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as multivariate median defined by Oja (1983) and Liu (1990), as the value of 9 which 

minimizes the expectation of a DISM of the type 6(X\, ...,Xm,9) where Xx, ...,Xm 

are independent copies of the underlying random variable X. Arcones et al (1994) 

studied the estimation of such parameters. We call the associated M-estimation MU- 

estimation (or //-estimation for convenience). When a DISM is not a differentiate 

function of 0, some complexities arise in studying the properties of estimations as well 

as in their computation. In such a case, we introduce a new method of smoothing the 

DISM with a kernel function and using it in estimation. It is seen that smoothing 

allows us to develop an elegant approach to the study of asymptotic properties and 

computation of estimations. 

1    Introduction 

Let us consider a parameter 6F e R
q of a p-variate distribution F that 

0F = argmin{A(/i,F)}, (1) 

where 

A(0,F) = EF5{X1,...Xm,n)1 (2) 

where EF(.) denotes the expectation with respect to F, 6(xi,..., xm, 9) : Rmp xRq —> R 

is a symmetric function of xi,...,xm for every fixed 9, called discrepancy measure 

(DISM), and Xx, ...,Xm are independent copies of a random variable X distributed 



as F. Let X\,...,Xn be a sample of n independent observations on X ~ F, and 

define Fn as the empirical distribution function based on Xi, ...,Xn. The /i-estimate 

of 9 = (#i,...,9q) is defined as 

0 = argmin{A(0,Fn)}, (3) 

where we define 

A(9,Fn)=(n) £        8{Xh,...Xim,9). (4) 
\m/        l<u<i2. ..<im<n 

If (4) is differentiable, then 9, an estimator of 9, is a solution of 

DA(9,Fn) = 0, (5) 

where D is the differential operator 

If the second derivative exists, we could use an iterative procedure like Newton- 

Raphson to compute the solution of (5). Further the asymptotic properties of the 

estimator can be studied without heavy assumptions. If the DISM is not differentiable, 

as in the case of median estimations of Oja (1983) and Liu (1990), then the problems 

of computing the //-estimate and deriving its asymptotic properties need complex 

approaches. To overcome the possible difficulties, we propose to smooth the DISM 

using a differentiable kernel function, which results in a differentiable function. We 



work with such a smoothed DISM and derive the asymptotic properties of the resulting 

/j-estimators. 

Let k(u): Rq —> R be a differentiable function, called a kernel function, such that 

/  k(u)du = l. (7) 

Using such a k(u), we obtain the smoothed version of the DISM by convolution 

6n(xi,...,xm,6)=      8(xi,...,xm,n-hnu)k(u)du, (8) 
JRi 

where hn is a bandwidth such that {hn,n = 1,2,...} decreasing to zero as n tends to 

infinite.. The derivative of 6n is 

D6n{xi,...,xm, 9) = jg J ? 5(xu..., xm, u)Dk (—^—) du. (9) 

Let 

An(9,Fn)=(n) £        Ufc,,...*^,*). (10) 
\m/        l<ii<t2. ..<im<n 

Then the /i-estimator obtained from the smoothed DISM is a solution of the equation 

DAn(0,Fn)=O. (11) 

Since we have the estimating equation in an explicit form, we can use standard com- 

putational techniques to obtain the estimator 6. We now investigate the asymptotic 

stochastic properties of the smoothed /x-estimator. We establish the consistency, as- 

ymptotic normality and asymptotic representation of 9 in Section 3 of the paper. 



A discussion of smoothed /i-estimator of the median when p = 1 and m = 1, and 

multivariate median of Liu (1990) is given in Section 4, and the results are compared 

with those obtained by Arcones et al (1994) using the unsmoothed DISM. 

For convenience and easy understanding of the paper, we list some symbols and 

statements in the following: 

• {Xi, i = 1,..., n} is an i.i.d. sample from a p-variate distribution F. f(x) denotes 

the density function, and Fn the empirical distribution. 

• ||.|| denotes the Euclidean norm. C denote a positive number which may take 

different values in different places. Denote an = n~l log log n. A matrix may be 

denoted as 0{.) (or o(.)) if its norm is 0(.) (or o(.)). E(.) and cov(.) denote 

mean and variance-covariance matrix respectively. 

