
AFRL-IF-RS-TR-1998-212
Final Technical Report
December 1998

DIGITAL SIGNAL PROCESSING RAPID
PROTOTYPING WITH FIELD PROGRAMMABLE
GATE ARRAYS

University of Kansas

Kambhammettu Nalinimohan, Venkatesh Rao, and Glenn E. Prescott

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE

DTIC QUALITY INSPECTED 3
ROME,NEWYORK 1 QQ90203 064

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-212 has been reviewed and is approved for publication.

,: SLfLcr^k^ APPROVED:
STEPHEN C. TYLER
Project Engineer

^&>~
FOR THE DIRECTOR:

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGC, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
OMB No. 0704-0188

Public reporting burden for this coDwtron of information is estimated to average 1 hour per response, including tha line for reviewing imlructions. searching enisling data sources, gathering and maintaining the data needed, and completing and renewing
the collection of information. Sand cc^nts regarding this burden estimate or any other aspect ol this collection of information, including suggestions for reducing this burden, to Washington Headguarters Services. Directorate for Information
0perationsandReports,1215Jeff«sonDavisHighwav.Suite1204,Arlington,VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington ÜC20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1998
3. REPORT TYPE AND DATES COVERED

Final
4. TITLE AND SUBTITLE

DIGITAL SIGNAL PROCESSING RAPID PROTOTYPING WITH FIELD
PROGRAMMABLE GATE ARRAYS

Feb 95 - Feb 98

6. AUTHOR(S)

Kambhammettu Nalinimohan, Venkatesh Rao, and Glenn E. Prescott

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

University of Kansas
Information and Telecommunication Technology Center
Lawrence KA 66045

9. SP0NS0RINGIM0NIT0RING AGENCY NAME(S) ANO ADDRESS(ES)

AFRL/IFGC
525 Brooks Road
Rome NY 13441-4505

11. SUPPLEMENTARY NOTES

S. FUNDING NUMBERS

C - F30602-95-C-0214
PE -62702F
PR -4519
TA -42
WU-92

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-212

AFRL Project Engineer: Stephen C. Tyler/IFGC/(315) 330-3618

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

N/A

13. ABSTRACT /Maximum 200 words)

Until recently radio transmitters and receivers were almost exclusively implemented with analog electronic components.
However, a new approach is now becoming popular - one that employs digital electronics to implement most of the analog
signal processing functions in the radio. The evolution in radio system design is driven by the ever increasing speed and
decreasing cost of microprocessors and high performance analog-to-digital (ADC) and digital-to-analog (DAC) converters.
It is no longer uncommon to sample a received signal at the intermediate frequency (IF) stage and process the signal with
numerical algorithms using specialized digital signal processing (DSP) hardware. The DSP hardware performs a variety of
operations on the signal including downconversion, demodulation, and filtering; all of which are inherently continuous-time
(i.e., analog) processes.

Modern field programmable gate arrays can implement functions beyond the capabilities of today's DSP micro-
processors. In fact, they have the potential to provide performance increases of an order of magnitude or better over
traditional DSP microprocessors, but with the same flexibility. These devices can provide the programmability of software,
the high speed of hardware and can be reconfigured in-circuit with no physical change to the hardware. In fact, FPGAs are
really "soft" hardware, in that they are a good compromise between flexible all-software approaches which unfortunately
limit throughput, and custom hardware implementations, which are more expensive and inflexible. FPGAs offer a powerful
approach — an architecture tailored to the specific application.
14. SUBJECT TERMS

Digital Signal Processing, Field Programmable Gate Arrays, Communications, Spread
Spectrum
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

108
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89] (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro. WHS/DIOR, Oct 94

Contents

1 Introduction 1-1

1.1 DSP: Capabilities and Requirements 1-1

1.2 Military Radio Signal Processing Requirements 1-2

1.3 Advantages of Specialized Digital Hardware 1-3

1.4 Field Programmable Gate Arrays 1-4

1.5 DSP Microprocessors 1-5

2 Software Radio . 2-1

2.1 A Software Radio Architecture 2-2

2.2 Software Radio Processing Requirements 2-3

2.3 DSP Hardware Alternatives 2-5

2.4 A DSP Testbed for Military Tactical Radio 2-6

2.4.1 Proposed Testbed Configuration . 2-7

2.4.2 A Rapid Prototyping Facility 2-8

3 Field Programmable Gate Arrays 3-1

3.1 Programmable Logic Technology 3-1

3.2 Practical Consideration in the Use of FPGAs . 3-3

3.3 Binary Arithmetic Techniques for FPGAs 3-4

3.3.1 Conventional Arithmetic 3-7

3.3.2 Serial Distributed Arithmetic (SDA) 3-8

3.3.3 Parallel Distributed Arithmetic (PDA) 3-11

3.3.4 Constant Coefficient Multiplier using LUT . 3-12

3.4 Using FPGAs for DSP Applications 3-15

3.4.1 Pipelined Architectures 3-16

3.4.2 Design of Data Paths 3-17

3.4.3 Routing Delays 3-17

3.5 FPGA Applications in Software Radio 3-18

4 Rapid Prototyping Concepts 4-1

4.1 Design Concepts 4-2

4.1.1 Functional Description using SPW and VHDL 4-3

4.1.2 Simulation and Synthesis 4-4

4.1.3 Implementation 4-6

4.1.4 Verification 4-7

4.2 Prototyping 4-7

5 Implementation Case Studies 5-1

5.1 FIR Filter Design with CAD Tool 5-2

5.1.1 LowPassFilter 5-4

5.1.2 High Pass Filter .' 5-7

5.1.3 Band Pass Filter -. . 5-8

5.H4 BoxCarFüter 5-11

5.2 Twelve Tap FIR Filter using LUT Techniques 5-12

Ü

5.2.1 Design using SPW 5-12

5.2.2 Filter Performance 5-15

5.3 PN Sequence Generator 5-18

5.4 Design of 8-PointFFT 5-20

5.4.1 Description of Algorithm 5-20

5.4.2 Details of Implementation 5-21

5.5 ScalableFFTs 5-24

5.5.1 Description of the Algorithm 5-25

5.5.2 General Overview of the System ° 5-26

5.5.3 Control Logic Design 5-27

5.5.4 Memory Control Unit 5-28

5.5.4.1 Write Address Counters 5-29

5.5.4.2 Read Address Counters 5-31

5.5.5 Design ofRadix-4 Butterfly Element 5-32

5.5.6 Design of Complex Multiplier 5-33

5.5.7 ROMDesign 5-34

5.6 Implementation of a 64-PointFFT 5-35

5.6.1 Control Unit Design 5-36

Appendix A: Details of the Design Flow A-l

Appendix B: Details of Design of Control Logic Unit B-l

Appendix C: Bibliography C-l

in

List of Tables

3.1 Contents of 16-Word LUT • • • 3-11

3.2 Multiplication Table 3-13

3.3 Fully Parallel 8-Bit FIR Filter 3-18

3.4 Silicon Resource Comparison 3-19

3.5 Xilinx 4000 Series FPGA Multipliers • • 3-19

5.1 High Pass Filter Design Parameters • • 5-8

5.2 Coefficients for LUT Multiplication 5-9

5.3 Area and Timing Performance Results . 5-15

5.4 Comparison of Area and Time Performance 5-16

5.5 Design of the 16-PointFFT 5-30

5.6 Design of the 16-Point FFT (Cont.) 5-31

iv

List of Figures

2.1 Software Radio System 2-3

2.2 Tactical Radio Testbed 2-9

2.3 Rapid Prototyping Configuration 2-10

3.1 Configurable Logic Block of the X3000FPGA 3-2

3.2 Block Diagram of Basic Multiplier Alternatives . 3-5

3.3 Four Product MAC Unit with Conventional Arithmetic 3-8

3.4 Four Product MAC using SDA 3-9

3.5 A LUT Replaces the AND Gates & Adders in SDA 3-10

3.6 2-Bit Parallel Distributed Arithmetic 3-12

3.7 Constant Coefficient Multiplier using LUT 3-14

3.8 The Pipelining Concept 3-16

4.1 Block Diagram of the Rapid Prototyping Flow .4-3

4.2 Block Diagram of Simulation Flow 4-4

4.3 Block Diagram of Synthesis Procedure 4-5

5.1 Direct Form Structure of an FIR Filter 5-2

5.2 The Block Diagram of Inverse FIR Filter Structure . 5-3

5.3 Theoretical Results of LPF Algorithm 5-6

5.4 Comparison of Magnitude Response of LPF 5-6

5.5 Comparison of Magnitude Response of HPF 5-8

5.6 Hie Block Diagram of BPF 5-10

5.7 Comparison of Magnitude Response of BPF 5-10

5.8 Block Diagram of 25-Tap Box Car Filter 5-11

5.9 Comparison of Magnitude Response of Box Car Filter 5-12

5.10 Block Diagram of FIR Filter 5-14

5.11 Internal Structure of LUT 5-14

5.12 Theoretical Frequency Response 5-16

5.13 Experimental Frequency Response 5-17

5.14 Block Diagram of PN Sequence Generator 5-19

5.15 Detail Block Diagram of PN Sequence Generator 5-19

5.16 Block Diagram of Radix-2 Butterfly Element 5-20

5.17 Block Diagram of 8-PointFFT using the Radix-2 Algorithm 5-22

5.18 Detail Block Diagram of 8-Point FFT using Radix-2 Algorithm 5-22

5.19 Block Diagram of Node Element Used in 8-PointFFT . 5-23

5.20 Block Diagram of Buffering Stage used in 8-Point FFT 5-24

5.21 Flow Diagram of 16-Point FFT 5-25

5.22 Block Diagram of the system 5-26

5.23 Block Diagram of Control Logic Unit 5-28

5.24 Memory Control Logic Unit 5-29

5.25 Flow Diagram of Radix-4 Butterfly Element . . 5-32

5.26 Block Diagram of Complex Multiplexer 5-33

5.27 Block Diagram of Read Only Memory 5-35

vi

Chapter 1

Introduction

Until recently radio transmitters and receivers .were almost exclusively implemented

with analog electronic components. However, a new approach is now becoming

popular - one that employs digital electronics to implement most of the analog signal

processing functions in the radio. Ulis evolution in radio system design is driven by

the ever increasing speed and decreasing cost of microprocessors and high

performance analog-to-digital (ADC) and digital-to-anälog (DAC) converters. It is

no longer uncommon to sample a received signal at the intermediate frequency (IF)

stage and process the signal with numerical algorithms using a specialized digital

signal processing (DSP) hardware. The DSP hardware performs a variety of

operations on the signal including downeonversion, demodulation, and filtering; all of

which are inherently continuous-time (i.e., analog) processes.

1.1 DSP: Capabilities and Requirements

The mathematics of digital signal processing provides the framework for the design

of software radio algorithms, while modem high speed digital electronic components

1-1

make real time implementation of these algorithms possible. However, the hardware

currently available to implement DSP algorithms for all stages of the radio system is

still limited in speed, accuracy and flexibility. Initially, digital signal processing was

used only for baseband waveform processing. As digital electronic devices increased

in speed, DSP was soon applied to signal processing functions performed at higher

frequencies - e.g., the final IF stage in a radio receiver. Functions such as IF

bandpass filtering, automatic gain control (AGC), and coherent modulation and

demodulation are typically required at this stage. In the absence of a sufficiently high

speed processing capability, innovative techniques such as sub-sampling are used to

process bandpass signals of small to moderate bandwidth. This has allowed the

boundary between analog and digital processing to be pushed as far up the signal path

towards the antenna as permitted by physical electronic devices. For most types of

moderate data rate communications - on the order of 100 kB/s or less - bandwidth is

not a serious barrier to DSP techniques. However, military radio systems pose a

notable challenge because of the wide bandwidth characteristics of spread spectrum

modulation.

1.2 Military Radio Signal Processing

Military communication systems often require the use of spread spectrum techniques

to provide an antijam (AJ) capability, or some measure of covertness through the use

of low probability of intercept (LPI) waveforms. The result is that extremely wide

bandwidth signals are present at the output stage of the transmitter and the input

stages of the receiver. We know from the Nyquist theorem and fundamental

bandpass sampling techniques that bandpass signals can be sampled at a rate no less

than the bandwidth of the signal; so high frequencies alone do not put a limitation on

DSP processor capability. However, wide bandwidth signals are a challenge for any

type of digital signal processing hardware, and they are especially troublesome for

conventional DSP microprocessors. While conventional DSP microprocessors are

1-2

optimized for real-time data processing, they are nevertheless implemented using the

traditional serial-based architecture - an inherently serial architecture which uses a

single multiplier and executes one instruction at a time. While providing the

advantage of flexibility through programmability, this architecture limits the speed

with which signal samples can be processed. Even modern DSP microprocessors

operating at 40 million instructions per second (MIPS) have a useful bandwidth limit

of less than 500 kHz. This is especially troublesome for military communication

systems which employ AJ and LPI waveforms having typical bandwidths in excess of

10MHz.

1.3 Advantages of Specialized Digital Hardware

When digital signal processing at wide bandwidths is required the radio designer

turns to specialized hardware which can operate at much higher throughputs than is

possible with a DSP microprocessor. These include application specific standard

products (ASSP), application specific integrated circuits (ASIC), and field

programmable gate arrays (FPGA).

Application Specific Standard Products (ASSP) such as FIR filters,

correlators, and FFT processors, permit certain popular DSP algorithms or functions

to be optimized in hardware at the cost of flexibility. Use of ASSPs can significantly

increase the device count and often presents special interface problems which can

lead to further complications. Furthermore, due to a narrow range of applicability,

many ASSPs may not be available in state of the art process technology [1].

When performance is a factor and product volume is high, many designers

turn to ASIC technology. ASIC technology offers the ability to design a custom

architecture that is optimized for a particular application. For example a conventional

DSP microprocessor has only a single multiply-accumulate (MAC) stage (see Section

3), so each filter tap must be executed sequentially. An ASIC implementation of a

DSP algorithm, on the other hand, might have multiple parallel multiply-accumulate

1-3

(MAC) stages. When comparing the performance of the ASIC versus the DSP

microprocessor it becomes apparent that the DSP microprocessor offers slow speed

but maximum flexibility (due to programmability) while the ASIC provides high

speed with minimal flexibility. Between these two extremes lies the field

programmable gate array [2].

1.4 Field Programmable Gate Arrays

Modern field programmable gate arrays can implement functions beyond the

capabilities of today's DSP microprocessors. In fact, they have the potential to

provide performance increases of an order of magnitude or better over traditional

DSP microprocessors, but with the same flexibility [3]. These devices can provide

the programmability of software, the high speed of hardware and can be reconfigured

in-circuit with no physical change to the hardware. In fact, FPGAs are really "soft"

hardware, in that they are a good compromise between flexible all-software

approaches which unfortunately limit throughput, and custom hardware

implementations, which are more expensive and inflexible [4]. FPGAs offer a

powerful approach - an architecture tailored to the specific application. Because the

logic in an FPGA is flexible and amorphous, a DSP function can be mapped directly

to the resources available on the device. Modern FPGAs have sufficient capacity to

fit multiple MACs or algorithms into a single device along with the interface circuitry

required by the application - a single chip solution.

Although FPGAs can out-perform DSP microprocessors under some

circumstances, they are not universally the best choice for processing at every stage

of the software radio. The limitations and advantages of FPGAs compared to those of

the DSP microprocessor are examined further in the sections that follow. At the

conclusion of this report, a suggestion is presented for the use of both the FPGA and

the DSP microprocessor in a software radio testbed.

1-4

1.5 DSP Microprocessors

A modern programmable DSP microprocessor typically provides up to 200 MIPS or

50 MFLOPS. For example, the TMS320C40 has 50 MFLOPS at 25 MIPS with a 50

MHz clock. There are many high performance DSP processors on the market, but

they are not suited to all DSP applications. Their general purpose architecture makes

these DSP processors flexible but they may not be fast enough or cost effective for all

systems. The DSP processor provides flexibility through software instruction

decoding and execution while providing high performance arithmetic components

such as a fast array multiplier and multiple memory banks to increase data

throughput. The performance limit for commercially available DSP processors

currently tops out at about 50 MIPS [6].

