
AFIT/GCS/ENG/99M-22

TRANSFORMING COBOL LEGACY SOFTWARE
TO A GENERIC IMPERATIVE MODEL

THESIS

Dinä Leite Moraes, Captain, Brazilian Air Force

AFIT/GCS/ENG/99M-22

Approved for public release; distribution unlimited

DEC QUALITY INSPECTED S 1999040/ US I

REPORT DOCUMENTATION PAGE form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estinated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

and completing and reviewing
:, Directorate for Information

1. AGENCY USE ONLY (Leave blank! 2. REPORT DATE

March 1999
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

TRANSFORMING COBOL LEGACY CODE SOFTWARE TO A GENERIC
IMPERATIVE MODEL

6. AUTHOR(S)

Dina Leite Moraes, Captain, Brazilian Air Force

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2750 P Street
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-22

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Roy F. Stratton
AFRL/IFTD
525 Brooks Rd.
Rome, NY 13441-4505
(3031 315-3004 fDSN 587-30041

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Dr. Robert P. Graham, Jr.
Robert.graham@afit.af.mil
(513) 255-9918
12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words!

Legacy COBOL code presents challenges for organizations wishing to increase their effectiveness and improve their
efficiency. The systems that utilize this code are vital to enterprise operations, yet maintenance of code is expensive. This
research presents an alternative that overcomes some of the problems of legacy COBOL code through the use of software
reengineering techniques.

This research develops a transformation system to convert COBOL code into a generic imperative model,
recapturing the initial design and deciphering the requirements implemented by the legacy code, thereby making possible the
documentation of legacy systems, design restructuring, and the re-design of a new, enhanced system.

14. SUBJECT TERMS

COBOL, Generic Language, Legacy Software, Reengineering
15. NUMBER OF PAGES

89
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of Ministerio da Aeronautica do Brasil.

AFIT/GCS/ENG/99M-22

TRANSFORMING COBOL LEGACY SOFTWARE

TO A GENERIC IMPERATIVE MODEL

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Systems

Dinä Leite Moraes, B.S.

Captain, Brazilian Air Force

March 1999

Approved for public release; distribution unlimited

AFIT/GCS/ENG/99M-22

TRANSFORMING COBOL LEGACY SOFTWARE

TO A GENERIC IMPERATIVE MODEL

Dinä Leite Moraes, B.S.

Captain, Brazilian Air Force

Approved:

MMJ^X- (OAOM(
Dr. Robert P. Graham, Jr., Chairman

Dr. Scott A. DeLoach

date

date

date

Acknowledgements

I am extremely grateful to the Brazilian Air Force for giving me the opportunity

to complete an AFIT degree. There is no doubt I have developed additional skills that

will serve me throughout my life. I extend my deep appreciation and admiration to the

faculty and staff of the Air Force Institute of Technology, School of Engineering for

helping me to attain my goals and for their dedication and enthusiasm in teaching and

research. In particular, I'd like to thank my advisor, Maj. Robert P. Graham, Jr. for his

guidance and support throughout the course of this thesis effort.

I would like also to express my appreciation to my Brazilians fellows, Capt. Sonia

Rodrigues and Maj. Ferreira Gomes and his family. They made me feel as comfortable

here as I would have been in my home country. I would also like to thank Mrs. Annette

Robb for the consistent and heartfelt support she gave not only to me but also to all

international students.

Finally, I'd like to express my deep appreciation to my fiancee Capt Joseph Henry

Scherrer. His love and faith in my abilities gave me the confidence I needed to overcome

all obstacles in this difficult process. The relationship we built during our time here at

AFJT provided us with the foundation for continual happiness, joy, commitment, and

strength as we embark on our life together.

Dinä Leite Moraes

m

Table of Contents

Acknowledgements iii

List of Figures vii

List of Tables viii

Abstract ix

I. Introduction 1

Chapter Overview 1

Background 1

Research Context 3

Problem Statement 5

Thesis Outline 6

II. Literature Review 7

Chapter Overview 7

Generic Programming Languages fand, the Generic Imperative Model ;..,. 7

Transformation Systems 11
TAMPR transformation system 12
Inverse Transformation 13
COBOL Program Reuse 16
Draco-PUC Transformational Engine 18

Other Techniques for Extracting Specifications from COBOL Code 19
Creating Specifications from Code 19
Reverse Engineering from COBOL to Narrative Specification 19

Summary 21

III. Methodology 22

Chapter Overview 22

Methodology 22

GEVI Restrictions 27
Restriction 1: 27
Restriction 2: 27
Restriction 3: 28

iv

Restriction 4: , , , 28
Restriction5: 28
Restriction 6: 28
Restriction 7: 29
Restriction8: 29
Restriction 9: 29

COBOL Constructs Not Implemented 29
Group 1 30
Group 2 30
Group 3 31
Group 4 32
Group 5 32

Summary 33

IV. Transformation 34

Chapter Overview 34

Introduction 34

COBOL Add Transform 36

COBOL Subtract Transform 38

COBOL Move Transform 40

COBOL Redefines Transform 41

Record Elimination 41

Summary 44

V. Translation and Analysis of the GIM 45

Chapter Overview 45

Translation of COBOL constructs 45
Add Statement 45
Subtract Statement 47
Multiply Statement... 47
Divide Statement 47
Compute Statement 48
Move Statement 48
Accept Statement 49
Read Statement 49
Display Statement 50
Write Statement 51
Open Statement 52
If Statement 52
Call Statement 53
Perform Statement 54

v

The Program 57

Building the new GM AST 58
New COBOL Attributes 59

Analysis of the GIM 60

Summary 65

VI. Conclusion 66

Analysis of the Results 66

Recommendations 69

Future Research 70

Summary 70

Bibliography 71

Appendix A: Example of COBOL Code Transformation 73

Vita 79

VI

List of Tables

Table Page

1. COBOL Constructs Translated into the GIM 46
2. COBOL Constructs Translated 67
3. COBOL Constructs Not Implemented 68

vin

List of Figures

Figure Page

1. Reengineering Process 2
2. Reverse Engineering Process 4
3. GIM Domain Model Inheritance Hierarchy 11
4. Reverse Engineering and Restructuring 14
5. COBOL Code Transformation and its Translation 26
6. COBOL Add Statement AST 35
7. Imperative-Input 50
8. Imperative-Output 51
9. Imperative-File 52
10. Imperative-Selection 53
11. Imp-Subprogram-Call 56
12. Imperative-AST 58
13. Imperative-Record 61
14. Revised Imperative-Name 62
15. Imperative-Data-Type 63
16. Imperative-File Representing Ordered Files 65
17. COBOL Code Before Transformation 74
18. COBOL code After Transformation 76
19. COBOL Code After Translation 78

Vll

AFIT/GCS/ENG/99M-22

Abstract

Legacy COBOL code presents challenges for organizations wishing to increase

their effectiveness and improve their efficiency. The systems that utilize this code are

vital to enterprise operations, yet maintenance of code is expensive. This research

presents an alternative that overcomes some of the problems of legacy COBOL code

through the use of software reengineering techniques.

This research develops a transformation system to convert COBOL code

into a generic imperative model, recapturing the initial design and deciphering the

requirements implemented by the legacy code, thereby making possible the

documentation of legacy systems, design restructuring, and the re-design of a new,

enhanced system.

IX

TRANSFORMING COBOL LEGACY SOFTWARE TO A

GENERIC IMPERATIVE MODEL

I. Introduction

Chapter Overview

This chapter discusses the status of legacy systems in the Brazilian Air Force and

efforts to keep them operational and updated. Next, reverse engineering is explained as a

possible method to aid in the renovation of these legacy systems. Finally, a reverse

engineering method for the purpose of this research is described.

Background

Despite new information technologies that exist in the Brazilian Air Force for

developing computer systems, many systems still use early versions of third generation

languages, in particular COBOL. These so-called "legacy systems" are large systems

that were developed years ago using now-obsolete technology but that are still reliable

for the organizations. They represent years of accumulated experience and knowledge,

and often are the only place where the organization's business rules can be found. These

systems are very hard to maintain because they are poorly structured, poorly documented,

or both. Despite these problems, legacy systems are vital for administration and operation

of Brazilian Air Force. Based mainly on the analysis of these legacy systems, alternative

software has been developed to replace them. This analysis is done by analyzing COBOL

1

program source code, because documentation of the original program code is outdated

and unreliable. In order to replace an old system with a new one, the new system must

perform at least as well as the legacy system. Evaluating these results without formal

documentation of the user requirements is a very hard task. Some activities modeled and

implemented in the legacy system are not frequently executed, and for this reason it is

difficult to detect that they are missing in the new system. To avoid the lack of some

important activity in the new system, the transition between systems is made during a

long period of time, demanding the users do the same activities in both systems. Even

with all these precautions there is still uncertainty that the new system is achieving at

least all the old system results. To avoid chaos in the organization, in most cases, these

legacy systems are never discontinued.

Reengineering of legacy code may provide a way to avoid this chaos.

Reengineering, also known as both renovation and reclamation of legacy code, is the

examination and alteration of a subject system to reconstitute it in a new form and the

subsequent implementation of the new form [4]. Figure 1 shows a generalized view of the

process of reengineering legacy code as developed by Byrne [3].

Reengineering

Legacy System Target System

Figure 1. Reengineering Process

In order to effectively reengineer the legacy code, it must be expressed at a higher

level of abstraction than the programming language in which it was written [15]. This

process of expressing the legacy code in a higher level of abstraction is reverse

engineering. The different levels of abstraction in reengineering include implementation,

design, and requirements specification [13]. Reverse engineering does not involve

changing the subject system or creating a new system based on the reverse-engineered

subject system. It is a process of examination, not a process of change or replication [4].

Legacy code can be reengineered at each of these levels of abstraction. At the

implementation level, it is possible to re-code a program from one programming

language to another. At the design level, it is possible to re-design a program changing

the design of the legacy code into a design for the target system. At the requirement

specification level, it is possible to re-specify the requirements for a program [13].

Research Context

Legacy systems with missing or inaccurate documentation are very difficult to

operate and maintain because the primary source of information for these systems is the

source code itself. This old code cannot be easily understood because of the following

reasons:

- With a third generation language such as COBOL it is very difficult to use

structured programming techniques. This makes the program logic

unapparent and consequently hard to understand.

- Over the years software modifications make the software even more complex

and less maintainable and its documentation completely outdated. This is

called "program erosion" and is the result of software modifications

implemented unsystematically and without concern for the initial design.

- Data structures used in these programs are affected by the small main

memory.

- These programs have typically many lines of code that make their

understanding more difficult.

- They have no formal documentation.

Given these issues, reverse engineering could be the part of the

maintenance process that would help understand the legacy systems to make the

appropriate changes starting from the existing implemented code and recapturing

or recreating the design and deciphering the requirements actually implemented

by the subject system [4]. Figure 2 shows the process of reverse engineering in

more detail:

Reverse Specification

Reverse Design

Legacy System

Figure 2. Reverse Engineering Process

The process of reverse design is the focus of this research. Reverse design

abstracts the implementation information up to the design level. This process extracts

4

information such as a structure chart showing the calling hierarchy of the legacy code,

data flow diagrams showing the flow of data in and between legacy code routines, or

control flow diagrams showing the flow of control for the legacy code.

One method of reverse design developed by Sward includes as its first step

transforming the legacy code into a canonical form [13]. A canonical form allows code

that performs the same to look the same. Sward's reengineering methodology uses the

Generic Imperative Model (GIM) as the canonical form. The GIM includes fundamental

aspects of imperative programming languages. The imperative programming language

constructs are modeled in the GEVI by building abstract syntax trees that store knowledge

about the constructs.

