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Abstract 

Several past research efforts have developed methods to take advantage of Global 

Positioning System (GPS) positioning and apply it to a precision landing system (PLS). 

There have been proposals to phase out the current Instrument Landing System (ILS) m 

favor of a more cost-efficient and effective system. Accomplishments have been made in 

detailing a system implementing an INS aided with differential GPS, a GPS pseudolite, 

and a radar altimeter to handle the critical PLS requirements. This research applies the 

newly developed Modified Multiple Model Adaptive Estimation (M3AE) architecture in 

an attempt to enhance the performance of a PLS in an environment involving GPS 

interference. The M3AE uses Multiple Model Adaptive Estimation (MMAE) and 

Kaiman filtering techniques to estimate the levels of interference and the navigation 

performance of the aircraft simultaneously. In addition, in the original development of 

M3AE, the truth and filter model used were of the same order. This research serves as a 

demonstration of M3AE applied to system where the truth model is of a higher order than 

the filter model. 
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Integrated GPS/INS Precision Approach Landing 

with M3AE Interference Avoidance 

1. Introduction 

The focus of this research is to examine an application of a newly developed method 

of simultaneous state and parameter estimation to the precision approach and landing 

problem [11, 22,45]. The study involves a simulated aircraft navigation system using an 

inertial navigation system (INS) augmented with data from altimeters and Global 

Position System (GPS) receivers. It extends the efforts of previous analyses from the Air 

Force Institute of Technology (AFTT) entailing integrated aircraft navigation systems [7, 

13,34, 38, 56]. 

1.1.     Background 

There has been extensive research in aircraft automatic precision approach and 

landing systems [5,7,10,11, 13,18, 22,45, 56]. These systems prove invaluable during 

periods of low visibility, or when a pilot is unfamiliar with the landing site. Landing 

safely involves many factors, including flying at the proper speed and attitude, knowing 

where the aircraft and the landing point are accurately, and having a clear view or 

indication of the landing point. 



1.1.1.     Instrument Landing System 

The current system in use by the Department of Defense and civil aviation is the 

Instrument Landing System (ILS) [10]. This system is a highly directional guidance 

system that gives the pilot critical information pertaining to the aircraft's azimuth relative 

to the centerline of the runway, called the localizer, and the aircraft's approach elevation 

relative to the surface of the runway, called the glideslope. The modulated signals 

provide aircraft course and direction information to the pilot [47]. The system transmits 

two principal carrier signals, 108.10 MHz to 111.95 MHz for the localizer and 329.15 

MHz to 335.00 MHz for the glideslope. The localizer beam can be received 35° from 

both sides of the runway centerline up to 10 nautical miles (nmi) away and 10° up to 18 

nmi. The glideslope beam is 1.4° wide centered at an ideal glideslope of approximately 

3°. This translates to approximately a 1,000 ft. drop in altitude for every 3 nmi traveled, 

a guideline many pilots use for a quick check [58]. In addition, this signal is normally 

usable up to 10 nmi away. Both carrier signals are modulated with a different frequency 

signal, depending on which side of the beam centerline the aircraft is. The two 

modulating frequencies are 90 Hz and 150 Hz. (Figures 1 and 2 illustrate how this is 

applied). 

This system is in use extensively and satisfies the Federal Aviation Administration 

(FAA) Category IE requirements for aircraft precision approaches [12]. However, due to 

the cost of maintaining the aging ILS structure, there is an active search for replacement 

systems. One alternative being actively pursued involves applying Global Positioning 

System (GPS) based systems as a low-cost, flexible substitute [5,18,45]. 



,,'£*£*■»  ^^T^ss^rJ'V." 

150 Hz 
H0° 150 Hz 

10nmi 

90 Hz 

Figure 1.        Localizer Service Range 

18 nmi 

10 nmi 

Figure 2.        Glideslope Service Range 



GPS is a well-established, reliable system for navigation and surveying, and is currently 

being used as a supplemental navigation aid for non-precision aircraft approaches. 

1.1.2.     Global Positioning System 

The FAA is working closely with state aviation and industry officials to develop 

GPS-type procedures for all U.S. airports [5,18,45]. Several procedures, unique to GPS, 

have already been developed. One method uses differential GPS (DGPS) to provide error 

correction data to incoming aircraft that use GPS as a navigational aid [5, 18,45]. 

Another advantage of GPS is its ability to provide the pilot more flexible landing 

approach options, unlike the ILS, which obliges landing aircraft to follow one prescribed 

approach pattern closely, limiting the pilot's choices. 

Any alternative navigation system must still conform to the FAA precision landing 

requirements and must satisfy Category HI performance before it can be considered as a 

replacement to ILS. Table 1 gives the constraint parameters for the different categories 

[7,13]. 

Table 1.   FAA ILS Precision Approach Requirements (la) 

Category Horizontal Accuracy Vertical Accuracy 

I ±28.1 ft ± 6.8 ft 

II ± 8.6 ft ± 2.8 ft 

III ± 6.8 ft ±1.0 ft 



Relying solely on a GPS-based system is inadequate. The GPS transmissions, which 

are universally available, are those of the standard positioning service (SPS). As a 

security measure, SPS can be degraded by introducing a random drift known as selective 

availability (SA) to reduce the precision available to users outside of the U. S. Armed 

Forces [37]. Currently SA is active, and, as shown in Table 2, the level of accuracy for 

GPS is unacceptable for even a Category I approach. However, even without SA, the 

precision available fails to meet any of the FAA criteria for vertical accuracy (see Table 

2). This lack of precision, along with the unavailability of the precise positioning service 

(PPS) signal to the public has encouraged the development of other methods to decrease 

the error levels in SPS. One method that had gained popularity is the use of differential 

GPS (DGPS). 

DGPS yields greater position accuracy by eliminating errors common to GPS 

receivers. The reference DGPS receiver is located at a surveyed spot, known with a high 

degree of accuracy, e.g., at an airport. When the GPS signals it receives are.compared to 

those from another receiver, e.g., on board an aircraft, error corrections can be calculated 

and sent to the other receiver, improving the accuracy of its positioning; see Figure 3. 

The two receivers should be within 27 nmi (50 Km) to be effective [24]. While highly 

accurate, positioning using DGPS falls short of the required precision for FAA 

approaches, Table 2. 

Centimeter-level precision can be achieved using another method known as carrier- 

phase GPS, which calculates the phase shift of the SPS carrier signal, LI, at 1,575.42 

MHz. The wavelength of LI is approximately 19 cm; the positioning accuracy is a 

fraction of this wavelength. However, determining the number of whole (integer) cycles 



between the satellite and receiver becomes a problem. A momentary loss of the signal 

can disrupt the count of the whole cycles, resulting in integer ambiguities [4]. Currently, 

most carrier-phase uses have concentrated on surveying applications, since determining 

integer ambiguities is more difficult in a dynamic environment [41,42]. 

Table 2.   Precision Values Available with GPS 

GPS Method Horizontal Accuracy Vertical Accuracy 

SPS with SA 

SPS without SA 

SPS using DGPS 

± 134.8 ft 

± 33.5 ft 

±7.2 ft 

± 168.6 ft 

±42.0 ft 

± 9.2 ft 

GPS 
Satellite 

#@f fat GPS 
Satellite 

\ 

t  a ^,^.-- 

uv^-^T 
-A 

Reference 
Receiver i 

(tvaos' 
^\ft\n9 

£ttof CotteCl 
;\\orvs} Aircraft 

Receiver 

Figure 3.        Differential GPS 



1.1.3.     Inertial Navigation System 

Most aircraft use an inertial navigational system (INS) for their standard navigation 

aid. An INS is a self-contained "box" (it requires no outside information) that uses a 

system of gyros and accelerometers to sense specific forces as the aircraft's position, 

velocity, and attitude changes. With a knowledge of the gravitational field, the INS 

integrates the specific forces over time to calculate its velocity and position with respect 

to a known reference frame. A significant drawback of an INS is that the readings in the 

vertical direction (relative to the earth) are unstable. This is usually corrected by the 

addition of a barometric altimeter to the INS. For better accuracy at lower altitudes, a 

radar altimeter can further improve the vertical position accuracy. Another problem is 

that INS-derived positions have errors that grow over time, resulting in a drift [27]. This 

can be corrected using ground-based navigation aids such as VHF Omnidirectional 

Range (VOR) and Tactical Air Navigation (TACAN). 

GPS can serve as a replacement for these ground-based aids and adds flexibility in the 

flight path, as the aircraft does not have to follow a trajectory to stay in range of a VOR 

or TACAN system. As seen above, GPS also has a weakness in vertical positioning. 

This is due to the fact that the local horizon of a receiver limits the visibility of the GPS 

constellation. Only satellites above the horizon, or more commonly, above a user- 

selectable elevation mask angle (set to minimize ground clutter and atmospheric 

conditions) can be used to determine a navigation solution. One method to improve 

vertical GPS precision uses ground-based GPS transmitters, called pseudolites, to provide 

a GPS-like signal from below an aircraft's horizon. Pseudolites require extremely low 



power transmissions to mimic the -163 dBw GPS signal power level while not saturating 

the LI frequency with its own signal and blocking actual GPS satellite transmissions. 

The low power level of GPS transmissions brings to light the problems of 

interference and noise. GPS spread spectrum provides some protection; still some 

interference has been experienced from users when receiving spurious emissions near the 

LI band, such as second and third harmonics of UHF television stations, and even higher 

order harmonics from VOR and TACAN [40]. Also, there is the risk of someone 

deliberately broadcasting interference to deny any GPS signals to a receiver ("jamming") 

or mimicking transmissions from a satellite to give erroneous information ("spoofing"). 

Recall that an INS is a self-contained system that does not rely on outside 

navigational signals or beacon transmissions. Despite its inherent long-term drift 

characteristics, an INS provides velocity and position estimates with high degree of 

precision and low error standard deviation in the short-term. A great deal of work has 

been done integrating systems such as GPS receivers and one or more INSs (for failure 

redundancy), combining the benefits of GPS accuracy with the protection INS systems 

have against external noise [2,4,13,14,17,19, 21,23, 39,44,45, 50, 51,56]. 

Integration of navigation aids can further improve the performance of the system. Due to 

the dependence on GPS, it would be useful to have a system that could determine the 

level of accuracy and reliability of GPS transmissions before computing a navigation 

solution. 



1.1.4.     Sensor Integration 

An extended Kaiman filter can combine the position, velocity, and attitude states 

output by the INS with measurements from a GPS receiver, barometric and radar 

altimeters, and a pseudolite to determine the best estimate of those states. The Kaiman 

filter in this research uses tight integration to process the measurements. Tight 

integration incorporates raw measurements from all sensors, e.g., pseudoranges for GPS, 

into a central Kaiman filter as shown in Figure 4. In contrast, loose integration provides 

each sensor (or a selected subset of sensors) with its own filter to process its 

measurements before incorporating the measurements into the central filter as shown by 

Figure 4. Although loose integration offers less complexity for each filter, tight 

integration is preferred in this case, as it requires the design and tuning of only a single 

filter and has better performance potential [20]. 

Furthermore, in cases where fewer than four GPS signals are available (the minimum 

to compute positions and velocities using GPS), the filter can still function properly [27]. 

If a separate filter is devoted to processing GPS measurements, as in loose integration, it 

cannot give an unambiguous estimate when there are fewer than four measurements 

available. The entire benefit of GPS is lost during those periods. When tight integration 

is implemented, all measurements are delivered to a single state estimation filter. When 

there are fewer than four GPS measurements available, the filter continues to function, 

deriving some advantage of having at least partial information from GPS. 
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1.2. Problem Definition 

The core of this work is to examine the application of the newly developed Modified 

Multiple Model Adaptive Estimation (M3AE) algorithm [33] to an existing navigational 

system model using a GPS-aided INS in the presence of external interference. This 

algorithm is then applied to the precision landing problem to determine its suitability. 

1.3. Previous Research 

A great deal of research has been conducted to develop an adequate precision landing 

system (PLS) using GPS [5,7,11,13,18, 22,45, 56]. One significant effort is the 

FAA's Local Area Augmentation System (LAAS), which is based upon a ground-based 

system broadcasting DGPS error corrections and utilizing airport pseudolites [5,18]. 

Within AFTT, there have been two realms of research applicable to PLS. The first relates 

to the practical aspects of PLS, which include Johnson [23] and Negast [38] who focused 

on GPS/INS navigation systems. The work of Gray [13] applied the system to a PLS and 

showed that JLS Category II could be satisfied using a GPS-aided INS with radar 

altimeter and pseudolite measurements incorporated. Britton [7] follows this by using 

differential GPS (DGPS) measurements to show Category III could be met. White [56] 

investigated the performance a PLS in the presence of GPS interference and spoofing. 

White implemented Multiple Model Adaptive Estimation (MMAE) [31] techniques to 

adjust the navigational system's model to give dependable results. Advanced 

developments in more theoretical topics involving the M3AE architecture expanded the 

capabilities of MMAE to handle the task of simultaneous estimation of interference levels 

and navigation performance [33, 55]. 
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1.4.     Scope of the Problem 

The basis of this work is the expansion of the effort at AFIT towards investigating 

PLSs [56]. It will primarily be the application of the algorithm developed by Miller 

known as Modified MMAE (M3AE) [33] and to extend the work of White to simulate 

varying GPS interference levels for a GPS/INS PLS [33]. This research uses a computer- 

based simulation, Multiple Model Simulation for Optimal Filter Evaluation (MMSOFE) 

[39], to test the performance of a model of the PLS. The model of the PLS implemented 

at AFIT assumes the INS is the primary navigation aid. 

Two configurations are investigated using various INS models with two different drift 

rates, combined with various combinations of other navigation aids to determine the 

effects on the overall performance of the system. The principal criteria by which to judge 

the performance are the FAA precision approach categories. All aircraft navigational 

computers can only use finite-order models of the system. To reflect this, an elaborate 96- 

state truth model is used to simulate "real-world" aircraft position, velocity, and attitude 

errors, and a reduced-order 13-state filter model serves as the aircraft's on-board 

navigation filter model of sensor error characteristics. The difference between the states 

of the truth model and state estimates of the filter model will provide the error data to be 

weighed against the FAA categories. Monte Carlo analysis is conducted to tune each 

filter model for optimal performance and to determine whether the configuration is 

sufficient for a PLS. Monte Carlo analysis is conducted using MMSOFE, along with 

MPLOT. MPLOT is a software tool used in conjunction with MMSOFE that extracts the 

raw data from the files created by MMSOFE to provide usable data for plotting [36]. 

12 



In addition, this work serves as an initial application of M3AE techniques to a 

practical situation. The M3AE concept has been verified using truth and filter models of 

the same order [33]. The capability of M3AE using a more realistic and complete truth 

model and a reduced-order filter model in the simulation is accomplished. 

1.5.     Assumptions 

As in all research, a number of assumptions must be made to define the limits of the 

corresponding results and conclusions. The most crucial elements are the models used to 

depict the behavior of navigation equipment in the real world. The 96-state truth model 

is assumed to represent how the system would perform in the real world, while the filter 

model serves as an example of how an operational navigation system would be 

implemented. The simulated flight profile and GPS satellite ephemeris data used are 

generated by a program called PROFGEN [35] designed specifically to create the proper 

files for use with MMSOFE [39]. 

The INS is assumed to have a barometric altimeter integrated with it, as this is 

commonly done to stabilize the INS's vertical readings. A feed-forward configuration is 

used with the INS, which means the INS receives no data to update its current position. 

Although a feedback configuration in which the INS could accept position updates from 

the navigation filter could yield better accuracy, if the measurements of a sensor were 

corrupted, the INS would be extrapolating its states based on an erroneous input which 

can further distort its results. 

The presence of GPS interference is modeled as zero-mean white Gaussian noise 

(WGN) in the measurement models. This is the only interference to be taken into 
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account; the INS is considered to be unaffected by outside disturbances, and jamming of 

the radar altimeter is not examined. Pseudolites can be affected in the same manner as 

GPS satellite signals. 

1.6.     Summary 

This work follows the progress of other studies concerning integrated GPS/INS 

navigation. The intent is to incorporate the recently developed theory behind 

simultaneous parameter and state estimation with M3AE into this path of study, PLS 

improvement. Chapter 2 presents the theory behind a critical tool of modern navigation 

systems, Kaiman filtering. It then follows with a description of parameter and state 

estimation using MMAE, and provides an overview of the development behind M AE. 

Chapter 3 presents the system models implemented in the simulations. The structure of 

the models for each navigation system component is described as well as the states and 

measurements modeled. Chapter 4 shows the results obtained through simulations and 

the corresponding analysis of the performance observed. Lastly, Chapter 5 gives a 

summary of conclusions based on this work and any recommendation for other paths of 

study. 
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2. Theory 

2.1.     Overview 

The overall structure of the navigation system simulated in this work is based on a 

modified MMAE (M3AE). Miller developed this method as a solution to the dilemma in 

simultaneously estimating both the states and the parameters of a system model 

accurately [33]. The structure of M3AE is composed of two major parts: the MMAE, 

designed specifically for parameter estimation, and a single extended Kaiman filter 

(EKF) tuned precisely for state estimation, once provided the parameter estimate from the 

MMAE. 

The MMAE is composed of a bank of Kaiman filters, each one based upon a different 

value of parameters. Both the MMAE and state estimator receive measurements from the 

external sensors. The MMAE uses these data to come up with a blended parameter 

estimate, which is passed on to the state estimator. The state estimator then has the best 

model available to render its estimate of the states, based on the incoming measurements. 

In this way, accurate state estimates can be obtained in an environment where some of the 

parameters of the model can change. The Kaiman filter serves as the fundamental 

building block of an M3AE; thus, an explanation of the M3 AE begins from the most 

elementary component proceeding towards the overall structure. 

