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Figure 1: Example of TLDS execution. 

1    Introduction 

As the number of transistors on a state-of-the-art microprocessor chip continues to increase, architects 
are exploring new ways to translate these additional resources into improved performance beyond today's 
superscalar paradigm. One option is to integrate multiple processors onto a single chip. While single-chip 
multiprocessing is attractive from an implementation point of view [9], it is only useful for accelerating a 
given application if that application contains parallel threads. To avoid placing an additional burden on 
programmers, the most desirable method of parallelizing an application would be for the compiler to create 
the parallel threads automatically. Unfortunately, despite the significant progress which has been made in 
automatically parallelizing numeric applications, compilers have had little or no success in automatically 
parallelizing the ubiquitous non-numeric applications due to their complex control flow and memory access 
patterns. 

1.1     Thread-Level Data Speculation 
Thread-Level Data Speculation (TLDS) [15] and other similar techniques [10, 13] allow the compiler to 
automatically parallelize portions of code in the presence of statically ambiguous data dependences, thus 
extracting parallelism between whatever dynamic dependences actually exist at run-time. To illustrate how 
TLDS works, consider the simple while loop in Figure 1(a) which accesses elements in a hash table. This 
loop cannot be statically parallelized due to possible data dependences through the array hash. While 
it is possible that a given iteration will depend on data produced by an immediately preceding iteration, 
these dependences may in fact be infrequent if the hashing function is effective. Hence a mechanism that 
could speculatively execute the loop iterations in parallel—while rewinding and re-executing any iterations 
which do suffer dependence violations—could potentially speed up this loop significantly, as illustrated in 
Figure 1(b). Here a read-after-write (RAW) data dependence violation is detected between epoch 1 and epoch 
4, so epoch 4 is rewound and restarted to produce the correct result. This example demonstrates the basic 
principles of TLDS—it can also be applied to regions of code other than loops. 

In this example we assume that the program is running on a shared-memory multiprocessor, and that 
some number of processors (four, in this case) have been allocated to the program by the operating system. 
Each of these processors is assigned a unit of work, or epoch, which is a single loop iteration here. Epoch 
numbers are used to specify and maintain the ordering of memory references, and their order corresponds to 
the original sequential execution of the program. Any violation of the original program order is detected with 
the assistance of the TLDS mechanism. To help the reader, a glossary is provided in Figure 2 to summarize 
the terminology we use. 



Epoch:  The unit of execution within a program which is executed speculatively. 

Epoch Number: A number which identifies the relative ordering of epochs within an OS-level thread. Epoch numbers can 
also indicate that certain parallel threads are unordered. 

Homefree Token: A token which indicates that an epoch is the least speculative, and therefore cannot suffer a violation. 
If the epoch has not already suffered a violation when it receives the homefree token, it may commit its speculative 
modifications to memory. 

OS-level Thread: A thread of execution as viewed by the operating system—multiple speculative threads may exist within 
an OS-level thread. 

Speculation Level:  The level in the cache hierarchy below which speculative data references are handled by coherence. 

Speculative Context: The state information associated with the execution of an epoch. This includes the register contents 
and cache state. 

Speculative Region:  Part of a program where TLDS is performed. 

Speculative Thread:  A light-weight thread that is used to exploit parallelism within an OS-level thread. 

Violation: A thread has suffered a true data dependence violation if it has read a memory location that was later modified 
by a sequentially earlier epoch. 

Figure 2: Glossary of terms for TLDS. 

This paper focuses on the design of a cache coherence protocol. Further examples of the use of TLDS, and 
an exploration of the interface between TLDS hardware and software can be found in a previous technical 
report [14]. 

1.2 Related Work 

The Multiscalar architecture [5, 13] was the first to provide hardware support for thread-level speculation. 
While the Multiscalar approach is effective at exploiting speculative parallelism, it originally had two impor- 
tant disadvantages: the ring architecture is over-specialized; and memory disambiguation is performed by a 
large, centralized structure (the ARB). SVC [6] is a cache coherence scheme which overcomes the central- 
ization of the ARB, but it uses a snoopy bus based protocol which does not scale beyond a tightly coupled 
system. 

There have since been several other proposals [6, 7, 15, 18] describing distributed approaches, the most 
relevant being the Stanford Hydra [7]. Similar to the TLDS approach, Hydra adds memory disambiguation 
support to a general-purpose, chip multiprocessor (CMP), and uses software to manage threads and spec- 
ulation. However, there are two important distinctions between Hydra and TLDS. First, each processor in 
a Hydra CMP has a special write-buffer for speculative modifications, while our implementation of TLDS 
uses the first-level caches to buffer speculative state. Second, to ensure that data dependences are preserved, 
Hydra employs write-through coherence and snoops the write buffers on all stores, while we use write-back 
invalidation-based coherence. The previous schemes do not scale beyond a tightly coupled system such as 
single-chip or snoopy bus based multiprocessor. We believe that irregular scientific applications will be fertile 
ground where TLDS can offer benefits, since large data sets will make true dependences between threads 
sparse. Demonstrating the power of TLDS with such applications will be future work, and is beyond the 
scope of this paper. 

1.3 Contributions 

The protocol we propose is the first truly scalable solution for TLDS. Since this coherence scheme is an 
extension of invalidation-based coherence, it will work wherever invalidation-based coherence can be used. 
This means that it can be used in a wide variety of multiprocessor architectures including multithreaded 
processors, chip-multiprocessors, more traditional multiprocessors, and even software distributed shared 
memory multiprocessors. Implementing our scheme has a minimal impact on the area and complexity of the 
augmented multiprocessor. This paper presents a detailed description of how our coherence scheme can be 
realized, and is the first to evaluate this type of scheme using a collection of R10000 class processors. 

The remainder of this paper is organized as follows: Section 2 describes how an invalidation-based cache 
coherence scheme can be extended to detect data dependence violations, and Section 3 gives a possible 
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Figure 3: Using cache coherence to detect a RAW dependence violation. 

hardware implementation of that scheme. We evaluate the performance of our implementation in Section 4, 
and conclude in Section 5. 

2    Coherence Scheme 

To support TLDS, we must perform the difficult task of detecting data dependence violations at run-time. 
Since we perform memory operations in parallel which may not be independent, the addresses of all memory 
references generated by separate speculative threads must be compared to ensure that data dependences 
are preserved. A key element of data speculation is detecting when a data dependence has been violated. 
This detection is straightforward for instruction-level data speculation, since there are few load and store 
addresses to compare. However, for thread-level data speculation the task is more complicated since there 
are many more addresses to compare, and since the relative interleaving of loads and stores from different 
threads is not statically known. 

One solution is to use an invalidation-based cache coherence scheme. In invalidation-based coherence, 
a cache line must be owned exclusively before it may be modified. Exclusive access is achieved by sending 
out invalidations to all other caches owning a copy of the line. To extend this mechanism to detect data 
dependence violations, we simply need to track which cache lines have been speculatively loaded. Whenever 
a less speculative epoch modifies a cache line that we have speculatively loaded (as indicated by an arriving 
invalidation), we know that a violation has occurred. 