This thesis describes the transformations necessary to translate a representative

sample of the Brazilian Air Force Maintenance and Supply System COBOL source code

to the GIM and evaluate the ability of Sward's Generic Imperative Model to handle the

COBOL language in the reverse engineering process at the design level. This

transformation system was developed in partnership with Capt Sonia Rodrigues

(Brazilian Air Force).

Problem Statement

Legacy COBOL code presents challenges for organizations wishing to increase

their effectiveness and improve their efficiency. The systems that use this code are vital

to enterprise operations, yet maintenance of code is expensive. This research presents an

alternative that overcomes some of the problems of legacy COBOL code through the use

of software reengineering techniques. Using a commercial off-the-shelf software

package called Refine/COBOL™, part of Software Refinery™ , a representative sample

5

of Brazilian Air Force legacy COBOL code is reverse engineered. The reverse

engineering process uses Refine/COBOL™ to transform legacy COBOL code into the

Generic Imperative Model (GM). This process uses the GUVI to express the COBOL

legacy code in a higher level of abstraction. After this transformation, the COBOL

legacy code is modularized and represented through a collection of imperative

subprograms where the constructs that perform the same function have the same syntax.

This research aids in the understanding of legacy code, thereby making possible

the documentation of legacy systems, the extension of vital business functions, the

implementation of new functions, and the generation of new enhanced source code that

captures the key aspects of the original code.

Thesis Outline

Chapter II of this paper will present a review of applicable literature from

technical sources. Chapter III will provide the methodology to develop the

transformation system outlined in Chapter I. Chapter IV describes the implementation of

this system. Finally, a discussion of the results and subsequent conclusions will be

included in Chapter V.

II. Literature Review

Chapter Overview

It is well accepted by the software engineering community that one of the more

important aspects of reengineering is to move COBOL code to a higher abstraction level,

i.e., to reverse engineer COBOL, because the presentation at a higher abstraction level is

more easily understood [7]. Due to the rising popularity of such reengineering efforts,

there are quite a number of papers available that discuss methods and techniques that

focus on COBOL. This chapter examines some of the papers that focus on getting a

description of COBOL code at a higher level of abstraction as the first step of a reverse

engineering effort.

First, an approach advocating generic language technology as a prerequisite to

building analysis and reengineering tools, such as Sward's Generic Imperative Model, is

discussed. Next, methodologies to reverse engineer COBOL programs to their design

using transformation systems are described. Finally, techniques to create specifications

from COBOL code that involve human expertise are outlined.

Generic Programming Languages and the Generic Imperative Model

According to van den Brand, Klint, and Verhoef, generic language technology

is a prerequisite to building analysis and conversion tools that are needed for the

reengineering of large software systems [9]. They argue that since many legacy systems

are polylingual it is important that reengineering systems are based on generic language

technology.

Legacy code or even complete systems are written in numerous dialects of "old-

fashioned" programming languages that have to be understood and analyzed. Developing

new tools for all dialects is far too expensive and can be done more effectively using

generic techniques. Van den Brand, Klint, and Verhoef claim that a system is language-

generic if the language can be a parameter of the system and upon instantiation with a

language definition a language-specific system is obtained.

By this definition, Sward's Generic Imperative Model (GEM) can be viewed as a

generic model that upon instantiation can generate a specific imperative language system.

Sward developed the Parameter-Based Object Identification (PBOI) methodology for

automatically extracting functionally equivalent object-oriented designs from legacy

imperative programs [13]. The PBOI methodology is based on fundamental ideas that

relate programs written in imperative languages to objects and classes written in object-

oriented languages. To focus this task, Sward developed the Generic Imperative Model

(GIM) as a generic model of imperative programming languages, and the Generic Object-

Oriented Design Model (GOM) as a generic model of object-oriented programming

languages. Using formal transformations, imperative subprograms represented in the

GEM are converted into classes and objects represented in the GOM.

The GIM is a generic language that provides a canonical form for representing

imperative programs. According to Sward, a canonical form must be:

- language independent - the representation is not tied to any one specific

programming language;

8

- programming construct independent - constructs that provide the same control

flow, even having a different syntax, can be recognized as the same entity;

- control flow construct independent - equivalent control structures can be

represented as the same control flow entity.

The GEVI includes fundamental aspects of imperative programming languages.

An imperative programming language paradigm is a style of programming based on the

following concepts:

- Variables - Variables hold state information during execution of the program;

- Data Types - Data types define the acceptable values for a variable and the

operations that can be done on the variable

- Expressions - Expressions are combinations of variables and operations used

to express temporary intermediate values;

- Assignment Statements - Assignment statements change state by assigning

new values to variables via expression evaluation;

- Input/Output - Input and output statements read and write to the standard

input/output devices and to files;

- Sequential Control - In sequential control flow, a sequence of statements

executes one after another;

- Selective Control - In selective control flow, a choice is made, based on the

result of a boolean expression, between executing one sequence of statements

versus another;

- Iterative Control - In iterative control flow, a sequence of statements is

executed repeatedly while a boolean expression is true;

- Procedural Abstraction - A procedural abstraction collects a sequence of

statements that are executed when the abstraction is referenced by name. A

procedural abstraction can be passed parameters and may return values.

- Main Program - In systems of imperative subprograms, there is always one

subprogram that is given the flow of control as the system begins execution.

This special subprogram is termed the main program.

Imperative programming languages include FORTRAN, C, Pascal, Ada, COBOL,

and any language that implements the concepts presented above. These imperative

programming language constructs are modeled in the GIM by building abstract syntax

trees that store knowledge about the constructs. For each programming language

construct modeled in the GIM, formal semantics are provided using the state model of

programs. Pre conditions and post conditions are used to define the semantics for each

GHVI representation of an imperative construct. Specifically, given a post condition R

that is guaranteed to be true after a statement S is executed, the weakest precondition,

wp(S,R), defines the weakest set of preconditions that must hold in order for the

execution of S to establish R.

Figure 3 shows part of the inheritance hierarchy of the GM domain model. The

overall superclass of the domain is the imperative-domains AST. The imperative-design

class models collections of imperative subprograms. The abstract class imperative-

statement is the superclass for all imperative-programming statements modeled in the

GIM. The imperative-data-construct class is the superclass of imperative expressions,

data types, and variables modeled in the GIM.

10

imperative-domain

imperative-design

imperative-statement imperative-subprogram

imperative-io . ^^ / \ imperative-iteration

imperative-assignment / imp-procedure-call

imperative-function
imperative-selection imperative-procedure

imperative-data-construct

mperative-expression
imperative-variable

imperative-data-type

imperative-function-call

Figure 3. GIM Domain Model Inheritance Hierarchy

Although the Generic Imperative Model (GIM) was developed to model the

variables, expressions, assignment statements, and control flow typically built into

imperative programming languages, it has some restrictions. These restrictions will be

described in Chapter III.

My research develops a transformation system to abstract a COBOL code

implemented information up to the design level. At the design level, the extracted

information is represented using the Sward's Generic Imperative Model as a generic

language.

Transformation Systems

As a possible solution for the maintenance and improvement problem in legacy

systems, many efforts based on transformation systems have been proposed to extract the

design from the implemented code. This section discusses some of these efforts based on

transformation systems that focus on abstracting COBOL code up to the design level.

11

TAMPR transformation system.

Harmer, McParland and Boyle's research had proposed a transformation system

called TAMPR that derives a COBOL program with improved structure from an existing

COBOL program [6]. Their work can be seen from the re-engineering context as

restructuring at the implementation level. The re-coded program maintains the same

behavior as the original program, but with a rationalized structure that facilitates its

understanding, thereby reducing the cost of its maintenance.

The TAMPR transformation system was used to build the restructuring

transformation system that restructures COBOL programs. This restructuring

transformation system receives as input an unstructured COBOL program, and outputs a

structured COBOL program. This restructuring transformation system consists of a

sequence of transformations built in two phases, each one using specific COBOL

language knowledge.

The first phase is based on COBOL Execution Model knowledge. The goal of the

Execution Model Stage is to transform a conventional COBOL input program into an

output program whose execution behavior is simpler to understand than the model

required by COBOL and will facilitate further processing. To achieve this goal, the

authors define a simple language form into which all COBOL forms must be converted.

This language form requires that:

- procedures be used instead of paragraphs and sections to group sequences of

statements;

- procedures have conventional behavior, i.e. they are invoked by stating the

procedure name, and when execution terminates they return to the caller;

12

- goto statements transfer execution control only within the body of a procedure.

The second phase is based on structured programming knowledge. This phase

uses the output of COBOL execution model derivation as its input. The structured

programming phase transformations are concentrated on improving program structure.

The goals of the structuring transformations are:

- to impose a top-down structure on the program;

- to uncover structured constructs expressed by goto statements and to introduce the

corresponding structured constructs.

To reduce the effort required in developing restructuring transformations, an

intermediate language form is used between the input form, COBOL, and the output

form, structured COBOL. Finally, dead code (code that will never be executed) is

identified and removed and the standard intermediate language is transformed back in

COBOL.

The authors' work has the advantage of being a fully automated program

transformation that restructures COBOL programs, while the transformation system

developed in my research requires a structured COBOL program as the input program.

On the other hand, the authors' restructuring transformation system only has applicability

in restructuring COBOL code into COBOL code, while my research uses a generic

language to model the COBOL program at the design level.

Inverse Transformation.

Sneed defines inverse transformation as being the process of retranslating

software code back into an application specification [11]. The motivation for Sneed's

work is the belief that software can be better altered and enhanced at the conceptual level

13

rather than at the physical level where the maintainer's view is often obstructed by

implementation details.

In Sneed's work, COBOL programs are retranslated into an intermediate design

schema based on a set of normalized relational tables for the modules, data capsules, and

interfaces extracted from the source programs. The mapping of COBOL source code

back into a design schema is based on a set of transformation rules obtained by inverting

the rules used to generate COBOL programs from the design. The design schema used

here is structured and modular. If the software has not been designed and implemented in

accordance with structured and modular design rules, it may be necessary to restructure

and remodularize it. It is in this respect that reverse engineering and restructuring

complement one another as shown in Figure 4.

Reverse Design

Restructuring

Figure 4. Reverse Engineering and Restructuring

The design schema used to represent the logical level is divided into two major

parts: data design, and program design.

The data design part contains five design elements that are:

- database structure design, which provides an overview of the database

design;

14

- file design, which provides information on the characteristics of the

files being used;

- data communication design, which provides an implementation-

independent view of the system interfaces;

- data capsule design, which provides an implementation-independent

view of the data structures;

- data constant design, which identifies all explicitly assigned values in

the source programs.

The program design part also contains five design elements. They are:

- process structure design, which depicts the sequential order in which

the individual programs are executed;

- component design, which describes characteristics taken from the

COBOL Identification Division and provides an overview of the

system configuration;

- data flow design, which describes the input/output relationship of the

programs to both the data capsules and the data communication;

- module interface design, which captures connections between modules

within a program;

- module design, which is a table of pseudo code instructions for each

module.

At the end of the retransformation of all programs, the design database contains

an aggregated logical description of the source system in the form of normalized

relational tables, which can be further processed for documentation, validation, and

15

program description contained in the design of the source language, in this case COBOL.

It represents a logical view of the software implementation, equivalent to the ANSI-

SPARC logical view of database implementation.

In the author's work, the design extracted from the code can be only used for

documentation, validation and program description, different from a design represented

in a generic language that can be used to generate code automatically.

COBOL Program Reuse.

Yang, Chu and Sun's research focused on acquiring Entity Relationship models

from data intensive source code to obtain reusable COBOL code components and their

designs by combining an analysis of data structures and code [7]. The authors'

motivation originated from observing the existing related work, in particular Sneed's

research reviewed above. Suitable formal transformations for this purpose have been

developed, in particular transformations for dealing with COBOL records and files,

aliased records, foreign keys, user defined abstract data types, and functional

relationships.

