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Software for Generating Synthetic Passive Fourier 
Transform Infrared Interferograms and Single-beam Spectra 

INTRODUCTION 

The remote detection and identification of toxic vapors in the atmosphere 
provides significant information for assessing both the military and environmental impact 
of these materials. One powerful analytical tool for these remote sensing applications is 
passive Fourier transform infrared (FT-IR) spectroscopy [1-4]. Passive FT-IR remote 
sensing is widely documented for a variety of open-air monitoring scenarios [5-7]. Unlike 
the traditional bistatic and monostatic active FT-IR spectrometer configurations that each 
require an elevated temperature infrared (IR) source, the passive FT-IR sensor 
configuration relies solely on the ambient radiance difference between the target vapor 
and the background such as terrain, water, sky, or some combination. For atmospheric 
monitoring and other open-air applications, the passive configuration provides a distinct 
advantage in deployment over the traditional active configurations. 

The traditional limitations to the passive measurement have been the lack of a 
stable infrared background and the occurrence of weak spectral signatures for the 
analytes of interest. Recently, workers have demonstrated great promise in overcoming 
these limitations through the application of advanced signal processing and pattern 
recognition algorithms to raw FT-IR interferograms [8-11]. While powerful, these 
methods require specific information about the analytes of interest and robust signal 
processing schemes since each interferogram point contain components of all spectral 
frequencies. Traditional data analysis methodology designed for spectral-domain 
processing of infrared absorbance spectra is well characterized and visually intuitive. 
However, the analysis of interferometric data is not as straightforward. The 
interferogram-based analysis scheme takes advantage of the fact that signals from wide 
spectral bands (i.e., the frequency-domain or spectral-domain) dampen faster in the 
interferogram (time-domain) than narrow spectral bands. By coupling a frequency 
selective time-domain digital filter with a judiciously selected interferogram segment, 
analyte specific detection and quantification is often performed, even for complex 
mixtures such as the analysis of blood glucose [12]. Since the concepts and terminology 
of this methodology are not as well-established, this approach requires greater 
experimentation than spectral-based methods for optimizing many of the signal 
processing and pattern recognition parameters. Time-domain interferogram processing 
(i.e., digital filtering and pattern recognition) relies more heavily on robust data sets that 
provide a global description of the experimental and instrumental conditions. 

The need for statistically complete data sets for passive FT-IR remote sensing 
implies that extensive data collection efforts for feasibility studies are necessary. 
However, controlled releases of many toxic gases are heavily restricted. Controlled 
releases are necessary for verification and quantification (i.e., ground truth). These 
experiments typically consists of vapor releases with a portable emission stack [13]. In 
these experiments it is often difficult to know exact vapor plume concentrations and 
dimensions due to potential variations in meteorological conditions and limitations 
imposed by the FT-IR sensor field of view. To fully understand and model these 
controlled releases requires the ability to account for (1) incomplete filling of the FT-IR 
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spectrometer field of view, (2) heterogeneous plume composition/temperature profiles, 
and (3) various background scene radiances. 

One approach to quantifying the importance of the variances in vapor plume 
generation is to model the effects using single-beam spectra and interferograms that 
have been generated synthetically [14]. Synthetic spectral generation provides a means 
of assessing a wide variety of experimental conditions and promises to allow 
determination of optimal experimental designs for performing controlled open-air 
releases. Recent papers in the literature have reported various methods for computing 
synthetic data using simple radiometric models for passive FT-IR remote sensing [14- 
16]. These radiometric models have been widely reported in the literature and have 
served as the basis for signal processing schemes designed to overcome the severe 
background variation present in the passive infrared measurement [17,18]. This report 
focuses on these semi-empirical radiative models and document the MATLAB-based 
software necessary for synthetic single-beam spectra and interferogram generation from 
library reference absorbance spectra. 

EXPERIMENTAL 

The FT-IR data used in this report were collected on two Midac Outfielder FTIR 
emission spectrometers (units 145 and 175, Midac, Corp., Irvine, CA). This spectrometer 
design is upon a flex-pivot "porch swing" Michelson interferometer. The detector 
spectral response was restricted to the 8-12 ^m atmospheric window. All interferograms 
consisted of 1024 points sampled at every eighth zero-crossing of the reference He-Ne 
laser. The maximum observable frequency was 1974.75 cm"1 and the point spacing in 
the single-beam spectra was approximately 4 cm"1. For validation of radiometric models, 
interferograms were collected under laboratory conditions in the passive FT-IR 
configuration. In the laboratory setup, an external blackbody source was positioned to 
ensure that it filled the entire field of view of the FT-IR spectrometer. Changing the 
blackbody source temperature permitted simulation of background radiance levels. 
Groups of 50 consecutive interferograms were acquired and subsequently averaged for 
each specific blackbody radiance temperature. This or similar laboratory experimental 
configurations have been employed in several other studies [9,10,19,20]. 

Additional interferograms were obtained from unit 175 with an infrared gas cell 
located in the field of view of the spectrometer prior to the blackbody source. At each 
blackbody temperature setting, 50 interferograms were collected with a known 
concentration of 1, 1, 1, trichloroethane (TCA) in the cell, while another 50 were 
collected with the cell filled with clean air. TCA was introduced into the gas cell as a 
liquid through a stopcock with the use of a digital microsyringe. The TCA liquid quickly 
evaporated to fill the cell. The concentration was determined based on the amount of 
liquid introduced and the pressure, temperature, and volume of the cell. Using this 
method of sample introduction, it is possible that some of the vapor can escape the cell 
before the stopcock can be closed. However, this method is certainly sufficient for 
qualitative analysis. Comparison to library spectra is difficult due to the presence of 
potential concentration errors which are reflected as errors in absorbance values. 

Library absorbance spectra were obtained from the AEDC/U.S. EPA data base 
[21]. The library spectra were reduced from -0.25 cm"1 point spacing to 2 cm"1 point 
spacing (4 cm"1 resolution) by convolving with an instrument line function using software 



provided by AEDC/EPA. To ensure correct registration with the Midac collected single- 
beam spectra, the deresolution was followed by cubic spline interpolation. 

All calculations were performed with routines written in the commercial software 
package MATLAB (Mathworks, Inc., Natick, MA, version 5.2) on a Dual-processor 200 
MHz Pentium Pro computer (Micron Electronics, Inc., Nampa, ID) running Windows NT 
(Microsoft, Inc., Richland, WA, version 4.0). The interpolation and random number 
generator routines used in the programs are internal MATLAB functions. The remaining 
program functions were written by the one of the authors (RES). 

THEORY 

Passive Infrared Spectroscopy 

The fundamental basis for passive infrared spectroscopy is the theory of radiative 
transfer (radiation theory). Radiative transfer models allow the calculation of the energy 
reaching an IR detector in terms of spectral radiance. Since the spectral units and 
terminology used by chemists and physicists often differ, where possible this report 
relies on the symbols, nomenclature, and units as outlined in the Infrared Handbook [22]. 
The radiative model that is developed in this report is independent of the infrared 
instrumentation type (dispersive or FT-IR) used. The infrared spectral units (radiation 
variables) are usually given in terms of wavelength (X) for a dispersive instrument and 
wavenumber (v) for an FT-IR. In this report, we will use X for the general case and v 
for non-dispersive cases specific to FT-IR spectrometry. 

The primary principal governing radiative transfer is that the radiance (L) emitted 
by any surface is Planck's theoretical blackbody function L*(k,T) scaled by the emissivity 
e(X), 

L(A) = e(X) x L*(A, T) (1) 

where T is the temperature of the material. A blackbody is defined as a perfect radiator 
and is dependent solely upon the temperature of the material (i.e., e = 1). Although no 
material found in nature is a perfect blackbody, they are a central component to passive 
infrared radiometric modeling. Emissivity is an intrinsic property of the material and is 
defined as the ratio of the radiance of a given body to that of a perfect blackbody. A 
material that has an emissivity which is independent of X is often called a gray body, 
while those with an emissivity that varies with X are termed spectral bodies. When 
radiance is incident upon a material, some of it is transmitted, some absorbed or 
emitted, and some is reflected. The total power law states that the sum of the 
transraittance (x), reflectance (p), and emittance is equal to unity. Since gases are 
usually nonreflective in the infrared, e(X) can be rewritten in terms of transmittance for 
purposes of passive IR model development (i.e., e(X) = 1 - x (X)). 

The radiation incident on a passive IR sensor is the sum of the individual 
radiances from (1) the background, (2) the target gas cloud, and (3) the intervening 
atmospheric gases. Figure 1 depicts two potential measurement scenarios. One 
configuration is an FT-IR spectrometer mounted on an aircraft measuring a vapor plume 
contrasted against a background. Another scenario features a ground-based FT-IR 



spectrometer observing a gas emanating from a hot smoke stack against a cold sky 
background. 

Flanigan visualized the radiative transfer problem as a set of parallel layers 
orthogonal to the line of sight of the sensor [2,15,16]. Using Fig. 1 as an example, the 
first layer is the background to vapor plume (far field); the second layer consists of the 
vapor plume (consisting of the target analyte); and the final layer is the intervening 
atmosphere between the plume and the sensor (near field). Each layer attenuates the 
radiation passed to it from the previous layer. Flanigan expressed this relationship 
simply as 

P = [TtxaLbg + (1-x,xa)LJxB, (2) 

where P is power of the light incident on the sensor, xt is the target cloud transmittance, 
xa is the transmittance of the atmosphere, Ug is the radiance of the background, Lt is the 
radiance of the target cloud, and B is a parameter related to the optical collection 
efficiency of the passive sensor (i.e., the product of the collector area and solid 
acceptance angle). The target cloud transmittance is xt = exp(-<xc/) where a is the 
absorptivity (m2/mg) of the target gas and c is the concentration of the gas (mg/m3), and / 
is the optical pathlength (m) of the cloud. The target cloud absorbance is A = -log(tt) = 
0.434(ac/). These equations assume that the target vapor fills the spectrometer field of 
view and negligible radiance losses occur due to scattering. If the collection efficiency of 
the sensor is ignored, eq. (2) can be rewritten in terms of the spectral radiance coming 
from the scene (Lx), 

Lx = [Xt Xa Lbg + (1 - x, Ta) LJ. (3) 

For simplicity, it is assumed that Ug and l_t are perfect blackbodies that are represented 
by Planck's function (L*). These radiances depend solely on temperatures of the 
background (Tbg) and the analyte plume (Tt) respectively. 

One practical implication of the passive IR model is that the temperature 
difference between the target cloud (Tt) and the background (Tbg) must be significant for 
the infrared chemical signature of the analytes in the gas cloud to reach the sensor. If Tt 

= Tug then eq. (3) reduces to Lx= Lbg. Thus, a challenging detection problem occurs 
when (1) the concentration or pathlength of the target gas is small (i.e., minimal xt) or (2) 
the temperature difference between the background and the cloud is small (i.e., L, - Lbg 
is minimal). The radiance model also explains why emission infrared features are found 
when the analyte vapor plume temperature is hotter than the background and 
absorbance features are seen when the background is hotter than the plume. 

Generation of Synthetic FT-IR Spectra 

The passive IR model given in eq. (3) can be used to generate synthetic single- 
beam FT-IR spectra and interferograms as follows: 



1'.   Equation (1) can be used to estimate the spectral radiance from the gas cloud and 
the background (Ug and Lt). Since the emittance is assumed to be equal to unity, Ug 
and Lt are easily computed at each wavenumber from Planck's blackbody equation 

* C,xv3 

L(v,T) = - 
exp(-^-—)-l 

where Ci and C2 are the first and second radiation constants computed as 

d = 2hc2 = 1.191 x 10"12 W/cm2 sr (cm"1)4 (5) 
and 

C2=hc/k=1.439 Kern. (6) 

Flanigan reported that MODTRAN can also be used for computing Ug [15]. The 
estimated radiance is based on the integration of Tbg across the MODTRAN path 
using the U.S. standard atmosphere model. 

2. The target cloud transmittance (xt) can be obtained from one of many different 
sources such as laboratory collections, commercially available spectral libraries, or 
theoretical approaches [23]. Regardless of where the absorption coefficients (a) are 
obtained, for studying various passive FT-IR remote sensing scenarios, a must be 
scaled at each v to produce the desired cl. According the Hanst spectral library 
manual, dividing a library spectrum by its listed cl product will provide a good 
approximation to the absorption coefficients of the gas [24]. The library spectrum is 
essentially a one-point calibration model. If multiple gases are present in the cloud, 
their absorptivities are additive (assumes that no chemical interactions took place, 
which may cause nonlinearities). Once the absorption spectrum is created with the 
desired gases at the proper cl, it is converted to a transmission spectrum (xt) for use 
in eq. (3). 

