H 0
o j:

w a)

U tj co
5& «
. ' ~rt
aj ??■

n C AJ tn
3 0t rtn
Wiw » "

01 Ol rt

■ r m «>
4" m k M

3*0 JJ >i
*J 01 ffl R)

«nS*
3 8 "I
H i w

ij M o
< H 3 ■•
.. jj e o

JJ (0 TJ
U 0> TJ TJ
o> ^ o at
•n Oi^- JJ
jj. ^*» RJ
O rn » H
, U ^ 0>

B w o at
rg nj JJ o
> (Ü EJ

t U Ol i
i Di E i

a> M
JJ PJ
«J
at rfl

tu ••
^ \D
X in
M ••
O vo
3rt

-^ at

"-. TJ
M 01
OS

U oo

j; at
•n AJ

■^ U
> at ?
ID E J

■njj E

re at 3
H U k
0) V4 Di
C 3 O
0) 0 M
utoa

< o w • g
«HO
10 (IH
rt M EH
rt 3 <

I XJ c2
u u <

-rt 3 J
UHU
O JJ W
IH tn o

Q) Ji -o at J
at ^ jj ^ rt
at o w 3 E

■H 3 • JJ o
0) u H

>,>, at at w
M U 01 JJ
Id (0 -H -H I
M k JJ i

XI J3 01 u
■H rt in n
r-l rt 3 ffl

o o o
o u u

m en

m

01 M
JJ fit

ot jq
"N. at

^-TJ
H at
OS

OS
rt

1 w —

rt S H
H CQ

> S-
W

JJ -
JJ rt o

< PS C JJ .. w « 01
II ii .. a>

w atTJ EH 0 01 A V v >w u

(^ 0) JJ a
Cd

M
3

< < (^ ID EH u W

o JJ en a O tn OTJ a>
t) m r- *J

at at XJ ffi 0) Dtrt
>iJJ K JJ 0 a

ffl -rJ JJ k O rt C ox
JJ H

ve SC fi 01 jj a T) tJ 0) u
c

U< U. rt 3 0> at IÖ J3

L.
s
u
s

0> oooooooo o o o ooooooo
g oooooooo ooo ooooooo

•H inintni/imuiuiin inmin in i/i in in in in i/i

■" HOOOOOOOOMOOOMrtrtt-lrtrtrtrt
OD E-<

Ü WOrtOrtOrtOrt WOOO I/IOHOHOHO
inOOrtrtOOrtrt inrtOrt WOOiHrHOOrt

#M CQnlHrtrtrtOOOOHJrtOOlOrtrtiHrHOOO
™ W r-(rt
^ (tfOOrtOrtOrtOrtClrtrtrtOrtOr-tOrtOrt
_• OOrtrtOOrtrH OrtO O^i-IOOrtrt
MM dP dP rt rt rt rt O O O O dP rt rt O dP rt rt r-4 O O O O

> OJ 3

*° E 5^ JJ O Q
•njj X

U m
C U •■ •■
W Oi C >, «

JJ 0 J2 E

H at n TJ n
" u o> at »w -
« DIJJ JJ E

i "p •■ «o (0 at 3
i -S m u u u h

o ^ at ot M oi
jJ(DCC30
Q AJ at oi o u
X nj o ü w &
> 01

H E-«rt

w HUM

S E"oVH
EH EH O rn
< rf rt h
£H - EH I 01
M Ot WTJ JJ

at JJ m
> oi u W 01
(JJ -H Ü ' M
Srt at Ol

:* i2 at
pq pi o oi >i

w JJ
i w c
i P 0)

GREATER3 235

PQ-H

u u

'S

u
S fa

12
u
R
u
M

in

fa

V W

0)
c

JJ

f» y
£
u
in

M
ai

0) jj
h ffl
3 u
U Di

2^

Son

TJ 3 ass

inn
< M o> ••

ai u c
.. u nj o
u <fl o>
u 01 n TJ
0) *4 01 01

■n 01^ AJ
.a---* «
On h h
, U O 0)

■ M *Ü '
i en ai i

•P14J
M -H

■^ u
> g> s
Ä O O
■rtJ3 5C
u -->

0) MJ •■

nj a; <3
MUM
ai M oi
G 3 O
a) o M
o W 0.

*t> ro W
u> 0) B
tH M O
i-t 3 H

|4JH
1)1)4

■HS«
tJl M 4
O 4J J

iH m o
.... I w
0) JiT1 v a
d) M 4J M
d) o en 3 w

•H S • 4J O*
V U >H

M M a) a.»
(0 (0 -H -H t
MM Xi
.Q.Q Ü U
-H -H M M
rHrH 3 «

LE5 236

if u

m iJ
^ c
M 11
O S

UXi

J
(N r-
r- m

XH
JE.
41 w
H P.

Ä 0)
■n E
H 0

.C ^

4J 0)

a, o

si

32

U w
" J
.a« ■
O r- in

Q X -H
> in in

i oi ai

X in
w ••
O vo
3H

^•0

OS

O co

VO
JH a,
•r-i JJ
rl -r(

•CO U
IIVIU "
JJ JJ £
rfl « 0) rt
H U V U
V V U Öl
C C 3 O
4' (U O VJ

lilt

o ■§
3T3

c
41

•^ ß
M 01 J

E 0 E 0)
4J -^

tn cn
a tn
41 -H ßcn

tn
O

en
t-i

E to 4) 0\

> JJ « ^
*H > JE, re « to VO 4> xn

J3 aft U J3 H ft

-n
in o > U in M

4) (N vo ■** 4» rj

4) j- 4) i~4 ■■

E
o ^i in U 0

-*v VO
M in

J:
O v>
3rH

HI ^.

1"
0 VD
3H

4)
u i" 5 « 1"
(0 ■0

4) A
■ ™

4i jq

Vl ^ 0) -rJ ^ ^ 41

41 ^ [L. *J S ^ b*

jJ CO re ^
E 5

CQ

ß 00 ^•o 00 ■^•0

-H en
en

U 41 0 s o
4>"H

J3 JJ
M 4)
0 S

JJ r-t JJ u ß rH jJ

ß c o tn oi ß
4) VO 41-W JJ ■- ß VO 4J ^j

i-t C ^J E • fi . o ^ E * o -^. tN St ■^(N

1 o in 1 o a\ 10 1
o CN -rt m TJ 3 O n -H in

JJ 0
u ^f

tn ■
U oo ^ JJ Ü

U —' ^r
in ■
U oo ^ > 3 , H > >

r-i m ■ <r\
>
ID

u
o US CT.

>
VO ..

4>
(N JZ 41 ^ JJ

"M
ra J3 41 J

•H 0)

ß

in >. -n JJ < u
4> 4) " >. •n JJ

M-H <
J m -^ U > u h > re -^ U

►* >1 X > OJ 3 1 rA 3 J-> E > S ^ ^r
•4J

U

vo E J vo u D) JJ-r4 VD E J vo

0 •H jS O Q TH •H 0 U J-» •H.COQ f-l

rH pi, - ß 4J n£ X E^ E«rt 0) 0) C U n-ß X

I W —
u o £■«

•H W M
CD E-< ffl

> s
4)

jJ
H o

12
c w tn to w in m

C
w

b. H-->

i E
1

Ü
O J wo

|XJ

*0 tn

JJ 0)

•5°
U- u -^ >

O 5
i-l H JJ

w in co C ß ß ß C C 3 c >i ■■ t> ^ o ^ JJ U — ß £i " 0
"O a (0 01 IM JJ

u
4)

0 J3 E «c < w tn JJ < " o ja E r-l

« > -IM 3
4) "O -H ß O

n II it 41 E o a o o o o 0 EH b* 10 H 3 « in o 1
4) V V V *4 U ••H O O O O O O

W| •0 "0 VJ w 4t w *d H J C O *J J TJ "O U 0) Ä *D
VI at JJ -H M < •H O JJ in in m in tn in 1 4) 11 4-1 - 41 JJ -H UTJ 0! 01 IW .. 41 W JJ

W 41 Ul 1/1
-H • H •• W

4) J »< *J

3
JJ
u

< W 4) W u w in
— £ JJ

— HJ
*■• E
re 4i re
^ u u

>>
0!

g
41 W w in H 0) 0)

•o E
JJ — re JJ E

re 4i re
4)

-rH
0
3

[fl

-i ... tn
M

H c 0 < 0) rH o —' 01 .. ■ u MUM 4t

>i 41 — in 41 4> CJI'H 4) 4i -a X W H rH r-t O O O J in 01 HMO X X 0) ft JJ re t-i in 0 ß in 0) Ot M tn * >i 41

M 41 >i4-> W JJ u 0) a u J Q 41 ß C 3 O m « U 0) >T w 4) J 0) 41 ß ß 3 0 M M ttt

1-4 Ip-rl U ^ J ■H c □ J3 4) CD <s iH tH H O O O f^ X H 01 DOM H 3 <: ■H JJ o »T-l O C; r* 0) 0t O U re re -H

M -HO 43 H U iH «H O H O O > ■■ a u w ft J ft H a ?«
• ■ C3 Ü W ft M u

r~ t~ j3 a» jj a •0 U tji a *0 t^ < HOHHOri r^ in 0) W JJ "TJ in A A Ot

•ri gi c c u a) c t* H O O O H H
[fe

4) i 1 (-H i tfl C c 1 0) 4> ' to ta b r-f 3 OJ 4) flj J3 4) dp H O O O O O * iH 1 1 I 1 J i D 0) 4> 1 .-1 H 1 ' ' ' r-l T-i 3

GE23u 237

CO
3 V

b%
•0^
0) u
-- 0

0) c

n E
«'

g 0 X
in >

3 tJ\
w J3

OIEH

si £
•r» 0
HXi

3 (X
en
IN CN
<U CN

g 0)
5 U ^ Ul

J3 * 0 vo

U * "i

vo E J
i£ o o

151

u a f

3 s
&>
BO

00

fa

ei HO
o w Z

•- I 3
HIT! 3 B O

0) to ra •• -
■H . u ■• B 3

0) O < U fl
>i 0) — re
M <U >AJ W
nl -H 4J M U
V4 -HO

■Q tt) iJ a *Ö
-H tn c B
rH 3 fl) 0)

b
s
u
3
u

I «I MJ ,_ 9 Eoooooooo 3

3
ä

-HOOOOOOOO a -H 0 - iJinininuimmini/i
3 — < w tllil U H
j-i m c O cn 0*0 U> nr

•H tl^X WOOOOiHT-1tHT-4
ß W o
0) to i-HiHtHOHOOO ro

Tl 90 rfrHOHHHOOH

fa i-tOOOOi-tr-liH fa in ja 0) (»OHHHHHrlH

CN IN
at IN & »

ä a*
H-H

■^ U
> 01 3
IO E J
X! SO
■nfi X
U ^ >

AJ —
u - -o
0) 3 0)
TIMÜ
.Q CN to
O (U h
J ?g
Sao
S n O
•■* CN

i 41 i

(0 cu id
u u ^

C 3 O
0) o u

>o

•rt o

WT3

10 4J

BO

i EH O W E-t
I < rH -H W
^ -H I H
1 (UMfl SJ

ID iJM -i-t
«Ilbltinh •• •*
; -H ü • a» a: •• 3
i « o> eno ■— <u M
: >* u ID o* 4-> ra DifN
1 ft! U ttl >. H 0)
1 *C (< -H 4J I O Dl
j cc a -nip,

a) u-u *o
H i w c c
J i D 0) a»

85 •0

JJ Ifl
J

E u &
» >

3 &
to x:
U-n

DiE-<
-v u

Ä E
-n O
^ X!

3 a
m
(N rj
a» (N

E *
5 u

•** vo
ji in
u -
O vo

/" M 3rH

U 4J ^^
«I

TJ
CDÄ

QJ J
■° s
St

or> ^■0
<T> M (U
1^ O 3

«ü
U3

C
a» -v

(N E •

U 00

' -H

■nU

■jay >i

K > 0) S
X> E J

*i w -H Ä O O
"ä 1 U n£X
■S'o IK W-v>
U di_

äVn
>i ••

.. 01 c>: OX1 E

U 1 tH*0 *0 M 01 Ä
a* 0) <w •■

£) N l* id id ai id •H 3
0 4»^ k
j DiD * >.

^ k
id «

DunOi u u
ÄX)

0) o
cn 3

LT12u 238

MT2 QJ
H JJ k
O M 3
3 ■ -u

0) U
>i QJ QJ
rl 0) JJ

<ooo!
WS ft ää»
o. o as &ft >< H O O O S
H W U U U ►■

I I I

at*
"3 0*

Öl
Ir-

3 a\

IT) Ot R w
■Q X

U> h •4-1
rH o
rH

1
« -

W
c
QJ o t) OH > Ä -

-rt
0>

W H
rH

(N -
O

u
> s

1-*

> ■H H JJ a H m
9 SCO Of Ä II

V V
II •<- 0)
v *w u s

<S u < •rt o - fS H rn H 3 < H 0) tr> U W »■M

>J •H £* " H 3 JJ m G ■J Di»j|D a> *-)
o tn i- 4-1

0) vox T-t ai 0) Ol-H
rJ ot >.*J H JJ t) a, c w
m •H 4J U kJ •rt C OX (S

OS 9N ja 01 4-> a T) (J tn u •0 9,
fe fe • i4 tn

3
c
0) tu IDA 0) to

in in w in
- C B C C
0)
E o o o o

•H O O O O
jj tn in in in

f^HHOO
J

rH rH O O
rH rH O O

< rH O rH O
O H rH O

dP O O O H

T3

3

to

u "
o vo

I ä

W Ä QJ
-0 4J

* H-H
«J -* M
S > aj a

-rt J5 O O
M-nfi a
ft* u -^>

■nts

O JJ

0) (Li *w ■■
JJ JJ E
fl «i oi ra
M u u in
oi 0) h o
C ß 3 0
OJ QJ 0 VI
o o w a

I I I 1

jj g JJ (N X QJ
£ £ *r,4J

«« <u 5* & ü*ä
V° X > QJ 3 l-H

vo U Oi * ■ WEJ
JJ tn -H Ä 0 Q

HrH •* 1 H-nJ3X

Bo1 ■C'O U. H-- >
H-O

§ 0! •0 in < E|3 - ..
jj CM a ><»

«< rH-rH 10 01 JJ .. QJ rH O J2 E
(r* 1 H 3
WOSJ C O U M-O-O in

JJ M -rt 0J 3 ■• 01 QJ <w "
W WH fr* •n« 3 JJ -U E
c • jj o; 3 J3 rH tN nj n) QJ S
< 01 rH O JJ M O JJ H 14 (4 CJ U
W QJ 0* J- njt-H rH

V
H
D
L

r
k
/
l
t

G
e
n
e

G
e
n
e

S
o
u
r

P
r
o
g

U QJ >. V- JJ
< -H JJ i
a. -H i L

W JJ TJ
i en d C i JJ o i i > i
i D QJ 01 . rH 3 1 . I 1

■ &

GT3n 239

^ W

iH U O
r4 & H

W £«
U U rf

-H p (2

O 4J J
H U)U

.... | U

Of IH JJ M
vonsH

■H 3 ■ 4J ft
tt) 0 ><

>, >,a. <u y
U U 0> AJ
Id (fl -H -H I
H H ,6 i
.0 J3 0) U
-rt-H M V)
HH3«

Tl
3 0) ^. *«.
* n
•o -v
(1) u

■v. 0 ** 4J
0) (3

M £
Ü ■s.
*J n
c -H
OJ B1
6 u

2 B 01-0
01 JJ
0) «

U 0)

H H ill

& to as
v to
-H O

*J U 01
-H B 0X1
■C-H U

Kg"*
Si

* o -
u u

»■ox
c w
ti in

»I e

d'

Eo
•H O
u in

o o
o o
in in

o o
o o
in in

lOOrlH

C -■ • Or
<U Kl dPHr

< O O
S H O

4 PH O

QJ

3

2
es

©

-j 2

JJ r*
01 ■•
^ v>
M in
ix ■■
0 «3

m
M DJ
03

m
Ij-H

E > JJ 3

-H J3 O Q
U-nJ3 X
fa 1M^ >

n >i -

JJ "*■ g
0 Bio u
01 -~ QJ 01 iu ••
•ri ■ JJ XJ e
•S ö m « oi 13
o on u M u -i
j JJ o> ot 1-1 0)
g Bl C C 3 O
•n " 4) 01 o u
Jcuoiaii

>.u
•H

U 0)
•H 0
01**
O I
-J-O

IJJ •o w
u JJ

9
c o

HO t*

-e* i-H H
J WO J
i J-» C 'rt
1 W w m E-i
II) 'UK

< CJ OlO — JJ
< i^ 01 oi JJ m oi
: o m >i u

i a. -rt i ft
l tiu
I il»6

\o 01
J5 6

E 4J ' tu c

o B M O

rf

C

4J N

;: o <* u oo

." >. H N"

^ ?
SJ« E > 0 3
o o w> E J

n-nxia:
CL, W *->

ÜTJ *; it _
E ■ Ö >, -

-] C o J3 E
o

U V JJ "0 "0 u
a» a & a) <u *w -•
-n 1 •• W 4J E
J3CC nj R) a» H
0 M "*i h h U M

S D ft C C P O

5 ö J2 o o w &
1 AJ 0 till
i »3 1 1 ! 1

COMPARE 240

>

2
3 u
2

a
E e

JJ r-

(0 en
ftrH

dt E*
M CO
flj ft

^-0

o s

U oo

j- «j
■I-I4J

^ M
> a 3
J3 O Q
■n.c a

«"fl, c i
.. U OJ

QJ g OJ <

•g •• n i

>t •• H HO
Xi E < <-H

H-H 1 •o n W 0) W TJ
Q) *W •• iu JJ

«J 0> (3
>4 m w M
«.Hu-
rt < oi
2 x x ai Of u 0>

G 3 O m a; u ai
H < < -H
J K ft O to ft

M M
O O
JJ JJ
u u
a> ai > > I IUUUU
U U -H -H -H -H

•rl -H tJl O) tS tX
biDiOOOO
O O «H f-(rH tH
rHrH I I I I

I l'd'O'0'0
•Q »0 4J JJ JJ Jj
JJ JJ H 01 W tt
m to

c ß ß JJ
fi Ö -H -H -H 0

B* -H'H °
O Pi •• ••
U O ~ OHM

ft JJ fl J3 >, >i >i N

JJ i O
-H I ft

01 »
M H
ffl »J

■i-(-H C C O U;
is

JJ JJ JJ JJ JJ o
Ö c c c c u
1) (U Qj flj 41
C fi C ß fi w
O O O O O 2

U U U U U H -H

,_, — R
P4 <>

^ « o —
iw o c

T3
i-t S 0 X o>

w £ > 1 UJ H C JJ
xJ 0 H > X
3- •H tn H s J2 ffl
< U m -H OQ (N

w X n VO «-4 W
Pa Id C (11 CQ > SH X m

? a
E o

OJ TJ
«•rt < 0)

w <<
A II II II **-) u

o Ql «t sad 3 rtl .H 0) M W
u o -< JJ w c HUN M N*0 &>

U to H «W t-t rH C_ 5 — £ QJ OJ ÖI-H 0) OJ fc 0) >,UO JJ o a c w
•H

•H O £ H h
•H X] OJ 4J CO CJ r» P. ■a

fc. -H c s u* rH =J at ai « ja

e
X

i a
a
E
©

oooo oooo
oooo oooo
in in in in inininin

oooo
oooo
m m m in

>i OrHOtHHrHOHOHrHOr-tO

M HOHO OHOrH HOHO
tw p,OHOH aOHOH ftOHOH

PHOHO 3HOrHO 30HOH
CQ O 0 O

HOi-tOr-4 HOHHO IjHOOH
<OOOHHOOOOr^OOrHrHrH

.OHOr-4 rHOO^I OH^O
#dPOOHrt#OHriHdPOOOH

a.
E o u

OOOO OOOO oooo
oooo oooo oooo
in in in in in in in m m in in in

>t rHOHOHOWOtHWOt-t

CN OHOH HOiHO OH
>* ftHOrtO ftrHOHO ftHO

DOHOt-l DOrHOH 3HO
(SO O O

WOr-tOrH WOHHO J^HO
^OOOHrlÜOOOriUOH

Oi-tOrH rHOOH Or-I
##OOiHtHdPOHHHdl>00

O rH

O H

O t-4

.H O
O H

COMPARE 241

iJ > B,

M
CO

g-ri
"v. M

»K
RR
>5 01 f>,

10 Ck

OJ
L.
3
u
3

a a
E o

J«: in

O VD

u c
JJ c

S £

■ s *

Si ™
3 v ■■ M >i H
JJ -u ,H

j3 o M ID
u— jo ^

u ü;; u ß OJ
w o) « e
fj «J E
U BOB
«BO»
Bu*»
\ Hi O 0)

g PI ^ 0)

i O T) i
i U III i

U oo -* > >
J3 <U
•n JJ
M -H
'v M

> 0> 3
^EJ
.G O O
-nX! X
M ^->

« <u m
MUM
V U 01
C 3 O
OJ O M
Ü W 0.

