
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing tile collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

ll.Jan.99

3. REPORT TYPE AND DATES COVERED

THESIS
4. TITLE AND SUBTITLE

OPTIMIZATION OF LOW THRUST SPACECRAFT TRAJECTORIES USING A
GENETIC ALGORITHM

5. FUNDING NUMBERS

6. AUTHOR(S)

2D LT EISENREICH JASON C

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

UNIVERSITY OF TEXAS AUSTIN
8. PERFORMING ORGANIZATION

REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

FY99-49

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200words)

1 9990216199
14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTFJACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 230.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TiV-tVi

OPTIMIZATION OF LOW THURST SPACECRAFT TRAJECTORIES

USING A GENETIC ALGORITHM

by

JASON COREY EISENREICH, B.S.

THESIS

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING

The University of Texas at Austin

August 1998

SSCIED 8

OPTIMIZATION OF LOW THRUST SPACECRAFT TRAJECTORIES

USING GENETIC ALGORITHMS

APPROVED BY

SUPERVISING COMMITTEE:

Supervisor Wallace T. Fowler

Robert H. Bishop

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr Wallace T. Fowler for all of his support

and guidance during my time at The University of Texas at Austin. Without his

comments and suggestions this would never have been accomplished. Also thanks to

Dr Robert Bishop for reading my thesis.

I would also like to thank the faculty in the Department of Astronautics at the

United States Air Force Academy for my undergraduate education and selecting me

for the Graduate Studies Program.

Finally, I give thanks to my wife, Kody Eisenreich, and my parents, J.C. and

Linda Eisenreich for all of the sacrifices they have made for me to get this far in my

life.

August 5,1998

iii

OPTIMIZATION OF LOW THRUST SPACECRAFT TRAJECTORIES

USING A GENETIC ALGORITHM

by

Jason Corey Eisenreich, M.S.E.

The University of Texas at Austin, 1998

SUPERVISOR: Wallace T. Fowler

This thesis concerns the use of genetic algorithms in the optimization of the

trajectories of low thrust spacecraft. Genetic algorithms are programming tools which

use the principles of biological evolution and adaptation to optimize processes. These

algorithms have been found to be very useful in many different engineering

disciplines. The goal of this project is to determine their applicability to the

generation and optimization of low thrust spacecraft trajectories. This thesis

describes the basic operating principles of genetic algorithms and then applies them to

two different missions.

The first problem is an Earth to Mars mission. This mission has been solved

many times using both traditional calculus of variations-based optimization

techniques and genetic algorithms. Two-dimensional solutions from the literature

will provide a baseline and test case to ensure the functionality of the genetic

IV

algorithm. However, in this study, we expand this mission by using a three

dimensional model.

The two-dimensional model is a good approximation for the first mission, a

Mars test case, but is totally inadequate for the second mission, an asteroid rendevous.

The three dimensional model is needed to obtain a good solution for the second

mission, a mission from Earth to the asteroid Eros 433. Eros is a near-earth asteroid

with an orbit which is inclined from the Earth-Sun ecliptic. This mission will

demonstrate the development of a three dimensional trajectory using the genetic

algorithm.

The most important focus of this study is the use of a local coordinate frame

known as the trajectory-tangent coordinate frame in stead of a more traditional

heliocentric inertial frame. The local frame used will be able to drastically decrease

the memory required to operate the genetic algorithm. This is very important in

saving computing time as well as genetic algorithm effectiveness.

Table of Contents

List of Illustrations vii

List of Tables viii

Chapter 1: Introduction 1

Chapter 2: Background 4

2.1 Introduction 4

2.2 Optimization Techniques 4

2.2.1 Traditional Optimization Techniques 4

2.2.2 Genetic Algorithms 5

2.3 Earth to Mars Problem Description 8

2.4 Earth to Eros Problem Description 9

Chapter 3: Problem Formulation 12

3.1 Introduction 12

3.2 Equations of Motion 12

3.3 Genetic Algorithm Formulation 16

3.4 Fitness Function Development 18

3.5 Genetic Algorithm Parameters 19

Chapter 4: Results and Analysis 21

4.1 Introduction 21

4.2 Mars Test Case Initializations 21

4.3 Mars Results and Interpretation 21

vi

4.4 Eros Test Case Initializations 26

4.5 Eros Results and Interpretation 26

4.6 Similarities and Differences 32

4.7 Effectiveness of Trajectory-Tangent Coordinate Frame 33

Chapter 5: Conclusions and Recommendations 35

5.1 Conclusions 35

5.2 Recommendations for Further Study 36

Appendix A - How to Run Program 38

Appendix B - Program Listing 42

References 68

Vita 69

vn

List of Illustrations

Figure 2.1- Earth and Mars Orbits 8

Figure 2.2 - Earth and Eros Orbits 10

Figure 3.1 - Coordinate Systems Used for Problem 13

Figure 3.2 - Phenotype Structure 17

Figure 4.1 - Earth to Mars Trajectory 24

Figure 4.2 - Maximum Fitness Value per Iteration 24

Figure 4.3 - Median Fitness Value per Iteration 25

Figure 4.4 - Earth to Eros Trajectory 29

Figure 4.5 - Maximum Fitness Value per Iteration 30

Figure 4.6 - Median Fitness Value per Iteration 31

vni

List of Tables

Table 2.1 -Eros433 Orbital Parameters 9

Table 4.1 - Earth to Mars Initial Conditions 22

Table 4.2 - Earth to Mars Thrust History 22

Table 4.3 - Earth to Mars Final Conditions 23

Table 4.4 - Earth to Eros Initial Conditions 27

Table 4.5 - Earth to Eros Thrust History 27

Table 4.6 - Earth to Eros Final Conditions 28

IX

Chapter 1: Introduction

Low thrust propulsion is being considered as an efficient propulsion mode

for spacecraft flying to celestial bodies such as Mars and Near-Earth asteroids.

To date most space missions have used traditional high thrust methods to propel

spacecraft into deep space. The primary example of this is the upper stage rocket

motor. These engines are primarily chemical rockets such as solid, liquid, or

hybrid rockets. Once a spacecraft is placed in a parking orbit by a launcher, the

upper stage will fire and propel the spacecraft, causing it to escape the Earth's

influence. The typical firing interval is less than 1 percent of the mission length.

Low thrust propulsion is quite different. A low thrust engine can burn up to 100

percent of the transfer time. A typical low thrust system might produce up to 20

N, of thrust while a typical chemical rocket might produce up to the 35,000,000

N of thrust.

The reasons for using low thrust propulsion systems (ion engines and

solar electric engines) are that they are much more efficient than chemical

rockets. The measure of efficiency of a rocket engine is the specific impulse, Isp.

Isp is a measure of how many newtons of thrust you get from a kilogram of

propellant burned in one second. For chemical rockets specific impulses range

from 140 seconds for a monopropellant liquid rocket to 460 seconds for a

bipropellant liquid rocket (Humble, 1995). Low thrust engines have a range of

1

500 sec for electrothermal propulsion systems to 10,000 seconds for electrostatic

propulsion systems (Humble, 1995). This increased specific impulse allows for

an increased payload mass capacity. However, the low thrust, because of the low

resulting acceleration, necessitates an increased amount of time to reach the

destination. For this reason, low thrust propulsion is not suitable for transporting

humans to destinations such as Mars. However, low thrust propulsion is very

promising for use in propelling cargo spacecraft to Mars. Cargo spacecraft can be

launched before the astronauts and will reach Mars before the astronauts. By

using low thrust technologies, the cargo spacecraft will be able to carry more

cargo mass than when propelled by chemical rockets.

High thrust and low thrust rockets also differ in the way they are analyzed.

High thrust models can assume that the thrust, and thus the change in velocity,

occurs instantaneously. This greatly simplifies the necessary calculations because

after the change in velocity the spacecraft simply coasts on a ballistic trajectory.

For low thrust trajectories, the analysis is much more involved. For each step in

the numerical integration of the trajectory, the thrust, the angles of the thrusters,

as well as Newton's laws must be considered.

When trying to optimize the trajectory of low thrust spacecraft these extra

variables of integration make for much more difficult calculations. This thesis

will show a method of optimization of low thrust trajectories, which will ease the

calculation load on the analyst attempting to compute the optimal trajectories.

Genetic algorithms have shown usefulness in many areas optimization.

They have been used is high thrust trajectory optimization (Pinon, 1995) as well

as low thrust trajectory optimization (Rauwolf, 1995). The genetic algorithm

(GA) is an optimization algorithm that mimics the principles of biological

evolution and adaptation. The optimal initial values for the integration variables

in a low thrust trajectory are very difficult to obtain. Traditional optimization

methods are very dependent on the initial and final values of the problem. The

GA alleviates this concern by randomly selecting the initial guesses for system

parameters and then iterating to find near optimal values for these parameters.

The purpose of this project is to develop an implementation of a genetic

algorithm that will determine three-dimensional trajectories for low thrust

spacecraft trajectories for various missions. This study will look at two different

scenarios. The first is a cargo mission to Mars and the second a mission to the

Near-Earth asteroid, Eros. This study will show the viability of a GA in solving

the low thrust trajectory optimization. It will be shown that the GA can produce

near optimal solutions that can then be used as the basis for a more accurate

numerical method if so desired. This study is one stepping stone in showing the

potential of genetic algorithms for use in the optimization of spacecraft

trajectories.

Chapter 2: Background

2.1 Introduction

This chapter shows the basics of the problem to be solved as well as

baseline information on different techniques of optimization. Also, the two

trajectories to be analyzed are introduced.