3. The atmospheric transmittance (xa) term can be ignored in certain applications 
involving low-altitude airborne or ground-based measurements where the distance 
between the gas cloud and the sensor is small. In cases where this assumption is 
not warranted, atmospheric transmittance and radiance software such as LOWTRAN 
or MODTRAN can be used to estimate xa [15, 25, 26]. 

4. If necessary, interpolate the xt, xa, Ug, and L, spectra so that they fall on the same 
wavenumber axis (i.e., have identical point spacing). If the spectral resolution of the 
target application is much different than the resolution of the xa and xt spectra, then 
deresolution prior to interpolation is necessary. 

5. Compute the apparent spectral radiance (Lx) using eq. (3) and the products from 
step 4. 

6. For the synthetic spectra to have any realistic value, the spectra need to have some 
noise component. According to Flanigan, noise can be added to the synthetic 



spectra at any stage of processing [15]. Flanigan adds noise based upon noise- 
equivalent-spectral-radiance (NESR) values obtained from the literature. These 
NESR values will change from instrument to instrument and within a given 
instrument may change periodically over time. Another figure of merit which may 
ultimately provide a more accurate assessment of the noise is the NER per root 
Hertz as derived by Wyatt [27]. This figure of merit allows assessment of the 
integration time and has been employed to evaluate a passive FT-IR spectrometer 
[28]. For this work, we have chosen to simply add a randomly distributed value that 
has been scaled to user-chosen signal-to-noise ratio (SNR) to Lx. The signal is 
determined as the maximum spectral intensity in the detector window and the noise 
is the standard deviation of the randomly added values. For example, if the user 
selects a SNR of 100 and the maximum spectral intensity in Lx is 200 then a 
Gaussian distributed random variate is added to each v with a mean of zero and a 
standard deviation of two. This is similar to Flanigan's model which used a mean of 
zero and a standard deviation equal to NESR. 

7.  Lx must be corrected to "look" like a single-beam spectrum or interferogram collected 
on a particular instrument using a radiometric correction procedure. Radiometrie 
corrections are typically to used to remove instrument specific effects from the 
single-beam spectrum. However, in this case, the corrections will be used in reverse 
to add instrument specific information such as the detector response and the 
instrument self-emission function. 

A single-beam spectrum can be expressed mathematically as 

S = r(Lx+Le) (7) 

where r is the FT-IR instrument responsivity (gain), U is the FT-IR instrument self- 
emission function (offset), and S is the final single-beam spectrum [29-31]. Thus, the 
detector and electronics impose a linear correction to the input spectral radiance for 
all frequencies in the optical passband of the instrument. The instrument offset term 
arises from the combination of the emission and scattering contributions of various 
components in the optical train. The instrument responsivity or gain is a measure of 
the sensitivity of the detector at each infrared frequency (i.e., instrument response 
function). 

Responsivity and self-emission are computed by rearranging eq. (7) and 
collecting two single-beam spectra of blackbody sources at two different known 
temperatures 

r = (Sh-Sc)/(L*h-Q (8) 

l_e = [(Sc x L*h) - (Sh x Q] / (Sh - Sc) (9) 

where Sh and Sc are actual single-beam spectra for a hot and cold blackbody source 
collected on the target FT-IR instrument and l_"h and L*c are Planck blackbody 
spectra at the hot and cold temperatures. Similar to the assumption used in the 
passive IR theory section, the emittance from a blackbody source is presumed to be 
unity. In this context, hot and cold temperatures are relative terms simply referring to 
one temperature being warmer than the other. Assuming linear detector responses, 
any two temperatures would be sufficient, but in practice are usually chosen to span 



the temperature range that the instrument will encounter. Once r and Le are 
computed, Lx is adjusted using eq. (7) to determine a final single-beam spectrum (S). 

8. If the simulation experiment is targeted toward a specific FT-IR instrument, then the 
optical collection efficiency can be included. As shown in eq. (2), the B parameter 
can be multiplied by the product of step 7 (radiometrically corrected single-beam 
spectrum) to produce P. For the simulation experiments described in this report, the 
B parameter was assumed to be unity. 

9. Interferograms can be obtained by computing the inverse Fast Fourier transform 
(FFT) of S or P. 

Software Description 

To correctly implement the nine steps for synthetic spectral generation listed 
above several MATLAB functions or "m-files" were written. Rather than just write 
several large programs that perform many functions, several smaller m-files were written 
to each perform a few limited tasks. These smaller routines form the basis for the larger 
ones. Table 1 outlines the routines and their uses. These m-files are incorporated into 
the "FTIRJToolbox", which the appendix describes in great detail. For the remainder of 
this report, the filename of the FTIRJToolbox routine being discussed will be denoted in 
the text with italics. 

RESULTS AND DISCUSSION 

Software and Model Validation: Instrument Responsivitv and Self-emission 

To validate the synthetic interferogram and single-beam spectral software and 
the passive IR models, several experiments were performed. Fifteen FT-IR 
interferograms were obtained from the two different Midac Outfielder emission 
spectrometers described in the experimental section. The blackbody temperatures for 
the interferograms from Midac Units 145 and 175 were (25, 30, 35, 40, 45, and 50 °C) 
and (30, 40, and 50 °C), respectively. TCA at a concentration of 1585 ppm-m and blank 
cell data were also collected on unit 175. For data processing, the interferograms were 
Mertz phase corrected and converted to single-beam spectra {icompute). Using 
responsivity and selfemis, the instrument responsivity and self-emission profiles were 
determined using the spectra collected at 25 and 50 °C for unit 145 and 30 and 50 °C for 
unit 175. These instrument specific functions are plotted in Figures 2 and 3. These 
figures illustrate the need for correcting l_x using eq. (7). 

It should be noted that magnitude spectra are used in responsivity and selfemis. 
Revercomb et a/found that using complex spectra rather than just the magnitudes 
improved precision [30] using double-sided interferograms. Since the spectra that were 
used here were phase corrected prior to determining r and Le, the imaginary component 
of the complex spectrum was negligible. Further experimentation showed that, for the 
single-sided interferograms typically collected using passive FT-IR sensors, no accuracy 
is lost by phase correcting interferograms prior to the determination of r and Le. Most 
likely, improvements would only be seen for complex spectra when double-sided 



ihterferograms were collected. Further experimentation in this area may needed to 
clearly define the best protocol for a given interferogram type. 

Table 1 

Brief Description of FTIR_Toolbox Routines 

Filename Description 
Blackbody Compute Planck blackbody spectrum (L") using eqs. (4-6). 
Blackbody2 Computes Planck blackbody spectra (L") using eqs. (4-6) for an array of 

input temperatures. 
Deresspc Produces a lower resolution single-beam spectrum. 
Ffilter Implement Fourier filtering of spectra. 
Forman Implements Forman phase correction of interferograms. 
Icompute Produce phase corrected single-beam spectra from interferograms. 

Options are included for both Mertz and Forman phase correction. 
Mkifg Produce double-sided interferograms from single-beam spectra using 

inverse Fourier transform. 
Mkintspc Interpolate spectrum to desired point spacing. 
Mkintspc2 Interpolate spectrum to desired point spacing. Same approach as 

mkintspc but requires different input parameters. 
Mkssifg Produce single-sided interferograms from single-beam spectra using 

inverse Fourier transform. 
Radmcor Performs radiometric spectral corrections using eq. (7). 
Responsivity Compute instrument responsivity (r) using eq. (8). 
Rotintfg Rotates interferogram. 
Selfemis Compute instrument self-emission function (U) using eq. (9). 
Synsbdataset Generates multiple single-beam spectra for a given set of radiometric 

conditions. Implements eqs. (3) and (7) plus adds noise at the desired 
level. 

Synsbeam Computes a single synthetic single-beam spectrum using eqs. (3) and 
(7). 

Synsbeam2 Computes a single synthetic single-beam spectra using eqs. (3) and 
(7). Same approach as synsbeam but requires different input 
parameters. 

Triapod Performs triangular apodization on an interferogram. 

Software and Model Validation: Single-beam Spectra 

A simple validation of the software and the passive model was performed first. 
Using r and U for each instrument, single-beam spectra were simulated using synsbeam 
for the blackbody temperatures not used to calculate r and Le (40° C for unit 175 and 30, 
35, 40, and 45 °C for unit 145). Since there was no analyte in the field of view of the 
spectrometer for this experiment, it and Lt in eq. 3 are unity. The effect of xa is negligible 
since the distance between the blackbody source and the instrument was only a few 
inches. Based on these assumptions, Lx = Lbg for this experiment. The blackbody 
temperature (Tbg) can be used to determine Ug for the experimental setup assuming that 
the s of the blackbody is unity. 



The predicted (or simulated) single-beam spectra for each unit and blackbody 
temperature were compared to the collected spectra. If the responsivity and self- 
emission profiles of the FT-IR are consistent during the experiments and the model is 
valid, there should be little difference between the predicted and actual (measured) 
spectra. Figure 4A shows the simulated single-beam spectra for unit 175 at 40°C. The 
relative difference (i.e., [(predicted-measured) / measured] x 100) between the simulated 
and actual single-beam spectra is shown in Figure 4B. Figure 5A contains simulated 
single-beam spectra for unit 145 at 30, 35, 40, and 45 °C. As expected based on eqs. 
(1) and (3), the single-beam spectral intensities are directly related to the temperature of 
the blackbody source. The relative difference between the simulated and actual single- 
beam spectra for unit 145 are shown in Figure 5B. Similar to Figure 4B, there is 
excellent agreement between the predicted and the actual spectra (errors < 1% in the 
750-1300 cm"1 region). Inspection of Figure 5B indicates that there was probably a slight 
temperature drift of the instrument during the course of the experiments. The larger 
difference corresponds to the blackbody measurement at 25 °C, while the smallest 
difference was found at 45 °C. Internal temperature changes directly affect the r and U 
profiles of the instrument [29,31]. In fact, it has been shown that it is possible to linearly 
model r as a function of the internal temperature. Thus, any differences between the 
measured and predicted single-beam spectra are due to an inaccurate determination of r 
or U and not caused by the radiometric model. The positive residuals seen in Figures 
4B and 5B indicate cases when the instrument was slightly warmer than the estimated r 
suggests, while negative residuals imply a slightly colder instrument than expected. 

Software and Model Validation: Sinale-beam Spectra With Analvte Present 

A more challenging test is to simulate a single-beam spectrum in which an 
analyte vapor is present in the field of view of the spectrometer. The steps are the same 
as above except tt and Lt must be incorporated into the analysis (i.e., used as inputs to 
synsbeam). The absorption coefficients for the target analyte (TCA) were downloaded 
from the AEDC/EPA website [21]. The concentration of TCA in the library spectrum was 
504 ppm-m. The TCA absorbance spectrum is shown in Figure 6 for the 700-1400 cm"1 

atmospheric window after deresolution and interpolation to 4 cm*1 point spacing. 
Interferograms of TCA in the gas cell were collected at three blackbody temperatures on 
unit 175. The instrument r and U were computed using single-beam spectra from the 
empty cell at 30 and 50°C. For the 40 °C blackbody measurement, the gas cell was 
filled with TCA at 1585 ppm-m. Prior to simulation, the TCA library spectrum was scaled 
by multiplying each point by 3.145 (1585/504 = 3.145). The temperature of the gas 
inside the cell was 22.9 °C (Tt) The effect of xa is negligible similar to the no analyte 
case discussed above. 

The FTIR_Toolbox routine synsbeam was used to predict the single-beam 
spectrum of 1585 ppm-m TCA at 23.3°C with a background temperature of 40°C. Since 
the background temperature is hotter than the gas temperature, infrared absorbance is 
observed (i.e., a dip in the single-beam spectra where the analyte absorbs infrared 
energy). Figure 7A is the predicted single-beam spectrum of TCA. To highlight the 
analyte absorbance bands, the predicted background spectrum (same background 
temperature but no analyte) is superimposed. The difficulty in discerning the analyte 
bands are due to a combination of low concentration, insufficient temperature differential 
for background and the vapor, and the broadness of the band contour. The difference 
between the predicted and collected single-beam spectrum is shown in Figure 7B. 



