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Chapter 1 

Introduction 

Until recently radio transmitters and receivers .were almost exclusively implemented 

with analog electronic components. However, a new approach is now becoming 

popular - one that employs digital electronics to implement most of the analog signal 

processing functions in the radio. Ulis evolution in radio system design is driven by 

the ever increasing speed and decreasing cost of microprocessors and high 

performance analog-to-digital (ADC) and digital-to-anälog (DAC) converters. It is 

no longer uncommon to sample a received signal at the intermediate frequency (IF) 

stage and process the signal with numerical algorithms using a specialized digital 

signal processing (DSP) hardware. The DSP hardware performs a variety of 

operations on the signal including downeonversion, demodulation, and filtering; all of 

which are inherently continuous-time (i.e., analog) processes. 

1.1 DSP: Capabilities and Requirements 

The mathematics of digital signal processing provides the framework for the design 

of software radio algorithms, while modem high speed digital electronic components 
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make real time implementation of these algorithms possible. However, the hardware 

currently available to implement DSP algorithms for all stages of the radio system is 

still limited in speed, accuracy and flexibility. Initially, digital signal processing was 

used only for baseband waveform processing. As digital electronic devices increased 

in speed, DSP was soon applied to signal processing functions performed at higher 

frequencies - e.g., the final IF stage in a radio receiver. Functions such as IF 

bandpass filtering, automatic gain control (AGC), and coherent modulation and 

demodulation are typically required at this stage. In the absence of a sufficiently high 

speed processing capability, innovative techniques such as sub-sampling are used to 

process bandpass signals of small to moderate bandwidth. This has allowed the 

boundary between analog and digital processing to be pushed as far up the signal path 

towards the antenna as permitted by physical electronic devices. For most types of 

moderate data rate communications - on the order of 100 kB/s or less - bandwidth is 

not a serious barrier to DSP techniques. However, military radio systems pose a 

notable challenge because of the wide bandwidth characteristics of spread spectrum 

modulation. 

1.2 Military Radio Signal Processing 

Military communication systems often require the use of spread spectrum techniques 

to provide an antijam (AJ) capability, or some measure of covertness through the use 

of low probability of intercept (LPI) waveforms. The result is that extremely wide 

bandwidth signals are present at the output stage of the transmitter and the input 

stages of the receiver. We know from the Nyquist theorem and fundamental 

bandpass sampling techniques that bandpass signals can be sampled at a rate no less 

than the bandwidth of the signal; so high frequencies alone do not put a limitation on 

DSP processor capability. However, wide bandwidth signals are a challenge for any 

type of digital signal processing hardware, and they are especially troublesome for 

conventional DSP microprocessors.   While conventional DSP microprocessors are 
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optimized for real-time data processing, they are nevertheless implemented using the 

traditional serial-based architecture - an inherently serial architecture which uses a 

single multiplier and executes one instruction at a time. While providing the 

advantage of flexibility through programmability, this architecture limits the speed 

with which signal samples can be processed. Even modern DSP microprocessors 

operating at 40 million instructions per second (MIPS) have a useful bandwidth limit 

of less than 500 kHz. This is especially troublesome for military communication 

systems which employ AJ and LPI waveforms having typical bandwidths in excess of 

10MHz. 

1.3 Advantages of Specialized Digital Hardware 

When digital signal processing at wide bandwidths is required the radio designer 

turns to specialized hardware which can operate at much higher throughputs than is 

possible with a DSP microprocessor. These include application specific standard 

products (ASSP), application specific integrated circuits (ASIC), and field 

programmable gate arrays (FPGA). 

Application Specific Standard Products (ASSP) such as FIR filters, 

correlators, and FFT processors, permit certain popular DSP algorithms or functions 

to be optimized in hardware at the cost of flexibility. Use of ASSPs can significantly 

increase the device count and often presents special interface problems which can 

lead to further complications. Furthermore, due to a narrow range of applicability, 

many ASSPs may not be available in state of the art process technology [1]. 

When performance is a factor and product volume is high, many designers 

turn to ASIC technology. ASIC technology offers the ability to design a custom 

architecture that is optimized for a particular application. For example a conventional 

DSP microprocessor has only a single multiply-accumulate (MAC) stage (see Section 

3), so each filter tap must be executed sequentially. An ASIC implementation of a 

DSP algorithm, on the other hand, might have multiple parallel multiply-accumulate 
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(MAC) stages. When comparing the performance of the ASIC versus the DSP 

microprocessor it becomes apparent that the DSP microprocessor offers slow speed 

but maximum flexibility (due to programmability) while the ASIC provides high 

speed with minimal flexibility. Between these two extremes lies the field 

programmable gate array [2]. 

1.4 Field Programmable Gate Arrays 

Modern field programmable gate arrays can implement functions beyond the 

capabilities of today's DSP microprocessors. In fact, they have the potential to 

provide performance increases of an order of magnitude or better over traditional 

DSP microprocessors, but with the same flexibility [3]. These devices can provide 

the programmability of software, the high speed of hardware and can be reconfigured 

in-circuit with no physical change to the hardware. In fact, FPGAs are really "soft" 

hardware, in that they are a good compromise between flexible all-software 

approaches which unfortunately limit throughput, and custom hardware 

implementations, which are more expensive and inflexible [4]. FPGAs offer a 

powerful approach - an architecture tailored to the specific application. Because the 

logic in an FPGA is flexible and amorphous, a DSP function can be mapped directly 

to the resources available on the device. Modern FPGAs have sufficient capacity to 

fit multiple MACs or algorithms into a single device along with the interface circuitry 

required by the application - a single chip solution. 

Although FPGAs can out-perform DSP microprocessors under some 

circumstances, they are not universally the best choice for processing at every stage 

of the software radio. The limitations and advantages of FPGAs compared to those of 

the DSP microprocessor are examined further in the sections that follow. At the 

conclusion of this report, a suggestion is presented for the use of both the FPGA and 

the DSP microprocessor in a software radio testbed. 
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1.5 DSP Microprocessors 

A modern programmable DSP microprocessor typically provides up to 200 MIPS or 

50 MFLOPS. For example, the TMS320C40 has 50 MFLOPS at 25 MIPS with a 50 

MHz clock. There are many high performance DSP processors on the market, but 

they are not suited to all DSP applications. Their general purpose architecture makes 

these DSP processors flexible but they may not be fast enough or cost effective for all 

systems. The DSP processor provides flexibility through software instruction 

decoding and execution while providing high performance arithmetic components 

such as a fast array multiplier and multiple memory banks to increase data 

throughput. The performance limit for commercially available DSP processors 

currently tops out at about 50 MIPS [6]. 

Before exploring how DSP functions can be implemented on a variety of 

programmable logic devices, a broader definition of digital signal processing is in 

order. The term "DSP" applies broadly to discrete-time mathematical processes 

executed in real-time. These include functions such as: 

• Digital Filtering (FIR and ER) 

• Convolution 

• Correlation 

• Fast Fourier Transforms 

Implementation of these functions involves only the basic digital operations of 

addition, multiplication and delay/shift as indicated in the equation below: 

N-l 

E 
*=o 

y(n)= Y.h(kW-k) 
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where x(n) can be interpreted as the input data sequence, and h(k) is the impulse 

response sequence of length N, and y(n) is the output. Depending on the data format 

and suitable choice of tap coefficients, a number of different functions result: 

• Digital Filtering and Convolution - h(k) are the filter coefficients 

• Correlation - h(k) refers to another input sequence 

• Fourier Transform - h(k) are constants in complex exponential form 

Most of these functions require the incoming data to be multiplied or added 

with various internal feedback mechanisms to perform the desired mathematical 

function. This primitive function which is so common to DSP algorithms is called 

the multiply/accumulate (MAC) [3]. The MAC may actually consist of 6 to 12 

operations; however, to increase performance, most general-purpose DSP processors 

perform a MAC in a single clock cycle or less. Most DSP processors have a fixed- 

point MAC while some have a more expensive floating point MAC. Each tap of a 

digital filter requires one MAC cycle - for example a 16-tap filter requires 16 MAC 

cycles. Because most DSPs only have a single MAC unit, each tap is processed 

sequentially, and all taps are processed during a single sample time interval, slowing 

overall system performance. Thus a 50 MHz (25 MIPS) DSP processor performs at 

less than 2 Msps [1]. 

The need to process instructions sequentially will always remain a 

fundamental performance limitation of microprocessors. Acceleration via dedicated 

hardware has long been a solution to this problem. Traditionally, this meant 

dedicated hardware in the form of an ASIC, or in some special cases, 

multiprocessing. Recently another viable alternative has been introduced - the Field 

Programmable Gate Array. The FPGA offers Ihe advantage of fast hardware which 

can be reconfigured under software control. The use of FPGAs in DSP applications 

is the subject of the next section. 
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Chapter 2 

Software Radio 

The essential concept of software radio is that most of the analog signal processing 

operations of the radio transmitter and receiver are implemented with digital hardware 

using DSP techniques. The placement of the receiver analog to digital converter (ADC) 

and the transmitter digital to analog converter (DAC) as close to the antenna as possible 

are distinguishing characteristics of the software radio. In the software radio receiver, the 

approach often used is to digitize an entire band and to perform IF processing, baseband, 

bit stream and other functions completely in software [5]. This approach requires the use 

of high speed analog to digital converters and high speed DSP microprocessors. 

However, the signal processing requirements for military and commercial radio systems 

employing high data rate signals or spread spectrum modulation easily exceeds the 

processing speeds currently available in off-the-shelf DSP microprocessors. In this case, 

special purpose DSP hardware, application specific devices and field programmable gate 

arrays can play an important role. 

The motivation for implementing radios in software is that a highly flexible and 

reconfigurable communication system can be implemented for relatively low cost. The 

ability to adapt the radio to its environment by changing filters, changing modulation 

schemes, switching channels, using different protocols and dynamically assigning 
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Channels and capacity are features which are impractical to deliver with hardware alone. 

Since the behavior of the software radio can be changed so easily, denning a particular 

architecture does not limit the radio to one specific function. Instead, multiple radio 

systems can share a common front-end analog radio tuner while having independent 

digital processing for each individual radio channel. [5] 

2.1 A Software Radio Architecture 

A software radio is essentially a hybrid analog and digital processing system. As 

illustrated in Figure 2.1, fixed analog filtering and frequency conversion are still used in 

the RF stages. Conceivably, there will always be a need for an analog low-noise 

preamplifier to capture the signal from the antenna and establish the noise figure for the 

receiver. Also, a downconversion operation which places the signal at some convenient 

intermediate frequency and allows for additional conditioning of the signal before 

sampling will probably continue to be a part of the software radio system for the next 

decade. 

Using a sufficiently fast DSP microprocessor, a single device could be used to 

process the signal through all stages of the communication system. However, the signal 

processing requirements for each stage are quite different. In the IF stages, relatively 

simple high speed digital processing is needed, and special purpose DSP hardware can be 

used to satisfy this requirement. At this stage, signal processing is usually limited to 

filtering, correlation or FFT processing. At the baseband stage the spread spectrum 

modulation has been removed and the bandwidth of the signal is much narrower, 

meaning that fewer samples need to be processed per unit time. However, the complexity 

of the algorithms required at this stage increases dramatically, and the extra time between 

samples is required in order to implement digital phase locked loops and other 

computationally intensive algorithms. Use of simple, high speed DSP processing at the 

wide bandwidth stages and slower, more flexible processing at the lower bandwidth 

stages will efficiently satisfy both the complexity and high throughput requirements of 

modem radio systems [4]. 
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Figure 2.1 - Software Radio System 

2.2 Software Radio Processing Requirements 

The single most critical requirement in software radio is real-time processing. If the 

system is to operate in real time, then the data must be moved in and out of the DSP 

microprocessor on a regular (i.e., sample by sample) basis, where hundreds of 

instructions may need to be executed for every sample that enters the processor. 

Obviously, low sample rates are desired for this reason. However, the sample rate 

requirement is dictated primarily by the information bandwidth of the signal. The 

information bandwidth in radio systems ranges from under 4 kHz for HF voice band 

channels to over 1 MHz for cellular systems. Spread spectrum (or CDMA) systems are a 

notable challenge, especially for military systems where interference excision techniques, 

or chip wave shaping (for LPI enhancement), are applied directly to the spread 

waveform. This requires that complex signal processing be applied at the chip level, 

which can be one or two orders of magnitude wider bandwidth than the information 

signal. 

A well designed system will use a variety of sampling rates to achieve an efficient 

flow of data through the processor. At the A/D or the D/A stage, over sampling is quite 

often used. Over sampling of the signal is useful to shift aliases out of band and simplify 

filtering, so faster sample rates and narrower bandwidths are used. On the other hand, 
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novel under sampling sampling techniques are possible with stable, linear analog-to- 

digital converters. Under sampling techniques can be used to implement bandpass 

sampling - digitizing the signal in the second or third Nyquist zone, so that the desired 

signals will be aliased in-band by the sampling. Both of these techniques can be 

combined as needed within the various stages of the software radio to enhance the signal 

to noise ratio yet maintain the sample rate at the lowest practical level. 

