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OPTIMIZATION OF LOW THRUST SPACECRAFT TRAJECTORIES 

USING A GENETIC ALGORITHM 

by 

Jason Corey Eisenreich, M.S.E. 

The University of Texas at Austin, 1998 

SUPERVISOR: Wallace T. Fowler 

This thesis concerns the use of genetic algorithms in the optimization of the 

trajectories of low thrust spacecraft. Genetic algorithms are programming tools which 

use the principles of biological evolution and adaptation to optimize processes. These 

algorithms have been found to be very useful in many different engineering 

disciplines. The goal of this project is to determine their applicability to the 

generation and optimization of low thrust spacecraft trajectories. This thesis 

describes the basic operating principles of genetic algorithms and then applies them to 

two different missions. 

The first problem is an Earth to Mars mission. This mission has been solved 

many times using both traditional calculus of variations-based optimization 

techniques and genetic algorithms. Two-dimensional solutions from the literature 

will provide a baseline and test case to ensure the functionality of the genetic 
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algorithm. However, in this study, we expand this mission by using a three 

dimensional model. 

The two-dimensional model is a good approximation for the first mission, a 

Mars test case, but is totally inadequate for the second mission, an asteroid rendevous. 

The three dimensional model is needed to obtain a good solution for the second 

mission, a mission from Earth to the asteroid Eros 433. Eros is a near-earth asteroid 

with an orbit which is inclined from the Earth-Sun ecliptic. This mission will 

demonstrate the development of a three dimensional trajectory using the genetic 

algorithm. 

The most important focus of this study is the use of a local coordinate frame 

known as the trajectory-tangent coordinate frame in stead of a more traditional 

heliocentric inertial frame. The local frame used will be able to drastically decrease 

the memory required to operate the genetic algorithm. This is very important in 

saving computing time as well as genetic algorithm effectiveness. 
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Chapter 1: Introduction 

Low thrust propulsion is being considered as an efficient propulsion mode 

for spacecraft flying to celestial bodies such as Mars and Near-Earth asteroids. 

To date most space missions have used traditional high thrust methods to propel 

spacecraft into deep space. The primary example of this is the upper stage rocket 

motor. These engines are primarily chemical rockets such as solid, liquid, or 

hybrid rockets. Once a spacecraft is placed in a parking orbit by a launcher, the 

upper stage will fire and propel the spacecraft, causing it to escape the Earth's 

influence. The typical firing interval is less than 1 percent of the mission length. 

Low thrust propulsion is quite different. A low thrust engine can burn up to 100 

percent of the transfer time. A typical low thrust system might produce up to 20 

N, of thrust while a typical chemical rocket might produce up to the 35,000,000 

N of thrust. 

The reasons for using low thrust propulsion systems (ion engines and 

solar electric engines) are that they are much more efficient than chemical 

rockets. The measure of efficiency of a rocket engine is the specific impulse, Isp. 

Isp is a measure of how many newtons of thrust you get from a kilogram of 

propellant burned in one second. For chemical rockets specific impulses range 

from 140 seconds for a monopropellant liquid rocket to 460 seconds for a 

bipropellant liquid rocket (Humble, 1995). Low thrust engines have a range of 
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500 sec for electrothermal propulsion systems to 10,000 seconds for electrostatic 

propulsion systems (Humble, 1995). This increased specific impulse allows for 

an increased payload mass capacity. However, the low thrust, because of the low 

resulting acceleration, necessitates an increased amount of time to reach the 

destination. For this reason, low thrust propulsion is not suitable for transporting 

humans to destinations such as Mars. However, low thrust propulsion is very 

promising for use in propelling cargo spacecraft to Mars. Cargo spacecraft can be 

launched before the astronauts and will reach Mars before the astronauts. By 

using low thrust technologies, the cargo spacecraft will be able to carry more 

cargo mass than when propelled by chemical rockets. 

High thrust and low thrust rockets also differ in the way they are analyzed. 

High thrust models can assume that the thrust, and thus the change in velocity, 

occurs instantaneously. This greatly simplifies the necessary calculations because 

after the change in velocity the spacecraft simply coasts on a ballistic trajectory. 

For low thrust trajectories, the analysis is much more involved. For each step in 

the numerical integration of the trajectory, the thrust, the angles of the thrusters, 

as well as Newton's laws must be considered. 

When trying to optimize the trajectory of low thrust spacecraft these extra 

variables of integration make for much more difficult calculations. This thesis 

will show a method of optimization of low thrust trajectories, which will ease the 

calculation load on the analyst attempting to compute the optimal trajectories. 



Genetic algorithms have shown usefulness in many areas optimization. 

They have been used is high thrust trajectory optimization (Pinon, 1995) as well 

as low thrust trajectory optimization (Rauwolf, 1995). The genetic algorithm 

(GA) is an optimization algorithm that mimics the principles of biological 

evolution and adaptation. The optimal initial values for the integration variables 

in a low thrust trajectory are very difficult to obtain. Traditional optimization 

methods are very dependent on the initial and final values of the problem. The 

GA alleviates this concern by randomly selecting the initial guesses for system 

parameters and then iterating to find near optimal values for these parameters. 

The purpose of this project is to develop an implementation of a genetic 

algorithm that will determine three-dimensional trajectories for low thrust 

spacecraft trajectories for various missions. This study will look at two different 

scenarios. The first is a cargo mission to Mars and the second a mission to the 

Near-Earth asteroid, Eros. This study will show the viability of a GA in solving 

the low thrust trajectory optimization. It will be shown that the GA can produce 

near optimal solutions that can then be used as the basis for a more accurate 

numerical method if so desired. This study is one stepping stone in showing the 

potential of genetic algorithms for use in the optimization of spacecraft 

trajectories. 



Chapter 2: Background 

2.1 Introduction 

This chapter shows the basics of the problem to be solved as well as 

baseline information on different techniques of optimization. Also, the two 

trajectories to be analyzed are introduced. 

2.2 Optimization Techniques 

2.2.1     Traditional Optimization Techniques 

Traditional optimization techniques include direct and indirect methods 

(Kluever, 1997). Indirect methods are those methods based on the calculus of 

variations, such as the two point boundary value problem. These lead to accurate 

optimal solutions, but are very sensitive to the initial guess for the initial guess for 

the costate variables. Determining accurate values for these unknown variables 

can be very difficult. Direct methods are those which change the control variables 

at each iteration to continually reduce the performance index. It is usually easier 

to produce a good guess for the initial conditions using direct methodsTraditional 

methods have the drawback that the optimal value reached is not necessarily the 

global optimum. Among traditional methods, the indirect method is the standard 

which has been used for the majority of spacecraft trajectory optimization. 



2.2.2   Genetic Algorithms (GAs) 

A GA is an optimization scheme based on the principles of evolution. The 

GA starts by randomly generating a population of candidate solutions to the 

problem. These candidate solutions, called chromosomes, contain parameter 

variable values, which are used to evaluate the performance index selected for the 

specific problem. The performance index is evaluated using the variables stored 

in each chromosome. Each chromosome is then assigned a fitness value based on 

this performance index. The goal can be to either minimize or maximize the 

performance index. For example, if the maximum performance index is desired, a 

chromosome with a high performance index will be assigned a high fitness value. 

The number of variables and the desired precision for each variable determines 

the length of each chromosome (Pinon 1995). The GA operates for a specified 

number of iterations, each of which produces a new generation of chromosomes. 

Each generation begins with the translation of the binary genetic material 

into decimal values for parameters to start the integration. These values are then 

used for the calculation of the spacecraft trajectory. The trajectory is calculated 

by integrating the equations of motion over a specified time interval. Once the 

trajectory has been determined, its performance index is calculated and its fitness 

value is assigned. Once each population member trajectory has a fitness value, 

the three basic genetic operators are used to generate genetic material for a new 



generation. The evolutionary-based operators are selection, crossover, and 

mutation. 

Selection is the process of choosing the parent chromosomes for the next 

generation. There are two basic methods for selection: the roulette wheel 

selection method and tournament selection. The roulette wheel selection method 

assigns a slot on the wheel for each population member. The slot size is 

proportional to the relative fitness value for each member. Those chromosomes 

with higher fitness values receive a better chance of reproduction. The wheel is 

the "spun" to select a parent chromosome. Tournament selection involves 

randomly selecting two population members and then choosing the chromosome 

with the highest fitness value. This member goes on to become a parent 

chromosome. This study uses the tournament selection because of its ease of 

coding. 

Once all of the parent chromosomes have been selected, the crossover 

operation takes place. Crossover is the mating of two parent chromosomes to 

produce the next generation. The parent strings are crossed with a fixed 

probability to produce two child chromosomes. Typical probabilities of crossover 

range from 0.4 to 0.8 (Piflon 1995). 

There are two methods for crossover. The two methods of crossover 

differ in their method of crossover. In single point crossover the two parents are 

randomly chosen and then a single point of crossover is randomly chosen. The 
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two parents then swap genetic material at this point. For example two members 

'00000' and '11111' could become '00111' and '11000'. In uniform crossover, 

there is the possibility of swapping genetic material at each point. In this case the 

parents '00000' and '11111' may become '01010' and 10101'. This project uses 

single point crossover because of the ease of programming. 

