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ABSTRACT 

Mathematical modeling forms a bridge between the study of mathematics and the 
application of mathematics with the intent of explaining or predicting real world behavior. In their 
book A First Course in Mathematical Modeling, Frank R. Giordano, Maurice D. Weir, and 
William P. Fox provide an introduction to the entire modeling process. Model verification, an 
important step in the modeling process, often requires the analysis of vast amounts of data, 
making computational support essential. Mathematical Modeling Using MATLAB acts as a 
companion resource to A First Course in Mathematical Modeling with the goal of guiding the 
reader to a fuller understanding of the modeling process through the employment of MATLAB's 
powerful computational capabilities. In it, the reader is led through a series of examples, each 
building upon the previous, which apply MATLAB's computational power to various modeling 
scenarios. While not intended as a text in modeling, Mathematical Modeling Using MATLAB is a 
useful resource for the novice modeler interested in tackling problems too large to be performed 
manually. 
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I.   INTRODUCTION 

A.   BACKGROUND 

Mathematical modeling is the science of explaining and 

predicting (to the extent possible) "real world" behavior 

through the application of mathematics. Before we would use 

a potential model, however, we would first want to verify, 

or validate, the model to ensure it makes sense and that it 

answers the question we wish answered. This validation 

often requires detailed analysis of large amounts of data 

using a combination of modern computer hardware and 

appropriate software. MATLAB (matrix laboratory) is one 

such software package. 

MATLAB integrates computation, visualization, and 

programming in an easy-to-use environment expressing 

problems and solutions in familiar mathematical notation. 

This makes it a useful tool in the process of mathematical 

modeling. MATLAB is capable of running on several platforms, 

including UNIX systems and personal computers (PCs). In 

this thesis I describe the use of MATLAB, Version 5.2 (the 

latest version as of this printing) operating in the PC 

environment; however, the methods are virtually identical 

from platform to platform. A complete description of this 

release of MATLAB can be found in Mastering MATLAB 5: A 

Comprehensive Tutorial and Reference (1). 



B.   INTRODUCTION TO MATLAB 

1.   Structure 

MATLAB is an interactive system whose basic data 

element is a rectangular matrix (note: row and column 

vectors and even scalars are simple forms of rectangular 

matrices). A variety of mathematical operations can be 

easily performed on these data arrays to achieve whatever 

results are desired. MATLAB offers two environments in 

which these operations can be performed: the Command Window 

and script files.  We will discuss the Command Window first. 

a) The Command Window 

Figure 1.1. MATLAB Command Window 

The  Command Window  (shown  in Figure  1.1) is 

displayed when MATLAB is  first invoked. Commands are 

entered at the ">>" symbol  (the command prompt)  and are 

executed when the [Enter] key is depressed. For example, to 

sum the numbers 10, 20, 30, and 40, one would enter the 

following at the command prompt: 

10 + 20 + 30 + 40  [Enter] 



■) MATLAB Command Window 

File  £dit  Wjndow  Help 

IsSsIEl 

Ü [g^ :'y':. m m 
» 
»  10+20+30+40 

ans 

Hi -d »tel jj 

100 

^fi 
Figure 1.2. Command Window Example 

Note the term "ans" following the entry at the 

command prompt in Figure 1.2. MATLAB assigns the result of 

a computation to this temporary variable, which is 

overwritten by succeeding unassigned computations. 

Alternatively, one could assign this expression to a 

variable  and then solve for it: 

»   x=10+20+30+40 
x = 

100 

The variable x takes on the value of the expression, and 

subsequent operations can then be performed on x. For 

example: 

» x=10+20+30+40 
x = 

100 
»  y=sqrt (x) 
y = 

10 



Here we used a MATLAB function, i.e. sqrt, to obtain the 

desired result. We could just as easily have used an 

operation (raising a number to a power) to accomplish the 

same thing: 

» x=10+20+30+40 
x = 

100 
» y=x~(l/2) 

y = 
10 

A more thorough discussion of functions and operations will 

be provided shortly. First, we turn our attention to the 

MATLAB script file environment. 

b)        Script Files 

For simple problems, the Command Window provides a 

fast and efficient way to enter data and produce solutions. 

However, as problems become more complex and the need arises 

to change the value of one or more variables and reevaluate 

a series of commands, typing these commands at the MATLAB 

prompt quickly becomes tedious and unappealing. MATLAB 

solves this problem by enabling you to write (and store) 

text files containing the desired sequence of commands that 

can be executed simply by entering the file name in the 

Command Window. MATLAB executes the commands exactly as if 

you had typed them at the command prompt. These files are 

commonly referred to as M-files since the file name must end 

with the extension .m   ("dot m") , as in example.m.  Because 



the file is stored, you can run it again and again (making 

changes if desired) by merely typing its name at the command 

prompt. MATLAB provides a text editor, known as the MATLAB 

Editor/Debugger, for the purpose of writing and editing M- 

files. 

(1)  Using M-files.  To open the MATLAB 

Editor/Debugger from the Command Window, click on File, then 

New, followed by M-file. 

MATLAB Editoi/Debuggei    [Unhtledl] 

:(3 £ite   Edit  $ew  ßebug  loots  ^ndow  #e|p 

5Siia'itNtf"ii.friii 
Stack: 

ratal m 
^ifffxj 

<m4 

Q     UnWIedl 

Ready [UheT [3:30 m   ■£ 
Figure 1.3. MATLAB Editor/Debugger 

In addition to acting as a text editor, the MATLAB 

editor/debugger allows you to execute M-files directly from 

its window (without having to switch to the Command Window), 

and assists in debugging code. What follows in Figure 1.4 

is a simple example of an M-file written in the MATLAB 

editor. The example multiplies each number in a sequence by 

3. 



MATLAB Ediloi/Debuggei    [example m - C \MATLAB\bin\example m] 

QSJ File   Edit   View   Debug   Tools   Window   Help 

ISsWJ wü I 

ygj;*] 

DiH £ 
© Stack: 

x=[l,3,5,7,9,11,13,15] 
y=x*3; 

example.tn • ... 

Ready Line 3 110:01 AM   ^ 

Figure 1.4. M-file Example 

You can execute this M-file in one of two ways: switch to 

the Command Window and enter the name of the file (in this 

case, example.m) at the command prompt, or select Tools from 

the MATLAB editor "pull-down" menu and click on Run. Either 

method will net the same results, shown in Figure 1.5. 

i «,£ MA 1 LAI) Command Window ■■^■■.Inlxi 
File   Edit Window Help         ;: 

0   B? &   % 1 ii -*\m tsl ?! 
» 
x = 

1 

z   = 

3 
9 

15 
21 
27 
33 
39 
1*5 

3 5            7            9 11 13 15 

*■ 

.:!  ■ 

Figure 1.5. Results of M-file Execution 



The commands in the M-file are executed exactly as if they 

had been typed directly in the Command Window. As we will 

see shortly, M-files are very useful in modeling 

applications. 

We have introduced a few new ideas with 

the above example that deserve mention. First, notice in 

Figure 1.4 that the variable x represents a vector. The 

square brackets [ ] are used to denote a sequence of numbers 

as a vector, with commas separating each element. Next, 

notice the use of the semicolon following the line y - x * 

3 in Figure 1.4. The semicolon acts to suppress the 

display in the Command Window of the results of the command 

preceding it. Also, notice the absence, due to the use of 

the semicolon, of any reference to the variable y in Figure 

1.5. The semicolon is a very powerful tool that greatly 

simplifies the analysis of large arrays of data by 

suppressing from view the results of intermediate 

calculations that are not necessary to see. Finally, note 

the use of the apostrophe following the line z = y. The 

apostrophe serves to transpose the vector y, changing it 

from a row vector to a column vector. This distinction is 

important when manipulating data arrays. 



(2)  File Management Involving M-files. 

One may receive an error message, like the following, when 

attempting to run an M-file either from the Command Window 

or from the MATLAB Editor (the M-file in this case is called 

armsl.m) : 

» armsl 
??? Undefined function or variable 'armsl'. 

If this situation occurs, then one of 

two things has happened (assuming you typed the M-file name 

correctly): either the file was not previously saved, or 

(more likely) the directory in which the file is stored is 

not included in the MATLAB search path. The first problem 

is easily remedied; the second requires adding your M-file 

storage directory to the MATLAB search path. To do this, 

click on File in the Command Window, and then on Set Path. 

This causes the MATLAB Path Browser window to become active. 

Now add your M-file storage directory to the search path by 

either typing the directory name into the box marked 

"Current Directory" or by using the Browse button to find 

and highlight the appropriate directory. Once either of 

these actions is done, add this directory to the path by 

clicking on Path, followed by Add to Path. Once this is 

done, save the path by clicking on File, then Save Path. 

Once the path is saved, you can close the Path Browser 

window and return to the Command Window.  M-files stored in 



this   directory  may  now  be   run   from both   the   Command  Window 

and the MATLAB Editor. 

2.       Functions and Operations 

MATLAB       offers       the       following       basic       arithmetic 

operations: 

Operation Symbol Example 
Addition + 2+8 
Subtraction - 16.3-14 
Multiplication * 8*19 
Division /  or  \ 15/3=3\15 
Power ~ 5"}, ,, .,. 

Table I.l. MATLAB Operations 

The following table shows a sample of the functions offered 

by MATLAB: 

Common Functions 
abs(x) Absolute value 
cos(x) Cosine 
exp(x) Exponential: ex 

log(x) Natural logarithm 
loglO(x) Base 10 logarithm 
sin(x) Sine 
sqrt (x)' Square root 
tan(x) Tangent 
Table 1.2. Common Functions 

Other functions will be introduced as needed throughout this 

thesis. 



3.   Workspace 

MATLAB remembers all commands entered in the Command 

Window as well as the value of any variables you create. 

These commands and variables reside in the MATLAB Workspace 

and can be recalled on demand. For example, to find the 

current value of the variable x, simply enter its name at 

the command prompt and its value will be displayed: 

» X 

X = 

1    3    5    7    9   11   13   15 

If you forget the name of some or variables in use, the 

command whos results in a listing of all the variables 

created in the current session: 

» whos 
Name Size Bytes Class 
x 1x8 64 double array 
y 1x8 64 double array 
z 8x1 64 double array 

The size of the variable indicates whether it is a scalar, 

vector, or matrix. 

MATLAB allows you to recall previously entered commands 

by using the up arrow on your keyboard. Pressing this key 

once recalls the most recent command; each successive 

pressing results in the next most recent command, allowing 

you to scroll backward through the commands you have 

entered. The down arrow lets you scroll forward in similar 

fashion.  Once you have scrolled to the desired command, you 

10 



may re-execute the command or edit it prior to execution. 

Hitting the enter key executes the command. 

4.   Variables 

a)       Naming Variables 

MATLAB  has  very  specific  rules  about  naming 

variables.  A variable name: 

•    must be a single word containing no spaces; 

• is case sensitive; i.e., ITEMS, Items, items, and itEms are all different 
MATLAB variables; 

can contain up to 19 characters; 

must start with a letter, followed by any number of letters, digits, or 
underscores. 

b)       Redefining Variables 

Variables    may    be     redefined    as    desired. For 

example, 

» apples=4; 
»  oranges=7; 
»  applesandoranges=apples+oranges 
applesandoranges  = 

11 
» apples=7 
apples  = 

7 
»  applesandoranges 
applesandoranges  = 

11 

11 



Notice that changing the value of apples   did  not 

cause the value of applesandoranges   to change.   Unlike a 

spreadsheet,  MATLAB  does  not  recalculate  the  number 

applesandoranges  based on the new value of apples.      MATLAB 

performs calculations based on the information available at 

the time that the command is executed.  In order to update 

the total fruit count, one must reissue the command: 

»  applesandoranges=apples+oranges 
applesandoranges = 

14 

c)       Deleting Variables 

MATLAB variables can be irrecoverably deleted from 

the workspace using the clear command.  For example, 

» clear oranges 

deletes the variable oranges;   the command 

» clear 

deletes all of the variables in the workspace. Needless to 

say, the clear command should only be used with extreme 

caution. 

5.    Online Help 

Should you need it, MATLAB offers an extensive library 

of help capabilities that are available in three forms: the 

MATLAB commands help and lookfor and interactively using the 

Help Desk from the pull-down menu. 

12 



a)       The help Command 

If you know the name of a MATLAB function, the 

help command is the simplest way to get information about 

that function. For example, for help on the Absolute Value 

function, we would type: 
Use lower case for all 

» help abs MATLAB functions. 
ABS   Absolute value. 

ABS (X) is the absolute value of the elements of X. 
When X is complex, ABS (X) is the complex modulus 
(magnitude) of the elements of X. 

See also SIGN, ANGLE, UNWRAP. 

It is important to note at this point that, just as with 

variables, MATLAB distinguishes between upper and lower case 

characters in function names. Notice that the command ABS 

is capitalized in the first line after the command prompt. 

This is for readability purposes only. You must always call 

MATLAB functions using lower case characters. Attempting to 

call functions using upper case characters will result in 

error messages like the following: 

»   SORT(2) 
??? Undefined variable  or capitalized internal  function 
SORT;   Caps  Lock may be  on. 

The help command works well provided you know the name of 

the function you desire information on. When this is not 

the case,   the next  command may assist you. 

13 



b) The lookfor Command 

The  lookfor  command provides help by searching all 

MATLAB  files  for  the key word you provide.     For example, 

»   lookfor  cosine 
ACOS       Inverse  cosine. 
ACOSH    Inverse hyperbolic  cosine. 
COS Cosine. 
COSH  Hyperbolic cosine. 
TFFUNC time and frequency domain versions of a cosine 
modulated Gaussian pulse. 

provides a list of all the functions that contain the key 

word cosine. 

c) The Help Desk 

Perhaps the most extensive and user-friendly way 

to access help in MATLAB is the new (with version 5.2), 

interactive, Hypertext Markup Language- (HTML-) based Help 

Desk. The Help Desk is accessed from Help on the pull-down 

menu and requires an Internet Web browser, such as Internet 

Explorer or Netscape, to access. The use of hypertext 

allows for easy access to any topic by simply pointing and 

clicking with a mouse. The novice MATLAB user would benefit 

from a look at the "Getting Started" section, which 

describes all the basic functions and how they are used. 