2.1    Example 

To demonstrate how invalidation-based cache coherence can be extended to track data dependences, we 
give an example of the detection of a read-after-write (RAW) dependence violation. Recall that a given 
speculative load violates a RAW dependence if its memory location is subsequently modified by another 
epoch such that the store should have preceded the load in the original sequential program. As shown in 
Figure 3, we augment the state of each cache line to indicate whether the cache line has been speculatively 
loaded and/or speculatively modified. For each cache, we also maintain a number which indicates the 
sequential ordering ofthat epoch with respect to all other epochs (the epoch number), and a flag indicating 
whether a data dependence violation has occurred. 

In the example, epoch 6 performs a speculative load, so the corresponding cache line is marked as 
speculatively loaded. Epoch 5 then stores to that same cache line, generating an invalidation containing its 
epoch number. When the invalidation is received, three things must be true for this to be a RAW dependence 
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Figure 4: Base architecture for the TLDS coherence scheme. 

violation. First, the same cache line that the invalidation is for must be present in the cache. Second, it 
must be marked as speculatively loaded. Third, comparison of the current epoch number with the epoch 
number of the invalidation must tell us that the invalidation came from a less speculative epoch. Since all 
three conditions are true, a RAW dependence has been violated: epoch 6 is notified by setting the violation 
flag. As we will show, the full coherence scheme must handle many other cases, but the overall concept is 
analogous to this example. 

In the sections that follow, we define the new speculative cache line states and the actual cache coherence 
scheme, including the actions which must occur when an epoch becomes homefree or is notified that a 
violation has occurred. We begin by describing the underlying architecture assumed by the coherence 
scheme. 

2.2    Underlying Architecture 

The goal of our coherence scheme is to be both general and scalable. We want the coherence mechanism 
to be applicable to any combination of single-threaded or multithreaded processors and shared-memory 
architectures, not necessarily restricted to multiprocessors on a single chip. 

For simplicity, we assume some shared-memory architecture that supports an invalidation-based cache 
coherence scheme where all hierarchies enforce inclusion. Figure 4(a) shows a generalization of the underlying 
architecture. There may be a number of processors or perhaps only a single multithreaded processor, followed 
by an arbitrary number of levels of physically private caching. The level of interest is the first level where 
invalidation-based cache coherence begins, which we will call the speculation level. 

We generalize levels of the system below the speculation level, as shown in Figure 4(a), to be an in- 
terconnection network providing access to main memory with some arbitrary number of levels of caching. 
All memory references originating from a processor that reach the speculation level will be referred to as 
processor actions, and all coherence events that are received from lower levels of the system (i.e. further away 
from the processor) will be referred to as external actions. 

The amount of detail shown in Figure 4(a) is not necessary for the purposes of describing our cache 
coherence scheme. Instead, Figure 4(b) shows a simplified model of the underlying architecture. The 
speculation level described above happens to be a physically shared cache and is simply referred to from now 
on as "the cache". Above the caches, we have some number of processors, and below the caches we have an 
implementation of cache-coherent shared memory. 

Although coherence can be recursive, speculation only occurs at the speculation level. Above the specu- 
lation level (i.e. closer to the processors), we maintain speculative state and buffer speculative modifications. 
Below the speculation level (i.e. further from the processors), we simply propagate speculative coherence 
actions and enforce inclusion. 



Table 2: Processor-initiated actions 
Table 1: Shared cache line states 

State Description 

I invalid 
E exclusive 
S shared 
D dirty (implies exclusive) 
DSpL dirty and speculatively loaded (implies exclusive) 
SpLE speculatively loaded exclusive 
SpLS speculatively loaded shared 
SpME speculatively modified exclusive 
SpMS speculatively modified shared 
SpLME speculatively loaded and modified exclusive 
SpLMS speculatively loaded and modified shared 

Action Description 

PRM processor read miss 
PRH processor read hit 
PWM processor write miss 
PWH processor write hit 
PRMSp processor read miss speculative 
PRCMSp processor read conflict-miss speculative 

(a more speculative epoch has already 
modified the same cache line) 

PRHSp processor read hit speculative 
PWMSp processor write miss speculative 
PWCMSp processor write conflict-miss speculative 

(another epoch has already speculatively 
modified the same cache line) 

PWHSp processor write hit speculative 

2.3 Line State in the Cache 

A standard invalidation-based cache coherence scheme can be in one of the following states: invalid (/), 
exclusive (E), shared (5), or dirty (D). The invalid state indicates that the cache line is no longer valid 
and should not be used. The shared state denotes that the cache line is potentially cached in some other 
cache, while the exclusive state indicates that this is the only cached copy. The dirty state denotes that the 
cache line has been modified and must be written back to external memory. When a processor attempts to 
write to a cache line, exclusive access must first be obtained—if the line is not already in the exclusive state, 
invalidations must be sent to all other caches which contain a copy of the line, thereby invalidating these 
copies. 

To detect data dependences and to buffer speculative memory modifications, we extend the standard set 
of cache line states to include the seven new states as described in Table 1. The new states denote four 
orthogonal properties of a cache line: whether it is dirty; whether it has been speculatively loaded (SpL); 
whether it has been speculatively modified (SpM); and whether it is exclusive (E) versus shared (S). 

Although these properties are orthogonal, some combinations are not allowable such as dirty and specu- 
latively modified. When a cache line is dirty, the cache owns the only up-to-date copy of the cache line, and 
must preserve it without speculative modifications so that the line can eventually be supplied to the rest of 
the memory system. Conversely, when a cache line is in the speculatively modified state, we may need to 
discard any speculative modifications to the line if the speculation ultimately fails. Since it would be difficult 
to isolate both dirty and speculatively modified portions of the same line in a traditional hardware cache 
(especially if these portions can overlap), it is difficult to allow both of these states to co-exist. 

Maintaining the notion of exclusiveness is important since a speculatively modified cache line that is 
exclusive (SpME or SpLME) does not require invalidations to be sent out when modifications are committed 
to memory. It is also interesting to note that the states SpMS and SpLMS imply that the cache line is both 
speculatively modified and shared. This means that it is possible for more than one modified copy of a cache 
line to exist as long as no more than one copy is non-speculative and the rest of the copies are speculative. 

The dirty and speculatively loaded state (DSpL) indicates that a cache line is dirty and that the cache 
line is the only up-to-date copy. Since a speculative load cannot corrupt the cache line, it is safe to delay 
writing the line back until a speculative store occurs. 

For speculation to succeed, any cache line with a speculative state must remain in the cache until the 
corresponding epoch becomes homefree. Speculative modifications may not be propagated to the rest of the 
memory hierarchy, and cache lines that have been speculatively loaded must be tracked in order to detect 
whether data dependence violations have occurred. If a speculative cache line must be replaced, then this 
is treated as a violation causing speculation to fail and the epoch is re-executed—note that this will affect 
performance but not correctness. 

