
»-»• %

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MATHEMATICAL MODELING USING
MATLAB

by

Donovan D. Phillips

December 1998

Thesis Advisor:
Second Reader:

Maurice D. Weir
Bard K. Mansager

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

MATHEMATICAL MODELING USING MATLAB

6. AUTHOR(S)
Phillips, Donovan D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING /
MONITORING

AGENCY REPORT NUMBER

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Mathematical modeling forms a bridge between the study of mathematics and the application of mathematics with the intent
of explaining or predicting real world behavior. In their book A First Course in Mathematical Modeling, Frank R. Giordano,
Maurice D. Weir, and William P. Fox provide an introduction to the entire modeling process. Model verification, an important
step in the modeling process, often requires the analysis of vast amounts of data, making computational support essential.
Mathematical Modeling Using MATLAB acts as a companion resource to .4 First Course in Mathematical Modeling with the goal
of guiding the reader to a fuller understanding of the modeling process through the employment of MATLAB's powerful
computational capabilities. In it, the reader is led through a series of examples, each building upon the previous, which apply
MATLAB's computational power to various modeling scenarios. While not intended as a text in modeling, Mathematical
Modeling Using KdATLAB is a useful resource for the novice modeler interested in tackling problems too large to be performed
manually.

14. SUBJECT TERMS

Mathematical Modeling, Discrete Dynamical Systems, Proportionality, Model fitting

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

7540-01-280-5500

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES
132

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

MATHEMATICAL MODELING USING MATLAB

Donovan D. Phillips
Captain, United States Army

B.S., United States Military Academy, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
December 1998

Author:

Approved by:

Donovan D. Phillips

IU-

rice D. Weir, Thesis Advisor

B «^4 K. \N\c^^^
Bard K. Mansager, Second Reader

p?7t<0 (yüt&t
Guillermo Owen, Chairman
Department of Mathematics

ui

IV

ABSTRACT

Mathematical modeling forms a bridge between the study of mathematics and the
application of mathematics with the intent of explaining or predicting real world behavior. In their
book A First Course in Mathematical Modeling, Frank R. Giordano, Maurice D. Weir, and
William P. Fox provide an introduction to the entire modeling process. Model verification, an
important step in the modeling process, often requires the analysis of vast amounts of data,
making computational support essential. Mathematical Modeling Using MATLAB acts as a
companion resource to A First Course in Mathematical Modeling with the goal of guiding the
reader to a fuller understanding of the modeling process through the employment of MATLAB's
powerful computational capabilities. In it, the reader is led through a series of examples, each
building upon the previous, which apply MATLAB's computational power to various modeling
scenarios. While not intended as a text in modeling, Mathematical Modeling Using MATLAB is a
useful resource for the novice modeler interested in tackling problems too large to be performed
manually.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1
B. INTRODUCTION TO MATLAB 2

1. Structure 2
2. Functions and Operations 9
3. Workspace 10
4. Variables]]
5. Online Help 12

II. MODELING WITH DISCRETE DYNAMICAL SYSTEMS 15

A. INTRODUCTION 15
B. EXAMPLE 1: THE ARMS RACE 15

Scenario 15
Modeling the Dynamics of the Arms Race 16
Plotting 21

EXAMPLE 2: POPULATION GROWTH IN A YEAST CULTURE 27
Scenario 27
An Initial Model 28
Model Refinement 31
Numerical Solution for the Refined Model 33
Bifurcation and Chaos 34

D. EXAMPLE 3: LANCHESTER'S SQUARE LAW DISCRETE MODEL 41
The Model. 42
A Numerical Example 42

III. MODELING USING PROPORTIONALITY 47

A. EXAMPLE 1: VEHICULAR STOPPING DISTANCE 47
1. Initial Model 47

Model Refinement 49
EXAMPLE 2: A BASS FISHING DERBY 56

/. Initial Model 56
Model Refinement 60

■>

■>

IV. MODELING FROM DISCRETE DATA 63

A. MODEL FITTING ; 64

1. Vehicular Stopping Distance — Another Approach 65
2. Residual Plots 66
3. Using MATLAB's Polyfit Function 68

B. EMPIRICAL MODELING 70
1. High-Order Polynomial Models 71
2. Low-Order Polynomial Models 75
3. Cubic Spline Models 84

V. SIMULATION MODELING 87

A. RANDOM NUMBER GENERATION IN MATLAB 87

VI l

B. SIMULATING DETERMINISTIC BEHAVIOR 88
1. Area Under a Curve 88
2. Volume Under a Surface 91

C. SIMULATING PROBABILISTIC BEHAVIOR 92
/. Tossing a Fair Coin 92
2. The Roll of a Fair Die 94

VI. LINEAR PROGRAMMING : 97

A. GEOMETRIC SOLUTIONS 98
B. TABLEAU SIMPLEX METHOD 102

VII. CONCLUSION Ill

APPENDIX 113

INDEX 119

LIST OF REFERENCES 121

INITIAL DISTRIBUTION LIST 123

Vlll

I. INTRODUCTION

A. BACKGROUND

Mathematical modeling is the science of explaining and

predicting (to the extent possible) "real world" behavior

through the application of mathematics. Before we would use

a potential model, however, we would first want to verify,

or validate, the model to ensure it makes sense and that it

answers the question we wish answered. This validation

often requires detailed analysis of large amounts of data

using a combination of modern computer hardware and

appropriate software. MATLAB (matrix laboratory) is one

such software package.

MATLAB integrates computation, visualization, and

programming in an easy-to-use environment expressing

problems and solutions in familiar mathematical notation.

This makes it a useful tool in the process of mathematical

modeling. MATLAB is capable of running on several platforms,

including UNIX systems and personal computers (PCs). In

this thesis I describe the use of MATLAB, Version 5.2 (the

latest version as of this printing) operating in the PC

environment; however, the methods are virtually identical

from platform to platform. A complete description of this

release of MATLAB can be found in Mastering MATLAB 5: A

Comprehensive Tutorial and Reference (1).

B. INTRODUCTION TO MATLAB

1. Structure

MATLAB is an interactive system whose basic data

element is a rectangular matrix (note: row and column

vectors and even scalars are simple forms of rectangular

matrices). A variety of mathematical operations can be

easily performed on these data arrays to achieve whatever

results are desired. MATLAB offers two environments in

which these operations can be performed: the Command Window

and script files. We will discuss the Command Window first.

a) The Command Window

Figure 1.1. MATLAB Command Window

The Command Window (shown in Figure 1.1) is

displayed when MATLAB is first invoked. Commands are

entered at the ">>" symbol (the command prompt) and are

executed when the [Enter] key is depressed. For example, to

sum the numbers 10, 20, 30, and 40, one would enter the

following at the command prompt:

10 + 20 + 30 + 40 [Enter]

■) MATLAB Command Window

File £dit Wjndow Help

IsSsIEl

Ü [g^ :'y':. m m
»
» 10+20+30+40

ans

Hi -d »tel jj

100

^fi
Figure 1.2. Command Window Example

Note the term "ans" following the entry at the

command prompt in Figure 1.2. MATLAB assigns the result of

a computation to this temporary variable, which is

overwritten by succeeding unassigned computations.

Alternatively, one could assign this expression to a

variable and then solve for it:

» x=10+20+30+40
x =

100

The variable x takes on the value of the expression, and

subsequent operations can then be performed on x. For

example:

» x=10+20+30+40
x =

100
» y=sqrt (x)
y =

10

Here we used a MATLAB function, i.e. sqrt, to obtain the

desired result. We could just as easily have used an

operation (raising a number to a power) to accomplish the

same thing:

» x=10+20+30+40
x =

100
» y=x~(l/2)

y =
10

A more thorough discussion of functions and operations will

be provided shortly. First, we turn our attention to the

MATLAB script file environment.

b) Script Files

For simple problems, the Command Window provides a

fast and efficient way to enter data and produce solutions.

However, as problems become more complex and the need arises

to change the value of one or more variables and reevaluate

a series of commands, typing these commands at the MATLAB

prompt quickly becomes tedious and unappealing. MATLAB

solves this problem by enabling you to write (and store)

text files containing the desired sequence of commands that

can be executed simply by entering the file name in the

Command Window. MATLAB executes the commands exactly as if

you had typed them at the command prompt. These files are

commonly referred to as M-files since the file name must end

with the extension .m ("dot m") , as in example.m. Because

the file is stored, you can run it again and again (making

changes if desired) by merely typing its name at the command

prompt. MATLAB provides a text editor, known as the MATLAB

Editor/Debugger, for the purpose of writing and editing M-

files.

(1) Using M-files. To open the MATLAB

Editor/Debugger from the Command Window, click on File, then

New, followed by M-file.

MATLAB Editoi/Debuggei [Unhtledl]

:(3 £ite Edit $ew ßebug loots ^ndow #e|p

5Siia'itNtf"ii.friii
Stack:

ratal m
^ifffxj

<m4

Q UnWIedl

Ready [UheT [3:30 m ■£
Figure 1.3. MATLAB Editor/Debugger

In addition to acting as a text editor, the MATLAB

editor/debugger allows you to execute M-files directly from

its window (without having to switch to the Command Window),

and assists in debugging code. What follows in Figure 1.4

is a simple example of an M-file written in the MATLAB

editor. The example multiplies each number in a sequence by

3.

MATLAB Ediloi/Debuggei [example m - C \MATLAB\bin\example m]

QSJ File Edit View Debug Tools Window Help

ISsWJ wü I

ygj;*]

DiH £
© Stack:

x=[l,3,5,7,9,11,13,15]
y=x*3;

example.tn • ...

Ready Line 3 110:01 AM ^

Figure 1.4. M-file Example

You can execute this M-file in one of two ways: switch to

the Command Window and enter the name of the file (in this

case, example.m) at the command prompt, or select Tools from

the MATLAB editor "pull-down" menu and click on Run. Either

method will net the same results, shown in Figure 1.5.

i «,£ MA 1 LAI) Command Window ■■^■■.Inlxi
File Edit Window Help ;:

0 B? & % 1 ii -*\m tsl ?!
»
x =

1

z =

3
9

15
21
27
33
39
1*5

3 5 7 9 11 13 15

*■

.:! ■

Figure 1.5. Results of M-file Execution

The commands in the M-file are executed exactly as if they

had been typed directly in the Command Window. As we will

see shortly, M-files are very useful in modeling

applications.

We have introduced a few new ideas with

the above example that deserve mention. First, notice in

Figure 1.4 that the variable x represents a vector. The

square brackets [] are used to denote a sequence of numbers

as a vector, with commas separating each element. Next,

notice the use of the semicolon following the line y - x *

3 in Figure 1.4. The semicolon acts to suppress the

display in the Command Window of the results of the command

preceding it. Also, notice the absence, due to the use of

the semicolon, of any reference to the variable y in Figure

1.5. The semicolon is a very powerful tool that greatly

simplifies the analysis of large arrays of data by

suppressing from view the results of intermediate

calculations that are not necessary to see. Finally, note

the use of the apostrophe following the line z = y. The

apostrophe serves to transpose the vector y, changing it

from a row vector to a column vector. This distinction is

important when manipulating data arrays.

(2) File Management Involving M-files.

One may receive an error message, like the following, when

attempting to run an M-file either from the Command Window

or from the MATLAB Editor (the M-file in this case is called

armsl.m) :

» armsl
??? Undefined function or variable 'armsl'.

If this situation occurs, then one of

two things has happened (assuming you typed the M-file name

correctly): either the file was not previously saved, or

(more likely) the directory in which the file is stored is

not included in the MATLAB search path. The first problem

is easily remedied; the second requires adding your M-file

storage directory to the MATLAB search path. To do this,

click on File in the Command Window, and then on Set Path.

This causes the MATLAB Path Browser window to become active.

Now add your M-file storage directory to the search path by

either typing the directory name into the box marked

"Current Directory" or by using the Browse button to find

and highlight the appropriate directory. Once either of

these actions is done, add this directory to the path by

clicking on Path, followed by Add to Path. Once this is

done, save the path by clicking on File, then Save Path.

Once the path is saved, you can close the Path Browser

window and return to the Command Window. M-files stored in

this directory may now be run from both the Command Window

and the MATLAB Editor.

2. Functions and Operations

MATLAB offers the following basic arithmetic

operations:

Operation Symbol Example
Addition + 2+8
Subtraction - 16.3-14
Multiplication * 8*19
Division / or \ 15/3=3\15
Power ~ 5"}, ,, .,.

Table I.l. MATLAB Operations

The following table shows a sample of the functions offered

by MATLAB:

Common Functions
abs(x) Absolute value
cos(x) Cosine
exp(x) Exponential: ex

log(x) Natural logarithm
loglO(x) Base 10 logarithm
sin(x) Sine
sqrt (x)' Square root
tan(x) Tangent
Table 1.2. Common Functions

Other functions will be introduced as needed throughout this

thesis.

3. Workspace

MATLAB remembers all commands entered in the Command

Window as well as the value of any variables you create.

These commands and variables reside in the MATLAB Workspace

and can be recalled on demand. For example, to find the

current value of the variable x, simply enter its name at

the command prompt and its value will be displayed:

» X

X =

1 3 5 7 9 11 13 15

If you forget the name of some or variables in use, the

command whos results in a listing of all the variables

created in the current session:

» whos
Name Size Bytes Class
x 1x8 64 double array
y 1x8 64 double array
z 8x1 64 double array

The size of the variable indicates whether it is a scalar,

vector, or matrix.

MATLAB allows you to recall previously entered commands

by using the up arrow on your keyboard. Pressing this key

once recalls the most recent command; each successive

pressing results in the next most recent command, allowing

you to scroll backward through the commands you have

entered. The down arrow lets you scroll forward in similar

fashion. Once you have scrolled to the desired command, you

10

may re-execute the command or edit it prior to execution.

Hitting the enter key executes the command.

4. Variables

a) Naming Variables

MATLAB has very specific rules about naming

variables. A variable name:

• must be a single word containing no spaces;

• is case sensitive; i.e., ITEMS, Items, items, and itEms are all different
MATLAB variables;

can contain up to 19 characters;

must start with a letter, followed by any number of letters, digits, or
underscores.

b) Redefining Variables

Variables may be redefined as desired. For

example,

» apples=4;
» oranges=7;
» applesandoranges=apples+oranges
applesandoranges =

11
» apples=7
apples =

7
» applesandoranges
applesandoranges =

11

11

Notice that changing the value of apples did not

cause the value of applesandoranges to change. Unlike a

spreadsheet, MATLAB does not recalculate the number

applesandoranges based on the new value of apples. MATLAB

performs calculations based on the information available at

the time that the command is executed. In order to update

the total fruit count, one must reissue the command:

» applesandoranges=apples+oranges
applesandoranges =

14

c) Deleting Variables

MATLAB variables can be irrecoverably deleted from

the workspace using the clear command. For example,

» clear oranges

deletes the variable oranges; the command

» clear

deletes all of the variables in the workspace. Needless to

say, the clear command should only be used with extreme

caution.