14 



II.  MODELING WITH DISCRETE DYNAMICAL SYSTEMS 

A. INTRODUCTION 

In Chapter I, we discussed some basic essentials for 

using MATLAB. Here, we delve a bit deeper into more 

sophisticated features offered by MATLAB. New topics 

introduced in this chapter include data manipulation, 

looping, and plotting, which are used to model change via 

discrete dynamical systems. We present these concepts using 

several examples of dynamical systems taken from A First 

Course in Mathematical Modeling by Giordano, Weir, and Fox 

(2). 

B. EXAMPLE 1:  THE ARMS RACE 

1.   Scenario 

Section 1.1 of (2) outlines in detail the scenario for 

this model.  Following is a brief summary: 

Two countries, X and Y, are involved in an arms race. 

We wish to model the advancement of arms proliferation in 

terms of the number of missiles each country has at a given 

time. To do this, we need to make the assumption that each 

country follows a strategy of deterrence that reguires it to 

have a given number of weapons to deter the enemy even if 

the enemy has no weapons. The strategy of each country is 

to increase its arms inventory by some percentage of its 

enemy's arsenal each time the enemy adds weapons to its 

15 



inventory. For example, suppose Country Y feels it needs 

12 0 weapons to deter the enemy. Further, for every two 

weapons possessed by Country X, Country Y feels it needs to 

add one additional weapon to ensure 120 weapons will remain 

after a potential strike by Country X. It follows that the 

number of weapons needed by Country Y (y weapons) as a 

function of the number of weapons it thinks Country X has (x 

weapons) is 

v=120+-x (2.1) 
2 

Now suppose Country X is following a similar 

strategy. It determines it needs 60 weapons even if Country 

Y has none. Further, for every three weapons it thinks 

Country Y possesses, Country X feels it must add one weapon. 

Thus the number of weapons needed by Country X as a function 

of the number of weapons it thinks Country Y has is 

1 
x=60+-y (2.2) 

We will now look at the dynamic progression of the 

arms race. 

2.   Modeling the Dynamics of the Arms Race 

Suppose initially that Countries Y and X do not think 

the other side has arms. Following their strategy, they 

build 120 weapons and 60 weapons respectively.  Now assume 

16 



each has perfect intelligence (i.e., each knows the exact 

number of weapons the other has built). The result is a 

dynamical progression of the arms race. At each stage, each 

country adjusts its inventory based on the size of the 

enemy's arsenal during the previous stage. To model this 

situation in MATLAB, we use the MATLAB Editor to write an M- 

f ile: 

MATLAB Editoi/Debuggei    (aimsl m - F:\lhesis\m lilesW  .   E5ÖÜI31 

-teixf yg file   Edit   View   ßebug   Tools   Window   Help . „.._ „ --^j^ m^- -jjijp 
Stack;] «Ü mm. 

x=[]; 

y=[]; 
x(l)=60; 
y(l)=120; 

for  n=2:IS 
x(n)=x(l)+y(n-l)/3; 
y(n)=y(l)+x(n-l)/2; 

end 

\M armsl .m -F:..i 
"in ' 

; Ready Line 10 12:08 PM: i:]^ 

Figure II. 1. Arms Race M-file 

Before we look at the results, let's discuss the new 

MATLAB concepts introduced in Figure II.1. First, notice 

the expressions x= [] and y= [] . These commands serve to 

assign temporarily empty vectors {row vectors by default) to 

the variables x and y, which represent the size of each 

country's arsenal at each stage.   This is done with the 

17 



intent of assigning elements to these vectors at a later 

time, which can be done in various ways. Note how this 

differs from explicitly defining the elements of a vector as 

demonstrated in Figure 1.4. Next, we see that we can assign 

elements to a vector individually with expressions like 

y(l) = 120. This assigns the value 12 0 as the first element 

of y. 

Now that we have our vectors (or data arrays) 

initialized, we can now proceed to fill them by successively 

iterating or looping over expressions (2.1) and (2.2). 

Figure II.1 provides an example of a for loop. It consists 

of an index (in this case, n, representing the stage of the 

dynamical system) which determines the number of times the 

loop will be executed, a series of commands executed each 

time through the loop, and an end statement to signal the 

end of the loop. In this case, the loop starts with an 

index value of n = 2 (since the first elements of x and y 

have already been assigned) . Each time the loop is 

executed, values for the number of each country's weapons 

are calculated and assigned as elements of their respective 

vectors. 

The results of running this M-file will be the creation 

of two row vectors, x and y, containing elements 

representing the number of weapons each country has on hand 

at each of stages one through fifteen. These vectors are 

stored in the MATLAB Workspace.   We can switch to the 

18 



Command Window and view this  result by entering  the 

following command: 

\~) MATLAB Command Window Büß 
0fe:fdit:  Window   Help 

D|e£| ilMsl H *|%|   ?l 
» [(1:15)', x'.y] ä 
ans = 

1.0000 60.0000 120.0000 
2.0000 100.0000 150.0000 
3.0000 110.0000 170.0000 
4.0000 116.6667 175.0000 
5.0000 118.3333 178.3333 
6.0000 119.4444 179.1667 
7.0000 119.7222 179.7222 
8.0000 119.9074 179.8611 
9.0000 119.9537 179.9537 ■ "     ': 

10.0000 119.9846 179.9769 
11.0000 119.9923 179.9923 
12.0000 119.9974 179.9961 
13.0000 119.9987 179.9987 
14.0000 119.9996 179.9994 
15.0000 119.9998 179.9998 

4"-- ■    Md 
Figure II.2. Dynamical System Results 

The expression [ (1:15) ' ,x' ,y< ] can be translated, "Construct 

a matrix having three columns. In the first column, display 

the numbers one through fifteen; in the second and third 

columns, display the transposed vectors x and y, 

respectively." The same result could be obtained just as 

easily with the following alternate commands: 

»  n=l:15; 
»   [n\x\y'] 

19 



You will find, as we go along, that this situation is not 

unusual. There are usually more ways than one to obtain a 

particular desired result in MATLAB. 

Let's look at the output itself for a moment. Notice 

in Figure II.2 that the growth rate in the arms race appears 

to be decreasing over successive stages. In fact, the size 

of each country's arsenal appears to be approaching an 

equilibrium value (120 for country X and 180 for country Y). 

Suppose you wanted to know how changing the initial 

values would effect the equilibrium values. To find out, 

you need only change the initial values in your M-file and 

run it again. For example, suppose country X started with 

150 weapons and country Y started with 80. To compute the 

new equilibrium values, you could change your M-file as 

follows: 

MATLAB Editot/Debugget - [aimsl.m - F:\»hesis\m filesVai      fmtM W3\ 

Q) E<le   Edit   View   ßebup   tools   Window   Help -Iffl xj 

DjsajB 
^ *! li 

U  €)ltii 
Stack: 

x=[]; ▲ 

y=[]; 
x(l)=150; 
y(l)-80; 

for  n=2:15 
x(n)=x(l)+y(n-l)/3; 
y(n)=y(l)+x(n-l)/2; 

end -™1 

1 zi 
M armsl m - f:.. . 

Ready JLinelO 11:33 PM   £ 

Figure II.3. Modified M-file 
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The results of running this modified M-file appear below: 

\<J MAT LAB Command Window fityilfol E*S 

File   £dä   Window   Hefe 

oN %\mM *>| etel ?j 
» [n'.x'.y ] M 
sans = 

1.0006 150.0000 80.0000 
2.oeoo 176.6667 155.0000 
3.0000 201.6667 168.3333 
4.0000 206.1111 180.8333 
5.0000 210.2778 183.0556 
6.0000 211.0185 185.1389 
7.0000 211.7130 185.5093 
8.0000 211.8364 185.8565 
9.0000 211.9522 185.9182 

10.0000 211.9727 185.9761 
11.0000 211.9920 185.9864 
12.0000 211.9955 185.9960 
13.0000 211.9987 185.9977 
14.0000 211.9992 185.9993 M 
15.0000 211.9998 185.9996 H 

: i\ ^:;:*:LT- iß 
Figure II.4. Results of Modified M-file 

It is easy to see that the equilibrium values have 

changed to 212 for country X and 186 for country Y. This 

small example of sensitivity analysis shows the beauty of 

using M-files: a few keystrokes (changing the M-file 

itself) result in the solution of a modified problem that 

can lead to a more complete understanding of the behavior 

being modeled. 

3.        Plotting 

Another useful means of analyzing a discrete dynamical 

system is to plot the data.   Simple problems  (such as 

21 



demonstrated above) can be easily analyzed by displaying the 

data: trends and key information, such as equilibrium 

values, are usually obvious. We now address plotting in 

MATLAB using the Arms Race problem to demonstrate. 

MATLAB's basic plotting command, plot(x#y), generates a 

plot of y versus x, where x and y are vectors of equal 

length. Before we can plot (for example, the growth in 

country X's arsenal by stage) we first need a vector to plot 

against, equal in length to the vector x, and representing 

the various stages. If we let n be this stage vector, we 

adjoin the line 

n = 1:15; 

after the "end" statement of our M-file (see Figure II. 1) 

which creates the desired vector. This results in the 

assignment of a vector containing the elements one through 

fifteen (in sequence) to the variable n. Note that the 

vectors x and n are of equal length. Note also that, even 

though we used the symbol n as our looping index, we can use 

the same symbol to represent the stage vector since MATLAB 

overwrites variables when reassigned (see Chapter I, section 

B.4.b) and we no longer need the looping index. Now, to 

produce the desired plot, use the command plot(n,x). This 

command can either be entered in the command window (after 

running the modified M-file that creates the vectors x and 

n) or adjoined directly to end of the M-file.  We use here 
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the M-file option which, when modified,  looks like the 

following: 

MATLAB Editoi/Debuggei • [aimsl m    FMhesis\...   RSJiiES 

\msM ;.P Fie   Edit   iflew  ßebug  Jools   Window   Help 

oSai' 'l:[liir'#j:fi""ii[ii'' 
A) D D ; «N* f 

x-[]; 
y=[]; 
x(l)=60; 

y(l)-120; 

for  n=2:15 
x(n)=x(l)+y(n-l)/3; 
y(n)=y(l)+x(n-l)/2; 

end 
n=l:15; 
plot (n,x)| 

I armsLw^F... 

Ready Unell    : f j     |2:16 PM~^ 

Figure II.5. M-file with Plot Command 

Running this M-file produces the graph in Figure II.6. 

I * Figuie No  1 liß 
File   Edit   Window   Help 

-i-in 
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Figure II.6. Plot of x vs. n 
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Adding axis labels and a title require the use of the 

commands xlabel, ylabel, and title. To add these features 

to our plot, simply adjoin the following lines at the end of 

the updated M-file in Figure II.5: 

xlabel('n - stages'); 

ylabel('x - Number of Weapons'); 

title('Arms Race - Country X1); 

Running this updated M-file produces Figure II.7. 
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Figure II.7. Plot with Labels 

Putting the graphs of both countries on the figure is 

almost as easy.  It requires changing the plot command to 

the following (again, this can be done either in the command 

window or in the M-file): 

plot(n/x,n#y) 
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This modification, along with appropriate label changes, 

results in Figure II.8. 

1 / Figuie No. 1 H@Ol 
File: Etfit   ^irwiOW   üelp: :\\ 

180 
Arms Race - Country X 
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/ 
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f ■                                i 

) 5                               10 15 
n - staqes 

Figure II.8. Two Graphs 

However, in black and white, it is difficult to discern 

which curve represents Country X and which represents 

Country Y. We need a way to distinguish among several 

curves in a single figure: the curve's must be 

distinguishable and labeled. This can be accomplished by 

making one of the curves a dashed line and adding a legend. 

The commands are as follows: 

plot(n,x#n,y#'--•); 

legend('Country X», "Country Y') 

The resulting figure follows: 
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Figure II.9. Plot with Legend and Dashed Line 

Notice how the entry •--' in the plot command causes 

the curve for Country Y to be dashed. This modification is 

one of many that can be added to a plot command to obtain 

line effects and colors. Table II.1 lists all such 

modifiers: 

Symbol Color Symbol Line Style 
y yellow . point 
m magenta o circle 
c cyan X x-mark 
r red + plus 

g green + star 
b blue - solid line 
w white : dotted line 
k black -. dash-dot line 

— dashed line 

Table II.1. Basic Plot Line Types and Colors 
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It is easy to see the value of plotting data for a 

discrete dynamical system. MATLAB provides a wide 

assortment of plot features to enhance the user's ability to 

analyze dynamical systems. We discuss some of these in the 

examples that follow. 

C.   EXAMPLE 2:  POPULATION GROWTH IN A YEAST CULTURE 

With this example, we look at modeling by approximating 

change with difference equations. This problem can be found 

in Section 3.2 of (2). 

