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ABSTRACT 

In a previous report we described, modelled and analysed a protocol "rsync" for 
synchronising related files at different ends of a communications channel with a 
minimum of transmitted data. This report identifies the extent of the gains that this 
method may provide by performing experiments on large repositories of data. The 
outcome is a new method of compressing large directories of data that together with 
conventional methods provides major gains in compression factors. As is explained 
in the report, these gains in compression are also indicative of the data transmission 
gains available when mirroring a collection of files at a remote site using rsync. 
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An Analysis of Transmission and Storage Gains from 
Sliding Checksum Methods 

Executive Summary 

In a previous report we described, modelled and analysed a protocol "rsync" for 
synchronising related files at different ends of a communications channel with a 
minimum of transmitted data. This protocol is suitable for supporting such activities as 
collaborative writing of documentation and synchronisation of distributed databases 
in the situation where no one location is aware of the differences and similarities 
between their files and remote related files. 

Rsync may be particularly useful in synchronising databases that have significant 
disconnections or outages, resulting in an inefficiency or inability to synchronise data 
based on large numbers of missed updates. In this situation Rsync may be used to 
efficiently synchronise databases without any version control or common reference 
point. Another major application of Rsync is in maintaining web pages which are 
regularly being changed at the server and have to be synchronised with the clients. 
Thus the changes to client files are identified and only updates to files are sent from 
the server. This is achieved without the need for the server to maintain any records of 
client files or to store old versions. The characteristics of Rsync make it a good match to 
the paradigm of high computing - low bandwidth, as well mobile information systems 
with dynamic operational status. This makes Rsync an attractive tool for tactical C3 
environments. 

The power of this method as a tool to minimise the use of bandwidth depends on the 
likelihood and extent to which transmitted data is similar to data already held by the 
receiver. This report investigates the gains that this method may provide by 
performing experiments on large repositories of data. 

By building on the sliding checksum method of rsync, a novel method of compressing 
large data repositories is developed. The report shows how this method can be used 
together with conventional compression methods to produce major gains in 
compression factors. The experimental data presented indicates that the compression 
factor may be doubled with these methods in comparison to conventional methods, 
depending on the application types. 

These gains in compression are also indicative of the data transmission gains available 
when mirroring a file structure at a remote site using the rsync protocol. 
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1. Introduction 

In a previous report we described, modelled and analysed a protocol called rsync [1] 
for "synchronising" related files at different ends of a communications channel with a 
minimum of transmitted data. This protocol is suitable for supporting activities such as 
collaborative writing of documentation and synchronisation of distributed databases 
in the situation where no one location is aware of the differences and similarities 
between their files and remote related files. The key concept in the rsync protocol is the 
use of sliding checksums to efficiently identify similarities between data sets. Note that 
the extent of the utility of this method as a tool to minimise use of bandwidth depends 
on the likelihood and extent to which transmitted data is similar to data already held 
by the receiver. 

In this report we use the sliding checksum method of rsync to identify similarities in 
large repositories of data, which has two major outcomes, 

• providing a novel method of compressing large data repositories, "Rzip", which 
can be used together with conventional compression methods to produce major 
gains in compression factors, 

• as a measure of the possible utility of rsync in terms of transmission savings. 

To understand how the second outcome follows, consider a situation where a large 
directory of data is developed over time at one location a and is required to be 
duplicated at another location ß. Thus new files when completed are added to the 
directory at a and need to be sent to ß. In this case the compression achieved by Rzip 
of the directory at time t provides an indication (neglecting the checksum and other 
overheads of Rsync) of the total data that would need to be transmitted up to time t for 
location ß to be up to date. 

This report analyses the behaviour of the algorithm under varying conditions and in 
particular a comparative study is made with a standard compression algorithm 
GnuZip (or Gzip), which uses Lempel-Ziv (LZ77) coding. 

2. Background - The Rsync protocol 

The aim is to update File B (the old version) with File A (the current version). There are 
three important transactions that occur during the execution of the algorithm, as 
shown by the arrows in Figure 1. 
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• Step 1: a notifies ß that an rsync operation is to be initiated from File A to File B. 
• Step 2: ß partitions File B into non-overlapping fixed size blocks each of size b 

bytes. For each of these blocks a simple 32 bit checksum and a much stronger 128 
bit checksum (MD5 see [2], [3]) is calculated. These checksums are consolidated 
into a table and sent back to a. 

• Step 3: a scans through File A and calculates checksums for all blocks of length b 
bytes at all offset positions. These checksums are used to determine blocks of data 
in File B(in any position) that match blocks in File A. 32 bit checksums are 
calculated and checked first, if a match is found within the received table then the 
128 bit checksum is calculated and checked to be surer of the match. 