** (N W

»HMO
H 3 H

|±J E-
U U <

•H 3 «
01 M <<
0 JJ J
H MU

- - t H
II) Ä*0 OJ Q
OJ M *J M
uoinsu

-H 3 • u a
dl U S*

>,>. 0) <i> H
M M <U AJ
(0 (0 -r4 -H I
MM ja i
Ü£ 01 U
■H-rt W M
iH rH 3 flj

W H
J EH

Si
<N (5

»< J M
e2 u-o

M *0 > > s N U
< H c c c M H

rtui 10 H ■rH c °fe
S£ u JJUUUO

c c c c a <>
c 01

J * c c c c a w •< <> u n o 0 OZ
SS 0.
or It & s? K n H r> o 0 o 0
w O u u u U U M

C0MPARE3 242

U r*
(0 en

^rH
m
0) &
u w

OOOOOOO OOOOOOO
OOOOOOO OOOOOOO
in in in in in in in in in in in in in in

■o
■c

3
b

'S
HHOOHHO r-C H O O r a
O O H H O O H H i-t iH O O H H © S
O O rH H O O rH H O O rH rH O O tH Q

U rHHOOrHrHOHOOr-trHOOH

O H O H O i-4 O &rH O rH O H O iH
O O rH H O O H 3 O H i-t O O rH H ^
OOOOrHrHtHOOOOHt-trHrH ■

H O H O i-t O H O O iH O H O rH O 1"H
O rH rH O O rH H OOHHOOiH - •
O O O iH H rH rH dP O O O O t-t i-i «H W

-■* Ü)
** b* n_
O S
JJ
ß
0> *»
E •

n xiai
ra T-i-P
&J3 H-H

QJ "v. U
o fa > a a
u u>S)j

CJ3 OP
>, 0-r»XJX
JJ—£ M^>
-rl ■
JJ ro
ß 41
W H ß >. »

■H &na-o S U o a, o«W •■
11 uwiJ e

°D » « « V 3
•Qn n M u M
o o <u a) u oi
J M ß ß 3 o
Q (0 fl) a o n
x do o w ft
t o
i CJ

i U M

w ß
£3 0

u u
0 0

u o
v ai

I IUUUU I
U U 'H -H -H -rl I

-rf -H 0> Ol Ol Ü1 I
Ot a O O O 0 I
O OHHHH i
HrH 1 I I I I

I I-OTJ-OTJ I
>Q«Ü JJ JJ JJ JJ I
JJ JJ w w w to i
(0 W I

ß ß ß JJ -
ß ß -rl -H -H 3 m I
-H-H 0 dt !

01«"

ä ■ * a
u w, ä h i

.. « Ö. O J

■ Tjm u n i

►3 H 3 ß I
s •■>" '

3 »4 !

«0§E
U«IH[
HHE*«
H 3 rf .

JJ K C
U U rt (

•H a J (
Ol w o
o JJ m E
H uc:

5) X t> 0) J !
0) U JJ U < <
01 O 01 3Z <

I -H 3 'UO:
1)UH(

>,>, 0) 01 WC
V4 W 0> AJ
UJ Ifl -H -A I
MW Al
■Q.Q 01 U

H -H n u
4^3«

! > > ß BIN O
!CC»«UH
J -H -H C ß O ft;

> Jj Jj JJ JJ JJ O
: c c ß c ß u
J 0) 0) 0) 01 41
: c c c e c u
) o o o o o E

sfllfli) O O 0 o o z
) U U U U O M

ß.
s o u

• O

H W

O
Ü _ t

o
u r

e
Diininoimwintn n oi v) to to to in W M W 01 W W M

o
*J
u

t3 o tH 01 ■H ßßßßßßßß a c ß ß ß ß c
J= H| ^

1
rH ß AJ OOOOOOO OOOOOOO >,

U M H
-H -H H
Dl (Q

1 OOOOOOOO OOOOOOO OOOOOOO 1
"2 J3 «

rl V o H in
<2
u

N
inininininininin in in in in in in in

R a
E

HHC (U PQ >* < >> >* .. 01
CD a
E c
u

>* OOrHHOOHi-H OOHHOOH O O H rH O O rH a
dl *0 << fl
01 JJ Pu -■ W

01 < A 11 II II <4-l
HrHOOHHOO HHOOHHO HOOrHrHOOrH F >« OOrHHOOHrH HrHi-HOOHHO o o N in N tfl N T! ft> HHi-HOOf-lrHOO HOOrHrHOOrH

01 (J < & u VI H «4-1 r4 rH £- ? ftOHOHOHOri OiOHOHOHO QrH O rH O tH O rH

u
s
e

ie

e
n
t
i
t
y

p
o
r
t

e
n
d

C
O
 SOOHtHOOrHrH

<0
u
ja
•H
rH

•H
si

ß o ja
H H

oi a

-o
<s (Q OOOOOHHHH

U
»COOrHOrHOHOH i5HOHOHOHOOHOriOHO

OH<HOOiHl-| OOrHrHOOrH

u. M JQ 01 to dP #OOOOHHHridPOOOr!HriH dPOOOOiHrHrH

OOOOOOOO
OOOOOOOO
iniTrinininininin

* rHrHOOrHHOO

H OOHrHOOrHrH
^ HrlOOHHOOH
HOOrHrHOOcHHI-t

i
*aoHOHOriOHa
SOOHrlOOHri 3

J OOOOOrHHHH O
M H

CÖOHOrHOHOrHÜ
OOrHHOOrHrH

idPOOOOHHHHilP

C0MPARE3 243

•a

a
E e u

1/5

•ti > 0)
8.G
-x u tr.

'S*
<u fr«
U M
(0 (L

£ «H

JH
's.

■S"1

T1
41 ii

"J \u m -~-n
u V
o s

I ft

>«
QJ

^ ■ m a>

jj'O O ß
•H <D U O
X! E. » S -
o if*1

u (1 01
3 o> M ••
^ M * c :

U 00

J3 at
■nU
M-rl
"- U

> y s

-nx! X
M -s. >

n •>. ä to

, 01 O «

g (0 ^N. ai

d) 14-1 ..
< JJ E

« 01 ffl
M U M
U M Ü1
0 3 0
fltOh
o w a.

[i i

VO 01
H U
*H. 3

UJ
U U

0) M
o ±J

rH tn

if ii-o ai
ai o tn 3

•H ? • -u; a» u
>i >i OJ ai
M M <U *J
10 «J -H -H
MM A
.0 -Q Oi U
•H -H VI M
rH rH P IB

ft. J CN

< H ß

U I
W £ -U

H OI
J S c < o o so- a
C5 S &
H O O
w u u

(N m
m ki'O'O
■o > > £ £
CCCiCfl

JJ XJ iJ XJ iJ
c a c e c
HI 0> 0> (L) C
c c c c c
o o o o o
litt! 0 o o o o
u u u u u

C0MPARE4 244

•o Si

u r-
rfl en
am

0> EH
M W
(0 a

tn E
u o

•P2

'S
« a
E o u
'^,

3 > 0} 3
« ß J

i-ß es

u O 0) ot*w »
o> U XJ JJ ß
*" •• «J rfl d) S
■S ^f M h U U
9, at a> ai u oi
J M C C 3 O
9 idfci o^

u

— —-oooo
o o

oooo
o o JJ iJ AJ u

330000
0 O "O "d T) TJ

n o o fi

i Bom
i i-S'H
i E-« 0«* E-*

rt H 0> W
i -EH I M K
I OJ W TJ «J J

01 JJ a
i a) w n &EH
; -H o -OK
; < a) o o-

PQ W AJ
M i en c

— — *■(
U U 0
0 O *J
*J 4-> U
UUII
01 01 >

Vu.'
U O-H
-rt-H Dl
0) Oi o
O OH
rtH I JJ'O
•0 T) *J
JJ JJ w
w to

u u u
O O 0
JJ JJ iJ
u u u
Q) 0) Of

u u u
■rt -rt -H

o o o
HHrl

I I I
T3 73 *0
JJ JJ JJ
to in to

ft) H

is " c
11 OJ

•H C
u o

SB m o
n u
or "«»
~ m
■ n
at <d

si»
u o
11 0

s*.

'S,

*? - «J o>

•^ 01 V o

< 01 u ••
u ro ß :

» ID a o J

u tl-oi
01 O U 0) '

J3 "^.K (0
0 ^ H ^
. o> o ai

S n 5 ß

>&|°
1 OTJ I
■ U 0> i

-C 0»

> £ 5
x o a

■ - >

«j OJ S
M u n
o> M tn
a s o
a» o w
Ü w a

o
0
JJ O

11
TJ o

tn
oj M tn en in tn tn to in tn tn to w w in tn

a a c c BCEB c a c c a c ß B BÖGE

oooo oooo o o o o' oooo oooo oooo

cc oooo oooo «ri oooo
.„ in in in m in in in in in in in m in in in in in in in tn &
(0

— m
P: —
OP:

£ o o £ •-
HOHO HOHO

(A

e HOHO OHOH OHOH

*» o HOHO 01 HOHO OHOH
R t-l O H O HOHO h HOHO OHOH OHOH

■o >* (Ll ■rt O iH O trt H O f-4 O HOHO HOHO OHOH

JS H

H EH
8

£ JJ
trt O t-l o O r-4 O rH HOHO OHOH HOHO OHOH

u1
■H 1 >< O frt O H HOHO 1 OHOH HOHO

"J m 'S HOHO "S OHOH HOHO
(N •. .» .» N r-f O H O O H O H HOHO N OHOH HOHO OHOH

80.
a

O
w
Pi <

CD w
pa

>* r« v o iH V) u
n a
E
o u

O H O H OHOH OHOH O HOHO HOHO HOHO

PQ >H O i-4 O H O H O H OHOH a
E o

>* HOHO HOHO

wo 3 O rH O H O H O i-t OHOH

£
0

14-1 •ri 0 • . r-(OrtOH OHOH H O H O H H HOHO HOHO H H O H O
0) to s o GQ rt 3 rt .H at IH W >* H

MHOHOHirtOHO H O H O H H O H O H H O H O H H H O H O
u rt CO ? ^H O H O riOriO OHOH O) OHOH

£ >* &rH OHO &0 HOH X QjO HOH 0,0 HOH an OHO
JJ c w M 3 H O ft o 3 *H O <H O 3 O H O H fi 3 O H O H

(0 -H
1-1
£} 0>
•rt V]
H 3

4J 1-)
0 a

O •rt C 0X1 0) CQ
ffl

DU 0
KOHOH

O
U H O O H fo U O H O H U O H H O U H O O H

T1 *-< rfUOOHH O O O O .H O O H H H rt Ü O O H H ÜOOOHCJJOHHH

c
01 fa O H O i-f H O O H O H H O fe h 0) aji3 OJ dPdPOOrtrt #OrtHH # O O O H dPdPOOHHdPOHHH

COMPARE34 245

0> e
u w
(0 0.

Ji M
H 0

s c

**
■D w
<U-H ■c'
q> u

s, (0^. -«. >
M VO
0£ 0 JJ-n

&
■v. 0~>
•«# H

<D £H

M W S1" [fl (X

o o o o o o o
o o o o o o o
in in in in in in in

H tH O O H H O
HHOOHHO
HHOOHHO
HHOOHHO
OOHHOOH
OOHHOOH
© O H H O O TH
OOriHOOH

OOHHOOH
O O H H O O rH
OOHHOOH
O O rH rH O O H

O O O O O O O
O O O O O O O
in m in in in in in

HHOOHHO
rH H O O rH rH O
HHOOHHO
HHOOHHO

HHOOHHO
HHOOHHO
HHOOHHO
HHOOHHO

OOHHOOH
OOHHOOH
OOHHOOH
OOHHOOH

HHOOHHO OOHHOOH
HHOOHHOHOOHHOOH
HHOOHHOHOOHHOOH
HHOOHHOHOOHHOOH

OHOHOHO QtHOHOHOH
OOHHOOH SOHHOOHH
OOOOHHH OOOOHHHH

U
HOHOHOHÜOHOHOHO
OHHOOHH OOHHOOH
OOOHHHHdPOOOOHHH

<2 u n a
E o

>!fb

U 0)
o 3

U 00

Hi
M^>

a ID R .

» §OJ

y ü o>
u » jJ

ja m u
0 0) 01
J M C
O RJ 0>

g&°
i 0 i

fl 01 ä
M V U
0> M &
C 3 O
0> 0 M o « a

-O O O o

!SS6

o o
JJ JJ

0) QJ > >
Ju1

Öl*»
0 **i
H ID

- I u wo ia
0> JJ &
u w &

•rt ■ o
Q) U -

>> 0» 4
o; <u >. i
S-H JJ (

-H £
W W 4J
H W ß
J D OJ

TJTJ
JJ JJ
[0 VI

fl C1 MCI

"iH U M IH
0 0 O 0
4J JJ JJ JJ
u u u u
IV U 0) a>

0 u u u
•H -H «iH -H
01 0t t)> Oi
O 0 o o
H H H H

•o *0 *0 *0
JJ 4-> JJ 4J

[-H -Hl «rt 3 n
O 0»

I* 2 ß

51

u o
a u

•Ü m in
a <u H

«ASS

as».
«OB

01 U U 01

J11S*
0 fl ^ M
. 01 g 0) d we c

>§^°
i 0** i
> UCQ i

a
01 ^P
E ■

"*•» (N
in I

•H in
oi •
V oo

S"
VD
J3 QJ
-r»4J
in -H

•^. U

> % ^

H ^ >

A E o
•0 h

QJ «44 ••

m ai lo
u u ^
a» i-t oi
c P o
a« o n
es w a.

- o
j u

■ o
^ w
ID Q> 2
H H O
H 3 H

jU H
U U <

Dl W <
O *J iJ
H m u

- - I w
0) X T> 01 D
01 u -u h
oi o en a w

•H 3 * JJ 0*
41 U >

>,>» 0» OJ EH
kt M 0> 4J
(0 <0 -H -H i
MM JS l
jaxi o) u
-H-rH tf) M
H H 3 (fl

OOOOOOOO
OOOOOOOO
intninininminin

o o o o o o o o o o o o o o
in in in m tn in in

o o o o o o o
o o o o o o o
in in in in in m in

OOOOOOOO
OOOOOOOO
LninminininmLn

Cd
X
<
ON

o
u

O
■ O tt o

■o
*t rip

«M o
JS H W U 0 >< > H > W

H
^t > N
fo -H H E-< •5 « OH* 0) H O

O «*> W Id >i
H W ß n

&
S o

- 1 tK -H JJ ■* DU
01 TJ < 3 rn
01 JJ py •• 0 W M <

K 3 < JJ in
0) U rf N & O w

>, 0» — S
M 01 >,*J Cl jJ

•H ß 0
TT M -HO X H M
♦H J3 0" JJ Ot T t) ru a
k£< H 3 0i 0) (Ö Ä

X 03
JJ

(N V O H
CO >H > !x tn

•of »01
II «4-1 Ü
V -H 0 -

5 -rl (Ü M U
N DIN BIN'S Pt>

OOHHOOHH
OOHHOOHH
OOHHOOHH
OOHHOOHH
HHOOHHOO
HHOOHHOO
HHOOHHOO
HHOOHHOO
OOHHOOHH
OOHHOOHH
OOHHOOHH
OOHHOOHH

OOHHOOH OOHHOOH
OOHHOOH OOHHOOH
OOHHOOH OOHHOOH
OOHHOOH OOHHOOH
HHOOHHO OOHHOOH
HHOOHHO OOHHOOH
HHOOHHO OOHHOOH
HHOOHHO OOHHOOH

HHOOHHO
HHOOHHO
HHOOHHO
HHOOHHO

HHOOHHO
HHOOHHO
HHOOHHO
HHOOHHO

HHOOHHOO
HHOOHHOO
HHOOHHOO
HHOOHHOO
OOHHOOHH
OOHHOOHH
OOHHOOHH
OOHHOOHH

V **4 V

0) 01 TJ X
C W
01 CQ

a
E o u

HOOHHOO OOHHOOH H
HOOHHOO OOHHOOHHH
HOOHHOOHOOHHOOHHH
HOOHHOOHOOHHOOHHH

H O O H H O
H O O H H O
H O O H H O
H O O H H O

X 0,0
30

n o o
HOHOHOH &OHOHOHO ftHOHOHOH
OHHOOHH pOOHHOOH pOHHOOHH
OOOHHHH OOOOOHHH OOOOHHHH

M U
JHOHOHOHOHOHOHOHOOHOHOHO
SOHHOOHH OHHOOHH OOHHOOH
SOOOHHHHdPOOOHHHHdPOOOOHHH

H H O O H
N H H O O H

H H O O H
O H H O O H
>H

O O H H O
H O O H H O
>* O O H H O

H O O H H O
IN
>< ftOHOHOr

3 O O H H O C
ffl OOOOOHr

U
< O O H O H O

O O H H O
dPdPOOOOH

HOC
HOC
HOC
HOC

O H r
O H r
O H r
O H r

H O r
O H r
H H r

ADD4 246

— ~~ O
o o

o
0 0 4J
4-1 XJ C
c ö 5
5 5 o
T3-0

Cl
ei o ■*-

M h 0
0 O JJ
4J JJ U
CJ U 0) < > > •** I u

VO
H -H -H Dl

O) O) O

ffi i!U o OH

§ Bo 1 1*0
•O *Q JJ

B B 0 H JJ JJ en
< <H V) l/l tfl n
E* "E< 1 H H
W 0) BIT) J a c 0

JH 0> W Dl *Ü H
Tt K

SxSu
(0 o —

0<4J «JjQ'O
>i u

H «S <-rt
j2 a.

JJ 0 rt a
CO w JJ

i H r w c
i J i3 QJ

a c

in

fa

■o

V)
1-4

fa

— — o
o o

0
0 o JJ
4J JJ C

H iSi
H o o-o
R> TfO

J3 m m — m
JJ

—-H M ^ 0
■H •o

.-1 H 0 O JJ v A
H (0 JJ JJ U •0 >

- 10 1 U V 01 •o
u • u1

H« o

01 tt) > (0 *ri
rijri

m in w in
C C c c

tn tn tn oi
fi C C C

CQ
tn vi tn tn
C C C C

ai tn tn in
ß C ß C

in
c

in in
B ß

MHO
E H rH

U U-H
•H -H 0»
Öl D) 0
OOH

0

1 o o o o o o o o

e
o o o o O O o o O o O 3

u
3

0) o o o o o o o o o o o o O O O o o o o

> in in in tn in in m in in in in in in tn in in tn in in

H -H JJ

JJ*0"
(tt U

P: en in «ri
< o ■

H o
- IH

WO B
pa 4J w

■H

•0 *0 v 01
tQ -

> VOHHO o o o o >■ 01 O H rH O o o o o H o o "l
m m CQ in 1 gOHHH o o H o ^,1 EOHHH o o H o O H O V 0) + W ^,

■rt O H H H O O O H ^ ■riOHHH o o o H o H H

^ C C 3 M < 01 • . •o JJOHHH O O H O "O JJ O rH rH rH O O H O o H H "8

M ■ X

>iW H
M w P;

•0

10

•H -H o 3 < 0
o

01 > •a n •• o H o H HHHO •• O rH O rH H H H O H H H
u in II u £ O H O r-l H O O H O rH O rH H O O H H O H

JJ < ra 0
u "0

0)
JJ

0)
u

C
H

V 0.Ä
0) «s

QOriOri
O H o H

HOHO
H O O rH fn

D O i-H O rH
O rH O rH

HOHO
H O O H

H
H

H O
H H ■w

Itt H <

^ m tu
••H U] «
H33

JJ 0 a - « C
r-i

0 010*0 JD
dl e ■ w* OOHH rH rH rH O u5 OOHH H H H O O H H tfl

JJ
C
01

"*0
a

u oaja
M O
i0 J2

0)«
c
01

< O O H H OHOi-l
OOr-ti-l OrlHO

dPOdHH#OHOH«l

«(OOHH OHOrl rH OO
OOHH OHHO O OO

dPOOHHdPOHOHdPOdPOO fa

r" "

U 0) o s

>
J3 0)

i. > JJ S

3 J3 O O
3-riX! X
H U -^ >

Ü «0 »a u
ot — ai a) u-i ••

*J~>» jj JJ E
i -Q -<f to io oj H

o>a ^ h U IJ
j TJ a» 01 ^ 01

ä ■■ 11) 01 0 u

■ «a • i ■ ■

ADD4 247

•a
a

K5

ADD4wc 248

3

o o o
o o o
in in in

OHn
O O H
o o o
o o o

H O O
OHO
O O H
o o o d

o o o o
o o o o
in in in in

r-t O O O
t-t H O O
HHHO

o o o o
H H H H

OHHH
H O H H
rlHOH

o o o o
o o o o
o o o o
O O O O d

ß ß ß ß c
o o o
o o o
in in in

o o
o o
in in

o o o
H O O
HHO

o o o
o o o

Odd
HOH
H H O

O O O
O O O
O O O d

U
3
V3, OO .-

HO |
H i-4 U

OO £

o o ^J
T3 «-■ H m

tHrH W
O T-4
H O ^

OO >C*

OO -•
i OO ft

JJ en

rO H
0.

