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as multivariate median defined by Oja (1983) and Liu (1990), as the value of § which
minimizes the expectation of a DISM of the type §(Xu, ..., Xm,0) where X, ..., Xp,
are independent copies of the underlying random variable X. Arcones et al (1994)
studied the estimation of such parameters. We call the associated M-estimation MU-
estimation (or p-estimation for convenience). When a DISM is not a differentiable
function of 8, some complexities arise in studying the properties of estimations as well
as in their computation. In such a case, we introduce a new method of smoothing the
DISM with a kernel function and using it in estimation. It is seen that smoothing

alloWS us to develop an elegant approach to the study of asymptotic properties and

computation of estimations.

1 Introduction
Let us consider a parameter 6z € R? of a p-variate distribution F' that
Or = arg min {A(IL7 F)} ) (1)

where

A(a’ F) = EF5(X17 -~-Xma :u')? (2)

where Er(.) denotes the expectation with respect to F', §(z1, ..., Tm,0) : R"PXR? — R
is a symmetric function of zi,...,Zm for every fixed 8, called discrepancy measure

(DISM), and X, ..., Xm are independent copies of a random variable X distributed



as F. Let Xi,...,X, be a sample of n independent observations on X ~ F', and
define F, as the empirical distribution function based on Xj, ..., X,. The p-estimate

of 8 = (61, ...,0,) is defined as
8 = argmin{A(9, F,)}, (3)

where we define

A(H,Fn)z(;)_l Y §(Xn, X, 0)- (4)

1<i; <ig...<im<n
If (4) is differentiable, then 6, an estimator of 0, is a solution of

DA, F,) =0, (5)
where D is the differential operator

0 0?2
D={— , D?= ( ) ) 6
(a“i)nq Opidu; gxq ©)

If the second derivative exists, we could use an iterative procedure like Newton-

Raphson to compute the solution of (5). Further the asymptotic properties of the
estimator can be studied without heavy assumptions. If the DISM is not differentiable,
as in the case of median estimations of Oja (1983) and Liu (1990), then the problems
of computing the p-estimate and deriving its asymptotic properties need complex
approaches. To overcome the possible difficulties, we propose to smooth the DISM

using a differentiable kernel function, which results in a differentiable function. We



work with such a smoothed DISM and derive the asymptotic properties of the resulting

p-estimators.

Let k(u): R? — R be a differentiable function, called a kernel function, such that
k(u)du = 1. 7
|, Flu)du )
Using such a k(u), we obtain the smoothed version of the DISM by convolution
Bn(1, oory Ty 0) = /R 8(21, orrs Ty 1t — ) () ds, 8)
q

where h,, is a bandwidth such that {h,,n = 1,2, ...} decreasing to zero as n tends to

infinite.. The derivative of §,, is

1 0—u
Dbp(1, oy Ty, 0) = E/n 6(m1,...,xm,u)Dk( - )du. 9)
Let
n\ "} |
A0, Fy) =< ) > (X, - X, 0). (10)
m 1<i1<ig...<im<n

Then the p-estimator obtained from the smoothed DISM is a solution of the equation
DA(6,F,) =0. (11)

Since we have the estimating equation in an explicit form, we can use standard com-
putational techniques to obtain the estimator 6. We now investigate the asymptotic
stochastic properties of the smoothed p-estimator. We establish the consistency, as-
ymptotic normality and asymptotic representation of 6 in Section 3 of the paper.
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A discussion of smoothed p-estimator of the median when p = 1 and m = 1, and
multivariate median of Liu (1990) is given in Section 4, and the results are compared
with those obtained by Arcones et al (1994) using the unsmoothed DISM.

For convenience and easy understanding of the paper, we list some symbols and

statements in the following:

e {X;,i=1,...,n}is an i.i.d. sample from a p-variate distribution F. f(z) denotes

the density function, and F,, the empirical distribution.

e ||.|| denotes the Euclidean norm. C denote a positive number which may take
different values in different places. Denote a, = n~!loglogn. A matrix may be

denoted as O(.) (or o(.)) if its norm is O(.) (or o(.)). E(.) and cov(.) denote

mean and variance-covariance matrix respectively.