5. Online Help

Should you need it, MATLAB offers an extensive library

of help capabilities that are available in three forms: the

MATLAB commands help and lookfor and interactively using the

Help Desk from the pull-down menu.

12

a) The help Command

If you know the name of a MATLAB function, the

help command is the simplest way to get information about

that function. For example, for help on the Absolute Value

function, we would type:
Use lower case for all

» help abs MATLAB functions.
ABS Absolute value.

ABS (X) is the absolute value of the elements of X.
When X is complex, ABS (X) is the complex modulus
(magnitude) of the elements of X.

See also SIGN, ANGLE, UNWRAP.

It is important to note at this point that, just as with

variables, MATLAB distinguishes between upper and lower case

characters in function names. Notice that the command ABS

is capitalized in the first line after the command prompt.

This is for readability purposes only. You must always call

MATLAB functions using lower case characters. Attempting to

call functions using upper case characters will result in

error messages like the following:

» SORT(2)
??? Undefined variable or capitalized internal function
SORT; Caps Lock may be on.

The help command works well provided you know the name of

the function you desire information on. When this is not

the case, the next command may assist you.

13

b) The lookfor Command

The lookfor command provides help by searching all

MATLAB files for the key word you provide. For example,

» lookfor cosine
ACOS Inverse cosine.
ACOSH Inverse hyperbolic cosine.
COS Cosine.
COSH Hyperbolic cosine.
TFFUNC time and frequency domain versions of a cosine
modulated Gaussian pulse.

provides a list of all the functions that contain the key

word cosine.

c) The Help Desk

Perhaps the most extensive and user-friendly way

to access help in MATLAB is the new (with version 5.2),

interactive, Hypertext Markup Language- (HTML-) based Help

Desk. The Help Desk is accessed from Help on the pull-down

menu and requires an Internet Web browser, such as Internet

Explorer or Netscape, to access. The use of hypertext

allows for easy access to any topic by simply pointing and

clicking with a mouse. The novice MATLAB user would benefit

from a look at the "Getting Started" section, which

describes all the basic functions and how they are used.

14

II. MODELING WITH DISCRETE DYNAMICAL SYSTEMS

A. INTRODUCTION

In Chapter I, we discussed some basic essentials for

using MATLAB. Here, we delve a bit deeper into more

sophisticated features offered by MATLAB. New topics

introduced in this chapter include data manipulation,

looping, and plotting, which are used to model change via

discrete dynamical systems. We present these concepts using

several examples of dynamical systems taken from A First

Course in Mathematical Modeling by Giordano, Weir, and Fox

(2).

B. EXAMPLE 1: THE ARMS RACE

1. Scenario

Section 1.1 of (2) outlines in detail the scenario for

this model. Following is a brief summary:

Two countries, X and Y, are involved in an arms race.

We wish to model the advancement of arms proliferation in

terms of the number of missiles each country has at a given

time. To do this, we need to make the assumption that each

country follows a strategy of deterrence that reguires it to

have a given number of weapons to deter the enemy even if

the enemy has no weapons. The strategy of each country is

to increase its arms inventory by some percentage of its

enemy's arsenal each time the enemy adds weapons to its

15

inventory. For example, suppose Country Y feels it needs

12 0 weapons to deter the enemy. Further, for every two

weapons possessed by Country X, Country Y feels it needs to

add one additional weapon to ensure 120 weapons will remain

after a potential strike by Country X. It follows that the

number of weapons needed by Country Y (y weapons) as a

function of the number of weapons it thinks Country X has (x

weapons) is

v=120+-x (2.1)
2

Now suppose Country X is following a similar

strategy. It determines it needs 60 weapons even if Country

Y has none. Further, for every three weapons it thinks

Country Y possesses, Country X feels it must add one weapon.

Thus the number of weapons needed by Country X as a function

of the number of weapons it thinks Country Y has is

1
x=60+-y (2.2)

We will now look at the dynamic progression of the

arms race.

2. Modeling the Dynamics of the Arms Race

Suppose initially that Countries Y and X do not think

the other side has arms. Following their strategy, they

build 120 weapons and 60 weapons respectively. Now assume

16

each has perfect intelligence (i.e., each knows the exact

number of weapons the other has built). The result is a

dynamical progression of the arms race. At each stage, each

country adjusts its inventory based on the size of the

enemy's arsenal during the previous stage. To model this

situation in MATLAB, we use the MATLAB Editor to write an M-

f ile:

MATLAB Editoi/Debuggei (aimsl m - F:\lhesis\m lilesW . E5ÖÜI31

-teixf yg file Edit View ßebug Tools Window Help . „.._ „ --^j^ m^- -jjijp
Stack;] «Ü mm.

x=[];

y=[];
x(l)=60;
y(l)=120;

for n=2:IS
x(n)=x(l)+y(n-l)/3;
y(n)=y(l)+x(n-l)/2;

end

\M armsl .m -F:..i
"in '

; Ready Line 10 12:08 PM: i:]^

Figure II. 1. Arms Race M-file

Before we look at the results, let's discuss the new

MATLAB concepts introduced in Figure II.1. First, notice

the expressions x= [] and y= [] . These commands serve to

assign temporarily empty vectors {row vectors by default) to

the variables x and y, which represent the size of each

country's arsenal at each stage. This is done with the

17

intent of assigning elements to these vectors at a later

time, which can be done in various ways. Note how this

differs from explicitly defining the elements of a vector as

demonstrated in Figure 1.4. Next, we see that we can assign

elements to a vector individually with expressions like

y(l) = 120. This assigns the value 12 0 as the first element

of y.

Now that we have our vectors (or data arrays)

initialized, we can now proceed to fill them by successively

iterating or looping over expressions (2.1) and (2.2).

Figure II.1 provides an example of a for loop. It consists

of an index (in this case, n, representing the stage of the

dynamical system) which determines the number of times the

loop will be executed, a series of commands executed each

time through the loop, and an end statement to signal the

end of the loop. In this case, the loop starts with an

index value of n = 2 (since the first elements of x and y

have already been assigned) . Each time the loop is

executed, values for the number of each country's weapons

are calculated and assigned as elements of their respective

vectors.

The results of running this M-file will be the creation

of two row vectors, x and y, containing elements

representing the number of weapons each country has on hand

at each of stages one through fifteen. These vectors are

stored in the MATLAB Workspace. We can switch to the

18

Command Window and view this result by entering the

following command:

\~) MATLAB Command Window Büß
0fe:fdit: Window Help

D|e£| ilMsl H *|%| ?l
» [(1:15)', x'.y] ä
ans =

1.0000 60.0000 120.0000
2.0000 100.0000 150.0000
3.0000 110.0000 170.0000
4.0000 116.6667 175.0000
5.0000 118.3333 178.3333
6.0000 119.4444 179.1667
7.0000 119.7222 179.7222
8.0000 119.9074 179.8611
9.0000 119.9537 179.9537 ■ " ':

10.0000 119.9846 179.9769
11.0000 119.9923 179.9923
12.0000 119.9974 179.9961
13.0000 119.9987 179.9987
14.0000 119.9996 179.9994
15.0000 119.9998 179.9998

4"-- ■ Md
Figure II.2. Dynamical System Results

The expression [(1:15) ' ,x' ,y<] can be translated, "Construct

a matrix having three columns. In the first column, display

the numbers one through fifteen; in the second and third

columns, display the transposed vectors x and y,

respectively." The same result could be obtained just as

easily with the following alternate commands:

» n=l:15;
» [n\x\y']

19

You will find, as we go along, that this situation is not

unusual. There are usually more ways than one to obtain a

particular desired result in MATLAB.

Let's look at the output itself for a moment. Notice

in Figure II.2 that the growth rate in the arms race appears

to be decreasing over successive stages. In fact, the size

of each country's arsenal appears to be approaching an

equilibrium value (120 for country X and 180 for country Y).

Suppose you wanted to know how changing the initial

values would effect the equilibrium values. To find out,

you need only change the initial values in your M-file and

run it again. For example, suppose country X started with

150 weapons and country Y started with 80. To compute the

new equilibrium values, you could change your M-file as

follows:

MATLAB Editot/Debugget - [aimsl.m - F:\»hesis\m filesVai fmtM W3\

Q) E<le Edit View ßebup tools Window Help -Iffl xj

DjsajB
^ *! li

U €)ltii
Stack:

x=[]; ▲

y=[];
x(l)=150;
y(l)-80;

for n=2:15
x(n)=x(l)+y(n-l)/3;
y(n)=y(l)+x(n-l)/2;

end -™1

1 zi
M armsl m - f:.. .

Ready JLinelO 11:33 PM £

Figure II.3. Modified M-file

20

The results of running this modified M-file appear below:

\<J MAT LAB Command Window fityilfol E*S

File £dä Window Hefe

oN %\mM *>| etel ?j
» [n'.x'.y] M
sans =

1.0006 150.0000 80.0000
2.oeoo 176.6667 155.0000
3.0000 201.6667 168.3333
4.0000 206.1111 180.8333
5.0000 210.2778 183.0556
6.0000 211.0185 185.1389
7.0000 211.7130 185.5093
8.0000 211.8364 185.8565
9.0000 211.9522 185.9182

10.0000 211.9727 185.9761
11.0000 211.9920 185.9864
12.0000 211.9955 185.9960
13.0000 211.9987 185.9977
14.0000 211.9992 185.9993 M
15.0000 211.9998 185.9996 H

: i\ ^:;:*:LT- iß
Figure II.4. Results of Modified M-file

It is easy to see that the equilibrium values have

changed to 212 for country X and 186 for country Y. This

small example of sensitivity analysis shows the beauty of

using M-files: a few keystrokes (changing the M-file

itself) result in the solution of a modified problem that

can lead to a more complete understanding of the behavior

being modeled.

3. Plotting

Another useful means of analyzing a discrete dynamical

system is to plot the data. Simple problems (such as

21

demonstrated above) can be easily analyzed by displaying the

data: trends and key information, such as equilibrium

values, are usually obvious. We now address plotting in

MATLAB using the Arms Race problem to demonstrate.

MATLAB's basic plotting command, plot(x#y), generates a

plot of y versus x, where x and y are vectors of equal

length. Before we can plot (for example, the growth in

country X's arsenal by stage) we first need a vector to plot

against, equal in length to the vector x, and representing

the various stages. If we let n be this stage vector, we

adjoin the line

n = 1:15;

after the "end" statement of our M-file (see Figure II. 1)

which creates the desired vector. This results in the

assignment of a vector containing the elements one through

fifteen (in sequence) to the variable n. Note that the

vectors x and n are of equal length. Note also that, even

though we used the symbol n as our looping index, we can use

the same symbol to represent the stage vector since MATLAB

overwrites variables when reassigned (see Chapter I, section

B.4.b) and we no longer need the looping index. Now, to

produce the desired plot, use the command plot(n,x). This

command can either be entered in the command window (after

running the modified M-file that creates the vectors x and

n) or adjoined directly to end of the M-file. We use here

22

the M-file option which, when modified, looks like the

following:

MATLAB Editoi/Debuggei • [aimsl m FMhesis\... RSJiiES

\msM ;.P Fie Edit iflew ßebug Jools Window Help

oSai' 'l:[liir'#j:fi""ii[ii''
A) D D ; «N* f

x-[];
y=[];
x(l)=60;

y(l)-120;

for n=2:15
x(n)=x(l)+y(n-l)/3;
y(n)=y(l)+x(n-l)/2;

end
n=l:15;
plot (n,x)|

I armsLw^F...

Ready Unell : f j |2:16 PM~^

Figure II.5. M-file with Plot Command

Running this M-file produces the graph in Figure II.6.

I * Figuie No 1 liß
File Edit Window Help

-i-in

100

80

/

■

60
C

/
) 5 10 1 5

Figure II.6. Plot of x vs. n

23

Adding axis labels and a title require the use of the

commands xlabel, ylabel, and title. To add these features

to our plot, simply adjoin the following lines at the end of

the updated M-file in Figure II.5:

xlabel('n - stages');

ylabel('x - Number of Weapons');

title('Arms Race - Country X1);

Running this updated M-file produces Figure II.7.

1 / Figuie No. 1 -M*l
file Edit Window Help

Arms Race - Country X

N
um

be
r

of
 W

ea
po

ns

C
D

 <
JD

 O

 -

*•

 N

o

o

 o

o

c

\

-

X

70

"/ i r uu
0 5 10 1

n - stages
5

Figure II.7. Plot with Labels

Putting the graphs of both countries on the figure is

almost as easy. It requires changing the plot command to

the following (again, this can be done either in the command

window or in the M-file):

plot(n/x,n#y)

24

This modification, along with appropriate label changes,

results in Figure II.8.

1 / Figuie No. 1 H@Ol
File: Etfit ^irwiOW üelp: :\\

180
Arms Race - Country X

160
CO c o

f 140

I 120
E

^ 100
>-.
X

80

60
[

/
1

/
/

1

/
/

l'

f ■ i

) 5 10 15
n - staqes

Figure II.8. Two Graphs

However, in black and white, it is difficult to discern

which curve represents Country X and which represents

Country Y. We need a way to distinguish among several

curves in a single figure: the curve's must be

distinguishable and labeled. This can be accomplished by

making one of the curves a dashed line and adding a legend.

The commands are as follows:

plot(n,x#n,y#'--•);

legend('Country X», "Country Y')

The resulting figure follows:

25

-t Figuie No. 1

file £dit Window Met

180

1601-
c o
I 140

fc 120

E

z 100

80 -

60

Arms Race - Country X

5 10
n - stages

gna

X- — ■— i

1
1

 Country X
 - Country Y

-
i

!
t

f "

/

fy

/
i

-

7 . . -

15

Figure II.9. Plot with Legend and Dashed Line

Notice how the entry •--' in the plot command causes

the curve for Country Y to be dashed. This modification is

one of many that can be added to a plot command to obtain

line effects and colors. Table II.1 lists all such

modifiers:

Symbol Color Symbol Line Style
y yellow . point
m magenta o circle
c cyan X x-mark
r red + plus

g green + star
b blue - solid line
w white : dotted line
k black -. dash-dot line

— dashed line

Table II.1. Basic Plot Line Types and Colors

26

It is easy to see the value of plotting data for a

discrete dynamical system. MATLAB provides a wide

assortment of plot features to enhance the user's ability to

analyze dynamical systems. We discuss some of these in the

examples that follow.