Before exploring how DSP functions can be implemented on a variety of

programmable logic devices, a broader definition of digital signal processing is in

order. The term "DSP" applies broadly to discrete-time mathematical processes

executed in real-time. These include functions such as:

• Digital Filtering (FIR and ER)

• Convolution

• Correlation

• Fast Fourier Transforms

Implementation of these functions involves only the basic digital operations of

addition, multiplication and delay/shift as indicated in the equation below:

N-l

E
*=o

y(n)= Y.h(kW-k)

1-5

where x(n) can be interpreted as the input data sequence, and h(k) is the impulse

response sequence of length N, and y(n) is the output. Depending on the data format

and suitable choice of tap coefficients, a number of different functions result:

• Digital Filtering and Convolution - h(k) are the filter coefficients

• Correlation - h(k) refers to another input sequence

• Fourier Transform - h(k) are constants in complex exponential form

Most of these functions require the incoming data to be multiplied or added

with various internal feedback mechanisms to perform the desired mathematical

function. This primitive function which is so common to DSP algorithms is called

the multiply/accumulate (MAC) [3]. The MAC may actually consist of 6 to 12

operations; however, to increase performance, most general-purpose DSP processors

perform a MAC in a single clock cycle or less. Most DSP processors have a fixed-

point MAC while some have a more expensive floating point MAC. Each tap of a

digital filter requires one MAC cycle - for example a 16-tap filter requires 16 MAC

cycles. Because most DSPs only have a single MAC unit, each tap is processed

sequentially, and all taps are processed during a single sample time interval, slowing

overall system performance. Thus a 50 MHz (25 MIPS) DSP processor performs at

less than 2 Msps [1].

The need to process instructions sequentially will always remain a

fundamental performance limitation of microprocessors. Acceleration via dedicated

hardware has long been a solution to this problem. Traditionally, this meant

dedicated hardware in the form of an ASIC, or in some special cases,

multiprocessing. Recently another viable alternative has been introduced - the Field

Programmable Gate Array. The FPGA offers Ihe advantage of fast hardware which

can be reconfigured under software control. The use of FPGAs in DSP applications

is the subject of the next section.

1-6

Chapter 2

Software Radio

The essential concept of software radio is that most of the analog signal processing

operations of the radio transmitter and receiver are implemented with digital hardware

using DSP techniques. The placement of the receiver analog to digital converter (ADC)

and the transmitter digital to analog converter (DAC) as close to the antenna as possible

are distinguishing characteristics of the software radio. In the software radio receiver, the

approach often used is to digitize an entire band and to perform IF processing, baseband,

bit stream and other functions completely in software [5]. This approach requires the use

of high speed analog to digital converters and high speed DSP microprocessors.

However, the signal processing requirements for military and commercial radio systems

employing high data rate signals or spread spectrum modulation easily exceeds the

processing speeds currently available in off-the-shelf DSP microprocessors. In this case,

special purpose DSP hardware, application specific devices and field programmable gate

arrays can play an important role.

The motivation for implementing radios in software is that a highly flexible and

reconfigurable communication system can be implemented for relatively low cost. The

ability to adapt the radio to its environment by changing filters, changing modulation

schemes, switching channels, using different protocols and dynamically assigning

2-1

Channels and capacity are features which are impractical to deliver with hardware alone.

Since the behavior of the software radio can be changed so easily, denning a particular

architecture does not limit the radio to one specific function. Instead, multiple radio

systems can share a common front-end analog radio tuner while having independent

digital processing for each individual radio channel. [5]

2.1 A Software Radio Architecture

A software radio is essentially a hybrid analog and digital processing system. As

illustrated in Figure 2.1, fixed analog filtering and frequency conversion are still used in

the RF stages. Conceivably, there will always be a need for an analog low-noise

preamplifier to capture the signal from the antenna and establish the noise figure for the

receiver. Also, a downconversion operation which places the signal at some convenient

intermediate frequency and allows for additional conditioning of the signal before

sampling will probably continue to be a part of the software radio system for the next

decade.

Using a sufficiently fast DSP microprocessor, a single device could be used to

process the signal through all stages of the communication system. However, the signal

processing requirements for each stage are quite different. In the IF stages, relatively

simple high speed digital processing is needed, and special purpose DSP hardware can be

used to satisfy this requirement. At this stage, signal processing is usually limited to

filtering, correlation or FFT processing. At the baseband stage the spread spectrum

modulation has been removed and the bandwidth of the signal is much narrower,

meaning that fewer samples need to be processed per unit time. However, the complexity

of the algorithms required at this stage increases dramatically, and the extra time between

samples is required in order to implement digital phase locked loops and other

computationally intensive algorithms. Use of simple, high speed DSP processing at the

wide bandwidth stages and slower, more flexible processing at the lower bandwidth

stages will efficiently satisfy both the complexity and high throughput requirements of

modem radio systems [4].

2-2

V Osc
low noise amp

RFAmp-

V
RFAmp
power amp

X

DSP

D/A <£y- IF Amp A/D
Rx

v»y _ ^

-(xY D/A
Tx

*
A/D

Osc

. analog out

-^ digital out

digital in

■ analog in

Figure 2.1 - Software Radio System

2.2 Software Radio Processing Requirements

The single most critical requirement in software radio is real-time processing. If the

system is to operate in real time, then the data must be moved in and out of the DSP

microprocessor on a regular (i.e., sample by sample) basis, where hundreds of

instructions may need to be executed for every sample that enters the processor.

Obviously, low sample rates are desired for this reason. However, the sample rate

requirement is dictated primarily by the information bandwidth of the signal. The

information bandwidth in radio systems ranges from under 4 kHz for HF voice band

channels to over 1 MHz for cellular systems. Spread spectrum (or CDMA) systems are a

notable challenge, especially for military systems where interference excision techniques,

or chip wave shaping (for LPI enhancement), are applied directly to the spread

waveform. This requires that complex signal processing be applied at the chip level,

which can be one or two orders of magnitude wider bandwidth than the information

signal.

A well designed system will use a variety of sampling rates to achieve an efficient

flow of data through the processor. At the A/D or the D/A stage, over sampling is quite

often used. Over sampling of the signal is useful to shift aliases out of band and simplify

filtering, so faster sample rates and narrower bandwidths are used. On the other hand,

2-3

novel under sampling sampling techniques are possible with stable, linear analog-to-

digital converters. Under sampling techniques can be used to implement bandpass

sampling - digitizing the signal in the second or third Nyquist zone, so that the desired

signals will be aliased in-band by the sampling. Both of these techniques can be

combined as needed within the various stages of the software radio to enhance the signal

to noise ratio yet maintain the sample rate at the lowest practical level.

When the time between samples is on the order of tens of microseconds to

hundreds of nanoseconds such single-sample operations require hundreds of MIPS

(million instructions per second) and/or MFLOPS (million floating operations per

second) to Giga-FLOPS. A good FIR/IIR channel selection filter could require about 100

operations per sample at 30 Msps, or 3000 MIPS. Using a naive brute force approach,

we would require 15 to 60 DSPs cooperating for this section alone, repeated for every

channel. As a result, even with faster devices, software on DSPs still cannot be used for

the down conversion itself, but must still essentially operate at baseband (albeit a much

wider baseband, up to a few MHz). Even the most fundamental demodulation or tuning

algorithm requires 10 operations per sample, which would limit a DSP microprocessor to

filtering signals with a bandwidth of a few hundred kHz. In a conventional voice-band

cellular system, baseband processing requirements can range from 10 to 100

MIPS/MFLOPS per channel; while any digital signal processing at the IF frequency can

drive the processing requirements to 500 MIPS/ MFLOPS and upwards of 10 GFLOPS

[5]-
We contend with these formidable processing challenges by abandoning the use

of general purpose processors in favor of a mixed approach in which high speed digital

hardware is used in the earliest stages, doing much of the filtering and processing in fast

digital logic. When the signal reaches the post-IF stages, the processing load has been

reduced considerably so that it can now be effectively handled by general purpose DSP

processors. As long as this specialized hardware is versatile and is controllable to some

extent from software, a hybrid architecture will meet our requirements. Most IF

processing and chip rate processing can be off-loaded to these special purpose devices

until the day that general purpose processors with sufficient processing power are

available and cost effective.

2-4

2.3 DSP Hardware Alternatives

The most significant limiting factor in development of software radio systems has been

the lack of sufficiently fast hardware - most notably, fast DSP microprocessors. As high

performance, high speed ADCs have become available commercially, hybrid techniques

using specialized digital hardware have become more common, while use of DSP

microprocessors has lagged behind [5]. DSPs are getting ever faster, but it will be a

while before we can use a single 'ultimate' chip to do everything. Instead, the idea of

using multiprocessing to share the effort seems attractive.

Multiprocessing as an alternative to the processing limitations of conventional

DSPs can have only limited success. First of all, traditional DSP architectures were not

well suited to multiprocessing. In fact, there are only one or two commercially available

DSP processors which have the architecture to efficiently support multiprocessing - most

notably the Texas Instruments TMS320C40. Also, software to support parallel and

multiprocessing is scarce and expensive. Secondly, it is a characteristic of a DSP (as

contrasted with a conventional microprocessor) that it must operate on a continuous flow

of data. There are few functions in the software radio that could benefit from the power

of parallel processors.

Software radios ideally place most IF, and all baseband, bit stream and source processing

in a single processor. However, when we examine the speed requirements of the IF

stage, especially when spread spectrum is used, we conclude that we need a special

purpose device - and this is where FPGAs come into favor. Some of the lower data rate

anti-jam tactical communications standards, such as HaveQuick and SINCGARS, are

best implemented using high dynamic range software-oriented digital signal processing.

In these radios, FPGAs could effectively provide the core of real-time sample rate and

baud rate pipelined processing. They could also be used in their more conventional role

of providing gate level support for the other processors and ASICs that make up the

system [4].

Recent technical history has suggested that only software and not hardware

possesses the programmability that is needed for versatile multi-role radio designs. The

2-5

flexibility of software is high; but the throughput necessary for any respectable data rate

is low, making it suitable only for voice processing data rates. However, the availability

of high speed FPGAs provides a greatly enhanced DSP capability which can be

reprogrammed to handle wideband digital signal processing tasks. This permits a flexible

architecture consisting of dedicated wideband ASICs, FPGAs, and programmable

narrowband DSP processors. In the near future, reconfigurable modem architectures will

provide in excess of 400,000 gates of programmable hardware with throughputs

measured in the 100 millions of operations per second and at power consumption levels

under 2 watts [4].

2.4 A DSP Testbed for Military Tactical Radio

Current research at the Rome site of the AF Research Laboratory is focused on the

development, testing and evaluation of algorithms for future Air Force radio systems. It

is understood that these are radio systems which will be implemented using state-of-the-

art digital signal processing hardware. Therefore, the question of how to make the best

use of currently available DSP technology is one that must be answered. After

examining the strengths and weaknesses of DSP microprocessors, application specific

signal processing devices and FPGAs, we have concluded that there is an appropriate

place for each of these technologies in the modern software radio. One notable

characteristic of military radio systems is that they employ wideband spread spectrum

modulation in order to reduce the effects of jamming or to provide some level of signal

covertness. In either case, at the receiver, we would like to defer any signal processing of

the spread spectrum signal until after the despreading function has been completed.

However there are military requirements which necessitate processing at the spread

bandwidth. For example, interference excision and detection of intercepted covert

communications signals are often essential capabilities of these radios. In order to test

the effectiveness of excision and detection algorithms, a testbed is needed which can

process the wide bandwidth spread spectrum signal in real time. General purpose DSP

2-6

microprocessors would be the most cost effective and flexible solution, however DSP

microprocessors are not capable of handling the high data throughput rates required at

spread spectrum bandwidths. Special purpose digital hardware is a likely candidate, but

these devices are most appropriately used for those functions which will never need to

change - the downconversion process, for example. The FPGA however, is a powerful

new technology which can be used to maximum advantage in this application. The

engineer can configure the internal structure of the FPGA via software - in effect,

generating a unique hardware design under software control which suits the signal

processing task at hand.

2.4.1 Proposed Testbed Configuration

A proposed system architecture for the software radio testbed is shown in Figure 4.

FPGAs are used to advantage in the chip stream section of the transmitter and receiver

where a few simple DSP operations need to be performed at a high rate of speed. In

FPGA XI, interference excision processes of any description can be implemented

immediately following the A/D converter, including FIR filters, Fast Fourier Transforms,

and even adaptive filters. Following this stage, the de-spreading process can be

performed using FPGA X2. On the transmitter side, spreading is accomplished with X5.

Flexibility can be obtained by using FPGAs here in order to quickly modify the spreading

sequence, giving an added dimension to the role of the spreading sequence in maintaining

interference-free or covert communications. A need still exists for the general purpose

DSP microprocessor to perform the complex operations of demodulation, system timing,

carrier extraction and adaptive equalization. Also, multiple DSP processors can be

configured to perform complex tasks in parallel using an appropriate processor, such as

the TMS320C40. Once the bit level decision has been made, digital signal processing

using 16-bit (or longer) word lengths is no longer needed - the signal of interest is now in

the form of a binary information bit stream. This data bit stream can now be processed

much more efficiently using digital logic techniques. In this stage X3 and X4 represent

FPGAs which can be used to implement a variety of bitstream processes such as

interleaving, forward error correction, compaction/compression, and encryption.

2-7

The testbed is implemented with a balance of all three forms of current DSP

hardware technology - FPGAs, ASSPs, and DSP microprocessors - each used in the most

appropriate stage of the software radio. This testbed can be easily used to provide the best

in currently available signal processing technology to implement and test radio

algorithms

2.4.2 A Rapid Prototyping Facility

The testbed described in the previous section can be implemented using equipment and

software presently available at the University of Kansas and the AFRL Rome site. Figure

5 shows the overall configuration of the testbed using a combination of software and

hardware tools. The software tools are used to program the DSP microprocessor and to

configure the FPGAs. At the top level is the Signal Processing Worksystem (SPW)

which allows the algorithms for both the FPGA and DSP microprocessor to be

developed, tested and interconnected at the highest level of abstraction. On the FPGA

side, the SPW design is input to the fixed point Hardware Design System (HDS), which

is actually part of SPW. HDS converts the top level design to a form which is suitable

for implementation in digital hardware. At this point the Synopsys tools are used to

convert the HDS output into VHSIC (Very High Speed Integrated Circuit) Hardware

Design Language - VHDL. The VHDL description of the design is then input to the

Xilinx tools which formats it for placement in the FPGA, whose internal circuitry is

configured to implement the design.

The FPGAs are physically located on the Aptix Field Programmable Circuit

Board, which allows FPGAs and other digital hardware to be placed and interconnected

via software. The Aptix board is connected to one of the communications ports of the

TMS320C40 processors located in the Ironies VME box. The C40s are the DSP

microprocessors which perform the more complex tasks in the radio as discussed

previously. The C40s are programmed from the top level using the SPW in the same

manner that it was used when beginning design of the FPGA algorithm. After the

algorithm design has been completed, the SPW output is processed by the Code

Generation System (CGS) which is an ancillary function of SPW. The code generation

2-8

system produces C40-specific assembly language which is then input to the Texas

Instrument floating point software tools, where it is compiled and loaded into the C40

microprocessors. The SPW Multiprox tool is also part of the software set which allows

the efficient partitioning of DSP tasks onto multiple processors.

\7 Receiver Analog Preamp & IF

RFAmp}-^)-fff

im
Amp

WB Filter Downconvcrt
FPGA ASSP

IA/DH XI H X2 h-fröcj-
Despread

FPGA

V Transmitter Analog RF Section

Spreading
FPGA

Upconvert
ASSP

RFAmp[-(£)-JIFAmpf--fD7Ä"l fxTl fPDCh

jTo

o
5 o _
m u

JTVA L analog
öllt

digital

FPGA
out

FPGA
digital

in

WD\- analog

Figure 2-2: Tactical Radio Testbed

There are several hardware additions to the system which support the overall

testbed. For example, a multiple channel analog interface board is available as part of the

C40 system and is installed in the Ironies VME chassis. This analog interface board is

used to input or output the baseband information signal - speech, data, or compressed

video - directly into the C40 DSP microprocessors. They can also bypass the C40s and

exchange signals directly with the Aptix board in order to have direct access to an FPGA

for bit stream processing. Also Connected to the Aptix board are high speed (40 MHz)

A/D and D/A converters which are interfaced to the analog RF & IF system.