2.4 Processor Actions 

We now describe an implementation of an invalidation-based cache coherence scheme extended to detect data 
dependence violations.  First, we list all possible actions that are originated by the processors, the shared 



Type 

External 

Shared 
Cache 
Controller 

Action 
Table 3: Coherence Actions and Conditions 

G.ER 
G.EREx 
G.EWb 
G.EU 

G.EUp 

Conditions 

G.EUpSp 

Description 

Generate external read. 
Generate external read exclusive. 
Generate external writeback (the line is no longer cached). 
Generate external update-line (like a write, except the line remains 
cached). 
Generate external upgrade request (request for ownership). 
This sends invalidations (El) to all appropriate processors. 

G.ERExSp 

G.Viol 
G.Suspend 

G.Combine 

G.ORB 
G.FlushORB 

G.Progress 

Ack=Excl 

Exposed 

Olde 

Replicate 

Generate external upgrade request speculative (request for ownership 
which may not be granted). This sends speculative invalidations (EISp) 
to all appropriate processors. 
Generate external read exclusive speculative (exclusiveness may not 
be granted) 

Generate violation (a definite violation). 
Generate a suspend (a violation which may be avoided by suspending). 
May be conservatively replaced with a real violation (G. Viol) 
Combine this cache line with the external copy (if combining is not 
supported then ignore this action). 
Add current tag to ORB (ownership required buffer). 
For each tag in the ORB (ownership required buffer) generate an EUpSp. 
If cache line combining is supported, otherwise an EUp. If any actions 
follow, they must wait until G.FlushORB completes. 
If epoch E, which has speculatively modified the cache line, is 
more speculative than the current epoch then squash epoch E, 
otherwise G.Suspend for the current epoch (ensuring forward progress). 

Acknowledgement from the previous action indicates that the cache line 
is exclusive. 
False if the epoch stored to the memory location before the load 
occurred, true otherwise. 
True if the epoch which generated the action is older (less 
speculative) than the current epoch. 
True if the cache line may be replicated in the local cache (the 
actions that follow apply to the replicated cache line). 

cache controller, or the external memory system. Table 2 lists the possible actions which are originated by 
the processor. Processor-initiated actions are divided into reads and writes, hits and misses, and speculative 
and non-speculative accesses. 

Misses are further divided into regular misses and conflict-misses. For states other than invalid (/), a 
regular miss indicates that the current cache line must be replaced. A conflict-miss indicates that two different 
epochs—executing on processors that physically share the cache or on one multithreaded processor—have 
accessed the same cache line in an unacceptable manner. The following scenarios differentiate acceptable 
access patterns from those that are unacceptable in a shared cache. 

• Two different epochs may both speculatively read the same cache line. 

• If an epoch speculatively modifies a cache line, only a more speculative epoch may read that cache 
line afterwards. This effectively allows us to forward speculative modifications between two properly 
ordered epochs, and is only guaranteed to be correct for epochs executing on processors that share a 
cache. If a less speculative epoch attempts to read the cache line, a read conflict-miss will result. 

• Only one epoch may speculatively modify a given cache line. If an epoch attempts to speculatively 
modify a cache line that has already been speculatively modified by a different epoch, a write conflict 
miss (PWCMSp) results. 

2.5     Cache Actions 

Table 3 describes all coherence actions and conditions. The first five actions (G.ER, G.EREx, G.EWb, 
G.EU, and G.EU) all behave as in a standard coherence scheme, and the next two are new speculative actions 
to support TLDS. These speculative actions both piggyback the epoch number of the requester.   G.EUpSp 



sends speculative invalidations to all appropriate processors, and G.ERExSp requests a copy of a cache line. 
For both speculative actions, exclusiveness may not be granted if the requesting epoch is more speculative 
than the receiving epoch, as determined by comparison of the epoch numbers. 

If two epochs speculatively modify the same cache line, there are two ways to resolve the situation. One 
option is to simply squash the more speculative epoch. Alternatively, we could allow both epochs to modify 
their own copies of the cache line and combine them with the real copy of the cache line as they commit, as 
is done in a multiple-writer coherence protocol [2, 3]. The action G. Combine indicates that the current cache 
line should be combined with the copy stored at the next level of caching in the external memory system. If 
combining is not supported, the G. Combine action is simply ignored. 

When an epoch becomes homefree, it may allow its speculative modifications to become visible to the 
rest of the system. However, the epoch must first acquire ownership of all cache lines that are speculatively 
modified but not in an exclusive state. Since a search over the entire cache for such cache lines would take 
far too long and delay passing the homefree token, we propose instead that the addresses of cache lines 
requiring ownership be stored in an ownership required buffer (ORB). The G.ORB action adds the current 
cache line address to the ORB. 

When an epoch becomes homefree, it generates an upgrade request for each entry in the ORB, as 
described by the G.FlushORB action. If cache line combining is supported, G.FlushORB may instead 
generate speculative upgrade requests for each line address in the ORB. Since write-after-write (WAW) 
dependences are not true dependences, they may be eliminated through renaming. The more speculative 
of two epochs which both speculatively modify the same cache line does not need to be squashed, and the 
speculative modifications may be combined later. A speculatively modified cache line may not change to the 
dirty state until G.FlushORB completes. 

The two conflict-misses described previously in Table 2 do not necessarily have to result in violations. 
If cache line replication is supported, some violations can be avoided. However, when replication is not 
possible we must be careful which epoch is suspended or squashed, since the wrong choice could result 
in deadlock or even livelock. The action G.Progress only suspends or squashes more speculative epochs, 
ensuring that speculation makes forward progress. If epoch E which speculatively modified the cache line is 
more speculative than the current epoch, then G.Progress squashes epoch E; otherwise, G.Progress performs 
G.Suspend for the current epoch. 

The last group of actions are actually conditions evaluated by the coherence mechanism. Since we want 
to maintain as exact information as possible about exclusiveness, external upgrade requests will indicate in 
the acknowledgement whether exclusiveness is obtained (Ack=Excl). 

Support may exist to detect whether a load is an upwards exposed use—i.e. the use of a location without a 
prior definition of that location by the same epoch [1]. We only have to consider a location to be speculatively 
loaded if it is an upwards exposed use, otherwise the load cannot cause a data dependence violation. To 
differentiate these cases, we will check the condition Exposed. 

Some speculative actions received from the external memory system will have different effects depending 
on whether they were originated by a less speculative epoch or a more speculative epoch. The Older condition 
is true if the epoch which generated the action is older than the current epoch and false otherwise. 

Finally, the condition Replicate is true if a cache line is successfully replicated where successful replication 
means that another copy of the same cache line (with the same cache tag) may be created. If cache line 
replication is not supported then Replicate is always false. 

2.6    Other Actions 

Table 4 describes several miscellaneous actions. The first group are actions which are received from the 
external memory system. The action HFree indicates that an epoch has received the homefree token and 
has processed any pending incoming coherence actions, and hence memory is consistent with the rest of 
the system. At this point, the epoch is guaranteed not to have violated any data dependences with less 
speculative epochs and can therefore commit all of its speculative modifications by changing their cache 
states to dirty (D). 

