
AFRL-IF-RS-TR-1998-233
Final Technical Report
January 1999

Mitchell J. Anderson and Robert Mathews

ALGEBRAIC AND TOPOLOGICAL STRUCTURE
OF QOS (END TO END) WITHIN LARGE SCALE
DISTRIBUTED INFORMATION SYSTEMS l"*

CD
Mitchell J. Anderson, Consultant CO

CO
©
10

o
CO

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. CD

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-23 3 has been reviewed and is approved for publication.

APPROVED: \JJ >-l^^
PATRICK M. HURLEY
Project Engineer

FOR THE DIRECTOR:
WARREN H. DEBANY JR.
Technical Advisor, Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approval
OMBNo, 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden est'snate or any other aspect of this collection of information, including suggestions for reducmg this burden, to Washington Headquarters Services. Directorate for Information
Operations and Reports. 1215 Jefferson Davis Highway. Suits 1204, Arlington. VA 22202-4302, and to the Office ol Management and Budget, Paperwork Reduction Project 10704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (leaveblank) 2. REPORT DATE

January 1999
3. REPORT TYPE AND DATES COVERED

Final Jan 98 - Jul 98
4. TITLE AND SUBTITLE

ALGEBRAIC AND TOPOLOGICAL STRUCTURE OF QOS (END TO END)
WITHIN LARGE SCALE DISTRIBUTED INFORMATION SYSTEMS
6. AUTHOR(S)

Mitchell J. Anderson and Robert Mathews

5. FUNDING NUMBERS

C - F30602-98-C-0035
PE - 62702F
PR - ALGI
TA - TO
WU - PI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Mitchell J. Anderson, Consultant
HCR - Box 5692
Keaau HI 96749

!. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/IFGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-233

It. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Patrick M. Hurley/TFGA/(315) 330-3624

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 mrds/

End-to-end quality of service (QoSete) in large scale distributed information systems (DIS) is essential for intelligent system
acquisition and design. Without well-developed mechanisms to measure system performance in terms of user requirements,
systems can only be built in an ad-hoc manner. The QoSete model formalizes the identification of user requirements and
provides performance metrics that are based on empirically measurable attributes that indicate how well user requirements
have been met. These performance metrics manifest through the Benefit Function, which is then used for resource
dimensioning. Ideally, large scale DIS should be designed and built to efficiently match both system and capital resources to
pre-defined user requirements. This avoids users receiving unacceptably low levels of service and/or expending unnecessary
capital. The current barriers to achieving QoSete include a lack of understanding of user requirements, the lack of a
practical interface between the users and system designers, the lack of a common framework for integration of concepts
between the various areas of expertise within the system, and the lack of a mature composability theory that allows such
systems to be designed in a modular sense. The work herein addresses to some degree (primarily at a high-level) each of
these obstacles, as well as providing insight into a number of related issues.

14. SUBJECT TERMS

Distributed Information Systems (DIS), Quality of Service (QoS)

15. NUMBER OF PAGES

44
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 IRev. 2-89) (EGI
Prescribed by ANSI Std. 239.18
Designed using Perform Fro, WHS/DIOR, Del 94

Acknowledgments

The authors would like to acknowledge the assistance provided by both Patrick Hurley
and Thomas Lawrence, of AFRL/IF, who provided support in the form of much needed
and stimulating brainstorming sessions.

CONTENTS

EXECUTIVE SUMMARY lv

1.0 INTRODUCTION 1

2.0 USER REQUIREMENTS 1
2.1 Responsiveness 2
2.2 Interoperability 2
2.3 Coverage and Connectivity 3
2.4 Mobility 3
2.5 Human/Environmental Interaction 3
2.6 Measurability 3
2.7 Affordability 4
2.8 Structural Rules and Conventions 4
2.9 Flexibility 4
2.10 Security 4
2.11 Survivability 5
2.12 Summary •'■ 5

3.0 THE LAWRENCE QoS MODEL 5

4.0 THE ROLE OF TPA IN DELIVERING QoSete 6

5.0 RESEARCH RESULTS 8
5.1 Approach • 8
5.2 The Benefit Function 9
5.3 QoSete - A posteriori Definition 10

5.4 QoSete - A priori Definition & the Utility Function 11
5.5 Application/System Decomposition 12
5.6 Composability 14
5.7 Algebraic Structure 15
5.8 Resource Management 17
5.9 Topological Structure 19
5.10 Statistical Considerations 21
5.11 Logistical Considerations 22

XI

5.12 Global Perspective 23
5.12.1 Global Benefit Function 23
5.12.2 Global Utility Function 24
5.12.3 Global Composability/Algebraic Structure 24
5.12.4 Global Adaptive Resource Management 25

5.13 SUMMARY 26

5.14 FUTURE DIRECTIONS 26

REFERENCES 27

Notation 29

Figures

1 The Role of TPA - Equating System Capabilities to User Requirements .. 8
2 The Benefit Function 10
3 The Utility Function 12
4 Multi-Level Resource Management 19

iii

Executive Summary

End-to-end quality of service (QoSete) in large scale distributed information systems (DIS)
is essential for intelligent system acquisition and design. Without well-developed
mechanisms to measure system performance in terms of user requirements, systems can
only be built in an ad-hoc manner. The QoSete model formalizes the identification of user
requirements and provides performance metrics that are based on empirically measurable
attributes that indicate how well user requirements have been met. QoSete is a special case
of QoS in the sense that QoS metrics have values for each component/subsystem in a
system, while QoSete metrics specifically refer to end-to-end system performance. In this
sense QoS is more general and can be applied at both the system and subsystem level.
Ideally, QoSete metrics define end-to-end performance in terms of the component QoS
metrics. QoSete performance metrics manifest through the Benefit Function, which is then
used for resource dimensioning. Ideally, large scale DIS should be designed and built to
efficiently match both system and capital resources to pre-defined user requirements.
This avoids users receiving unacceptably low levels of service and/or expending
unnecessary capital. The current barriers to achieving QoSete include a lack of
understanding of user requirements, the lack of a practical interface between the users and
system designers, the lack of a common framework for integration of concepts between
the various areas of expertise within the system, and the lack of a mature composability
theory that allows such systems to be designed in a modular sense. The work herein
addresses to some degree (primarily at a high-level) each of these obstacles, as well as
providing insight into a number of related issues.

This report presents a conceptual view of how the Lawrence QoS model can be used as an
appropriate point of departure for providing a common framework for equating
system/subsystem capabilities to user requirements. This is achieved by first presenting a
summary of user requirements, relating whenever possible these requirements to the
QoSete model. Following the section on user requirements is an outline of the Lawrence
QoS model and a discussion of the precise role it plays in the delivery of QoSete. Such a
role is heavily dependent on the development of the Benefit Function and related
mechanisms. This 'individual' Benefit Function exists for each user/application/time and
is used to quantify the subjective benefit to the user executing an application at a
particular point in time.

Two distinct, yet closely related, perspectives were identified from which to address
QoSete- In the passive, a posteriori (past tense) perspective, QoSete is simply the benefit
perceived by the user from an already executed application. This model of QoSete is used
to gain insight into the more dynamic processes required for adaptive resource
management. The Utility Function is then developed to map system resources to
application tasks, using a decomposition of applications and systems/sub-systems into
logical tasks and the corresponding system components used to execute these tasks. The

XV

Utility Function composed with the Benefit Function yields the QoSete mapping of system
resources, relative to each application, to user benefit and hence provides a measurement
of system performance in terms of satisfying user requirements.

The decomposition of applications into logical tasks, together with the subsequent
mapping to system resources via the Utility Function, provides a basis for describing
QoSete in terms of the QoS delivered by each component. This description takes form in
the section on Composability and concludes with a presentation on Algebraic Structure.
Each QoSete attribute requires identification of its aggregate values in terms of its
component values. An introduction into this process is presented here, with preliminary
results provided for the class-level attributes. Further identification depends first on the
identification of each QoSete attribute through the decomposition of the high-level
attribute classes.

A model for adaptive resource management is then presented which outlines a strategy
for multi-level resource management. This model requires that application tasks be
further grouped into sub-sequences of tasks, with each sub-sequence under the control of
a single resource manager. Requests for required levels of performance (given in terms
of the QoSete attributes) travel from higher level managers down, with possible execution
"paths" based on available resources traveling back up. A mathematical, topological
structure for the classification and comparison of such paths is then presented, along with
statistical and logistical considerations.

The final section addresses the difference between QoSete for the individual user and
QoSete for an aggregate community of users. Just as each individual user perceives a
subjective benefit from each execution of an application, so too does a community of
users perceive a subjective benefit from the aggregate execution of a set of applications at
each point in time. This global level of analysis extends to the Utility Function and to
adaptive Resource Management as well. Strategies for identifying overall benefit to a
user community in terms of individual benefit are presented. This leads to a definition for
Global QoSete and a discussion of tradeoffs on a global scale.