Communication signals at RF or IF can be routed to and from the Aptix board through

the A/D and D/A converters, to complete the implementation of the testbed described in

the previous section.

2-9

FPGASW Tools C40SW Tools

SPW

Synopsys

Xilinx

Sun Workstation

A/D&D/A <—>

Analog
RF&IF

Aptix
FPCB
Proto

System

Oscilloscope

Ironies
VME

Quad-C40 |<—>
System

SPW

C40 Tools

A/D&D/A

Baseband Information
Signal In and Out

Logic Analyzer

Figure 2-3: Rapid Prototyping Configuration

2-10

Chapter 3

Field Programmable Gate Arrays

Programmable hardware has been available for many years - conventional memory

devices are the most obvious example. Various PLDs (programmable logic devices)

have long been used in implementing state machines and "glue" logic, among other

things. However, the available devices have tended to have restricted architectures and to

be rather small [7]. The last decade has seen a significant change with the introduction of

a variety of field programmable gate arrays, as well as an evolution of some PLDs into

much larger devices with extended architectures. Essentially, the FPGA is a general

purpose programmable logic device consisting of a regular array of cells with distributed

routing that can be configured with a specific design by the user, without the need to

fabricate an application specific device (i.e., an ASIC) [8].

3.1 Programmable Logic Technology

There are a variety of FPGA architectures available depending upon the manufacturer.

However, there is one broad distinction that can be made regarding FPGA structure: the

architectures are either course-grained or fine-grained [7]. The earlier devices were

3-1

simple anays of logic gates which were programmable in the field in much the same way

as a conventional ROM. These devices are considered fine-grained in the sense mat there

can be a large number of very simple logic operations which can be interconnected. On

the other hand, modern FPGAs have a relatively smaller number of more complex logic

cells available.

Other than granularity, FPGAs are differentiated by their chip level architecture

and their interchip wiring organization. As an example, the Xilinx 3000 family FPGAs

consist of an array of cells called CLBs (configurable logic blocks). Each CLB contains

two latches and a function generator as illustrated in Figure 3.1. The internal connections

within the cell and the lookup table in the function generators are determined by

configuration bits held in an integrated SRAM. This allows an individual cell to

implement quite complex combinational and sequential functions. The routing resources

allow the cells to be connected as required, at least in principle. In practice, the problem

of routing a congested design is the major obstacle in obtaining highest performance.

M
U
L
T
I
P
L
E
X
0
R

D-FF

Logic
Variables M

U
X

C

M
U
X

a

Boolean
Function
Generator d —

e

Enable Clock ■
Clock-

Reset D-FF

CLB Outputs

Figure 3.1 - Configurable Logic Block of the X3000 FPGA

3-2

FPGAs are just beginning to have a significant impact, although their cost is still

relatively high (i.e., hundreds of dollars for the largest devices). Two application areas

which traditionally have dominated their use are general purpose gate-level logic support

(i.e., glue logic) and emulation of new IC designs. However, FPGA manufacturers

believe that their products will change the way in which digital design is approached in a

revolution similar to that engendered by the microprocessor [7], The fact that FPGAs are

now being investigated for use in high speed DSP applications is an indication of the

broad impact they may have in digital applications of all kinds.

3.2 Practical Consideration in the Use of FPGAs

Because the FPGA is programmable in manner similar to a microprocessor, it is already

becoming widely used. However, the configuring of hardware to fit a specific

computation is significantly different from the programming of a microprocessor. In

particular, the microprocessor has a fixed instruction set, and all solutions are algorithmic

in nature. In contrast, an FPGAs internal structure must be customized to implement a

particular algorithm. Since digital hardware designs are not software driven, the

overhead associated with command interpretation, scheduling and execution is eliminated

and there is a substantial gain in speed. Furthermore, a hardware design can take

advantage of parallel implementations to eliminate bottlenecks [2]. It is interesting to

note that we may even combine the two approaches and compile a specialized

microprocessor into the FPGA with a restricted instruction set chosen to suite any

particular application.

It often occurs that a computation is better suited for either dedicated hardware or

microprocessor software. This is the situation we are examining in the software radio -

when to use FPGAs and when to use DSP microprocessors. Simply stated, an FPGA is

appropriate when the design calls for the performance of an ASIC and the flexibility of a

microprocessor. An FPGA should not be used if the algorithms to be implemented are

complex, or vary significantly in structure or complexity. Detennining when to offload

3-3

DSP algorithms to FPGAs requires an analysis of speed versus problem size. At one end

of the scale, problem size gets very large and direct hardware solutions become too

difficult and expensive to build [2].

The advantage of FPGAs is that they represent a compact integrated

programmable hardware solution which can be user configured for any conceivable logic

design. Current designs contain in excess of 40,000 logic gates, all under the control of

the designer. On the other hand, FPGAs have some notable disadvantages. First, there

internal routing contributes substantial delay between logic elements resulting in a

significant limitation in performance, although parallelism and pipelining can still be

used. The second disadvantage is that it is not possible to execute a variety of arithmetic

operations within the logic resources available. Added to this is that the programming of

FPGAs is difficult, especially when implementing DSP functions [9].

3.3 Binary Arithmetic Techniques for FPGAs

The primary limitation of the FPGA when used in DSP applications is arithmetic - most

notably multiplication. When FPGAs are used for DSP applications, the multiplier

circuits must be implemented with the available chip resources. However, a hardware

multiplier is a reasonably complex circuit, as evidenced by the fact that conventional DSP

microprocessors contain only a single hardware multiplier, and it occupies most of the

real estate on the chip. A state-of-the-art FPGA can support no more than a handful of

multipliers, meaning that brute force multiplication is often avoided in some of the most

common operations - e.g., filtering or correlation.

When implementing multipliers in hardware, two basic alternatives are available:

The fully parallel array multiplier and the fully bit-serial multiplier. The advantage of the

fully parallel, array multiplier is that all of the product bits are produced at once which

generally results in a faster multiplication rate. The multiplication rate for this adder is

simply the delay through the combinational logic. However, parallel multipliers also

require a large amount of area to implement. Bit serial multipliers on the other hand

3-4

generally require only 1/Nth the area of an equivalent parallel multiplier but take 2N bit

times to compute the entire product (N is number of bits of multiplier precision) [6]. This

concept is illustrated in Figure 3.2. A new trend is to incorporate a limited number of

hardware multipliers wimin the FPGA. For example, AT&T incorporates a 4 X 1

multiplier in each programmable function unit of its ORCA FPGA family.

Innovative techniques which avoid conventional multiplication in computing FIR

filters and other DSP algorithms have been investigated by a number of researchers. For

example use of distributed arithmetic techniques have been reported [12], which makes

extensive use of look-up tables, an approach which allows a considerable savings in chip

resources.

(N bits, serial) >

(M bits, serial or parallel)

1
Multiplication time =

N+M bit times
->• (N+M bits serial)

product

Bit Serial Multiplier out

(N bits, parallel) •

(M bits, parallel)

1
Multiplication time =
prop, delay of logic

product
out

(N+M bits parallel)

Parallel Multiplication Array

Figure 3.2 - Block Diagram of Basic Multiplier Alternatives

3-5

Distributed Arithmetic are computational algorithms that perform multiplications with

look up tables. This algorithm is generally used to perform important DSP filtering and

frequency transforming functions. Since most of the recent architectures of the

programmable logic have supported the look-up table methodology distributed

arithmetic has become very popular.

Distributed Arithmetic differs from conventional arithmetic only in the order in

which it performs operations. Take for example a four-product MAC function that uses

a conventional sequential shift and add technique to multiply four pairs of numbers and

sum results. The four-multiplication are performed simultaneously and the results are

then summed when the products are complete. This method of implementation requires

n-clock cycles for data sample of n-bits. Hence , the processing clock rate is equal to

data rate divided by the number of data bits. During each data clock-cycle, the four-

multipliers simultaneously create four-product terms, that eventually are summed into

the output. The distributed arithmetic differs from this process by adding the partial-

products before, rather than after, the bit-weighted accumulation.

By using Distributed Arithmetic, the operations are reordered. The reordering

reduces the number of shift-and-add circuits to one, but does not change the number of

simple adders. Distributed arithmetic is of two types the serial and parallel distributed

arithmetic.

Distributed arithmetic is useful in filtering applications, where the coefficients

are constant. Adders and AND gates are made use of to implement multiplication with

coefficients. But in distributed arithmetic the AND functions and adders are replaced

with look up tables (LUT). If a single bit is made use of to access the LUTs then it is

called serial distributed arithmetic, where the incoming sample of the signal stored in a

shift register and a bit at a time is shifted out. The other type of distributed arithmetic is

Parallel distributed arithmetic (PDA), where the number of bits used to access the LUTs'

are more than one. The overall performance of PDA is better than SDA as in the former

case the number of bits processed during each clock cycle is increased.

This section provides a brief overview of the popular multiplication techniques,

and presents the advantages and disadvantages of each technique in terms of speed,

complexity, and area requirements for FPGA implementation.

3-6

3.3.1 Conventional Arithmetic

We will first examine how binary multiplication is carried out. Assume that we want to

multiply two 4-bit numbers as shown below:

Multiplicand 1001

Multiplier 0110

Product

0000

1001

10010

1001

110110

0000

00110110

Partial Product

Partial Product

As shown above, each bit of the multiplier is multiplied with the multiplicand producing

partial products which are appropriately weighted and added together to give the final

product. As a typical example, consider a four-product Multiply-Accumulate (MAC)

unit used to multiply four pairs of numbers and sum the results (a typical application of

this - with slight modifications - would be in FIR filters). Figure 3.3 below illustrates a

hardware implementation of this MAC unit.

Each MAC block multiplies the coefficient Y by one bit of the data A from the

shift register using an AND operation, thus forming partial products. The output of the

AND gate feeds an adder and a register. The second input of the adder is fed with the

output of the register which represents the previous partial product divided by two

(shifted to the right) thus appropriately weighting the partial products. In summary, for

each clock cycle, each data bit (Ai) is multiplied with the coefficient (Y), and the

register's output (previous partial product) is right shifted and added with the current

partial product. For the whole four-product unit, the four multiplications (data A, B, C, D

3-7

times the coefficients Ya, Yb, Yc, Yd) are carried out simultaneously, and the results are

added together when the products are complete.

PRODUCT
SUM

Figure 3.3 - Four-Product MAC Unit with Conventional Arithmetic

This procedure requires n clock cycles for data samples of n bits. During each

cycle, the four multipliers simultaneously create four partial products PA PB, PC, PD

that are summed together to form the output. In terms of speed, this arithmetic technique

is not efficient because to process the entire data sample, the processing rate is equal to

the clock rate divided by the number of bits in the data sample. Also, in terms of surface

real estate needed on an FPGA, the MAC block in each data path increases the area

occupied on the chip.

3.3.2 Serial Distributed Arithmetic (SDA)

The Serial Distributed Arithmetic technique is more efficient than the conventional

approach. SDA differs from the conventional arithmetic only in the order it performs

3*8

operations. That is, in the SDA approach, the partial products generated by multiplying

each data bit with the coefficient, are added before, rather than after, the bit-weighted

accumulation in the MAC block.

By reordering the operation as described above, the number of shift-and-add

(MAC block) circuits is reduced to one, resulting in tremendous saving in FPGA area. A

Serial Distributed Arithmetic circuit is shown in Figure 3.4.

Further improvement in that circuit can be achieved if we consider that in many

DSP applications the coefficients Y are constants (e.g., a standard FIR filter). In such a

case, the AND operations and the adders depend only on the input data bits from the shift

registers. As stated before, these AND gates and adders generate the partial products and

add them together before the weighting accumulation. We can therefore pre-compute all

possible partial products (sums of the coefficients), and place them in a Look-Up-Table

(LUT) which replaces all the AND gates and adders. Therefore, the input data bits from

the shift registers, will just serve as indexes (address inputs) of the LUT. The LUT circuit

for a Serial Distributed Arithmetic approach is shown in Figure 3.5.

SHIFT REGISTER REGISTER ^|) ^(1) 1

—1 S-r^" t X REGISTER ^j J • /| SHUT REGISTER

REGISTER

MACBLOCK
{w3-J

PRODUCT

Figure 3.4 - Four-Product MAC using SDA.

3-9

I
SHIFT REGISTER

Ai

i
SHIFT REGISTER

Bi

i
SHIFT REGISTER

Q

il
SHIFT REGISTER

LOOK-UP
TABLE

-e REGISTER

-EH

PRODUCT
SUM

Figure 3.5 - A LUT Replaces the AND Gates & Adders in SDA

The Look-Up Table contains 16 memory locations (4 address inputs) which hold all

possible sums of the coefficients. In our example where we have four coefficients, the

LUT width should be equal to the coefficient width plus two extra bits to allow for word

growth. The data bits which address the LUT, determine which sum of coefficients will

be placed in each LUT memory location. For example, when all four data bits are 1, the

sixteenth memory location (1111) will contain the sum of all four coefficients. Any data

bit that is zero eliminates the corresponding coefficient from the sum. Table 3.1 below

illustrates the contents of the 16-Word LUT.

By implementing the LUT in place of the AND gates and adders, the speed

improvement is significant because we avoid adding the partial products in real time.

Rather, all the partial product sums are pre-computed and are readily available at the

output of the LUT. In summary, the optimized Serial Distributed Arithmetic technique

using LUT is much more efficient compared with Conventional Arithmetic, both in terms

of speed (LUT) and area occupation (only one shift-and-add circuit is needed since

partial products are added before, rather than after, the bit-weighted accumulation).

3-10

TABLE 3.1 - CONTENTS OF 16-WORD LUT

Ai Bi Ci Di LUT Contents

0 0 0 0 0

1 0 0 0 Ya

0 1 0 0 Yb

1 1 0 0 Ya + Yb

0 0 1 0 Yc

1 0 1 0 Ya = Yc

0 1 1 0 Yb = Yc

1 1 1 0 Ya + Yb+ Yc

0 0 0 Yd

1 0 0 Ya + Yd

0 1 0 Yb + Yd

1 1 0 Ya + Yb + Yd

0 0 1 Yc + Yd

1 0 1 Ya + Yc + Yd

0 1 1 Yb + Yc + Yd

1 1 1 Yz + Yb + Yc + Yd

3.3.3 Parallel Distributed Arithmetic (PDA)

Increasing the number of data bits processed for each clock cycle from one to two results

in twice the throughput However, there is a trade off here in terms of FPGA area used,

which is increased dramatically since more CLBs are employed. Figure 3.6 below

illustrates a block diagram of a 2-bit PDA circuit.

In the 2-bit PDA approach, the data word is split into even and odd bits and is fed into

two parallel shift registers which are half the bit width of the shift registers used in the

SDA approach. Therefore, for each clock cycle we process two bits of the data sample

instead of one bit as in the SDA technique. However, now two LUTs are needed, one to

store partial products of the even bits, and the other for the odd bits. Also, an adder is

3-11

required to sum these two partial products, and also the shift-and-add circuit (scaling

accumulator) at the end, shifts the data by two-bits (divide by 4) for scaling of the final

product. With this approach, more than two parallel bits can be processed at a time. In

fact, this concept can be extended to a folly parallel PDA circuit in which all n bits of a

data sample are processed on each clock cycle, resulting in increased throughput.

However, this would result in a very significant increase in hardware area, so the number

of parallel bits sampled at one time should be increased only to meet the required speed

performance.

Figure 3.6 - 2-bit Parallel Distributed Arithmetic.

3.3.4 Constant Coefficient Multiplier using LUT

In the preceding sections, we focused on distributed arithmetic methods for binary

multiplication. In this section, a different approach is presented for multiplying data with

a fixed coefficient. This method is folly parallel, and uses Look-Up-Tables to store all

3-12

possible partial products of data times coefficient. To understand this hybrid technique of

multiplication, consider how hexadecimal multiplication is performed:

55

x 2B

3A7 = Bx55

+0AA0 = 2x55

0E47

Now, having the 55h multiplication table on hand, makes the multiplication of 55h with

any number very easy. Table 3.2 below shows a 55h multiplication table.