■^H
U W
so.
t*
•0 <N
TJ M
«1 "
*^\o
A: in
M ••
0 u>
>H -*.
*"
■n
<U J-l

* fc
B ^•n
U HI
OS
*J c
01 *J
E ■

B II

0 ^- M
S > « *

u> E J
]£OD
U-OJ3 X

-r8Äi
JJ O 0
u S "0 *o M
a) ■<* 4i at »w "
-n -0 JJ JJ E
n Tj ffl ffl at ffl
0 ffl M M O M
, •• a» a; u ra

S u c ß 3 o
B 3 a» ai o u
* ** o o w cu

1 ffl I I I I

-— o

UM 0
0 0 ■*■>
JJ JJ - U
u u v at
at ai ■-•H >
> > o o> l

I M o u
U U Dl H -rl
•rt-H O I Dl
Ö) 0>H Tj 0
0 O I -U H
HH"d M t

| | JJ TJ

JJ JJ 3 w
to w ß o

J ffl O -
P. JJ ffl ,0 U U TJ 2

ID a»
.0 E
■n O
MX:

■. "^>
0) *
E *

8 5
E C
l> 01
B C
u o
n Q

3t~

-a a*
■OrH ffl
U W
SO.

u i u

< o ^
.-IT)

.. IT)
JJ U IT)
U 3 ■■
V« Ü
i-i TJ 3
•O'SS 0 ffl TJ

-, ^- TJ

>TJ M
1 Tj O
I fll 3

at ja
*v at
v fa

M M-H
ffl "^ M

U3 E J

- ai-nX I
3 U^>

•o t* n
ai at >w ••
4-1 4-t E
re Q at 3
u u u u
ai oi u 01
ß ß 3 o
01 QJ O u

«) 0) 2
HklO
H 3 H

5SS
Oi V4 <
0 4-» iJ
HMU

- - | u
ot^xi at Q
at u 4J M
at o to 3 w

•H 3 • JJ ft
at v >*

>» >iOi OtH
M u at jj
ffl rfl -H -H i
MM £ i
J2 J3 at u
-H -H W M
HH 3D

S5E- t

ss -
S3 fN ra :

U -O »w m MC
< U ß 3 M O t
j o «j ja o x i
u i :
W ^ jj JJ JJ JJ <
O 2 ß ß ß C t

w at at ai at
j 2 ß ß ß ß [
< o o o o o s ssüm; H o o o o o 5
HlUUÜUÜt

i l

u

mm —
 M
M M O
0 O JJ
JJ JJ U
U U 01 U
at at > --H
> > I u tn

I lü-HO
u u-H bin

•P4 -H Ol O I
ÖiOO-tTt
O OH JU
HH 1*0 «

i I'd 4J
•0 »O JJ tn JJ
JJ JJ M 3
tn «i ß o

-* C ß 3 ;•
«C -H -H 0 " »T4

ffl — HO
JJ << 01 Q U U

JJ o
•na

M u ra
Tl > 0 s i H

t
M H Tl
at a JJ

uo in
OH

. •n'
H JJ ß
Tl n -H

__ ä >!
?: M M
H Q) M
CJ U «

0 tn U
01

V QJ
H H

ja ja ja (/ m ffl ffl ß
tc •rt -H •H

k. M M t7>
-H r; ffl ffl U
m c > > > JJ
01 ^>

■U u

8-

H M ß
T1T) ■H

ß ß 1 ffl ffl >1
M
M

0 0 U

O 0)
M >
0. ffl

E o o o o
•H O O O O
JJ in in in m

o o o o
o o o o
in in in in

B o o o o
•rl o o o o
JJ tn m in m

o o o o
o o o o
in in in tn

ßOHHH OOOH
OHHH OOHO

9-i O H H H OOOH
POHHH OOHO

U O O O r

B O O O r

H H O H

H H O H

UOHOH HOHO
OHOH HOOH

C0OHOH HOHO
OHOH HOOH
OOHH OHHO

<OOHH OHOH
OOHH OHHO

dPOOHHdPOHOHd

QJ

n

SO

Q O H H H
OHHH

E-i O H H H
P O H H H
O
O O O O H

S3 O O O H
H
Ü O H O H

OHOH
GQ O H O H

OHOH

OOHH
< O O H H

OOHH
dP O O H H d

OOOH
OOHO
OOOH
OOHO

H H O H

H H O H

HOHO
HOOH
HOHO
HOOH

OHHO
OHOH
OHHO

P O H O H d

ADD4wc 249

\ JJ
^f fi
cu a»

b u ■^.

vt
JJ ■H

G 10
<D (J
B >

x: o

at en

-OJ3
u ^ (0 w

rH CU

6 a ItN

\ u s ■■

■u •O in
-g ■•

r.a Hi u>
^ 1-1

£s E
U in
£

u |
U
W XI

9 fu
u a

m ^-o
m U 0)

Sj5 m o s
?:A H

a
a> *i

3 a in E ■
^.CJ

«s o
U) 1

-r-t in

JS

in U 00

»>! TH > > 3-rt
JJ jj

?. o

*!■

ri H
O U ! <fl -■* W

3 U Ä > £ *,
«■» * >0 E J
u 73- ^r •D£ OQ
3 u u*o aj r^45 S

<-H ■ns k^>

M| g fli .. u c >. ■•

s .U.G 0 0X1 E
0

^f o> tn UT3 Tl U
■c 3 HI anw ••

n
■*p AJ E

O*0 u
J 1 «0 (V a» ^ öi
Q U c C 3 O

ve E 3 b 01 now
o o w cu

f-i ■ox:

b
u
Efl ! i i i

i i i

Qt M Tl ai
01 U JJ ^ < o
01 O W 3 2 &

•H 3 • JJ C5 S
01 O H O

>, >, 0> DtflU
M U 01 JJ
(fl fO •«-! -H 1 I
W U All

XI XI tt) U
■r4-H (I) h
HH3ID

ij >
X ai-0

(o E
ü O

•O a*
T)iH

\o «
Ä 01
pü

E ai
2 w
* CJ

30.

"0 D

(0 ••
"v ID
.Kin
u ■•
O ID

3-0
JJ-O
u «J

«fir ^ 01 r

3 '•J ä t
JJ 0 .

ft) ■ 3

•H (fQ
£ (CO

Mr- »
<-H ü ■

.. !■*■ i
JJ U Tl
Ü 3T1
41 ^f (0

XI Tl^
o ta u

i^ > 0i 3

01 J3 O O

Tl T) ^
01 01 XJ •■
JJ JJ E
id <ö oi ra
U U U Vi
m a ^ oi
C C 3 O
0) 01 o u

< o

^f m
vo 0)
rH M
rH 3

o u
-H 3
Ü) ^
0 JJ

rH W

QjjiT) 01
0) M JJ U
u o in s

•H 3 ■ J-»
o> u

>i >i Oi OI
U U 01 JJ
ffl ffl -rt -H
U U JZ

XI XI 01 u
•H-4 m u
^H i-t 3 nj

CO

§
W H
2 E-

WO <
S H 2
Of-«
H rf J M

3< a a

< O I
J W H 4J
O Q S C
U U 0)
a J s c

< o o
w 3 o. a
o. o E E
>. M o o
H w u u

J EH

rt O fa-

JJ JJ o tf a u
ecu 5 o 3
01 0) oft u
C C W 2 s u
O O 2 O O 3
a aH u u u
E E J w
o o s a ' 'to
U U H -H I i

O) T)

ADD8 250

o o o o
o o o o
in in in in

o o o o
o o o o
H O O O
HHOO
HHHO

OHHH
HOHH
H H O H
HHHO

o o o o
iH iH H r-(
O O O O
O O O O
O O O O
o o o o
o o o o
O O O O d

o o o o
o o o o
m m in in

o o o o
H O O O
HHOO
HHHO
H H H H

OHHH
HOHH
H H O H
HHHO

O O O O
O O O O
O O O O
O O O O
O O O O d

O O O
O O O
in m in

O O O
H O O
H H O
H H H

O H H
H O H
H H O

O O O
O O O
O O O
H H H
O O O
O O O
O O O

» O O O t

O O
O O
in in

o o
o o
o o
o o
H H
o o
o o
o o

§■

u

I

o o o o
o o o o
in in in in

O H H O
OHHH
OHHH
OHHH
OHHH
OHHH
OHHH
OHHH

O H O H
■*0 H O H

O H O H
0» O H O H
E O H O H
•HOHOH
JJ O H O H

O H O H

O O H H
QOOHH

O O H H
noOHH

O O H H
rtj O O H H

O O H H
<*> O O H H i

O O O O o o
o o o o o o
in in m in in in

o o o o j-i rt
O O H O OH
O O O H O O
O O H O O O
O O O H O O
O O H O O O
O O O H O O
O O H O O O

HHHO i-t ri
H O O H H H
H O H O H H
H O O H r-t fi
H O H O r-i ri
H O O H r^ ri
H O H O M ^
H O O H H H

HHHO O O
O H O H HO
O H H O OH
O H O H O O
O H H O O O
O H O H O O
O H H O O O

s O H O H dP O O

O O O
O O O
m m m

o o
o o
in in

o o o r-i ^-i
H O O O O
H H O HO

f-f r-\ r-i t-i r4
O H H r-i r-i
H O H OH
H H O HO

H H H O O
O O O r-i t-t
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

POOOdPOOd

O O
o o
in in

O H
O O
O o
o o

o o
o o
o o
o o
H O
O H
o o
O O i

O O O
O O O
in in in

o o o
H O O
H H O
H H H

O H H
H O H
H H O
ri i~i f<

O O O
O O O
O O O

O O O
O O O
O O O

a O O O d

O O
O O
in in

H H
O H
H O

O O
o o
O o
o o

o o
o o
o o

>
a; u
3

00

•a a
in

at xi
^v 111

u oj
OS
JJ

.C ai
•nJJ
H-H

■^ v<
> V 3

£OQ
■r-».C X
H -^ >

4J ' — o
0 •0-0 M
OJ — iy <u iw ••

■r-i« jj ij E
JJ CO (C (0 (U ffl

j"0 u in n a
gfflCCSO
ü .. QJ ai o n
c CO u o w cu

t «0 i I i i

EH 0 < H in
. -fri M
W OJWT)

at JJ co
>* a> w w "a
Bl-HO ■ "Ö
S< 4) (0

> K a>
ca p4o oj >i
H rf < -H 4J
J 2 G. -H

m w JJ
iH me
i J i o <u

. o
o o

U 4J CJ

H INS
m -o-o
^ r- r- — w
JJ u

— -H MHO

JJ JJ U T)
•- 10 1 U U OJ •n
H **-H > > 1 •s

1 I o *«i
MHO U U-H 0
E H H •H -H Dl

0) 0) 0 OJ o
(r* VÜ 0 OH

•O H H } u t i-o ^
£ •0 «0 4J

^1 > VI JJ JJ W JJ
oe1

f"l 00 «•Oh JJ OJ + m
T) on CCS M < ■o

Ui W W E •0 •H-H O 3
JJ w o > •a

ffl 00 O UI MM«
>iU H JJ < 00 0 •0 OJ 01 c V °"£
M W Pi >iH ■n r«

- m •H c If h- r~- r- JS M C_
JJ ■n o D> CkJQ OJ-O

b. fc. ■H W M
H p p

c
01

c
OJ

H OJ
ß ja

c
0) Ex.

o o o o
o o o o
in in in in

o o o o
o o o o
in in m in

o o o o
o o o o
in in in in

o o o o
o o o o
m in tn m

o o o o o
o o o o o
in in in in in

o o o o o o
o o o o o o
in m m in in m

OHHO oooo
OHHH OOHO
OHHH OOOH
OHHH OOHO
OHHH OOOH
OHHH OOHO
OHHH OOOH
OHHH OOHO

OHOH HHHO
•-OHOH HOOH
OHOH HOHO

OJ O H O H HOOH
EOHOH HOHO
•HOHOH HOOH
JJOHOH HOHO
OHOH HOOH

OOHH HHHO
QOOHH OHOH
OOHH OHHO

(QOOHH OHOH
OOHH OHHO

<OOHH OHOH
OOHH OHHO

dPOOHHdPOHOHdP

OHHO OOOO
OHHH OOHO
OHHH OOOH
OHHH OOHO
OHHH OOOH
OHHH OOHO
OHHH OOOH
OHHH OOHO

OHOH HHHO
— OHOH HOOH
OHOH HOHO

OJ O H O H HOOH
EOHOH HOHO

■HOHOH HOOH
JJOHOH HOHO
OHOH HOOH

OOHH HHHO
QOOHH OHOH
OOHH OHHO

[QOOHH OHOH
OOHH OHHO

< O O H H OHOH
OOHH OHHO

dPOOHHdPOHOHe

HHHHH OOOOOO
OHHHH HOOOOO
OOHHH HHOOOO
OOOHH HHHOOO
OOOOH HHHHOO
OOOOO r-t r-t r-i i~i t-i O
OOOOO HHHHHH
OOOOO HHHHHH

HHHHH OHHHHH H
HHHHH HOHHHH O
HHHHH HHOHHH H
HHHHH HHHOHH H
HHHHH HHHHOH H
HHHHH HHHHHO H
HHHHH HHHHHH H

OOOOO HHHHHH O
HOOOO OOOOOO H
OHOOO OOOOOO O
OOHOO OOOOOO O
OOOHO OOOOOO O
OOOOH OOOOOO O
OOOOO OOOOOO o
aOOOOOdPOOOOOOdPO

ADD8 251

0 0 JJ
JJ JJ d

ee*
0 CO
-co

r-
r-1- '■- *-— ^
0 0 -U
Wü U
U U OJ

> >
I u

-H -H 01
01 0> 0
OOH

1 fO

H JJ JJ M
W V) (0

4J

tJ C C 3

f-<
PS

ft JJ Hl JQ *0

•M J*
V4 M

:* *
**
-o-o
01 OJ

TP ■<*

CQ PQ -^ -v
u

0 0
JJ

c e
(t)
E E
01 V)

•H •>H
in V)
u U

> >
\o vo
.d J:

M u
(II

Fi E
0

Ä.C

ft 0)

o r-
i~(en \<*
00 rH
■o
-0 H
IT) M

I1"
•o
~* <u
V In n

O 3

•nJ3 SC

U O *0
0) rH —. ft»

■n I'U
j3 oo oo ra
0 *0 "O M
,-0-0 a>

id 01 fl
M u u
OJ U 01
c a o
<u o u
o w ft

00
•O

ea

NO

u tn
in 0

4->
^s*
OJ OJ

b u
in

JJ ■rH
tn

OJ tj
E

> }>

J5 5

01 0)

u o

31

n

c
o> **
E •

"v. (N
w 1

w
ID H
H >i
-] JJ TJ
JJ-H

JJ C ■ <g
■rtW «a
■c o _ UT3
H— I 0>

U "D
•H-0
jj (0 ■*

- rt ■• d :
JJ E <o o J
U 0> •"!

-n U | 41
ja en co JJ
O ^-T) <C

(0 "0 u
_3 iH ID OJ
O U"-; d
ac E oi
> co a> C5

r "D U I
i ID CO r

x: at
•o JJ

^ u

> S 3
J3 O Q

a» u-i •■
JJ E
m a> <o
u o n
OJ U Di
C 3 O
01 O U
o w ft

.-as w H

Jiw o B
< 0 W H o

• S EH H
*» M W O < E-"
vo 0J2HK <

t«

i
c
_
l
l

u
c
t
u
r

R
A
T
I
O

L
A
R
A
T

D
E
C

 L
A

i
n
v

n
a
n
d
2

na
nd

3
na

nd
4

F
I
G
U
P
 E

H

Z Ol
tJH<U 1 2

2 h
rHuiuQzcddCO O 3

• - - | H S 01 01 OJ OJ ft 4J
0)rK'oaiQjSadCdg E U

O 3
ojon3WKfte.aa &H
•H3 -jJftOSs&EEP

(UUIHHOOOOOS:

U U
JJ

ß i in
>1>IJ)Ot<WUUUUUH H r

nj m -H -H i i i K F
ja si a u

SUB4
MX
u u
II
II

u u
o o
U JJ
s c

252

•a
>

2!
s

a
(A

so

M in fc ••
0 vo
3H

*"•
T!
ID Al

«* fc m
^.•0
M 0) os

ft ^* VJ
< > 0> 5
Vlgj

2-° 28

J -0-0 U
J — o> a> *4-i *•

i ■« * * id «t B
Oä U U U H

5 w q s 3 o
y ■• at aj o u
tt Tt o o w &

i 3 i > i '

* £H O E-"
: < i-t w w
4 ... £n |.H H
1 0> W*Ü J

0) JJ «*
4 OJ W ui J3 £H
: -H o • P pc : rt <u M o
i >* £ at &
1 OS Ü Ü >i
I ft < -rt JJ <

. O
o o

0
0 0 JJ
4J JJ C

m f> ~
— *- n
U U 0
o o JJ
JJ JJ u
U U 0)
o a* > > >

u
O U-H
•H-rt tr>
tu Ü1 o
OOH
-4rH

I I'D
TJ T3 JJ
4J jj en
Dl M

a Cd 4J
W C

1

■§*

■n-n
JJ. M
3 fN

a) aj

1 I At tn
J3 JS

3* Pi **« JH

0) B —
•r-t I"
ja •» ^ 0.0.0
J 3 ?

