
Computer Science

Carnegie
Mellon

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

Extending Cache Coherence to Support Thread-Level
Data Speculation on a Single Chip and Beyond

J. Gregory Steffan Christopher B. Colohan
Todd C. Mowry
December 1998
CMU-CS-98-171

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

Thread-Level Data Speculation (TLDS) is a technique which enables the optimistic parallelization of ap-
plications despite ambiguous data dependences between the resulting threads. Although TLDS is mostly
managed by software, hardware provides two key pieces of functionality: (i) detecting dependence violations,
and (ii) buffering speculative side-effects until they can be safely committed to memory. To provide this
functionality we present an extension to invalidation-based cache coherence which is both scalable and has
a minimal impact on hardware complexity. We explore the design space in depth and find that our baseline
architecture is sufficient to exploit speculative parallelism.

This research is supported by a grant from NASA. Todd C. Mowry is partially supported by a Faculty Development
Award from IBM.

19990528 013
DISTRIBUTION STATEMEMT A

Approved for Public Release
Distribution Unlimited

Keywords: C.1.2 Multiple Data Stream Architectures (Parallel Processors), B.3.2 Cache Memories, C.4
Performance of Systems

CMU-CS-98-171
Computer Science Department
School of Computer Science, Carnegie Mellon University

CMU-CS-98-171

Extending Cache Coherence to Support Thread-Level
Data Speculation on a Single Chip and Beyond

J. Gregory Staggan, Christopher B. Colohan, Todd C. Mowry

December 1998

CMU-CS-98-171.ps
CMU-CS-98-171.pdf

Keywords: Multiple data stream architectures (parallel processors),
cache memories, performance of systems

Thread-Level Data Speculation (TLDS) is a technique which enables the
optimistic parallelization of applications despite ambiguous data
dependencies between the resulting threads. Although TLDS is mostly
managed by software, hardware provides two key pieces of functionality:
(i) detecting dependence violations, and (ii) buffering speculative
side-effects until they can be safely committed to memory. To provide this
functionality we present an extension to invalidation-based cache
coherence which is both scalable and has a minimal impact on hardware
complexity. We explore the design space in depth and find that our
baseline architecture is sufficient to exploit speculative parallelism.

22 pages

while (contimie_cond) {

x = hash[indexl] ;

hash[index2] = y;

} '"

Processorl Processor2 Processor3 Processor4

Epoch 1 Epoch 2
ü,pocnj>

Epoch 4
hash[3]

hash[10] =

attempt „commit ()

hash[19]
Violation!

hash[21]

Epoch 3

= hash[33]

attempt__commit ()

hash[30]

attempt_commit ()

= hash[10]

hash[25] =

X
atteaqpt_caxmnit ()

Redo

Epoch 5
Epoch 6

= hash[30]
= hash[9]

Epoch 7

hash[27]

Epoch 4 ^ :

= hash[10]

hash[25] =

attampt_conmiit ()

(a) Pseudo-Code (b) TLDS Execution

Figure 1: Example of TLDS execution.

1 Introduction

As the number of transistors on a state-of-the-art microprocessor chip continues to increase, architects
are exploring new ways to translate these additional resources into improved performance beyond today's
superscalar paradigm. One option is to integrate multiple processors onto a single chip. While single-chip
multiprocessing is attractive from an implementation point of view [9], it is only useful for accelerating a
given application if that application contains parallel threads. To avoid placing an additional burden on
programmers, the most desirable method of parallelizing an application would be for the compiler to create
the parallel threads automatically. Unfortunately, despite the significant progress which has been made in
automatically parallelizing numeric applications, compilers have had little or no success in automatically
parallelizing the ubiquitous non-numeric applications due to their complex control flow and memory access
patterns.

1.1 Thread-Level Data Speculation
Thread-Level Data Speculation (TLDS) [15] and other similar techniques [10, 13] allow the compiler to
automatically parallelize portions of code in the presence of statically ambiguous data dependences, thus
extracting parallelism between whatever dynamic dependences actually exist at run-time. To illustrate how
TLDS works, consider the simple while loop in Figure 1(a) which accesses elements in a hash table. This
loop cannot be statically parallelized due to possible data dependences through the array hash. While
it is possible that a given iteration will depend on data produced by an immediately preceding iteration,
these dependences may in fact be infrequent if the hashing function is effective. Hence a mechanism that
could speculatively execute the loop iterations in parallel—while rewinding and re-executing any iterations
which do suffer dependence violations—could potentially speed up this loop significantly, as illustrated in
Figure 1(b). Here a read-after-write (RAW) data dependence violation is detected between epoch 1 and epoch
4, so epoch 4 is rewound and restarted to produce the correct result. This example demonstrates the basic
principles of TLDS—it can also be applied to regions of code other than loops.

In this example we assume that the program is running on a shared-memory multiprocessor, and that
some number of processors (four, in this case) have been allocated to the program by the operating system.
Each of these processors is assigned a unit of work, or epoch, which is a single loop iteration here. Epoch
numbers are used to specify and maintain the ordering of memory references, and their order corresponds to
the original sequential execution of the program. Any violation of the original program order is detected with
the assistance of the TLDS mechanism. To help the reader, a glossary is provided in Figure 2 to summarize
the terminology we use.

Epoch: The unit of execution within a program which is executed speculatively.

Epoch Number: A number which identifies the relative ordering of epochs within an OS-level thread. Epoch numbers can
also indicate that certain parallel threads are unordered.

Homefree Token: A token which indicates that an epoch is the least speculative, and therefore cannot suffer a violation.
If the epoch has not already suffered a violation when it receives the homefree token, it may commit its speculative
modifications to memory.

OS-level Thread: A thread of execution as viewed by the operating system—multiple speculative threads may exist within
an OS-level thread.

Speculation Level: The level in the cache hierarchy below which speculative data references are handled by coherence.

Speculative Context: The state information associated with the execution of an epoch. This includes the register contents
and cache state.

Speculative Region: Part of a program where TLDS is performed.

Speculative Thread: A light-weight thread that is used to exploit parallelism within an OS-level thread.

Violation: A thread has suffered a true data dependence violation if it has read a memory location that was later modified
by a sequentially earlier epoch.

Figure 2: Glossary of terms for TLDS.

This paper focuses on the design of a cache coherence protocol. Further examples of the use of TLDS, and
an exploration of the interface between TLDS hardware and software can be found in a previous technical
report [14].

1.2 Related Work

The Multiscalar architecture [5, 13] was the first to provide hardware support for thread-level speculation.
While the Multiscalar approach is effective at exploiting speculative parallelism, it originally had two impor-
tant disadvantages: the ring architecture is over-specialized; and memory disambiguation is performed by a
large, centralized structure (the ARB). SVC [6] is a cache coherence scheme which overcomes the central-
ization of the ARB, but it uses a snoopy bus based protocol which does not scale beyond a tightly coupled
system.

There have since been several other proposals [6, 7, 15, 18] describing distributed approaches, the most
relevant being the Stanford Hydra [7]. Similar to the TLDS approach, Hydra adds memory disambiguation
support to a general-purpose, chip multiprocessor (CMP), and uses software to manage threads and spec-
ulation. However, there are two important distinctions between Hydra and TLDS. First, each processor in
a Hydra CMP has a special write-buffer for speculative modifications, while our implementation of TLDS
uses the first-level caches to buffer speculative state. Second, to ensure that data dependences are preserved,
Hydra employs write-through coherence and snoops the write buffers on all stores, while we use write-back
invalidation-based coherence. The previous schemes do not scale beyond a tightly coupled system such as
single-chip or snoopy bus based multiprocessor. We believe that irregular scientific applications will be fertile
ground where TLDS can offer benefits, since large data sets will make true dependences between threads
sparse. Demonstrating the power of TLDS with such applications will be future work, and is beyond the
scope of this paper.