TABLE 3.2: MULTIPLICATION TABLE

0x55 = 000 8x55 = 2AB

1x55 = 055 9x55 = 2FD

2x55 = 0AA Ax55 = 352

3x55 = OFF Bx55=3A7

4x55 = 154 Cx55 = 3FC

5x55 = 1A9 Dx55=451

6x55 = 1FE Ex55=4A6

7x55 = 253 Fx55 = 4FB

The fixed coefficient multiplication table can be stored in a ROM Look-Up-Table. In our

example we assumed that both data and coefficients are 8-bits wide. The data should be

split in two 4-bit segments, and each segment is used to address one of the two ROM

LUTs as shown in Figure 3.7 below.

3-13

4Mb
ROMLUT (UM»}

WMMdte

MS

«1»

MS "~\ Ittiti
-~S Vb

WcdSjiäter

OW^I

WOO

DaUln
MS 4biu

u

/
4bic ® S-bito \

LS

*oo
WartMw* f

ROM lit
Addrms

<»2biU)
L .MS

_/ tm«
1$ LS

0.1

PfcOdlUSl

iv«hw

Figure 3.7 - Constant Coefficient Multiplier using LUT.

Each ROM LUT is a fixed coefficient multiplication table and contains 16 entries which

represent all possible partial products from 0 x "coefficient" up to F x "coefficient". The

upper (Most Significant) LUT contains all the partial products of the 8-bit coefficient

times the most significant 4-bits of the incoming data. Similarly, the lower (least

significant) LUT contains all the possible partial products of the 8-bit coefficient times

the least significant 4-bits of the data. Therefore, at the output of each LUT we have a 12

bit partial product (4 bits data + 8 bits coefficient). Each 12 bit partial product is

appropriately zero padded (for scaling) and then summed to produce the final product at

the output of the multiplier. This approach is very efficient in both speed and area

required on the FPGA. The data samples are processed in parallel resulting in very high

processing rates. We could have used only one ROM LUT and apply all the eight bits of

the data on it, but this would consume more space on the FPGA, because it would need a

ROM with 28 = 256 memory locations. By splitting the data in two, each ROM LUT has

now 2 =16 memory locations resulting in area saving.

3-14

3.4 Using FPGAs for DSP Applications

The FPGA has recently generated interest for use in DSP systems because of its

potential to implement an infinite variety of custom hardware solutions while still

mamtaining the flexibility of a conventional programmable device [6]. Although DSP

microprocessors have complete algorithm flexibility, their performance is limited because

algorithms are implemented by sequential MAC operations, as previously described.

Additionally, DSP microprocessors have an overhead for reading in the operands and

writing the result through a single data port. Therefore, a DSP microprocessor may

require at least four cycles (i.e., read, multiply, add and write) to perform the simplest of

algorithms, resulting in 10 MIPS performance from a 40 MIPS processor [1].

Because DSP algorithms are optimally mapped to the device architecture, FPGA

performance can significantly exceed DSP processor performance. For example, a DSP

microprocessor can implement an 8-tap FIR filter at 5 Msps. An FPGA can implement

the same FIR filter at 100 Msps [1]. FPGAs will never completely replace general

purpose DSP processors, however. Current generation programmable logic addresses

only the fixed point DSP portion of the market. General purpose DSPs still dominate in

floating point performance. Also, general purpose DSP processors utilize familiar

software methods, while using programmable logic requires a completely different

approach on the part of the DSP designer. Implementing DSP functions in FPGAs

provide the following advantages over conventional DSP hardware:

a. Parallelism - Using FPGAs can lead to significantly higher performance than a

typical DSP processor for some applications.

b. Efficiency - An FPGA can be optimized for specific algorithms, thus achieving

the performance of hardware with the flexibility of software.

c. In-circuit Reconfigurability - Permits the algorithm or function to be changed

while operating in-circuit. An additional benefit of FPGAs over ASICs is that they can be

3-15

reprogrammed on the fly in the system. Consequently, a single FPGA can implement

different DSP functions at various times in a system to boost overall performance.

d.. Adaptability - A device that can implement large internal RAM blocks can be

used to implement real-time adaptive functions at a throughput that cannot be matched by

conventional DSP solutions.

3.4.1 Pipelined Architectures

Since the FPGA CLBs contain flip-flops, they are used for storing and delaying the

signal. The purpose of pipelining is to increase the speed at which the system operates

by decreasing the delay of the critical path of the system. The Figure 3.8 below

illustrates the concept of pipelining.

1 Ityuwm

IfeUy .T«
r

Ftaqwi ■ey rf Oock- 1/T
"

IN,

r Ctakl Cbcafc2

| <SJC 1

with Mpal Iota« «K*«

CfUy -T/

■ion.

•!- ney of Oook»2/T

1

IN

r
C1nnln.it

CbcaMl

D
nta
Flop CkoA2

OUT

r
cue | 1

PC Of PI] Simple DUxmn fflnsnatm« te oonoo

Figure 3.8 - The Pipelining Concept

In this figure we have two clocked circuits which are driven by the same clock.

Hence the speed of operation depends on the delay that separates the two clocked

circuits. If the delay is more than die clock period, men the frequency of operation is

limited by the delay between them. To increase the frequency, register elements can be

3-16

include in the delay path thereby decreasing the delay in the path and increasing the

speed of operation. This is shown in part two of Figure 3.8. Pipelining is a trade off

between speed versus resource utilization. Using too many pipelined stages in the

system results in an enormous consumption of hardware resources; and in designs where

area and power are of main concern, pipelining may not be advisable.

3.4.2 Design of Data Paths

The data path is that part of the system that performs the data processing operations, so

the design of the data path in any system design is very important. The speed of the

system increases if there are a number of data paths performing the same function in

parallel, however this kind of system design requires lots of hardware resources so it is

important to decide whether or not the data path will be shared.

A critical factor in designing the data path is the precision requirements of the

design. If very high precision is required, such as needed in DSP applications, then the

data path should implement a floating point processing of the signals. This would lead to

excessive use of resources since two registers are required to store a floating point

number in the data path. Therefore, all of the present designs make use of fixed point

datapaths.

Though fixed point data path design leads to using fewer hardware resources, the

accuracy of the results obtained is less, when compared to the floating point designs. By

making use of fixed point algorithms, the number of resistor elements can be reduced,

which in turn can be used to implement parallel data paths and pipelining to improve the

speed at which the design operates.

3.4.3 Routing Delays

Routing Delays play a major role in the hardware design since they limit the operating

speed of the system. Very complex designs often suffer from routing delays because of

the large number of logic circuits implemented in the device, resulting in less space

3-17

available for achieving optimal routing. This is a concern for DSP systems as many

arithmetic operations need to be performed. Arithmetic elements are required which

typically occupy a large percentage of the available resources, which affects the routing

of the design.

The recent trend in FPGAs is to use common function (or macro) blocks to aid in

developing systems with lower routing delays. For example the Xilinx FPGAs supports

XBOLX modules such as adders, subtractors, incrementors, decrementors etc. , which

are used extensively to implement arithmetic functions on Xilinx FPGAs with very low

routing delays. Thus by decreasing the routing delays we can increase the frequency of

operation of the system.

3.5 FPGA Applications in Software Radio

The DSP Functions that FPGAs do best are those requiring high sample rates and short

word length. They are especially suited for FIR filter designs employing lots of filter taps

and fast correlators. The lookup table architecture of FPGAs provides a fast and efficient

way to build correlators [3]. More taps can be added to the parallel filter with only a

small performance tradeoff with additional parallel silicon resources. In contrast, DSP

processors exhibit a linear decrease in performance as the number of taps increases

(Table 3.3). An 8-tap, 8-bit FIR filter implemented on an Altera device needs only 80%

more silicon than one 8 x 9 bit fixed multiplier (Table 3.4)[1].

TABLE 33 - FULLY PARALLEL 8-BIT FIR FILTER (FLEX 8000A FPGA)

of Taps Performance (MSPS) Equivalent MIPS (DSP Processor)

8 104 832

16 101 1,616

24 103 2,472

32 105 3,360

3-18

TABLE 3.4 - SILICON RESOURCE COMPARISON

Function

FIR Filter

Fixed Point Multiplier

Inputs & Outputs

8-bit data, coeff

17-bit output

8x9bitdata

17 bit output

Flex 8000A Logic Cells

296

164

Table 3.5 shows the performance of multipliers implemented on the Xilinx 4000 family.

Note that parallel multipliers require a larger proportion of the device, while bit serial

implementations are slower. The first number in the Multiplier Speed column for the bit-

serial multipliers is the clock speed, while the second number is the multiplier speed.

TABLE 3.5 - XILINX 4000 SERIES FPGA MULTIPLIERS

Type of Multiplier #CLBs % of FPGA Mult. Speed

8 bit unsigned (parallel) 64 16% 8.54 MHz

16 bit unsigned (parallel) 242 60% 3.8 MHz

8 bits unsigned (bit-serial) 17 4% 73.1/4.6 MHz

16 bit unsigned (bit-serial) 33 8% 62/1.9 MHz

FPGAs can efficiently implement DR. filters. For example, a lookup table based

vector multiplier can be used to create a complete second order section of an all pole

analog filter. The vector multiplier requires the same resources and operates at the same

speed as a fixed point multiplier. A Butterworth filter can run at a rate of 25 Msps and

require only 139 logic cells [1].

Altera has developed high speed FIR filter megafunctions that are optimized for

their own FPGA structure. These filters can be implemented in parallel or serial form

allowing a tradeoff between silicon resources and performance. Parallel filters can

perform at rates up to 100 Msps enabling digital processing of RF-IF data. Serial filters

3-19

require less logic and still perform at 5 to 6 Msps. In a Spread Spectrum RF modem

application, an Altera FPGA can implement the receiver's correlation filter function at a

chip rate over 60 MHz. A DSP processor can perform the remaining tasks, such as

quadrature phase shift key (QPSK) demodulation. The resulting DSP application can

deliver six times the data rate as the DSP processor alone.

3-20

Chapter 4

Rapid Prototyping Concepts

Designing with FPGAs requires computer assistance at almost every stage of the design

including detailed specification, simulation, placement and routing. The use of schematic

capture based CAD tools is a common approach to the design of custom logic devices

using FPGAs. This process is often combined with logic level simulation to verify a

specific design. One method of increasing the range of architectural solutions that a

designer may explore in a reasonable time is to specify the DSP system with a hardware

description language (HDL) [10]. This steps the design process up one level and allows a

generic functional description of the target system which can be further simulated or

implemented directly onto an FPGA after the HDL code is converted using the FPGA

manufacturers software.

In DSP applications, arithmetic circuitry for operations such as addition,

subtraction and multiplication are commonly required. These arithmetic circuits can be

designed and implemented by employing user-generated or manufacturer-provided sub-

circuits, which can be reused. However, as these designs can only be simulated at the

logic gate level, it is difficult to verify the functional performance of the algorithms being

implemented. It is particularly difficult to determine the potential undesirable side effects

of finite precision arithmetic, as mis may require that large data sets be simulated and

4-1

translated from numerical values to logic levels and vice versa [10]. However, new

software tools are being developed which raise the design process to yet another level,

allowing the designer to begin at the system level.

Simulation tools such as Cadence's Signal Processing Worksystem (SPW) now

have features which allow the engineer to design hardware logic systems and DSP fixed

point systems using the traditional block diagram functional description of the circuit.

This design is then immediately converted into a hardware description language. Other

SPW tools allow the design to be simulated via the HDL description of the system and

then linked into a manufacturers software tools which support specific devices. Most

manufacturers, in the interest of making their product more attractive to their customers,

have developed a set of stock logic elements which can be reused within their device to

assist the engineer in quickly achieving any design. Once suitable design tools and

automatic methods are perfected, designers and programmers will be able to create

custom hardware circuitry and pipelines to suit the problem at hand - the term 'soft

hardware' suggests that hardware will become as readily created and malleable as

software. In a practical sense this will mean that the turn-around time for custom

hardware will be just as short as software development is today.

4.1 Design Flow

Figure 4.1 illustrates the flow of rapid prototyping. The flow of the design is from the

functional description of the system to the hardware implementation. The functional

description of the system is implemented in either SPW (Signal Processing

WorkSystem) or in VHDL. The functional description is usually is at the system level,

where algorithm functions are of primary interest. A reconfigurable flat-form is used to

aid the flow of rapid prototyping, and commercial CAD tools are used to integrate the

design.

4-2

SPW

PfabOd-PMOt VHDL
Modoiinc

1 '
VHDL

Gcncndoa

■ 1 ■
.

Synaptys

JOUnr

lunwm
Synthesis

Top Level
NetUst

,. ■
< ■

H*OA
HatUit

APTDC
Softwue

'
1

XAcr

1
FPOA CaafigamJoa FUe

(MP3 FPCB)

Figure 4.1 - Block Diagram of Rapid Prototyping Flow

4.1.1 Functional Description using SPW and VHDL

Hie system to be implemented is functionally described using the Hardware Design

System (HDS) of SPW. The algorithm is designed using the blocks available in HDS.

The functional description of the system is completed using the fixed point blocks to

control the use of hardware resources which are quite limited in reconfigurable

hardware. The algorithm developed is simulated in the SPW environment before the

implementation is completed to make sure that the functional description of the system is

correct. To implement the design on hardware, the HDS component of SPW provides a

link which generates VHDL code for the system designed in HDS. The generated

VHDL code is used for synthesis in order to implement the system on the targeted

device.

The other way to functionally describe the system is with VHDL. The advantage

of using hand-coded VHDL, rather than using VHDL code generated by the schematic

tool is that for very large and complex designs, schematic capture of the system

4-3

becomes difficult and impractical. Also, the hand-coded VHDL is very flexible in that,

if certain enable signals are required for flip-flops, counters etc., then the blocks

provided by HDS can be modified and customized. It is also true that code generated

from a schematic tool tends to be less efficient and require more hardware resources that

would be required if the system were hand-coded with VHDL.

4.1.2 Simulation and Synthesis

The next step in the design flow is to simulate the design using standard tools that verify

the functionally of the design. If the simulation results are satisfactory then the design is

synthesized using standard tools that target the design to specific FPGAs. The systems

designed using SPW can be simulated in that environment. But hand-coded VHDL,

need to be compiled and simulated using VHDL simulation tools such as Mentor,

Synopsys, etc. Figure 4.2 shows the flow followed during the simulation of the system.

System VflriScMloa
IMag

SFVI

PMCUOGM mdLoglc
•f Syuan

(Mac MaaearTaal«

VHDL Code
[CDMUni VHB(

VHDLLUc

X

Punrrinml «ndLofic
of SjnMooi

Uffcif Sjnopsjn Took

SYKIBBSIS

Figure 4.2 - Block Diagram of Simulation Flow

Synthesis is the procedure that makes possible the implementation of the system

on the targeted hardware. It is also one of the key factors which aids in rapid prototyp-

ing. Synthesis tools translate the high level design into gate and register levels which the

routing software can process. The synthesis tools generate netlist files that are used by

the routing software to generate files that are used to define the hardware physically. For

example the Synopsys FPGA compiler generates a top level netlist which is used by the

Xilinx software to partitions places and route the design. Figure 4.3 shows the flow of

the synthesis procedure.

High level system design is gaining popularity since it allows the designers to

describe systems at a high level using schematic capture. The high-level design

approach reduces library and technology dependence, enabling re-targeting to other

libraries, such as an FPGA library, with greater ease.

Figure 4.3 - Block Diagram of Synthesis Procedure

4-5

4.1.3 Implementation
Implementation occurs at two levels: first is at chip level where the entire system

is partitioned into smaller submodules, and these modules are implemented on the target

FPGA. The second level of implementation is at the system level, where all submodules

are integrated and the entire system is tested.

Chip level implementation on the FPGA is an important part of the rapid

prototyping process. Synthesis tools provide the designers with netlist files of the

submodules to be implemented. During the synthesis, constraints are provided to meet

design specifications. The reconfigurable nature of FPGAs also aids the rapid

prototyping approach. Every FPGA has its own placement and routing software to map

the design. The software partitions the design and places the logic into the configurable

logic blocks and finally does the routing of the entire design. The software generates a

bit file to configure the FPGA device.