¢ Conditions for changing the order between integrals, between derivatives, and

between integral and derivative are assumed to be satisfied.

e k(u) : R? — R is a function, called a kernel function, such that [ge k(u)du = 1.

{hn,n =1,2...} is a sequence of positive numbers called bandwidth.

o 6(z,0) = 6(z1, ..., Tm,0) : R™ x R? — R is a function called a DISM (discrep-

ancy measure) which is symmetric with respect to permutations of (z1, ..., Zm)-



A kernel smoothed DISM is

On(z,0) = /Rq 8(Z1y ey T, 8 — hpu)k(u)du.

e Denote A, ; the element in the 4th row and jth column of matrix A. A" denotes

the transpose of matrix A. And

D=(a(3> , D*=DeD, D3=D®(D®D'),
i 1xgq

-2 _ - O
LT 90;00; T 90,00;00,

0

Di= 5o

k1(u) = Dk(u), kg = D2k(u),

-1
A8, F) = Epd(X1, ..., Xm, 0), A(G,Fn)z(:l) Y 6(Xiy, X, 6),

1<41<%2...<tm<n

-1
An(8,F) = Epéu(X1, .., X, 0), An(6,F,) = (") S ba( Xy Xin, 6).
m 1<i1 <ig...<im<n
G(6,F) = DA(O,F), G(8,F,) = DA, F,),
Gn(6, F) = DAW(0,F), Gn(6,F,) = DALB, Fy).

S(6,F) = D*A(6,F), S(0,F) = D?A(6, F)|s=o.

S = cov (B (D8(X1, s Xmy 0) |1X1)), B = cov (E (D6(X1, ey Xy 0) |X1))

2 Existence and consistency

Under some regularity conditions, the strong law of large numbers of U-statistic
implies that G,(0, F;,) will converge to G(0, F) for every fixed 6, and therefore when
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G(9,F) = 0 is solvable, the existence of solution of (11) depends on the uniform

closeness of G, (0, F,) and G(0, F').

Theorem 1 Assume:

Al. A(6,F) has a unique minimum value, reached at 0 = 6. Without loss of
generality, assume 6y = 0. G(0, F) and S(0, F') exist for € B, an open neighborhood
of 0, and S(8, F) is continuous and positive definite for every 6 € B.

A2. the kernel function chosen has a compact support, is three times differentiable.
D?6,(x1, ..., Tn,0) is continuous and has full rank for every 6 € B.

A3. the bandwidth sequence is such that

lim h, =0 (12)
A4
lim sup ||Gn(8, F,,) — Gn(0, F)|| =0. w.p.1. (13)

700 ge B

Then for large n, (11) has a unique solution 6, w.p.1 and

lim 6 =0, w.p.l. (14)

Remark 1 (1) It would have been more satisfactory if the conditions under which
A/ holds could be stated. We hope to study this problem in a future communication.
It may be easy to verify A4 in particular cases.

(2) When the DISM § is twice differentiable, no smoothing is needed. In such a

case the bandwidth can be chosen to be 0.



Proof. We prove this theorem for ¢ = 2 and h,, # 0. Similarly, one can prove the

theorem for other cases. Note that

G0, F) = / G(0 — hwu, F)k(u)du. (15)

RP

Then by conditions A2, A3, A4 and (15) we have

lim sup ||Gn(6, F) — G(8, F)|| = 0. (16)

R0 geB
By condition Al and the implicit function theorem, there exist continuous curves
Cy(t) = (t,c1(t)) and Cao(t) = (2, c2(t)) such that

Ci(t) CB, 01(0) = (Oa 0)7 G(Oi(t)1 F) =0, =12 (17)

By condition A4 and (16), it is obvious that

lim sup||Gn(6, F,,) — G(0,F)| =0, w.p.l. (18)