There is very good agreement (<1% error in single-beam intensity units) between the 
two spectra except for the locations of the two major analyte bands (730 and 1090 cm"1). 
At the location of the analyte bands, the error is still less than 10%. 

A more descriptive measure of simulation performance is to convert the single- 
beam spectra to absorbance units. The simulated spectra in Figure 7A were used to 
generate a predicted absorbance spectrum for TCA. An absorbance spectrum for TCA 
was also created using single-beam spectra collected using a 40°C blackbody, with and 
without the gas cell in the optical path of the instrument. These calculated absorbance 
spectra are shown in Figure 8 as the solid line (predicted) and the dashed line with 
circles (measured). It is evident from this plot that the absorbance band intensities for 
the two major peaks were incorrectly estimated by a relatively large amount. In addition, 
the predicted spectrum includes features at 880 cm"1 and 1130 cm"1 that are not present 
in the measured spectrum. The 880 and 1130 cm"1 peaks are also found in the 
AEDC/EPA library absorbance spectrum shown in Figure 6. This is not surprising since 
the library absorbance spectrum serves as the starting point for the radiometric models. 
Thus, a major source of error in this case might be the library spectrum itself. This 
assertion is in agreement with the experimental work by Richardson and Griffiths [23] 
comparing carefully controlled vapor-phase FT-IR spectra and reference spectra from 
the Hanst and AEDC/EPA libraries. They reported percent differences in absorbance 
units as high as 16.5% for TCA between their spectra and the Hanst library (TCA 
absorbance spectra from AEDC/EPA database were not used). Differences between 
their spectra and the AEDC/EPA library for another vapor, methanol, were as high as 
17.9% in the 8-12 urn region. These discrepancies have fueled further research by the 
National Institutes of Standards and Technology (NIST) to produce an accurate 
quantitative vapor phase FT-IR spectral library [32]. Since the special precautions for 
collecting accurate vapor-phase data prescribed by Richardson and Griffiths were not 
followed in our TCA data collection, the differences or variations seen in Figure 8 are not 
reflective of problems with the software or the passive infrared model. 

An alternative approach to using a library spectrum for simulating spectra is to 
determine the absorption coefficients from a set of carefully controlled measurements. 
Traditional laboratory FT-IR spectroscopy is performed using a hot source (usually > 
1000 K), however the interferograms that were used in this work were collected with a 
relatively cold source. Ballard et al. showed that absorbance spectra determined from 
analyte/background single-beam spectra collected with a heated gas cell causes 
inaccuracies in absorption coefficients due to unaccounted for emission along the optical 
train (e.g., heated cell windows and self emission of the heated samples) [33]. To 
overcome this problem, they developed a temperature independent method of 
determining emissivity (and hence transmittance) based on radiative transfer theory. 
Their method, shown as equation 10, requires two single-beam spectra of the analyte in 
the gas cell at two different blackbody temperatures (SHi and SCi) and two single-beam 
spectra of the evacuated gas cell at the same two blackbody temperatures (SH2 and 
Sc2)- 

T= (SHI-SCI)/ (SH2-SC2) (10) 

Strict care must be taken to ensure that no instrumental or experimental changes occur 
during these measurements other than the presence or absence of the gas and the two 
different source temperatures.   For example, the gas temperature, pressure, and 
concentration must be identical for Sm and SCi. Even though strict precautions were not 
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taken during these experiments, it is worthwhile to determine TCA transmittance using 
eq (10) using data collected on unit 175. 

For this calculation, the single-beam spectra collected from the blackbody at 
50°C and 30°C were used. After conversion to absorbance, single-beam spectra were 
simulated for the case where a 40°C blackbody and gas cell filled with 1585 ppm-m TCA 
at 23.3°C was in the optical path of the spectrometer. Figure 8 shows the predicted 
absorbance spectrum (solid line with squares) using this methodology. It is quite clear 
from this plot that spectra simulated using an absorbance spectrum computed using 
Ballard's method are better than those simulated using a library absorbance spectrum. 
The two anomalous features at 880 cm"1 and 1130 cm"1 that are present in the library 
spectra do not appear in this simulated data. These two anomalous spectral features 
are identified as 1,4 dioxane and may be spectrally removed by its associated library 
reference spectra [21]. TCA at 97% purity is stabilized with 3% of 1,4 dioxane which is 
undoubtedly responsible for the contaminant peaks at 800 cm"1 and 1130 cm"1 [34]. 
Although the peak heights are still off by about 20%, the band contours are much more 
consistent with the measured spectrum. For many applications that are envisioned for 
synthetically generated spectra and interferograms, quantitative error levels of 
approximately 20% are adequate. It is quite evident from these experiments, that 
accurate estimation of the "true" absorbance for a given compound is critical to 
generating quantitative simulated spectra. 

To see how the interferograms are affected by the slight errors at the band 
strengths and to further test the software, the predicted single-beam spectrum of TCA 
used to generate the absorbance spectrum in Figure 8 was transformed back to the 
time-domain (interferogram) using mkssifg. Figure 9A shows the 50 points before and 
after the centerburst (ZPD) of that interferogram (line with circles). Superimposed is the 
measured TCA interferogram (line with squares) after Forman phase correction. Figure 
9B is the difference between the predicted and actual interferograms for the 50 points 
before and after the centerburst. There appears to little difference between the two 
interferograms in the centerburst region; residual intensity errors are less than 10%. 
This result was not unexpected since the TCA spectral bands are fairly narrow. Thus, 
their time-domain representation is spread throughout the first two hundred points in the 
interferogram on either side of the centerburst. The centerburst region is dominated by 
broad spectral features such as the detector response envelope. Larger interferogram 
residual intensities can be found in the wings of the interferogram where the narrow 
width spectral features can be seen. These results illustrate that the simulated data will 
be useful for either spectral or interferogram-based research studies. 

Deresolution of Absorbance Spectra 

Since spectra from FT-IR library sources are often available only at high 
resolution (0.25 or 0.5 cm"1), it is sometimes necessary to create lower resolution spectra 
(2, 4, 8, or 16 cm"1) for research studies. In FT-IR spectroscopy, the resolution depends 
on the maximum retardation of the interferometer scan [35]. Thus, the preferred method 
of producing a low resolution spectrum is to simply truncate the interferogram (i.e., 
multiply by a boxcar function) to obtain the desired retardation. However, in many cases 
(e.g., ref. 36), the original interferograms are not available. Several commercially 
available programs (PLSJToolbox [37] and GRAMS [38]) have routines to perform this 
task on absorbance spectra. The FTIR_Toolbox contains the routine deresspc that 
implements several methods as well. One of the available options in deresspc is to 
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average the in-between points (GRAMS method). Another simple approach is to 
perform a cubic spline interpolation. For producing very low resolution spectra from high 
resolution spectra, these methods sometimes produce anomalous features in the 
spectra and are not always recommended. The methods used in the PLS_Toolbox 
(deresolv.m) and the AEDC/EPA deresolution program are to convolve the high 
resolution spectrum with an instrument function (boxcar, triangular, blackman, etc.). 
Another option available in deresspc convolves the absorbance spectrum with an 
instrument function through a Fourier filtering procedure followed by cubic spline 
interpolation (mkintspc) to ensure correct point spacing. The convolution based 
methods all seem to work a sufficient degree. Further experimentation may need to be 
done to determine if one method works consistently better than another. 

Generation of Synthetic Data Sets 

The two examples described above illustrate that the passive FT-IR radiometric 
models are valid and, with the FTIR_Toolbox software, single-beam infrared spectra and 
interferograms can be simulated. However, feasibility testing and fundamental signal 
processing research studies require more than just a single noise free interferogram or 
spectrum. The routine synsbdataset in the FTIRJToolbox can be used to generate a 
synthetic data set for given background and gas temperature ranges (to compute Lbg 
and Lt), analyte cl ranges, desired noise level, and a particular FT-IR instrument (r and 
U)- Similar to the above examples, xa and B are assumed to minimally impact the 
simulated data. 

The software randomly selects the temperatures and concentrations from within 
the input ranges. This is analogous to outdoor experiments where the temperatures and 
analyte concentrations can change rapidly. By carefully controlling the radiometric 
conditions, challenging remote sensing scenarios can be simulated and will provide 
supplemental data sets for difficult to generate open-air experiments. Several examples 
of how simulated data sets can be used is given by Shaffer and Combs [36]. 

CONCLUSIONS 

Radiometric models for passive FT-IR sensing have been derived. Information 
describing the analyte (concentration and temperature), background temperature (or 
radiance), and atmospheric transmittance, allows simulations of single-beam FT-IR 
spectra and interferograms with programs written in MATLAB. These simulated data 
have been shown to agree with laboratory collected passive FT-IR spectra and 
interferograms. Due to difficulties in obtaining very accurate absorption coefficients, the 
simulated data discussed here cannot be used as a replacement for laboratory collected 
data for building quantitative calibration models. However, the simulated data provides a 
means of modeling and explaining the results obtained from experimental data. The 
simulation approach also offers a fundamental research tool for validating and improving 
signal processing strategies in passive FT-IR remote sensing. 
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FIGURE CAPTIONS 

Figure 1. Depiction of two passive FT-IR remote sensing measurement scenarios. 

Figure 2. Instrument response function on the same scale for units 145 (solid line) and 
175 (dashed line). 

Figure 3. Instrument offset or self-emission function plotted on the same scale for units 
145 (solid line) and 175 (dashed line). 

Figure 4. Results of (A) generating a synthetic single-beam FT-IR spectrum for unit 175 
and (B) relative residual intensity between measured and simulated spectra for unit 175. 

Figure 5. Influence of source temperature on (A) simulated FT-IR single-beam synthetic 
spectra at 30°C (squares), 35°C (open circles), 40°C (+), and 45°C (solid line) for unit 
145 and (B) the relative residual intensities between measured and simulated spectra at 
30°C (squares), 35°C (open circles), 40°C (+), and 45°C (solid line) for unit 145. 

Figure 6. Library TCA absorbance spectrum 

Figure 7. Results of (A) generating a synthetic TCA FT-IR single-beam spectrum (solid 
line) with synthetic background spectrum (dashed line) superimposed and (B) calculating 
the residual intensity differences between simulated and measured TCA FT-IR single- 
beam spectra. 

Figure 8. TCA FT-IR absorbance spectra computed from simulated spectra using a 
library TCA spectrum (solid line), simulated spectra using Ballard's method of 
determining analyte absorptivities (solid with squares), and measured spectra from unit 
175 (dashed line with open circles). 