When the time between samples is on the order of tens of microseconds to 

hundreds of nanoseconds such single-sample operations require hundreds of MIPS 

(million instructions per second) and/or MFLOPS (million floating operations per 

second) to Giga-FLOPS. A good FIR/IIR channel selection filter could require about 100 

operations per sample at 30 Msps, or 3000 MIPS. Using a naive brute force approach, 

we would require 15 to 60 DSPs cooperating for this section alone, repeated for every 

channel. As a result, even with faster devices, software on DSPs still cannot be used for 

the down conversion itself, but must still essentially operate at baseband (albeit a much 

wider baseband, up to a few MHz). Even the most fundamental demodulation or tuning 

algorithm requires 10 operations per sample, which would limit a DSP microprocessor to 

filtering signals with a bandwidth of a few hundred kHz. In a conventional voice-band 

cellular system, baseband processing requirements can range from 10 to 100 

MIPS/MFLOPS per channel; while any digital signal processing at the IF frequency can 

drive the processing requirements to 500 MIPS/ MFLOPS and upwards of 10 GFLOPS 

[5]- 
We contend with these formidable processing challenges by abandoning the use 

of general purpose processors in favor of a mixed approach in which high speed digital 

hardware is used in the earliest stages, doing much of the filtering and processing in fast 

digital logic. When the signal reaches the post-IF stages, the processing load has been 

reduced considerably so that it can now be effectively handled by general purpose DSP 

processors. As long as this specialized hardware is versatile and is controllable to some 

extent from software, a hybrid architecture will meet our requirements.    Most IF 

processing and chip rate processing can be off-loaded to these special purpose devices 

until the day that general purpose processors with sufficient processing power are 

available and cost effective. 
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2.3 DSP Hardware Alternatives 

The most significant limiting factor in development of software radio systems has been 

the lack of sufficiently fast hardware - most notably, fast DSP microprocessors. As high 

performance, high speed ADCs have become available commercially, hybrid techniques 

using specialized digital hardware have become more common, while use of DSP 

microprocessors has lagged behind [5]. DSPs are getting ever faster, but it will be a 

while before we can use a single 'ultimate' chip to do everything. Instead, the idea of 

using multiprocessing to share the effort seems attractive. 

Multiprocessing as an alternative to the processing limitations of conventional 

DSPs can have only limited success. First of all, traditional DSP architectures were not 

well suited to multiprocessing. In fact, there are only one or two commercially available 

DSP processors which have the architecture to efficiently support multiprocessing - most 

notably the Texas Instruments TMS320C40. Also, software to support parallel and 

multiprocessing is scarce and expensive. Secondly, it is a characteristic of a DSP (as 

contrasted with a conventional microprocessor) that it must operate on a continuous flow 

of data. There are few functions in the software radio that could benefit from the power 

of parallel processors. 

Software radios ideally place most IF, and all baseband, bit stream and source processing 

in a single processor. However, when we examine the speed requirements of the IF 

stage, especially when spread spectrum is used, we conclude that we need a special 

purpose device - and this is where FPGAs come into favor. Some of the lower data rate 

anti-jam tactical communications standards, such as HaveQuick and SINCGARS, are 

best implemented using high dynamic range software-oriented digital signal processing. 

In these radios, FPGAs could effectively provide the core of real-time sample rate and 

baud rate pipelined processing. They could also be used in their more conventional role 

of providing gate level support for the other processors and ASICs that make up the 

system [4]. 

Recent technical history has suggested that only software and not hardware 

possesses the programmability that is needed for versatile multi-role radio designs. The 
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flexibility of software is high; but the throughput necessary for any respectable data rate 

is low, making it suitable only for voice processing data rates. However, the availability 

of high speed FPGAs provides a greatly enhanced DSP capability which can be 

reprogrammed to handle wideband digital signal processing tasks. This permits a flexible 

architecture consisting of dedicated wideband ASICs, FPGAs, and programmable 

narrowband DSP processors. In the near future, reconfigurable modem architectures will 

provide in excess of 400,000 gates of programmable hardware with throughputs 

measured in the 100 millions of operations per second and at power consumption levels 

under 2 watts [4]. 

2.4 A DSP Testbed for Military Tactical Radio 

Current research at the Rome site of the AF Research Laboratory is focused on the 

development, testing and evaluation of algorithms for future Air Force radio systems. It 

is understood that these are radio systems which will be implemented using state-of-the- 

art digital signal processing hardware. Therefore, the question of how to make the best 

use of currently available DSP technology is one that must be answered. After 

examining the strengths and weaknesses of DSP microprocessors, application specific 

signal processing devices and FPGAs, we have concluded that there is an appropriate 

place for each of these technologies in the modern software radio. One notable 

characteristic of military radio systems is that they employ wideband spread spectrum 

modulation in order to reduce the effects of jamming or to provide some level of signal 

covertness. In either case, at the receiver, we would like to defer any signal processing of 

the spread spectrum signal until after the despreading function has been completed. 

However there are military requirements which necessitate processing at the spread 

bandwidth. For example, interference excision and detection of intercepted covert 

communications signals are often essential capabilities of these radios. In order to test 

the effectiveness of excision and detection algorithms, a testbed is needed which can 

process the wide bandwidth spread spectrum signal in real time.  General purpose DSP 
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microprocessors would be the most cost effective and flexible solution, however DSP 

microprocessors are not capable of handling the high data throughput rates required at 

spread spectrum bandwidths. Special purpose digital hardware is a likely candidate, but 

these devices are most appropriately used for those functions which will never need to 

change - the downconversion process, for example. The FPGA however, is a powerful 

new technology which can be used to maximum advantage in this application. The 

engineer can configure the internal structure of the FPGA via software - in effect, 

generating a unique hardware design under software control which suits the signal 

processing task at hand. 

2.4.1 Proposed Testbed Configuration 

A proposed system architecture for the software radio testbed is shown in Figure 4. 

FPGAs are used to advantage in the chip stream section of the transmitter and receiver 

where a few simple DSP operations need to be performed at a high rate of speed. In 

FPGA XI, interference excision processes of any description can be implemented 

immediately following the A/D converter, including FIR filters, Fast Fourier Transforms, 

and even adaptive filters. Following this stage, the de-spreading process can be 

performed using FPGA X2. On the transmitter side, spreading is accomplished with X5. 

Flexibility can be obtained by using FPGAs here in order to quickly modify the spreading 

sequence, giving an added dimension to the role of the spreading sequence in maintaining 

interference-free or covert communications. A need still exists for the general purpose 

DSP microprocessor to perform the complex operations of demodulation, system timing, 

carrier extraction and adaptive equalization. Also, multiple DSP processors can be 

configured to perform complex tasks in parallel using an appropriate processor, such as 

the TMS320C40. Once the bit level decision has been made, digital signal processing 

using 16-bit (or longer) word lengths is no longer needed - the signal of interest is now in 

the form of a binary information bit stream. This data bit stream can now be processed 

much more efficiently using digital logic techniques. In this stage X3 and X4 represent 

FPGAs which can be used to implement a variety of bitstream processes such as 

interleaving, forward error correction, compaction/compression, and encryption. 
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The testbed is implemented with a balance of all three forms of current DSP 

hardware technology - FPGAs, ASSPs, and DSP microprocessors - each used in the most 

appropriate stage of the software radio. This testbed can be easily used to provide the best 

in currently available signal processing technology to implement and test radio 

algorithms 

2.4.2 A Rapid Prototyping Facility 

The testbed described in the previous section can be implemented using equipment and 

software presently available at the University of Kansas and the AFRL Rome site. Figure 

5 shows the overall configuration of the testbed using a combination of software and 

hardware tools. The software tools are used to program the DSP microprocessor and to 

configure the FPGAs. At the top level is the Signal Processing Worksystem (SPW) 

which allows the algorithms for both the FPGA and DSP microprocessor to be 

developed, tested and interconnected at the highest level of abstraction. On the FPGA 

side, the SPW design is input to the fixed point Hardware Design System (HDS), which 

is actually part of SPW. HDS converts the top level design to a form which is suitable 

for implementation in digital hardware. At this point the Synopsys tools are used to 

convert the HDS output into VHSIC (Very High Speed Integrated Circuit) Hardware 

Design Language - VHDL. The VHDL description of the design is then input to the 

Xilinx tools which formats it for placement in the FPGA, whose internal circuitry is 

configured to implement the design. 

The FPGAs are physically located on the Aptix Field Programmable Circuit 

Board, which allows FPGAs and other digital hardware to be placed and interconnected 

via software. The Aptix board is connected to one of the communications ports of the 

TMS320C40 processors located in the Ironies VME box. The C40s are the DSP 

microprocessors which perform the more complex tasks in the radio as discussed 

previously. The C40s are programmed from the top level using the SPW in the same 

manner that it was used when beginning design of the FPGA algorithm. After the 

algorithm design has been completed, the SPW output is processed by the Code 

Generation System (CGS) which is an ancillary function of SPW. The code generation 

2-8 



system produces C40-specific assembly language which is then input to the Texas 

Instrument floating point software tools, where it is compiled and loaded into the C40 

microprocessors. The SPW Multiprox tool is also part of the software set which allows 

the efficient partitioning of DSP tasks onto multiple processors. 
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Figure 2-2: Tactical Radio Testbed 

There are several hardware additions to the system which support the overall 

testbed. For example, a multiple channel analog interface board is available as part of the 

C40 system and is installed in the Ironies VME chassis. This analog interface board is 

used to input or output the baseband information signal - speech, data, or compressed 

video - directly into the C40 DSP microprocessors. They can also bypass the C40s and 

exchange signals directly with the Aptix board in order to have direct access to an FPGA 

for bit stream processing. Also Connected to the Aptix board are high speed (40 MHz) 

A/D and D/A converters which are interfaced to the analog RF & IF system. 

Communication signals at RF or IF can be routed to and from the Aptix board through 

the A/D and D/A converters, to complete the implementation of the testbed described in 

the previous section. 
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Chapter 3 

Field Programmable Gate Arrays 

Programmable hardware has been available for many years - conventional memory 

devices are the most obvious example. Various PLDs (programmable logic devices) 

have long been used in implementing state machines and "glue" logic, among other 

things. However, the available devices have tended to have restricted architectures and to 

be rather small [7]. The last decade has seen a significant change with the introduction of 

a variety of field programmable gate arrays, as well as an evolution of some PLDs into 

much larger devices with extended architectures. Essentially, the FPGA is a general 

purpose programmable logic device consisting of a regular array of cells with distributed 

routing that can be configured with a specific design by the user, without the need to 

fabricate an application specific device (i.e., an ASIC) [8]. 

3.1 Programmable Logic Technology 

There are a variety of FPGA architectures available depending upon the manufacturer. 

However, there is one broad distinction that can be made regarding FPGA structure: the 

architectures are either course-grained or fine-grained [7].   The earlier devices were 
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simple anays of logic gates which were programmable in the field in much the same way 

as a conventional ROM. These devices are considered fine-grained in the sense mat there 

can be a large number of very simple logic operations which can be interconnected. On 

the other hand, modern FPGAs have a relatively smaller number of more complex logic 

cells available. 

Other than granularity, FPGAs are differentiated by their chip level architecture 

and their interchip wiring organization. As an example, the Xilinx 3000 family FPGAs 

consist of an array of cells called CLBs (configurable logic blocks). Each CLB contains 

two latches and a function generator as illustrated in Figure 3.1. The internal connections 

within the cell and the lookup table in the function generators are determined by 

configuration bits held in an integrated SRAM. This allows an individual cell to 

implement quite complex combinational and sequential functions. The routing resources 

allow the cells to be connected as required, at least in principle. In practice, the problem 

of routing a congested design is the major obstacle in obtaining highest performance. 
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Figure 3.1 - Configurable Logic Block of the X3000 FPGA 
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FPGAs are just beginning to have a significant impact, although their cost is still 

relatively high (i.e., hundreds of dollars for the largest devices). Two application areas 

which traditionally have dominated their use are general purpose gate-level logic support 

(i.e., glue logic) and emulation of new IC designs. However, FPGA manufacturers 

believe that their products will change the way in which digital design is approached in a 

revolution similar to that engendered by the microprocessor [7], The fact that FPGAs are 

now being investigated for use in high speed DSP applications is an indication of the 

broad impact they may have in digital applications of all kinds. 

3.2 Practical Consideration in the Use of FPGAs 

Because the FPGA is programmable in manner similar to a microprocessor, it is already 

becoming widely used. However, the configuring of hardware to fit a specific 

computation is significantly different from the programming of a microprocessor. In 

particular, the microprocessor has a fixed instruction set, and all solutions are algorithmic 

in nature. In contrast, an FPGAs internal structure must be customized to implement a 

particular algorithm. Since digital hardware designs are not software driven, the 

overhead associated with command interpretation, scheduling and execution is eliminated 

and there is a substantial gain in speed. Furthermore, a hardware design can take 

advantage of parallel implementations to eliminate bottlenecks [2]. It is interesting to 

note that we may even combine the two approaches and compile a specialized 

microprocessor into the FPGA with a restricted instruction set chosen to suite any 

particular application. 

It often occurs that a computation is better suited for either dedicated hardware or 

microprocessor software. This is the situation we are examining in the software radio - 

when to use FPGAs and when to use DSP microprocessors. Simply stated, an FPGA is 

appropriate when the design calls for the performance of an ASIC and the flexibility of a 

microprocessor. An FPGA should not be used if the algorithms to be implemented are 

complex, or vary significantly in structure or complexity. Detennining when to offload 
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DSP algorithms to FPGAs requires an analysis of speed versus problem size. At one end 

of the scale, problem size gets very large and direct hardware solutions become too 

difficult and expensive to build [2]. 