1.   Scenario 

Consider the following experimental data regarding the 

growth of a yeast culture: 

Time  Observed  Change 
in    yeast    in 
hours biomass  biomass 
_5 Pn pn+l~Pn 

0 9.6 8.7 
1 18.3 10.7 
2 29.0 18.2 
3 47.2 23.9 
4 71.1 48.0 
5 119.1 55.5 
6 174.6 82.7 
7 257.3 

Table II.1. Yeast Population Data 

To make a scatter plot of the growth of the biomass, use the 

following M-file: 
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x=[9.6 18.3 29 47.2 71.1 119.1 174.6]; 
y=[8.7 10.7 18.2 23.9 48 55.5 82.7]; 
plot(x,y,'ko') 
xlabel('Biomass ' ) 
ylabel('Change in Biomass') 
title('Change in Biomass vs. Biomass') 

Recall that the 'ko' modifier in the plot command causes 

each data point to be plotted with a black circle (see Table 

II.1).  Running this M-file results in Figure 11.10. 
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Figure 11.10. Yeast Culture Scatter Plot 

2.   An Initial Model 

Although the graph of the data does not lie precisely 

along a straight line passing through the origin, you can 

see that such a line can approximate it. We can modify our 

M-file to produce this line, as follows: 

x=[9.6 18.3 29 47.2 71.1 119.1 174.6]; 
y=[8.7 10.7 18.2 23.9 48 55.5 82.7]; 
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k=rto(x,y); 
z=0:max(x); 
plot(x,y,'ko',z,k*z,'k') 
text(80,30,['slope = ',num2str(k)]) 
xlabel('Biomass') 
ylabel('Change in Biomass') 
title('Change in Biomass vs. Biomass') 

The function rto(x,y) performs "regression through the 

origin" of y on x and outputs the slope of the best-fit line 

(in the least squares sense) through the origin. This 

function is not available in MATLAB, but can be found in the 

appendix. In addition, the command z = 0:max(x) results in 

the assignment to the variable z of a vector of values 

starting at zero and ending at the largest value in the 

vector x, with a step size of one.  For example, the command 

a = 1:5 

results in the output 

a = 
12     3     4     5. 

Finally, we use the text command for the first time 

here. This command allows you to label items on a graph 

with text. The numeric arguments that appear in this 

command represent the coordinates of the location on the 

graph for the text to begin. The command num2str used 

within the text command converts a number to a text string, 

which is necessary for inclusion of numerical data in a text 

expression. The graph produced by this M-file appears in 

Figure 11.11. 
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Change in Biomass \e. Biomass 
100 

200 
Biomass 

Figure 11.11. Scatter Plot w/Best Fxt Line 

From this information we can derive a proportionality 

model for population growth: 

kPn = Pn^-Pn=0A96Pn (2.3) 

yielding the model 

A,-, = 1-496^ (2.4) 

to predict future population at the next stage based on 

population at the current stage. Notice that this model 

predicts a population that increases without bound, which, 

in all likelihood, is quite unrealistic. Thus, our model 

needs some refinement. 
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3.   Model Refinement 

Realistically, the availability of critical resources 

(air, light, food, etc.) in the environment supporting the 

population tends to limit the population to some maximum 

level, known as the carrying capacity. Table II.3 shows 

what actually happens to the yeast culture growing in a 

restricted environment for time periods beyond those shown 

in Table II.2. 

Time Observed Chanqe 
0 9.6 8.7 
1 18.3 10.7 
2 29.0 18.2 
3 47.2 23.9 
4 71.1 48.0 
5 119.1 55.5 
6 174.6 82.7 
7 257.3 93.4 
8 350.7 90.3 
9 441.0 72.3 
10 513.3 46.4 
11 559.7 35.1 
12 594.8 34.6 
13 629.4 11.4 
14 640.8 10.3 
15 651.1 4.8 
16 655.9 3.7 
17 659.6 2.2 
18 661.8 

Table II.3. Extended Yeast Data 

The yeast population data is plotted in Figure 11.12. 
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Figure 11.12. Approaching a Limiting Population Level 

Notice that the population does indeed tend toward some 

limiting value, which we estimate by inspection to be about 

665.  Now consider the model 

&P„=P^-P„=Wtt-Pn)Pr (2.5) 

which causes lSpn to become increasingly small as pn 

approaches 665. We can test the validity of this model by 

plotting (pn+1 - pn) versus (665 - pn)Pn to see if there is a 

reasonable proportionality, with slope k. This can be done 

with the following M-file: 

pn=[9.6 18.3 29 47.2 71.1 119.1 174.6 257.3 350.7 441 
513.3 559.7 594.8 629.4 640.8 651.1 655.9 659.6 661.8]; 
a=length(pn); 
delta_pn=[]; 
for n=l:(a-1) 

delta_pn(n)=pn(n+l)-pn(n); 
end 
pn=pn(1:(a-1)); 
x=pn.*(665-pn); 
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k=rto(x,delta_pn); 
plot(x,delta_pn,'o',x,k*x) 
xlabelf'pn(665-pn)') 
ylabel('p(n+l)-p(n)') 
title('Growth Constrained by Resources' 
text(80000,62,['k = ',num2str(k)]) 

which produces the output 

Growth Constrained by Resources 
-1 r- 

6 8 10 12 
pn(665-pn) 

X10 

Figure 11.13. Constrained Growth Model 

4.   Numerical Solution for the Refined Model 

Using the value of k obtained above and solving for 

Pn+i  yields the model 

/>„+,=/>„+0.00081(665-/>>„ (2-6> 

which is quadratic in pn. This model is easily solved 

numerically (iteratively) if we start with an initial 

population.  Since p0  = 9.6, we can compute p1  as follows: 

px =p0 +0.00081(665 -p0)p0 =9.6 + 0.00081(665-9.6)9.6 = 14.70 
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Next we can compute P2 from plt and the remaining 

populations predicted by the model in similar fashion. 

Comparing these predictions with the actual observed 

populations gives insight into the accuracy of our model. 

Time Observation Prediction 
0 9.6 9.6000 
1 18.3 14.6964 

2 29.0 22.4377 

3 47.2 34.1159 

4 71.1 51.5497 

5 119.1 77.1644 
6 174.6 113.9060 
7 257.3 164.7521 
8 350.7 231.5098 
9 441.0 312.7992 

10 513.3 402.0354 
11 559.7 487.6694 
12 594.8 557.7172 
13 62 9.4 606.1823 
14 640.8 635.0622 
15 651.1 650.4622 
16 655.9 658.1218 
17 659.6 661.7884 
18 661.8 663.5100 

Predictions and Observations 
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Figure 11.14. Model Predictions and Observations 

It is apparent that our model does a fairly good job of 

predicting population levels and captures the trend of the 

original data. Now let us study variations of this 

population model by changing the constant of proportionality 

k in Equation (2.5). 

5.   Bifurcation and Chaos 

Suppose we have the population model 
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Pn*\=k(\-Pn)Pn (2.7) 

where we have normalized the carrying capacity to one unit 

of population.  We wish to examine the effect of changing 

the growth constant  of proportionality, k. For  this 

experiment, we will use an initial population p0 = 0.3, 

evaluate pn+i from Equation (2.7), and plot the population 

over time for various values of k. 

0.3( ) 
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•   o 

0 1 ^«npPcajQixDxnxaxBQEmxx^^ 
10 20 30 40 50 

Stage 
Figure 11.15. Population growth, k = 0.75 

We see in Figure 11.15 that the population dies out 

quickly when k = 0.75. Figure 11.16 shows the results of 

increasing k to 1.5. 
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Figure 11.16. Population growth, k = 1.5 

Here, the larger proportionality constant causes the 

population to increase initially, then tend toward a 

constant value (about one-third) as the stage number grows. 

20    30    40    50 
Stage 

Figure 11.17. Population growth, k = 2.9 
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Figure 11.17 depicts the results of increasing k to 

2.9. In this case, we begin to see oscillation in the early- 

stages before the population gravitates toward a steady- 

state of approximately 0.65. In Figure 11.18, we increase 

the value of k to 3.25. 
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Figure 11.18. Population growth, k = 3.25 

For k = 3.25, we no longer see the population tend 

toward one steady-state value. In fact, as the stages 

increase, the population splits into two branches and jumps 

between values that tend toward steady-state values 

(approximately 0.5 and 0.8). This splitting effect is known 

as bifurcation. 

Figure 11.19 shows the affect of increasing k to 3.4. 
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Figure 11.19. Population growth, k = 3.4 

We see in Figure 11.19 that, in addition to splitting, 

each of the two branches oscillates before eventually 

achieving steady-state. 

We find that increasing k even further causes each of 

the two branches to split, or bifurcate, again. Figure 

11.20 depicts this phenomenon. 
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Figure 11.20. Population growth, k = 3.5 

Here, we see each branch bifurcating again.  Let's look 

at the effect of increasing k again. 
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Figure  11.21.   Population growth,   k =  3.545 
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Figure 11.21 reveals that for k = 3.545, each of the 

four branches are oscillating initially before settling down 

and reaching steady-state. 
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Figure 11.22. Population growth, k = 3.695 

Figure 11.22 shows the results of increasing k to 

5.695. We see each of the four branches shown in Figure 

11.21 begin to bifurcate again, forming eight total 

branches. 
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Figure II.9. Population growth, k = 3.75 

Finally, we see in Figure II.9 that when k is large 

enough, the system reaches a point where there are no 

steady-state values. The system is trying to be at every 

value for every stage. At this point, the system has 

achieved a state of chaos. 

D.   EXAMPLE 3:  LANCHESTER«S SQUARE LAW DISCRETE MODEL 

Consider the situation of combat between two forces, 

which we will call Blue and Red. We want to know, among 

other things, if one side will defeat the other, or whether 

the fight will end in a draw. Lanchester's combat models 

provide an analytical framework within which to study these 

questions (see Ch. 11 of (2)). We now look at the discrete 

version of the Lanchester square law model. 
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1. The Model 

Let Bt and Rt be the force levels (number of systems on 

each side; e.g., soldiers, tanks, or ships) of the Blue 

force and Red force, respectively, at time period t. If we 

assume that the change in force level (i.e., the casualty 

rate) for a given side (say, Blue) is proportional to the 

force level of the opposing side (Red) , we can very easily 

derive the equation 

BM = B,-aR„ (2.8) 

where a is known as the attrition coefficient and reflects 

the rate at which the Red force inflicts casualties on the 

Blue force.  A similar analysis results in the expression 

K^Rt-bBn (2.9) 

where jb is the coefficient reflecting, similarly, the rate 

at which Blue inflicts casualties on Red. Together, these 

equations form a discrete dynamical system with which we can 

predict and study the. outcomes of hypothetical "battles." 

2. A Numerical Example 

Suppose that the Red and Blue forces engage in battle, 

and that the two sides begin the engagement with 50 and 100 

systems, respectively (i.e., R0 = 50 and B0 = 100). Suppose 

also that 10 Red systems are required to destroy one Blue 

system (i.e., a = 0.1) and furthermore that 2 0 Blue systems 
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are required to destroy one Red system (b = 0.05). Which 

side will win this battle? To find out, we could execute 

the  following M-file: 

%   Initialize   force  vectors,   initial  force  strengths 
%  and attrition  coefficients: 

B=[];   R=[];   B(l)=100;   R(l)=50; 
a=.l;   b=.05; 

% Loop through Lanchester equations to determine 
% force strength at each time period: 

for t=l:12  %12 is an arbitrary stopping point 
B(t+l)=B(t)-a*R(t); 
R(t+l)=R(t)-b*B(t); 

end 
t=0:t; 
%   create   a  matrix  of  output 
OUT=[f    B'    R'     (B./R) '] ; 
%  write  this  matrix  to  an ASCII   file  for  future 
%   reference: 
dlmwrite('f:\thesis\documents\lanch.out' ,OUT, ' \t') ; 

Notice the use of the percent sign (%) . This symbol 

denotes comments in an M-file which are not executed. These 

comments can appear anywhere in the file, as long as a 

percent    sign    precedes     them. Notice    also    the    command 

dlmwrite, which saves the results of M-file execution in an 

ASCII file (to later be manipulated with a word processor, 

spreadsheet, or other software). With little effort, the 

file "lanch.out" created by MATLAB can be imported into this 

document and displayed as  a table: 
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t Sr Rr Br/Rt- 
0 100 50 2 

1 95 45 2.1111 

2 90.5 40.25 2.2484 

3 86.475 35.725 2.4206 

4 82.9025 31.4013 2.6401 

5 79.7624 27.2561 2.9264 

6 77.0368 23.268 3.3108 

7 74.71 19.4162 3.8478 

8 72.7683 15.6807 4.6406 

9 71.2003 12.0423 5.9125 

10 69.9961 8.4822 8.2521 

11 69.1478 4.9824 13.8783 

12 68.6496 1.525 45.0148 

Table  II.4.   Status  of Red and Blue Forces   (a=.l,   b=.05) 

Blue     requires only     12     time periods     to    virtually 

eliminate   the   Red   f orce,   even   though the   Red   force   systems 

were  twice as  lethal   (a  =  0. 1 vs.   b = =   0.05).     Apparently,   a 

2:1    lethality   advantage    (ratio   of   attrition   coefficients) 

does   not .make   up   f •or   a   2:3 .   disadvantage   in   initial   force 

levels.      Let's   run the  model   again using  a   =   0.2   to   see   if 

an   increase   in   lethality   for   the   Red   force   achieves   better 

results   (see Table II.5) . 

t Bt Rt Bt/Rt 
0 100 50 2 
l 90 45 2 
2 81 40.5 2 
3 72.9 36.45 2 
4 65.61 32.805 2 
5 59.049 29.5245 2 
6 53.1441 26.5721 2 
7 47.8297 23.9148 2 
8 43.0467 21.5234 2 
9 38.742 19.371 2 
10 34.8678 17.4339 2 
11 31.3811 15.6905 2 
12 28.243 14.1215 2 

Table  II.5.   Status of Red and Blue Forces   (a=.2,   b=.05) 
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In this case, the original 2:1 force ratio {Bt/Rt) is 

maintained at every time period, indicating that parity 

exists. Clearly, Red requires a higher lethality advantage 

to compensate for the 2: l disadvantage in initial force 

strength. The lethality advantage required is 4/1, which is 

the square of the 2/1 force strength disadvantage for Red. 