This study uses Kaiman filters to combine various sensor data (INS, GPS, etc.) to 

obtain an optimal estimate of the aircraft's position and velocity. Kaiman filtering has 

been used considerably in navigation applications [19, 27]. 
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It is well suited for this due its ability to take into account levels of uncertainty of states 

and measurements within a system. Kaiman filtering deals with systems that can be 

described by a set of linear, time-varying, stochastic differential equations [24,30]. In a 

sampled-data environment, such as a computer, discrete difference equations can be used 

with some adaptation. The stochastic processes involved are represented by white 

Gaussian noise (WGN), usually zero-mean unless a bias is needed. "White" indicates 

that the value of the process at an instant of time is independent of all other values at any 

other time, i.e., "perfect" randomness. Gaussian functions are used since uncorrelated 

jointly Gaussian functions are also independent. The strength values can be adjusted to 

fit the level of uncertainty needed for the models. 

2.2.     Extended Kaiman Filter 

Originally, Kaiman filters were designed to handle systems adequately described by 

linear models [30]. All models are approximations, and in many cases, linear models 

have deficiencies that are not negligible. This is often the case when the noise strengths, 
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i.e., levels of uncertainty, of the model are small values. Over time, the states of the filter 

can rely too heavily on the system model and become affected less by external 

measurements. This can result in model behavior that strays away from the actual real- 

world situation [31]. Several methods have been developed to counteract this. Some 

restrict the variance of the states from going below a certain value or have a built-in 

minimum threshold of uncertainty. Others limit the "memory" of the filter, such as in 

Fagin age-weighting where the effects of more recent measurements are magnified by 

increasing the assumed noise variance of earlier measurements exponentially backwards 

in time [31]. In cases where the linear model cannot sufficiently characterize the system, 

the filter equations can be adapted to handle non-linear equations. A linearized Kaiman 

filter assumes that a nominal state trajectory (value of the state vector over time) exists 

and estimates the perturbation about the nominal value. The perturbation is defined as 

the first-order term of the Taylor series of the difference between the state vector and its 

nominal trajectory. This filter performs well unless the actual and nominal state 

trajectories differ significantly [31]. To compensate for this, extended Kaiman filtering 

(EKF) relinearizes about the most recent state update. Thus, the filter computes a new 

nominal state trajectory after each update phase. 

In the equations that follow, a certain type of notation is used, following a convention 

adopted by Maybeck [30, 31, 32]. Vector and matrix variables are distinguished from 

scalar variables through a boldface type. Boldface, lower-case letters are reserved for 

vectors and capital letters for matrices. Thus, a, b, c would be scalars, a, b, c would be 

vectors, and A, B, C would be matrices. Variables are further distinguished by typeface. 
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Roman type indicates a deterministic variable, e.g., a, b, c, while a sans-serif (Helvetica) 

type indicates a stochastic variable, e.g. a, b, C. 

2.2.1.     System Dynamics Model Equation 

Consider the linear system dynamics model equation used for Kaiman filtering 

x(0 = F(Ox(0 + B(f)u(f) + G(f)w(0 (1) 

where x(f) is the state vector, F(f) is the system dynamics matrix, u(f) is a vector of 

deterministic control inputs with B(f) as a control input matrix, and w(f) is a vector of 

zero-mean WGN with G(t) as a noise input matrix. Note, w(f) is the hypothetical time 

derivative of a Brownian motion process ß(f) 

«W-4C0 (2) 
dt 

which does not exist in the real world since w(f) has an equal power density over all 

possible frequencies (hence, the term "white"). However, if it is assumed that a finite 

band of frequencies (of concern to the problem) is used, then w(f) "appears" as a white 

noise process within that band. Also, since w(f) is a Gaussian process, two statistics, 

mean and (auto)covariance kernel, are sufficient to completely describe how it behaves: 

E{w(f)} = 0 (3) 

E{ w(OwT (t + T) } = Q(t)S(r) (4) 

Q(0 is a square matrix that can be interpreted as the strength of the WGN, while 8(f) is 

the Dirac delta function, also known as the impulse function. With the addition of w(0, 

x(0 becomes a stochastic variable itself with these statistics: 

E{x(t)} = m (5) 
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E{ [x(0 - x(0][x(0 - x(Of} = P(0 (6) 

x(f) is interpreted as the best estimate of the state vector at time t, and P(f) is its 

corresponding covariance or range of uncertainty. 

When the system dynamics cannot be expressed as a set of linear equations, a non- 

linear function must be set up for the model: 

x(0 = f[x(0,u(0,*] + G(f)w(0 (7) 

where f[x(f), u(f), t] is the non-linear vector function in terms of the state and control 

vectors and time. Also, in this research, no deterministic control inputs are considered, 

thus B(0 and u(0 are zero and do not appear from this point on. 

2.2.2.     Measurement Model Equation 

The linear discrete measurement model equation used for Kaiman filtering is 

z(/I.) = H(f,.)x(f,.) + v(0 (8) 

where zfo) is the measurement vector, H(f*) is the measurement matrix, and vfe) is a 

vector of zero-mean, discrete-time WGN representing the uncertainty of the 

measurements, or the measurement noise. It is important to note this equation is a 

discrete-time process (f,- instead of i) since measurements are taken at specific instants of 

time. Here, the measurements are considered to be taken at regular time intervals. The 

measurement noise v(fc) has the following statistics: 

E{v(f,)} = 0 (9) 

[R(0   i = 3 
W,)V^)}=0 .,- (10) 
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In this description, R(ff) is a square, positive definite matrix interpreted as the covariance 

of the noise vfo). Rfo) beinS positive definite implies that all measurements, i.e., 

elements of vfe), are corrupted by noise, and no linear combination of these 

measurements would be free from noise. In addition, it is assumed that the state and 

noise vectors, x(f), w(f), and v(f,), are uncorrelated with each other, and being jointly 

Gaussian this means they are also independent of each other[30]. 

As above, when the measurement dynamics cannot be expressed as a set of linear 

equations, a non-linear function must be used: 

z(r,.) = h[x(r/),rJ] + v(fI.) (ID 

where h[x(f), t] is the non-linear vector function in terms of the state vector and time. 

2.2.3.     System Model Linearization 

Equations (7) and (11) describe the non-linear model of the system of which a 

Kaiman filter determines the best estimate of the states x(f) and the estimation error 

covariance P(f). A linear approximation must be made to create a linearized Kaiman 

filter to apply to the model. A nominal state trajectory \„(t) V t e T (7/is the entire 

period the filter operates) is computed with initial conditions of x„(f0) = x„o, where the 

noise-free system dynamics equation is defined by 

xn(0 = f[x„(0,'] (12) 

where f[v] is the same as in Equation (7). Nominal, noise-free measurements are also 

considered with the corresponding measurement equation 

zn(ti) = h[xn(ti),ti] (13) 

where h[vlis me same as in Equation (11). 
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As mentioned in the beginning of this section, a linearized Kaiman filter estimates a 

perturbation to the nominal trajectory. The state perturbation is found by subtracting the 

nominal states from the original states. This yields a system dynamics equation Of 

[x(f) - x„ (f)] = {f [x(0, t] - f [x„ (0, t]} + G(f)w(f) (14) 

Now, a Taylor series expansion is performed on f[x(0, t] about xn(t) V t e T 

dkf[x(t),t] 
f[x(0,f] = £- 

*=o 
[x(0-x„(0f (15) 

x(0=x„(r) dxk 

A first-order approximation may be made by neglecting all the terms with powers greater 

than one (k > 2) 

[x(0-x„(r)] (16) f[x(0,^f[xn(0,]+
af[X(0'?] 

ax 

Let 

Ffc..«]-«1*^' 

x(r)=x„(r) 

(17) 
x«)=x„«) 3x 

The linearized (first-order approximation) perturbation 5x(t) = [x(f) - x„(0] is found by 

substituting Equations (16) and (17) into Equation (14) 

Sx(t) = F[t;xn(t)]Sx(t) + G(t)\N(t) (18) 

The same procedure is applied to the measurement equation, with a Taylor series 

expansion of h[xfo), t] about zn(ti) V tte T yielding 

Sz(ti) = mt;xn(ti)]Sx(t) + v(t) (19) 

At this point, the Kaiman filter equations can be applied, resulting in the linearized 

Kaiman filter. It should be noted that, unlike the basic Kaiman filter, the best estimates 

of the perturbation states <5x(0 are first-order approximations and not truly optimal. In 
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order to get the estimates of the states themselves, the nominal state trajectory must be 

added 

2.2.4.     Extended Kaiman Filter Equations 

In many cases, the effect of neglecting the higher order terms of the Taylor series can 

cause the accuracy of the filter's predictions to stray over time. This is caused when the 

nominal state trajectory deviates significantly from the actual trajectory. Extended 

Kaiman filtering solves this by relinearizing about the most recent state estimate x(f) 

instead of the initial nominal state trajectory x„(0- Thus, a new nominal trajectory is 

created for each cycle of the filter. Each cycle of a Kaiman filter has two phases: 

propagation and update. Each filter update occurs at regular intervals u (i = 0,1, 2,...) 

and of instantaneous duration. The propagation phase takes place during the intervals 

between tt and *,-+;. In the EKF equations below, the following notation convention is 

observed [30, 31,32]: 

t\tt indicates the value of a given variable at time t, conditioned on measurements 

taken through time tt (this also represents the relinearization taking place). 

t;  indicates the value after the propagation phase, prior to the update phase 

t*  indicates the value after the update phase, prior to the next propagation phase 

2.2.4.1.     Propagation Phase 

The values of the state estimate x(t\tt) and state covariance P(f|f,) are propagated 

from t+ to f~i through the following differential equations: 
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x(t\ti) = f[x(t\ti),t] (2D 

PC^Ffrx^OlPt^ (22) 

where 

9f[x(0,f] 
F[f;x(%)] = - 

3x 

with these initial conditions: 

(23) 
x(O=x(f|»,0 

i(r,|f,) = i(fl
+) (24) 

P(rI.|fI.) = P(C) (25) 

2.2.4.2.     Update Phase 

After each propagation, the discrete-time measurements z, = z(fc) are applied. The 

updated values of the state estimate x(tt) and state covariance P(f,.) are computed through 

the following equations: 

K(f,) = P(fr)HT[fl;i(rr)]{H[rf;i(fr)]P(fr)HT[ff;i(/r)] + Rft)}"1 (26) 

x(t:) = x(t;) + K(ti){zi-h[x(t;),ti]} (27) 

P(O = P(0-K(OH[',;x(Q]P(0 (28) 

where 

dh[x(t),t] 
H[r,x(^)]s- 

3x 
(29) 

x(0=x(rf ) 

and translating the values after the propagation phase as: 

i(0 = *(',!',-.) (30) 

P(0 = P(^M) <31> 
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The values x(7,+) and P(f,+ ) are then used to start the next propagation phase and to 

recalculate the nominal state trajectory. 

The term {z,. -h[x(0,f,]} in Equation (27) is known as the measurement residual, 

and is represented by rfe)- The value of rfc) represents the difference between the actual 

measurements taken z,- = z(t,) and the filter's prediction of the measurements 

z(f,) = h[x(f r),f J based on the best estimate of the state vector prior to receiving z/. The 

characteristics of rfo) show how well the filter model simulates the behavior in the real 

world. In a linear Kaiman filter, for an accurate model, r(f,) will appear white and 

Gaussian with a mean of zero and a covariance of 

A(ti) = wrM;mt-)HT[ti-,x(t;)]+R(ti) (32) 

Note this term is embedded in the expression for Kfo) in (26). For an extended Kaiman 

filter, this description is good only to the first order. 

2.3.     Multiple Model Adaptive Estimation (MMAE) 

As a Kaiman filter runs, the algorithm generates its prediction of the states of the 

system model, x(f), along with an estimation error covariance P(f). All of this depends 

on how well the model itself depicts the system's behavior in the real world. The 

structure of the model is based on the parameters describing the interrelations of the 

states. For this work, these are the system dynamics function f[x(f), t], system noise 

input matrix G(0, measurement function h[x(r), t], and the strength of the system 

dynamics noise Q(0 and covariance of the measurement noise R(f,-). The filter can 

encounter difficulties when any of these quantities change from values assumed by the 

filter. Thus, it would be beneficial to have a filter that could adapt to such changes. A 
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technique known as multiple model adaptive estimation (MMAE) handles changes in 

system characteristics through a parallel bank of K individual Kaiman filters (where K is 

the number of possible parameter values a* taken into account), each calculating its own 

best estimate of the state vector xt(r,.) with Pt(r,.) (k = 1, 2,..., K). When the 

measurements z,- are given to the filters, they generate a set of residuals r*fe). These 

residuals are processed by a hypothesis conditional probability computation algorithm to 

quantify how well each filter matches the real world circumstances. This is expressed as 

a conditional probability, pk(td, by the recursive equation 

_    /*t,)|a,Z(tM)(Zila* »Zi-t)P* (f'-i) (33) 

where a* is the value of parameters associated with the fcth filter, ZM is the realization of 

the variable of Z(fa), which is in turn a vector of cumulative measurements from the 

initial time to to fa: 

Z(',-i) = 
z(*,_2) 

Z(*o) . 

(34) 

and fz, ,aZ(, )(z,|at ,Z,_,) is a Gaussian density function with a mean of rjtfe) and a 

covariance of AtC?/): 

/^la^Al^^-i) = ßk exp|"M'i)j (35) 

where 

& = 
(2rc)f|A,(rf 

(36) 
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and 

Lk(ti) = rJ(ti)A-k\(ti) (37) 

The quantity rk(td is an m-dimension vector, i.e., m scalar measurements are taken at 

each measurement update interval. These conditional probabilities are then multiplied by 

their corresponding state estimates, which are summed to produce a blended estimate of 

the state vector i(f,). Figure 7 shows a block diagram of the MMAE [31]. 

The conditional probability is best interpreted as pk(ti) - Prob[a = a* | Z(f,-) = Z,], i.e., 

the probability that the parameter value a* is the correct one for the model, based on the 

measurements collected up to this point Z(Y,) = Z,-. 
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Figure 7.        MMAE Structure for Parameter Estimation 
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The blended estimate is then the weighted mean of xk(tt), k = 1, 2,..., K: 

x(r,) = £{xfc)|Z(f,) = Z,} = f it(/,)A(',) (38> 

The corresponding covariance P(f,-) of the blended solution is 

k=\ 

The underlying concept of the MMAE is that values of the residuals determine which 

filter best represents the real-world system at the current time, i.e., the best filter has the 

smallest scaled residuals. These residuals are scaled by the inverse of the filter-computed 

residual covariance, as seen in Equation (37). The corresponding probability of that filter 

should increase over time and the other filters' probabilities should decrease, assuming 

the system environment remains constant. Prior to using the MMAE, each filter should 

be tuned (values of the dynamics pseudonoise strength matrix Q adjusted) for its best 

performance by running the algorithms under the conditions of each of K parameter 

values being the best or "true" values in the real world. Thus, the ** filter would be 

tuned for best performance when the "true" parameters are a*. 

An inherent trade-off problem exists in an MMAE between state estimation (x) and 

parameter estimation (ä). The problem is that the only way an MMAE can ascertain 

what the system parameters should be is through the measurements it receives. When an 

MMAE is designed to yield good state estimates (i.e., accurately predicting the system's 

actual states xfo) given all previous actual measurements ZM over a period of time) each 

filter is tuned individually to provide accurate state estimates for its own parameter value 

a*. If the filters are tuned conservatively, the residuals, rk (t,) = z, - h[x* (t~), t, ], can 

appear similar to each other. If all the residuals tend to have nearly the same magnitude, 
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then the MMAE favors (assigns the highest probability to) the filter with the least value 

of |At|, as shown by Equations (33) and (35) - (37). Although A* is used to represent the 

covariance of the residuals (assumed Gaussian), the value of |At| is independent of the 

residuals themselves and how well the kth filter fits the parameter environment. The 

conditional probability of each filter pfa) is dependent upon its residuals through L*fe) 

from Equation (37). If the scaled values of the residuals, r*(f,), are similar, then Life) ~ 

L2fo)«... * Luiti). This means that pk(td is how highly dependent on ßßd (2-32) which 

has as its only variable, |At (tt)\.  A strong dependence on |At (t,)\ can distort the 

blending process since there will be one filter; e {1, 2,..., K}, such that |A7(f,)| < 

U (t,)\ V fc */. If the parameter environment does not change for a period, pfr) will 

approach unity while all other pk(td will approach zero. As this happens, one filter out of 

the bank becomes favored by having most of the probability weighting. This may be the 

"best" filter out of the choices available, though it may not have the best parameters out 

of the entire parameter space. 

However, the performance of the algorithm relies upon significant differences 

between the residual characteristics of each elemental filter. Because of this, it is 

important to avoid adding too high levels of dynamics pseudonoise Q during filter tuning. 

Although a conservative tuning philosophy is used to keep filter estimates from diverging 

considerably from the truth, conservative tuning tends to mask the differences between 

good and bad models [28, 33]. 

Another concern occurs when one of the elemental filters achieves a conditional 

probability of zero. Whenever this occurs, that filter's probability remains zero 
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indefinitely due to the recursive nature of Equation (33).  Thus, the filter is eliminated 

from the possible choices considered by the MMAE in the future. Even if the parameter 

conditions change such that the elemental filter that had zero-probability now represents 

the best model of the real-world system, that filter cannot have any probability weight 

assigned to it. One solution to prevent this from happening is to establish an artificial 

minimum threshold value that/?* can attain, i.e., min(p*) [1,31]. Consequently, this 

means no elemental filter can have pk = 1 even if it is the exact match, though this should 

not produce any significant problems in determining a solution [31]. 