1.3 Contributions

The protocol we propose is the first truly scalable solution for TLDS. Since this coherence scheme is an
extension of invalidation-based coherence, it will work wherever invalidation-based coherence can be used.
This means that it can be used in a wide variety of multiprocessor architectures including multithreaded
processors, chip-multiprocessors, more traditional multiprocessors, and even software distributed shared
memory multiprocessors. Implementing our scheme has a minimal impact on the area and complexity of the
augmented multiprocessor. This paper presents a detailed description of how our coherence scheme can be
realized, and is the first to evaluate this type of scheme using a collection of R10000 class processors.

The remainder of this paper is organized as follows: Section 2 describes how an invalidation-based cache
coherence scheme can be extended to detect data dependence violations, and Section 3 gives a possible

Processor 1 (m g = sx) Processor 2 Time

Epoch 5

(5) STORE *q = 2;

LI Cache

Epoch 6
Obeoome_speculative ()

LOAD a = *p;

(3) attempt_commit ()

LI Cache

FAILS!

Epoch # = 5

Violation? = False

x = 1—^2 T T
1 SLSM

Epoch # = 6

Violation? = TRUE
Speculatively

Loaded?

Speculatively
Modified?

Read
Request

Figure 3: Using cache coherence to detect a RAW dependence violation.

hardware implementation of that scheme. We evaluate the performance of our implementation in Section 4,
and conclude in Section 5.

2 Coherence Scheme

To support TLDS, we must perform the difficult task of detecting data dependence violations at run-time.
Since we perform memory operations in parallel which may not be independent, the addresses of all memory
references generated by separate speculative threads must be compared to ensure that data dependences
are preserved. A key element of data speculation is detecting when a data dependence has been violated.
This detection is straightforward for instruction-level data speculation, since there are few load and store
addresses to compare. However, for thread-level data speculation the task is more complicated since there
are many more addresses to compare, and since the relative interleaving of loads and stores from different
threads is not statically known.

One solution is to use an invalidation-based cache coherence scheme. In invalidation-based coherence,
a cache line must be owned exclusively before it may be modified. Exclusive access is achieved by sending
out invalidations to all other caches owning a copy of the line. To extend this mechanism to detect data
dependence violations, we simply need to track which cache lines have been speculatively loaded. Whenever
a less speculative epoch modifies a cache line that we have speculatively loaded (as indicated by an arriving
invalidation), we know that a violation has occurred.

2.1 Example

To demonstrate how invalidation-based cache coherence can be extended to track data dependences, we
give an example of the detection of a read-after-write (RAW) dependence violation. Recall that a given
speculative load violates a RAW dependence if its memory location is subsequently modified by another
epoch such that the store should have preceded the load in the original sequential program. As shown in
Figure 3, we augment the state of each cache line to indicate whether the cache line has been speculatively
loaded and/or speculatively modified. For each cache, we also maintain a number which indicates the
sequential ordering ofthat epoch with respect to all other epochs (the epoch number), and a flag indicating
whether a data dependence violation has occurred.

In the example, epoch 6 performs a speculative load, so the corresponding cache line is marked as
speculatively loaded. Epoch 5 then stores to that same cache line, generating an invalidation containing its
epoch number. When the invalidation is received, three things must be true for this to be a RAW dependence

(a) General architecture

(F) CD
|c| lei

Physically

Private
Caches

PhyslcaUy
Shared
Caches

jo op
Processor
Actions

External
Actions

(b) Simplified architecture

I I P)(P)(p)(p)l ^»r K P)(P){ P)(P

Cache

N
c C C • • • C C C

1 1 1 1 "T H-^
lolereoimecttoD Network

1 1 1 ^^ -1- T-

,
M M M • • • M M M

c
• • •
External
Actions

Cache

Shared-Memory D

Figure 4: Base architecture for the TLDS coherence scheme.

violation. First, the same cache line that the invalidation is for must be present in the cache. Second, it
must be marked as speculatively loaded. Third, comparison of the current epoch number with the epoch
number of the invalidation must tell us that the invalidation came from a less speculative epoch. Since all
three conditions are true, a RAW dependence has been violated: epoch 6 is notified by setting the violation
flag. As we will show, the full coherence scheme must handle many other cases, but the overall concept is
analogous to this example.

In the sections that follow, we define the new speculative cache line states and the actual cache coherence
scheme, including the actions which must occur when an epoch becomes homefree or is notified that a
violation has occurred. We begin by describing the underlying architecture assumed by the coherence
scheme.

2.2 Underlying Architecture

The goal of our coherence scheme is to be both general and scalable. We want the coherence mechanism
to be applicable to any combination of single-threaded or multithreaded processors and shared-memory
architectures, not necessarily restricted to multiprocessors on a single chip.

For simplicity, we assume some shared-memory architecture that supports an invalidation-based cache
coherence scheme where all hierarchies enforce inclusion. Figure 4(a) shows a generalization of the underlying
architecture. There may be a number of processors or perhaps only a single multithreaded processor, followed
by an arbitrary number of levels of physically private caching. The level of interest is the first level where
invalidation-based cache coherence begins, which we will call the speculation level.

We generalize levels of the system below the speculation level, as shown in Figure 4(a), to be an in-
terconnection network providing access to main memory with some arbitrary number of levels of caching.
All memory references originating from a processor that reach the speculation level will be referred to as
processor actions, and all coherence events that are received from lower levels of the system (i.e. further away
from the processor) will be referred to as external actions.

The amount of detail shown in Figure 4(a) is not necessary for the purposes of describing our cache
coherence scheme. Instead, Figure 4(b) shows a simplified model of the underlying architecture. The
speculation level described above happens to be a physically shared cache and is simply referred to from now
on as "the cache". Above the caches, we have some number of processors, and below the caches we have an
implementation of cache-coherent shared memory.

Although coherence can be recursive, speculation only occurs at the speculation level. Above the specu-
lation level (i.e. closer to the processors), we maintain speculative state and buffer speculative modifications.
Below the speculation level (i.e. further from the processors), we simply propagate speculative coherence
actions and enforce inclusion.

Table 2: Processor-initiated actions
Table 1: Shared cache line states

State Description

I invalid
E exclusive
S shared
D dirty (implies exclusive)
DSpL dirty and speculatively loaded (implies exclusive)
SpLE speculatively loaded exclusive
SpLS speculatively loaded shared
SpME speculatively modified exclusive
SpMS speculatively modified shared
SpLME speculatively loaded and modified exclusive
SpLMS speculatively loaded and modified shared

Action Description

PRM processor read miss
PRH processor read hit
PWM processor write miss
PWH processor write hit
PRMSp processor read miss speculative
PRCMSp processor read conflict-miss speculative

(a more speculative epoch has already
modified the same cache line)

PRHSp processor read hit speculative
PWMSp processor write miss speculative
PWCMSp processor write conflict-miss speculative

(another epoch has already speculatively
modified the same cache line)

PWHSp processor write hit speculative

2.3 Line State in the Cache

A standard invalidation-based cache coherence scheme can be in one of the following states: invalid (/),
exclusive (E), shared (5), or dirty (D). The invalid state indicates that the cache line is no longer valid
and should not be used. The shared state denotes that the cache line is potentially cached in some other
cache, while the exclusive state indicates that this is the only cached copy. The dirty state denotes that the
cache line has been modified and must be written back to external memory. When a processor attempts to
write to a cache line, exclusive access must first be obtained—if the line is not already in the exclusive state,
invalidations must be sent to all other caches which contain a copy of the line, thereby invalidating these
copies.