The action Viol indicates that the current epoch has either suffered a violation or been cancelled. All 
cache lines which have been speculatively modified must be invalidated (changed to the invalid state), and 
all other speculative cache lines may be changed back to an appropriate non-speculative state. 



Action 

ER 
EREx 

EI 
EISp 

ERExSp 

HFree 
Viol 
-►X 
(A)?(B):(C) 

Table 4: Other actions 
Description 

External read. 
External read exclusive (copy of line is supplied 
with ack). 
External invalidate. 
External invalidate speculative. Only invalidate the 
line if this from a less speculative epoch. 
External read exclusive speculative (copy of line 
is supplied with ack). 

Epoch has become homefree. 
Epoch has suffered a violation or been cancelled. 
Transition to new state X. 
If A then B else C. 

2.7    State Transition Diagram 

We describe the coherence scheme for supporting TLDS using a state transition diagram, given in Table 5. 
For each current shared cache line state and each possible action we give the appropriate result actions and 
the transition to the new state. 

We now investigate several "action x state" pairs of interest. 

• Some actions cannot occur in a given state. For example, PRH x / cannot occur since an invalid 
cache line cannot yield a hit. A conflict-miss like PWCMSp can only occur if the cache line has been 
speculatively modified. By definition, a conflict miss occurs when another epoch, sharing the same 
cache, has already speculatively modified the cache line in question—i.e. it is in one of the states SpME 
SpMS, SpLME, or SpLMS. 

• An example of the basic detection of a read-after-write dependence violation is illustrated by EISp x SpLS. 
If the epoch which generated the speculative upgrade request is older than the current epoch, then a 
dependence violation has occurred and the processor is notified (G. Viol). 

• This version of the coherence scheme is implemented with the objective of slowing down a non- 
speculative thread as little as possible. For this reason, a cache line in a non-speculative state is 
not invalidated when a speculative upgrade-request occurs, as shown by EISp x E. Alternatively, the 
cache line could be relinquished in order to give exclusiveness to the speculative thread, possibly elimi- 
nating the need for that thread to obtain ownership when it becomes homefree. These two options must 
be analyzed experimentally in future work to decide which approach results in better performance. 

• PWHSp x D generates an update (G.EU), ensuring that the only up-to-date copy of a cache line is 
not corrupted with speculative modifications. Conversely, PRHSp x D simply changes to the dirty 
and speculatively loaded state (DSpL), since the cache line will not be corrupted by a speculative load. 

• PRMSp x SpME results in a G. Suspend: the cache line which has been speculatively modified must be 
replaced to continue, and this is not allowable. We may either squash the epoch, or suspend until the 
epoch becomes homefree at which point we may allow the speculative modifications to be written-back 
to the external memory system. 

• ER x SpLME demonstrates the case when exclusive ownership of a cache line which has been specu- 
latively modified is lost. The tag for this cache line is added to the ORB by the action G.ORB so that 
ownership may be obtained quickly when the epoch becomes homefree. 

• HFree x SpLME demonstrates waiting for G.FlushORB to complete, which guarantees ownership of 
all speculatively modified cache lines, before changing to the dirty (D) state. In HFree x SpLMS, 
after waiting for G.FlushORB to complete, the speculatively modified cache line is combined with the 
current external copy before changing to the dirty state. 



Table 5:  Cache state transition diagram, 
denotes if A then B else C. 

—>X represents the transition to new state X, and (A)?(B):(C) 

Action 
Cache  Line  State 

I E s 
PRM G.ER;  (Ack=Excl)?(->E):(-+S); G.ER;  (Ack=Excl)?(-+E):(->S); G.ER;  (Ack=Excl)?(->E):(-»S); 

PRH - -+E; -»S; 

PWM G.EREx;  -+D; G.EREx; -►D; G.EREx; -+D; 
PWH - -+D; G.EUp; ->D; 
PRMSp G.ER;  (Ack = Excl)?(-»SpLE):(->SpLS)i G.ER;  (Ack=Excl)?(->SpLE):(->SpLS); G.ER;  (Ack=Excl)?(-fSpLE):(-) SpLS); 
PRCMSp - - - 
PRHSp - -►SpLE; -►SpLS; 
PWMSp G.ERExSp; 

(Ack=Excl)?(-»SpME):(G.ORB;  ->SpMS); 
G. ERExSp; 
(Ack=Excl)?(-+SpME):(G.ORB;  -tSpMS); 

G.ERExSp; 
(Ack=Excl)?(-+SpME):(G.ORB; -►SpMS); 

PWOMSp - - - 
PWHSp " -»SpME; G.EUpSp; 

(Ack=ExcI)?(-»SpME):(G.ORB; -►SpMS); 

ER - -*S; -+S; 
EREx - -*■!; -Hi 
El - -Hi -Hi 
EISp - -»S; -+S; 
EUp - -♦■I; -Hi 
ERExSp - -t-S; -►Si 

HFree -Hi  G.FIushORB; -►E; G.FIushORB; -►S; G.FIushORB; 
Viol -H; -+E; -»■Si 

Action 
Cache  Line State 

D DSpL SpLE 

PRM G.EWb; G.ER;  (Ack=Excl)?(->E):(-fS); G.Suspend; G.Suspend; 
PRH -tD; -►DSpL; -►SpLE; 
PWM G.EWb; G.EREx; ->D; G.Suspend; G.Suspend; 
PWH -+D; G.Viol; G.Viol; 
PRMSp G.EWb; 

G.ER;  (Ack=Excl)?(-»SpLE);(-+SpLS); 
G.Suspend; G.Suspend; 

PRCMSp - - - 
PRHSp -»DSpL; -»DSpL; -»SpLE; 
PWMSp G.EWb; G.ERExSp; 

(Ack=Excl)?(->SpME):(G.ORB;   -»SpMS); 
G.Suspend; G.Suspend; 

PWCMSp - - - 
PWHSp G.EU;  -t-SpME; G.EU; -►SpLME; -»SpLME; 

ER G.EU;  -fS; G.EU; -tSpLS; -+SpLS; 
EREx G.EWb; -Hj G.EWb; G.Viol; G.Viol; 
El G.EWb; —»-Ij G.EWb; G.Viol; G.Viol; 
EISp -tD; G.EU;  -l-SpLS; (01der)?(G.Viql):(-»SpLS); 
EUp G.EWb; -+I; G.EWb; G.Viol; G.Viol; 
ERExSp G.EU; -»S; G.EU; ->SpLS; (Older)?(G.Viol):(-»SpLS); 

HFree -(D; G.FIushORB; -►D; G.FIushORB; -►E; G.FIushORBi 
Viol -tD; -+D; -►E; 

Action 
Cache   Line State 

SpLS SpME SpMS 

PRM G.Suspend; G.Suspend; G.Suspend; 
PRH -►SpLS; G.Viol; G.Viol; 
PWM G.Suspend; G.Suspend; G.Suspend; 
PWH G.Viol; G.Viol; G.Viol; 
PRMSp G.Suspend; G.Suspend; G.Suspend; 
PRCMSp - (Replicate)? (~+SpLSJ:(G. Progress); (Replicate)?(—►SpLS): (G. Progress); 
PRHSp -►SpLS; (Bjposed)?l-»SpLME);(-tSpME)i (Exposed)?(-»SpLMS):(->SpMS); 
PWMSp G.Suspend; G.Suspend; G.Suspend; 
PWCMSp - (Replicate) ?(-*-SpMS):(G. Progress); (Replicate)? (-+SpMS)r(G.Progress); 
PWHSp G.EUpSp; (Ack=Excl)? 