Complex DIS are very costly and inefficient unless they can effectively satisfy very
precise user requirements. These requirements are becoming much more demanding,
both in terms of the sophistication of the applications the user community employs to
complete its business, and the sheer magnitude of the user community itself. The next
generation of users requires information systems to be able to prioritize both users and
applications, and to dynamically re-allocate resources to provide assurances that the
highest priority jobs receive the highest probability of completion, while at the same time
allowing lower priority jobs to gracefully shut down. Such decisions, addressing the
tradeoff between fixed resources, can be made intelligently only if quantifiable
measurements of the effects due to such actions can be [pre] determined. This is the role

that QoSete plays, providing a metrics-based methodology and theory for designing and
implementing complex DIS and for measuring the success thereof.

vx

1.0 Introduction

This Final Technical Report summarizes the work performed under Contract No. F30602-
98-C-0035, between Mitchell J. Anderson, Consulting, and AFRL/IF from Jan. 28, 1998
through August 28, 1998; and is designated as CLTJSf 0003, as stipulated in section B of
the contract. Patrick Hurley, AFRL/IFGA, is the program manager for this contract.

The primary goals of this project are to identify user/user-class requirements within
complex DIS, the relationship between these requirements and end-to-end Quality of
Service (QoSete), and a mathematical foundation and structure for such QoSete in complex
distributed information systems (DIS). For a comprehensive survey of QoS
Architectures, together with an extensive bibliography and highlights of many current
efforts, approaches, and concerns regarding QoS, see [CA96]. This particular research
effort was designed to develop a high-level approach to mathematically describing the
quality of service model, and takes as a point of departure the Lawrence QoS Model,
introduced by Thomas Lawrence in [L97] and since refined and developed in
[SCDSL97], [CSSDL97], and [WNCHL97], among others.

This report proceeds by first outlining the user requirements identified as most relevant to
the quantification and mathematical development of QoS theory, together with an
overview of the Lawrence QoS Model and its role in delivering QoSete. A presentation of
the [user] Benefit function, as well as two perspectives of QoSete follows this general
overview. The passive, a posteriori (past-tense) perspective is descriptive in nature,
simply recording the level of QoSete delivered to the user, and forms a foundation for the
second perspective. The active, a priori (future) perspective is based on the
decomposition of both applications and system resources and the corresponding mapping
between the two, and takes into account the statistical nature of the QoS attributes. The a
priori perspective leads to the definition of the Utility Function, which maps system
resources to QoSete attributes, and subsequently to the development of a multi-level
Resource Management methodology. A rudimentary composability theory is presented
that describes end-to-end system QoS in terms of sub-system QoS, followed by an
algebraic structure that is closely related to composability. Following a section
addressing the topological structure of resource management (from a
distance/metric/comparison-based perspective) the report concludes with a presentation
of a global perspective to both QoSete and resource management.

2.0 User Requirements

The primary goal of QoSete is to satisfy end-user requirements, and the primary goal of
this research is to develop the mathematical foundation for the structure upon which
QoSete is based. In order for the resulting mathematical foundation to be relevant, it must
be flexible enough to incorporate as many of the desirable user requirements as possible.

It must also facilitate the measurement of the effectiveness or level of satisfaction (from a
user perspective) relative to the delivery of such requirements. Therefore, the first step in
implementing QoSete within large scale DIS is identifying user requirements. Rather than
providing an exhaustive survey of such requirements, the authors present a summary of
their findings directly below. The goal here was to capture the essence of large scale DIS
as a system of sub-systems in order to enable the subsequent building of the mathematical
structure to support QoSete within such systems. The authors identified the primary user
requirements and classified them into eleven not necessarily mutually exclusive areas
including responsiveness, interoperability, coverage and connectivity, mobility,
human/environmental interaction, measurability, affordability, structural rules and
conventions, flexibility, security, and survivability. These user requirements were
catalogued through meetings with key user communities including government (tri-
service, JS, TBC, DARPA, NIST, PACOM), academia (Syracuse, GMU, Penn State,
LSU) and industry (Bell Atlantic, HP, Sun Microsystems, AT&T, Cabletron, MITRE,
BBN).

2.1 Responsiveness
Responsiveness is closely related to QoSete in the sense that it addresses the system's
ability to respond or to deliver information in a manner that is acceptable to the user. For
example, users expect the system to respond in a timely manner, to deliver the right
amount of data with little or no variance in either arrival time or the quantity of data
delivered, and to be free from errors. In order to maximize system performance, this
QoSete must be delivered in an efficient manner. Thus, since system resources will
always be finite and hence limited, systems must develop fair preemptive capabilities.
They must have multi-level preemption capabilities to handle national security issues as
well as assuring that the highest priority tasks correspond to those with the highest
probability of completion. Service level agreements between the user and the system,
designed with an understanding from both sides of what is desired and what can be
'guaranteed', must be developed. If these agreements are coupled with user friendly
feedback from the network regarding demand and available resources, the user could
possibly become proactive in helping to increase responsiveness on a real time basis.

2.2 Interoperability
Users are primarily interested in the interoperability of the information itself, not with
that of the equipment. They want to be able to integrate information from multiple
distributed sources, a capability sometimes referred to as All Source Fusibility.
Information today, especially within C2 operations, can arrive quickly from a variety of
sources, and in a variety of formats. Objects and/or functions from one application need
to be able to transport, in a modular manner to other applications. Further, information
that is provided at one platform must be consistent with that provided at other platforms.
This sort of information portability is evidenced today in an introductory sense through
middleware products such as CORBA, which assures that data precision arrives in a
consistent manner. Future applications will require much more flexibility than the static

precision offered/required by CORBA. A well-defined and developed QoSete theory will
assist in this process by providing a common framework and lexicon from which to work.

2.3 Coverage and Connectivity
With respect to coverage and connectivity, users want access to information on a global
scale, available in the remotest regions. This is true whether or not the user is from the
military or civilian population. This ubiquitous coverage and connectivity should include
both push and pull capabilities and should be re-configurable in real time in order to
facilitate the dynamic nature of information operations. The implications to QoSete here
are that regardless of the location, the user requires access to information while
consistently maintaining high levels of QoSete-

2.4 Mobility
Users are particularly interested in access to information on a mobile basis, the transition
from static to mobile being transparent in nature. The philosophy here is that the user and
not the computer is the end component in the system. Satellite technology will introduce
bandwidth and other restrictions, making it necessary to be much more aware of the need
to match functionality to system resources. Thus, a robust methodology for resource
management is a necessity with respect to mobility.

2.5 Human/Environmental Interaction
This area of requirements is related to the users' desire for user-friendly systems. Users
want systems in which they can quickly learn the basics, utilizing such features as 'just in
time' learning. This area introduces QoSete from a utility perspective, but remains
relevant with respect to the usual QoSete attributes of Timeliness, Precision, and Accuracy
(TPA). In particular, users want to be provided just the right amount of information, not
so much as to be overwhelmed, but not so little as to be unable to successfully complete
the mission at hand. This relates directly to the precision attribute in TPA. In this same
light, users want a set of core functions that cross different applications, so that they are
not forced to repeatedly re-learn new functions. Further, users want the system to be
intelligent in the sense that it should know each user's profile so that it can respond to the
individual user's needs automatically.

2.6 Measurability
Measurability is a technical requirement from the user, stemming from the fact that
advanced capabilities with respect to QoSete cannot be delivered otherwise. Further, from
the users' perspective, if more feedback was available to the user regarding excessive
system load and anticipated low-level performance, the user could intelligently respond
by re-apportioning application loads, shutting down the unnecessary applications to better
ensure the successful completion of the more important functions. This goes hand in
hand with the type of resource management discussed in detail below, and speaks to the
need for prioritization, preempt-ability, and paying for service, all of which are

interrelated. One of the ultimate goals of QoSete is to provide an idea of what constitutes
'guaranteed' service and how one might go about the necessary negotiation.

2.7 Affordability
In effect, affordability is tied directly to the technical problem of integration. The user
wants to utilize COTS and GOTS products because they are inexpensive and they work
very well when limited to the jobs for which they were originally designed. With respect
to QoSete, such integration within heterogeneous systems can be affordably achieved only
with a clear understanding of the resulting system performance, where performance is
defined in terms of user requirements. One way to keep the costs associated with system
evolution down is to involve the user whenever possible, particularly allowing the user to
extend the life of applications by facilitating the ability to contribute to application design
and modification.