To detect data dependences and to buffer speculative memory modifications, we extend the standard set
of cache line states to include the seven new states as described in Table 1. The new states denote four
orthogonal properties of a cache line: whether it is dirty; whether it has been speculatively loaded (SpL);
whether it has been speculatively modified (SpM); and whether it is exclusive (E) versus shared (S).

Although these properties are orthogonal, some combinations are not allowable such as dirty and specu-
latively modified. When a cache line is dirty, the cache owns the only up-to-date copy of the cache line, and
must preserve it without speculative modifications so that the line can eventually be supplied to the rest of
the memory system. Conversely, when a cache line is in the speculatively modified state, we may need to
discard any speculative modifications to the line if the speculation ultimately fails. Since it would be difficult
to isolate both dirty and speculatively modified portions of the same line in a traditional hardware cache
(especially if these portions can overlap), it is difficult to allow both of these states to co-exist.

Maintaining the notion of exclusiveness is important since a speculatively modified cache line that is
exclusive (SpME or SpLME) does not require invalidations to be sent out when modifications are committed
to memory. It is also interesting to note that the states SpMS and SpLMS imply that the cache line is both
speculatively modified and shared. This means that it is possible for more than one modified copy of a cache
line to exist as long as no more than one copy is non-speculative and the rest of the copies are speculative.

The dirty and speculatively loaded state (DSpL) indicates that a cache line is dirty and that the cache
line is the only up-to-date copy. Since a speculative load cannot corrupt the cache line, it is safe to delay
writing the line back until a speculative store occurs.

For speculation to succeed, any cache line with a speculative state must remain in the cache until the
corresponding epoch becomes homefree. Speculative modifications may not be propagated to the rest of the
memory hierarchy, and cache lines that have been speculatively loaded must be tracked in order to detect
whether data dependence violations have occurred. If a speculative cache line must be replaced, then this
is treated as a violation causing speculation to fail and the epoch is re-executed—note that this will affect
performance but not correctness.

2.4 Processor Actions

We now describe an implementation of an invalidation-based cache coherence scheme extended to detect data
dependence violations. First, we list all possible actions that are originated by the processors, the shared

Type

External

Shared
Cache
Controller

Action
Table 3: Coherence Actions and Conditions

G.ER
G.EREx
G.EWb
G.EU

G.EUp

Conditions

G.EUpSp

Description

Generate external read.
Generate external read exclusive.
Generate external writeback (the line is no longer cached).
Generate external update-line (like a write, except the line remains
cached).
Generate external upgrade request (request for ownership).
This sends invalidations (El) to all appropriate processors.

G.ERExSp

G.Viol
G.Suspend

G.Combine

G.ORB
G.FlushORB

G.Progress

Ack=Excl

Exposed

Olde

Replicate

Generate external upgrade request speculative (request for ownership
which may not be granted). This sends speculative invalidations (EISp)
to all appropriate processors.
Generate external read exclusive speculative (exclusiveness may not
be granted)

Generate violation (a definite violation).
Generate a suspend (a violation which may be avoided by suspending).
May be conservatively replaced with a real violation (G. Viol)
Combine this cache line with the external copy (if combining is not
supported then ignore this action).
Add current tag to ORB (ownership required buffer).
For each tag in the ORB (ownership required buffer) generate an EUpSp.
If cache line combining is supported, otherwise an EUp. If any actions
follow, they must wait until G.FlushORB completes.
If epoch E, which has speculatively modified the cache line, is
more speculative than the current epoch then squash epoch E,
otherwise G.Suspend for the current epoch (ensuring forward progress).

Acknowledgement from the previous action indicates that the cache line
is exclusive.
False if the epoch stored to the memory location before the load
occurred, true otherwise.
True if the epoch which generated the action is older (less
speculative) than the current epoch.
True if the cache line may be replicated in the local cache (the
actions that follow apply to the replicated cache line).

cache controller, or the external memory system. Table 2 lists the possible actions which are originated by
the processor. Processor-initiated actions are divided into reads and writes, hits and misses, and speculative
and non-speculative accesses.

Misses are further divided into regular misses and conflict-misses. For states other than invalid (/), a
regular miss indicates that the current cache line must be replaced. A conflict-miss indicates that two different
epochs—executing on processors that physically share the cache or on one multithreaded processor—have
accessed the same cache line in an unacceptable manner. The following scenarios differentiate acceptable
access patterns from those that are unacceptable in a shared cache.

• Two different epochs may both speculatively read the same cache line.

• If an epoch speculatively modifies a cache line, only a more speculative epoch may read that cache
line afterwards. This effectively allows us to forward speculative modifications between two properly
ordered epochs, and is only guaranteed to be correct for epochs executing on processors that share a
cache. If a less speculative epoch attempts to read the cache line, a read conflict-miss will result.

• Only one epoch may speculatively modify a given cache line. If an epoch attempts to speculatively
modify a cache line that has already been speculatively modified by a different epoch, a write conflict
miss (PWCMSp) results.

2.5 Cache Actions

Table 3 describes all coherence actions and conditions. The first five actions (G.ER, G.EREx, G.EWb,
G.EU, and G.EU) all behave as in a standard coherence scheme, and the next two are new speculative actions
to support TLDS. These speculative actions both piggyback the epoch number of the requester. G.EUpSp

sends speculative invalidations to all appropriate processors, and G.ERExSp requests a copy of a cache line.
For both speculative actions, exclusiveness may not be granted if the requesting epoch is more speculative
than the receiving epoch, as determined by comparison of the epoch numbers.

If two epochs speculatively modify the same cache line, there are two ways to resolve the situation. One
option is to simply squash the more speculative epoch. Alternatively, we could allow both epochs to modify
their own copies of the cache line and combine them with the real copy of the cache line as they commit, as
is done in a multiple-writer coherence protocol [2, 3]. The action G. Combine indicates that the current cache
line should be combined with the copy stored at the next level of caching in the external memory system. If
combining is not supported, the G. Combine action is simply ignored.

When an epoch becomes homefree, it may allow its speculative modifications to become visible to the
rest of the system. However, the epoch must first acquire ownership of all cache lines that are speculatively
modified but not in an exclusive state. Since a search over the entire cache for such cache lines would take
far too long and delay passing the homefree token, we propose instead that the addresses of cache lines
requiring ownership be stored in an ownership required buffer (ORB). The G.ORB action adds the current
cache line address to the ORB.

When an epoch becomes homefree, it generates an upgrade request for each entry in the ORB, as
described by the G.FlushORB action. If cache line combining is supported, G.FlushORB may instead
generate speculative upgrade requests for each line address in the ORB. Since write-after-write (WAW)
dependences are not true dependences, they may be eliminated through renaming. The more speculative
of two epochs which both speculatively modify the same cache line does not need to be squashed, and the
speculative modifications may be combined later. A speculatively modified cache line may not change to the
dirty state until G.FlushORB completes.

The two conflict-misses described previously in Table 2 do not necessarily have to result in violations.
If cache line replication is supported, some violations can be avoided. However, when replication is not
possible we must be careful which epoch is suspended or squashed, since the wrong choice could result
in deadlock or even livelock. The action G.Progress only suspends or squashes more speculative epochs,
ensuring that speculation makes forward progress. If epoch E which speculatively modified the cache line is
more speculative than the current epoch, then G.Progress squashes epoch E; otherwise, G.Progress performs
G.Suspend for the current epoch.

The last group of actions are actually conditions evaluated by the coherence mechanism. Since we want
to maintain as exact information as possible about exclusiveness, external upgrade requests will indicate in
the acknowledgement whether exclusiveness is obtained (Ack=Excl).

Support may exist to detect whether a load is an upwards exposed use—i.e. the use of a location without a
prior definition of that location by the same epoch [1]. We only have to consider a location to be speculatively
loaded if it is an upwards exposed use, otherwise the load cannot cause a data dependence violation. To
differentiate these cases, we will check the condition Exposed.