Their study on COBOL code reuse focuses on the parts-based approach. In this

approach, components are required to be found and understood, and then incorporated

into the designed system. Reusable parts are identified through reverse engineering via

program transformation. Program understanding is done inside the program

transformation process.

The method proposed to reverse engineer COBOL programs into their reusable

forms through program transformation is based on a wide spectrum language, RWSL

(Reengineering Wide Spectrum Language). This method consists of the following steps:

16

- translating a COBOL program into RWSL;

- cleaning up the target program in RWSL;

- looking for functionally self-contained modules;

- reverse engineering the modules into their high-level representations in Entity

Relationship (ER) diagrams by applying program transformations.

The obtained ER diagrams are viewed as reusable components. The ER

diagrams, together with the original code, are used by a Semantic Interface Analysis tool

to generate semantic predicates and interface predicates for a reusable module in terms of

its pre-conditions, post-conditions and obligations. The abstracted ER diagrams are able

to represent the design of the original programs and they make original programs much

more understandable, which is a great help to identify reusable COBOL components.

The correctness of the obtained ER diagrams is at present checked manually based on

human knowledge and expertise. This method only requires source code as its input and

it can be applied to heavily modified code typical of systems that have been maintained

over many years.

The COBOL code representation in a wide spectrum language obtained after the

translations is used by the authors to model the entities and relationships extracted from

the COBOL source code. The COBOL constructs irrelevant for acquiring entities and

relationships such as display, perform, if, when, until, and accept, are ignored in the

authors' work, in contrast to Sward's Generic Imperative Model, which models the

fundamental constructs of imperative programming languages.

17

Draco-PUC Transformational Engine.

Prado Leite, Sant' Anna, and Francisco do Prado have developed a

transformational engine Draco-PUC for porting COBOL programs to C++ [8]. Porting

occurs in the context of adaptive maintenance, where the functionality stays the same, but

there is a need to alter the supporting platform (hardware or software). They argue that if

we have the knowledge from the source language and the target language, we are able to

specify the mapping between them and to apply this mapping to any program written in

the source language.

Draco-PUC is a transformation system. First of all the input program is analyzed

to generate a Dast (Draco abstract syntax tree). Then, a set of pre-defined transformation

rules are applied by navigating the Dast in a left-to-right, bottom-up fashion. Whenever

several options of transformation exist, a rule filter selects among the several options the

one to be applied. After the transformation is applied, the new partial Dast is again

selected for transformation using the same set of candidate rules, unless there is a change

in the control strategy. Once transformations are finished the Dast is pretty-printed.

Implementing a porting strategy in Draco requires three basic steps:

- the construction of source and target domain parsers and pretty-printers;

- the construction of auxiliary libraries, which help in bridging the semantic gap

between domains;

- the construction of transformation rules that encapsulate the overall strategy.

The authors' work is an extension of the transformational paradigm to use

transformations to extract program structure from code, and then to use the produced

information to help in the application of porting transformations.

18

Other Techniques for Extracting Specifications from COBOL Code

This section review some of the papers that focus on using automated tools and

intelligent human guidance to reverse COBOL code to its design

Creating Specifications from Code.

Breuer and Lano have developed techniques to reverse COBOL application code

back to the design and specification stages to recreate lost information for the application

or to extract new information [2]. This method requires a translation of the source

language into a structured programming language. The authors' techniques are aimed at

representations that have already been restructured to reveal their essential structure. The

aim is to structure the code so that each line is a meaningful fragment of a program

specification, which explains why gotos must be replaced. These commands contribute

only during execution and tend to hide the real function of the program. The output of

this reverse engineering process is a formal notation in the Z specification language,

where the code becomes supported by a formal description, which may have been

previously lacking.

The reverse engineering begins by reorganizing the data and the code of the

program to facilitate analysis, aiming to produce well-defined objects and single-function

procedures. The final description returned will consist of a set of class definitions, a list

of variable declarations using either the classes or the basic types, and a list of

descriptions of the functionality of program segments.

Reverse Engineering from COBOL to Narrative Specification.

Yoshino, et al. have described a new reverse engineering technology that

generates a narrative specification used by real-world maintainers, which facilitates the

19

understanding of business procedures in existing COBOL programs [14]. It defines

business process logic and how to recognize it in a program. It also defines how to

generate narrative specifications based on this process logic.

One of the most important results of this research is the determination of what

information should be extracted from COBOL programs for software maintenance. To

understand programs, software maintainers must understand the program details after

restructuring the design logic, which is more abstract than the program code. The process

logic recognized from the programs is classified into two types of process: Normal

process and Error process, which handles error case procedures. Specifications are

constructed in a book paradigm. The book paradigm consists of a preface (or front page),

a table of contents, and the body of text, which consists of structured sections and

sentences, references, and comments. The preface is the outline of the program, and the

body is in the form of narrative sentences with headings. Then, the process logic is

extracted from the programs using the following generation techniques:

- error process and normal process - the system recognizes and suggests error

and normal process, which helps the maintainers to understand business

processes;

- error check process - the system recognizes the branch condition from a

normal process to an error process as being an error check process;

- data item editing - the system puts a sequence of assignment statements of the

same record together into an assignment table;

- external program invocation - calls to external subprograms provide important

logical units to help comprehend the business process.

20

This system extracts information, which has not been clearly expressed in

programs, and creates narrative specification. The system also provides parallel scrolling

and proof-correction marking tools based on the information acquired in the specification

generation.

Summary.

Chapter II summarized the literature relevant to this research. Chapter III will

describe the methodology used to develop the COBOL to the GM transformation

system. III. Methodology.

21

III. Methodology

Chapter Overview

This chapter describes and explains the methodology used to transform COBOL

legacy code into the Generic Imperative Model (GM) described in Chapter II. First, the

methodology is described. Next, the GM restrictions in modeling some imperative

language constructs are discussed. Finally, the COBOL constructs not implement by

this work are discussed.

Methodology

The methodology to transform COBOL into the GM began as a comparative

analysis between the structure of a COBOL program and the abstract syntax trees

included in the GM that model an imperative program. The objective of this analysis

was to understand what information should be extracted from a COBOL program and

what object class in the abstract syntax trees could capture and model extracted COBOL

information through the transformation process. To do this, one must start from the

components of a COBOL program, - program identification, data, statements, and

environment, and then identify equivalent elements and object classes in the GIM. These

components are described in more detail as follows.

The Program. A COBOL program consists of four divisions: the Identification

Division, Environment Division, Data Division, and Procedure Division. These divisions

give information about the program, its connection with the physical environment, its

22

data structures, and its executable statements, respectively. An imperative subprogram in

the GEVI is an abstraction unit that may be referenced by a name and that groups a

sequence of statements with information about the data manipulated by these statements.

A GIM subprogram combines information that in COBOL is in four separated divisions.

A collection of GIM subprograms constitutes an imperative program.

The Environment. The Environment Division in a COBOL program describes

how the program is connected to the physical environment and links internal references

to input/output devices to external ones in the particular operating system. The GEVI does

not model the links between internal and external references, which does not constitute a

problem, because the absence of those references does not interfere with the program

functionality.

The Data. The Data Division in a COBOL program contains descriptions of data

structures both internal and external. External data structures are contained in the File

Section or Communication Section, internal data structures are contained in the Working

Storage Section, and parameter structures are contained in the Linkage Section. All

variables in a COBOL program are declared in the Data Division and they are visible to

the entire program. COBOL language does not use actual or formal parameters.

In the GEVI, the imperative-data-construct object class is the superclass that

models the imperative subprograms' data types and variables, regardless of how they are

used, whether they are used as internal data, parameters, or for input or output. GIM

subprograms communicate through actual and formal parameters.

The Statements. The Procedure Division in a COBOL program contains the

executable statements grouped into paragraphs, which in turn may be grouped into units

23

called sections. In a typical COBOL program, a single paragraph or a sequence of

paragraphs is executed by a perform statement. Such execution transfers control to the

first statement of the paragraph and returns to the statement following the perform

statement provided the paragraph terminates by completing. Thus, the perform statement

plays the role of a call to a subprogram while the statements contained within the

paragraphs are the subprogram itself. In the GIM, the imperative-statement is the

superclass for all imperative programming statements modeled in the GIM, and includes:

- imperative-assignment, which models an expression evaluation and retention of the

result in a variable. It takes the general form:

x:=e

where x is a variable and e is an expression of the same type;

- imperative-selection, which models.selective control flow. It takes the general form

If B then

SI

else

S2

where B is a boolean expression and SI and S2 are sequences of statements;

- imperative-iteration, which models a control mechanism for repeating a

sequence of statements known as iterative control. It takes the general form:

While B

SI

where B represents a boolean expression and S1 a sequence of imperative

statements;

- imperative-procedure-call, which calls a subprogram by name and passes any actual

parameters required by the subprogram;

24

- imperative-io, which models the imperative languages' input and output statements.

After this brief comparative analysis between the COBOL structure and the GIM,

it was possible to conclude that the GIM would be able to represent all COBOL program

components, directly or indirectly, except for the information concerning the physical

environment. However, while the GIM was developed as a canonical form, where code

that performs the same functions has the same format, in the COBOL language several

statements with the same meaning can be written in different formats. For example, if

one wants to model the sum of three variables, say x, y and z, and store the result of that

sum in the variable k, one could use the GIM imperative-assignment object class in the

following way:

k := x + y+ z;

However, use of a COBOL add statement would yield at least, three different

formats for that operation:

add x y z to k (in this case k has to be initialized with zero)

add x y z giving k

add x y to z giving k

This diversity of possible formats allowed by COBOL semantics increases the

complexity of the transformation system construction, because that transformation system

would have to foresee all possible COBOL variations. One way of reducing such

complexity would be to create an intermediate stage by first transforming the source

COBOL program in another, equivalent COBOL program. The COBOL code would be

rewritten in a homogeneous way that could be called canonical COBOL or restricted

COBOL, where statements with the same functionality are codified in the same format.

25

This transformation of COBOL to canonical COBOL would preserve the original

program's meaning according to COBOL semantics. The canonical COBOL code

obtained after those transformations would produce the same result of the original code.

The canonical COBOL code would be recognized by the same COBOL compiler used for

the original COBOL code. In addition, and most important, the canonical COBOL

should use constructions similar to those of the GIM, in order to facilitate the

transformation of the canonical COBOL into the GIM. For each COBOL construct, the

equivalent chosen canonical format is the one closest to the corresponding GIM object

class. The closer the GIM object is to the canonical COBOL construct, the less complex

it is to directly translate into the GEVI.

Once the source code is transformed into canonical COBOL, it would be directly

translated into the GIM, if for all canonical COBOL constructs there were a

corresponding similar GEVI construct. However, some canonical COBOL constructs,

such as the perform statement and read statement, do not possess an equivalent or similar

GIM construct. Therefore, some COBOL constructs needed more programming effort to

be converted into the GIM. This conversion type was called indirect translation. The

two stages (transformation and directly/indirectly translation) used in the transformation

system are shown in Figure 5.

Legacy
COBOL

transformation CANONICAL
COBOL

direct translation .

indirect translation)

GIM

Figure 5. COBOL Code Transformation and its Translation

26

The next section of this chapter will discuss in more detail some restrictions the

GIM presents in modeling an imperative language.

GIM Restrictions

The GIM imposes some restrictions in modeling some imperative language

constructs. While some of those restrictions are not applicable to the COBOL language,

other must be treated in the construction of COBOL into the GIM transformation system.

Restriction 1;

A formal parameter of a procedure must not be both an input and an output

parameter.