C. EXAMPLE 2: POPULATION GROWTH IN A YEAST CULTURE

With this example, we look at modeling by approximating

change with difference equations. This problem can be found

in Section 3.2 of (2).

1. Scenario

Consider the following experimental data regarding the

growth of a yeast culture:

Time Observed Change
in yeast in
hours biomass biomass
_5 Pn pn+l~Pn

0 9.6 8.7
1 18.3 10.7
2 29.0 18.2
3 47.2 23.9
4 71.1 48.0
5 119.1 55.5
6 174.6 82.7
7 257.3

Table II.1. Yeast Population Data

To make a scatter plot of the growth of the biomass, use the

following M-file:

27

x=[9.6 18.3 29 47.2 71.1 119.1 174.6];
y=[8.7 10.7 18.2 23.9 48 55.5 82.7];
plot(x,y,'ko')
xlabel('Biomass ')
ylabel('Change in Biomass')
title('Change in Biomass vs. Biomass')

Recall that the 'ko' modifier in the plot command causes

each data point to be plotted with a black circle (see Table

II.1). Running this M-file results in Figure 11.10.

100

w
tn
ro
E
o

CO

80

60

§> 40
ra
O

20

Change in Biomass \s. Biomass

o

o
o

o
o

o°

50 150 200 100
Biomass

Figure 11.10. Yeast Culture Scatter Plot

2. An Initial Model

Although the graph of the data does not lie precisely

along a straight line passing through the origin, you can

see that such a line can approximate it. We can modify our

M-file to produce this line, as follows:

x=[9.6 18.3 29 47.2 71.1 119.1 174.6];
y=[8.7 10.7 18.2 23.9 48 55.5 82.7];

28

k=rto(x,y);
z=0:max(x);
plot(x,y,'ko',z,k*z,'k')
text(80,30,['slope = ',num2str(k)])
xlabel('Biomass')
ylabel('Change in Biomass')
title('Change in Biomass vs. Biomass')

The function rto(x,y) performs "regression through the

origin" of y on x and outputs the slope of the best-fit line

(in the least squares sense) through the origin. This

function is not available in MATLAB, but can be found in the

appendix. In addition, the command z = 0:max(x) results in

the assignment to the variable z of a vector of values

starting at zero and ending at the largest value in the

vector x, with a step size of one. For example, the command

a = 1:5

results in the output

a =
12 3 4 5.

Finally, we use the text command for the first time

here. This command allows you to label items on a graph

with text. The numeric arguments that appear in this

command represent the coordinates of the location on the

graph for the text to begin. The command num2str used

within the text command converts a number to a text string,

which is necessary for inclusion of numerical data in a text

expression. The graph produced by this M-file appears in

Figure 11.11.

29

Change in Biomass \e. Biomass
100

200
Biomass

Figure 11.11. Scatter Plot w/Best Fxt Line

From this information we can derive a proportionality

model for population growth:

kPn = Pn^-Pn=0A96Pn (2.3)

yielding the model

A,-, = 1-496^ (2.4)

to predict future population at the next stage based on

population at the current stage. Notice that this model

predicts a population that increases without bound, which,

in all likelihood, is quite unrealistic. Thus, our model

needs some refinement.

30

3. Model Refinement

Realistically, the availability of critical resources

(air, light, food, etc.) in the environment supporting the

population tends to limit the population to some maximum

level, known as the carrying capacity. Table II.3 shows

what actually happens to the yeast culture growing in a

restricted environment for time periods beyond those shown

in Table II.2.

Time Observed Chanqe
0 9.6 8.7
1 18.3 10.7
2 29.0 18.2
3 47.2 23.9
4 71.1 48.0
5 119.1 55.5
6 174.6 82.7
7 257.3 93.4
8 350.7 90.3
9 441.0 72.3
10 513.3 46.4
11 559.7 35.1
12 594.8 34.6
13 629.4 11.4
14 640.8 10.3
15 651.1 4.8
16 655.9 3.7
17 659.6 2.2
18 661.8

Table II.3. Extended Yeast Data

The yeast population data is plotted in Figure 11.12.

31

700
Growth in Yeast Culture

-I— ■ '

n o o o o
o °

600 o
o

500 . 0
c
o o

'■•-»

■§ 400 •
a. o o
Ü. _ _
~ 300
en
ca o a>
> 200

o

100 •

o
o

o

0< 1 o o
1

10 15 20
, Time (hr\ . . „ . ,_ . _ ,

Figure 11.12. Approaching a Limiting Population Level

Notice that the population does indeed tend toward some

limiting value, which we estimate by inspection to be about

665. Now consider the model

&P„=P^-P„=Wtt-Pn)Pr (2.5)

which causes lSpn to become increasingly small as pn

approaches 665. We can test the validity of this model by

plotting (pn+1 - pn) versus (665 - pn)Pn to see if there is a

reasonable proportionality, with slope k. This can be done

with the following M-file:

pn=[9.6 18.3 29 47.2 71.1 119.1 174.6 257.3 350.7 441
513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8];
a=length(pn);
delta_pn=[];
for n=l:(a-1)

delta_pn(n)=pn(n+l)-pn(n);
end
pn=pn(1:(a-1));
x=pn.*(665-pn);

32

k=rto(x,delta_pn);
plot(x,delta_pn,'o',x,k*x)
xlabelf'pn(665-pn)')
ylabel('p(n+l)-p(n)')
title('Growth Constrained by Resources'
text(80000,62,['k = ',num2str(k)])

which produces the output

Growth Constrained by Resources
-1 r-

6 8 10 12
pn(665-pn)

X10

Figure 11.13. Constrained Growth Model

4. Numerical Solution for the Refined Model

Using the value of k obtained above and solving for

Pn+i yields the model

/>„+,=/>„+0.00081(665-/>>„ (2-6>

which is quadratic in pn. This model is easily solved

numerically (iteratively) if we start with an initial

population. Since p0 = 9.6, we can compute p1 as follows:

px =p0 +0.00081(665 -p0)p0 =9.6 + 0.00081(665-9.6)9.6 = 14.70

33

Next we can compute P2 from plt and the remaining

populations predicted by the model in similar fashion.

Comparing these predictions with the actual observed

populations gives insight into the accuracy of our model.

Time Observation Prediction
0 9.6 9.6000
1 18.3 14.6964

2 29.0 22.4377

3 47.2 34.1159

4 71.1 51.5497

5 119.1 77.1644
6 174.6 113.9060
7 257.3 164.7521
8 350.7 231.5098
9 441.0 312.7992

10 513.3 402.0354
11 559.7 487.6694
12 594.8 557.7172
13 62 9.4 606.1823
14 640.8 635.0622
15 651.1 650.4622
16 655.9 658.1218
17 659.6 661.7884
18 661.8 663.5100

Predictions and Observations

500

c 400 o
«

f 300

0
O M

o

o
X

0
M

» A *> e

X

I

o O Observed
M Predicted

0 >

0 M

0 «

... °■
6 8 10 12 14 16 18

Time (hfs)

Figure 11.14. Model Predictions and Observations

It is apparent that our model does a fairly good job of

predicting population levels and captures the trend of the

original data. Now let us study variations of this

population model by changing the constant of proportionality

k in Equation (2.5).

5. Bifurcation and Chaos

Suppose we have the population model

34

Pn*\=k(\-Pn)Pn (2.7)

where we have normalized the carrying capacity to one unit

of population. We wish to examine the effect of changing

the growth constant of proportionality, k. For this

experiment, we will use an initial population p0 = 0.3,

evaluate pn+i from Equation (2.7), and plot the population

over time for various values of k.

0.3()

0.25 -

o 0.2 .

o 0.15
o.

p

0.1 -o

0.05
o

• o

0 1 ^«npPcajQixDxnxaxBQEmxx^^
10 20 30 40 50

Stage
Figure 11.15. Population growth, k = 0.75

We see in Figure 11.15 that the population dies out

quickly when k = 0.75. Figure 11.16 shows the results of

increasing k to 1.5.

35

0.335

0.33

0.325

.2 032
*-'
jo
3

o 0.315
Q.

0.31

0.305

0.36-

cpoxixxixxxoQOocxxxrxxxxrxxrxxxxxixxKoooooa)

o

■o

10 20 30 40 50
Stage

Figure 11.16. Population growth, k = 1.5

Here, the larger proportionality constant causes the

population to increase initially, then tend toward a

constant value (about one-third) as the stage number grows.

20 30 40 50
Stage

Figure 11.17. Population growth, k = 2.9

36

Figure 11.17 depicts the results of increasing k to

2.9. In this case, we begin to see oscillation in the early-

stages before the population gravitates toward a steady-

state of approximately 0.65. In Figure 11.18, we increase

the value of k to 3.25.

1

0.9

0.8

0.7
c o

I 0.6
a o
a0.5

0.4

0.3o

0.2

0oooooooooooooooooo

.ooo

ooooooooooooooooo

0 10 20 30 40 50
* Stage

Figure 11.18. Population growth, k = 3.25

For k = 3.25, we no longer see the population tend

toward one steady-state value. In fact, as the stages

increase, the population splits into two branches and jumps

between values that tend toward steady-state values

(approximately 0.5 and 0.8). This splitting effect is known

as bifurcation.

Figure 11.19 shows the affect of increasing k to 3.4.

37

1

0.9

0.8

0.7
c
o

| 0.6
Q.
O

^0.5

0.4 -

0.3o

0.2

OQOOOOOOOOOOOOOOOOOO

On
o

o°o°ooooooooooooooo<)

10 20 30
Stage

40 50

Figure 11.19. Population growth, k = 3.4

We see in Figure 11.19 that, in addition to splitting,

each of the two branches oscillates before eventually

achieving steady-state.

We find that increasing k even further causes each of

the two branches to split, or bifurcate, again. Figure

11.20 depicts this phenomenon.

38

1

0.9

0.8

0.7 c
_o

| 0.6
Q.
O
Q.

- O

b

0.5

0.4

0.3<fe

0.2

oooooooooooooooooooooooc
°oooooooooooooooooooooo

o0

ooooooooooooooooooooo

oooooooooooooooooooooo

0 20 40 60 80 100
Stage

Figure 11.20. Population growth, k = 3.5

Here, we see each branch bifurcating again. Let's look

at the effect of increasing k again.

1

0.9

0.8

0.7 c
o

| 0.6
Q.
O

°- 0.5

0.4

0.3<t>

0.2

b

oooooooooooooooooooooooc
o ooooooooooooooooooooooo

Oo0o0o0o0o0o0o0o0o0o0o0i

OOOOOOOOOOOOOOOOOOOOOQOO

20 40 60 80 100
Stage

Figure 11.21. Population growth, k = 3.545

39

Figure 11.21 reveals that for k = 3.545, each of the

four branches are oscillating initially before settling down

and reaching steady-state.

1

0.9

0.8

0.7
c o

I 0.6
Q.
O

^O.S

0.4

0.3<fe

0.2

)cP&P&£&&#^cfW&#
■bOp° ooooo ooooo 0ooo0 ooOpo
OOoOoOoOoOoOoO(DOO o o o o o o

o°
o

0o0o0o0o0o0o0o0o0o0o0o0

o ° o o^o o o °„o °„o o
OOOOOOOOQOOC

o O O o o 0 o o o 0 o o o 0 O o Op O o o O
OOoOoOoOoOoOoOoOoOoOoOo<t>

50 100
Stage

150 200

Figure 11.22. Population growth, k = 3.695

Figure 11.22 shows the results of increasing k to

5.695. We see each of the four branches shown in Figure

11.21 begin to bifurcate again, forming eight total

branches.

40

1

0.9

0.8

0.7

O _0_CbO QoOQo OOOOOQ 0 OOC^QOOOQ C
■O CD CQo 0 o o o-
° ° o° 0oo o 0oo 0o0co° ° oo0°0 o°° °

t>°o0oo* o°°o ° °o o0°0 o°

c
_o

I 0.6
a o
^0.5

0.4

0. 3o

0.2

o o o0 o 0 Qtt o°o o0

0Ooo oo °oo0 o°oCb ocP0o°
0oo

o o° ° ° ° °-"

o
o o o

^ nO ° ° O cO o
ooO°o 0Ooo

00oo oo0|

O Cn

o o

• o
o

r\ O
°00° O^ 0U OOOo«- O. ° OQU QOCOQ QOQ Q

C

50 100
Stage

150 200

Figure II.9. Population growth, k = 3.75

Finally, we see in Figure II.9 that when k is large

enough, the system reaches a point where there are no

steady-state values. The system is trying to be at every

value for every stage. At this point, the system has

achieved a state of chaos.

D. EXAMPLE 3: LANCHESTER«S SQUARE LAW DISCRETE MODEL

Consider the situation of combat between two forces,

which we will call Blue and Red. We want to know, among

other things, if one side will defeat the other, or whether

the fight will end in a draw. Lanchester's combat models

provide an analytical framework within which to study these

questions (see Ch. 11 of (2)). We now look at the discrete

version of the Lanchester square law model.

41

1. The Model

Let Bt and Rt be the force levels (number of systems on

each side; e.g., soldiers, tanks, or ships) of the Blue

force and Red force, respectively, at time period t. If we

assume that the change in force level (i.e., the casualty

rate) for a given side (say, Blue) is proportional to the

force level of the opposing side (Red) , we can very easily

derive the equation

BM = B,-aR„ (2.8)

where a is known as the attrition coefficient and reflects

the rate at which the Red force inflicts casualties on the

Blue force. A similar analysis results in the expression

K^Rt-bBn (2.9)

where jb is the coefficient reflecting, similarly, the rate

at which Blue inflicts casualties on Red. Together, these

equations form a discrete dynamical system with which we can

predict and study the. outcomes of hypothetical "battles."