The advantage MMAE provides to Kaiman filtering is that it handles situations where 

a single system model cannot sufficiently simulate the behavior of an actual system 

confronted with varying parameters. In addition to the states, the MMAE algorithm can 

be used to determine the best estimate of the parameters themselves a(f,.) based on all the 

measurements collected Zfo) = Z,. The blended estimate of the parameter set is 

calculated in the same manner as with the state vector: 

&(f,) = E{a(t,)\Z(tt) = Z,} = SMOft Ci) W 

The conditional covariance of a(f,-) of the blended parameter estimate is 

Pa(0 = JS{[aa,.)-ä(0][aa,)-ä(0]T|Z(0 = z.} 

= 5>t W -*W** (ti)-*(ti)fPk (O 
(41) 

When the filters are tuned for parameter estimation, it is done such that the residuals 

tend to have values sufficiently distant from each other. This helps to create a situation 

such that if the actual parameters do not exactly or closely match those of one of the 

filters, a blending of several filters will provide an accurate estimate of the parameters. 
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However, the method to make the residuals more distinct from each other entails 

applying smaller values of the Kaiman filter gains K*fo) to reduce the influence of the 

measurements z(. When the measurements have less influence, the filter tends to rely too 

heavily on the propagated state estimates x(0 . This means the actual state x(f,) can be 

misrepresented over time. Therefore, new techniques have been developed to give 

accurate estimates of both the states and the parameters simultaneously [33]. 

2.4.     Modified MMAE (M3AE) 

The M3AE architecture combines MMAE and Kaiman filter techniques for 

simultaneous state and parameter estimation. Under this architecture, an MMAE serves 

as the parameter estimator and is designed and tuned for estimating the system's 

uncertain parameters accurately. It is optimized for distinguishing among several 

possible hypothesized operating conditions dictating the parameters of the system. The 

separate single state estimator within the M3AE algorithm is designed and tuned to 

provide accurate state estimation, conditioned on the measurements and knowledge of the 

parameters provided by the parameter estimator. 

Several assumptions regarding the system must be accepted before an M AE can be 

applied to the model. Most importantly, the parameters to be estimated lie within a finite 

predefined parameter space. The elemental filters of the MMAE are then based on a 

subset of discrete parameter values chosen from the parameter space [31]. In addition, 

the variable parameters change more slowly than the system's states, thus estimates of 

these parameters can make use of any prior information available as to how they vary 

over time. As for designing an M3AE architecture, Miller describes a straightforward 
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method to analyze, tune, and predict the system's performance before conducting a full- 

scale Monte Carlo analysis. Figure 8 shows a flowchart of the performance analysis tool. 

First, a discretized parameter set is established using an algorithm designed by 

Sheldon to determine the parameters of each elemental filter of the MMAE [48, 33]. If 

appropriate, inter-residual distance feedback (IRDF) techniques developed by Lund [28] 

are applied to make each elemental filter appear more distinct from one another. Next, 

the state estimation Kaiman filter is designed using techniques described by Maybeck 

[30, 31]. It is important to note that the MMAE will provide the values of the variable 

parameters to the state estimator based on the incoming measurements. Then, the 

MMAE and state estimator are coded in a software simulation. A single Monte Carlo run 
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Figure 8.        MMAE Structure 
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is performed on the MMAE to generate the values of the parameter estimate, a(f,), its 

covariance determined by the elemental filters, Pa(f,-), and the probabilities associated 

with each elemental filterpfa). Finally, an approximate covariance analysis is conducted 

to verify if the design's performance meets the desired specifications. If so, a thorough 

Monte Carlo analysis is conducted on the M3AE. If not, the MMAE and the state 

estimator are modified iteratively to solve the discrepancies. 

2.4.1.     Parameter Space Discretization 

The M3AE's MMAE is designed for accurate parameter estimation. When designing 

the MMAE for parameter estimation, a parameter space must be defined. The parameter 

space is the range of values the uncertain parameter to be estimated can assume. Once 

this is determined, the next issue is the placement of the elemental filters to span the 

space. In the past, several ad hoc methods were used to determine the placement or 

discretization of the parameter space, e.g., equal spacing, exponential spacing, etc. [15, 

16, 31,46,49]. Sheldon[48,49] thought a more systematic design approach was required, 

thus he developed a method to assign the placement of the filters optimally. His method 

involves minimizing a cost function, C, which is the average of the mean-squared 

estimation error taken over the parameter space: 

J E{[a(0 - a(0]T W[a(0 - a(0]}<*> 
C = * -.  (42) 

\da 

where 

\da= J ... J jdal da2 ... daN 
(43) 

isw K2   N, 
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a, 
a 

a = 
2 (44) 

aN 

and W is a weighting matrix chosen by the designer to emphasize specific states, N is the 

number of scalar parameters (dimension of a), and K is the bounded region of the 

parameter space within which the parameters can take on values. 

The parameter space discretization and placement of the elemental filters is 

accomplished before implementing the MMAE. This entails deciding which parameters 

can change, what the appropriate parameter spaces are, and where the elemental filters 

should be placed within the parameter space. Sheldon developed a five-step algorithm to 

minimize a cost function over a parameter space numerically. The first three steps 

consist of constructing the truth and filter models to represent the system, deciding the 

number of filters to be used, and determining the cost function (parameter, state, or 

control, but in the M3AE, the MMAE is only used for parameter estimation) of the 

parameter set to be employed. The fourth step is the core of the process. The basic 

purpose is to apply a numerical integration technique to evaluate the value of the cost 

function, C, over the parameter space K. Assuming the parameter set remains constant 

for a given problem, only the numerator of Equation (42) needs to be evaluated, and with 

W often chosen as a diagonal matrix, it can be expressed as: 

JE{[a(0-ä(0]TW[a(0-ä(0]}rfa = Jtr(WE{[a(0-ä(0][a(f)-ä(0]T}ya   (45) 

where tr(») is the trace of a square matrix (sum of its diagonal elements). For numerical 

integration, X is divided into a number of discrete intervals. At one point of each 

integration interval, a value for a(f,.) is calculated in the following manner: 
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Sheldon defines a transformation matrix T that converts true states (indicated by the 

subscript T) Xrfo) to filter states (no subscript T) xfo) in this way: 

x(f,) = TxT(f,.) (46) 

where x(ti) is defined by the discrete-time system equation: 

x{tM) = &(tM,tl)x(tl) + Gä(ti)}Ni(tl) 

*(w,)=«,(*x*H~*) 

and 

(47) 

(48) 

(49) Gd(fl)wd(rl) = <[
w*ft+I,rl)G(T)dß(T) 

and wd(fj) is zero-mean WGN with strength (covariance) of Qdtt): 

Qd (,,) = J'i+1 *(,|+1, T)G(T)Q(T)G
T

 (T)O
T

 (*l+1, t)dt (50) 

The following equation is then solved iteratively, where the subscript, k, denotes the 

** filter corresponding to ak(k = 1, 2,..., K) (T, as a subscript, still denotes the truth 

model): 

rt (n +1) = YTt (n) YT + G0Q0Gj (51) 

where 

Y = 
■*t(I-K4Ht)   (^T-TOT)-^K,(HJ-HTy 

G0 = 

0>x 

TGdT   *tK/ 

G dT 0 

Qo = 
o QdT 

0     RT 

(52) 

(53) 

(54) 
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f.th 

The iteration ends when rk(n) approaches a steady-state value, i.e., lim 1^0), (or 

practically when Tk(n+1)« Tk(n)), and is represented as T~. The proximity of the k' 

filter is defined as [49]: 

^lnlAj + trJA^H,   H,T-HT]I7[H,    H/T-HT]
T+RT]} (55) 

If the MMAE has sufficient conditions to converge in the Baram-sense [3], it will 

converge toward the/1 filter governed by: 

lj=rmn{lk\k = l,2,...,K} (56) 

Then the parameter is given by 

k=\ 

K 

= {[1- ^Ja^J + E3*^- 
(57) 

k=\ 

where pmin is the pre-defined minimum conditional probability a filter can attain, and a; is 

the value of a(f,■) according to the ;** filter. 

The fifth step is to use the values of a(f,) computed above in a vector minimization 

of C(a). This yields the optimal values of a* for each filter. 

This procedure applies to steady-state, constant-gain (i.e., K(t() does not vary over 

time) Kaiman filter. This is adequate for time-invariant systems with stationary noise. In 

cases involving astable or unstable system model, the Kaiman filters of the MMAE do 

not achieve a steady-state condition. This motivates the use of a finite horizon, the 

selecting of a period where the system parameters can be considered time-invariant [33]. 

This research uses an INS with time-varying parameters in its system dynamics matrix 

and an inherent instability in estimating vertical positions (a common trait of INSs). 
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Thus, a finite horizon is implemented in the software in the iterative solution of the 

Equation (51). 

2.4.2.     Inter-Residual Distance Feedback (IRDF) 

Another concern in parameter estimation is to keep the values of Lk(td sufficiently 

distinct to avoid overdependence on \Ak(tt)\. To accomplish this, Lund [28, 29, 33] 

defines a quadratic term Jkj(ti) as the squared distance measure of the difference between 

residual rk(ti) and residual r/f,-): 

W^WV'i) (58) 

where r*/*,-) = rk(ti) - r,-(f,-), j * k, is the inter-residual distance between the k^ filter and 

the/1 filter, and *¥kj is a positive definite scaling matrix. The plan is to maintain Jkj(ti) 

above a specific limit value J0(td > 0 by adjusting the filter gains. A common method to 

accomplish this involves adjusting the filter gains by varying the dynamics noise 

strengths Qk downward. In the continuous-time method developed by Lund, Q* is 

replaced by 

Q[(t) = ri(t)Qk(t), 77(0 e [^,1] (59) 

Assuming Q* represents the dynamics noise for the kth filter tuned for best estimation 

when its assumed parameter value is true, the modulating parameter t]{t) has an upper 

limit of 1, since 7]{t) > 1 would decrease the distinguishability of the residuals [28, 29, 

33]. A lower limit ^n > 0 is set to maintain the stability of the filter. In addition, Lund 

defines the continuous-time derivative of r\{i) as: 

iL„(()=p4<<w»e>].co„d.i 
dt |0, Cond. 2 

36 



where 

Cond. 1:   r](t) £[77^,1] 

Cond. 2:   »7(0 = 7?™, AND £[Jkj(t)-J0(t)]<0  OR (61) 

JJ(0=   1  ANDfryO-/0(0]>0 

The constant t, provides proper attenuation of the noise modified by t](t). Ad hoc 

methods are used to determine the values of £ »7mm, and J0. Lund suggests choosing £ 

such that HE, is greater than the largest time constant of the elemental filters, and »7„ün = 0 

if the system maintains its stability [28, 29]. For J0, one ad hoc method involves 

performing a sample run before applying the IRDF techniques [29, 33]. An initial value 

for Jo is chosen based on the actual values of Jkj observed, e.g., the mean value of Jkj. 

These values are then "tuned" in further simulations to verify the system performs within 

its requirements. However, there is a shortcoming in this method in that the modulated 

system noise strength Q^(0, being a function of time, is computed in real-time and 

cannot be determined in advance. 

As a way around this, Lund recommends modulating the quantity K*(0r*(0 instead of 

Qk(t) to simplify this for linear models: 

K'k(t)rk(t) = r1(t)Kk(t)rk(t),r](t)e[rlls,D,l] (62) 

The primary benefit of this is that the Kaiman filter gains Kk(t) can be precomputed 

and only »7(0 is computed in real-time [29, 33]. In addition, modulating K*(f) yields 

quicker adaptation responses than with Qk(t), which relies on the filter state covariance 

Pt(0 equations transient effects to subside before the filter gains can be changed [29, 33]. 

Conversely, Lund states this approach has less benefit for extended Kaiman filter and 

other higher order filters where their filter gains are computed in the process. In this 
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research effort, the MMAE filters implemented have reasonably distant values when the 

parameter space is discretized by means of Sheldon's algorithm. Also, many of the terms 

of the system dynamics noise matrix Q for the truth model and tuned filter model are very 

small or zero. For these reasons, IRDF was not pursued in this work, although it may be 

of significant interest to other potential research areas [29, 33]. 

2.5.     Summary 

The theory and approaches described in this chapter are intended to provide insight 

into the methods used to implement system models for test simulations. Due to the extent 

Kaiman filtering is applied to navigation problems, a good understanding of its workings 

can be invaluable in designing such systems. One of the motivations for this work is to 

apply the newly developed M3AE techniques [33] to an actual problem, thus improving 

the capabilities of parameter estimation (prediction of the system's working 

environment), and state estimation (prediction of the values of concern, such as altitude). 

In this work, state estimation in the face of changing parameters for the precision landing 

problem is the core matter. 
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3. Methodology 

3.1. Overview 

The fundamental elements of this type of research effort are the application and 

implementation of accurate system models and simulations for the problem at hand. This 

chapter presents a comprehensive description of the truth and filter models, integration 

methods, and simulation techniques employed. An overall description of the system is 

provided at the start. Next, the truth and filter models are developed for each navigation 

subsystem, including a complete description of their roles. Finally, the approaches to 

perform simulations of the problem are outlined. The next chapter then gives a 

breakdown of the results of the simulations. 

3.2. System Description 

The navigation system to be examined consists of several elements. The basis for the 

system is the M3AE. Its role here is to provide the best estimates of the error states of 

the INS rather than the true states. True states are the actual values of position, velocity, 

attitude, etc. This should not be confused with the truth model, which is a system model 

that is assumed to depict the actual behavior of the states, true or error. Error states are 

distinguished from true states in that they are the correction values of position, velocity, 

etc. that should be subtracted from the states output from the INS to provide the best 

navigation estimates. This is necessary, since the INS, in the configuration being 

considered, does not have its states reinitialized to reflect an update on the actual position 

of the aircraft according to the measurement devices. Before the entire system is first 
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activated, the initial states of the INS are carefully calibrated to reflect the craft's current 

position, and the M3AE error states are assumed to be zero. After activation,' the state 

estimator predicts how far INS readings deviate from the actual (true) position, attitude, 

and velocity of the craft, hence the term error states. 

To compute its best estimate of these error states, the M3AE receives information from 

several sources. These consist of the INS with altitude estimation {vertical channel) 

aiding from a barometric altimeter, pseudoranges from four GPS satellites and one 

pseudolite, and relative altitude from a radar altimeter. The GPS signals and altimeter 

readings are considered as measurement values for the M3AE. The truth model uses 62 

error states to describe how these systems function in the real world [7,13, 38,56]. 

Then, the reduced-order filter model's performance is compared to the truth model's 

performance. The filter model tracks 13 error states, representing the navigation system 

on board the aircraft. Figure 9 shows a layout of the relationships between subsystems. 

For the purposes of simulation, a flight profile trajectory was generated in advance by the 

program PROFGEN. The GPS satellite data used are from a file recorded 4 May 1991 

[13]. 

The simulations compare the performance of the 13-state reduced-order filter to the 

62-state truth model. The (error) states of the filter model are a proper subset of those of 

the truth model, and were chosen to be those having the greatest influence over the 

desired navigation data output of the complete system [38]. The truth model makes use 

of 39 states representing the INS and 23 states for the GPS data. From this group of 

states, 11 INS states and 2 GPS states were selected to be implemented into the filter 

model. 
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Figure 9.        Navigation System Block Diagram 

3.3.     Inertial Navigation System Models 

The INS model used in this work is based on the Litton LN-93 strapdown, wander- 

azimuth INS using accelerometers and ring-laser gyroscopes (RLG) to detect the changes 

in the motion and orientation of the aircraft. Readings from these instruments are 

translated into the various states of the model including position, velocity, and attitude. 

Litton developed a sophisticated error state model using 93 states to describe the 

characteristics of the LN-93 INS [26]. This error state model provides an accurate 

depiction of the actual performance characteristics of the INS and has been used in 

several research projects at the Air Force Institute of Technology (AFIT) [7, 13, 38, 56, 

57]. The error state model has been implemented into the MMSOFE program [39, 36] to 

conduct the Monte Carlo simulations. 
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The error states of the LN-93 <5x can be expressed as a 93-state vector that can be 

separated into six categories or "subvectors". 

<5x = [<5x^   8K
J

2   Ox]   Sx]   öx]   Sxr
6]

T (63) 

<5xi   has 13 elements representing the commonly used nine Pinson error 

states: position, velocity, and attitude in three dimensions; and four 

errors in the vertical channel of the INS [43]. 

Sx2   has 16 elements representing the exponentially time-correlated errors of 

the gyros, accelerometers, and barometric altimeter, and "trend" states, 

all of which are treated as first-order Gauss-Markov processes. 

<5x3   has 18 elements representing gyroscopic bias errors, which are treated as 

random constants. 

5X4   has 22 elements representing accelerometer bias errors, which are 

treated as random constants. 

ÖX5   has six elements representing accelerometer and initial thermal 

transients, all of which are treated as first-order Gauss-Markov 

processes. 

<5x6   has 18 elements representing gyroscopic compliance errors, treated as 

biases. 
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The differential system equation for the INS truth model is 

8x = Föx + Gw 

'8x{' 

8x2 

8x3 

<5x4 

8x5 

8x6 

0 

0 

0 

0 

0 

M2 

F 

0 

0 

0 

0 

4 13 

0 

0 

0 

0 

0 

M4 

0 

0 

0 

0 

0 

*15 

0 

0 

0 

F55 

0 

M6 

0 

0 

0 

0 

0 

\8x{~ w," 
8x2 w2 

8x3 

8X4 
+ I6X6 

0 

0 

8x5 0 
L<5x6_ 0 

(64) 

A complete description of the submatrices within F is given in Appendix B. 

3.3.1.     INS Dynamics Truth Model 

Although this 93-state model provides the most accurate depiction of the behavior of 

the LN-93 INS, there is a considerable computational burden involved by implementing 

this model directly. The work of Negast provides a reduced-order version of this and 

demonstrates it retains sufficient fidelity to the original for the types of simulations 

conducted here [38]. The reduced-order model, which is incorporated into this work, is: 

~<5x," 

8x2 

8x3 

8X4 

Fll F12 F13 F14 

0 F22 0 0 

0 0 0 0 

0 0 0 0 

r<5xi" "w," 
8x2 

8x3 
+ 

w2 

0 

L5X4. 0 

(65) 

The states of this model are a validated subset of 93-state vector, though they are not 

the first 39 states of that vector. Thus, the submatrices within this equation are different 

from those in the previous equation since the error state subvectors do not correspond 

exactly to those above. The relationship between the states of the two models is provided 

in Appendix B. 