This restriction is applicable to COBOL, since the collection of the

subprograms/procedures that model the GIM imperative-AST, have their definitions

extracted from performs statements and from called subprograms. In both cases, all

variables are global. Therefore, once converted in actual parameters, they should be both

input and output parameters. In order to avoid violating this restriction, the "process for

converting procedures with a parameter that is both input and output parameter into a

procedure that has no such parameters" presented in the Appendix D of Sward's

dissertation was used.

Restriction 2:

All functions in the GIM return a single value at the end of their execution and

have no output parameters.

This restriction is not applicable to COBOL since the COBOL language does not

use functions.

27

Restriction 3:

All actual parameters in subprograms calls must be variables.

This restriction is automatically enforced for COBOL because all parameters in

subprogram calls are built during translation to reference only variables in the Data

Division.

Restriction 4:

Subprograms to be modeled in the GIM are not allowed to make calls to

themselves.

This restriction is not applicable, because in COBOL, a program can be both a

called program and a calling program, but can never call itself. Paragraphs are also not

allowed to perform themselves.

Restriction 5:

The call tree of a collection of imperative subprograms must be a directed acyclic

graph.

This restriction is not applicable, because a COBOL program cannot call any

program that directly or indirectly contains it, avoiding the formation of cyclical graphs.

Restriction 6:

All variables in a subprogram are either declared locally or are formal

parameters of the subprogram.

This restriction is applicable to COBOL and is enforced by the translation system.

The imperative subprogram that corresponds to the body of the main program has only

local variables. The imperative subprograms originating from calls and performs have

their variables treated as formal parameters.

28

Restriction 7:

Subprograms cannot be declared inside of another subprogram. They are all

declared in the main program's global scope.

This restriction is not applicable to COBOL programs, where all the subprograms

are declared out of the main program scope.

Restriction 8:

The GIM does not model heterogeneous data structures.

This was the GIM restriction that had the largest impact on the translation of

COBOL into the GIM since most of the data in a COBOL program are structured as

records. A specific treatment for this restriction is described in Chapter IV.

Restriction 9:

The GIM does not model pointers.

This restriction is not applicable to COBOL, since COBOL does not use pointer

data types.

COBOL Constructs Not Implemented

Some COBOL constructs are not handled by the GIM. Some of them could had

been built combining other constructs modeled by the GIM. However that was not done

because it would increase the complexity of the system substantially and also because

most of them do not interfere in the program's functionality or were not available in the

early COBOL language versions. This section presents these constructs in four groups

with common characteristics and a brief explanation about them

29

Group 1.

This group is constituted by statements that had to be manually eliminated from

the source code before the transformations.

Go To. The go to statement overrides the normal, sequential execution of

statement by transferring control to a designated paragraph or section.

Exit. The exit statement provides a common ending point for a group of

procedures usually to leave a procedure before it has finished.

Copy. The copy statement inserts a library text into the source program at

compile time.

The go to and exit statements were substituted by perform and if statements while

the copy statement was eliminated by inserting the library text in the source program.

Group 2.

This group is constituted by the statements that do not interfere with the program

functionality but require additional knowledge from the source code to understand the

program at the design level modeled by the GIM.

Merge. The merge statement combines two or more files according to a

set of specified keys and makes the records available, in merged order, to an output file or

procedure.

Sort. The sort statement creates a sort file making the records available in

sorted order.

30

Group 3.

This group is constituted by the statements that were not implemented but

interfere with the program functionality. If one of these statements is in the source code

it has to be eliminated before the transformations.

Delete. The delete statement logically removes a record from a mass

storage file.

Evaluate. The evaluate statement determines the value of one or more

conditions. Subsequent program action depends on the result. (Implemented only in

COBOL 85).

Initialize. The initialize statement sets data items to specified values.

(Implemented only in COBOL 85).

Inspect. The inspect statement counts and /or replaces the occurrences of

a character or group of characters in a data item. (Implemented only in COBOL 85).

Purge. The purge statement eliminates a partial message from a queue.

(Implemented only in COBOL 85).

Receive. The receive statement makes a message, a message segment or

part of a message segment available to the program.

Rewrite. The rewrite statement logically replaces a existing record in a

mass storage file after a read statement without affecting the file position indicator.

Search. The search statement scans a table for an element that satisfies a

specified condition.

Send. The send statement causes a message, a message segment, or part

31

of a message to be release to one or more output queues that are maintained by the

message control system.

Group 4.

This group is constituted by the statements do not interfere with the program

understanding or its functionality.

Cancel. The cancel statement ensures that the next time a program is

called it will be in its initial state.

Enter. The enter statement allows a language other than COBOL to be

used in a COBOL source program.

Release. The release statement transfers records to the initial phase of a

SORT operation.

Replace. The replace statement replaces source program text.

(Implemented only in COBOL 85).

Return. The return statement obtains records from the final phase of a sort

or merge operation.

String. The string statement concatenates the whole or partial contents of

two or more data items into a single data item.

Use For Debugging. The use for debugging statement identifies those user

items that are to be monitored by a debugging procedure.

Group 5.

This group is constituted by statements only used to format reports.

Generate. The generate statement causes the report writer control system

32

to produce a report.

Start. The start statement positions the file position indicator prior to

sequential retrieval of records.

Suppress. The suppress statement inhibits the presentation of a report

group.

Terminate. The terminate statement causes the Report Writer to complete

the processing of a report.

Use Before Reporting. The use before reporting statement specifies a

procedure that is executed before a report group is presented.

Summary

Chapter HI has defined the methodology used to transform COBOL legacy code

into the GIM through transformation of COBOL into canonical COBOL and translation

of canonical COBOL into the GIM, has presented the GIM restrictions in modeling

imperative languages, and also has pointed out the COBOL constructs not implemented

by this work. Chapter IV will describe how the COBOL into canonical COBOL

transformation was implemented.

33

IV. Transformation

Chapter Overview

This chapter describes the transformation of the original COBOL abstract syntax

tree (AST) into the canonical COBOL. First, transform programs were defined to

convert COBOL constructs into equivalent canonical COBOL constructs. Then, the

record elimination to satisfy the GIM restriction of not modeling heterogeneous data

types is presented. This transformation system was developed in partnership with Capt.

Sonia Rodrigues of the Brazilian Air Force. The programs described in this research

complement those described in her research.

Introduction

The COBOL-to-GIM transformation system was built using the Software

Refinery™ development environment. Refine/COBOL™ , part of Software Refinery™,

is an interactive workbench that supports reengineering of COBOL legacy systems.

Refine/COBOL™ encompasses a domain model and grammar for many dialects of

COBOL, including COBOL 74, COBOL 85, IBM COBOL II and a generic COBOL

format.

To develop the transformation system, Refine/COBOL was configured to work

with the generic format. The generic format does not correspond to any specific COBOL

dialect. Rather, it is used to configure Refine/COBOL to handle a range of dialects that

have common characteristics.

34

Refine/COBOL parses COBOL source code and builds abstract syntax trees

(ASTs) based upon classes and attributes defined for the COBOL language domain

model. For instance, parsing a COBOL add statement of the type

add identifier 1 identified identifier3 to variable-1

yields the abstract syntax tree represented in Figure 6.

add-
statement

add-statemenl-data—■
— item-sequence ^y\~- -add-statment-arithmetic-

variable-sequence

identifier-1
add-statement-data-add-s,alement-da,a-

item-sequence Item-sequence variable-1

identifier-3 identifier-2

Figure 6. COBOL Add Statement AST

These ASTs store information about the legacy source code. The transformations

modify the original ASTs to conform to canonical COBOL. These transformed COBOL

ASTs are the input to the translations that build new GEVI ASTs based on those

transformed COBOL ASTs.

The objective of transformation is to modify the original COBOL code to

conform to canonical COBOL. For each COBOL construct, a program was developed

called transform that modifies the original AST to represent canonical COBOL.

Transforms were built using the Refine language transform construct. The Refine

transform construct specifies a change to the state of the environment by specifying what

conditions the goal state achieves. The transform construct allows specifying side

effecting operations "by giving the precondition and post condition of the transformation.

35

To transform COBOL into canonical COBOL, preconditions are defined as

patterns that match the original COBOL source code, and post conditions are defined as

the canonical COBOL one wants to obtain after the transformations.

Once all the preconditions and their consequent post conditions are defined, the

COBOL AST is traversed in a preorder fashion looking for the patterns defined in the

preconditions. Every time a precondition is found, the COBOL AST object base

representation is modified to satisfy the defined post condition. The following describes

the transforms written for this research.

COBOL Add Transform.

The COBOL Add transform, modifies any add statement to its canonical format:

add identifier-1 identifier-2... identifier-n giving identifier-m.

The COBOL Add transform has two main functions:

(1) Transform-add-to function that transforms add statements of the format:

add identifier-1 identifier-2 ... identifier-n to identifier-1 ... identifier-m.

This COBOL add statement is computed by placing the sum of the identifiers

before to in a temporary variable and then adding this temporary variable to the

identifier-1, ..., identifier-m. The transformation is made by creating one add statement

that will store in an auxiliary variable the sum of the identifiers before to, followed by an

add statement for each one of the identifiers after to. The creation of an auxiliary

variable is necessary to guarantee that the values used in the calculation of the identifiers

after to, are the initial values of the identifiers before to, for all new add statements,

thereby preserving the program meaning. For instance, let us use the following add

statement:

36

add identiferl identifier-2 identifier-3 to identifier-1 identifier-4 identifier-5

After the transformation we would obtain:

add identifier-1 identifier-2 identifier-3 giving variable-auxiliary

add variable-auxiliary identifier-1 giving identifier-1

add variable-auxiliary identifier-4 giving identifier-4

add variable-auxiliary identifier-5gi'ving identifier-5

In a COBOL program, all variables must be declared in the Data Division. So,

after the transformations, the auxiliary variable that has been created is inserted in the

AST that represents the Data Division.

(2) Transform-add-giving function that transforms two formats of add statements:

Format!: add identifier-1 identifier-2 ... identifier-n giving identifier-1 ...

identifier-m.

This COBOL add statement is computed by adding together all identifiers before

giving and placing the result into the identifiers after giving. In this case, after the

transformation, the first add statement will contain just one identifier after giving. Since

all identifiers after giving will have the same result after the add statement execution, it is

possible to use move statements to complete the transformation as seen in the following

add statement:

add identiferl identifier-2 identifier-3 giving identifier-1 identifier-4 identifier-5

In this case, after the transformation we would obtain:

add identifier-1 identifier-2 identifier-3 giving identifier-1

move identifier-1 to identifier-4

move identifier-1 to identifier-5

37

Format 2: add identifier-1 identifier-2 ... identifier-n to identifier-n

giving identifier-1 ... identifier-m.

In this case, the identifier after to is incorporated into the identifiers before to, and then

transformed in the same way as the first format.

COBOL Subtract Transform.

The COBOL Subtract transform, modifies any subtract statement to its canonical

format:

subtract identifier-1 identifier-2... identifier-n from identifier-pgiving

identifier-m.

The COBOL Subtract transform has two main functions:

(1) Transform-sub-from function that transforms subtract statements of the format

subtract identifier-1 identifier-2 ... identifier-n from identifier-1 ...

identifier-m.