2.8 Structural Rules and Conventions
In order for systems to function more effectively, it is imperative that both the user and
the provider know what is and is not allowed. Thus, as QoSete and the associated resource
management mechanisms are developed, associated rules as well as enforcement
mechanisms also need to be developed. To assist this process, the system needs to
include the necessary capabilities to develop audit trails that are designed around the
QoSete attributes, and finally to provide automatic management capabilities to deal with
the inherent instability associated with the complexity of distributed systems.

2.9 Flexibility
Flexibility again addresses the user-friendliness of the system, but from a more dynamic
perspective. Users want upgrade-ability, as well as backward compatibility. They want
systems that are designed in a modular manner, allowing them to scale as necessary as
well as making them easy to design, repair, and upgrade. They want things simple. They
want nomadic computing and communications to be transparent, as well as QoSete

requirements such as negotiation of services. Further, they want new applications and
services to appear in a much more fluid manner as opposed to new capabilities suddenly
appearing, requiring the user to quickly adjust mid-stream. If QoSete mechanisms are to
be introduced successfully they will need to take into account these user requirements.

2.10 Security
Users want assurances that information received has not been maliciously altered in any
manner during transit. They also want authentication and non-repudiation 'guarantees'
that indicate whether or not information received originated from the intended source, and
whether or not information sent will be accepted. Users also want feedback verifying that
desired events actually occurred. Authentication and non-repudiation need to be multi-
level, time synchronized, and role based. Users need to be able to ensure that
information is made available only to those for which it was intended. These issues are
closely related to all three classes of QoSete attributes described below, given that it

appears that each property can be delivered through the appropriate manipulation of one
or more attribute.

2.11 Survivability
This user requirement speaks directly to the issue of QoSete in the face of anomalies.
Users want information systems to continue providing services despite adverse
conditions. They want to be able to demand more and more from systems. When
systems fail to keep up, they want them to respond in a user-friendly manner, gracefully
degrading services, allowing less important functions the time necessary to shut down,
shifting limited resources to the more important applications. Assurances of survivability
should be given through user-system agreements, with each set of user/user-class
requirements contained in user profiles. These are precisely the types of QoSete issues
that the resource management mechanisms need to address. Users would also like
feedback mechanisms so that they can proactively take part in the management process.

2.12 Summary
The user requirements presented above include a number of recurring themes, most of
which are directly related to the QoSete model. The user community wants systems to be
receptive to their needs; they want quality of service capabilities, better utilization of
limited resources, and active participation. They want the mechanisms enabling these
capabilities to be transparent to the user. In order to achieve these goals, much more
dynamic information needs to be made available to the appropriate party(s), either to the
user, the resource manager, or both. Given the fact that systems will continue to grow,
and that the complexity of applications will continue to increase the load on systems that
are already pushed to their limit, it becomes increasingly important to develop
mechanisms that will more efficiently match user demands to system capabilities, or vice-
versa. Preemption mechanisms need to be developed to enable those functions that are
most critical to mission success to have the highest probability of completion. The
remainder of this report illustrates that these user requirements correspond very closely to
the goals of QoSete.

3.0 The Lawrence QoS Model

The Lawrence QoS Model states that the different levels of service provided to individual
users/user-classes through the execution of applications within complex distributed
information systems can be completely described in terms of the three quantifiable QoS
attributes, Timeliness (T), Precision (P), and Accuracy (A). Timeliness in this case
describes when data is produced, how long is required to transport data from point A to
point B, the amount of variance in the data arrival times, etc. Precision describes the
quantity of data produced or transported and is directly related to the amount of detail
delivered by applications. Accuracy refers to the bit error associated with the data
produced or transported. The hypothesis of the Lawrence QoS Model is that each user
requirement falls within one of these three classes of QoS attributes. One essential task

not addressed within this research, therefore, is to identify the decomposition of the three
classes relative to the set of user requirements.

One assumption of the Lawrence QoS Model is that two executions of the same
application can receive different levels of QoSete only if they differ in at least one aspect
of their timeliness, precision, or accuracy. For example, one might provide more detail
(i.e. a higher level of precision), less bit errors (a higher level of accuracy), or less latency
(a higher level of timeliness). The level of QoSete a user receives from a particular
execution of an application is both subjective and objective. It is subjective in the sense
that each desired or perceived level of QoSete depends on the particular user and may
change over time. It is objective in the sense that the values for T, P, and A can be
empirically measured, independent of the user, the time of execution, or the resources
used to deliver the application. In effect, these attributes are mathematically metrizable.
The Lawrence QoS model is based on the following three principles:

1. QoSete is meaningless unless the values of all three attributes are known or specified.
2. Assuming a system running an application has no reserve resources, the only way to

increase the performance of one of the attributes for the application, without affecting
another application running on the same system, is to decrease the performance of at
least one of the other attributes for the application.

3. Assuming a system running an application has no reserve resources, the only way to
increase the performance of one of the attributes for the application is to decrease the
performance of at least one of the attributes for an application running on the system.

Note that the second principle is a local (to the application) principle, while the third
principle is global to the system.

The QoS TPA attributes are both fuzzy and statistical. They are fuzzy in the sense that
multiple values and/or combinations of the values T, P, and A, corresponding to the
execution of a particular application at a fixed point in time, may provide equal benefit to
the user; and they are statistical in the sense that each value of T, P, and A, corresponding
to a particular application/HW/SW/anomaly configuration, is given by a probability
distribution.

4.0 The role of TPA in Delivering QoSete

The ultimate goal of quality of service is to maximize resources from a user perspective.
This implies two necessary capabilities; 1) understanding in a quantifiable manner user
requirements so that 'maximize' is welf defined (represented by the upper-level mapping
in Figure 1), and 2) mapping system resources to those requirements (represented by the
lower-level mapping in Figure 1). Unfortunately, system capabilities are usually given in
terms of Processing (P), Communications (C), and Data Management (D), while user

requirements are generally much more broad, including properties such as functionality,
reliability, security, etc.

Historically, the user community in general has difficulty articulating end-to-end
performance requirements within complex DIS. Nevertheless, given two applications
running simultaneously, individual users can usually determine, albeit subjectively, which
is performing more to their liking based on some basic properties. For example, one
application output displayed on a monitor may appear to have more clarity, more intensity
of color, more detail, less distortion, or less jitter than another, and hence may appear to
provide more information and is therefore perceived as more desirable. Unfortunately, the
system capabilities are given for components only, if at all, and not for end-to-end
systems; and, these capabilities are given in terms such as clock speed, bandwidth,
instructions/sec, etc. What is required is a conceptual, unifying interface between the
user and the system to bridge the gap between these two contrasting lexicons. The
Lawrence QoS Model provides this interface.

Each of T, P, and A forms a class of quantifiable QoS attributes that together play a role
that is comparable to the role the prime numbers play in number theory where every
integer can be "broken down" and represented in terms of prime numbers. It is the
hypothesis of the Lawrence Model that all user requirements can be decomposed and
represented in terms of the elements of T, P, or A. Thus, corresponding to each user,
application, and point in time, there is a set of empirically measurable TPA values that
describes the user's requirements at time t (represented as the TPA set to the left of the
middle layer in Figure 1). Similarly, system capabilities can theoretically be mapped to
the same set of attributes (represented as the TPA set to the right of the middle layer in

Figure 1). If these two sets intersect, then it is possible to meet user requirements with
available resources, thus completing the QoSete mapping to the left. If not, then QoS
mechanisms such as tradeoffs between the QoS attributes, available resources, and/or
applications must be implemented. In any case, the Lawrence QoS Model plays an
important role in better understanding system performance and capabilities.

The Role of TPA - Equating
System Capabilities to User Requirements

Figure 1
The Lawrence QoS Model, while clearly not a complete solution to the QoSete problem,
provides a very promising structure for addressing the problem of matching information
system resources to user requirements. It provides a common framework for
communication and understanding between the different areas of expertise within the
system such as middleware, network management, database management, and
applications development. From the engineering perspective, TPA provides a common
metric for comparing the performance of two different systems running the same
application for the same set of users.

5.0 Research Results

5.1 Approach
The approach the research followed was to first develop appropriate mathematical
definitions for the QoSete - related objects, and then, based on these definitions, to provide
heuristic topological and algebraic structure to QoSete. The research identified two
perspectives from which to address the objects within QoSete. The passive perspective
represents an a posteriori (after-the-fact) view of QoSete, while the active perspective
represents an a priori (yet to be executed) view. For example, from the a posteriori
perspective, once an application has completed execution, a particular level of service is
completely determined by the resulting empirically observable/measurable values for

each of the QoSete attributes, together with the subjective benefit having been perceived
by the user at that time. On the other hand, the a priori perspective addresses the problem
of delivering desired user requirements based on the probability that the system can
deliver particular TPA values and is thus given statistically as a distribution. As such,
QoSete in the a posteriori case constitutes a particular mathematical object different than,
albeit related to, that in the a priori case.