2. A Numerical Example

Suppose that the Red and Blue forces engage in battle,

and that the two sides begin the engagement with 50 and 100

systems, respectively (i.e., R0 = 50 and B0 = 100). Suppose

also that 10 Red systems are required to destroy one Blue

system (i.e., a = 0.1) and furthermore that 2 0 Blue systems

42

are required to destroy one Red system (b = 0.05). Which

side will win this battle? To find out, we could execute

the following M-file:

% Initialize force vectors, initial force strengths
% and attrition coefficients:

B=[]; R=[]; B(l)=100; R(l)=50;
a=.l; b=.05;

% Loop through Lanchester equations to determine
% force strength at each time period:

for t=l:12 %12 is an arbitrary stopping point
B(t+l)=B(t)-a*R(t);
R(t+l)=R(t)-b*B(t);

end
t=0:t;
% create a matrix of output
OUT=[f B' R' (B./R) '] ;
% write this matrix to an ASCII file for future
% reference:
dlmwrite('f:\thesis\documents\lanch.out' ,OUT, ' \t') ;

Notice the use of the percent sign (%) . This symbol

denotes comments in an M-file which are not executed. These

comments can appear anywhere in the file, as long as a

percent sign precedes them. Notice also the command

dlmwrite, which saves the results of M-file execution in an

ASCII file (to later be manipulated with a word processor,

spreadsheet, or other software). With little effort, the

file "lanch.out" created by MATLAB can be imported into this

document and displayed as a table:

43

t Sr Rr Br/Rt-
0 100 50 2

1 95 45 2.1111

2 90.5 40.25 2.2484

3 86.475 35.725 2.4206

4 82.9025 31.4013 2.6401

5 79.7624 27.2561 2.9264

6 77.0368 23.268 3.3108

7 74.71 19.4162 3.8478

8 72.7683 15.6807 4.6406

9 71.2003 12.0423 5.9125

10 69.9961 8.4822 8.2521

11 69.1478 4.9824 13.8783

12 68.6496 1.525 45.0148

Table II.4. Status of Red and Blue Forces (a=.l, b=.05)

Blue requires only 12 time periods to virtually

eliminate the Red f orce, even though the Red force systems

were twice as lethal (a = 0. 1 vs. b = = 0.05). Apparently, a

2:1 lethality advantage (ratio of attrition coefficients)

does not .make up f •or a 2:3 . disadvantage in initial force

levels. Let's run the model again using a = 0.2 to see if

an increase in lethality for the Red force achieves better

results (see Table II.5) .

t Bt Rt Bt/Rt
0 100 50 2
l 90 45 2
2 81 40.5 2
3 72.9 36.45 2
4 65.61 32.805 2
5 59.049 29.5245 2
6 53.1441 26.5721 2
7 47.8297 23.9148 2
8 43.0467 21.5234 2
9 38.742 19.371 2
10 34.8678 17.4339 2
11 31.3811 15.6905 2
12 28.243 14.1215 2

Table II.5. Status of Red and Blue Forces (a=.2, b=.05)

44

In this case, the original 2:1 force ratio {Bt/Rt) is

maintained at every time period, indicating that parity

exists. Clearly, Red requires a higher lethality advantage

to compensate for the 2: l disadvantage in initial force

strength. The lethality advantage required is 4/1, which is

the square of the 2/1 force strength disadvantage for Red.

This is no coincidence. One of the results Lanchester

derived from (2.8) and (2.9) is an expression that must be

satisfied at every time period for parity to occur:

bB2=aR2 (2.10)

Given that jb = .05, B - 100, and R = 50, we can use

this expression to compute the required value of a in order

to achieve parity:

0.05000)' =«(50)" =a = MÄ= 0.2 502

Table II. 5 verifies this to be true. In order for the Red

force to win, we must have a > 0.2. To demonstrate this,

Table II.6 displays the results of the battle for b = 0.05,

B0 = 100, R0 = 50, and a = 0.3.

45

t Bt Rt Bt/Rt
0 100 50 2
1 85 45 1.8889
2 71.5 40 75 1.7546
3 59.275 37 175 1.5945
4 48.1225 34 2113 1.4066
5 37.8591 31 8051 1.1903
6 28.3176 29 9122 0.94669
7 19.3439 28 4963 0.67882
8 10.7951 27 5291 0.39213
9 2.5363 26 9893 0.093975

Table II.6. Status of Red and Blue Forces (a=0.3, b=.05)

46

III. MODELING USING PROPORTIONALITY

In Chapter II, the concept of proportionality was

introduced along with a demonstration of its use in modeling

change (see Example 2). This concept is now formalized by

applying MATLAB to two examples taken from Chapter 4 of (2).

A. EXAMPLE 1: VEHICULAR STOPPING DISTANCE

This problem, first introduced in Chapter 2 and

presented in more depth in Chapter 4 of (2) , asks the

modeler to predict a vehicle's total stopping distance as a

function of its speed.

1. Initial Model

Consider the following rule of thumb often provided to

young drivers-in-training: for every 10 miles per hour

(mph) of your speed, leave one car length (about 15 feet)

between you and the vehicle in front of you. For example, a

car traveling at 60 mph should move no closer than 80 feet

from the vehicle in front. This rule assumes a linear

relationship between stopping distance and velocity. A

graph of this proportionality relationship is a straight

line of positive slope passing through the origin, as

depicted in Figure III.l.

47

One-car-length Rule of Thumb

0 20 40
speed (mph)

Figure III.l. One Car Length per 10 mph of speed is a
proportionality relationship.

To verify this potential model, we need to test it

against empirical data. We'll use the following data taken

from Chapter 4 of (2):

Driver
Speed Reaction Braking Distance Total . Stopping
(mph) Distance (ft) Distance (ft)

(ft)
20 22 18-22 (20) 40-44 (42)
25 28 25-31 (28) 53-59 (56)
30 33 36-45 (40.5) 69-78 (73.5)
35 39 47-58 (52.5) 86-97 (91.5)
40 44 64-80 (72) 108-124 (116)
45 50 82-103 (92.5) 132-153 (142.5)
50 55 105-131 (118) 160-186 (173)
55 61 132-165 (148.5) 193-226 (209.5)
60 66 162-202 (182) 228-268 (248)
65 72 196-245 (220.5) 268-317 (292.5)
70 77 237-295 (266) 314-372 (343)
75 83 283-353 (318) 366-436 (401)
80 88 334-418 (376) 422-506 (464)

Table III.l. Observed Reaction and Braking Distances
(Mean Distances in Parentheses)

48

Let' s compare a scatterplot of these data against the

One-car-length rule proportionality (we'll use the Mean

Total Stopping Distance data from Table III.l for this

comparison). This comparison is depicted in Figure III.2.

500

400

0)

g 300
c
re

■*-»

w
T3

Ü?200
a.
Q.
O
to

100

 1- 1

<)

■
 One-car-length Rule

o Empirical Data o -

■

0
o

o
o

^1—- 1 »

o

0

o

o

o

20 60 80 40
speed (mph)

Figure III.2. Initial Model Validation

From the plot, it appears that the rule of thumb does

not accurately predict safe stopping distances, especially

at speeds above 40 mph. It stands to reason that the model

must be refined to make it more realistic. Notice that the

scatterplot of the data is more accurately represented by a

curve rather than a straight line through the origin.

2. Model Refinement

In order to construct a better model, let us consider

the components that make up the total stopping distance.

49

One can reasonably argue that the total distance d required

for a vehicle to come to a complete stop is the sum of two

distances: reaction distance, dr (the distance traveled

between the time the driver determines the need to stop and

the time the driver applies the brakes) , and breaking

distance, d^ (the distance traveled from between application

of the brakes and complete stop). In other words,

d = dr+db (3.1)

We now examine these two components individually.

a) Reaction Distance

Since we desire a model that predicts stopping

distance as a function of vehicle speed, it seems natural to

seek a relationship between each of the components in

Equation (3.1) and vehicular speed. To get some idea of the

relationship between reaction distance and speed, first

create a scatterplot of the reaction distance data from

Table III.l. This scatterplot is depicted in Figure III.3.

50

70 80 40 50 60
speed (mph)

Figure III.3. Reaction Distance vs. Speed

This relationship appears to be linear, but is it

in fact a proportionality? In order for reaction distance

to be proportional to vehicular speed, the best-fit line

must pass (reasonably) through the origin. The following M-

file generates a plot to help in answering that question:

dr=[22 28 33 39 44 50 55 61 66 72 77 83
speed=20:5:80;
tr=rto(speed,dr);
x=0:8 0;
plot(speed,dr,'o',x,tr*x)
text(40,40,['Slope = ',num2str(tr)])
xlabel('speed (mph)')
ylabel('reaction distance (ft)')

The plot is shown in Figure III.4.

51

40 60 80
speed (mph)

Figure III.4. Reaction distance data with best-fit line

Indeed, from the graph it can be seen that reaction distance

is proportional to vehicle speed. The relationship is

described by the submodel

dr = 1.104V, (3.2:

where v is the speed of the vehicle. Let us next determine

a relationship between braking distance and vehicular

velocity.

b) Braking Distance

To obtain some idea of the relationship between

braking distance and vehicle speed, create a scatterplot of

the braking distance data (we use the mean data for braking

52

distance, as before). The scatterplot is displayed in

Figure III.5.

30 40 50 60
speed (mph)

70 80

Figure III.5. Braking Distance vs. Speed

From the figure, it is quickly revealed that this

relationship is definitely not linear, much less a

proportionality. Since Braking Distance is not proportional

to speed, it could turn out to be proportional to some

transformation of speed. In other words, a plot of Braking

Distance against some function of the speed (i.e., square

root, square, etc.) could reasonably produce a straight line

through the origin. As discussed in Section 4.2 of (2), it

is reasonable to expect the braking distance to be

proportional to the square of the speed. Let us try

plotting Braking Distance vs. Speed2. To do so, us the

following M-file:

53

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376];
speed=20:5:80;
speed2=speed.A2;
k=rto(speed2,db);
x=0:max(speed2);
plot (speed2,db, 'ko', x,x*k)
text(4000,200, ['Slope = ',num2str(k)])
xlabel('speedA2 (mph"2)')
ylabel('braking distance (ft)')

The result is shown in Figure III.6.

-I r i r

1000 2000 3000 4000 5000 6000 7000

speed2 (mph2)
akinq Dist Figure III.6. Braking Distance vs. Speed

As you can see, this relationship appears

reasonably close to a proportionality. From this we can

tentatively conclude (pending model verification) that

db = 0.0542v
2. (3.3)

54

Summing the two submodels (3.2) and (3.3) yields the

following proposed model for the total stopping distance:

d = \.\04v + 0.0542v2
(3.4!

The predictions given by model (3.4) along with

the actual observations are compared in Figure III.7. The

One-car-length Rule is also plotted for comparison.

500

450-

400-

«g. 350
0)

§ 300 *-»
15 250

"£200

1 150
(0

■5
** 100

50-

 T 1

o

-
o Observation
x Model Prediction
 One-car-length Rule

i:

O -
X

®

ft
X

O
X

O
X

O
- X

x O
x O

Tr^TlT.. i i

20 60 80 40
speed (mph)

Figure III.7. Total Stopping Distance

below:

The M-file used to produce Figure III.7 appears

d=[42 56 73.5 91.5 116 142.5 173 209.5 248 292.5 343 401 464];
speed=20:5:80;
x=0:80;
stop_d=l.104*speed+.0542*speed.A2;
plot(speed,d,'o',speed,stop_d,'x',x,1.5*x)
xlabel('speed (mph)1)
ylabel('total stopping distance (ft)')
legend('Observation', 'Model Prediction', 'One-car-length Rule')

55

Considering the assumptions and simplifications

necessary to construct model (3.4) together with the

inherent inaccuracies in the data, our model appears to

agree fairly closely with the data. Observe also that the

One-car-length Rule significantly underestimates the

required stopping distance at speeds above 40 mph.

This example demonstrates the use of

proportionality models using transformed data. Let's

consider another way that proportionality can be used to

model a real-world situation.

B. EXAMPLE 2: A BASS FISHING DERBY

Consider the problem of determining (approximately) the

weight of a fish in terms of some easily measurable

dimension(s) (as discussed in Section 4.5 of (2)).

1. Initial Model

For simplicity's sake (at least initially), we restrict

our analysis to one species of fish, say bass. Assuming

that all bass are geometrically similar (see Section 4.4 of

(2) for a discussion of geometric similarity) , one can

easily argue that the volume of any bass is proportional to

the cube of some characteristic dimension. Using length 1

as our characteristic dimension, the volume V of a bass then

satisfies the proportionality

VKI
3
.

56

Suppose too that the average density of all bass is

constant (not an unreasonable assumption since their bones

are small and almost "fleshy"). Then, since weight W is

volume times average density times gravity, it follows

immediately that

Wozl\

Let' s compare this model against the following

data, collected during a fishing derby (see Section 4.5 of

(2)):

....Length^.. J„.Jin..J. Girth,.....g....lin.J Weight.x....!^...loz...).
14.5 9.75 27
12.5 8.375 17
17.25 11.0 41
14.5 9.75 26

12.625 8.5 17
17.75 12.5 49
14.125 9.0 23
 12.625 8J5 16

Table III.2. Observed Data

If our model is to be valid, the graph of W vs. I3

should approximate a straight line passing through the

origin. This plot, together with a best-fitting straight

line is presented in Figure III.8. The following M-file

generated this plot:

length=[14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625];
wt=[27 17 41 26 17 49 23 16];
13=length."3;
k=rto(13, wt);
x=0:max(13);
plot(13,wt,'o',x,k*x)
xlabelf lengths (inA3)')

57

ylabel{'weight (oz.)')
text (1500,10, ['slope = ',num2str(k)])

50

45

40

35

o 30
N

£ 25

120

15

10

5

0

i r —1 r -
0

y

—
1
—

1
—

1

1

/slope = 0.0084368

-

1000 2000 3000 4000 5000 6000

length3 (in3)

Figure III.8. Weight vs. length with Best-fit Line

The slope of the best-fit line yields the

proportionality factor k. With this value, we propose the

model

W = 0.008437/3 (3.5)

Figure III.9 compares model (3.5) with a scatterplot of

the original data. This figure was generated by the

following M-file:

length=[14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625];
wt=[27 17 41 26 17 49 23 16];
x=10: .1:20;
pred_w=0.008437*x.A3;

58

plot(length,wt,'o',x,pred_w)
xlabel('length (in)')
ylabel('weight (oz.)')
legend('Original data','Model (3.5)'

70

60

50

g 40f-

o Original data
 Model (3.5)

10 12 14 16 18 20
length (in)

Figure III.9. Model (3.5) compared with original data

With the small amount of data we have, Figure III.9

shows that model (3.5) does not appear grossly inaccurate.