The COBOL subtract statement is computed by placing the sum of the identifiers

before from in a temporary variable and then subtracting from each one of the identifiers

after from this temporary variable. The transformation is made by creating an auxiliary

variable that will store the sum of the identifiers before from and an additional subtract

statement for each one of the identifiers after from. The creation of an auxiliary variable

is necessary to guarantee that the values used in the calculation of the identifiers after

from, are the initial values of the identifiers before from, for all new subtract statements,

preserving the program meaning. For instance, let us use the following subtract

statement:

38

subtract identifier-1 identifier-2 identifier-3 from identifier-1 identifier-4

identifier-5

In this case, after the transformation we will obtain:

add identifier-1 identifier-2 identifier-3 giving variable-auxiliary

subtract variable-auxiliary from identifier-1 giving identifier-1

subtract variable-auxiliary from identifier-4 giving identifier-4

subtract variable-auxiliary from identifier-5 giving identifier-5

After the transformations the auxiliary variable that has been created is inserted in the

AST that represents the Data Division.

(2) Transform-sub-giving function that transforms subtract statements of the

format:

subtract identifier-1 identifier-2 ... identifier-n from identifier-p giving

identifier-1 ... identifier-m.

In this case, the transformation is made by modifying the original subtract

statement to have just one identifier after from, followed by additional move statements

for each one of rest of the identifiers after from. For instance, let us use the following

subtract statement:

subtract identifier-1 identifier-2 identifier-3 from identifier-1 giving identifier-4

identifier-5 identifier-6

In this case, after the transformation we will obtain:

subtract identifier-1 identifier-2 identifier-3 from identifier-1 giving identifier-4

move identifier-4 to identifier-5

move identifier-4 to identifier-6

39

COBOL Move Transform.

The COBOL Move transform, modifies any move statement to its canonical

format:

move identifier-1 to identifier-2.

The COBOL move transform has as its main function, transform-move, that

modifies move statements with more than one identifier after to transforming it into

several move statements with just one identifier after to. For instance, let us use the

following move statement:

move identifier-1 to identifier-2 identifier-3 identifier-4

After the transformation we would obtain:

move identifier-1 to auxiliary-variable

move auxiliary-variable to identifier-2

move auxiliary-variable to identifier-3

move auxiliary-variable to identifier-4

The auxiliary variable is necessary to preserve the meaning of move statements of the

type:

move identifier-1 (index-1) to index-2 identifier-2(index-2)

This COBOL move statement is made storing the initial value of identifier-1

(index-1) in a temporary variable and then placing this value into index-2 and

identifier-2(index-2).

After the transformations the auxiliary variable that has been created, is inserted

in the Data Division Working Storage Section using the same structure of the identifier

before to.

40

COBOL Redefines Transform.

In canonical COBOL all data items have just one description entry in the Data

Division.

The COBOL Redefines transform has as its main function, transform-redefines,

that eliminates all redefined items from the COBOL source code. In a COBOL program,

fields contained in a redefining item occupy the same memory positions as the fields

being redefined. The redefined items have to be eliminated because the GIM does not

handle this construct. To eliminate the redefined items, all operations that refer to these

items are modified to refer to the item that is being redefined. After that, the redefined

items are eliminated.

Record Elimination.

To avoid violating the GIM restriction of not modeling heterogeneous data types,

all group items in a COBOL program had to be transformed in elementary items. Most

of the data in a COBOL program are structured as records. A record is a group item of

related information uniquely identifiable and treated as a unit. This group item is a data

item that is composed of elementary items and/or other group items.

Record elimination is the process of group item transformation into elementary

items. This elimination was done in the following stages:

(1) Renaming of all the elementary items. The renaming is made to guarantee the

uniqueness of each elementary item and avoid ambiguity when an elementary item is

referred, because elementary items belonging to different group items can have the same

name.

41

(2) Mapping group items into their elementary items. This mapping is made to

aid in the transformation of statements that manipulate group items into equivalent

statements manipulating elementary items. This mapping is made by a function called

find-family. The function find-family is a recursive function that retrieves all the

descendants of a group item. The descendants ofthat group item that are elementary

items are stored in a sequence called group. For instance, let us use the following group

item:

01 identifier-1.

03 identifier -11 picture x(3).

03 identifier-12.

05 identifier -121 picture x(3).

05 identifier-122.

07 identifier -1221 picture x(3).

The find-family function we would obtain:the sequence:

group(identifier -1) = [identifier -11, identifier -121, identifier -1221]

(3) Transformation of move statements that manipulate group items into move

statements manipulating the elementary items that compose that group item.

(4) Transformation of all input/output statements that refer group items into

equivalent input/output statements referring elementary items as described following

for write and accept statements.

COBOL Write Transform. The COBOL write, transform has as its main function,

transform-write, that modifies write statements with group items transforming it into

several write statements with elementary items. The transform-write function calls the

find-family function described in item (2) of Record Elimination to determine what

42

elementary items correspond to the group item in the write statement being transformed.

For instance, let us suppose the group item identifier-1 from the COBOL If transform

example and the write statement:

write identifier-1

After the transformation we would obtain:

write identifier- 111

write identifier-1121

COBOL Accept Transform. The COBOL accept transform has as its main

function, the transform-accept, that modifies accept statements with group items

transforming it into several accept statements with elementary items. The transform-

accept function calls the find-family function to determine what elementary items

corresponds to the group item in the accept statement being transformed.

For instance, let us use identifier-1 group item from the previous COBOL If

transform example and the accept statement:

accept identifier-1 from console

After the transformation we would obtain:

accept identifier- 111 from console

accept identifier-1121 from console

(5) Transformation of the original COBOL program eliminating from the Data

Division all group items.

43

Summary

Chapter IV has described how the COBOL into canonical COBOL transformation

was made. Chapter V will describe how the canonical COBOL is translated into the GIM

and will discuss the ability of GIM to handle COBOL language.

44

V. Translation and Analysis of the GIM

Chapter Overview

This Chapter describes how the new GIM AST is built, and discusses the ability

of GIM to handle COBOL language. First, the translation of canonical COBOL

constructs into the GIM is explained. Then, the construction of the new GIM AST is

described. Finally, the ability of GEVI in modeling COBOL language is analyzed.

Translation of COBOL constructs

This section explains how the canonical COBOL constructs are translated into the

GEVI. Table 1 summarizes the COBOL constructs translated into the GIM objects classes.

Add Statement.

Add statements have the following format in canonical COBOL:

add identifier-1 identifier-2... identifier-ngiving identifier-m

In this COBOL add statement format, all identifiers preceding giving are added together.

This sum is stored as the new value of the identifier following giving. The corresponding

GEVI object class is an imperative-assignment, whose imp-assign-rhs attribute is an

imperative-addition object. The add statement format chosen is directly translated into

the GIM as the assignment statement:

identifier-m := identifier-1 + identifier-2 + ... + identifier-n;

45

Table 1. COBOL Constructs Translated into the GIM

COBOL statements GIM Imperative-statements
Add
Subtract
Multiply
Divide
Compute
Move

Imperative-assignment

Call Imp-subprogram-call
Accept
Read

Imperative-input

Display
Write

Imperative-output

Open
Close

Imperative-file

If Imperative-selection
Perform paragraph thru

end-paragraph
Imp-subprogram-call

Perform paragraph thru
end-paragraph until condition

Imperative-iteration
(while not condition)

Imp-subprogram-call
Perform paragraph thru
end-paragraph
varying identifier-1 by identifier-2 until
condition

Imperative-assignment
Imperative-iteration
(while not condition)

Imperative-addition
Imp-subprogram-call

Perform paragraph thru
end-paragraph
identifier-1 times

Imperative-assignment
Imperative-iteration
(while not condition)

Imperative-addition
Imp-subprogram-call

Main Program
(statements delimited by Stop run)

Perform
(Sequence of statements executed by) |

Imperative-subprograms

46

Subtract Statement.

Subtract statements have the following format in canonical COBOL:

subtract identifier -1 identifier -2... identifier -n from identifier-mgiving

identifier-p

In this COBOL subtract statement format, all identifiers preceding/rom are added

together. This sum is then subtracted from identifier-n. The result is stored as the new

value of identifier-p. The corresponding GIM object class is an imperative-assignment,

whose imp-assign-rhs attribute is an imperative-subtraction object. The subtract

statement format chosen is directly translated into the GIM as the assignment statement:

identifier-p := identifier-m -identifier-1 - identifier-2 -... - identifier-n;

Multiply Statement.

Multiply statements have the following format in canonical COBOL:

multiply identifier-m by identifier-n giving identifier-p

In this COBOL multiply statement format, the product of the identifier before by and the

identifier after by is stored in the identifier following giving. The corresponding GIM

object class is an imperative-assignment, whose imp-assign-rhs attribute is an imperative-

multiplication object. The multiply statement format chosen is directly translated into the

GIM as the assignment statement:

identifier-p := identifier-m * identifier-n;

Divide Statement.

Divide statements have the following format in canonical COBOL:

divide identifier-m by identifier-n giving identifier-p

47

In this COBOL divide statement the identifier-m is divided by identifier-n and the

quotient is placed into identifier-p. The corresponding GEVI object class is an imperative-

assignment, whose imp-assign-rhs attribute is an imperative-division object. The divide

statement format chosen is directly translated into the GEVI as the assignment statement:

identifier-p := imperative-name-m / imperative-name-n;

Compute Statement.

Compute statements have the following format in canonical COBOL:

compute identifier-m = arithmetic-expression

In this COBOL compute statement the value determined in the arithmetic-expression is

placed into identifier-m. The corresponding GEVI object class is an imperative-

assignment, whose imp-assign-rhs attribute is an imperative-expression object. The

compute statement format chosen is directly translated into the GIM as the assignment

statement:

identifier-m := arithmetic-expression;

Move Statement.

Move statements have the following format in canonical COBOL:

move identifier-m to identifier-n

In this COBOL move statement, the content of the sending item, identifier-m, is

transferred to the receiving variable, identifier-n. The corresponding GIM object class is

an imperative-assignment, whose imp-assign-rhs attribute is an imperative-name object.

The move statement format chosen is directly translated into the GEVI as the assignment

statement:

imperative-name-n := imperative-name-m;

48

Accept Statement.

Accept statements have the following format in canonical COBOL:

accept identifier-n

The accept statement inputs non-file data. It is used to transfer data from a hardware

device such as terminal into identifier-n. In this accept statement, the data comes from a

standard operating system input device. The accept statement is translated into the GEVI

as an imperative-input, subclass of imperative-io. The input device is translated into the

GEVI as the imp-in-logical-file. The accept statement format chosen is directly translated

into the GEVI because it is similar to the syntax generated by the GEVI grammar that has

the general form:

read imp-in-logical-file, identifier-1 ... identifier-n;

Read Statement.

Read statements have the following format in canonical COBOL:

read file-name-n

The read statement obtains a record from a file and puts it into the file's record area.

Read statements are indirectly translated into the GEvI as an imperative-input, subclass of

imperative-io. The read statement cannot be translated directly into the GEVI, because it

only refers to an input file, while the GEVI imperative-input also refers to a sequence of

identifiers to receive the data read.

The imperative-input is the imperative-io subclass that models accept and

read statements. Figure 7 shows the imperative-input object class. For accept statements,

the imp-in-logical file models the standard input device where the data comes from, and

for read statements it models the name of the file being read. The imp-input-list models

49

the data items being read. For accept statements these data items are translated directly

from the accept statement. For read statements these data items are translated from the

read-fields attribute. COBOL read gives a logical file while the File Section in the Data

Division provides the variables that receive the data. GIM must explicitly mention both.

The read-fields-attribute maps the logical file to the variables that receive the data.

Imperative-
input

1
imp-in-logical-file

Imperative-
data-

construct

Imperative-
literal-

charstrinq

Imperative-
name

imp-input-list

Imperative-
data-

construct

Figure 7. Imperative-Input

Display Statement.

Display statements have the following format in canonical COBOL:

display identifier-1 identifier-2 ... identifier-n upon mnemonic-name

The display statement is used to output non-file data. The display statement is translated

into the GIM as an imperative-output, subclass of imperative-io. The display statement

format chosen is directly translated into the GIM because it is similar to the syntax

generated by the GIM grammar that has the general form:

write imp-out-logical-file, identifier-1 ... identifier-n;

50

Write Statement.