2.2 Optimization Techniques

2.2.1 Traditional Optimization Techniques

Traditional optimization techniques include direct and indirect methods

(Kluever, 1997). Indirect methods are those methods based on the calculus of

variations, such as the two point boundary value problem. These lead to accurate

optimal solutions, but are very sensitive to the initial guess for the initial guess for

the costate variables. Determining accurate values for these unknown variables

can be very difficult. Direct methods are those which change the control variables

at each iteration to continually reduce the performance index. It is usually easier

to produce a good guess for the initial conditions using direct methodsTraditional

methods have the drawback that the optimal value reached is not necessarily the

global optimum. Among traditional methods, the indirect method is the standard

which has been used for the majority of spacecraft trajectory optimization.

2.2.2 Genetic Algorithms (GAs)

A GA is an optimization scheme based on the principles of evolution. The

GA starts by randomly generating a population of candidate solutions to the

problem. These candidate solutions, called chromosomes, contain parameter

variable values, which are used to evaluate the performance index selected for the

specific problem. The performance index is evaluated using the variables stored

in each chromosome. Each chromosome is then assigned a fitness value based on

this performance index. The goal can be to either minimize or maximize the

performance index. For example, if the maximum performance index is desired, a

chromosome with a high performance index will be assigned a high fitness value.

The number of variables and the desired precision for each variable determines

the length of each chromosome (Pinon 1995). The GA operates for a specified

number of iterations, each of which produces a new generation of chromosomes.

Each generation begins with the translation of the binary genetic material

into decimal values for parameters to start the integration. These values are then

used for the calculation of the spacecraft trajectory. The trajectory is calculated

by integrating the equations of motion over a specified time interval. Once the

trajectory has been determined, its performance index is calculated and its fitness

value is assigned. Once each population member trajectory has a fitness value,

the three basic genetic operators are used to generate genetic material for a new

generation. The evolutionary-based operators are selection, crossover, and

mutation.

Selection is the process of choosing the parent chromosomes for the next

generation. There are two basic methods for selection: the roulette wheel

selection method and tournament selection. The roulette wheel selection method

assigns a slot on the wheel for each population member. The slot size is

proportional to the relative fitness value for each member. Those chromosomes

with higher fitness values receive a better chance of reproduction. The wheel is

the "spun" to select a parent chromosome. Tournament selection involves

randomly selecting two population members and then choosing the chromosome

with the highest fitness value. This member goes on to become a parent

chromosome. This study uses the tournament selection because of its ease of

coding.

Once all of the parent chromosomes have been selected, the crossover

operation takes place. Crossover is the mating of two parent chromosomes to

produce the next generation. The parent strings are crossed with a fixed

probability to produce two child chromosomes. Typical probabilities of crossover

range from 0.4 to 0.8 (Piflon 1995).

There are two methods for crossover. The two methods of crossover

differ in their method of crossover. In single point crossover the two parents are

randomly chosen and then a single point of crossover is randomly chosen. The

6

two parents then swap genetic material at this point. For example two members

'00000' and '11111' could become '00111' and '11000'. In uniform crossover,

there is the possibility of swapping genetic material at each point. In this case the

parents '00000' and '11111' may become '01010' and 10101'. This project uses

single point crossover because of the ease of programming.

The final operation to take place is mutation. Whereas selection and

crossover attempt to produce the best possible members from the existing

population, mutation attempts to create diversity in the population. Mutation

randomly will cause a bit in a chromosome to flip from 0 to 1 or vice versa. The

user assigns the probability of mutation. This allows the GA to account for

candidate variables that would not be produced by the selection and crossover

operators.

One other important topic on the background of GAs is the coding of the

chromosomes. To this point binary numbers have been solely discussed as the

method of coding. This is because binary numbers are most commonly used.

They give the GA the benefits of low-order schemata and the fact that the binary

alphabet is the smallest available. Schemata are the building blocks of GAs.

They are short lengths of the chromosome that produce similar results in different

chromosomes. Schemata are discussed in depth by Pinon and Goldberg. Low-

order schemata allow those short pieces of chromosomes that continually produce

good results to grow. The fact that binary is the smallest available alphabet

simply gives more schemata to build on.

2.3 Earth to Mars Problem Statement

The first problem to be studied is an Earth to Mars transfer. This problem

was selected because the optimal solution for the two dimensional problem has

been found through both the calculus of variations (Bryson and Ho, 1975) and

through genetic algorithms (Rauwolf, 1995). To best replicate these results using

a three-dimensional model, the same values as used in the literature were used for

thrust, initial mass, and the mass flow rate. They are as follows:

T = 3.7877V

m0 = 4545.5%

m = 6.787 xlO'5 kg/ sec

For this problem, the trajectory starts at the Earth's position and is affected

solely by the gravity of the Sun. Throughout the mission, the Sun is the only

gravitational force considered. The following figure shows the orbits of the Earth

and Mars around the Sun.

Figure 2.1 - Earth and Mars Orbits

As you can see, the orbits of Earth and Mars are very similar. Mars has of course

a larger semi-major axis and is very slightly inclined from the Earth-Sun ecliptic

as well as having a slightly more eccentric orbit than the Earth.

This is a highly practical problem as low thrust propulsion is a primary

candidate for cargo missions in support of a manned mission to Mars. Because of

the ability of a spacecraft with a low thrust propulsion source to carry more cargo

mass for the same change in velocity as a high thrust propulsion source, more

cargo can be carried to Mars at a lower cost.

2.4 Earth to Eros Problem Statement

For this mission, the spacecraft again starts at the Earth's position and is

affected only by the thrust of the engine and the Sun's gravitational pull

throughout the entire mission. Eros 433 is a Near-Earth asteroid with the

following orbital characteristics:

Orbital Parameter Value
Semi-major Axis 1.4583 AU

Eccentricity 0.2229
Inclination 10.832 degrees

Longitude of Ascending Node 304.497 degrees
Longitude of Perihelion 123.004 degrees

Table 2.1 - Eros 433 Orbital Parameters

Figure 2.2 shows the orbits of the Earth and Eros 433. Notice the contrast

between the orbits of the Eros and Mars. Eros's orbit is much more eccentric and

more inclined than the orbit of Mars.

Figure 2.2 - Earth and Eros Orbits

An Earth to Eros mission would primarily serve two purposes. The first

mission would be to land a spacecraft on the asteroid and obtain physical

evidence as to its composition and mass characteristics. This would then lead to

the second mission, which would again land on the asteroid to conduct mining

operations. Although not financially viable at the current time, mining of

asteroids are being considered as a future means of obtaining raw materials. Both

of these missions would need a very large cargo mass capacity because of the

many instruments needed and large return cargoes. It is for this reason that the

study of the Earth to Eros mission uses a larger initial mass than that of the Earth

to Mars mission. The values for thrust, initial mass, and mass flow rate used here

are:

T = 3.0N

m0=\0,000kg

m = 6.116xl(T5 kg I sec

10

Notice that the thrust is slightly lower than that used in the Earth to Mars test

case. It then follows that the mass flow rate is also lower, as it is directly related

to the thrust.

11

Chapter 3: Problem Formulation

3.1 Introduction

In this chapter the formulation of the problems to be solved is developed.

The first step is to define the relevant coordinate frame. Part of this definition

will be the introduction of the variables which the GA will use to optimize the

fitness. A description of the GA used as well as the definition of the fitness

function will follow.

3.2 Equations of Motion

In many previous studies of low thrust propulsion, two-dimensional

coordinates have been used. These studies concentrated on missions to other

planets in our solar system, such as Mars. For interplanetary missions, a two-

dimensional model is adequate because of the negligible difference in the

inclinations of the Earth and the other planets (excluding Mercury and Pluto). For

example, the Martian obit is inclined 1.85 degrees from the ecliptic plane.

However, near-earth asteroids and comets, can have inclinations that vary greatly

from the ecliptic. For example, Eros 433 is inclined 10.8 degrees to the ecliptic

and Halley's Comet is inclined 162 degrees (Hamilton 1997). The Rauwolf study

(1995) was two-dimensional and used a heliocentric polar coordinate frame. The

control variable for this frame is the thrust angle. This frame can be easily

changed into three dimensions by adding a second control angle for out of plane

12

thrust. However, using such a coordinate set is a disadvantage because you must

vary the control angles ±90 degrees. This presents the problem of long genetic

strings in order to gain precision. The number of divisions within a range of

values corresponds to the number of bits in a chromosome. For example, for the

range ±90 degrees, a chromosome with 4 bits would have 24 (16) divisions. Thus

the variable would have only about 11 degrees of precision.

In order to increase precision while maintaining small length

chromosomes, this study uses the trajectory-tangent coordinate system. This

system is described in detail in Ashley (1974). These coordinates are typically

used for high thrust missions such a boost from a rotating planet. The coordinate

frame is used in this study because its use should lead to better precision while

using shorter chromosomes and thus saving computing time. The trajectory-

tangent system is rotated and translated from the inertial coordinate frame as

illustrated in Figure 3.1.

As can be seen in Figure 3.1, there are four coordinate frames used in the

transformation from the inertial frame to the trajectory-tangent frame. The first is

the inertial coordinate frame. This has the origin at the planetary center (in this

study the center of the Sun) with the Z - axis pointing through the north pole of

the body and parallel to the angular momentum vector (Ashley 1974). The

second coordinate frame is the planet-fixed central system. This is a rotating

coordinate frame with a rotation rate the same rate as the planet. For this study,

13

xL(Vert)

>rL(East)

Figure 3.1 - Trajectory Tangent Coordinate System

the rotating planet-fixed coordinate system is unnecessary because the Sun does

not rotate. Therefore, for our problem, the inertial and planet-fixed coordinate

frames are identical. The third reference system is the locally level frame. It has

its origin at the spacecraft center of mass and x-direction, xi, is the radial

direction. The unit vecotrs vz. and zi point toward local east and north,

respectively. The final coordinate frame is the trajectory-tangent frame. It also

has its origin at the spacecraft center of mass. Its y-direction, unit vector yj,

points in the direction of the spacecraft velocity vector, vc. The unit vector xj is

normal to vr in the plane containing xi.