• Step 4: a sends ß a sequence of instructions for constructing a copy of A. Each 
instruction is either a reference to a block of data or literal data. Literal data is sent 
only for those blocks of A which are different to any of the blocks in B. 

The algorithm may be better understood with reference to Figure 1 (see [1], [4] for 
more details): 

Source: 
File A 

(current 
version) 

Computer a © 

Destination: 
FileB 

(old version) 

Computer ß 

Figure 1 - Information flow during rsync operation. 

3. How Rzip works 

In this section we outline the algorithm and highlight some of the potential areas that 
can be optimised for speed. In simple terms the algorithm works by identifying 
repeated blocks in the data and noting that pointers to repeated blocks may be stored 
rather than the data itself. The challenge is to identify repeated blocks efficiently at 
whatever byte offset they may occur. 

There are two principal phases of execution. In the first pass, the data is partitioned 
into non overlapping fixed size blocks, each of size b bytes (typically in the range 100 
to 1000 bytes). For each of these blocks a 64 bit checksum is calculated. These 
checksums are consolidated into a table and sorted. In the second pass, 64 bit 
checksums are calculated for all blocks at all byte offset positions. For each byte offset 
"sliding" checksums are efficiently calculated by an incremental method, and searched 
for in the sorted table. If a match is found within the table, its offset location is 
registered in another table, the rows of which correspond to the block numbers of the 
sorted table. In general, redundancy in the file occurs if there is a match with the 
sorted table such that the corresponding blocks do not overlapp. By noting all the 
redundancies it is possible to determine the overall compression factor. The offset 
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locations of repeated blocks may be used as the basis of a compression method by 
using pointers to repeated data blocks. The details of the algorithm to estimate the 
compression factor in a file are outlined below: 

1. Set redundancy R to 0. R is a measure of the amount of repeated data identified by 
the algorithm in the form of repeated blocks. 
2. Partition file into non overlapping fixed size blocks of size b bytes. 
3. Calculate 64 bit checksums for each block and store them in a sorted table. 
4. Start at the beginning of the file again and calculate checksum for first block. 
5. Shift block one byte, and calculate checksum. 
6. Search for checksum in the sorted table. 
7. If the search is successful AND this is the first time this checksum has been found, 

note the offset position of the block. Go to 4. 
8. If search is successful AND this is at least the second time this checksum has been 

found AND the current block does not overlap the previous matching block, 
increment R by b (at this point a block that occurs previously in the file has been 
identified). Shift the block by b bytes and calculate checksum. Go to 5. 

4. Sliding Checksums 

The computationally intensive component of the algorithm is Step 4, since checksums 
are calculated and matched within a table for every byte offset in the file. In order to 
make these computations feasible, we use checksums that are simple to compute, and 
in particular can be updated quickly as the block offset is incremented (or "slides"). In 
a previous report [4] we have designed checksums that are both strong as block 
fingerprints, and can be updated for each new block offset with just one multiplication 
together with elementary operations (add, subtract, assign, and shift). 

It is important to note that the length of the checksum required to provide a given level 
of confidence that the checksum provides a unique fingerprint of the data blocks varies 
significantly with the file size. We have estimated (see [4]) that in a file of size Y bytes, 
with block size b bytes, and checksum size n bits then under certain statistical 
assumptions the probability p of at least one "collision" (different blocks with the same 
checksum) may be bounded by 

x Y-J 
2" 

If for example we have a file of 1 Gigabyte (Y=109 bytes), a block size of 400 (b=400), 
and checksums of 64 bits (n=64) then p is upper bounded by 1.35xl0"4. 
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In this report we have utilised the following four 16 bit functions from [4], 

Dl(k,l)=XI+3X,_l +32Xl_2+...+3"-,Xk mod[216 -1], 

D2(k,l)=X,+ 5XM + 52X,_2+...+5"-1 Xk mod[216 - 3], 

D3(k, l) = X,+ 7XM + 72 X,_2+...+lb'] Xk mod[216 - 5], 

DMk,i) = x, +nxl_l +n2x,_2+...+nh-1xk mod[216 -n 

The corresponding sliding updates may be evaluated as, 

D\{k +1, / +1) = 3Dl(Jk,/) + X;+I - 3* Xk+l mod[216 -1], 

D2(k +1, / +1) = 5£>1(*. /) + XM - 5b Xk+l mod[216 - 3], 

D3(k +1, / +1) = lD\(k, I) + XM - lh Xk+X mod[216 - 5], 

DA{k +1, / +1) = llD\(k, I) + XM - \lb Xk+i mod[216 - 7]. 

The 64 bit checksum is created by concatenating Dl, D2, D3 and D4. 