The advantage of FPGAs is that they represent a compact integrated 

programmable hardware solution which can be user configured for any conceivable logic 

design. Current designs contain in excess of 40,000 logic gates, all under the control of 

the designer. On the other hand, FPGAs have some notable disadvantages. First, there 

internal routing contributes substantial delay between logic elements resulting in a 

significant limitation in performance, although parallelism and pipelining can still be 

used. The second disadvantage is that it is not possible to execute a variety of arithmetic 

operations within the logic resources available. Added to this is that the programming of 

FPGAs is difficult, especially when implementing DSP functions [9]. 

3.3 Binary Arithmetic Techniques for FPGAs 

The primary limitation of the FPGA when used in DSP applications is arithmetic - most 

notably multiplication. When FPGAs are used for DSP applications, the multiplier 

circuits must be implemented with the available chip resources. However, a hardware 

multiplier is a reasonably complex circuit, as evidenced by the fact that conventional DSP 

microprocessors contain only a single hardware multiplier, and it occupies most of the 

real estate on the chip. A state-of-the-art FPGA can support no more than a handful of 

multipliers, meaning that brute force multiplication is often avoided in some of the most 

common operations - e.g., filtering or correlation. 

When implementing multipliers in hardware, two basic alternatives are available: 

The fully parallel array multiplier and the fully bit-serial multiplier. The advantage of the 

fully parallel, array multiplier is that all of the product bits are produced at once which 

generally results in a faster multiplication rate. The multiplication rate for this adder is 

simply the delay through the combinational logic. However, parallel multipliers also 

require a large amount of area to implement.  Bit serial multipliers on the other hand 
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generally require only 1/Nth the area of an equivalent parallel multiplier but take 2N bit 

times to compute the entire product (N is number of bits of multiplier precision) [6]. This 

concept is illustrated in Figure 3.2. A new trend is to incorporate a limited number of 

hardware multipliers wimin the FPGA. For example, AT&T incorporates a 4 X 1 

multiplier in each programmable function unit of its ORCA FPGA family. 

Innovative techniques which avoid conventional multiplication in computing FIR 

filters and other DSP algorithms have been investigated by a number of researchers. For 

example use of distributed arithmetic techniques have been reported [12], which makes 

extensive use of look-up tables, an approach which allows a considerable savings in chip 

resources. 
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Figure 3.2 - Block Diagram of Basic Multiplier Alternatives 
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Distributed Arithmetic are computational algorithms that perform multiplications with 

look up tables. This algorithm is generally used to perform important DSP filtering and 

frequency transforming functions. Since most of the recent architectures of the 

programmable logic have supported the look-up table methodology distributed 

arithmetic has become very popular. 

Distributed Arithmetic differs from conventional arithmetic only in the order in 

which it performs operations. Take for example a four-product MAC function that uses 

a conventional sequential shift and add technique to multiply four pairs of numbers and 

sum results. The four-multiplication are performed simultaneously and the results are 

then summed when the products are complete. This method of implementation requires 

n-clock cycles for data sample of n-bits. Hence , the processing clock rate is equal to 

data rate divided by the number of data bits. During each data clock-cycle, the four- 

multipliers simultaneously create four-product terms, that eventually are summed into 

the output. The distributed arithmetic differs from this process by adding the partial- 

products before, rather than after, the bit-weighted accumulation. 

By using Distributed Arithmetic, the operations are reordered. The reordering 

reduces the number of shift-and-add circuits to one, but does not change the number of 

simple adders. Distributed arithmetic is of two types the serial and parallel distributed 

arithmetic. 

Distributed arithmetic is useful in filtering applications, where the coefficients 

are constant. Adders and AND gates are made use of to implement multiplication with 

coefficients. But in distributed arithmetic the AND functions and adders are replaced 

with look up tables (LUT). If a single bit is made use of to access the LUTs then it is 

called serial distributed arithmetic, where the incoming sample of the signal stored in a 

shift register and a bit at a time is shifted out. The other type of distributed arithmetic is 

Parallel distributed arithmetic (PDA), where the number of bits used to access the LUTs' 

are more than one. The overall performance of PDA is better than SDA as in the former 

case the number of bits processed during each clock cycle is increased. 

This section provides a brief overview of the popular multiplication techniques, 

and presents the advantages and disadvantages of each technique in terms of speed, 

complexity, and area requirements for FPGA implementation. 
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3.3.1 Conventional Arithmetic 

We will first examine how binary multiplication is carried out. Assume that we want to 

multiply two 4-bit numbers as shown below: 

Multiplicand  1001 

Multiplier    0110 

Product 

0000 

1001 

10010 

1001 

110110 

0000 

00110110 

Partial Product 

Partial Product 

As shown above, each bit of the multiplier is multiplied with the multiplicand producing 

partial products which are appropriately weighted and added together to give the final 

product. As a typical example, consider a four-product Multiply-Accumulate (MAC) 

unit used to multiply four pairs of numbers and sum the results (a typical application of 

this - with slight modifications - would be in FIR filters). Figure 3.3 below illustrates a 

hardware implementation of this MAC unit. 

Each MAC block multiplies the coefficient Y by one bit of the data A from the 

shift register using an AND operation, thus forming partial products. The output of the 

AND gate feeds an adder and a register. The second input of the adder is fed with the 

output of the register which represents the previous partial product divided by two 

(shifted to the right) thus appropriately weighting the partial products. In summary, for 

each clock cycle, each data bit (Ai) is multiplied with the coefficient (Y), and the 

register's output (previous partial product) is right shifted and added with the current 

partial product. For the whole four-product unit, the four multiplications (data A, B, C, D 
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times the coefficients Ya, Yb, Yc, Yd) are carried out simultaneously, and the results are 

added together when the products are complete. 

PRODUCT 
SUM 

Figure 3.3 - Four-Product MAC Unit with Conventional Arithmetic 

This procedure requires n clock cycles for data samples of n bits. During each 

cycle, the four multipliers simultaneously create four partial products PA PB, PC, PD 

that are summed together to form the output. In terms of speed, this arithmetic technique 

is not efficient because to process the entire data sample, the processing rate is equal to 

the clock rate divided by the number of bits in the data sample. Also, in terms of surface 

real estate needed on an FPGA, the MAC block in each data path increases the area 

occupied on the chip. 

3.3.2 Serial Distributed Arithmetic (SDA) 

The Serial Distributed Arithmetic technique is more efficient than the conventional 

approach. SDA differs from the conventional arithmetic only in the order it performs 
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operations. That is, in the SDA approach, the partial products generated by multiplying 

each data bit with the coefficient, are added before, rather than after, the bit-weighted 

accumulation in the MAC block. 

By reordering the operation as described above, the number of shift-and-add 

(MAC block) circuits is reduced to one, resulting in tremendous saving in FPGA area. A 

Serial Distributed Arithmetic circuit is shown in Figure 3.4. 

Further improvement in that circuit can be achieved if we consider that in many 

DSP applications the coefficients Y are constants (e.g., a standard FIR filter). In such a 

case, the AND operations and the adders depend only on the input data bits from the shift 

registers. As stated before, these AND gates and adders generate the partial products and 

add them together before the weighting accumulation. We can therefore pre-compute all 

possible partial products (sums of the coefficients), and place them in a Look-Up-Table 

(LUT) which replaces all the AND gates and adders. Therefore, the input data bits from 

the shift registers, will just serve as indexes (address inputs) of the LUT. The LUT circuit 

for a Serial Distributed Arithmetic approach is shown in Figure 3.5. 
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Figure 3.4 - Four-Product MAC using SDA. 

3-9 



I 
SHIFT REGISTER 

Ai 

i 
SHIFT REGISTER 

Bi 

i 
SHIFT REGISTER 

Q 

il 
SHIFT REGISTER 

LOOK-UP 
TABLE 

-e REGISTER 

-EH 

PRODUCT 
SUM 

Figure 3.5 - A LUT Replaces the AND Gates & Adders in SDA 

The Look-Up Table contains 16 memory locations (4 address inputs) which hold all 

possible sums of the coefficients. In our example where we have four coefficients, the 

LUT width should be equal to the coefficient width plus two extra bits to allow for word 

growth. The data bits which address the LUT, determine which sum of coefficients will 

be placed in each LUT memory location. For example, when all four data bits are 1, the 

sixteenth memory location (1111) will contain the sum of all four coefficients. Any data 

bit that is zero eliminates the corresponding coefficient from the sum. Table 3.1 below 

illustrates the contents of the 16-Word LUT. 

By implementing the LUT in place of the AND gates and adders, the speed 

improvement is significant because we avoid adding the partial products in real time. 

Rather, all the partial product sums are pre-computed and are readily available at the 

output of the LUT. In summary, the optimized Serial Distributed Arithmetic technique 

using LUT is much more efficient compared with Conventional Arithmetic, both in terms 

of speed (LUT) and area occupation (only one shift-and-add circuit is needed since 

partial products are added before, rather than after, the bit-weighted accumulation). 
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TABLE 3.1 - CONTENTS OF 16-WORD LUT 

Ai Bi Ci Di LUT Contents 

0 0 0 0 0 

1 0 0 0 Ya 

0 1 0 0 Yb 

1 1 0 0 Ya + Yb 

0 0 1 0 Yc 

1 0 1 0 Ya = Yc 

0 1 1 0 Yb = Yc 

1 1 1 0 Ya + Yb+ Yc 

0 0 0 Yd 

1 0 0 Ya + Yd 

0 1 0 Yb + Yd 

1 1 0 Ya + Yb + Yd 

0 0 1 Yc + Yd 

1 0 1 Ya + Yc + Yd 

0 1 1 Yb + Yc + Yd 

1 1 1 Yz + Yb + Yc + Yd 

3.3.3 Parallel Distributed Arithmetic (PDA) 

Increasing the number of data bits processed for each clock cycle from one to two results 

in twice the throughput However, there is a trade off here in terms of FPGA area used, 

which is increased dramatically since more CLBs are employed. Figure 3.6 below 

illustrates a block diagram of a 2-bit PDA circuit. 

In the 2-bit PDA approach, the data word is split into even and odd bits and is fed into 

two parallel shift registers which are half the bit width of the shift registers used in the 

SDA approach. Therefore, for each clock cycle we process two bits of the data sample 

instead of one bit as in the SDA technique. However, now two LUTs are needed, one to 

store partial products of the even bits, and the other for the odd bits. Also, an adder is 
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required to sum these two partial products, and also the shift-and-add circuit (scaling 

accumulator) at the end, shifts the data by two-bits (divide by 4) for scaling of the final 

product. With this approach, more than two parallel bits can be processed at a time. In 

fact, this concept can be extended to a folly parallel PDA circuit in which all n bits of a 

data sample are processed on each clock cycle, resulting in increased throughput. 

However, this would result in a very significant increase in hardware area, so the number 

of parallel bits sampled at one time should be increased only to meet the required speed 

performance. 

Figure 3.6 - 2-bit Parallel Distributed Arithmetic. 

3.3.4 Constant Coefficient Multiplier using LUT 

In the preceding sections, we focused on distributed arithmetic methods for binary 

multiplication. In this section, a different approach is presented for multiplying data with 

a fixed coefficient. This method is folly parallel, and uses Look-Up-Tables to store all 
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possible partial products of data times coefficient. To understand this hybrid technique of 

multiplication, consider how hexadecimal multiplication is performed: 

55 

x 2B 

3A7 = Bx55 

+0AA0 = 2x55 

0E47 

Now, having the 55h multiplication table on hand, makes the multiplication of 55h with 

any number very easy. Table 3.2 below shows a 55h multiplication table. 

TABLE 3.2: MULTIPLICATION TABLE 

0x55 = 000 8x55 = 2AB 

1x55 = 055 9x55 = 2FD 

2x55 = 0AA Ax55 = 352 

3x55 = OFF Bx55=3A7 

4x55 = 154 Cx55 = 3FC 

5x55 = 1A9 Dx55=451 

6x55 = 1FE Ex55=4A6 

7x55 = 253 Fx55 = 4FB 

The fixed coefficient multiplication table can be stored in a ROM Look-Up-Table. In our 

example we assumed that both data and coefficients are 8-bits wide. The data should be 

split in two 4-bit segments, and each segment is used to address one of the two ROM 

LUTs as shown in Figure 3.7 below. 
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Figure 3.7 - Constant Coefficient Multiplier using LUT. 

Each ROM LUT is a fixed coefficient multiplication table and contains 16 entries which 

represent all possible partial products from 0 x "coefficient" up to F x "coefficient". The 

upper (Most Significant) LUT contains all the partial products of the 8-bit coefficient 

times the most significant 4-bits of the incoming data. Similarly, the lower (least 

significant) LUT contains all the possible partial products of the 8-bit coefficient times 

the least significant 4-bits of the data. Therefore, at the output of each LUT we have a 12 

bit partial product (4 bits data + 8 bits coefficient). Each 12 bit partial product is 

appropriately zero padded (for scaling) and then summed to produce the final product at 

the output of the multiplier. This approach is very efficient in both speed and area 

required on the FPGA. The data samples are processed in parallel resulting in very high 

processing rates. We could have used only one ROM LUT and apply all the eight bits of 

the data on it, but this would consume more space on the FPGA, because it would need a 

ROM with 28 = 256 memory locations. By splitting the data in two, each ROM LUT has 

now 2 =16 memory locations resulting in area saving. 
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3.4 Using FPGAs for DSP Applications 

The FPGA has recently generated interest for use in DSP systems because of its 

potential to implement an infinite variety of custom hardware solutions while still 

mamtaining the flexibility of a conventional programmable device [6]. Although DSP 

microprocessors have complete algorithm flexibility, their performance is limited because 

algorithms are implemented by sequential MAC operations, as previously described. 