The a posteriori perspective provides objective information (quantified values for TPA)
acquired from prior application executions that can be used to provide insight towards
both system design and resource management. In particular, for example, a single a
posteriori value for latency (a timeliness attribute), corresponding to a single execution of
an application or sub-application task, contributes to the a priori statistical representation
for latency for the same application executing under similar conditions. It is important to
note that the objective TPA values themselves are independent of the subjective level of
service desired by the user. The a priori perspective plays a significant role with regards
to resource management.

The mathematical results of the research are presented below in the following order. First
the Benefit function is developed from an object definition view. The Benefit function
plays a significant role in translating objective TPA values to subjective user benefit. The
QoSete object is then defined, first from an a posteriori perspective and then from an a
priori perspective. The a priori perspective uses the development of the Utility function
which describes all possible mappings from available system resource to TPA sets. Once
these objects have been defined, along with a methodology for decomposing applications
and system resources relative to application tasks, the mathematical results are presented
in the sections on composability and algebraic structure. The Resource Management
object is then defined, followed by a corresponding topological structure thereof, as well
as statistical and logistical considerations/observations. The final section presents a
global perspective of Benefit, QoSete, and Resource Management.

5.2 The Benefit Function

The first step in the process of defining QoSete after the extraction of requirements from
the individual user or group of users, is the subsequent translation, via for example an
interface mechanism, of those requirements into the TPA framework. With this in mind,
let D denote the set of all possible TPA triples for a particular application running on a
system at a fixed time, t. Note: as long as each of T, P, and A is well defined for the
application, then D is a well defined set. For example, if T represents latency (the
difference in time from data input to output), P represents the volume of data output, and
A represents the bit error rate of the data between input and output, then each TPA triple
is either empirically possible or it is not possible. As illustrated in Figure 2, each element
of D provides a subjective "benefit" to the user (the height on the surface, corresponding
to each point in D). Thus, associated with each user, application, and time t, is a benefit

function Bu,APp,t: D -> [0,1] which maps each quantified element of D to a subjective
benefit, scaled between 0 and 1.

Clearly, Bu,App,t is not one-to-one since it is highly probable that multiple values of TPA
are considered of equal benefit to the user. For example, data that arrives quickly but
with less clarity (i.e. high T, low P) might be of equal benefit as the same data that arrives
a little later but with better clarity (i.e. lower T, higher P). In fact, this is the basis for
making intelligent tradeoff decisions between system resources. Bu,APP,t" [bi, b2] denotes
the pre-image of the benefit interval [bi, b2] and hence represents all TPA triples that user
U running application App at time t perceives as providing a benefit value between bi and
b2. In particular, if the user classifies all benefits above a fixed value, say b, to be
acceptable, then Bu.App.t'^b, 1] denotes all acceptable TPA values for user U running App
at time t (Figure 2, the un-shaded region in D). Notice that from the system perspective,
BuApp.t"1 [bi, b2] is an objective set of TPA values, independent of the user or the time the
application is run, and as such may be considered a "target" for system capabilities.

It should be noted that the benefit to the user, and hence the benefit function, while
dependent on time, is independent of the two perspectives, versus a priori.

Acceptable

Figure 2

5.3 QoSete - A posteriori Definition

QoSete in its simplest form, and from an a posteriori perspective, is a function whose
domain is the set of triples (App, S, I) and whose final set is the quality of service space
(TPA) representing timeliness, precision, and accuracy. Here App represents a
user/application pair, S represents the system configuration (HW/SW/services/anomalies)
upon which the application executed, and I is the [past-tense] interval of time during
which the application executed. All three components of the domain are necessary since
different user/application pairs desire different levels of service, different
systems/configurations are able to provide different capabilities, and the information

10

environment is dynamic. It should be noted that the user/user-class requirements for the
same application executed at different times are not necessarily identical. As an ordered
triple of quantifiable values the TPA space can be considered a subset of Euclidean 3-
space, R3. However, taking into consideration that each of T, P, and A can be
decomposed into finer-grain attributes, TPA should more formally be considered a subset
of Rn, for an as yet undetermined positive integer n.

Thus, in this case QoSete: V -> D, where Vis the space of ordered triples, (App, S, I), and

D is the space of QoS attributes, (TPA). From a user perspective, QoSete can be extended
further by subsequently sending D into [0, 1] via the benefit function, BufApp,i, yielding
the following final definition for a posteriori QoSete:

QoSete:V->[0,l].

In short, a posteriori QoSete is the perceived benefit to the user corresponding to a single
[past-tense] execution of an application. The a priori definition for QoSete is much more
"rich" from a research perspective and is provided, following the development of the
utility function, at the end of the section immediately below.

5.4 QoSete - A priori Definition & The Utility Function

Given that the benefit function provides a set of acceptable TPA values for user U
executing App at time t, namely Bu.App.t'^bi, b2], the question becomes "Can the system,
S, deliver these objective TPA values at time t?" Here, S denotes the set of all possible
software (SW), hardware (HW), services (sometimes referred to as the bitways and
services), and anomaly configurations within a particular distributed system. Towards
answering the above question, let SApp denote the set of all configurations in S that, if
available, could be used to execute App. (The practical representation of SApP reflects
available system resources and depends on the level of decomposition of both the system
components.) Notice that each such execution of App results in an empirically
observable, a posteriori TPA value in D delivered by a particular point in SApp. For each
such point in SApp, all possible TPA values (viewed in the a priori sense) taken as a whole
provide a statistical representation (rather than a single value) of the resulting TPA.
Thus, from an a priori perspective, each configuration/point in SApp corresponds to a
statistical distribution/representation of possible TPA values in D. For correctness, in the
a priori case we consider each point in D to be not an ordinary triple, but such a statistical
TPA triple/n-tuple.

At each point in time only a certain percentage of the resources in SApp are available to
execute App due to the additional applications and services executing at that time, as well
as component failures and/or other anomalies. Thus, let SApp>t denote the set of resource
configurations within SApp available to execute App at time t. Further, let UApP,t: SApp;t ->

11

D denote the Utility function that associates with each member of SApP,tthe corresponding
possible TPA triple in D. From an a posteriori perspective, only a single point in UApp,t
represents the actual mapping of resources to the resulting TPA that occurs as a result of
executing App at time t. It then follows that this single corresponding TPA output in D,
when provided as input for Bu,APp,t> yields end-to-end quality of service for the user at
time t. In general, we define QoSete = BU)ApP,t °UApP)t. That is, the utility function
composed with the benefit function yields end-to-end QoS. This composition maps
system capabilities at time t to user benefit, and is captured in Figure 3. From a practical
perspective, the user first defines the level of desired benefit. This then defines, through
B"1 an objective set of TPA values. At the same time, U defines a set of possible TPA
values available from the system at time t. If these two TPA sets intersect (Figure 3) then
the system can in fact deliver the desired benefit to the user at time t. It should be noted
again that in the a priori case, since the range of UApP,t is statistical in nature, that QoSete is
statistically based also.

5.5 Application/System Decomposition

0 1

Figure 3

Many of the results presented below (e.g. resource management, composability, and the
algebraic and topological results) rely on a decomposition of applications into sub-
applications/tasks and/or the system into subsystems/modules. Thus, assume that App
can be decomposed into m logical sub-applications, Ai, A2, ...Am, each executed
sequentially, and that i < m + 1. For example, App might represent a VTC application
necessitating the repeated capturing, processing, and transporting of audio/video frames,
or a tracking application that requires regular refreshing of track data. Although we do
not provide a rigid and detailed definition for a sub-application here, it suffices to note
that each of these 'sub-applications' requires physically distributed resources within the
system and that App is realized by the sequential execution of the 'sub-applications'.
Further, assume that A can be decomposed into n logical tasks x = Xi, x2, ...xn.