(-»SpLME);(G.ORB;  -vSpLMS); 
-►SpME; -►SpMS; 

ER -►SpLS; G.ORB;  ->SpMS; -»SpMS; 
EREx G.Viol; G.Viol; G.Viol; 
El G.Viol; G.Viol; G.Violi 
EISp (01der)?(G.Viol):(-tSpLS); G.ORB;  -»SpMS; -►SpMS; 
EUp G.Viol; G.Viol; G.Viol; 
ERExSp (Older)?(G.Viol):(-»SpLS); G.ORB;  -»SpMS; -►SpMS; 

HFree -►S; G.FIushORB; G.FIushORB;  ->-D; G.FIushORB;  G.Combine; —►D; 
Viol -►S; -+I; -H; 

Action 
Cache   Line State 

SpLME SpLMS 
PRM G.Suspend; G.Suspend; 
PRH G.Viol; G.Viol: 
PWM G.Suspend; G.Suspend; 
PWH G.Viol; G.Viol; 
PRMSp G.Suspend; G.Suspend; 
PRCMSp (Replicate)".'(—►SpLMS) :(G. Progress); (Replicate)?(->SpLM5):(G. Progress); 
PRHSp -►SpLME; -►SpLMS; 
PWMSp G.Suspend; G.Suspend; 
PWCMSp (Replicate)?(—►SpLMS) :(G. Progress); (Replicate)?(-»SpLMS):(G. Progress); 
PWHSp -►SpLME; -►SpLMS; 
ER G.ORB;  -»SpLMS; -►SpLMS; 
EREx G.Viol; G.Viol; 
El G.Viol; G.Viol; 
EISp (Older)?(G.Viol):(G.ORB;  -tSpLMS); (01der)?(G.Viol):(-+SpLMS); 
EUp G.VioU S.Viol; 
ERExSp (Older)?(G.Viol):(G.ORB;  ->SpLMS); (Ö!der)';(G.Viol):(-»SpLMS); 
HFree G.FIushORB;  ->D; G.FIushORB;  G.Combine; —►D; 
Viol -»I; -»I; 



2.8 Coherence in the External Memory System 

Coherence with support for speculation in the external memory system is quite similar to regular coherence. 
As listed in Table 4, we require the following standard coherence actions: read (ER), read-exclusive (EREx), 
invalidate (El), and upgrade requests (EUp). A read is a request for a copy of the cache line, and a read- 
exclusive is a request for a copy of the cache line as well as ownership. An upgrade request does not require 
a copy of the cache line. An invalidation, which is used to maintain inclusion, causes the cache to give up 
the appropriate cache line. 

Two new speculative coherence actions are supported by the external memory system: read-exclusive 
speculative (ERExSp) and upgrade request speculative (EUpSp). Both of these actions behave similarly to 
their non-speculative counterparts with the exception of two important distinctions. First, the epoch number 
of the requester is piggybacked along with the request in both cases, so the receiver can make decisions based 
on the relative ordering of the requesting epoch. Second, both actions are only hints and do not compel the 
cache to relinquish ownership. As long as these signals are propagated, this layer of the coherence scheme 
may be applied recursively to deeper levels of the external memory system, thus making speculation support 
scalable. 

2.9 Forwarding Data Between Epochs 

A key requirement of TLDS is the ability to forward data between epochs. For register values, forwarding 
is required for correctness and must be performed. For memory locations, such as scalars, forwarding may 
be performed to avoid frequent data dependence violations but is not required for correctness. There are 
three cases where forwarding is used. In the first case, initial information is forwarded from a thread to its 
child upon creation, including the initial register values as well as any other data needed to start the new 
epoch. This type of forwarding could occur through shared memory or possibly by some other faster means 
of communication. 

The second and third cases both involve forwarding values at some point after the initialization of the child 
epoch. The second case involves forwarding locations that do not have ambiguous data dependences, such 
as registers or scalars which have provably not had their address taken. The third case is forwarding in the 
midst of ambiguous memory references. Both cases require the ability to issue a non-speculative store in the 
midst of speculative memory references, possibly implemented as an uncached store. Producer/consumer 
style synchronization is also required, and could be implemented by synchronizing on specially allocated 
memory locations, or by implementing something with similar functionality to full/empty bits [4, 8, 11]. 

As shown in Figure 5(a), an inefficient way to forward a memory location from one epoch to another is 
simply to allow a data dependence violation to occur—the epoch which consumes the value is re-executed 
once the producing epoch has committed its speculative modifications. This causes some code to be re- 
executed unnecessarily. 

Figure 5(b) shows how forwarding works at a high level for the second case, when the location to be 
forwarded has no ambiguous data dependences. First, a shadow copy of the location to be forwarded must 
be created—since the forwarded values are speculative, we do not want them to corrupt the correct value 
which is stored in the real location. The epoch then accesses the shadow location as though it were the 
original location, and synchronizes before the first use and and after the last definition of the location in 
question. Once an epoch is no longer speculative, the value in the shadow location is copied into the real 
location since this is now the true and current value. Should a violation occur due to some other data 
dependence, the shadow location must be restored -with the most recent committed value. The epoch can 
then be re-executed. 

The third case is difficult: forwarding a location that might have ambiguous data dependences. What 
makes this case difficult is the possibility that ambiguous loads and stores might occur between separate 
epochs or even within an epoch. The mechanisms required to successfully forward values in the midst of 
ambiguous memory references are beyond the scope of this study, and so in our evaluation we conservatively 
allow violations to occur, guaranteeing correctness. 
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Epoch i 

load a  =  X 
Violation^ 

store X =  a- 

attempt_commit () 

Epoch i+1 

load  a  =  X 

store X  =  a 

X 
attempt_connn±t (} 

Redo Epoch i+1 J 

load a  = X 

store X  =  a 

attempt_conmit () 

Region Start 
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wait() 
load a = shadow_X 

Epoch i+1 

uc_store shadow_X = a 
signal 0 _ 

atteapt_commit () 
copy X = shadow_X 

wait() 
load a = shadow_X 

uc_store shadow_X = a 
signal() 

attempt_coii&nit () 
copy X = shadow_X 

(a) Data Dependence Violation (b) Violation Avoided Through Forwarding 

Figure 5: Simple forwarding, when the forwarded location has provably not had its address taken (uc_store 
represents an uncached store). 

3    Implementation 

In this section, we describe an implementation of our coherence scheme, starting with a hardware implemen- 
tation of epoch numbers. We then give an encoding for cache line states, and describe the organization of 
epoch state information. Finally, we describe how to allow multiple speculative writers and how to support 
multiple epochs per processor. 