43 



3.3.2. INS Dynamics Filter Model 

The model representing a typical implementation in a navigation computer installed 

on an aircraft would tend to be less complex than the full-scale truth model. Processing 

full-order models requires extensive computing capacity. Therefore, reduced-order 

models economize the limited computation resources normally available on board an 

aircraft and provide quick processing of results in real time. This encourages the 

development of a further reduced-order filter model. The filter model for the INS used in 

this research consists of 11 states: three position alignment errors, three velocity biases, 

three attitude alignment errors (related to the nine Pinson error states) [43], and two states 

for vertical channel stabilization. Since the ultimate goal is to obtain the most current and 

accurate information about the position and velocity of the craft, the states selected are 

those having the greatest influence on these quantities. All of these states are elements of 

8x\. Thus, the elements of the system dynamics matrix form a subset of the elements of 

Fn. To compensate for the omission of states, the values of the strength of the dynamics 

noise matrix Q(0, where £{w(0wT(? + T)} = Q(t)S(r), T= 0, are tuned, i.e., adjusted, so 

that the behavior of the filter equation closely resembles that of the truth model. 

Appendix B gives a further description of these states and Appendix C lists the tuning 

values. 

3.3.3. INS Measurement Filter Model 

The measurement device directly incorporated into the INS is the barometric 

altimeter. The barometric altimeter provides signals to counteract the inherent instability 

of the vertical channel, i.e. altitude determination, of the INS. Since the M3AE uses error 
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states, the value of the true altitude (unknown) must be eliminated by taking the 

difference between the altitude predicted by the INS hINS and the reading of the 

barometric altimeter hBar. The value of INS-predicted altitude hm is considered to be the 

sum of the true altitude hT and the INS error in altitude above the reference ellipsoid of 

the earth (WGS-84 [9]), Sh. The reference ellipsoid is used since barometric altimeters 

are calibrated to measure altitude above mean sea level, and not the actual terrain. The 

barometric altimeter reading is viewed as the sum of the true altitude hr, the time- 

correlated error in the altitude reading ShB, and a random noise in the measurement VBar, 

an element of the measurement noise vector V. By taking the difference of the two 

altitude readings, the value of the true altitude is eliminated, thus: 

= [/iT+^]-[/ir+aß-^flr] (66) 

= 8h-8hB+vBar 

The random noise vBar is considered to be zero-mean, discrete-time WGN, thus it can 

take on a positive or negative sign. The sign of vBar was chosen to yield a positive one in 

the final form of the equation to emphasize the addition of measurement noise. Two 

states from the filter model appear in this equation: the INS error in altitude above the 

reference ellipsoid öh and the time-correlated barometric altimeter error 8hB. 

3.4.     Radar Altimeter Measurement Model 

Accurate and precise knowledge of altitude is vital to flying and landing an aircraft 

safely. Thus, an additional instrument, a radar altimeter, is commonly included on 

aircraft to determine altitude further. The radar altimeter readings hRad are modeled as 

merely the sum of the true altitude hT and zero-mean WGN in the measurement vRad (note 
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the sign convention). The measurement error is calculated in the same manner as with 

the barometric altimeter: 

°ZRad = "'INS ~ "'Rad 

=1/^+&]-[/*,--VaJ (67) 

= 8h + vRad 

Unlike the INS and barometric altimeter measurements, there are no time-correlated 

components associated with the radar altimeter measurements. However, the radar 

altimeter is sensitive to the relative altitude of the aircraft. Radar altimeters give better 

readings when closer to the surface terrain, "above ground level" (AGL), than at higher 

altitudes. Thus, radar altimeters are used regularly only when the relative altitude drops 

below 3,000 ft AGL. The precision dependence of the radar altimeter is reflected in the 

covariance of the measurement noise RRad as a function of the true AGL altitude hAGL- 

This value is the same in both the truth and filter models and is given by [13]: 

RRad=(0M2h2
AGL+025)ft2 (68) 

The quantity RRad is a diagonal element of the measurement noise matrix R. 

3.5.     Global Positioning System Models 

GPS is made up of a constellation of satellites sitting in six orbital planes revolving 

about the earth in an approximately 12-hour orbit. The constellation consists of a 

minimum of 24 satellites with several on-orbit spares. The satellites of GPS are designed 

to serve as a radionavigation system to provide three-dimensional positioning information 

with respect to the earth. Each GPS satellite or space vehicle (SV) broadcasts 

information about its own position in orbit at a specific time. GPS receivers on earth 

search for, acquire, and track signals broadcast from four or more SVs and process them 
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to determine their position relative to the earth. Since the position is calculated in three 

dimensions, at least four signals are needed to produce an unambiguous solution for 

position. The signal from each SV contains information identifying which satellite it is, 

what its position is according to its own ephemeris, what time this signal was broadcast, 

and other data specific to the SV. The key to using GPS signals for positioning is to 

determine the difference in time between when the SV sent the signal and when the 

receiver picked up the signal. Based on the predetermined velocity of radio frequency 

(RF) transmissions, this difference in time can be translated into a distance between the 

receiver and the satellite. This quantity is known as the pseudorange. A pseudorange 

differs from the true range between the receiver and SV in that it has several errors 

embedded into it due to timing inaccuracies and RF propagation delays. These errors are 

taken into account when determining a positioning solution for the receiver. 

3.5.1.     GPS Truth Models 

The pseudoranges calculated from the receiver to each GPS satellite are subject to 

three primary categories of errors: errors due the receiver's internal clock, errors due to 

atmospheric effects, and errors due to each SV's equipment. Each error has the effect of 

increasing or decreasing the apparent pseudorange between the receiver and the 

transmitting satellite. Therefore, these errors have been studied widely and models have 

been constructed to describe and simulate their behavior accurately [25]. 

3.5.1.1.     GPS Dynamics Model 

The GPS truth model developed has been used with success by several research 

efforts at AFIT [7, 13, 38, 56, 57]. The 30 states used by the model are listed in 
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Appendix B. The first errors considered are the most significant, which involve the 

internal clock of the receiver. Although each SV in the GPS constellation possesses a 

high-accuracy atomic clock on-board, most receivers use less expensive clocks that do 

not keep time to the same degree. The difference between the time the receiver clock 

indicates and the actual time is represented by user's receiver clock bias öRUcik and clock 

drift rate 8Dudk. The system dynamics equation relating these is: 

OR, Vclk 

St), Uclk. 

0   1" 

0   0 

8R, Vclk 

8D, Uclk. 

(69) 

The initial values of the state estimates and corresponding values of covariance were 

chosen to be consistent with past studies at AFTT [7,13, 38, 56]: 

™Ud*Vo)_ 

öRvcM 

öDucM. 

"9.0xl014ft2 

0 9.0 xlO10 -^ 

(70) 

(71) 

These errors are the same with respect to each satellite since they are produced by the 

receiver equipment. The next errors considered are associated with a particular satellite, 

denoted by the subscript; e {1, 2, 3,4}. Another error associated with GPS receivers is 

the multi-path error, SRMPJ, which is caused by stray signals reflected by surfaces near the 

receiver's location. 

In addition, GPS signals, being RF, are subject to atmospheric interference delaying 

the transmission. There are two atmospheric errors modeled: the tropospheric delay 

SRtr0pj and the ionospheric delay öRionj. The three errors cited above are all treated as 

first-order Markov processes with zero-mean WGN as shown by: 
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SRMPJ 

öR, ■tropj 

OR wnj 

-1      0 

0 

0 

1 
500 

0 

0 ~8RMPj~ **MPj 

0 K0Pj + w tropj 

1 
1,500 _ 8R.onJ \ w. ■ wnj 

(72) 

with initial state covariances given by: 

1 MPIAtm Ho)- 

0.25 0 0 " 

0 1.0 0 

0 0 3.0 

ft2 (73) 

and dynamics noise characteristics given by: 

E{wGPS(t)\NJ
GPS(t + T)} = QGPS8(r) ■■ 

0.5       0 0 

0    0.004      0 

0        0       0.004 

&8(t) 

(74) 

(75) 

Although each GPS SV has a high-accuracy clock on-board, its time may not be set 

exactly. This introduces another error term known as the satellite clock bias SRsdkj- The 

last errors taken into account are the line-of-sight satellite position errors, &cSvj, Sysvj, and 

Szsvj- These four errors are modeled thus: 

8R, ■Sclkj 

&C 

Sy, 

SVj 

SVj 

fosvj 

with initial state covariances given by: 

= 0 4x4 

8x 

fysvj 
(76) 

"sdk/Los Vo ) — 25 It   l4x4 
(77) 

The full 30-state system dynamics equation is formed by taking the user's receiver 

clock equations and augmenting them with four versions of Equations (72) and (76), for 

each/1 satellite. Appendix B provides a description for the 30 states. 
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3.5.1.2.     GPS Measurement Model 

The principal measurements for a GPS receiver are the pseudoranges pGpsj to each 

satellite. This can be expressed as the sum of the true range pr, plus all the errors 

described above and measurement noise VPR/. 

PGPSJ = PTJ + 8RMPj + SRtropj + SRimj + 8RSclkJ + 8RUdk + vPRj (78) 

The true range is always an unknown quantity, thus a measurement difference is 

calculated to eliminate it. This is carried out by computing the position of the craft 

(user's receiver) as indicated by the INS pu and the satellite's position according to its 

ephemeris ps- The difference, INS range, is given by: 

'INS \Pu~Ps \ = 

Xy 
ECEF 

xs 
ECEF 

yv 
— ys 

U/_ .zs_ 

(79) 

where ECEF indicates that all elements are expressed in the Earth-Centered, Earth-Fixed 

(ECEF) coordinate reference frame. The quantity pm also can be expressed as: 

pms = J(xu-xs)2+(yu-ysf+(zu-zs)
2 (8°) 

This equation for pINS is a non-linear function of the craft and satellite positions. To 

create a linear expression from this, a Taylor series expansion is calculated about a 

nominal value of both positions with the terms greater than first-order neglected. 

This yields the equation: 

'/NS — PT "*" 
dPs 

Sps + 
(Ps.Pu)m™ ) 

dPm(Ps>Pu) 

dPu 
Spv (81) 

(Ps.Py)m>m J 
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Substituting Equation (80) into Equation (81) and evaluating the partial derivatives 

produces: 

p,«=PT-(s)M&)MieK       ' (82) 
+(s)Me)Mia)&* 

The measurement difference equation is formed by taking the difference between 

Equation (82) and Equation (78) for each satellite: 

OZPRj — PiNSj - PGPSJ 

=-teK-(sK-(eK (83) 
+(s)Ms)MiaK 
- SRMPj - SR,^ - S^j - 8RSclkj - SRudk + vPRJ 

Thus, the values of the receiver position errors, Sxu, öyu, and Szu, can be derived from the 

first three states, 8dx, S9y, and S9Z, of the truth or filter model through an orthogonal 

transformation [7, 13]. 

3.5.2.     Differential GPS Truth Models 

As seen in the previous section, GPS pseudorange data contain errors from many 

different sources. A commonly used technique to eliminate some of these errors is 

known as Differential GPS (DGPS). To apply this technique, two GPS receivers are 

required. The first receiver, known as the reference receiver, is located at a site whose 

position is well surveyed and known to a high degree of accuracy. The reference receiver 

is usually equipped with a high-accuracy clock to diminish the receiver clock bias and 

drift. By comparing its GPS-computed position with its surveyed position, the reference 

receiver can obtain a precise estimate of the errors in the pseudoranges to each visible 
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satellite. For example, certain errors, such as the error in the position of the SV and 

satellite clock bias, are common between receivers that are relatively close by (within 

approximately 100 nmi). These errors then may be calibrated and transmitted to another 

remote receiver, e.g., on-board an aircraft, in the vicinity of the reference receiver. The 

transmitted error data provide differential corrections for the use by the remote receiver 

to remove them from its pseudorange calculation. Using DGPS, the truth model can be 

reduced to 26 states by disregarding the satellite clock biases SRScikj for each satellite. In 

addition, there is difficulty in consistently characterizing the multi-path error, SRMpj, 

since it is highly dependent upon the location of the receiver. Therefore, for the 

simulations performed in this research, SRMPJ is lumped into the measurement noise, V. 

Thus, the final DGPS truth model used consists of 22 states. 

3.5.2.1.     DGPS Dynamics Model 

The system dynamics equation for the receiver clock bias and drift remains 

unchanged as in Equations (69), (70), and (71). Grouping the remaining atmospheric and 

satellite position errors, the system dynamics equation becomes: 

SRtropj 
l 

500 0 

SRionJ 
0 1 

1,500 

U\SVj = 0 0 

fysvj 0 0 

ÖZsvi 0 0 

0   0   0" 'KoPj~ W      ' tropj 

0   0   0 Knj W-   ■ ion] 

0   0   0 8x + 0 

0   0   0 fysvj 0 

0   0   0 _ &svj . 0 

(84) 
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with initial state covariances given by: 

1.0 0 0 0 0 

0 1.0 0 0 0 

Co) = 0 0 0.35 0 0 

0 0 0 0.35 0 

0 0 0 0 0.35 

and dynamics noise characteristics given by: 

£{wDGPS(0} = 0 

ft2 

E^DGPsit^laPsO + T)} = QDGPSSW = 

0.001        0 0 0 0" 

0 0.0004 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

(85) 

(86) 

&S(T)   (87) 

3.5.2.2.     DGPS Measurement Model 

The DGPS pseudorange measurement equation is identical in form to Equation (78) 

less the range errors due to multi-path and satellite clock bias: 

POOPS, = PT, + Kop, + Mian, + Kclk - VPR, (88) 

The DGPS measurement difference equation is formed in the same manner as previously 

seen. In this case, the difference between Equation (82) and Equation (88) is taken for 

each satellite: 

&TO = P PR, ~ riNSj      PDGPS, 

=-te)Ms)MiSfK 
+ 

(89) 

■KoP,-
SRion,-<c,k+VpRj 
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3.5.3.     DGPS Filter Models 

The simulations conducted in this work utilize DGPS to take advantage of the higher 

accuracy. Of all the errors discussed, the predominant errors are the receiver clock bias 

SRucik and clock drift SRUcik- The other errors are combined and modeled as zero-mean 

WGN resulting in this system dynamics equation: 

SR, Vclk 

ÖD, Vclk. 

0    1" 

0   0 

SR Vclk 

SD, Uclk. 

+ Uclk 

Uclk 

(90) 

with an initial covariance given by 

*UclkVo) = 

'9.0xl014ft2 

0 9.0 xlO10 -4 
(91) 

To get the filter model to emulate the behavior of the truth model, the elements of the 

dynamics noise matrix Q(0 are tuned in the filter. These tuning values are listed in 

Appendix C. 

The measurement equation for the filter is similar to the other filter equations except 

several states are omitted: the multi-path effects, atmospheric effects, satellite clock 

biases, and satellite position errors from the ephemerides. With only the error in the 

craft's (receiver's) position and receiver clock bias and drift remaining, the filter 

measurement equation works out to be: 

&TO=Pms»-P PR] ~~ rlNSj      HDGPSj 

(92) 

=-terN -teK -tef)*«-«»+v 

The strength of the measurement noise is adjusted to compensate for the eliminated 

states. The four diagonal elements of the measurement noise matrix R pertaining to the 

pseudorange measurements RPRJJ e {1, 2, 3,4} are tuned for optimal performance. 
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3.5.4.     GPS Pseudolite Models 

The pseudorange measurements for the ground-based pseudolite are treated as if they 

were received from a fifth GPS satellite (j = 5), with three exceptions pertaining to the 

truth model: 

1. The atmospheric effects on pseudolite transmissions are caused only by 

the troposphere, since the pseudolite is on the ground. Thus, there is no 

ionospheric delay error term <5R,0„5 present, only a tropospheric term 

8Rtrop5- 

2. The pseudolite is assumed to be located at a surveyed site, eliminating the 

. uncertainty in the satellite position from its ephemeris: Sxsvs, fysvs, dzsvs,- 

3. The pseudolite is equipped with a high-accuracy clock, thus clock bias 

SRsdia may be ignored. 

Otherwise, for the filter model, there are no differences between a satellite measurement 

and a pseudolite measurement that need to be taken into account. 

3.6.     Integrated System Models 

The models implemented into the simulations are a combination of those described 

above. The state vector of the entire system is constructed so the first 13 states of the 

truth state vector form the filter state vector. The remaining states for the truth model are 

augmented afterwards, in the following format: 

^Truth 

O* INS Filter 

O* DGPS Filter 

"* INS Other 

"*■ DGPS Other 

11 INS Filter States 

2 DGPS Filter States 
(93) 

Other 28 INS States 

Other 21 DGPS States 
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The elements of the system dynamics matrix F and the dynamics noise strength matrix Q 

are arranged to maintain the state relationship so the system dynamics equation for the 

truth model in terms of the filter model is: 

<5x 

Sx 
Filler 

Other 

■ Filter 1 Other(l,2) 

^Other(2,\)      'cWier(2,2) 

8x 

Sx 
Filter 

Other 

Filter 

Other. 

(94) 

and the noise strength is: 

E{yNTmth(t)yNr
Truth(t+T)} = QTmth(t)8(z) = 

Q Filter 

0      Q 

0 

Other 

<5(T) (95) 

All of the dynamics noise for each state is considered to be independent of (uncorrelated 

with) each other. Therefore, all of the matrices representing the strength of the dynamics 

noise, QTruth, Qra«r, and Qother, are diagonal. 