There are four important angles in the coordinate transformation. The east

longitude, A, and north latitude, X are measured from the x-axis in the inertial

frame. The azimuth angle, ß, is measured about XL from the yi direction. The

14

elevation or flight path angle, y, measures upward from the local horizontal. The

azimuth and elevation angles determine the direction of the velocity vector.

The following equations that govern the motion of a spacecraft using the

trajectory-tangent frame (Ashley 1974):

A =

X =

(3.1)

(3.2)

(3.3)

(3.4)

T
X

(3.5)

T2 (3.6)
mv . COS;K

r = vc sin Y

vc cos Y COS ß

r cos/

vc cos Y sin ß

r

k sin Y T
v = —+ — c 2 r m

. v, cos Y kcosY Ty

r vcr
2

V COS Y
ß = -(S ^-)cosy9tanA +

These equations include modifications to account for the lack of a rotating central

body and the absence of lift and drag. In the equations the quantities Tx, Ty, and

Tz represent the components of thrust. These components are determined by two

control angles, cp and \j/. These angles represent the gimbal angles of the

propulsion engine and are typically very small. The thrust components are

computed via:

Tx=Tsin<p (3J)

Tt =T cos q> cosy/ (3.8)

T2=T cos (p sin y/ (3.9)

15

3.3 Genetic Algorithm Formulation

The genetic algorithm used for a spacecraft trajectory optimization must

choose a thrust history, which includes thrust direction and possibly coast arcs,

which will satisfy performance conditions determined by the user to an acceptable

level. These conditions and the acceptable level of performance lead to the

definition of the fitness function for the study. For this study, there are four

variables that need to be coded into the GA. The two thrust direction angles are

obvious choices. A third variable of interest is the time of flight. A fourth

variable is necessary to allow for the possibility of coast arcs. Coast arcs are

segments of the trajectory where the engine is turned off. A variable called

'onoff is used to represent if the engine is turned on or off.

It is in coding for the GA that using the trajectory-tangent system gains its

advantage. The length of chromosomes is very important in the coding of a GA.

The length determines the number of iterations and population members.

Therefore, minimizing chromosome length minimizes computing time and

maximizes the efficiency of the GA. Using the more traditional polar coordinates,

the thrust direction angles are required to vary ±90 degrees. Each angle would

require 8 bits to obtain better than one degree of precision. In the trajectory-

tangent coordinate frame, the gimbal angles are typically very small. For this

16

study, they were allowed to vary ±7 degrees. This uses only 4 bits for each angle

and attains 0.573 degrees of precision.

In order to facilitate the analysis and implementation of the GA, each

trajectory is divided into 4 segments. During each segment, the thrust

characteristics are assumed to remain constant. Each phenotype (set of

parameters, the GA "genetic information") is made up of 40 bits for the Earth to

Eros mission and 38 bits for the Earth to Mars mission. An example of a

chromosome for the Earth to Eros test case is seen in Figure 3.2. The difference

between the two is the number of days which the time of flight is allowed to vary

for each case. Because it has been proven in other studies that the optimal time of

flight for an Earth to Mars low thrust mission is 193 days (Bryson and Ho, 1975),

our study varied the time of flight from 190 to 221 days. This requires 3 bits. For

the Earth to Eros mission the time of flight was allowed to vary from 142 days to

400 days. This is due to the fact that the calculus-based optimum is not known.

This mission requires five bits for the time of flight. These bits are located at the

end of the chromosome.

OrJOff Switches for
Segments 2-4

ODD DDDD D DDDD DDDD D DDDD DEED □ DEED DUD DDDDD
Thrust Angles for

Segment 1
Thiust Angles for

Segment 2

J L
Thrust Angles for

Segment 3

J L J L
Thrust Angles for Time of Flight

Segment 4 per Segment

Figure 3.2 - Phenotype structure

17

Each of the different thrust direction angles, two for each segment, are

coded into 4 bits. This gives a total of 32 bits for the thrust angles. Finally, the

last three segments each have an onoff bit which proceed the thrust angles. The

first segment does not contain an onoff bit because it is necessary for the engine

to be on to start the mission.

3.4 Fitness Function Development

The same fitness function was used for both mission evaluated. The

fitness function combined measures of the relative final position and relative

velocity of the spacecraft and the target. The parameters were evaluated in

astronomical units. A weighting factor was used to counter the fact that the

relative velocity is inherently a much smaller number than the relative position.

Equation 3.10 shows the fitness function used for this study.

0.01 0.00001 (3-10)
Fitness = +

MISS VREL (311,

MISS = ^(xtgt -xsc)2 + {ytgt -yscf + {ztgt -zscf

VREL = ^iyxtgt - vxsc)2 + (yytgt - vysc)2 + (vztgt - vzsc)2

where

xtgt - x-component of target position
ytgt - y-component of target position
ztgt - z-component of target position
vxtgt - x-component of target velocity
vytgt - y-component of target velocity
vztgt - z-component of target velocity
xsc - x-component of spacecraft position
ysc - y-component of spacecraft position

18

zsc - z-component of spacecraft position
vxsc - x-component of spacecraft velocity
vysc - y-component of spacecraft velocity
vzsc - z-component of spacecraft velocity

By having the miss distance and the relative velocity in the denominator of the

fitness function, the fitness function will grow with increasing accuracy. If either

the miss distance or relative velocity were zero, the fitness value would be

infinite. This could cause some problems but the GA is not likely to produce such

a result as it is not able to obtain such accuracy. The fitness function was

designed so that the trajectory is within 1 percent of the position of the target the

first component of Equation 3.10 will equal 1. If the velocity of the trajectory is

within 0.001 percent of the velocity of the target, the second component of

Equation 3.10 will equal 1. For example if the miss distance where 0.02 AU and

the relative velocity were 0.00002 JD/AU, the fitness value would be equal to 1.

3.5 Genetic Algorithm Parameters

The GA used in this study was programmed in FORTRAN based of the

algorithms found in Goldberg's text (1989). All other subroutines except for

those used in integration come from the Mission Design Subroutine Library of the

Department of Aerospace Engineering at the University of Texas at Austin. The

two subroutines used for integration were modified from the Astro 422 Library

from the Department of Astronautics at the United States Air Force Academy.

The program ran on Silicon Graphics workstation.

19

The GA was designed using the basic operators mentioned in Chapter 2

plus one special operator. This special operator is known as elitism. This

operation takes place before selection of the new generation. This operator

determines the gene with the highest fitness value and ensures that it survives to

the next generation. The other operators were chosen mostly for ease of

programming as all options produce similar results.

Also necessary in the formulation of the GA are the following parameters:

number of individuals, number of generations, crossover probability, and

mutation probability. The parameters for this study were chosen based on

analyses done by Goldberg and Rauwolf. Both studies cite numbers of

generations and individuals similar to the number of bits in each phenotype as

sufficient. Therefore, this study chose 50 generation and 50 individuals. A

crossover probability of 0.65 was used and a mutation probability of 0.015 was

used. These are consistent with studies done by Pinon and Rauwolf.

20

Chapter 4: Numerical Study

4.1 Introduction

This chapter presents the results of the numerical simulations. The

analysis demonstrates the viability of using a genetic algorithm for low thrust

trajectory analysis as well as the performance of the trajectory-tangent coordinate

frame.

4.2 Mars Test Case Initializations

The most important initialization variable for each of the two test cases is

the launch date for the mission. This was determined through a trial and error

process. Determining an appropriate launch date is necessary to resolve phasing

issues between the Earth and the target. For the Mars test case, this study used a

launch date of 15 March 2002. This date was by numerical experimentation over

dates ranging from 01 January 2002 to 31 December 2003. For the Mars case,

the range of possible times of flight is only between 190 and 221 days, because of

the fact that a known optimum of 193 days exists (from calculus of variations

solutions to the problem) (Bryson 1975).

4.3 Mars Results and Interpretation

The Mars test case produced some interesting results. The GA was able to

converge on all runs of the program. The trajectory was initiated at the position

and velocity (in the inertial reference frame) given in Table 4.1.

21

X Y Z

Position (AU) -0.98908490 0.10244640 0.00000069

Velocity (AU/JD) -0.00205368 -0.01717673 -0.00000062

fable 4.1 - Earth to Mars Initial Conditions

The GA produced an optimal solution with a 192 day transfer time. This

is only one day off of the calculus of variations solution of 193 days. The GA

does not "converge" quadratically, so this is an excellent resultTable 4.2 shows

the values of the thrusting angles for each segment of flight.

Segment 1 Segment 2 Segment 3 Segment4

(p (degrees) -4.285 -3.571 5.000

^(degrees) 5.714 5.714 5.714

Engine On/Off On Off On On

Table 4.2 - Earth to Mars Thrust History

A most interesting feature of the solution is the fact that a coast arc exists

and that the thrust angle, v|/, is constant throughout the flight. During the second

segment of the mission, the spacecraft coasts and is influenced only by the

attraction of the Sun. The out-of-plane gimbal angle, i|/, which was constant

throughout the flight, causes the spacecraft to constantly increase its inclination

with resect to the Sun. This causes the spacecraft to approach Mars from the

22

Martian South Pole. The thrust history above produced the final conditions given

in Table 4.3.