Figure 9. Results from the simulation of FT-IR interferograms showing (A) the synthetic 
interferogram (open circles) and phase-corrected measured interferogram (solid 
squares) of TCA for the 50 points before and after the centerburst and (B) the residual 
intensities between the simulated and measured interferograms. 
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APPENDIX 

This appendix contains the MATLAB source code ("m-file") for the functions that 
make up Version 1.0 of the FTIR_Toolbox. Please note that upon importing these m- 
files into a word processor, some line wrapping occurs which causes a single line of 
code to appear as two lines in the appendix. The input parameters for each m-file can 
be determined at the MATLAB prompt by typing help ftirjtoolbox. Electronic copies of 
these m-files as well as other useful routines for processing FT-IR interferograms and 
spectra can be obtained by contacting, Dr. Ronald E. Shaffer; Naval Research 
Laboratory; Chemistry Division; 4555 Overlook Ave, SW; Washington, DC 20375; email: 
shaffer@ccf.nrl.navy.mil; phone: 202-404-3361. 
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%FTIR_Toolbox, Version 1.0, Dec. 10, 1998 
% 
%Ron Shaffer 
%Naval Research Laboratory 
%Chemistry Division 
%4555 Overlook Ave., SW 
%Washington, DC 20375 
%email: shaffer@ccf.nrl.navy.mil 
%phone: 202-404-3361 
% 
% 
%BLACKBODY: Generate a single theoretical blackbody frequency spectrum. 
%BLACKBODY2: Generate Blackbody frequency spectra for an array of temperatures 
%DERESSPC: Produces lower resolution spectrum 
%FFILTER:  Implement Fourier Filtering 
%FORMAN:  Performs forman phase correction on a matrix of interferograms 
%IC0MPUTE:  Compute phase corrected spectra from interferograms 
%MKIFG: Make double-sided interferograms from spectra 
%MKINTSPC: Make an interpolated infrared spectrum using cubic splines 
%MKINTSPC2: Make an interpolated infrared spectrum using cubic splines 
%MKSSIFG: Make single-sided interferograms from spectra. 
%RADMCOR — Radiometrie spectral correction 
%RESPONSIVITY - Compute FT-IR instrument responsivity 
%ROTINTFG: Rotate interferogram so that 
%SELFEMIS — Compute FT-IR instrument self-emission 
%SYNSBDATASET — Compute synthetic single-beam data set 
%SYNSBEAM: Compute a synthetic single beam spectrum 
%SYNSBEAM2: Compute a synthetic single beam spectrum 
%TRIAPOD:  Triangular apodization on an interferogram 
%[spec,f] = blackbody(temp,npts,resol); 
%[spec,f] = blackbody2(temp,npts,resol); 
%[newx,newy] = deresspc(oldx,oldy,rfac,rtype,ropt); 
%[out] = ffilter(raw,atype,ftype,params); 
%[fdmat,pifg] = forman(dmat,nppa); 
%[specmat,specx,phcalc,spec_unc,MaxFreq,pointspac] = icompute(ifgmat,pctype,samprate,npa); 
%[ifg] = mkifg(specy,specx); 
%[newx,newy] = mkintspc(oldx,oldy,finit,fend,fres); 
%[newx,newy] = mkintspc2(oldx,oldy,finit,fend,npts); 
%[ssifg] = mkssifg(specx, specy, nipts, ss); 
%[outspec] = radmcor(inspec, R,Le,opt); 
% [R, specx] = responsivity (sped, spec2, specl2x, Tl, T2,MaxFreq, npts, opt) ; 
%[output] = rotintfg(input); 
%(Le, specx) = selfemis (sped, spec2, specl2x, T1,T2,MaxFreq, npts) ; 
%[specx,specy,cone,Tt,Tb] = synsbdataset(absspcX,absspcY,absspcX2,absspcY2, 
minTt,maxTt,minTb,maxTb,SNR,R,Le,specxRLe,MaxFreq,npts,nspec,rngseed); 
% [specx, specy,Lt, Lb, Lx,R,Le] = synsbeam(absspcX,absspcY,Tt,Tb, sped, spec2, specl2x,Tl,T2,MaxFreq, npts) , 
%[specx,specy] = synsbeam2(absspcX,absspcY,Tt,Tb,R,Le,specxRLe,MaxFreq, npts); 
%[output,apdfunc] = triapod(input,atype) 
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function [spec,f] = blackbody(temp,npts,resol); 
% BLACKBODY: Generate a single theoretical blackbody frequency spectrum. 
% Unlike blackbody2 this routine operates on a single temperature at a time 
% and uses the resolution as the input rather than the number of points. 
% [spec] = blackbody(temp,npts,resol); 
% spec    — output spectrum 
% f      — frequency axis in wavenumbers 
% temp    — temperature in Celsius 
% npts    — desired number of points in spectrum 
% resol   — spectral resolution in wavenumbers (i.e., 3.8574) 
% Author:    Ron Shaffer, Naval Research Laboratory 
% Version:   1.0.  9/3/97 Original Version 
% 1.1.  11/6/97 changed to compute 0 response at 0 cm-1 

% Constants 
cl = 1.191062 * 10"-12; 
c2 = 1.438786; 

% Convert temperature from Celcius to Kelvin 

temp = temp + 273.16; 

% 0 cm-1 produces a value of 0 
f(l) = 0; 
spec(l) = 0; 

% Loop through desired spectral range. 

for i = 2:npts 

f(i) = (i-1) * resol; % current frequency in cm-1 

spec(i) = (cl * (f(i)A3)) / (exp((c2 * f(i))/temp)-l); 

end 
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function [spec,f] = blackbody2(temp,npts,resol); 
% BLACKB0DY2: Generate Blackbody frequency spectra for an array of temperatures 
% [spec] = blackbody2(temp,npts,resol); 
% spec — output spectrum 
% f — frequency axis in wavenumbers 
% temp — temperature in Celsius 
% npts — desired number of points in spectrum 
% resol — spectral resolution in wavenumbers (i.e., 3.8574) 
% Author:    Ron Shaffer, Naval Research Laboratory 
% Version:   1.0.  9/3/97 Original Version 
% 1.1.  11/6/97 changed to compute response at 0 cm-1 
% 2.0  12/22/97 Modified so that user could pass in multiple temperatures 
% and output a matrix of spectra 

% Set Constants 
cl = 1.191062 * 10*-12; 
c2 = 1.438786; 
nspec = length(temp); 
spec = zeros(nspec,npts); 

% Convert temperature from Celcius to Kelvin 

temp = temp + 273.16; 

% 0 cm-1 produces a value of 0 
f(l) = 0; 

% Loop through desired spectral range. 

for i = 2:npts 

f(i) = (i-1) * resol; % current frequency in cm-1 

spec(:,i) = (cl * <f(i)*3)) ./ (exp((c2 * f(i))./temp)-1)'; 

end 
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function [newx,newy] = deresspc(oldx,oldy,rfac,rtype,ropt); 
% DERESSPC: Produces lower resolution spectrum 
% Equal point spacing of x is assumed. 
% [newx,newy] = deresspc(oldx,oldy,rfac,rtype,ropt); 
% Ron Shaffer — NRL — 5/1/98 Version 1.0 
% 5/5/98 Version 1.1 Incorporate Fourier filtering 
% routines. 
% newx       new x-axis in cm-1 
% newy     new y-axis in same units as oldy 
% oldx     old x-axis in cm-1 
% oldy     old y-axis 
% rfac     reduction factor (must be a power of 2) 
% rtype    Type of reduction (1 = average in-between points, 
% 2=Fourier filtering with triangle apod.) 
% ropt     Options for FF (fraction of zero-filling, first and last cm-1 in returned spectrum) 

oldmaxx = max(oldx); 
oldminx = min(oldx); 
oldfres = (oldmaxx-oldminx)/(length(oldx)-1); 
fprintfCOld Spectrum:  %8.4f - %8.4f cm-1, %8.4f spacing \n',oldminx,oldmaxx,oldfres) ; 

if rtype == 1 % average in-between points 
fres = oldfres*rfac; 
newx = oldminx:fres:oldmaxx; 
fprintf('Target Spectrum: %8.4f - %8.4f cm-1, %8.4f spacing \n',oldminx,oldmaxx,fres); 
poi = 1:rfac:length(oldx); 
lastpoint = length(oldy); 
lastnewpoint = length(newx); 
% first and last points of new spectrum are special cases 
lastpoint = length(oldy); 
lastnewpoint = length(newx); 
newy(l) = mean(oldy(1:(rfac/2))); 
firstpos = lastpoint-(rfac/2)+1; 
newy(lastnewpoint) = mean(oldy(firstpos:lastpoint)); 

% remainder of points use the last rfac-1 and the next rfac points 
% to compute newy 

for i = 2:(lastnewpoint-1) 
curoldx = poi(i); 
firstpos = curoldx-(rfac/2)+l; 
lastpos = curoldx+(rfac/2); 
newy(i) = mean(oldy(firstpos:lastpos)); 

end 

end 

if rtype == 2 % use Fourier filtering then interpolation 

fres = oldfres*rfac; 
newx = ropt(2):fres:ropt(3); 
npts = length(newx); 
fprintf('Target Spectrum: %8.4f - %8.4f cm-1, %8.4f spacing \n',ropt(2),ropt(3),fres); 
[fout] = ffilter(oldy,0,3,ropt(D); 
(newx,newy] = mkintspc2(oldx,fout,ropt(2),ropt(3),npts); 

end 
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function [out] = ffilter(raw,atype,ftype,params); 
% FFILTER:  implement Fourier Filtering 
% [out] = ffilter(raw,atype,ftype,params); 
% out    — filtered data 
% raw    — input data 
% atype  — type of apodization (0=boxcar (i.e., none), l=triangular, 2=bartlett, 3=blackman, 
% 4=hanning, 5=hamming, 6=kaiser-l, 7=kaiser-2) 
% ftype  — filter function (l=boxcar, 2=Gaussian); 
% params  — filter specific parameters 
% boxcar — [xboxon xboxoff] 
% e.g. [0 0.25] in % of total # of points in raw 
% Gaussian — [filter_position filter_width] 
% represented as a fraction of the total # of points in raw 
% Ron Shaffer — Naval Research Laboratory 
% Version 1.0  4/28/98 Original Code. 
% Based on filter in GRAMS/32 and ffil.f and GERM.f 
% written by Gary Small at Ohio university. 

% Determine # of points in raw data 
npts = length(raw); 
orig_pnts = npts; 
% Apodize input data if necessary 
switch atype 
case 0 

% no apodiation do nothing 
case 1 

% triangular 
raw = raw .* triang(npts); 

case 2 
% Bartlett (page 4-2 in Signal Processing Toolbox Manual) 
raw = raw .* bartlett(npts); 

case 3 
% Blackman (generalized cosine) page 4-4 in Signal Proc. toolbox manual 
raw = raw .* blackman(npts); 

case 4 
% Hanning (page 4-4 in Signal Proc. toolbox manual) 
raw = raw . * hanning(npts); 

case 5 
% Hamming (page 4-4 in Signal Proc. toolbox manual) 
raw = raw .* hamming(npts); 

case 6 
% Kaiser 1 (page 4-5 in Signal Proc. toolbox manual) 
raw = raw .* kaiser(npts,1); 

case 7 
% Kaiser 3 
raw = raw .* kaiser(npts,3); 

case 8 
% Kaiser 5 
raw = raw .* kaiser(npts,5); 

otherwise 
error ('ERROR: incorrect apodization function')," 

end 

% If not a power of 2 pad with zeros 
test = rem(log2(npts) , 1); 
if test -= 1 % if not zero-fill to next power of 2 

npts2 = pow2(nextpow2(npts)); 
raw(npts+l:npts2) = zeros(npts2-npts,1); 
npts = npts2; 
clear npts2; 

end 

% Forward FFT the raw data 

craw = fft(raw); 
NumUniqPnts = ceil((npts+1)/2); 
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% Now Create Filter Function 
switch ftype 
case 1 

%boxcar filter 
boxon = round)(params(1)*NumUniqPnts)+1); 
boxoff = round((params(2)*NumUniqPnts)); 
filtfunc = zeros(NumUniqPnts,1); 
filtfunc(boxon:boxoff) = boxcar(boxoff-boxon+1); 

case 2 
% Gaussian filter 
fpos = round((params(1)*NumOniqPnts) +1) ; 
fwid = params(2)*NumOniqPnts; 
filtfunc = gengauss(fwid,npts,fpos); 

case 3 
% Triangular filter 
triend = round(params(1)*NumUniqPnts); 
filtfunc = zeros(NumUniqPnts,1); 
i = 0:triend-l; 
filtfuncd:triend) = (triend - i)./triend; 

otherwise 
error('ERROR: Improper Filter Function'); 

end 
% Multiply Filter Function and Complex Fourier Domain Data 

craw2 = craw(l:NumUniqPnts) .* filtfunc; 

% Reflect then Inverse Transform 

craw2(NumUniqPnts+l:npts) = conj(flipud(craw2(2:NumUniqPnts-l))); 
out2 = real(ifft(craw2)); 
out = out2(1:orig_pnts) ; 
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function [fdmat,pifg] = forman(dmat,nppa); 
% FORMAN:   performs forman phase correction on a matrix of interferograms 
% [fdmat,pifg] = forman(dmat,nppa); 
% dmat — matrix of interferograms 
%  nppa — total number of points to use in the phase array (default = 128) 
%  fdmat — phase corrected interferogram matrix 
% pifg — phase interferogram (useful for debugging code) 
%  Ron Shaffer — Naval Research Laboratory 
% Version 1.0   6/19/98 
% Based on Fred Koehler's forman routine and forman.f written 
% by Gary Small from Ohio university. 