The measurement vector, ÖZ = [ SzBar SZPRI • • • 5ZPR4 SzRad SZPRS ] , remains the 

same for both the truth model and the filter since there is no reduction in the number of 

measurement sources from the truth model to the filter. Conversely, the measurement 

noise covariance matrix, R, does have different values between the truth model and the 

filter to reflect the reduction of states from the truth model to the filter. In addition, the 

measurement matrix, H, is structured to fit the state vector convention. Thus, the 

measurement equation for the truth model in terms of the filter is: 

~öx, 
5z = [HF//ttr   H0/ter] 

'Filter 

8x Other 

+ v (96) 
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and a measurement noise strength of: 

E{v(ti)v
T(tjj\ = R(ti)S. 

K-Bar 0 0 ... 0 0 

0 "pRl 0 ... 0 0 

0 0 
■• 

: ; 

On 
• '• K-PR4 0 0 y 

0 0 ... 0 RRad 0 

0 0 ... 0 0 KpR5_ 

(97) 

where Sy is the Kronecker delta function. 

3.7.     Interference Models 

The environment in which an aircraft travels is filled with many sources of RF 

signals, especially near the ground. Although GPS is a highly accurate system for 

determining positions with respect to the earth, it processes RF signals with a very low 

carrier-to-noise ratio, -163 dBw [25]. These signals may be subjected to interference 

from various sources ranging from unintentional spurious emissions to malicious 

disruption on or near the GPS frequency band. In these simulations, this is reflected by 

an increase in the elements of the measurement noise matrix R(f,) related to the 

pseudorange measurements. This variation in R(r,) represents a change in the parameter 

structure of the system a(f,-). Accounting for this change while generating the appropriate 

state estimates is the role of the M3AE. The variable elements RPRj(ti) of R(tt) will have a 

finite range, i.e., parameter space, since beyond a certain level of interference, GPS signal 

are effectively unusable. The MMAE is designed to have filters spanning this finite 

parameter space, and to be optimized for estimating the actual value of R(/,) based on the 

rp rp rp rp 

measurements available up to the time in question, Z(t() = [z (/,) z (f,-./) • • • z (to)] ■ No 

changes in the measurement noise for the altimeters, RBar(ti) and Ritadtti), are taken in 
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account. The barometric altimeter is affected only by the atmospheric pressure and the 

radar altimeter has a narrow field of reception directed downward. In addition, the INS is 

a self-contained piece of equipment influenced only by the linear and angular 

accelerations of the craft. With a feed-forward configuration in place, the only 

measurement the INS receives is from the barometric altimeter incorporated within itself. 

3.8.     Simulation Software 

The FORTRAN-based software, Multimode Simulation for Optimal Filter Evaluation 

(MSOFE), is a program constructed for conducting simulations of systems that employ 

Kaiman filtering [36]. The structure of MSOFE allows it to be directly applied to a 

variety of problems requiring optimal state estimation with a minimal amount of software 

refitting. The program has two principal simulation modes for assisting in evaluating the 

performance of the system: 

1. Monte Carlo simulation generates multiple-sample time histories of a 

system's truth states, filter states, and filter estimation errors, including 

non-linear effects, using linear or extended Kaiman filtering. 

2. Covariance simulation generates time histories of the second-order 

statistics, i.e., values of covariance, of a system's truth states, filter 

states, and filter estimation errors using only linear or linearized 

models. 

The two modes are complementary. Covariance simulation can generate the 

performance statistics of a filter in a single pass. Monte Carlo simulation requires 

multiple sample runs before meaningful statistics can be computed for a scenario. 
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Conversely, Monte Carlo simulation can handle non-linear processes, which the 

covariance mode cannot. 

An extension of MSOFE, Multiple Model Simulation for Optimal Filter Evaluation 

(MMSOFE), developed by Nielsen [39], supports the analysis of systems using multiple 

model adaptive estimation. MMSOFE is a modified version of MSOFE using similar 

core code with modifications reflecting the use of multiple Kaiman filters. It is designed 

to conduct the propagation and update of several filters simultaneously. While 

performing the filter operations, it performs the calculations for hypothesis conditional 

probability and appropriate blending for MMAE and other multiple model algorithms. In 

this work, MMSOFE is used in the Monte Carlo mode for all simulations. 

3.9.     Parameter Estimation 

The navigation system models are implemented using the M3AE architecture with an 

MMAE consisting of five elemental filters, delivering parameter updates to a state 

estimator. Five was chosen to give a finer discretization of the parameter space than in 

the previous research by White [56], but to keep the simulation time needed to a 

manageable level. The estimated parameter is the GPS pseudorange measurement noise 

strength, RPRjJ E {1,2,3,4, 5}. This noise is assumed to affect all pseudorange 

measurements uniformly, thus RPRi = RPRJ V i *j. Although the values of RPR (j subscript 

dropped for simplicity) are meant to portray an increase in the strength of the RF 

interference noise on the GPS LI frequency, it is not an accurate representation of an 

increase in the noise power. Still, varying RPR serves to demonstrate a meaningful 

change in a parameter. 
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The greatest admissible value of pseudorange measurement noise variance is set as 

2,000 times the nominal value of RPR without RF interference (RPRo) [56]. Any value 

greater than this is assumed to render GPS signals useless. Thus, the finite parameter 

space, K, can be defined to encompass the real numbers from 1 to 2,000 and the 

estimated parameter vector, a, is actually a scalar quantity, a 6 X. The value of a can be 

treated then as a multiplier to RPRo, which in past research at AFIT was taken to be 9 (ft) 

[38]. With X and a defined, the placement of the elemental MMAE filters can be 

determined. Using the algorithm developed by Sheldon [48] described in Section 2.4.1., 

the values of a (instead of a, since this quantity is not stochastic) for each of the five 

filters was calculated as follows: 

a, = 1.0 

a2 = 214.4 

a3 = 610.7 

a4 = 1,064.3 

a5 = 1,629.4 

In addition, a constrained optimization was implemented into the enhanced Sheldon 

algorithm to fix one of the filters to the nominal parameter level, a\. 

During each Monte Carlo run, three programs are used. First, the program MMSOFE 

runs the MMAE filters to calculate its best estimate of the pseudorange measurement 

noise strength factor, a(tO = E{a(tt) | Z(f,-) = Z,}, at each time interval over the entire 

flight trajectory in question. This value of ä is then appended to the flight trajectory data 

using the program APPEND and passed on to the state estimator to be incorporated into 

its measurement noise matrix, R, by letting RPRj = aRPR0. Next, the state estimator 

calculates its best estimate of the states, x , from which the best estimate of the error in 

the aircraft's position is calculated at each time interval. Like the MMAE, the state 
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estimator is implemented into MMSOFE (a variation called SMSOFE) with certain 

variations, e.g., the number of filters is set to one. SMSOFE has the same basic structure 

as MMSOFE, except it has only one filter that accepts a parameter update generated by 

the MMAE (implemented in MMSOFE). After SMSOFE is run, the error in the aircraft's 

position (east, north, and vertical directions) over the trajectory is recorded. Ten Monte 

Carlo runs are performed to obtain sufficient data for a meaningful analysis. Finally, 

these data are processed using programs written in Matlab® [52] to create plots of the 

errors over the time of the trajectory. 

3.10.   Summary 

The models described in this chapter are employed for simulating an integrated 

GPS/INS aircraft navigation system augmented with a radar altimeter and a signal 

available from a GPS pseudolite. A reduced-order filter model is constructed using a 

subset of the states from the system truth model. This is done to model the difference 

between the predictions an on-board navigation computer (filter model) would make of 

the position of the aircraft against actual behavior of the craft (truth model). In Chapter 

4, the performance of the system is analyzed through various levels of interference to 

determine its suitability for a PLS. 

61 



4. Analysis of Results 

This chapter covers the simulations conducted and provides interpretations of the 

results. Eight test cases are presented, depicting two navigation system configurations 

and four GPS interference scenarios. The M3AE algorithm is implemented for each case, 

where the MMAE is set up to determine the variable parameter in the presence of 

interference and the state estimator provides the best estimate of the position of the 

aircraft. 

4.1.     Flight Profile 

The simulations were performed using the MMSOFE program working with a flight 

trajectory created by PROFGEN [35]. The flight profile created represents a KC-135 

(Boeing 707) aircraft flying for 3,912.5 seconds from take-off to landing touch-down at 

runway 23R (heading 232°) at Patterson Field, Wright-Patterson AFB. The portion of the 

flight profile examined is the period just before landing, from 3,810 to 3,910 seconds, 

when the aircraft is on its 3° descent glideslope with a steady velocity of 132 knots [13]. 

The local terrain is assumed to be "flat", at an altitude of 825 ft from mean sea level 

(MSL). The coordinates of the flight path are shown in Figure 10. 
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Actual Aircraft Trajectory 
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Figure 10.      Actual Trajectory of the Simulated Landing Aircraft 

4.2.     GPS Data 

To determine the pseudorange measurements, actual GPS almanac data were 

incorporated into the simulations. The almanac data were obtained from the Coast Guard 

Bulletin Board Services (CGBBS). A program called SEM3.6 [13] processed this 

information to select the four best GPS satellites of those visible, based on the best 

geometry, i.e., geometric dilution-of-position (GDOP). An arbitrary take-off time and 

date, 04:00 UTC (08:00 EDT), 21 May 1994, and a mask angle of 5° above the horizon, 

were used to determine which GPS satellites would be visible for the flight trajectory. 
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4.3. Navigation System Configurations 

The navigation systems modeled in this study follows the work of previous [7,13, 38, 

56] and current [53, 57] research at AFU. The core of the system is an INS with a 

barometric altimeter built-in for vertical channel aiding. To compare the effects of the 

quality of the INS used, two models were used, an INS with a drift rate of 0.4 nmi/hr 

(CEP) vs. a lower quality INS with a drift rate of 4.0 nmi/hr (CEP). The positioning 

ability of the INS is enhanced with pseudorange measurements provided by a GPS 

receiver. The receiver accepts signals from the four best GPS satellites visible and from a 

ground-based GPS pseudolite. The pseudolite is included to improve the vertical 

positioning of GPS. This is reflected in a lower (better) value of GDOP; 2.63 without the 

pseudolite vs. 2.50 using the pseudolite [25]. Finally, a radar altimeter is incorporated to 

improve altitude readings further; this is a navigation aid found in most military and 

commercial aircraft for use in landing. 

4.4. GPS RF Interference Scenarios 

The navigation systems modeled in this study follows the work of previous research 

by Gray, Britton, and White. Gray examined different combinations of navigation aids, 

first introducing different qualities of INS: 0.4 nmi/hr, 2.0 nmi/hr, and 4.0 nmi/hr drift 

rates. Britton followed this by incorporating DGPS in place of ordinary GPS 

pseudorange measurements. White applied RF interference and GPS spoofing to some of 

the past test cases to assess the performance of an MMAE to provide accurate state 

estimates. 
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The simulations performed for this effort use four different schemes of RF 

interference to examine the performance of the M3AE design described in previous 

chapters. The first has no interference to establish a nominal reference. The second uses 

the same scheme applied by White in his research, which consists of varying the 

parameter, a, at different levels spaced as shown in the top plot of Figure 11. The third 

scheme attempts to portray a situation where the interference increases as the aircraft 

approaches the touch-down point. Here, the source is assumed to be in the flight path of 

the aircraft. The value of a is increased in inverse proportion to the square of the distance 

to the interference source. In the fourth scheme, the value of a is decreased in the same 

manner to depict flying away from an RF interference source. The four RF interference 

scenarios are combined with the two navigation configurations to form eight test cases. 

Table 3 summarizes the test cases and Figure 11 shows the RF interference schemes 

where the parameter a varies. 

Table 3.    Simulation Test Cases 

Case Drift Rating of 
INS Used 

RF Interference 
Scheme 

I 0.4 nmi/hr Nominal 

II 4.0 nmi/hr Nominal 
III 0.4 nmi/hr White's ("Exponential") 
IV 4.0 nmi/hr White's ("Exponential") 
V 0.4 nmi/hr Increasing 
VI 4.0 nmi/hr Increasing 
VII 0.4 nmi/hr Decreasing 
vin 4.0 nmi/hr Decreasing 
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Exponential Noise Levels Scenario: Cases III & IV 
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Figure 11.      GPS Interference Scenarios 

4.5.     PLS Comparison Criteria 

When the aircraft is on final approach, the FAAILS criteria [12] are applied at 

specific decision heights (DH). When the aircraft reaches a particular DH, the 

uncertainty in the horizontal and vertical must be no greater than the values specified by 

66 



that category. These values and the time in the trajectory when the aircraft in these 

simulations reaches the DH points are summarized in Table 4. 

Table 4.   FAAILS Precision Approach Requirements (±la) 

Category Decision Height 
(AGL) 

Occurrence in 
Flight Trajectory 

Horizontal 
Accuracy 

Vertical 
Accuracy 

I 200 ft 3,894 sec ±28.1 ft ± 6.8 ft 

II 100 ft 3,902 sec ± 8.6 ft ± 2.8 ft 

III 50 ft 3,907 sec ± 6.8 ft ±1.0 ft 

Two types of data plots are displayed in the next sections covering each test case. 

The first type includes six graphs. The top graph is a plot of the MMAE's estimate of the 

parameter, ä over the simulation period. The solid line indicates the mean value of ä over 

ten Monte Carlo runs, while a dashed line above and below show the span of one 

standard deviation in ä (±<Ja) over the ten Monte Carlo runs. The heavier solid flat lines 

represent the true values of a. The horizontal dotted lines show the values of a where 

each elemental filter is placed, i.e., ak, k € {1, 2, 3,4, 5}. The five graphs below the 

estimated parameter plot illustrate how the probability assigned to each elemental filter, 

Pk, varies over time. Again, a solid line represents the mean value of the quantity in 

question, pk, and the dashed lines represent the span of one standard deviation of pk (±crp) 

over ten Monte Carlo runs. Figure 12 shows a legend for these plots. 

The second type of figure shows three graphs. Each one displays the error in the 

position of the aircraft as it varies during the landing period. The top graphs shows the 

variation in error in the east horizontal (longitude) direction, the middle graph shows the 

same for the north horizontal (latitude) direction, and the bottom graphs shows this for 
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the vertical (altitude) direction. The solid line in the center of each plot represents the 

mean position error over ten Monte Carlo runs. The dotted lines above and below it 

represent the span of one standard deviation of the position error (±cw) over the ten 

Monte Carlo runs. This is the actual level of estimation performance encountered in the 

simulations. The dashed lines above and below these represent the span of one standard 

deviation computed by the filter {±oFuter). According to the filter model, this is the level 

of uncertainty expected under the conditions of the simulation. In addition, the filter- 

computed standard deviation, aFu,er, is shown added to and subtracted from a value of 

zero, since the filter assumed the errors to be a zero-mean process. Figure 13 shows a 

legend for these plots. 

Filter-Computed Parameter/Probability 

Standard Deviation over 10 Monte Carlo runs 

Parameter Value of an Elemental MMAE Filter 

Figure 12.      Parameter / Estimated Probability Plot Legend 

Position Error over 10 Monte Carlo runs 

Standard Deviation over 10 Monte Carlo runs 

Filter-Computed Standard Deviation 

Figure 13.      Position Error Plot Legend 
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4.6.     Nominal Interference Scenario 

The two cases that follow are set up to examine the performance of the M3AE model 

in the absence of RF interference. The parameter a is set to 1 to represent a condition 

where the pseudorange measurement noise variance is equal to the nominal value, i.e., 

RPRJ = RPRO, j e {1,2, 3,4,5} (see Section 3.9). Although a = 1, the MMAE estimated 

parameter delivered to the state estimator, a, is a higher value. This is due to the 

minimum probabilities assigned to each elemental filter, /w The MMAE implemented 

in these simulations have/?,™ = 0.001. Thus, assuming the ax elemental filter receives all 

of the probability weight less the minimum assigned to the other filters, the estimated 

parameter used by the state estimator is computed by: 

a = Y,akPk = 0.996a, +0.00lj>* = 4.514797 (98) 

Although this value is over four times greater than the nominal, it is the best the MMAE 

can do given the pmin specified. Given the nature of this problem, it recommended that 

the blending could be limited to remove the effects caused by pmi„ (see Section 5.3). 

4.6.1.     Case I 

This case covers the best scenario of the ones examined, using the INS with the lower 

drift rate, 0.4 nmi/hr, and having no added measurement noise. Figure 14 shows how the 

estimated parameter, a, and the elementary filter probability weights, pk, vary over time. 

Without RF interference present, the MMAE parameter estimator decides very quickly 

that the ax elemental filter is the best model for the system. Since a never changes 

throughout the scenario, ä remains unchanged once the MMAE determines the ax 

elemental filter has the best representation of the situation. The initial spike in the plot of 

69 



<D 2000 

co 
> 
5 1000 
0) 
E 

CO 
Q. 

Estimate of GPS Noise Strength Parameter (a) 

—i 1 r-—-—i 1 1     r 

tL 
3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

Time (sec) 

Figure 14.      Case I: Estimated Parameter and Elemental Filter Probabilities 
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ä is due to the fact that each elemental filter has the same initial probability assigned to it, 

as shown in Figure 14. At 3,811 seconds, the a2 elemental filter tries to grab all of the 

probability weight, but it is not the best representation of the current environment. The 

MMAE adapts quickly once the ax elemental filter residuals look the best, reflecting the 

current operating environment. 

Figure 15 shows the output of the state estimator. The standard deviation of the 

errors in all three cardinal directions remains under 5 ft for nearly the entire period in 

question. The filter-computed standard deviation, Omter, plots (dashed lines) start at a 

conservatively high value. It converges to a mean steady-state value of 1.02 ft in the 

east(/west) direction and 1.30 ft in the north(/south) direction 20 seconds into the 

trajectory. The value of o?mer in the vertical direction quickly converges to a value of 

4.02 ft within 5 seconds and decreases steadily, as the aircraft approaches ground level. 