Some speculative actions received from the external memory system will have different effects depending
on whether they were originated by a less speculative epoch or a more speculative epoch. The Older condition
is true if the epoch which generated the action is older than the current epoch and false otherwise.

Finally, the condition Replicate is true if a cache line is successfully replicated where successful replication
means that another copy of the same cache line (with the same cache tag) may be created. If cache line
replication is not supported then Replicate is always false.

2.6 Other Actions

Table 4 describes several miscellaneous actions. The first group are actions which are received from the
external memory system. The action HFree indicates that an epoch has received the homefree token and
has processed any pending incoming coherence actions, and hence memory is consistent with the rest of
the system. At this point, the epoch is guaranteed not to have violated any data dependences with less
speculative epochs and can therefore commit all of its speculative modifications by changing their cache
states to dirty (D).

The action Viol indicates that the current epoch has either suffered a violation or been cancelled. All
cache lines which have been speculatively modified must be invalidated (changed to the invalid state), and
all other speculative cache lines may be changed back to an appropriate non-speculative state.

Action

ER
EREx

EI
EISp

ERExSp

HFree
Viol
-►X
(A)?(B):(C)

Table 4: Other actions
Description

External read.
External read exclusive (copy of line is supplied
with ack).
External invalidate.
External invalidate speculative. Only invalidate the
line if this from a less speculative epoch.
External read exclusive speculative (copy of line
is supplied with ack).

Epoch has become homefree.
Epoch has suffered a violation or been cancelled.
Transition to new state X.
If A then B else C.

2.7 State Transition Diagram

We describe the coherence scheme for supporting TLDS using a state transition diagram, given in Table 5.
For each current shared cache line state and each possible action we give the appropriate result actions and
the transition to the new state.

We now investigate several "action x state" pairs of interest.

• Some actions cannot occur in a given state. For example, PRH x / cannot occur since an invalid
cache line cannot yield a hit. A conflict-miss like PWCMSp can only occur if the cache line has been
speculatively modified. By definition, a conflict miss occurs when another epoch, sharing the same
cache, has already speculatively modified the cache line in question—i.e. it is in one of the states SpME
SpMS, SpLME, or SpLMS.

• An example of the basic detection of a read-after-write dependence violation is illustrated by EISp x SpLS.
If the epoch which generated the speculative upgrade request is older than the current epoch, then a
dependence violation has occurred and the processor is notified (G. Viol).

• This version of the coherence scheme is implemented with the objective of slowing down a non-
speculative thread as little as possible. For this reason, a cache line in a non-speculative state is
not invalidated when a speculative upgrade-request occurs, as shown by EISp x E. Alternatively, the
cache line could be relinquished in order to give exclusiveness to the speculative thread, possibly elimi-
nating the need for that thread to obtain ownership when it becomes homefree. These two options must
be analyzed experimentally in future work to decide which approach results in better performance.

• PWHSp x D generates an update (G.EU), ensuring that the only up-to-date copy of a cache line is
not corrupted with speculative modifications. Conversely, PRHSp x D simply changes to the dirty
and speculatively loaded state (DSpL), since the cache line will not be corrupted by a speculative load.

• PRMSp x SpME results in a G. Suspend: the cache line which has been speculatively modified must be
replaced to continue, and this is not allowable. We may either squash the epoch, or suspend until the
epoch becomes homefree at which point we may allow the speculative modifications to be written-back
to the external memory system.

• ER x SpLME demonstrates the case when exclusive ownership of a cache line which has been specu-
latively modified is lost. The tag for this cache line is added to the ORB by the action G.ORB so that
ownership may be obtained quickly when the epoch becomes homefree.

• HFree x SpLME demonstrates waiting for G.FlushORB to complete, which guarantees ownership of
all speculatively modified cache lines, before changing to the dirty (D) state. In HFree x SpLMS,
after waiting for G.FlushORB to complete, the speculatively modified cache line is combined with the
current external copy before changing to the dirty state.

Table 5: Cache state transition diagram,
denotes if A then B else C.

—>X represents the transition to new state X, and (A)?(B):(C)

Action
Cache Line State

I E s
PRM G.ER; (Ack=Excl)?(->E):(-+S); G.ER; (Ack=Excl)?(-+E):(->S); G.ER; (Ack=Excl)?(->E):(-»S);

PRH - -+E; -»S;

PWM G.EREx; -+D; G.EREx; -►D; G.EREx; -+D;
PWH - -+D; G.EUp; ->D;
PRMSp G.ER; (Ack = Excl)?(-»SpLE):(->SpLS)i G.ER; (Ack=Excl)?(->SpLE):(->SpLS); G.ER; (Ack=Excl)?(-fSpLE):(-) SpLS);
PRCMSp - - -
PRHSp - -►SpLE; -►SpLS;
PWMSp G.ERExSp;

(Ack=Excl)?(-»SpME):(G.ORB; ->SpMS);
G. ERExSp;
(Ack=Excl)?(-+SpME):(G.ORB; -tSpMS);

G.ERExSp;
(Ack=Excl)?(-+SpME):(G.ORB; -►SpMS);

PWOMSp - - -
PWHSp " -»SpME; G.EUpSp;

(Ack=ExcI)?(-»SpME):(G.ORB; -►SpMS);

ER - -*S; -+S;
EREx - -*■!; -Hi
El - -Hi -Hi
EISp - -»S; -+S;
EUp - -♦■I; -Hi
ERExSp - -t-S; -►Si

HFree -Hi G.FIushORB; -►E; G.FIushORB; -►S; G.FIushORB;
Viol -H; -+E; -»■Si

Action
Cache Line State

D DSpL SpLE

PRM G.EWb; G.ER; (Ack=Excl)?(->E):(-fS); G.Suspend; G.Suspend;
PRH -tD; -►DSpL; -►SpLE;
PWM G.EWb; G.EREx; ->D; G.Suspend; G.Suspend;
PWH -+D; G.Viol; G.Viol;
PRMSp G.EWb;

G.ER; (Ack=Excl)?(-»SpLE);(-+SpLS);
G.Suspend; G.Suspend;

PRCMSp - - -
PRHSp -»DSpL; -»DSpL; -»SpLE;
PWMSp G.EWb; G.ERExSp;

(Ack=Excl)?(->SpME):(G.ORB; -»SpMS);
G.Suspend; G.Suspend;

PWCMSp - - -
PWHSp G.EU; -t-SpME; G.EU; -►SpLME; -»SpLME;

ER G.EU; -fS; G.EU; -tSpLS; -+SpLS;
EREx G.EWb; -Hj G.EWb; G.Viol; G.Viol;
El G.EWb; —»-Ij G.EWb; G.Viol; G.Viol;
EISp -tD; G.EU; -l-SpLS; (01der)?(G.Viql):(-»SpLS);
EUp G.EWb; -+I; G.EWb; G.Viol; G.Viol;
ERExSp G.EU; -»S; G.EU; ->SpLS; (Older)?(G.Viol):(-»SpLS);

HFree -(D; G.FIushORB; -►D; G.FIushORB; -►E; G.FIushORBi
Viol -tD; -+D; -►E;

Action
Cache Line State

SpLS SpME SpMS

PRM G.Suspend; G.Suspend; G.Suspend;
PRH -►SpLS; G.Viol; G.Viol;
PWM G.Suspend; G.Suspend; G.Suspend;
PWH G.Viol; G.Viol; G.Viol;
PRMSp G.Suspend; G.Suspend; G.Suspend;
PRCMSp - (Replicate)? (~+SpLSJ:(G. Progress); (Replicate)?(—►SpLS): (G. Progress);
PRHSp -►SpLS; (Bjposed)?l-»SpLME);(-tSpME)i (Exposed)?(-»SpLMS):(->SpMS);
PWMSp G.Suspend; G.Suspend; G.Suspend;
PWCMSp - (Replicate) ?(-*-SpMS):(G. Progress); (Replicate)? (-+SpMS)r(G.Progress);
PWHSp G.EUpSp; (Ack=Excl)?