This is no coincidence. One of the results Lanchester 

derived from (2.8) and (2.9) is an expression that must be 

satisfied at every time period for parity to occur: 

bB2=aR2 (2.10) 

Given that jb = .05, B - 100, and R = 50, we can use 

this expression to compute the required value of a in order 

to achieve parity: 

0.05000)' =«(50)" =a = MÄ= 0.2 502 

Table II. 5 verifies this to be true. In order for the Red 

force to win, we must have a > 0.2. To demonstrate this, 

Table II.6 displays the results of the battle for b = 0.05, 

B0 = 100, R0 = 50, and a = 0.3. 
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t Bt Rt Bt/Rt 
0 100 50 2 
1 85 45 1.8889 
2 71.5 40 75 1.7546 
3 59.275 37 175 1.5945 
4 48.1225 34 2113 1.4066 
5 37.8591 31 8051 1.1903 
6 28.3176 29 9122 0.94669 
7 19.3439 28 4963 0.67882 
8 10.7951 27 5291 0.39213 
9 2.5363 26 9893 0.093975 

Table II.6. Status of Red and Blue Forces (a=0.3, b=.05) 
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III. MODELING USING PROPORTIONALITY 

In Chapter II, the concept of proportionality was 

introduced along with a demonstration of its use in modeling 

change (see Example 2). This concept is now formalized by 

applying MATLAB to two examples taken from Chapter 4 of (2). 

A.   EXAMPLE 1:  VEHICULAR STOPPING DISTANCE 

This problem, first introduced in Chapter 2 and 

presented in more depth in Chapter 4 of (2) , asks the 

modeler to predict a vehicle's total stopping distance as a 

function of its speed. 

1.     Initial Model 

Consider the following rule of thumb often provided to 

young drivers-in-training: for every 10 miles per hour 

(mph) of your speed, leave one car length (about 15 feet) 

between you and the vehicle in front of you. For example, a 

car traveling at 60 mph should move no closer than 80 feet 

from the vehicle in front. This rule assumes a linear 

relationship between stopping distance and velocity. A 

graph of this proportionality relationship is a straight 

line of positive slope passing through the origin, as 

depicted in Figure III.l. 
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One-car-length Rule of Thumb 

0       20       40 
speed (mph) 

Figure III.l. One Car Length per 10 mph of speed is a 
proportionality relationship. 

To verify this potential model, we need to test it 

against empirical data. We'll use the following data taken 

from Chapter 4 of (2): 

Driver 
Speed Reaction Braking Distance Total . Stopping 
(mph) Distance (ft) Distance (ft) 

(ft) 
20 22 18-22 (20) 40-44 (42) 
25 28 25-31 (28) 53-59 (56) 
30 33 36-45 (40.5) 69-78 (73.5) 
35 39 47-58 (52.5) 86-97 (91.5) 
40 44 64-80 (72) 108-124 (116) 
45 50 82-103 (92.5) 132-153 (142.5) 
50 55 105-131 (118) 160-186 (173) 
55 61 132-165 (148.5) 193-226 (209.5) 
60 66 162-202 (182) 228-268 (248) 
65 72 196-245 (220.5) 268-317 (292.5) 
70 77 237-295 (266) 314-372 (343) 
75 83 283-353 (318) 366-436 (401) 
80 88 334-418 (376) 422-506 (464) 

Table III.l. Observed Reaction and Braking Distances 
(Mean Distances in Parentheses) 
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Let' s compare a scatterplot of these data against the 

One-car-length rule proportionality (we'll use the Mean 

Total Stopping Distance data from Table III.l for this 

comparison).  This comparison is depicted in Figure III.2. 

500 

400 

0) 

g 300 
c 
re 

■*-» 

w 
T3 

Ü?200 
a. 
Q. 
O 
to 

100 

 1- 1  

<) 

■ 
     One-car-length Rule 

o      Empirical Data o   - 

■ 

0 
o 

o 
o  

^1—-        1                                  » 

o 

0 

o 

o 

o 

20 60 80 40 
speed (mph) 

Figure III.2. Initial Model Validation 

From the plot, it appears that the rule of thumb does 

not accurately predict safe stopping distances, especially 

at speeds above 40 mph. It stands to reason that the model 

must be refined to make it more realistic. Notice that the 

scatterplot of the data is more accurately represented by a 

curve rather than a straight line through the origin. 

2.   Model Refinement 

In order to construct a better model, let us consider 

the components that make up the total stopping distance. 
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One can reasonably argue that the total distance d required 

for a vehicle to come to a complete stop is the sum of two 

distances: reaction distance, dr (the distance traveled 

between the time the driver determines the need to stop and 

the time the driver applies the brakes) , and breaking 

distance, d^ (the distance traveled from between application 

of the brakes and complete stop).  In other words, 

d = dr+db (3.1) 

We now examine these two components individually. 

a)       Reaction Distance 

Since we desire a model that predicts stopping 

distance as a function of vehicle speed, it seems natural to 

seek a relationship between each of the components in 

Equation (3.1) and vehicular speed. To get some idea of the 

relationship between reaction distance and speed, first 

create a scatterplot of the reaction distance data from 

Table III.l.  This scatterplot is depicted in Figure III.3. 
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70 80 40    50    60 
speed (mph) 

Figure III.3. Reaction Distance vs. Speed 

This relationship appears to be linear, but is it 

in fact a proportionality? In order for reaction distance 

to be proportional to vehicular speed, the best-fit line 

must pass (reasonably) through the origin. The following M- 

file generates a plot to help in answering that question: 

dr=[22 28 33 39 44 50 55 61 66 72 77 83 
speed=20:5:80; 
tr=rto(speed,dr); 
x=0:8 0; 
plot(speed,dr,'o',x,tr*x) 
text(40,40,['Slope  =   ',num2str(tr)]) 
xlabel('speed   (mph)') 
ylabel('reaction distance   (ft)') 

The plot   is   shown  in Figure   III.4. 
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40       60       80 
speed (mph) 

Figure III.4. Reaction distance data with best-fit line 

Indeed, from the graph it can be seen that reaction distance 

is proportional to vehicle speed. The relationship is 

described by the submodel 

dr = 1.104V, (3.2: 

where v is the speed of the vehicle. Let us next determine 

a relationship between braking distance and vehicular 

velocity. 

b)       Braking Distance 

To obtain some idea of the relationship between 

braking distance and vehicle speed, create a scatterplot of 

the braking distance data (we use the mean  data for braking 
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distance,  as before).   The scatterplot is displayed in 

Figure III.5. 

30 40    50   60 
speed (mph) 

70 80 

Figure III.5. Braking Distance vs. Speed 

From the figure, it is quickly revealed that this 

relationship is definitely not linear, much less a 

proportionality. Since Braking Distance is not proportional 

to speed, it could turn out to be proportional to some 

transformation of speed. In other words, a plot of Braking 

Distance against some function of the speed (i.e., square 

root, square, etc.) could reasonably produce a straight line 

through the origin. As discussed in Section 4.2 of (2), it 

is reasonable to expect the braking distance to be 

proportional to the square of the speed. Let us try 

plotting Braking Distance vs. Speed2. To do so, us the 

following M-file: 
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db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376]; 
speed=20:5:80; 
speed2=speed.A2; 
k=rto(speed2,db); 
x=0:max(speed2); 
plot (speed2,db, 'ko', x,x*k) 
text(4000,200, [ 'Slope = ',num2str(k)]) 
xlabel('speedA2 (mph"2)') 
ylabel('braking distance (ft)') 

The result is shown in Figure III.6. 

-I r i r 

1000 2000 3000 4000 5000 6000 7000 

speed2 (mph2) 
akinq Dist Figure III.6. Braking Distance vs. Speed 

As you can see, this relationship appears 

reasonably close to a proportionality. From this we can 

tentatively conclude (pending model verification) that 

db = 0.0542v
2. (3.3) 
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Summing  the  two  submodels  (3.2)  and  (3.3)  yields  the 

following proposed model for the total stopping distance: 

d = \.\04v + 0.0542v2 
(3.4! 

The predictions given by model (3.4) along with 

the actual observations are compared in Figure III.7. The 

One-car-length Rule is also plotted for comparison. 
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Figure III.7. Total Stopping Distance 

below: 

The   M-file   used   to   produce    Figure    III.7   appears 

d=[42   56   73.5   91.5   116   142.5   173   209.5   248   292.5   343   401   464]; 
speed=20:5:80; 
x=0:80; 
stop_d=l.104*speed+.0542*speed.A2; 
plot(speed,d,'o',speed,stop_d,'x',x,1.5*x) 
xlabel('speed (mph)1) 
ylabel('total stopping distance (ft)') 
legend('Observation', 'Model Prediction', 'One-car-length Rule') 
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Considering the assumptions and simplifications 

necessary to construct model (3.4) together with the 

inherent inaccuracies in the data, our model appears to 

agree fairly closely with the data. Observe also that the 

One-car-length Rule significantly underestimates the 

required stopping distance at speeds above 40 mph. 

This example demonstrates the use of 

proportionality models using transformed data. Let's 

consider another way that proportionality can be used to 

model a real-world situation. 

B.   EXAMPLE 2:  A BASS FISHING DERBY 

Consider the problem of determining (approximately) the 

weight of a fish in terms of some easily measurable 

dimension(s) (as discussed in Section 4.5 of (2)). 

1.   Initial Model 

For simplicity's sake (at least initially), we restrict 

our analysis to one species of fish, say bass. Assuming 

that all bass are geometrically similar (see Section 4.4 of 

(2) for a discussion of geometric similarity) , one can 

easily argue that the volume of any bass is proportional to 

the cube of some characteristic dimension. Using length 1 

as our characteristic dimension, the volume V of a bass then 

satisfies the proportionality 

VKI
3
. 
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Suppose too that the average density of all bass is 

constant (not an unreasonable assumption since their bones 

are small and almost "fleshy"). Then, since weight W is 

volume times average density times gravity, it follows 

immediately that 

Wozl\ 

Let' s compare this model against the following 

data, collected during a fishing derby (see Section 4.5 of 

(2)): 

....Length^.. J„.Jin..J. Girth,.....g....lin.J Weight.x....!^...loz...).  
14.5 9.75 27 
12.5 8.375 17 
17.25 11.0 41 
14.5 9.75 26 

12.625 8.5 17 
17.75 12.5 49 
14.125 9.0 23 
 12.625 8J5 16  

Table III.2. Observed Data 

If our model is to be valid, the graph of W vs. I3 

should approximate a straight line passing through the 

origin. This plot, together with a best-fitting straight 

line is presented in Figure III.8. The following M-file 

generated this plot: 

length=[14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625]; 
wt=[27 17 41 26 17 49 23 16]; 
13=length."3; 
k=rto(13, wt); 
x=0:max(13); 
plot(13,wt,'o',x,k*x) 
xlabelf lengths   (inA3)') 
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ylabel{'weight   (oz.)') 
text (1500,10, ['slope  =   ',num2str(k)]) 
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Figure  III.8.   Weight vs.   length    with Best-fit  Line 

The slope of the best-fit line yields the 

proportionality factor k. With this value, we propose the 

model 

W = 0.008437/3 (3.5) 

Figure III.9 compares model (3.5) with a scatterplot of 

the original data.   This figure was generated by the 

following M-file: 

length=[14.5   12.5   17.25   14.5   12.625   17.75   14.125   12.625]; 
wt=[27   17   41   26   17   49   23   16]; 
x=10: .1:20; 
pred_w=0.008437*x.A3; 
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plot(length,wt,'o',x,pred_w) 
xlabel('length (in)') 
ylabel('weight (oz.)') 
legend('Original data','Model (3.5)' 
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Figure III.9. Model (3.5) compared with original data 

With the small amount of data we have, Figure III.9 

shows that model (3.5) does not appear grossly inaccurate. 

However, suppose certain fishermen are dissatisfied with 

this model because it treats long, skinny fish equally with 

short, fat fish (that is, our model, which is based solely 

on length, could predict a long, skinny fish to weigh more 

than a short, fat fish; not very satisfactory for a 

fisherman). Let us propose an alternate model to satisfy 

these disgruntled fishermen. 
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2.   Model Refinement 

To take into account the three-dimensional aspect of a 

given fish, we replace the assumption that all fish are 

geometrically similar by assuming that only the cross - 

sectional areas of the fish are similar. Choosing girth g 

as our characteristic dimension (we define girth as the 

circumference of the fish at its widest point) , then the 

average cross-sectional area is proportional to the square 

of the girth, and we can subsequently conclude that 

Woz\g2 

(see Section 4.5 of (2) for a detailed discussion of this 

proportionality). 

Let's attempt to verify this model using the data from 

Table III.2.  First we create the following M-file: 

length=[14.5 12.5 17.25 14.5 12.625 17.75 14.125 12.625]; 
wt=[27 17 41 26 17 49 23 16]; 
girth=[9.75 8.375 11 9.75 8.5 12.5 9 8.5]; 
g2=girth.A2; 
lg2=length.*g2; 
k=rto(lg2, wt); 
x=0:max(lg2); 
plot(lg2,wt,'o',x,k*x) 
xlabel('lg"2 (inA3)') 
ylabel('weight (oz.)') 
text(600,10, ['slope = ' , num2str(k)]) 

The  M-file  produces  the  graph  and  best-fitting  line 

displayed in Figure III.10. 

60 



0 500      1000     1500     2000     2500     3000 

Ig2 (in3) 

Figure  III.10.   Wt vs.   lg2 w/Best-fit  Line 

The result  of  this procedure yields  the model 

PT = 0.01871g2. (3.6) 

A fisher would probably be happier with the new model 

(3.6), because doubling the girth leads to a fourfold 

increase in the predicted weight of the fish.  However, this 

rule  is  more  difficult  to  apply.    It  requires  two 

measurements for each fish as opposed to only one for model 

(3.5) . 
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IV.  MODELING FROM DISCRETE DATA 

In this chapter, we look at two techniques for modeling 

data sets: Model Fitting and Empirical Modeling. The 

distinctions between these techniques are best seen by- 

defining the following possible tasks associated with 

analyzing a collection of data points: 

• Fitting a selected model type (or types) to the data 
• Choosing an appropriate model from competing ones 

determined by the data 
• Making predictions based on the model 

The first two tasks describe the situation where a 

model type (e.g., curve) exists that seems to explain the 

behavior being observed (e.g., a quadratic explaining 

projectile motion). The modeler's job is to find the 

particular model that "best" fits the data. If more than 

one such model is found, he must choose, using some 

established criteria, the best of the alternatives to 

describe the phenomenon being studied. This process is 

called Model  Fitting. 