The final operation to take place is mutation. Whereas selection and 

crossover attempt to produce the best possible members from the existing 

population, mutation attempts to create diversity in the population. Mutation 

randomly will cause a bit in a chromosome to flip from 0 to 1 or vice versa. The 

user assigns the probability of mutation. This allows the GA to account for 

candidate variables that would not be produced by the selection and crossover 

operators. 

One other important topic on the background of GAs is the coding of the 

chromosomes. To this point binary numbers have been solely discussed as the 

method of coding. This is because binary numbers are most commonly used. 

They give the GA the benefits of low-order schemata and the fact that the binary 

alphabet is the smallest available. Schemata are the building blocks of GAs. 

They are short lengths of the chromosome that produce similar results in different 

chromosomes. Schemata are discussed in depth by Pinon and Goldberg. Low- 

order schemata allow those short pieces of chromosomes that continually produce 



good results to grow. The fact that binary is the smallest available alphabet 

simply gives more schemata to build on. 

2.3 Earth to Mars Problem Statement 

The first problem to be studied is an Earth to Mars transfer. This problem 

was selected because the optimal solution for the two dimensional problem has 

been found through both the calculus of variations (Bryson and Ho, 1975) and 

through genetic algorithms (Rauwolf, 1995). To best replicate these results using 

a three-dimensional model, the same values as used in the literature were used for 

thrust, initial mass, and the mass flow rate. They are as follows: 

T = 3.7877V 

m0 = 4545.5% 

m = 6.787 xlO'5 kg/ sec 

For this problem, the trajectory starts at the Earth's position and is affected 

solely by the gravity of the Sun. Throughout the mission, the Sun is the only 

gravitational force considered. The following figure shows the orbits of the Earth 

and Mars around the Sun. 

Figure 2.1 - Earth and Mars Orbits 



As you can see, the orbits of Earth and Mars are very similar. Mars has of course 

a larger semi-major axis and is very slightly inclined from the Earth-Sun ecliptic 

as well as having a slightly more eccentric orbit than the Earth. 

This is a highly practical problem as low thrust propulsion is a primary 

candidate for cargo missions in support of a manned mission to Mars. Because of 

the ability of a spacecraft with a low thrust propulsion source to carry more cargo 

mass for the same change in velocity as a high thrust propulsion source, more 

cargo can be carried to Mars at a lower cost. 

2.4 Earth to Eros Problem Statement 

For this mission, the spacecraft again starts at the Earth's position and is 

affected only by the thrust of the engine and the Sun's gravitational pull 

throughout the entire mission. Eros 433 is a Near-Earth asteroid with the 

following orbital characteristics: 

Orbital Parameter Value 
Semi-major Axis 1.4583 AU 

Eccentricity 0.2229 
Inclination 10.832 degrees 

Longitude of Ascending Node 304.497 degrees 
Longitude of Perihelion 123.004 degrees 

Table 2.1 - Eros 433 Orbital Parameters 

Figure 2.2 shows the orbits of the Earth and Eros 433. Notice the contrast 

between the orbits of the Eros and Mars. Eros's orbit is much more eccentric and 

more inclined than the orbit of Mars. 



Figure 2.2 - Earth and Eros Orbits 

An Earth to Eros mission would primarily serve two purposes. The first 

mission would be to land a spacecraft on the asteroid and obtain physical 

evidence as to its composition and mass characteristics. This would then lead to 

the second mission, which would again land on the asteroid to conduct mining 

operations. Although not financially viable at the current time, mining of 

asteroids are being considered as a future means of obtaining raw materials. Both 

of these missions would need a very large cargo mass capacity because of the 

many instruments needed and large return cargoes. It is for this reason that the 

study of the Earth to Eros mission uses a larger initial mass than that of the Earth 

to Mars mission. The values for thrust, initial mass, and mass flow rate used here 

are: 

T = 3.0N 

m0=\0,000kg 

m = 6.116xl(T5 kg I sec 
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Notice that the thrust is slightly lower than that used in the Earth to Mars test 

case. It then follows that the mass flow rate is also lower, as it is directly related 

to the thrust. 
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Chapter 3: Problem Formulation 

3.1 Introduction 

In this chapter the formulation of the problems to be solved is developed. 

The first step is to define the relevant coordinate frame.  Part of this definition 

will be the introduction of the variables which the GA will use to optimize the 

fitness. A description of the GA used as well as the definition of the fitness 

function will follow. 

3.2 Equations of Motion 

In many previous studies of low thrust propulsion, two-dimensional 

coordinates have been used. These studies concentrated on missions to other 

planets in our solar system, such as Mars. For interplanetary missions, a two- 

dimensional model is adequate because of the negligible difference in the 

inclinations of the Earth and the other planets (excluding Mercury and Pluto). For 

example, the Martian obit is inclined 1.85 degrees from the ecliptic plane. 

However, near-earth asteroids and comets, can have inclinations that vary greatly 

from the ecliptic. For example, Eros 433 is inclined 10.8 degrees to the ecliptic 

and Halley's Comet is inclined 162 degrees (Hamilton 1997). The Rauwolf study 

(1995) was two-dimensional and used a heliocentric polar coordinate frame. The 

control variable for this frame is the thrust angle. This frame can be easily 

changed into three dimensions by adding a second control angle for out of plane 
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thrust. However, using such a coordinate set is a disadvantage because you must 

vary the control angles ±90 degrees. This presents the problem of long genetic 

strings in order to gain precision. The number of divisions within a range of 

values corresponds to the number of bits in a chromosome. For example, for the 

range ±90 degrees, a chromosome with 4 bits would have 24 (16) divisions. Thus 

the variable would have only about 11 degrees of precision. 

In order to increase precision while maintaining small length 

chromosomes, this study uses the trajectory-tangent coordinate system. This 

system is described in detail in Ashley (1974). These coordinates are typically 

used for high thrust missions such a boost from a rotating planet. The coordinate 

frame is used in this study because its use should lead to better precision while 

using shorter chromosomes and thus saving computing time. The trajectory- 

tangent system is rotated and translated from the inertial coordinate frame as 

illustrated in Figure 3.1. 

As can be seen in Figure 3.1, there are four coordinate frames used in the 

transformation from the inertial frame to the trajectory-tangent frame. The first is 

the inertial coordinate frame. This has the origin at the planetary center (in this 

study the center of the Sun) with the Z - axis pointing through the north pole of 

the body and parallel to the angular momentum vector (Ashley 1974). The 

second coordinate frame is the planet-fixed central system. This is a rotating 

coordinate frame with a rotation rate the same rate as the planet. For this study, 
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xL(Vert) 

>rL(East) 

Figure 3.1 - Trajectory Tangent Coordinate System 

the rotating planet-fixed coordinate system is unnecessary because the Sun does 

not rotate. Therefore, for our problem, the inertial and planet-fixed coordinate 

frames are identical. The third reference system is the locally level frame. It has 

its origin at the spacecraft center of mass and x-direction, xi, is the radial 

direction. The unit vecotrs vz. and zi point toward local east and north, 

respectively. The final coordinate frame is the trajectory-tangent frame. It also 

has its origin at the spacecraft center of mass. Its y-direction, unit vector yj, 

points in the direction of the spacecraft velocity vector, vc. The unit vector xj is 

normal to vr in the plane containing xi. 

There are four important angles in the coordinate transformation. The east 

longitude, A, and north latitude, X are measured from the x-axis in the inertial 

frame. The azimuth angle, ß, is measured about XL from the yi direction. The 

14 



elevation or flight path angle, y, measures upward from the local horizontal. The 

azimuth and elevation angles determine the direction of the velocity vector. 

The following equations that govern the motion of a spacecraft using the 

trajectory-tangent frame (Ashley 1974): 

A = 

X = 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

T 
X 

(3.5) 

T2 (3.6) 
mv . COS;K 

r = vc sin Y 

vc cos Y COS ß 

r cos/ 

vc cos Y sin ß 

r 

k sin Y    T 
v = —+ — c 2 r m 

.    v, cos Y    kcosY      Ty 

r vcr
2 

V   COS Y 
ß = -(S ^-)cosy9tanA + 

These equations include modifications to account for the lack of a rotating central 

body and the absence of lift and drag. In the equations the quantities Tx, Ty, and 

Tz represent the components of thrust. These components are determined by two 

control angles, cp and \j/. These angles represent the gimbal angles of the 

propulsion engine and are typically very small. The thrust components are 

computed via: 

Tx=Tsin<p (3J) 

Tt =T cos q> cosy/ (3.8) 

T2=T cos (p sin y/ (3.9) 
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3.3 Genetic Algorithm Formulation 

The genetic algorithm used for a spacecraft trajectory optimization must 

choose a thrust history, which includes thrust direction and possibly coast arcs, 

which will satisfy performance conditions determined by the user to an acceptable 

level. These conditions and the acceptable level of performance lead to the 

definition of the fitness function for the study. For this study, there are four 

variables that need to be coded into the GA. The two thrust direction angles are 

obvious choices. A third variable of interest is the time of flight. A fourth 

variable is necessary to allow for the possibility of coast arcs. Coast arcs are 

segments of the trajectory where the engine is turned off. A variable called 

'onoff is used to represent if the engine is turned on or off. 

It is in coding for the GA that using the trajectory-tangent system gains its 

advantage. The length of chromosomes is very important in the coding of a GA. 

The length determines the number of iterations and population members. 