• Conditions for changing the order between integrals, between derivatives, and 

between integral and derivative are assumed to be satisfied. 

• k(u) : Rq —> R is a function, called a kernel function, such that J^, k(u)du = l. 

{hn,n = 1,2...} is a sequence of positive numbers called bandwidth. 

• 6(x, 9) = 6{xi,..., xm, 6) : i?mp x Rq -> R is a function called a DISM (discrep- 

ancy measure) which is symmetric with respect to permutations of (x\, ...,xm). 



A kernel smoothed DISM is 

6n(x,9) = /   6(xi,...,xm,9-hnu)k(u)du. 
JRi 

Denote Aitj the element in the ith. row and jth. column of matrix A. A denotes 

the transpose of matrix A. And 

D=(w)    '   D2
 
=
 

JD
®

D
''   D

3
 = D®(D®D'), 

d       „, d2 „, <93 

n. _ /v = n6   = 

ki(u) = Dk(u),    k2 = D2k{u), 

A(9,F) = EF6(X1,...,Xm,8),    A(9,Fn)=(n) £        6(Xh,...Xim,9), 
V71/       l<ti<i2...<»m<n 

An{0,F) = EF6n(Xll...,Xk,9),    An(0,Fn)=(n) £        ^ft."4.^ 
\m/        l<ii <i2...<im<n 

G(9, F) = DA(9, F),    G(9, Fn) = DA(8, Fn), 

Gn(9, F) = DAn(9, F),    Gn(6, Fn) = DAn(9, Fn). 

S{9, F) = D2A(9, F),    5(0, F) = D2A(9, F)\e=0. 

£ = cav(E(DS{Xu ...,Xm,0) |Xi)), En = cau{E{DSn(Xlt...,Xm,0) \XX)) 

2    Existence and consistency 

Under some regularity conditions, the strong law of large numbers of [/-statistic 

implies that Gn(9, Fn) will converge to G(8, F) for every fixed 9, and therefore when 

6 



G(9, F) = 0 is solvable, the existence of solution of (11) depends on the uniform 

closeness of Gn{9, Fn) and G(9, F). 

Theorem 1 Assume: 

Al. A(9,F) has a unique minimum value, reached at 9 = 9Q. Without loss of 

generality, assume 90 = 0. G(9, F) and S(9, F) exist for 9 £ B, an open neighborhood 

of 0, and S(9, F) is continuous and positive definite for every 9 G B. 

A2. the kernel function chosen has a compact support, is three times differentiable. 

D26n(xi,..., xn, 9) is continuous and has full rank for every 9 G B. 

A3, the bandwidth sequence is such that 

lim hn = 0 (12) 
n—*oo 

limsup||G„(0,Fn)-Gn(0,F)||=O.   w.p.l. (13) 

Then for large n, (11) has a unique solution 9, w.p.l and 

lim 0 = 0,    w.p.l. (14) 
n—*oo 

Remark 1 (1) It would have been more satisfactory if the conditions under which 

A4 holds could be stated. We hope to study this problem in a future communication. 

It may be easy to verify A4 in particular cases. 

(2) When the DISM 6 is twice differentiable, no smoothing is needed. In such a 

case the bandwidth can be chosen to beO. 



Proof. We prove this theorem for q = 2 and hn^0. Similarly, one can prove the 

theorem for other cases. Note that 

Gn(9, F)= f  G{9 - hnu, F)k{u)du. (15) 
JRP 

Then by conditions A2, A3, A4 and (15) we have 

lim sup ||Gn(0,F) - G(9, F)\\ = 0. (16) 
n—*oo eeB 

By condition Al and the implicit function theorem, there exist continuous curves 

d(i) = (t,ci(t)) and C2(t) = (t,c2(t)) such that 

d(t) C B, , d(0) = (0,0),    G(G{t),F) =0,    i = 1,2. (17) 

By condition A4 and (16), it is obvious that 

lim sup \\Gn(9, Fn) - G(9, F)\\ = 0,    w.p.l. (18) 

By condition A2, (18), and the implicit function theorem, for every e > 0 and large 

n, there exist continuous curves C[{t) = (t, c'^t)) and C'2(t) = (t,c2{t)) such that 

C'MCB,    Gn(C'i(t),Fn) = 0,    i = l,2, (19) 

and 

Ci(t)-e<C<(t)<Ci(t)+e,    w.p.l,    i = 1.2. (20) 

Condition Al implies that Ci(t) and C2(t) cross with each other at a unique point 

which is (0,0).  (20) implies that C[(t) and C'2{t) cross with each other at a unique 



point in B when e is small enough. This cross point is 9. Let e -»■ 0, which requires 

n —*■ oo. Then 9 —> 0, tu.p.l, which establish the desired result. 