12

The literature [CSSDL97] refers to such tasks as either Logical Units of Work (LuoW),
Logical Realization of Work (LroW), or Physical Units of Work (PuoW), depending upon
the granularity or whether or not the concern is logical or physical. It suffices for this
research to consider all such tasks as logical units of work. For example, the tasks might
be fetch video, fetch audio, package video/audio for transport, transport video from
sending LAN to receiving LAN, synchronize audio and video, etc. It is assumed that each
task is completed by a specific component of the system, call it S;, (a PC, the sending or
receiving LAN, a component of the telecom, etc.; the granularity is meant to be flexible)
and that Tj is performed during the time interval [t;, ti+i]. It is not assumed, however, that
these intervals are non-overlapping, since some tasks may be performed in whole or in
part simultaneously. In fact, unlike the sub-applications, these n tasks, while listed
sequentially, are partially ordered relative to their order of execution by the relation "is
equal to or must be completed prior to the beginning of." Since the execution of App is
realized through the sequential execution of the Aj, QoSete for App is completely
dependent on QoSete (the TPA values) for each A;. Thus, without loss of generality it
suffices to investigate A; alone. Corresponding to the sequence of tasks, T, is the sequence
S of system resources such that Tj is executed on Sj. This mapping suggests that the
fidelity of the decomposition of both A, into T and the system into S are inter-dependent
The granularity of the decomposition of A; depends greatly on the degree to which the
system can be decomposed (and understood/controlled) into corresponding resources; the
ideal results occur when each task is performed by a simple, well understood, system
component. Notice that the union of the members of S in an a posteriori sense represents
that point in SAPP,t corresponding to the execution of A,.

Next, denote by QoSj the resulting/expected TPA from the execution of Tj. That is, each
execution of Tj can be characterized as a transformation of information in the sense that Tj,
for example, requires a certain amount of time to execute (contributing to a change in T),
possibly alters the volume of data produced (e.g. via compression or packet loss,
contributing to a change in P), and possibly alters the bit error in the data produced
(contributing to a change in A). The implication here is that each Tj plays a role identical
to that of App in the above construction of the utility function, with a corresponding
similar resulting TPA value. The question before us then is what is the relationship
between the sequence of QoSj corresponding to T, and the aggregate TPA for Aj, and
hence to QoSete for App? This question is partially answered in the following sections.

13

5.6 Composability

Utilizing the decomposition of App into sequentially executed sub-applications, A;, the
further decomposition of Aj into partially ordered logical tasks, x, the mapping of % to the
system resources, S, and the utility mapping, U, which provides a representation of each
member of S as a transformation of information, (transforming TPA-in to TPA-out), we
provide the following initial hypotheses regarding the composability of these
transformations. These hypotheses are intended to be high-level, first approximations to
the mathematics of composability. Further granularity will depend on identifying the
components of each of T, P, and A (for example, timeliness includes not only latency, but
also jitter, variance of jitter, scheduling, etc.), and on obtaining hard experimental data
relative to each. The results below have significant implications to resource management

(Sec. 5.8).

• Accuracy (bit error rate) is cumulative in the following multiplicative sense.

Let Ej represent the error rate for data during the execution of task Tj. That is, the
probability of data having arrived at the beginning of task j surviving task j is 1 - 8j.
Thus, assuming accuracy is the percentage of data free from error (which is 1 minus the
error rate), and that accuracy is task independent, it follows that the end-to-end accuracy
for Ai is given by

A-n(i-«>)
which is equivalent to saying the end-to-end error rate is 1 - A. (It should be noted that
included in each et is the error resulting from an I/O interface between tasks i and i+1.)
The implication here is that end-to-end accuracy can be controlled by bounding the error
rates of the individual tasks. Simplistically, for example, if the desired bound for end-to-
end error is e, then bounding each intermediate error to the n* root of e ensures success.
Realistically, since components differ in their levels of reliability and each task differs in
its complexity, the component errors can be much less uniformly distributed while still
remaining within the end-to-end 8 error bound. These component error rates, together
with those associated with each I/O interface, should result from experimentation.

• Timeliness is additive when restricted to the case of latency.

Let Aj denote the latency due to Tj, and let 5j denote the delay between the completion of
task Tj.i and the start of task Tj, with Si being the scheduling delay prior to the start of xu

Then, if T is executed sequentially it follows that end-to-end timeliness is given by

14

In case T is not executed sequentially, then this sum forms an upper bound for latency and
must be reduced by overlapping times in order to achieve equality. Analogous to the
accuracy scenario above, an end-to-end latency bound X can be guaranteed simplistically
by requiring Xj + 6j to be bounded by X/n for each j. Again, given the diverse nature of
the tasks and the components executing the tasks, more precise (less uniform) bounds can
be assigned to individual tasks based on historic, dynamically evolving data.

• Precision (volume of data processed or transported) is determined by the minimum
precision throughout execution.

Precision for each task in this case equates to the volume of data output from each task,
Tj. Since the volume of data may decrease from task to task, due to for example
compression algorithms during processing or dropped packets during transport, it appears
that in the straightforward cases end-to-end precision is given by

P = min p,
j

where Pj denotes the precision for Tj. In the case of packet loss, for example, end-to-end
loss can again be bounded by bounding the intermediate tasks in an appropriate manner,
analogous to the methods above for error rate and latency.

It is important to remember that we have chosen simplistic representations for T, P, and A
here, and that each of these attributes contains a number of additional representations
with respect to satisfying user requirements, each of which requires an associated theory
for composability. In the case of jitter, for example, this timeliness property appears to
compose much differently than latency. In fact, since jitter is defined as the variance in
latency at the end-user, it doesn't make sense to simply sum the intermediate latencies,
nor does it make sense to sum the variances. As is similar with all composability, what is
required for the composability of jitter is to unearth the relationship between the
intermediate variances and the final variance. Therefore, jitter appears to compose much
like the accuracy representation above. This follows because in order to ascertain the
resulting variance we must first ascertain the mean, and in order to ascertain the mean, the
intermediate distributions must first be summed, which subsequently causes the resulting
variance to "spread out", similar to the cumulative multiplicative effect described above.

5.7 Algebraic Structure

Composability provides a foundation for certain algebraic structure within the Lawrence
QoS model. The fundamental, theory presented here is based on the idea that if task Tj is
executed on resource Sj, transforming the TPA-in into the TPA-out via the information
transformation QoSj, then the sequential execution of Tj followed by Tj+i will form a

15

transformation of the information input into Sj and output from Sj+i given by the
mathematical operation of composition of functions QoSj+l o QoS}.

Before proceeding to such a theory we must ensure that the transformations to be
composed, QoSj, have compatible domains and target spaces. This can be achieved by
first realizing that when data arrives at Sj, there is a cumulative effect on QoS to that
point, say TPA/. Formally, assuming tasks x0, Xi,... ij are performed sequentially, in the
aggregate they can be considered (informally) a sub-application in the sense that the
execution of such a sub-sequence of tasks is the realization of a larger task and as such
the composability results from above remain true. Thus, here we augment the QoS
domain space defined above, represented by the ordered triples (App,S,I), to be
(App,x,S,I,TPA*). The result is that the domains and target spaces are then equivalent,
allowing for mathematical composition, or transformation. That is, the execution of each
task depends on the application, its decomposition into x, available system resources,
time, and the TPA (information) values input, and acts as a transformation of that TPA,

resulting in TPA-out.

A more general result is true, one that is similar to flow solutions to differential
equations. That is, continuing to assume the tasks are executed sequentially, if we denote
the transformation represents the execution of tasks X; through Xj, j > i, as QoSy, with the
resulting quality of service component of the transformation output denoted by TPAjj,
and n is a positive integer, then QoSi)j+„ = QoSj,j+n °QoSij, which implies TPAiJ+n =
TPAjj+n * TPAjj. Here, * refers to the cumulative effects of QoS as described in the
previous section on composability, and is written from right to left to mimic the
mathematical composition of the QoS functions. Notice that * defines an additive
structure on the set {0,1,2, ... n} in the sense that i * j = i + j iff TPA0li * TPAi>i+j =
TPAoj * TPAjj+i =TPAQ,i+j, which is true provided i + j < n + 1.

Therefore, * resembles a semigroup with identity. Using the composability results above,
it follows that the transformation, e, corresponding to the identity is given simply by

e={(0,w0,l)},

where 0 represents the transformation requiring no time, 1 represents the transformation
that introduces no bit error, and GJ0 can be replaced by any transformation that represents
the delivery of an upper bound value for the volume of data (P). Note: composition is
defined only for each execution 'flow', since it is defined in terms of QoSy, which in turn
relies on the various sub-systems performing particular tasks, the order and values of
which cannot be changed in general. An alternative algebraic structure relative to
composition results from considering the sub-application, Aj as a function of time, its
realization occurring over the time required to execute its tasks. In this sense, A4

resembles a one-parameter (time) flow, again yielding a similar definition for a

16

semigroup operation, depending on time, with an associated QoS at time t, namely the
cumulative QoS through time t, provided t lies within the time interval of execution.