%  find size of input matrix 
[n,m]=size(dmat); 
[maxval,mindex]=max(dmat); 
fprintf('Number of Interferograms: %d \n',m); 

if nargin == 1 
nppa = 64; 

else 
nppa = nppa/2; 

end 

% perform for each interferogram in matrix 
for index = l:m 

%  find the centerburst 
burst=mindex(index); 

%  In the eternal words of Dr. Shaffer: 
%  "carve out the available points for the phase calculation" 

if nppa > burst I nppa==burst 
if burst == 1 

% must be a rotated interferogram! 
% put together the phase interferogram array from the tail 
%  and head of the rotated interferogram. 
iposl = n-nppa+1; 

workl(l:nppa)=dmat(iposl:n,index); 
workl(nppa+l:nppa*2)=dmat(1:nppa,index); 

else 
error('ERROR: Specified phase array is too large'); 

end 
else 
%  put together phase interferogram from nppa points around the centerburst 

workl(l:2*nppa)= dmat(burst-nppa+1:burst+nppa,index); 
end 

% rotate the phase interferogram 
[chkl,chk2] = size(workl); % make sure its a column vector first 
if chk2>chkl 

workl = workl'; 
end 
workl = rotintfg(workl); 
% do the fourier transform to get the complex phase spectra 
% the spectra has only really half the # of pt's of the interferogram 
% NumUniqPnts = ceil((npts+1)/2); 

nxfpts = ceil((length(workl)+1)/2); 
cspec = fft(workl); 
dphase = unwrap(angle(cspec)); 

% setup for inverse transform — must have two parts:  complex and real, 
% and must have a mirror image, the complex conjugate. 
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rphase = cos(dphase)'; 
iphase = sin(dphase)'; 
cphase = (rphase - i*iphase); 

% add the complex conjugate to the end. 

nneg = nxfpts -1; 
tl = nxfpts+1; 
t2 = 2*nppa; 
cphase(tl:t2) = fliplr(conj(cphase(2:nneg))); 

% Do the inverse fft from the complex phase spectrum to the real phase 
% interferogram. 

intphase = ifft(cphase); 
pifg = intphase; 
intphase = real(intphase); 

% reverse rotate (get centerburst into center for convolution) 
% and apodize the phase interferogram 

phintfg = triapod(fftshift(intphase)'); 

% convolve input interferogram with phase interferogram 

rintfg = conv(dmat(:,index),phintfg); 

%  fix after convolution screws up location of center burst, length. 
nout = n + nppa*2 -1; 
[rmax,nburst]=max(rintfg); 
iposl = nburst  - burst +1; 
ipos2 = iposl+n-1; 
fdmat(l:n,index)   = rintfg(iposl:ipos2); 

end 
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function [specmat, specx, phcalc,spec_unc,MaxFreq,pointspac] = icompute(ifgmat,pctype,samprate,npa), 
% ICOMPUTE:  compute phase corrected spectra from interferograms 
% [specmat,specx,phcalc,spec_unc] = icompute(ifgmat,pctype,samprate, npa); 
% specmat    spectra (phase corrected if desired) 
% specx    frequencies corresponding to spectral intensities in spec (i.e., the x-axis) 
% ifgmat     input matrix of interferograms (npts,nspec) 
% pctype  desired type of phase correction (l=mertz, 2=forman, 3 = none) 
% samprate — interferogram sampling rate (1 = every zero crossing, 2 every other, etc.) 
% This is used for compute the max. freq. in computed spectrum. 
% Assumes HeNe at 15798cm-l 
% npa     desired number of points in phase array (optional)(default=256) 
% Ron Shaffer — Naval Research Laboratory 
% Version 1.0  4/24/98 
% Original Code.  Based loosely on cphase.f and pcspec.f by 
% Gary Small at Ohio University 
% 
% Version 1.1  4/27/98 
% Check to make sure ifg is a power of 2 if not zero fill accordingly. 
% Fixed bug in selecting unique frequencies after FFT.  See MATLAB Technical 
% Note #1702. 
% 
% Version 1.2   6/25/98 
% Added capability to perform on multiple interferograms (i.e., a matrix) 
% 
% Version 1.3   8/18/98 
% Added option for Forman phase correction of interferograms 
% 
% Version 1.4   11/25/98 
% Added option for producing complex spectra with no phase correction 

if (nargin==3) 
npa = 256; % default setting 

end 

[npts,nspec] = size(ifgmat); 

if pctype == 1 
for iter = l:nspec 

ifg = ifgmat(:,iter); 
% check to see if ifg is a power of 2 
test = rem(log2(npts),1); 
if test ~= 1 % if not zero-fill to next power of 2 

npts2 = pow2(nextpow2(npts)); 
[maxval,cburstpos] = max(ifg); 
if cburstpos == 1 

ifg = fftshift(ifg); % if centerburst is first rotate prior to zero filling 
end 
ifg(npts+l:npts2) = zeros(npts2-npts,nspec); 
npts = npts2; 
clear npts2; 

end 
% search for centerburst (ZPD) 
[maxval,cburstpos] = max (ifg); 
% Carve out enough points around centerburst for the phase 
% calculation.  If not enough points adjust accordingly. 
npa2 = npa/2; 
if (npa2) > cburstpos 

istart = 1; 
ifin = 2*cburstpos; 
icbpnew = cburstpos; % cburstpos for small interferogram 

else 
istart = cburstpos-npa2+l; 
ifin = cburstpos+npa2; 
icbpnew = npa2; % cburstpos for small interferogram 

end 
work = ifg(istart:ifin); 
% apodize double-sided small interferogram 
work = triapod(work,2); 
% zerofill to the same # of points as the original interferogram 
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work(ifin:npts) = zeros((npts-ifin+1),1); 
% rotate interferogram 
work = rotintfg(work); 
% do the FFT 
cwork = fft(work); 
% compute phase array 
phcalc = unwrap(angle(cwork)); 
% 
% apodization, rotate, compute uncorrected spectrum. 
% 
nspecpnts = ceil((npts+1)/2); % See MATLAB Tech Note 1702 
work2 = triapod(ifg,1); 
work2 = rotintfg(work2); 
spec_unc = fft(work2); 
% Determine Freq. ranges in spectra 
HeNe = 15798; %frequency of HeNe Laser in FT-IR 
MaxFreq = HeNe/samprate; 
specx = (0:nspecpnts-l) * 2 * MaxFreq/npts; % see MATLAB Tech Note 1702 
% zero out points in phase array corresponding to locations where 
% phase is not defined (< 400 cm-1 and > 2000 cm-1 for most systems 
% that I use).  This option is usually deselected. 
popt = 1; 
if popt — 2 

boxcar = zeros(npts,1); 
jl = find(specx>400 & specxOOOO); 
boxcar(jl)=l; 
clear jl; 
phcalc = phcalc .* boxcar; 

end 
% Mertz phase correct and return 
spec =  (real(spec_unc(l:nspecpnts)) .* cos(phcalc(l:nspecpnts))) + (imag(spec_unc(l:nspecpnts)) 

.* sin(phcalc(1:nspecpnts))) ; 
specmat(:, iter) = spec; 

end % end of Mertz phase correction and return 

elseif pctype == 2 
% must forman phase correction 
test = rem(log2(npts),1); 
for i = l:nspec 

ifg = ifgmat(: ,i) ; 
if test -= 1 % if not zero-fill to next power of 2 

[maxval,cburstpos] = max(ifg); 
if cburstpos == 1 

ifg = fftshift(ifg); % if centerburst is first rotate prior to zero filling 
end 
npts2 = pow2(nextpow2(npts)); 
ifg(npts+l:npts2) = zeros(npts2-npts,1); 
npts = npts2; 
clear npts2; 

end 
ifgmat2(:,i) = ifg; 

end 
clear ifgmat; 
nspecpnts = ceil((npts+1)12); % See MATLAB Tech Note 1702 
[fdmat) = forman(ifgmat2,npa); 
for i = l:nspec 

ifg = fdmat(:,i) ; 
ifg = triapod(ifg,1); 
ifg = rotintfg(ifg); 
fdmat(:,i) = ifg; 

end 
% Determine Freq. ranges in spectra 

HeNe = 15798; %frequency of HeNe Laser in FT-IR 
MaxFreq = HeNe/samprate; 
specx = (0:nspecpnts-l) * 2 * MaxFreq/npts; % see MATLAB Tech Note 1702 

work2 = fft(fdmat); 
specmat = real(work2(1:nspecpnts,:)); 

elseif pctype == 3 
% no phase correction; produce complex spectrum 
test = rem(log2(npts),1); 
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for i'= l:nspec 
ifg = ifgmat(:,i); 
if test ~= 1 % if not zero-fill to next power of 2 

[maxval,cburstpos] = max(ifg); 
if cburstpos == 1 

ifg = fftshift(ifg); % if centerburst is first rotate prior to zero filling 
end 
npts2 = pow2(nextpow2(npts)); 
ifg(npts+l:npts2) = zeros(npts2-npts, 1); 
npts = npts2; 
clear npts2; 

end 
ifgmat2(:,i) = ifg; 

end 
clear ifgmat; 
nspecpnts = ceil((npts+1)/2); % See MATLAB Tech Note 1702 
[fdmat] = ifgmat2; 
for i = l:nspec 

ifg = fdmat(:,i); 
ifg = triapod(ifg,1); 
ifg = rotintfg(ifg); 
fdmat(:,i) = ifg; 

end 
% Determine Freq. ranges in spectra 

HeNe = 15798; %frequency of HeNe Laser in FT-IR 
MaxFreq = HeNe/samprate; 
specx = (0:nspecpnts-l) * 2 * MaxFreq/npts; % see MATLAB Tech Note 1702 

work2 = fft(fdmat); 
specmat = (work2(1:nspecpnts,:)); 

end 
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function (ifg) = mkifg(specy,specx); 
% MKIFG: make double-sided interferograms from spectra 
% function [ifg] = mkifg(specy,specx); 
% ifg -- interferograms 
% specy — spectra 
% specx — frequency axis (default: assumes DC freq. not included) 
% Ron Shaffer — 5/1/97 — NRL 
% Version 1.1 — 12/8/98 — NRL 
% Make routine smart enough to 
% recognize when the input spectrum has 
% the zero'th frequency included. 

% find length and number of spectra 
% assume rows are the number of spectra 
% and columns of the spectral points 

if (nargin==l) 
specx(l) = 1; % default setting, DC frequency (0 cm-1) 

% is not included in specy 
end 

[nspec,npoints] = size(specy); 

npoints2 = npoints*2; 
% create interferogram array 

if specx(1) == 0 % is the DC freq included in the input spectra? 
% flip spectra 
specl = specy; 
spec2 = fliplr(specl); 
% complete spectra for processing 
spec3 = [specl'; spec2(:,2:(npoints-1))*]; 
% create interferogram arrays 
ifg = zeros(nspec,npoints2-2); 
% inverse FFT 
ifg = real(ifft(spec3))'; 

else 
% flip spectra 
specl = specy; 
spec2 = fliplr(specl); 
% complete spectra for processing 
spec3 = [zeros(l,nspec); specl'; spec2(:,2:npoints)']; 
% create interferogram arrays 
ifg = zeros(nspec,npoints2); 
% inverse FFT 
ifg = real(ifft(spec3))'; 

end 
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function [newx,newy] = mkintspc(oldx,oldy,finit,fend,fres); 
% MKINTSPC: Make an interpolated infrared spectrum using cubic splines 
% given an existing spectrum, This does the same calculation 
% as "mkintspc2" but requires different inputs. 
% Equal point spacing of x is assumed. 
% [newx,newy] = mkintspc(oldx,oldy,finit,fend,fres); 
% Ron Shaffer — NRL — 10/6/97 Version 1.0 
% 7/30/98 fixed bug in computed oldfres 
% newx       new x-axis in cm-1 
% newy     new y-axis in same units as oldy 
% oldx     old x-axis in cm-1 
% oldy     old y-axis 
% oldres   point spacing in oldx 
% finit    starting cm-1 for interpolation 
% fend     ending cm-1 for interpolation 
% fres     desired point spacing in newx 

oldmaxx = max(oldx); 
oldminx = min(oldx); 
oldfres = (oldmaxx-oldminx)/(length(oldx)-l) ; 
npts = round((abs(finit-fend))/fres); 
fprintfCOld Spectrum:  %8.4f - %8.4f cm-1, %8.4f spacing \n',oldminx,oldmaxx,oldfres); 
fprintf('Target Spectrum: %8.4f - %8.4f cm-1, %8.4f spacing \n',finit,fend,fres); 
newx = finit:fres:fend; 
% now check to see if the old spectrum is 
% entirely within the range of the new spectrum. 
if oldmaxx < fend %fend is not within the range 

templb = (min(find(newx>oldmaxx)))-l; %first location in newx where oldmmax ends 
temp_fend = newx(templb); 
tempi = npts-templb+1; 

else 
temp_fend = fend; 
tempi = 0; 

end 
if oldminx > finit 

temp2b = max(find(newx<oldminx))+l;%first location in newx where oldminx begins 
temp_finit = newx(temp2b); 
temp2 = temp2b-l; 

else 
temp_finit = finit; 
temp2 = 0; 

end 

xfinterp = temp_finit:fres:temp_fend; 
fprintf('Interpolating range %8.4f - %8.4f , %d # of points 
\n',min(xfinterp),max(xfinterp),length(xfinterp)); 
yfinterp = interpl(oldx,oldy,xfinterp,'spline'); 

fprintf('now adding %d points before and %d after interpolated spectrum for return \n',temp2,tempi) , 
% if tempi or temp2 = 1 then replace with closest value from orginal else 
% replace with zeros 
if (tempi == 1) 