'33

•OT) M
a; at «w "
JJ JJ E
nj <o OJ ra
u u u H
ai at u Oi
3 3 3 0
aj a> o n
O O W CU

i

00
r«N

— — o
o o

O
O O 4J
4J JJ ß

BEB ^-
r-l O O-O
(0

X MW — VI
JJ — — U •H

•»■H U U 0
H H O O JJ ^r
H rt JJ JJ u A

- * 1 u u ai 3
U • Ü
M ** -rl

at at >
Ifl 0) CO w
C C C 3

w w « to
c c a c

en co to to
3 C fi e

CO 10 W W
C 3 C C

CO (0
3 3

CO CO to
3 3 3

to to
3 3

WHO
EHH

= u EH o-o

U Ü-H
■H -H &
01 (31 O
OOH

0 w o o o o o o o o s* o o o o O O O O O O o o o o o
01 > O

U

o o o o
in in m in

o o o o
m in in in 3

o o o o
in in in m

o o o o
in in in in

O O
in in

o o o
in in in

o o
in in

H -H JJ rH r-t
1 1*0 J3 cu K O) W

< O •
H CJ

- |H
W T! EH
Cd 4J W

in
-H

•o *o JJ
JJ JJ CO
w to

JJ
c a 3

at
J3

w
n

n
1IOHHO
ßOOrtO

-H O O H O

HHHri
HHHO
H H O rH ^

OJ O rH rH O
E O O rH O

•H O O i-4 O

rH rH rH rH
HHHO
H H O H

H o
O H
o o

H O O
H H O
r-l rM r^

H H
H O
H H

** h < at — JJ O O T-4 O H rH H O A JJ O O rH O HHHO o o rH t-i r-\ H H

>IW H

J3
3

-H -H 0 3
JJ Ifl

< u
0

OJ > 3 • • O iH O H rH rH O rH s •• O rH O H H H O H o o H O O O O

^
%

(A O H O H O rH H O K O rH O rH OHHO o o OHO H O

JJ *(« 0 OJ
JJ fj

c V
at IS

Q O i-4 O H
O i-l O t-t

O rH O H
O rH rH O

00

D O H O rH
O H O H

a
O O iH r-t

O H O H
OHHO

o o
o o

OOH
O O O

O H
O O

(0 H «<
U
X) at a*

JJ
■H
JJ
C
at

0 ft ■- m -H

u
M
CO

c 0 tJtO'O J3 00
(Q

O O H rH O O rH O O O H O H O O O O H H

3
c
OJ

ftjq QJ-O (dOOHH
o a ^-1 r-t

O «H O H
OHHO ^ «<OOHri

O O H rH
O H O H
OHHO

O H
o o

O O O
O o o

O O
o o

H3 3 a> fe dPOOHHdPOHOHdP tb dPOOHiHdPOrHOHdPOOdPOOOdPOO

SUB4 253

m 0»
^ E
W"v
0 in
AJ-H

e^ " >
«\o

-H JS u w -i-i
U M

JJ r*

11 sy
•n.Ü tn

«1 w

I» U M ! »

^ in u>
4J-^

£

X! C
VI £

M G v (fa
5 CQ

. u oo ^«0
m— <* M at
£ o> OS

5 'S c
flöi « B '

M >| >
•o u-rf J3 <D
X! UU pnU >

.H„«OJS
£^H «6J

S tj — 1Ä 'n £ X
4-i *-ol*»^> w
3 ■H 3

4J1 «j oxt e
Ü HH O

■>» ux: uflfl ^

S
-o U 1 0> 01 *w "
J3 m ^r JJ -iJ E
O ^- .Q flJ (0 at ra

(0 3 M M U h
J rH w at ai M o
Q U> C ä 3 0
x I E 0) at o M

00
(H £> JS

fa i 3 U I i i 1
1 W Ü1 I 1 1 1

"» M W
uttiZ
.HMO
rH 3 H

|*J ^
U U <

"-I 3 £
Dt ft <
O 4J J

rH W U
- - I w
oi jits at o
0> M *J M
0) o in 3 W

-H 3 ■ u a
ai u >

>, >, at aiH
M W 0) 4J
Ifl Ifl -H -H I
MM J3 i

.Q.Q 0 Ü
•H -H M M
HH am

: c c c c u c
i at oi a> oi f

) O O O O S <

> O O O O 2 G
) U U U U H -H

ADDSUB4
X U
u o
O 4J
3 ß

15
TJ to

254

Diuiii n
ß ß e c

to in (ft tn
ß ß C c

tn in tn to
a a ß c

to to to
ß ß ß

to in
ß ß

tn to to
ß ß ß

to in
ß ß

o o o o
o o o o
tn in in tn

o o o o
o o o o
in tn in in

o o o o
o o o o
in in in tn

o o o
o o o
in tn in

o o
o o
in tn

o o o
o o o
tn in in

o o
o o
in m

o o o o
OOHO
O O © H
O O rH O

O rH H O
O O rH O
O O H O
O O rH O

HrlHrl
rH rH H O
rH H O rH
rH rH rH O

o o o
O rH O
HHO
O O H

rH O
O rH
o o
o o

rH O O
HHO
H H H
H H H

H H
H O
H H
H H

HHHO
rH O O i-4
H O rH O
rH O O rH

OrlOH
OrlOH
O rH O H
O rH O rH

rH rH O rH
O rH H O
O rH © rH
O rH rH O

A
D
D

C
L
A

0
0
0
1

00
11

0
0
0
1

01
01

0
0
1
0

01
10

5
u

g

o o
o o
o o
© ©

H O O
©HO
O O H
O O O

O O
H O
O H
o o

HHHO
OHOH
O H H O
OHOH

O O H rH
pOOHrl
P O O rH rH
W O O H H

OOHO
OHOH
O H H O
OHOH

H O
O rH
O O
© O

O O O
O O O
O O O
O © O

H H
o o
o o
o o

OOOOdPdPHHHHdPHHHH* dPOOOdPdPHHdPHHHdPHH

>

9 u

XI
3

•a a

ON
IN

(0 r*
a oi

Tf H

O'H
3 w
tn a

•0 M
•O (N
(0 ••
•^ vo
J4 in
V* -■
0 vo
JH

^-0
U OJ
OS

Ä 01

M-H
^ n

•n.C a

.. I 0 .0. E

£*0*0'0 H

.* •• 4J 4J E
£■«* IB « (Ü 10
7; I U U U U

£ 3 C ß 3 0
S to o> at o u
a lüöttP.
> TJ

n
mm —
— *— H
U M 0
0 O 4-1
4J JJ U
U u <u
01 0) >

- > > I
U IU

•H O Ü-H
0)->H-H Di
O OlQO
H O O H

|HH |

JJ Tj Tj 4->
W 4-1 i-> 10

tn in
ß *J

-H ß ß 3

U U3
0 £

ß H
oi ^
S «

■^ E
tn o

■H J3

xi 01

tn

H *0
3 10

ybri

Tl
T> r-
(0 oi

^f H

n'fn
3 M
in a

Tj d
■0 M
ID ••
"^»43
M in
M ■•
0 vo
*H

^N.

■ft"1

•n
aiAi
>. «i
^ [h
u
~-T)
M a>
OS

S-0 H >
ä 2 >
S WIN vo

Ä 01
* Tl •nu
tn -0 u IH H

t10 a u
41 V •• < > a s

U3 E »J
E isroo
ija J= n£ a

u if 3t< H ^ >
< <W-

1 Ti O.O E

UTS* -0*0 M
01 10 U V 0) >w

^■§1

4J 4J E
10 10 o) 18

0i 0) U tJi
ß ß 3 0
01 Ot 0 u
o ü w a

— -^0
© 0

0
0 0 4-1
4J 4J ß

H 0 0*0
Q -co

m
J3 m m —
JJ — — M

.-•H MHO
H U 0 O 4J

4J 4-1 U
■- (0 1 U U V
O • V 01 0> >
t-i *t -H - > > 1 u u

t3 0>-H -H D>
O OOiO

fn UTJ H 0 OH

pa Di 01 M •H •0 1 I'D

Q

< O ' 4J *0 T) 4J
tn 4-14-1 to

3 - |H
W -0 ^ ■si

tn to
ß 4J rQ to •H ß ß 3

n H • a ■d
-rt-H 0

jJ 0 < « 0
u a 0: >i »-

4J c
ON 9\ -H c
rH *H X) 0) 01 4J

ts- EH
■H 10 W
H 3 S

ß
01

II II IH U 01
* V V -H O >
> at u io

Q W P-O Q.JC

•H ß O 0)-
Jß-H M 5

0

tn to in tn
ß ß c ß

co to in tn
ß C ß ß

U (0 10 to
ß ß ß ß

in in to in
ß ß ß ß

0 0 0 ©
0000
in in in tn

O © 0 0
0000
tn in tn in

OOOO
O C O O
in in in in

OOOO
OOOO
tn in in tn

-0
3
(A •a

0)
E

•H
4J

O H H 0
O H H H
O H H H
O H H H

© 0 0 0
OOHO
0 0 O H
OOHO

© H H 0
OOHO
OOHO
OOHO

H H H H
H H H O
H H O H
HHHO

O
OHOH
OHOH
OHOH
OHOH

HHHO
H O O H
H O H O
H O O H

OHOH
OHOH
OHOH
OHOH

H H O H
O H H O
OHOH
O H H O

ON
H

< O © H H
Q O O H H

bQOOHH
O < O O H H

HHHO
OHOH
O H H O
OHOH

O O H H
CQ O O H H
D O O H H
W O O H H

OOHO
OHOH
O H H O
OHOH

a
^ oi in in 10
K ß ß ß ß
Im
© OOOO

■M OOOO
U in in in in

*, •
_t> E O H H O
jL -rl O H H H
■H XJ O H H H
3 O H H H

dPdPOOOOdPOOOOdPdPt H H dP H H H H dP

•O OHOH
IM O OHOH
35 OHOH
™ CQ OHOH

ff} < O O H H
* a © o H H

ON a, Q © O H H
H O •< © O iH rH

EH dPdPooood

ADDSUB4 255

J3 -u
U C
n Of

J

«i o

u u

0> .WO OJ
QJ M -u M
ID O in 3

•rt 3 ■ iJ

>i SO) 111
M M a- AJ
(0 10 -rt -H
MM £
a SI OJ u
-H -* in u
•-<-< 3 n

ZH«!

H rt J w

Si« U C 3
j Q « a

m w in m
Q J a c c

rt o o o
a z o. —
a o 2
* H o o o
tinu tJ u

01
u
9

.a a
tn •a •a

c >
01 VD
6J3 U

-H ^

ü E I1

>-C 43 o\

^ "„
(Ö £<

-^ nj u a

0 0
.0 JJ 3™

p ^ «■
4-> ja
u 3 j
^iS c

^S .! 4J -o —M
» «" u
■ ■ ID '

0, 4J Or

U <U 3 .

3 a "-* u
J < > 0J 3

• 3 J3 O Q
3 Ä-I-.J3 £

U W w o
<D -^ TJ "0 'Ü ^
-n fl -O 0) <1) «4-1 •■
h .H (0 4J XJ g
o u s ID HI dl S
Jtr Cl <U OJ U D
Q.Q J= C ß 3 O

> w w o O w ^
i tj« I i i i
i ffi (0 i i ' i

INC4 256

MM
U U
0 O
3 3

u u
O 0
JJ JJ
q ß
a> tu
£ E

•H c

> >
V> VD
J3..C
■rvn

-^ -v.

u u
■H (0
JJ«W

Hl 4J

si

M •
JJ ^

■ c

3-U
U-H
U AJ
01 C

"'S
u.
Ü «
"«'
.. (N
4J r-

•n I" J3 ** -9
O U U
J e d

OS
JJ
d a> ^
g ■

S-0 96 3 -P1Ä x
5 n^>

* u u
i c c

TJTJ *4
Hi d)»W ..
4J JJ E
to ta o> ffl
M u u h
01 (U u Ol
ß ß 3 O
OJ 01 o u
OCSMfc

I I I I

a» p.

- nj I 0J Ol c
u * o 0» c •H

ß (0
u-l

u o
SHH
£ i t

oi
at w 0)

fri UTJ w u >
O H

< 0 •
0) GS jq tH -

u
> - |H -H H W

s WÖ E-" JJ OJ
W JJ w ** C 3 M * at -

z e UWE U
c

-H O .. 3
4J w o >

-H •«T tJ en it k n]
SH H JJ >4 N <> OJ a) c v a£
u w o: >i u e JJ H

JJ O -•rl •rt ß Ü e e £ H c «s *s ,Q fl) QJ JJ Tl U D> P.J3 OTJ

u. u- *-i 3 3 <U 01 (0 J3 <L>

Ä >
•B

U
(A S
0

U

(A W w in in w u
3
Ix

ß ß
-o o

C d C ß

O O O o
moo o o o o
Emm ini^i/iji 1 V TT1

CJ U
e r- O O O O H C

.. o o O O r-4 H
o o OHHH

c* N O O HHrtH fO
o O H HHHO ©
c* >* O H rl H O f* fs

HOHH fa u« dBOH#OriHH

nj H
U«

U (N
K N

■i-l •■
■»* ID
jjiin
M ••
0 u>
»H

*"
'S 0
^ a
^" u*
m
^•n
M aj
o a

2 > 0 3
«3 E J

I) 43 0 O

4J 0
0 TJTJ h
<u —. at tu «M ••
'" ■ JJ JJ E
-g ^p nj io oj m
o v u u u M
j ß <U 0J H Ol
g -rH c c 3 o
ö •• Oi at o u
"^ ri

EH 0
) W

E* - EH t*H H
(Q Dt0<O «J

0» JJ ^
i* 01 Cd W U EH

2 >t K 01

03 W JJ
H I W ß
J I |D ttl

E 0> o u
£ ra

u 5

u s w s

M JJ
3 C
XJ aj

.. |«
1J C U
U OJ c
01 Dl-H
•o I ■•
Ä ■« -O"
O Ü U

I c o

U N
ß(N .rt ..
•^ VO
A: in
M •■
o «>
3H

*"
T3
QJ J3

<■ b
(X)

m ^-0
er» M 0>
CT» 0 s

4J
c

iH 0) ^f
m

00
r-l

«3
rH

E •
■v. M
in |

•H in
w •
U oo -* > >

W1 v>
M J- 0)

■n JJ
>l U-H

•^ U
£ > V 3
01 J= 0 Q
3 nj3 X
H n ^ >

c >1 ••
ojq E

0
•013 U 01 M

0i iw - 01 ^
JJ *-* E 0) 0

ro oi 3 ■rA S

Ö) 0) U Ol >!>!
c ß 3 0 ^ u
OJ OJ 0 ^ « ffl
0 O W & U M

ja J3

! 1 1 1 i-l r-f

INC8 257

3
00 rH
U

^ > 0> 3
«> e iJ

T)J30a
01-n.Ö X

•CO u
ID (jj tw •■
JJ JJ E
<d « a» is
M H U h

CC30
01 01 0 k
O O W ft

I I 1 1

in >

w .G

QC u

M

h

T3

f
so
u e

- ffl a> en
O • U 0) c
HWH HS

M „
E 1-1 r-l

H 0*0 w o
H-rt JJ O (d
tf 0) tn

^.i ffl
- M -H H

WOH JJ

W JJ u on fi 3
t) -H O

H • S ß
•H

>iW H JJ >J N
MM« >i H

JJ 0
U •H a

■H
CO
U

>
M VO

Xi a
tn w wntnwwwcnw *©

-H
e c CCCCÖCCC Ä •H C W-H

*■» OOOOOOOO ^ > Oj 3
M o o OOOOOOOO
+■ u

a> 3 JJ
OJ-nX X
5 M ^> > o tH O OOOOOOOt-J S

u O O OOOOOOi-trH

2 — O O OOOOOrHf-ttH C ^ e
»-I — at o o OOOOHHHH 0 J3 e

goo OOOHHHHiH . wl U
01 so' •H O O OOiHHrHHHtH oo1

4J O O ©iHf-tHHiHHr*
THHTHi-l»HiHrH«H Ja' e e X
HHririHHHO <;

O »-4 t-trHrHHrHHOr-l c
JJ U -H 01 c* i-tr-tr-tr-(i-IOH«H f>

riHHHOrlHH g i-Hr-trHOHr-tHiH
n ><OH rtHDHHHHH c*

HOHHHHrlri u. (DA S u. dPOHdPOHHHHHHH
1

H i i i i

U 01
0 3

2 u

E c
u 5 in o

r&
3 .

.5
JJ

01 -H
M JJ
P c
JJ OJ

01 o
JJ„
•H .

•8",

u c u
UIC
OJ 0)-H

■n I ■•
a co oo
O U U
j s s
g^
Soo A:
■^ u k
i c o

DEC4 258

IS
01 u

at
o • 0 0) ß •o
*■**>•* d «

ID H iw
MHO U 0

a
S 1 ! a; w at
f u-0 W O >
H -H *J U W m

■B Qi 0» W W EH si

If

<« 0 ■

• IS in So
H

XI
in

u
u

•B

u TI y JJ 0) i w
ß 3

W to E O ■H O A JM U Q)

a H ■ X a> — ** O tn II M *
SU H at 01 e v axi

>,u 0) u o
*J »TI ß 0 0>NTJ XI

fS «H ■H ä k d n fS xi at at JJ •n u & a xi atts

Is. u< r-4 3 3 PJ 01 id .a a>

o
-o o
at o o
Emm

o o o o
o o o o
in in m in

•o ..~ O rH
O O
O O O rH

HHrl O O O O

O i-H rH O O O
>« O i-i O .-t O O

O t-l O O H O
#OH#OOOri

33 *o

ri

Jim
M •■
0 «3
Si*

c
6 •

i] ^ u
e > t> 3

3 Si 0 Q
XI-OJ3 X

<l> ~ 0) 0 <w ••
•" ■ iJ " E
■" rr ffl ID 0> fO
0 u u u U ^

Ü fl> OJ "~

t* - h<
w at w

m —

U 0
O AJ

u ai

IÜ
U-H

•H Ol
Oi o

iJ in

ß 3

I m u E-t
i • at K •• -
! WOO-
; at tu 4J >, N
t at >i u

w d
D at

w > at r-
Oio

UT-> -W H

0) H
•a fi

•n 0
U IN
at oi

E 0) X in

Ä ifl 0 vo
' U JH

"5 I1"
ai ß

•a
at xi

u d

rt
si
3 .

o OS
rH JJ

in
in

B
at ■*
E •

0) r4

d

E > 0! S
ü x> h J

T1X1 U
at £ X

tn S M ^*- >
M -n1

at - >.
1 ^p OX) E

*J c u 0
01 at TI -o u
mti at at i->

i AJ w ffi m (11
o V M u u u

a

>

a: at at VI tn
T1T1 c B 3 0

^
at n i

i -o 3 i i I 1

ADDINC4 .259

M M
u o
O AJ
3 a

O O AJ
AJ AJ ß

g g I
0 0*0

m
ro ro —
— — M
M M 0
00Ü
4J AJ U
U O 0»
(LI 01 >

V.J
U U-H
•H-H Ol
01 ÖI O
OOH
-H-H I
-JJ*0
•0 *Ö AJ
4J AJ M
w in

vo
OJC
AJ « M

v.
E Q)

b
(A

■H JS

0
ÜJ
u
m

Ü 44
M

M a)
AJ

Q) ß
R ■H h AJ
£ c

•rt •>
•O m
»0 o
(0 H

u w
e ft

-H
•0 CN
•0 CN
«I ■■

■ »O H
a>TJ
M rt «>
3' " *> ^ .~ Ü AJ «>
3-H CN

AJ ß O
W 41 — •"»

2-0
S tO-H

s|1

^•o
u HI
OS

P ai ß

•< 1*0

- V 16
AlCV
CJ'H Ji
0> "O M

•|-.*0 O
Art»

ITS!
5-H a>
** »o --■

1 *o ^
1 rt to

^ > V 3
vo E *J

■HJjOfl
M-I-1J3 X

•0 T) M
m ai iw •■

AJ AJ E
rt rt ci rt
W M U M
m a> M o
ß a s 0
at a» o M
O O W ft

j «

< <M w
• OS

** o
VO 01 H
HUH
H3Ä

|AJ (2
V V <

■H 3 J
tJUCJ
0 AJ W
HgiQ

.. .* I
01 M *0 0) J
aj h A) ^ <!
a> o w 3 B

•H 3 • AJ o
01 U H

>, >,0I 01 to
M M 01 AJ
rt rt -H -H 1
MM Al

J3 J3 0» U
•H -H 0} M
H H 3 rt

AJ f>
M <T\
rt a«

Ä — o
O O

0
0 0 AJ

.„ AJ AJ C

H W fl •0*0 ■H

r tn »*) —
JJ — — M

•--H M M 0 a
0 0 AJ •H

r-f (0 AJ AJ u Tl x
•- rt l u ü OJ *0
0 • u Ü 01 > Q

U e

>

H ^--H > >, t
t; 1 1 u 4-1

•H Ü O-H 0

■a
EHH
X I 1

Ol-H -H C»
QJ a>

fH
O

u
.s H u*o H OOH > JZ O >

H Tl 1 1*0 £ (Q DQ ■

z rf < 0 ■ jJ « TJ AJ 0) ^
HUV AJ AJ in JJ

e - |H in e 0
Q

U*0 fc< C C AJ 0) ft < A! in
•n W AJ W H •H CB3 «3 M O II •e

W M £ Tl •H-H O c; 3 *- 11

< H ■ X XI _ ft a
■H

AJ
0

to CU V
m 0 01 M rt

T, a; tt) s: O » Q n ax: >, ^ •O AJ U-H*W IH a 01 fS
JJ - (T ■H a 0 Ol-H 0) Oi-OÄ

a M -H
JD fl) 01 AJ

U
~*T1

£
0

HMOJ c
0i*0 W

fa fa •-4 P 3 8 C
01

U 01
rt ja

c
01 fa

>

,' E

0000
0000
in in in in

OHrlO
OHHH
O iH H H
OHHH

O H O H
Q O H O H

O H O H
CQ O H O H

»«5 O O H H
Q O O H H

ft Q O O H H
O < O O H H

OOOO
OOOO
in in in in

00 OOOO
00 0000
in in in in in in

OOOO HO OOOH
OOHO OO OOHH
OOOH OO OHHH
OOHO OO HHHH
H H H O
H O O H
H O H O
H O O H
HHHO OH HHHO
OHOH OOH HHOH
OHHO £OH HOHH
OHOH HOH OHHH

dP*>OOOOdPOOOOdPdPHHdPH 1r4r4 U.