3    Asymptotic Normality and Asymptotic Representation 

We first consider a /i-estimator with a twice differentiable discrepancy function. Since 

we proved the existence and consistency of //-estimates under certain conditions, we 

assume 9 exists and is consistent in the following. 

Theorem 2 Assume that the DISM 6 is twice differentiable with respect to 9, and 9 

exists and is strongly consistent. Further assume: 

Bl.   Both D8(Xl,...,Xrn,9) and D26(Xi,...,Xm,9) have second order moments 

for every 9 £ B. 

B2. G(0,Fn) is not a degenerate U-statistic, i.e. E is positive definite. 

Then 

e = -S-1 (0, F)G(0, Fn) + O K),    w.p.l, (21) 

and 

n*S{0,F)9-+N(0,m2Y,),    in dist, as n^ oo. (22) 

Proof. By Taylor's theorem and condition Bl 

G(0,Fn) = G(0,Fn)-G(9,Fn) (23) 

= -DG(0,Fn)9 + O(\\9\\2),    w.p.l. 



By the law of iterated logarithm for [/-statistics, we have 

G{0,Fn) = O(ai),    w.p.l, (24) 

DG{0,Fn) = S{0,F) + o(a£),    w.p.l. (25) 

Therefore 

9 = -S-l(0,F)G(0,Fn) + 0{ci\\6\\) + 0 (\\9\\2) ,    w.p.l. (26) 

(21) is proved. Since G(0, Fn) is a non-degenerated [/-statistic, by Hoeffding's (1948) 

central limit theorem for [/-statistics, (22) is true. 

The following results are on smoothed estimates, i.e. those obtained by a smoothed 

DISM. 

Theorem 3 Assume 9 exists and is strongly consistent and 

Cl. There exist a > 0 such that 

cov (D26n(X1,.., Xm, 0)) = 0(h~a), therefore (27) 

cov (D*6n(Xu ..., Xm, 0)) = 0(h-a~2). 

C2. There is an integer I > 2 such that C4 holds, A(0, F) is I times continuously 

differentiate, and lim^oo Sn = S exists and is positive definite. 

C3. k(u) has a compact support, is twice differentiable, and there is integer r > 1 

such that C4 holds and 

r m 

/   u[\..ul™k{u)du - 0,    for lj > 0 and 0 < £ lj < r < I - 2, (28) 

10 



where u = (ui,...um). 

Cl Choose hn = o(afT*Y. 

Then 
/      4r+g \ 

e = -S-1{0,F)Gn{0,Fn) + O(atr+2a),    w.p.l, (29) 

and 

n*S{0, F)(e-E {D8n{Xu..., Xk, 0))) -► iV(0, /c2E), in dzsi. as n -> oo.      (30) 

Remark 2 J.   in condition Cl, the value of a depends on the smoothness of the 

underlying density and the DISM. In fact 0 < a < 4. 

2. In the worst case where a = 4, (29) becomes 

6 = -S-\0, F)Gn(0, Fn) + o (a?*) , w.p.l. (31) 

The remainder can be as close to 0(an) as possible if r is large enough.  In the 

best case where a = 0, (29) becomes 

6 = -S-^O, F)Gn(0, Fn) + 0{an), w.p.l. (32) 

3. In fact 

EGn(0, Fn) = [  DA(-hnu, F)k(u)du = 0(hr
n
+1). (33) 

JR1 

Condition C4 implies 

lim n*EGn(0, Fn) = 0. (34) 
n—*oo 

11 



If we replace condition C4 with limn_>oo n1/2/i^+1 exists and is greater than 0, then 

9 converges to a non-central normal distribution. 