3.1 Epoch Numbers 

In previous sections we describe the use of epoch numbers in determining the relative order of two epochs. In 
the coherence scheme, an epoch number is associated with every speculative cache line and every speculative 
coherence action. The implementation of epoch numbers must address several issues. First, we must be 
able to differentiate between two epochs from independent programs or even from independent chains of 
speculation within the same program. We solve this problem by having each epoch number consist of two 
parts: a thread identifier (TID) and a sequence number. When the shared cache controller receives external 
speculative actions, it only applies them to speculative cache lines which have a matching TID. If the TID's 
match, then Older is computed by comparing the sequence number portion of the epoch numbers. If the 
TID's do not match, then Older is false. 

The second issue concerns this comparison—we need the comparison of two epoch numbers to be fast. We 
also have the opposing desire to have large epoch numbers so that we may have many epochs. One solution 
is to have large integer epoch numbers (such as 32 bits or even larger) and then use signed differences to 
determine the relative order of the corresponding epochs. Signed differences have the benefit of preserving 
comparative order when the sequence numbers wrap around. 

A third issue is storage. We do not want to store a 32 bit epoch number in the tag of every cache line. 
We will show that this is not necessary and that the epoch number may be stored in a single location for 
each epoch. 

3.2 Cache Line State Encoding 

We encode the speculative cache line states given in Table 1 using five bits as shown in Figure 6(a). Two 
bits, speculatively loaded (SL) and speculatively modified {SM), differentiate speculative states from non- 
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(a) Cache line state bits 

Bit Description 
Va valid 
Di dirty 
Ex exclusive 
SL speculatively loaded 
SM speculatively modified 

(c) Hardware support 
Speculative 

Context 
Speculative 

Context 
Active Context Information 

(b) State encoding 
State SL SM Ex Di Va 
I X X X X 0 
E 0 0 1 0 
S 0 0 0 0 
D 0 0 X 1 
DSpL 1 0 X 1 
SpLE 1 0 1 0 
SpLS 1 0 0 0 
SpME 0 1 1 1 
SpMS 0 1 0 1 
SpLME 1 1 1 1 
SpLMS 1 1 0 1 

Epoch Nnmber 

Cancel Handler 

Violation Handler 
Address 

Violation Flag 

BB 

BB 

'      Epoch Number 

I      Cancel Handler 
1           Address 
1    Violation Handler 
!            Address 

Violation Flag 

SL    SM 

BB 

BB 
ORB 

i 

'        Context Pointer        ' 
I    I 1    , 
, More Speculative Mask , 

i   IDD-DPI   i 

Cache Line State 
SM[0..N-1]        ElDIV»        Digs 

Figure 6: Encoding of LI cache line states 

speculative states. Figure 6(b) shows the state encoding which is designed to have the following two useful 
properties. First, when the SM and SL bits are reset, the state will change from a speculative state to the 
corresponding non-speculative state as required when an epoch becomes homefree. Second, when a violation 
occurs we want to invalidate the cache line if it has been speculatively modified—this can be accomplished 
by setting its Va bit to the AND of its Va bit with the inverse of its 5Mbit (i.e. Va = Va & \SM). 

3.3 Implementation of Speculative State 

A naive implementation of the cache line state would be to place the speculative state bits and epoch number 
in each cache line. One problem with this approach is that there will be significant overhead associated with 
storing an epoch number with every cache line. We also want to avoid traversing the entire cache, for example 
when we invalidate all cache lines that have been speculatively modified. 

Speculative state will be arranged as shown in Figure 6(c). We wire the SL bits as well as the SM bits 
so that the entire column of bits can be simultaneously reset using a single control signal. We also wire the 
SM bits to the corresponding Va bits so that all cache lines which have been speculatively modified may 
be simultaneously invalidated when an epoch is squashed. Also associated with the speculative state are an 
epoch number, an ownership required buffer (ORB), the addresses of the cancel and violation routines, and 
a violation flag which indicates whether a violation has occurred.1 

3.4 Support for Cache Line Combining 

If an epoch has speculatively modified a cache line and another epoch sharing the same cache line on a 
different processor modifies its own copy, the coherence scheme will not signal a violation. However, when 
the less speculative epoch commits its speculative state, the more speculative epoch will receive an upgrade 
request and will therefore fail. Since these write-after-write (WAW) or output dependences are not true 
dependences, we would like speculation to succeed in their presence. 

As discussed in Section 2.5, we need to provide support for multiple-writers. One possibility is to replicate 
the SM column of bits so that there are as many SM columns as there are words or even bytes in a cache line, 
as shown in Figure 6(c). We will call this fine-grain SM bits. When a write occurs, the appropriate SM bit is 
set. If a write occurs which is of lower granularity than the SM bits can resolve, we must conservatively set 
the SL bit for that cache line since we can no longer perform a combine operation on this cache line—setting 
the SL bit ensures that a violation is raised if a less speculative epoch writes the same cache line. 

1 The cancel and violation routines are used to manage unwanted and violated epochs respectively. See [14] for more details. 
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SM[0..N-1] 0 0 0 0 
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Figure 7: Support for cache line combining. 

Figure 7 shows an example of cache line combining. Two epochs speculatively modify the same cache line 
simultaneously, setting the fine-grain 5Mbit for each location modified. Once the cache lines are committed, 
they are combined with the last committed cache line and the modifications of the most recent epoch are 
given precedence. In the example, both epochs have modified the first location. Since epoch i+1 is more 
speculative, its value G takes precedence over the value E. 

False violations can be a source of performance loss in TLDS. Since dependence violations are caused by 
speculative loads, or more specifically by cache lines that are in a speculatively-loaded state, then tracking the 
notion of speculatively loaded more precisely will result in fewer false violations. As described in Section 2.5, 
a cache line only needs to change to a speculatively loaded state (setting the SL bit) for speculative loads 
that are exposed. If fine-grain SM bits are implemented, a speculative load is considered exposed only if it 
has not yet been defined by the current epoch, which is indicated by the 5Mbit for that address not being 
set. This support should therefore reduce the number of false violations detected. 

3.5    Support for Multiple Epochs per Processor 

We would like to support multiple speculative contexts on a single processor for three reasons. First, we 
want to maintain speculative state across OS-level context switches so that we can support TLDS in a 
multiprogramming environment. Second, we can use multiple speculative contexts to allow the processor 
to execute another epoch when the current one is suspended (i.e. causes a suspending violation). Finally, 
multiple speculative contexts will allow TLDS to run under simultaneous multithreading (SMT) [16]. 

The coherence scheme as described in Section 2.7 supports multiple epochs per processor. Epochs from 
the same program may access the same cache lines, except in two cases: two epochs may not modify the 
same cache line, and an epoch may not read the modifications of a more speculative epoch. The coherence 
scheme avoids these cases either through the use of cache line replication, or else by suspending or violating 
the appropriate epoch. 