Therefore, minimizing chromosome length minimizes computing time and 

maximizes the efficiency of the GA. Using the more traditional polar coordinates, 

the thrust direction angles are required to vary ±90 degrees. Each angle would 

require 8 bits to obtain better than one degree of precision. In the trajectory- 

tangent coordinate frame, the gimbal angles are typically very small. For this 
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study, they were allowed to vary ±7 degrees. This uses only 4 bits for each angle 

and attains 0.573 degrees of precision. 

In order to facilitate the analysis and implementation of the GA, each 

trajectory is divided into 4 segments. During each segment, the thrust 

characteristics are assumed to remain constant. Each phenotype (set of 

parameters, the GA "genetic information") is made up of 40 bits for the Earth to 

Eros mission and 38 bits for the Earth to Mars mission. An example of a 

chromosome for the Earth to Eros test case is seen in Figure 3.2. The difference 

between the two is the number of days which the time of flight is allowed to vary 

for each case. Because it has been proven in other studies that the optimal time of 

flight for an Earth to Mars low thrust mission is 193 days (Bryson and Ho, 1975), 

our study varied the time of flight from 190 to 221 days. This requires 3 bits. For 

the Earth to Eros mission the time of flight was allowed to vary from 142 days to 

400 days. This is due to the fact that the calculus-based optimum is not known. 

This mission requires five bits for the time of flight. These bits are located at the 

end of the chromosome. 

OrJOff Switches for 
Segments 2-4 

ODD DDDD D DDDD DDDD D DDDD DEED □ DEED DUD DDDDD 
Thrust Angles for 

Segment 1 
Thiust Angles for 

Segment 2 

J      L 
Thrust Angles for 

Segment 3 

J      L J L 
Thrust Angles for      Time of Flight 

Segment 4 per Segment 

Figure 3.2 - Phenotype structure 
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Each of the different thrust direction angles, two for each segment, are 

coded into 4 bits. This gives a total of 32 bits for the thrust angles. Finally, the 

last three segments each have an onoff bit which proceed the thrust angles. The 

first segment does not contain an onoff bit because it is necessary for the engine 

to be on to start the mission. 

3.4 Fitness Function Development 

The same fitness function was used for both mission evaluated. The 

fitness function combined measures of the relative final position and relative 

velocity of the spacecraft and the target. The parameters were evaluated in 

astronomical units. A weighting factor was used to counter the fact that the 

relative velocity is inherently a much smaller number than the relative position. 

Equation 3.10 shows the fitness function used for this study. 

0.01    0.00001 (3-10) 
Fitness = +  

MISS     VREL (311, 

MISS = ^(xtgt -xsc)2 + {ytgt -yscf + {ztgt -zscf 

VREL = ^iyxtgt - vxsc)2 + (yytgt - vysc)2 + (vztgt - vzsc)2 

where 

xtgt - x-component of target position 
ytgt - y-component of target position 
ztgt - z-component of target position 
vxtgt - x-component of target velocity 
vytgt - y-component of target velocity 
vztgt - z-component of target velocity 
xsc - x-component of spacecraft position 
ysc - y-component of spacecraft position 
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zsc - z-component of spacecraft position 
vxsc - x-component of spacecraft velocity 
vysc - y-component of spacecraft velocity 
vzsc - z-component of spacecraft velocity 

By having the miss distance and the relative velocity in the denominator of the 

fitness function, the fitness function will grow with increasing accuracy. If either 

the miss distance or relative velocity were zero, the fitness value would be 

infinite. This could cause some problems but the GA is not likely to produce such 

a result as it is not able to obtain such accuracy. The fitness function was 

designed so that the trajectory is within 1 percent of the position of the target the 

first component of Equation 3.10 will equal 1. If the velocity of the trajectory is 

within 0.001 percent of the velocity of the target, the second component of 

Equation 3.10 will equal 1. For example if the miss distance where 0.02 AU and 

the relative velocity were 0.00002 JD/AU, the fitness value would be equal to 1. 

3.5 Genetic Algorithm Parameters 

The GA used in this study was programmed in FORTRAN based of the 

algorithms found in Goldberg's text (1989). All other subroutines except for 

those used in integration come from the Mission Design Subroutine Library of the 

Department of Aerospace Engineering at the University of Texas at Austin. The 

two subroutines used for integration were modified from the Astro 422 Library 

from the Department of Astronautics at the United States Air Force Academy. 

The program ran on Silicon Graphics workstation. 
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The GA was designed using the basic operators mentioned in Chapter 2 

plus one special operator. This special operator is known as elitism. This 

operation takes place before selection of the new generation. This operator 

determines the gene with the highest fitness value and ensures that it survives to 

the next generation. The other operators were chosen mostly for ease of 

programming as all options produce similar results. 

Also necessary in the formulation of the GA are the following parameters: 

number of individuals, number of generations, crossover probability, and 

mutation probability. The parameters for this study were chosen based on 

analyses done by Goldberg and Rauwolf. Both studies cite numbers of 

generations and individuals similar to the number of bits in each phenotype as 

sufficient. Therefore, this study chose 50 generation and 50 individuals. A 

crossover probability of 0.65 was used and a mutation probability of 0.015 was 

used. These are consistent with studies done by Pinon and Rauwolf. 
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Chapter 4: Numerical Study 

4.1 Introduction 

This chapter presents the results of the numerical simulations. The 

analysis demonstrates the viability of using a genetic algorithm for low thrust 

trajectory analysis as well as the performance of the trajectory-tangent coordinate 

frame. 

4.2 Mars Test Case Initializations 

The most important initialization variable for each of the two test cases is 

the launch date for the mission. This was determined through a trial and error 

process. Determining an appropriate launch date is necessary to resolve phasing 

issues between the Earth and the target. For the Mars test case, this study used a 

launch date of 15 March 2002. This date was by numerical experimentation over 

dates ranging from 01 January 2002 to 31 December 2003. For the Mars case, 

the range of possible times of flight is only between 190 and 221 days, because of 

the fact that a known optimum of 193 days exists (from calculus of variations 

solutions to the problem) (Bryson 1975). 

4.3 Mars Results and Interpretation 

The Mars test case produced some interesting results. The GA was able to 

converge on all runs of the program. The trajectory was initiated at the position 

and velocity (in the inertial reference frame) given in Table 4.1. 
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X Y Z 

Position (AU) -0.98908490 0.10244640 0.00000069 

Velocity (AU/JD) -0.00205368 -0.01717673 -0.00000062 

fable 4.1 - Earth to Mars Initial Conditions 

The GA produced an optimal solution with a 192 day transfer time. This 

is only one day off of the calculus of variations solution of 193 days. The GA 

does not "converge" quadratically, so this is an excellent resultTable 4.2 shows 

the values of the thrusting angles for each segment of flight. 

Segment 1 Segment 2 Segment 3 Segment4 

(p (degrees) -4.285 -3.571 5.000 

^(degrees) 5.714 5.714 5.714 

Engine On/Off On Off On On 

Table 4.2 - Earth to Mars Thrust History 

A most interesting feature of the solution is the fact that a coast arc exists 

and that the thrust angle, v|/, is constant throughout the flight. During the second 

segment of the mission, the spacecraft coasts and is influenced only by the 

attraction of the Sun. The out-of-plane gimbal angle, i|/, which was constant 

throughout the flight, causes the spacecraft to constantly increase its inclination 

with resect to the Sun. This causes the spacecraft to approach Mars from the 
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Martian South Pole. The thrust history above produced the final conditions given 

in Table 4.3. 

X Y Z 

Spacecraft Position 
(AU) 

-1.53811280 0.64911999 0.03341085 

Target Position 
(AU) 

-1.53233910 0.65136474 0.05135923 

Relative Position 
(AU) 

-0.00577370 -0.00224475 -0.01794838 

Spacecraft Velocity 
(AU/JD) 

-0.01296442 -0.01094570 0.00007795 

Target Velocity 
(AU/JD) 

-0.00492701 -0.01169463 -0.00012363 

Relative Velocity 
(AU/JD) 

-0.00803741 0.00074893 0.00020158 

Table 4.3 - Earth to Mars Final Conditions 

These results show that the GA did very well at finding a solution, which 

minimized the relative position and velocity of the spacecraft and Mars. The 

magnitude of the relative position is about 1.5 million miles. At first glance this 

does not seem to be a very good solution. However, the fact that the GA 

produced a trajectory that comes this close to Mars is a great success. To realize 

the success, we must remember the fact that these trajectories are randomly 

produced. Guessed initial conditions produced trajectories which finished 

hundred of millions of miles away from the target. The ability of a program to 

move to the vicinity of Mars is what is what expected. The trajectories obtained 

are not accurate enough to be used for an actual mission, but they are clearly 

sufficient as a starting point for quadratically converging optimizer, which is very 
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sensitive to initial conditions. The following figure shows the flight path of the 

spacecraft and Mars throughout the time of flight. 

Figure 4.1 - Earth to Mars Trajectory 

Another interesting facet of the study is the performance of the GA. The 

Figure 4.2 shows the maximum fitness value in the population for each iteration. 
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Figure 4.2 - Maximum Fitness Value per Iteration 

As seen, the maximum fitness value of about 0.53 is attained after only 29 

iterations. From the literature the expected number of iterations required should 

be equal to the length of the genetic data string. For this case, the length was 38 

bits. 
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Another interesting statistical value is the median value of the population. 