Proof. By Taylor's theorem, we have 

Gn(0, Fn) = G„(0, Fn) - Gn(9, Fn) (35) 

= -D'Gn(0,Fn)9 + O(\\9\\2\\D3An(0,Fn)\\) 

By condition Cl and the law of iterated logarithms for [/-statistics, we have 

D'Gn(0, Fn) = D'Gn{0, F) + 0 (/At) ,    w.p.l. 

and 

£>3An(0, Fn) = D3An(0, F) + O (hn S 'at) ,    w.p.l. 

Further, by condition C3 

Consequently 

(36) 

(37) 

D'G„(0, F) = ED2 [  6{XU..., Xk, 9 - hnu)k{u)du\e^ (38) 
JRi 

= D2 [  A(9 - hnu, F)k(u)du\e=o = f  D2A(-hnu,F)k{u)du 
JRI JRi 

= S(0,F) + o(hr
n). 

Gn(0,Fn) = -S(0,F)9 + o(hr
n\\9\\) + 0 (/At||0||) (39) 

12 



+0(||ö||2) + 0(/in^  lak\\e\\2y    w.p.l. 

By the law of iterated logarithms, we have 

S(0, F)9 = -EGn{0, Fn) + 0 (a^j , w.p.l. (40) 

On the other hand 

EGn(0,Fn) = D I  E6(XU ...,Xm,9- hnu)k(u)du\9=0 (41) 
JRi 

= [  DA(-hnu,F)k{u)du = 0{hr
n
+1). 

JRi 

Therefore 

0 = 0{hr
n
+1) + O (at) = 0(d),    w.p.l. (42) 

(29) is proved. By central limit theorem of [/-statistics, we have 

n*Zn> {Gn(0,Fn) - EGn(0,Fn)) -> N(0,m2Iqxq), in dist. (43) 

(30) is proved. 

4    Applications 

We apply the asymptotic theory of ^-estimation established in previous sections to 

the median where p = 1, m = 1, and to the median of Liu (1994) using a smoothed 

version of the DISM. 

13 



4.1    Smoothed median estimator 

It is well known that the Li-norm estimator that minimizes 

i=\ 

is a sample median. Asymptotic properties of a sample median have been well studied. 

We use this example to demonstrate how well the kernel smoothing method performs. 

In this case, the observations are i.i.d. univariate random variables and m = 1. 

Without loss of generality, let us assume that the median is 0. Note that the smoothed 

discrepancy function becomes 

6JX, 6)= [ \X - 6 + hnu\k{u)du. (45) 
JR 

Denote K{x) = /f ^ k(x)dx. Then we have 

DSn{X,0)=2K^^\-lt (46) 

and 

G„(^„)=g(^(^)-i). <«) 

Theorem 4 Assume that 

Dl. /(0) > 0 and f(x) is differentiable in a neighborhood ofO. 

D2. k(u) is twice differentiable and has a compact support, and 

f uk{u)du = 0. (48) 
JR 

14 



D3. Choose the bandwidth as 

hn = 0(n 3 (log log n) 3) (49) 

Then 

1. 9 is strongly consistent, i.e. 

lim 9 = 0, w.p.l. 
n—>oo 

(50) 

2. 9 is asymptotically normal, i.e. 

2/(O)n20 —> N(0,1), in dist., as n —► 00. (51) 

3. 9 can be represented as 

0 = _L_ J2 (l - 2K (-^)) + O (n-t(loglogn)f) , w.p.l. (52) 
2/(0)77. ^_^ V \   h>n    ' ' 

Proof: We need only to verify conditions in previous theorems.  We first verify 

condition A4 in theorem 1. Other conditions are easy to be verified. Note that 

sup\Gn(9,Fn)-Gn(9,F)\ 

2snp\-}^K[—^— 
\n i=\ L K (^) f(x)dx 

2 sup I / (Fn(9 - hnx) - F{9 - hnx)) k(x)d: 
\JR 

< Csup|Fn(x) - F{x)\ < Cn~2, w.p.l. 