Figure 6(c) shows hardware support for multiple epochs per processor where we implement several spec- 
ulative contexts. The Ex, Di, and Va bits for each cache line are shared between all speculative contexts, 
but each speculative context has its own SL and SM bits. If fine-grain SM bits are implemented, then only 
one group of them is necessary per cache line (shared by all speculative contexts) since only one epoch may 
modify a given cache line. The single SM bit per speculative context indicates which speculative context 
owns the cache line, and is simply computed as the OR of all the fine-grain SM bits. 

To determine whether a load or store results in a conflict miss requires comparing epoch numbers and 
speculative state bits with other speculative contexts. Since epoch number comparisons may be slow, we 
want to use a bit mask which can compare against all speculative contexts in one quick operation, so 
we maintain a more speculative mask indicating which speculative contexts contain epochs that are more 
speculative than the active epoch.   Read and write conflict-misses can also be detected quickly using a 
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Table 6: Simulation parameters. 

Pipeline Parameters 

Issue Width 4 
Functional Units 2 Integer, 2 FP, 

1 Memory, 1 Branch 
Reorder Buffer Size 32 
Integer Multiply 12 cycles 
Integer Divide 76 cycles 
All Other Integer 1 cycle 
FP Divide 15 cycles 
FP Square Root 20 cycles 
All Other FP 2 cycles 
Branch Prediction Scheme 2-bit Counters 

Memory Parameters 
Line Size 32B 
Instruction Cache 32KB, 2-way set-assoc 
Data Cache 32KB, 2-way set-assoc 
Unified Secondary Cache 2MB, 2-way set-assoc 
Data Cache Banks 2 
Data Cache Fill Time 
(Requires Exclusive Access) 

4 cycles 

Miss Handlers 8 for data, 2 for insts 
Main Memory Bandwidth 1 access per 20 cycles 
Total Miss Latency to 
Secondary Cache 

10 cycles 

Total Miss Latency to 
Local Memory 

75 cycles 

similar mechanism [14]. To allow fast switching between speculative contexts, we will use an active context 
to indicate which speculative context is currently active. 

Another feature of the coherence scheme which supports multiple epochs per processor is the ability to 
perform cache line replication. Replication is necessary to avoid suspension or violation whenever there is a 
conflict miss (see Section 2.4). For more details about how replication is implemented, see [14]. 

4    Performance Evaluation 

We now quantify the performance of our scheme using detailed simulation. The goal of this performance 
study is to quantify how well our architecture supports TLDS, not to prove that TLDS can offer compelling 
performance benefits as shown previously [6, 10, 15]. For this reason, we concentrate on four applications 
with different behavior and explore in detail the effects of different aspects of our scheme. 

4.1    Experimental Methodology 

There are several steps involved in simulating the TLDS execution of an application. First, we compile the 
application with -02 optimization using the standard MIPS C compiler under IRIX 6.4. Second, we profile 
the application to find suitable regions for speculative execution—usually loops with a reasonable amount 
of computation per iteration that have infrequent loop-carried data dependences. Third, we annotate the 
binary to indicate the start and end of each epoch, and the points at which the epochs should synchronize 
(to allow data forwarding). 

Our simulator reads traces generated by the MIPS pixie utility [12] and breaks the sequential trace 
into parallel traces according to our annotations. The simulator models out-of-order, superscalar processors 
with issues widths of four instructions similar to the MIPS R10000 [17]. Register renaming, the reorder 
buffer, branch prediction, instruction fetching, branching penalties, and the memory hierarchy (including 
contention) are all modeled, and are parameterized as shown in Table 6. Because our simulator is relatively 
fast, we are able to simulate all applications to completion. 

Our baseline architecture has four tightly-coupled, single-threaded processors, each with their own pri- 
mary caches, and sharing a single secondary cache among all processors. Our simulator implements the 
coherence scheme described earlier in Section 2, and modeling the hardware support described in Section 3. 
Although we do model communication latency and the limited bandwidth associated with flushing the ORB 
(as described later), we assume that the interconnection network has sufficient bandwidth such that coherence 
traffic is not otherwise delayed due to contention. 

The simulated execution model makes several assumptions with respect to the management of epochs and 
speculative threads. Epochs are assigned to processors in a round-robin fashion, and each epoch must spawn 
the next epoch with a delay of the specified communication latency (10 cycles for the baseline architecture). 
This same delay applies to synchronizing two epochs when forwarding occurs, and to sending out upgrade 
requests when flushing the ORB. For the baseline architecture, we only allow one upgrade request to be 
issued per cycle. Violations are detected through polling, so an epoch runs to completion before checking 
if a violation has occurred. When an epoch suffers a violation, we also squash all epochs that are more 
speculative. 
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Table 7: Applications and Speculative Regions. 

Suite Application 
Input 

Data Set 

Speculative 
Region 

(src_fUe:line) 

Number 
of Times 
Unrolled 

Coverage 
(% sequential 

cycles) 

NAS-Parallel buk 64kB buk.f:105, do loop 
buk.f:117, do loop 
buk.f: 123, do loop 

7 
3 
0 

0.6% 
31.8% 
33.4% 

Spec92 compress test .in compress.c:787, while loop 0 84.1% 
sc loadal interp.c:1001, for loop 0 62.5% 

Spec95 ijpeg specmun.ppm jccolor.c:138, for loop 
jidctint.c:171, for loop 
jidctint.c:276, for loop 

4 
1 
1 

9.9% 
6.0% 
5.0% 

Table 8: Application performance on baseline architecture. 

Application 

Average 
Number of 
Instructions 
per Epoch 

Overall Region 
Speedup on 

Baseline 
Architecture 

Coverage 
(% sequential 

cycles) 

Program 
Speedup on 

Baseline 
Architecture 

buk 50.0 1.59 65.8% 1.35 
compress 74.9 1.05 84.1% 1.04 
sc 417.0 2.90 62.5% 1.74 
ijpeg 297.2 2.38 20.9% 1.15 

In some cases, our region and program speedups differ from those in previous work [15]. There are 
three reasons for this discrepancy. First, we are not rescheduling the code to minimize the critical paths 
for forwarding (which had a large performance benefit in previous work [15]), so we must execute the code 
as compiled for a sequential machine. Second, we are now modeling superscalar processors, so all caches 
(instruction, data, and branch prediction) may suffer from decreased locality. Third, good speedup is more 
difficult to achieve when comparing against a superscalar execution of the sequential application. 

Table 7 lists the applications that are used in this study. Buk is an implementation of the bucket sort 
algorithm, compress performs data compression, sc computes a spreadsheet, and ijpeg performs various 
algorithms on images. We perform speculation on loops that were hand-selected as good candidates for 
TLDS (TLDS is not limited to loops, but other speculative regions are more difficult to implement [14]). 
To decrease the relative overheads of TLDS, some of the loops have been unrolled, as indicated in Table 7. 
(Note that the "'number of times unrolled' column in Table 7 corresponds to the number of additional copies 
of the original loop body that exist after unrolling; hence a value of zero indicates that the loop has not been 
unrolled, a value of three indicates that there are four instances of the original loop body, etc.) 