[jl,j2] = min(abs(oldx-temp_fend)); 
newy = [zeros(1, temp2) yfinterp oldy(j2)]; 

%elseif (temp2 == 1) 
%   [jl,j2] = min(abs(oldx-temp_finit)) ; 
%  newy = [oldy(j2) yfinterp zeros(1,tempi)]; 
else 

newy = [zeros(1,temp2) yfinterp zeros(1,tempi)]; 
end 
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function [newx,newy] = mkintspc2(oldx,oldy,finit,fend,npts); 
% MKINTSPC2: Make an interpolated infrared spectrum using cubic splines 
% given an existing spectrum, This does the same calculation 
% as "mkintspc" but requires different inputs. 
% Equal point spacing of x is assumed. 
% [newx,newy] = mkintspc2(oldx,oldy,finit,fend,npts); 
% Ron Shaffer — NRL — 12/6/97 Version 1.0 
% 5/1/98 Version 1.1 
% fixed bug in calculating point spacing in oldx 
% newx       new x-axis in cm-1 
% newy     new y-axis in same units as oldy 
% oldx     old x-axis in cm-1 
% oldy     old y-axis 
% oldres   point spacing in oldx 
% finit    starting cm-1 for interpolation 
% fend     ending cm-1 for interpolation 
% npts     desired number of points in newx 

oldmaxx = max(oldx); 
oldminx = min(oldx); 
oldfres = (oldmaxx-oldminx)/(length(oldx)-l); 
fres = (fend-finit) ./ (npts-1); 
fprintft'Old Spectrum:  %8.4f - %8.4f cm-1, %8.4f spacing \n',oldminx,oldmaxx,oldfres); 
fprintf('Target Spectrum: %8.4f - %8.4f cm-1, %8.4f spacing \n',finit,fend,fres); 
newx = finit:fres:fend; 
% now check to see if the old spectrum is 
% entirely within the range of the new spectrum. 
if oldmaxx < fend %fend is not within the range 

templb = (min(find(newx>oldmaxx)))-l; %first location in newx where oldmmax ends 
temp_fend = newx(templb); 
tempi = npts-templb; 

else 
temp_fend = fend; 
tempi = 0; 

end 
if oldminx > finit 

temp2b = max(find(newx<oldminx))+l;%first location in newx where oldminx begins 
temp_finit = newx(temp2b); 
temp2 = temp2b-l; 

else 
temp_finit = finit; 
temp2 = 0; 

end 

xfinterp = temp_finit:fres:temp_fend; 
fprintf('Interpolating range %8.4f - %8.4f , %d # of points 
\n',min(xfinterp),max(xfinterp),length(xfinterp)); 
yfinterp = interpl(oldx,oldy,xfinterp,'spline'); 

fprintf('now adding %d points before and %d after interpolated spectrum for return \n',temp2,tempi) , 
% if tempi or temp2 = 1 then replace with closest value from orginal else 
% replace with zeros 
if (tempi == 1) s (temp2 == 1) 

[jl,j2] = min(abs(oldx-fend)); 
[J3,j4] = min(abs(oldx-finit)); 
newy = [oldy(j4) yfinterp oldy(j2)]; 

elseif (tempi == 1) 
[jl,j2] = min(abs(oldx-fend)); 
newy = [zeros(1,temp2) yfinterp oldy(j2)]; 

elseif (temp2 == 1) 
[jl,j2] = min(abs(oldx-finit)); 
newy = [oldy(j2) yfinterp zeros(1,tempi)]; 

else 
newy = [zeros(1,temp2) yfinterp zeros(1,tempi)]; 

end 
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function [ssifg] = mkssifg(specx, specy, nipts, ss); 
% MKSSIFG: make single-sided interferograms from spectra. 
% The spectrum must have greater than or equal the number 
% of points in the desired interferogram. (e.g., need 512 
% spectral points to generate a 512 point single-sided interferogram). 
% function [ifg] = mkssifg(specx, specy, nipts, ss); 
% ssifg -- single-sided interferograms 
% nipts — number of desired points in interferogram (e.g., 1024) 
% ss  — length of single sided portion (e.g., 100) 
% specx — wavenumber axis of specy 
% specy — spectra 
% Ron Shaffer — Naval Research Laboratory — 12/8/98 
% Version 1.0 adapted from mkifg.m version 1.1 
% 

% find length and number of spectra 
% assume rows are the number of spectra 
% and columns of the spectral points 

[nspec,nspecpoints] = size(specy); 
npoints2 = nspecpoints*2; 

if (nspecpoints <= nipts) 
error('desired interferogram size too large'); 

end 

% create interferogram array 

dsifg = zeros(nspec,npoints2); 
ssifg = zeros(nspec,nipts); 
% check to see if zero'th frequency has been 
% included in the array 

if specx(1) == 0 % is the DC freq included in the input spectra: 
% flip spectra 
sped = specy; 
spec2 = fliplr (sped) ; 
% complete spectra for processing 
spec3 = [sped'; spec2(:,2:(nspecpoints-1))']; 
% create interferogram arrays 
dsifg = zeros(nspec,npoints2-2); 
ssifg = zeros(nspec,nipts); 
% inverse FFT 
dsifg = real(ifft(spec3))'; 

else 
% flip spectra 
sped = specy; 
spec2 = fliplr (sped) ; 
% complete spectra for processing 
spec3 = [zeros (1, nspec) ; sped'; spec2 (:, 2 : nspecpoints) ' ] ; 
% create interferogram arrays 
dsifg = zeros(nspec,npoints2); 
ssifg = zeros(nspec,nipts); 
% inverse FFT 
dsifg = real(ifft(spec3))'; 

end 

% current interferogram is double sided 
% now make it single-sided 

dsifg = fftshift(dsifg); % shift so ZPD is the middle of the array 
% 
% Process each interferogram individually 
for i = l:nspec 

% search for centerburst (ZPD) 
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[maxval,cburstpos] = max(dsifg(i,:)); 
istart = cburstpos-ss; 
ifin = istart + nipts -1; 
ssifg(i,:) = dsifg(i,istart:ifin) * 2; % scaling needs to be done 

end 
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function [outspec] = radmcor(inspec,R,Le,opt); 
% RADMCOR — Radiometrie spectral correction 
% NOTE:  assumes that x-axis for inspec, R, and Le are the same. 
% [outspec] = radmcor(inspec,R,Le,opt); 
% Ron Shaffer — Naval Research Laboratory 
% — Version 1.0 8/12/98 Original code 
% — Version 1.1 12/10/98 Added second option 
% inspec     — input spectrum to be operated on (row vector) 
% R — instrument responsivity 
% Le — instrument self-emission curve 
% outspec    — corrected spectrum 
% opt opt = 1:  input is single-beam spectrum and output is a spectrum 

in radiometric units (W/sr/cm2/cm-l) (basically strips 
out instrument specific features) 

opt = 2:  input is a spectrum in radiometric units and the output 
is a single-beam spectrum (i.e., adds instrument specific 
features) 

if opt == 1 
outspec = (inspec./R) - Le; 

else 
outspec = R .* (inspec + Le) 

end 
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function [R,specx] = responsivity (sped,spec2,specl2x,Tl,T2,MaxFreq,npts,opt); 
% RESPONSIVITY - compute FT-IR instrument responsivity 
% [R,specx] = responsivity (sped, spec2,specl2x,Tl,T2,MaxFreq, npts, opt); 
% Ron Shaffer 7/30/98 Original code based on specdiag.m 
% 11/25/98 If complex spectra are used (specl,spec2) then 
% uses the responsivity calculation developed by 
% Revercomb et al. Applied Optics 1988, 27, 3210-3218. 
% or if opt = 1 is selected use the method described 
% in A. Villemaire, Jean-Marc Theriault, et al., SPIE, 
% Volume 3082, pages 83-91. 
% sped    — blackbody spectrum at temperature Tl (row vector) 
% spec2    — blackbody spectrum at temperature T2 (row vector) 
% specl2x  — x-axis for specl,spec2,speclv,spec2v (row vector) 
% Tl       — blackbody temperature for sped 
% T2       — blackbody temperature for spec2 
% MaxFreq  — maximum frequency in cm-1 (e.g., 1974.5) 
% npts     — number of spectral points to compute (e.g., 512) 
% R       — instrument Responsivity 
% specx    — point spacing (x-axis) of R 
% opt      — if complex spectra are used (1 = return complex R, 0 return real R), default=0 

interpflag = 0; 
% compute X-axis values for spectra 
Fres = MaxFreq / (npts-1); 
specx = 0:Fres:MaxFreq; 

if (nargin==9) 
opt = 0; % default setting 

end 

% transpose input x-axis and spectra if necessary. 
[nl,n2] = size(specl2x); 
if nl > n2 

specl2x = specl2x'; 
end 
[nl,n2] = size(specl); 
if nl > n2 

sped = sped'; 
end 
[nl,n2] = size(spec2); 
if nl > n2 

spec2 = spec2'; 
end 
clear nl n2 

% Now check if specl2X is the same as our target x-axis 
% if not then interpolate 
if (length(specx) == length(specl2x)) 

if ((sum(specx-specl2x))>0) 
interpflag = 1; 

else 
interpflag = 0; 

end 
else 

interpflag = 1; 
end 

if interpflag == 1 
[junk,temp] = mkintspc2 (specl2x, sped, 0,MaxFreq, npts) ; 
sped = temp; 
[junk,temp] = mkintspc2(specl2x,spec2,0,MaxFreq,npts); 

spec2 = temp; 
end 

% Compute instrument Responsivity (R) 

BB1 = blackbody(Tl,npts,Fres); 
BB2 = blackbody(T2,npts,Fres); 

if (isreal(specl) == 1)& (isreal(spec2) == 1) 
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R(2:npts) = abs( (sped (2 :npts)-spec2 (2 :npts) ) ./ (BB1(2:npts)-BB2(2:npts))); 
% the abs value is used to ensure that the responsivity goes in the positive 
% direction, which can happen when Tl is colder than T2. 
% R is not defined at 0 cm-1 
R(l) = 0.0; 
R = R'; 

else 
if opt == 0 

R(2:npts) = abs (abs (sped (2 :npts) -spec2 (2:npts) ) ./ (BB1(2:npts)-BB2(2:npts))); 
% The inside abs produces a power spectrum from the complex difference spectra 
% (see section IIIA from the Revercomb paper for discussion). 
% The outer abs performs the same function as it does with real spectra. 
% R is not defined at 0 cm-1 
R(l) = 0.0; 
R = R'; 

else 
R(2:npts) = ((specl(2:npts)-spec2(2:npts)) ./ (BB1(2:npts)-BB2(2:npts))); 
% Be careful that the Tl is hotter than T2 in this formulation, otherwise 
% R will produce negative numbers. 
% R is not defined at 0 cm-1 
R(l) = 0.0; 
R = R'; 

end 
end 
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function (output] = rotintfg(input); 
% ROTINTFG: rotate interferogram so that 
% function [output] = rotintfg(input); 
% centerburst is at point #1 in the output array. 
% input  unrotated interferogram 
% output rotated interferogram 
% Ron Shaffer Naval Research Laboratory 
% Version 1.0  9/18/97 

% search for centerburst (ZPD) 
[maxval,cburstpos] = max(input); 

% determine length of interferogram 
isize = max(size(input)); 