X Y Z

Spacecraft Position
(AU)

-1.53811280 0.64911999 0.03341085

Target Position
(AU)

-1.53233910 0.65136474 0.05135923

Relative Position
(AU)

-0.00577370 -0.00224475 -0.01794838

Spacecraft Velocity
(AU/JD)

-0.01296442 -0.01094570 0.00007795

Target Velocity
(AU/JD)

-0.00492701 -0.01169463 -0.00012363

Relative Velocity
(AU/JD)

-0.00803741 0.00074893 0.00020158

Table 4.3 - Earth to Mars Final Conditions

These results show that the GA did very well at finding a solution, which

minimized the relative position and velocity of the spacecraft and Mars. The

magnitude of the relative position is about 1.5 million miles. At first glance this

does not seem to be a very good solution. However, the fact that the GA

produced a trajectory that comes this close to Mars is a great success. To realize

the success, we must remember the fact that these trajectories are randomly

produced. Guessed initial conditions produced trajectories which finished

hundred of millions of miles away from the target. The ability of a program to

move to the vicinity of Mars is what is what expected. The trajectories obtained

are not accurate enough to be used for an actual mission, but they are clearly

sufficient as a starting point for quadratically converging optimizer, which is very

23

sensitive to initial conditions. The following figure shows the flight path of the

spacecraft and Mars throughout the time of flight.

Figure 4.1 - Earth to Mars Trajectory

Another interesting facet of the study is the performance of the GA. The

Figure 4.2 shows the maximum fitness value in the population for each iteration.

0.6

0.5 ,,/

= 0.4

E 0.3
E s
E

| 0.2

0.1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Iteration Number

Figure 4.2 - Maximum Fitness Value per Iteration

As seen, the maximum fitness value of about 0.53 is attained after only 29

iterations. From the literature the expected number of iterations required should

be equal to the length of the genetic data string. For this case, the length was 38

bits.

24

Another interesting statistical value is the median value of the population.

This can be seen in Figure 4.3.

0.6 -i

i*ti*' 0.5 -

«j 0.4 -

>

.t; 0.3 -

B

■3

* 0.2 -

0.1 -i

n

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Iteration Number

Figure 4.3 - Median Fitness Value per Iteration

This graph shows that the maximum median fitness value is reached at

iteration 51. At this time the median value is 0.525368, nearly equal to the

maximum. It is this is more informative with respect to the required number of

iterations because it shows that a large segment of the population has similar

genetic material. This defines "convergence" for a GA. It is also interesting to

note that the median goes down after this point. This is due to the fact that

mutations alter the genetic mix even after "convergence."

25

Mutation introduces a random bit into the genetic material. Mutation can

be very important if a maximum is reached that is not the global maximum.

Looking at the "convergence" data, we see that 50 - 60 iterations would have

been sufficient. Actually 75 iterations were used in this study. It is important to

minimize the number of iterations to decrease population size as computing time

increases linearly with the number of generations, or iterations (Rauwolf 1995).

However, it is important to have sufficient iterations to ensure convergence.

The Mars test case showed the applicability of GAs to the generation of

low thrust spacecraft trajectories. The GA was able to converge to an optimal

solution that is very near the solution obtained through calculus-based methods.

4.4 Eros Test Case Initializations

As for the Mars case, an important factor is the selection of the launch

date. For this case the best launch date was determined to be 15 November 2004.

This was based on a trial and error search to find the date which produced the best

fitness value over the years of 2003 and 2004.

4.5 Eros Test Case Results and Interpretation

The Earth to Eros test case was also successful. Once again, the GA was able

to converge on all runs of the program. There was a noticeable difference in the

maximum fitness value reached in the Mars test case. However, the trajectory

was able to sufficiently approach Eros. The trajectory again began at the Earth's

26

position with the Earth's velocity in the heliocentric inertial coordinate frame.

Table 4.4 shows the initial coordinates of the trajectory.

X Y Z

Position (AU) 0.59868739 0.78731214 0.00002972

Velocity (AU/JD) -0.01397586 0.01034976 0.00000033

Table 4.4 - Earth to Eros Initial Conditions

The GA produced an optimal trajectory with a transfer time of 336 days.

This is a much longer transfer time than that of the mission to Mars. This is most

likely due to the larger inclination of the orbit of Eros. When calculating the

change in velocity for a trajectory, a change in inclination is much more costly

than a change in semi-major axis. This is amplified by the fact that it takes a low

thrust engine a long time to build up a change in velocity. Table 4.5 shows the

optimal thrust history generated by the GA.

Segment 1 Segment 2 Segment 3 Segment4

cp (degrees) 0.000 7.050

v|/(degrees) 5.714 -5.000

Engine
On/Off

On On Off Off

Table 4.5 - Earth to Eros Thrust History

Table 4.5 shows some interesting results. The first is the fact that there are

two coast arcs at the end of the mission. For this trajectory, the engine is engaged

27

only half of the time. This brings about two possibilities. The trajectory could

use only half of the time of flight to get to Eros and then coast with Eros for the

last half of the mission. The trajectory could also use the first two segments to get

into an orbit that will then fly ballistically to intersect with Eros's orbit.

X Y Z

Spacecraft Position
(AU)

0.68154751 -1.66538049 -0.01423593

Target Position
(AU)

0.67361681 -1.63979014 -0.07147498

Relative Position
(AU)

0.00793070 -0.02559035 0.05723905

Spacecraft Velocity
(AU/JD)

0.01083091 0.00290918 -0.00003022

Target Velocity
(AU/JD)

0.01064372 0.00361664 0.00207037

Relative Velocity
(AU/JD)

0.00018719 -0.00070746 -0.00210059

Table 4.6 - Earth to Eros Final Conditions

These values for the variables in the model generate the final conditions in Table

4.6.

These final conditions again do not look very promising upon first glance.

The GA generated trajectory finishes 5.9 million miles away from Eros.

However, this is again a very good result when the expectations are kept in

perspective. One member of the initial population produced a trajectory that

finished over 120 million miles away from Eros. This is an improvement of 2000

percent produced without any input from the user. The final conditions also

answer the question as to whether the trajectory coast with Eros for the last half of

28

the mission or if it coasts to Eros. By looking at the z-components of the

velocities we see that the trajectory and Eros are going in opposite directions.

This shows that the trajectory coasts to an intersection with Eros. The trajectory

produced by the best performer is shown in the following figure.

Figure 4.4 - Earth to Eros Trajectory

Figure 4.4 shows the greater distance between the spacecraft and the target

at the end of the trajectory than in the Earth to Mars test case. This was expected

from looking at the numerical results. This shows the need for a more accurate

optimizer. But the initial conditions produced by the GA can be used to allow the

more accurate optimizer to accomplish the task in much less time. Without the

initial conditions from the GA, a quadratically converging optimizer either would

take a very large amount of time or could not solve the problem.

29

This case also exhibited some insight into the effectiveness of the GA.

Figure 4.5 shows the maximum fitness value for each iteration.

0.18

0.15

= 0.12
St

>

E 0.09
E

| 0.06

0.03

0.00

——

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Iteration Number

Figure 4.5 - Maximum Fitness Value per Iteration

This case took until iteration 56 to produce the maximum fitness value of

0.15868. This case seems to have stalled at a maximum fitness value slightly

lower than this for the previous 10-15 iterations. This change suggests that a

mutation took place which increased the fitness value. This higher fitness value

was then allowed to go throughout the population in subsequent generations. By

iteration 63, this member had proliferated enough to reach the highest median

fitness value of 0.158176. This is seen in Figure 4.6, which shows the median

fitness value for each generation. Again, this shows when the GA has converged

30

to a point where the best performer occupies the majority of the population

members.

0.18

0.15

0.12

5 0.09

S 0.06

0.03

0.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Iteration Number

Figure 4.6 - Median Fitness Value per Iteration

This test case shows the importance of employing a sufficient number of

iterations. Had the standard benchmark of using a number of iterations equal to

the length of the chromosome been used, this test case would not have shown

what proved to be the best performer. This test case showed that 60 - 70

iterations would be needed to exhibit convergence.

31

4.6 Similarities and Differences

This study presented many differences and similarities between to the two

test cases. In both cases, the GA was successful in generating a good solution to

the problem. However, the GA in the Mars test case was able to come much

closer to the target than in the Eros case, though in both cases the GA provided

marked improvement over the initial populations. Although the final relative

distances exceeded one million miles in both cases, the results are more that

sufficient for use in a quadratically converging optimizer.

The difference between the two cases is the strategies used to approach the

targets. For the Mars case, the GA produced a trajectory which, outside of the on

coast arc, was thrusting constantly toward Mars. This trajectory was also

approaching Mars using the same out-of-plane angle throughout the flight. For

the Eros test case the strategy used was to find a trajectory that would go into an

orbit which would ballistically travel towards the target. This is exhibited by the

fact that the best trajectory thrusted for the first half of the mission and coasted for

the last half.

Another difference between the two test cases was the number of

iterations need for the GA to produce the best performing chromosome. In the

Mars test case, the GA produced the best performer in only 29 iterations and

converged in 51 iterations. The Eros test case took longer to reach the maximum

32

value and for convergence. This difference shows the importance of selecting a

number of iterations that is large enough to allow for convergence.