This can be seen in Figure 4.3. 
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Figure 4.3 - Median Fitness Value per Iteration 

This graph shows that the maximum median fitness value is reached at 

iteration 51. At this time the median value is 0.525368, nearly equal to the 

maximum. It is this is more informative with respect to the required number of 

iterations because it shows that a large segment of the population has similar 

genetic material. This defines "convergence" for a GA. It is also interesting to 

note that the median goes down after this point. This is due to the fact that 

mutations alter the genetic mix even after "convergence." 
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Mutation introduces a random bit into the genetic material. Mutation can 

be very important if a maximum is reached that is not the global maximum. 

Looking at the "convergence" data, we see that 50 - 60 iterations would have 

been sufficient. Actually 75 iterations were used in this study. It is important to 

minimize the number of iterations to decrease population size as computing time 

increases linearly with the number of generations, or iterations (Rauwolf 1995). 

However, it is important to have sufficient iterations to ensure convergence. 

The Mars test case showed the applicability of GAs to the generation of 

low thrust spacecraft trajectories. The GA was able to converge to an optimal 

solution that is very near the solution obtained through calculus-based methods. 

4.4 Eros Test Case Initializations 

As for the Mars case, an important factor is the selection of the launch 

date. For this case the best launch date was determined to be 15 November 2004. 

This was based on a trial and error search to find the date which produced the best 

fitness value over the years of 2003 and 2004. 

4.5 Eros Test Case Results and Interpretation 

The Earth to Eros test case was also successful. Once again, the GA was able 

to converge on all runs of the program. There was a noticeable difference in the 

maximum fitness value reached in the Mars test case. However, the trajectory 

was able to sufficiently approach Eros. The trajectory again began at the Earth's 
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position with the Earth's velocity in the heliocentric inertial coordinate frame. 

Table 4.4 shows the initial coordinates of the trajectory. 

X Y Z 

Position (AU) 0.59868739 0.78731214 0.00002972 

Velocity (AU/JD) -0.01397586 0.01034976 0.00000033 

Table 4.4 - Earth to Eros Initial Conditions 

The GA produced an optimal trajectory with a transfer time of 336 days. 

This is a much longer transfer time than that of the mission to Mars. This is most 

likely due to the larger inclination of the orbit of Eros. When calculating the 

change in velocity for a trajectory, a change in inclination is much more costly 

than a change in semi-major axis. This is amplified by the fact that it takes a low 

thrust engine a long time to build up a change in velocity. Table 4.5 shows the 

optimal thrust history generated by the GA. 

Segment 1 Segment 2 Segment 3 Segment4 

cp (degrees) 0.000 7.050 

v|/(degrees) 5.714 -5.000 

Engine 
On/Off 

On On Off Off 

Table 4.5 - Earth to Eros Thrust History 

Table 4.5 shows some interesting results. The first is the fact that there are 

two coast arcs at the end of the mission. For this trajectory, the engine is engaged 
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only half of the time. This brings about two possibilities. The trajectory could 

use only half of the time of flight to get to Eros and then coast with Eros for the 

last half of the mission. The trajectory could also use the first two segments to get 

into an orbit that will then fly ballistically to intersect with Eros's orbit. 

X Y Z 

Spacecraft Position 
(AU) 

0.68154751 -1.66538049 -0.01423593 

Target Position 
(AU) 

0.67361681 -1.63979014 -0.07147498 

Relative Position 
(AU) 

0.00793070 -0.02559035 0.05723905 

Spacecraft Velocity 
(AU/JD) 

0.01083091 0.00290918 -0.00003022 

Target Velocity 
(AU/JD) 

0.01064372 0.00361664 0.00207037 

Relative Velocity 
(AU/JD) 

0.00018719 -0.00070746 -0.00210059 

Table 4.6 - Earth to Eros Final Conditions 

These values for the variables in the model generate the final conditions in Table 

4.6. 

These final conditions again do not look very promising upon first glance. 

The GA generated trajectory finishes 5.9 million miles away from Eros. 

However, this is again a very good result when the expectations are kept in 

perspective. One member of the initial population produced a trajectory that 

finished over 120 million miles away from Eros. This is an improvement of 2000 

percent produced without any input from the user. The final conditions also 

answer the question as to whether the trajectory coast with Eros for the last half of 
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the mission or if it coasts to Eros. By looking at the z-components of the 

velocities we see that the trajectory and Eros are going in opposite directions. 

This shows that the trajectory coasts to an intersection with Eros. The trajectory 

produced by the best performer is shown in the following figure. 

Figure 4.4 - Earth to Eros Trajectory 

Figure 4.4 shows the greater distance between the spacecraft and the target 

at the end of the trajectory than in the Earth to Mars test case. This was expected 

from looking at the numerical results. This shows the need for a more accurate 

optimizer. But the initial conditions produced by the GA can be used to allow the 

more accurate optimizer to accomplish the task in much less time. Without the 

initial conditions from the GA, a quadratically converging optimizer either would 

take a very large amount of time or could not solve the problem. 
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This case also exhibited some insight into the effectiveness of the GA. 

Figure 4.5 shows the maximum fitness value for each iteration. 
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Figure 4.5 - Maximum Fitness Value per Iteration 

This case took until iteration 56 to produce the maximum fitness value of 

0.15868. This case seems to have stalled at a maximum fitness value slightly 

lower than this for the previous 10-15 iterations. This change suggests that a 

mutation took place which increased the fitness value. This higher fitness value 

was then allowed to go throughout the population in subsequent generations. By 

iteration 63, this member had proliferated enough to reach the highest median 

fitness value of 0.158176. This is seen in Figure 4.6, which shows the median 

fitness value for each generation. Again, this shows when the GA has converged 
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to a point where the best performer occupies the majority of the population 

members. 
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Figure 4.6 - Median Fitness Value per Iteration 

This test case shows the importance of employing a sufficient number of 

iterations. Had the standard benchmark of using a number of iterations equal to 

the length of the chromosome been used, this test case would not have shown 

what proved to be the best performer. This test case showed that 60 - 70 

iterations would be needed to exhibit convergence. 
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4.6 Similarities and Differences 

This study presented many differences and similarities between to the two 

test cases. In both cases, the GA was successful in generating a good solution to 

the problem. However, the GA in the Mars test case was able to come much 

closer to the target than in the Eros case, though in both cases the GA provided 

marked improvement over the initial populations. Although the final relative 

distances exceeded one million miles in both cases, the results are more that 

sufficient for use in a quadratically converging optimizer. 

The difference between the two cases is the strategies used to approach the 

targets. For the Mars case, the GA produced a trajectory which, outside of the on 

coast arc, was thrusting constantly toward Mars. This trajectory was also 

approaching Mars using the same out-of-plane angle throughout the flight. For 

the Eros test case the strategy used was to find a trajectory that would go into an 

orbit which would ballistically travel towards the target. This is exhibited by the 

fact that the best trajectory thrusted for the first half of the mission and coasted for 

the last half. 

Another difference between the two test cases was the number of 

iterations need for the GA to produce the best performing chromosome. In the 

Mars test case, the GA produced the best performer in only 29 iterations and 

converged in 51 iterations. The Eros test case took longer to reach the maximum 
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value and for convergence. This difference shows the importance of selecting a 

number of iterations that is large enough to allow for convergence. 

4.7 Effectiveness of Trajectory -Tangent Coordinate System 

The most important results of this study are the effectiveness of the 

coordinate frame used. It was hypothesized that by using a local coordinate frame 

rather than a more traditional inertial frame, the GA would be able to use much 

smaller chromosomes. This proved to be true. As mentioned before, the 

chromosomes used for this study are 38 bits long for the Mars test case and 40 

bits long for the Eros test case. In both cases, 4 equal length segments were used. 

Thus there are 8 different thrust angles (2 for each segment) stored in each 

chromosome. Each thrust angle requires 4 bits to obtain 0.573 degrees of 

precision. This is due to the fact that each angle need only be varied over the 

range of ±7 degrees as measured instantaneously from the velocity vector. 

If an inertial frame were used, the thrust angles must be varied at least ±90 

degrees. If 8 bits were used to represent these angles, we would have 0.703 

degrees of precision, while if 9 bits are used, the angles have 0.352 degrees of 

precision. For the sake of discussion, we will assume 8 bits would be used for an 

inertial frame. Under these conditions, a chromosome for the Mars test case 

would need to be 70 bits long. A chromosome for the Eros test case would need 

to be 72 bits long. 
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Using the local coordinate frame saves 28 bits for each mission. 

Decreasing the length of chromosomes is important because computing time is 

reduced in two ways. First, the computer does not have to deal with as much 

information when analyzing the chromosome itself, thus it can complete an 

iteration faster. Second, the length of the chromosome is the primary measuring 

stick in determining the number of iterations and the number of population 

members required for successful GA operation. By employing a shorter genetic 

string, the number of iterations and the number of population members required 

are decreased. By decreasing both quantities, the required computing time is 

drastically reduced. The fact that these three different quantities, chromosome 

length, number of iterations, and number of population members, each lowers the 

computing time, major time savings have been effected. 