% now rotate inteferogram around centerburst position (cburstpos) 

output = [input(cburstpos:isize)' input(1:(cburstpos-1))']' ; 
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function [Le,specx] = selfemis(specl,spec2,specl2x,Tl,T2,MaxFreq,npts), 
% SELFEMIS — compute FT-IR instrument self-emission function 
% [Le,specx] = selfemis(specl,spec2,specl2x,Tl,T2,MaxFreq,npts); 
% Ron Shaffer  7/30/98 Version 1.0 
% specl    — blackbody spectrum at temperature Tl (row vector) 
% spec2    — blackbody spectrum at temperature T2 (row vector) 
% specl2x  — x-axis for specl,spec2,speclv,spec2v (row vector) 
% Tl      — blackbody temperature for specl 
% T2       — blackbody temperature for spec2 
% MaxFreq  -- maximum frequency in cm-1 (e.g., 1974.5) 
% npts     — number of spectral points to compute (e.g., 512) 
% Le       — Instrument Self-emission 
% specx    — point spacing (x-axis) of R and Le 
interpflag = 0; 
% compute X-axis values for spectra 
Fres = MaxFreq / (npts-1); 
specx = 0:Fres:MaxFreq; 
% transpose input x-axis and spectra if necessary. 
[nl,n2] = size(specl2x); 
if nl > n2 

specl2x = specl2x'; 
end 
[nl,n2] = size(specl); 
if nl > n2 

specl = specl'; 
end 
[nl,n2] = size(spec2); 
if nl > n2 

spec2 = spec2'; 
end 
clear nl n2 
% Now check if specl2X is the same as our target x-axis 
% if not then interpolate 
if (length(specx) == length(specl2x)) 

if ((sum(specx-specl2x))>0) 
interpflag = 1; 

else 
interpflag = 0; 

end 
else 

interpflag = 1; 
end 

if interpflag == 1 
[junk,temp] = mkintspc2(specl2x,specl,0,MaxFreq,npts); 
specl = temp; 
[junk,temp] = mkintspc2(specl2x,spec2,0,MaxFreq,npts); 
spec2 = temp; 

end 

% Compute instrument Responsivity (R) 

BB1 = blackbody(Tl,npts,Fres); 
BB2 = blackbody(T2,npts,Fres); 
Led) = 0; 
numerl = (specl(2:npts) .* BB2(2:npts)); 
numer2 = (spec2(2:npts) .* BB1(2:npts)); 
denom = spec2(2:npts) - specl (2:npts); 

Le(2:npts) = (numerl-numer2)./denom; 

% transpose and return 

Le = Le'; 
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function [specx,specy,cone,Tt,Tb] = 
synsbdataset(absspcX,absspcY,absspcX2,absspcY2,minTt,maxTt,minTb,maxTb,SNR,R,Le,specxRLe,MaxFreq,npts,ns 
pec,rngseed); 
% SYNSBDATASET — Compute synthetic single-beam data set 
% [specx,specy,cone,Tt,Tb] = synsbdataset(absspcX,absspcY,absspcX2,absspcY2,minTt,maxTt,minTb,maxTb, ... 
% SNR,R,Le,specxRLe,MaxFreq,npts,nspec,seed); 
% Ron Shaffer 12-21-97 Version 1.0 (based on synsbeam2.m) 
% 12-24-97 Version 1.1 (added Gaussian distributed random noise) 
% 1-20-98 Version 1.2 Fixed error in calculation of the 
% output single-beam spectra (specy = r*(Lx+Le)) 
% 1-29-98 Version 1.3 Add noise to Lx rather than final spectrum 
% specx    — output synthetic single beam spectrum x-axis 
% specy    — output synthetic single beam spectra y-axis 
% absspcX  — absorbance spectrum for target analyte x-axis 
% absspcY  — absorbance spectrum for target analyte y-axis 
% absspecX2 — absrorbance spectrum for interferent analyte x-axis 
% absspecY2 — absorbance spectrum for interferent analyte y-axis 
% minTt    — Minimum temperature of target vapor cloud (in C) 
% maxTt    — Maximum temperature of target vapor clound(in C) 
% minTb   — Minimum temperature of background (in C) 
% maxTb    — Maximum temperature of background (in C) 
% SNR     — Target Signal-to-Noise ratio of the single-beam spectra 
% R       — Instrument responsivity 
% specxRLe — x-axis for R and Le 
% Le — Instrument self-emission profile 
% MaxFreq  — maximum frequency in cm-1 (e.g., 1974.5) 
% npts     — number of spectral points to compute (e.g., 512) 
% nspec    — number of single-beam spectra in each of the 4 classes (active, mix, intf, bkgd) 
% rngseed     — seed # for random number generator 

% initialize some parameters 
rngTb = maxTb - minTb; 
rngTt = maxTt - minTt; 
rand('state',rngseed) 

% make sure the passed in spectra are column vectors (i.e., 512 X 1) 
tjl,j2] = size(specxRLe); 
if (jl < j2) 

specxRLe = specxRLe'; 
end 
(jl,j2] = size(R); 
if (jl < j2) 

R = R"; 
end 
[jl,j2] = size(Le); 
if (jl < j2) 

Le = Le'; 
end 
[jl,j2J = size(absspcX); 
if (jl < j2) 

absspcX = absspcX'; 
end 

[jl,j2]   =  size(absspcY); 
if   (jl  <  j2) 

absspcY = absspcY'; 
end 
[jl,j2] = size(absspcX2); 
if (jl < j2) 

absspcX2 = absspcX2'; 
end 

[jl,j2] = size(absspcY2); 
if (jl < j2) 

absspcY2 = absspcY2'; 
end 

% interpolate target and interferent absorbance spectra to desired spectral range 
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Fres = MaxFreq / (npts-1); 
fprintf('Interpolating Target Analyte Library Spectrum \n'); 
[specx,absspcY3] = mkintspc2(absspcX,absspcY,0,MaxFreq,npts); 
fprintf('Interpolating Interferent Library Spectrum \n'); 
[specx,absspcY4] = mkintspc2(absspcX2,absspcY2,0,MaxFreq,npts); 
[jl,j2] = size (specx); 
if (jl < j2) 

specx = specx'; 
end 

[jl,j2] = size(absspcY3); 
if (jl < j2) 

absspcY3 = absspcY3'; 
end 

[jl,j2] = size(absspcY4); 
if (jl < j2) 

absspcY4 = absspcY4'; 
end 

% Now check if specxRLe is the same as our target x-axis 
% if not then interpolate 
if (length(specx) ~= length(specxRLe)) 

fprintf('Interpolating R spectrum \n'); 
[junk,speclb] = mkintspc2(specxRLe,R,0,MaxFreq,npts); 
fprintf('Interpolating Le spectrum \n'); 
[ junk, spec2b] ■= mkintspc2 (specxRLe, Le, 0, MaxFreq, npts) ; 
R = speclb; 
Le = spec2b; 
clear speclb spec2b; 
% rearrange if necessary 
[jl,j2] = size(R); 
if (jl < j2) 

R = R'; 
end 
[jl,j2] = size(Le); 
if (jl < j2) 

Le = Le ' ; 
end 

elseif ((sum(specx-specxRLe))>0) 
fprintf('Interpolating R spectrum \n'); 
[junk,speclb] = mkintspc2(specxRLe,R,0,MaxFreq, npts) ; 
fprintf('Interpolating Le spectrum \n'); 
[junk,spec2b] = mkintspc2(specxRLe,Le, 0,MaxFreq,npts); 
R = speclb; 
Le = spec2b; 
clear speclb spec2b; 
%  rearrange if Lecessary 
if (jl < j2) 

R = R' ; 
end 
[jl,j2] = size(Le); 
if (jl < j2) 

Le = Le ' ; 
end 

end 

% now start to create spectral data set 
% Group 1 contains analyte active only 

% Randomly select analyte concentration 
%   as fraction of library concentration 

concl = 0.1 .* unidrnd(10,nspec,1); % cone values 0.1, 0.2, ... 1.0 
tl = absspcY3 * concl'; 

% convert spectra to transmittance spectra 
tspecy =10."(-tl); 
clear tl; 
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% randomly select cloud and background temperature 
Tbl = (rand(nspec,l) .* rngTb) + minTb; 
Ttl = (rand(nsped) .* rngTt) + minTt; 

% now compute blackbody spectra for background and analyte 
[Lb] = blackbody2(Tbl',npts,Fres); 
[Lt] = blackbody2(Ttl*,npts,Fres); 

% compute apparent radiance (Lx) 

Lx = (tspecy .* Lb') + ((1 - tspecy) .* Lt'); 

% Rearrange spectra to make sure everything is a column vector 
[jl, j2] = size(Lx) ; 
if (jl < j2) 

Lx = Lx'; 
end 

[jl,j2] = size(specx); 
if (jl < j2) 

specx = specx'; 
end 

% Add noise 
meanspec = mean(Lx'); 
[signal,wavpos] = max(meanspec); 
Lx = Lx + (randn(npts,nspec).*(signal/SNR)); 

% Compute Single-beam spectrum (specy or Sx) 

specyl = (R*ones(l,nspec)) .* (Lx + (Le * ones(l,nspec))); % end of group 1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Group 2 contains analyte active and 
% interferent mixtures 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Randomly select analyte and interferent concentrations 
% as fraction of library concentration 

conc2a = 0.1 .* unidrnd(10,nspec,1); % cone values 0.1, 0.2, ... 1.0 
conc2b = 0.1 .* unidrnd(10,nspec,1); % cone values 0.1, 0.2, ... 1.0 
tl = absspcY3 * conc2a'; 
t2 = absspcY4 * conc2b',- 
t3 = tl + t2; % add analyte and interferent spectra together 

% convert spectra to transmittance spectra 
tspecy = 10.^(-t3); 
clear tl t2 t3; 

% randomly select cloud and background temperature 
Tb2 = (rand(nspec,l) .* rngTb) + minTb; 
Tt2 = (randlnspec,1) .* rngTt) + minTt; 

% now compute blackbody spectra for background and analyte 
[Lb] = blackbody2(Tb2',npts,Fres); 
[Lt] = blackbody2(Tt2',npts,Fres); 

% compute apparent radiance (Lx) 

Lx = (tspecy .* Lb') + ((1 - tspecy) .* Lt'); 

% Rearrange spectra to make sure everything is a column vector 
[jl, j2] = size(Lx); 
if (jl < j2) 

Lx = Lx'; 
end 
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[jl,j2] = size(specx); 
if (jl < j2> 

specx = specx'; 
end 

% Add noise 
meanspec = mean(Lx'); 
[signal,wavpos] = max(meanspec); 
Lx = Lx + (randn(npts,nspec).*(signal/SNR)); 

% Compute Single-beam spectrum (specy or Sx) 

specy2 = (R*ones(l,nspec)) .* (Lx + (Le * ones(l,nspec))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%« 
% Group 3 contains interferent spectra 

% Randomly select interferent concentration 
% as fraction of library concentration 

conc3 = 0.1 .* unidrnd(10,nspec,l); % cone values 0.1, 0.2, ... 1.0 
tl = absspcY4 * conc3'; 

% convert spectra to transmittance spectra 
tspecy = 10."(-tl); 
clear tl; 

% randomly select cloud and background temperature 
Tb3 = (rand(nspec,1) .* rngTb) + minTb; 
Tt3 = (rand(nspec,1) .* rngTt) + minTt; 

% now compute blackbody spectra for background and analyte 
[Lb] = blackbody2(Tb3',npts,Fres); 
[Lt] = blackbody2(Tt3',npts,Fres); 

% compute apparent radiance (Lx) 

Lx = (tspecy .* Lb') + ((1 - tspecy) .* Lt'); 

% Rearrange spectra to make sure everything is a column vector 
[jl,j2] = size(Lx); 
if (jl < j2) 

Lx = Lx'; 
end 

[jl,j2] = size(specx); 
if (jl < j2) 

specx = specx'; 
end 

% Add noise 
meanspec = mean(Lx'); 
[signal,wavpos] = max(meanspec); 
Lx = Lx + (randn(npts,nspec).*(signal/SNR)) ; 

% Compute Single-beam spectrum (specy or Sx) 

specy3 = (R*ones(1,nspec)) .* (Lx + (Le * ones(1,nspec))); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% backgrounds 

conc4 = zeros(nspec,1); 
tl = absspcY1! * conc4 ' ; 

% convert spectra to transmittance spectra 
tspecy = 10."(-tl) ; 
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clear tl; 

% randomly select cloud and background temperature 
Tb4 = (rand(nspec,l) .* rngTb) + minTb; 
Tt4 = (rand(nspecl) .* rngTt) + minTt; 