4.2    Baseline Performance 

Table 8 summarizes the performance of each application on the baseline architecture. We achieve a 
variety of region speedups ranging from 5% to 190%. Program speedups are limited by coverage (the portion 
of the application that performs TLDS execution), and range from 4% to 74%. Sc and ijpeg achieve the 
best region speedups in part because their large epochs help hide TLDS overheads. 

In the results that follow, we will only analyze the performance of speculative regions so that we may focus 
on the performance of our architecture during speculative execution. Figure 8(a) shows processor utilization 
for a varying number of processors. Each bar is broken down into seven categories explaining what happened 
during all potential graduation slots.2 The top four sections represent non-graduating slots attributed to the 
following TLDS-related reasons:  waiting to begin a new epoch (spawn); waiting for synchronization for a 

2 The number of graduation slots is the issue width (4 in this case) multiplied by the number of cycles multiplied by the 
number of processors. 
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Figure 8: Performance of TLDS on a varying number of processors. The number of processors in our baseline 
architecture is 4, as indicated by the *. Part (a) is scaled to the number of processors multiplied by the 
number of cycles, and shows the utilization across all processors. Part (b) is shows normalized execution 
time. 

forwarded location (sync); waiting to become homefree (homefree); and graduating speculative instructions 
for an epoch that is violated (specJail). The remaining sections represent regular execution: the busy section 
is the number of slots when instructions actually graduate and commit; the dcache^miss section is the 
number of non-graduating slots attributed to data cache misses; and the istall section is all other slots where 
instructions do not graduate. 

As we increase the number of processors and begin to speculatively execute in parallel, the heights of the 
bars increase—if we were achieving linear speedup, we would expect the bars to remain the same height. 
Although we do not achieve linear speedup, the growth of the bars for sc and ijpeg is slow, indicating that 
they scale well. Compress does not scale as well: as the number of processors increases, compress spends 
more time waiting for epochs to spawn and performing speculation that fails. 

In Compress, we synchronize around a particular set of references to a location to decrease the number of 
violations that occur (effectively forwarding the value). Interestingly, the time spent waiting for forwarded 
values to arrive (sync) is negligible. This is likely due to the large amount of time spent waiting for epochs 
to spawn. Buk also spends a significant amount of time waiting for epochs to spawn. For sc and ijpeg, the 
spawn time is almost negligible—the amount of work per epoch is sufficient to hide this overhead for these 
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Figure 9: Impact of using cache coherence to detect dependences (Co is the basic coherence scheme, FG 
builds on Co by adding fine-grain SM bits, Ex builds on FG by tracking exposed uses, CL builds on Ex by 
no longer modeling coherence, and Id builds on CL by tracking data dependences at a word granularity). 
The baseline architecture is Ex, as indicated by the *. 

two applications. Notice that time spent performing failed speculation and time spent awaiting the homefree 
token only account for a small portion of the execution time for all applications. 

Figure 8(b) shows the bars from Figure 8(a) normalized by the sequential execution time. We see that 
buk, sc, and ijpeg benefit from increased speedup as the number of processors increase, indicating that 
there is much available speculative parallelism. The performance of compress improves less as the number 
of processors increases from two, so our baseline architecture of four processors does not perform as well 
as a two-processor machine in this case. This is an artifact of the violation polling scheme modeled by 
our simulator: when there are many violations and epochs are short, the time to restart epochs can be a 
bottleneck. An interrupt-based approach (which is difficult to simulate with our current simulator) where 
epochs can restart immediately when a violation occurs would not suffer from this effect. Sc scales quite 
well, achieving a region speedup of 4.76 on 8 processors. 

4.3    Using Cache Coherence to Track Data Dependences and Buffer Speculative 
State. 

We now compare several implementations of TLDS hardware support. These implementations are of varying 
complexity, including two which are not practical to implement. Figure 9 shows execution time normalized to 
the baseline architecture for the different implementations. The first bar, Co, represents the basic coherence 
scheme. For this case, output dependences cause violations. The FG case builds on Co by adding fine-grain 
SM bits, therefore allowing speculation to succeed in the presence of output dependences. We see that buk, 
sc, and ijpeg have crucial output dependences which limit performance unless handled, while compress 
does not. The Ex case builds on FG by only setting the SL bit for exposed uses (see Section 2.5)—this is the 
baseline architecture, although sc is the only application which benefits from tracking exposed uses. The 
next two cases cannot be built, but they indicate the efficiency of our scheme. Case CL builds on Ex by 
no longer modeling coherence between the caches (no longer sending upgrade requests), but still checking 
dependences at a cache line granularity. By comparing with Ex, we see that having coherence increases 
the number of data cache misses, but that the impact on performance is reasonable. Finally, Id builds on 
CL by tracking dependences at a word granularity. The difference in height between the CL and Id bars 
indicates whether a application suffers from violations due to false dependences,3 which is the case for both 
buk and compress. This "ideal" architecture only performs between 1% and 19% better than our baseline 
architecture, indicating that our baseline architecture is quite effective. 

3 A false dependence occurs when separate parts of a cache line are speculatively read and written, thereby triggering a 
violation unnecessarily. 
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Figure 10: Impact of varying communication latency (in cycles). The baseline architecture has a communi- 
cation latency of 10 cycles, as indicated by the *. 
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Figure 11: Impact of varying the number of upgrade requests issued per cycle when flushing the ORB. The 
baseline architecture can issue 1 upgrade request per cycle as indicated by the *. 

4.4    Communication Latency 

In Figure 10, we vary the communication latency from two to twenty cycles (for our baseline architecture 
it is ten cycles). Evidently, compress and buk are the most sensitive to communication latency. Increasing 
communication latency increases epoch spawn time for both applications, but decreases the amount of failed 
speculation for compress. This decrease is fortuitous: the epochs become less and less overlapped and 
therefore have fewer out-of-order memory references which could cause violations. Sc provides a substantial 
amount of work per epoch, and as a result it is almost completely insensitive to communication latency. 
Given the region and program speedups in Table 8, we see that buk, sc, and ijpeg would still speedup with 
a higher communication latency than our baseline, while compress would not. 
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4.5    Flushing the ORB 

Figure 11 shows the impact of increasing the number of upgrade requests that the ORB may issue each 
cycle when committing an epoch. Contrary to expectations, execution time increases slightly for sc.4 This 
experiment has no effect on buk or compress, indicating that for those applications each epoch modifies only 
a small number of cache lines. Ijpeg, which issues an average of 4.3 upgrade requests per epoch, benefits 
only slightly from increased upgrade request bandwidth. This experiment demonstrates that the delay of 
passing the homefree token is not a performance bottleneck. 

5    Conclusions 

Extending the cache coherence protocol is a viable way of exploiting TLDS on architectures supporting 
multiple threads. We have shown a detailed design of such a protocol, and demonstrate that it can be used 
to exploit speculative parallelism. The hardware which we have simulated is realistic, and does not put any 
onerous requirements on hardware designers. Of course further performance analysis will be required to 
design a complete TLDS architecture, but the benchmarks in this paper show the feasibility of the protocol. 
In the future we will build upon this scalable platform and focus on compilation techniques to target TLDS 
machines. 
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