Write statements have the following format in canonical COBOL:

write identifier-n

The write statement writes records to a file or positions lines within a page. The write

statement is directly translated into the GIM as an imperative-output, subclass of

imperative-io. The write statement format chosen is directly translated into the GIM

because it is similar to the syntax generated by the GIM grammar that has the general

form:

write imp-out-logical-file, identifier-1 ... identifier-n;

The imperative-output is the imperative-io subclass that models display

and write statements. Figure 8 shows the imperative-output object class.

Imperative-
output

1
imp-out-logical-file

Imperative-
data-

construct

Imperative-
literal-

charstrinq

Imperative-

imp-ouputt-list

Imperative-
data-

construct

Figure 8. Imperative-Output

For display statements, the imp-in-logical file models the mnemonic name defined in the

upon clause, and for write statements it models the file's name being written. The imp-

output-list models the data items being written. These data items are directly translated

from the canonical COBOL display and write statements.

51

Open Statement.

Open statements have the following format in canonical COBOL: ,

open {input/output} file-name-n

The open statement makes a file available to the program for processing. The open

statement is directly translated into the GEVI as an imperative-file. The GEVI does not

produce grammar to the open statement. The imperative-file is instantiated just to

indicate whether the file is available for input or output.

The imperative-file is the imperative-io subclass that models open

statements. Figure 9 shows the imperative-file object class. The imp-designator attribute

holds name of the logical file as referenced in the open statement. The im-access

attribute holds the access type and the imp-status attribute holds the status of the file,

opened either for input or output.

imp-designator
i

imperative-
data-

construct

imperative-
file

<>

imp-access

symbol

imp-status

symbol

Figure 9. Imperative-File

If Statement.

If statements have the following format in canonical COBOL:

if condition then statements. { else statements.}

52

The if statement evaluates a condition. Subsequent program action depends on whether

this condition is true or false. The if statement is directly translated into the GEVI as a

selection statement:

if condition then

statements;

else

statements;

endif;

The imperative-selection shown in Figure 10 is the GEVI object class that models

if statements.

Imperative-
selection

0

imperative-exp imperative-then-part imperative-else-part

1 L
mperative- Imperative- Imperative

data- data- data-
construct construct construct

Figure 10. Imperative-Selection

Call Statement.

Call statements have the following format in canonical COBOL:

call 'subprogram-1' using identifier-1, identifier-2, ..., identifier-n

In this COBOL call statement, the calling and called programs are linked via shared

common data. Both programs' Data Division must contain all data items mentioned in

the using clause. The call statement format chosen is directly translated into the GEVI as

the procedure call:

53

subprogram-1 (identifier-1, identifier-2,..., identifier-n);

Perform Statement.

Perform statements have four possible formats in the Canonical COBOL:

Format 1: perform paragraph-name through end-paragraph-name

Format 2: perform paragraph-name through end-paragraph-name until

condition-1

Format 3: perform paragraph-name through end-paragraph-name

varying variable-1 from identifier-1 by identifier-2 until

condition-1

Format 4: perform paragraph-name through end-paragraph-name

identifier-1 times

The GIM does not have a construct to model perform statements, so they

are indirectly translated into the GIM as imperative-subprogram-calls. The called

imperative-subprogram's name is the paragraph name and the actual parameters are the

variables used by the statements executed by the perform statement. These executed

statements are translated into imperative-subprograms which formal parameters are equal

to the imperative-subprogram-call actual parameters.

For all four formats, the end-paragraph-name is a new paragraph created in the

transformation just to delimit the perform scope making it easier to translate. This new

paragraph has no statements and its placed just after the last statement executed by the

perform statement. For perform statements with a single paragraph, for example, perform

paragraph-1, the end-paragraph-name is placed just after the last statement in

paragraph-1. For a sequence of paragraphs in the perform statement, for example,

54

perform paragraph-1 through paragraph-2, the end-paragraph-name is placed after the last

statement in paragraph-2.

After delimiting the perform scope, formats 2, 3, and 4 have a specific treatment

to be indirectly translated into the GM.

Format 2: perform paragraph-name through end-paragraph-name until

condition-1

This perform statement is indirectly translated into a imperative-subprogram-call

inside an imperative-iteration that takes the general format:

while not condition-1 do

begin

paragraph-name (parameter-1, ...,parameter-n);

end

The condition has to be negated to preserve program's meaning because the

statements inside the perform until are executed while the condition is false, in

opposition to the while statement where the repetition happens while the condition is true.

Format 3: perform paragraph-name through end-paragraph-name

varying variable-1 from identifier-1 by identifier -2 until

condition-1

This perform statement is indirectly translated into imperative-assignments and

into an imperative-subprogram-call inside an imperative-iteration and that takes the

general format:

variable 1: = identifier-1;

while not condition-1 do

begin

variable-l:= variable-1 + identifier-2 ;

55

paragraph-name (parameter-1, ...,parameter-n);

end;

Format 4: perform paragraph-name through end-paragraph-name

identifier-1 times

This perform statement is indirectly translated into imperative-assignments and

into an imperative-subprogram-call inside an imperative-iteration and that takes the

general format:

variable-1:=0;

while variable-1 < identifier-1 do

begin

variable-1:= variable-1 + 1 ;

paragraph-name (parameter-1, ...,parameter-n);

end

The imp-subprogram-call models explicit calls to COBOL subprograms

and calls to the subprograms defined from the perform statements. Figure 11 shows the

imp-subprogram-call object class.

Imp-
subprogram

-call

t
mp-call-identifi 3r imp-call-actuals

1
Imperative-

name
Imperative-

name

Figure 11. Imp-Subprogram-Call

For explicit calls to a COBOL subprogram the imp-call-actuals are translated

from the shared variables referenced in the using clause. For calls to subprograms made

56

up from perform statements the imp-call-actuals are translated from the variables referred

by the statements executed by these performs.

The Program.

The COBOL main program's body is also translated into the GIM as an

imperative-subprogram. The main program consists of all statements before the stop run

statement. The COBOL stop run statement closes all files, causes the program to be

terminated, and transfers control to the operating system.

An imperative subprogram is composed of an identifier, formal parameters and

imperative statements. The first subprogram built in the new GIM AST is the one that

corresponds to the main program. Its identifier is the COBOL program ID, and its

statements are translated from the statements in the Procedure Division before the stop

run statement. Then, the subprograms that corresponds to each one of the perform

statements are built. The subprograms extracted from perform statements have as

identifier the performed paragraph name. The formal parameters are translated from the

variables mapped in the COBOL-symbol-table attribute and their statements are

translated from the statements mapped in the statements-table attribute. The COBOL-

symbol-table and statements-table attributes will be explained in the next section.

This collection of imperative-subprograms builds the GIM imperative abstract

syntax tree (imperative-AST), as shown in Figure 12 using Rumbaugh's notation [10].

Imperative statements comprise the body of each imperative subprogram. These

imperative statements are translated from COBOL to the corresponding GIM object to

build the new GIM AST.

57

Imperative-
AST

i
Imperative-

subprogram

0

imp-subprog-identifier imp-subprog

Imperative-
name

formals imp-subprog-statements

A_
Imperative-

Imperative-
program-
construct

Figure 12. Imperative-AST

Building the new GIM AST

The first approach to translate the COBOL AST into the new GIM AST is to

traverse the input COBOL AST and for each visited node to create an object in the new

GIM AST whose class models the visited imperative construct. Once all COBOL AST

nodes are visited, the new GIM AST can be built.

However, the structures of the COBOL and GEVI ASTs are very different, and

subsequently caused this approach to be discarded. While a COBOL program has all

statements in its Procedure Division, an imperative program is modeled in the GIM as a

collection of subprograms. For a COBOL imperative program, these subprograms would

be extracted from the main program body delimited by the stop run statement and from

the sequence of statements called by a perform statement.

When translating an imperative construct into the GIM, it is necessary that the

subprogram of which that statement is part has already been created in the new GIM

AST. These subprograms will be the roots of each one of the subtrees that model an

58

imperative program. So, for COBOL to GIM translation, the first step is to build the

subprogram corresponding to the COBOL main program, and then traverse the COBOL

AST to look for perform statements to complete the collection of imperative subprograms

in the GIM AST. Finally the imperative statements for each one of the subprograms are

built. To make possible the translation, some additional attributes had to be created in the

COBOL AST. These attributes are described next.

, New COBOL Attributes.

The attributes described as follows were made to group information that is

dispersed throughout the COBOL AST to facilitate extracting it to build the new GIM

AST.

Statements-Table Attribute. This attribute maps a perform statement into

a sequence of statements. It facilitates knowing what statements are part of the perform

statement's scope. For each perform statement visited in the COBOL AST, a new

imperative-subprogram is created in the GIM AST. The statements-table attribute

supplies the COBOL constructs that are part of that imperative-subprogram.

COBÖL-Symbol-Table Attribute. This attribute maps a perform

statement into a sequence of variables. It facilitates knowing what variables are used

inside the perform statement's scope. In a COBOL program all variables are global,

therefore visible to the perform statements. A call to an imperative-subprogram must

include actual parameters and a declaration of an imperative-subprogram must include

the sequence of formal parameters. The COBOL-symbol-table attribute gives the

variables that must be declared as actual and formal parameters.

59

Expression-Table Attribute, This attribute maps a parent arithmetic

expression to its children arithmetic expressions. It facilitates translating the compute

statements using a recursive function.

Write-Output Attribute. This attribute maps a write statement to its file

description. It facilitates knowing the output file that contains the record referenced in

the write statement.

Read-Fields Attribute. This attribute maps a read statement to the data

items that composes the file referred in the read statement. It facilitates obtaining the

information needed to create the imperative-input object.

Analysis of the GIM

The transformation system developed by this research has shown that almost all

COBOL constructs can be modeled by the GEVI. However, as addressed in Chapter III,

the GEVI presents some restrictions when modeling imperative languages. One of these

restrictions is that the GIM does not model heterogeneous data types. This restriction has

impacted the development of the transformation system, and tends to make GIM

programs much larger than their COBOL counterparts.

According to Yang, Chu, and Sun, "COBOL programs represent a class of

program in which the complexity is focused on the design and implementation of data

structures rather than the algorithms which are often simple. The COBOL language

provides complex data structuring mechanisms and high level composite operation to

manipulate them. Because of this, COBOL programs are often referred to as data-

intensive programs"[7]. Thus, it would be very useful if the GIM could represent

records.

60

Records could be modeled in the GIM by adding imperative-record as a new

subclass of imperative-data-type, as shown in Figure 13.

Imperative-
data-type

imperative-
record

imperative-
integer

imperative-
real

imperative-
double

imperative-
boolean

imperative-
character

imperative-
string

imperative-
array

imperative-
index-type

1
imp-record-fields

:
imperative-

variable

Figure 13. Imperative-Record

Data is modeled in the GIM by two object classes: the imperative-variable, which

contains information used to declare the variable, and the imperative-name, which

contains information used to refer to the variable. The imperative-variable can support

the new data-type imperative-record declaration without changes, but it is not possible to

refer to a record field by using the existing imperative-name. Moreover, the current

model does not handle array element references correctly, either. The revised imperative-

name is detailed in Figure 14 using Rumbaugh's notation. The imp-scope attribute is the

imperative-subprogram where the record is referred, the imp-identifier attribute is the

record's name or field's name, and the imperative-symbol-table attribute is the reference

to the imperative-variable that stores the record declaration; no changes were made to this

part. The Imperative-field-reference is the subclass that models a reference to a field of a

61

record type, and the subclass imperative-array-reference models references to array

elements.