*0 IN
*0 CN
(0 •-

ai -v

- CN

3 > V 3
vo E J

■* J3 0 Q
^-nj3 X
L, M -^.>

w ^ ß
.. U O

O-H *0

•J U ß
9 ß ot

a» *w ••
AJ E
rt 01 rt
MOM
(U M Ol
ß 3 O
tt) O U
o w a

H ** w
•■ |UH ß
0) Tl ß J -H
0) AJ-H
tu w *o rr"

•H ••Oft!
ot rt o-* a

[H OJ ft AJ O
K a1 >i M
S-H AJ I O

■H 1 a
03 W AJ
H W Ö
J D 01

PLUS3 260

*? t/1
«OS
H M O
H 3 H

l*J E"*
UUrf

■H 3 (2
Ol M <
0 4J J

H Mt)
- - 1 H
a) AJ*O 0) o
UMJJU
0) O « 3 W

■rt 3 ■ 4J a
01 O X

M M 01 -U
«J <ti -H -H I
MM J3 i
A J3 C Ü
■rt -H W M
HH ? ig

o
O JJ

i§
OTl

U O
O -U
AJ U
u m
«j >
> I
It)

U-H
•H Ol
Dl 0 SS C C B C C

•o H-H AJ •H (fl o u
ITJ X!

ifl TJ 4J <U o >
■H iJ M JJ 1

US
=3 s

- |H
WO EH

tn

0}

C 3
OJ
M £

w
+ w

0) ..
3

l-l ft.
3 -rt 0 3

a H • £ H — 0 tf) 0 >
11 U i0 cu

3 0) 0) c V ft.3
MW Cd >i M H 4J H M

AJ 0 - U -H C O

■s a 3 J3 0IO)
P.

""•0 Ü O CO 0J«Ü

ti. u, •H n in
H33

c
0J O J3 0 ta

o o
o o

-in in
o o o o o
o o o o o
in in m in m

JiHO H O O O H
rH t-(H O H H O

• O O rH H H O O
O O H H O H O
O O H H H O H

OH OriHHO
OH O O t-t H H

xOH H O O H H
OH H H O O H

POHdPMHHOO

i s
u
s

rr,
VI
3
O.

I"1
•o
u ja
-v 01 ** ft*

c
0) **
B •

C > 0} 3
vo E «J

3 J3 0 D

: M v. >

oi tn a» ai *H

ja 3 <ö
OHM
j aoi

HUM
0) M O
3 3 0
01 O M
ocoa

u
0 4J
AJ u

01
0) > >
IU

o ■rl
•H T7I
Ö) o

W QJ W TJ fi J
0) -UU

EH 0) W W 3 E-"

oi P; u oi >i

4J in
3 H

in
ts u

V) >
■H \D

W J=
-n

>
Ul
s: b

O
MJ3

(1) fc
IM
M
ai
4J
c

1 -H

ai
.G
u 3
01 0

3 W
M 3

u
0)

3
0) < > 0)

R
Tl 3

J3

o p £ u

VI
1 ^*

0 3 0 JJ E
H

i a-öis k
0) <ü IM

<n JJ u
ja 3 m ffi ■0 ai

H 3 M M

o
>

u H OJ 0) u
U 3 3 3

in ji es ü w
3 M

i
t a 3 ' ' i

MINUS5 261

in r-
3 m
C <*

E
•*VEH
m w
to &
3
C (N

-H M
b •■
M in
n ••
o vo
3^

■S1"
•0
VX)

^~ HI «* fa
m
^•0
kj OJ
OS
JJ
c
Of 9 fc •
*v CN
in 1

-rt ul
n ■
U oo ~- > >

u>
j- ID
-niJ
fc-rl

1> 3
fij
o a
AS

u u
U Ol
3 o
o u
W ft

am (Np
> U U (N U O
Ü O 0 U 0 H

•H C C O X ft

iJ 4J AJ *J 4J O
cceecu
O V 91 V t1

CCCfiCW
o o o o o s

m&&3 o o o o o te

4J >

QJ .c
E-p

1/1
en i/5

S £

b fa H33

- 0 I
o • u
H «»-H
f< v> Ol
UHO
SHH
S I I
ti U"0
H-HAJ
B: tn M
rt o •

rH u
- IH
»flf

M E"<
>»H H
M W Cd
BH<
M
ja m OJ

•n
in

in
n

k* 0
0 v
*J
tf ai
at > >

OJ to

4J >* N

4J O

0J -
3 — >i u 01
4J « O >
U (A II M ffl
(D ID C V a,si
4J u-H at
*H ß O Ol N tJ J3
.C -H H 0 C
U Ol Qnfl 0> "0
M OJ e
«J.Q Oi

O
tn tn to w to in to tn
13 C c ß C C C ß

u
s.

1

o o o o o o o o
o o o o o o o o
in in in in in in in m

v>
s E H o O i-l r-t H O H

•H i-f rH O O r-t H O O
e 4J O O OHHOHH

T-i H OOHOHH

E ■• rH .H © O O O O H
i-t H O O O t-4 O O

N O r-(r-l O O O H O
O i-l O O O iH

VI O t-(.H O H O O O
C* |HOH O rH O H O O

O iH O O «H O 1-4 O
U. dPOHdPOOOHOH

■o
>

3
B

JJ at
M Oi
(Ö rH
U
--H
in w
tn ft
3
ö rj

E •• •^ «>
.* in
u ••
0 us
SrH

.c at
Tl JJ

Jl u -H
3 ^ u
c > 0) 3

«> E hJ
)£OQ

W •• ••
— C >T «

.. ■ 0Ä E
JJ in O
u tn *0 "0 V<
0, 3 QJ OJ*W "

.n G JJ AJ e
O -i-l ffl CO flJ 11
0 E u U U u
- •■ tu at u oi
ymccso
B tn ai QJ o M
* 3 Ü U W ft
> ß

in
in —
— U
U O
0 A»
AJ U
U C
OJ >

"iJ
U-H

-H 0)
& 0

§ H Oi tn
1-0

*0 ->J
E* En 0 -H e* JJ to
<< <rH CO 111
H - E-< 1 in H
W OJ W T) w J C 3

-H 0
tn OJ W m C E-i

rf ,_ «(ago
m os o OJ >, ^
H rt < -H 4J l
*J Pi ft -Hi

0
a

i J i D OJ

JS 6.
•n U
U K

3 >.

Srrg1
U Bl Ul< >

I JJ W w
•" 3 3T3£

i 'd O C U-n
l -0 rH -H 3 U

i < a; m •■ *■
0> tn a >i

1 3 OJJ
: JJ in c

U in -H T3 tJ
OJ 3 E OJ OJ

. .n C ^ iJ -»J
i ja -H A: nj tu
I 0 E M ^ H
i .N o in m
' « m 3 ö C

d to ■•-* OJ OJ

PLUS25 .262

IN r>
w en
3 en
fH r-l

m w
IN a

0 VD
3H ->.

■fr
•n

111 Al
-» 01
*]• &.
01
-~Tl

o s
JJ
C
0) V
ti •

*r> > JJ. S
•Ü.E O Q

Tj"*Ü M
0! at *w ••
JJ JJ E
dig u n
n ^ u n
a) a? u Di
c c 3 o
aj ai o u
Ü O W ft

•o > s M «*l w «
§ c 0

c c 0

■UO tlUUUil
ß c c a G c o
B c c C a w
0 0 o o 0 02

6 a 9. K .

U U ü M ~H

ri
s

in
<s w
3
'S
■<*

ve
<s
fa

■0 a»
0 E
*» in
m-H
•v. «

JJ >

x. £* B-n in
fN r-
m en

" £ 3 en

UrL. >^
Xi (U M

3 CN ■p U
>H (Ö

§ <u
8-«

H IN ft »
^. \D
X m
U •■
0 *&
3H

JJ

•H (U 1"
ti c ■0
«fl O 0).fl

s*t ^ 0)
<* tu

.c o
Ü u oo ^.*Ö

3 3
JJ rH
U ft

n at r

3 •« .— ,-
03 a;
■nU

t> « in TJ

*! -H m ••
X,cs ß

.. I in o
AJ tn 3
O oi rH <o
ai in a QJ
-n 3 ^ JJ
X! r-t ,* ffl
o o. u u
- -. O 01

in 3 C

UJ 6 J
J3 o Q
■r\S! X

i M *
jo

fl <I) S
u u u
V U 0.
C 3 O
<U 0 In
U W ft

in W
IN ft

Iß

■u >
01 Ä
E-n

- p-
IN IN
O H

00 o
+j (N TH in

...H H 1 CN
w

r^ (0 III 3

« - A 1 OJ 0) i-i

u • u 25 ft
13 h IM

0
SHrt oi o

K H OJ
Tl ^r U*0 W U >
>
in
(A
S

C5 M
Pi Oi m
< 0 •

in
•H gg

X!
a' in i

ta-o &H
in
ca
tn

H

C 3 P + Wl
9 _] w in E 3 -H 0 in 3 >^

c &. H ■ S rH — IN
in

JJ
t)

m
in It

Ü
u

> a
■U >< N 3 ai QJ ß V Q£

>i u r-l 4-> H u n
JJ •* U •H c n « SO VO -H Ä H u OJ c

<N fS J3 (D 0 JJ Tl Ü Di ftJQ atTJ <s
fe U- *H in n

rH 3 3
c
aj mx) U.

ecficccec

o o
o o
in tn

rH o
o o

-o o
UHH
E rH iH
•HO O
jj o O

O O

NOH
O H
O rH

O rH
dPOHH

oooooooo u
oooooooo 2 inininininininin

u
S u

rHOOOrHHOO
rHrHOOHOHO
»HrHrHOrHrHOtH 1
iHOOOOOOrH in

on
9

rHOrHHOrHHO
HHHOOHOO
HHOHOHHO
HHrtOHrlHrt

OriHHOOHH B.
iHOrHrHHOOfH
iHrHOrHHrHOO i»)
OHHOlHrHrHO v« OOHHOrirld
HOOHHOHH C4
HHOOHriOri fe PIHHOOHHO

Jri in
u -
0 «>
3rH

i-
01 XI

U co -^ > >

3 _,

I S

> a> 3
v> E J
J3ÖO
■r»X S
H^ >

.. - o J
jj in
(J CN "0
m m tit
-n3 AJ

gin ö
S (N OJ

am_i ..
AJ E
to Qi n
u u u
at >H CT

-. „ e 3 o
(N OJ Of O M
- "" Ü W ft

O AJ

^ u
u o
0 JJ
4J U
u a1

ai >
> I
IU

O-H
■H Dl
010

i S o> in
H O-H e*

q 4-1 CO
■» — E-i I in H
Q tt) W TJ (N J

0J AJ in
t oj H m 3 EH
tf -H O "H pi
c < at ao«
2 >H i<i Qt ft J
a at o at >. i
H rf 4 -H JJ 1 l
a c2 ft -H i i

CO W JJ
i H i in ö
i j i Dm

at u
E at

JÜ c

■ jj

«8

■3i » ,
w m
« <N
at in
n 3
3H

3 >.
M*J

- C

a>^l
s?.
XJ . ,
^ w in
^ I«
"3»
•-J 5 s
J-rtrH
P ia
< 0) in

CD CN
■• 1 01
u in 3
U CN -H
OJ w a

in ■n 3 ~-
r; Xl-H-K
tn 0 tt U
3

bfMN
rH

- a
""-0 >^

c i -co
at i 0, 01

MINUS25 263

?l-
C en

•rt tn
Fi-H

in E-«
CN w
u &
3
a <N

•H CN
e ••
•^ VD
M in
u -
o \o
SH

■&"■
Tl
11143
^ 0)
^ (1* ra
-~Tl
H 01
os

o o
^ >

oi ni
U h
M Ol
3 O
O M
w &

h o
O U

Ä ro P4
4-1 O r-l

«-(1
H k

•- « 1 V 0)
O • U 0) C
H *r-4

§ M
M

Tl E <HrH CC

>
X

W Ü
o w

1/3 V)
w
a

K O) tn

«Sri
■rt

m KB
H

WOh tn 4J
c W AJ H 3 C 3

s E H • a •H

>tW H i)>iM
u w a >i H

*J 0
r- 1** -H a
»s C* ,Q at a AJ

b. u. ■H Cl) III
H 3 3

c
a;

41 --

3 —
01 ..

t-> w O >
u to ii M m
0) 0) ß V Q,£
AJ u-H ai
-H C O Ol N »O JQ

u oi aja CD T3
MOI c
<0X) a;

3 e

o o
o o
tn in

O iH
HOH

O rH
O rH

IXOH
O tH

OOOOOOOO
oooooooo
ininminininmin

OrHHi-iOOHH
OOt-ti-IOrHOrH
OOOHOOrHO
Ofli-IHi-trHi-t©
O rH O O i-4 O O
OOOTHi~*OrHi-(
OOT-HO^OOTH

OOOT-IOOOO

,HOOOrHr-tOO
OrHOOOrHHO
OOHOOOrtH
HOOtHOOOH
.-HHOOHOOO
OHHOOHOO
OOIHTHOOHO

OOOOHrHOOi-t

B

i
r-

AJ r-
u en
(0 tn
0..H

in ^
cs to

'H en u 0)
AJ en OS
C rH AJ

c > aj 3

q Ä O O

°m 4>

S tn ai w 3 0

at «w ••

« a» S
M u u
01 U Ol
C 3 O
01 0 h
UU1P<

i i i

— u
u o
o AJ
4J U
u at

S»i

9 u bi-H
B ^ O ^
< <Hinw
^ - E-< |CN H
W 01 CO *0 W J

01 AJ 3

K -rt O • -H Pi

>* &2 oi cu J
CQ t£ U OJ >i I
■ - - < -H 4-1 1 I

-* u
^ >
OX
4J-n
C H
0) -**
B <y
"*. E
(0 o
-HÄ
W *^
U «
-^ ai
> ii

■n U
u ai
~^ w
01 c
es
5£

«I o>,
■fil

m
i &

CO c
t) 41

wi w en
■~" 3 en
. (j rH
4)-H
^ B r-
3' N

4J >1

U AJ

(0 0) —H
. M-l ■

O in ft
oXn

u S

3 Ol
e 3

•H < >
E vo
- d£
in o*n

VI

: u 4> 0)
< O AJ -*J
: 3 nl id

l E 0) 41
a« C C
fl T) 01 OJ
3 41 O C5

S0P1 264

u a
b

a o

fa

MX
U U
0 0
3 » — ^.
66
-0*0
<U V
-v -^
*9 *f
en m
•^ ^s.
u t-l
0 0

Ö c
a) aj
E E •o1

ß r-
(0 Q\

w tn Cm
IH

o E"

•f-vn an
O O)

E E .«in

Ä J5 0 u>
t ■ *«-•
-H U

«3
3 J3 O Q
•C-n.C X

■UIJ
O C
0) IS
•r.C,
•° J o a
j " o
X

■ 4J iJ E
H (0 flj «J 3
a n M u n
0 0} 0) ^ 01
10 C B 3 O
.. 0) HI O U
H O O W ft a
o I I I I

■B

>■ - -H U

P.
o
1/3

a. e W M
H •

ft CO O
0

>.td 4J < N
U u >i M

00 s J3 0)
*H ft
4J

fa fa

> — —
«JOB
* • ~ <u u R
Ä - K •

0)
u < <
3 — ~~ U 01

o >

8
o o o o o

N O O O O O
in m in in in

O
a o

! 0 OiNl
I M (U 1
i ftA (

U
O O H O i-l

CQ
HOHXX

< 0<iH <H O O
,-t X X O t-t

dPOOOHH

T J3 U
•n4J

■4 M-H

C > 0) 3
vo E >J

3JJOQ

■* M ^ >

w —■ V (IU ••
•r» ■ u 4j g
.0 t-i nj IB <1) S3
O ft U U U U
jOtl (1) MO

C R 3 0
■ 0> < o u

 u
U U V U-H

•H -r4 •--(-H Ö»
0> Dt 01 0> C
0 0 0 0.H

rH rH rH i-l

*0 *0 "0 *0 ■»J

u JJ 4-i J-) tn
to to in in

4J
a c c c 3

a *J co J3 u ■o N

XA!
h M
0 0
» s

^^
-0-0
m a> *^. ^.
q> Tf

PQ CQ
-■^ -v.
u u
O 0
U JJ
c c
U 0)
E E o1

0 H

-n*n H
ft<N
O (N

E E M in
JZ JC o \o
■ * 3H

s -

c
in w

BP1 * E •

Iß •
H U CO

o vo
W m

•i-i V
y ■>, M M-H
t^ »
W-H < > J s
UJ ,,
AJ r 3X! 0 O

Ä-nfi X
fj»H

K° <.
■• i 0ÄE

0
•0 "0 U

— Qj a> w ••
. 4J AJ E

Si I r-4 (fl fl 01 (D
o ft ft u u Ü u

0 Of 01 h o
W C C 3 0

H O U W C

S0P4 265
MM
U U

88
11

u u
0 o
JJ JJ
c c
0J 0>

E E
rt r-
ß m

*)• T-i

&EH
en w

CD 01

11 0 o
.R,R

W JJ

— c

«D !

•3'S

j- 01
•niJ

*-. *H
> Ü 3

•t-tJZ X

U ro *u
0) C— 0)
-n I- JJ
JO ^ ^r <0
O 0. O. n
jOOll

> a a
i o o
i « en

fl tv «
u u ^
ii u &
R 3 0
tu o u
C5 W ft

Ai A!
U -H

3 3

£6
T1T1
0) 01 -^ "**.
*y ^
CU CQ
■^ -^

U M
0 0
JJ JJ

R R
0> Oi
e B

> >

— 0
U 4J
o c u 3
U O JJtJ

l"> u~
Dl o
O 4->

T3 D) QTS

>
0

cn »to
•*r *-J •H U

a. 1 e
CA

W JJ -w - 3 u Id in Q. 03 O
0

>.a JJ < N
M W >i u

e\ » «s fS Ä 0) JJ

o o o o o
o o o o o
in in i/i ifi in

> T ~

CD : M

u < < 01 -
3 — — U tU
JJ w 0 >
U 10 II H «
0) tU C V &£
JJ O-H 01
•H R o o> N TJ ja
XI -H t-4 01 C
U O) &J2 01 Tt

fe fe

1
O rH H O O

"OriHOO
O H PH O O

N O H H O O

Q r-t X X O r-4
H X « O t-C

CQ
O O O r-t iH

((OOOriH
O O O rH .H

dP O O O f-t H

'S

ON

fa

c 00 ^TJ

JJ
o\ OS o o o o

0
0 O 0 0 JJ
jj JJ JJ JJ C
ccccS
ShSo 0

<t* & •
& <n 1 OOOOT)

•H in •a TJ *d XJ
n

rH
U 00 ^ > CO Cl o w

Jj U U U 0
VO O 0 0 O JJ

a
o

J 4J JJ JJ JJ U
•J UUCIUf >, << 0) 0i Oi 0> >

^ u
S 0* 3 V I l l tu * .C E J U3

4J 0 a •r(-H -rH -H Dl
-H ß J3 X rH EnrH Dl tn Oi Oi 0
JJ ^ > M 0 O 0 0 -H

i3 rHrHr-H^H |

S § 01
1 1 1 1*0

*0 "0 *0 'O JJ
>i h EH 0 H JJ JJ JJ JJ (A

on s < <rH tn W n in tn in
H -EH 1 H H

ra-c u U) 0) CO *0 J R R R R 3
ft) HJ ■• 41 JJ ^ ■H -rt -n -H C

■n

0

* JJ JJ
(0 oi 3

u u

> 0) w n
-H O •

<c 0>
x &2 a>

an
o a
w o —.