For the third task, a model type does not exist to 

explain the observed behavior. Yet, the modeler wishes to 

predict what might happen within a certain range of interest 

(either within or outside the range of the data) based 

solely on the observed data. This process is known as 

Empirical Modeling. 
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In discussing these different modeling techniques, 

several new MATLAB capabilities will be introduced. Among 

these are polyfit, which fits a polynomial of a desired 

order to a given set of data points; and spline, which fits 

a cubic spline to a set of data points. 

A.   MODEL FITTING 

The idea of choosing a model thought to describe some 

observed behavior is not new to us. The Vehicular Stopping 

Distance problem is one such example. Recall that, after 

decomposing the problem into two sub-models (reaction 

distance and braking distance) we proceeded to fit submodels 

to each component. We had reason to believe (even before 

seeing the data) that reaction distance was proportional to 

vehicle speed based on the premise that, regardless of 

speed, response time was essentially constant (an average 

response time across the population). Likewise, we deduced 

from the physics of the vehicle braking process that braking 

distance was proportional to the speed squared. Once these 

proportionalities were established, only the constants of 

proportionality remained to be determined. In both cases, 

the observed data also validated the reasonableness of the 

submodels chosen. The two combined submodels then provided 

a relatively accurate predictor of total required stopping 

distance as a function of vehicle speed. 

64 



1.   Vehicular Stopping Distance -- Another Approach 

Recall that in determining the constant k for the 

expression d^ = kv2 we first transformed (by squaring) the 

vehicular speed data, and then plotted braking distance 

versus speed squared. The value of the slope of the best- 

fit line (using the least-squares criterion) through the 

origin then yielded the proportionality constant k, 

resulting in model (3.3). An alternative approach would be 

to compute this constant directly, without first executing 

any transformations. The following M-file demonstrates this 

approach (the plot generated by this M-file appears at 

Figure IV.1): 

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376]; 
speed=20:5:80; 
k=cfit(speed,db,2); 
plot(speed,db,'ko',speed,k*speed.A2) 
legend('observed data',['model: db = ',num2str(k),'vA2']) 
xlabel('speed, v (mph)') 
ylabel('braking distance, db (ft)') 

The function k = cfit(x,y,n) computes the constant k 

(in the least squares sense) for the one-term polynomial 

expression  y   = kx11.        Like the function rto(x,y),  this 

function is not available in MATLAB but can be found in the 

appendix. 
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Figure IV.1. Braking Distance Revisited 

Notice that the resulting model obtained using the 

function cfit is very close to the model shown in Figure 

III.6 obtained using the function rto. This is another case 

where similar results can be obtained using different 

techniques with MATLAB. 

Because it can generate one-term polynomial models of 

the form y = kx11 for any degree n (including fractional 

degrees), the function cfit is useful in many model-fitting 

scenarios. 

2.       Residual Plots 

A useful tool in determining the validity of a model is 

the study of the errors or residuals     (the differences 
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between predicted and observed values).  We can compute and 

plot these residuals using the following M-file: 

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376]; 
speed=20:5:80; 
residual=.054209*speed."2-db; 
plot(speed,residual, 'ko',speed, zeros(size(speed))) 
xlabel('speed, v (mph)') 
ylabelC residual (ft)') 

Figure IV.2 shows the resulting residual plot. 
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Figure IV.2. Residual Plot (predicted - observed) 

Note the distinct pattern in the nature of the 

residuals. This pattern might cause us to reexamine the 

model for erroneous or oversimplified assumptions, or other 

errors. For this particular case, however, the magnitude of 

the errors is almost insignificant (about one car length or 

less), and further investigation is unwarranted. 
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3.   Using MATLAB's Polyfit Function 

MATLAB has a built-in function for fitting polynomials 

to a data set called polyfit. The function polyfit(x,y,n) 

produces the n+1 coefficients of the nth degree polynomial 

that fits (in the least squares sense) the data depicted by 

the vectors x and y. The M-file below, which produces 

Figure IV. 3, shows how this function can be used to model 

braking distance: 

db=[20 28 40.5 52.5 72 92.5 118 148.5 182 220.5 266 318 376]; 
speed=20:5:80; 
p=polyfit(speed,db,2); 
predict=p(1)*speed.A2+p(2)*speed+p(3) ; 
plot(speed,db,'ko',speed,predict) 
legend('observed data','prediction') 
xlabel('speed, v (mph)') 
ylabel('braking distance, db (ft)') 
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Figure  IV.3.   Braking distance modeled with polyfit 
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The equation for the model curve in Figure IV. 3 

generated by polyfit is 

dh = 0.0887V2-3.0841V+ 50.1294 (4.1) 

Notice how this curve appears to more accurately 

capture the data than the model having only the squared term 

(model (3.3), plotted in Figure IV.1). The residual plot 

for model (4.1) provides some verification of this apparent 

increase in accuracy (Figure IV.4). 

speed, v (mph) 
Figure IV.4. Residual plot for the polyfit model 

Compare these residuals with those shown in Figure 

IV. l. Figure IV.4 seems to provide further evidence that 

model (4.1) is more accurate than (3.3), but is this 

actually the case?  Upon closer inspection, we see that 
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model (4.1) predicts that a vehicle traveling at a speed of 

zero mph requires over 50 feet to come to a complete stop. 

This absurdity reveals the potential risk of blindly using 

this function (or any other, for that matter). Polyfit 

produces a polynomial that fits the data very well; it may 

well serve to allow the modeler to interpolate between data 

points. However, one would be ill-advised to use this model 

(4.1) to attempt to extrapolate information about vehicular 

braking distances for speeds outside the range of the 

observed data. 

The previous example does not necessarily point out a 

weakness in MATLAB, but it does warn the user against merely 

using polyfit to fit data to a curve without completing 

further model analysis. 

B.   EMPIRICAL MODELING 

In the braking distance example above, physics dictates 

that the relationship between braking distance and vehicle 

speed is a proportionality to speed squared. Many modeling 

scenarios arise, however, where neither physics nor any 

other science can provide a formula modeling the behavior or 

phenomenon being studied. In these situations, we typically 

have only the data itself from which to make desired 

predictions (either within or outside the range of the 

data) .  Thus, we wish to find some curve of convenience, or 
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empirical model, that captures the trend of the data from 

which to best make our predictions. 

In this section, we discuss several types of empirical 

models, including high- and low-order polynomials, and cubic 

splines. A detailed discussion of these concepts, along 

with other topics related to empirical modeling, can be 

found in Chapter 6 of (2) . 

1.   High-Order Polynomial Models 

Mathematical theory from linear algebra guarantees that 

a unique polynomial of at most degree n can be passed 

exactly through a set of n+1 distinct (x,y) points (see p. 

180 of (2)) . So, for any set of data we wish to analyze, we 

can find a polynomial that fits it exactly, with no error. 

As good as this sounds, we'll find that this method has 

several drawbacks. Let us use MATLAB's polyfit function to 

compute these polynomials in several examples. 

a)        The Elapsed Time of a  Tape Recorder 

The data below relates the counter on a particular 

analog  tape  recorder  to  its  elapsed playing  time  (c 

represents  counter reading and t the elapsed time in 

seconds): 

C        I  100 200 300 40(3 500 600 700 800 

t      205     430     677     945    1233    1542    1872    2224 
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4_ 1— 

The following M-file computes and plots the 7 - 

order polynomial that passes exactly through each data 

point: 

c=100:100:800; 
t=[205   430   677   945   1233   1542   1872   2224]; 
p=polyfit(c,t,7) ; 
x=0:800; 
y=polyval(p,x) ; 
plot(c, t,'o',x,y) 
xlabel('counter  reading') 
ylabel('elapsed time   (sec)') 
legend('observed data','model  prediction') 

Note the use of the function polyval(p,x) in this 

file. Polyval evaluates the polynomial generated by polyfit 

at each point of the vector x. The input argument p is the 

vector of  coefficients  of  the polynomial. 

The coefficients of the 7 -degree polynomial 

generated by this M-file are: 

a0 = -1.4000e+001 
ax = 2.3291e+000 
a2 = -2.9083e-003 
a3 = 1.9785e-005 
a4 = -5.3542e-008 
a5 = 8.0139e-011 
a6 = -6.2500e-014 
a7 = 1.9841e-017 

Figure  IV. 5  shows  a  scatterplot   of   the  data  along 

with     the     polynomial     model. It     is     evident     that     the 

polynomial model passes through each of our data points. In 

addition, it appears that the model captures the trend of 

the   data   fairly   well   for   regions   between   data   points,    as 
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well as outside the range of the data.  Overall, this 7th- 

degree polynomial model seems to be a fairly good model. 
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Figure IV.5. Tape recorder counter data with high-order 
polynomial model 

Let us look at another example using high-order 

polynomials. 

b)        Volume of a Ponderosa Pine 

In this problem, we wish to predict the volume V 

(in board feet) of Ponderosa Pine trees based on the tree's 

diameter d. The following data represents a sample of 14 

such trees (taken from p. 187 of (2)): 

17 19 20 22 23 25 31 32 33 36 37   38 39 41 
V       19 25 32 51 57 71 141  123  187  192  205  252  248  294 
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,th The  following M-file  computes  the  13 -degree 

polynomial model and plot in Figure IV.6: 

d=[17 19 20 22 23 25 31 32 33 36 37 38 39 41]; 
v=[19 25 32 51 57 71 141 123 187 192 205 252 248 294]; 
p=polyfit(d,v,13); 
x=17:.1:41; 
y=polyval(p,x); 
plot(d,v,'o1,x,y) 
xlabel('diameter') 
ylabel('volume') 
legend('observed data','model prediction') 
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Figure IV.6. Ponderosa Pine tree data with 13th degree 
polynomial 

Although the polynomial model does pass exactly 

through each of the data points, it does a poor job 

predicting the volume of trees having diameters between 17 
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and 19 inches and between 25 and 31 inches. This example 

demonstrates a disadvantage of using high-order polynomial 

models. These polynomials tend to oscillate, especially 

near the end points of the data, rendering them almost 

useless for interpolation between data points. 

The next method we will consider eliminates most 

of the disadvantages associated with high-order polynomials. 

2.   Low-Order Polynomial Models 

Unlike high-order polynomials, low-order polynomials 

generally do not pass exactly through every data point. 

Rather, in most cases they tend to "smooth" the data in 

providing a viable model for purposes of interpolation and 

extrapolation. Again, the MATLAB function polyfit can be 

used to obtain these low-order polynomials. 

To demonstrate this process, consider again the problem 

of predicting elapsed time of a tape recorder. 

a)       Elapsed Time of  a Tape Recorder Revisited 

Recall the tape recorder data: 

C   I  100 200 300 400 500 600 700 800 
t   I  205     430     677     945     1233    1542    1872    2224 

Before fitting a polynomial to this data, we need 

to know what order polynomial to use. A divided difference 

table, constructed from the data, can assist in the 

determination of the order of the polynomial to use (Section 
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6.3 of (2) explains the use of divided difference tables to 

determine the order of an interpolating polynomial). The 

following M-file produces a divided difference table for the 

tape recorder data. Table IV.l depicts the divided 

difference table. 

c=100:100:800; 
t=[205 430 677 945 1233 1542 1872 2224]; 
D=divdiff(c,t,4); 
dlmwrite('f:\thesis\divtab', D,'\f) 

We introduce a new function in this file called 

divdiff. The command divdiff(x,y,ord) produces a divided 

difference table of order "ord" ("ord" being the highest 

divided difference calculated). This function is not 

available in MATLAB; it can be found in the appendix. 

*i Yi A A2 A 3 A4 
100 205 2 25 0 00110 0 00000 0 00000 
200 430 2 47 0 00105 0 00000 0 00000 
300 677 2 68 0 00100 0 00000 0 00000 
400 945 2 88 0 00105 0 00000 0 00000 
500 1233 3 09 0 00105 0 00000 
600 1542 3 30 0 00110 
700 1872 3 52 
800 2224 

Table IV.1. Divided difference table for tape recorder data 

We see in Table IV. 1 that the second divided 

differences are virtually constant, and the third divided 

differences are zero (to five decimal places). This 

suggests that the data is essentially quadratic (again, see 
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Section 6.3 of (2) to see why this is true), which leads us 

to attempt to fit a second-order polynomial to the data. 

Fitting a second-order polynomial to the data can 

be accomplished with the following M-file: 

c=100:100:800; 
t=[205 430 677 945 1233 1542 1872 2224]; 
p=polyfit(c,t,2) ; 
x=0:1000; 
y=polyval(p,x) ; 
plot(c,t,'o',x,y) 
xlabel('counter reading') 
ylabel('elapsed time (sec)') 
legend('observed data','model prediction') 

The plot in Figure IV. 7 shows that the second-order 

polynomial model does a very good job of capturing the trend 

of the data even though the residual plot shown in Figure 

IV. 8 reveals that the model does not pass exactly through 

each data point. 
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Figure  IV.7.   Second-order polynomial model 
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Figure  IV.8.   Residuals  from 2nd-order polynomial model 
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Figure IV. 8 reveals how good the quadratic fit 

really is. The largest error shown in this plot is less 

than one second; a comparison of the error with the 

magnitude of the dependent variable (elapsed time), which is 

measured in thousands of seconds, results in a largest 

relative error of about one-tenth of one percent. This 

certifies the accuracy of the quadratic model. 