(-»SpLME);(G.ORB; -vSpLMS);
-►SpME; -►SpMS;

ER -►SpLS; G.ORB; ->SpMS; -»SpMS;
EREx G.Viol; G.Viol; G.Viol;
El G.Viol; G.Viol; G.Violi
EISp (01der)?(G.Viol):(-tSpLS); G.ORB; -»SpMS; -►SpMS;
EUp G.Viol; G.Viol; G.Viol;
ERExSp (Older)?(G.Viol):(-»SpLS); G.ORB; -»SpMS; -►SpMS;

HFree -►S; G.FIushORB; G.FIushORB; ->-D; G.FIushORB; G.Combine; —►D;
Viol -►S; -+I; -H;

Action
Cache Line State

SpLME SpLMS
PRM G.Suspend; G.Suspend;
PRH G.Viol; G.Viol:
PWM G.Suspend; G.Suspend;
PWH G.Viol; G.Viol;
PRMSp G.Suspend; G.Suspend;
PRCMSp (Replicate)".'(—►SpLMS) :(G. Progress); (Replicate)?(->SpLM5):(G. Progress);
PRHSp -►SpLME; -►SpLMS;
PWMSp G.Suspend; G.Suspend;
PWCMSp (Replicate)?(—►SpLMS) :(G. Progress); (Replicate)?(-»SpLMS):(G. Progress);
PWHSp -►SpLME; -►SpLMS;
ER G.ORB; -»SpLMS; -►SpLMS;
EREx G.Viol; G.Viol;
El G.Viol; G.Viol;
EISp (Older)?(G.Viol):(G.ORB; -tSpLMS); (01der)?(G.Viol):(-+SpLMS);
EUp G.VioU S.Viol;
ERExSp (Older)?(G.Viol):(G.ORB; ->SpLMS); (Ö!der)';(G.Viol):(-»SpLMS);
HFree G.FIushORB; ->D; G.FIushORB; G.Combine; —►D;
Viol -»I; -»I;

2.8 Coherence in the External Memory System

Coherence with support for speculation in the external memory system is quite similar to regular coherence.
As listed in Table 4, we require the following standard coherence actions: read (ER), read-exclusive (EREx),
invalidate (El), and upgrade requests (EUp). A read is a request for a copy of the cache line, and a read-
exclusive is a request for a copy of the cache line as well as ownership. An upgrade request does not require
a copy of the cache line. An invalidation, which is used to maintain inclusion, causes the cache to give up
the appropriate cache line.

Two new speculative coherence actions are supported by the external memory system: read-exclusive
speculative (ERExSp) and upgrade request speculative (EUpSp). Both of these actions behave similarly to
their non-speculative counterparts with the exception of two important distinctions. First, the epoch number
of the requester is piggybacked along with the request in both cases, so the receiver can make decisions based
on the relative ordering of the requesting epoch. Second, both actions are only hints and do not compel the
cache to relinquish ownership. As long as these signals are propagated, this layer of the coherence scheme
may be applied recursively to deeper levels of the external memory system, thus making speculation support
scalable.

2.9 Forwarding Data Between Epochs

A key requirement of TLDS is the ability to forward data between epochs. For register values, forwarding
is required for correctness and must be performed. For memory locations, such as scalars, forwarding may
be performed to avoid frequent data dependence violations but is not required for correctness. There are
three cases where forwarding is used. In the first case, initial information is forwarded from a thread to its
child upon creation, including the initial register values as well as any other data needed to start the new
epoch. This type of forwarding could occur through shared memory or possibly by some other faster means
of communication.

The second and third cases both involve forwarding values at some point after the initialization of the child
epoch. The second case involves forwarding locations that do not have ambiguous data dependences, such
as registers or scalars which have provably not had their address taken. The third case is forwarding in the
midst of ambiguous memory references. Both cases require the ability to issue a non-speculative store in the
midst of speculative memory references, possibly implemented as an uncached store. Producer/consumer
style synchronization is also required, and could be implemented by synchronizing on specially allocated
memory locations, or by implementing something with similar functionality to full/empty bits [4, 8, 11].

As shown in Figure 5(a), an inefficient way to forward a memory location from one epoch to another is
simply to allow a data dependence violation to occur—the epoch which consumes the value is re-executed
once the producing epoch has committed its speculative modifications. This causes some code to be re-
executed unnecessarily.

Figure 5(b) shows how forwarding works at a high level for the second case, when the location to be
forwarded has no ambiguous data dependences. First, a shadow copy of the location to be forwarded must
be created—since the forwarded values are speculative, we do not want them to corrupt the correct value
which is stored in the real location. The epoch then accesses the shadow location as though it were the
original location, and synchronizes before the first use and and after the last definition of the location in
question. Once an epoch is no longer speculative, the value in the shadow location is copied into the real
location since this is now the true and current value. Should a violation occur due to some other data
dependence, the shadow location must be restored -with the most recent committed value. The epoch can
then be re-executed.

The third case is difficult: forwarding a location that might have ambiguous data dependences. What
makes this case difficult is the possibility that ambiguous loads and stores might occur between separate
epochs or even within an epoch. The mechanisms required to successfully forward values in the midst of
ambiguous memory references are beyond the scope of this study, and so in our evaluation we conservatively
allow violations to occur, guaranteeing correctness.

10

Epoch i

load a = X
Violation^

store X = a-

attempt_commit ()

Epoch i+1

load a = X

store X = a

X
attempt_connn±t (}

Redo Epoch i+1 J

load a = X

store X = a

attempt_conmit ()

Region Start
Tcopy shadow_X = X

Epoch i

wait()
load a = shadow_X

Epoch i+1

uc_store shadow_X = a
signal 0 _

atteapt_commit ()
copy X = shadow_X

wait()
load a = shadow_X

uc_store shadow_X = a
signal()

attempt_coii&nit ()
copy X = shadow_X

(a) Data Dependence Violation (b) Violation Avoided Through Forwarding

Figure 5: Simple forwarding, when the forwarded location has provably not had its address taken (uc_store
represents an uncached store).

3 Implementation

In this section, we describe an implementation of our coherence scheme, starting with a hardware implemen-
tation of epoch numbers. We then give an encoding for cache line states, and describe the organization of
epoch state information. Finally, we describe how to allow multiple speculative writers and how to support
multiple epochs per processor.

3.1 Epoch Numbers

In previous sections we describe the use of epoch numbers in determining the relative order of two epochs. In
the coherence scheme, an epoch number is associated with every speculative cache line and every speculative
coherence action. The implementation of epoch numbers must address several issues. First, we must be
able to differentiate between two epochs from independent programs or even from independent chains of
speculation within the same program. We solve this problem by having each epoch number consist of two
parts: a thread identifier (TID) and a sequence number. When the shared cache controller receives external
speculative actions, it only applies them to speculative cache lines which have a matching TID. If the TID's
match, then Older is computed by comparing the sequence number portion of the epoch numbers. If the
TID's do not match, then Older is false.

The second issue concerns this comparison—we need the comparison of two epoch numbers to be fast. We
also have the opposing desire to have large epoch numbers so that we may have many epochs. One solution
is to have large integer epoch numbers (such as 32 bits or even larger) and then use signed differences to
determine the relative order of the corresponding epochs. Signed differences have the benefit of preserving
comparative order when the sequence numbers wrap around.