J
a

ft JJ (0 jq u "0 N
R 3 0 BAU dl > ^ (!. (-1

(2 CL
JJ

«UOUBi <J H a
U. CQ W JJ

H i m R
W i ' l o i P 01

I I o o
■C J3

oS

— R
. ai

H Si

0) tn
^ V
3 >i
JJ *-•
U -H

uo

a jq
^ oi

M 0>
OS

> £ %
X! OO
•nJ3 X

H ■
< 6 in

I R
.. o o

JJ JJ
U 3 "0
01 (fl — 01
•n I« JJ
.Q ^3* *f CO
0 & 0- U
.0001
^ in tn R

E^i^ ü
> a a

i o o I
i tn in i

Hi tu ••
*-• fi
c oi ra
M U ^
0) In Dl
R 3 O
ft) 0 U
C5 M ft

P0S1 266

- a
•J
< O

*f H W
\o 0) Z
H M o
ri3H

|4-> EH
U U rt

•H 3 c2
0>M <
0 JJ »J

r-(tO U
.... | U

01 M 4-> M
01 O to 3 W

•H £ • JJ ft
a» u >H

>»>■ ai v EH
M M a) JJ
rö m -H -H i
MM j: i
jp ja o» u
•H -H 10 M
HH 3 n)

©

>!ü
U U
0 0 » »
££
-CO
V 01

*f «f
m a
M M
O 0
JJ JJ
cs c
<U 01
E E *'
ui m ten

H H

> > 0 EH
aw

XJ.C
■rvn H

W CN
0 CN

E § M m

0 *0

tJ «

** IM
fl"
•0
ai ja

^f Cu

U.5
pa

00 >^«o
By en M tu

m OS
■ 53 H

m

?<? E •
^<N

3 U in

3*
< > «I s
3.C O D

O W M
-.0 0

•0 *o u
at oi*w ••
JJ JJ g
<o «j oi S3
M M u M
u a> u oi
a c 3 o
01 0) O M
U O W ft

(ill

< o

*f O W

HMO
H 3 H

|U EH
U U <

-H 3 (2
O) M <
O 4-1 J

r-4 W U
.... | W
0> A!*Ü 0) Q
01 M -W M
0» O W 3 W

-rl S • JJ ft
a> u *

>,>,0> 0)EH
M M 01 U
nj rt -H -H i
MM xi i
ja ja oi u

I 3 fO

^ >
o o

WT3
Cd JJ
(4 to

JJ
H - 3
VI 0] 0

ON a
>*W JJ < N
M U >i M

O o -H a «*) **» Ä 01 JJ

fe fc. •H W
r-l 3 01

i tn o >
i w tt M n
i OJ c v ax!
I U-H 0)
i c o bits *0 A
!-H M a» c
i en 0..Q oi-a

o o o o o
N o o o o a

in in in m in
Q

OHHOH

< i-t H H O O
OH O X X

dP O O H H H

s
9

O a

o

tO (N
0 O)
a ■•

0)X5
-. OJ

c > St i

3 J3 0 C
5-nB :

I * 0) <
I M U I
1 01 M I
;c3i
1 01 O 1

^
U3 U U U U -H

EHH 01 Dl Dl 01 O

So1 O 0 0 O H
HHrHH |

§"& IJ 1 I'D
■0 *0 V *0 -u

& O EH 4J JJ AJ AJ to
<H ton C0 f] CO CQ

JJ
ai WÜ J C C C C 3
01 JJ H ■H -H -H -rH 0
01 W 10 M 6-"
H Ü • 0 d

< oi ao
&H K a» ft 4J (fl jq U TJ N

«s
M M
0 0
» 3

^^
-OTJ
0> 01

•* -W
ma
M M
0 0

c c
B B 4J

•H-H |en
U U

> > oe* a«

•n-n H
t0 (N

B B o 0 M tn
ÄJ3 0 «3
■ i 3H

JJ (JJ
§M

01
<U JJ

-0 c o.5
in iJ
— a
, 01
<u c
M O

Si

01 £
^ dt

m
u t'
OS

U 00

>

0, ^ U
rt > oj 3

3 J3 O &

JJ 0
3 TJT1 u
ifl -^ 01 Q)

•n t
H

• 4J
H (0

JJ
frt V 5

m 10 M M

Q

n ai 01 u Oi a a c C 3 0
M

t-t H O Ü W ft

GT 267

M *J
0 Q>
3^

M AJ
o 0>

51

»'S

U> tfl
J3 u

U42

o M

»1 ■H43

"8*3

»IS
Ö.X O u

M 01
03
AJ
c

E •

a.

O-H ..

< g OJ

U to

vo
Ä OJ
•OJJ
M-H
>v M

> « 3
»6J
■COQ
•nÄ X
M •*■*>

•n. nj
43 to M
O I fl)
J 3 a
Q O U

« ai 5
MUM
V M Ol
G 3 O
<D o M
O W ft

"* (N W
U3- fl) 2
HIJO
H3H

|4J c*
U U rt!

•H 5 2
o» u <
0 4J J

<H W U
- - I w

a M AJ M
01 O Bl 3 Ed

-rt 3 • AJ ft
OJ U JM

>, >. 01 flJ E-i
M M fl) AJ
(0 (0 -H -rt I
MM JH I

■H -rt W M
HH 3 IB

«■> in
43 u
k >

V- VD
D 43
h o
0 M

4J ft

AJ M

■ g
U 0

•H J3
AJ ^

»5 - M JJ

SgS
P§2

3»*.!

"■SB1

J3 o a
•nj3 X
W^ >

U I 01
HSU

■r-. o Id

o i m
J ß o
a m ai
x Old

!
-Ü M

ro (u <d
MUM
fl) M Ol
a 3 o
a» o M
Ö CO ft

- o>

< o

ya fl) S
rH M o
iH 3 H

IAJ EH
U U rf

•rt 3 K
Ol M <
0 AJ J

H nu
•.- I K
0>,y *0 fl) Q
0) U JJ M
a» o oi 3 w

•H 3 • AJ ft
fli O >

M M fl) AJ
IS Rj -H -H I
MM 43 i

43 43 0> U
-H -H (fl M
Hrt 3 ID

W Cd

< H a
J Q (0
U I
W E

*3 rt: o o s ft -
H O O
w o u

c c M y-
«J-H o b

E
iJ AJ AJ C
c c a t
0) 01 01
c c c &

_ O 0 O E

M AJ
O O)
3 ^
--. M
E M

T3 O
-O 3

0>-H
O Ol

■H O
IrH

C <M
f
at
u
s

O)
0

W JJ
n 0i o

-o ■rl AJ
4J « — VI x; wo to 3 0) < in

H <
U 0) 1

Ü Ofi H * AJ v -H
AJ (A

V)
II o >
v M ni &

>iH AJ < « fl) 0) C , °"?
M H >. M AJ AJ *s

•H (3
43 H c

r*> <*> 43 OJ AJ •n U Oift42 01 TJ rn
Esb ti«

■H VI
-H 3 01

c
0)

M fl)
(0 43 0) tb

-H O O O O O O
AJ o o o o o o

in tn in in in tn
o o
o o
in in

OOtHOOHOr-tO

AJ £-<
M W
m ft

SH

5^ A 0)

i M M-H
a -v M

j < > 0) 3

^J3 -o;

o
AJ-O^O M
U 0) 01 iw ••
fl) J_) 4J E

*n «j ni 0) m
43 M M U M
0 ai ni M &
J c c 3 o
Q 0) fl) O M
K Ü U W ft

§ ÜÜ'i

PQ cd

3S

AJ AJ
u u
0) fl)
> > u

I M
U CJ Ol

-H -H O
Ol OlrH
O O I
f-t f-i *a

I |AJ
-O T3 W

t-< O t-< AJ AJ
rt! tn 10 in in AJ
t* I H 3
WOWJ CCO

W Hi £r*
Ü • AJ « •■ ■•
Sfl) 0»O — AJ

fl) ft 4J 10 43 O)
CJ D >i M
< -H AJ 1 O

0 'f
AJ m

E 0
0 m

(Ö E-<
■J?

AJ (N

M >
4i in

01 A O *J3
3iH

43 -N.

M
u 0

•rt 43

1"
•0
0) 43
•^. 0)

^?{°°
U «W °> 03
n M ^ Ü
— o> ■ ^

■ "s 01 crt

MO
^ 9- tn E m
«On
SJ w a 3 - ^
AJ U ^

01« 2
Aj >,g
43 >n<
O JJ .. ,

^ 3 c ■
< a3 gj

> Sj 3
vo E J
43 O Q
•nxi I

•r-> «1 «
A I M
O O 0)
J AJ C
Q 3 <U

> I
t AJ I

I Ol '

I fl) <4-l ••
I JJ E

m 0) td
MUM
ai M o
C 3 O
fl) O M
C5 W ft

1 1 I

OIJiT)
0) M AJ
ai o tn

•H 3 •

>, >, OJ
M M at
nj ro -1-1
M M

43 43 0)
■rt-H ifl

X0R4 268

MM
!H U
O 0

.3 3
**. ■—

*£
-0T3
01 OJ
^ -s.
*f <4
0 CO

H M
0 0
JJ JJ
c c
E E
in to

■H-H

u u
> >

U3 vO
•CJG

U M \ -^
0) OJ
E E
0 0
X J3
-■* "N.

i"
■y**

si
PP.

o

U-H

■6°

..o1

Jj 4J
u 2

•1-1 I-
J3^" ■«*
0 n n
-, o o
a£*
£ ** -v
■^ ^ H

1 O O
t X X

(0 tr.

H (N

8?

OJ JO.

u GO

>
VD

Xi at
■n JJ

(I «W «
JJ 4-1 E
«10(14
N U U k
OJ 0J U Ol
c d D o
OJ o> o u

<U4«S*0 OJ G
OJ U JJ ^
OJ O W 3 W
-HS • JJ CU

0J U >*
>, >,0J 41 £*
U U OJ JJ
lUHl-H-H I
M fc £ I
.a J3 at u
-H-H W U
HH3B

»a

u
3 w
9

"2 e

k M
O 0
3 3
-^ -v

£*
VO
Ol OJ

"V. "N.

V «*
DQ CO

U U
0 O
JJ JJ
CJ C

E E

u u
> > 0 E-«

X M
ÄÄ
wn

M CN
O CN

E E J* in
J3£

0 VD
>H

|s
•S.g o

•0
oj a

*r tu

> '-»'Ö

ö » os

J

< O

vo ais
.H H O
i-l 3 H

|JJ H
Ü U rt

•H 3(2
Ol n <
O -U >4
H B> O

- - I w

OJ ^ JJ v<
ci on PU
■H ä • JJ a

cu tj >
>i>i 0> QJt*
M VJ 01 JJ
ifl (0 -H -H I
M fc J3 i

-Q.Q OJ U
-H -H CO VI
rHrH 3 «

^J" Ö CTI
IS -H 0
i-i PH

1 -w
D C4 4J

•8 m
o O JJ

PS
fH cn

- I-H
ajTi

- 0
1»

o ai to K .
X -H ■ Ü

OJ X „ < M

& OJ AJ
OJ >T H

fS «N
m fl JJ OJ JJ

fa fa J p OJ

^
K

D

f) K > «
«M

o ■+1 a o
B ^ 3
e o CJ

x 4-* u —
g

*- 3
1) (11 10 (l) 10

A rt "l
ECCÖCÖCÖC

•H -I •H
«

a) o

e
X

4JOOOOOOOO rr 4J O O O O ^T w X OOOOOOOO c, O O O O ll
.. 3

Ü
OJ
JJ

< > "ininminmininin s •• in in in in

Q O H O f-t

O
X

a
o

II A
V OJ »<» QOf-tHOT-tOrHO r» Tt

x -H
H

u
C

O
BIOHOHOOOO «s QOHHO N

•0 t) r T) ro <OOr-trHOiHOO <*> < O H O f-t f)
n fa OOOO^HOiH 'fa OriOri fa QJ 10 XI 0> dPOOOOOOHH dPOOHH

>t v> e 3 VO U U U U-H
-H -H -H -H O)

E* &; •** JJ fa u~~-> i I»1 O O O O rH s r-1 r-t t-i rH |

§ s*s 1 1 1 1*0
-o >0 *0 -O JJ

c >. •• ^ EH O 6- JJ jj jj JJ 10
;; o ja E f< rf|H (OtC CO CO to CO
ti o
U -OTt M tn awd J a c c c 3
<u -* OJ a* H4 •• tu JJ ^ -r) -H -H -H O
'£ - JJ JJ E
■Q -a- re ia oj m

>* a» w cn n E-"
a -H o 'OK
< < 01 x o
K >< K CU ft j O OJ OJ U t3t

S x c a s o
JJ IOja UT) N

CQ Oi U OJ >r h
H rf < -H 4J I
j 2 a. -HI

c,
C^C50Wft V

CQ Ed JJ
1 H 1 V) C

i X i ' i i i J i p 0)

X0R4 269

T3

<2

u
S

O

rri

x x
u u
o o
3 3

II
-0*0
0) a»

"^ -N.

M U
O 0
JJ AJ
C C
ai aj
E E
m tn

•H
tn

o u
> >
£ .C

M u

6 E
o o
J3 J3

it
£5
s|
ti § §°
k "

in u
- o

ä^
U *J

"'S
O .

Ü m

CJ-H "d
HI X — «J
•n I- JJ

0 M M M
T O O OJ

g x x c

^ M M
1 O O i
I X X i

4 j: m
•n JJ

H M-H
3 -^ M
3 > J! 3

U£OQ
3-OJ3 X

10 Of ffl
MUM
HI M 01
C 3 O
VOM

J=

o

r-

o M
tn 0

JJ
■* c
CQ 0)

t;
M ■v,

en
AJ -H

tn
at o
R ->. >
m \o
•HÄ

(J M -^ > ai tf> h
-C 0
•r- J3

t-4 ■v.
-v
0) a
h u

(0

9 e

h in
o ••

w XI
■^ O)

ij Q C (0

.c o a
U — l-H
^ « « M
< U V4 (b

-H O
4J X

> 0> 3
«3 E J
£ OQ

«
T3 C

uvC O
U J3 tO
flj u ß -O
•n m | ai
JP "** •*■ *J

COU
J «J X V
O C> C
X 1 E (U
>■<* «J C5

M£
I O U i

at iw -

ro a» §
n u w

C 3 O
0 0 h
O t/l &

u u
■* a
0) fc
0 u

rH tn

0» M *J ^
01 O M 3

a> u

w h at jj
HJ IT) -rt -rt

i ä J3 at u
-H -H W M
HH 3 10

Ul

S 2 o s
W H O
S3 FH H

W O < ^
S5 H 2 rf
O ^ < tN ö
H < JTJ 5
E* c2 O £ C5
S< W S H

J Q C h
< U I B
JWhUO
U Q ss c u
w iii at
Q J S ß W

<OOZ

aoSEJ
>* H O O 53 I
HWU O H -i

B at
S n
o 3

E V
O 3
U ^

X0R5 270

ei

s
a
L.

9
X

xü
u u
0 0
* 3
^ ■-,

**
T3-0

OJ OJ
•^ "V.
*f **
ffl PQ

0 0
JJ JJ
ß C
01 0) & &
in io

-i-t-H
w tn
ü u

> >
U> V)
XJX!

H M
-^ "V.
(1) 01
E E
0 0

■ßja

o) r-
ü CT1

ten
in *H

OH
X w

in
H (N
0 N
X «

-N.U)
Jim
U "
0 u>
Srt

- g H

SS S sä

"in
■ u

SS
V JJ
at-H
JJ JJ

£ > OJ 3
«) E *J

•HÄÖP
H-n£ X
b* U "-» >

.Q in in
O M n
, o o

rf X X

•0 *o u
01 0) *H *•
JJ JJ E
nj (0 o> rt
M w u u
OJ 01 N Ö>
CC50
ai oi o u
C5 Cü w a

iiii

'S u
S

8

^ e
PQ Oi
"*- E
n -^
0 w
JJ -rt
a in
oi u

-H J2
in -n

01 OJ
E ü
O ffl

ig

~ o
ü

aiT

st
«g
■ X

•C ft

rt ra

in «o
w in
0 ■•
X«)

in J3
■^ Oi

U co ^ > >

5 ß-Ü >i
jj ai ö nj
.*«« rtE > V 3

vD E J

■nÜX
H >^ >

JJ X

U 8 ß O J3 E
UJ3 « __ O
«] ü COT) H
•n in | 01 OJ «W "
J3 ^ in JJ JJ £
0*0 M rt iö oi (0

J (0 X 01 0) M Oi

i E 0) 0) 0 U
> in 5J O U w O.

i O U i l i l
l X M ' i i i

- X
J
J*J
•< ° E2
«* ro W O
vc Oi S H
.-I N O H
*H 3 H rf

|JJ H 2
U CJ rf <

•H 3 K J
O) H rt CJ
O JJ J W
H W U Q

- .. I W
01 AfO <D O J
OJ 1^ 4J n rt
ai o m s w S

•H 3 ■ JJ (k O
0> U >* H

>>,Q) 0»H W
VJ M 0) JJ
10 (!) -H -H I I
M U J3 1 I
ja .a o» u
-H-H « U
r-it-i 3 rt

JA Ai

SS
II

o o
JJ JJ
3 e
o> 0)
E E
n in

■B &
<n f 0

F-i tn

PS oiw

o 8
moms

X •H ■ O

>iOl JJ
^H M 01 >, U

fl f*^ »o r* ja at JJ

u. tu J & 01

8 -

ai ii j
JJ v i
•H c J
J3-H N
DO) 1
H 0) I
rt X) <

t- «H
ftül

J3 in
U v* rj

O CN
0) X ■■
E
o

"*v«J
Jfiin

J3 U "
0 uj
3-H

i1" rt •0
w u ja
u "^ 01
0) ^ &-
JJ DO
ß 00 ■^TJ

■H Ct M 0)
JJ
3
01
c

OI OS

^
JJ
3
0) **

r-f E • o i
0

^-.CJ. •* w)
O •rt in

Dl ■ u i-(U 00
tH

J3 0> *o in CO
J

J= o -n4J J > X >. K -H < ^ ?-5 rt
> Of 3

US E J
u

X >i U9 U U V O O-H
♦J u JJ ■rir OQ rH •H -H -iH -H -H Ol
o3 9 •H u OJ3 X HH Ol 0) Ol 0> O) O
iJ JJ [fa H "v > So1

Sei

O O O O OH
o

0> tn tu tn tn

u
3
b
Ö5

£ i
rH rH iH t-t rH

IJJJJ'0
•o "d "0 *o *o JJ

V > E ö ß C c §5e % HO H
rt IH in w

JJ JJ JJ JJ JJ in
tn tn in w «

1 JJ o o o o
o o o o

1

e

JJ
U

O
•0 ^3 M ül

•- H 1-H H
0) W TJ J 3 3 3 ß C 3

•■ in in in in 0) — OJ 0) <H •■ 0) JJ in -H -H -H -H -H O
■n ■ JJ

m oi rt
>* OJ W tn M H

S J3 tn id s -HO • O K.
X

fü O H H o
O

C3

U U
0 0)

MUH
01 VJ Dl s rt 0i X O

>H &2 0) o. JJ rt ja UT) oi N
N P « X 3 3 3 0 CQ CC U 0) >) H

f^
OOOHH
EQOHHO f5 X >

■- 01 01 0 u
inoowft

H rf « -H JJ 1
2 P* -Ml

0

tn <OHOH <»i VJ PQ tu JJ
OOHH

b
O i H 1 W ß

tb dPOHOH > X ' i i i ' J 1 3 OJ

> >
U3 VD
JS JS
-n*m
U U

0) 01

I n O O

0. 3

JJ 4J
U 3
oi rt
-rt I

O M
X ••

S > 9! 3
to g J

•ri£OQ
M-rix: X

3 >i "
0 X) E

0
•ü^ u

— 0> 01 "W ••
* JJ 4J E
in rt rt o> rt

i u u u u u
) O 0) 0» U Ol l
(X 3 3 3 O
* ■• OJ Oi O H
iinüotiia-

01 Ai T3
01 M JJ
oi o tn

•H 3 •
OJ

>>i0)
N W 01
(0 rt-H
H U
JJ ja oi
-H -H in
rtH 3

X0R5 271

.e

i

e x
ve

Ä 0
U 4J (ft c
** fl
CO.
-■* m
M •H (ft
4J O

DJ >
h U> ^ Ä
in *n

M
m

Q)
R > n

vo JS
X3 *^
M -».
(11
h m
0 4-i
X u

at
u
e

JJ
u
a

.C
0>

0

«■„' n

3

'■ggr..
U MB!