Additionally, DSP microprocessors have an overhead for reading in the operands and 

writing the result through a single data port. Therefore, a DSP microprocessor may 

require at least four cycles (i.e., read, multiply, add and write) to perform the simplest of 

algorithms, resulting in 10 MIPS performance from a 40 MIPS processor [1]. 

Because DSP algorithms are optimally mapped to the device architecture, FPGA 

performance can significantly exceed DSP processor performance. For example, a DSP 

microprocessor can implement an 8-tap FIR filter at 5 Msps. An FPGA can implement 

the same FIR filter at 100 Msps [1]. FPGAs will never completely replace general 

purpose DSP processors, however. Current generation programmable logic addresses 

only the fixed point DSP portion of the market. General purpose DSPs still dominate in 

floating point performance. Also, general purpose DSP processors utilize familiar 

software methods, while using programmable logic requires a completely different 

approach on the part of the DSP designer. Implementing DSP functions in FPGAs 

provide the following advantages over conventional DSP hardware: 

a. Parallelism - Using FPGAs can lead to significantly higher performance than a 

typical DSP processor for some applications. 

b. Efficiency - An FPGA can be optimized for specific algorithms, thus achieving 

the performance of hardware with the flexibility of software. 

c. In-circuit Reconfigurability - Permits the algorithm or function to be changed 

while operating in-circuit. An additional benefit of FPGAs over ASICs is that they can be 

3-15 



reprogrammed on the fly in the system. Consequently, a single FPGA can implement 

different DSP functions at various times in a system to boost overall performance. 

d.. Adaptability - A device that can implement large internal RAM blocks can be 

used to implement real-time adaptive functions at a throughput that cannot be matched by 

conventional DSP solutions. 

3.4.1 Pipelined Architectures 

Since the FPGA CLBs contain flip-flops, they are used for storing and delaying the 

signal. The purpose of pipelining is to increase the speed at which the system operates 

by decreasing the delay of the critical path of the system. The Figure 3.8 below 

illustrates the concept of pipelining. 
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Figure 3.8 - The Pipelining Concept 

In this figure we have two clocked circuits which are driven by the same clock. 

Hence the speed of operation depends on the delay that separates the two clocked 

circuits. If the delay is more than die clock period, men the frequency of operation is 

limited by the delay between them. To increase the frequency, register elements can be 
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include in the delay path thereby decreasing the delay in the path and increasing the 

speed of operation. This is shown in part two of Figure 3.8. Pipelining is a trade off 

between speed versus resource utilization. Using too many pipelined stages in the 

system results in an enormous consumption of hardware resources; and in designs where 

area and power are of main concern, pipelining may not be advisable. 

3.4.2 Design of Data Paths 

The data path is that part of the system that performs the data processing operations, so 

the design of the data path in any system design is very important. The speed of the 

system increases if there are a number of data paths performing the same function in 

parallel, however this kind of system design requires lots of hardware resources so it is 

important to decide whether or not the data path will be shared. 

A critical factor in designing the data path is the precision requirements of the 

design. If very high precision is required, such as needed in DSP applications, then the 

data path should implement a floating point processing of the signals. This would lead to 

excessive use of resources since two registers are required to store a floating point 

number in the data path. Therefore, all of the present designs make use of fixed point 

datapaths. 

Though fixed point data path design leads to using fewer hardware resources, the 

accuracy of the results obtained is less, when compared to the floating point designs. By 

making use of fixed point algorithms, the number of resistor elements can be reduced, 

which in turn can be used to implement parallel data paths and pipelining to improve the 

speed at which the design operates. 

3.4.3 Routing Delays 

Routing Delays play a major role in the hardware design since they limit the operating 

speed of the system. Very complex designs often suffer from routing delays because of 

the large number of logic circuits implemented in the device, resulting in less space 
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available for achieving optimal routing. This is a concern for DSP systems as many 

arithmetic operations need to be performed. Arithmetic elements are required which 

typically occupy a large percentage of the available resources, which affects the routing 

of the design. 

The recent trend in FPGAs is to use common function (or macro) blocks to aid in 

developing systems with lower routing delays. For example the Xilinx FPGAs supports 

XBOLX modules such as adders, subtractors, incrementors, decrementors etc. , which 

are used extensively to implement arithmetic functions on Xilinx FPGAs with very low 

routing delays. Thus by decreasing the routing delays we can increase the frequency of 

operation of the system. 

3.5 FPGA Applications in Software Radio 

The DSP Functions that FPGAs do best are those requiring high sample rates and short 

word length. They are especially suited for FIR filter designs employing lots of filter taps 

and fast correlators. The lookup table architecture of FPGAs provides a fast and efficient 

way to build correlators [3]. More taps can be added to the parallel filter with only a 

small performance tradeoff with additional parallel silicon resources. In contrast, DSP 

processors exhibit a linear decrease in performance as the number of taps increases 

(Table 3.3). An 8-tap, 8-bit FIR filter implemented on an Altera device needs only 80% 

more silicon than one 8 x 9 bit fixed multiplier (Table 3.4)[1]. 

TABLE 33 - FULLY PARALLEL 8-BIT FIR FILTER (FLEX 8000A FPGA) 

# of Taps Performance (MSPS) Equivalent MIPS (DSP Processor) 

8 104 832 

16 101 1,616 

24 103 2,472 

32 105 3,360 
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TABLE 3.4 - SILICON RESOURCE COMPARISON 

Function 

FIR Filter 

Fixed Point Multiplier 

Inputs & Outputs 

8-bit data, coeff 

17-bit output 

8x9bitdata 

17 bit output 

Flex 8000A Logic Cells 

296 

164 

Table 3.5 shows the performance of multipliers implemented on the Xilinx 4000 family. 

Note that parallel multipliers require a larger proportion of the device, while bit serial 

implementations are slower. The first number in the Multiplier Speed column for the bit- 

serial multipliers is the clock speed, while the second number is the multiplier speed. 

TABLE 3.5 - XILINX 4000 SERIES FPGA MULTIPLIERS 

Type of Multiplier #CLBs % of FPGA Mult. Speed 

8 bit unsigned (parallel) 64 16% 8.54 MHz 

16 bit unsigned (parallel) 242 60% 3.8 MHz 

8 bits unsigned (bit-serial) 17 4% 73.1/4.6 MHz 

16 bit unsigned (bit-serial) 33 8% 62/1.9 MHz 

FPGAs can efficiently implement DR. filters. For example, a lookup table based 

vector multiplier can be used to create a complete second order section of an all pole 

analog filter. The vector multiplier requires the same resources and operates at the same 

speed as a fixed point multiplier. A Butterworth filter can run at a rate of 25 Msps and 

require only 139 logic cells [1]. 

Altera has developed high speed FIR filter megafunctions that are optimized for 

their own FPGA structure. These filters can be implemented in parallel or serial form 

allowing a tradeoff between silicon resources and performance. Parallel filters can 

perform at rates up to 100 Msps enabling digital processing of RF-IF data. Serial filters 
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require less logic and still perform at 5 to 6 Msps. In a Spread Spectrum RF modem 

application, an Altera FPGA can implement the receiver's correlation filter function at a 

chip rate over 60 MHz. A DSP processor can perform the remaining tasks, such as 

quadrature phase shift key (QPSK) demodulation. The resulting DSP application can 

deliver six times the data rate as the DSP processor alone. 
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Chapter 4 

Rapid Prototyping Concepts 

Designing with FPGAs requires computer assistance at almost every stage of the design 

including detailed specification, simulation, placement and routing. The use of schematic 

capture based CAD tools is a common approach to the design of custom logic devices 

using FPGAs. This process is often combined with logic level simulation to verify a 

specific design. One method of increasing the range of architectural solutions that a 

designer may explore in a reasonable time is to specify the DSP system with a hardware 

description language (HDL) [10]. This steps the design process up one level and allows a 

generic functional description of the target system which can be further simulated or 

implemented directly onto an FPGA after the HDL code is converted using the FPGA 

manufacturers software. 

In DSP applications, arithmetic circuitry for operations such as addition, 

subtraction and multiplication are commonly required. These arithmetic circuits can be 

designed and implemented by employing user-generated or manufacturer-provided sub- 

circuits, which can be reused. However, as these designs can only be simulated at the 

logic gate level, it is difficult to verify the functional performance of the algorithms being 

implemented. It is particularly difficult to determine the potential undesirable side effects 

of finite precision arithmetic, as mis may require that large data sets be simulated and 
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translated from numerical values to logic levels and vice versa [10]. However, new 

software tools are being developed which raise the design process to yet another level, 

allowing the designer to begin at the system level. 

Simulation tools such as Cadence's Signal Processing Worksystem (SPW) now 

have features which allow the engineer to design hardware logic systems and DSP fixed 

point systems using the traditional block diagram functional description of the circuit. 

This design is then immediately converted into a hardware description language. Other 

SPW tools allow the design to be simulated via the HDL description of the system and 

then linked into a manufacturers software tools which support specific devices. Most 

manufacturers, in the interest of making their product more attractive to their customers, 

have developed a set of stock logic elements which can be reused within their device to 

assist the engineer in quickly achieving any design. Once suitable design tools and 

automatic methods are perfected, designers and programmers will be able to create 

custom hardware circuitry and pipelines to suit the problem at hand - the term 'soft 

hardware' suggests that hardware will become as readily created and malleable as 

software. In a practical sense this will mean that the turn-around time for custom 

hardware will be just as short as software development is today. 

4.1 Design Flow 

Figure 4.1 illustrates the flow of rapid prototyping. The flow of the design is from the 

functional description of the system to the hardware implementation. The functional 

description of the system is implemented in either SPW (Signal Processing 

WorkSystem) or in VHDL. The functional description is usually is at the system level, 

where algorithm functions are of primary interest. A reconfigurable flat-form is used to 

aid the flow of rapid prototyping, and commercial CAD tools are used to integrate the 

design. 
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Figure 4.1 - Block Diagram of Rapid Prototyping Flow 

4.1.1 Functional Description using SPW and VHDL 

Hie system to be implemented is functionally described using the Hardware Design 

System (HDS) of SPW. The algorithm is designed using the blocks available in HDS. 

The functional description of the system is completed using the fixed point blocks to 

control the use of hardware resources which are quite limited in reconfigurable 

hardware. The algorithm developed is simulated in the SPW environment before the 

implementation is completed to make sure that the functional description of the system is 

correct. To implement the design on hardware, the HDS component of SPW provides a 

link which generates VHDL code for the system designed in HDS. The generated 

VHDL code is used for synthesis in order to implement the system on the targeted 

device. 

The other way to functionally describe the system is with VHDL. The advantage 

of using hand-coded VHDL, rather than using VHDL code generated by the schematic 

tool is that for very large and complex designs, schematic capture of the system 
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becomes difficult and impractical. Also, the hand-coded VHDL is very flexible in that, 

if certain enable signals are required for flip-flops, counters etc., then the blocks 

provided by HDS can be modified and customized. It is also true that code generated 

from a schematic tool tends to be less efficient and require more hardware resources that 

would be required if the system were hand-coded with VHDL. 

4.1.2 Simulation and Synthesis 

The next step in the design flow is to simulate the design using standard tools that verify 

the functionally of the design. If the simulation results are satisfactory then the design is 

synthesized using standard tools that target the design to specific FPGAs. The systems 

designed using SPW can be simulated in that environment. But hand-coded VHDL, 

need to be compiled and simulated using VHDL simulation tools such as Mentor, 

Synopsys, etc. Figure 4.2 shows the flow followed during the simulation of the system. 
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Figure 4.2 - Block Diagram of Simulation Flow 



Synthesis is the procedure that makes possible the implementation of the system 

on the targeted hardware. It is also one of the key factors which aids in rapid prototyp- 

ing. Synthesis tools translate the high level design into gate and register levels which the 

routing software can process. The synthesis tools generate netlist files that are used by 

the routing software to generate files that are used to define the hardware physically. For 

example the Synopsys FPGA compiler generates a top level netlist which is used by the 

Xilinx software to partitions places and route the design. Figure 4.3 shows the flow of 

the synthesis procedure. 

High level system design is gaining popularity since it allows the designers to 

describe systems at a high level using schematic capture. The high-level design 

approach reduces library and technology dependence, enabling re-targeting to other 

libraries, such as an FPGA library, with greater ease. 

Figure 4.3 - Block Diagram of Synthesis Procedure 
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4.1.3 Implementation 
Implementation occurs at two levels: first is at chip level where the entire system 

is partitioned into smaller submodules, and these modules are implemented on the target 

FPGA. The second level of implementation is at the system level, where all submodules 

are integrated and the entire system is tested. 

Chip level implementation on the FPGA is an important part of the rapid 

prototyping process. Synthesis tools provide the designers with netlist files of the 

submodules to be implemented. During the synthesis, constraints are provided to meet 

design specifications. The reconfigurable nature of FPGAs also aids the rapid 

prototyping approach. Every FPGA has its own placement and routing software to map 

the design. The software partitions the design and places the logic into the configurable 

logic blocks and finally does the routing of the entire design. The software generates a 

bit file to configure the FPGA device. 