(53) 

15 



The last inequality is from Dvoretzky-Kiefer-Wolfowitz theorem (1956) on Kolmogorov- 

Simirnov distance (Serfling, 1980). By Theorem 1, (50) is true. Note that 

S(0,F) = ^E\X1-9\\6=0 (54) 

= lL([   {x - 0)f{x)dx - f   (x-9)f(x)dx)\9=0 
dVz \Jx>0 Jx<0 / 

= 1 (2F(9) - 1) |e=0 = 2/(0), 

and 

En = var (D6n(Xu0)) = Avar (K (J^
1
)) (55) 

= 8 I F{-hnu)K(u)k{u)du-A(J F(-hnu)k{u)duj 

-> 4F(0) f 2K(u)k(u)du - 4F2(0) = 1, as n -* oo. 
JR 

All other conditions in Theorem 3 are satisfied and note that a = 1, and r = 1. Then 

(51) and (52) follow theorem 3. 

Remark 3 1. Bahadur (1966) and Kiefer (1967) found an asymptotic representation 

of a sample quantile. The Bahadur-Kiefer representation of a sample median is given 

as 

& = £ + ^7T (1 - 2i7UO) + O (n-t(loglogn)f) , w.p.l. (56) 
2/(0 

16 



The remainder rate cannot be improved. However, under the same conditions as those 

of Bahadur-Kiefer representation, a smoothed median estimator can have a represen- 

tation with a remainder rate n~5/6(loglogn)5/6. If f(x) is r times differentiable, the 

remainder rate can be n-^r+1^r+2\\og\ognYAr+iy^r+2\ 

2. The smoothed median estimate provides an alternative computing method for 

Li-norm locations and linear models. We will carry on comparison study on compu- 

tation of Li-norm for linear programing based methods and the smoothed estimation 

method in future communication. 

4.2    Simplicial median estimator 

By the notion of data depth (Liu, 1990), the deepest point which is called sim- 

plicial median of a multivariate distribution is a generalization of the median to 

a multivariate distribution. Estimating of a simplicial median falls within the fx- 

estimation framework. Let A(x) = A(xi,...,xp+1) be a closed simplex in RP with 

vertices x\, ...,:Tp+i, and define 

l  if yeB 
IB(V) = { 

A simplicial median DISM is 

(57) 

0   if y$B 

6(x,e) = -IA{x)(9). (58) 

17 



Applying kernel smooth method, we have a smoothed DISM. 

6n{x, 6)= f  -IA(x)(0 - hnu)k(u)du. (59) 
Jw 

Theorem 5 Assume: 

El. F(x) has a unique simplicial median which is assumed to be 0 for convenience. 

f(x) is differentiable, and S(0, F) is positive definite. 

E2. k(u) has a compact support, twice differentiable and 

f  uk{u)du = 0 (60) 
Jw 

E3. hn = 0 (n"i (log log n) 4) . 

Then: 

1. 6 is strongly consistent, i.e. 

lim 0 = 0,    w.p.l. (61) 
n—»00 

2. 6 can be represented as 

0 = S-\0, F)Gn{0, Fn) + O (n-f (loglogn)*) ,    w.p.l. (62) 

3. 0 is asymptotically normal, i.e. 

n2S(0,F)£->iV(o,(p+l)2£),    indist.,    n^oo, (63) 

where E is the variance-covariance matrix of D(E(6(X,0)\Xi) 

18 



Remark 4 The asymptotic distribution we obtained is the same as Arcones et al 's 

(1994) result. Our conditions are much milder, simpler, and easy to verify. 

Proof. We need to verify condition Al in Theorem 1 and find a and r for the 

smoothed simplicial median estimator. By the conditions in the theorem, we know 

that r = 1. Note that 

E (DlhSn(X, 0)DlJn(X, 0)) (64) 

= h~4 f    f   Pr (-hnu, -hnv G A{X)) Dldlk{u)D2
i2^k{v)dudv = 0(h~2), 

J HP J HP 

and 

E {DlJltlA(^)DlJ2,iM^)) (65) 

= h~6 I    I  Pr (-hnu, -hnv G A(X)) DlJuhk(u)Dlhtl2k(v)dudv = 0(h^). 

Therefore a = 2. It is easy to show that 

lim sup\Fn(x) — F(x)\ = 0,    w.p.l, (66) 

as in the multivariate case. It is seen that 

sup||G„(0,FB)-Gn(0,F)|| 

< Csup 

(67) 

fl{9 6 A(X)) d(Fn x     x Fn) - j1(9 e A(X)) d{F x ... x F) 
p+i 

0,    w.p.l,    n —»■ 00. 

P+I 

Other conditions in Theorem 3 are easy to verify. This theorem is proved. 

19 
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