™ 9eB
By condition A2, (18), and the implicit function theorem, for every & > 0 and large

n, there exist continuous curves C;(t) = (t,¢;(t)) and Cy(t) = (t,c,(t)) such that
Ci(t)C B, Gn(Ci(t),F,)=0, i=1,2, (19)
and
Ci(t) —e < Ci(t) < Ci(t) +¢, wpl, i=12 (20)

Condition Al implies that C)(t) and Cs(t) cross with each other at a unique point
which is (0,0). (20) implies that C;(t) and C,(t) cross with each other at a unique

8



point in B when ¢ is small enough. This cross point is 6. Let € — 0, which requires

n — oo. Then § — 0, w.p.1, which establish the desired result.

3 Asymptotic Normality and Asymptotic Representation

We first consider a p-estimator with a twice differentiable discrepancy function. Since
we proved the existence and consistency of p-estimates under certain conditions, we

assume 6 exists and is consistent in the following.

Theorem 2 Assume that the DISM § is twice differentiable with respect to 0, and 0
exists and is strongly consistent. Further assume:

B1. Both D§(Xy,..., Xm,0) and D?*§(Xy, ..., Xm,0) have second order moments

for every 6 € B.

B2. G(0, F,) is not a degenerate U-statistic, i.e. ¥ is positive definite.

Then
6=—-5"10,F)G(0,F,) + O(a,), w.p.l, (21)
and

n25(0, F)8 — N(0,m?%), in dist., as n — oco. (22)
Proof. By Taylor’s theorem and condition B1
G(0, F,) = G(0,F,) — G(8, F,) (23)

— —DG(0, F)8 + 0(|8]]?), w.p.1.

9




By the law of iterated logarithm for U-statistics, we have

G(0,F,) = O(a2), wp.l, (24)
DG(0, F,) = S(0,F) + O (an)  wpl. (25)

Therefore
8= 5710, F)G(0, F,) + O |I8ll) + O (II8I°), wp.1. (26)

(21) is proved. Since G(0, F,) is a non-degenerated U-statistic, by Hoefiding's (1948)
central limit theorem for U-statistics, (22) is true.

The following results are on smoothed estimates, i.e. those obtained by a smoothed

DISM.

Theorem 3 Assume 0 exists and is strongly consistent and

C1. There exist a > 0 such that
cov (D*6,(X1, y Xm,0)) = O(h;®), therefore (27)
cov (D*6n(X1, ., Xm, 0)) = O(h;*7%).

C2. There is an integer | > 2 such that C/ holds, A(6, F) is | times continuously
differentiable, and lim, o £, = X exists and is positive definite.

C3. k(u) has a compact support, is twice differentiable, and there is integer r > 1

such that C/ holds and

/R ullluﬁ;;‘k(u)du =0, forl;>0and0< le <r<l-2, (28)

j=1

10



where u = (uy, ...Um).
C4. Choose h, = O (a%’_*i) ..
Then

~ Arie
5= —S1(0, F)Gn(0, Fy) + O (a,‘i'“")  wpl, (29)

and
n35(0,F) (0 — E (D8n(X1, s Xiy 0))) — N(0,kS), in dist. asn— co.  (30)

Remark 2 1. In condition C1, the value of o depends on the smoothness of the
underlying density and the DISM. In fact 0 < o < 4.

2. In the worst case where o = 4, (29) becomes

£l

6 = —S71(0, F)G,(0, F,.) + o (a,',“) , w.p.l. (31)

The remainder can be as close to O(a,) as possible if v is large enough. In the

best case where a =0, (29) becomes

6 = —S7Y0, F)Gn(0, F,) + O(an), w.p.1. (32)

3. In fact

EG,(0,F,) = /R  DA(~huu, F)k(u)du = O(™). (33)

Condition C4 implies

lim nfEG,(0, F,) = 0. (34)

n~—00

11



If we replace condition C4 with lim,_,n'/2h7+! exists and is greater than 0, then