System level implementation is accomplished using the rapid prototyping board, 

known as the field programmable circuit board (FPCB). The FPIC (field programmable 

interconnect component), are programmable interconnect components which form the 

core of the programmable circuit board. For example, the Aptix MP3 reconfigurable 

board has three programmable interconnect components used for routing purposes. The 

MP3 board also supports diagnostic programmable interconnect components which aid 

in viewing signals on the diagnostic instruments. The FPIC is configured through a Host 

Interface Module (HIM), which transfers data from a workstation to program the FPIC. 

A Stand-alone Program Module (SPM) can be utilized to perform the same function 

without a workstation. 

The FPCB provides fully automated downloading of configuration data to both 

FPGAs and FPIC devices.   As the board supports the combination of FPGAs with 

standard components(memory, DSP and microcontrollers) makes the MP3 uniquely, 

suited for DSP system prototyping. 
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4.1.4 Verification 

The rapid prototyping environment helps in debugging and verifying very complex 

systems. As stated earlier, the FPIC devices used on the FPCB are of two types: one is 

used for routing purposes and is designated as an FPIC(R) device . The other type of 

device is the diagnostic device, which is used for probing, debugging and verifying 

signals in the design and is designated as FPIC(D). These FPIC(D) devices can be 

connected to the logic analyzer with help of diagnostic pads. The software for the board 

is called AXESS, and it programs both the diagnostic FPIC devices and logic analyzer. 

This setup provides a very powerful debugging capability, since each signal that 

appears in the system level netlist can be routed through one or more FPIC(D) devices 

and viewed on the logic analyzer. The signals to be viewed are selected with the help of 

diagnostic device interface provided by the software. The software automatically 

programs the diagnostic FPIC device to display the selected signals on the logic 

analyzer. At the same time, the diagnostic interface facility configures the logic 

analyzer. The diagnostic interface provided by the reconfigurable board software does 

the channel assignment and labeling of the waveform displays. 

4.2 Prototyping 

In traditional prototyping approaches, the design is mapped to a technology that allows 

speeds such that all interfaces to targeted applications can operate in real time. But rapid 

prototyping provides flexibility for system emulation to explore architectural and 

implementation alternatives available for achieving the desired system function. 

Prototyping was commonly done using custom printed circuit boards and wire 

wrap technologies until the design complexity became too large to make these 

approaches feasible. The new technologies such as FPIC, FPCB, and FPGA have 

created a new path that enables mapping of complex logic into programmable hardware 

which can meet the real-time operating frequencies of DSP applications. The main aim 
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of rapid prototyping is to design, implement and verify systems quickly, hence aiding in 

bringing products faster to the market when compared to traditional prototyping 

methods. 
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Chapter 5 

Implementation Case Studies 

This chapter describes the DSP algorithms designed and implemented on the Aptix MP3 

reconfigurable circuit board. The algorithms designed here are digital filters, fast Fourier 

transforms and communications modules such as the PN sequence generator. All designs 

developed are targeted to Xilinx FPGAs and use a reconfigurable hardware platform (the 

Aptix MP3) to illustrate the concept and the speed with which systems can be designed and 

implemented using rapid prototyping. 

The digital filters described in this chapter are designed using both a locally 

developed FIR CAD tool and the Signal Processing Worksystem (SPW) software. The FIR 

CAD tool generates XNF files for the filter, but filters designed using SPW employ 

commercial tools to generate the filter XNF file. Other systems examined in this chapter 

include an eight point FFT, and a scalable FFT (16,64 points). The scalable FFT algorithm 

designs use a standard memory chip. The following sections give the details of the designs 

developed and their implementation. 
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5.1 FIR Filter Design using CAD Tools 

Finite Impulse Response (FIR) Alters play an important role in the design of practical 

discrete-time systems. At the heart of a FIR filter lies the multiplication function, which 

introduces the coefficients of the filter in the design. Each filter tap has its own multiplier, 

which gives the product of the input data with the coefficient. When implementing a FIR 

filter on an FPGA, the multiplication function imposes a bottleneck on the speed, 

performance and area requirements of the design, therefore the designer should focus on 

enhancing the performance of these multipliers and hence of the whole design. 

Multiplication techniques include Shift-and-Add, Adder Tree, Logical Tree, multiplication 

by a power-of-two, and constant coefficient multiplier using Look-Up-Tables (LUT). The 

last technique is the key to high performance in FIR filters with fixed coefficients. 

FIR filters are very useful in DSP applications because they are inherently stable 

and can be designed to exhibit linear phase characteristics.. The general Direct Form 

structure of an FIR filter is shown in Figure 5.1. 

Figure 5.1 - Direct Form structure of an FIR filter 

The algorithmic form of the Direct Form FIR filter is given by: 

y(n) = hox(n) + hix(n-l) + h2x(n-2) + + h„.ix(n-m) 
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For linear phase response of the filter, the impulse response must satisfy the symmetry 

condition: 

h[M-n] = h[n]   for n=0,l,2 M 

The general Direct Form structure exhibits excessive redundant hardware and poor timing 

characteristics when implemented in hardware. An alternative inverted structure 

implementation is shown in Figure 5.2. 

In the inverse structure, the data samples are applied to all the tap multipliers at the 

same time. Processing of the data samples is done in parallel and hence the overall timing 

performance is stabilized. Also, by exploiting the symmetric nature of the coefficients, we 

can reduce the number of coefficient multipliers needed by one half. Moreover, if we use 

Look-Up-Tables instead of regular multipliers, the time delay incorporated in the 

multiplication function is dramatically reduced. Each Look-Up-Table in each Tap contains 

all the possible products obtained when we multiply the specific tap coefficient with the 

incoming data. Therefore, the data bits are applied on the address input of the LUT (which 

is basically a ROM) and the corresponding "data * coefficient" product is obtained 

automatically on the output of the LUT 
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Figure 5.2 - The Block Diagram of Inverse FIR Filter Structure 

An efficient FIR filter architecture suitable for FPGAs, is implemented using a 

locally designed CAD tool. The filter architecture uses coefficients that can be expressed 
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in the form of a sum or difference of two terms, both of which are powers of two. 

Multiplication in binary arithmetic by a power of two is simply a shift operation. 

Implementation of algorithms with multiplication may be simplified by using a limited 

number of power-of-two terms, thus decreasing the number of shift and add operations 

required. The FIR filter structure assumed by the FIR CAD tool is the inverted form. 

To obtain good performance a small number of power-of-two terms are used in 

approximating each coefficient value of the filter and hence an optimization technique is 

carefully selected to derive the coefficient values. 

5.1.1 Low Pass Filter 

To design a low pass filter, the coefficients of the filter are obtained using the Filter Design 

System (FDS) feature of the Signal Processing Worksystem (SPW). The frequency 

specification is used to obtain the coefficients for implementing the filter. 

The low pass filter design in this example consists of 11 taps, each represented by 

10 bits. The frequency specification of the filter requires a passband cutoff frequency of 

O.lFs (where Fs is the sampling frequency) at 3dB attenuation and a stopband cutoff 

frequency of 0.15Fsat 18dB attenuation. The values of the taps are obtained using FDS. 

These coefficient values are used to develop a simulation model in the SPW Hardware 

Design System (HDS). The simulation results are helpful in validating both theoretical and 

implementation results. The simulation model consists of taps, adders and delay elements. 

The taps are implemented using the shift and add method in order to emulate the function 

of the FIR CAD tool in which multiplication of the samples are implemented by the same 

method. 

Each tap is implemented using the shift block, adders or subtracters provided in 

HDS. The requirement is that the tap values be expressed as the sum of two, power-of-two 

terms. The required shift is provided as a parameter to the shift block. The low pass filter 

implementation is accomplished using the FIR CAD filter tool. The tool takes the 

coefficients provided from FDS and the number of bits required to represent them. The tool 

uses the number of coefficients, and the number of bits required in order to represent the 

coefficients and their values as input to a XNF (Xilinx Netlist File) file and a HDL 
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(Hardware Description Language) file. The XNF is then used to provide the bit file 

required to configure the FPGA according to the design requirements. Before generating 

the bit file, the HDL file is used to perform a check of the logic circuitry. Since the input 

required for testing the HDL file is the sampled input signal, the filter model is tested using 

SPW in the simulation mode. 

As previously mentioned, the CAD tool takes coefficients which are expressed as a 

sum of powers of two. The reason for expressing the coefficients in powers of two is that 

the hardware implementation for multiplication is implemented by a shift and add 

operation on the input samples. Therefore, we are able to accommodate more useful logic 

on the FPGA and can therefore implement filters with a larger number of taps. 

After the logic circuitry is tested using the HDL file and the bit file for the Low 

Pass filter is obtained, the design is implemented on the Aptix MP3 board. To implement 

the design on the board we need a top level netlist file and a clock which drives the FPGAs 

on the board. Also, an essential part of the implementation is the input/output FPGA which 

is used to route data to and from the board in order to provide signals to the filter. The other 

component on the board is a Xilinx FPGA, on to which the low pass filter design is 

downloaded. 

The top level netlist file needed to implement the design is a file showing 

interconnections of the components. This is an input file to the Aptix MP3 software 

(AXESS). The AXESS software uses the top level netlist file to configure FPIC devices on 

the MP3 board according to the required interconnections between the components. After 

configuring the FPIC devices, the bit files for configuring the I/O FPGA and FPGA on 

which the low pass filter is implemented are downloaded. The I/O FPGA is used to buffer 

the input signals and route them to the target FPGA containing the low pass filter. The 

logic implemented on the I/O FPGA is simple buffering. The XLS (Xilinx Logic 

Synthesizer) is used to implement the logic. 

The design of the low pass filter is tested using sampling frequencies of 1 MHz and 

5 MHz. The results obtained from the implementation are compared with the simulation 

and theoretical results. A sine wave of varying frequency is used to test the low pass filter. 

According to theory, any frequency within O.lFs, is reconstructed by the filter, but 

frequencies at and beyond stopband are by reduced by at least 18dB. The Figure 5.3 
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illustrates the theoretical result of low pass filtering. Figure 5.4 compares the magnitude 

response of the implementation with the theoretical response obtained from MATLAB. 
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5.1.2 High Pass Filter 

Design of the high pass filter is accomplished in the Hardware Design System (HDS) of 

SPW. The filter has the following frequency specifications: the stop band cutoff frequency 

is O.OlF&with an attenuation of 13dB; while the pass band cutoff frequency is 0.05Fswith 

an attenuation of 3dB. With the help of the Filter Design System (FDS), the values of the 

coefficients are obtained. The number of taps needed to obtain the required response is 11. 

The coefficients that are obtained are used to design an inverted form FIR filter. 

The architecture of the filter model is the same as in the FIR CAD tool, but the coefficients 

that are obtained are not rounded to the nearest integer. Rather, the coefficients used to 

implement the filter are in fractional form. To implement a multiplication of input samples 

with coefficients, the shift and add method is used. Since the coefficients are represented 

as fractions, we require the use of a shift block that performs a right shift of the samples. 

The filter is designed by making use of the shift, adder, subtracter and flip-flop blocks. A 

simulation model for the filter is developed and the model is tested using a sine wave of 

varying frequency as the input. The hardware description for the design is obtained from 

the SPW-VHDL link. The link generates VHDL code for the filter model developed in 

HDS. The VHDL description of the design is used by the synthesis tool to generate a netlist 

of the filter which is later used by the Xilnx FPGA software to provide the configuration 

file. The implementation of the filter is accomplished using the Aptix MP3 system 

emulator. The filter is implemented on a Xilinx 4013PQ208-4 FPGA. The design 

consumes 322 logic blocks (CLBs) and can run at 10 MHz clock frequency. Table 5.1 

gives the number of coefficients required to design the high pass filter, along with the 

values of these coefficients. The coefficients obtained are expressed in the form of sum or 

difference of two-power two terms. 

The number of CLBs required to implement each weight is also provided. The 

fixed point shift blocks are used to express the coefficients. Figure 5.5 shows a comparison 

between the theoretical magnitude response and the response obtained from 

implementation of the filter on a Xilinx 4000 series FPGA. 
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TABLE 5.1 - HIGH PASS FILTER DESIGN PARAMETERS 

Weight 

number 

Value of 

the weights 

Representation 

of the weights 

Number of 

CLBs required 

WO, WIO -0.2185 -2"z + X3 25 

Wl, W9 -0.046875 -2T 45 

W2.W8 -0.0625 -2- 25 

W3.W7 -0.0625 -2- 25 

W4.W6 -0.0625 -2- 25 

W5 1 2 35 
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Figure 5.5 - Comparison of Magnitude Response of High Pass Filter 

5.1.3 Band Pass Filter 

This section describes the design of a band pass filter. The band pass filter is developed 

using a concatenated high and low pass filter designed in the previous sections. The band 
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pass filter is designed to have a normalized bandpass from 0.05Fs to O.lFs within 3 dB 

attenuation. The out of band attenuation is 15 dB. 

The coefficients of the filter are obtained from the Filter Design System (FDS) of 

SPW, and the coefficients are expressed as a sum of power-of-two terms. The coefficients 

obtained and their representations in power-of-two terms are given in Table 5.2. The block 

diagram of the band pass filter developed by cascading the high pass and low pass filter is 

shown in Figure 5.6. The I/O FPGA in the design is used for routing the signals to the 

filters implemented on FPGA2 and FPGA3. The I/O FPGA is also used to convert the 

offset data generated from the A/D into a two's complement representation since the digital 

FIR filters are designed for this. The high pass filter is implemented on FPGA2 as shown 

in the figure and the low pass filter is on FPGA3. Both the filters have 11 taps and operate 

at a precision of 10 bits. 