System level implementation is accomplished using the rapid prototyping board,

known as the field programmable circuit board (FPCB). The FPIC (field programmable

interconnect component), are programmable interconnect components which form the

core of the programmable circuit board. For example, the Aptix MP3 reconfigurable

board has three programmable interconnect components used for routing purposes. The

MP3 board also supports diagnostic programmable interconnect components which aid

in viewing signals on the diagnostic instruments. The FPIC is configured through a Host

Interface Module (HIM), which transfers data from a workstation to program the FPIC.

A Stand-alone Program Module (SPM) can be utilized to perform the same function

without a workstation.

The FPCB provides fully automated downloading of configuration data to both

FPGAs and FPIC devices. As the board supports the combination of FPGAs with

standard components(memory, DSP and microcontrollers) makes the MP3 uniquely,

suited for DSP system prototyping.

4-6

4.1.4 Verification

The rapid prototyping environment helps in debugging and verifying very complex

systems. As stated earlier, the FPIC devices used on the FPCB are of two types: one is

used for routing purposes and is designated as an FPIC(R) device . The other type of

device is the diagnostic device, which is used for probing, debugging and verifying

signals in the design and is designated as FPIC(D). These FPIC(D) devices can be

connected to the logic analyzer with help of diagnostic pads. The software for the board

is called AXESS, and it programs both the diagnostic FPIC devices and logic analyzer.

This setup provides a very powerful debugging capability, since each signal that

appears in the system level netlist can be routed through one or more FPIC(D) devices

and viewed on the logic analyzer. The signals to be viewed are selected with the help of

diagnostic device interface provided by the software. The software automatically

programs the diagnostic FPIC device to display the selected signals on the logic

analyzer. At the same time, the diagnostic interface facility configures the logic

analyzer. The diagnostic interface provided by the reconfigurable board software does

the channel assignment and labeling of the waveform displays.

4.2 Prototyping

In traditional prototyping approaches, the design is mapped to a technology that allows

speeds such that all interfaces to targeted applications can operate in real time. But rapid

prototyping provides flexibility for system emulation to explore architectural and

implementation alternatives available for achieving the desired system function.

Prototyping was commonly done using custom printed circuit boards and wire

wrap technologies until the design complexity became too large to make these

approaches feasible. The new technologies such as FPIC, FPCB, and FPGA have

created a new path that enables mapping of complex logic into programmable hardware

which can meet the real-time operating frequencies of DSP applications. The main aim

4-7

of rapid prototyping is to design, implement and verify systems quickly, hence aiding in

bringing products faster to the market when compared to traditional prototyping

methods.

4-8

Chapter 5

Implementation Case Studies

This chapter describes the DSP algorithms designed and implemented on the Aptix MP3

reconfigurable circuit board. The algorithms designed here are digital filters, fast Fourier

transforms and communications modules such as the PN sequence generator. All designs

developed are targeted to Xilinx FPGAs and use a reconfigurable hardware platform (the

Aptix MP3) to illustrate the concept and the speed with which systems can be designed and

implemented using rapid prototyping.

The digital filters described in this chapter are designed using both a locally

developed FIR CAD tool and the Signal Processing Worksystem (SPW) software. The FIR

CAD tool generates XNF files for the filter, but filters designed using SPW employ

commercial tools to generate the filter XNF file. Other systems examined in this chapter

include an eight point FFT, and a scalable FFT (16,64 points). The scalable FFT algorithm

designs use a standard memory chip. The following sections give the details of the designs

developed and their implementation.

5-1

5.1 FIR Filter Design using CAD Tools

Finite Impulse Response (FIR) Alters play an important role in the design of practical

discrete-time systems. At the heart of a FIR filter lies the multiplication function, which

introduces the coefficients of the filter in the design. Each filter tap has its own multiplier,

which gives the product of the input data with the coefficient. When implementing a FIR

filter on an FPGA, the multiplication function imposes a bottleneck on the speed,

performance and area requirements of the design, therefore the designer should focus on

enhancing the performance of these multipliers and hence of the whole design.

Multiplication techniques include Shift-and-Add, Adder Tree, Logical Tree, multiplication

by a power-of-two, and constant coefficient multiplier using Look-Up-Tables (LUT). The

last technique is the key to high performance in FIR filters with fixed coefficients.

FIR filters are very useful in DSP applications because they are inherently stable

and can be designed to exhibit linear phase characteristics.. The general Direct Form

structure of an FIR filter is shown in Figure 5.1.

Figure 5.1 - Direct Form structure of an FIR filter

The algorithmic form of the Direct Form FIR filter is given by:

y(n) = hox(n) + hix(n-l) + h2x(n-2) + + h„.ix(n-m)

5-2

For linear phase response of the filter, the impulse response must satisfy the symmetry

condition:

h[M-n] = h[n] for n=0,l,2 M

The general Direct Form structure exhibits excessive redundant hardware and poor timing

characteristics when implemented in hardware. An alternative inverted structure

implementation is shown in Figure 5.2.

In the inverse structure, the data samples are applied to all the tap multipliers at the

same time. Processing of the data samples is done in parallel and hence the overall timing

performance is stabilized. Also, by exploiting the symmetric nature of the coefficients, we

can reduce the number of coefficient multipliers needed by one half. Moreover, if we use

Look-Up-Tables instead of regular multipliers, the time delay incorporated in the

multiplication function is dramatically reduced. Each Look-Up-Table in each Tap contains

all the possible products obtained when we multiply the specific tap coefficient with the

incoming data. Therefore, the data bits are applied on the address input of the LUT (which

is basically a ROM) and the corresponding "data * coefficient" product is obtained

automatically on the output of the LUT

Xk

®WN-1 ®WN-2 ®WN-3

D

®W0

Figure 5.2 - The Block Diagram of Inverse FIR Filter Structure

An efficient FIR filter architecture suitable for FPGAs, is implemented using a

locally designed CAD tool. The filter architecture uses coefficients that can be expressed

5-3

in the form of a sum or difference of two terms, both of which are powers of two.

Multiplication in binary arithmetic by a power of two is simply a shift operation.

Implementation of algorithms with multiplication may be simplified by using a limited

number of power-of-two terms, thus decreasing the number of shift and add operations

required. The FIR filter structure assumed by the FIR CAD tool is the inverted form.

To obtain good performance a small number of power-of-two terms are used in

approximating each coefficient value of the filter and hence an optimization technique is

carefully selected to derive the coefficient values.

5.1.1 Low Pass Filter

To design a low pass filter, the coefficients of the filter are obtained using the Filter Design

System (FDS) feature of the Signal Processing Worksystem (SPW). The frequency

specification is used to obtain the coefficients for implementing the filter.

The low pass filter design in this example consists of 11 taps, each represented by

10 bits. The frequency specification of the filter requires a passband cutoff frequency of

O.lFs (where Fs is the sampling frequency) at 3dB attenuation and a stopband cutoff

frequency of 0.15Fsat 18dB attenuation. The values of the taps are obtained using FDS.

These coefficient values are used to develop a simulation model in the SPW Hardware

Design System (HDS). The simulation results are helpful in validating both theoretical and

implementation results. The simulation model consists of taps, adders and delay elements.

The taps are implemented using the shift and add method in order to emulate the function

of the FIR CAD tool in which multiplication of the samples are implemented by the same

method.

Each tap is implemented using the shift block, adders or subtracters provided in

HDS. The requirement is that the tap values be expressed as the sum of two, power-of-two

terms. The required shift is provided as a parameter to the shift block. The low pass filter

implementation is accomplished using the FIR CAD filter tool. The tool takes the

coefficients provided from FDS and the number of bits required to represent them. The tool

uses the number of coefficients, and the number of bits required in order to represent the

coefficients and their values as input to a XNF (Xilinx Netlist File) file and a HDL

5-4

(Hardware Description Language) file. The XNF is then used to provide the bit file

required to configure the FPGA according to the design requirements. Before generating

the bit file, the HDL file is used to perform a check of the logic circuitry. Since the input

required for testing the HDL file is the sampled input signal, the filter model is tested using

SPW in the simulation mode.

As previously mentioned, the CAD tool takes coefficients which are expressed as a

sum of powers of two. The reason for expressing the coefficients in powers of two is that

the hardware implementation for multiplication is implemented by a shift and add

operation on the input samples. Therefore, we are able to accommodate more useful logic

on the FPGA and can therefore implement filters with a larger number of taps.

After the logic circuitry is tested using the HDL file and the bit file for the Low

Pass filter is obtained, the design is implemented on the Aptix MP3 board. To implement

the design on the board we need a top level netlist file and a clock which drives the FPGAs

on the board. Also, an essential part of the implementation is the input/output FPGA which

is used to route data to and from the board in order to provide signals to the filter. The other

component on the board is a Xilinx FPGA, on to which the low pass filter design is

downloaded.

The top level netlist file needed to implement the design is a file showing

interconnections of the components. This is an input file to the Aptix MP3 software

(AXESS). The AXESS software uses the top level netlist file to configure FPIC devices on

the MP3 board according to the required interconnections between the components. After

configuring the FPIC devices, the bit files for configuring the I/O FPGA and FPGA on

which the low pass filter is implemented are downloaded. The I/O FPGA is used to buffer

the input signals and route them to the target FPGA containing the low pass filter. The

logic implemented on the I/O FPGA is simple buffering. The XLS (Xilinx Logic

Synthesizer) is used to implement the logic.

The design of the low pass filter is tested using sampling frequencies of 1 MHz and

5 MHz. The results obtained from the implementation are compared with the simulation

and theoretical results. A sine wave of varying frequency is used to test the low pass filter.

According to theory, any frequency within O.lFs, is reconstructed by the filter, but

frequencies at and beyond stopband are by reduced by at least 18dB. The Figure 5.3

5-5

illustrates the theoretical result of low pass filtering. Figure 5.4 compares the magnitude

response of the implementation with the theoretical response obtained from MATLAB.

1 IHKJMIULJ af tin* «>T« fa «•0.1&

LDWPM

«KM«) «M»)

■Ug0jDM0 OK SiylOl Wan
Fubonug (Fioqucncy Do—to)

hiBiad 0.1&

Slop Band (USb

2 Frequency of SinowsN fc >• 0.136

dCf+fo) «XW»>

MtpilWrVi of Sl(a*l before
RltonBcC FmpMBCjr Ooniiin)

"•1-^-^ oTSlfml MB Dawa After

riteorio^ (Riwyif Ht* y Doouin)

UWFM

Htar

Pa« Bend 0.16
Slop Band 0.15ft

t t
*X*H6) «XM»)

Mtgitoufci of Slfnal 1S4B Down After
FDtsriac(ftaqoeocjr Donuda)

Magnitude Response of Sue ware befixe and after low pats filtering

Figure 5.3: Theoretical Results: Low Pass Filtering

02 026 OS OJ6
of 8amplna Fraquaney Fa

OJS

Figure 5.4: Comparison of Magnitude Response of Low Pass Filter

5-6

5.1.2 High Pass Filter

Design of the high pass filter is accomplished in the Hardware Design System (HDS) of

SPW. The filter has the following frequency specifications: the stop band cutoff frequency

is O.OlF&with an attenuation of 13dB; while the pass band cutoff frequency is 0.05Fswith

an attenuation of 3dB. With the help of the Filter Design System (FDS), the values of the

coefficients are obtained. The number of taps needed to obtain the required response is 11.

The coefficients that are obtained are used to design an inverted form FIR filter.

The architecture of the filter model is the same as in the FIR CAD tool, but the coefficients

that are obtained are not rounded to the nearest integer. Rather, the coefficients used to

implement the filter are in fractional form. To implement a multiplication of input samples

with coefficients, the shift and add method is used. Since the coefficients are represented

as fractions, we require the use of a shift block that performs a right shift of the samples.

The filter is designed by making use of the shift, adder, subtracter and flip-flop blocks. A

simulation model for the filter is developed and the model is tested using a sine wave of

varying frequency as the input. The hardware description for the design is obtained from

the SPW-VHDL link. The link generates VHDL code for the filter model developed in

HDS. The VHDL description of the design is used by the synthesis tool to generate a netlist

of the filter which is later used by the Xilnx FPGA software to provide the configuration

file. The implementation of the filter is accomplished using the Aptix MP3 system

emulator. The filter is implemented on a Xilinx 4013PQ208-4 FPGA. The design

consumes 322 logic blocks (CLBs) and can run at 10 MHz clock frequency. Table 5.1

gives the number of coefficients required to design the high pass filter, along with the

values of these coefficients. The coefficients obtained are expressed in the form of sum or

difference of two-power two terms.

The number of CLBs required to implement each weight is also provided. The

fixed point shift blocks are used to express the coefficients. Figure 5.5 shows a comparison

between the theoretical magnitude response and the response obtained from

implementation of the filter on a Xilinx 4000 series FPGA.

5-7

TABLE 5.1 - HIGH PASS FILTER DESIGN PARAMETERS

Weight

number

Value of

the weights

Representation

of the weights

Number of

CLBs required

WO, WIO -0.2185 -2"z + X3 25

Wl, W9 -0.046875 -2T 45

W2.W8 -0.0625 -2- 25

W3.W7 -0.0625 -2- 25

W4.W6 -0.0625 -2- 25

W5 1 2 35

CompaiWon «X magnftud« iMpons* of rtgh p«w »or Thorny v» knptomontajlon
1 1 1

2* " ^. •

■ -i i

_/ ' \S
0

-*

v. rfs

V*».. T V

C J......V~ >

fl
If

If
.If

AM"
-16 wem otot»o#d from knpkMn#nUttion

xMcsl Response
■

/
j
i

 — •- Th*

-ao i i

-86 ■ i ; i i ; ! i ■
O O05 0.1 0.16 02 025 03 0J5 0.4 0.46 0.6

Mulplw of Stnptog Fwquoncy Ft

Figure 5.5 - Comparison of Magnitude Response of High Pass Filter

5.1.3 Band Pass Filter

This section describes the design of a band pass filter. The band pass filter is developed

using a concatenated high and low pass filter designed in the previous sections. The band

5-8

pass filter is designed to have a normalized bandpass from 0.05Fs to O.lFs within 3 dB

attenuation. The out of band attenuation is 15 dB.

The coefficients of the filter are obtained from the Filter Design System (FDS) of

SPW, and the coefficients are expressed as a sum of power-of-two terms. The coefficients

obtained and their representations in power-of-two terms are given in Table 5.2. The block

diagram of the band pass filter developed by cascading the high pass and low pass filter is

shown in Figure 5.6. The I/O FPGA in the design is used for routing the signals to the

filters implemented on FPGA2 and FPGA3. The I/O FPGA is also used to convert the

offset data generated from the A/D into a two's complement representation since the digital

FIR filters are designed for this. The high pass filter is implemented on FPGA2 as shown

in the figure and the low pass filter is on FPGA3. Both the filters have 11 taps and operate

at a precision of 10 bits.

TABLE 5.2 - COEFFICIENTS FOR LUT MULTIPLICATION

Weight

number

Value of

the weights

Representation

of the weights

Number of

CLBs required

WO, W10 -0.03125 2"J 25

W1.W9 0.0703125 2^ + 2-' 50

W2.W8 0.132815 T' + T' 50

W3,W7 0.21875 T*-T 25

W4.W6 0.234375 T1, T" 30

W5 0.28125 2"" + 2~J 25

Figure 5.7 compares the theoretical magnitude response of the band-pass to the response

observed in the implementation.