However, suppose certain fishermen are dissatisfied with

this model because it treats long, skinny fish equally with

short, fat fish (that is, our model, which is based solely

on length, could predict a long, skinny fish to weigh more

than a short, fat fish; not very satisfactory for a

fisherman). Let us propose an alternate model to satisfy

these disgruntled fishermen.

59

2. Model Refinement

To take into account the three-dimensional aspect of a

given fish, we replace the assumption that all fish are

geometrically similar by assuming that only the cross -

sectional areas of the fish are similar. Choosing girth g

as our characteristic dimension (we define girth as the

circumference of the fish at its widest point) , then the

average cross-sectional area is proportional to the square

of the girth, and we can subsequently conclude that

Woz\g2

(see Section 4.5 of (2) for a detailed discussion of this

proportionality).

Let's attempt to verify this model using the data from

Table III.2. First we create the following M-file:

length=[14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625];
wt=[27 17 41 26 17 49 23 16];
girth=[9.75 8.375 11 9.75 8.5 12.5 9 8.5];
g2=girth.A2;
lg2=length.*g2;
k=rto(lg2, wt);
x=0:max(lg2);
plot(lg2,wt,'o',x,k*x)
xlabel('lg"2 (inA3)')
ylabel('weight (oz.)')
text(600,10, ['slope = ' , num2str(k)])

The M-file produces the graph and best-fitting line

displayed in Figure III.10.

60

0 500 1000 1500 2000 2500 3000

Ig2 (in3)

Figure III.10. Wt vs. lg2 w/Best-fit Line

The result of this procedure yields the model

PT = 0.01871g2. (3.6)

A fisher would probably be happier with the new model

(3.6), because doubling the girth leads to a fourfold

increase in the predicted weight of the fish. However, this

rule is more difficult to apply. It requires two

measurements for each fish as opposed to only one for model

(3.5) .

61

62

IV. MODELING FROM DISCRETE DATA

In this chapter, we look at two techniques for modeling

data sets: Model Fitting and Empirical Modeling. The

distinctions between these techniques are best seen by-

defining the following possible tasks associated with

analyzing a collection of data points:

• Fitting a selected model type (or types) to the data
• Choosing an appropriate model from competing ones

determined by the data
• Making predictions based on the model

The first two tasks describe the situation where a

model type (e.g., curve) exists that seems to explain the

behavior being observed (e.g., a quadratic explaining

projectile motion). The modeler's job is to find the

particular model that "best" fits the data. If more than

one such model is found, he must choose, using some

established criteria, the best of the alternatives to

describe the phenomenon being studied. This process is

called Model Fitting.

For the third task, a model type does not exist to

explain the observed behavior. Yet, the modeler wishes to

predict what might happen within a certain range of interest

(either within or outside the range of the data) based

solely on the observed data. This process is known as

Empirical Modeling.

63

In discussing these different modeling techniques,

several new MATLAB capabilities will be introduced. Among

these are polyfit, which fits a polynomial of a desired

order to a given set of data points; and spline, which fits

a cubic spline to a set of data points.

A. MODEL FITTING

The idea of choosing a model thought to describe some

observed behavior is not new to us. The Vehicular Stopping

Distance problem is one such example. Recall that, after

decomposing the problem into two sub-models (reaction

distance and braking distance) we proceeded to fit submodels

to each component. We had reason to believe (even before

seeing the data) that reaction distance was proportional to

vehicle speed based on the premise that, regardless of

speed, response time was essentially constant (an average

response time across the population). Likewise, we deduced

from the physics of the vehicle braking process that braking

distance was proportional to the speed squared. Once these

proportionalities were established, only the constants of

proportionality remained to be determined. In both cases,

the observed data also validated the reasonableness of the

submodels chosen. The two combined submodels then provided

a relatively accurate predictor of total required stopping

distance as a function of vehicle speed.

64

1. Vehicular Stopping Distance -- Another Approach

Recall that in determining the constant k for the

expression d^ = kv2 we first transformed (by squaring) the

vehicular speed data, and then plotted braking distance

versus speed squared. The value of the slope of the best-

fit line (using the least-squares criterion) through the

origin then yielded the proportionality constant k,

resulting in model (3.3). An alternative approach would be

to compute this constant directly, without first executing

any transformations. The following M-file demonstrates this

approach (the plot generated by this M-file appears at

Figure IV.1):

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376];
speed=20:5:80;
k=cfit(speed,db,2);
plot(speed,db,'ko',speed,k*speed.A2)
legend('observed data',['model: db = ',num2str(k),'vA2'])
xlabel('speed, v (mph)')
ylabel('braking distance, db (ft)')

The function k = cfit(x,y,n) computes the constant k

(in the least squares sense) for the one-term polynomial

expression y = kx11. Like the function rto(x,y), this

function is not available in MATLAB but can be found in the

appendix.

65

400

350

~ 300-

^ 250
0) u
| 200
'■&

g 150

E
-° 100

50-

20

 , r , T .
o

-

o/
-

o observed data
 model: db = 0.054209V2

So
■

So ■

s'o

s^°
'

^^°

30 40 50 60 70 80
speed, v (mph)

Figure IV.1. Braking Distance Revisited

Notice that the resulting model obtained using the

function cfit is very close to the model shown in Figure

III.6 obtained using the function rto. This is another case

where similar results can be obtained using different

techniques with MATLAB.

Because it can generate one-term polynomial models of

the form y = kx11 for any degree n (including fractional

degrees), the function cfit is useful in many model-fitting

scenarios.

2. Residual Plots

A useful tool in determining the validity of a model is

the study of the errors or residuals (the differences

66

between predicted and observed values). We can compute and

plot these residuals using the following M-file:

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376];
speed=20:5:80;
residual=.054209*speed."2-db;
plot(speed,residual, 'ko',speed, zeros(size(speed)))
xlabel('speed, v (mph)')
ylabelC residual (ft)')

Figure IV.2 shows the resulting residual plot.

20

10-

(0
3

a> -io

-20

-30

-I—

o o
o 0

0
o

r ■

o
o o

o
U

-
o

' ' <>
20 30 40 50 60 70 80

speed, v (mph)
Figure IV.2. Residual Plot (predicted - observed)

Note the distinct pattern in the nature of the

residuals. This pattern might cause us to reexamine the

model for erroneous or oversimplified assumptions, or other

errors. For this particular case, however, the magnitude of

the errors is almost insignificant (about one car length or

less), and further investigation is unwarranted.

67

3. Using MATLAB's Polyfit Function

MATLAB has a built-in function for fitting polynomials

to a data set called polyfit. The function polyfit(x,y,n)

produces the n+1 coefficients of the nth degree polynomial

that fits (in the least squares sense) the data depicted by

the vectors x and y. The M-file below, which produces

Figure IV. 3, shows how this function can be used to model

braking distance:

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376];
speed=20:5:80;
p=polyfit(speed,db,2);
predict=p(1)*speed.A2+p(2)*speed+p(3) ;
plot(speed,db,'ko',speed,predict)
legend('observed data','prediction')
xlabel('speed, v (mph)')
ylabel('braking distance, db (ft)')

20

HUU 1 1 - i

350

g300

o observed data
 prediction

XI
"° 250 z'
0) u
| 200 X

g 150 y

E
-° 100 as

50

n ■ ■■it

30 40 50 60 70 80
speed, v (mph)

Figure IV.3. Braking distance modeled with polyfit

68

The equation for the model curve in Figure IV. 3

generated by polyfit is

dh = 0.0887V2-3.0841V+ 50.1294 (4.1)

Notice how this curve appears to more accurately

capture the data than the model having only the squared term

(model (3.3), plotted in Figure IV.1). The residual plot

for model (4.1) provides some verification of this apparent

increase in accuracy (Figure IV.4).

speed, v (mph)
Figure IV.4. Residual plot for the polyfit model

Compare these residuals with those shown in Figure

IV. l. Figure IV.4 seems to provide further evidence that

model (4.1) is more accurate than (3.3), but is this

actually the case? Upon closer inspection, we see that

69

model (4.1) predicts that a vehicle traveling at a speed of

zero mph requires over 50 feet to come to a complete stop.

This absurdity reveals the potential risk of blindly using

this function (or any other, for that matter). Polyfit

produces a polynomial that fits the data very well; it may

well serve to allow the modeler to interpolate between data

points. However, one would be ill-advised to use this model

(4.1) to attempt to extrapolate information about vehicular

braking distances for speeds outside the range of the

observed data.

The previous example does not necessarily point out a

weakness in MATLAB, but it does warn the user against merely

using polyfit to fit data to a curve without completing

further model analysis.

B. EMPIRICAL MODELING

In the braking distance example above, physics dictates

that the relationship between braking distance and vehicle

speed is a proportionality to speed squared. Many modeling

scenarios arise, however, where neither physics nor any

other science can provide a formula modeling the behavior or

phenomenon being studied. In these situations, we typically

have only the data itself from which to make desired

predictions (either within or outside the range of the

data) . Thus, we wish to find some curve of convenience, or

70

empirical model, that captures the trend of the data from

which to best make our predictions.

In this section, we discuss several types of empirical

models, including high- and low-order polynomials, and cubic

splines. A detailed discussion of these concepts, along

with other topics related to empirical modeling, can be

found in Chapter 6 of (2) .

1. High-Order Polynomial Models

Mathematical theory from linear algebra guarantees that

a unique polynomial of at most degree n can be passed

exactly through a set of n+1 distinct (x,y) points (see p.

180 of (2)) . So, for any set of data we wish to analyze, we

can find a polynomial that fits it exactly, with no error.

As good as this sounds, we'll find that this method has

several drawbacks. Let us use MATLAB's polyfit function to

compute these polynomials in several examples.

a) The Elapsed Time of a Tape Recorder

The data below relates the counter on a particular

analog tape recorder to its elapsed playing time (c

represents counter reading and t the elapsed time in

seconds):

C I 100 200 300 40(3 500 600 700 800

t 205 430 677 945 1233 1542 1872 2224

71

4_ 1—

The following M-file computes and plots the 7 -

order polynomial that passes exactly through each data

point:

c=100:100:800;
t=[205 430 677 945 1233 1542 1872 2224];
p=polyfit(c,t,7) ;
x=0:800;
y=polyval(p,x) ;
plot(c, t,'o',x,y)
xlabel('counter reading')
ylabel('elapsed time (sec)')
legend('observed data','model prediction')

Note the use of the function polyval(p,x) in this

file. Polyval evaluates the polynomial generated by polyfit

at each point of the vector x. The input argument p is the

vector of coefficients of the polynomial.

The coefficients of the 7 -degree polynomial

generated by this M-file are:

a0 = -1.4000e+001
ax = 2.3291e+000
a2 = -2.9083e-003
a3 = 1.9785e-005
a4 = -5.3542e-008
a5 = 8.0139e-011
a6 = -6.2500e-014
a7 = 1.9841e-017

Figure IV. 5 shows a scatterplot of the data along

with the polynomial model. It is evident that the

polynomial model passes through each of our data points. In

addition, it appears that the model captures the trend of

the data fairly well for regions between data points, as

72

well as outside the range of the data. Overall, this 7th-

degree polynomial model seems to be a fairly good model.

3500

3000

2500

|,2000
0)

I 1500

§■ 100° re
0)

500

-500

r 1 T 1

o observed data
 model prediction

•

' '
200 400 600

counter reading
800 1000

Figure IV.5. Tape recorder counter data with high-order
polynomial model

Let us look at another example using high-order

polynomials.

b) Volume of a Ponderosa Pine

In this problem, we wish to predict the volume V

(in board feet) of Ponderosa Pine trees based on the tree's

diameter d. The following data represents a sample of 14

such trees (taken from p. 187 of (2)):

17 19 20 22 23 25 31 32 33 36 37 38 39 41
V 19 25 32 51 57 71 141 123 187 192 205 252 248 294

73

,th The following M-file computes the 13 -degree

polynomial model and plot in Figure IV.6:

d=[17 19 20 22 23 25 31 32 33 36 37 38 39 41];
v=[19 25 32 51 57 71 141 123 187 192 205 252 248 294];
p=polyfit(d,v,13);
x=17:.1:41;
y=polyval(p,x);
plot(d,v,'o1,x,y)
xlabel('diameter')
ylabel('volume')
legend('observed data','model prediction')

500

03

E
3

-500

-1000

observed data
model prediction

15 20 25 30 35
diameter

40 45

Figure IV.6. Ponderosa Pine tree data with 13th degree
polynomial

Although the polynomial model does pass exactly

through each of the data points, it does a poor job

predicting the volume of trees having diameters between 17

74

and 19 inches and between 25 and 31 inches. This example

demonstrates a disadvantage of using high-order polynomial

models. These polynomials tend to oscillate, especially

near the end points of the data, rendering them almost

useless for interpolation between data points.

The next method we will consider eliminates most

of the disadvantages associated with high-order polynomials.

2. Low-Order Polynomial Models

Unlike high-order polynomials, low-order polynomials

generally do not pass exactly through every data point.

Rather, in most cases they tend to "smooth" the data in

providing a viable model for purposes of interpolation and

extrapolation. Again, the MATLAB function polyfit can be

used to obtain these low-order polynomials.

To demonstrate this process, consider again the problem

of predicting elapsed time of a tape recorder.

a) Elapsed Time of a Tape Recorder Revisited

Recall the tape recorder data:

C I 100 200 300 400 500 600 700 800
t I 205 430 677 945 1233 1542 1872 2224

Before fitting a polynomial to this data, we need

to know what order polynomial to use. A divided difference

table, constructed from the data, can assist in the

determination of the order of the polynomial to use (Section

75

6.3 of (2) explains the use of divided difference tables to

determine the order of an interpolating polynomial). The

following M-file produces a divided difference table for the

tape recorder data. Table IV.l depicts the divided

difference table.

c=100:100:800;
t=[205 430 677 945 1233 1542 1872 2224];
D=divdiff(c,t,4);
dlmwrite('f:\thesis\divtab', D,'\f)

We introduce a new function in this file called

divdiff. The command divdiff(x,y,ord) produces a divided

difference table of order "ord" ("ord" being the highest

divided difference calculated). This function is not

available in MATLAB; it can be found in the appendix.