This effect is magnified if the number of segments in the trajectory is 

increased. An increase in segments is necessary when trying to obtain more 

precise trajectories. For example an Earth-to-Eros trajectory with 50 trajectory 

segments would require 454 bits when using the trajectory-tangent coordinate 

frame. This same mission would require 854 bits when using an inertial frame. 

Using the inertial frame would also require 400 more iterations and population 

members than the local frame. In such cases, the savings in computing time can 

make solving an impossible solution possible. 
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Chapter 5: Conclusions and Recommendations 

5.1 Conclusions 

This study produced some very useful results. The use of the trajectory- 

tangent frame proved to be very beneficial in application of a GA to the analysis 

of low thrust trajectories. The coordinate frame allows for shorter genetic strings, 

which in turn reduces the computing time. In this basic study, the effects of the 

trajectory-tangent frame were seen by lowering the chromosome length from 72 

bits to 40 bits for the Eros test case. 

The Earth to Mars was used as a validation case to ensure that solutions 

generated by the GA matched those in the literature. The GA was successful in 

matching these solutions within the expected level of accuracy. The success of 

the Earth to Mars test case allowed us to use the GA for the second case, a 

rendezvous with the near-earth asteroid, Eros 433. The importance of this case is 

that the orbit of Eros is sufficiently inclined from the ecliptic to force the use of a 

three dimensional model. 

The GA was able to converge on a solution in both the Earth to Mars test 

case and the Earth to Eros test case. The trajectories produced by the GA for both 

test cases were both within the expected level of accuracy. The GA operated very 

well in both cases. From analysis of the two test cases, we have surmised that for 

the chromosomes used, 40 bits long, 50 - 60 iterations should be used. This is 
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about 50 percent more than is recommended in the literature. However, we feel 

that the ability to obtain the best solution is more important that the computing 

time that will be saved by using fewer iterations. 

5.2 Recommendations for Further Study 

There are four main recommendations for further study. The first is to 

integrate a more traditional optimization program with the GA to produce a 

hybrid optimizer. Hybrid optimization has been used to produce results that would 

be much more difficult to obtain using only the traditional optimization technique 

or the GA alone (Pinon 1995). The GA is able to obtain a solution with a 

sufficient accuracy to ensure rapid covergence for higher order optimization 

techniques. 

The second recommendation focuses on the existence of coast arcs in both 

test cases run in this study. For the Mars test case, each segment is 48 days long 

and for the Eros test case the segments were 85 days long. The time of flight sets 

the length of the coast arcs. It is highly probable that in the true optimal solution 

the coast arcs would not start and stop at exactly the same points as in this study 

and their lengths would have been different. Therefore additional work needs to 

be done if optimization of these trajectories is desired. 

There are two methods to make coast arcs more accurate. The first and 

most attractive option is to allow the GA to have a variable trajectory segment 

length. This would add another variable to the genetic string. A variable length 
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trajectory segment length would not only allow coast arcs to become the optimal 

length but would also allow for thrust direction change at optimal times.     A 

second way to address this problem is to simply increase the number of trajectory 

segments. This method would require less modification to the existing 

implementation but probably would not result in as good a final solution unless a 

large number of trajectory segments were used. 

The third recommendation is to allow for a variable mission start date 

rather than using the trial and error method used to determine start dates in this 

study. This could be accomplished by simply adding another time variable to the 

chromosome. 

A final recommendation would also add more genetic material. The 

purpose would be to allow variable thrust along the trajectory. Many times it may 

not be optimal to use the full thrusting capacity of the engine. This change would 

require slight modifications to the integration subroutines used in this project. 

All of these recommendations require adding genetic material to the 

chromosomes. This is however, not a great problem. Studies have been 

accomplished successfully with chromosome lengths in the hundreds of bits. 

Also, these effects are mitigated by the use of the trajectory-tangent coordinate 

frame. 
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Appendix A 

Program Usage 
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Program Usage 

The program used for this study is very easy to use. For this study, the 

program was run on a Silicon Graphics workstation at the Center for Space 

Research at the University of Texas at Austin. The program is written in 

FORTRAN 77. All subroutines that are not listed in the following appendix are 

available in the Mission Design Library from the Department of Aerospace 

Engineering at the University of Texas at Austin. 

All modifications that may be needed to use the program are relatively 

simple. This section will list a few probable modifications and the method to 

accomplish these changes. 

Lengthening the Chromosome or Adding Genetic Material 

The first step to lengthening the chromosome is to change the variable, 

SIZE, in the main program. Also if the length is to be over 100 bits, the variable 

declaration must be changed. Second, the user must change the BIN2DEC 

subroutine. This subroutine changes binary value to decimal values. Each 

variable is listed and an equation is used for the transformation. Finally, the MAP 

subroutine must be changed. This subroutine maps the decimal values from 

BIN2DEC into the desired range. The user must change the equations in this 

subroutine to fit the needs of the study. 
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Adding Population Members 

Adding population members is accomplished by simply changing the 

value of the variable POP in the main program. If the population is to exceed 

100, the variable declaration must be changed. This goes for any subroutine 

which is called and is passed the variable POP. 

Adding Iterations 

Adding iterations is completed by changing the value of X in the statement 

"DO ITER = 1 ,X". This statement is in the main program. 

Changing the Number of Segments in the Trajectory 

To change the number of segments in the trajectory, the user must first add 

the appropriate genetic material as prescribed above. Second, the value for the 

counting variable under the comment "Loop Through Each Segment" must be 

changed to reflect the appropriate number of segments. 

Changing the Launch Date 

To change the launch date the user must change the values of the array 

ITIME and the variable STIME. 

Changing the Probability of Crossover and Mutation 

To change the probability of crossover, enter the appropriate value into the 

variable XPROB in the subroutine CROSS. To change the probability of 

mutation, change the value of the variable MUTPROB in the subroutine 

MUTATE 
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Output Files 

There are four different output files produced by the program. The first 

EROS.OUT is a listing of the initial conditions for the case and then the final 

values of the propagated states and the fitness value of each population member. 

FIT.OUT is a listing of the initial position and velocity in the inertial frame. This 

is followed by the final position of the position and velocity of the trajectory and 

the target in inertial frame. MAP.OUT is a listing of the values of each thrust 

angle for each population member as well as the time of flight and the onoff 

variable. F.OUT is a listing of the fitness value of each population member. 

Changing the Target 

The user may change the target by simply changing the final variable in 

the subroutine call for the subroutine SOLAR each time it is called for the target 

(this is done both in the main program and the subroutine FITNESS. A word of 

caution, the subroutine SOLAR is called in the main program to get the initial 

conditions of the trajectory (these are the conditions of Earth at the launch date 

and time). Changing this subroutine call will change the launch location of the 

trajectory. 

41 



Appendix B 

Program Listing 

42 



* PROGRAM GA 
* 

* Jason C. Eisenreich 210ct97 
* 

* This program is a genetic algorithm which generates flight path 
* angles for a space mission to a near Earth asteroid or any other 
* celestial body using a low thrust propulsion system. 
* 

* Variables: 
* SIZE      Length of each bit string 
* POP       Number of population members 
* SEED    Seed for random number generation 
* GENE    Matrix of genetic material 
* XPosition of Earth in Inertial frame km 
* JD       Julian date at start of mission days 
* STATE State matrix 
* STATE(l)      Velocity in trajectory tangent frame km/s 
* STATE(2)       Flight path angle rad 
* STATE(3) Azimuthangle rad 
* STATE(4)      Distance from Sun to spacecraft km 
* STATE(5)      Solar latitude rad 
* STATE(6)      Solar longitude rad 
* STATE(7)      Spacecraft mass kg 
* TEMP Temporary vector for matrix rotation 
* PHI     Array of control angles rad 
* PSI      Array of control angles rad 
* VL      Velocity in inertial frame km/s 
* STIME Seconds at intial time sec 
* ITIME Initial time 

ITIME(l) Month 
ITIME(2) Day 
ITIME(3) Year 
ITIME(4) Hour 
ITIME(5) Minute 
DT      Time interval for Runge-Kutte integration 
FIT     Array of fitness values 

sec 

ISTATE Initial value for state matrix 
TOF    Array of values of time of flight sec 
ONOFF Array of thruster on/off designators 

I Counting variable 
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J Counting variable 
K Counting vatiable 
ITER Iteration counter 
RA Initial Position of the asteroid km 
RS Initial Position of the spacecraft km 
VA Initial velocity of the asteroid km/s 
VS Initial velocity of the spacecraft km/s 

* Constants: 
* PI 3.1415  
* 

* Subroutines: 
* JULDAY       Determines the Julian date given a calender date and 
* time 
* SOLAR Determines the position and velocity of a body in the 
* heliocentric inertial frame in AU and AU/JD 
* MAG Determines the magnitude of a vector 
* ROT3 Rotates a coordinate frame about its 3rd axis 
* ROT2 Rotates a coordinate frame about its 2nd axis 
* GENERATE  Generates an ititial random population 
* BIN2DEC      Changes a binary string into the appropriate decimal 
* parameter values 
* MAP   Scales the paramter values to valid values 
* RK4    A fourth order Runge-Kutte integrator 
* FITNESS       Determines the fitness value of each population member 
* after integration 
* TOURNAMENT       Uses tournament selection operator to select 
* parents of next generation 
* CROSS Crossover operator to generate children of next 
* generation 
* MUTATE      Mutation operator 

References: 