Imperative-name

Imp-record-scope
imp-record-identifier
Imperative-symbol-table

Imperative-
array-

reference
7F

imp-indices

Imperative-
field-

reference

Imperative-
data-

construct

7T
imp-field

I
Imperative-

name

Figure 14. Revised Imperative-Name

Although the GIM is a generic language, it has incorporated some particulars of

the FORTRAN language. One of these particularities is the use of implicit data types as

declaration of formal parameters. FORTRAN implicitly types variables beginning in the

letters A thorough H or P through Z as real and variables beginning with the letters I

through N as integers. This implicit declaration is used by the GEVI in the imperative-

subprograms formal parameters. These parameters are only referenced by their names,

without their data-types. The GIM would be more generic if the imperative-subprogram

uses imperative-variables to model formal parameters instead of imperative-names. A

new attribute, imp-local-vars, could also be created to model local variables within the

subprograms.

Most imperative languages have literal constants with a name, which represent its

value. The GEVI does model some of these constructs, but COBOL has some predefined

constants that are not modeled by the GIM. These constants are: figurative zero, which

62

represents one or more instances of the character zero; figurative space, which represents

one or more instances of the space character; figurative high-value, which represents one

or more instances of the character that has the highest ordinal position in the collating

sequence; figurative low-value, which represents one or more instances of the character

hat has the lowest ordinal position in the collating sequence; and figurative quotes, which

represents one or more instances of the quotation character [12].

The figurative constants zero, space, and quotes could be translated into the GIM

as instances of imperative-literal-constant with the values zero, space and quotes

respectively. To translate the figurative low-value and high value, however, it is

necessary to know the minimum and maximum value that each variable can store in the

assignments of low-values or high-values to them. This could be done by adding new

attributes imp-value-lower-bound and imp-value-upper-bound to the numeric imperative-

data-types and instantiating them in the variables declaration. The new attributes to

model minimum and maximum value that a numeric type can store are shown in

Figure 15.

imp-value-lower-bound

Imperative-
data-

construct

Imperative-
data-type

Imperative-
numeric-
data-tvpe

7>

I
imp-value-upper-bound

Imperative-
data-

construc

Figure 15. Imperative-Data-Type

63

With these new attributes, it is not necessary to have the imp-type-size attribute.

Other COBOL constructs not modeled by the GEVI are the sort statement and the

merge statement. A sort statement causes a COBOL program to process one or more

existing unordered files and to produce an ordered file. A merge statement causes a

COBOL program to process two or more existing ordered files, and to produce from

them a single file ordered in the same sequence as the input files.

Applications developed in COBOL often require the sorting of records into a

specific order. As the algorithm to process the input file is written according to this

order, the knowledge about it is fundamental in the program understanding. Both sort

and merge statements process input files and produce the same result: an ascending or

descending sorted file that matches a logical order. The sequence in which the produced

file is sorted is determined by one or more data items specified in the sort statement key

clause. These data items are interpreted from left to right as being of decreasing

significance.

The GIM imperative-file object class, subclass of imperative-io, could be

modified to accommodate this information. The imp-file-name attribute represents the

sequence of imperative files being sorted. The imp-order-mode attribute says if the file is

sorted in ascending or descending order, and the imp-order-key attribute models the data

items which are the keys used in the sort. The sort and merge statements could be

translated into the GEM by instantiation of these new attributes. The release and return

statements that manipulate the sorted files could be translated as imperative-input and

imperative-output, sub classes of imperative-io. These statements have the logical

64

functions of read and write file records. Figure 16 shows the imperative-file with these

modifications.

imp-file-name
A

Imperative-
data-

construct

imperative-
file

77"

l I
imp-order-mode imp-order-key

Symbol Imperative-
name

imp-designator
|

Imperative-
data-

eonstruct

imp-access

Ssymbol

I
imp-status

Ssymbol

Figure 16. Imperative-File Representing Ordered Files

Summary

Chapter IV has described how the canonical COBOL constructs are translated

into the GEvI and has discussed the ability of GIM to handle COBOL language.

Chapter VI will present the contributions of this study along with suggestions for future

research.

65

VI. Conclusion

Analysis of the Results

This research has developed a COBOL-to-GIM transformation system using

Software Refinery™ software that demonstrates that the GIM domain model provides

sufficient canonical constructs to model legacy COBOL programs effectively. The

diversity of COBOL constructs is modeled by the GEVI with generic constructs that can

be easily translated to any imperative language. Tables 2 shows the COBOL constructs

translated and Table 3 shows those not implemented by this work.

The COBOL-to-GEVI transformation system models a COBOL program as a

collection of imperative-subprograms. These imperative-subprograms correspond to the

body of the main COBOL program (the statements executed before the stop run

statement,) and to each one of the sequences of statements executed by a perform. The

imperative-subprograms are organized in a hierarchical structure, where a main control

subprogram directs the execution of the others subprograms, which makes the control

flow structure clearer and consequently more easily understood.

The global variables manipulated by a sequence of paragraphs are translated into

formal parameters of the imperative-subprograms which allows each subprogram to be

analyzed separately from the main program. Additionally, paragraphs found after the

stop run statement that are never executed by a perform, are discarded in the

transformation, avoiding the creation of dead code within the imperative-subprograms.

66

Table 2. COBOL Constructs Translated

COBOL statements GIM Imperative-statements
Add
Subtract
Multiply
Divide
Compute
Move

Imperative-assignment

Call Imp-subprogram-call
Accept
Read

Imperative-input

Display
Write

Imperative-output

Open
Close

Imperative-file

If Imperative-selection
Perform paragraph thru

end-paragraph
Imp-subprogram-call

Perform paragraph thru
end-paragraph until condition

Imperative-iteration
(while not condition)

Imp-subprogram-call
Perform paragraph thru
end-paragraph
varying identifier-1 by identifier-2 until condition

Imperative-assignment
Imperative-iteration
(while not condition)

Imperative-addition
Imp-subprogram-call

Perform paragraph thru
end-paragraph
identifier-1 times

Imperative-assignment
Imperative-iteration
(while not condition)

Imperative-addition
Imp-subprogram-call

Main Program
(statements delimited by Stop run)

Perform
(Sequence of statements executed by)

Imperative-subprograms

67

Table 3. COBOL Constructs Not Implemented

COBOL statements Treatment
Go To
Exit
Copy

Not implemented. Treated manually.

Merge
Sort

Not implemented. Do not interfere with program
functionality.

Delete
Evaluate
Initialize
Inspect
Purge
Receive
Rewrite
Search
Send
Cancel
Enter
Release
Replace
Return
String
Use For Debugging
Generate
Start
Suppress
Terminate
Use Before Reporting

Not implemented. Not found in the sample legacy
source code.

The COBOL-to-GIM transformation system reverse designs a COBOL program,

obtaining a modularized design with canonical constructs that captures all the

functionality of the original source code. This design can be easily understood, making it

possible to restructure it to improve the existing design or to re-design it to extend the

functionality and incorporate new enhanced functions.

An example of COBOL code transformation is shown in Appendix A. The

example shows the outputs for the two-phased approach. Verification of transformation

68

correctness was done by analyzing and comparing the input COBOL program with the

obtained design.

Recommendations

Despite limitations of this study, some recommendations can be offered with

regard to the transformation system development approach.

The COBOL-to-GIM transformation system was developed with a two-phased

approach. First, the diversity of the COBOL imperative programming language

constructs is reduced into a subset of this language by applying transformations,

obtaining an equivalent source code with the same meaning but re-coded using

homogeneous constructs close to those constructs used by the GIM. Then, this reduced

subset is translated into the GIM.

The objective of this approach is to reduce the complexity and programming

effort needed in manipulating at the same time two abstract syntax trees (COBOL and

GIM) that are completely different. By using this approach, each node of the imperative

programming language reduced subset AST is translated into one node of the GIM AST

that represents an object class with the same structure of the object class being translated.

The adopted methodology showed its efficacy in reducing the programming effort

by working in two steps that manipulate similar structures, which allowed code reuse or

minor alterations to implement the translations.

The transformation system developed by this research has shown that almost all

COBOL constructs can be modeled by the GIM. However, as addressed in Chapter III,

the GIM presents some restrictions when modeling imperative languages.

69

Future Research

To be modeled by the GM, a program has to be structured. As the use of go to

statements in COBOL programs is quite common, future research could address the

development of a tool to structure imperative programs as well as to impose on them a

top-down, hierarchical structure. A top-down, hierarchical structure can make the

execution of the statements inside a paragraph be executed only by a perform that refers

to this paragraph. By imposing this structure, code duplication generated by the

transformation system is avoided. The modifications and the creation of object classes

presented in the previous section can also be explored in future research.

Summary

This study explored the GM as a generic language to model COBOL programs.

Representing a COBOL program at a higher abstraction level using a generic language is

a fundamental step in the reengineering process. This representation recovers the initial

program design, facilitating its documentation, maintenance, making possible the

redesign of the program by preserving its original semantic behavior, and adding new

functions or extending the existing ones. Once redesigned in the GIM, the canonical

constructs can be parameterized with a desired target language and a new, enhanced

system can be automatically generated.

70

Bibliography

1. Bennett, Keith. "Legacy Systems: Coping with Success," IEEE Software
(January 1995).

2. Breuer, P.T. and Lano K. "Creating Specifications from Code: Reverse-
engineering Techniques." Journal of Software Maintenance: Research and
Practice, (1991).

3. Byrne, Eric J. "A conceptual foundation for software reengineering,"
Proceedings of The International Conference on Software Maintenance. 216-235.
IEEE Computer Society Press, Nov 1992.

4. Chikkofsky, Elliott and James H. Cross. "Reverse Engineering and Design
Recovery: A Taxonomy," IEEE Software. (January 1990).

5. Corbi, T.A. "Program understanding: Challenge for the 1990s," IBM Systems
Journal (1989).

6. Harmer, Terence J., McParland, Patrick J. and James M. Boyle. "Transformations
to Restructure and Re-engineer COBOL Programs," Automated Software
Engineering. (1998).

7. Hongji Yang, William C. Chu, and Young Sun. "A Practical System of COBOL
Program Reuse for Reengineering," IEEE Eighth International Workshop on
Technology and Engineering Practice incorporating Computer Aided Software
Engineering. (1997).

8. Julio Cesar Sampaio do Prado Leite, Marcelo Sant'Anna, and Antonio Francisco
do Prado. "Porting COBOL programs using a transformational approach,"
Journal of Software Maintenance: Research and Practice. (1997).

9. Mark van den Brand, Paul Klint, and Chris Verhoef. "Reengineering needs
generic programming language technology," Technical Report P9618. University
of Amsterdam, Programming Research Group. (1996).

10. Rumbaugh, James and Michael Blaha. Object-Oriented Modeling and Design.
New Jersey, Prentice Hall, Inc., 1991.

11. Sneed, H.M. and Jandrasics G. "Inverse Transformation of Software from Code to
Specification," IEEE Conference on Software Maintenance. (1988).

12. Sordillo. Donald A. The Programmer's ANSI COBOL Reference Manual. New
Jersey: Prentice Hall, 1989.

71

13. Sward R. E. Extracting Functionally Equivalent Object-Oriented Designs from
Imperative Legacy Code. Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, Sep 1997.

14. T. Yoshino, S. Uehara, T. Ookubo, S. Suguta, Y. Hotta, and M. Sonobe. "Reverse
engineering from COBOL to narrative specification," IEEE Proceeding-
Nineteenth Annual International Computer Software and Application
Conference" (1995).

15. Waters, Richard C. "Program Translation via Abstraction and Re-
implementation," IEEE Transactions on Software Engineering (Aug 1988).