% now compute blackbody spectra for background and analyte 
[Lb] = blackbody2(Tb4'(npts,Fres); 
[Lt] = blackbody2(Tt4',npts,Fres); 

% compute apparent radiance (Lx) 

Lx = (tspecy .* Lb') + ((1 - tspecy) .* Lt'); 

% Rearrange spectra to make sure everything is a column vector 
[jl,j2] = size(Lx); 
if (jl < j2) 

Lx = Lx'; 
end 

[jl,j2] = size(specx); 
if (jl < j2) 

specx = specx'; 
end 

% Add noise 
meanspec = mean(Lx'); 
[signal,wavpos] = max(meanspec); 
Lx = Lx + (randn(npts,nspec).*(signal/SNR)); 

% Compute Single-beam spectrum (specy or Sx) 

specy4 = (R*ones(l,nspec)) .* (Lx + (Le * ones(l,nspec))); 

specy = [specyl specy2 specy3 specy4]; % group spectra together 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% return final data set of spectra 
cone = [concl conc2a conc2b conc3]; 
Tt = [Ttl Tt2 Tt3 Tt4]; 
Tb = [Tbl Tb2 Tb3 Tb4]; 
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function [specx,specy, Lt, Lb,Lx,R,Le] = 
synsbeam(absspcX, absspcY, Tt,Tb, sped, spec2,specl2x,Tl,T2,MaxFreq, npts) ; 
% SYNSBEAM: compute synthetic single beam spectra 
% from absorbance spectra.  This version also computes responsivity and self-emission. 
% [specx, specy, Lt, Lb, Lx,R, Le] = synsbeam(absspcX,absspcY,Tt,Tb, sped, spec2, spec 12x,Tl,T2,MaxFreq,npts) 
% Ron Shaffer  11-6-97 Version 1.0 
% 1-20-97 Version 1.1 Fixed error in calculation of the 
% output single-beam spectrum (specy = r*(Lx+Le)) 
% 2-23-98 Added more error checking 
% 7-30-98 Added more error checking.  To calculate a blackbody spectrum 
% (i.e., no analyte) absspcX must be an empty matrix [].  absspcY and Tt are then 
% set to the appropriate default values 
% specx    — output synthetic single beam spectrum x-axis 
% specy    — output synthetic single beam spectrum y-axis 
% absspcX  — absorbance spectrum for target analyte x-axis 
% absspcY  — absorbance spectrum for target analyte y-axis 
% Tt      — Temperature of target vapor cloud (in C) 
% Tb — Temperature of background (in C) 
% sped    — blackbody spectrum at temperature Tl 
% spec2    — blackbody spectrum at temperature T2 
% specl2x  — x-axis for sped and spec2 
% Tl      — blackbody temperature for sped 
% T2      — blackbody temperature for spec2 
% MaxFreq  — maximum frequency in cm-1 (e.g., 1974.5) 
% npts     — number of spectral points to compute (e.g., 512) 

Fres = MaxFreq / (npts-1); 
specx = 0:Fres:MaxFreq; 

if (isempty(absspcX) == 1) 
absspcX = specx; 
absspcY = zeros(1, npts); 
Tt = 0; 

end 

% more error checking to make sure that absspcx and absspcy are 
% row vectors (i.e., 513 rows x 1 column) 

fjl,j2] = size(absspcX); 
if (jl>j2) 

absspcX = absspcX'; 
end 

[jl,j2] = size(absspcY); 
if (jl>j2) 

absspcY = absspcY'; 
end 

% interpolate absorbance spectrum to desired spectral range 
% if necessary 

if (length(absspcX) ~= length(specx)) 
[specx,absspcY] = mkintspc(absspcX,absspcY,0,MaxFreq,Fres); 

end 

if sumfspecx - absspcX) > 0 
[specx,absspcY] = mkintspc(absspcX,absspcY,0,MaxFreq, Fres) , 

end 

% convert absorbance spectra to transmittance spectra 

tspecy = 10. A (-absspcY) ,- 

% now compute blackbody spectra for background and analyte 
[Lb] = blackbody(Tb,npts,Fres); 
[Lt] = blackbody(Tt,npts,Fres); 

% compute apparent radiance (Lx) 
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Lx = (tspecy .* Lb) + ((1 - tspecy) .* Lt); 

% Now check if specl2X is the same as our target x-axis 
% if not then interpolate 

if length(specx) ~= length(specl2x) 
[junk,speclb] = mkintspc (specl2x, sped, 0,MaxFreq, Fres); 
[junk,spec2b] = mkintspc(specl2x,spec2,0,MaxFreq,Fres) ; 
sped = speclb; 
spec2 = spec2b; 
clear speclb spec2b; 

elseif ((sum(specx-specl2x))>0) 
[junk,speclb] = mkintspc(specl2x,sped,0,MaxFreq,Fres) ; 
[junk,spec2b] = mkintspc(specl2x,spec2,0,MaxFreq,Fres); 
sped = speclb; 
spec2 = spec2b; 
clear speclb spec2b; 

end 

% more error checking to make sure that sped and spec2 are 
% row vectors (i.e., 513 rows x 1 column) 

[jl,j2] = size(specl); 
if (jl>j2) 

sped = sped'; 
end 

[jl,j2] = size(spec2); 
if (jl>j2) 

spec2 = spec2'; 
end 

% Compute instrument Responsivity (R) and self-emission (Le) 

[R] = responsivity(specl,spec2,specl2x,Tl,T2,MaxFreq,npts)'; 
[Le] = selfemis(specl,spec2,specl2x,Tl,T2,MaxFreq,npts)'; 

% Compute Single-beam spectrum (specy or Sx) and return 

specy = R .* (Lx + Le); 
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function [specx,specy] = synsbeam2(absspcX,absspcY,Tt,Tb,R,Le,specxRLe,MaxFreq,npts); 
% SYNSBEAM2 — compute synthetic single beam spectra 
% from absorbance spectra.  This version requires R and Le as inputs unlike "synsbeam" 

[specx,specy 
Ron Shaffer 

% 
% 
% 
% 
% 
% specx 
% specy 
% absspcX 
% absspcY 
% Tt 
% Tb 
% R 
% Le 
% specxRLe 
% MaxFreq 
% npts 

synsbeam2(absspcX,absspcY,Tt,Tb,R,Le,specxRLe, MaxFreq, npts); 
Naval Research Laboratory 

12-9-97 Version 1.0 
1-20-97 Version 1.1 Fixed error in calculation of the 
output single-beam spectrum (specy = r*(Lx+Le)) 

7-30-98 Added more error checking.  To calculate a blackbody spectrum 
(i.e., no analyte) absspcX must be an empty matrix [].  absspcY and Tt are then 
set to the appropriate default values 

— output synthetic single beam spectrum x-axis 
— output synthetic single beam spectrum y-axis 
— absorbance spectrum for target analyte x-axis 
— absorbance spectrum for target analyte y-axis 
— Temperature of target vapor cloud (in C) 

— Temperature of background (in C) 
— Instrument responsivity 

— Instrument self-emission profile 
— x-axis for R and Le 
— maximum frequency in cm-1 (e.g., 1974.5) 
— number of spectral points to compute (e.g., 512) 

Fres = MaxFreq / (npts-1); 
specx = (0:Fres:MaxFreq)'; 
if (isempty(absspcX) == 1) 

absspcX = specx; 
absspcY = zeros(npts,1); 
Tt = 0; 

end 

% make sure the passed in spectra are column vectors (i.e., 512 X 1) 
[jl,j2] = size(specxRLe); 
if (jl < j2) 

specxRLe = specxRLe'; 
end 
[jl,j2] = size(R); 
if (jl < j2) 

R = R'; 
end 
I jl,j2] = size(Le); 
if (jl < j2) 

Le = Le'; 
end 
[jl,j2] = size(absspcX); 
if (jl < j2) 

absspcX = absspcX'; 
end 

[jl,j2] = size(absspcY); 
if (jl.< j2) 

absspcY = absspcY'; 
end 

% interpolate absorbance spectrum to desired spectral range 
% if necessary 

if (length(absspcX) ~= length(specx)) 
[specx,absspcY] = mkintspc2(absspcX,absspcY,0,MaxFreq,npts); 
absspcY = absspcY'; 

elseif sum(specx - absspcX) > 0 
[specx,absspcY] = mkintspc2(absspcX,absspcY,0,MaxFreq,npts); 
absspcY = absspcY'; 

end 

% convert absorbance spectra to transmittance spectra 
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tspecy = lCM-absspcY); 

% now compute blackbody spectra for background and analyte 
[Lb] = blackbody(Tb,npts,Fres)'; 
[Ltl = blackbody(Tt,npts,Fres)'; 

% compute apparent radiance (Lx) 
Lx = (tspecy .* Lb) + ((1 - tspecy) .* Lt); 

% Rearrange spectra to make sure everything is a column vector 
[jl,j2] = size(Lx); 
if (jl < j2) 

Lx = Lx"; 
end 

[jl,j2] = size(specx); 
if (jl < j2) 

specx = specx'; 
end 

% Now check if specxRLe is the same as our target x-axis 
% if not then interpolate 
if (length(specx) ~= length(specxRLe)) 

(junk,speclb] = mkintspc2(specxRLe,R,0,MaxFreq,npts); 
[junk,spec2b] = mkintspc2(specxRLe,Le,0,MaxFreq,npts); 
R = speclb; 
Le = spec2b; 
clear speclb spec2b; 
% rearrange if necessary 
[jl,j2] = size(R); 
if (jl < j2) 

R = R'; 
end 
[jl,j2] = size(Le); 
if (jl < j2) 

Le = Le'; 
end 

elseif ((sum(specx-specxRLe))>0) 
[junk,speclb] = mkintspc2(specxRLe,R,0,MaxFreq,npts); 
[junk,spec2b] = mkintspc2(specxRLe,Le,0,MaxFreq,npts); 
R = speclb; 
Le = spec2b; 
clear speclb spec2b; 
%  rearrange if necessary 
if (jl < j2) 

R = R'; 
end 
[ jl,j2] = size(Le); 
if (jl < j2) 

Le = Le'; 
end 

end 

% Compute Single-beam spectrum (specy or Sx) 
specy = R .* (Lx + Le) ; 
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function [output,apdfunc] = triapod(input,atype) 
% TRIAPOD:  Triangular apodization on an interferogram 
% output = triapod(input,atype) 
% atype is an optional parameter (see comments for version 1.1) 
% Ron Shaffer — Naval Research Laboratory 
% Version 1.0  4/17/98. Original Code — based on trapod.f by 
% Gary Small at Ohio University 
% Version 1.1  4/24/98. Incorporated code for trapod2.f by 
% Gary Small at Ohio university.  When 
% atype == 1 weight apodization function ("left-ramp function" 
% of mostly single-sided interferogram to ensure 
% photometric accuracy (see page 31 and 32 of 
% Griffiths and DeHaseth, "Fourier Transform 
% Infrared Spectroscopy"). When atype == 2 
% weigth points near centerburst equally.  For 
% double-side and purely single-sided interferograms 
% atypel and atype2 are equivalent.  atype==l is 
% the default setting. 
% 

if (nargin==l) 
atype =1; % default setting 

end 

% search for centerburst (ZPD) 
[maxval,cburstpos] = max(input); 

% determine length of interferogram 

npts = length(input); 

% initialize apodization function 
apdfunc = zeros(npts,1); 

% First check to see whether this is a single or double 
% sided interferogram 

fract = (min([cburstpos (npts-cburstpos)])) / npts; 

if fract < 0.33 
single_sided = 1; 

else 
single_sided = 0; 

end 

% apodize up to centerburst.  Handle case of single-sided 
% and double-sided differently 
if cburstpos > 1 

if (single_sided == 1) & (atype == 1) 
firsthalf = 2*cburstpos-l; % see page 31, Griffeths and DeHaseth, 1986 

else 
firsthalf = cburstpos; 

end 
i = 1:firsthalf; 
apdfunc(l:firsthalf) = i./firsthalf; 

else 
firsthalf = 1; % truely one-sided interferogram if cburstpos ==1 
apdfunc(1) = 1; 

end 
% now derive apodize function for backside 
secondhalf = npts-firsthalf; 
i = (firsthalf+1):npts; 
j = 1:secondhalf; 
apdfunc(i) = (npts-i)./secondhalf; 
% now multiply apodization function by original interferogram and return 
output = input .* apdfunc; 

58 