*i Yi A A2 A 3 A4
100 205 2 25 0 00110 0 00000 0 00000
200 430 2 47 0 00105 0 00000 0 00000
300 677 2 68 0 00100 0 00000 0 00000
400 945 2 88 0 00105 0 00000 0 00000
500 1233 3 09 0 00105 0 00000
600 1542 3 30 0 00110
700 1872 3 52
800 2224

Table IV.1. Divided difference table for tape recorder data

We see in Table IV. 1 that the second divided

differences are virtually constant, and the third divided

differences are zero (to five decimal places). This

suggests that the data is essentially quadratic (again, see

76

Section 6.3 of (2) to see why this is true), which leads us

to attempt to fit a second-order polynomial to the data.

Fitting a second-order polynomial to the data can

be accomplished with the following M-file:

c=100:100:800;
t=[205 430 677 945 1233 1542 1872 2224];
p=polyfit(c,t,2) ;
x=0:1000;
y=polyval(p,x) ;
plot(c,t,'o',x,y)
xlabel('counter reading')
ylabel('elapsed time (sec)')
legend('observed data','model prediction')

The plot in Figure IV. 7 shows that the second-order

polynomial model does a very good job of capturing the trend

of the data even though the residual plot shown in Figure

IV. 8 reveals that the model does not pass exactly through

each data point.

77

3000

2500

u 2000

<D

•I 1500

I 1000

500

 1 T" I

- o observed data
 model prediction /

•

-

200 800 1000 400 600
counter reading

Figure IV.7. Second-order polynomial model

0.6

0.4

0.2

CO
3

1

0

-0.2

-0.4

-0.6

o °

o

 e

o
q

o

o

-0.8
100 200 300 400 500 600 700 800

counter reading

Figure IV.8. Residuals from 2nd-order polynomial model

78

Figure IV. 8 reveals how good the quadratic fit

really is. The largest error shown in this plot is less

than one second; a comparison of the error with the

magnitude of the dependent variable (elapsed time), which is

measured in thousands of seconds, results in a largest

relative error of about one-tenth of one percent. This

certifies the accuracy of the quadratic model.

Let's look at another example that will further

demonstrate the advantages of using low-order polynomials.

b) Volume of a Ponderosa Pine

Recall that previously we attempted to model the

volume of Ponderosa Pine Trees with a 13th-degree

polynomial. Figure IV. 6 demonstrates that, although this

high-order polynomial does pass exactly through each data

point, it might be better to model the situation with a low-

order polynomial. To determine the order of the polynomial

that would best fit the data, we first produce a divided

difference table (using the Ponderosa Pine Tree data

previously given) with the M-file shown below:

d=[17 19 20 22 23 25 31 32 33 36 37 38 39 41];
v=[19 25 32 51 57 71 141 123 187 192 205 252 248 294];
D=divdiff(d,v,4);
dlmwrite('f:\thesis\divtab', D, '\t')

This M-file produces Table IV.2.

79

d V A A2 A 3 A4

17 19 3.0000 1.3333 -0 1000 -0.0667
19 25 7.0000 0.8333 -0 5000 0.1333
20 32 9.5000 -1.1667 0 3000 -0.0247
22 51 6.0000 0.3333 0 0278 -0.0563
23 57 7.0000 0.5833 -0 5357 0.6191
25 71 11.6667 -4.2338 5 6548 -1.5429
31 141 -18.0000 41.0000 -11 3167 2.5000
32 123 64.0000 -15.5833 3 6833 -0.1417
33 187 1.6667 2.8333 2 8333 -2.8333
36 192 13.0000 17.0000 -14 1667 4.5583
37 205 47.0000 -25.5000 8 6250
38 252 -4.0000 9.0000
39 248 23.0000
41 294

Table IV.2. Divided difference table for Ponderosa Pine Tree
data

As it turns out, the divided differences in Table

IV.2- provide very little useful information to help

determine the degree of polynomial to use. Negative values

(anywhere in the table) and large values in the high order

divided differences (3rd or 4th) tend to result from errors

and irregularities in the observed data. We resort to an

educated guess and try a quadratic model. This M-file

generates the quadratic model as well as the scatterplot at

Figure IV.9 and the residual plot at Figure IV.10:

d=[17 19 20 22 23 25 31 32 33 36 37 38 39 41];
v=[19 25 32 51 57 71 141 123 187 192 205 252 248 294];
p=polyfit(d,v,2);
x=17:.1:41;
y=polyval(p,x);
plot(d,v,'o',x,y)
xlabel{'diameter')
ylabel('volume')
legend('observed data','model prediction')
figure(2)
plot(d,polyval(p,d)-v, 'o',d,zeros(size(d)))
xlabel('diameter')
ylabel('residual')

80

300

250

200

I 150

100

'—"T "•' 1 Y\

So

/o

• o observed data
 model prediction

■

o

/ o

 i ' 1 • i

50-

15 20 25 30 35 40 45
diameter

Figure IV.9. Ponderosa Pine data with 2d-order polynomial
model

25 30 35
diameter

40 45

Figure IV.10. Residuals from 2d-order polynomial model

81

The model shown in Figure IV.9 seems to capture

the trend of the data more accurately than the model shown

in Figure IV.6. To illustrate, suppose we desire to know

the volume of a 28-inch diameter tree. According to 13 -

degree polynomial model, the volume of this tree is expected

to be almost 494 board feet, an unreasonable estimate

(compare this to the actual data: a 31-inch diameter tree

yielded only 141 board feet). On the other hand, the

quadratic model predicts a volume of just under 100 board

feet, a much more believable number.

The errors plotted in Figure IV. 10 also seem to

indicate that the quadratic is a good fit. For comparison,

let's try modeling this data with a cubic polynomial. The

M-file (not shown) that generates the cubic model (Figure

IV.11) and residual plot (Figure IV.12) is nearly identical

to the one used for the quadratic fit.

82

300

250

200-

I 150

100-

50

i i r- • i f~.

-
o observed data
 model prediction oX

-

 1 1 i

/o
o /o

o

15 20 25 30 35 40 45
diameter

Figure IV.11. Ponderosa Pine data with cubic model

15 20 25 30 35 40 45
diameter

Figure IV.12. Residuals from cubic model

There does not seem to be any significant

difference (in terms of accuracy) in the two models.

83

However, one might be inclined to select the cubic model

over the quadratic for reasons of proportionality. Diameter

is a linear measure, and we know (see Bass Fishing Derby-

example in Chapter III) that volume is proportional to the

length cubed.

3. Cubic Spline Models

Cubic spline models combine the advantage of high-order

polynomials to pass exactly through each data point with the

feature of low-order polynomials (data smoothing) to capture

the trend of the data. However, while high- and low-order

polynomial models can be useful to both extrapolate and

interpolate, cubic spline models are generally only useful

for interpolation purposes (see Section 6.4 of (2) for a

detailed discussion of splines).

MATLAB constructs cubic splines with its spline(x,y,xx)

function. The syntax is yy = spline(x,y,xx) , where x and

y are vectors representing the data to be modeled, xx is the

new abscissa (x-axis) vector representing the range over

which the spline will be evaluated, and yy is the output

vector containing the value of the spline function at each

point in xx.

Let's consider again the Vehicular Stopping Distance

problem for illustrative purposes. The M-file below

demonstrates how to use MATLAB to model total stopping

84

distance with a cubic spline (using mean total stopping

distance data from Table III.l):

speed=20:5:80;
obs=[42 56 73.5 91.5 116 142.5 173 209.5 248 292.5 343 401 464];
x=20:.1:80;
y=spline(speed,obs,x);
plot (speed, obs, 'ko',x,y)
xlabel('speed (mph)')
ylabel('total stopping distance (feet)')
legend('Observation','Cubic Spline')

500

c- 400
0)

CD

§ 300 *-*
V)
T3
O)

S- 200
o
in

~m

2 100

 , ,

- o Observation
 Cubic Spline r '

■

 1 L._. 1

20 30 40 50 60 70
speed (mph)

80

Figure IV.13. Total stopping distance modeled with cubic
spline

Figure IV.13 shows the features of cubic spline models.

Note the smoothness of the model and how it passes exactly

through each data point. We could easily use this model to

interpolate between data points. For example, a few

modifications to the previous M-file, as noted below, can

provide us the stopping distance predicted by the cubic

85

spline model for any speed within the domain of our data

(i.e., between 20 and 80 mph). Figure IV.14 provides a

visual demonstration of this capability.

speed=20:5:80;
obs=[42 56 73.5 91.5 116 142.5 173 209.5 248 292.5 343 401 464];
x=20:.1:80;
y=spline(speed,obs,x);
yl=spline(speed,obs,28);
plot(speed,obs,'ko',x,y,28,yl,'+')
xlabel('speed (mph)')
ylabel('total stopping distance (feet)')
legend('Observation','Cubic Spline')
text(28,50,['stopping distance at 28'])
text(28,20,['mph is ' ,num2str(yl), ' ft.'])

500

■2 100

stopping distance at 28
mph is 66.4818 ft.

20 30 40 50 60
speed (mph)

70 80

Figure IV.14. Cubic spline model used for interpolation

86

V. SIMULATION MODELING

In situations where either the modeler cannot construct

an adequate analytic model to explain the behavior being

observed or the behavior itself is probabilistic in nature,

Monte Carlo simulation may provide a useful approach. In

this chapter, we demonstrate MATLAB's capabilities for

simulation modeling by means of several examples. We first

cover random number generation, followed by simulations of

both deterministic and probabilistic behaviors. In this

process, we introduce the MATLAB function random and

demonstrate the use of logical operators in MATLAB. Chapter

7 of (2) contains a more detailed discussion of simulation

modeling.

A. RANDOM NUMBER GENERATION IN MATLAB

Random numbers can be generated in MATLAB in many

different ways using several different functions. The

function we use exclusively for this chapter is random. The

syntax for using this function is

r = random('name•, a, b, m, n)

where name represents the name of the distribution desired

(i.e., 'unif for uniform, 'norm' for normal, and 'bino' for

binomial, to name just 3 of the 20 distributions available);

a and b represent the parameters of the desired

distribution; and m and n represent the dimensions of the

87

desired output (i.e., m = n = 1 will result in a scalar

output of one random number; m = 2, n = 3 will result in a

2x3 matrix of random numbers; and so forth). We use the

Uniform distribution exclusively in this presentation.

To demonstrate the use of this function, a simple

example is in order. The input:

» r=random('norm»,0,1,1,5)

results in the output:

r =
-0.4326 -1.6656 0.1253 0.2877

1.1465

which consists of a five-element row vector containing

random samples from a normal distribution with mean zero and

standard deviation one. Obviously, since this is a random

number generator, different results are achieved when the

same command is entered again. With this command, MATLAB is

capable of quickly generating enormous arrays of random

numbers, making it a necessary and convenient tool for

conducting simulations.

We now look at several examples.

B. SIMULATING DETERMINISTIC BEHAVIOR

1. Area Under a Curve

In this section, we demonstrate the use of Monte Carlo

simulation to model a deterministic behavior: the area

under a positive curve y = f(x). First identify any number

M such that 0 < f(x) < M over the closed interval [a,b].

88

is in the interval [a;b] and y± is in the interval [0,M] ,

for i = 1,2,...,n. Then count the number of points (Xi,yi)

that fall under the curve, and call this number count.

Finally, calculate the area under the curve to be

(approximately)

AREA = M(b-a) count/n.

A formal algorithm for this process can be found on page 221

of (2).

The following M-file computes the area under the curve

y = cos(x) over the interval

-n/2<x<n 12

using M = 1:

count=0;
a=-pi/2; b=pi/2; M=l;
n=100;
x=random('unif',a,b,n,1);
y=random(' unif , 0,M, n, 1) ;
z=y<=cos(x);
count=sum{z);
area=(b-a)*M*count/n

This file creates two n-long vectors, x and y, of

random numbers drawn from the uniform distribution. The x

values are chosen from the interval

-7r/2< X< nil,

and the y values are taken from [0,1]. Once these vectors

are created, the MATLAB logic operator "<=" creates the

vector z: the line "z=y<=cos (x) ;" can be translated, "Test

each x and y pair; if y is less than or equal to cos (x),

89

assign the value one to the corresponding element in z.

Otherwise, assign the value zero to the corresponding

element in z." The sum of the elements in the vector z then

corresponds to the number of random points from our sample

that fall on or below the curve. The area is then computed

as indicated in the last line of the above M-file.

Note the power of using logic operators in MATLAB. An

alternative is to use "for" and "if" loops, but they

significantly increase the time required for the simulation

(for large n (in the neighborhood of 10,000), the time

required for running this simulation using loops instead of

logic operators can be measured in minutes, whereas with

logic operators, the time required is decreased by a factor

of about 25) . A general rule of thumb for any MATLAB code

is to avoid using loops whenever possible.

Running the above M-file for various values of n

produces the following results:

approx. area
1000 2.0106
2000 2.0122
3000 1.9855
4000 2.0169
5000 2.0062
6000 2.0070
7000 1.9940
8000 1.9977
9000 1.9726

10000 1.9984

Table V.l. Monte Carlo approximation to the area under the
curve y - cos(x)

90

We can compare these results with the actual area,

which is 2 square units and see that our simulation model is

indeed reasonable. Note that increasing n does not

necessarily result in greater accuracy.

Figure V.l provides a visual representation of how the

Monte Carlo simulation works (the simulation equates to

throwing darts randomly at a dart board).

\ . * • .'y^'^N .'"^T:—'

0.8

0.6

0.4 .* */*r .'A^As 1.941^ • *V • '

': ./NUMBER9F POINTS = 6po\/.*

0.2

n

•/POINTS BELOW cufcvE 5,369V
/ * * . * • ** ■ . * \'

/ . • ". • *• ** • .* •* *\ / •• « ' V
-2 0

x x
Figure V.l. 500 random points to approximate the area under

the curve y = cos(x)

Let's look at another example of a deterministic

behavior modeled with Monte Carlo simulation.

2. Volume Under a Surface

Suppose we wanted to determine the volume of the sphere

X2 + y2 + z2 < 1

91

that lies in the first octant, x>0, y>0,z>0. We can

approach this problem in much the same way as for the area

under a curve problem (see page 22 3 of (2) for a formal

algorithm) by using the M-file below:

a=0; b=l; c=0; d=l; M=l;
n=100000;
x=random('unif ,a,b,n, 1)
y=random('unif ,c,d,n, 1)
z=random('unif',0,M,n,l)
v=(x.A2+y.A2+z.A2)<=1;
count=sum(v);
area=(b-a)*(d-c)*M*count/n

Running this code for various values of n produces the

following results:

n Approx. vol.
1000 0 52600
2000 0 54550
3000 0 52933
4000 0 52575
5000 0 51940
6000 0 51767
7000 0 52429
8000 0 53312
9000 0 52233

10000 0 52430

Table V.l. Monte Carlo approximation to the volume in the
first octant under the unit sphere

The actual volume is 0.5236 to four decimal places.