This to due to the improved measurement estimates in the vertical direction (i.e., altitude) 

due to the radar altimeter. Equation (68) shows that the variance of the noise in the radar 

altimeter measurement, RRad, is a function of the altitude AGL, hAGL- 

/^=(0.012fc2
GL+0.25)ft2 (68) 

Thus, the closer the aircraft is to the ground, the better the radar altimeter readings 

become. This improvement was demonstrated by the research of Gray [13] and Britton 

[7], where the value of oFnter converged to a steady-state value and remained unchanged 

when radar altimeter measurements were not incorporated. Their research showed the 

same type of decrease in Oniter in the vertical direction seen in Figure 15 when radar 

altimeter measurements were included. 
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Figure 15.      Case I: State Estimator Position Errors 
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The standard deviation of position errors over ten Monte Carlo runs, aw, (dotted 

lines) is consistently less than aFUter. The indicates that the state estimator overestimates 

the error in position, a conservative tuning philosophy. The mean of the position errors, 

even over ten Monte Carlo runs (solid line), does not remain exactly at zero; ideally, it 

should be (this was seen even over 20 Monte Carlos runs; ten runs were chosen for each 

case due to the length of computer simulation time required). Still, over time, the 

position errors do stay close to zero. In addition, as long as the mean position errors ± 

aTrue remain close to the Cnner bounds, the state estimator filter provides good estimates, 

as shown by Figure 15. 

The critical tests come at the DHs of the FAAILS categories. Tables 5-7 show the 

values of aFater and aTme at each DH for the three position errors. To assess horizontal 

accuracy, the values of a¥i\ter in the east and north directions are compared to the FAA 

requirements. In Case I, the values of both aFuter and arrue satisfy the Category HI 

requirement, ± 6.8 ft. In the vertical direction, aFuter and aw also satisfy the Category 

HI requirement, being ± 1.0 ft. The performance of Case I simulates the best situation of 

all the test cases considered. Thus, it serves as a reference to determine how a lower 

quality INS or RF interference degrades the performance of the navigation system. 

Table 5.    Case I: East Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) VTrue (ft) 

I 200 1.034 0.263 
n 100 1.034 0.142 
ni 50 1.034 0.302 
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Table 6.    Case I: North Position Error Standard Deviations 

ILS Category DH (ft) (^Filter (ft) OTrue (ft) 

I 200 1.345 0.342 

n 100 1.361 0.233 

III 50 1.369 0.530 

Table 7.    Case I: Vertical Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) OTrue (ft) 

I 200 1.814 1.214 

II 100 1.145 0.711 
ni 50 0.709 0.798 

4.6.2.     Case II 

This case is identical to Case I, except an INS with a drift rate of 4.0 nmi/hr is 

implemented in the navigation system model. Figure 16 shows essentially identical 

results to Figure 14, for ä and/?*. This follows, since an INS is not affected by any 

external measurements and, the drift rate of the INS is not a function of the measurement 

noise (since it is not being updated by the filter). 

Conversely, this does not apply to the output of the state estimator, as shown in 

Figure 17. While the position errors in all three directions remain under 5 ft, the plots of 

OFiUer show that its steady-state values are greater in the horizontal directions: 1.83 ft, 

east, and 1.99 ft, north. The values of aTme are still significantly smaller than anuer\ 

however, as the position errors wander about zero, they fit closely within the Onuer 

bounds. 

Tables 8-10 show how üFater and aTme compare with the ILS categories. In both the 

horizontal and vertical directions, the values of amer and aTme satisfy the Category III 
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Table 8.    Case II: East Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) OTrue (ft) 

I 200 1.834 0.593 

n 100 1.829 0.348 

m 50 1.826 0.457 

Table 9.    Case II: North Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) OTrue (ft) 

I 200 1.999 0.723 

n 100 1.999 0.354 

ni 50 1.997 0.808 

Table 10. Case II: Vertical Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) OTrue (ft) 

I 200 1.914 1.836 

n 100 1.246 0.900 

m 50 0.792 0.824 

requirements. This shows that an INS with a greater drift rate may be used to met the 

requirements with nominal GPS pseudorange measurement noise present. In addition, 

this case serves as a reference for Cases IV, VI, and Vffl to determine how increased 

level of pseudorange measurement noise (i.e., increase in a, hence RPRj) affects the 

performance of this navigation system (with the 4.0 nmi/hr INS). 

4.7.     White's ("Exponential") Noise Levels Scenarios 

The next two cases examine the system performance against a scenario used in 

White's research [56]. In this scenario, the value of the parameter a varies at levels of 1, 

100, 200, 400, 800,1600, and 2000 during the 100-second interval under investigation; as 

shown in the top plot of Figure 11. White used an MMAE with three elemental filters 
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with parameters spaced at: a, = 1, a2 = 200, and a3 = 2,000. The position errors (states) 

calculated by each filter were multiplied by its corresponding probability weight, pk, k e 

{1,2,3}, and then summed together to form a blended output. 

In the cases performed in this research, blending is done to calculate a to pass on to 

the state estimator, which determines the position errors. The difference between the 

position errors of a blended output of the MMAE and those of the state estimator are 

examined in this case to provide an initial baseline. However, it is important to note that 

the MMAE is tuned for parameter estimation in the M3AE architecture. 

4.7.1.     Case III 

This case involves the navigation system using the 0.4 nmi/hr drift rate INS with the 

parameter a (thus, RPRj) at levels researched by White [56]. Figure 18 shows how a and 

pk vary over the scenario. In the top plot, the actual value of the parameter a is shown by 

the heavy solid lines. The MMAE estimate, a, adapts its value whenever a changes. 

During the first 10 seconds, the MMAE estimates ä = 4.51 as in the nominal scenario 

when a = 1. When a becomes 100 in the next 10 seconds (3,820 - 3,830 sec), ä settles 

on a mean value of 216.9 within 2 seconds. This is very close to the value of a2 = 214.4, 

indicating the MMAE weighted the a2 elemental filter with nearly all of the probability 

weight (p2 = 0.996) and judged it to be the most accurate model for the current operating 

environment. Thus, minimal blending occurred during this period. Also, the standard 

deviation of ä, aä, remains below 0.1, showing that the MMAE was very consistent in 

assigning ä = 216.9. This can be seen by the five probability plots; p2 receives almost all 
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Figure 18.      Case III: Estimated Parameter and Elemental Filter Probabilities 
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of the probability (only 0.996, though, due to pmin of the other filters) very quickly while 

the elemental filters have probabilities near zero. 

For the period when a = 200 (3,830 - 3,840 sec), the mean of Ü stays at 216.9, which 

is appropriate since that value is close to a2. When a changes level to 400 and 800 (3,840 

- 3,850 sec and 3,850 - 3,860 sec, respectively), the MMAE starts to show some 

blending. The value of ä does not quite reach a, though it does increase. The probability 

plots show the probability weighting being distributed primarily between p2 and p3. The 

increase in the standard deviations of a mdpk indicate the MMAE may favor one 

elemental filter over the others in a single Monte Carlo run. Still, taking the mean over 

the ten Monte Carlo runs, as shown in the plots of Figure 18, it averages out to show that 

probability blending taking place. 

As a reaches the levels of 1,600 and 2,000 (3,860 - 3,870 sec and 3,870 - 3,880 sec, 

respectively), the MMAE takes all of the period when a = 1,600 to push a near that value, 

and a hits a ceiling at 1,612.5 when a = 2,000. This ceiling is due to the highest value of 

ak for an elemental filter, which is a5 = 1,629.4. The parameter estimate, a, can never be 

greater than a5, and its upper limit is slightly less due to the p^ that must be assigned to 

the other filters. Even though the MMAE cannot estimate a = 2,000 exactly in the 

configuration used in this research, the M3AE's state estimate performance is still 

effective as shown later. 

For the remainder of the scenario, when a decreases from 800 to 1, the mean of ä 

follows, but with a lag of approximate 5 seconds. This is a typical aspect of fixed-bank 

MMAEs. The delay occurs since the majority of the probability weight resides with the 

filter that has the higher ak value and consequently smaller Lk{tt) = rt
T(f,)A~ V,) value. 
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This gives the MMAE the false impression that it has the best parameter estimation 

performance [33]. However, the MMAE quickly responds once the residuals indicate 

this performance is incorrect. Subsequently the estimation performance improves when 

the elemental filter with the best estimate of a is given the majority of the probability 

weight. 

Figure 19 shows the blended output of the position errors from the MMAE (tuned for 

parameter estimation). Although the MMAE used in these cases is not tuned for state 

estimation, the output is examined to give a link to the past research of White [56], which 

involved an MMAE used for state estimation. These plots follow the results of White's 

[56] research, using his navigational set-up and scenario (cf. Nav Case 1 in [56]). The 

minor differences between the plots here and in [56] can be attributed to using a different 

set-up of the elemental filters in the MMAE. Blending does provide considerably better 

estimates of the position errors than a single non-adaptive Kaiman filter could. Figure 20 

shows the position error plots from the output of the a\ elemental filter (note the 

difference in scale). This filter measurement noise parameter is tuned for performance 

under nominal conditions. When the measurement noise changes, as in this case, its 

performance drastically suffers, improving performance under changing parameters is 

the thrust for developing adaptive filtering techniques such the M AE. 

Figure 21 shows the positions errors calculated by the state estimator within the 

M3AE. The horizontal (east and north) position error estimates improve when using a 

filter provided with an estimate of the uncertain parameter (the state estimator) over using 

ordinary MMAE blending techniques. As mentioned before, the MMAE used in these 
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Figure 21.      Case III: State Estimator Position Errors 
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simulations is not optimized for state estimation. Still, the state estimator's oFnter and 

GTrUe values are less than their corresponding blended values. Both horizontal values of 

OFnter converge to 2.1 ft in the beginning of the scenario. Then they gradually increase as 

a increases over time. There is a slight decrease in aFii,er at the end, reflecting the 

decrease in interference levels. The values of aTrM are much smaller than aFiiter, erring on 

the side of caution. The vertical position error estimates show only minor improvement. 

This can be attributed to the radar altimeter. It provides better measurements as the 

aircraft approaches the ground (viz. RRad), making both the MMAE's blended output and 

the state estimator's output comparable and both very good. 

Tables 11-13 show the values of aFuter and aTme at each DH for the three position 

errors. The values shown are greater than those in Case I, but in both the horizontal and 

vertical directions, the values of üFüteT and aFrue still satisfy the Category HI requirements. 

Table 11. Case III: East Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) OTrue (ft) 

I 200 3.567 0.431 
n 100 3.868 0.393 
ni 50 3.841 0.489 

Table 12. Case III: North Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) OTrue (ft) 

I 200 3.672 1.741 
II 100 3.976 1.519 
III 50 3.966 1.503 
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Table 13. Case III: Vertical Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) OTrue (ft) 

I 200 1.902 1.390 

II 100 1.166 0.774 

HI 50 0.714 0.787 

The level of interference (measurement noise) was significant in the time just before the 

DH were reach, though it dropped to a nominal level in the last 10 seconds of the 

scenario. The value of a did drop dramatically in the last 5 seconds, so this may have 

allowed the ILS categories to be met. Case V shows the same navigation configuration 

under a continually increasing level of noise to observe its performance when the 

interference level is high at touch-down. 

4.7.2.     Case IV 

This case is identical to Case m, except a 4.0 nmi/hr drift rate INS is used rather than 

the 0.4 nmi/hr INS. The results of a and pk from the MMAE essentially duplicate those 

of Case HI shown in Figure 18, as expected, thus they are not shown. Figure 22 shows 

the blended output of the position errors from the MMAE. Like the results of Case HI 

shown in Figure 19, these plots follow the results of White's research [56] (cf. Nav Case 

4 in [56]; N.B., White does not use GPS pseudolite or radar altimeter measurements in 

this case.). Figure 23 shows the position error plots from the output of the ai elemental 

filter to display the poor estimates generated by a single Kaiman filter tuned for nominal 

performance. 
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The output of the M3AE's state estimator is shown in Figure 24. As in Case III, there 

is great deal of improvement of these position errors estimates over those from the 

MMAE, especially in the horizontal directions. The values of amim and aTrUe for the 

horizontal position errors are significantly greater than those of Case III; this shows the 

effects of using an INS with a larger drift rate. (Note the difference in scale of the east 

and north position error axes between Figures 21 and 24.) 

There is a noticeable growth in these values after 3,850 seconds into the scenario. 

The is expected since a jumps to the levels of 800,1600, and 2000. Also, for the most 

part, the values of the estimated east and north errors ± aTrm still fit within the bounds of 

aFii,er- The vertical position error estimates do not show significant difference between 

the state estimator output of Case III, though, as mentioned previously, the radar altimeter 

measurements have a significant impact on the altitude measurements. 

Tables 14 - 16 show the values of aFnm and aTme at each DH for the three position 

errors. In comparing the values of amter against the FAA criteria, this case still satisfies 

Category IE for the vertical positioning error; however, it can only meet Category I for 

horizontal positioning. The values of aTrUe show better results with vertical positioning 

meeting Category HI and horizontal positioning meeting Category II. Unlike Case III, 

the horizontal position errors did not improve quickly enough to met Category III in all 

areas. It can be seen that the system modeled with the 4.0 nmi/hr INS results in degraded 

performance in horizontal position. Thus, this suggests that an INS with a lower drift rate 

is important to satisfy the landing requirements in this scenario. 
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Table 14. Case IV: East Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) OTrue (ft) 

I 200 10.67 5.614 
II 100 11.72 5.579 
III 50 10.43 3.394 

Table 15. Case IV: North Position Error Standard Deviations 

ILS Category DH (ft) CTFiUer (ft) OTrue (ft) 

I 200 11.42 8.222 
n 100 12.58 5.980 
m 50 11.25 4.033 

Table 16. Case IV: Vertical Position Error Standard Deviations 

ILS Category DH (ft) <?Filter (ft) OTrue (ft) 

I 200 2.016 1.954 
II 100 1.273 0.920 
m 50 0.798 0.818 

4.8.     Increasing Noise Levels Scenarios 

Cases V and VI examine the system performance against a scenario where the level 

of GPS pseudorange measurement noise increases as the aircraft approaches the touch- 

down point. The level of a increases in inverse proportion to the square of the distance to 

the RF interference source (viz. Friis transmission formula [8]). The source is assumed to 

be in-line with the flight path of the aircraft. This is meant to depict a point source of RF 

interference increasing the level of measurement noise for RPRj. Although this is not the 

most accurate representation, it is meant to show the effects on the position errors as the 

landing aircraft moves toward an interference source. 
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To implement the increasing level of a over time (hence over distance, as the aircraft 

maintains a steady glide velocity), different constant values of a had to be shown in 

separate intervals. This is due the limitation of the software configuration used, which 

could only accept constant parameter values at a maximum of 19 intervals. Table 17 

shows the how a varies over this scenario. 

Table 17. Increasing Noise Levels Scenario 

Interval 
Start Time 

(sec) 

Actual 
Parameter 

(a) 
3,810 1.0 
3,820 8.0 
3,825 30.0 
3,830 70.0 
3,835 125.0 
3,840 195.0 
3,845 280.0 
3,850 380.0 
3,855 500.0 
3,860 630.0 
3,865 780.0 
3,870 945.0 
3,875 1,125.0 
3,880 1,320.0 
3,885 1,530.0 
3,890 1,760.0 
3,895 2,000.0 

4.8.1.     Case V 

This case involves the navigation system using the 0.4 nmi/hr drift rate INS. Figure 

25 shows how ä and pk vary over the scenario. As in Figure 18, the top plot of Figure 25 

includes the actual value of the parameter a with heavy solid lines. The value of ä 
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Figure 25.      Case V: Estimated Parameter and Elemental Filter Probabilities 

93 



follows a throughout the scenario. Up to 3,820 seconds, the ax elemental filter is chosen 

to be the best model. When a = 8, between 3,820 seconds and 3,825, the MMAE 

calculates a blended estimate of ä = 93. After that point, when a becomes 30 at 3,825 

seconds, the MMAE gives nearly all of the probability weighting to the a2 elemental 

filter. This remains the case until 3,850 seconds, when a becomes 380. From this point 

on, blending occurs within the MMAE to determine the value ä. At 3,875 seconds, the 

estimated parameter, a, starts to lag the actual parameter, a, which takes on the value of 

1,125 at that time. Throughout the remainder of the scenario, the value of ä slowly 

increases towards its upper limit, just under a5. Again, this highlights the impact of not 

having an elemental filter at a = 2,000 (see recommendation in Section 5.3). 

Figure 26 shows the position errors according to the M3AE's state estimator. The 

results appear similar to those of Case IE shown in Figure 21 without the decrease in 

Gmiter at the very end. The absence of the decrease is due to a remaining at 2,000, rather 

taking on lower levels as in Case m. Also, the values of aTme are much less than aFUter as 

in Case HI, though they are greater than GTrue of Case III overall. 

Tables 18-20 show the values of aFater and aTme at each DH. The horizontal and 

vertical positioning error according to both amer and aTrue continues to meet Category 

El. This suggests there is no significant impact of a remaining at 2,000 in this scenario. 

Thus, the navigation system configuration with the lower drift rate INS can operate 

sufficiently well in the presence of a high degree of pseudorange measurement noise. 