A third issue is storage. We do not want to store a 32 bit epoch number in the tag of every cache line.
We will show that this is not necessary and that the epoch number may be stored in a single location for
each epoch.

3.2 Cache Line State Encoding

We encode the speculative cache line states given in Table 1 using five bits as shown in Figure 6(a). Two
bits, speculatively loaded (SL) and speculatively modified {SM), differentiate speculative states from non-

11

(a) Cache line state bits

Bit Description
Va valid
Di dirty
Ex exclusive
SL speculatively loaded
SM speculatively modified

(c) Hardware support
Speculative

Context
Speculative

Context
Active Context Information

(b) State encoding
State SL SM Ex Di Va
I X X X X 0
E 0 0 1 0
S 0 0 0 0
D 0 0 X 1
DSpL 1 0 X 1
SpLE 1 0 1 0
SpLS 1 0 0 0
SpME 0 1 1 1
SpMS 0 1 0 1
SpLME 1 1 1 1
SpLMS 1 1 0 1

Epoch Nnmber

Cancel Handler

Violation Handler
Address

Violation Flag

BB

BB

' Epoch Number

I Cancel Handler
1 Address
1 Violation Handler
! Address

Violation Flag

SL SM

BB

BB
ORB

i

' Context Pointer '
I I 1 ,
, More Speculative Mask ,

i IDD-DPI i

Cache Line State
SM[0..N-1] ElDIV» Digs

Figure 6: Encoding of LI cache line states

speculative states. Figure 6(b) shows the state encoding which is designed to have the following two useful
properties. First, when the SM and SL bits are reset, the state will change from a speculative state to the
corresponding non-speculative state as required when an epoch becomes homefree. Second, when a violation
occurs we want to invalidate the cache line if it has been speculatively modified—this can be accomplished
by setting its Va bit to the AND of its Va bit with the inverse of its 5Mbit (i.e. Va = Va & \SM).

3.3 Implementation of Speculative State

A naive implementation of the cache line state would be to place the speculative state bits and epoch number
in each cache line. One problem with this approach is that there will be significant overhead associated with
storing an epoch number with every cache line. We also want to avoid traversing the entire cache, for example
when we invalidate all cache lines that have been speculatively modified.

Speculative state will be arranged as shown in Figure 6(c). We wire the SL bits as well as the SM bits
so that the entire column of bits can be simultaneously reset using a single control signal. We also wire the
SM bits to the corresponding Va bits so that all cache lines which have been speculatively modified may
be simultaneously invalidated when an epoch is squashed. Also associated with the speculative state are an
epoch number, an ownership required buffer (ORB), the addresses of the cancel and violation routines, and
a violation flag which indicates whether a violation has occurred.1

3.4 Support for Cache Line Combining

If an epoch has speculatively modified a cache line and another epoch sharing the same cache line on a
different processor modifies its own copy, the coherence scheme will not signal a violation. However, when
the less speculative epoch commits its speculative state, the more speculative epoch will receive an upgrade
request and will therefore fail. Since these write-after-write (WAW) or output dependences are not true
dependences, we would like speculation to succeed in their presence.

As discussed in Section 2.5, we need to provide support for multiple-writers. One possibility is to replicate
the SM column of bits so that there are as many SM columns as there are words or even bytes in a cache line,
as shown in Figure 6(c). We will call this fine-grain SM bits. When a write occurs, the appropriate SM bit is
set. If a write occurs which is of lower granularity than the SM bits can resolve, we must conservatively set
the SL bit for that cache line since we can no longer perform a combine operation on this cache line—setting
the SL bit ensures that a violation is raised if a less speculative epoch writes the same cache line.

1 The cancel and violation routines are used to manage unwanted and violated epochs respectively. See [14] for more details.

12

Original Cache Line

SM[0..N-1] 0 0 0 0

Data A B C D

Epoch i Epoch i+1

SM[0..N-1] 1 0 0 1 SM[0..N-1]

Data

1 0 1 0

Data E B C F G B H D

Combined Copj

SM[0..N-1] 0 0 0 0

Data G B H F

Figure 7: Support for cache line combining.

Figure 7 shows an example of cache line combining. Two epochs speculatively modify the same cache line
simultaneously, setting the fine-grain 5Mbit for each location modified. Once the cache lines are committed,
they are combined with the last committed cache line and the modifications of the most recent epoch are
given precedence. In the example, both epochs have modified the first location. Since epoch i+1 is more
speculative, its value G takes precedence over the value E.

False violations can be a source of performance loss in TLDS. Since dependence violations are caused by
speculative loads, or more specifically by cache lines that are in a speculatively-loaded state, then tracking the
notion of speculatively loaded more precisely will result in fewer false violations. As described in Section 2.5,
a cache line only needs to change to a speculatively loaded state (setting the SL bit) for speculative loads
that are exposed. If fine-grain SM bits are implemented, a speculative load is considered exposed only if it
has not yet been defined by the current epoch, which is indicated by the 5Mbit for that address not being
set. This support should therefore reduce the number of false violations detected.

3.5 Support for Multiple Epochs per Processor

We would like to support multiple speculative contexts on a single processor for three reasons. First, we
want to maintain speculative state across OS-level context switches so that we can support TLDS in a
multiprogramming environment. Second, we can use multiple speculative contexts to allow the processor
to execute another epoch when the current one is suspended (i.e. causes a suspending violation). Finally,
multiple speculative contexts will allow TLDS to run under simultaneous multithreading (SMT) [16].

The coherence scheme as described in Section 2.7 supports multiple epochs per processor. Epochs from
the same program may access the same cache lines, except in two cases: two epochs may not modify the
same cache line, and an epoch may not read the modifications of a more speculative epoch. The coherence
scheme avoids these cases either through the use of cache line replication, or else by suspending or violating
the appropriate epoch.

Figure 6(c) shows hardware support for multiple epochs per processor where we implement several spec-
ulative contexts. The Ex, Di, and Va bits for each cache line are shared between all speculative contexts,
but each speculative context has its own SL and SM bits. If fine-grain SM bits are implemented, then only
one group of them is necessary per cache line (shared by all speculative contexts) since only one epoch may
modify a given cache line. The single SM bit per speculative context indicates which speculative context
owns the cache line, and is simply computed as the OR of all the fine-grain SM bits.

To determine whether a load or store results in a conflict miss requires comparing epoch numbers and
speculative state bits with other speculative contexts. Since epoch number comparisons may be slow, we
want to use a bit mask which can compare against all speculative contexts in one quick operation, so
we maintain a more speculative mask indicating which speculative contexts contain epochs that are more
speculative than the active epoch. Read and write conflict-misses can also be detected quickly using a

13

Table 6: Simulation parameters.

Pipeline Parameters

Issue Width 4
Functional Units 2 Integer, 2 FP,

1 Memory, 1 Branch
Reorder Buffer Size 32
Integer Multiply 12 cycles
Integer Divide 76 cycles
All Other Integer 1 cycle
FP Divide 15 cycles
FP Square Root 20 cycles
All Other FP 2 cycles
Branch Prediction Scheme 2-bit Counters

Memory Parameters
Line Size 32B
Instruction Cache 32KB, 2-way set-assoc
Data Cache 32KB, 2-way set-assoc
Unified Secondary Cache 2MB, 2-way set-assoc
Data Cache Banks 2
Data Cache Fill Time
(Requires Exclusive Access)

4 cycles

Miss Handlers 8 for data, 2 for insts
Main Memory Bandwidth 1 access per 20 cycles
Total Miss Latency to
Secondary Cache

10 cycles

Total Miss Latency to
Local Memory

75 cycles

similar mechanism [14]. To allow fast switching between speculative contexts, we will use an active context
to indicate which speculative context is currently active.