4.7 Effectiveness of Trajectory -Tangent Coordinate System

The most important results of this study are the effectiveness of the

coordinate frame used. It was hypothesized that by using a local coordinate frame

rather than a more traditional inertial frame, the GA would be able to use much

smaller chromosomes. This proved to be true. As mentioned before, the

chromosomes used for this study are 38 bits long for the Mars test case and 40

bits long for the Eros test case. In both cases, 4 equal length segments were used.

Thus there are 8 different thrust angles (2 for each segment) stored in each

chromosome. Each thrust angle requires 4 bits to obtain 0.573 degrees of

precision. This is due to the fact that each angle need only be varied over the

range of ±7 degrees as measured instantaneously from the velocity vector.

If an inertial frame were used, the thrust angles must be varied at least ±90

degrees. If 8 bits were used to represent these angles, we would have 0.703

degrees of precision, while if 9 bits are used, the angles have 0.352 degrees of

precision. For the sake of discussion, we will assume 8 bits would be used for an

inertial frame. Under these conditions, a chromosome for the Mars test case

would need to be 70 bits long. A chromosome for the Eros test case would need

to be 72 bits long.

33

Using the local coordinate frame saves 28 bits for each mission.

Decreasing the length of chromosomes is important because computing time is

reduced in two ways. First, the computer does not have to deal with as much

information when analyzing the chromosome itself, thus it can complete an

iteration faster. Second, the length of the chromosome is the primary measuring

stick in determining the number of iterations and the number of population

members required for successful GA operation. By employing a shorter genetic

string, the number of iterations and the number of population members required

are decreased. By decreasing both quantities, the required computing time is

drastically reduced. The fact that these three different quantities, chromosome

length, number of iterations, and number of population members, each lowers the

computing time, major time savings have been effected.

This effect is magnified if the number of segments in the trajectory is

increased. An increase in segments is necessary when trying to obtain more

precise trajectories. For example an Earth-to-Eros trajectory with 50 trajectory

segments would require 454 bits when using the trajectory-tangent coordinate

frame. This same mission would require 854 bits when using an inertial frame.

Using the inertial frame would also require 400 more iterations and population

members than the local frame. In such cases, the savings in computing time can

make solving an impossible solution possible.

34

Chapter 5: Conclusions and Recommendations

5.1 Conclusions

This study produced some very useful results. The use of the trajectory-

tangent frame proved to be very beneficial in application of a GA to the analysis

of low thrust trajectories. The coordinate frame allows for shorter genetic strings,

which in turn reduces the computing time. In this basic study, the effects of the

trajectory-tangent frame were seen by lowering the chromosome length from 72

bits to 40 bits for the Eros test case.

The Earth to Mars was used as a validation case to ensure that solutions

generated by the GA matched those in the literature. The GA was successful in

matching these solutions within the expected level of accuracy. The success of

the Earth to Mars test case allowed us to use the GA for the second case, a

rendezvous with the near-earth asteroid, Eros 433. The importance of this case is

that the orbit of Eros is sufficiently inclined from the ecliptic to force the use of a

three dimensional model.

The GA was able to converge on a solution in both the Earth to Mars test

case and the Earth to Eros test case. The trajectories produced by the GA for both

test cases were both within the expected level of accuracy. The GA operated very

well in both cases. From analysis of the two test cases, we have surmised that for

the chromosomes used, 40 bits long, 50 - 60 iterations should be used. This is

35

about 50 percent more than is recommended in the literature. However, we feel

that the ability to obtain the best solution is more important that the computing

time that will be saved by using fewer iterations.

5.2 Recommendations for Further Study

There are four main recommendations for further study. The first is to

integrate a more traditional optimization program with the GA to produce a

hybrid optimizer. Hybrid optimization has been used to produce results that would

be much more difficult to obtain using only the traditional optimization technique

or the GA alone (Pinon 1995). The GA is able to obtain a solution with a

sufficient accuracy to ensure rapid covergence for higher order optimization

techniques.

The second recommendation focuses on the existence of coast arcs in both

test cases run in this study. For the Mars test case, each segment is 48 days long

and for the Eros test case the segments were 85 days long. The time of flight sets

the length of the coast arcs. It is highly probable that in the true optimal solution

the coast arcs would not start and stop at exactly the same points as in this study

and their lengths would have been different. Therefore additional work needs to

be done if optimization of these trajectories is desired.

There are two methods to make coast arcs more accurate. The first and

most attractive option is to allow the GA to have a variable trajectory segment

length. This would add another variable to the genetic string. A variable length

36

trajectory segment length would not only allow coast arcs to become the optimal

length but would also allow for thrust direction change at optimal times. A

second way to address this problem is to simply increase the number of trajectory

segments. This method would require less modification to the existing

implementation but probably would not result in as good a final solution unless a

large number of trajectory segments were used.

The third recommendation is to allow for a variable mission start date

rather than using the trial and error method used to determine start dates in this

study. This could be accomplished by simply adding another time variable to the

chromosome.

A final recommendation would also add more genetic material. The

purpose would be to allow variable thrust along the trajectory. Many times it may

not be optimal to use the full thrusting capacity of the engine. This change would

require slight modifications to the integration subroutines used in this project.

All of these recommendations require adding genetic material to the

chromosomes. This is however, not a great problem. Studies have been

accomplished successfully with chromosome lengths in the hundreds of bits.

Also, these effects are mitigated by the use of the trajectory-tangent coordinate

frame.

37

Appendix A

Program Usage

38

Program Usage

The program used for this study is very easy to use. For this study, the

program was run on a Silicon Graphics workstation at the Center for Space

Research at the University of Texas at Austin. The program is written in

FORTRAN 77. All subroutines that are not listed in the following appendix are

available in the Mission Design Library from the Department of Aerospace

Engineering at the University of Texas at Austin.

All modifications that may be needed to use the program are relatively

simple. This section will list a few probable modifications and the method to

accomplish these changes.

Lengthening the Chromosome or Adding Genetic Material

The first step to lengthening the chromosome is to change the variable,

SIZE, in the main program. Also if the length is to be over 100 bits, the variable

declaration must be changed. Second, the user must change the BIN2DEC

subroutine. This subroutine changes binary value to decimal values. Each

variable is listed and an equation is used for the transformation. Finally, the MAP

subroutine must be changed. This subroutine maps the decimal values from

BIN2DEC into the desired range. The user must change the equations in this

subroutine to fit the needs of the study.

39

Adding Population Members

Adding population members is accomplished by simply changing the

value of the variable POP in the main program. If the population is to exceed

100, the variable declaration must be changed. This goes for any subroutine

which is called and is passed the variable POP.

Adding Iterations

Adding iterations is completed by changing the value of X in the statement

"DO ITER = 1 ,X". This statement is in the main program.

Changing the Number of Segments in the Trajectory

To change the number of segments in the trajectory, the user must first add

the appropriate genetic material as prescribed above. Second, the value for the

counting variable under the comment "Loop Through Each Segment" must be

changed to reflect the appropriate number of segments.

Changing the Launch Date

To change the launch date the user must change the values of the array

ITIME and the variable STIME.

Changing the Probability of Crossover and Mutation

To change the probability of crossover, enter the appropriate value into the

variable XPROB in the subroutine CROSS. To change the probability of

mutation, change the value of the variable MUTPROB in the subroutine

MUTATE

40

Output Files

There are four different output files produced by the program. The first

EROS.OUT is a listing of the initial conditions for the case and then the final

values of the propagated states and the fitness value of each population member.

FIT.OUT is a listing of the initial position and velocity in the inertial frame. This

is followed by the final position of the position and velocity of the trajectory and

the target in inertial frame. MAP.OUT is a listing of the values of each thrust

angle for each population member as well as the time of flight and the onoff

variable. F.OUT is a listing of the fitness value of each population member.

Changing the Target

The user may change the target by simply changing the final variable in

the subroutine call for the subroutine SOLAR each time it is called for the target

(this is done both in the main program and the subroutine FITNESS. A word of

caution, the subroutine SOLAR is called in the main program to get the initial

conditions of the trajectory (these are the conditions of Earth at the launch date

and time). Changing this subroutine call will change the launch location of the

trajectory.

41

Appendix B

Program Listing

42

* PROGRAM GA
*

* Jason C. Eisenreich 210ct97
*

* This program is a genetic algorithm which generates flight path
* angles for a space mission to a near Earth asteroid or any other
* celestial body using a low thrust propulsion system.
*

* Variables:
* SIZE Length of each bit string
* POP Number of population members
* SEED Seed for random number generation
* GENE Matrix of genetic material
* XPosition of Earth in Inertial frame km
* JD Julian date at start of mission days
* STATE State matrix
* STATE(l) Velocity in trajectory tangent frame km/s
* STATE(2) Flight path angle rad
* STATE(3) Azimuthangle rad
* STATE(4) Distance from Sun to spacecraft km
* STATE(5) Solar latitude rad
* STATE(6) Solar longitude rad
* STATE(7) Spacecraft mass kg
* TEMP Temporary vector for matrix rotation
* PHI Array of control angles rad
* PSI Array of control angles rad
* VL Velocity in inertial frame km/s
* STIME Seconds at intial time sec
* ITIME Initial time

ITIME(l) Month
ITIME(2) Day
ITIME(3) Year
ITIME(4) Hour
ITIME(5) Minute
DT Time interval for Runge-Kutte integration
FIT Array of fitness values

sec

ISTATE Initial value for state matrix
TOF Array of values of time of flight sec
ONOFF Array of thruster on/off designators

I Counting variable

43

J Counting variable
K Counting vatiable
ITER Iteration counter
RA Initial Position of the asteroid km
RS Initial Position of the spacecraft km
VA Initial velocity of the asteroid km/s
VS Initial velocity of the spacecraft km/s