) converges to a non-central normal distribution.
Proof. By Taylor’s theorem, we have

Gn(0> Fn) = Gn(07 Fn) - Gn(aa Fn) (35)

= —D'Gn(0, )8+ O (16112 | D*An(0, F)|)
By condition C1 and the law of iterated logarithms for U-statistics, we have

D'GA(0, F) = D'Ga(0, F) + O (h;%a:%)  wpl. (36)

D3AL(0,F,) = D3A,(0,F) + O (h; %"1a3f> , w.p.l. (37)

Further, by condition C3
D'G,(0, F) = ED? /R 8(X1, e Xiy 0 — hutt) ()| (38)

— D? /R A8 = hnt, Fk(w)duloo = /R  D2A(~hyu, F)k(u)du
= 5(0, F) + o(K").

Consequently
Gal0, F) = =50, B + ol 181) + O (¥ ad 01 (39)

12



+O(oIR) +0 (h*aHIBI?), wpal.

By the law of iterated logarithms, we have

S(0, F)8 = —EGn(0, Fy) + O (an) wpl. (40)
On the other hand
EG.(0,F,) =D /R E6(X1, ., Xm,0 — hy)k(w)duloo (41)
= [ DA(=hu, F)k(w)du = O(h).
(42)

Therefore
B=0(h ) +0 (an> —0(ad), wpl.

(29) is proved. By central limit theorem of U-statistics, we have
-1
ni%n? (Gu(0, F,) — EGH(0, F,)) — N(0,m?I,,), in dist. (43)

(30) is proved.

4 Applications
We apply the asymptotic theory of p-estimation established in previous sections to

the median where p = 1, m = 1, and to the median of Liu (1994) using a smoothed

version of the DISM.

13



4.1 Smoothed median estimator

It is well known that the L,-norm estimator that minimizes

> 1X: -6
i=1

(44)

is a sample median. Asymptotic properties of a sample median have been well studied.

We use this example to demonstrate how well the kernel smoothing method performs.

In this case, the observations are i.i.d. univariate random variables and m = 1.

Without loss of generality, let us assume that the median is 0. Note that the smoothed

discrepancy function becomes
5a(X,0) = /R X = 0 + houlk(u)du.

Denote K(z) = [Z k(z)dz. Then we have

Dé6,(X,0) = 2K (0 ; X) ~1,

and

Gn(0,F,) = fj (2}( (9 ;nX") - 1) .

i=1
Theorem 4 Assume that
D1. f(0) > 0 and f(x) is differentiable in a neighborhood of 0.

D2. k(u) is twice differentiable and has a compact support, and

/Ruk(u)du =0.

14
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D38. Choose the bandwidth as
h, =0 (n‘%(log logn)%) .

Then

1. 8 is strongly consistent, i.e.

lim 6 = 0, w.p.1.

n—oo
2. 9 is asymptotically normal, i.e.
2f(0)n3d — N(0,1), in dist., as n — 0.

3. 8 can be represented as

1 & ~X;

6=

20 & (1-2x ( h): )) +0 (nt(oglogn)f) , wp.L

(49)

(50)

(51)

(52)

Proof: We need only to verify conditions in previous theorems. We first verify

condition A4 in theorem 1. Other conditions are easy to be verified. Note that

sup |G (0, Fn) — Gn(0, F)|

e () (5 e

— 2sup l /R (Fa(8 = hat) — F(8 — haz)) k(z)dz

= 2sup

< Csup |Fy(z) — F(z)| < Cn%, wp.l.

15
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The last inequality is from Dvoretzky-Kiefer-Wolfowitz theorem (1956) on Kolmogorov-

Simirnov distance (Serfling, 1980). By Theorem 1, (50) is true. Note that

S0, F) = 2 BIX, ~ o= (54)
- ([ e~ 0f@s [~ 8)f@ds)lomo
d
=5 (2F(0) = Dlo=0 = 2£(0),
and
-X;
%, = var (D6n(X1,0)) = dvar (K ( - )) (55)

o (G2 e [ () )
—3 /R F(—hnu) K (w)k(u)du — 4 ( /R F(—hnu)k(u)du)2
— 4F(0) /RZK(u)k(u)du —4F%*(0) =1, as n — oo.