Again, notice that increasing the number n of random points

does not necessarily result in increased accuracy.

C. SIMULATING PROBABILISTIC BEHAVIOR

1. Tossing a Fair Coin

It is generally understood that the probability of

obtaining a head in tossing a fair coin is 0.5. This does

92

not mean, however, that one out of every two tosses results

in a head. It only means that in the long run the ratio of

heads obtained to the number of coins tossed should be close

to 0.5.

To simulate n coin tosses for any value of n, we need

only draw n uniformly distributed random numbers from the

interval [0,1] and count the number of samples less than

0.5. This count value represents the number of heads

obtained. For a formal algorithm, see page 229 of (2) . The

M-file below performs this simulation:

n=1000;
x=random('unif',0,l,n,1);
y=x<=0.5;
numheads=sum(y)
percheads=numheads/n

Running this code for various values of n produces the

following results:

Number Number Percent
of of Heads
Tosses Heads

1000 504 0.50400
2000 1012 0.50600
3000 1523 0.50767
4000 1998 0.49950
5000 2476 0.49520
6000 2990 0.49833
7000 3492 0.49886
8000 3996 0.49950
9000 4545 0.50500

10000 5099 0.50990

Table V.3. Results of tossing a fair coin

This next example for simulating a roll of a fair die

is more complex.

93

2. The Roll of a Fair Die

Instead of only two possible outcomes, as in tossing a

coin, we now must simulate an event with six possible

outcomes. In order to do this, we modify our code to

distribute the count of random values between zero and one

into six "bins." The formal algorithm for this simulation

is on page 229 of (2) . Our modified M-file for this

simulation appears below.

n=1000;
x=random('unif', 0,1,n,1);
yl=x<=(l/6);
y2=x>(l/6) & x<=(2/6)
y3=x>(2/6) & x<=(3/6)
y4=x>(3/6) & x<=(4/6)
y5=x>(4/6) & x<=(5/6)
y6=x>(5/6);
num_ones=sum(yl)
num_two s=s urn(y2)
num_threes=sum(y3)
num_fours=sum(y4)
num_fives=sum(y5)
num sixes=sum(y6)

Notice the use of compound logic statements. As an

example, the line

y2=x>(l/6) &x<=(2/6);

can be translated, "Create a vector called y2 whose elements

are equal to one for every x such that 1/6 < x < 2/6 and

zero otherwise." Simply summing every element of this

vector (using the sum command) gives the number of "twos"

rolled in this simulation.

94

Running this code for several values of n produced the

following results:

Number Percent Percent Percent Percent Percent Percent
of Ones Twos Threes Fours Fives Sixes

Rolls, n
10 0 10000 0.20000 0 10000 0 20000 0 30000 0 10000

100 0 10000 0.22000 0 13000 0 19000 0 16000 0 20000
1000 0 17800 0.16100 0 20400 0 15300 0 15900 0 14500

10000 0 16880 0.17140 0 16040 0 16270 0 16520 0 17150
100000 0 16648 0.16708 0 16542 0 16520 0 16883 0 16699
Table V .4 . Results from n i "Oils C)f < ä fair si x-side< 1 d ie

Comparing these results with the expected result of 1/6

for each entry shows that the model is indeed reasonable.

For large n, the simulation results are close to the

expected value.

95

96

VI. LINEAR PROGRAMMING

Linear programming (LP) is a branch of mathematics used

to obtain an optimal (maximum or minimum) value for a

predetermined linear objective that is subject to certain

linear constraints. This technique is very useful for

solving such problems as resource allocation, profit

maximization, and transportation system optimization, to

name just a few.

A typical LP consists of a set of decision variables, a

linear objective function, and a set of linear constraints.

We define these terms below:

Decision variables: the parameters over which the decision-maker has
control. For example, if a carpenter must decide how many chairs and
tables to make to maximize his profit, his decision variables would be
number of chairs to make (call this X) and number of tables to make
(call this Y).

Objective function: a linear combination of the decision variables to
be maximized or minimized. For example, suppose our carpenter
makes a net profit of $10 for chairs and $25 for tables, and he desires
to maximize his net profit. His objective function would then be

Maximize 1 OX + 25 Y

Constraints: side conditions that must be met. The objective function
must be maximized (or minimized) subject to these conditions.
Continuing with our carpenter example, a possible constraint could be
in the area of available materials. For example, suppose the carpenter
has 250 board feet of wood available to make chairs and tables. If
chairs require 17 board feet of wood and tables require 29, then the
constraint for wood would be

17X + 29Y<250

97

Linear programs can be solved in many different ways

using a variety of graphical, algebraic, and computational

techniques. We will discuss two methods of solving such

problems: geometric and the tableau Simplex methods.

A. GEOMETRIC SOLUTIONS

To demonstrate a geometric approach to solving linear

programs, let's look at an example involving a different

carpenter (taken from section 9.1 of (2)).

EXAMPLE: The Carpenter Problem.

Scenario: A carpenter makes tables and bookcases and sells them for a net
profit of $25 and $30 each, respectively. He would like to determine how
many of each to make each week in order to maximize his profit. He has
690 board feet of lumber available each week and up to 120 hours of labor.
He estimates that tables require 20 board feet of lumber and 5 hours of
labor to complete, while bookcases require 30 board feet of lumber and 4
hours of labor.

The first step to solving a problem like this is to put

all of this information into a workable format. So, we let

X represent the number of tables to be produced and Y denote

the number of bookcases. We can formulate the carpenter's

problem as follows:

Maximize 25X + 30Y (objective function)

Subject to:

20X + 30Y < 690 (lumber constraint)

5X + 4Y < 120 (labor constraint)

X, Y > 0

98

Now, let's look at the geometric representation of this

problem.

First, we plot the lumber constraint:

25

20

w 15
CO u
o

10-

(0,23)
 1 ,

>< Infeasible

Feasible
Region

\20X+30Y = 690

. \(34.5,o;

10 20
X-tables

30 40

Figure VI.1. Geometric interpretation of the lumber
constraint

The line 2OX + 3 0Y = 690 represents the region in which

the lumber constraint is met at equality. The phrase "met

at eguality" is used to describe a situation where a

constraint is satisfied exactly. In this problem, for

example, if the carpenter decided to make no tables and 23

bookcases, he would use exactly 69 0 board feet of lumber.

So is the case of any other combination of tables and

bookcases that lies along this line.

99

Note, however, that the constraint for lumber is an

inequality constraint. This translates geometrically to

(X,Y) combinations (combinations of tables and bookcases)

that lie not only on the line, but also anywhere to the left

of the line. We call this the feasible region for this

constraint. Any (X,Y) combination lying in the feasible

region is guaranteed to meet the lumber constraint. To

check, select the point (10,5) (corresponding to the

potential decision to make 10 tables and 5 bookcases) . It

is easy to see that this point lies to the left of the line

in Figure VI. 1. We can also see that the lumber required by

this table/bookcase combination is

20(10) + 30(5) = 200 + 150 = 350 board feet

which is less than the maximum available lumber of 69 0 board

feet per week. We see that the point (10,5) is indeed

feasible as far as the lumber constraint is concerned.

Note that lumber is not the only constraint; we also

have a constraint for available labor. We now plot the

labor constraint along with that for lumber.

The feasible region for both constraints together,

shown in Figure VI. 2, is a bit smaller than the one in

Figure VI. 1. In order for a point to be feasible, it must

satisfy both constraints. Only those (X,Y) combinations

that lie inside this feasible region do so. This region

turns out to be a convex set (also known as a polygon) .

100

35

30

25

§20

o
5

I
15

10

(0,30)

i i

(0.23K Infeasible

S. \ 5X+4Y= 120

AJ12.15) -

\20X+30Y = 690

f Feasible i';mW0
;| Region

^.(24,0)^X04.5,0)
10 20

X-tables
30 40

Figure VI.2. Lumber and labor constraints

The final two constraints in our problem indicate that

the decision variables X and Y must be nonnegative. That

is, (X,Y) combinations must lie above the X-axis and to the

right of the Y-axis in order to be feasible. The feasible

region (shaded) shown in Figure VI.2 already accounts for

these two constraints.

Now that we have plotted the feasible region, we have

narrowed our search for a solution somewhat. We know that

the solution must lie inside (or on the border of) the

feasible region, since this is the only geometric location

where all the constraints are met. There are an infinite

number of points within the feasible region; fortunately,

however, it turns out that an optimal solution to a linear

101

program, if one exists, lies on one of the extreme points of

the convex set formed by the intersection of the set of

constraints. The values of the objective function at the

extreme points are

Extreme Objective
point function value
(0,0) $0
(24,0) $600
(12,15) $750
(0,23) $690

Table VI.1. Objective function evaluated at the extreme
points of the feasible region

So, to maximize his profit, the carpenter should make

12 tables and 15 bookcases. This combination earns him $750

per week, and there exists no other combination that would

earn him more. This is the optimal solution to this linear

program.

B. TABLEAU SIMPLEX METHOD

As the name suggests, the tableau Simplex Method of

solving linear programs involves arranging the coefficients

of the objective function and constraints in a table, or

tableau. For a complete description of this method, see

Section 9.3 of (2). To demonstrate this method, we will

again use the Carpenter's Problem.

The appendix contains an M-file called tableau.m that

serves as an interactive tableau-based LP solver. We will

102

demonstrate the use of this program as we go along. Let us

begin with the necessary format for the LP.

In order to use the tableau method to solve a linear

program, the LP must be expressed in standard tableau

format. Tableau format assumes that the objective function

is to be maximized and the constraints are "less-than-or-

equal-to" inequalities. Additionally, all variables are

nonnegative. The Carpenter's Problem, which is to

Maximize 25X + 3 0Y

Subject to

20X + 30Y < 690

5X + 4Y < 120

X, Y > 0

is already in the desired format.

Prior to solving with the tableau, one final

modification to the LP is needed. We first constrain the

objective function to be no worse than its current value

(assumed to be zero to start) and express this idea with the

less-than-or-equal-to constraint

-25X - 30Y < 0.

We then add nonnegative slack variables to all constraints

so as to transform them into equality constraints. This

process results in the augmented constraint set

103

20X + 30Y + a = 690

5X + 4Y + b = 120

-25X - 30Y + z = 0

where all variables are nonnegative. The value of the

variable z represents the value of the objective function.

Now that we have the correct format, let us begin using

tableau.m to solve this problem.

The M-file tableau.in is executed by typing the word

"tableau" at the prompt in the MATLAB Command Window. The

first screen that appears is a description of the program

and instructions for its use. Figure VI. 3 shows what

appears in the MATLAB Command Window when tableau is

executed.

104

rj MAT 1 AB Coimndnd Window

Hie £dit Ü/rntew Help
mm&\

o ffl :&M m\m\ ?i

» »
* TABLEAU SIMPLEX TUTORIAL •
* *
* This simple program guides the user through the steps of soluing a *
* linear program using the tableau simplex method. It is executed from •
* the MATLAB Command Window by entering the command "tableau" (the name *
* of the M-file). All inputs for this tutorial »
* require the linear program to be in STANDARD TABLEAU FORMAT. That is, »
* all constraints are EQUALITY constraints with SLACK UARIABLES, and the *
* objective function is of the form -25x1 - 38x2 + z - 0 (the Right »
* Hand Side — RHS -- is ALWAYS zero. This program requires all input to »
» be correct — you cannot change input once you hit the ENTER key. As a *
» result, make sure the input is correct BEFORE hitting the enter key. *
» If you make a mistake, press the CTRL and C keys simultaneously. This *
» uill abort the execution of the M-file. Then, re-execute this program *
» by again typing "tableau" at the command prompt. »
* *
* Written by Donouan Phillips, 25 October 1998. •

Hit any key to begin using the tableau simplex tutorial.

Figure VI.3. Instruction screen for running tableau

On the next and subsequent screens, we are prompted to

enter the necessary information with which the tableau will

be constructed. Figure VI.4 shows the first such screen.

■<} MAT LAB Command Window

Fie £cfit Window Help;

füGO EÜ3

üvm ^.Mml H »li;§l ?|
Enter the number of variables for the Standard-~g£
Form Problem (including slack variables, excluding z) ==> 4

How many of these are slack variables? ==> 2|

jj*5
Figure VI.4. The user is prompted for information with which

to build the tableau

105

This process continues until all necessary information

has been entered. The program then displays the initial

tableau, shown in Figure VI.5.

■■} MAT LAB Command Window

! Rle £dit Wjndow Jfelp

The initial tableau is displayed below.

Tableau 0:
ix1 x2

20
5

-25

x3 xk RHS

30
H

-30

1
0
0

0
1
0

0
0
1

Hit any key to begin pivoting.

We will now begin piuoting.

Enter the column number (1 through 4)
for the entering variable ==> 2|

BBE3

690
120

0

,'Z
Figure VI.5. After all data is entered, the initial tableau
is displayed and the user is prompted to choose an entering

variable

Note that the tableau displayed in Figure VI.5 portrays

the Carpenter's Problem. The initial extreme point implied

by this tableau is the origin. The variables xl and x2 are

independent variables assigned the value 0; the variables

x3, x4, and z are dependent variables whose values are to be

106

determined (x3 and x4 are the original slack variables

corresponding to the two constraints in the problem). Each

row in this tableau corresponds to a constraint from the

problem, with the last row representing the objective

function.

To pivot, we must select an entering variable. At this

point, either xl or x2 could enter, since their coefficients

in the objective function are both negative (indicating that

either variable could improve the current objective function

value). We will choose x2 as the entering variable since it

has the largest (in absolute value) negative coefficient.

Tableau prompts the user to enter the column number

corresponding to the variable chosen as the entering

variable (column 2 in this case). An intermediate tableau

is then displayed, as shown in Figure VI.6.

107

|-,i MAT LAB Command Window BSE!
£ile £dit Window Hefe

D & <% &*. Hi .O| ffl laljd : ■
Based on your selection of column 2 as the
variable, ratios are calculated below.

entering

^

Intermediate Tableau:
x1 x2 x3 x4 z RHS RATIO

20 30 1 0 0
5 k 0 1 0

-25 -30 0 0 1

690
120

0

23
30

Enter the row number (1 through 2)
corresponding to the exiting variable ==> 1 •j
'M-..■.-:.■. HMJ :>W

Figure VI.6. Once the entering variable is chosen, an
intermediate tableau is displayed and the user is prompted

to choose an exiting variable

Tableau automatically computes the ratios necessary for

conducting the feasibility test to choose the exiting

variable. We choose x3 as the exiting variable since its

corresponding ratio is smallest in value. We indicate this

choice by entering the number 1 (corresponding to row 1) at

the prompt in Figure VI.6. Tableau then pivots by

performing the necessary row operations and displays the

updated tableau, shown in Figure VI.7.