72

Appendix A: Example of COBOL Code Transformation

000000 ID DIVISION.
000100 PROGRAM-ID. COBOLOOl
000200 AUTHOR. Rodrigues e Moraes.
000300 INSTALLATION.
000400 DATE-WRITTEN. 28 jul 98.
000500 REMARKS.
000700 ENVIRONMENT DIVISION.
000700 CONFIGURATION SECTION.
000701 SPECIAL-NAMES.
000702 console is console.
000720 SKIP2
000730 INPUT-OUTPUT SECTION.
000740 SKIP1
000750 FILE-CONTROL.
000760 SKIP1
000770 SELECT SYS0 ASSIGN TO SYS006-ARQ01
000780 ORGANIZATION IS INDEXED
000781 ACCESS MODE IS SEQUENTIAL.
000910 SELECT SYS5 ASSIGN TO SYS011-UT-3350-AS-UNIF
000920 ORGANIZATION IS SEQUENTIAL.
000940 EJECT
000950 DATA DIVISION.
000960 FILE SECTION.
000999 SKIP3
001000 FD SYS0,
001020 RECORD CONTAINS 1 TO 12488 CHARACTERS,
001050 LABEL RECORDS ARE STANDARD.
001099 SKIP1
001100 01 max_number PICTURE 9(03).
001999 SKIP3
006000 FD SYS 5,
006001 RECORD CONTAINS 1 TO 12488 CHARACTERS,
006002 LABEL RECORDS ARE STANDARD.
006010 01 total-output-01 PICTURE 9(09).
006010 01 total-output-02 PICTURE 9(09).
400000 WORKING-STORAGE SECTION.
400338 01 total PICTURE 9(07)
400339 USAGE IS COMPUTATIONAL, VALUE IS ZERO.
400340 01 total_odd PICTURE 9(07)
400341 USAGE IS COMPUTATIONAL, VALUE IS ZERO.
400342 01 temp PICTURE 9(07) .
400343 01 a PICTURE 9 (07) .
400344 01 b PICTURE 9(07) .
400345 01 C PICTURE 9(07) .
400346 01 d picture 9 (05) .
400346 01 e occurs 10 times picture 9(05).
400355 01 &

400357 05 fll PICTURE X(03).
400358 05 fl2 PICTURE X(03).
400370 01 g-

73

400372 05 gll PICTURE X(03).
400373 05 gl2 PICTURE X(03).
500000 PROCEDURE DIVISION.
500005 paragraph-start.
500010 OPEN INPUT SYSO .
600001 OPEN OUTPUT SYS5 .
600002 READ SYSO.
600010 ACCEPT total-output-01 .
600017 MOVE f to g.
600018 ADD a to a b d.
600020 PERFORM paragraph-1 THRU compute-paragraph-1 UNTIL a > b.
600040 PERFORM paragraph-4 VARYING a FROM b by c UNTIL a > d .
600050 WRITE total-output-01 .
600060 ACCEPT total-output-01 .
600070 DISPLAY "End of main program.' temp UPON CONSOLE.
600080 STOP RUN.
600090 paragraph-1.
600100 MULTIPLY a BY c GIVING e(l) e(2) e(3).
60003 0 PERFORM paragraph-2 thru paragraph-3.
600110 COMPUTE a d = b + c .
600115 compute-paragraph-1.
600120 DISPLAY 'The maximum number is :' max_number .
600150 IF a < b THEN
600160 ADD a b c GIVING d e(l) e(2) e(3).
600170 IF a > b THEN
600180 DIVIDE c BY b GIVING a d.
600140 paragraph-2.
600140 SUBTRACT a b FROM c d.
600200 paragraph-3.
600210 MOVE false to a.
600220 WRITE total-output-02 .
60023 0 ACCEPT total-output-02 .
600250 paragraph-4.
600260 IF a > b THEN
600270 ADD e(a) b d c 3 GIVING e(b) e(l) e(2)
600280 ELSE .
600290 MOVE 2.7 to b.
600320 ADD e(a) b d c 3 GIVING e(b) .

Figure 17. COBOL Code Before Transformation

Figure 17 shows a COBOL code before the transformation.

74

IDENTIFICATION DIVISION.PROGRAM-ID.COBOLOOl.
AUTHOR.

Rodrigues e Moraes.
INSTALLATION.
DATE-WRITTEN.

28 jul 98.
REMARKS.
ENVIRONMENT DIVISION.

CONFIGURATION SECTION.SPECIAL-NAMES.CONSOLE IS CONSOLE.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT SYSO ASSIGN TO SYS006-ARQ01
ORGANIZATION IS SEQUENTIAL ACCESS MODE IS SEQUENTIAL.

SELECT SYS5 ASSIGN TO SYS011-UT-3350-AS-UNIF
ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.

FD SYSO RECORD CONTAINS 1 TO 12488 CHARACTERS
LABEL RECORD IS STANDARD.1 MAX_NUMBER PIC IS 9(03).

FD SYS5 RECORD CONTAINS 1 TO 12488 CHARACTERS
LABEL RECORD IS STANDARD.
1 TOTAL-OUTPUT-01 PIC IS 9(09).
1 TOTAL-OUTPUT-02 PIC IS 9(09).

WORKING-STORAGE SECTION.
1 TOTAL PIC IS 9(07) USAGE IS COMPUTATIONAL VALUE IS ZERO.
1 TOTAL_ODD

PIC IS 9(07) USAGE IS COMPUTATIONAL VALUE IS ZERO.
1 TEMP PIC IS 9(07) .
1 A PIC IS 9(07) .
1 B PIC IS 9(07) .
1 C PIC IS 9(07).
1 D PIC IS 9(05).
1 E PIC IS 9(05) OCCURS 10 TIMES.
1 Fll-F PIC IS X(03).
1 F12-F PIC IS X(03).
1 Gll-G PIC .IS X(03).
1 G12-G PIC IS X(03).
1 VAR-41 PIC IS 9(07) .
1 VAR-42 PIC IS 9(07) .

PROCEDURE DIVISION.
PARAGRAPH-START.
OPEN INPUT SYSO.OPEN OUTPUT SYS5.READ SYSO END-READ.
ACCEPT TOTAL-OUTPUT-01.MOVE Fll TO Gil MOVE F12 TO G12.
MOVE A TO VAR-41
ADD VAR-41 A GIVING A
ADD VAR-41 B GIVING B
ADD VAR-41 D GIVING D.
PERFORM PARAGRAPH-1 THROUGH end_COMPUTE-PARAGRAPH-1
UNTIL A >B END-PERFORM.

PERFORM PARAGRAPH-4 THROUGH end_PARAGRAPH-4
VARYING A FROM B BY C UNTIL A >D END-PERFORM.

WRITE TOTAL-OUTPUT-01 END-WRITE.
ACCEPT TOTAL-OUTPUT-01.
DISPLAY End of main program. UPON CONSOLE
DISPLAY TEMP UPON CONSOLE .
STOP RUN.

PARAGRAPH-1.

75

MULTIPLY A BY C GIVING E (1)
MOVE E (1) TO E (2)
MOVE E (1) TO E (3).

PERFORM PARAGRAPH-2 THROUGH end_PARAGRAPH-3 END-PERFORM.
COMPUTE A = B + C MOVE A TO D.

COMPUTE-PARAGRAPH-1.
DISPLAY The maximum number is : .

IF A <B THEN
ADD ABC GIVING D
MOVE D TO E (3)
MOVE D TO E (2)
MOVE D TO E { 1)
END-IF.

IF A >B THEN DIVIDE C INTO B GIVING A MOVE A TO D END-IF.
end_COMPUTE-PARAGRAPH-1.
PARAGRAPH-2.
ADD A B GIVING VAR-42
SUBTRACT VAR-42 FROM C END-SUBTRACT
SUBTRACT VAR-42 FROM D END-SUBTRACT.

PARAGRAPH-3.
MOVE FALSE TO A.
WRITE TOTAL-OUTPUT-02 END-WRITE.

ACCEPT TOTAL-OUTPUT-02.
end_PARAGRAPH-3.
PARAGRAPH-4.

IF A >B THEN
ADD E (A) B D C 3 GIVING E (B)
MOVE E (B) TO E (2)
MOVE E (B) TO E (1)
ELSE MOVE 2.7 TO B END-IF.
ADD E (A) B D C 3 GIVING E (B).

end_PARAGRAPH-4.

Figure 18. COBOL code After Transformation

Figure 18 shows the canonical COBOL obtained after the transformation

76

procedure COBOLOOl
(TOTAL, TOTAL_ODD, TEMP, A, B, C, D, E, Fll-F, F12-F,
Gll-G, G12-G, VAR-41, VAR-42, MAX_NUMBER, TOTAL-OUTPUT-01,
TOTAL-OUTPUT-02

) begin
read (SYSO, MAX_NUMBER);
read (FROM-CONSOLE, TOTAL-OUTPUT-01);
Gll-G := Fll-F;
G12-G := F12-F;
VAR-41 , := A;
A := VAR-41 + A;
B := VAR-41 + B;
D := VAR-41 + D;
while not A > B do begin

PARAGRAPH-1 (C, A, E, B, D, TOTAL-OUTPUT-02) end;
A := B;
while not A > D do begin

PARAGRAPH-4 (B, E, A, D, C); A := A + C end;
write (SYS5, TOTAL-OUTPUT-01);
read (FROM-CONSOLE, TOTAL-OUTPUT-01);
write (STD-OUTPUT, "End of main program.");
write (STD-OUTPUT, TEMP)
end

procedure PARAGRAPH-1
) begin
E (1) := A
E (2) := E
E (3) := E
PARAGRAPH-2
A := B + C;
D := A;
write (STD-OUTPUT,
if A < B

then D := A +
else endif;

D := A + B +
E (3) := D
E (2) := D
E (1) := D
if A > B then A
A := C / B;
D := A
end

(C, A, E, B, D, TOTAL-OUTPUT-02

* C;
(1);
(l);
(C, A, D, TOTAL-OUTPUT-02);

"The maximum number is ');

B + C; E (3) := D; E (2)

C;

D; E (1) := D

C / B; D := A else endif;

B + D + C + 3;

procedure PARAGRAPH-4 (B, E, A, D, C) begin
if A > B

then E (B) := E (A) +
E (2) := E (B);
Eil) := E (B)

else B := 2.7 endif;
B :
E (

(

= 2.
B)
2)
1)

7;
(A) +
(B) ;
(B);

B + D + C + 3;

E (A) +B + D + C + 3

E
E (
E (B)
end

procedure PARAGRAPH-2 (C, A, D, TOTAL-OUTPUT-02) begin
VAR-42 := A + B;

77

C := C - VAR-42;
D := D - VAR-42;
A := false;
write (SYS5, TOTAL-OUTPUT-02);
read (FROM-CONSOLE, TOTAL-OUTPUT-02)
end

Figure 19. COBOL Code After Translation

Figure 19 shows COBOL code after translation. The imperative subprograms

were translated from the main program and from the statements executed by perform.

78

Vita

Captain Dinä Leite Moraes was born on 19 April 1960 in Rio de Janeiro, Brazil.

She graduated from Colegio Marista Säo Jose in Rio de Janeiro in 1977. She entered

undergraduate studies at Santa Ursula University in Rio de Janeiro, where she graduated

with a Bachelor of Science degree in Civil Engineering in December 1982.

Her first assignment was at Diretoria de Administracäo do Pessoal in August

1984. In March 1986, she was assigned to Centro de Computacäo da Aeronäutica do Rio

de Janeiro - CCA-RJ. In July 1997, she entered the Graduate Computer Systems

program, School of Engineering, Air Force Institute of Technology.

Permanent Address: 4 Raymond Court
New Baden-IL-62265

79