All other conditions in Theorem 3 are satisfied and note that & = 1, and r = 1. Then

(51) and (52) follow theorem 3.

Remark 3 1. Bahadur (1966) and Kiefer (1967) found an asymptotic representation

of a sample quantile. The Bahadur-Kiefer representation of a sample median is given

as

1

fn=§+%

(1-2F,(&)+0 (n‘%(loglog n)%) , w.p.l. (56)

16




The remainder rate cannot be improved. However, under the same conditions as those
of Bahadur-Kiefer representation, a smoothed median estimator can have a represen-
tation with a remainder rate n~%%(loglogn)/®. If f(z) is r times differentiable, the
remainder rate can be n~4r+D/4r+2)(jog log n)(r+1)/(4r+2),

2. The smoothed median estimate provides an alternative computing method for
L,-norm locations and linear models. We will carry on comparison study on compu-

tation of Li-norm for linear programing based methods and the smoothed estimation

method in future communication.

4.2 Simplicial median estimator

By the notion of data depth (Liu, 1990), the deepest point which is called sim-
plicial median of a multivariate distribution is a generalization of the median to
a multivariate distribution. Estimating of a simplicial median falls within the p-
estimation framework. Let A(z) = A(zi,...,Zp+1) be a closed simplex in RP with

vertices 1, ..., Zp+1, and define

1 if yeB
Ip(y) = . ‘ (57)
0 if y¢ B
A simplicial median DISM is
5(:1:, 9) = —IA(m)(Q). (58)

17



Applying kernel smooth method, we have a smoothed DISM.

8z, 0) = /RP —Iae) (8 — hyu)k(u)du.

Theorem 5 Assume:

(59)

E1. F(z) has a unique simplicial median which is assumed to be 0 for convenience.

f(z) is differentiable, and S(0, F) is positive definite.

E2. k(u) has a compact support, twice differentiable and

/RP uk(u)du =0

E3. hp,=0 (n'i (loglog n)%) :
Then:

1. 8 is strongly consistent, i.e.

lim 6 =0, w.p.l.

n—0Q0

2. 9 can be represented as

alw

6 = S0, F)Gn(0,F,) + O (n_% (loglogn)
3. 8 is asymptotically normal, i.e.
n%S(O, F)§ —» N (0, (p+ 1)22) , in dist.,, n— oo,
where ¥ is the variance-covariance matriz of D(E(6(X,0)|X1)

18
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Remark 4 The asymptotic distribution we obtained is the same as Arcones et al’s

(1994) result. Our conditions are much milder, simpler, and easy to verify.

Proof. We need to verify condition Al in Theorem 1 and find a and r for the
smoothed simplicial median estimator. By the conditions in the theorem, we know
that r = 1. Note that

1,71

E (D}, ;,6n(X,0)D%, ;,6n(X,0)) (64)

— ht /Rp /R Pr(—hut, —hnv € A(X)) D3, k(u) D3, , k(v)dudv = O(h7?),

i1,0
and
E (D} ;, 1,6n(X,0) D}, , 1,6n(X,0)) (65)

e /m /m Pr (—hnts, —hav € A(X)) D3, , k(u)D3 . ;. k(v)dudv = O(h7*).

Therefore o = 2. It is easy to show that

lim sup |F,(z) — F(z)| =0, w.p.l, (66)

n—oo T

as in the multivariate case. It is seen that
sup HGn(O, Fn) = Gn(9, F)H (67)

< Csup /1(9 € AX)) d(Fp % ... x Fy) —/I(ee A(X)) d(F x ... x F)
\T/ \—;;———/

— 0, wpl, n-— oo

Other conditions in Theorem 3 are easy to verify. This theorem is proved.

19
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