* Constants:
* PI 3.1415
*

* Subroutines:
* JULDAY Determines the Julian date given a calender date and
* time
* SOLAR Determines the position and velocity of a body in the
* heliocentric inertial frame in AU and AU/JD
* MAG Determines the magnitude of a vector
* ROT3 Rotates a coordinate frame about its 3rd axis
* ROT2 Rotates a coordinate frame about its 2nd axis
* GENERATE Generates an ititial random population
* BIN2DEC Changes a binary string into the appropriate decimal
* parameter values
* MAP Scales the paramter values to valid values
* RK4 A fourth order Runge-Kutte integrator
* FITNESS Determines the fitness value of each population member
* after integration
* TOURNAMENT Uses tournament selection operator to select
* parents of next generation
* CROSS Crossover operator to generate children of next
* generation
* MUTATE Mutation operator

References:

PROGRAM GA

IMPLICIT NONE
REAL*8RS(4),VS(4),X(6)5JD,STATE(7),TEMP(4),PHI(100,4),RA(4)
REAL*8VL(4),STIME,DT,FIT(100),ISTATE(7),PSI(100,4),VA(4),Y(6)

44

INTEGER SIZE,POP,SEED,GENE(100,100),TOF(100),ONOFF(100 4)
INTEGER ITIME(5),K,J,I,ITER

* Initialize Chromosome Values

SIZE = 40
POP = 50

* Initialize Seed Value-

SEED = 124687
OPEN(UNIT = 10,FILE=,EROS.OUT',STATUS='UNKNOWN')
OPEN(UNIT = 1 l,FILE=,MAP.OUT',STATUS='UNKNOWN')
OPEN(UNIT = 12,FILE=TIT.OUT',STATUS=,UNKNOWN')
OPEN(UNIT = 13,FILE=T.OUT,,STATUS='UNKNOWN')

* Intialize Launch Date-

ITIME(3) = 2004
ITIME(1) = 11
ITIME(2) = 15
ITIME(4) = 0
ITIME(5) = 0
STIME = 0.0D0
CALL JULDAY(ITIME,STIME,JD)

* Initialize State Matrix

* Get Earth Position and Velocity Vector-

CALL SOLAR(X,JD,3)
CALL SOLAR(Y,JD,10)
DOJ=l,3
RS(J) = X(J)
VS(J) = X(J+3)
RA(J) = Y(J)
VA(J) = Y(J+3)

ENDDO
CALL MAG(RS)
CALL MAG(VS)
CALL MAG(RA)

45

CALL MAG(VA)
WRITE(12,*)'Initial Position and Velocity'
WRITE(12,25)RS
WRITE(12,26)RA
WRITE(12,27)VS
WRITE(12,28)VA
DOJ=l,3

RS(J) = X(J)*149597870.0D0
VS(J) = X(J+3)*149597870.0D0/86400.0D0
RA(J) = Y(J)*149597870.0D0
VA(J) = Y(J+3)*149597870.0D0/86400.0D0

ENDDO
CALL MAG(RS)
CALL MAG(VS)
CALL MAG(RA)
CALL MAG(VA)

* Determine Initial Solar Lat and Lon-

ISTATE(5) = DATAN(RS(2)/RS(1))
ISTATE(6) = DASIN(RS(3)/RS(4))
ISTATE(4) = RS(4)

* Determine Initial Azimuth Angle

CALL ROT3(VS,ISTATE(5),TEMP)
CALL ROT2(TEMP,ISTATE(6),VL)
ISTATE(3) = DATAN(VL(3)/VL(2))
ISTATE(2) = DATAN(VL(1)/VL(4))
ISTATE(l) = VL(4)

* Initialize Initial Mass

ISTATE(7) = 10000.0D0
WRITE(10,*)'Initial State'
WRITE(10,20)ISTATE

 Generate Initial Population

CALL GENERATE(SEED,POP,SIZE,GENE)

46

* 75 Iterations of GA

DOITER=l,75

* Convert From Binary into Decimal Values
WRITE(10,*)'Iteration #',ITER
WRITEO l,*)'iteration #',ITER
WRITE(12,*)'Iteration #',ITER
WRITE(13,*)'Iteration #',ITER
CALLBIN2DEC(POP,GENE,PHI,PSI,TOF,ONOFF)
CALL MAP(POP,PHI,PSI,TOF)
DO 1=1,POP

WPJTE(11,21)PHI(I,1),PHI(I,2),PHI(I,3),PHI(I,4)
WWTE(11,22)PSI(I,1),PSI(I,2),PSI(I,3),PSI(I,4)
WRITE(1 l,*)'OnOff= ',ONOFF(I,l),ONOFF(I,2),ONOFF(I,3),

& ONOFF(I,4)
WRITE(1 l,*)'TOF = ',TOF(I); days per segment'

ENDDO

*.

 Loop through each Population Member-

DO 1=1,POP

 Integrate Each Population Member—

DT = TOF(I)*86400.0D0/50.0D0
DOJ=l,7

STATE(J) = ISTATE(J)
ENDDO
 Loop Through Each Segment
DOJ=l,4

DO K= 1,50
CALLRK4(DT,STATE,PHI(I,J),PSI(I,J),ONOFF(I,J))

ENDDO
ENDDO
WRITE(10,*)'Member#',I
WRITE(10,20)STATE
WRITE(12,*)'Member#,,I
CALLFITNESS(STATE,TOF(I),JD,FIT(I),ITER)
WRITE(10,23)FIT(I)

WRITE(13,*)FIT(I)

47

ENDDO

* Generate next Population Member-

CALLTOURNAMENT(POP,SIZE,GENE,FIT,SEED)
CALL CROSS(POP,SIZE,GENE,SEED)
CALL MUTATE(POP,SIZE,GENE,SEED)

ENDDO

CLOSE(IO)
CLOSE(ll)
CLOSE(12)

CLOSE(13)
20 FORMAT('V = 'JS^/Gamma = ',F9.6,//Beta = ',F13.10,/,'r = ',

& F15.4,/,Lat = ',F9.6,/,'Lon = ',F13.10,//Mass = ',F12.6)
21 FORMAT('Phi = ',4(F9.6,3X))
22 FORMAT('Psi = ',4(F9.6,3X))
23 FORMAT(Titness = ',F20.8)
25 FORMATCRS = ',4(F12.8,3X))
26 FORMAT('RA = ',4(F12.8,3X))
27 FORMAT('VS = ',4(F11.8,3X))
28 FORMAT('VA = '4(F11.8,3X))

STOP
END

*
* SUBROUTINE GENERATE
*

* Jason C. Eisenreich 210ct97
* Edited 14Jan98
*

* This subroutine generates an initial population.
*

* Variables:
* POP Population size
* SIZE Length of each chromosome
* I Counting variable
* J Counting variable
* RAND Random number
* GENE Matrix containing each chromosome with form

48

* (chromosome #,bit #)
* SEED Integer seed for random number generation
*

* Constants:
* None
*

* Coupling:
* RANDOM This subroutine generates a uniformly distributed random
* number between 0.0 and 1.0
*

* References:
*
*

SUBROUTINE GENERATE(SEED,POP,SIZE,GENE)

IMPLICIT NONE
REAL* 8 RAND
INTEGER POP,I,SIZE,J,GENE(100,100),SEED

* Loop to generate population-

DO 1=1, POP
DOJ=l,SIZE

CALL RANDOM(SEED,RAND)
IF (RAND XE. 0.5) THEN
GENE(IJ) = 0

ELSE
GENE(I,J) = 1

ENDIF
ENDDO

ENDDO

RETURN
END

SUBROUTINE BIN2DEC

* Jason C. Eisenreich 210ct97
Edited 14Jan98

49

* This subroutine converts a binary number into its appropriate decimal
* equivalent for my low thurst mission. The total chromosome is 39
* bits. The first 7 bits determine the flgiht path angle for the first
* flight segment. The final 8 bits determine the time of flight with a
* minumum of 90 days and a maximum of 345 days. In between thes two
* segments are segments of eight for each other flight segment. Of
* these eight, the first bit determines if the engine is engaged or not
* and the other seven bits determine the flight path angle.
*

* Variables:
* GENE Matrix of chromosomes
* I Current chromosome
* TEMP Temporary variable
* PHI
* PSI
* J Couting variable
* ONOFF Matrix of on/off data for engine
* TOF Time of flight from one node to next days
*

* Constants:
*

* Coupling:
*

* Referances:

SUBROUTINE BIN2DEC(POP,GENE,PHI,PSI,TOF,ONOFF)

IMPLICIT NONE
REAL*8 PHI(100,4),PSI(100,4)
INTEGER I,GENE(100,100),POP,J,ONOFF(100,4),TOF(100)

* Determine flight path angle for each segment
DO 1=1,POP
DO J = 0,3

PHI(I,J+1) = 8*GENE(I,J*9+l)+4*GENE(I,J*9+2)+2*GENE(I,J*9+3)+
& GENE(I,J*9+4)

PSI(I,J+1) = 8*GENE(I,J*9+5)+4*GENE(I,J*9+6)+2*GENE(I,J*9+7)+
& GENE(I,J*9+8)

ENDDO
ONOFF(I,l)=l

50

DOJ = 2,4
ONOFF(U) = GENE(I,9*(J-1))

ENDDO

* Determine time of flight-

*

TOF(I) = 16*GENE(I,36)+8*GENE(I,37)+4*GENE(I,38)+2*GENE(I,39)+
& GENE(I,40)