PROGRAM GA 

IMPLICIT NONE 
REAL*8RS(4),VS(4),X(6)5JD,STATE(7),TEMP(4),PHI(100,4),RA(4) 
REAL*8VL(4),STIME,DT,FIT(100),ISTATE(7),PSI(100,4),VA(4),Y(6) 
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INTEGER SIZE,POP,SEED,GENE(100,100),TOF(100),ONOFF(100 4) 
INTEGER ITIME(5),K,J,I,ITER 

* Initialize Chromosome Values  

SIZE = 40 
POP = 50 

* Initialize Seed Value- 

SEED = 124687 
OPEN(UNIT = 10,FILE=,EROS.OUT',STATUS='UNKNOWN') 
OPEN(UNIT = 1 l,FILE=,MAP.OUT',STATUS='UNKNOWN') 
OPEN(UNIT = 12,FILE=TIT.OUT',STATUS=,UNKNOWN') 
OPEN(UNIT = 13,FILE=T.OUT,,STATUS='UNKNOWN') 

* Intialize Launch Date- 

ITIME(3) = 2004 
ITIME(1) = 11 
ITIME(2) = 15 
ITIME(4) = 0 
ITIME(5) = 0 
STIME = 0.0D0 
CALL JULDAY(ITIME,STIME,JD) 

* Initialize State Matrix  

* Get Earth Position and Velocity Vector- 

CALL SOLAR(X,JD,3) 
CALL SOLAR(Y,JD,10) 
DOJ=l,3 
RS(J) = X(J) 
VS(J) = X(J+3) 
RA(J) = Y(J) 
VA(J) = Y(J+3) 

ENDDO 
CALL MAG(RS) 
CALL MAG(VS) 
CALL MAG(RA) 
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CALL MAG(VA) 
WRITE(12,*)'Initial Position and Velocity' 
WRITE(12,25)RS 
WRITE(12,26)RA 
WRITE(12,27)VS 
WRITE(12,28)VA 
DOJ=l,3 

RS(J) = X(J)*149597870.0D0 
VS(J) = X(J+3)*149597870.0D0/86400.0D0 
RA(J) = Y(J)*149597870.0D0 
VA(J) = Y(J+3)*149597870.0D0/86400.0D0 

ENDDO 
CALL MAG(RS) 
CALL MAG(VS) 
CALL MAG(RA) 
CALL MAG(VA) 

* Determine Initial Solar Lat and Lon- 

ISTATE(5) = DATAN(RS(2)/RS(1)) 
ISTATE(6) = DASIN(RS(3)/RS(4)) 
ISTATE(4) = RS(4) 

* Determine Initial Azimuth Angle  

CALL ROT3(VS,ISTATE(5),TEMP) 
CALL ROT2(TEMP,ISTATE(6),VL) 
ISTATE(3) = DATAN(VL(3)/VL(2)) 
ISTATE(2) = DATAN(VL(1)/VL(4)) 
ISTATE(l) = VL(4) 

* Initialize Initial Mass  

ISTATE(7) = 10000.0D0 
WRITE(10,*)'Initial State' 
WRITE(10,20)ISTATE 

 Generate Initial Population  

CALL GENERATE(SEED,POP,SIZE,GENE) 
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* 75 Iterations of GA  

DOITER=l,75 

* Convert From Binary into Decimal Values  
WRITE(10,*)'Iteration #',ITER 
WRITEO l,*)'iteration #',ITER 
WRITE(12,*)'Iteration #',ITER 
WRITE(13,*)'Iteration #',ITER 
CALLBIN2DEC(POP,GENE,PHI,PSI,TOF,ONOFF) 
CALL MAP(POP,PHI,PSI,TOF) 
DO 1=1,POP 

WPJTE(11,21)PHI(I,1),PHI(I,2),PHI(I,3),PHI(I,4) 
WWTE(11,22)PSI(I,1),PSI(I,2),PSI(I,3),PSI(I,4) 
WRITE(1 l,*)'OnOff= ',ONOFF(I,l),ONOFF(I,2),ONOFF(I,3), 

& ONOFF(I,4) 
WRITE(1 l,*)'TOF = ',TOF(I); days per segment' 

ENDDO 

*. 

 Loop through each Population Member- 

DO 1=1,POP 

 Integrate Each Population Member— 

DT = TOF(I)*86400.0D0/50.0D0 
DOJ=l,7 

STATE(J) = ISTATE(J) 
ENDDO 
 Loop Through Each Segment  
DOJ=l,4 

DO K= 1,50 
CALLRK4(DT,STATE,PHI(I,J),PSI(I,J),ONOFF(I,J)) 

ENDDO 
ENDDO 
WRITE(10,*)'Member#',I 
WRITE(10,20)STATE 
WRITE(12,*)'Member#,,I 
CALLFITNESS(STATE,TOF(I),JD,FIT(I),ITER) 
WRITE(10,23)FIT(I) 

WRITE(13,*)FIT(I) 
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ENDDO 

* Generate next Population Member- 

CALLTOURNAMENT(POP,SIZE,GENE,FIT,SEED) 
CALL CROSS(POP,SIZE,GENE,SEED) 
CALL MUTATE(POP,SIZE,GENE,SEED) 

ENDDO 

CLOSE(IO) 
CLOSE(ll) 
CLOSE(12) 

CLOSE(13) 
20 FORMAT('V = 'JS^/Gamma = ',F9.6,//Beta = ',F13.10,/,'r = ', 

&      F15.4,/,Lat = ',F9.6,/,'Lon = ',F13.10,//Mass = ',F12.6) 
21 FORMAT('Phi = ',4(F9.6,3X)) 
22 FORMAT('Psi = ',4(F9.6,3X)) 
23 FORMAT(Titness = ',F20.8) 
25 FORMATCRS = ',4(F12.8,3X)) 
26 FORMAT('RA = ',4(F12.8,3X)) 
27 FORMAT('VS = ',4(F11.8,3X)) 
28 FORMAT('VA = '4(F11.8,3X)) 

STOP 
END 

*  
* SUBROUTINE GENERATE 
* 

* Jason C. Eisenreich 210ct97 
* Edited 14Jan98 
* 

* This subroutine generates an initial population. 
* 

* Variables: 
* POP    Population size 
* SIZE   Length of each chromosome 
* I Counting variable 
* J Counting variable 
* RAND Random number 
* GENE Matrix containing each chromosome with form 
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* (chromosome #,bit #) 
* SEED   Integer seed for random number generation 
* 

* Constants: 
* None 
* 

* Coupling: 
* RANDOM This subroutine generates a uniformly distributed random 
* number between 0.0 and 1.0 
* 

* References: 
* 
*  

SUBROUTINE GENERATE(SEED,POP,SIZE,GENE) 

IMPLICIT NONE 
REAL* 8 RAND 
INTEGER POP,I,SIZE,J,GENE(100,100),SEED 

* Loop to generate population- 

DO 1=1, POP 
DOJ=l,SIZE 

CALL RANDOM(SEED,RAND) 
IF (RAND XE. 0.5) THEN 
GENE(IJ) = 0 

ELSE 
GENE(I,J) = 1 

ENDIF 
ENDDO 

ENDDO 

RETURN 
END 

SUBROUTINE BIN2DEC 

* Jason C. Eisenreich 210ct97 
Edited 14Jan98 
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* This subroutine converts a binary number into its appropriate decimal 
* equivalent for my low thurst mission. The total chromosome is 39 
* bits. The first 7 bits determine the flgiht path angle for the first 
* flight segment. The final 8 bits determine the time of flight with a 
* minumum of 90 days and a maximum of 345 days. In between thes two 
* segments are segments of eight for each other flight segment. Of 
* these eight, the first bit determines if the engine is engaged or not 
* and the other seven bits determine the flight path angle. 
* 

* Variables: 
* GENE Matrix of chromosomes 
* I Current chromosome 
* TEMP   Temporary variable 
* PHI 
* PSI 
* J      Couting variable 
* ONOFF  Matrix of on/off data for engine 
* TOF    Time of flight from one node to next days 
* 

* Constants: 
* 

* Coupling: 
* 

* Referances: 

SUBROUTINE BIN2DEC(POP,GENE,PHI,PSI,TOF,ONOFF) 

IMPLICIT NONE 
REAL*8 PHI(100,4),PSI(100,4) 
INTEGER I,GENE(100,100),POP,J,ONOFF(100,4),TOF(100) 

* Determine flight path angle for each segment  
DO 1=1,POP 
DO J = 0,3 

PHI(I,J+1) = 8*GENE(I,J*9+l)+4*GENE(I,J*9+2)+2*GENE(I,J*9+3)+ 
& GENE(I,J*9+4) 

PSI(I,J+1) = 8*GENE(I,J*9+5)+4*GENE(I,J*9+6)+2*GENE(I,J*9+7)+ 
& GENE(I,J*9+8) 

ENDDO 
ONOFF(I,l)=l 
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DOJ = 2,4 
ONOFF(U) = GENE(I,9*(J-1)) 

ENDDO 

* Determine time of flight- 

* 

TOF(I) = 16*GENE(I,36)+8*GENE(I,37)+4*GENE(I,38)+2*GENE(I,39)+ 
& GENE(I,40) 