5. Experimental Testing 

The algorithm was tested with three different data sets. The first consists of a large tar 
file. This was generated from a common working directory visible to all the groups at 
the DSTO C3 Research Centre in Fernhill Park, Canberra. For each of the groups within 
the Centre a tar file was generated, consisting of all file types present (.docs, .ppt, .c, 
.exe, .exel, .gif, etc). The second consists of all Microsoft Power Point files from all of 
the groups concatenated into a large file with no compression. Similarly, the third 
consists of all Microsoft Word files from all of the groups in one large file. All of the 
data presented in Figures 2 and 3 corresponds to a block size b of 400 bytes. 

Shown below in Figure 2 is an experiment where the original data is first processed 
using Rzip, the output of which is then further compressed using a standard 
compression algorithm GnuZip. This is compared with the result of compression with 
GnuZip only. By preprocessing the data with Rzip one eliminates large blocks of data 
which are identical, however they may be scattered throughout the file. This is the key 
difference between Rzip and run-length coding schemes. In general run length 
compression operates on a small window over which it allocates codewords to 
frequently occurring symbols. We note that Rzip and GnuZip appear to have 
somewhat orthogonal properties, so that they can work in series to maximise the 
compression of the original data. This effect is dependent on the order of compression 
however, as we have found that Rzip does not significantly compress a file that has 
previously been compressed with GnuZip. It is important to note that the block size 
can also be adaptively resized to take into account redundancies present at different 
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levels. Thus for small window sizes Rzip will mimic standard compression algorithms 
such as GnuZip. 

A - 640Mb 

GnuZip /       \ RZip 

Figure 2 

In Figure 3 similar results are shown for data sets based on application type. The 
compression figures shown are for all Microsoft PowerPoint files and all Microsoft 
Word files across the C3 Research Centre. 
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(^PPT -760Mb 

GnuZip   y 

<^243.5MtT) 

104.7Mb 

RZip 

"301.7Mb~^> 

' GnuZip 

Figure 3 

The block size used in rsync and Rzip plays an important part in the efficiency of both 
methods. Larger blocks mean that the hash tables constructed and used in both 
methods are smaller which leads to efficiencies in both storage, processing and for 
rsync transmission time. Of course this comes at the price that rsync and Rzip will 
identify less repeated data, between and within data sets, as the block size increases. 
Thus there is a compromise between block size and the overheads associated with 
generating and transmitting checksums and location pointers. 

Figure 4/Table 1 shows that as the block sizes increase, the redundancy (as measured 
by block repetitions) identified by Rzip decreases surprisingly slowly. The files tested 
were a 135 MByte file formed from the concatenation of a general directory of 
Microsoft Powerpoint files, and a 150 MByte file formed from the concatenation of a 
general directory of Microsoft Word files. 
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Redundancy (MBytes) vs Block Size (bytes) 
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Figure 4 - Redundancy asymptotes as block sizes increase 

Block Size (bytes) Redundancy (Mbytes) 
135 MByte ppt directory 

Redundancy (Mbytes) 
150 Mbyte doc directory 

100 86.87 120.57 
200 80.68 113.99 
400 76.63 104.32 
800 74.82 100.46 
1600 73.02 93.35 
3200 72.34 89.22 
6400 69.40 84.33 
12800 65.53 79.08 

Table 1 - Redundancy asymptotes as block sizes increase 

Computational Performance 

The table below indicates the computational performance of Rzip in comparison to 
Gzip in processing the data sets from Figure 4/Table 1. This indicates that the 
computational requirement of Rzip is of the same order of magnitude as Gzip (note 
that the Rzip code we have produced is not optimised for speed). 
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Execution Time (minutes) Gzip Rzip 
PPT file (135 Mbyte) 13 27 
DOC file (150 Mbyte) 17 33 

Table 2 - Computational performance of Gzip and Rzip 

Adding to Rzip 

Figure 4 suggests that it makes sense to modify Rzip in the following way so that new 
data may be added to the compressed data generated by Rzip incrementally. Thus if in 
Step 1 and 2 of Rzip the sorted checksum list is generated and stored in a file, then 
when adding a new file to the stored compressed file it is only necessary to calculate 
rolling checksums on the new file and compare with the sorted checksum list. The 
sorted checksum list may then be updated and the new file added to the compressed 
data as a combination of both pointers to repeated blocks and new data. Thus the large 
amount of stored compressed data need not be read or processed in any way, but 
rather the stored checksum list is used instead. As the size of the stored checksum list 
is inversely proportional to the block size used, the bigger the blocksize while 
combined with a good level of redundancy detection provides the best results in terms 
of storage and speed. As an example a block size of 3200 bytes (see Figure 4), with 
checksums of 64 bits and block location pointers of 32 bits generates a sorted checksum 
list of 12/3200 = 0.00375 or (0.375%) of the original data. 

6. Conclusions 

The results of the tests presented in this report indicate that repositories of stored data 
contain significant repetitions of large blocks. This fact may be taken advantage of to 
make significant improvements to existing methods for both compressing and 
transmitting data. 
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