However, it should noted that GPS aiding was present at the beginning of the scenario 

and reduced over time. Previous research [7,13, 38, 56] has shown that, without GPS 

aiding, this level of precision could not be met. 
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Table 18. Case V: East Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) (TTrue (ft) 

I 200 3.566 0.863 

II 100 3.914 0.983 

III 50 4.153 1.149 

Table 19. Case V: North Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) OTrue (ft) 

I 200 3.649 1.481 

II 100 3.997 1.309 

ni 50 4.236 1.712 

Table 20. Case V: Vertical Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) OTrue (ft) 

1 200 1.902 1.395 

II 100 1.166 0.768 

m 50 0.715 0.794 

4.8.2.     Case VI 

This case is identical to Case V, except for the 4.0 nmi/hr drift rate INS. As in Case 

IV, the results of ä mdpk are not shown since they essentially duplicate those of the 

previous case shown in Figure 25. The output of the state estimator is shown in Figure 

27. The standard deviations of the horizontal position errors are significantly greater than 

those of Case V. These are in the same scale as in Case IV, so Figure 27 uses the same 

scaling as Figure 24. Unlike Case IV, the values of oFuter and aTme for the horizontal axis 

errors continue to increase due to the growth in the level of a, in the same manner as seen 

in Case V. 
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Figure 27.      Case VI: State Estimator Position Errors 
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Tables 21 - 23 show the values of oFÜUr and aTrM the DH points. As in Case IV, the 

value of omer meets Category III in the vertical direction and only Category Tin the 

horizontal directions. The values of aTme meet Category III specifications in the vertical 

direction; however, they can only meet Category II specifications in the horizontal 

directions. The filter-computed standard deviation, amer, is more conservative than the 

standard deviation over the Monte Carlo runs, aTme, as usual. As in Case IV, the quality 

of the INS has a prominent effect on the position errors in the presence of measurement 

noise. This also emphasizes the importance of having an INS of good quality on board 

when GPS measurements are disrupted. 

Table 21. Case VI: East Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) 0True (ft) 

I 200 14.46 7.724 

n 100 15.86 6.208 

m 50 16.68 8.983 

Table 22. Case VI: North Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) Ofrue (ft) 

I 200 15.23 10.29 

n 100 16.81 7.921 

in 50 17.74 12.64 

Table 23. Case VI: Vertical Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) Ojrue (ft) 

1 200 2.017 1.942 

n 100 1.273 0.923 

in 50 0.800 0.829 

98 



4.9.     Decreasing Noise Levels Scenarios 

In the last two cases, the system performance is examined against a scenario where 

the level of GPS pseudorange measurement noise starts at the level where GPS is 

ineffective. As the trajectory progresses, the interference decreases to a nominal level as 

the aircraft approaches the touch-down point. The level of a decreases in inverse 

proportion to the square of the distance to the RF interference source, as in Cases V and 

VI. Also, the source is assumed to be in-line with the flight path of the aircraft. Table 24 

shows the how a varies over this scenario. 

Table 24. Decreasing Noise Levels Scenario 

Interval 
Start Time 

(sec) 

Actual 
Parameter 

(a) 
3,810 2,000.0 
3,820 1,760.0 
3,825 1,530.0 
3,830 1,320.0 
3,835 1,125.0 
3,840 945.0 
3,845 780.0 
3,850 630.0 
3,855 500.0 
3,860 380.0 
3,865 280.0 
3,870 195.0 
3,875 125.0 
3,880 70.0 
3,885 30.0 
3,890 8.0 
3,895 1.0 
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4.9.1.     Case VII 

As with the other odd-numbered cases, this case involves the navigation system using 

the 0.4 nmi/hr drift rate INS. Figure 28 shows how ä and pk vary over the scenario. As 

in Case V, the value of ä follows a throughout the scenario with a lag. The effect of this 

is that ä tends to be greater than a, except during the beginning of the scenario (a tended 

to be less than a in previous scenario where a was increasing due to a5 < 2,000). The 

value of ä reaches the upper bound just under a5 by the time a drops to 1,530. Up to the 

time of 3,880 seconds in the scenario, blending is achieved within the MMAE as the 

probability plots of the a2, a3, a*, and a5 elemental filters show. From 3,880 to 3,895 

seconds of the scenario, the MMAE favors the a2 elemental filter almost exclusively, as 

in Case V, when the values of a was between «, and a2. After that point, when a reaches 

the nominal level of 1, the MMAE readjusts a within 5 seconds. 

Figure 29 shows the positions errors according to the M3AE's state estimator. The 

values of oFilter and aTme decrease, as the state estimator adapts to account for the 

decrease in a as the scenario progresses. Note that the scale of the horizontal error plots 

is greater than in previous figures, to show the entire range of how the errors and their 

standard deviations vary. Overall, the values of aTrue stay within the amer bounds, 

showing that the state estimator filter performs adequately. 

Tables 25 - 27 show the values of aFilter and aTrue at each DH. For both the amer and 

arme in vertical and horizontal directions, Category El is satisfied. Despite a high level of 

interference at the beginning of the scenario, the state estimator, provided with updated 

values of a, can perform well enough to meet Category EL This indicates that the effects 

100 



Estimate of GPS Noise Strength Parameter (a) 

I       3810    3820    3830    3840    3850    3860    3870    3880    3890    3900    3910 

3°810    3820    3830    3840    3850    3860    3870    3880    3890    3900    3910 

S 0.5 
ii 

CM 
CO I 

Ijl 

3°810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

1 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3°810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

3810 3820 3830 3840 3850 3860 3870 3880 3890 3900 3910 

Time (sec) 

Figure 28.      Case VII: Estimated Parameter and Elemental Filter Probabilities 
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Figure 29.      Case VII: State Estimator Position Errors 
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Table 25. Case VII: East Position Error Standard Deviations 

ILS Category DH (ft) (^Filter (ft) GTrue (ft) 

I 200 5.507 0.936 
II 100 1.858 0.701 
III 50 1.509 0.582 

Table 26. Case VII: North Position Error Standard Deviations 

ILS Category DH (ft) OFiUer (ft) OTrue (ft) 

I 200 5.982 3.183 
n 100 2.068 0.888 
m 50 1.665 0.838 

Table 27. Case VII: Vertical Position Error Standard Deviations 

ILS Category 
I 
II 
in 

DH (ft) 
200 
100 
50 

^Fitter (ft) 

1.886 
1.146 
0.710 

OTrue (ft) 

1.435 
0.719 
0.798 

of increased pseudorange measurement noise do not linger within the filters' calculations 

long enough to affect the outcomes, if the noise variance returns to a nominal level soon 

before touch-down. 

4.9.2.     Case VIII 

This case is identical to Case VII, except for the 4.0 nmi/hr drift rate INS. As with 

the other even-numbered cases, the plots of ä andp* are essentially identical to its 

previous case (see Figure 28). Figure 30 shows the positions errors determined by the 

M3AE's state estimator. The only notable feature is that aFnter for the horizontal position 

errors remains at a higher level than in Case VII from 3,870 to 3,890 seconds in the 
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Figure 30.      Case VIII: State Estimator Position Errors 
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scenario. Otherwise, the navigation system demonstrates a performance similar to that in 

Case VII. 

Tables 28 - 30 show the values of oFaur and aTme at the DH points. Although the 

values of abater and aTme at the DH points are greater than in Case VII, Category III is 

satisfied, in both the vertical and horizontal directions. As with Case VII, the effects of 

increased measurement noise do not persist if a nominal level is reached in reasonably 

short time prior to touch-down. 

Table 28. Case VIII: East Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) &True (ft) 

I 200 8.965 2.495 
n 100 2.691 0.587 
m 50 2.210 0.679 

Table 29. Case VIII: North Position Error Standard Deviations 

ILS Category DH (ft) OFtoer (ft) OTrue (ft) 

I 200 9.602 2.713 
II 100 2.979 1.767 
m 50 2.423 1.524 

Table 30. Case VIII: Vertical Position Error Standard Deviations 

ILS Category DH (ft) ^Filter (ft) OTrue (ft) 

I 200 2.009 1.939 
n 100 1.248 0.891 
in 50 0.793 0.825 
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4.10.   Summary 

The test cases presented in this chapter covered four different pseudorange 

measurement noise scenarios using the flight profile of a simulated landing for a KC-135 

tanker aircraft. Table 31 summarizes the results of all the test cases. The minimum ILS 

category each case can satisfy is listed, i.e., the worst performance between the horizontal 

and vertical position errors, and between the filter-computed standard deviation, aFuter, 

and the standard deviation over the Monte Carlo runs, aTme, is used to make this 

assessment. For most instances, Category m could be met. In the cases which could not, 

the higher drift rate INS were used and there was a high level of interference near the DH 

points. 

Table 31. ILS Precision Approach Categories Met for each Test Case 

ILS 
Category 

Case 
I 

Case 
II 

Case 
III 

Case 
IV 

Case 
V 

Case 
VI 

Case 
VII 

Case 
VIII 

I Yes Yes Yes Yes Yes Yes Yes Yes 

n Yes Yes Yes No Yes No Yes Yes 

in Yes Yes Yes No Yes No Yes Yes 
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5. Conclusions and Recommendations 

5.1. Overview 

The objective of this research effort has been to apply the M3AE architecture to an 

aircraft precision approach landing where the GPS signals were subjected to interference. 

The work has focused on calculating accurate data on the aircraft's position throughout 

its glideslope, and comparing the precision of the data against FAAILS criteria to assess 

the performance of the modeled aircraft navigation system. The navigation system 

models have included an INS with a built-in barometric altimeter, a GPS receiver 

collecting measurements from 4 GPS SVs and a ground-based pseudolite, and a radar 

altimeter. This is a direct extension to the research of previous AFIT theses by Gray [13], 

Britton [7], White [56], and Miller [33]. 

The modeled system underwent a series of simulations where the measurement noise 

of the GPS signals varied to depict RF interference. An M3AE architecture was applied 

to handle the nature of the changing parameter of the noise, yet still produce accurate 

state estimation. This has been done to attempt to maintain the level of precision in the 

estimated aircraft's position. 

5.2. Conclusions 

This research showed that an M3AE provides improvement in estimating both GPS 

interference levels and aircraft position errors over that obtained in previous research. 

Several test cases were researched using two INSs of different quality and various 

interference profiles. The overall performance of each simulation was judged against the 
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FAAILS criteria for precision approach. Most of the test cases examined in this research 

effort satisfied the requirements for a Category III approach. In the cases where the 

Category III requirements were not met, there was a high level of GPS interference near 

the landing point and the navigation system was using the poorer quality INS (4.0 nmi/hr 

drift rate). However, in those cases, Category I requirements were met. When Category 

m could not be met, it was due to the level of accuracy in the horizontal (east and north) 

directions. In the horizontal directions, the INS has aiding from GPS measurements only, 

unlike in the vertical direction, where there are measurements from a barometric altimeter 

and a radar altimeter as well GPS (recall that INSs inherently have a greater difficulty 

estimating vertical positions [6, 27], an extremely important concern to all aircraft, thus 

these instruments are added). The results of the simulations show the significance of the 

INS drift rate and GPS measurements. Without high-accuracy pseudorange 

measurements provided by the GPS receiver, the effect of the INS drift rate becomes 

prominent enough to affect the positioning accuracy at the decision height (DH) points. 

Based on the results, the following conclusions can be made: 

1. The M3AE's MMAE provided good estimates of the interference levels, except at 

the high interference levels (beyond the boundary of the MMAE's elemental 

filters) where parameter estimation suffered. This would be readily compensated 

by allowing an elemental filter to assume the largest interference level of concern. 

However, navigation performance was not adversely affected. 

2. The M3AE architecture and techniques were validated against a realistic aircraft 

navigation truth model. The results in this research provide a practical 

demonstration of M3AE using truth and filter models of different orders. 
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3.  The level of GPS pseudorange measurement noise had a greater impact on the 

position errors in the horizontal directions (east and north) than in the vertical 

direction. This is attributed to the assistance the navigation system derives from 

other altitude measuring devices that are unaffected by interference in the GPS 

frequency band, particularly the very accurate radar altimeter. 

5.3.     Recommendations 

The scope of this research encompassed examining the performance of a GPS-aided 

INS in the presence of GPS interference. As shown, precision approach under the 

presence of GPS interference was achieved using an M3AE architecture. However, there 

are several areas that require further research: 

1. Develop a more accurate model of interference than the one implemented here. 

The effects of a change in the actual power of RF noise should be represented by 

a more detailed algorithm. 

2. Implement a moving-bank MMAE architecture, developed by Vasquez [54, 55], 

in place of the fixed-bank MMAE parameter estimator to investigate the 

differences in performance. 

3. Generate several different flight profiles to examine the effects of maneuvering 

during the landing approach phase of flight. 

4. Perform the constrained parameter discretization fixing filters at a\ = 1 and aK = 

2,000 (where there are K filters in the MMAE). 

5. Incorporate logic where, if pk = 1 - (K-l)pmin, then pk = 1 and pj = 0\/j*kdje 

{1, 2,..., K} is sent the output of the MMAE. 
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Appendix A.     Acronym List 

AFIT Air Force Institute of Technology 
AGL Above Ground Level 
DGPS Differential GPS 
DH Decision Height 
ECEF Earth-Centered, Earth-Fixed (reference frame) 
EKF Extended Kaiman Filter 
FAA Federal Aviation Administration 
GPS Global Positioning System 
ILS Instrument Landing System 
INS Inertial Navigation System 
ERDF Inter-Residual Distance Feedback 
LAAS Local Area Augmentation System 
MSOFE Multi-mode Simulation of Optimal Filter Equations 
MMSOFE Multiple Model Simulation of Optimal Filter Equations 
MMAE Multiple Model Adaptive Estimator 
M3AE Modified Multiple Model Adaptive Estimator 
PLS Precision Landing System 
PPS Precise Positioning Service 
PR Pseudorange 
RF Radio Frequency 
SA Selective Availability 
SP Standard Positioning Service 
SV Space Vehicle 
TACAN Tactical Air Navigation 
UHF Ultra High Frequency 
VHF Very High Frequency 
VOR VHF Omnidirectional Range 
WGN White Gaussian Noise 
WGS-84 World Geodetic Survey 1984 
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Appendix B.    Error States of the Truth and Filter Models 

This appendix lists the error states implemented by the truth and filter models 

considered in this research. Tables 32 - 34 show a complete list of the 93 error states that 

comprise the Litton LN-93 INS truth model [26]. Tables 35 and 36 list the 39 error states 

of the reduced-order truth model used in the simulations [7, 13, 38, 56, 57]. These 

consist of a proper subset of the original LN-93 states, i.e., every state in the reduced- 

order truth model is a state in the original truth model. Table 37 lists the 30 error states 

characterizing a GPS truth model using 4 SVs and 1 receiver [7,13, 38, 56, 57]. Table 

38 lists the 22 error states associated with a DGPS truth model; these form a proper 

subset of the GPS states [7,13, 38,56, 57]. Table 39 lists the 13-state filter model, 

consisting of 11 INS error states and the 2 error states related to the GPS receiver [7,13, 

38,56, 57]. 
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Table 32. Original 93-State Truth Model for the INS: States 1 - 31 

State 
Number 

State 
Symbol 

State 
Definition 

1 sex X-component of vector angle from true to computer frame 
2 89y Y-component of vector angle from true to computer frame 
3 59z Z-component of vector angle from true to computer frame 
4 0* X-component of vector angle from true to platform frame 
5 0v Y-component of vector angle from true to platform frame 
6 0z Z-component of vector angle from true to platform frame 
7 sv* X-component of error in computed velocity 
8 svv Y-component of error in computed velocity 
9 svz Z-component of error in computed velocity 
10 Sh Error in vehicle altitude above reference ellipsoid 
11 ShL Error in lagged inertial altitude 
12 ss3 Error in vertical channel aiding state 
13 ÖS4 Error in vertical channel aiding state 
14 K X-component of gyro correlated drift rate 

15 K Y-component of gyro correlated drift rate 

16 K Z-component of gyro correlated drift rate 

17 v*. 
X-component of accelerometer and velocity quantizer correlated noise 

18 v* 
Y-component of accelerometer and velocity quantizer correlated noise 

19 v, 
Z-component of accelerometer and velocity quantizer correlated noise 

20 fax X-component of gravity vector errors 
21 fay Y-component of gravity vector errors 
22 8RZ 

Z-component of gravity vector errors 
23 ShB Total barometric altimeter correlated error 
24 K X-component of gyro trend 

25 K Y-component of gyro trend 

26 K Z-component of gyro trend 

27 v, X-component of accelerometer trend 

28 v» Y-component of accelerometer trend 

29 v. Z-component of accelerometer trend 

30 &x X-component of gyro drift rate repeatability 
31 ^v Y-component of gyro drift rate repeatability 
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Table 33. Original 93-State Truth Model for the INS: States 32 - 63 

State 
Number 

State 
Symbol 

State 
Definition 

32 bz 
Z-component of gyro drift rate repeatability 

33 ^gx X-component of gyro scale factor error 
34 •Jj?V Y-component of gyro scale factor error 
35 "jez Z-component of gyro scale factor error 
36 Xi X gyro misalignment about Y-axis 
37 Xi Y gyro misalignment about X-axis 
38 X3 Z gyro misalignment about X-axis 
39 Vi X gyro misalignment about Z-axis 
40 v2 

Y gyro misalignment about Z-axis 
41 v3 

Z gyro misalignment about Y-axis 
42 Uxxx X gyro scale factor nonlinearity 
43 Lfyyy Y gyro scale factor nonlinearity 
44 L'zzz Z gyro scale factor nonlinearity 
45 ^Qb. 