Another feature of the coherence scheme which supports multiple epochs per processor is the ability to
perform cache line replication. Replication is necessary to avoid suspension or violation whenever there is a
conflict miss (see Section 2.4). For more details about how replication is implemented, see [14].

4 Performance Evaluation

We now quantify the performance of our scheme using detailed simulation. The goal of this performance
study is to quantify how well our architecture supports TLDS, not to prove that TLDS can offer compelling
performance benefits as shown previously [6, 10, 15]. For this reason, we concentrate on four applications
with different behavior and explore in detail the effects of different aspects of our scheme.

4.1 Experimental Methodology

There are several steps involved in simulating the TLDS execution of an application. First, we compile the
application with -02 optimization using the standard MIPS C compiler under IRIX 6.4. Second, we profile
the application to find suitable regions for speculative execution—usually loops with a reasonable amount
of computation per iteration that have infrequent loop-carried data dependences. Third, we annotate the
binary to indicate the start and end of each epoch, and the points at which the epochs should synchronize
(to allow data forwarding).

Our simulator reads traces generated by the MIPS pixie utility [12] and breaks the sequential trace
into parallel traces according to our annotations. The simulator models out-of-order, superscalar processors
with issues widths of four instructions similar to the MIPS R10000 [17]. Register renaming, the reorder
buffer, branch prediction, instruction fetching, branching penalties, and the memory hierarchy (including
contention) are all modeled, and are parameterized as shown in Table 6. Because our simulator is relatively
fast, we are able to simulate all applications to completion.

Our baseline architecture has four tightly-coupled, single-threaded processors, each with their own pri-
mary caches, and sharing a single secondary cache among all processors. Our simulator implements the
coherence scheme described earlier in Section 2, and modeling the hardware support described in Section 3.
Although we do model communication latency and the limited bandwidth associated with flushing the ORB
(as described later), we assume that the interconnection network has sufficient bandwidth such that coherence
traffic is not otherwise delayed due to contention.

The simulated execution model makes several assumptions with respect to the management of epochs and
speculative threads. Epochs are assigned to processors in a round-robin fashion, and each epoch must spawn
the next epoch with a delay of the specified communication latency (10 cycles for the baseline architecture).
This same delay applies to synchronizing two epochs when forwarding occurs, and to sending out upgrade
requests when flushing the ORB. For the baseline architecture, we only allow one upgrade request to be
issued per cycle. Violations are detected through polling, so an epoch runs to completion before checking
if a violation has occurred. When an epoch suffers a violation, we also squash all epochs that are more
speculative.

14

Table 7: Applications and Speculative Regions.

Suite Application
Input

Data Set

Speculative
Region

(src_fUe:line)

Number
of Times
Unrolled

Coverage
(% sequential

cycles)

NAS-Parallel buk 64kB buk.f:105, do loop
buk.f:117, do loop
buk.f: 123, do loop

7
3
0

0.6%
31.8%
33.4%

Spec92 compress test .in compress.c:787, while loop 0 84.1%
sc loadal interp.c:1001, for loop 0 62.5%

Spec95 ijpeg specmun.ppm jccolor.c:138, for loop
jidctint.c:171, for loop
jidctint.c:276, for loop

4
1
1

9.9%
6.0%
5.0%

Table 8: Application performance on baseline architecture.

Application

Average
Number of
Instructions
per Epoch

Overall Region
Speedup on

Baseline
Architecture

Coverage
(% sequential

cycles)

Program
Speedup on

Baseline
Architecture

buk 50.0 1.59 65.8% 1.35
compress 74.9 1.05 84.1% 1.04
sc 417.0 2.90 62.5% 1.74
ijpeg 297.2 2.38 20.9% 1.15

In some cases, our region and program speedups differ from those in previous work [15]. There are
three reasons for this discrepancy. First, we are not rescheduling the code to minimize the critical paths
for forwarding (which had a large performance benefit in previous work [15]), so we must execute the code
as compiled for a sequential machine. Second, we are now modeling superscalar processors, so all caches
(instruction, data, and branch prediction) may suffer from decreased locality. Third, good speedup is more
difficult to achieve when comparing against a superscalar execution of the sequential application.

Table 7 lists the applications that are used in this study. Buk is an implementation of the bucket sort
algorithm, compress performs data compression, sc computes a spreadsheet, and ijpeg performs various
algorithms on images. We perform speculation on loops that were hand-selected as good candidates for
TLDS (TLDS is not limited to loops, but other speculative regions are more difficult to implement [14]).
To decrease the relative overheads of TLDS, some of the loops have been unrolled, as indicated in Table 7.
(Note that the "'number of times unrolled' column in Table 7 corresponds to the number of additional copies
of the original loop body that exist after unrolling; hence a value of zero indicates that the loop has not been
unrolled, a value of three indicates that there are four instances of the original loop body, etc.)

4.2 Baseline Performance

Table 8 summarizes the performance of each application on the baseline architecture. We achieve a
variety of region speedups ranging from 5% to 190%. Program speedups are limited by coverage (the portion
of the application that performs TLDS execution), and range from 4% to 74%. Sc and ijpeg achieve the
best region speedups in part because their large epochs help hide TLDS overheads.

In the results that follow, we will only analyze the performance of speculative regions so that we may focus
on the performance of our architecture during speculative execution. Figure 8(a) shows processor utilization
for a varying number of processors. Each bar is broken down into seven categories explaining what happened
during all potential graduation slots.2 The top four sections represent non-graduating slots attributed to the
following TLDS-related reasons: waiting to begin a new epoch (spawn); waiting for synchronization for a

2 The number of graduation slots is the issue width (4 in this case) multiplied by the number of cycles multiplied by the
number of processors.

15

(a) Processor Utilization

e
(3

spawn
sync
homefree
spec_fail
istall
doache_miss
busy

2 3 4* 5 6
Upeg

(b) Impact on Execution Time

1 2 3 4* 5
buk

:s

$S

S
1 2 3 4* 5

Upeg
6 7 8

spawn
sync
homefree
spec_fail
istall
dcache_miss
busy

Figure 8: Performance of TLDS on a varying number of processors. The number of processors in our baseline
architecture is 4, as indicated by the *. Part (a) is scaled to the number of processors multiplied by the
number of cycles, and shows the utilization across all processors. Part (b) is shows normalized execution
time.

forwarded location (sync); waiting to become homefree (homefree); and graduating speculative instructions
for an epoch that is violated (specJail). The remaining sections represent regular execution: the busy section
is the number of slots when instructions actually graduate and commit; the dcache^miss section is the
number of non-graduating slots attributed to data cache misses; and the istall section is all other slots where
instructions do not graduate.

As we increase the number of processors and begin to speculatively execute in parallel, the heights of the
bars increase—if we were achieving linear speedup, we would expect the bars to remain the same height.
Although we do not achieve linear speedup, the growth of the bars for sc and ijpeg is slow, indicating that
they scale well. Compress does not scale as well: as the number of processors increases, compress spends
more time waiting for epochs to spawn and performing speculation that fails.

In Compress, we synchronize around a particular set of references to a location to decrease the number of
violations that occur (effectively forwarding the value). Interestingly, the time spent waiting for forwarded
values to arrive (sync) is negligible. This is likely due to the large amount of time spent waiting for epochs
to spawn. Buk also spends a significant amount of time waiting for epochs to spawn. For sc and ijpeg, the
spawn time is almost negligible—the amount of work per epoch is sufficient to hide this overhead for these

16

E
F

S 200

Co FG Ex" CL Tff
compress ijpeg

Figure 9: Impact of using cache coherence to detect dependences (Co is the basic coherence scheme, FG
builds on Co by adding fine-grain SM bits, Ex builds on FG by tracking exposed uses, CL builds on Ex by
no longer modeling coherence, and Id builds on CL by tracking data dependences at a word granularity).
The baseline architecture is Ex, as indicated by the *.

two applications. Notice that time spent performing failed speculation and time spent awaiting the homefree
token only account for a small portion of the execution time for all applications.