Let's look at another example that will further 

demonstrate the advantages of using low-order polynomials. 

b)        Volume of  a Ponderosa Pine 

Recall that previously we attempted to model the 

volume of Ponderosa Pine Trees with a 13th-degree 

polynomial. Figure IV. 6 demonstrates that, although this 

high-order polynomial does pass exactly through each data 

point, it might be better to model the situation with a low- 

order polynomial. To determine the order of the polynomial 

that would best fit the data, we first produce a divided 

difference table (using the Ponderosa Pine Tree data 

previously given) with the M-file shown below: 

d=[17 19 20 22 23 25 31 32 33 36 37 38 39 41]; 
v=[19 25 32 51 57 71 141 123 187 192 205 252 248 294]; 
D=divdiff(d,v,4); 
dlmwrite('f:\thesis\divtab', D, '\t') 

This M-file produces Table IV.2. 
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d V A A2 A 3 A4 

17 19 3.0000 1.3333 -0 1000 -0.0667 
19 25 7.0000 0.8333 -0 5000 0.1333 
20 32 9.5000 -1.1667 0 3000 -0.0247 
22 51 6.0000 0.3333 0 0278 -0.0563 
23 57 7.0000 0.5833 -0 5357 0.6191 
25 71 11.6667 -4.2338 5 6548 -1.5429 
31 141 -18.0000 41.0000 -11 3167 2.5000 
32 123 64.0000 -15.5833 3 6833 -0.1417 
33 187 1.6667 2.8333 2 8333 -2.8333 
36 192 13.0000 17.0000 -14 1667 4.5583 
37 205 47.0000 -25.5000 8 6250 
38 252 -4.0000 9.0000 
39 248 23.0000 
41 294 

Table IV.2. Divided difference table for Ponderosa Pine Tree 
data 

As it turns out, the divided differences in Table 

IV.2- provide very little useful information to help 

determine the degree of polynomial to use. Negative values 

(anywhere in the table) and large values in the high order 

divided differences (3rd or 4th) tend to result from errors 

and irregularities in the observed data. We resort to an 

educated guess and try a quadratic model. This M-file 

generates the quadratic model as well as the scatterplot at 

Figure IV.9 and the residual plot at Figure IV.10: 

d=[17 19 20 22 23 25 31 32 33 36 37 38 39 41]; 
v=[19 25 32 51 57 71 141 123 187 192 205 252 248 294]; 
p=polyfit(d,v,2); 
x=17:.1:41; 
y=polyval(p,x); 
plot(d,v,'o',x,y) 
xlabel{'diameter') 
ylabel('volume') 
legend('observed data','model prediction') 
figure(2) 
plot(d,polyval(p,d)-v, 'o',d,zeros(size(d))) 
xlabel('diameter') 
ylabel('residual') 
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Figure  IV.10.   Residuals  from 2d-order polynomial model 
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The model shown in Figure IV.9 seems to capture 

the trend of the data more accurately than the model shown 

in Figure IV.6. To illustrate, suppose we desire to know 

the volume of a 28-inch diameter tree. According to 13 - 

degree polynomial model, the volume of this tree is expected 

to be almost 494 board feet, an unreasonable estimate 

(compare this to the actual data: a 31-inch diameter tree 

yielded only 141 board feet). On the other hand, the 

quadratic model predicts a volume of just under 100 board 

feet, a much more believable number. 

The errors plotted in Figure IV. 10 also seem to 

indicate that the quadratic is a good fit. For comparison, 

let's try modeling this data with a cubic polynomial. The 

M-file (not shown) that generates the cubic model (Figure 

IV.11) and residual plot (Figure IV.12) is nearly identical 

to the one used for the quadratic fit. 
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Figure IV.12. Residuals from cubic model 

There  does  not  seem  to  be  any  significant 

difference  (in terms  of accuracy)  in the two models. 
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However, one might be inclined to select the cubic model 

over the quadratic for reasons of proportionality. Diameter 

is a linear measure, and we know (see Bass Fishing Derby- 

example in Chapter III) that volume is proportional to the 

length cubed. 

3.   Cubic Spline Models 

Cubic spline models combine the advantage of high-order 

polynomials to pass exactly through each data point with the 

feature of low-order polynomials (data smoothing) to capture 

the trend of the data. However, while high- and low-order 

polynomial models can be useful to both extrapolate and 

interpolate, cubic spline models are generally only useful 

for interpolation purposes (see Section 6.4 of (2) for a 

detailed discussion of splines). 

MATLAB constructs cubic splines with its spline(x,y,xx) 

function. The syntax is yy = spline(x,y,xx) , where x and 

y are vectors representing the data to be modeled, xx is the 

new abscissa (x-axis) vector representing the range over 

which the spline will be evaluated, and yy is the output 

vector containing the value of the spline function at each 

point in xx. 

Let's consider again the Vehicular Stopping Distance 

problem for illustrative purposes. The M-file below 

demonstrates how to use MATLAB to model total stopping 
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distance with a cubic spline (using mean total stopping 

distance data from Table III.l): 

speed=20:5:80; 
obs=[42 56 73.5 91.5 116 142.5 173 209.5 248 292.5 343 401 464]; 
x=20:.1:80; 
y=spline(speed,obs,x); 
plot (speed, obs, 'ko',x,y) 
xlabel('speed (mph)') 
ylabel('total stopping distance (feet)') 
legend('Observation','Cubic Spline') 
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Figure IV.13. Total stopping distance modeled with cubic 
spline 

Figure IV.13 shows the features of cubic spline models. 

Note the smoothness of the model and how it passes exactly 

through each data point. We could easily use this model to 

interpolate between data points. For example, a few 

modifications to the previous M-file, as noted below, can 

provide us the stopping distance predicted by the cubic 
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spline model for any speed within the domain of our data 

(i.e., between 20 and 80 mph).   Figure IV.14 provides a 

visual demonstration of this capability. 

speed=20:5:80; 
obs=[42 56 73.5 91.5 116 142.5 173 209.5 248 292.5 343 401 464]; 
x=20:.1:80; 
y=spline(speed,obs,x); 
yl=spline(speed,obs,28); 
plot(speed,obs,'ko',x,y,28,yl,'+') 
xlabel('speed (mph)') 
ylabel('total stopping distance (feet)') 
legend('Observation','Cubic Spline') 
text(28,50,['stopping distance at 28']) 
text(28,20,['mph is ' ,num2str(yl), ' ft.']) 
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Figure IV.14. Cubic spline model used for interpolation 
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V.   SIMULATION MODELING 

In situations where either the modeler cannot construct 

an adequate analytic model to explain the behavior being 

observed or the behavior itself is probabilistic in nature, 

Monte Carlo simulation may provide a useful approach. In 

this chapter, we demonstrate MATLAB's capabilities for 

simulation modeling by means of several examples. We first 

cover random number generation, followed by simulations of 

both deterministic and probabilistic behaviors. In this 

process, we introduce the MATLAB function random and 

demonstrate the use of logical operators in MATLAB. Chapter 

7 of (2) contains a more detailed discussion of simulation 

modeling. 

A.   RANDOM NUMBER GENERATION IN MATLAB 

Random numbers can be generated in MATLAB in many 

different ways using several different functions. The 

function we use exclusively for this chapter is random. The 

syntax for using this function is 

r = random('name•, a, b, m, n) 

where name represents the name of the distribution desired 

(i.e., 'unif for uniform, 'norm' for normal, and 'bino' for 

binomial, to name just 3 of the 20 distributions available); 

a and b represent the parameters of the desired 

distribution; and m and n represent the dimensions of the 
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desired output (i.e., m = n = 1 will result in a scalar 

output of one random number; m = 2, n = 3 will result in a 

2x3 matrix of random numbers; and so forth).  We use the 

Uniform distribution exclusively in this presentation. 

To demonstrate the use of this function,  a simple 

example is in order.  The input: 

» r=random('norm»,0,1,1,5) 

results in the output: 

r = 
-0.4326   -1.6656    0.1253    0.2877 

1.1465 

which consists of a  five-element row vector containing 

random samples from a normal distribution with mean zero and 

standard deviation one.  Obviously, since this is a random 

number generator, different results are achieved when the 

same command is entered again.  With this command, MATLAB is 

capable of quickly generating enormous arrays of random 

numbers,  making it a necessary and convenient tool for 

conducting simulations. 

We now look at several examples. 

B.   SIMULATING DETERMINISTIC BEHAVIOR 

1.   Area Under a Curve 

In this section, we demonstrate the use of Monte Carlo 

simulation to model a deterministic behavior: the area 

under a positive curve y = f(x). First identify any number 

M such that  0 < f(x) < M  over the closed interval [a,b]. 

88 



is in the interval [a;b] and y± is in the interval [0,M] , 

for i = 1,2,...,n. Then count the number of points (Xi,yi) 

that fall under the curve, and call this number count. 

Finally, calculate the area under the curve to be 

(approximately) 

AREA  = M(b-a) count/n. 

A formal algorithm for this process can be found on page 221 

of (2). 

The following M-file computes the area under the curve 

y  = cos(x)   over the interval 

-n/2<x<n 12 

using M = 1: 

count=0; 
a=-pi/2; b=pi/2; M=l; 
n=100; 
x=random('unif',a,b,n,1); 
y=random( ' unif , 0,M, n, 1) ; 
z=y<=cos(x); 
count=sum{z); 
area=(b-a)*M*count/n 

This file creates two n-long vectors, x and y, of 

random numbers drawn from the uniform distribution. The x 

values are chosen from the interval 

-7r/2< X< nil, 

and the y values are taken from [0,1]. Once these vectors 

are created, the MATLAB logic operator "<=" creates the 

vector z: the line "z=y<=cos (x) ;" can be translated, "Test 

each x and y pair; if y is less than or equal to cos (x), 
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assign the value one to the corresponding element in z. 

Otherwise, assign the value zero to the corresponding 

element in z." The sum of the elements in the vector z then 

corresponds to the number of random points from our sample 

that fall on or below the curve. The area is then computed 

as indicated in the last line of the above M-file. 

Note the power of using logic operators in MATLAB. An 

alternative is to use "for" and "if" loops, but they 

significantly increase the time required for the simulation 

(for large n (in the neighborhood of 10,000), the time 

required for running this simulation using loops instead of 

logic operators can be measured in minutes, whereas with 

logic operators, the time required is decreased by a factor 

of about 25) . A general rule of thumb for any MATLAB code 

is to avoid using loops whenever possible. 

Running the above M-file for various values of n 

produces the following results: 

approx. area 
1000 2.0106 
2000 2.0122 
3000 1.9855 
4000 2.0169 
5000 2.0062 
6000 2.0070 
7000 1.9940 
8000 1.9977 
9000 1.9726 

10000 1.9984 

Table V.l. Monte Carlo approximation to the area under the 
curve y -  cos(x) 
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We can compare these results with the actual area, 

which is 2 square units and see that our simulation model is 

indeed reasonable. Note that increasing n does not 

necessarily result in greater accuracy. 

Figure V.l provides a visual representation of how the 

Monte Carlo simulation works (the simulation equates to 

throwing darts randomly at a dart board). 
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Figure V.l. 500 random points to approximate the area under 

the curve y  = cos(x) 

Let's  look at  another example of  a deterministic 

behavior modeled with Monte Carlo simulation. 

2.   Volume Under a Surface 

Suppose we wanted to determine the volume of the sphere 

X2  + y2  + z2  < 1 
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that lies in the first octant, x>0, y>0,z>0. We can 

approach this problem in much the same way as for the area 

under a curve problem (see page 22 3 of (2) for a formal 

algorithm) by using the M-file below: 

a=0;   b=l;   c=0;   d=l;   M=l; 
n=100000; 
x=random( 'unif ,a,b,n, 1) 
y=random( 'unif ,c,d,n, 1) 
z=random('unif',0,M,n,l) 
v=(x.A2+y.A2+z.A2)<=1; 
count=sum(v); 
area=(b-a)*(d-c)*M*count/n 

Running this code for various values of n produces the 

following results: 

n Approx. vol. 
1000 0 52600 
2000 0 54550 
3000 0 52933 
4000 0 52575 
5000 0 51940 
6000 0 51767 
7000 0 52429 
8000 0 53312 
9000 0 52233 

10000 0 52430 

Table V.l. Monte Carlo approximation to the volume in the 
first octant under the unit sphere 

The actual volume is 0.5236 to four decimal places. 

Again, notice that increasing the number n of random points 

does not necessarily result in increased accuracy. 

C.   SIMULATING PROBABILISTIC BEHAVIOR 

1.   Tossing a Fair Coin 

It is generally understood that the probability of 

obtaining a head in tossing a fair coin is 0.5.  This does 
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not mean, however, that one out of every two tosses results 

in a head. It only means that in the long run the ratio of 

heads obtained to the number of coins tossed should be close 

to 0.5. 