5-9

CLK

(FP0A2)
ffijh Pan Filler

Pan band - 0.05 ft

Stop Band - 0J)1 &

10
^

H»,

(FPGA3)
Low Pat* Filter

Pan Band - 0.1 ft

Stop Band - 0.15 &

-*V-

(FPOA 1)
Rooting nptav

Output Signal«

INPUT

10 12/

Analog to

Digital Converta

X

Digital to

Analog Conrertei

OUTPUT

BLOCK DIAGRAM OP BAND PASS FILTER DESIGNED

10

0

-10

-20

JB-90

Figure 5.6 - The Block Diagram of Band Pass Filter

Comp*t»kxi<AmaQr*i^r~ponm*<*BmndpmmuM*Tbm<xyv»Urvlmm»t*M*m

I
-60

-«0

-70

Oaaponaa obtaard from Implamantatton
ThaorHoal Raapona«

IN ; ...j. i. 4.
V\|

"V"/ ""

Hi

• \ : / :

■i a i
•jr

••••Hi

. *
:l

—il
•i

1::::t
i 1 * ■••:- * 1-

:!
i: j_ j_
i : :
: 1 •

\ :
t /

• ••i\-t
:"«i
:i«

11
:l

"Vt

v /
\ / • •

t I

ii
ii

i
j
i

0J06 0.1 0.16 02 02S 0.9 036
MuMplaa of 8ampann Fraouaney F.

0.4 0.46 0.6

Figure 5.7 - Comparison of Magnitude Response of Band-Pass Filter

5-10

5.1.4 Box Car Filter

The Box Car filter is a simple FIR filter in which the coefficients are all unity. The design

consists of a direct form FIR structure with twenty five taps. The filter block diagram is

shown below. The design consists of twenty four delay elements, 25 taps and the width of

each delay element is 10 bits wide. The design also uses 11 bit adders in order to add the

delayed samples. The frequency response of the filter has 30dB attenuation in magnitude

at multiples of 0.04Fs.

The filter is designed in HDS and simulated in SPW using square wave and sine

wave inputs. The filter is implemented on the FPGAs and the results obtained are very

similar to that obtained when the system is simulated. The design requires 379 logic blocks

(CLBs) on a Xilinx 4013PQ208-4 FPGA and runs at a speed of nearly 20MHz. Figure 5.9

gives a comparison of the theoretical frequency response with the measure response.

ax

ax

•FPGA
(Noccb Fiker)

ax

^

VO FPGA
{ROOM, inpvc

* la

INPUT SIGNAL

-V-

ANALOG TO
DKBTAL

CONVERTER

ax.
DIGITAL TO

ANALOG

CONVHK'IMK. FILTERED SIGNAL

TUB BLOCK DIAGRAM OF NOTCH FILTER DESIGN SETUP.

Figure 5.8 - The Block Diagram of Twenty five Tap Box Car Filter

5-11

Cofflp^flMioo ol wqnlhuto

0.05 0.1 0.16 0.2 0.26 OJ 0.35
Mul^pMt of ©•ffipwnQ Fr*^u#noy F

0.4 0.45 0.5

Figure 5.9 - Comparison of Magnitude response of Box Car Filter

5.2 Twelve Tap FIR Filter using LUT Techniques

This section describes the design of a Low Pass 12-tap FIR filter using constant coefficient

multipliers using Look Up Table techniques and implemented on a Xilinx 4013 FPGA

using the Aptix Mp3 prototyping board..

5.2.1 Design using SPW

The SPW tool provides the means for designing the system schematically and for verifying

and simulating the design. SPW is a powerful block oriented software tool suitable for

designing any kind of DSP system. The Filter Design System (FDS), which is a part of

SPW, was used to obtain the filter's coefficients. First, the filter's frequency characteristics

(Low Pass, cutoff frequency etc) were given as input to FDS, which in turn calculates the

coefficients and the number of taps needed to meet the desired specifications. The Block

5-12

Design Editor (BDE), which is another subsystem tool of SPW, was used to design the

filter schematically using standard DSP blocks like adders, multipliers, delay elements etc.

All these blocks are located in the Hardware Design System (HDS) library of SPW,

which allows the use of fixed-point arithmetic in the design. The advantage of using fixed-

point arithmetic is that we can accurately model the real behavior of the digital system

because we don't need to deal with loss of precision when using floating point arithmetic in

a bit-limited digital system. After the system is designed schematically, the Signal

Calculator System of SPW is invoked to simulate the operation of the design. The Signal

Calculator is capable also of generating fixed-point signals which can be applied to the

design and verify its real performance.

The FIR filter described in this report has the following characteristics:

Type: Low Pass FIR

Tap length: 12

Cutoff frequency: fc=0.1Fs (Fs = sampling frequency)

Stooband edge: 0.13Fs

Stopband Attenuation: 30 dB

Filter Method: Equiripple/Low Pass

Input Data width: 8 bits

Output Data width: 12 bits

Coefficients: 8 bits

Using the Filter Design System (FDS), which is a part of the SPW design tool, the

coefficients of the filter were obtained (in Double precision format):

bo = bn = 0.040473

bi= bio = 0.075372

b2 = b9 = 0.11826

b3=b8 = 0.16903

b4 = b7 = 0.20653

b5 = b6 = 0.22994

5-13

Figure 5.10 below illustrates the block diagram of the design. As shown, the design is

implemented as a parallel inverse structure and only 6 Look-Up-Table (LUT) blocks are

used because the 12 coefficients are symmetric.

rauiiivut(tMts)
I» I I 1

Füta Output (12 bta)

«*

I
LUT1 urn LOT) LUT 4 LUT 3 LUT«

CacffjO-11 CMff.1-10 Cttttl-* CXffJ-l Cocff.4-T CtBi-i

U^^W
©+jj[M&*-^^

Figure 5.10 - Block diagram of the FIR Filter

As discussed before, the LUT blocks are used instead of regular multipliers. The internal

structure of each LUT block is shown in Figure 5.11 below.

4Wts

Data In

8-bki

WordSpKter

4bfcs MS

<:
LS

ROMLUT

Address
(12bits)

Word Merge

MS
MS
Partial
Product

OoOO

16brcs

4bici

Zero Padding

Zero Padding

Word Merge

r-\16bits
> I »■ Tap Out

y-yFinal
Product

4Mtt
ROMLUT

Address
(12orts)

MS
Partial
Product

0000
I Word Merge
I I hft

__ _^r 16bits
LS

Figure 5.11- Internal structure of LUT

As shown in Figure 5.11 above, the incoming 8-bit data is split into two segments of 4-bits

each. Each 4-bit segment is used to address a ROM Look-Up-Table. So, each LUT block

shown in Figure 5.10 it actually contains two ROM LUTs. We could have had only one

5-14

ROM LUT and apply all the eight bits of the data on it, but this would be space consuming

on the FPGA because it would need a ROM with 28 = 256 memory locations. By splitting

the data in two, each ROM has now 24 = 16 memory locations.

The upper (Most Significant) LUT contains all the partial products of the 8-bit

coefficient times the most significant 4-bits of the data (i.e., 16 partial products). Similarly,

the lower (least significant) LUT contains all the possible partial products of the 8-bit

coefficient times the least significant 4-bits of the data. Therefore, at the output of each

LUT we have a 12 bit partial product (4bits data + 8bits coefficient). Each 12 bit partial

product is appropriately zero padded and then Summed to produce the final product at the

output of the Tap.

5.2.2 Filter Performance

The design was implemented on a Xilinx 4013 10 FPGA on the Aptix Mp3 prototyping

board. Using the Synopsys and Xilinx tools, the FPGA area used and the max time delay of

the filter were obtained as shown on Table 5.3 below.

TABLE 5.3 - AREA AND TIMING PERFORMANCE

Total number of CLBs used 302

% space of 4013 FPGA used 52%

Max data arrival time (=max delay) 51.65 sec

Max filter clock speed 20 MHz

Table 5.4 below shows a comparison of the filter described in this report with two other

filters designed before.

As shown in the tables, the LUT based FIR filter has much better speed

performance compared with the two other filters which use regular multipliers in the

design. Even the 8-tap filter, which uses much less space than the 12-tap LUT based filter,

has bigger time delay in the Data path compared with the 12-tap LUT based design.

5-15

TABLE 5.4 - COMPARISON OF AREA AND TIMING PERFORMANCE OF 3 FILTER DESIGNS

Filter Type Total # of CLB's Max Data Delay Max filter clock
FIR 8-tap with regular

multipliers
140 (24%) 87.8 nsec 11.4 MHz

FIR 12-tap with regular

multipliers
329(57%) 130.36 nsec 7.5 MHz

FIR12-tap with LUT

constant coefficient

multipliers

302(52%) 51.65 nsec 20 MHz

Figure 5.12 below shows the theoretical frequency response of the filter obtained

using Double Precision arithmetic for the coefficients. On the other hand, Figure 5.13

illustrates the experimental frequency response with fixed point coefficients. From Figure

5.12 we observe that there is a steep roll-off at the cut off frequency (O.lFs). At this cut off

point we can see that the magnitude of the response falls by -3dB from the maximum. This

graph was obtained using Double Precision arithmetic for the coefficients which means that

it gives us the desired frequency response with the characteristics given from the Filter

Design System tool. In Figure 5.13 however, we observe that the real frequency response

of the filter differs from the desired theoretical response of Figure 5.12. The -3dB point on

the experimental response occurs at a normalized frequency of 0.08FS.

|H(Q|

<dB> -50 r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized frequency F/Fs

Figure 5.12 - Theoretical Frequency Response

5-16

10

0 \ ■

-10 \ ■

Vout/Vin

(dB)"20 \ ■

-30 ■

-40

-50
C) 0.1 0.2 0.3 0.-

normalized frequency F/Fs

Figure 5.13 - Experimental Frequency Response (Fixed-Point Coefficients)

As shown on Figure 5.13, the -3dB point occurs at around 0.08 Fs and not at O.lFs which is

the design specification. This happens mainly because of the quantization error introduced

on the coefficients. According to our design, the coefficients of the filter are represented by

an 8-bit fixed point binary number. Therefore, when the Double Precision coefficient

number is represented by the 8-bit fixed point number, there is loss of precision because of

quantization. This error can change the filter's characteristics, and especially the frequency

response and cut off point, because the original value of the coefficients changes after

quantization. For example, coefficient bO has a value of bO = 0.040473. When this number

is represented with 8-bit fixed point (two's compliment) arithmetic, it becomes 0.0390625

which is the closest approximation to the original number.

Other man that, the frequency response of the filter shows good rejection

characteristics and meets the -30dB rejection in the stopband as specified in the design.

Compared with filter designs which use regular multipliers, this filter exhibits much better

speed performance and area occupation on the FPGA. A maximum delay of 51.65 nsec was

obtained which allows the filter to operate on clock speed of 20 MHz. The frequency

response of the filter shows good rejection characteristics (-30 dB in the stop band), but due

to quantization error introduced on the coefficients, the cut off frequency is shifted from

O.lFs to 0.08Fs.

5-17

This design occupies 52% of a Xilinx 4013 FPGA, which means that there is still

enough space on the FPGA to expand the design with more taps. The benefit of this will be

better frequency response characteristics with a trade off on delay increase since the data

will have to travel in longer paths. Investigation of this expansion is planned for the future.

Also, the future work includes investigation of some other design techniques for delay

reduction (pipelining for example). Other types of filters are also under investigation (High

Pass, Band Pass etc).

5.3 PN Sequence Generator

Binary PN sequence generators are used in Direct Sequence (DS) spread spectrum systems

as spreading codes. The sequence length before repetition can be extremely long and is

assumed to be random - i.e., the autocorrelation function is an impulse, or nearly so. A PN

sequence generator block diagram is shown in Figure 5.14

The circuit consists primarily of shift registers which are implemented using D type

flip-flops. The input to the first flip-flop in the shift register is the output of the parity

generator, which is implemented using exclusive-or gates. The inputs to the parity

generator are the outputs of the flip-flops. The character of the PN sequence generated

depends on the number of flip-flops employed and on the selection of which flip-flop

outputs are connected to the parity generator. The PN sequence generator is designed using

blocks provided by the Hardware Design System (HDS) and simulated by the simulator

provided by SPW. For synthesis of the PN sequence generator we require the VHSIC

Hardware Description Language (VHDL) code. The detail block diagram of the PN

sequence generator developed in HDS is given in Figure 5.15.

5-18

PARITY
OHNBRATOB

DO Dl
He*

D2
cat

D3 DW-I

cuoac

Figure 5.14 - Block Diagram of PN Sequence Generator

"\ + /

D Q D Q D Q D Q

CLZ

t t t t t t
1

ENB2

MODULO
1«

OOONTSL

IOOBZ
SLOCX1

OZA*
LOOK

ENS1

Figure 5.15 - Detail Block Diagram of PN Sequence Generator

5-19

The VHDL code generated is used by the synthesis tool to generate the design. In our case

we used Synopsys as the tool to synthesize the PN sequence generator. The Synopsys

synthesis tool takes the VHDL file as input and complies the code. The FPGA compiler

gives a netlist of the design which is used by the Xilinx software' to obtain the

downloadable bit file. This is the general procedure for synthesis of any design developed

in HDS and SPW. The advantage is that changes can be made in the top level design and

synthesized quickly using the synthesis tool. The same procedure as described for the low

pass filter implementation is used to implement the PN sequence generator on the Aptix

MP3 board.

5.4 Design of 8 point FFT

5.4.1 Description of the Algorithm

In the radix-2 decimation in frequency (DIF) FFT algorithm, the frequency decimation

passes through total of M stages, where N = 2M with N/2 2-point DFTs or butterflies per

stage, giving a total of N/2 * log2 N butterflies per N-point FFT.

The RMBX % frOKffly Element

Figure 5.16 - The Block Diagram of Radix 2 Butterfly Element

5-20

In the case of an 8-point DFT implemented using the radix-2 DBF FFT algorithm,

the input samples are processed through three stages. Four butterflies are required per

stage, giving a total of twelve butterflies in the radix-2 implementation. Each butterfly is a

2-point DFT of the form depicted in the Figure 5.16 . The inputs A and B are the inputs to

the radix-2 DEF FFT butterfly. Multiplication with the twiddle factor W is shown in the

Figure 5.16 . The outputs of the radix 2 element are X and Y expressed in terms of inputs

A, B and the twiddle factor W.

5.4.2 Details of Implementation

The 8 point FFT is designed using HDS. The design uses the shift and add technique for

multiplication of the filter coefficients with the signal samples. The coefficients that are

used in the design are rounded so they can be expressed as the sum of two, power-of-two

terms. The design makes use of a radix-2 algorithm which includes a standard butterfly

element and necessary weights. The block diagram of the eight point FFT is shown in

Figure 5.17.

The block diagram gives the overview of the 8 point FFT system. The design makes

use of two FPGAs to implement the following two functions: FPGA1 is used for buffering

the incoming signal and FPGA2 is the 8 point FFT processor which computes the FFT of

the samples provided by the input buffer stage. The detailed implementation of the 8 point

processor is shown in Figure 5.18. The figure makes use of the radix 2 DEF algorithm to

compute the 8 point FFT.

The element node in the Figure 5.18 is the radix 2 butterfly element except that the outputs

of the node element are weighed by the twiddle factors. The multiplication with twiddle

factor is implemented using the add and shift method by expressing the twiddle factor in

terms of two power-two terms. The block diagram of the node element implemented is

shown in Figure 5.19: The requirement is that the 8 point FFT be capable of processing real

time data, hence it is necessary to buffer the incoming data bits. To buffer the input data it

is necessary to latch the incoming serial data which requires us to demultiplex the data and

latch, so that the data is available for processing.

5-21

SD (KM

ANALOOTO

DttXEAL OUMVEUSft

!»•

nr^

IPOA1
(prrtNkc

HHBU.TO

AKALOO UmiBIU

THE BLOCK DIAGRAM OP 1 POINT PFT VSSNO KADPt I BUTTERFLY

Figure 5.17 - The Block Diagram of Eight point FFT using Radix 2 Algorithm

MODS HODB NODB

i vniV^r
, Tnmr%

MSpOl

» IT*1

*

ftftfy

MOB

W*tX

KODB NOOB

(pf»^
.*

*

JÜI!T^
NODI MODI

Wf*l

.00.

> r—r'*

-^ * .

W(kl] „^

MOM

W*X

NODS
:

MODS
•jnECUL^

'

waki p—jf
'

i IBB DB1 rAILBIX XX DU U3RAM OF t K INT FFT USD« BADOC 2 ALO ORITHM

Figure 5.18 - The Detail Block Diagram of 8-point FFT using Radix 2 Algorithm

5-22

The block diagram of the buffering stage, which buffers the incoming real time A/D

converted signal is shown in Figure 5.20. To implement the buffering stage we need around

250 CLBs on the FPGA. The design of an 8 point FFT requires more than 350 CLBs;

therefore, both the buffering stage and 8 point FFT cannot be implemented on a single

FPGA, hence we require two FPGAs to implement both of them.