U ifi "O 1
u — M OJ '
01 ■ O 4J ■

■n O X <0 '
J3 -H •• M
O -U M 0"
J nJ .Q Ü
a g v
aj a» m o
>.c w

i u o i
I M K I

> £ ?

M^>

< O

^> «f
\D <U
H M
TH 3

U U
•H 3
Dl U
O JJ

MUM
OJ M tX
a 3 o
ai o u
UCQb

I 1

a) A: TJ w
at M -u M
ai o 01 3
-* 3 • JJ

OJ u
>, >. o <u
M M U 4J
rtJ (IS -H -H
MM J3
J3 J3 0) U
•H -H W M
-t-n 3 (0

w H o
2 EH H

WO < EH
2 H 2 rf
O EH <n tf

b* 2 u £ o
SrifUflH

JQCb
rt u t 2
J H EH JJ O
OO Z C U
pa E a»
QJZBU

< O O 2
W 2 & fin

ABS4 272

u
a *-»
u
2

u •§

d H
a> U)
R u

■-» ■v.

m t>
•H VO

W J2
ü *n

■^ M > v.
VI aj
A R

U J3

R 8
x

u
CJ ai

I
A d

0
M *

o
u

M ~
S
3

en

■a
JJ >1

«XI ~« »
■fl- Gb

os

.. ty*"

u IJ3
0) H nj
•n « ■•
XI >■■»
0 tn w

i xi o
1 O 3

S > £ ? vo B J
0IÄ o P
3-n.C X

Säg
o

•0 T) U
ID QJ tw ..
uu E
A « a) 83
H M U U
OJ OJ M Ol
C d 3 O
QIU Oh
o o w o-

OS
H O
W H
01 E-"

- Bj W <<
J S 55 H

< o W H o §£ vno<| fr;

tH 3 tt J CM Nt>
ai a

UU<WC3HOH
-HSJQiOÄOXPü

2 w oi
04->WEHU4JAJUO PS Z H

5o 3 Hwoscciscu
y & ** 0) AIT» m J s c d c d w S5 y O p 3

.Sg*!2§§&itl3 U U M
JJ

>,>ifl)<UWOUUUUH H 1 1

IS Q-rl-H 1 1 I

,0.0 ttJ Ü
-H -H ü) H
HH3«

M A;

§§
II

M M
0 O
JJ 4-1
c e
01 0)
E R

-->. -v.
w m

> >
J3Ä

O) d
C IB
(0 ^
M

w o
CD W

03

i in t
.- _j..

3 Si

- ,-■-, AJ
4>*0 C 3
ViJ«-H O
u oin

■H • m
a* •< x M ^

>i OJ — w
H 0> >iXJ CO
10 -H JJ U <
U -HO

XJ 4> JJ & »0

>: -
w in

m u
o -

II hU
M C V ft>

Of OIN TJ SG
u a» d w

-H (0 C
rH 3 OJ 0

•H d OÄ
Ä-H M
U O) o.

0J

QJ to

tn [ft in in M
u d d c d c

•H O O O O O
JJ o o o o o

in m in in LD

N O iH H O O
OHHHO
OHHHd

O rH H O O
X O ri O H O

OHOOri
dPOOHHH

4 X! Ol

h H -H
3 -K U
5 > a> 3 vo R j
3J3 OD
Lt-nx: K
: u -^ >

o; — a> o> <4-t ••
•ri ■ jj JJ R

0 en u u u u
, jq oi OJ M &

5^3 c c 3 o
rl .. di m ri Li

JJ 0

oJ
Tl O

•0
m
— r)
M —
O U
JJ o

-H • XI X "
OJ ID — ^*

>H 01 JJ N V]
oi 0> >, M -C
S-rt JJ O - IB

-H ft — _
03 W JJ 'O
HU1 G ß
J D 4» 0)

01 0)

i § o o
x:x:

' V
u u

•H (0
JJ »w
3 ^
E oi
0) JJ

•S-d <=

!> O _.

3 JJ

m .

>
rH Si <D

•n iJ
>> H-H
10 ^ b

TJ J3 O Q
OJ-nx! X
3 W~- >

XI >■»
O « IA

•^ w tn
i X1Ä
i nj (B

•OT) M
0) 01 *H ■•
JJ JJ R
HJ (0 <u a

0) 0) M Oi
d d 3 o
01 OJ 0 M
U O W P.

o u
-H 3
0> M
O JJ

rH r

OJ J* "0 -
at H JJ u
41 O "■ J

■H S
01 u

>, rtUl 0»
U U 0» 4J
(Tj 10 -H -H
U ^ JÖ

i XI XI 0) u
i -H -H tn ^
I rH rH 3 10

* o <
J H p:
J f>< <
1 < J <N

< W d 3 P
JP (0 XI -H
O I
W Pt jj JJ JJ
QZCCC

B 41 0) 41
j S d d d
< o o o o

g&m
H O O O O
w u u u u

ABS8 273

ft
M a a

u *o M **

JJ JJ JJ JJ 4J 4J
c c ß e ß c
Of QJ 01 0> 0> 01
CCBCCC
O O 0 o o o

fllllt o o o o o o
U O U U U O

■a

«I
OTJ
S 0)

•3 m
•0^
01 M
*** 0

ffl a
M g

s' u to

0) «
E u c1

« > Üicr»
m j3

00 r-t

U3 0)
X E
•o O

A fr*

CO

E 0)
U ••
0 « J3 10

1?
1"
0) J3

" s .c "
U B, OD ^TJ

— & m OS
. B rH XJ

3 . O g ■

< O W H

** (N W O <
ID 01 B H pü

J H rt *J PJ «N

lrf<«CSCOh

4 << U

iH 3 ►

U U o
-H 3 C

131 U <■
O 4J »

HI AT» «!
0> M 4J h
dt O W 3

■H £ • iJ

>, >.0) 01
M H 01 U
A) ItJ -H -H
H U X

XI J3 01 U
■H -H W lj
HH 3 ID

CCGC E
tu w oi oi a> a> a>
QjgßßßßG

< Q O O O O O

KSS&mt
IxHOOOOOO
E^wuuuuuu

00 >.

n .g
< a

>1 «I

u
a

« a
H et

£3

nwMwwwwww
dcecßCCßc
ooooooooo
ooooooooo
inuiinmmtnininin

i
W I

If) V)

b to rt s

*J U (
■H B O J
J3-H h
U Dl &

aß

o -
i u u

c la
•n
to

DOHHOOOOOO
6O.H»-).-)OOOOO
•HOHt-Hr-tr-iOOOO
JJOH*1I-4T-4I-(000

OHHHHHHOO
"OHiHrtHHHHO

Oi-HrHi-IHi-tHr-IH

NOr-tr-tOOOOOO
O^OrHOOOOO
Oi-tOOHOOOO
OtHOOOiHOOO
OHOOOOrHOO

XOHOOOOOrHO
OT-4000000rH

dPOOHHHHHHri

no

to

> (0 EH aw
p, CO
n

.Q rg

1 M in

O u>
3<H

■^

01
t) *"
(0 •0

01 A
u
0)

CÜ
c CO -^*o

-H
oi OS

01 H
c
oi ^r
E ■

> $ ^

U <C0 M
W« JJ (I *J ••

•r» - JJ jj E
JQ co ffl nj 0) (0
0 W 1-1 U V u
jj3 0)ll)WOi
5 (0 C C 3 0
a ■• 0) 01 O U
toüowa

i J3 i » i i

i i
I u

EH o EH
<H MW

- EH J-H H
LI W *0 J
I) J-t CO
J W M 01 Er«
HU • XI K

rf 0) (Ö O
H K 01 a
i O 0) >,
C < -H W t

O 4J

T3

— U
U 0
0 *J
4J U
U Of

•H &
& 0
OH
-H |

•d 4J
JJ M

JiJ<
M H

3 3 *^ ^-.
** •o-o
0> 01

^f -V
m co

0 o
JJ JJ
ß ß
a oi
E E *'

Or-

> > XI EH
(0 w

■n'n CO

XI (N

N i J<t in
J3X3

O «
■ i - JH

2>-
Ä 0)

M-H
■^ U

> 0) 3
vo E J

•nJ3 E

JJ ■=t 0
0 Tltl u

fli 0) *w
i* JJ JJ

CO 00 ffl «0
W (0 M u t) M

a
>

XJXJ ai V u m
ra n c c 3 o

at u
coaouM
n to

a

X) JJ
i tO (0 i i i i

NEG4 .274

a a™ a

o o c - '
jj AJ JJ JJ S
CCBCU
dj m at Q)
a a c a w
O O O O 2

tills
o o o o s M
U U U U H -H

'S
f

1.
s

JJ in
c •H
a> tn
E u

~*s -N.

VI >
•H «>
tn ■ß
0 -n **» U > v.

ir> u
JC E
h J3

■v. -^
at
e

(0

to o

3 o>
M HI
JJ c

a, JJ
jj -H

x) ß
O O
at iw
JJ O -rt
Jß. tr,
o tn
* 1

o- s
»Hfl O
JJ |Ol o c u-o
oi at ß at

•r> 01 •• U

O 0> 01 U
. ai a» <u

S c c c

*> Ol M
i at o i
i ß 3 '

ß r-
at a>
Oio^
(H

Q) EH
ß w

OlN
(1) «
c ■■
Ä if)
h •■
O u>

M «I
OS

: > oj 3

> JS o a
J-n.0 E

at *w ••

« at 3
MOW
(LI k Oi
ß 3 o
a> o u
o w ft

i i i

a 2
c 3
rfl U

w u

f* u

0) -0
0» JJ *r
W tn U

at 2
>. a»
u <U >
B3 -H u i
fc -H I
Si v *J i
•H rac
H 3 0t

>} N "*
0) 0) t
JJ Ü (
■HBOJ
JS-rt H u o a

M 0>
ffl.Q

0 -
M W a%

■0 X
B U

ve cj x

=00000
* o o o o o
] in in in tn tn

OriHOO
O O r* .-t O
OOHHH
© H O O O

O t-l H O O
O H O rH O
O H O O H
O O H f* H

•O
■S

1-3
V
la
3
t3
2

1
B

I»)

r>
t.

A! tn
M ••
0 «3

i" •o

S > Oi 3
>l %EJ

•Ö-C 0 Q

c
S U -■>

ß >, "
0Ä E

•0 T3 U -
Ä (D 11 -w ..

-n

Oi u *J u U

0
0) 01 <U JJ 01
C ß C 3 0
•■ mflj o ^

K -ü" o o w a.

o
0

0 J-)

— U
U 0
o JJ
JJ u
U 01 < at >
> l fl u

«]
f-l •rt 01

1
OtO
O f-f

V ■H |
•H t«0
rr "0 JJ
0 H JJ tn

r-4 tn w tn
- 1 H H JJ
ajTj ij C 3
tu 4J A ■rt O
a> tn

<v ß o
a >- X N

& d >, *.
S-H JJ i

•H 1
o
Q

ai w JJ
H M a
JS at

JA Ä
)^ u
0 0
3 S

^^
•0*0
at at

a a
M H
O 0
JJ JJ
ß ß

E g "l
tn tn

0 ex*

> > 01 EH
ß W

-C-C
■rrn fl

OlM -^ ~^ V (N

E E
0 0 Ä m
-ßÄ O VD
■ B

OS

33

" 0)
at at
^ ß
s «

at-H
4J JJ
-H C
J3 at

S > 0) s

T3 -C 0 Q

3 H^ >

0i 0
•OT ^

— at a* 14-1 ■■
. 4J 4.J E

l-e (c to at 13
1 Oi M u u n
i at at at M oi
! ß ß ß 3 O
. ■• at at o ^

PI 0)
i at i i < i

t Pi uw
t < H 3
; JQXI

.. .. i
at -* TJ at
ai u JJ h
0) o w 3

-r4 ? ■ -J
ai u

>, >. at oi
u u at JJ
(0 nj -H -I-I

-QJ3 at u
■H -H tn n
rH r-i 3 TO

W 01
J S c
rt o o
K o* &
GEE
H O O
W fj U

NEG8 275

>
ri v u =

oo1

M
c

fa

««
n n
O 0
? 3 ^ ^
££
•CO
0) QJ

■**. *».
qi ^
a «
u u
0 0 a -u
Ö ß »'
e E c-
to m

-H -r) Km
|m

> > d) ^
ö w

00
en«
01 M

tit J^in
J3XI o vo

" 4l
3rH

u u *m
li ^

"Sä
B HI
0) AJ

■S ß 01
U-ri o) -s.'O

n hü
* OS

0) r-

2 *-• -y c
Of *f
E *

o JJ

^•0
u ai o s
ij
c
ai-w
E •

I m
u O

"D 01 t«
,n o Z

00 >• »-t w H

O 00 Ol-O C
an NM Of n u

Ä c
>i0> ~
U 01 >iAJ

r~ r» U -HO
r> r> 43 01 -u ft

fa fa

u X 0 -
3 ii U K
4J m C V U>

V)
iu ÜIN T3 EC

JJ [i at c w
■H C 0.Q a) 03
£ H kj
t) t7l U •o

01 c
10 JJ a)

ooooooooo
ooooooooo
i/iioi/iininmi/iuiir

o
Oi-tHOOOOOO

OJOOrHrHOOOOO
01 EOOHiHi-tOOOO
p» ■HOOHHHHOOO

UOOHrlHHrlOO
nn OOHHHHrlHO

-OOHtHr-tHi-4rti-i
OiHOOOOOOO

e NOr-lr-lOOOOOO

r» OHOOrHOOOO
OHOOOTHOOO

i~ OrHOOOOtHOO
n XOiHOOOOOHO

fa OI-HOOOOOOTH
ijPOOrtHHHHHH

■o
f
s

00
ec
v
e

fa

> « S vo g J
BOO
•n.0 K

.-- ii JJ E
M 00 (0 (0 01 H
O 01 U U U Vj

41 01 41 U 01

Ü 01

O'-H

>H I

»0 JJ

W 0) "0 J
Ü J-> CO

>• 1) M 0)H
K -H - 0) OS 2 a c o-

Jw (U ft 4
DQ CU 0t >i)
H rf -r(4J I (
J K -H I I

« ca JJ
I H W Ö
i *3 D a>

•n-U

rö -^ U
S>J!S

«> E >J
<0,COQ

! Dt

1 C OJ 01 V
-n | •• 4J xi

i so fO

\ a» at
: c c

RJ at ra
M u u
01 M Öl (
C 3 0
0) O U u w a

at jfo
at M i->
at o w

>i >i at
M M at
ID 10-H
u u

•H -H W
HH 3

ALU4wc 276

.« A A

X X
II It

w to
I •- - K a

n AJ ■4 A X X 1 X X 1

Vi O 1
01 x)
10 SS

ass C.Q in B '

II
II

: CH
i (d o
i u o

. . . . H (N W H
•0 "0 « "CO HTJ1

a c o c c at c
cO a) H <o (0 .C <0

0) Q) * 01 0» 0 01
o, a a a a
o o a o o c o

a at
o w

3 - 0, -

£?- ox

•H — II H
w a v b
to O _ O

is •0~

3Ä
O AJ

o o o o
- o o o o

^ 0 in m in in
M E

o o o o
o o o o
in in in m

o o o o
o o o o
m in in in

E E

II (H ..
v b«w

-OUIOO

(fl
s

111
u ~

12
H
t>

u >

•0 a;

« n
«s <<

aa
BO &

•a f> o
a
m fe dP

O H O H
• O H H O
O H O H

lOHHO

* O H O H

)OHOH
J
o H H o
OriOH
OrlHO
O H O H

OHHO
O H O H
OHHO
O H O H

O O O O
O O O O
O O O O i

O H O H OHOO
OHHO OHOO
OHOrH OHOO
OHHO OHOO
OOOH OOHH
OOOH OOHH
OOHO HOOH
OOOH HOOH
OOHO HOOH
OOOH HOOH
HOOH OOOH
HOHO OOOH
HOOH OOOH
HOHO OOOH
HHHH OOOO
OOOO HHHH

POOOOdPOOOOd

O O O
O O O
in in in

O H H

«MX
o o o

OHO

O O H
O O H
O O H
O O H

i-i r-i f-<
i-i <~{ t-i

o O O O d

OOOO
OOOO
in in m in

OOOO
OOOO
in in in in

o o
o o
o o
o o

XX

OX

O H
O H
O H
O H

HO OOHO
OH OOOH
HO OOHO
OH OOOH
XX XXXX

OH o X OH
J H O HOHO
3 O H HOOH
> H O HOHO
3 O H HOOH

r-4 O HOOH
OH HOHO
HO HOOH
OH HOHO

> O O HHHH
> O O OOOO
4f_»f-ldPHHHHd

00 »Ü
0\ O

•a
£ u > s u

■* %
1-J Tt - s
< n

..
00 so
m tr,

to to

-co
H S-rf

(0 --H
• c o

j- O 0)
AJ x a

- <0 o
O • O J 4J
M ** -H a «
EH \O ölX U
W H 0 > tu
£ H H 1 C
s I l o o>
E- UT3 AJ O
H-*AJ I
pc; CT w «J "0
< o • J a

H u N
- |H >I-H

W AJ Id (1)
W M £ C AJ
W ■ £ 0) 0l

W fr< AJ §
>,W H AJ 8
U (Ü PS -H U
nj H *; u n
u s a

.Q 01 0
•H to in i i
H a 3 i i

(Of H
Ai 3 O
0 w H •• en
u u re m (N
nj at u ö
W AJ II CO »J
a> a> «c
C E ii) w
ai Rj E n ii

o —.~
o o

o
AJ O 0
e Ait)

<0 Q O
TlTJ

(N
— ci m
M — —
0 ^ H
WOO
U Al Al
01 u u
> o) a>
l> >,

ü i l
-H u u
01-H -H
O 0) Oi
H 0 0

- u
U 0) .--rt >

V O I
■H 0 U

ja pu oi a II AI ^
•H AJ E S ffl (0
j-OtDffiWSüü
Ü 01 C M

01 tO AJ Oi
0 «0

■o'-'i .
AJ -0 *0
in AJ AJ

CO VI
c

•H C C

AJ O << CQ

H H TJ (0 I

c o
■H AJ

.. 3 .-
•• EH 0 U
2D S
H O ■■ **
O U D 3

H
CO

u >
01 (0
AJ X

< M
3

U AJ
3 tJ

§- 0

0 o

0—
f AJ U
-co
U 3 AJ
0 o u
AJ T3 01
Ü >
0>«* I
> — U

I H-H
u o Oi

•H AJ O
01 UH

»om l
CU H >T3
O I (AJ

-■o o w
2 AJ-H

o o o
AJ AJ AJ

see
o o o
'O *0 "0

Hmf

Ai U U
0 0 0
AJ AJ AJ
U U U
tu oi oi > > >

I . .
o u u

CQ I X t
-CN «o a» c

< TJ AJ |r-
-C «A
ID CO IT
W Al ■• AJ A
oi at o t
U 0. AJ c
0 O X

n a
in in AJ co
0) A! x)
U 01 01 AJ
o a i o
Al 0 CO C

j A) AJ AJ
4X33
> at o o

I I I I
>. OX!
Al-H AJ
A) 0»-H
CO 0 U

J AJS
3 0 H
3 C U

I at at oi at at a>

A) A! At'
i i0 CO cO > > >

A U Al
(0 CO rO I
> > >■■

■4 rt! pa -
o

3 ia tti -

,.... „
) OJ JJ 15

V tli>
I 10

10 .0 c

X X

J>!
I u

AJ Al
O CO
c o

0 M (
I I 0)
I Ufi I

■i-r* AJ -i
0) 0 I

i C cd

l 0)