ENDDO

RETURN
END

* SUBROUTINE TOURNAMENT
*

* Jason C. Eisenreich 210ct97

* This subroutine uses tournament selection to create the next generation
*

* Variables:
* I Counting variable
* POP Population size
* RAND1 Random number
* RAND2 Random number
* X Chromosome number of first compared value
* Y Chromosome number of second compared value
* FIT Column matrix of fitness values for each chromosome
* J Counting variable
* NEW Matrix of new generation chromosomes
* GENE Matrix of old generation chromosomes

* Constants:
*

* Coupling:
*

* References:

SUBROUTINE TOURNAMENT(POP,SIZE,GENE,FIT,SEED)

51

IMPLICIT NONE
REAL*8 RAND1,RAND2,FIT(100)
INTEGER I,J,POP,X,Y,GENE(100,100),SEED,SIZE,NEW(100,100)

-Loop through population size-

DO 1=1,POP
CALL RANDOM(SEED,RANDl)
CALL RANDOM(SEED,RAND2)

X=l+INT(RANDl*POP)
Y = 1 + INT(RAND2*POP)

* Compare fitness values

IF (FIT(X) .GT. FIT(Y)) THEN
DOJ=l,SIZE

NEW(I,J) = GENE(X,J)
ENDDO

ELSE
DOJ=l,SIZE

NEW(I,J) = GENE(Y,J)
ENDDO

ENDIF
ENDDO

* Fill Gene matrix with new generation

DO 1 = 1,POP
DOJ=l,SIZE

GENE(I,J) = NEW(I,J)
ENDDO

ENDDO

RETURN
END

*

* SUBROUTINE CROSS
*

* Jason C. Eisenreich 210ct97

52

* This subroutine does a crossover operation on the new generation. It
* looks at each pair of chromosomes. To change the probability of
* crossover, one simply needs to change the value of the variable XPROB.

* Variables:
* POP Population size
* SIZE Length of chromosome
* I Counting variable
* XPROB Probability of crossover
* J Counting variable
* X Position of crossover
* GENE Matrix of chromosomes
*
*

TEMP Temporary matrix

*
*

Constants:

*
*

Coupling:

*
*
*

References

SUBROUTINE CROSS(POP,SIZE,GENE,SEED)

IMPLICIT NONE
REAL*8 XPROB,RAND,RANDl
INTEGER I,J,X,POP,GENE(50,20),TEMP(50,20),SEED,SIZE

* Declare probability of crossover

XPROB = 0.65D0

* Loop through each pair

DO 1=1,POP-1,2
CALL RANDOM(SEED,RAND)

* Check if crossover happens

IF (RAND XE. XPROB) THEN

* Generate position of crossover-

53

CALL RAND0M(SEED,RAND1)
X=1+INT(RAND1*SIZE)

* Crossover from X to end of chromosome-

DO J = X,SIZE
TEMP(I,J) = GENE(I+1,J)
GENE(I+1,J) = GENE(LJ)
GENE(I,J) = TEMP(I,J)

ENDDO
ENDIF

ENDDO

RETURN
END

* SUBROUTINE MUTATE

* This subroutine checks each bit in a population for mutation
*

* Jason C. Eisenreich 10Nov97
*

* Variables:
* POP
* SIZE
* GENE
* SEED
* I
* J
* MUTPROB
* RAND

* Constants:
*

Coupling:

* References:
*
*

54

SUBROUTINE MUTATE(POP,SIZE,GENE,SEED)

IMPLICIT NONE
REAL* 8 RAND,MUTPROB
INTEGER POP,SIZE,GENE(100,100),SEED,I,J

MUTPROB = 0.015
DO 1=1,POP
DOJ=l,SIZE

CALL RANDOM(SEED,RAND)
IF (RAND .LE. MUTPROB) THEN

IF (GENE(I,J) .EQ. 0) THEN
GENE(I,J) = 1

ELSE
GENE(I,J) = 0

ENDIF
ENDIF

ENDDO
ENDDO

RETURN
END

* SUBROUTINE RANDOM
*

* Jason Eisenreich 21 Oct97
*

* This subroutine generates random values between 0.0 and 1.0 using
* an integer seed. This subroutine is taken from "FORTRAN 77 with
* Numerical Methods" by D.M. Etter pg. 306.
*

* Variables:
* SEED The integer seed for the random number
* RAND The random number which is generated
*

* Constants:
* None

* Coupling:
* None

55

* References:
* 1) Etter, D.M. "FORTRAN 77 with Numerical Methods for
* Scientists and Engineers". Redwood City, CA: The
* Benjamin/Cummings Publishing Company; 1992.

SUBROUTINE RANDOM(SEED,RAND)

IMPLICIT NONE
REAL*8 RAND
INTEGER SEED

SEED = 2045*SEED+1
SEED = SEED - (SEED/1048576)* 1048576
RAND = REAL(SEED+1)/1048576.0D0

RETURN
END

*

* SUBROUTINE MAP

*
*

SUBROUTINE MAP(POP,PHI,PSI,TOF)

IMPLICIT NONE
REAL*8 PHI(100,4),PSI(100,4),PI
INTEGER POP,I,J,TOF(l 00)

DO 1 = 1,POP
PI = DACOS(-1.0D0)
DOJ=l,4

PHI(I,J) = 10.0D0*PI*PHI(I,J)/14.0D0/180.0D0-5.0D0*PI/180.0D0
PSI(I,J) = 10.0D0*PI*PSI(I,J)/14.0D0/180.0D0-5.0D0*PI/180.0D0

ENDDO
TOF(I) = TOF(I)*2+38
ENDDO

RETURN

56

END

SUBROUTINE FITNESS

* Jason C. Eisenreich 17Feb98
*

* This subroutine determines the fitness value of a population memeber.
* The fitness function is a weighted combination of the relative
* distance and velocity of the spacecraft and the target.

*

* Variables:
* STATE The state matrix after integration
* JD The Julian Date at the start of the mission days
* JDF The Julian Date at the end of the mission days
* X The position and velocity of the asteroid at
* the end of the mission
* RAST The position of the asteroid at the end of the
* mission km
* VAST The velocity of the asteroid at the end of
* the mission km/s
* RSC The position of the spacecraft at the end of
* the mission km
* VSC The velocity of the spacecraft at the end of
* the mission km/s

VL The velocity of the spacecraft in the
trajectory tangent frame km/s

TEMP Temporary vector
MISS The distance between the spacecraft and the

asteroid at the end of the mission km
* VREL The relative velocities of the spacecraft and
* the asteroid at the end of the mission km/s
* FIT The fitness of the population member
* TOF Time of flight days
* I Counting variable
* ITER The iteration number
*

* Constants:
*

* Coupling:
*

57

* References:
*
*.

SUBROUTINE FITNESS(STATE,TOF,JD,FIT,ITER)

IMPLICIT NONE
REAL* 8 STATE(7),JD,JDF,RAST(4),VAST(4),RSC(4),VSC(4),VL(4)
REAL*8 TEMP(4),MISS,VREL,FIT,X(6)
INTEGER TOF,I,ITER

* Determine Position and Velocity of Asteroid

JDF = JD+TOF*4.0D0
CALLSOLAR(X,JDF,10)
DO I =1,3

RAST(I) = X(I)
VAST(I) = X(I+3)

ENDDO
CALL MAG(RAST)
CALL MAG(VAST)

* Determine Position and Velocity of Spacecraft

RSC(l) = STATE(4)*DCOS(STATE(6))*DCOS(STATE(5))
RSC(2) = STATE(4)*DCOS(STATE(6))*DSIN(STATE(5))
RSC(3) = STATE(4)*DSIN(STATE(6))
CALL MAG(RSC)

* Velocity in Locally Level Frame

VL(1) = STATE(1)*DSIN(STATE(2))
VL(2) = STATE(l)*DCOS(STATE(2))*DCOS(STATE(3))
VL(3) = STATE(l)*DCOS(STATE(2))*DSIN(STATE(3))
CALL MAG(VL)

* Transform into Inertial Frame

CALL ROT2(VL,-STATE(6),TEMP)
CALL ROT3(TEMP,-STATE(5),VSC)

DO I =1,3
RSC(I) = RSC(I) /149597870.0D0

58

VSC(I) = VSC(I)*86400.0D0/149597870.0D0
ENDDO
CALL MAG(RSC)
CALL MAG(VSC)

WRITE(12,25)RSC
WRITE(12,26)RAST
WRITE(12,27)VSC
WRITE(12,28)VAST

* Determine Miss Distance

MISS = DSQRT((RAST(1)-RSC(1))**2+(RAST(2)-RSC(2))**2+
& (RAST(3)-RSC(3))**2)

* Determine Relative Velocity

VREL = DSQRT((VAST(1)-VSC(1))**2+(VAST(2)-VSC(2))**2+
& (VAST(3)-VSC(3))**2)

* Determine Fitness Value

FIT = 0.01D0/MISS+0.000001/VREL

25 FORMAT('RS = ',4(F12.8,3X))
26 FORMAT('RA = ',4(F12.8,3X))
27 FORMATCVS = ',4(F11.8.3X))
28 FORMAT(VA = '4(F11.8,3X))

RETURN
END

*

* SUBROUTINE ROT1
*

* This subroutine performs a rotation about the 1st axis
*

* Author : Capt Dave Vallado USAFA/DFAS 719-472-4109 12Aug88
*

* Inputs :

59

Vec - Input vector
XVal -Angle of rotation rad

Outputs :
* OutVec - Vector Result
*

* Locals :
* c -Cosine of angle XVal
* s - Sine of angle XVal
* Temp - Temporary REAL value

Coupling
None.