ENDDO 

RETURN 
END 

* SUBROUTINE TOURNAMENT 
* 

* Jason C. Eisenreich 210ct97 

* This subroutine uses tournament selection to create the next generation 
* 

* Variables: 
* I Counting variable 
* POP    Population size 
* RAND1 Random number 
* RAND2 Random number 
* X        Chromosome number of first compared value 
* Y        Chromosome number of second compared value 
* FIT     Column matrix of fitness values for each chromosome 
* J Counting variable 
* NEW Matrix of new generation chromosomes 
* GENE Matrix of old generation chromosomes 

* Constants: 
* 

* Coupling: 
* 

* References: 

SUBROUTINE TOURNAMENT(POP,SIZE,GENE,FIT,SEED) 
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IMPLICIT NONE 
REAL*8 RAND1,RAND2,FIT(100) 
INTEGER I,J,POP,X,Y,GENE(100,100),SEED,SIZE,NEW(100,100) 

-Loop through population size- 

DO 1=1,POP 
CALL RANDOM(SEED,RANDl) 
CALL RANDOM(SEED,RAND2) 

X=l+INT(RANDl*POP) 
Y = 1 + INT(RAND2*POP) 

* Compare fitness values  

IF (FIT(X) .GT. FIT(Y)) THEN 
DOJ=l,SIZE 

NEW(I,J) = GENE(X,J) 
ENDDO 

ELSE 
DOJ=l,SIZE 

NEW(I,J) = GENE(Y,J) 
ENDDO 

ENDIF 
ENDDO 

* Fill Gene matrix with new generation  

DO 1 = 1,POP 
DOJ=l,SIZE 

GENE(I,J) = NEW(I,J) 
ENDDO 

ENDDO 

RETURN 
END 

*  

* SUBROUTINE CROSS 
* 

* Jason C. Eisenreich 210ct97 
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* This subroutine does a crossover operation on the new generation. It 
* looks at each pair of chromosomes. To change the probability of 
* crossover, one simply needs to change the value of the variable XPROB. 

* Variables: 
* POP Population size 
* SIZE Length of chromosome 
* I Counting variable 
* XPROB          Probability of crossover 
* J Counting variable 
* X Position of crossover 
* GENE Matrix of chromosomes 
* 
* 

TEMP Temporary matrix 

* 
* 

Constants: 

* 
* 

Coupling: 

* 
* 
* 

References 

SUBROUTINE CROSS(POP,SIZE,GENE,SEED) 

IMPLICIT NONE 
REAL*8 XPROB,RAND,RANDl 
INTEGER I,J,X,POP,GENE(50,20),TEMP(50,20),SEED,SIZE 

* Declare probability of crossover  

XPROB = 0.65D0 

* Loop through each pair  

DO 1=1,POP-1,2 
CALL RANDOM(SEED,RAND) 

* Check if crossover happens  

IF (RAND XE. XPROB) THEN 

* Generate position of crossover- 
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CALL RAND0M(SEED,RAND1) 
X=1+INT(RAND1*SIZE) 

* Crossover from X to end of chromosome- 

DO J = X,SIZE 
TEMP(I,J) = GENE(I+1,J) 
GENE(I+1,J) = GENE(LJ) 
GENE(I,J) = TEMP(I,J) 

ENDDO 
ENDIF 

ENDDO 

RETURN 
END 

* SUBROUTINE MUTATE 

* This subroutine checks each bit in a population for mutation 
* 

* Jason C. Eisenreich 10Nov97 
* 

* Variables: 
* POP 
* SIZE 
* GENE 
* SEED 
* I 
* J 
* MUTPROB 
* RAND 

* Constants: 
* 

Coupling: 

* References: 
* 
*  
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SUBROUTINE MUTATE(POP,SIZE,GENE,SEED) 

IMPLICIT NONE 
REAL* 8 RAND,MUTPROB 
INTEGER POP,SIZE,GENE(100,100),SEED,I,J 

MUTPROB = 0.015 
DO 1=1,POP 
DOJ=l,SIZE 

CALL RANDOM(SEED,RAND) 
IF (RAND .LE. MUTPROB) THEN 

IF (GENE(I,J) .EQ. 0) THEN 
GENE(I,J) = 1 

ELSE 
GENE(I,J) = 0 

ENDIF 
ENDIF 

ENDDO 
ENDDO 

RETURN 
END 

* SUBROUTINE RANDOM 
* 

* Jason Eisenreich 21 Oct97 
* 

* This subroutine generates random values between 0.0 and 1.0 using 
* an integer seed. This subroutine is taken from "FORTRAN 77 with 
* Numerical Methods" by D.M. Etter pg. 306. 
* 

* Variables: 
* SEED   The integer seed for the random number 
* RAND   The random number which is generated 
* 

* Constants: 
* None 

* Coupling: 
* None 
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* References: 
* 1) Etter, D.M. "FORTRAN 77 with Numerical Methods for 
* Scientists and Engineers". Redwood City, CA: The 
* Benjamin/Cummings Publishing Company; 1992. 

SUBROUTINE RANDOM(SEED,RAND) 

IMPLICIT NONE 
REAL*8 RAND 
INTEGER SEED 

SEED = 2045*SEED+1 
SEED = SEED - (SEED/1048576)* 1048576 
RAND = REAL(SEED+1)/1048576.0D0 

RETURN 
END 

*  

* SUBROUTINE MAP 

* 
*  

SUBROUTINE MAP(POP,PHI,PSI,TOF) 

IMPLICIT NONE 
REAL*8 PHI(100,4),PSI(100,4),PI 
INTEGER POP,I,J,TOF(l 00) 

DO 1 = 1,POP 
PI = DACOS(-1.0D0) 
DOJ=l,4 

PHI(I,J) = 10.0D0*PI*PHI(I,J)/14.0D0/180.0D0-5.0D0*PI/180.0D0 
PSI(I,J) = 10.0D0*PI*PSI(I,J)/14.0D0/180.0D0-5.0D0*PI/180.0D0 

ENDDO 
TOF(I) = TOF(I)*2+38 
ENDDO 

RETURN 
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END 

SUBROUTINE FITNESS 

* Jason C. Eisenreich 17Feb98 
* 

* This subroutine determines the fitness value of a population memeber. 
* The fitness function is a weighted combination of the relative 
* distance and velocity of the spacecraft and the target. 

* 

* Variables: 
* STATE The state matrix after integration 
* JD       The Julian Date at the start of the mission     days 
* JDF     The Julian Date at the end of the mission      days 
* X        The position and velocity of the asteroid at 
* the end of the mission 
* RAST The position of the asteroid at the end of the 
* mission km 
* VAST The velocity of the asteroid at the end of 
* the mission km/s 
* RSC    The position of the spacecraft at the end of 
* the mission km 
* VSC    The velocity of the spacecraft at the end of 
* the mission km/s 

VL      The velocity of the spacecraft in the 
trajectory tangent frame km/s 

TEMP Temporary vector 
MISS  The distance between the spacecraft and the 

asteroid at the end of the mission km 
* VREL The relative velocities of the spacecraft and 
* the asteroid at the end of the mission km/s 
* FIT     The fitness of the population member 
* TOF    Time of flight days 
* I Counting variable 
* ITER  The iteration number 
* 

* Constants: 
* 

* Coupling: 
* 
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* References: 
* 
*. 

SUBROUTINE FITNESS(STATE,TOF,JD,FIT,ITER) 

IMPLICIT NONE 
REAL* 8 STATE(7),JD,JDF,RAST(4),VAST(4),RSC(4),VSC(4),VL(4) 
REAL*8 TEMP(4),MISS,VREL,FIT,X(6) 
INTEGER TOF,I,ITER 

* Determine Position and Velocity of Asteroid  

JDF = JD+TOF*4.0D0 
CALLSOLAR(X,JDF,10) 
DO I =1,3 

RAST(I) = X(I) 
VAST(I) = X(I+3) 

ENDDO 
CALL MAG(RAST) 
CALL MAG(VAST) 

* Determine Position and Velocity of Spacecraft  

RSC(l) = STATE(4)*DCOS(STATE(6))*DCOS(STATE(5)) 
RSC(2) = STATE(4)*DCOS(STATE(6))*DSIN(STATE(5)) 
RSC(3) = STATE(4)*DSIN(STATE(6)) 
CALL MAG(RSC) 

* Velocity in Locally Level Frame  

VL(1) = STATE(1)*DSIN(STATE(2)) 
VL(2) = STATE(l)*DCOS(STATE(2))*DCOS(STATE(3)) 
VL(3) = STATE(l)*DCOS(STATE(2))*DSIN(STATE(3)) 
CALL MAG(VL) 

* Transform into Inertial Frame  

CALL ROT2(VL,-STATE(6),TEMP) 
CALL ROT3(TEMP,-STATE(5),VSC) 

DO I =1,3 
RSC(I) = RSC(I) /149597870.0D0 
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VSC(I) = VSC(I)*86400.0D0/149597870.0D0 
ENDDO 
CALL MAG(RSC) 
CALL MAG(VSC) 

WRITE(12,25)RSC 
WRITE(12,26)RAST 
WRITE(12,27)VSC 
WRITE(12,28)VAST 

* Determine Miss Distance  

MISS = DSQRT((RAST(1)-RSC(1))**2+(RAST(2)-RSC(2))**2+ 
&       (RAST(3)-RSC(3))**2) 

* Determine Relative Velocity  

VREL = DSQRT((VAST(1)-VSC(1))**2+(VAST(2)-VSC(2))**2+ 
&      (VAST(3)-VSC(3))**2) 

* Determine Fitness Value  

FIT = 0.01D0/MISS+0.000001/VREL 

25 FORMAT('RS = ',4(F12.8,3X)) 
26 FORMAT('RA = ',4(F12.8,3X)) 
27 FORMATCVS = ',4(F11.8.3X)) 
28 FORMAT(VA = '4(F11.8,3X)) 

RETURN 
END 

*  

* SUBROUTINE ROT1 
* 

* This subroutine performs a rotation about the 1st axis 
* 

* Author      : Capt Dave Vallado USAFA/DFAS 719-472-4109 12Aug88 
* 

* Inputs      : 
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Vec       - Input vector 
XVal      -Angle of rotation rad 

Outputs     : 
* OutVec    - Vector Result 
* 

* Locals      : 
* c -Cosine of angle XVal 
* s - Sine of angle XVal 
* Temp      - Temporary REAL value 

Coupling 
None. 