TABLE 5.2 - COEFFICIENTS FOR LUT MULTIPLICATION 

Weight 

number 

Value of 

the weights 

Representation 

of the weights 

Number of 

CLBs required 

WO, W10 -0.03125 2"J 25 

W1.W9 0.0703125 2^ + 2-' 50 

W2.W8 0.132815 T' + T' 50 

W3,W7 0.21875 T*-T 25 

W4.W6 0.234375 T1, T" 30 

W5 0.28125 2"" + 2~J 25 

Figure 5.7 compares the theoretical magnitude response of the band-pass to the response 

observed in the implementation. 
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5.1.4 Box Car Filter 

The Box Car filter is a simple FIR filter in which the coefficients are all unity. The design 

consists of a direct form FIR structure with twenty five taps. The filter block diagram is 

shown below. The design consists of twenty four delay elements, 25 taps and the width of 

each delay element is 10 bits wide. The design also uses 11 bit adders in order to add the 

delayed samples. The frequency response of the filter has 30dB attenuation in magnitude 

at multiples of 0.04Fs. 

The filter is designed in HDS and simulated in SPW using square wave and sine 

wave inputs. The filter is implemented on the FPGAs and the results obtained are very 

similar to that obtained when the system is simulated. The design requires 379 logic blocks 

(CLBs) on a Xilinx 4013PQ208-4 FPGA and runs at a speed of nearly 20MHz. Figure 5.9 

gives a comparison of the theoretical frequency response with the measure response. 
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5.2 Twelve Tap FIR Filter using LUT Techniques 

This section describes the design of a Low Pass 12-tap FIR filter using constant coefficient 

multipliers using Look Up Table techniques and implemented on a Xilinx 4013 FPGA 

using the Aptix Mp3 prototyping board.. 

5.2.1 Design using SPW 

The SPW tool provides the means for designing the system schematically and for verifying 

and simulating the design. SPW is a powerful block oriented software tool suitable for 

designing any kind of DSP system. The Filter Design System (FDS), which is a part of 

SPW, was used to obtain the filter's coefficients. First, the filter's frequency characteristics 

(Low Pass, cutoff frequency etc) were given as input to FDS, which in turn calculates the 

coefficients and the number of taps needed to meet the desired specifications. The Block 
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Design Editor (BDE), which is another subsystem tool of SPW, was used to design the 

filter schematically using standard DSP blocks like adders, multipliers, delay elements etc. 

All these blocks are located in the Hardware Design System (HDS) library of SPW, 

which allows the use of fixed-point arithmetic in the design. The advantage of using fixed- 

point arithmetic is that we can accurately model the real behavior of the digital system 

because we don't need to deal with loss of precision when using floating point arithmetic in 

a bit-limited digital system. After the system is designed schematically, the Signal 

Calculator System of SPW is invoked to simulate the operation of the design. The Signal 

Calculator is capable also of generating fixed-point signals which can be applied to the 

design and verify its real performance. 

The FIR filter described in this report has the following characteristics: 

Type: Low Pass FIR 

Tap length: 12 

Cutoff frequency: fc=0.1Fs (Fs = sampling frequency) 

Stooband edge: 0.13Fs 

Stopband Attenuation: 30 dB 

Filter Method: Equiripple/Low Pass 

Input Data width: 8 bits 

Output Data width: 12 bits 

Coefficients: 8 bits 

Using the Filter Design System (FDS), which is a part of the SPW design tool, the 

coefficients of the filter were obtained (in Double precision format): 

bo = bn = 0.040473 

bi= bio = 0.075372 

b2 = b9 = 0.11826 

b3=b8 = 0.16903 

b4 = b7 = 0.20653 

b5 = b6 = 0.22994 
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Figure 5.10 below illustrates the block diagram of the design. As shown, the design is 

implemented as a parallel inverse structure and only 6 Look-Up-Table (LUT) blocks are 

used because the 12 coefficients are symmetric. 
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Figure 5.10 - Block diagram of the FIR Filter 

As discussed before, the LUT blocks are used instead of regular multipliers. The internal 

structure of each LUT block is shown in Figure 5.11 below. 
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Figure 5.11- Internal structure of LUT 

As shown in Figure 5.11 above, the incoming 8-bit data is split into two segments of 4-bits 

each. Each 4-bit segment is used to address a ROM Look-Up-Table. So, each LUT block 

shown in Figure 5.10 it actually contains two ROM LUTs. We could have had only one 
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ROM LUT and apply all the eight bits of the data on it, but this would be space consuming 

on the FPGA because it would need a ROM with 28 = 256 memory locations. By splitting 

the data in two, each ROM has now 24 = 16 memory locations. 

The upper (Most Significant) LUT contains all the partial products of the 8-bit 

coefficient times the most significant 4-bits of the data (i.e., 16 partial products). Similarly, 

the lower (least significant) LUT contains all the possible partial products of the 8-bit 

coefficient times the least significant 4-bits of the data. Therefore, at the output of each 

LUT we have a 12 bit partial product (4bits data + 8bits coefficient). Each 12 bit partial 

product is appropriately zero padded and then Summed to produce the final product at the 

output of the Tap. 

5.2.2 Filter Performance 

The design was implemented on a Xilinx 4013 10 FPGA on the Aptix Mp3 prototyping 

board. Using the Synopsys and Xilinx tools, the FPGA area used and the max time delay of 

the filter were obtained as shown on Table 5.3 below. 

TABLE 5.3 - AREA AND TIMING PERFORMANCE 

Total number of CLBs used 302 

% space of 4013 FPGA used 52% 

Max data arrival time (=max delay) 51.65 sec 

Max filter clock speed 20 MHz 

Table 5.4 below shows a comparison of the filter described in this report with two other 

filters designed before. 

As shown in the tables, the LUT based FIR filter has much better speed 

performance compared with the two other filters which use regular multipliers in the 

design. Even the 8-tap filter, which uses much less space than the 12-tap LUT based filter, 

has bigger time delay in the Data path compared with the 12-tap LUT based design. 
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TABLE 5.4 - COMPARISON OF AREA AND TIMING PERFORMANCE OF 3 FILTER DESIGNS 

Filter Type Total # of CLB's Max Data Delay Max filter clock 
FIR  8-tap with regular 

multipliers 
140 (24%) 87.8 nsec 11.4 MHz 

FIR 12-tap with regular 

multipliers 
329(57%) 130.36 nsec 7.5 MHz 

FIR12-tap with LUT 

constant coefficient 

multipliers 

302(52%) 51.65 nsec 20 MHz 

Figure 5.12 below shows the theoretical frequency response of the filter obtained 

using Double Precision arithmetic for the coefficients. On the other hand, Figure 5.13 

illustrates the experimental frequency response with fixed point coefficients. From Figure 

5.12 we observe that there is a steep roll-off at the cut off frequency (O.lFs). At this cut off 

point we can see that the magnitude of the response falls by -3dB from the maximum. This 

graph was obtained using Double Precision arithmetic for the coefficients which means that 

it gives us the desired frequency response with the characteristics given from the Filter 

Design System tool. In Figure 5.13 however, we observe that the real frequency response 

of the filter differs from the desired theoretical response of Figure 5.12. The -3dB point on 

the experimental response occurs at a normalized frequency of 0.08FS. 

|H(Q| 

<dB> -50 r 
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Figure 5.12 - Theoretical Frequency Response 
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Figure 5.13 - Experimental Frequency Response (Fixed-Point Coefficients) 

As shown on Figure 5.13, the -3dB point occurs at around 0.08 Fs and not at O.lFs which is 

the design specification. This happens mainly because of the quantization error introduced 

on the coefficients. According to our design, the coefficients of the filter are represented by 

an 8-bit fixed point binary number. Therefore, when the Double Precision coefficient 

number is represented by the 8-bit fixed point number, there is loss of precision because of 

quantization. This error can change the filter's characteristics, and especially the frequency 

response and cut off point, because the original value of the coefficients changes after 

quantization. For example, coefficient bO has a value of bO = 0.040473. When this number 

is represented with 8-bit fixed point (two's compliment) arithmetic, it becomes 0.0390625 

which is the closest approximation to the original number. 

Other man that, the frequency response of the filter shows good rejection 

characteristics and meets the -30dB rejection in the stopband as specified in the design. 

Compared with filter designs which use regular multipliers, this filter exhibits much better 

speed performance and area occupation on the FPGA. A maximum delay of 51.65 nsec was 

obtained which allows the filter to operate on clock speed of 20 MHz. The frequency 

response of the filter shows good rejection characteristics (-30 dB in the stop band), but due 

to quantization error introduced on the coefficients, the cut off frequency is shifted from 

O.lFs to 0.08Fs. 
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This design occupies 52% of a Xilinx 4013 FPGA, which means that there is still 

enough space on the FPGA to expand the design with more taps. The benefit of this will be 

better frequency response characteristics with a trade off on delay increase since the data 

will have to travel in longer paths. Investigation of this expansion is planned for the future. 

Also, the future work includes investigation of some other design techniques for delay 

reduction (pipelining for example). Other types of filters are also under investigation (High 

Pass, Band Pass etc). 

5.3 PN Sequence Generator 

Binary PN sequence generators are used in Direct Sequence (DS) spread spectrum systems 

as spreading codes. The sequence length before repetition can be extremely long and is 

assumed to be random - i.e., the autocorrelation function is an impulse, or nearly so. A PN 

sequence generator block diagram is shown in Figure 5.14 

The circuit consists primarily of shift registers which are implemented using D type 

flip-flops. The input to the first flip-flop in the shift register is the output of the parity 

generator, which is implemented using exclusive-or gates. The inputs to the parity 

generator are the outputs of the flip-flops. The character of the PN sequence generated 

depends on the number of flip-flops employed and on the selection of which flip-flop 

outputs are connected to the parity generator. The PN sequence generator is designed using 

blocks provided by the Hardware Design System (HDS) and simulated by the simulator 

provided by SPW. For synthesis of the PN sequence generator we require the VHSIC 

Hardware Description Language (VHDL) code. The detail block diagram of the PN 

sequence generator developed in HDS is given in Figure 5.15. 
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The VHDL code generated is used by the synthesis tool to generate the design. In our case 

we used Synopsys as the tool to synthesize the PN sequence generator. The Synopsys 

synthesis tool takes the VHDL file as input and complies the code. The FPGA compiler 

gives a netlist of the design which is used by the Xilinx software' to obtain the 

downloadable bit file. This is the general procedure for synthesis of any design developed 

in HDS and SPW. The advantage is that changes can be made in the top level design and 

synthesized quickly using the synthesis tool. The same procedure as described for the low 

pass filter implementation is used to implement the PN sequence generator on the Aptix 

MP3 board. 

5.4 Design of 8 point FFT 

5.4.1 Description of the Algorithm 

In the radix-2 decimation in frequency (DIF) FFT algorithm, the frequency decimation 

passes through total of M stages, where N = 2M with N/2 2-point DFTs or butterflies per 

stage, giving a total of N/2 * log2 N butterflies per N-point FFT. 

The   RMBX %  frOKffly Element 

Figure 5.16 - The Block Diagram of Radix 2 Butterfly Element 
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In the case of an 8-point DFT implemented using the radix-2 DBF FFT algorithm, 

the input samples are processed through three stages. Four butterflies are required per 

stage, giving a total of twelve butterflies in the radix-2 implementation. Each butterfly is a 

2-point DFT of the form depicted in the Figure 5.16 . The inputs A and B are the inputs to 

the radix-2 DEF FFT butterfly. Multiplication with the twiddle factor W is shown in the 

Figure 5.16 . The outputs of the radix 2 element are X and Y expressed in terms of inputs 

A, B and the twiddle factor W. 

5.4.2 Details of Implementation 

The 8 point FFT is designed using HDS. The design uses the shift and add technique for 

multiplication of the filter coefficients with the signal samples. The coefficients that are 

used in the design are rounded so they can be expressed as the sum of two, power-of-two 

terms. The design makes use of a radix-2 algorithm which includes a standard butterfly 

element and necessary weights. The block diagram of the eight point FFT is shown in 

Figure 5.17. 

The block diagram gives the overview of the 8 point FFT system. The design makes 

use of two FPGAs to implement the following two functions: FPGA1 is used for buffering 

the incoming signal and FPGA2 is the 8 point FFT processor which computes the FFT of 

the samples provided by the input buffer stage. The detailed implementation of the 8 point 

processor is shown in Figure 5.18. The figure makes use of the radix 2 DEF algorithm to 

compute the 8 point FFT. 

The element node in the Figure 5.18 is the radix 2 butterfly element except that the outputs 

of the node element are weighed by the twiddle factors. The multiplication with twiddle 

factor is implemented using the add and shift method by expressing the twiddle factor in 

terms of two power-two terms. The block diagram of the node element implemented is 

shown in Figure 5.19: The requirement is that the 8 point FFT be capable of processing real 

time data, hence it is necessary to buffer the incoming data bits. To buffer the input data it 

is necessary to latch the incoming serial data which requires us to demultiplex the data and 

latch, so that the data is available for processing. 
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The block diagram of the buffering stage, which buffers the incoming real time A/D 

converted signal is shown in Figure 5.20. To implement the buffering stage we need around 

250 CLBs on the FPGA. The design of an 8 point FFT requires more than 350 CLBs; 

therefore, both the buffering stage and 8 point FFT cannot be implemented on a single 

FPGA, hence we require two FPGAs to implement both of them. 
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Figure 5.19 - The Block Diagram of Node element used in 8 point FFT 

To implement the buffer stage, VHDL code is compiled and simulated in order to verify 

the design. The VHDL code is used as an input to the Synopsys tool to synthesize the logic. 