Ai

Bi

SHIFT

auf**«» -V— c,

SHIFT
^-* Ci

SHIFT

CUttakr«-»
-j£—. Dr

SHIFT
» . Di

THE BLOCK DIAGRAM OF NODE IN THE RADIX 2 BUTTERFLY IN < POINT FFT DESKS

Figure 5.19 - The Block Diagram of Node element used in 8 point FFT

To implement the buffer stage, VHDL code is compiled and simulated in order to verify

the design. The VHDL code is used as an input to the Synopsys tool to synthesize the logic.

The 8 point FFT designed in HDS follows a procedure similar to the PN sequence

generator. The model of the 8 point FFT developed in HDS and the VHDL code generated

by the VHDL link of SPW (HDS) is used for synthesis. The synthesis is accomplished

using the Synopsys FPGA compiler which provides a netlist file which is used by the

Xilinx Synopsys libraries to provide the downloadable bit file which can be used to

implement the FFT on the Xilinx FPGA.

5-23

Figure 5.20 - The Block Diagram of Buffering Stage used in 8 point FFT

5.5 Scalable FFTs

As the number of points of FFT implementation increases, it requires buffering of

incoming samples and processing of the stored samples. The buffering suggested in the

previous section is not practical and requires a memory to store the incoming samples and

the intermediate samples that are to be processed.

The implementation can be done in two ways, one method is to make use of the

memory provided by the FPGA and second way is to use an external memory. For very

large FFTs it is advisable to use external memory. Both methods of implementation make

use of the same algorithm except that, the number of points, amount of time and hardware

required differ.

5-24

5.5.1 Description of the Algorithm

The algorithm used to compute the 16 point FFT is based on the radix 4 FFT. The hardware

requirements for the implementation are memory to store the incoming and processed

samples, a radix 4 butterfly for processing purposes and a multiplier for performing

multiplication of twiddle factors with the samples. The multiplication operation is obtained

by shift and add operations on the samples.

We make use of just one complex multiplier for multiplying the coefficients and the

samples. A critical component of the design is the implementation of the control logic for

synchronizing the memory, radix-4 butterfly element and the multiplier. The radix-4

algorithm is used when the number of the points of FFT required is a power of 4. In this

way, the original one dimensional array can be broken down into elementary computations

of four point DFTs. The systems developed are 16 point and 64 point FFTs. The block

diagram of a 16 point FFT is shown in Figure 5.21 and can be expressed as a flow diagram

in a similar manner as the radix-2 flow diagram.

_**m*^ %^

^ '** T!/*- 'iT* •#
,»?"e~T~~-^ S V* ^^*^_>^--
A^^Tv "^^■^-i/^^^^ •_^

yv >^syA A^^. y
• »•

**"^ • ,%

12 • » -

13 •

14 "

is e»

Y^/A/^ . ^v£_ J—---^—^*"

KADK * . 16 POINT DIP. NORMALLY ORDERED INPUT.
BIT REVERSED OUTPUT

Figure 5.21 - Flow Diagram of 16 Point FFT

5-25

5.5.2 General Overview of the System

This section gives the details of how the algorithm is implemented. The block diagram of

the design is shown in Figure 5.22. The detailed block diagram shows how the different

hardware components are connected. The input samples from the A/D board are interfaced

to the MP3 system emulator and are routed with the help of the I/O FPGA to the radix four

butterfly element. The control logic is implemented in the I/O FPGA which generates the

control signals for the memory, the butterfly element and the complex multiplier.

»Aft* 1

inSTOt.1T
'1K.A u

-*—
i—r

3—
Mi

«t»l

UAOtJä

inamm
MUX

WKM

iJr
i. K> IK.Ai

cn (•hi

Ms**
1

^

^-V-

-^^T1-

-7-

inn. HI/X'IC owfiRAM Or SOAunu; RT

Figure 5.22 - The Block Diagram of the System

The MP3 board, as discussed earlier, is a field programmable circuit board which is

used to prototype complex digital systems. The programmable interconnect components on

the board provide the programming capability of the board. ASICs, FPGAs and other

components can be plugged into the board. The board has a diagnostic plug interface to

which diagnostic devices are connected. The hardware components required to implement

the FFT algorithm are SRAM, ROM and FPGAs.

The radix-4 butterfly element is a four point DFT implemented on the FPGA. The

complex multiplier, which is also implemented on a FPGA, operates on complex inputs and

5-26

coefficients and gives a complex output signal. The control signals required to synchronize

all of the interconnections between the hardware components are implemented on an I/O

FPGA. The advantage of putting the butterfly, complex multiplier and control unit on a

FPGA is that the design can be changed. The details of implementation of the control

logic, radix 4 butterfly and complex multiplier are discussed in the following sections.

5*5.3 Control Logic Design

Control logic is used to synchronize various components of the design. The control logic

generates control signals for the whole design. The main control signals generated by the

unit are those used to enable read and write address counters which provide addresses to

perform memory read and write operations.

The control unit enables all the read and write counters at appropriate times. Three

read and two write counters are required for the entire computation of 16 point FFT. The

counters are multiplexed to form a single bus, which is used as the address lines of a

second port for the memory. The Figure 5.23 shows various blocks of the control logic

unit.

The data buffer unit serves the purpose of latching the incoming data and sending it

to the data bus of port one of the memory. The memory control unit generates the read and

write addresses for both ports of the memory along with the port enable and read/write

enable signals. The memory control unit generates control signals for other parts of the

design such as the ROM control unit, Coeff buffer, input data buffer and the buffer used to

latch data read from memory. The ROM control unit generates the addresses for the ROM

along with the output enable. The ROM unit is used for storing coefficients and the

coefficients are accessed by the address generated by the ROM control unit. The Coeff

buffer is used to store the real and imaginary parts of the coefficients and route them to the
A

complex multiplier.

The memory control signals buffer is used to buffer all the memory control signals

along with the addresses. The buffering is done in order to avoid interfacing problems

between two chips. The two chips are the FPGA, which generates the control signals and

addresses, and the SRAM. The data read from memory is 8 bits wide and inputs to the

5-27

radix 4 element are four samples, each 16 bits wide. Therefore, the data read from the

memory needs to be buffered in order to input it to the radix-4 butterfly element. In the

following section the memory control unit is discussed in detail.

Daufroa
A4>

Dtti M
Memory

lll|HU

Dm

Bafltr

Caaaai Addreu
IB

^'.

CaUU 10

13

Mi limp Cuuiiol
SJQUk
Buffer

12 ¥-

ax.

J
13

CoaUol

Unit

13

Coeff
Baffer

w
ROM

n ROM
Control

Unit

Buffer lo

U*A dma
IMA fiOCD

The Block Diagram of Control Logic Unit Designed

Figure 5.23 - Block diagram of Control Logic Unit

5.5.4 Memory Control Unit

The memory control unit is the main part of the control logic . The purpose of the unit is to

generate control signals and addresses for the design. The unit includes the read and write

counters to generate the addresses to access the memory. Figure 5.24 gives details of the

memory control unit.

In Figure 5.24 the read counters and the write counters generate read/write

addresses to access the second port of the memory. The outputs of these counters are

multiplexed using a 5 to 1 multiplexer. The logic block takes the outputs of the read/write

counters to generate memory control signals and enable signals which are used to enable

the counters. The write address block in the figure generates write addresses for port one of

the memory chip. A detailed explanation of each block is given in the sections to follow.

5-28

CWgllBR J

.WgjTOtl

13
«L

O0DMIBL1
Z^

^

<XK

COQWTBK» ■^

OOQKTOtj
>3L

5 to 1

MUX To

Multiplex

Addree»

[-* Count

Peit2 Read/Write Addren
-^

13

Enable SitneJ«

Logic is
genenle

metooxy control
ad

Enbele ■icnaa

T
JLJL.

Memory Control Siguk

—?4:

Write Addrau t3x

12

Pott 1 Write Addrea

The detail diagnun of the memory control unit designed

Figure 5.24 - Diagram of memory control logic unit

5.5.4.1 Write Address Counters

This section describes how the write address is generated for storing the incoming samples.

Since the design is required to store 16 samples, the write address counter is a modulo 16

counter. The clock required to run this counter is thirty two times slower than the clock

required for processing the stored data. To eliminate the problem of clock skew, which

occurs when more than two different clocks are used, we derive the slower clock from the

faster clock by making use of a divide by five counter. Since a dual port SRAM is to store

the incoming samples, one of the ports of the memory is used for writing the data samples

obtained from the A/D. Writing data into the memory requires a port enable signal, address

bus and write signal. The write address, as mentioned earlier, is a simple modulo 16

counter and the data is written to memory on the rising edge. Hence the write signal for

port 1 is obtained from inverting the clock used to run its address counter.

The speed of the clock used for generating the write address is determined by

calculating the number of clock cycles required for computing the 16 point FFT. The write

address is generated continuously to store samples coming at a constant rate. Hence one

5-29

port of the memory is permanently used for writing input data. Since the 16 point FFT of a

signal requires writing the computed data twice into memory we require two more sets of

write addresses. These address lines are used to access the second port of the memory.

The write is executed on the rising edge of the signal, which is obtained by inverting the

clock used for generating the write addresses. This clock signal is obtained using a modulo

two counter clocked by the system clock. Table 5.5 gives the number of write counters

used for designing a 16 point FFT, along with the port accessed, the clock required to

generate address counter, the range of the addresses accessed by the counters and the time

for which they are enabled. In Table 5.5 Cntrl is a counter that generates the address for

writing the data samples obtained from the A/D into the memory. These addresses access

only port one of the memory and write into the memory from address 0 to F in the

sequential order. The Cntrl is always enabled as it has to write the data coming from the

A/D.

TABLE 5.5 - DESIGN OF THE 16-POINT tti

Write counter
number

Port number
accessed

Clock speed for
generating addresses

Addresses
accessed

Enable time
for write

Cntrl 1 sys-clk/32 0 -F(hexO always

Cntr2 2 sys-clk/2 10 - 2F (hex) certain time

Cntr3 3 sys-clk/2 10 - 2F (hex) certain time

The write counter Cntr2 is used to write back the computed data during the first stage of

processing of the data samples. The range of addresses accessed is from 10 - 2F (hex). The

final write counter Cntr3 generates an address to write back the data that is computed after

stage two. Cntr3 also accesses addresses from 10 - 2F (hex), and both Cntr2 and Cntr3

generate addresses that access the second port of the memory. The difference in the two

counters are the times for which they are enabled and the order in which they count.

5-30

5.5.4.2 Read Address Counters
The addresses for the memory read are provided by the read counters. There are three read

counters to generate a different set of addresses at different times. These read counters are

enabled at different times to count and generate the required address lines. According to

the algorithm, one read operation from the memory is followed by the processing of the

sample from memory and then writing back of the processed sample. Since we are making

use of the radix-4 butterfly element, we read four memory locations consecutively. The

purpose of the read counters is to generate addressees for these memory locations in the

correct order. The number of read counters required for a 16 point FFT computation are

three. The first read counter increments such that the sequence of the count generates

addresses to read from Oth, 4th, 8th and 12th memory locations.

TABLE 5.6 - DESIGN OF THE 16-POINT FFT (CONTD.)

Write counter
number

Port number
accessed

Clock speed for
generating addresses

Addresses
accessed

Enable time
for write

Cntrl 2 sys-clk/4 0 -F(hexO 4

Cntr2 2 sys-clk/4 10-2F(hex) 8

Cntr3 2 sys-clk/2 10 - 2F (hex) 32

After the samples are read from memory they are buffered and input to the radix-4 butterfly

element. The read counters are enabled at appropriate times as mentioned earlier. The first

read counter is enabled only after the 12th input sample is written into the memory - in fact

the counter is enabled one cycle after the 12th data sample is written into the memory.

Four read operations are followed by a DFT computation of four samples read from

memory, which is followed by the multiplication of the computed samples with the

appropriate coefficients. Table 5.6 provides the number of read counters required, the port

number accessed by the addresses generated by the counter, the speed of the clock required

to drive the three synchronous counters in terms of the system clock, the range of addresses

accessed and the number of read operations performed during a read cycle. The Cntrl

counter generates the addresses to read from port two of the memory during the first stage

5-31

of processing. Counter Cntr2 is used to read the intermediate computed data written after

the first stage of processing; and the final counter Cntr3 is used to read the processed

samples that are stored after the second stage of processing. Since it is a 16 point FFT there

are only two stages of processing required and hence the final counter reads the computed

FFT of the signal.

5.5.5 Design of Radix 4 Butterfly Element

The flow diagram of the radix 4 butterfly element is shown in Figure 5.25. The element

inputs four samples and outputs four samples. The algorithm is as follows: the four input

samples shown in the figure are multiplied by certain weights and summed to give a single

output sample. We require four adders to sum the input samples.

INPUTl --/^r\.
•

OUTPUTl

1NFUT2 ..

INPUT3^

INPUT *££

RADIX 4 BUTTERFLY

42/

OUTPUT*

vrV. OUTPUTS

ELEMENT FLOW

OUTPUT*

DIAGRAM.

Figure 5.25 - The Flow Diagram of Radix 4 Butterfly Element

The design is pipelined by using flip flops in the path between the inputs and outputs. This

helps in increasing the operating clock frequency. The design of the Radix 4 Butterfly

element is designed using HDS. The SPW tool generates the VHDL code for the butterfly

5-32

element The code generated is synthesized by the Synopsys FPGA compiler to provide the

netlist of the design for configuring the FPGA.

5.5.6 Design of Complex Multiplier

The block diagram of the complex multiplier is shown in Figure 5.26. The multiplier takes

the real and imaginary part of the sample as input, along with complex coefficient, which is

stored in the ROM. The complex multiplier is designed in HDS section of SPW.

Figure 5.26 - The Block Diagram of Complex Multiplier

The same procedure described in the previous section is carried out for implementing the

multiplier on the FPGA. There are two clock cycles available for computing the complex

multiplication of the inputs and the coefficients. A pipelined architecture is used in the

data path which helps to increase the operating clock frequency of the multiplier. The

product of the sample and coefficient provides real and imaginary parts each of which are 8

bits wide. Since the width of memory bus is only 8 bits, we require two clock cycles to

write the complex product. The real and imaginary parts are multiplexed using a two to one

5*33

multiplexer, with the select line provided by a modulo two counter which is clocked four

times slower than the system clock. The two to one multiplexer, the modulo two counter,

and the complex multiplier are designed as a single module. The speed of operation of the

module is determined by the delay involved in designing the complex multiplier. The time

required to perform the complex multiplication is 105ns. The data path delay in the

multiplier limits the frequency of operation. Reducing this delay helps in achieving higher

speeds of operation.

5.5.7 Read Only Memory Design

The coefficients used during the computation of the FFT need to be stored since they are

used repeatedly for processing of the signal samples. The coefficients are stored in a ROM

since the coefficients do not change during computation of the FFT. The control logic and

ROM to store the coefficients are designed to target a single FPGA.

The design of the ROM consists of a look up table of 14 addresses, since there are

only 7 different coefficients required for computing a 16 point FFT using radix 4 algorithm.

Access to the table is accomplished with the help of integers and requires a bit vector to

integer conversion. The diagram showing the design of the 14 x 8 ROM is shown in Figure

5.27.

The inputs to the ROM module are the clock, the output enable and four address

lines. The output of the ROM module is an 8 bit wide coefficient. Two memory locations

are used to store the 16 bit complex coefficient. The address lines are given to the bit vector

and decoder section of the module which converts the binary address into integers to access

the look up table, in which the coefficients are stored. The output section of the ROM

module consists of a sequential element which is enabled by the input and triggered by-an

external clock. The coefficient is written to the output data bus only on the rising edge of

the clock and when the enable signal is high - this helps in interfacing the ROM with the

control logic unit.

5-34

14 x 8

LOOK UP

TABLE

(To Store

Coefficient!)

i
■
i • 1 to 14

Addreu

Doooder

»/ D

Flip-Flop

COEFF

AORS
/ '

* .j / • I

3

ENABLE

CLK

THE BLOCK DIAGRAM OF 14x8 ROM DESIGNED.