SUBROUTINE ROTl(Vec,XVal,OutVec) 
IMPLICIT NONE 
REAL*8 Vec(4),XVal,OutVec(4) 

* Locals 
REAL*8 C,S,Temp 

*  Implementation ■ 
Temp = Vec(3) 
c = DCos(XVal) 
s = DSin(XVal) 

OutVec(3) = c*Vec(3)-s*Vec(2) 
OutVec(2) = c*Vec(2) + s*Temp 
OutVec(l) = Vec(l) 
OutVec(4) = Vec(4) 

RETURN 
END 

* SUBROUTINE ROT2 
* 

This subroutine performs a rotation about the 2nd axis 
* 
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* Author      : Capt Dave Vallado USAFA/DFAS 719-472-4109 12Aug88 
* 

* Inputs      : 
* Vec       - Input vector 

XVal      - Angle of rotation rad 

Outputs     : 
* OutVec    - Vector Result 

* Locals      : 
* c -Cosine of angle XVal 
* s - Sine of angle XVal 
* Temp      - Temporary REAL value 
* 

* Coupling    : 
* None. 
* 
*  

SUBROUTINE ROT2(Vec,XVal,OutVec) 
IMPLICIT NONE 
REAL*8 Vec(4),XVal,OutVec(4) 

* Locals 
REAL*8 C,S,Temp 

* Implementation ■ 
Temp = Vec(3) 
c = DCos(XVal) 
s = DSin(XVal) 

OutVec(3) = c*Vec(3) + s*Vec(l) 
OutVec(l) = c*Vec(l) - s*Temp 
OutVec(2) = Vec(2) 
OutVec(4) = Vec(4) 

RETURN 
END 

*  

* SUBROUTINE ROT3 
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* This subroutine performs a rotation about the 3rd axis 

* Author      :CaptDaveVallado USAFA/DFAS 719-472-4109 12Aug88 
* 

rad 

* Inputs 
* Vec 
* XVal 
* 

- Input vector 
-Angle of rotation 

* Outputs 
* OutVec 
* 

- Vector Result 

* Locals 
* c -Cosine of angle XVal 
* s - Sine of angle XVal 
* Temp      - Temporary REAL value 
* 

* Coupling    : 
* None. 

SUBROUTINE ROT3(Vec,XVal,OutVec) 
IMPLICIT NONE 
REAL* 8 Vec(4),XVal,OutVec(4) 

* Locals 
REAL*8 C,S,Temp 

* Implementation 
Temp = Vec(2) 
c = DCos(XVal) 
s = DSin(XVal) 

OutVec(2) = c*Vec(2) - s*Vec(l) 
OutVec(l) = c*Vec(l) + s*Temp 
OutVec(3) = Vec(3) 
OutVec(4) = Vec(4) 

RETURN 
END 
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*. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 

SUBROUTINE MAG 

This subroutine finds the magnitude of a vector. The tolerance is 
set for 0.000001, thus the 1.0D-12 for a squared test of underflows 

Author 

Inputs 
Vec 

Outputs 
Vec(4) 

Locals 
Temp 

Coupling 
None. 

: Capt Dave Vallado USAFA/DFAS 719-472-4109 20Sep90 

Vector 

- Answer stored in fourth component 

- Temporary REAL value 

SUBROUTINE MAG(Vec) 
IMPLICIT NONE 
REAL* 8 Vec(4) 

* Locals 
REAL* 8 Temp 

 Implementation  
Temp = Vec(l)**2 + Vec(2)**2 + Vec(3)**2 
IF (DABS(Temp).gt.l.0D-12) THEN 

Vec(4) = DSQRT(Temp) 
ELSE 

Vec(4) = 0.0D0 
ENDIF 

RETURN 
END 
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* SUBROUTINE RK4 
* 

* This subroutine is a fourth order Runge-Kutta integrator for a 7 
* dimension First Order Diferential Equation. This subroutine was 
* modified from the A422LIB used at the United States Air Force Academy 
* in the Astro 422 class. 

* Author      : Capt Dave Vallado USAFA/DFAS 719-472-4109 20Sep90 
* 05Aug91 
* Edited      : Lt Jason Eiserneich 30Jan98 
* 

* Inputs: 
* ITIME     -Intialtime sec 
* DT        -Step size sec 
* X - State vector at intitial time 
* 

* Outputs: 
* X - State vector at new time 

* 
* 
* 
* 
* 
* 

Locals: 
XDOT 
K 
TEMP 
J 

- Derivative of state vector 
Storage 

- Storage 
[ndex 

* 
* 
* 

Constants 
None. 

* 
* 

Coupling 
DERIV Subroutines of derivatives 

* References: 
* James, et al., "Numerical Methods" pg. 461 -466, eqtn pg 463. 
* BMW pg 414-415 

A4221ib.for * 

SUBROUTINE RK4(DT,X,PHI,PSI,ONOFF) 

IMPLICIT NONE 
REAL*8 DT,X(7),PHI,PSI 
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INTEGER ONOFF 

* Locals- 

REAL*8 XDOT(7),K(7,3),TEMP(7) 
INTEGER J 

* Evaluate 1st Taylor Series Term-- 

CALL DERIV(X,XDOT,PHI,PSI,ONOFF) 

* Evaluate 2nd Taylor Series Term- 

DOJ=l,7 
K(J,1) = DT*XDOT(J) 
TEMP(J) = X(J)+0.5D0*K(J,1) 

ENDDO 
CALLDERIV(TEMP,XDOT,PHI,PSI,ONOFF) 

-Evaluate 3rd Taylor Series Term- 

DOJ=l,7 
K(J,2) = DT*XDOT(J) 
TEMP(J) = X(J) + 0.5D0*K(J,2) 

ENDDO 
CALLDERIV(TEMP,XDOT,PHI,PSI,ONOFF) 

* Evaluate 4th Taylor Series Term—■ 

DOJ=l,7 
K(J,3) = DT*XDOT(J) 
TEMP(J) = X(J) + K(J,3) 

ENDDO 
CALLDEPJV(TEMP,XDOT,PHI,PSI,ONOFF) 

* Update the State Vector, Perform Integration  

DOJ=l,7 
X(J) = X(J)+(K(J,l)+2.0D0*(K(J,2)+K(J,3))+DT*XDOT(J))/6.0D0 

ENDDO 
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RETURN 
END 

* SUBROUTINE DERIV 
* 

* This subroutine contains the EOMs for the trajectory tangent 
* coordinate system. 
* 

* Jason C. Eisenreich 30JAN98 
* 

* Variables 
* 

* 0 Constants 

* Coupling 
* 

* References 
* 
*  

SUBROUTINE DERIV(X,XDOT,PHI,PSI,ONOFF) 

IMPLICIT NONE 
REAL*8ISP,MDOT,X(7),XDOT(7),PHI,PSI,T(4),K 
INTEGER ONOFF 

* Declare Constants  

K=1.32712438D11 

* Booster Performance  

ISP = 5000.0D0 
IF (ONOFF .EQ. 1) THEN 
T(4)=100*0.00003D0 

ELSE 
T(4) = 0.0D0 

ENDIF 
MDOT = -T(4)/ISP/0.009807D0 

* Determine Thrust Components- 
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T(1) = T(4)*DSIN(PHI) 
T(2) = T(4)*DC0S(PHI)*DC0S(PSI) 
T(3) = T(4)*DC0S(PHI)*DSIN(PSI) 

* Initialize Derivatives- 

XDOT(l)=(-k*DSIN(X(2))/X(4)**2+T(2)/X(7)) 
XDOT(2)=(X(l)*DCOS(X(2))/X(4)-k* 

& DCOS(X(2))/(X(l)*X(4)**2)+T(l)/(X(7) 
& *X(1))) 

XDOT(3)=-(X(l)*DCOS(X(2))/X(4))*DCOS 
& (X(3))*DTAN(X(6))+T(3)/(X(7)*X(l)*DCOS(X(2))) 

XDOT(4)=X(l)*DSIN(X(2)) 
XDOT(5)=(X(l)*DCOS(X(2))*DCOS(X(3))/(X(4) 

& *DC0S(X(6)))) 
XDOT(6)=X(l)*(DCOS(X(2))*DSIN(X(3))/X(4)) 
XD0T(7)=MD0T 

RETURN 
END 
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