5.8 Resource Management

For the discussion here we assume the existence of both the benefit function and the
utility function defined above. That is, for each triple (U, App, t) there is a function
Bu,APp,t that maps each objective TPA value in the set D of all such TPA values to a value
in [0,1]; and there is a function UApp,t that maps each set of resources available in SApp for
executing App at time t to a set of TPA values in D. (Figure 3)

To begin the investigation of resource management within a reasonable setting, we
restrict our attention to the case where the system in question has a single resource
manager, RM, controlling m resources, s = Si, S2, ... sm, (i.e. s is a sequential
decomposition of SApp into task-oriented resources) and let App be an application
attempting to execute on this system during a fixed time interval, I. Further, let App be
given logically by the sequence of tasks, x - Xi, ... xn, which execute sequentially.
Heuristically speaking, RM is then a middleware function that maps task requirements to
available resources, while attempting at the same time to satisfy user requirements. From
an a priori perspective, RM is statistical in nature as indicated above through its relation
to the statistically based utility function; and from an a posteriori perspective, RM
provides an empirically observable record of resource usage towards application
execution. More specifically, RM is a choice function, each choice representing a single
point given by the utility function, UApp,t, and when composed with the benefit function
provides a statistical mapping from system resources to user/user-class benefit, that is,
QoSete-

RM:(x,TPAp,Po)-»(SApp,„D)

Here, TPAp represents the TPA profile of the user/user-class (i.e. those partially ordered
levels of QoS desired by the user), and Po represents the system policy for delivering
requested levels of TPA, depending on system load, anomalies, user-prioritization within
the system, etc. Recall that SApp,t represents those system resources available at time t to
execute App. Note: there are multiple values in the image of RM only because x
represents more than one task, in general, not because of the multiplicity of the TPA
values in D, since one of the roles of RM is to choose exactly one value in SApp,t for each
task, which then leads to a single TPA value (or single statistical distribution) in D. In
the case where m = 1, that is, where there is only 1 task being performed, RM simply
decides which resource under its control will deliver the task.

The user profile, TPAP, provides user TPA preferences to RM, facilitating intelligent,
decision making by RM. As such, TPAp must contain all information contained in the

17

benefit function for the user at time t. Although it is possible that the user will desire the
same benefit function for every execution of App, RM is clearly a function of time, t
being implicitly included in the user profile. Similarly, the system policy, P0, for making
resource allocation decisions must contain all information required by the system to
determine resource allocation at that point in time. Presumably, system requirements
change over time; hence P0 is also a function of time. Note: for simplicity, if we view
RM as a short term decision making process, system policy remains constant and need
not be included as a coordinate of the domain.

Consider now the case where tasks must be performed by resources outside the control of
a single resource manager. For simplicity, assume App is decomposed into logical tasks
x, grouped into two sequences Ti,i, Ti,2, ... tui and x2)i, x2,2, ... x2,n2 under the control of
resource managers RMi and RM2, respectively. Further, assume RM is a control
mechanism as above, with RMi and RM2 mimicking the role of s. From the perspective
of RM, each sequence of tasks is simply a single aggregate task. Thus, by induction, each
of RMi and RM2 provides "black box" information to RM regarding the available
resources and more specifically the corresponding statistical TPA-values deliverable for
each of the two higher level tasks. Given that RM above was responsible for the
assignment of n tasks within m resources, there is no reason for restricting the sequence
of resource managers, RMi and RM2 to two. In general, we assume RM has m resource
managers to consider as resources to execute App.

Similarly, if % is subdivided into n sub-sequences, each of which must be assigned to one
of the m resource managers RMj, again by induction the problem is reduced to the simple
case above where RM must make n execution choices. The only difference here is that a
resource manager 'manages' its own resources based on detailed information regarding
each resource, while lower level resource managers transmit black-box information to the
resource manager one level up. In this manner, multi-level resource management can be
developed as "granular" or "course" as necessary. For example, from the highest
perspective, RM might control only three or four (different for each App) resource
managers, representing say the sending LAN, the telecom, and the receiving LAN, with a
database resource acting as the fourth. Similarly, the resource manager in charge of the
LAN might control three or four sub-nets, each with its own resource manager, and so on
(Figure 4). This decomposition may continue down to the level where each computer has
its own resource manager.

The set of resource managers is partially ordered by the relation RM; < RMj only in case
RMj also manages the resources managed by RMi. Numerous approaches can be
developed to attempt to deliver QoSete utilizing this structure. For example, requirements
can travel down from higher-level resource managers to lower level managers, requesting
particular ranges of TPA to be delivered from each 'black-box' resource. Simplistically,
for example, utilizing the composability results above, if timeliness has a latency

18

requirement less than or equal to X, RM can transmit requests to each RMj requiring that
5j + Xj < X/n. Similarly, if aggregate accuracy was required to be greater than A0, then as

long as (1 - 8j) > nf\ , relative to each sub-sequence of tasks Tj, then end-to-end accuracy

would be greater than Ao- Improvements to this scheme should utilize historically
validated statistical distributions describing the predictable percentage of total latency
required by each logical aggregate task. Alternatively, but much more computationally
intensive, RM could request all possible mappings (or a subset thereof, based on
additional historical data) from each level-two resource manager; in effect gathering a
comprehensive representation of the utility function UApP>t, where App here represents
each aggregate task, and utilize well developed decision making policies at the RM level
to complete the process. Realistically, efficient resource management will utilize a
combination of the above, together with more refined methodologies. In any event, in
order for RM to arrive at a decision regarding the allocation of resources, information
must pass to RM from the next layer down, which in turn must receive similar
information from managers under its control, etc.

5.9 Topological Structure
Figure 4

Of particular interest with respect to resource management is the need to compare the
benefit and cost (in performance) of two apparently different resource mappings towards
the implementation of the same application. Mathematically speaking, this can be
addressed from a topological perspective. Specifically, based on the quantitative nature
of the QoS attributes it is possible to define a metric on the range of RM analogous to

19

distance between objects in a space. This metric can be defined both at the component
level and at the end-to-end flow level in terms of the TPA results and the system 'path'
taken to execute the application. Further, this metric is consistent with the QoS attribute
values in the sense that two such paths are 'close' only in case they use many of the same
resources for the same tasks, and provide similar TPA results.

In particular, suppose 5; and S2 are two choices of flows which each yield sub-application
Aj. Suppose further that TPAi and TPA2 denote the resulting TPA outputs, respectively.
Since each of these triples is a point in Euclidean 3-space, R3, there are numerous choices
for distance between them. However, QoSete, like the benefit function, is not one-to-one
in the sense that it is possible to get identical TPA outputs traveling along different paths.
That is, it is possible to choose different sub-systems to achieve intermediate tasks and
yet arrive at identical TPA values. On the other hand, it is not desirable to consider such
solutions equivalent, at least not from a topological point of view, since this
representation takes into account only the TPA outputs and not the resources committed
to the execution of the application. These resources could possibly be better utilized
elsewhere in the system and could play an important role with regards to tradeoffs. As
such, the information relative to resource allotment should be reflected in the topology.

Alternatively, let M be an n x m matrix, where n is the number of tasks, xu and m is the
number of sub-systems (or components), sk, available to execute the n tasks. In terms of
the resource management discussion above, and from the perspective of a single resource
manager RMj, m represents the number of resources under the control of RMj. Let M =
mij, where for each i < n+1, j < m+1, mjj is the ordered triple (Tj, Pi, A), namely the TPA
output of QoSj, assuming Ti is realized through component (or sub-system) j, and is zero
otherwise. Here we are assuming that for each i, %\ is realized through a single sub-
system, or single component. From an a posteriori perspective this representation is well
defined and is unique for each choice of system resources; that is, for each choice of the
sequence of components used to satisfy the sequence of tasks, T. Further, there are a
number of equivalent choices for metrics in the space of n x m real-valued matrices, each
yielding an equivalent topology for the space of flows. More importantly, these choices
for metrics, and hence for the resulting topology, are consistent with our idea of
"closeness" for two flows. Namely two flows should be close only in case they use
primarily the same components with similar (T, P, A) values; and each time they use
different components the resulting (T, P, A) entries are small, which implies that only a
small portion (relative to TPA) of the overall application was performed by that
component. From an a priori perspective each entry in M represents a statistical
distribution, or triple thereof, representing expected values for TPA from each
component. Relevant choices for metrics can be made in this case also. These vary from
simplistic methods based on numerical values for TPA in the form of ordered pairs
representing the mean and standard deviation of each distribution, (which reduces to the a

20

posteriori case) to more sophisticated and computationally intensive, but somewhat
standard metrics for comparing continuous distributions.