Figure 5.27 - The Block Diagram of Read Only Memory

5.6 Implementation of 64 Point FFT

The algorithm used here is the same as the one, used for implementing 16 point FFT with a

few hardware changes. The design uses SRAM, a radix 4 butterfly element, a complex

multiplier and control logic. The control logic design differs slightly from the previous

design in that there are more samples to process; requiring changes in the generation of

read and write addresses. Since a standard memory chip is addressed, care is taken to

generate appropriate read and write enable.

Since the design makes use of the same radix-4 butterfly element and complex

multiplier, the real challenge of the design is to develop the necessary control logic to

access the memory. A different sized ROM is also required to store the coefficients which

are different from the coefficients used in the 16 point FFT design. As more computations

are necessary in the case of the 64 point FFT, the design runs slower than the 16 point FFT.

Therefore, as the number of points in the FFT computation increases, the time required for

the computation also increases. The focus of the design is mainly on the control logic unit,

therefore, the next section describes with the design details of the control logic required to

integrate SRAM, ROM, radix-4 butterfly element and complex multiplier.

5-35

5.6.1 Control Unit Design

The control unit can be broken up into several sub units. One important sub unit is the

control unit for memory which generates the read and write addresses used to access the

memory locations of the SRAM. The read and write addresses are 13 bits wide and the

design requires four phases of read operations and three phases of write operations.

Counters are designed for generating the read and write addresses for the read and write

operations respectively. The SRAM used is a dual port memory, which means that write

and read operations can be done simultaneously but to different memory locations.

According to the design requirements, the data is received continuously from the A/D, so

one port of the memory is used exclusively for writing the incoming data. The other port

of memory is used for reading the buffered input and writing back the intermediate

computed samples. To do this we multiplex the outputs of the read and write counters to

obtain a single bus for addressing the second port of the memory. The read counters are

enabled for reading eight memory locations and are disabled for the time duration of the

computation and time required for writing the eight intermediate computed samples back

into memory. In the same manner the write counters are enabled for writing eight samples.

During the three read and write phases, we carry out the same logic except during the

fourth read phase, when the FFT is computed, and during which 128 memory locations are

read.

For the read operation to be accomplished from the SRAM, we need the read signal

to be high, the corresponding port enable to be low and the appropriate address required to

access the memory location. The write operation is slightly different, as the data for a

specific memory location is written on the rising edge of the write signal, hence care should

be taken not to violate the setup and hold time requirements of the device. The control unit

is modeled in VHDL, using behavioral and data flow styles. The code is simulated using

the Mentor Graphics simulation tool to test the functionality of the control unit.

ROM address generation is another sub unit function. The ROM holds the

coefficients which are used as inputs to the complex multiplier along with the outputs of

the radix-4 butterfly element. The address bus is 6 bits wide and it is generated by the

5-36

control unit. The unit also generates the chip enable, output enable and read signal for the

ROM. The coefficients stored are the twiddle factors which are used in the multiplication

operation with the output of the radix 4 element.

The buffer control unit is another sub unit which is used to buffer the samples read

from the memory and send them to the radix-4 butterfly element. Since we can read only

one sample from memory at a time, and the radix-4 element requires four sample, this unit

buffers the samples and then send the samples to the butterfly element.

5-37

Appendix A

Details of The Design Flow

This chapter of the appendix gives the details of a simple design to illustrate the design

flow adopted.

A.1 Description of The Design

The first step in the flow is to describe the design using a language or a schematic editor.

The example code below is for a simple PN sequence generator. The number of delay

elements used is 4 and hence the length of the codes that can be generated is 24 - 1.

— Define External Libraries

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE. STD_LOGIC_ARITH. ALL;

LIBRARY SYNOPSYS;

USE SYNOPSYS.ATTRIBUTES.ALL;

A-l

ENTITY pnseq IS

PORT(clear,Clock : IN BIT;

pnout : OUT BIT;

clkout : OUT BIT);

END pnseq;

ARCHITECTURE pn_behav OF pnseq IS

SIGNAL cnt4,cout,dout : BIT_VECTOR (3 DOWNTO 0);

SIGNAL ENBl,ENB2 : BIT ;

BEGIN

prol : PROCESS(clear,Clock,ENB1)

BEGIN

IF(clear='l') THEN

cnt4 <= -0000";

ELSIF(Clock'event AND Clock='l') THEN

IF(ENBl='l') THEN

cnt4(0) <= NOT (cnt4(0));

cnt4(l) <= cnt4(l) XOR cnt4(0);

cnt4(2) <= (cnt4(2) XOR (cnt4(l) AND cnt4(0)));

cnt4(3) <= (cnt4(3) XOR (cnt4(2) AND cnt4(l) AND

cnt4(0)));

END IF;

END IF;

A-2

END PROCESS prol;

cout <= cnt4;

pro2 : PROCESS(cout)

BEGIN

ENB1 <= NOT (COUt(O) AND COUt(lj AND

cout(2) AND cout(3));

ENB2 <= (cout(3) AND (NOT cout(2))

AND cout(l) AND (NOT cout(O)));

END PROCESS pro2;

pro3 : PROCESS(clear,Clock,ENB2)

BEGIN

IF(clear='l') THEN

dout <= "0000";

ELSIF(Clock'event AND Clock='l') THEN

IF(ENB2='l') THEN

dout <= "1000";

ELSIF(ENB2='0') THEN

dout(0) <= dout(3) XOR dout(2);

dout(l) <= dout(0)

dout(2) <= dout(l)

dout(3) <= dout(2)

END IF;

END IF;

A-3

END PROCESS pro3;

clkout <= Clock;

pnout <= dout(3);

END pn_behav ;

A.2 Simulation and Synthesis of the design

The second step in the flow is to simulate the design. If the design is developed using the

SPW schematic editor, the design is verified in the simulation environment provided by

SPW. If the design is described using a hardware description language, the design is

simulated using Synopsys simulation environment. Once the design is verified

functionally, then it is synthesized using the Synopsys FPGA compiler. Below is the

script file used for synthesizing the PN sequence generator.

/* Set the top level module names for the design */

TOP = pnseq

/* set the designer and company name for documentation */

designer = "rao"

company = "ITTC"

A-4

/* Analyze and Elaborate the design file and specify the

design format */

analyze -format vhdl TOP + ".vhd"

elaborate TOP

/*. Set the current design to the top level */

current_design TOP

/* Add pads to all ports , change the default

slew rate to SLOW */

set_port_is_pad {clear,Clock,pnout,clkout}

uniquify

insert_pads

/* set the timing constraints */

create_clock Clock -period 50

/* Compile Design */

compile -map_effort med

/* Save Design report file */

A-5

report_fpga > TOP + ".fpga"

report_timing > TOP + ".timing"

/* Write out the design to a DB file */

write -format db -hierarchy -output TOP + ".db"

/* Replace CLBs and IOBs with gates */

replace_fpga

/* Set the part type */

set_attribute TOP "part" -type string "4013pg208-4"

/* Save design in the XNF format as <design>.sxnf */

write -format xnf -hierarchy -output TOP + ".sxnf"

/* Exit the compiler */

exit

A-6

A.3 Implementation of the design

As mentioned earlier, the Aptix MP3 board is used for implementing all the designs

developed. The Aptix MP3 hardware platform is supported by software to accomplish

the reprogramming. The input for the software is a top level netlist of the design in a

standard XNF or SCICARD format. The file below gives the top-level netlist file for the

PN-sequence generator in the XNF format.

LCANET, 4

SYM, OSC, OSC, =REFDES=CLOCKl, =PKG_TYPE=DIP4_3

PIN, CLK, 0, ioclk,, =#=1

PIN, GND, I, GND, , =#=2

PIN, VCC, I, VCC,, =#=3

PIN, GND, I, GND,, =#=4

END

SYM,IFIL,4013PQ208-4,=REFDES=FPGAl,FILE=pnseql.xnf,

=PKG_TYPE=MP_XC_MQ208

PIN, IRESET, I, buf2pad3

PIN, IOutData, 0, IOutData

END

SYM, QFIL, 4013PQ208-4, =REFDES=FPGA2, FILE=pnseq2 .xnf,

=PKG_TYPE=MP_XCJMQ2 08

PIN, QRESET, I, buf2pad3

A-7

PIN, QOutData, 0, QOutData

END

SYM,IOFPGA,4013PG223/=REFDES=IOFPGA/FILE=pnckio.xnf,

=PKG_TYPE=APMP3_XX110

PIN, buf2padl, I, IOutData

PIN, buf2pad2, I, QOutData

PIN, buf2pad3, 0, buf2pad3

PIN, ioclk, I, ioclk

END

PWR, 0, GND

PWR, 1, VCC

EOF

A-8

Appendix B

Details of Design of Control Logic Unit

B.l Memory Interface Signals

This section gives the details of the signals used for interfacing with the standard SRAM

chip.

B.l.l Port 1 address, enable & read/write signals

As the SRAM used in our case is a dual port, that is there are two ports available for

reading and writing. The address generated for port one are 0-F(hex). The port is used

only for writing the incoming data. The enable signal for port 1 is always low, as data

is coming in continously. The data coming in is to be written into the memory and is

done on a rising edge. The write signal is obtained from inverting the clock used for

driving the write address counter that generates address for port 1 of memory.

B-l

B.1.2 Port 2 address, enable & read/write signals

The address of second port of memoiy is obtained by multiplexing five address coun-

ters. The five address counters generate read and write address, that are used access

data in the memory or write data into the memory. The details of the counters are given

below :

• The first read counter reads the data that is stored in the memory for processing

the data in first stage. The sequece in which the counter counts is as follows, all

the address are in hex representation:

00,04,08, OC, 01,05,09,0D, 02,06,0A, OE, 03,07, OB & OF.

During the first read only four samples are read at a time, hence there are four

read cycles in which four samples are read each time.

• The first write counter writes the data that is obtained after the processing through

first stage. The sequence in which the counter counts is as given below and all

the address are in hex:

10,11,18,19,20,21,28,29,12,13,1A, IB, 22,23,2A, 2B, 14,15,

1C, ID, 24,25,26,2D, 16,17, IE, IF, 26,27,2E & 2F.

During the write, eight samples are written one after another and there are four

such write cycles.

• The second read counter reads data from the memory for processing data in sec-

ond stage. The address generated by the counter are as follows : 10,11,12,13,

14,15,16,17,18,19,1A, IB, 1C, ID, IE, IF,

20,21,22,23,24,25,26,27,28,29,2A, 2B, 2C, 2D, 2E, & 2F.

In the second read phase eight samples are read one after another for processing.

They are a total of four read cycles each reading eight samples.

B-2

• The write counter generates addresses to write the data processed in the second stage.

The sequence of counting is identical to the second read count. The sequence is as

follows:

10,11,12,13,14,15,16,17,18,19,1A, IB, 1C, ID, IE, IF,

20,21,22,23,24,25,26,27,28,29,2A, 2B, 2C, 2D, 2E, 2F

The second write counter writes eight samples in the corresponding locations

• The final counter is used to read the samples whose DFT has been computed. The

counter reads 32 memory locations continuously. The sequence in which the counter

reads the samples is as follows:

10,11,18,19,20,21,28,29,12,13,1A, IB, 22,23,2A, 2B, 14,15,

1C, ID, 24,25,26,2D, 16,17, IE, IF, 26,27,2E, 2F

B.1.3 ROM enable and address signals

The ROM used to store coefficients consists of 14 memory locations, each 8 bits wide.

The enable and address lines are used to access the coefficients stored in the ROM. The

signals are described below:

• The coefficients stored in memory are written to the output bus on the rising edge

of the clock. The clock for the ROM is derived from a modulo-2 counter..

• The output of the ROM is written to the output when the output enable signal is

high.

• The address bus is 4 bits wide and is used to access the look-up table. As

mentioned earlier, the depth of the look-up table is 14 and the coefficients stored

in the table are 8 bits wide.

B-3

Appendix C

Bibliography

[1] Digital Signal Processing in FLEX Devices, ALTERA Product Information Bulletin
23, See http:/Avww.altera.com.

[2] Leo Petropoulos, "Replace Digital Signal Processors with HCPLDs," Electronic
Design, September 5,1995, pp. 99 - 104.

[3] Steven Knapp, "Using Programmable Logic to Accelerate DSP Functions", Xilinx
Application Note, 1995.

[4] Eric. L. Upton and Thomas J. Kolze, "Reconfigurable Modems Serve as Multi-
Application Communications Node Integrators," 1993 Conference of the American Institute
of Aeronautics and Astronautics, pp. 1 - 3.

[5] Rupert Baines, "The DSP Bottleneck," IEEE Communications Magazine, May 1995,
pp. 46-54.

[6] Russell Petersen and Brad Hutchings, "An Assessment of the Suitability of FPGA
Based Systems for Use in Digital Signal Processing," Field Programmable Logic and
Applications: Proceedings of the 5th International Workshop, FPL-95, Oxford, United
Kingdom, August/September 1995, pp. 293 - 302.

[7] A. Lawrence, A. Kay, W. Luk, T. Nomura, "Using Reconfigurable Hardware to Speed
up Product Development and Performance," Field Programmable Logic and Applications:
Proceedings of the 5th International Workshop, FPL-95, Oxford, United Kingdom,
August/September 1995, pp. 1.11 - 117.

[8] S. Kotta and S. Simanapalli, "Rapid Prototyping of a Digital Signal Processor," Field
Programmable Logic and Applications: Proceedings of the 5th International Workshop,
FPL-95, Oxford, United Kingdom, August/September 1995, pp. 844 - 847.

[9] Paul Dunn, "A Configurable Logic Processor for Machine Vision," Field
Programmable Logic and Applications Proceedings of the 5th International Workshop,
FPL-95, Oxford, United Kingdom, August/September 1995, pp. 68 - 77.

C-l

[10] L.E. Turner and PJ.W Graumann, "Rapid Hardware Prototyping of Digital Signal
Processing Systems using Field Programmable Gate Arrays," Field Programmable Logic
and Applications Proceedings of the 5th International Workshop, FPL-95, Oxford, United
Kingdom, August/September 1995, pp. 129-138.

[11] Joe Mitola, "The Software Radio Architecture," IEEE Communications Magazine,
May 1995, pp. 26 - 38.

[12] Bernie New, "A Distributed Arithmetic Approach to Designing Scalable DSP Chips,"
EDN, August

[13] Satish Mohankrishnan and Joseph B. Evans, "Automatic Implementation of FIR
Filters on Field Programmable Gate Arrays", JJEEE Signal Processing Letters, March 1995.

[14] Joseph B. Evans, "Efficient FIR Filter Architecture Suitable for FPGA
Implementation", IEEE Trans. Circuit & Systems, July 1994.

[15] Chi-Jui, Satish Mohanakrishnan and Joseph B. Evans, 'TPGA Implementation of
Digital Filters", Proceedings of the. 1993 International. Conference on. Signal Processing.
Applications. & Technology.

[16] Joseph B. Evans, "An Efficient FIR Filter Architecture", Proceedings of the 1993
IEEE Int. Symposium on Circuit & Systems.

[17] Satish Mohanakrishnan and Joesph B. Evans, "A Framework for the Design of High
Speed FIR Filters on FPGAs", Proceedings of the. 1994 International. Conference on
Signal Processing. Applications & Technology

[18] Yong Ching Lim, Joseph B. Evans, Bede Liu, "An Efficient Bit-Serial FIR Filter
Architecture", Circuit Systems and Signal Processing, May 1995.

[19] Henry Verheyen and Greg Lara, "Rapid Prototyping Using System Emulation
Technology for DSP Design Validation", An article by Aptix Corporation, May 1996. 73

[20] Wayne Wilson and Michel Courtoy, "Rapid Prototyping of Telecommunication
ASICs with FPGAs", An article by QUALCOMM Inc and Aptix Corporation, 1996.

[21] Michel Courtoy, Aptix Corporation, "RAPID Verification of ASIC-Based Designs",
Wireless Systems Design, October 1996.

1999-MO-130-HIO70
«U.S. GOVERNMENT PRINTING OFFiCE.

C-2

MISSION
OF

ÄFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