The 8 point FFT designed in HDS follows a procedure similar to the PN sequence 

generator. The model of the 8 point FFT developed in HDS and the VHDL code generated 

by the VHDL link of SPW (HDS) is used for synthesis. The synthesis is accomplished 

using the Synopsys FPGA compiler which provides a netlist file which is used by the 

Xilinx Synopsys libraries to provide the downloadable bit file which can be used to 

implement the FFT on the Xilinx FPGA. 
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Figure 5.20 - The Block Diagram of Buffering Stage used in 8 point FFT 

5.5 Scalable FFTs 

As the number of points of FFT implementation increases, it requires buffering of 

incoming samples and processing of the stored samples. The buffering suggested in the 

previous section is not practical and requires a memory to store the incoming samples and 

the intermediate samples that are to be processed. 

The implementation can be done in two ways, one method is to make use of the 

memory provided by the FPGA and second way is to use an external memory. For very 

large FFTs it is advisable to use external memory. Both methods of implementation make 

use of the same algorithm except that, the number of points, amount of time and hardware 

required differ. 
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5.5.1 Description of the Algorithm 

The algorithm used to compute the 16 point FFT is based on the radix 4 FFT. The hardware 

requirements for the implementation are memory to store the incoming and processed 

samples, a radix 4 butterfly for processing purposes and a multiplier for performing 

multiplication of twiddle factors with the samples. The multiplication operation is obtained 

by shift and add operations on the samples. 

We make use of just one complex multiplier for multiplying the coefficients and the 

samples. A critical component of the design is the implementation of the control logic for 

synchronizing the memory, radix-4 butterfly element and the multiplier. The radix-4 

algorithm is used when the number of the points of FFT required is a power of 4. In this 

way, the original one dimensional array can be broken down into elementary computations 

of four point DFTs. The systems developed are 16 point and 64 point FFTs. The block 

diagram of a 16 point FFT is shown in Figure 5.21 and can be expressed as a flow diagram 

in a similar manner as the radix-2 flow diagram. 
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5.5.2 General Overview of the System 

This section gives the details of how the algorithm is implemented. The block diagram of 

the design is shown in Figure 5.22. The detailed block diagram shows how the different 

hardware components are connected. The input samples from the A/D board are interfaced 

to the MP3 system emulator and are routed with the help of the I/O FPGA to the radix four 

butterfly element. The control logic is implemented in the I/O FPGA which generates the 

control signals for the memory, the butterfly element and the complex multiplier. 
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Figure 5.22 - The Block Diagram of the System 

The MP3 board, as discussed earlier, is a field programmable circuit board which is 

used to prototype complex digital systems. The programmable interconnect components on 

the board provide the programming capability of the board. ASICs, FPGAs and other 

components can be plugged into the board. The board has a diagnostic plug interface to 

which diagnostic devices are connected. The hardware components required to implement 

the FFT algorithm are SRAM, ROM and FPGAs. 

The radix-4 butterfly element is a four point DFT implemented on the FPGA. The 

complex multiplier, which is also implemented on a FPGA, operates on complex inputs and 
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coefficients and gives a complex output signal. The control signals required to synchronize 

all of the interconnections between the hardware components are implemented on an I/O 

FPGA. The advantage of putting the butterfly, complex multiplier and control unit on a 

FPGA is that the design can be changed. The details of implementation of the control 

logic, radix 4 butterfly and complex multiplier are discussed in the following sections. 

5*5.3 Control Logic Design 

Control logic is used to synchronize various components of the design. The control logic 

generates control signals for the whole design. The main control signals generated by the 

unit are those used to enable read and write address counters which provide addresses to 

perform memory read and write operations. 

The control unit enables all the read and write counters at appropriate times. Three 

read and two write counters are required for the entire computation of 16 point FFT. The 

counters are multiplexed to form a single bus, which is used as the address lines of a 

second port for the memory. The Figure 5.23 shows various blocks of the control logic 

unit. 

The data buffer unit serves the purpose of latching the incoming data and sending it 

to the data bus of port one of the memory. The memory control unit generates the read and 

write addresses for both ports of the memory along with the port enable and read/write 

enable signals. The memory control unit generates control signals for other parts of the 

design such as the ROM control unit, Coeff buffer, input data buffer and the buffer used to 

latch data read from memory. The ROM control unit generates the addresses for the ROM 

along with the output enable. The ROM unit is used for storing coefficients and the 

coefficients are accessed by the address generated by the ROM control unit. The Coeff 

buffer is used to store the real and imaginary parts of the coefficients and route them to the 
A 

complex multiplier. 

The memory control signals buffer is used to buffer all the memory control signals 

along with the addresses. The buffering is done in order to avoid interfacing problems 

between two chips. The two chips are the FPGA, which generates the control signals and 

addresses, and the SRAM. The data read from memory is 8 bits wide and inputs to the 
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radix 4 element are four samples, each 16 bits wide. Therefore, the data read from the 

memory needs to be buffered in order to input it to the radix-4 butterfly element. In the 

following section the memory control unit is discussed in detail. 
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Figure 5.23 - Block diagram of Control Logic Unit 

5.5.4 Memory Control Unit 

The memory control unit is the main part of the control logic . The purpose of the unit is to 

generate control signals and addresses for the design. The unit includes the read and write 

counters to generate the addresses to access the memory. Figure 5.24 gives details of the 

memory control unit. 

In Figure 5.24 the read counters and the write counters generate read/write 

addresses to access the second port of the memory. The outputs of these counters are 

multiplexed using a 5 to 1 multiplexer. The logic block takes the outputs of the read/write 

counters to generate memory control signals and enable signals which are used to enable 

the counters. The write address block in the figure generates write addresses for port one of 

the memory chip. A detailed explanation of each block is given in the sections to follow. 
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Figure 5.24 - Diagram of memory control logic unit 

5.5.4.1 Write Address Counters 

This section describes how the write address is generated for storing the incoming samples. 

Since the design is required to store 16 samples, the write address counter is a modulo 16 

counter. The clock required to run this counter is thirty two times slower than the clock 

required for processing the stored data. To eliminate the problem of clock skew, which 

occurs when more than two different clocks are used, we derive the slower clock from the 

faster clock by making use of a divide by five counter. Since a dual port SRAM is to store 

the incoming samples, one of the ports of the memory is used for writing the data samples 

obtained from the A/D. Writing data into the memory requires a port enable signal, address 

bus and write signal. The write address, as mentioned earlier, is a simple modulo 16 

counter and the data is written to memory on the rising edge. Hence the write signal for 

port 1 is obtained from inverting the clock used to run its address counter. 

The speed of the clock used for generating the write address is determined by 

calculating the number of clock cycles required for computing the 16 point FFT. The write 

address is generated continuously to store samples coming at a constant rate. Hence one 
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port of the memory is permanently used for writing input data. Since the 16 point FFT of a 

signal requires writing the computed data twice into memory we require two more sets of 

write addresses. These address lines are used to access the second port of the memory. 

The write is executed on the rising edge of the signal, which is obtained by inverting the 

clock used for generating the write addresses. This clock signal is obtained using a modulo 

two counter clocked by the system clock. Table 5.5 gives the number of write counters 

used for designing a 16 point FFT, along with the port accessed, the clock required to 

generate address counter, the range of the addresses accessed by the counters and the time 

for which they are enabled. In Table 5.5 Cntrl is a counter that generates the address for 

writing the data samples obtained from the A/D into the memory. These addresses access 

only port one of the memory and write into the memory from address 0 to F in the 

sequential order. The Cntrl is always enabled as it has to write the data coming from the 

A/D. 

TABLE 5.5 - DESIGN OF THE 16-POINT tti 

Write counter 
number 

Port number 
accessed 

Clock speed for 
generating addresses 

Addresses 
accessed 

Enable time 
for write 

Cntrl 1 sys-clk/32 0 -F(hexO always 

Cntr2 2 sys-clk/2 10 - 2F (hex) certain time 

Cntr3 3 sys-clk/2 10 - 2F (hex) certain time 

The write counter Cntr2 is used to write back the computed data during the first stage of 

processing of the data samples. The range of addresses accessed is from 10 - 2F (hex). The 

final write counter Cntr3 generates an address to write back the data that is computed after 

stage two. Cntr3 also accesses addresses from 10 - 2F (hex), and both Cntr2 and Cntr3 

generate addresses that access the second port of the memory. The difference in the two 

counters are the times for which they are enabled and the order in which they count. 
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5.5.4.2 Read Address Counters 
The addresses for the memory read are provided by the read counters. There are three read 

counters to generate a different set of addresses at different times. These read counters are 

enabled at different times to count and generate the required address lines. According to 

the algorithm, one read operation from the memory is followed by the processing of the 

sample from memory and then writing back of the processed sample. Since we are making 

use of the radix-4 butterfly element, we read four memory locations consecutively. The 

purpose of the read counters is to generate addressees for these memory locations in the 

correct order. The number of read counters required for a 16 point FFT computation are 

three. The first read counter increments such that the sequence of the count generates 

addresses to read from Oth, 4th, 8th and 12th memory locations. 

TABLE 5.6 - DESIGN OF THE 16-POINT FFT (CONTD.) 

Write counter 
number 

Port number 
accessed 

Clock speed for 
generating addresses 

Addresses 
accessed 

Enable time 
for write 

Cntrl 2 sys-clk/4 0 -F(hexO 4 

Cntr2 2 sys-clk/4 10-2F(hex) 8 

Cntr3 2 sys-clk/2 10 - 2F (hex) 32 

After the samples are read from memory they are buffered and input to the radix-4 butterfly 

element. The read counters are enabled at appropriate times as mentioned earlier. The first 

read counter is enabled only after the 12th input sample is written into the memory - in fact 

the counter is enabled one cycle after the 12th data sample is written into the memory. 

Four read operations are followed by a DFT computation of four samples read from 

memory, which is followed by the multiplication of the computed samples with the 

appropriate coefficients. Table 5.6 provides the number of read counters required, the port 

number accessed by the addresses generated by the counter, the speed of the clock required 

to drive the three synchronous counters in terms of the system clock, the range of addresses 

accessed and the number of read operations performed during a read cycle. The Cntrl 

counter generates the addresses to read from port two of the memory during the first stage 
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of processing. Counter Cntr2 is used to read the intermediate computed data written after 

the first stage of processing; and the final counter Cntr3 is used to read the processed 

samples that are stored after the second stage of processing. Since it is a 16 point FFT there 

are only two stages of processing required and hence the final counter reads the computed 

FFT of the signal. 

5.5.5 Design of Radix 4 Butterfly Element 

The flow diagram of the radix 4 butterfly element is shown in Figure 5.25. The element 

inputs four samples and outputs four samples. The algorithm is as follows: the four input 

samples shown in the figure are multiplied by certain weights and summed to give a single 

output sample. We require four adders to sum the input samples. 

INPUTl --/^r\. 
• 

OUTPUTl 

1NFUT2    .. 

INPUT3^ 

INPUT *££ 

RADIX 4  BUTTERFLY 

42/ 

OUTPUT* 

vrV. OUTPUTS 

ELEMENT FLOW 

OUTPUT* 

DIAGRAM. 

Figure 5.25 - The Flow Diagram of Radix 4 Butterfly Element 

The design is pipelined by using flip flops in the path between the inputs and outputs. This 

helps in increasing the operating clock frequency. The design of the Radix 4 Butterfly 

element is designed using HDS. The SPW tool generates the VHDL code for the butterfly 
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element The code generated is synthesized by the Synopsys FPGA compiler to provide the 

netlist of the design for configuring the FPGA. 

5.5.6 Design of Complex Multiplier 

The block diagram of the complex multiplier is shown in Figure 5.26. The multiplier takes 

the real and imaginary part of the sample as input, along with complex coefficient, which is 

stored in the ROM. The complex multiplier is designed in HDS section of SPW. 

Figure 5.26 - The Block Diagram of Complex Multiplier 

The same procedure described in the previous section is carried out for implementing the 

multiplier on the FPGA. There are two clock cycles available for computing the complex 

multiplication of the inputs and the coefficients. A pipelined architecture is used in the 

data path which helps to increase the operating clock frequency of the multiplier. The 

product of the sample and coefficient provides real and imaginary parts each of which are 8 

bits wide. Since the width of memory bus is only 8 bits, we require two clock cycles to 

write the complex product. The real and imaginary parts are multiplexed using a two to one 
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multiplexer, with the select line provided by a modulo two counter which is clocked four 

times slower than the system clock. The two to one multiplexer, the modulo two counter, 

and the complex multiplier are designed as a single module. The speed of operation of the 

module is determined by the delay involved in designing the complex multiplier. The time 

required to perform the complex multiplication is 105ns. The data path delay in the 

multiplier limits the frequency of operation. Reducing this delay helps in achieving higher 

speeds of operation. 

5.5.7 Read Only Memory Design 

The coefficients used during the computation of the FFT need to be stored since they are 

used repeatedly for processing of the signal samples. The coefficients are stored in a ROM 

since the coefficients do not change during computation of the FFT. The control logic and 

ROM to store the coefficients are designed to target a single FPGA. 