5.10 Statistical Considerations

As mentioned above, the a priori characteristic of resource management is statistical in
nature and is further complicated by the dynamic environment within complex DIS.
Typically, each resource manager provides information to the manager one level up, such
as, "The probability that latency for logical task Tj will be less than 8j is Pj." The problem
here is that since most of these tasks are independent, these probabilities are
multiplicative. Thus, if App is decomposed into n logical subtasks, each of which is
associated with a projected upper bound on latency, say 6j, each with probability Pj, then

n n

the total projected latency for App is bounded above by 2J*J with probability Y[Pj •
H 7=1

That is, RM can conclude from the information received from the lower-level managers
that the probability that App can be delivered with latency less than 61 +82 ••• 5„ is

PlP2---Pn.

At first glance this appears to be a significant problem, since for large n this product
approaches 0 quickly depending on the distance from 1 of each of the Pj. For example, if
n = 50 and each of Pj is only 99%, then the probability of delivering the upper bound on
latency is only about 60% which of course is unacceptable in most cases. If, on the other
hand, the user wants a 90% guarantee, each Pj would need to be at least 99.7895%, which
might be difficult to guarantee across the system.

Further, this multiplicity of probabilities holds true for each attribute within TPA, not just
latency, regardless of the composability features inherent to the particular attribute. For
example, composability relative to the volume of data is not additive, as is the case with
latency, but is simply the minimum amount of data produced or transported at any one
step in the execution process. Nevertheless, the probability of guaranteeing this
minimum throughout is again the product of the probabilities from each stage. Further,
this multiplicity holds at every level of resource management. Thus, if RM has only three
managers one level down with respect to App, resulting in projected attribute values
based on the product of only three probabilities (i.e. n = 3 at level-two), each of these
probabilities in turn would generally result from the product of more probabilities
stemming from still lower-level functionality. In other words, there is no way to alleviate
this problem by reducing the number of resource managers unless this in turn reduced the
number of resources required, and each had probabilities close to 1.

On a more positive note, n = 50 is arbitrary and represents a fine-grained decomposition
of both App and the associated resources. More importantly, current system performance

21

in general is much better than these figures indicate, which implies that the majority of
the Pj in general are very close to 1. Thus, the problem before researchers at this time is
the development of a systematic methodology for such decompositions and the
identification of the corresponding probability distributions for each QoS attribute.

5.11 Logistical Considerations

There are two intimately intertwined logistical considerations regarding the RM scenario
presented above; the volume of information processed and/or transmitted between the
levels of management, and the degree of granularity used for the TPA values. For
example, suppose App is subdivided into high-level logical tasks x = Ti, T2,..., xm with
resource managers RMi, ... RMm. That is, for simplicity we assume the single task Tj is
executed under the control of RMj. Thus, it might appear that m pieces of information
travel up to RM, each defining the TPA output resulting from the particular resource
mapping. On the contrary, each "piece" of information contains at least three quantities,
one for each attribute of TPA, assuming incorrectly here that each class of TPA attribute
is not further decomposed (e.g. T can be decomposed into latency, jitter, synchronization,
etc.) requiring the transmittal of additional information. Further, in order to describe the
entire range of possible mappings for resource allotment, which is what is required in
order to make full use of the benefit function to make intelligent tradeoffs, the
information must indicate a whole range of TPA values. Thus, the question becomes
what level of granularity should be used for TPA? Latency, for example, could be broken
down into increments as course as seconds, or as fine as nano-seconds. Unfortunately, it
is not useful to make simple statements such as "resource r can deliver task tj with
latency less than 5, with probability p", since latency means nothing without precision
and accuracy. Thus, combinations of these T, P, and A values must be given in some
orderly fashion. Further, if nT, nP) and nA represents the granularity of the levels used for
timeliness, precision, and accuracy, respectively, (i.e. there are nT possible values of
timeliness, etc.) then the total number of possible values for TPA for each task is given by
the product nTnPnA = n*. The total number of possible combinations of TPA for App is
then mn*.

One method for addressing the logistics associated with this difficulty is illustrated by
first taking a very course grained approach to the levels of granularity for TPA. Assume
for simplicity that the levels for each of T, P, and A are given by either Good (G), Fair (F)
or Poor (P), with each of these well defined in a quantitative manner for each application,
task, etc. Thus, in this case there are only 3*3 = 27 possibilities for a characterization of
TPA for each task, and hence each resource manager need only check if each of these (or
an appropriate subset thereof) can be delivered along with the corresponding probability.
These designations for TPA typically look like GGF, or FGF, etc., and are partially
ordered by TPAX < TPA2 only in case each component of TPAi is less than or equal to the

22

corresponding component of TPA2, and they are incomparable otherwise. For example,
GFF < GGF, but GFF is incomparable with FFG.

From a user perspective, this partial order is consistent with user requirements in the
sense that given the choice, if TPAi < TPA2 then the user will definitely prefer TPA2.
However, when points within this partial order are incomparable, additional information
from the user and/or the system may be needed to reduce the number of values in the
TPA range that need to be assessed. This information should be included in the user
profile (via the benefit function) and/or the system policies. Although these levels are
given in non-quantified terms (i.e. G, F, or P), clearly it is trivial to store these in
numerical form. As a final note, the granularity can be extended to any number of levels,
the only drawback of course being the geometric increase in the number of possibilities.
This course-grained approach is reasonable for initial modeling and experimentation.

5.12 Global Perspective

Quality of Service thus far in this report has been presented from the perspective of a
single user and application as opposed to the global view involving multiple users
executing multiple applications simultaneously. Similar to the discussions above, this
global view has both a posteriori and a-prior perspectives. However, the authors choose
not to elaborate on these perspectives here, assuming their relevance is clear.
5.12.1 Global Benefit Function
In addition to the subjective benefit, B, perceived by each individual user as a result of
executing a single application, there is a subjective global benefit perceived by the
aggregate community of users resulting from the execution of a set of applications. In a
detailed sense, this Global Benefit, denoted BüJ^j, is a function, which for each set of

users, U, and applications, App, at each point in time, t, maps sets of TPA values (one
TPA triple for each user/application) in D to [0,1]. Thus, just as the goal for B is to map
each TPA triple to [0,1], the goal for B is to map each collection of (User/App, TPA)
pairs, representing the aggregate of all TPA triples for all applications executing at time t,
to a single value in [0,1].

The values for B are highly dependent on the individual benefit functions, B, and on the
aggregate profile for the community of users. It is clear that the perceived benefit to the
community of users is dependent on the benefits perceived by the individuals within the
community in the sense that if all users are satisfied, then the community as a whole is
satisfied. It is not clear, however, how this relationship manifests itself in case some
users are satisfied and others are not. This is the reason B depends also on the aggregate
community profile. The community profile in this case refers to the policy(s) by which
B is determined from the collection of individual benefit functions. For example,
keeping in mind that the goal of QoSete is to maximize user satisfaction as defined by the

23

benefit function, one such policy might define aggregate benefit as the average of the
individual benefits. However, this would imply that the situation in which half the users
receive benefit 1, while the other half receives benefit 0, is equivalent to the case where
all users receive benefit Vi. If these two scenarios are equally desirable by the user
community, then this representation for global benefit is appropriate. If, on the other
hand, these two are not perceived as equivalent to the user community, then a different
definition/profile for global benefit must be used, especially since the global benefit
function will be used to make adaptive resource management decisions.

In the case of global benefit, then, the issue of prioritization plays a key role. It is
conceivable, for example, that the benefit perceived by the community of users as a whole
at a particular point in time may be high provided a single application above all others
receives high quality of service. This is particularly true in times of war, when the
satisfactory completion of a single high-priority application can mean the difference
between loss of life and victory. At different times, however, it might be perceived as
higher benefit to the community of users to assure the completion, albeit at lower levels
of QoSete, of the majority of the lower-priority applications rather than a single high-
priority task. This type of "weight" attached to each individual benefit is just one of the
issues that needs to be incorporated into each user-community profile and then

represented in B.

5.12.2 Global Utility Function
Just as the benefit function has a global representation, so too does the Utility Function,

U. The extension of U to the Global Utility Function, U, is much more easily described

than the extension of B to B. First, recall that SApp,t represents the set of possible
resources available to execute App at time t. Thus, SApp>t is a mappingjhat for each t
assigns to App a set of resources. Thus, we extend SApP)t and denote by SÄ^,t the set of

all possible mappings from the set of applications App to the set of resources available at

time t. That is, each application in App is executed by a resource in Sä^J . Given that ä
single set of resources can be used to [virtually and] simultaneously execute multiple

applications, this mapping is not necessarily one-to-one. We can then extend U to U in
the natural way by assigning to each collection of (application, resources) pairs the
resulting collection of points (or distributions) in D, the space of TPA n-
tuples/distributions. Thus, QoSete is naturally extended to Global End-to-End Quality of

Service by the definition QoSete = BüJ^,i ° U~W?,t •

5.12.3 Global Composability/AIgebraic Structure
From the global perspective, Composability theory as described above offers few new
results due to the fact that end-to-end QoS for each application still depends on the
intermediate TPA values for each task within the single application. Thus, Global
Composability must be tied directly to Global Benefit, which is as yet appears to be an

24

immature concept. However, the intermediate component TPA-outputs are highly
dependent on system load and other anomalies. Thus, the representation of each
component as a transformation of information under each HW/SW/services/anomaly
configuration is a global-level problem that must be solved in order to build a highly
developed composability theory.