To simulate n coin tosses for any value of n, we need 

only draw n uniformly distributed random numbers from the 

interval [0,1] and count the number of samples less than 

0.5. This count value represents the number of heads 

obtained. For a formal algorithm, see page 229 of (2) . The 

M-file below performs this simulation: 

n=1000; 
x=random('unif',0,l,n,1); 
y=x<=0.5; 
numheads=sum(y) 
percheads=numheads/n 

Running this code for various values of n produces the 

following results: 

Number Number Percent 
of of Heads 
Tosses Heads 

1000 504 0.50400 
2000 1012 0.50600 
3000 1523 0.50767 
4000 1998 0.49950 
5000 2476 0.49520 
6000 2990 0.49833 
7000 3492 0.49886 
8000 3996 0.49950 
9000 4545 0.50500 

10000 5099 0.50990 

Table V.3. Results of tossing a fair coin 

This next example for simulating a roll of a fair die 

is more complex. 
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2.   The Roll of a Fair Die 

Instead of only two possible outcomes, as in tossing a 

coin, we now must simulate an event with six possible 

outcomes. In order to do this, we modify our code to 

distribute the count of random values between zero and one 

into six "bins." The formal algorithm for this simulation 

is on page 229 of (2) . Our modified M-file for this 

simulation appears below. 

n=1000; 
x=random('unif', 0,1,n,1); 
yl=x<=(l/6); 
y2=x>(l/6) & x<=(2/6) 
y3=x>(2/6) & x<=(3/6) 
y4=x>(3/6) & x<=(4/6) 
y5=x>(4/6) & x<=(5/6) 
y6=x>(5/6); 
num_ones=sum(yl) 
num_two s=s urn(y2) 
num_threes=sum(y3) 
num_fours=sum(y4) 
num_fives=sum(y5) 
num sixes=sum(y6) 

Notice the use of compound   logic statements.   As an 

example, the line 

y2=x>(l/6) &x<=(2/6); 

can be translated, "Create a vector called y2 whose elements 

are equal to one for every x such that 1/6 < x < 2/6 and 

zero otherwise." Simply summing every element of this 

vector (using the sum command) gives the number of "twos" 

rolled in this simulation. 
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Running this code for several values of n  produced the 

following results: 

Number Percent Percent Percent Percent Percent Percent 
of Ones Twos Threes Fours Fives Sixes 

Rolls,   n 
10 0 10000 0.20000 0 10000 0 20000 0 30000 0 10000 

100 0 10000 0.22000 0 13000 0 19000 0 16000 0 20000 
1000 0 17800 0.16100 0 20400 0 15300 0 15900 0 14500 

10000 0 16880 0.17140 0 16040 0 16270 0 16520 0 17150 
100000 0 16648 0.16708 0 16542 0 16520 0 16883 0 16699 
Table V .4 .   Results  from n i "Oils   C )f < ä  fair si x-side< 1 d ie 

Comparing these results with the expected result of 1/6 

for each entry shows that the model is indeed reasonable. 

For large n, the simulation results are close to the 

expected value. 
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VI.  LINEAR PROGRAMMING 

Linear programming (LP) is a branch of mathematics used 

to obtain an optimal (maximum or minimum) value for a 

predetermined linear objective that is subject to certain 

linear constraints. This technique is very useful for 

solving such problems as resource allocation, profit 

maximization, and transportation system optimization, to 

name just a few. 

A typical LP consists of a set of decision variables, a 

linear objective function, and a set of linear constraints. 

We define these terms below: 

Decision variables: the parameters over which the decision-maker has 
control. For example, if a carpenter must decide how many chairs and 
tables to make to maximize his profit, his decision variables would be 
number of chairs to make (call this X) and number of tables to make 
(call this Y). 

Objective function: a linear combination of the decision variables to 
be maximized or minimized. For example, suppose our carpenter 
makes a net profit of $10 for chairs and $25 for tables, and he desires 
to maximize his net profit. His objective function would then be 

Maximize 1 OX + 25 Y 

Constraints: side conditions that must be met. The objective function 
must be maximized (or minimized) subject to these conditions. 
Continuing with our carpenter example, a possible constraint could be 
in the area of available materials. For example, suppose the carpenter 
has 250 board feet of wood available to make chairs and tables. If 
chairs require 17 board feet of wood and tables require 29, then the 
constraint for wood would be 

17X + 29Y<250 
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Linear programs can be solved in many different ways 

using a variety of graphical, algebraic, and computational 

techniques. We will discuss two methods of solving such 

problems:  geometric and the tableau Simplex methods. 

A.   GEOMETRIC SOLUTIONS 

To demonstrate a geometric approach to solving linear 

programs, let's look at an example involving a different 

carpenter (taken from section 9.1 of (2)). 

EXAMPLE: The Carpenter Problem. 

Scenario: A carpenter makes tables and bookcases and sells them for a net 
profit of $25 and $30 each, respectively. He would like to determine how 
many of each to make each week in order to maximize his profit. He has 
690 board feet of lumber available each week and up to 120 hours of labor. 
He estimates that tables require 20 board feet of lumber and 5 hours of 
labor to complete, while bookcases require 30 board feet of lumber and 4 
hours of labor. 

The first step to solving a problem like this is to put 

all of this information into a workable format. So, we let 

X represent the number of tables to be produced and Y denote 

the number of bookcases. We can formulate the carpenter's 

problem as follows: 

Maximize  25X + 30Y       (objective function) 

Subject to: 

20X + 30Y < 690 (lumber constraint) 

5X + 4Y < 120   (labor constraint) 

X, Y > 0 

98 



Now, let's look at the geometric representation of this 

problem. 

First, we plot the lumber constraint: 

25 

20 

w 15 
CO u 
o 

10- 

(0,23) 
 1 ,  

>< Infeasible 

Feasible 
Region 

\20X+30Y = 690 

.   \(34.5,o; 

10 20 
X-tables 

30 40 

Figure VI.1. Geometric interpretation of the lumber 
constraint 

The line 2OX + 3 0Y = 690 represents the region in which 

the lumber constraint is met at equality. The phrase "met 

at eguality" is used to describe a situation where a 

constraint is satisfied exactly. In this problem,  for 

example, if the carpenter decided to make no tables and 23 

bookcases, he would use exactly 69 0 board feet of lumber. 

So is the case of any other combination of tables and 

bookcases that lies along this line. 
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Note, however, that the constraint for lumber is an 

inequality constraint. This translates geometrically to 

(X,Y) combinations (combinations of tables and bookcases) 

that lie not only on the line, but also anywhere to the left 

of the line. We call this the feasible region for this 

constraint. Any (X,Y) combination lying in the feasible 

region is guaranteed to meet the lumber constraint. To 

check, select the point (10,5) (corresponding to the 

potential decision to make 10 tables and 5 bookcases) . It 

is easy to see that this point lies to the left of the line 

in Figure VI. 1. We can also see that the lumber required by 

this table/bookcase combination is 

20(10) + 30(5) = 200 + 150 = 350 board feet 

which is less than the maximum available lumber of 69 0 board 

feet per week.   We see that the point (10,5) is indeed 

feasible as far as the lumber constraint is concerned. 

Note that lumber is not the only constraint; we also 

have a constraint for available labor. We now plot the 

labor constraint along with that for lumber. 

The feasible region for both constraints together, 

shown in Figure VI. 2, is a bit smaller than the one in 

Figure VI. 1. In order for a point to be feasible, it must 

satisfy both constraints. Only those (X,Y) combinations 

that lie inside this feasible region do so. This region 

turns out to be a convex set (also known as a polygon) . 
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Figure VI.2.  Lumber and labor constraints 

The final two constraints in our problem indicate that 

the decision variables X and Y must be nonnegative. That 

is, (X,Y) combinations must lie above the X-axis and to the 

right of the Y-axis in order to be feasible. The feasible 

region (shaded) shown in Figure VI.2 already accounts for 

these two constraints. 

Now that we have plotted the feasible region, we have 

narrowed our search for a solution somewhat. We know that 

the solution must lie inside (or on the border of) the 

feasible region, since this is the only geometric location 

where all the constraints are met. There are an infinite 

number of points within the feasible region; fortunately, 

however, it turns out that an optimal solution to a linear 
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program, if one exists, lies on one of the extreme points of 

the convex set formed by the intersection of the set of 

constraints. The values of the objective function at the 

extreme points are 

Extreme Objective 
point function value 
(0,0) $0 
(24,0) $600 
(12,15) $750 
(0,23) $690 

Table VI.1. Objective function evaluated at the extreme 
points of the feasible region 

So, to maximize his profit, the carpenter should make 

12 tables and 15 bookcases. This combination earns him $750 

per week, and there exists no other combination that would 

earn him more. This is the optimal solution to this linear 

program. 

B.   TABLEAU SIMPLEX METHOD 

As the name suggests, the tableau Simplex Method of 

solving linear programs involves arranging the coefficients 

of the objective function and constraints in a table, or 

tableau. For a complete description of this method, see 

Section 9.3 of (2). To demonstrate this method, we will 

again use the Carpenter's Problem. 

The appendix contains an M-file called tableau.m that 

serves as an interactive tableau-based LP solver.  We will 
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demonstrate the use of this program as we go along.  Let us 

begin with the necessary format for the LP. 

In order to use the tableau method to solve a linear 

program, the LP must be expressed in standard tableau 

format. Tableau format assumes that the objective function 

is to be maximized and the constraints are "less-than-or- 

equal-to" inequalities. Additionally, all variables are 

nonnegative.  The Carpenter's Problem, which is to 

Maximize 25X + 3 0Y 

Subject to 

20X + 30Y < 690 

5X + 4Y < 120 

X, Y > 0 

is already in the desired format. 

Prior  to  solving  with  the  tableau,  one  final 

modification to the LP is needed.  We first constrain the 

objective function to be no worse than its current value 

(assumed to be zero to start) and express this idea with the 

less-than-or-equal-to constraint 

-25X - 30Y < 0. 

We then add nonnegative slack variables to all constraints 

so as to transform them into equality constraints.   This 

process results in the augmented constraint set 
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20X + 30Y + a = 690 

5X + 4Y + b = 120 

-25X - 30Y + z = 0 

where all variables are nonnegative. The value of the 

variable z represents the value of the objective function. 

Now that we have the correct format, let us begin using 

tableau.m  to solve this problem. 

The M-file tableau.in is executed by typing the word 

"tableau" at the prompt in the MATLAB Command Window. The 

first screen that appears is a description of the program 

and instructions for its use. Figure VI. 3 shows what 

appears in the MATLAB Command Window when tableau is 

executed. 
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rj MAT 1 AB Coimndnd Window 

Hie   £dit  Ü/rntew   Help 
mm&\ 

o ffl :&M m\m\ ?i 

» » 
* TABLEAU SIMPLEX TUTORIAL • 
* * 
* This simple program guides the user through the steps of soluing a    * 
* linear program using the tableau simplex method. It is executed from  • 
* the MATLAB Command Window by entering the command "tableau" (the name  * 
* of the M-file). All inputs for this tutorial » 
* require the linear program to be in STANDARD TABLEAU FORMAT. That is, » 
* all constraints are EQUALITY constraints with SLACK UARIABLES, and the * 
* objective function is of the form   -25x1 - 38x2 + z - 0   (the Right » 
* Hand Side — RHS -- is ALWAYS zero. This program requires all input to » 
» be correct — you cannot change input once you hit the ENTER key. As a * 
» result, make sure the input is correct BEFORE hitting the enter key. * 
» If you make a mistake, press the CTRL and C keys simultaneously. This * 
» uill abort the execution of the M-file. Then, re-execute this program * 
» by again typing "tableau" at the command prompt. » 
* * 
* Written by Donouan Phillips, 25 October 1998. • 

Hit any key to begin using the tableau simplex tutorial. 

Figure VI.3. Instruction screen for running tableau 

On the next and subsequent screens, we are prompted to 

enter the necessary information with which the tableau will 

be constructed.  Figure VI.4 shows the first such screen. 

■<} MAT LAB Command Window 

Fie   £cfit  Window   Help; 

füGO EÜ3 

üvm ^.Mml H »li;§l ?| 
Enter the number of variables for the Standard-~g£ 
Form Problem (including slack variables, excluding z) ==> 4 

How many of these are slack variables? ==> 2| 

jj*5 
Figure VI.4. The user is prompted for information with which 

to build the tableau 
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This process continues until all necessary information 

has been entered. The program then displays the initial 

tableau, shown in Figure VI.5. 

■■} MAT LAB Command Window 

! Rle   £dit   Wjndow   Jfelp 

The initial tableau is displayed below. 

Tableau 0: 
ix1     x2 

20 
5 

-25 

x3 xk RHS 

30 
H 

-30 

1 
0 
0 

0 
1 
0 

0 
0 
1 

Hit any key to begin pivoting. 

We will now begin piuoting. 

Enter the column number (1 through 4) 
for the entering variable ==> 2| 

BBE3 

690 
120 

0 

,'Z 
Figure VI.5. After all data is entered, the initial tableau 
is displayed and the user is prompted to choose an entering 

variable 

Note that the tableau displayed in Figure VI.5 portrays 

the Carpenter's Problem. The initial extreme point implied 

by this tableau is the origin. The variables xl and x2 are 

independent variables assigned the value 0; the variables 

x3, x4, and z are dependent variables whose values are to be 

106 



determined (x3 and x4 are the original slack variables 

corresponding to the two constraints in the problem). Each 

row in this tableau corresponds to a constraint from the 

problem, with the last row representing the objective 

function. 

To pivot, we must select an entering variable. At this 

point, either xl or x2 could enter, since their coefficients 

in the objective function are both negative (indicating that 

either variable could improve the current objective function 

value). We will choose x2 as the entering variable since it 

has the largest (in absolute value) negative coefficient. 

Tableau prompts the user to enter the column number 

corresponding to the variable chosen as the entering 

variable (column 2 in this case). An intermediate tableau 

is then displayed, as shown in Figure VI.6. 
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|-,i MAT LAB Command Window BSE! 
£ile £dit Window Hefe 

D & <% &*. Hi .O| ffl laljd : ■ 
Based on your selection of column 2 as the 
variable, ratios are calculated below. 

entering 

^ 

Intermediate Tableau: 
x1     x2     x3     x4     z     RHS RATIO 

20      30       1       0       0 
5       k                  0       1       0 

-25     -30       0       0       1 

690 
120 

0 

23 
30 

Enter the row number (1 through 2) 
corresponding to the exiting variable ==> 1 •j 
'M-..■.-:.■. HMJ :>W 

Figure VI.6. Once the entering variable is chosen, an 
intermediate tableau is displayed and the user is prompted 

to choose an exiting variable 

Tableau automatically computes the ratios necessary for 

conducting the feasibility test to choose the exiting 

variable. We choose x3 as the exiting variable since its 

corresponding ratio is smallest in value. We indicate this 

choice by entering the number 1 (corresponding to row 1) at 

the prompt in Figure VI.6. Tableau then pivots by 

performing the necessary row operations and displays the 

updated tableau, shown in Figure VI.7. 
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<} MAT LAB Command Window 

Fäe   |dit   Window  Jjelp 
HBO! 