Figure 8(b) shows the bars from Figure 8(a) normalized by the sequential execution time. We see that
buk, sc, and ijpeg benefit from increased speedup as the number of processors increase, indicating that
there is much available speculative parallelism. The performance of compress improves less as the number
of processors increases from two, so our baseline architecture of four processors does not perform as well
as a two-processor machine in this case. This is an artifact of the violation polling scheme modeled by
our simulator: when there are many violations and epochs are short, the time to restart epochs can be a
bottleneck. An interrupt-based approach (which is difficult to simulate with our current simulator) where
epochs can restart immediately when a violation occurs would not suffer from this effect. Sc scales quite
well, achieving a region speedup of 4.76 on 8 processors.

4.3 Using Cache Coherence to Track Data Dependences and Buffer Speculative
State.

We now compare several implementations of TLDS hardware support. These implementations are of varying
complexity, including two which are not practical to implement. Figure 9 shows execution time normalized to
the baseline architecture for the different implementations. The first bar, Co, represents the basic coherence
scheme. For this case, output dependences cause violations. The FG case builds on Co by adding fine-grain
SM bits, therefore allowing speculation to succeed in the presence of output dependences. We see that buk,
sc, and ijpeg have crucial output dependences which limit performance unless handled, while compress
does not. The Ex case builds on FG by only setting the SL bit for exposed uses (see Section 2.5)—this is the
baseline architecture, although sc is the only application which benefits from tracking exposed uses. The
next two cases cannot be built, but they indicate the efficiency of our scheme. Case CL builds on Ex by
no longer modeling coherence between the caches (no longer sending upgrade requests), but still checking
dependences at a cache line granularity. By comparing with Ex, we see that having coherence increases
the number of data cache misses, but that the impact on performance is reasonable. Finally, Id builds on
CL by tracking dependences at a word granularity. The difference in height between the CL and Id bars
indicates whether a application suffers from violations due to false dependences,3 which is the case for both
buk and compress. This "ideal" architecture only performs between 1% and 19% better than our baseline
architecture, indicating that our baseline architecture is quite effective.

3 A false dependence occurs when separate parts of a cache line are speculatively read and written, thereby triggering a
violation unnecessarily.

17

compress ijpeg

Figure 10: Impact of varying communication latency (in cycles). The baseline architecture has a communi-
cation latency of 10 cycles, as indicated by the *.

o
Z

I
■a s

o z

100 100 100

!SS1 I

F^iRHr?? r 2 4"
buk

100 100 100

v2 4
compress

100 101 100

^

^ ^

^

^ r 2 4
sc

99 98

Figure 11: Impact of varying the number of upgrade requests issued per cycle when flushing the ORB. The
baseline architecture can issue 1 upgrade request per cycle as indicated by the *.

4.4 Communication Latency

In Figure 10, we vary the communication latency from two to twenty cycles (for our baseline architecture
it is ten cycles). Evidently, compress and buk are the most sensitive to communication latency. Increasing
communication latency increases epoch spawn time for both applications, but decreases the amount of failed
speculation for compress. This decrease is fortuitous: the epochs become less and less overlapped and
therefore have fewer out-of-order memory references which could cause violations. Sc provides a substantial
amount of work per epoch, and as a result it is almost completely insensitive to communication latency.
Given the region and program speedups in Table 8, we see that buk, sc, and ijpeg would still speedup with
a higher communication latency than our baseline, while compress would not.

18

4.5 Flushing the ORB

Figure 11 shows the impact of increasing the number of upgrade requests that the ORB may issue each
cycle when committing an epoch. Contrary to expectations, execution time increases slightly for sc.4 This
experiment has no effect on buk or compress, indicating that for those applications each epoch modifies only
a small number of cache lines. Ijpeg, which issues an average of 4.3 upgrade requests per epoch, benefits
only slightly from increased upgrade request bandwidth. This experiment demonstrates that the delay of
passing the homefree token is not a performance bottleneck.

5 Conclusions

Extending the cache coherence protocol is a viable way of exploiting TLDS on architectures supporting
multiple threads. We have shown a detailed design of such a protocol, and demonstrate that it can be used
to exploit speculative parallelism. The hardware which we have simulated is realistic, and does not put any
onerous requirements on hardware designers. Of course further performance analysis will be required to
design a complete TLDS architecture, but the benchmarks in this paper show the feasibility of the protocol.
In the future we will build upon this scalable platform and focus on compilation techniques to target TLDS
machines.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and Tools. Addison
Wesley, 1986.

[2] C. Amza, S. Dwarkadas A.L. Cox, and W. Zwaenepoel. Software DSM Protocols that Adapt between
Single Writer and Multiple Writer. In Proceedings of the Third High Performance Computer Architecture
Conference, pages 261-271, February 1997.

[3] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Techniques for reducing consistency-related information
in distributed shared memory systems. ACM Transactions on Computer Systems, 13(3):205-243, August
1995.

[4] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang, Y. Gurevich, and W. S. Lee. The
M-Machine Multicomputer. In Proceedings of ISC A 28, December 1995.

[5] M. Franklin and G. S. Sohi. ARB: A Hardware Mechanism for Dynamic Reordering of Memory Refer-
ences. IEEE Transactions on Computers, 45(5), May 1996.

[6] S. Gopal, T. Vijaykumar, J. Smith, and G. Sohi. Speculative Versioning Cache. In Proceedings of the
Fourth International Symposium on High-Performance Computer Architecture, February 1998.

[7] L. Hammond, M. Willey, and K. Olukotun. Data Speculation Support for a Chip Multiprocessor. In
Proceedings of ASPLOS-VIII, October 1998.

[8] S. W. Keckler and W. J. Dally. Processor Coupling: Integrating Compile Time and Runtime Scheduling
for Parallelism. In Proceedings of the 19th Annual International Symposium on Computer Architecture,
pages 202-213, May 1992.

[9] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The Case for a Single-Chip
Multiprocessor. In Proceedings of ASPLOS-VII, October 1996.

[10] Jeffery Oplinger, David Heine, Shih-Wei Liao, Basem A. Nayfeh, Monica S. Lam, and Kunle Olukotun.
Software and Hardware for Exploiting Speculative Parallelism with a Multiprocessor. Technical Report
CSL-TR-97-715, Stanford University Computer Systems Lab, February 1997.

[11] B. J. Smith. Architecture and Applications of the HEP Multiprocessor Computer System. SPIE,
298:241-248, 1981.

4 This anomaly is likely due to a change in the execution pattern of the epochs.

19

[12] M. D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford University, November
1991.

[13] G. S. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar Processors. In Proceedings of ISC A 22 pages
414-425, June 1995.

[14] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural Support for Thread-Level Data Spec-
ulation. Technical Report CMU-CS-97-188, School of Computer Science, Carnegie Mellon University,
November 1997.

[15] J. G. Steffan and T. C. Mowry. The Potential for Using Thread-Level Data Speculation to Facilitate
Automatic Parallellization. In Proceedings of the Fourth International Symposium on High-Performance
Computer Architecture, February 1998.

[16] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous Multithreading: Maximizing On-Chip
Parallelism. In Proceedings of ISC A 22, pages 392-403, June 1995.

[17] K. Yeager. The MIPS R10000 superscalar microprocessor. IEEE Micro, April 1996.

[18] Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for Speculative Run-Time Paral-
lelization in Distributed Shared-Memory Multiprocessors. In Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture, February 1998.

20

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