ALU4wc 277

§"S

JJ «
c H

VI fc V "^ >«.
n >

■rt \£>

w .0
n •n

■v. M >
«3 a>
J3 B

0
HÄ
■^ -s.

I Tu
u «
01

U 1.1
■H C

? ■a
a

fit
Ä
U

3 O
JJ S

3 3
JJ a
.mV,

JJ
0»-H
M JJ
3 ß

Sf
4J ■
"d w — X la
P.XSO £ &3

J3 3
.. |H
JJ U id
ü » ;-

-r>3 3
X) H ^f
O <0 3
- "^iH

*r-
Tf o*
3 er.

rH H «
^H
CJ W
SO. **
3 (N
iH M * ••
^lO
A! in
u ■■
0 VD
3H

^m
■0
01 U

•* h
n
^■0

0B
JJ
B
01 **
b ■

XX 41
■n*J

Cl£ OP
3-nx; £

0 £■ ^
o

TJ»ü u
V 41 »w •■
jj JJ e
m «I a) io
H H U h
m oi u en
CC30
0) 01 o u

i i i i

<N ro « a <N
U "0 *0 *0 (N Q U

> >c Eg UNNO

-H-rtßßßßOOX
JJ4J4J4J4J4JJJJJ4J
ßßßßßßfißß

ßßCßßßßßß
ooooooooo

tit&iitff
ooooooooo
UÜUUUUUUU

Tl a;
0) E

*J m
(U ■H -*. 01
u t) \
u >
ß U3

3t^
3 (*

ES

-I
■ c
u oj

il ü8
w u
~" 3

3 <Ö

■ « „

3",r§
tt) aj s
^ Offl- 0)

■S Kr* f.
P M flj Jr--

X3 C
.. *> o

JJ O 3_
o 3^-0
on* HJ u

■r-, 3 -» JJ
AHA! 10
O «0 U U
, ■- O 0)
SOS»
H ■» ^ dl

^■■0

os

I H *Ö

h-r4

> aj s

si o D

m ^ >

ifl 4) B
u u h
a> M tn
ß 3 o
a> o ^
O 03 cu

IÜ u iJ u
ai o in 9

■H 3 * JJ P-
a> u ><

>, S,0) a» ^
M M 4» 4J
q} 14 -H *H i
MM J3 i
XI Ä OJ U
■H -H 10 M
r-t rH 3 10

h a

JJ >
ß u>
U J3
e-n

in IQ in ui
ß R C ß

Ifl (11 in 111
ß ß ß ß T3

o o o o
o o o o
ui in in in

OOOO
OOOO
in in m m

>

OHHO
OHHO
OHrtO
OrtHO

rH O O rH
H O O H
rH O O H
H O O rH

3

2
X X X XJ XX*X

oo XJ X «XXX «'
O H O rH
O H O iH
O iH O H
O H O rH

O rH O rH
O rH O H
OHOH
O rH O rH 9

OOHH
OOHH
O O tH H
OOHH

O O H rH
OOrtH
OOHH
OOHH

00
m OOOO iHrHHiH

1-Hi-li-ti-l iHrHrHrH
HHHrldPrIHHH

JJ en

(0 H

u w

01 ^f

£• QJ
•nJJ
Vt-H

> 01 S

"n.ß X

JJ V O
ü 3TJ *0 iH
<y ■<* 0J 01 «*H "

-n ß jj 4J E
O H (fl 10 41 CD
o <0 M rl u h
- •• 4) 01 U 01
SUCC30
B 3 4> ai o u
•S-jüüüiD.
•* 3
I H I I I 1
I (0 1 I I I

OJ M
E oi

•H ß
JJ o

st
0) 0

J3 U
U —
m »
— U
. 3
Ölt

3?
JJ JJ
w c
• <u

Ä£
3 ■ _
« cn.
U 1 M

2«*
■H.H 3
•S J3i-I

äJ;

0]3

U M
3 0*

•* um
H v. > >
H XI 0"

•rtJJ
§M-H

hJ > OJ 3
W3 E J

OtX! 0 C
3-nXi E

-n S^
J3H X
O <Ö M

•0 TJ M
0> <D<u ••
JJ JJ E
(0 R} 0) (0
M M U In
Ü 41 M Dl
ß C 3 0
ÖJ 4) O U
OÜ WO»

) W H
ZEH

IIOO<
J 2 H K

iHrtONn

■ * < W ß ß |
.; j o (0 (0 ■■

i < o '
JJJJJJJJJJ4JJJJJJJC
ßßßßßßCßßC
0IO)O>OI4iOi0)0)4t
ßßßßßßßßßt
OOOOOOOOO!

ooooooooo;
ÜUUOOUUUU1

01
ai a

ALU8wc 278

II
JJ JJ
3 m 3
0 14 O

l<u 1
•rl JJ-H
Öl O 01 -
0 O 0)
HCHI

01 It

•0 + ß
m

X X Tl
C
«1 _
U o
V ii

c x X u
o S o

-H - - 1 - - et oi H i~ JJ Q u U
X 1 xtc

M at a> JJ o> 01 JJ
1 0 ss H

TJ
o ,u_

l

0
IS C «' M ._ — o H

H O 4J ü J 0> JJ 3 3.A
U s Ü °.ti £ 01 H M 0 P.H 1

41 ■ »o TJ ■ TJ TJ TlTJ MTJTJ ux J3 U
go ß «in c a n ß fi

ID 8 id «A
M *4 JJ k M

(1 0) V JJ tt uu ana 3 <N
Ärtöoocjoo C O 0 c Ü o « I V) C* V S v p IH OJ

JC w a CJ
a) i 'S "§ * 3

Tl ■H
ß *"* w •n u

IÖ c n
1

HH "ill

ninnin w w en ID III U VI
ß ß ß c fi a a a fl fi ß c fi fi ß fi ß fi a

O O O O o o o o o o © o o o ©
o o o o o o o

in in in in in in in in in m in in in in in

O H O H O rH o o OHH O O H O
OHHO O tH O O O tH rH
O iH O H O H O O O tH rH

O rH o o O rH tH
O rH O O OHH
O rH O O OrlH OOOH
O rH O O OHri O O H O

"OHHO OHHO OHOO OHH OOOH

X E O H O H

U O H O H

OOOH O O rH tH XXX X X X X

©OOH OOrtH © © © O X O H

fa
e © O H O rH O O rH OHO HOHO

O O O TH tH O O rH OHO

u ©OHO rH O O tH ©HO
O O O iH H O O H OHO

hOHHO H © O rH OHO
O O O H H O O H ©HO

1 rH O O H OH©

£ UOHOH O O O iH rH O O H OHO

H O O H O © O rH O O H OHH©
H O H O O O O rH O O H

9 H O O H O O O rH O O H

« O O O rH O O H
H O O r-f O O O rH O O H OHHO
HOHO O O © rH OOH

**>
<OHHO rH O O rH O O © H O O H

O H O H
0.

rH O H O OOOH

rH tH rH H o o o o H H H O O O O
O O O O HHHrl iHr^ H

L* (JPOOOOdPOOOOdPOOOOdPOOOdPHHHH

•a

<

o ■ u
H ^ -H
^. VD 01
WHO

H UTJ
H-H4J
Pi 0) w

woe
W JJ w

C U o oi
E a

j JJ
a <u
x n
> OJ
iß

O 0)
jJ o
.1

H >|t

ii

) tH M
I O 0
) JJ JJ
) u u

CO

- u

•H >

w w
W >* OtlH-Oi

JJ w id OJ (N
id a» u &
M JJ n m J
01 0> <
ß E a> m
01 Q E »H II
0l U S 0) oo

id ß JJ o>
Situ a> a II
-H JJ | S

o 0) ß u

fl 3
■H o

a a

C 3
BOO

3
UH
3 « — 0.

■W 4J O
3 >i U
t-l w 0
nj-H a
i e

I HO«
U U 0)rH-H

•rt -t 0 I 01
C5T 01HTJ 0
0 O I JJ -I,

tH tH TJ n I
I I4J T)

TJ TJ W JJ JJ
JJ JJ 3d
[ft W C 0

■H JJ
C C "3
•H.H.. gO

....HO "
OIKJO

CO JJ uooo

U 3 JJ 0 O 0
0 0 U 4J 4J JJ
4J-0 OJ C ß fi
U > 3 3 S
0» oo | O 0 O
>— UTJTJ'O

1 M-H
U 0 01H p- 00

•H 4J 0 — — —
0) U H M M U

— 0 01 1 0 0 0

O 1 |JJ U U U
-TJ u to oi a» oi

S JJ -H > > >
H W & ••
u O 0 U V

« « H JJ -H H -H fi a 1 X Oi Oi Oi
• NT) fl) 0 O 0

-H tn <T3 JJ JHr-tr-1
JJ >H " S »AJJJ w <d 1*0 "0 TJ u
-H n Ul M •■ JJ JJ JJ JJ :* oi oi oinnn
U 00
CO 3 o 0 X

0i <w
M O
3
JJ <D
U >
o> id
JJ J2
-H 01

U JJ
3 U

oo 01
3 JJ

—. id J3 -H

01 -
. f JJ JJ JJ JJ

■i J2 X X 3 3
JJ 0) 01 o o

I fl - I I I t
n m
01 M
U OJ
o a
H o

0> JJ U Ol-H
to 10 O h

id c OH nj

L) oi oi a» oi oi
■t r-i r-l r-t t-i r-4
3 J2 J2 A JHXI
tl <d id id id it
H -H -H -H -H -H
HI W U U U U
d id id id m id I
>>>>>>■;

OOH
C fi U

^ < m - - -
o o o

J t8 da - - -

j JJ JJ JJ
II tl X X X

) 01 01 0>
4 III
i JJ JJ <d ja >i
i X X I I k

01 01 JJ JJ M
I | o o <d

ffl J3 C fi o

II Jj II JJ II JJ It J
3 3 3:

« 0 ' o ■ o • <
H |0 |H I©
H U O U O U H I

M O -H H -H H -H H ••
■H - 01" 0)« Oi ■ I

0 0 0 1
0-ßHflHfiHfir
O 01 01 OJ 01

Ä J3 X Ä
or 3 3 3 3

id

ALU8wc 279

Tl 01
0) fc •** *# W « •H

lft
u EJ *»*
u >
c «1
ot.fi
h -**

•H tt>
tn fi
U ri •**. xi > •**

3 <Ti

u to
SO.

3

00

to

0,3 ^ M 03 t-
3 3 "

g.« g
W.H ^

ss s
4J o . 3

1* - s
t! tn co *0
•d i s <u
y N m
Hp. ..
«<.* u •*

X 3 (3
.. |oo o
XJ U 3_
U 3H1J
0) co 10 01

AHJffl)
0 « M M

>?|°
1 H "0 I
I <0 01 I

"Sia

U CO

ID E J
XJ O D

>

rt o> fi
MUM
01 M O
e 3 o
0> O M
U W &

I I I

o o o o
O O O O
in in in in

o o o o
o o o o
in in in in

OOHO OHHO
OOOH OHHO
OOHO OHHO
OOOH OHHO
OOHO OHHO
OOOH OHHO
OOHO OHHO
OOOH OHHO
X XX X
O X O H

XX X X
oo X X

HOHO OHOH
HOOH OHOH
HOHO OHOH
HOOH OHOH
HOHO OHOH
i-HOOH OHOH
HOHO OHOH
HOOH OHOH
HOOH O O
HOHO O O
HOOH O O
HOHO O O
HOOH O O
HOHO O O
HOOH O O
HOHO O O

H H
H H
H H

O O O O
O O O O
in in m m

HOOH
HOOH
HOOH
HOOH
HOOH
HOOH
HOOH
HOOH

X X XX
X X XX
OHOH
OHOH
OHOH
OHOH
OHOH
OHOH
OHOH
OHOH

O O H H
O O H H
O O H H
O O H H
O O H H
O O rl H
O O H H
O O H H

O O O O
P H H H H 0C

H O O O O

Ä >
u
2
u
3
u

00

's
"2

.Kin fc ••
o *o
»•H

■ST
■n
OJ XI

a
^T1
u a)
OS
AJ
c
a; **
B •

j- ID
•nil

1 M-H
D -N. U
1 > 0» 3
WgJ

It .fi O 0
3-n.fi X
■* M -^>

W •• «
*- ß >• Z

.. ■ 0 .Q E
4J U 0
u 3 fl fl u
at co oi oi «w "
•n3*JiJ E
n H nj «J 0> fl)
O (0 M M U M
, .. a) oi u tn

H O C C 3 0
9 3 oi ai o M

— — o

SS

M U
0 o
XJ XJ
u u
01 0) > >
Jo1

-H-iH
Oi 0>
O 0

U - U
Ot O O

- > -rt >
U I Oi I

■H u o u
01-H H -H
O Oi 10»
H o fl o

iHXJr
I

flfl
XJ XJ

_ 1I
XJ fl TJ
ti] XJ XJ XJ

tQ 3 M

XJ >
C VO
Ol.fi ft n

•H
[fl Fi
I) o

43 >
J3

F
h -fi

'XJ

•H C
XJ

fl ^
X ()
u
in

3
ot
M
3
XJ

00
3
H
<o

U

XJ XJ
Hi C

3 r-
CO Oi
3 Cn
H H
(0
^H
U W
:* u-

CO
3 CM

fO ••

Äin
M ■•
0 VD
3 H

*•"
T)
a* ja

0)
M-r4

'S-0,

u tn > ot 3
3 »BJ

co 0) Ä 0 O
3 3-I-.J3 X
H S M ^ >

■n 3

O "3

3 C >* »
co 0J3 E
3 0
H T3 *0 U
id at 0)«j. ••
^ xJ XJ E
A4 (0 «0 01 H
u u u u ^
o ci at u oi
3 C C 3 O
^ 01 OJ o u

•0 ra n
> C M (N M
a « o M o

•H fi ß O X
XJ XJ XJ XJ XJ
C C C fi C
oi oi at o> oi
a e fi fi c
o o o o o

0 0 0 0 0
u u u o u

HAMMING4 280

ft N en

Qift b

OS PS «
— ooo
m XXX
o —.

u oi K oi
o ooo
u
0) ~
> (N m m

u1 XXX

K oioi
OOO
XXX

HrtiJH

W 10 ß w

o; pj« p;
oo o o
X X X X

xxx —
II II II

T-t CJ ro ^f

XX XX

X i-t c
— ,0-H
n m oi

U «
o >

WWW

fi (N m <■

QQDQ

5 M
C

E
E s

ooooooooooooooooo
ooooooooooooooooo
inininininininininininmini/iinmm

OHÜHOHHHOHOOOHOHO
QOHOOflHOOOHrHHOiHOflO

OflOHHflflflOOflflOOOOO

OOftOOOHOftOHOHOOOfl
XOOO.HiHflHOOflflOOflOf-IH

OOOOOOOflfti-lflOOOflftH
dPOOOOOOOOOOOflfliHftflHt!

u
3
w
3

1. s

e

i s u

a i > ü J3 vo E

>. ATI .8

•H ■
AJ -a"
B O ■■ ■■
U C C >■ "

'J S OJ QJ «w

^ •• «J « 0)
•S Tf U M U
9 Di a> at u
J B C C 3
Q -H a) a) o
a: e c3 o w
> E

HAMMING4 281

u
9

C

1
E
es

6

HAMMING8 . 282

 -c
wwwMMWMwinwww >
ßCCßCCßCCßße ^j
oooooooooooo 4J
OOOOOOOOOOOO fc*
tnininmininintflinintnin S3

HHHHOHHrtHHHr)
OOOOOOOrHOOOO
rHHr-IHrHHrHOOHHH
OOOOOOOOOOOO
OOOOOOOOOrHOO
HHHHriHHrlHOOH
OOHOOOOOOOOO
OOOOOWOOOOOO

i-IOOOOOOOi-tOOi-»
OOtHOOOOOOOHi-t
OOOOOrHOOHOHH
iHOrHOrHHOHOHOrt

HriHrlOHrtHrirlHrt
OOOOOOOOHOOO
rtHHriHHHOOHHH
OHOOOOOOOOOO

•OOOOOOOOOOHO
HHHrHrHHHHHOOrH
OOOrHOOOOOOOO
OOOOOOiHOOOOOdP

WWW

0 0 JJ •H H
4J JJ

H CD
tJ)

JJ
•H U

rH o o JJ
rH JJ JJ U
<n u u m

GJ <D > A J
> > f ■H

"O vo t 10 t-l 01

so
O
7,

x: >
rH
rH •H-rH 0>

Ö) 0» O 0) 1
oo
M
e
E
E
eg .=

U in 0 OH
OH

>
«1 JJ

1 1*0 JÜ to

5 0
t*4

00 •o *d *J
■U JJ tft

tu
ja

? K« •l-l
(A CO

JJ 00 0) Ä w
•< JJ cc? r»

-H -H O c 3 s H .^ . . •rl jJ XH C
— J3-H

& JJ x a c Ql u fl Oi
JJ ir
-H Ö H J3

•H ^M •H P. & H t: ia
Tf TT £ 01 4J •o V B» C >
i* U. 1-1 3 QJ 0) « JQ a

o o

o oo o
KXXK

in tc oo oo

« DJ B! a
o oo o
X XXX

*» *f V r-

X XX X

« PS PS PS
o o oo
X X X X

n m m\o
XX XX
K «OS OS
O OOO
X XXX

HrtMin H (N f*l ** 1/1 «> I- 00

XXXX XXXXXXXX
II II II II II II II I' I) II II II
 V V V V V V V V

r-l <N et ^ tHNm*»in\or-co

tQtanm QQQflDQQQ

riHUHHUHil
 0 0—0

««ospspspipsps
OOOOOOOO
XXXXXXXX

8
»,

00
en
B

E .. E
a

JS
J3
QJ fS

JJ
*-4

•n Tt
c
01 u.

goooooooooo
-HOOOOOOOOOO
jJtntnininminininintn

OHOrHOOOHOrH
OHOOrHOOrHiHrH
OHOrHWOrHrHOO
OrHOrHtHOOOrHH

QOHrHrHOHOHrHrH
OHrHOrHHrHHOO
OrlHOriHOOHri
OOOHOrHOOOO

OOOOiHOrHrHOH
OOHOOrHrHrHOH

CUOOO.HHHOOOO
OOOHiHHOOOO

OrHOrHOOrHOrHrH
OrHrHOrHrHOrHrHrH
OrHOrHrHOHrHOO
OrHOrHrHOOOrHrH
OOriHOHOrlHH

XOrHtHOrHrHHrHOO
OrHHOrHrHOOiHrH

dPOOOiHiHrHOOOOd

OOOOOOOOOOO
OOOOOOOOOOO
inininutinininini/imi/i

o o H o o o
H H rH rH H O
O O O O O H
O H H i-4 iH r-i
rH H r-l r-t rH fH
O O O O O O
H O r-t rH r-l H
HriHHOH

O O rH H O O

O O O rH O O
riHHrlHO
o o o o o o

1 o o o o o
(OrirtHH
H ft H rH O H

O O O O t-t
O rH rH rH O
O O O O rH
H tH H rH O
rH O O H O
O rH O O rH
rlHHHO
t-4 rH H rH O

rH O O rH O
O O rH rH O
O rH O O O
O O O H H

O O O O H
O H rH rH O
rH O O O H
rtHHHO
rH O O H O
OOHOH
rH rH rH rH O
HrlHHO

HAMMING8 283

- > 3'

oe1

M
S
E
E
ea

^
ta

•H-0 01 I

^ c* w
to «a
H U O
t-l 3 H

0 U Ä
•H 3 t2
01 U >S
0 AJ J
t-l M U

.... | B
VJfB 01 Q
0) O 10 3 W
-HS -DP.

01 U !H
>.>, 0) «I H
k M 01 iJ
nj nj -H -ri i
h M Ä i
.0.0 0) U

i^-ri n w
.-i H 3 <Ü