The design of the ROM consists of a look up table of 14 addresses, since there are 

only 7 different coefficients required for computing a 16 point FFT using radix 4 algorithm. 

Access to the table is accomplished with the help of integers and requires a bit vector to 

integer conversion. The diagram showing the design of the 14 x 8 ROM is shown in Figure 

5.27. 

The inputs to the ROM module are the clock, the output enable and four address 

lines. The output of the ROM module is an 8 bit wide coefficient. Two memory locations 

are used to store the 16 bit complex coefficient. The address lines are given to the bit vector 

and decoder section of the module which converts the binary address into integers to access 

the look up table, in which the coefficients are stored. The output section of the ROM 

module consists of a sequential element which is enabled by the input and triggered by-an 

external clock. The coefficient is written to the output data bus only on the rising edge of 

the clock and when the enable signal is high - this helps in interfacing the ROM with the 

control logic unit. 
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Figure 5.27 - The Block Diagram of Read Only Memory 

5.6 Implementation of 64 Point FFT 

The algorithm used here is the same as the one, used for implementing 16 point FFT with a 

few hardware changes. The design uses SRAM, a radix 4 butterfly element, a complex 

multiplier and control logic. The control logic design differs slightly from the previous 

design in that there are more samples to process; requiring changes in the generation of 

read and write addresses. Since a standard memory chip is addressed, care is taken to 

generate appropriate read and write enable. 

Since the design makes use of the same radix-4 butterfly element and complex 

multiplier, the real challenge of the design is to develop the necessary control logic to 

access the memory. A different sized ROM is also required to store the coefficients which 

are different from the coefficients used in the 16 point FFT design. As more computations 

are necessary in the case of the 64 point FFT, the design runs slower than the 16 point FFT. 

Therefore, as the number of points in the FFT computation increases, the time required for 

the computation also increases. The focus of the design is mainly on the control logic unit, 

therefore, the next section describes with the design details of the control logic required to 

integrate SRAM, ROM, radix-4 butterfly element and complex multiplier. 
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5.6.1 Control Unit Design 

The control unit can be broken up into several sub units. One important sub unit is the 

control unit for memory which generates the read and write addresses used to access the 

memory locations of the SRAM. The read and write addresses are 13 bits wide and the 

design requires four phases of read operations and three phases of write operations. 

Counters are designed for generating the read and write addresses for the read and write 

operations respectively. The SRAM used is a dual port memory, which means that write 

and read operations can be done simultaneously but to different memory locations. 

According to the design requirements, the data is received continuously from the A/D, so 

one port of the memory is used exclusively for writing the incoming data. The other port 

of memory is used for reading the buffered input and writing back the intermediate 

computed samples. To do this we multiplex the outputs of the read and write counters to 

obtain a single bus for addressing the second port of the memory. The read counters are 

enabled for reading eight memory locations and are disabled for the time duration of the 

computation and time required for writing the eight intermediate computed samples back 

into memory. In the same manner the write counters are enabled for writing eight samples. 

During the three read and write phases, we carry out the same logic except during the 

fourth read phase, when the FFT is computed, and during which 128 memory locations are 

read. 

For the read operation to be accomplished from the SRAM, we need the read signal 

to be high, the corresponding port enable to be low and the appropriate address required to 

access the memory location. The write operation is slightly different, as the data for a 

specific memory location is written on the rising edge of the write signal, hence care should 

be taken not to violate the setup and hold time requirements of the device. The control unit 

is modeled in VHDL, using behavioral and data flow styles. The code is simulated using 

the Mentor Graphics simulation tool to test the functionality of the control unit. 

ROM address generation is another sub unit function. The ROM holds the 

coefficients which are used as inputs to the complex multiplier along with the outputs of 

the radix-4 butterfly element. The address bus is 6 bits wide and it is generated by the 
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control unit. The unit also generates the chip enable, output enable and read signal for the 

ROM. The coefficients stored are the twiddle factors which are used in the multiplication 

operation with the output of the radix 4 element. 

The buffer control unit is another sub unit which is used to buffer the samples read 

from the memory and send them to the radix-4 butterfly element. Since we can read only 

one sample from memory at a time, and the radix-4 element requires four sample, this unit 

buffers the samples and then send the samples to the butterfly element. 
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Appendix A 

Details of The Design Flow 

This chapter of the appendix gives the details of a simple design to illustrate the design 

flow adopted. 

A.1   Description of The Design 

The first step in the flow is to describe the design using a language or a schematic editor. 

The example code below is for a simple PN sequence generator. The number of delay 

elements used is 4 and hence the length of the codes that can be generated is 24 - 1. 

— Define External Libraries 

LIBRARY IEEE; 

USE IEEE.STD_LOGIC_1164.ALL; 

USE IEEE. STD_LOGIC_ARITH. ALL; 

LIBRARY SYNOPSYS; 

USE SYNOPSYS.ATTRIBUTES.ALL; 
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ENTITY pnseq IS 

PORT( clear,Clock : IN BIT; 

pnout : OUT BIT; 

clkout : OUT BIT); 

END pnseq; 

ARCHITECTURE pn_behav OF pnseq IS 

SIGNAL cnt4,cout,dout : BIT_VECTOR (3 DOWNTO 0); 

SIGNAL ENBl,ENB2 : BIT ; 

BEGIN 

prol : PROCESS(clear,Clock,ENB1) 

BEGIN 

IF(clear='l') THEN 

cnt4 <= -0000"; 

ELSIF(Clock'event AND Clock='l') THEN 

IF(ENBl='l') THEN 

cnt4(0) <= NOT (cnt4(0)); 

cnt4(l) <= cnt4(l) XOR cnt4(0); 

cnt4(2) <= (cnt4(2) XOR (cnt4(l) AND cnt4(0))); 

cnt4(3) <= (cnt4(3) XOR (cnt4(2) AND cnt4(l) AND 

cnt4(0))); 

END IF; 

END IF; 
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END PROCESS prol; 

cout <= cnt4; 

pro2 : PROCESS(cout) 

BEGIN 

ENB1 <= NOT (COUt(O) AND COUt(lj AND 

cout(2) AND cout(3)); 

ENB2 <= (cout(3) AND (NOT cout(2)) 

AND cout(l) AND (NOT cout(O))); 

END PROCESS pro2; 

pro3 : PROCESS(clear,Clock,ENB2) 

BEGIN 

IF(clear='l') THEN 

dout <= "0000"; 

ELSIF(Clock'event AND Clock='l') THEN 

IF(ENB2='l') THEN 

dout <= "1000"; 

ELSIF(ENB2='0') THEN 

dout(0) <= dout(3) XOR dout(2); 

dout(l) <= dout(0) 

dout(2) <= dout(l) 

dout(3) <= dout(2) 

END IF; 

END IF; 
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END PROCESS pro3; 

clkout <= Clock; 

pnout <= dout(3); 

END pn_behav ; 

A.2   Simulation and Synthesis of the design 

The second step in the flow is to simulate the design. If the design is developed using the 

SPW schematic editor, the design is verified in the simulation environment provided by 

SPW. If the design is described using a hardware description language, the design is 

simulated using Synopsys simulation environment. Once the design is verified 

functionally, then it is synthesized using the Synopsys FPGA compiler. Below is the 

script file used for synthesizing the PN sequence generator. 

/* Set the top level module names for the design */ 

TOP = pnseq 

/* set the designer and company name for documentation */ 

designer = "rao" 

company = "ITTC" 
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/* Analyze and Elaborate the design file and specify the 

design format */ 

analyze -format vhdl TOP + ".vhd" 

elaborate TOP 

/*. Set the current design to the top level */ 

current_design TOP 

/* Add pads to all ports , change the default 

slew rate to SLOW */ 

set_port_is_pad {clear,Clock,pnout,clkout} 

uniquify 

insert_pads 

/* set the timing constraints */ 

create_clock Clock -period 50 

/* Compile Design */ 

compile -map_effort med 

/* Save Design report file */ 
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report_fpga > TOP + ".fpga" 

report_timing > TOP + ".timing" 

/* Write out the design to a DB file */ 

write -format db -hierarchy -output TOP + ".db" 

/* Replace CLBs and IOBs with gates */ 

replace_fpga 

/* Set the part type */ 

set_attribute TOP "part" -type string "4013pg208-4" 

/* Save design in the XNF format as <design>.sxnf */ 

write -format xnf -hierarchy -output TOP + ".sxnf" 

/* Exit the compiler */ 

exit 
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A.3   Implementation of the design 

As mentioned earlier, the Aptix MP3 board is used for implementing all the designs 

developed. The Aptix MP3 hardware platform is supported by software to accomplish 

the reprogramming. The input for the software is a top level netlist of the design in a 

standard XNF or SCICARD format. The file below gives the top-level netlist file for the 

PN-sequence generator in the XNF format. 

LCANET,   4 

SYM, OSC, OSC,   =REFDES=CLOCKl,   =PKG_TYPE=DIP4_3 

PIN, CLK, 0,   ioclk,,   =#=1 

PIN, GND, I,   GND, ,   =#=2 

PIN, VCC, I,   VCC,,   =#=3 

PIN, GND, I,   GND,,   =#=4 

END 

SYM,IFIL,4013PQ208-4,=REFDES=FPGAl,FILE=pnseql.xnf, 

=PKG_TYPE=MP_XC_MQ208 

PIN, IRESET, I, buf2pad3 

PIN, IOutData, 0, IOutData 

END 

SYM, QFIL, 4013PQ208-4, =REFDES=FPGA2, FILE=pnseq2 .xnf, 

=PKG_TYPE=MP_XCJMQ2 08 

PIN, QRESET, I, buf2pad3 
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PIN, QOutData, 0, QOutData 

END 

SYM,IOFPGA,4013PG223/=REFDES=IOFPGA/FILE=pnckio.xnf, 

=PKG_TYPE=APMP3_XX110 

PIN, buf2padl, I, IOutData 

PIN, buf2pad2, I, QOutData 

PIN, buf2pad3, 0, buf2pad3 

PIN, ioclk,   I, ioclk 

END 

PWR, 0, GND 

PWR, 1, VCC 

EOF 
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Appendix B 

Details of Design of Control Logic Unit 

B.l   Memory Interface Signals 

This section gives the details of the signals used for interfacing with the standard SRAM 

chip. 

B.l.l   Port 1 address, enable & read/write signals 

As the SRAM used in our case is a dual port, that is there are two ports available for 

reading and writing. The address generated for port one are 0-F(hex). The port is used 

only for writing the incoming data. The enable signal for port 1 is always low, as data 

is coming in continously. The data coming in is to be written into the memory and is 

done on a rising edge. The write signal is obtained from inverting the clock used for 

driving the write address counter that generates address for port 1 of memory. 
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B.1.2   Port 2 address, enable & read/write signals 

The address of second port of memoiy is obtained by multiplexing five address coun- 

ters. The five address counters generate read and write address, that are used access 

data in the memory or write data into the memory. The details of the counters are given 

below : 

• The first read counter reads the data that is stored in the memory for processing 

the data in first stage. The sequece in which the counter counts is as follows, all 

the address are in hex representation: 

00,04,08, OC, 01,05,09,0D, 02,06,0A, OE, 03,07, OB & OF. 

During the first read only four samples are read at a time, hence there are four 

read cycles in which four samples are read each time. 

• The first write counter writes the data that is obtained after the processing through 

first stage. The sequence in which the counter counts is as given below and all 

the address are in hex: 

10,11,18,19,20,21,28,29,12,13,1A, IB, 22,23,2A, 2B, 14,15, 

1C, ID, 24,25,26,2D, 16,17, IE, IF, 26,27,2E & 2F. 

During the write, eight samples are written one after another and there are four 

such write cycles. 

• The second read counter reads data from the memory for processing data in sec- 

ond stage. The address generated by the counter are as follows : 10,11,12,13, 

14,15,16,17,18,19,1A, IB, 1C, ID, IE, IF, 

20,21,22,23,24,25,26,27,28,29,2A, 2B, 2C, 2D, 2E, & 2F. 

In the second read phase eight samples are read one after another for processing. 

They are a total of four read cycles each reading eight samples. 

B-2 



• The write counter generates addresses to write the data processed in the second stage. 

The sequence of counting is identical to the second read count. The sequence is as 

follows: 

10,11,12,13,14,15,16,17,18,19,1A, IB, 1C, ID, IE, IF, 

20,21,22,23,24,25,26,27,28,29,2A, 2B, 2C, 2D, 2E, 2F 

The second write counter writes eight samples in the corresponding locations 

• The final counter is used to read the samples whose DFT has been computed. The 

counter reads 32 memory locations continuously. The sequence in which the counter 

reads the samples is as follows: 

10,11,18,19,20,21,28,29,12,13,1A, IB, 22,23,2A, 2B, 14,15, 

1C, ID, 24,25,26,2D, 16,17, IE, IF, 26,27,2E, 2F 

B.1.3 ROM enable and address signals 

The ROM used to store coefficients consists of 14 memory locations, each 8 bits wide. 

The enable and address lines are used to access the coefficients stored in the ROM. The 

signals are described below: 

• The coefficients stored in memory are written to the output bus on the rising edge 

of the clock. The clock for the ROM is derived from a modulo-2 counter.. 

• The output of the ROM is written to the output when the output enable signal is 

high. 

• The address bus is 4 bits wide and is used to access the look-up table. As 

mentioned earlier, the depth of the look-up table is 14 and the coefficients stored 

in the table are 8 bits wide. 
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