Here is the new tableau. Check for optimality. 

Tableau 1: 
x1    x2 

0.667 
2.33 

-5 

x3 

1 0.0333 
0 -0.133 
0       1 

xk RHS 

0 
1 
0 

0 23 
0 28 
1 690 

Is it optimal? If not, enter 1 to continue. 
If so, enter 0 to quit. ==> | 

~3 

M 
Figure VI.7. The new tableau is displayed 

The value of the objective function at this point is 

690, but we can see that this is not optimal because there 

is still a negative coefficient (of -5) in the objective 

function line of the tableau. 

Since optimality has not yet been achieved, we enter 

the number 1 (to continue pivoting) at the prompt in Figure 

VI.7. We will then be prompted to choose new entering and 

exiting variables resulting in a new tableau. The process 

continues until we determine that optimality has been 

achieved. At this point, the optimal objective value is 

displayed (see Figure VI.8), and we are offered the 

opportunity to run the program again if desired. 
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«} MAT LAB Command Window 

File   Edit   Window   Help 

Hfljiaf t*3 

D \3r m 
Here is the new tableau.    Check for optinality. 

Tableau 2: 
x1 x2 x3 

0 
1 
0 

1 8.87111 
0 -8.8571 
0 8.714 

x4 

8.286 
8.429 
2.14 

RHS 

8 
8 
1 

15 
12 

758 

Is  it  optimal?    If not,  enter 1  to continue. 
If so,  enter  8 to quit.    ==>  0 

The  value of the objective function at optinality is    758 

Vou can determine values of the decision variables from the tableau above. 

Thank you for using this tutorial.    Would you like to run 
another LP?    Hit 1  for VES,  8 to quit      ==> 

Figure VI.8.   Final  tableau with optimal  objective value 
displayed 

The M-file tableau.m can be found in the appendix. An 

Internet address is provided to make this file available for 

download and unrestricted use. 
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VII. CONCLUSION 

In this thesis, we have demonstrated MATLAB's ability 

to handle the data requirements of many mathematical 

modeling scenarios. The inherent data manipulation, 

graphical and statistical capabilities of MATLAB make it an 

ideal software package for this type of work. MATLAB's 

easy-to-learn coding language enables the user to build 

models ranging from the most simple to some of the more 

complex, and, once the model is complete, to conduct 

critical sensitivity analysis with only minor modifications 

to the original code. This and other features make MATLAB 

the consummate platform with which to model and/or simulate 

most observable behaviors. 

ill 
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APPENDIX. FUNCTION M-FILES 

M-files sited in the body of this thesis but not listed 
are included here.  The first two,  rto(xfy)  and 
cfit(x,y,n),  use equation (5.7) on page 154 of (2) to fit 
one-term polynomial models.  The third, divdiff(x#y,order) 
produces divided difference tables.  The last, tableau.m, 
executes a tutorial on the Tableau Simplex Method. 

All of these M-files are available for download at 

http;//math.nps.navy.mil/Archive 

function b=rto(x,y) 
% rto(x,y) performs linear regression (of y on x)on a set of data 
% points, but forces the regression line to go through the origin 
% (thus the name rto — "regression through the origin") 
% 
% rto(x,y) takes as input two equally-sized vectors, x and y, 
% and outputs the coefficient, b (as in y=bx), which creates the 
% best fit (in the least squares sense) line through the 
% origin. 
% 
% Written by Donovan Phillips, August 24, 1998 
% 
% initialization 

if nargin ~= 2 
error('Two vectors required as input.') 

end 
If length(x) ~= length(y) 

error('Vectors must be of equal length.') 
end 

% calculate coefficient b 

a=sum(x.*y) ; 
c=sum(x.A2); 
b=a/c; 
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function  a=cfit(x,y,n) 
%   a   =   cfit(x,y)   generates   the   coefficient   "a"   for  the 
%   quadratic  model 
% y=axn 

% 
%   where   x  and  y  are  equal-length  vectors   representing 
%   the  data being  analyzed and n  is  the  degree  of  the 
%   desired  one-term polynomial. 
% 
%   Written  by  Donovan  Phillips,   October   15,   1998. 

%   initialize 

if nargin ~= 3 
error('Three input arguments required.') 

end 
if length(x) ~= length(y) 

error('Vectors must be of equal length.') 
end 

%   compute a 

b=x.An; 
c=b.*y; 
d=x."(2*n) ; 
a=sum(c)/sum(d) ; 
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function D=divdiff(x,y,order) 
T. D = divdiff (x,y, order) generates a divided difference table with 
% the highest order equal to "order" (the number of columns produced 
r. will be equal to order) for the data vectors x and y.  If no order 
%   is specified, the function will default to an order of 3.  This 
'i   function calls the MATLAB function diff.m, which produces the 
%   standard difference of a vector. 

% Written by Donovan Phillips, November 5, 1998. 

%  initialize 
format bank 

if -isequal(size(x),size(y)) 
error('Input vectors must be the same size and orientation (row or 

column).') 
end 

if nargin==2 
order=3; 

end 

if size(x,l)==l 
x=x' ; 

y=y' ; 
end 

D= [ ] ; 

'?; construct the divided difference table 

D(: , 1:2) = [x y]; % first 2 columns of the table 

for n=l:order 
fill=zeros(n,1); 
denom=[]; 
for i=l:(size(x,1)-n) 

denom(i)=x(i+n)-x(i) ; 
end 
a=D(l:(size(x,l)-n+l),n+l); 
yl=diff(a)./denom'; 
D(:,n+2)=[yl;fill]; 

end 
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clc 
v=t 

• •a************************************************************************' 

* TABLEAU SIMPLEX TUTORIAL *' 
* * i 

* This simple program guides the user through the steps of solving a     * ' 
* linear program using the tableau simplex method.  It is executed from  *' 
* the MATLAB Command Window by entering the command "tableau" (the name   *' 
* of the M-file).  All inputs for this tutorial * * 
* require the linear program to be in STANDARD TABLEAU FORMAT.  That is,  *' 
* all constraints are EQUALITY constraints with SLACK VARIABLES, and the  *' 
* objective function is of the form   -25x1 - 30x2 + z = 0    (the Right * ■ 
* Hand Side — RHS — is ALWAYS zero.  This program requires all input to *' 
* be correct — you cannot change input once you hit the ENTER key.  As a *' 
* result, make sure the input is correct BEFORE hitting the enter key.    *' 
* If you make a mistake, press the CTRL and C keys simultaneously.  This  *' 
* will abort the execution of the M-file.  Then, re-execute this program  *' 
* by again typing "tableau" at the command prompt. *' 
* *' 
* Written by Donovan Phillips, 25 October 1998. *' 
* *' 

disp (v) 
disp (blanks (4)) 
disp('Hit any key to begin using the tableau simplex tutorial.') 
pause 

% determine size of tableau: 

format short , clc 
num_dgts=3; 
disp('Enter the number of variables for the Standard-') 
n=input ('Form Problem (including slack variables, excluding z)  => ') ; 
if n>8 

error('Too many variables (8 is max)') 
end 
fprintf('\n'), fprintf('\n') 
s=input('How many of these are slack variables?  => ') ; 

clc 
disp('Enter the number of constraints') 
m=input (' (excluding nonnegativity constraints)   => ') ; 
if m>4 

error('Too many constraints (4 is max)') 
end 

% construct the initial tableau: 

tab=zeros(m+1,n+2); 
numc=num2str (m) ; numv=num2str (n) ; 

for i=l:m 
clc 
disp(['Enter the ',numv,' coefficients for constraint ',num2str(i)]) 
z=input(' (separated by spaces)  => ' , 's') ; 
tab(i,1:n)=str2num(z); 

fprintf('\n'), fprintf('\n') 
disp('Enter the value of the right hand side') 
tab(i,n+2)=input(' (RHS) for this constraint => ') ; 

end 

clc 
disp(['Enter the ' ,num2str(n-s) , ' variable coefficients for the TABLEAU-FORMATTED']) 
z=input('objective function (i.e., at least SOME should be NEGATIVE) => ' , ' s') ; 
tab(m+1,1:(n-s))=str2num(z); 
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tab(m+l, (n-s+1) :n)=zeros (1 ,s) ; 

tab(l:m,n+l)=zeros(m,l); 
tab(m+l,n+l)=l; 
tab(m+l , n+2)=0; 

% initial tableau is now complete. 

% display initial tableau: 

clc 
disp ('The initial tableau is displayed below.') 
fprintf('\n'), fprintf(■\n') 
disp('Tableau 0:') 

varhold=[•xl' 'x2' 'x3• 'x4' 'x5' 'x6' •x7' ■x8 ' ] ; 

A=num2str(tab,num_dgts); 
w=size(A,2)/size(tab,2); w=w-1.5; w=round(w/2) ; 
varstr=[]; 
for 3=1:n 

varstrd, ((j-1) * (2*w+2) +1) : (j* (2*w+2)) ) = [varhold( (2*j-l) :2*j) ,blanks(2*w)] ; 
end 
varstr=setstr(varstr); 
varstr=[varstr,'z'.blanks(2*w),'RHS']; 

disp (varstr) 
fprintf(*\n') 
disp (A) 
fprintf('\n'), fprintf('\n'), fprintf('\n') 

% conduct pivoting 

disp('Hit any key to begin pivoting.') 
pause 
fprintf('\n'), fprintf('\n'), fprintf('\n') 
disp('We will now begin pivoting.') 
fprintf('\n'), fprintf('\n') 

status=l; count=0; 
while status ~= 0 

count=count+l; 
fprintf('\n'), fprintf('\n') 
disp(['Enter the column number (1 through ',numv,')']) 
enter=input('for the entering variable => '); 

% compute RATIO and display intermediate tableau 

ratio=tab(:,n+2)./tab(:,enter) ; 
ratio=num2str(ratio,num_dgts) ; 
ratio(m+1,:)='*'; 
clc 
disp(['Based on your selection of column ',num2str(enter),' as the entering']) 
disp('variable, ratios are calculated below.') 
fprintf('\n'), fprintf('\n') 
disp('Intermediate Tableau:') 
disp([varstr,blanks(2*w),'RATIO']) 
fprintf('\n') 

spc=[]; 
for i=l:m+l 

spc(i,:)=blanks(2*w); 
end 
disp([num2str(tab,num_dgts),setstr(spc),ratio]) 
fprintf('\n'), fprintf('\n') 

disp(['Enter the row number (1 through ',numc,') ']) 
exit=input('corresponding to the exiting variable => ') ; 
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fprintf('\n') 

% compute new tableau 

piv=tab(exit,enter); 
tab(exit,:)=tab(exit,:)/piv; 
for k=l:m+1 

if k ~= exit 
tab(k, :)=-tab(exit, :)*tab(lc, enter) + tab(k,:); 

end 
end 

% display new tableau 

clc 
disp('Here is the new tableau.  Check for optimality.') 
fprintf('\n'), fprintf('\n') 
disp(['Tableau ',num2str(count) ,':']) 

A=num2str(tab,num_dgts); 
w=size(A,2)/size(tab,2); w=w-1.5; w=round(w/2); 
varstr=[]; 
for j=l:n 

varstrd, ((j-1) * (2*w+2)+1) : (j*(2*w+2)))=[varhold((2*j-1) :2*j) ,blanks (2*w) ] ; 
end 
varstr=setstr(varstr); 
varstr=[varstr,'z',blanks(2*w),'RHS']; 

disp (varstr) 
fprintf('\n') 
disp (A) 

% optimality decision 

fprintf<'\n'), fprintf('\n') 
disp('Is it optimal?  If not, enter 1 to continue.') 
status=input('If so, enter 0 to quit.  => ') ; 

end 

% display results 

fprintf('\n'), fprintf('\n') 
disp(['The value of the objective function at optimality is  ' ,num2str(tab(m+l,n+2))]) 
disp(blanks(2)) 
disp('You can determine values of the decision variables from the tableau above.') 
disp(blanks(3)) 

% option to run the tutorial again 

disp(['Thank you for using this tutorial.  Would you like to run']) 
q=input(['another LP?  Hit 1 for YES, 0 to quit  => ']); 
if q = 1 

tableau 
end 
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INDEX OF MATLAB TOPICS AND COMMANDS 

MATLAB commands appear in bold type. 

C 

Curve fitting 
cfit 65,66, 113,114 
Divided differences 

divdiff 76,79, 113, 115 
POlyfit 64, 68, 69, 70, 71, 72, 74, 75, 77, 80 
polyval 72,74,77,80 
rto 29, 33, 51, 54, 57, 60, 65, 66, 113 
spline 64,84,85,86 

D 

Data manipulation 
max 29 
sum 89,92,93,94 

F 

File management 
dlmwrite 43; 76 
Set path g 

Functions 9 

H 

Help commands 

help 13 
lookfor 14 

/ 

Interpolation See Curve fitting 

L 

Linear programming 
tableau.m 104j H6 

Logic operators 89 
compound 94 

Looping 
end 18 
for 18,20,32,115 
if   115, 118 
Looping index 22 
while U7 

O 

Operations 9 
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p 

Plotting 
Adding text 

num2str 29, 54 
text 29,51 

Labels 
title 24 
xlabel 24 
ylabel 24 

legend 25,55,65 
Line types and colors 26 
plot 22,23,24,25 

Punctuation and special characters 
apostrophe 7 
brackets 7 
semicolon 7 

R 

Random number generation 
random 87,89,93 

V 

Variable management 
clear  12 
whos 10 
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