108

<} MAT LAB Command Window

Fäe |dit Window Jjelp
HBO!

Here is the new tableau. Check for optimality.

Tableau 1:
x1 x2

0.667
2.33

-5

x3

1 0.0333
0 -0.133
0 1

xk RHS

0
1
0

0 23
0 28
1 690

Is it optimal? If not, enter 1 to continue.
If so, enter 0 to quit. ==> |

~3

M
Figure VI.7. The new tableau is displayed

The value of the objective function at this point is

690, but we can see that this is not optimal because there

is still a negative coefficient (of -5) in the objective

function line of the tableau.

Since optimality has not yet been achieved, we enter

the number 1 (to continue pivoting) at the prompt in Figure

VI.7. We will then be prompted to choose new entering and

exiting variables resulting in a new tableau. The process

continues until we determine that optimality has been

achieved. At this point, the optimal objective value is

displayed (see Figure VI.8), and we are offered the

opportunity to run the program again if desired.

109

«} MAT LAB Command Window

File Edit Window Help

Hfljiaf t*3

D \3r m
Here is the new tableau. Check for optinality.

Tableau 2:
x1 x2 x3

0
1
0

1 8.87111
0 -8.8571
0 8.714

x4

8.286
8.429
2.14

RHS

8
8
1

15
12

758

Is it optimal? If not, enter 1 to continue.
If so, enter 8 to quit. ==> 0

The value of the objective function at optinality is 758

Vou can determine values of the decision variables from the tableau above.

Thank you for using this tutorial. Would you like to run
another LP? Hit 1 for VES, 8 to quit ==>

Figure VI.8. Final tableau with optimal objective value
displayed

The M-file tableau.m can be found in the appendix. An

Internet address is provided to make this file available for

download and unrestricted use.

110

VII. CONCLUSION

In this thesis, we have demonstrated MATLAB's ability

to handle the data requirements of many mathematical

modeling scenarios. The inherent data manipulation,

graphical and statistical capabilities of MATLAB make it an

ideal software package for this type of work. MATLAB's

easy-to-learn coding language enables the user to build

models ranging from the most simple to some of the more

complex, and, once the model is complete, to conduct

critical sensitivity analysis with only minor modifications

to the original code. This and other features make MATLAB

the consummate platform with which to model and/or simulate

most observable behaviors.

ill

112

APPENDIX. FUNCTION M-FILES

M-files sited in the body of this thesis but not listed
are included here. The first two, rto(xfy) and
cfit(x,y,n), use equation (5.7) on page 154 of (2) to fit
one-term polynomial models. The third, divdiff(x#y,order)
produces divided difference tables. The last, tableau.m,
executes a tutorial on the Tableau Simplex Method.

All of these M-files are available for download at

http;//math.nps.navy.mil/Archive

function b=rto(x,y)
% rto(x,y) performs linear regression (of y on x)on a set of data
% points, but forces the regression line to go through the origin
% (thus the name rto — "regression through the origin")
%
% rto(x,y) takes as input two equally-sized vectors, x and y,
% and outputs the coefficient, b (as in y=bx), which creates the
% best fit (in the least squares sense) line through the
% origin.
%
% Written by Donovan Phillips, August 24, 1998
%
% initialization

if nargin ~= 2
error('Two vectors required as input.')

end
If length(x) ~= length(y)

error('Vectors must be of equal length.')
end

% calculate coefficient b

a=sum(x.*y) ;
c=sum(x.A2);
b=a/c;

113

function a=cfit(x,y,n)
% a = cfit(x,y) generates the coefficient "a" for the
% quadratic model
% y=axn

%
% where x and y are equal-length vectors representing
% the data being analyzed and n is the degree of the
% desired one-term polynomial.
%
% Written by Donovan Phillips, October 15, 1998.

% initialize

if nargin ~= 3
error('Three input arguments required.')

end
if length(x) ~= length(y)

error('Vectors must be of equal length.')
end

% compute a

b=x.An;
c=b.*y;
d=x."(2*n) ;
a=sum(c)/sum(d) ;

114

function D=divdiff(x,y,order)
T. D = divdiff (x,y, order) generates a divided difference table with
% the highest order equal to "order" (the number of columns produced
r. will be equal to order) for the data vectors x and y. If no order
% is specified, the function will default to an order of 3. This
'i function calls the MATLAB function diff.m, which produces the
% standard difference of a vector.

% Written by Donovan Phillips, November 5, 1998.

% initialize
format bank

if -isequal(size(x),size(y))
error('Input vectors must be the same size and orientation (row or

column).')
end

if nargin==2
order=3;

end

if size(x,l)==l
x=x' ;

y=y' ;
end

D= [] ;

'?; construct the divided difference table

D(: , 1:2) = [x y]; % first 2 columns of the table

for n=l:order
fill=zeros(n,1);
denom=[];
for i=l:(size(x,1)-n)

denom(i)=x(i+n)-x(i) ;
end
a=D(l:(size(x,l)-n+l),n+l);
yl=diff(a)./denom';
D(:,n+2)=[yl;fill];

end

115

clc
v=t

• •a**'

* TABLEAU SIMPLEX TUTORIAL *'
* * i

* This simple program guides the user through the steps of solving a * '
* linear program using the tableau simplex method. It is executed from *'
* the MATLAB Command Window by entering the command "tableau" (the name *'
* of the M-file). All inputs for this tutorial * *
* require the linear program to be in STANDARD TABLEAU FORMAT. That is, *'
* all constraints are EQUALITY constraints with SLACK VARIABLES, and the *'
* objective function is of the form -25x1 - 30x2 + z = 0 (the Right * ■
* Hand Side — RHS — is ALWAYS zero. This program requires all input to *'
* be correct — you cannot change input once you hit the ENTER key. As a *'
* result, make sure the input is correct BEFORE hitting the enter key. *'
* If you make a mistake, press the CTRL and C keys simultaneously. This *'
* will abort the execution of the M-file. Then, re-execute this program *'
* by again typing "tableau" at the command prompt. *'
* *'
* Written by Donovan Phillips, 25 October 1998. *'
* *'

disp (v)
disp (blanks (4))
disp('Hit any key to begin using the tableau simplex tutorial.')
pause

% determine size of tableau:

format short , clc
num_dgts=3;
disp('Enter the number of variables for the Standard-')
n=input ('Form Problem (including slack variables, excluding z) => ') ;
if n>8

error('Too many variables (8 is max)')
end
fprintf('\n'), fprintf('\n')
s=input('How many of these are slack variables? => ') ;

clc
disp('Enter the number of constraints')
m=input (' (excluding nonnegativity constraints) => ') ;
if m>4

error('Too many constraints (4 is max)')
end

% construct the initial tableau:

tab=zeros(m+1,n+2);
numc=num2str (m) ; numv=num2str (n) ;

for i=l:m
clc
disp(['Enter the ',numv,' coefficients for constraint ',num2str(i)])
z=input(' (separated by spaces) => ' , 's') ;
tab(i,1:n)=str2num(z);

fprintf('\n'), fprintf('\n')
disp('Enter the value of the right hand side')
tab(i,n+2)=input(' (RHS) for this constraint => ') ;

end

clc
disp(['Enter the ' ,num2str(n-s) , ' variable coefficients for the TABLEAU-FORMATTED'])
z=input('objective function (i.e., at least SOME should be NEGATIVE) => ' , ' s') ;
tab(m+1,1:(n-s))=str2num(z);

116

tab(m+l, (n-s+1) :n)=zeros (1 ,s) ;

tab(l:m,n+l)=zeros(m,l);
tab(m+l,n+l)=l;
tab(m+l , n+2)=0;

% initial tableau is now complete.

% display initial tableau:

clc
disp ('The initial tableau is displayed below.')
fprintf('\n'), fprintf(■\n')
disp('Tableau 0:')

varhold=[•xl' 'x2' 'x3• 'x4' 'x5' 'x6' •x7' ■x8 '] ;

A=num2str(tab,num_dgts);
w=size(A,2)/size(tab,2); w=w-1.5; w=round(w/2) ;
varstr=[];
for 3=1:n

varstrd, ((j-1) * (2*w+2) +1) : (j* (2*w+2))) = [varhold((2*j-l) :2*j) ,blanks(2*w)] ;
end
varstr=setstr(varstr);
varstr=[varstr,'z'.blanks(2*w),'RHS'];

disp (varstr)
fprintf(*\n')
disp (A)
fprintf('\n'), fprintf('\n'), fprintf('\n')

% conduct pivoting

disp('Hit any key to begin pivoting.')
pause
fprintf('\n'), fprintf('\n'), fprintf('\n')
disp('We will now begin pivoting.')
fprintf('\n'), fprintf('\n')

status=l; count=0;
while status ~= 0

count=count+l;
fprintf('\n'), fprintf('\n')
disp(['Enter the column number (1 through ',numv,')'])
enter=input('for the entering variable => ');

% compute RATIO and display intermediate tableau

ratio=tab(:,n+2)./tab(:,enter) ;
ratio=num2str(ratio,num_dgts) ;
ratio(m+1,:)='*';
clc
disp(['Based on your selection of column ',num2str(enter),' as the entering'])
disp('variable, ratios are calculated below.')
fprintf('\n'), fprintf('\n')
disp('Intermediate Tableau:')
disp([varstr,blanks(2*w),'RATIO'])
fprintf('\n')

spc=[];
for i=l:m+l

spc(i,:)=blanks(2*w);
end
disp([num2str(tab,num_dgts),setstr(spc),ratio])
fprintf('\n'), fprintf('\n')

disp(['Enter the row number (1 through ',numc,') '])
exit=input('corresponding to the exiting variable => ') ;

117

fprintf('\n')

% compute new tableau

piv=tab(exit,enter);
tab(exit,:)=tab(exit,:)/piv;
for k=l:m+1

if k ~= exit
tab(k, :)=-tab(exit, :)*tab(lc, enter) + tab(k,:);

end
end

% display new tableau

clc
disp('Here is the new tableau. Check for optimality.')
fprintf('\n'), fprintf('\n')
disp(['Tableau ',num2str(count) ,':'])

A=num2str(tab,num_dgts);
w=size(A,2)/size(tab,2); w=w-1.5; w=round(w/2);
varstr=[];
for j=l:n

varstrd, ((j-1) * (2*w+2)+1) : (j*(2*w+2)))=[varhold((2*j-1) :2*j) ,blanks (2*w)] ;
end
varstr=setstr(varstr);
varstr=[varstr,'z',blanks(2*w),'RHS'];

disp (varstr)
fprintf('\n')
disp (A)

% optimality decision

fprintf<'\n'), fprintf('\n')
disp('Is it optimal? If not, enter 1 to continue.')
status=input('If so, enter 0 to quit. => ') ;

end

% display results

fprintf('\n'), fprintf('\n')
disp(['The value of the objective function at optimality is ' ,num2str(tab(m+l,n+2))])
disp(blanks(2))
disp('You can determine values of the decision variables from the tableau above.')
disp(blanks(3))

% option to run the tutorial again

disp(['Thank you for using this tutorial. Would you like to run'])
q=input(['another LP? Hit 1 for YES, 0 to quit => ']);
if q = 1

tableau
end

118

INDEX OF MATLAB TOPICS AND COMMANDS

MATLAB commands appear in bold type.

C

Curve fitting
cfit 65,66, 113,114
Divided differences

divdiff 76,79, 113, 115
POlyfit 64, 68, 69, 70, 71, 72, 74, 75, 77, 80
polyval 72,74,77,80
rto 29, 33, 51, 54, 57, 60, 65, 66, 113
spline 64,84,85,86

D

Data manipulation
max 29
sum 89,92,93,94

F

File management
dlmwrite 43; 76
Set path g

Functions 9

H

Help commands

help 13
lookfor 14

/

Interpolation See Curve fitting

L

Linear programming
tableau.m 104j H6

Logic operators 89
compound 94

Looping
end 18
for 18,20,32,115
if 115, 118
Looping index 22
while U7

O

Operations 9

119

p

Plotting
Adding text

num2str 29, 54
text 29,51

Labels
title 24
xlabel 24
ylabel 24

legend 25,55,65
Line types and colors 26
plot 22,23,24,25

Punctuation and special characters
apostrophe 7
brackets 7
semicolon 7

R

Random number generation
random 87,89,93

V

Variable management
clear 12
whos 10

120

LIST OF REFERENCES

1. Hanselman, Duane C. and Littlefield, Bruce C, Mastering Matlab 5: A
Comprehensive Tutorial and Reference, Prentice Hall, Upper Saddle
River, New Jersey, 1997.

2. Giordano, Frank R., Weir, Maurice D., and Fox, William P., A First
Course in Mathematical Modeling, 2nd Edition, Brooks/Cole Publishing
Company, Pacific Grove, California, 1997.

3. Fox, William P., Girodano, Frank R., Maddox, Stephen L., and Weir,
Maurice D., Mathematical Modeling with Minitab, Brooks/Cole
Publishing Company, Belmont, California, 1987.

4. Beauchamp, Robert, Mathematical Modeling Using Maple, Master's
Thesis, Naval Postgraduate School, Monterey, California, 1996.

5. Emmons, Nelson L., Mathematical Modeling Using Microsoft Excel,
Master's Thesis,. Naval Postgraduate School, Monterey, California,
1997.

6. Bertsimas, Dimitris and Tsitsiklis, John N., Introduction to Linear
Optimization, Athena Scientific, Belmont, Massachusetts, 1997.

7. Hamilton, Lawrence C, Regression with Graphics, Duxbury Press,
Belmont, California, 1992.

121

122

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 94943-5101

Maurice D. Weir, Code MA/Wc 3
Naval Postgraduate School
Monterey, California 93943-5216

Bard Mansager, Code MA/Ma 1
Naval Postgraduate School
Monterey, California 93943-5216

Frank R. Giordano 1
P.O. Box 446
Seaside, California 93955

Donovan D. Phillips 3
4969 Wiltshire Rd.
North Royalton, Ohio 44133

123