SUBROUTINE ROTl(Vec,XVal,OutVec)
IMPLICIT NONE
REAL*8 Vec(4),XVal,OutVec(4)

* Locals
REAL*8 C,S,Temp

* Implementation ■
Temp = Vec(3)
c = DCos(XVal)
s = DSin(XVal)

OutVec(3) = c*Vec(3)-s*Vec(2)
OutVec(2) = c*Vec(2) + s*Temp
OutVec(l) = Vec(l)
OutVec(4) = Vec(4)

RETURN
END

* SUBROUTINE ROT2
*

This subroutine performs a rotation about the 2nd axis
*

60

* Author : Capt Dave Vallado USAFA/DFAS 719-472-4109 12Aug88
*

* Inputs :
* Vec - Input vector

XVal - Angle of rotation rad

Outputs :
* OutVec - Vector Result

* Locals :
* c -Cosine of angle XVal
* s - Sine of angle XVal
* Temp - Temporary REAL value
*

* Coupling :
* None.
*
*

SUBROUTINE ROT2(Vec,XVal,OutVec)
IMPLICIT NONE
REAL*8 Vec(4),XVal,OutVec(4)

* Locals
REAL*8 C,S,Temp

* Implementation ■
Temp = Vec(3)
c = DCos(XVal)
s = DSin(XVal)

OutVec(3) = c*Vec(3) + s*Vec(l)
OutVec(l) = c*Vec(l) - s*Temp
OutVec(2) = Vec(2)
OutVec(4) = Vec(4)

RETURN
END

*

* SUBROUTINE ROT3

61

* This subroutine performs a rotation about the 3rd axis

* Author :CaptDaveVallado USAFA/DFAS 719-472-4109 12Aug88
*

rad

* Inputs
* Vec
* XVal
*

- Input vector
-Angle of rotation

* Outputs
* OutVec
*

- Vector Result

* Locals
* c -Cosine of angle XVal
* s - Sine of angle XVal
* Temp - Temporary REAL value
*

* Coupling :
* None.

SUBROUTINE ROT3(Vec,XVal,OutVec)
IMPLICIT NONE
REAL* 8 Vec(4),XVal,OutVec(4)

* Locals
REAL*8 C,S,Temp

* Implementation
Temp = Vec(2)
c = DCos(XVal)
s = DSin(XVal)

OutVec(2) = c*Vec(2) - s*Vec(l)
OutVec(l) = c*Vec(l) + s*Temp
OutVec(3) = Vec(3)
OutVec(4) = Vec(4)

RETURN
END

62

*.
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*

SUBROUTINE MAG

This subroutine finds the magnitude of a vector. The tolerance is
set for 0.000001, thus the 1.0D-12 for a squared test of underflows

Author

Inputs
Vec

Outputs
Vec(4)

Locals
Temp

Coupling
None.

: Capt Dave Vallado USAFA/DFAS 719-472-4109 20Sep90

Vector

- Answer stored in fourth component

- Temporary REAL value

SUBROUTINE MAG(Vec)
IMPLICIT NONE
REAL* 8 Vec(4)

* Locals
REAL* 8 Temp

 Implementation
Temp = Vec(l)**2 + Vec(2)**2 + Vec(3)**2
IF (DABS(Temp).gt.l.0D-12) THEN

Vec(4) = DSQRT(Temp)
ELSE

Vec(4) = 0.0D0
ENDIF

RETURN
END

63

* SUBROUTINE RK4
*

* This subroutine is a fourth order Runge-Kutta integrator for a 7
* dimension First Order Diferential Equation. This subroutine was
* modified from the A422LIB used at the United States Air Force Academy
* in the Astro 422 class.

* Author : Capt Dave Vallado USAFA/DFAS 719-472-4109 20Sep90
* 05Aug91
* Edited : Lt Jason Eiserneich 30Jan98
*

* Inputs:
* ITIME -Intialtime sec
* DT -Step size sec
* X - State vector at intitial time
*

* Outputs:
* X - State vector at new time

*
*
*
*
*
*

Locals:
XDOT
K
TEMP
J

- Derivative of state vector
Storage

- Storage
[ndex

*
*
*

Constants
None.

*
*

Coupling
DERIV Subroutines of derivatives

* References:
* James, et al., "Numerical Methods" pg. 461 -466, eqtn pg 463.
* BMW pg 414-415

A4221ib.for *

SUBROUTINE RK4(DT,X,PHI,PSI,ONOFF)

IMPLICIT NONE
REAL*8 DT,X(7),PHI,PSI

64

INTEGER ONOFF

* Locals-

REAL*8 XDOT(7),K(7,3),TEMP(7)
INTEGER J

* Evaluate 1st Taylor Series Term--

CALL DERIV(X,XDOT,PHI,PSI,ONOFF)

* Evaluate 2nd Taylor Series Term-

DOJ=l,7
K(J,1) = DT*XDOT(J)
TEMP(J) = X(J)+0.5D0*K(J,1)

ENDDO
CALLDERIV(TEMP,XDOT,PHI,PSI,ONOFF)

-Evaluate 3rd Taylor Series Term-

DOJ=l,7
K(J,2) = DT*XDOT(J)
TEMP(J) = X(J) + 0.5D0*K(J,2)

ENDDO
CALLDERIV(TEMP,XDOT,PHI,PSI,ONOFF)

* Evaluate 4th Taylor Series Term—■

DOJ=l,7
K(J,3) = DT*XDOT(J)
TEMP(J) = X(J) + K(J,3)

ENDDO
CALLDEPJV(TEMP,XDOT,PHI,PSI,ONOFF)

* Update the State Vector, Perform Integration

DOJ=l,7
X(J) = X(J)+(K(J,l)+2.0D0*(K(J,2)+K(J,3))+DT*XDOT(J))/6.0D0

ENDDO

65

RETURN
END

* SUBROUTINE DERIV
*

* This subroutine contains the EOMs for the trajectory tangent
* coordinate system.
*

* Jason C. Eisenreich 30JAN98
*

* Variables
*

* 0 Constants

* Coupling
*

* References
*
*

SUBROUTINE DERIV(X,XDOT,PHI,PSI,ONOFF)

IMPLICIT NONE
REAL*8ISP,MDOT,X(7),XDOT(7),PHI,PSI,T(4),K
INTEGER ONOFF

* Declare Constants

K=1.32712438D11

* Booster Performance

ISP = 5000.0D0
IF (ONOFF .EQ. 1) THEN
T(4)=100*0.00003D0

ELSE
T(4) = 0.0D0

ENDIF
MDOT = -T(4)/ISP/0.009807D0

* Determine Thrust Components-

66

T(1) = T(4)*DSIN(PHI)
T(2) = T(4)*DC0S(PHI)*DC0S(PSI)
T(3) = T(4)*DC0S(PHI)*DSIN(PSI)

* Initialize Derivatives-

XDOT(l)=(-k*DSIN(X(2))/X(4)**2+T(2)/X(7))
XDOT(2)=(X(l)*DCOS(X(2))/X(4)-k*

& DCOS(X(2))/(X(l)*X(4)**2)+T(l)/(X(7)
& *X(1)))

XDOT(3)=-(X(l)*DCOS(X(2))/X(4))*DCOS
& (X(3))*DTAN(X(6))+T(3)/(X(7)*X(l)*DCOS(X(2)))

XDOT(4)=X(l)*DSIN(X(2))
XDOT(5)=(X(l)*DCOS(X(2))*DCOS(X(3))/(X(4)

& *DC0S(X(6))))
XDOT(6)=X(l)*(DCOS(X(2))*DSIN(X(3))/X(4))
XD0T(7)=MD0T

RETURN
END

67

REFERENCES

Ashley, Holt, 1974. Engineering Analysis of Flieht Vehicles, New York: Dover

Publications, Inc.

Bryson, Arthur E., and Yu-Chi Ho, 1975. Applied Optimal Control, New York:

Hemisphere Publishing Corporation.

Goldberg, David E. 1989a. Genetic Algorithms in Search. Optimization &

Machine Learning, Reading, Ma.: Addison-Wesley Publishing Company,

Inc.

Hamilton, Calvin J. 1997. "Halley's Comet", http://www.hawast.soc.org/solar/

eng/halley.htm.

Humble, Ronald W., Gary N. Henry, and Wiley J. Larson, Space Propulsion

Analysis and Design, 1995. New York: McGraw-Hill, Inc.

Pinon, Elfego III, 1995. An Investigation of the Applicability of Genetic

Algorithms to Spacecraft Trajectory Optimization, Ph.D. diss., The

University of Texas at Austin.

Rauwolf, Gerald, 1995 Near-Optimal Low-Thrust Orbit Transfers Generated by

a Genetic Algorithm, M.S. Thesis, The University of Illinois at Urbana-

Champaign.

Sellers, Jerry Jon. 1994. Understanding Space: An Introduction to Astronautics,

New York: McGraw Hill, Inc.

68

VITA

Jason Corey Eisenreich was born in Gordon, Nebraska, on April 26,1974,

the son of Joe C. and Linda J. Eisenreich. After graduation from Gordon High

School in Gordon, Nebraska, in May 1993, he entered the United States Air Force

Academy. After graduation with a Bachelor of Science degree in Space

Operations and commissioning as a 2nd Lieutenant in the United States Air Force,

in May 1998, he enrolled in the graduate school of The University of Texas at

Austin. In July 1997, he married the former Kody Lanae Benson of Gordon,

Nebraska. Jason is a member of AIAA. After completion of his master's degree

he will be stationed at Los Angeles Air Force Base in El Segundo, California.

Permanent Address: 707 N. Main St.

Gordon, NE 69343

This thesis was typed by the author.

69