X gyro scale factor asymmetry error 

46 SQby Y gyro scale factor asymmetry error 

47 ^Qb, 
Z gyro scale factor asymmetry error 

48 V», X-component of accelerometer bias repeatability 

49 V», 
Y-component of accelerometer bias repeatability 

50 V*. 
Z-component of accelerometer bias repeatability 

51 SAX X-component of accelerometer and velocity quantizer scale factor 
52 SAV Y-component of accelerometer and velocity quantizer scale factor 
53 SäZ Z-component of accelerometer and velocity quantizer scale factor 
54 SoAx X-component of accelerometer and velocity quantizer scale factor asymmetry 
55 SoAy Y-component of accelerometer and velocity quantizer scale factor asymmetry 
56 SQAZ Z-component of accelerometer and velocity quantizer scale factor asymmetry 
57 Jxx Coefficient of error proportional to square of measured acceleration 
58 .Ivy Coefficient of error proportional to square of measured acceleration 
59 JZZ Coefficient of error proportional to square of measured acceleration 
60 Jxv Coefficient of error proportional to square of measured acceleration 
61 Jxz Coefficient of error proportional to square of measured acceleration 
62 Jyx Coefficient of error proportional to square of measured acceleration 
63 , _Jk  Coefficient of error proportional to square of measured acceleration 
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Table 34. Original 93-State Truth Model for the INS: States 64 - 93 

State 
Number 

State 
Symbol 

State 
Definition 

64 Jzz Coefficient of error proportional to square of measured 
acceleration 

65 Jzy Coefficient of error proportional to square of measured 
acceleration 

66 Pi X accelerometer misalignment about Z-axis 
67 ß2 Y accelerometer misalignment about Z-axis 
68 ß3 Z accelerometer misalignment about Y-axis 
69 Ü3 Z accelerometer misalignment about Y-axis 
70 v, X-component of accelerometer bias thermal transient 

71 ^ Y-component of accelerometer bias thermal transient 

72 \ 
Z-component of accelerometer bias thermal transient 

73 K X-component of initial gyro drift rate bias thermal transient 

74 K Y-component of initial gyro drift rate bias thermal transient 

75 K Z-component of initial gyro drift rate bias thermal transient 

76 r xyz X gyro compl iance term 
77 Fxw X gyro compl iance term 
78 r xyx X gyro compl iance term 
79 t'xzy X gyro compl iance term 
80 t'xzz X gyro compl iance term 
81 Fxz X gyro compl iance term 
82 Fyzx Y gyro compl iance term 
83 fyzz Y gyro compl iance term 
84 Fyzy Y gyro compl iance term 
85 Fyxz Y gyro compl iance term 
86 t'yxx Y gyro compl iance term 
87 ryxv Y gyro compl iance term 
88 fzxv Z gyro comph ance term 
89 r zxx Z gyro comph ance term 
90 r zxz Z gyro comph ance term 
91 fzvx Z gyro comph ance term 
92 fzw Z gyro comph ance term 
93 r zyz Z gyro comph ance term 

114 



Table 35. Reduced-Order 39-State Truth Model for the INS: States 1 - 20 

State 
Number 

State 
Symbol 

State 
Definition 

1 sex X-component of vector angle from true to computer frame 
2 56y Y-component of vector angle from true to computer frame 

3 sez Z-component of vector angle from true to computer frame 
4 <l>x X-component of vector angle from true to platform frame 
5 Qv Y-component of vector angle from true to platform frame 

6 <t>z Z-component of vector angle from true to platform frame 

7 svx X-component of error in computed velocity 

8 5VV Y-component of error in computed velocity 
9 svz Z-component of error in computed velocity 
10 oh Error in vehicle altitude above reference ellipsoid 
11 ShB Total barometric altimeter correlated error 
12 5hL Error in lagged inertial altitude 
13 SS3 Error in vertical channel aiding state 
14 SS4 Error in vertical channel aiding state 
15 v. 

X-component of accelerometer and velocity quantizer correlated noise 

16 v* 
Y-component of accelerometer and velocity quantizer correlated noise 

17 vZc 
Z-component of accelerometer and velocity quantizer correlated noise 

18 SRX X-component of gravity vector errors 
19 Sgy Y-component of gravity vector errors 
20 ösz 

Z-component of gravity vector errors 
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Table 36. Reduced-Order 39-State Truth Model for the INS: States 21 - 39 

State 
Number 

State 
Symbol 

State 
Definition 

21 bx X-component of gyro drift rate repeatability 
22 by Y-component of gyro drift rate repeatability 
23 K Z-component of gyro drift rate repeatability 
24 "gx X-component of gyro scale factor error 
25 &KV Y-component of gyro scale factor error 
26 bgz Z-component of gyro scale factor error 
27 v>, 

X-component of accelerometer bias repeatability 

28 v>, 
Y-component of accelerometer bias repeatability 

29 v. Z-component of accelerometer bias repeatability 

30 SAX X-component of accelerometer and velocity quantizer scale factor 
31 SAV Y-component of accelerometer and velocity quantizer scale factor 
32 SAZ Z-component of accelerometer and velocity quantizer scale factor 
33 SoAx X-component of accelerometer and velocity quantizer scale factor asymmetry 
34 SoAv Y-component of accelerometer and velocity quantizer scale factor asymmetry 
35 SQAZ Z-component of accelerometer and velocity quantizer scale factor asymmetry 
36 ßl X accelerometer misalignment about Z-axis 
37 P2 Y accelerometer misalignment about Z-axis 
38 Hi Z accelerometer misalignment about Y-axis 
39 °3 Z accelerometer misalignment about X-axis 
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Table 37. 30-State Truth Model for GPS 

State 
Number 

State 
Symbol 

State 
Definition 

1 8Rvdk 
User clock bias 

2 SDUdk 
User clock drift 

3 8RMP\ SV 1 multi-path error 

4 SRtropl 
SV 1 tropospheric error 

5 SRionl 
SV 1 ionospheric error 

6 öRSclkl SV 1 clock error 

7 oxsvl 
SV 1 x-component of position error 

8 fysvi 
SV 1 y-component of position error 

9 &svi 
SV 1 z-component of position error 

10 5RMP2 SV 2 multi-path error 
11 

ÖR,roP2 
SV 2 tropospheric error 

12 8Rion2 
SV 2 ionospheric error 

13 ÖRsclkl SV 2 clock error 
14 

ox SV 2 
SV 2 x-component of position error 

15 sySV2 
S V 2 y-component of position error 

16 °ZSV2 
SV 2 z-component of position error 

17 8RMP3 SV 3 multi-path error 

18 SRtr0P3 
SV 3 tropospheric error 

19 
SRionl 

SV 3 ionospheric error 

20 SRsdki SV 3 clock error 

21 oxsv3 
SV 3 x-component of position error 

22 fysvi 
SV 3 y-component of position error 

23 ozsv3 
SV 3 z-component of position error 

24 ORMPS SV 4 multi-path error 
25 

5Rtrop4 
SV 4 tropospheric error 

26 
SRionä, 

SV 4 ionospheric error 

27 ÖRsrlki SV 4 clock error 

28 8x U-ASV4 
SV 4 x-component of position error 

29 <5ySv4 
SV 4 y-component of position error 

30 
&SV4 

SV 4 z-component of position error 
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Table 38. 22-State Truth Model for Differential GPS 

State 
Number 

State 
Symbol 

State 
Definition 

1 &W User clock bias 

2 SDUclk 
User clock drift 

3 
SRtrop\ 

SV 1 tropospheric error 

4 «Li SV 1 ionospheric error 

5 UASV1 
SV 1 x-component of position error 

6 fysvi 
SV 1 y-component of position error 

7 fcsvi 
SV 1 z-component of position error 

8 
8Rtrop2 

SV 2 tropospheric error 

9 SRion2 
SV 2 ionospheric error 

10 fix SV 2 x-component of position error 

11 fysvi 
SV 2 y-component of position error 

12 
UZSV2 

SV 2 z-component of position error 

13 SKoP3 SV 3 tropospheric error 

14 SRM 
SV 3 ionospheric error 

15 oxsv3 
SV 3 x-component of position error 

16 <5ySv3 
S V 3 y-component of position error 

17 
OZsV3 

SV 3 z-component of position error 

18 8R,roP* 
SV 4 tropospheric error 

19 
8Rion4 

SV 4 ionospheric error 

20 Sx SV 4 x-component of position error 

21 fysv* 
SV 4 y-component of position error 

22 
&SV4 

SV 4 z-component of position error 
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Table 39. 13-State Filter Model (for all navigation components) 

State 
Number 

State 
Symbol 

State 
Definition 

1 sex X-component of vector angle from true to computer frame 
2 59, Y-component of vector angle from true to computer frame 
3 sez Z-component of vector angle from true to computer frame 
4 Qx X-component of vector angle from true to platform frame 
5 Qv Y-component of vector angle from true to platform frame 

6 Qz Z-component of vector angle from true to platform frame 

7 svx X-component of error in computed velocity 
8 SVy Y-component of error in computed velocity 
9 svz Z-component of error in computed velocity 
10 Sh Error in vehicle altitude above reference ellipsoid 
11 ShB Total barometric altimeter correlated error 
12 «W User clock bias 

13 SDUclk 
User clock drift 
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Appendix C.     Truth Model System Dynamics and Process Noise Matrices 

The LN-93 [26] error-state system dynamics matrix, F, is a 93 x 93 matrix with 

numerous zero elements. This matrix is parsed out into portions (submatrices) that 

contain non-zero elements, see Equations (64) and (65). The submatrices of the reduced- 

order truth matrix F develop by Negast [38] are shown in Tables 40-44. A complete 

listing of the 93-state system dynamics matrix can be found in the Litton's reference [26] 

as well in theses at AFIT [38, 56]. The system dynamics model for the single-positioning 

GPS and DGPS models are contained within Section 3.5. 

The Litton LN-93 truth model also includes a 93 x 93 process noise matrix, Q [26]. 

As shown in Equations (64) and (65), the WGN process noise vector, w, was subdivided 

into subvectors, Wi and w2, corresponding to the error state subvectors, ÖX\ and 5x2. 

These noise subvectors have process noise covariance (strength) matrices described by 

Qn and Q22 listed in Tables 45 and 46. The process noise submatrices for the GPS truth 

models are contained within Section 3.5. 
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Table 40. Elements of the System Dynamics Submatrix, Fn 

Element Term Element Term 

(13) -Py (1,8) -C ^RY 

(2,3) Px (2,7) ^RX 

(3,1) Py (3,2) -Px 

(4,2) -Qt (4,3) y 

(4,5) <°K (4,6) -a*, 
(4,8) -C 

^RY (5,1) Q7 

(5,3) "Ox (5,4) ~0iK 

(5,6) "^ (5,7) *"RX 

(6,1) -Q, (6,2) o, 
(6,4) <% (6,5) -^ 

(7,1) -2VyQy-2VzQz (7,2) 2VyQx 

(7,3) 2vzax (7,5) -\ 

(7,6) \ (7,7) -VC 

(7,8) 2QZ (7,9) -Py-2Q, 

(8,1) ivxay (8,2) -2VA-2VA 

(8,3) 2VZQ, (8,4) A 
(8,6) -A, (8,7) -2QZ 

(8,8) -VC (8,9) px+2ax 

(9,1) ivjaz (9,2) 2V,QZ 

(9,3) -2VyQy-2Vxax (9,4) -^ 
(9,5) K (9,7) py+2Qy + VxCKX 

(9,8) -px-2&x+VyCRY (9,10) 2g0/a 

(9,14) ^**2 (9,12) -1 

(9,16) fc2 (10,9) 1 

(10,14) -*! (10,16) *!-l 

(14,10) 1 (14,14) -1 
(15,14) *3 (15,16) ~*~rC-2 

(16,10) K (16,14) -K 
(16,16) K-\ 

Px.y 

nx,y,z 

kl,2,3,4 

a 
CRX,RY 

go 

Components of angular rate, navigation frame to ECEF frame 
Components of angular rate, ECEF to inertial frame 
Components of angular rate, navigation frame to inertial frame 

Components of vehicle velocity vector in ECEF coordinates 
Components of specific force in sensor frame 
Vertical channel gains 
Equatorial radius of the earth (20,926,470 ft) 
Components of earth spheroid inverse radii of curvature 
Equatorial gravity (32.08744 ft/sec2) 
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Table 41. Elements of the System Dynamics Submatrix, Fi2 

Element Term Element Term Element Term 

(7,17) Cn (7,18) Cn (7,19) Cn 
(7,20) 1 (8,17) C21 (8,18) C22 

(8,19) C23 (8,21) 1 (9,17) C31 

(9,18) C32 (9,19) C33 (9,22) 1 

(9,11) *2 (10,11) *i (15,11) -h 
(16,11) £4/600 

Note: For the above element definitions, t0 = 0 
C = Coordinate transformation matrix from body frame to navigation frame, C"b 

Table 42. Elements of the Dynamics Submatrix, Fi3 

Element Term Element Term Element Term 

(4,23) Cn (4,24) C\2 (4,25) ^13 

(4,26) CnOin, (4,27) cxl®iny (4,28) Ca(oini 

(5,23) C2i (5,24) C%2 (5,25) Cji 

(5,26) Clx(aK (5,27) C22COiny 
(5,28) CA, 

(6,23) C31 (6,24) C?,2 (6,25) C33 

(6,26) C3l(»ini (6,27) C32ft,m, (6,28) Qs®*,, 
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Table 43. Elements of the Dynamics Submatrix, Fx4 

Element Term Element Term Element Term 

(7,29) Q. (7,30) M2 (7,31) C M3 

(7,32) CuK (7,33) Cl2-Ay 
(7,34) r A

8
' 

(7,35) r A
B 

Ml nx 
(7,36) r A

B 

^12 ^y 
(7,37) Q3Af 

(7,38) QA* (7,39) -C  AB U12^ 
(7,40) Cl3"^ 

(7,41) r A
B L

13A! (8,29) ^21 (8,30) c ^22 

(8,31) r (8,32) r A
B (8,33) Cll^y 

(8,34) r A
B

' (8,35) r A
B (8,36) Q2 A* 

(8,37) r  A
B

' U23/1z 
(8,38) QA (8,39) -r A

B U
22^ 

(8,40) ^23^y 
(8,41) QsAc (9,29) c ^31 

(9,30) c \_-32 (9,31) C33 (9,32) QiAr 
(9,33) 

^32^ 
(9,34) C AB' (9,35) Ql4t 

(9,36) C^Ay (9,37) r A
B

' (9,38) r A
B 

(9,39) -r A
B (9,40) Q3^ (9,41) Q3A* 

AB z    = Components of acceleration in the body frame 

AB        = Specific force component (includes gravity) 

Table 44. Elements of the Dynamics Submatrix, F22 

Element Term Element Term Element Term 

(17,17) -K (18,18) 
-*. 

(19,19) -K 
(20,20) -P*. (21,21) -K (22,22) -K 
(11,11) -ß»r 

ßb 
= Gyro inverse correlation time constants (5 min) 

ß„        = Accelerometer inverse correlation time constants (5 min) 
V»<T.>C.V 

0* 
= Gravity vector error inverse correlation time constants (V/20NM) 

= Barometer inverse correlation time (10 min) 
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Table 45. Elements of Process Noise Submatrix Qn 

Element Term Element Term 

< 
(4,4) 

< 
(5,5) 

(6,6) 
< 

(7,7) 
< 

(8,8) a\ 
(9,9) 

< 

Table 46. Elements of Process Noise Submatrix Q22 

Element Term Element Term 
(17,17) 2/k< (18,18) 2ßv a\ 
(19,19) 2^< (20,20) 2ß^< 
(21,21) 2ßSgy< (22,22) 2ß*,< 
(11,11) 2/Vk 

a 

a 

a 

a 

2 

^h.y.z 

2 
lnx,y.z 

2 

K-ycic 
2 

2 

- PSD value of gyro drift rate white noise (6.25 x 10"10 -^r) 

7    ft^ = PSD value of accelerometer white noise (1.037 x 10" —r) sec 

= Variances of gyro drift correlated noise (3.086 x 10"13 —2") 

= Variances of accelerometer correlated noise (4.147 x 10" —r) 

,-6 A~J-\ 

Shr 

= Variances of gravity vector error component correlated noise (1.93 x 10" deg ) 

= Variance of barometer correlated noise (10,000 ft) 
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Appendix D.    Filter Model Process and Measurement Noise Matrices 

This appendix provides the values of the system dynamics driving noise employed in 

the M3AE's Kaiman filters used in the software simulations. These values are adjusted 

from the levels specified in the truth model. This is done to compensate for the 

inadequacies introduce by using a small subset of states to represent the behavior of a 

higher-order truth model. Tables 47 - 49 below shows the diagonal (autocovariance) 

terms of the process and measurement noise matrices, Q and R, respectively. Off- 

diagonal terms (cross-covariance) are assumed to be zero. 

Table 47. Process Noise Strength Values (Q) for Filter States (0.4 nmi/hr INS) 

State DGPS Units 

sex 1.2xl0"lb (arc-sec)2/sec 
S9V 1.5 xl0lb (arc-sec)2/sec 
sez 0.0 (arc-sec)2/sec 

0x 20.0 (arc-sec)2/sec 

0v 28.0 (arc-sec)2/sec 

A 85.0 (arc-sec)2/sec 

svx 0.1 ft2/seca 

svv 0.1 ft2/secJ 

8VZ 33,000.0 ft2/secJ 

5h 16.0 ft2/sec 
ShB 2.0 ft2/sec 

^RUc!k„ 
0.1 ft2/sec 

8DUclk„ 
5.0 xl0"n ft2/secJ 
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Table 48. Process Noise Strength Values (Q) for Filter States (4.0 nmi/hr INS) 

State DGPS Units 

S9X 1.2 xlO"2" (arc-sec)2/sec 

59v 1.5 xlO"2" (arc-sec)2/sec 

S9Z 0.0 (arc-sec)2/sec 

<k 14,500.0 (arc-sec)2/sec 

<t>y 14,500.0 (arc-sec)2/sec 

0, 520.0 (arc-sec)2/sec 

5VX 500.0 ft2/sec3 

SVy 500.0 ft2/sec' 

svz 43,000.0 ft2/secJ 

Öh 18.0 ft2/sec 

5hB 10.0 ft2/sec 

SRUclk„ 
0.1 ft2/sec 

SDudku 
5.0 xlO"10 ft2/secj 

Table 49. Measurement Noise Strengths Values (R) for the Truth and Filter States 

Measurement Truth Model Value Filter Model Value Units 

Barometric Altimeter 2,500.0 3,500.0 ft2 

DGPS 9.0 RpRl,2,3A ft2 

GPS Pseudolite 1.0 RpR5 ft2 

Radar Altimeter 0.09 0.12 ft2/sec2 
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