The Algebraic Structure developed at the individual user/application level and which is
dependent on the Composability Theory also extends naturally to the global perspective.
Rather than developing fully the rather cumbersome notation required to keep track of the
many applications and their associated decompositions into tasks, it suffices to note that
the individual algebra was based on cumulative TPA (as defined by composability). This
cumulative TPA occurred as the result of the cumulative individual application tasks
executed either sequentially or over time. Similarly, in the global case the TPA values
accumulate in the aggregate as a result of accumulating for each individual application.
Thus, in the continuous case, the aggregate TPA at time t + j is simply the aggregate TPA
through time t, composed with the TPA gained (as determined by the Composability
Theory applied to each application) from time t to t + j. This continuous theory for the
global case mimics precisely that for the individual case. The discrete theory also extends
in the natural manner, the notation becoming very cumbersome.

5.12.4 Global Adaptive Resource Management
Global Resource Management from an object-definition viewpoint differs little from the
resource management discussed above due to the fact that a set of applications,
decomposed individually into tasks, yields a single set of tasks, just as in the individual
case. However, from a control/decision-making perspective, multiple applications result
in limited resources and introduce the possibility for tradeoffs between both users/user-
classes and the QoS attributes. Tradeoffs in the individual case are designed to re-allocate
resources in order to provide a higher level of QoSete (TPA values). The fact that multiple
combinations of the TPA values represent equivalent individual QoSete allows for better
utilization of system resources, 'trading' between scarce resources without causing
negative QoS results. This type of tradeoff utilizes the Benefit Function, which
incorporates the fact that it is possible to provide equal benefit to the user by 'trading' one
TPA value for another, and the fact that different combinations of resources provide
different combinations of TPA. Thus, the question in the individual case becomes:
'which combination of resource allocation yields the highest benefit to the user while
satisfying system policy/requirements?'

Tradeoffs at the global level require tradeoffs not only between the TPA attributes of a
single user/application, but tradeoffs between the benefits provided to each user. Since
global benefit is a function of the individual benefits, albeit that relationship is as-yet
undetermined and depends on the particular user community, it is possible to tradeoff
benefit between individual users with the goal of increasing global benefit. For example,
higher priority users should receive higher assurances/probabilities of application

25

completion within acceptable QoSete ranges. It is possible to lower the benefit for a single
user/user-group in order to raise the benefit for another user/user group resulting in a
higher global benefit. Obviously the concepts of prioritization and preempt-ability play
an important role in this process, but only to the degree that these concepts must be well
developed and well understood in order to identify a well-defined global benefit function.
Once the global benefit function is well defined, the question of tradeoffs at the global
level is equivalent again to an identification of all possible such tradeoffs and their
resultant effects. This information is then used as a control mechanism to assist RM in
resource allocation and re-allocation.

5.13 Summary

The next generation of users requires information systems to reliably provide very
specific properties. Delivering these properties requires first their identification and
subsequently their implementation. Given the divergent interests of the user communities
from which these requirements originate, and the system "engineers" who are responsible
for their implementation, a unifying common framework is needed. This is the role of the
end-to-end quality of service model. QoSete is the composite of the Utility function, U,
which maps available system resources to statistically deliverable TPA sets, and the
Benefit function, B, which then maps TPA to user-perceived benefit. QoSete provides a
measurement mechanism by which intelligent decisions can be made regarding dynamic
or static resource allocation or reallocation within a fixed system, and regarding system
design and upgrade-ability. The composability theory enabling modular design and/or
QoSete predictability is based on a decomposition of applications into logical tasks, the
corresponding execution mapping of these tasks to system resources, and finally the
unearthing of the relationship between QoSete and QoS for the intermediate tasks. The
composability theory forms the basis for the algebraic structure of QoSete. Application
"paths" consist of time-sequential mappings of application tasks to the system resources
executing the tasks. The resultant QoS for each task then "accumulates" based on the
composability theory. This accumulation provides an algebraic structure resembling that
found in flow-semigroups. The multi-level resource management mechanism provides
dynamic global resource [re] allocation based on the global benefit function. The global
resource management process is assisted through a topological structure on the space of
application paths. This structure provides a metric-based comparison of the paths in terms
of their resultant TPA values, and hence provides a QoSete-based comparison mechanism.
Future research needs to unearth the underlying theory for identifying user requirements,
for identifying U and B in terms of TPA or similar basic information attributes, the
decomposition of applications and system resources, and the composability thereof.

5.14 Future Directions

26

The following have been identified as directions that warrant further investigation, in
addition to continuing research in the areas discussed above:

• Difference equations. The state of the system at each point in time depends on
applications currently being executed and those anticipated. Given that resource
management decisions are based on the current and expected state of the system,
this representation could be very useful. This model reflects a standard type of
system of difference equations that describes the change in the system states as the
difference: Flow-in minus Flow-out.

• Control Theory. The resource management mechanism, based on intelligent
tradeoffs, is a control mechanism designed to change the state of the system. As
such, control theory should contribute to this theory.

• Partial ordering of tasks. It was assumed in the majority of the work above that
the application tasks are executed sequentially. While this does not appear to be a
major obstacle to the resultant composability theory, the fact that tasks are
executed in parallel as well as sequentially needs to be considered.

• Further decomposition of TPA. It is clear that each of T, P, and A represents a
super-class of information attributes. Further decomposition needs to be
identified as it relates directly to user requirements. Then, a composability theory
needs to be developed for each basic attribute.

• Statistical nature of QoSete- A variety of methods are available to capture the
statistical nature of QoSete- A basic theory for implementing each of these is
required and should include the tradeoffs between more accurate representation
and additional load to the system.

• Global Benefit Function. Profiles for user communities as a whole, given in terms
of individual profiles need to be developed in order to identify global benefit.

REFERENCES

[CA96] Campbell, A., Aurrecoechea, and L. Hauw, "A Review of QoS Architectures,"
Proc. Of the 4th IFIP International workshop on Quality of Service (IWoS '96), Paris,
March 1996.
[CSSDL97] Chatterjee, S., J. Sydir, B. Sabata, M. Davis, andT. Lawrence, "Modeling
Applications for Adaptive QoS-based Resource Management," IEEE High Assurance
Systems Engineering Workshop, Washington, DC, Aug 1997.
[L97] Lawrence, Thomas F., "The Quality of Service Model and High Assurance," panel
position paper for the IEEE High Assurance Systems Engineering Workshop, Bethesda
MD, August 1997.
[SCDSL97] Sabata, B., S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence, "Taxonomy
for QoS Specifications," In the Proceedings of the IEEE Computer Society 3rd

International Workshop on Object-oriented Real-time Dependable Systems (WORDS
'97), Newport Beach, CA, Feb 1997.

27

[WNCHL97] Wang, W., H. Nguyen, P. Clark, C. Hammond, T. Lawrence, "An
Approach to Mapping Multimedia Application QoS to Resources," Technical report done
under AFRL prime contract no. F30602-95-C-0299 and in partnership with SRI
International, (chammond@sed.stel.com)

28

Notation

D - the space of TPA values.
Bu,App,t: D -> [0,1] - Subjective benefit to user U, executing application App, at time t.
Bu.App.t"1 [bi. b2] - {TPA e D : Bu>App,t (TPA) 6 [bi, b2] }. That is, B"1 is the functional
inverse of B.
V - The set of triples (App, S, I), where App represents the application, S represents the
set of all possible SW/HW/Services/Anomaly configurations, and I represents the interval
of time in which App is executed.
SAPP - {SW/HW/Services/Anomaly configurations that could be tasked, if available, to
execute App}
SApp.t - {s e SAPP : s is available at time t}
UApp,t — SApp.t ^ D
QoSete = Bu,App,t °UApp,t
Aj - sub-application (App is realized through the sequential execution of sub-
applications)
x — Sequence representing a decomposition of sub-application Aj.
Sj - system resource responsible for executing task Tj.
QoSj = UT. (. That is, the output of QoSj is that point in D resulting from the execution of

task Tj. QoSj is also used synonymously as that output.
Po - System Policy.
RM - Resource Manager.

29

MISSION
OF

AFRIANFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to an;

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

